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Abstract

This thesis is concerned with the problem of controlling concurrent access to shared
data. A language construct is proposed to enforce such control; a specification language
is defined to describe the formal requirements of such control; and verification
techniques are given to prove that instances of the construct satisfy their specifications.
The techniques are justified in terms of the definition of the construct and the
definition of the specification language. Results are given for a program that
implements a number of the techniques, illustrated by verifying several versions of the
readers-writers problem. Interactions between instances of the construct are discussed
in the context of a simple file system.
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I. Introduction

This thesis is concerned with the problem of controlling concurrent access (0
shared resources. In systems where Sévera‘l' , Processes may “aftempt to concurrently
access the same resource, there is a need to impose some order on those accesses. If
certain orders are not enforced, certain classes of access td the resource thay conflict and -
cause erroneous results. Other classes of accéss to' the ‘sam¢’ tesource tiay proceed
concurrently without conflict. This is true whether the resource is a data base, a printér
spooler; a file system, or a communications network, although the definition of the

classes of access may be specific o the resource.

Given this framework, we can informally define a few terms. Two accesses are
concurreiit if both accesses have started, yet neither - has completed.. Typieally, -
concurrent access is controlled through exclusion, where a progess executing one class.
of access prevents the initiation of another access from:any of .a set-of classes. When -
one access excludes another, the latter must ‘wait- for the former to complete. - If one -
4CCess 1S w.uung for anothcr Wthh is wamng for the ﬁrst to compku, then no progress
can be made on cither, WhICh is Cd"Ld dmdlock If two proccs‘scs are rmdy o initiate
accesses, yet one access excludes the other, then the process‘that proceeds is said tohave
priority over the other. A process. that is geady. to. prtaccgq, yet is cunlim:;_;jl}g denied

progress, suffers from starvation.

We wish to ensure that programs executing: concusrently. on shared- resources
obtain correct results, where correctness is defined in terms of programs mecting their

specifications. We wish to show, for properly designed programs, that certain accesses
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exclude others, that the proper accesses are granted priority, that appropriate access
may proceed concurrently, that there is no deadlock, and that there is no starvation. We
limit this concern to the issues that are specific to concurrency, and not those that apply
to determining whether the access, executed by itself, has the correct effect on the
resource or .returns the .correct information. Also, we are not concerned  with
concurrency issues unrelated to accessing resources, such as process creation and

deletion.

1.1 Initial decisions

Our first decision is that it is desirable to have a separate programming
language construct to realize reliable control. of concurrent access.  We believe it
insufficient to simply propose a comstruct and present: some examples of its use. A
lunguage designer Should also provide tools that increase the utility and reliability of a

language construct. Consequently, this thesis presents:
* A language construct to control concurrent accesses o shared resources.
* A definition of the semantics of the construct.

* A specification language to describe properties of ¢oncurrency control
that are to be realized through this construct.

* A verification methodology that is used to prov; that instances of the
construct satisfy their specifications. R



* The design of a program to make use of this methodology. and perform
verification.

One of the contributions of this thesis is that all of these elements are presented

together for a single construct.

Our approach to concurrency: control is: heavily influenced by by the monitor
construet of {Brinch Hansen 72] and [Hoare 74}, and the programming languages CLU
[Liskov et. al. 77, Liskov 79a] and Alphard [Wulf 78], whieh-in turn-awe much to Simula
[Dahl 72} In these languages, access to-data obiects is achieved through-alimited set of
operations, which are generally implemented-as procedures. -Just as: CLU:and -Adphard
scparate implementation details from the abstract appearance of data objects, our
objective is to separate concurrency control from access to data objects. The monitor
construct has a similar goal, although a slightly different view of data. The connechon
between concurrency cbntrol and data abstraction is a key issue in defining our

construct and in our verification techniques.

Verification does not prove that programs operate correctly, in the sense thata
verified program performs exactly as desired. There.is often no reason o believe that
the specifications are betler than the program text, for dcscribing‘:tl;ic desired vbc»htuv:ibr
for the program. Verification performs the task of taking two different descriptions ofa
problem solution and showing that the. descriptions. agrec,; in.the scnse that every
behavior that the program exhibits is allowed by the specifications.  The two
descriptions are quite,dim:rcntin kind: the codus ;;:lvg\ iiigdﬁiﬁfhk description, and the

specifications describe the effects of exceuting the code. ‘Ihe confimation of afriving at
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the same answer through two different methods ought to increase-confidence in the

solution.

.

We wish our techniques to be vzilid whether there is truc‘concurrency, using
multiple processors, or simulated concurrency, using a multiﬁlexéd Single processor, or
a mixture of the two. To accomodate this range of behavior, we have described accesses
as being concurrent if both accesses start before cither ends. . This definition may. seem
_overly broad, since two accesses are considered to be concurrent if one access occurs as
part of the other. We choose to make a conservative decision:: two accesses are
potentially concurrent if the start of either access can occur: between the start and finish

of the other.

1.2 Modularity

~ Large programs are usually difficult to understand »;m_d modify not bccausé of‘
their size, but because of their complexity. This cdmplexily is far more often Vduc to
interactions between parts of programs than it is to inherent complexity in the task
being performed. The notion of modularity is widely accepted as a means of limiting
these interactions, although lhg term is defined in various ways. This principle is usclul
in constructing programs, in modifying programs, and i verifying prograns.

Modularity in verification has also been called the-independence principle.

The proof of a routine may only depend upon its own specifications and
implementation, and upon the external specifications of the routines 1o’
which it textually refers. [Good, Cohen and Keeton-Williams 79, p.45]
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We propose to make use of the following kinds of modularity:

* Data abstraction is the organization of data.into distinct objects, where
each object belongs to a distinct data l;ype and dII‘LCt access to the objects
of any type is limited to the operations of the type. This deflinition of data
abstraction follows the lcad of the CLU programming language.

* Concurrency control is separated from data access. The implementation
of concurrency control is kept distinct from the implementation-of.data. .
access, although the external interface of the two implementations may be
similar.

* Specifications of concurrency control are separated from specifications.of .
other properties of a program. Further, these specxﬁcatlons are meant to
*be independent of any implementation: - : . 2 '

* Verification of concurrency control is separated from other program
verification techmiques. -in_ particular, -the. verification .of access t0 a
resource and the verification of the concurrency control for such access
are independent, although each may assume “the $pecifications of the
other (we will assume an absence of circularity, since it is a separable
issue).

It is possible to find fault with modularity, since the kinds of scparation we

have described may make it more difficult to acheive other desirable properties.

* The principle of modularity can be mmpplu,d the wrong kind, of
separation prevents necessary data from being ‘communicated from one
‘place 10 another. We: hope W show thmugb the-usc. of examples that the
kinds of mudulamy we propose to use do not prohlblt necessary
" information from being in the mnmpnatu phaces. =
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* Modularity can be inefficient: the mechanism- for transferring from onc
context to another, as in a procedure call or process switch, can be
expensive. Further, by limiting access to certain data, certain
computations may be redundant. We will not address this issue directly
in this thesis, but will return to this objection in our conclusions.

1.3 Related work

Much of the initial work on the construct we propose was done in conjunction
with Carl Hvewitt [Hewitt and Atkinson 79]. Since then, there has been a divergence in
our efforts; this thesis explores issués of automatic. verification of concurrency control,
while Hewitt has concentrated on more pnmmve control of concurrency in a context
where programs communicate by passing messag(s. Some of this work can be found in

[Hewitt, Attardi, and Liebcrman 79]

Below we briefly discuss related work on language constructs, concurrency

specifications, semantic models, and some differences in our approach from other work.

1.3.1 Related language constructs

Most authors in lhlS area note the importance of hmmn;, the mleCll()HS
between concurrent processes through the use of hnguagc constructs spcmhc.ully
designed for this purposc. We have a s:mﬂar approe&h in this thesis, with the-addition

that we attempt to relate concurrency control to abstract (uscr-dcl'mcd) data typcs.



We have already noted the intcllectual debt owed to the monitors of Brinch
Hansen and Hoare For now, we charactcnze the monitor approach by noting that
concurrency is controlled by only allowmg one proccss ata tlme to cxecute an opuratlon
that bdongs to a monitor. qun that mltml cxclusron further executlon orders may be
1mposcd by the monitor operatrons We will prescnt a more detalled companson of our

constru}ct with monitors in Chapter 2.

Another-line of thought in concurrency control is to fimit parallel processes to
communicating through the passing of messages. Various authors have proposed such
an approach dmong thr,m [Good, Cohm and Kceton-Wllhams 79, Hoare 78,
Fleman 79]. Concurrcnt actlons only procec.d when a process that is scnt a mcssage
chooses to receive it. Exclusron for a class of access derwes from a r«.fusal to acc«.pt a
message of thot class. This approach is particularly well suited to distributed systems,

where different processes may reside on widely separated processors.

These two approaches are not as different as they might initially appear.
Although our presentation will follow the first approach, we will arguc in this thesis that

our technigues are valid for the sccond approach as well.
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1.3.2 Concurrency specifications

Our work on specifications is strongly inﬂuéhced by Gréif[Gréif 75]). In this
approach, certain events related to an access are identified: access réduést. access start,
and access finish. 'Speciﬁcati‘ons are given by iﬁdicacing whichv orders of these eveh.ts
arc required. Fdr exafnple, suppose that the executicn of one kind of access (call lt X)I
prevents another kind of access (call it Y) from startmg We can sp.ecify‘ this
requirement by stating that ro Y. access start event can occur. betwecn any X access start
event and the corresponding X access finish event.

A similar approach to speciﬁcations appears in [}La‘venthal 78}, in which such

{

specifications are used to synthesize implementations to realize concurrency control.

1.3.3 Related semantic models

Various modcls have been used to deseribe concurrent execution of programs.

In the models we discuss here, a program proceeds from state to statc by atomic actions.

* In [Howard 76, Good, Cohen and Keeton-Wiltiants 79}, and in our work,
actions that take place are recorded in sequences called histories, and
program semantics are described by giving predicates that must be
satisficd for historics.

*In [Greif 75], actions are related by partial orders called  behaviors.
Program behavior is given by predicates on these partial orders.



*In lcmboml logic (a survey-level explanation of this ‘model appears in -
[Lamport 80]) the model uses sequences of states, rather than actions.
Predicates that describe program behavior may be apphed to sequences

~~~~~~

" of states, for a linear time theory, or to all scquences of states with a
- common sequence of states as a prelix, fora branching time theory.

* Anothér related modet, ‘based on trées ‘of states, is presented’in
[Owicki 75]. . Given an initial state and a program, the behavior of the
program is characterized by a tree of states, where the arcs represent
execution of an action-that leads. to the next state. - :

All of the above models use some structure to.:relate either states or actions, and

describe program behavior by giving predicates on:sych structures, .

It is poss:ble to dISCUSS statcs in terms of equwalence classes of h|stones (or

behaviors). For example

\

[There] is a correspondence between states and behavior that allows one ta.
define the stales of a sysiem as an equivalence relation over the possible
behaviors. [Greif 75, p. 72}
We believe it better to think of predicates on histories rather than to attempt to regard
states as cquivalence classes. Thie distinction lies in our doncern with  certain propertics

of objects at any particular time, rather than-the entire state of the object.
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1.3.4 Differences in our work

We approach concurrencyvcontrol no{tI _pust by déﬁnihg a Ignguage construct,
but also by providing specification and verification -metheds for the construct. Further,
these methods are actually demonstrated in a simple automatic verifier. By providing a
wide range of support for a relatively narrow constmct W_e ‘hop‘é to illustrate the benefits

of a unified approach to controlling concurrent access {0 resources.

We have attempted a greater use of modularity ‘than is commonly found in
other works. In partictlar; we couple :controt of concurrent access to the prinéiples of
data abstraction with strong typing, while maintaining separation of concurrency

control specification and verification from data access specification and verification.

1.4 Plan of thesis

Chapter 2 introduces the serializer language éonstruct,' which is a method for
controlling. concurrent access. An informal preseatation is made of the syntax and
scmantics of the construct. An cxample, based on the readers-writers problem, is.
discussed in detail. A simplification.of the serializer construct is:defined for use in later
chapters. A translation of scrializers into clusters and scmaphores is given as a possible

implementation strategy.

Chapter 3 presents a simple semantic model that supports concurrency, and
uses it to define more preciscly the simplified serializer construct. A definition

language based on first-order predicate calculus is used to describe serializers as
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enforcing limitations on the execution order of programs.

Chapter 4 discusses the four kinds of concurrency control specifications used
in this thesis. A simple specification language for concurrency control is defined.
Specifications are given for the readers-writers problem, with several variations, and the

bounded buffer problem.

Chapter 5 presents aﬁd justifies rules that are used to verify that serializers
meet their specifications. Although the definition of serializer semantics and the
definition of the specification language are sufficient to allow us to verify serializers, it
would be difficult to write an automatic verifier that directly uses these definitions.
Thercfore we define and prove a number of inference rules that allow us to infer
sp'cciﬁcalio’n clauses given the assumption (or proof) of other specification clauses,. An

example is given of how the rules allow verification in a simple mechanical fashion.

Chapter 6 describes a program that uses the verification rules to establish that
a serializer meets its specifications. We first describe how the structure of the program
incorporates the verification rules, and then present examples of proofs that the

program has performed.

Chapter 7 discusses issues related to interaction of serializers, and presents an
extended example of serializer usage: a simple hicrarchical filing system. Guidclines
arc given for providing scrializers for data types that are originally used in a

single-process environment.



Chapter 8 contains a discussion of how the work in the previous chapters can

be extended to cover more complex problems and more complex serializers.

Several examples of serializers are presented in the appendices, and are
referred to from time to time in the body of the thesis. The last appendix presents a

table showing where the various definitions and rules used in this thesis are defined.
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2. Serializers

This chapter introduces the serializer construct, which is intended to provide a
modular method of concurrent access to-shared: data: objects. Related programming
language constructs are monitors [Brinch Hansen 72, Hoare 74] path exprcss:ons

[Campbell.and Habermann 74] and commumcanng sg:q ucnttal processes [Hoare 78]

Wec treat the serializer construct as ‘an’ extéiision to the CLU programmmg
language [Liskov et. al. 77, Liskov 79a]. However, the deIC nduas behmd serializers go
beyond amy particular programmmg languagc Earher Vt.l‘SIQﬂS of the serializer
construct were presented in [Hewitt andiAtklnSOﬁill"I‘]:_aﬁd-{_ngnttand’ Atkinson 79]

using a significantly different language.

In this chapter we describe the. rationale for ;he design.,ol‘ Lhe serializer
construct, mformally dd’me the syntax and m:fﬂahttcs af seﬁahzers dnd presunt an
‘example of a serializer. - Then we d%crtbe thc hmited vemoaﬂf smalmus that we will
be using in the remaining chapters, give a P"?ﬁtl"?‘i"_}‘Qv'cch!f‘fiQn,,Of scrializers in

terms of semaphores; and compare the serializer and moliitorconsteyéts. -

RTINS PER I
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2.1 Serializer design issues

We believe that a language construct for controlling concurrent access to

shared objects should have the following qualities:

* The shared objects should be separated into identifiable sets of objects,
each set being a resource. ‘A resource should also-be treated as an object,
allowing resources to be composed from other resources. Each resource
can only be directly accessed through a set of operations associated with
the resource. ‘ | | -

* The construct should separate control of concurrency from the algonthms
that access the resource. This separation simplifies both the concurrency
control and the resource -access. Some concurrency - may be lost by
requiring complete separation, since it is likely to be difficult to pamally
overlap operations. However, we believe that the adde&sumplmty is well
worth the reduced concurrency.

*To aid reliability and verifiability, the shared ‘resource should not be
accessed except through an object that controls access. to the résource.
The concurrency control construct should enforce this restriction, since
relying on programmers to follow cotiventions‘is not satisfactory.

* To case the writing of programs that access resources, operations that
access the object controlling the resource should.appear to be, as nearly as
practical, the same as the operations that access the resource. That is, the
construct that controls-concurrency should have the same appearance o
the uscr as the construct used for the resource.

-21-



Based on these criteria, we designed the serializer construct to have the

following characteristics:

* Like the cluster construct of CLU, the serializer construct is used to
define data types by defining a set of operations for. each type. The
objects of a data type defined by the serializer construct :are called
serializer objects. _Each serializer object is used to control a scparate
resource object. The operations of the data type are serializer operations.
For the sake of modularity, serializer objocts can enlry be accessed
through the appropriate serializer operations. ‘

* The execution of protected parts of a scrializer operation for a particular
serializer object precludes the simultaneous execution of protected parts
of any serializer opcration on the same scrializer object. The process
executing a protcctcd part of an operatlon lS s.nd to havc. possesszon of the

| smahzcr object.

*During the execution of a serializer opcmtlon po&sessmn of the scrmluer
object can be released ‘and regained. ‘ 1t'is particufarly uscful to release
possession while accessing the resource, thereby permitting concurrent
activity involving the scrializer object. Afer the TesOUrce  access,
possession is regained to indicate that the aceess, is complete. This
temporary release of possession permits external procedures to be
invoked from a sertalizer ‘operation white ‘allowing - other  serializer
operations to continue. :

* During the exccwtion of-a serializer operation, it may become necessary to
suspend execution 1o wait for some condition to become true. For
example, if some operation needs exclusive access to the résotiree, it must
wait until no other resource accesses arc in progress. During this pause,
possession of the serializer object is released o allow other requests 1o
proceed concurrently as far as they are able. '
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Figure 1. A picture of a serializer object

O e e PPt L L +
| |
| Serializer object |
| |
| L L + ]
| : | I
Request --> (Pause) Request'-~-> | |
11
| | Resource | |
- ‘ 1 [N
Reply <--- - (Pause) Reply'<--- | |
I , I P
| ittt + |
I
+

A graphical description of how the serializer cdﬁétfuct is' used is'shown in
Figure 1. A Request is the start of an opemtion, and a Repl y its te‘rm{nalion (possibly
on the requests and replies as lhcy are lranSmItted ‘bt,tween the resource ‘md the
requesters. The (Pause) is optlom% based on wht.ther the respuree access: requcsted
can be performed mmndmtdy whm ﬁu wqucst cnters the. smalm.r In most cascs, a
serializer operation passes the information it receives “from the c';illcr”{lu the
corresponding resource operation, :md»mm»ﬂw*inﬁ)rmatkm it receives from the

resource operiation 1o the caller.



2.2 Serializer syntax and mechanism

This section gives a brief syntax for the serializer construct and the statements
used only by serializers. We also give an informal description of ‘what each form is used

for and how it works.

The syntax used for a serializer is similar to the syntax used for a CLU cluster.
The hei:der names the serializer and Tists the'ex’t:‘e:rhaﬂy available ‘dpérétio‘ﬁs; “Then the
representation type for the serializer is given, which determines the names to be used
for the components ‘0[ ;,t_he s_eriali}zeir:_(_})bjgct;_ f{hen the operations are given as
procedures. The form of a serializer is:
name = serializer is operation_name_list
rep = representation_ ype | |
operation_name = proc ( forma[ argumenls )
optional_return_list =~
optional_exception_ Ilsl

procedure_body
end operalion_name

. % other operations
_ end hname

We have used italics to informally indicate synﬁlctic quanlitiés;

As with clusters, the scrializer construct defines a new-data:type, where the
type is denoted by name. Certain of the operations are -used 110 create: new serializer
objects of the named type, while other operations ase- used-to- access the serializer.
nhy,us Operations named in the . npemlmu_fwmc list-.are. the c,m'mqllv available

s

opc ations, and may be used by code ()lILSIdL uf &hc wmh/u Op;,mlmns not mum.d in
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the operation_name_list may only be used internally. Starting the execution of any
externally available operation that directly uses the serializer object requires that the
executing process gain possession of the serializer objéct (starting execution is shown as
Request in Figure 1). Termination of an bpérétidn that has possession releases
possession (termination is shown as Reply in Figure 1). To reduce the likelihood of
deadlock, an operation that has possession of a serializer object is prohibited from

dircctly calling another opcration that requires possession of the same serializer object.!

We have also added two new kinds of statements that can only be used in a
scrializer. The enqueue statement is used to suspend execution (zind release possession)
until some condition is satisfied (shown M'(Pausej'gin:"ﬁgum 1). The statement has the
form:

enqueue gueue_expression until booleqn__expréssion |
The queue_expression denotes a queu€ thatls used t,qi imposc a first-in-first-out
disciplinc on processes waiting for conditions.” The boolean_expression denotes the
condition that is required to be true before a process can continue execution. Such a
condition is called a guarantee. When a process is waiting for the condition to be true,
we say that the process is waiting in thc quuuu. smce some ldmu ﬁcmon of the process
“is stored in the queuc. ‘When a process wallmg ina quuu. is alk)w;d to proceed, it
regains possession of the serializer object, the process identification is remaved from the

qucuc, and the enqueuc statement terminates..

1. In practice. it may not be possible o detoet when this' oceurs. - This does not affect our objective,
which is to reduce the chances for errors. We do not believe that it is pu\sxhlc for a language restriction to
completely climinate this kind of error-without: unduly affectingthe cxprdssive power of the lainguage.
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The queues used in serializers are first-in-first-out unless otherwise speciﬁed:2
If some process starts execution of an enqueue statement before another process starts
execution of an enqueue statement for the same queue, the first process-wilt complete
execution of the enqueue statement before the second process, provided. that either

stateﬁlent terminates.

The join statement is used to perform some body of statements that should be
executed while nol in possession of the sérializer object. The:statement has the form:
" join crowd_expression o
body_of_statements
end o SR T -

A crowd_expression denotes a set used to identify the processes that have started
exccuting a join statement but not completed it: There may be several such sets, called
crowds, so that different classes of access can be dist;iﬁgaishggi.? The join statcment
starts by placing some identification of the exécuﬁr@ process into. the specified crowd
and releasing possession (shown as Request'. in Figuge 1). Afgr possession is released,
the body:of statements is cxecuted. Finally, possession is regained (shown as Reply® in
Figure 1), the process identification .is removed. from. the crowd, and. execution
continues after the-end of the join statement.: Typically..a join inside.of an. vperation is

performed to invoke the corresponding operation of the resource.

. An cx.unpk of the use of priority queues appears in Appendin-.-
‘The Join statement is so called because the process exccuting the statement Joins a med nf snml.ur
pmecs\c\ 1t nut be comfused wuh fork and: join primitives: used: for progess creation and termination in

ulhm languages.
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A process attempting to start or continue exccution of an oper#tion on a
serializer object must wait until there is no other process that has possession of the
serializer object. If the process is waiting for some condition to be. satisfied, it does so in
an explicitly named queuc of an enqueue statement. If the process is waiting to gain
possession at the start of an operation or at the end of a join statement, it does so in an

implicit queue called the external queue, which is serviced in first-in-first-out order.*

Possession of the serializer object is released at the start of an enqueue
statement (after the process is placed on the queue), the stast of a join statement (after
the process is placed i_n the crowd), and at the end of an bberatidn. Whenever.
possession is released, the explicit serializer'queues are examined to determine whether
any queue has a process at its head with a'true guarantee.: If any of the guagantees are
true, then one of those associated waiting proceswes will get-possession of the serializer,
and be removed from its queue. Then the process can pmcwd with the execution of
the operation. In evaluating the guarantees, there is no assurance that the guarantees
will be evaluated in any particular order, or-that they will all be-cvaluated unless all
evaluate to false. 1f alt guarantees are false, then the process.on the external queue that

has waited the longést (if #ny) is removed from the-queue. and gains possession,

4. We have chosen to use a single external queue for simplicity of explanation.  Using a single external
queue is a valid implementation, although it is not the only valid implementation. »
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2.3 An cxample: the readers-writers problem

The general readers-wu'itefs' problem [Courtois, Heymans and Parnas71]
presents a simple resource that is to be accessed by ggncgtrcﬁt processes. There are two
operations on the resource, read and write. A process performing a read operation is
called a reader, while a process performing a. write opt,rauon is called a writer. In
keeping with the serializer methodology, we hdve spht the problem into writing a
cluster to implement the resource and constructing a senahzer that encapsulates such a
resource. The basic constraint on conlcuyl"r;eﬁcj: };i,s thatrgacfus should fndt?acccss the
resource concurrently with writers;, and wut:.mshuuld not access the resource
concurrently with other writers. The general readers-writers problem imposes no

further requirement on the erder of processing for operations. - -

N

The example we present iri*‘Fi‘gLi‘l"e“ 2 has the t‘é‘q.ui‘rém&nvt that if a read
operation on the serializer starts bc,fore a write opemtlon on the SLl'ldlIZLl‘ the reader
will access the resource beforc, that wnter and that thlS ﬁmt—m -first-out (FIFO)
ordering is also imposed on writers wnh n,spuct to readers, zmd on Wl‘llu’b with respect

to other writers. This variant of the rcadus-wnlc problc.m is dlSClISbt.d in [Gruf 75].

In the FIFO serializer, there are three operations, .one to create a new
scrializer object (and new resource), one to-tead a valug associded with a key in the
Fesource, one to write a value associated with a key in the resoarce. Only the serializer

operations that access the representation (rep) of a serializer object argument need to
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Figure 2. FIFO serializer

% The following serializer is a first-in-first-out solution to the
% readers-writers problem.

FIFO = ser1a11zer is .

' create, % Create a new serialized resource object
read, % Read a value from the resource given a key
write % Write a value to the resourcs given a key-

% Each serializer object has the follouang:rapresentation -
rep = racord [rc: crowd, % readers' crowd

wc: crowd, - % writers' crowd

Xxq: queue, ’ % common queue

res: resource] % unserialized resource

create = proc {) returns (cvt)
return (rep${rc: crowdScreate (),
wc: crowd$create (),
xq: queue$credte (é;”*' :
res: resource$create () })
end create’ ' - Coe SRR

read = proc (x: cvt, k: key) retuens (value).:

% Wait until there are no active writers
. . enqueue x.xq ug;i]‘crowd$eqptx*(;,gg),

% Become an active reader & perform the read

join x.#c
return (resourceSread (x res. k))
end: : ‘

end read
write = proc (x: cvt, k: key, v: Vélue)

% Wait until there are no active writers or readers
enqueue x.xq until crowdSempty (x.rc) & crowdSempty (x.wc)

% Become an active writer & perform the write
join x.wc

resourcedwrite (x.res, k, v)

end
end write

end FIFO



gain possession of the serializer objectm5 vTh’e use of ovt as a type declaration for
arguments to operations indicates which arguments are serializer Objects viewed as their
representations. The use of cvt follows the CLU usage, in that it represents a type
conversion between abstract type and representation type that is performed at the
interface of an opemtlon Each senahzer operatlon is llmlted to one cvt argument since
there is no provnsnon for gaining simultaneous possessnon of multnple senahzer objects
There is no restnctlon on the use of cvt used as a return type (even xf we allow mulnple

serializer objects to be returned).

In the read operation of the»-‘ FiFO ‘seri‘al‘iner.r xhe flét;mmn,tee is
crowdSempty(x.wc). Therefore, no readers wﬂlbegm to read {from the resdmee until
there are no writers accessifig the Tesoutce. Smﬁlarty m the write operation, the
guarantee is crowdSempty(x.rc) & crowdSempty(x. wc) Wthh prevenls a writer from

procecding until neither 'readers nor writers arg accéssitg the resource.

The importance of having sole possession of the sermhzer object can be
llluetraled by examining Figure 2 and consldermg the consequmces of nol having such
a restriction.  For cxample, if a wnter dld not have sole p(msslon of lhe scrializer
object aﬂer it performed its enqueue, am)lhef wnu.r cu;uld .,\eccss 1he resouru. between

the first wnter s execution of lhe cnqueuc swlumm anc’l tﬁe }om slatement Ihts would

5. The create operation does not need 10 gain POSSeSSiON. SINEe B, PROCESSCS ut»hc;r than the process
exceuting the create operation could access the objeet, .

6. Note that as an arguiment type duulpllun (‘Vl ,rcqmres a um\ crsmu lmm .lhslr.u.! to repr('\enmtmn
type. and as a return type deseription, the conversion is from uprcscm.limn w abstract lv;ae
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allow simultancous access to the resource by two writers, which violates our initial

requirements for the serializer.

2.4 Simple serializers

It is infeasible to prescnt definition 'speciﬁcation and verification techniques
for gem.ral serializers in this thesis. Therefore, we will resmct our attention to a limited

version called simple serializers. A sxmple senaluer has the followmg restrictions:

* The representation object (of type rep) for a simple serializer is a record
that may only contain a single ‘resource object and a fixed number of
statically named queues and crowds.

*All queue and crowd expressions arc limited to selection of
representation components.

* The guarantees on the enqueue statements can only test for queuc&.mpty,
crowd$empty, the logical and (x & y) of guarantees, "and the logical ‘or
(x| y)of guarantc&s.

“* Only enqueue and join statements may be LXCClItLd whlk in pOSSL‘SbIOH of
the serializer object.

* Each sulalmr opur.mnns must corrcspond «.x.xclly in numbu name, .md
interfice to a corresponding resource operation. - No. statements nuiy. be
exceuted inside a join statement cxcepl to invoke the corresponding
resource operation, teturning its results if there are any. “This restriction
also precludes the handling of exceptions.

* Inside of a simple serializer operation, the return statement docs ot
immediately return an object from the operation; as it would in 2 normal |
operation. Instead, it is used to indicite the object W be returned ‘when
the serializer up«.mlmn terminates. ‘This rcsmcmm lb tmsult to simplify
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the semantic model in the next chapter.

While the above restrictions may seem severe, they allow us to keep our
presentation of details not associated with concurrency control to a reasonable level.
Simple serializers are sufficient to solve the readers-writers problem, as well as some

more involved examples.

In several places throughou{ the theisfis,We will i,n'dic.atef how extensions to
simple serializers can be handled. These extensions include cases where more
complicated computation must occur to determine the order. of hrocessing requests,
where the interface to }thc serializer aiﬂ'érs frohi: thatof : t,h;%‘gljl;hde‘r,l,yinig resource, and

where the serializer and the resource are implemented together.

2.5 Using semaphores to implement serializers

In this section we present a possible impleméntation of simple serializers using

fair semaphores and clusters. We do this for two reasons: -

g

1: To show that the scrializer mechanism is realizable.

2: To give further insight into the semantics of scrializers by gwmb a
translation into a more commonly. undu\ux)d muhanlsm

The semaphores that we use can be freely created, and obey a FIFO discipline when
multiple processes request the same semaphore. We also describe the operations on the

queue and crowd data types used in this implementation of serializers.
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We assume that the semaphore data type has the following operations:

create () returns (scmaphore)
returns a new semaphore with count = 0.

P (S: semaphore)
Atomically tests and sets the count of the given semaphore If count
> 0, the count is decremented and the operation completes. If count
= 0, then it stays 0 and the process performing the P gperation does
not proceed until the count becomes positive. Once the count
becomes positive, the process waltmg the longest decrements the
count and completes the'P operation. =

V (S: semaphore)
Atomically increments the count. Note that a P -operation on an
initially created semaphore must wau for a correspondmg \'

operation.

We assume that the queue data type has the following operations:

create () returns (queuc)
creates a new, empty, queue.

eng (Q: qucue, T: semaphore, G: guar) Do :
adds the T, G pair to the queue, making the queue non- emply lhe
type of G. the guarantee prres'alun |§ a.ssumed m be a predlculc to
indicate whether the guarantec is (rie. '

deg (Q: quceue) signals (un pty)
removes the head pair iff the queue is not emply, otherwise signals

empty.



empty (Q: queuc) returns (bool)
returns true if the queue is empty, false otherwise.

get_guar (Q: queue) returns (guar) signals (empty)
returns the guarantee evaluation procedure at the head of the queue
if the queue is not empty, otherwise signals empty. Note that
queue$get_guar(Q) can also be written as Q.guar.

get_sem (Q: qucue) returns (scmphore)mgnals (empty)
returns the semaphore at the head of the queue if the queue is  not
empty, otherwise signals empty. Note that queueiget sem(Q) can
also be wnut,n as Q.sem.

We assume that the crowd data type has the following operations:

create () returns (crowd)
returns a new, empty, crowd.

insert (C: crowd, T: semaphore)
inserts a ssmaphore into a crowd.

remove (C: crowd. T: semaphore) signals (absent) ,
" removes a semaphore from a crowd if present, othuwusc. sngnals
absent.

empty (C: crowd) returns (bool)
returns true if the crowd is empty, false otherwise.

Implementing a serializer as a cluster that uses sernaphores is-a translation that

has the following cases: - -



1: The serializer becomes a cluster, and the representation object is
extended to include a sem component; which is of type semaphore; and
an eval component, which is of type sequencefqueue]. The sem
component is called the external senmphore, and the evaf companent is
called the queue list. :

2: The create operation initializes the external semaphore to-a newly created
semaphore, and performs semaphore$V on it. The queue list X.eval is
mmally the sequence of all queues in the represemanoa,

3: Each operation that requircs possession is gwen the R)Iiowing prolog

semaphore$P(X.sem)
T: semaphore := semaphore$new( ) ]
where X is the name of the cvt argument, and T is a unique local variable

used to hold a newly created semaphore for the transactlon T is used to
represent the process in queues and crowds. v ,

4: A return statement is translated into an assignment to a temporary
variable (or a multiple assignment if muiupl; return. valuts are present).
This reguires such variables to be declared in the prolog, and their values
rcturned in the epilog.

5: Each operation that requires possession. is giveﬁ ‘the ffolki)wli‘ng épildg:
Eval(X)
where the Eval proccdure is ait internal upemﬁon used t°sefect the next
process o procecd, and will be detailed below.  ~

6: Each statement of the form:
enqueue Q untll G
is translated into: ' )
queueSenq(Q, T, G') % place self in queue

Eval(X) % release possession
semaphore$P(Q. sem) % regain possession
queua“eq(m % resiove. seif: ;fm!l queue

where Q is the queue to use in lhe expression, T is the local sumphort.
variable introduced in the prolog, and G’ is a procedure describedias -



type guar) used to evaluate G

7: Each statement of the form:

join C

Body

end

is translated into: g o

crowd$insert(C, T) . % place self in crowd
Eval(X) % release possession
Body % execute body
semaphore$P(X.sem) % regain possession

crowdSremove(C T) % remove: seif from crowd
where ¢ is the crowd to: joify, and Body is the body of statements to
execute while not in possession.

The Eval procedure sclects the next:process to receive possession. It first
checks (in some unspecified order) the non- empty queues t() determine whether the
guarantee at the head of the queue |s true. The ﬁrst non- cmply quwe found wnh a true
guarantee has V performed on its head semaphore, a-nd Eval returns. If no non-empty
queues are found with true guzirahtees, v IS perfor:nied' on thee).(ternal seruaphore. Eval

can be written as:

7. A reader familiar with CLU may notice that we have taken some liberties in using G, and have not
lMdehmthwwgww:mgmmeuEnmmmwymuwutMﬂH?onmmMmumhhmunmmmh
define G'. We have avoided these issues tor the sake of simplicity: they do nut affect our approach to
concurrency control.



Eval = proc (X: rep)

% examine all queues for true guarantees
for q: queue in sequence[queue]$elements(X.gval) do
if queueSempty(q) then % if queue is empty

continue % then examine next gqueue
end LR
if q.guar(X) then % if guarantee is true
semaphore$V(q.sem) % then allow that process
return %  to continue -exacution
end E
end

% no non~empty'queues,havd.twua guarantees
semaphore$V(X.sem) .% serve the.axteraal queue

end Eval

The above version of Eval always checks the queues in some particular order. It would

be equally valid-to check the quenes.in any order, evea if non-detesministic.

An example of how a serlahzer is 1mp|emented usmg cIusters and semaphores
is shown in Figure 3. We have omltted the wnte operatton smce there is li‘tle

dlffel'(,nCL from thc rcad operation; and the Eval operallon smce lt was shown above

RN

2.6 A comparison of serializers with monitors

The unrestricted serializer construct has many similaritics to the monitor
construct [Brinch Hansen 72, Hoare 74).  Both serializers- and monitors deal with
synchronization by encapsulating details of concurrency control within a set of

procedures. We present a brief comparison of the serializer and monitor constructs.



Figure 3. Semaphore implementation of FIFO

FIFO = cluster is create, read, write

elist = sequence[queue]

rep = record [rc: crowd, % readers' crowd
wCc: crowd, % writers' crowd
X(q: queue, % common queue
res: resource, % unserialized resource
eval: elist, % the queue list

sem: semaphore] % ggaugxtefngl‘semaphore

create = proc () returns (cvt)

E: semaphore := semaphore$create()

semaphoreSV(E)

Q0: queue := queueS$create() -

return ( repS{rc crowdScreate (),
wc: crowdScreate (),
xq: Q,
res: reseurce$create (),
eval: elist$[Q],
sem: £ } )

end create

read = proc (x: cvt, k: key) returns (value)

% Prolog
semaphore$p(x.sem)
T: semaphore := semaphore$create()
v: value

% enqueue x.xq until crowdSempty (x.wc)
queueSenq(x.xq, T, crowd$empty)
Eval(x)
semaphore$P(x. xq. sem)
queueSdeq(x.xq) ‘

% join x.rc: return (resource$read (x res, k)); end
crowdSinsert(x.rc, T) : ‘
Eval(x)

v := resource$read(x.res, k)
semaphore$P(x.sem)
crowd$remove(x.rc, T)

% Epilog
Eval(x)
return (v)
end read

% The write operation is not shown.

end FIFO



below.? Except where noted, properties of the monitor construct are taken from

[Hoare 74]).

A serializer abstracnon is mtended to have. the same interface as the protected
resource, whlle the monitor appears to be a lock on access to the resource. The
serializer construct has the expressive power to be used-as a lock, but the monitor does
not have the expressive: power (o mimic the resource (w‘itﬁout serious loss’of
concurrency)9 The serializer and monitor .Constructs. both protg.ct the underlying
resource by controlling concurrent access to tt, pa‘owdmg that the only access is through
the serializer or monitor. The senahzer comtmct further protects the underlying
resource by allowing the programmer to prevent 'n:ccsﬂo the resource except through
;hc serializer. This protection can be achieved with momtots by havmg a data
abstraction encapsulating a monitor, such that both the resource and the monitor can
only be accessed through the data abstraction.. Our prcferencels to provide this

appearance through a single construct.

The serializer construct alluws pmse:ﬂon of th sgnaluu‘ Qb;cct to be relcased
and regained in a controlled manner within a serlalm,r upc.r.umn In the monitors
presented in [Hoare 74] there is no such pmvusmm l-ﬂ an. x.xtv.nsmn to monitors

[Lampson and-Redell 79] it is possible to wrile operations !ha& &ﬁwt feqmrc possession

8. A comparison of an carlicr version of serialiZers with monitors appears in [Hewitt and Atkinson Ml
An evatuation of serializers, monitors, and path expressions appears in | Bloom 79}

9. Extensions which alleviate this problem have been made for the monitors  presented in
|tampson and Redell 79].



of the monitor. This allows an operation to be written thatwreq.uires possession of the
monitor only for pzuts of the operatlon These protected parts are required to be
mvocatlons of monitor operatlons that requtre possess:on This soluuon IS shghtly more

complicated to use than the serlahzer jom statement but is otherwnse snmtlar

Serializers use explicit guarantees at the point in the procedure: where &
process walts ona queue That guarantee is true when the process ploceeds (prov:dmg
that removmg the process from the queue did not changa the guarantee) Momtors also
have first-in-first-out queues (called conditions), but the expressions that determine
which queues are to be serviced next ‘are »distmﬂétwgheutvfthe various procedures

of the monitor, which complicates the verification task.

As mentioned briefly above, there.is a.basic. difference the use. of queues in
- monitors and serializers... Processes in the same queue in scrializers can be waiting, for
different guarantces. Although the same cffect can be achigved in monitors, it usually

requires extra code to do so, and is difficult to write and understand. -

I"he sermluu construct, like the Ll U clustcr consuuct supports sets of
()bjLClS bt.lun;,mg to an abstract type The mumtura pruposo.d in [Hmrc 74] tend to
suppun onc-of-a-kmd encapsulutlon l‘hls dlfference 13 more a rcﬂetlum of the base
I.m;,ua;,e used tlmn a husu dlffcunce bctweut sumh/ers and momtors ‘We mentmn

a LI

this dtﬂerence because we beheve that supportmg, sets ol‘ Objt.Clb is a better cho:ce o

make, since there is more pututtml concuuency ina sybtem wherc dut.n is pdltlll()m.d

into scparate objects.



2.7 Opportunities for optimization

One objection that might be raised to serializers is that they are inherently
inefficient; at every release of possession the queues must be checked to determine
whether the condition at the head of each ‘queue is satisfied.!? For this objection we

have two answers:

1: It is unlikely that the evaluation of such conditions will be expenswe
compared to the execution of resource operations. - :

2:In the event of the guarantee checking being a significant cost in a
-program, optimization. tecbnuwes are especially: wphcable in this limited.
context.

As an example of how we might optimize the checking of guarantees, consider
the FIFO example. When a writer leaves the writérs crowd, it is casy to prove that both
the ‘readers -and writers crowds are empty. This knowledge allows an optimizing:
compiler to immediately dequene the next transaction in-the quene (if any) whenevera .
' writcr complglcs. In such a ease, no guarantee cval_uation takes place. When a reader
leaves the rcaders crowd it is casy to prove that tt;c '-wrilérs crowd 1:. sﬁll cmpty, which
- allows the compiler to simply chu.k lhc hcad of lh«, quwu for a rc.tdu lhus .wmdmg
any more complex cvaluation. thncvu a wnlu jmm thc wmus crowd all Ummmws
arc known to be false, and do nat nud to be chcckcd at all. In shor( we have shown

that intermediate steps of the vmﬁcauon progmm can kad o su lTICILnl in formatlon o

10. A similar objection is actually raised in {Hoare 74, p. 556}
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perform optimizations that can significantly reduce overhead for checking guarantees.

We have advocated designing, verifying, and implementing serializers and
data abstractions independently. This independence can lead (especially in CLU) to
many levels of procedure calls, where each procedure performs an extremely small part
of the computation. When the overhead for procedure calls costs on the same order as
the rest of the computation, it becomes desirable to substitute the bodies of procedures
for their invocations [Atkinson 76, Scheifler 77]. For serializers in the style we have
advocated, it is generally both simple and beneficial to perform this substitution. We
note that the simplicity of the substitution is greatly aided by our initial requirement

that the serializer present the same interface as the underlying resource.
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3. Semantic Model

In this chapter we present an abbreviated semantic. model for concurrent
execution of programs, and use.it to define serializer semantics. In the next chapter, we

use the model to define a smalt specification language for serializers.

The semantic model we use to define serializers is intended to be embedded .
within a larger semantic rrrodel, just as ;ﬁe seﬁalizer corlstruct is ‘émbeddéd irra larger -
programming language. We will not be concer-néd in’iftially wi;h'\ivﬁiéh iarger model is
used, although we will return to the issue later. Whyétever Iérger model is used, there

must be sdpport for shared objects, side-effects, and concurrency "

We will first give an overview of the semantipmodel for serializers, assuming a
particular larger semantic model. Then we discuss the various components of he
model in detail. Then we give the meaning of the serializér construct by giving
predicates that all serializers must satisfy. Finally, we discuss the role of inductidn in
the serializer model, and outline how the model might be embedded in a different

larger semantic model based on message-passing between processes. - - -



3.1 Overview of scrializer semantics

Informally, the text of a ‘serializcr is 'a set of st?rtcmehts that describe ‘what
happens when serializer oper'mons are executed in a system wrth concurrent processes '
To give the semantics of the semllzer construct, we requrre a deﬁmtron of 'serializer
operations”, a definition of "execution", a definition of "pgocess”, and a dcﬁnition of

"what happens”.

The model we choose can be vrewed as an mterprcter Each procédllre is
represented by a graph composcd of basic rnstmctrons t.hat mdrcate whrch actrons to
perform and arcs between the mstrucuons to mdlcate the order of execution. There isa
globat state; consisting of a set of shared objects and.a set of processes. Each process has
a local state, which includes a set of local objects, a stack-of procedure activations, and a
program counter that indicates the instruction that-the process is to execute next. -Each
instruction represents some basic action. Executing an instruction modifies the global
or. local state. The execution of an instruction always indicates the next instruction in
the process by modifying the program:counter. A process where the next instruction is
permitted to oecur is catled actéve. - Executing certain instructions niy causc 4 progess 1o:

become inactive until certain conditions hold.

For simple scrializers, the only components of the global state modclled are
the state of the queues and crowds for the serializer object, and the state of scrializer
possession. The only component of the local state modelled is the program counter

within a serializer operation.



The interpreter proceeds by choosing an active process, and executing the
instruction indicated by the program counter of that process. Although the choice of
process is non-deterministic, no process that is active may be indefinitely denied:

execution. We call the sequence of instructions executed by the interpreter a history.

‘We can give the semantics of this informal modet through a predicate that
takes a history, an initial global memory state, an initial set of processes (and their local
“states), and a set of graphs representing the procedures in the system, and returns a
boolean indicating whether the history could ‘be producéd Bg'me,intefpreter we have

described. We will call this prc&icate the global Iegalily',predicale. |

In this thesis we are discussing a single fanguage construct. in this context,
presenting a complete definition for a language would occupy more space and attention
than it merits. The scmantics of a language construct can be defined through-a partial
legality predicate that partially. determines the -global legality predicate. For the
scrializer construct, this predicate is false for ‘Histories. that are prohibited  due to
scrializer semantics, and truc for others. -We will not present a definition: of a larger.
language. nor formally statc the interactions between. the serializer construct and the

other kinguage features.



3.2 Nodes

In defining what is meant by "execution of serializer operations”, we first need
to define a representation for an operation and its %soma&ed data Since we are dealing
with only one serializer object at a time, it is convement to regard the senahzer
operationsrand the serializer object as being inextricably bound together into a single
unit. For brevity in this chapter, we:will use the term serializer object to refer to this

unit.

Each serializer operation (bound to an assoaated serializer object) is
composed of nodes. A node is just (mformally spt,akmg) an mstructlon at some location
in a program with |ts qssocmted data. A node graph is uscd to represcnt a serializer
operation, where the arcs in tht, gmph reprcsent sequentlal exucutu)n For simple
serializers, the node graph is degenerate, since there is a hnear ordcr to the nodes. We

have used the term graph to case the discussian of extensions to this model.

The following kinds of nodes are involved with synchronization in a simple

serializer. At such a node, possession of the serfalizer object may be gained or released.

enter (operation_name(formal_arguments)). 'This  nade -represents . the
initial entry to an operation that requires possession of the scrializer
object. After this nod«. is ucuculud lhg, cxwuunt, procuss has
possession. ‘

exit: This node represents the epilog to an operation that requires
possession. Executing this node releases posscssion.



enqueue (queue, guaraniee). This node represents the first part of an
enqueue statement. Executing this node places the process in the
specified queue with the specified guarantee and releases possession.

dequeue (queue, guaranice). This node represents the:second part of the
enqueue statement. Executing this node regains possessmn and
removes the executing process from the queue.

join (crowd). This node represents the start of the join statement.
Executing this node places: the process.in the crowd and releases
possession.

leave (crowd). This node represents the end of the jein statement.
Executing this-node regains posscssion through the external queue
and removes the process from the crowd. :

The following kinds of nodes are used for other primitive actions that can
occur in a simple serializer. |
invoke (invocation): This node represents-the termination of cxecution of

the specificd invocation. For simple scrializers it will only appear
once, and must appear in the body of a join statcment.

return (invocation): As with the iavoke node, the return :pode represents

~ the termination of exccution of the specified invocation.  Exccuting

the return node also- designates the object to b«. n,lumc.d whun the
 seriufizer opuulmn wmnmﬂeszﬂ lhcexlt‘mde SRR

The use of invoke and return nodes in‘Simpfc scrializers is Timited to showing where the

opcrations of the underlying resource are called.



Each node N has the following structure:

* N.kind - an identifier (one of enter, exit, enqueue, dequeue, join, leave,
invoke, return) indicating the kind of node.

* N.next - empty for exit nodes; otherwise the next node in the execution
sequence. Note that the next node for any return node is an leave node if
the return is performed while in a join statement, otherwise the next node
is a leave node.

* N.mob - for enqueue and dequeue nodes, the queue used; for join and
leave nodes, the crowd used; otherwise empty.

* N.expr - for enqueue and dequeue nodes, the condition to guarantee; for
return and invoke nodes, the expression to cvaluate; for an enter node,
the operation name and its formal arguments; otherwise empty. Note
that for an invoke or return node the information about which procedure
is executed and which arguments are used is contained in the expression.

* N.match - for an enqueue node, the corresponding dequeue node; for a
join node, the corresponding leave node; otherwise empty.

The transformation of a serializer operation to nodes will be given by example.
Suppose we have the following operation in a scrializer:

change = proc (x: cvt, d: data) returns (value)
enqueue x.q until crowd$empty(x.c)
join x.c
return (resource$change(x.r, d))
end
end change
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The node graph for the above operation can be represented as:.

N1:
N2:
N3:
N4 :
N5:
NG :
N7:

enter (change(x, d))

enqueue (x.q, crowdSempty(x.c))
dcqlleue (x.q, crowdSempty(x.c))
join (x.c)

return (resource$change(x.r, d))
leave (x.c)

exit

In the above graph, Nl.next = N2, N2.next = N3, and so on; N7.next is

empty. The queues, crowds, and expressions are indicated.

N2mob = N3Imob = xgq

Nd.mob = Némob = xc

N2.expr = N3expr = crowdSempiy(x.c)

The reader should be cautioned that the ‘des)éription we have given for nodes

and node graphs 'is mcomplute We have not dlscfused condmonal shtements

assignment, exceptions, or iteration. In later chaptefs we wnll describe how extended

node graphs would be handled.
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3.3 Events

Informally, an event is the completion of exccution of a node in a process. For

our purposes, the important features of an event are:

* An event is atomic. An event takes no time to occur, although the
amount of time between events is always positive and finite.

* An event is associated with a single node of a serializer.

* An event is associated with a single "process”. We assume that the reader
has some intuitive idea of process. We will introduce a more exact
definition of a specialization of the process notion in the next section.

[t has been proposcd [Greif 75] that an event is a state transition. The state of
a simple seria'izer consists of the state of the scrializer queues (not including the
external queuce), the state of the serializer crowds, and the state of the serializer
possession. Only the simple serializer events (enter, exit, enqueue, dequeue, join, leave)
change the state of possession. Changes in possession that do not alter internal queues
or crowds result from enter and leave ¢vents. Changes to internal queues result from
enqueue and dequeue cvents. Changes to crowds result from join and leave cvents. We

will return to this point in a later chapter.

In a full semantic model we would have to show where an invocation started
and where it terminated.  For simplicity, we have chosen to not represent the event that
marks the start of an invocation. 'F'he invoke and return cvents are sufficient to indicate

where the resource operations are called, which is all that we need at this point in our
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discussion,

A dequeue cvent marks a change in state of the indicated queue, and a change
in the possession of the serializer. A dequeue event for some process will not occur until
after the corresponding enqueue event, and not until that process is at the head of its
queue and the guarantee evaluates to true. The evaiuatum of guarnmees takes place
immediately prior to every. event that releases posessmn (enqueue join, and exit events
release possession). For any event E that releases posscssion, we will assume that
evaluation of the guarantces takes place between E and the serializer event immediately
preceding E. For simplc serializers, where the guarameeg_‘i are ,limi.te:d’iq‘sidéreffect free
evaluation of expressions involving the scrializer state, no furthef events need to be
introduced to represent the cvaluation of guarantees. If more mvolved exprcasuons are

allowed events represcmmg such evaluatlon muv‘ be mtroduced.

14 Transaction_s

For a serializer, a transaction is a sequence of 'serializcr events that oceur for
some process in the execution of a serializer aperation for some serializer object. The
order of events in a transaction is the same as the order in which those events occur in
the exccution of the serializer operation.  Each enter cvent for some serializer object is
the rﬁrst cvent in some transaction, and cach exit cvent is lh«. lust cvent in some
transaction. We assign a unique transaction identifier at the occurrence of an enter

cvent,



A transaction may also be viewed as a segment of a process. There may be
many transactions involving a serializer object for any particular process, but a
transaction can only belong to a single process. The intent of transactions is to capture
only the amount of detail about a process necessary to define serializer semantics.

Where we formerly used the term process, we will now use the term transaction.

Now that we have identified events as being associated with transactions and

nodes, it is notationally convenient to give events a structure. Each event E has several
components:

* E trans - the transaction identifier for the event.

* E.node - the node associated with the event.

* E kind - the same as E.node.kind.

We can associate possession of the serializer object with a transaction by
noting that if there have been more gaining than releasing events for some transaction
in some finite history (the difference can only be 0 or 1), then the transaction has
possession of the scrializer from the last releasing event for that transaction up to the

last event in that history.
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3.5 Histories

For a sermhzer‘ a history is a sequencc (poss:bly infinite) of events that
represents all events that occur for a partlcular serlahzer object For a given serializer
object, there are mf nitely many p0551ble hlstones dependmg on the requests sent to
that serlahzer Ob_]CCt and on the arbltrary choices posslble in selectmg dequeue events

when several queues are ready.

A history can be viewed as being some interleaving of the transactions
involving a serializer object. Every event in a history also belohgs to some transaction.

The reverse is not true, our model includes histories with incomplete transactions. -

Scrializer semantics is defined by stating which' histories-can be produced for
any given serializer object. We define a predicate that, given a representation of
serializer code and a serializer history, will be true il and only if the history could be
produced by the scri;nlizcr. A hisl()ry:that sglisﬁ_es;lhql_gregiegge i:s ealleq a legal history
for that scrializer code. A more complete deﬁnitioﬁ of »alleg’z.nl hlstory Qcc;urs‘ later in this

chapter.
We assume that the following functions are defined on ‘scrializer histories:

Finite(H)
is true il the history is finite; olhermsc false.

Size (H)
returns the number of clements in H il H is finite; otherwise is

undcelined.



Index_set (H)
if H is infinite, returns the set of positive integers; otherwise returns
the set of integers {N | 1 <= N <= Size(H)}.

Nth (H, N)
returns the Nth element of H if N € Index_set(H); otherwise is
undefined.

Head (H, N)
returns a prefix of H that is the first N elements of H, provided that
N € Index_set(H); returns the empty sequence if N is 0; othcrwise is
undefined.

For simplicity, we have chosen to model only those operations that accept a
serializer object as an argument. We assume that the serializer object is initially in some
initial state, such as that obtaincd by cxccutingvits create operation: the resource object
is in its initial state, no transaction has possession, and all queues and crowds are empty.
The model we have presented is only sufficient to represent operations where
possession of the scrializer object is gained. For example, the FIFO serializer presented
in the previous chapter has three operations; the model we have presented is only

sufficient to represent two of them: read and write.



3.6 Definitions

Predicates will be defined in a dialect of first-order predicate calculus.
Functions are deﬁm.d usmg a similar syntax, but avmd the use of quantifiers. We call

this language the definition Ianguage and will refer to it as such in latcrchapters

Many of the followmg dt,ﬁmuons are more wsﬂy expressed if we have a
notation for conditional expresuons. The expressm "if X then Y etsc Z" is taken to be
Y if X is true (even if Z is undefined), and Z if X is false (even if Y is undeﬁned). and
undefined if X is undefined. We also use the "elseif" extension to this notation,‘ as in
CLU, to allow convenient syntax for multiple cases. “{nr cases where the “else” clause is
omitted, "else true” is assumed (which implies that only boolean conditional expression

may omit the “else” clause).

Many of the functions and predicates given belowarx, defined only for finite
histories. In our definitions, these functions and predicates are never applicd to infinite

- histories; so there is no aced to define them for those cases.
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Event E occurs in history H if there is some integer index N such that E is the
Nth event of H. Event E1 precedes event E2 in history H if both E1 and E2 occur in H,

and the.index where E1 occurs is less than the index where E2 occurs.

Occurs (E, H) =
31 € Index_set(H): E = Nth(H, I)

Precedes (El, E2, H) =
11, J € Index_set(H):
1<J&E1 = Nth(H, I) & E2 = Nth(H, J)

Note that we have assumed that an event can only occur once in a history. This is

implicd by later definitions.

As a notational convenience, we introduce the predicate Same_trans(H, [, J),
which is true if the Ith and Jth events in history H are from the same transaction. The

predicate is undefined if the integers 1 or J do nqtrbclong to Index_scl(H).

Same_trans(H, 1, J)) =
-~ Nth(H, I).trans = Nth(H, J).trans
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We often nced to express the idea that a particular event, or all events for a

given node, cannot occur between two given events.

Excludes (El, E2, E,H) =
Precedes(E, E1, H) | Precedes(E2, E, H) | E = E1 | E = E2

Excludes_node (E1, E2, N, H) =
v | € Index_set(H):
~if Nth(H, I).node = N
then Excludes(E1, E2, Nth(H, 1), H)

A slightly more complicated predicate will be needed to specify a more
general  exclusion predicate  (to  be | used in later | chaptérs)
Node_excludes_nodec (N1, N2, N, H) is true iff no event for a given node N can occur
between any two events El and E2, where Elnode = Nl, E2.node = N2, and

El.trans = E2.trans.

Nodeé_excludes_node (N1, N2, N, H) =
v 1) € Index_set(H):
if ( Nth(H, D.node = N1
& Nth(H, J).node = N2
& Same_trans(H, 1, J))
then Excludes_node(Nth(H, 1), Nth(H, J), N, H)

Intuitively, Node_excludes_node(N1, N2, N, H)exprosses the restriction that no-event
gencrated by node N occurs between events generated by nodes N1 and N2, where the

events from N1 and N2 belong to the same transaction.
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We are often interested in the last event of a finite history, or in a history that
lacks only the last event of a given finite history. The functions Last and Front are used

for notational convenience.

Last (H) = Nth(H, Size(H))

Front (H) = Head(H, Size(H) - 1)

Certain events gain exclusive possession of the serializer, while other events
releasc possession of the serializer. Still other events do not change possession.
Gains(E) is true only if the cvent E gains possession, while Relcases(E) is true only if E
releases possession.

Gains (E) =
E.kind = enter | EXind = leave | E.kind = dequeue

Releases (E) =
E.kind = exit | Ekind = join | E.kind = enqueue
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A finite serializer history is busy if its last event gained posscssion of the
scrializer, or if its last event did not release the serializer and the history before that

event was busy.

Busy (H) =
if Size(H) = 0 then false
elseif Releases(Last(H)) then false
else Gains(Last(H)) | Busy(Front(H))

The functions Qsize and Csize return the number of transactions using a

queuc or crowd given the queue or crowd and a finite history.

Qsize (Q, H) =
if Size(H) = 0 then 0 ,
elseif Last(H).kind = enqueue & Last(H).mob = Q
then Qsize(Front(H)) + 1 o
clseif Last(H).kind = dequeue & Last(H).mob = Q
then Qsize(Fron(H)) - 1
else Qsize(Front(H))

Gsize (C,H) =
if Size(H) = 0then 0
elscif Last(H).kind = join & Last(H).mob = C
then Csize(Front(H)) + 1
clseif Last(H).kind = leave & Last(H).mob =C - -~ -
then Gsize(Front(H)) - 1
else Csize(Front(H))
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In certain serializer specifications, the rank of an event is ‘important. The rank
of an event E is an integer that represents the order of E relative to other events
occurring at E.-node. The first event to occur ata node has rank 1, the second has rank

-2, and so on. The rank of an event that does not occur in a h:story is 0.

Rank (H,E) =
if Occurs(H, E)
then 1 + Rank_scan(H, E, 1)
else 0

In defining Rank, we made use of Rank_scari(H, E, 1), which returns the
number of events occurring in H at or after event Nth(H, 1) and before E with the same

node as E.

Rank_scan (H,E, I) =
if Nth(H, I) = Ethen 0
elseif Nth(H, I).node = E.node
then 1 + Rank_scan(H, E, 1+ 1)
else Rank_scan(H, E, 1 +1)
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3.6.1 Lvaluation of guarantees

Whenever a serializer is released, the guarantees of the non-empty queues are
evaluated. The following functions define such evaluation given a finite history and an
expression to be evaluated. The notation {G} is used to represent the expression G
occurring in serializer code, and distinguishes the expression from our definition

notation, since the syntax for expressions and definitions is often similar.

Eval is defined by cases, each case being based on the syntax for boolean
expressions. For simple serializers, Eval returns a boolean value, since guarantees are

limited to boolean expressions involving tests on the emptiness of queues and crowds.
Eval (H, {G1 & G2}) = Eval(H, {G1}) & Eval(H, {G2})
Eval (H, {G1| G2}) = Eval(H, {G1}) | Eval(H, {G2})
Eval (H, {~ G}) = ~Eval(H, {G})
Eval (H, {crowd$empty(C)}) = Csize(Var({C}), H) = 0
Eval (H, {queucsempty(Q)}) = Qsize(Var({QD, H) = 0
Eval (H, {falsc}) = false
Eval (H, {truc}) = true
The Var function (in Var(§Q}) and Var({C})) is a mapping from syntactic

expressions for queues and crowds to some semantic representation for queues and

crowds. We require that the mapping produced by Var is the same mapping that is
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used to produce the N.mob component of any nede N in the history H.

The above definition of Eval is tailored to the needs of defining the semantics
of simple serializers. There is no provision for local variables, which would be
transaction specific. There is no provision for guarantees with side effects, exceptions,
or non-termination, which would require the use of events to mark the state transitions.

Further, such provisions would also complicate the definition of the Var function.

3.6.2 Legal histories

A history is legal if it can be produced by some execution of a serializer.
Legal(H, S) takes a history and a set of nodes that represe’ﬁt the code for a serializer,
and returns true if the history could have been produced from the serializer code. A
legal history must be composed of legal steps. That is; each prefix of the history can
only be followed by an event that represents a permitted state transition of the

serializer.
For a finite history H to be legally followed by the event E; the following rules

must be satisfied:

* For E to gain posscssion of the sumlm.r, llu,n lhm, can bc no transaction
in possession of the serializer (~ Busy(H)) ’

* [ there is a transaction in possession of the sctisdizer, théii'E must'belong
to that transaction.
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*If E is a dequcue event, its transaction must.be at the head of its queue
and the guarantee must be true.

* If E is an enter or leave event, thére may be no queues stich that the front
transaction in the queue has a true guarantee, :

* All events from a single transaction must occur in the order dictated by
legal execution of the code for the operation executed by that transaction.
In partlcular an enter event must be the first event in its transaction.

Note that there are no restrictions explicitly involving join and exit events. The only
restrictions that we impose for these events are expressed by the requirement for "legal

execution” of the node graph.

The above conditions lead to the fo_l»l(owing definitions of Legal and
Legal_step, where H is a history, and S is these;pf enter nodes _fqr the operations.of the -

serializer that require possession.

legal(H,S) =
v N.€ Index_set(H): Legal_step(Head(H, N-1), Nth(H, N), S)

Legal_step(H. E, S) =
( (if Gains(E) then ~Busy(H))
& (if Busy(H) then-Last(H).trans = E.trans)
& (Fkind = dcqueue)lxg,nl deguenc(H, B)) .
& (if E.kind = enter | E.Xind = Iéavc lhcn None rcady(H))
& Legal_transaction_step(H, E) SER :
& (F.kind = enter D E.node € Nodes(S)) ) .



The event E is a legal dequeue event afler the end of history H if the guarantee

is true, and the corresponding enqueue event is is at the head of its queue in history H.

Legal_dequeue (H, E) =
( Eval(H, E.expr)
& 31 € Index_set(H):
( Nth(H, I).node.next = E.node
& Nth(H, I).trans = E.trans
& Head__enqueue(H, 1) ))

The transaction for the enqueue event Nth(H, 1) is at the head of its queue if
Nth(H, I) is the last event in H for the transaction, and every other enqueue event

occurring in H before Nth(H, 1) has a corresponding dequeue event.

Head_enqueue (H, ) =
(In_queue(H, 1)
& v J € Index_set(H):
if J <1 then ~In_same_queue(H, I, J))

In_queue(H, 1) is true only if Nth(H, ).is an enqueue cvent that is the last event in H

for its transaction.

In_queue (H, 1) =
( Nth(H, D.kind = enqucue
& v J € Index_sct(H):
if 1> I then ~Same_trans(H, 1, J))



In_same_queue(H, 1, J) is true iff Nth(H, 1) and Nth(H, J) are enqueue cvents that are

the last events in their transactions and the transactions are in the same queue.

In_same_queue (H, I, J) =
( In_queue(H, 1)
& In_queue(H, J)
& Nth(H, 1).node.mob = Nth(H, J).node.mob )

None_ready(H) is true if for a particular finite history there is no explicit
serializer queue such that the front transaction in the queue has a guarantee that
evaluates to true. This predicate is used to define the priority of explicit queues over
the single external queue of a serializer.

None_ready (H) =
v | € Index_sct(H):

if Head_cnqueue(H, 1)
then ~Eval(H, Nth(H, 1).node.expr)

An event E can be a lcgal step after some history H only if it can be produced
by scquential execution of some transaction. There must not be an event in H with the
same transaction and the same node as E; and if E is not an enter node, then there must
be an event in H from the same transaction as E that results from exccuting a node for

which E.node is the next node.
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Legal_transaction_step (H, E) =
(v 1 € Index_sct(H):
(if E.trans = Nth(H, I).trans
then E.node # Nth(H, I).node)
&ifEkind # enter
then 3 1 € Index_set(H):
( E.trans = Nth(H, I).trans
& E.node = Nth(H, I).node.next) )

3.6.3 Complete histories

The set of legal histories for a serializer includes historics .where transactions
have been staned but not completed Any finite kgal hlstory where thc senahzer state
requircs further events to occur is termed incomplete. Alt-other legal htstoncs are
complete. A complete finite history is one where no further events are required to

occur. Events are required to occur according to the following rules:

The serializer specification language will be interpreted as defining
specification predicates on complete histories.  Scrializer codc is s.ud to mect its
specifications if the specification predicates are true for every compk.tu history of that

code.
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For a complete history, all events that are required to occur in the history must

occur.

* Whenever a releasing event occurs and there are ready queues, a dequeue
event from one of those queues is required. Therefore, if H is finite, and
the last event in H released possession, then H is only complete if no
queues are ready.

* For every event that gains possession of the serializer, a corresponding
event that releascs the serializer is required. For simple serializers, every
gaining event will be followed by a releasing event. Note that this
condition implies that if H is finite and not empty, then Last(H) was a
relcasing event.

-

* For every join event, a corresponding leave event is required. We assume
that cvery operation of the underlying resource used in a join statement
will terminate. Such an assumption is part of a modular proof of
termination for programs involving serializers.

These conditions lead to the following definition for Complete, where H is a history for
some scrializer, and S is the set of enter nodes for operations of that scrializer that

require possession.

Complete (H, S) =
( begal(H, S)
& (if Finite(H) then None_ready(H))
& Gain_complete(H)
& Join_complete(H) )
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Gain_complete(H) is true if for every gaining event there is a corresponding

releasing event that occurs after the gaining event.

Gain_complete (H) =
v | € Index_sct(H):
if Gains(Nth(H, 1))
then 3 J € Index_sct(H):
Corresponding_release(H, 1, 1)

Corresponding_release (H, 1, J) is true if Nth(H, J) is the releasing event that
corresponds to the gaining event at Nth(H,I). A releasing event corresponds to a
gaining event if both cvents are in the same transaction, and there are no intervening
relcasing events for the same transaction.

Corresponding_release (H, 1, J) =
( Release_follows(H, 1, J)

& v K € Index_sct(H):
if K <J then ~Release_follows(H, 1, K))

Release_follows (H. 1, 1) is true iff Nth(H, 1) is a releasing event that follows

the event Nth(H, 1); and belongs to the same transaction as Nth(H, 1).

Release_follows (H, 1, J) =
I < J & Same_trans(H, 1, 1) & Releases(Nth(H, 1))
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-Join_complete(H) is true if every join event has a corresponding:leave event.
A leave event corresponds to a join event iff it-belongs to: the same: transaction as the

join event and there are no intervening leave events for the same transaction.

Join_complete (H) =
v I € Index_set(H):
if Nth(H, I).kind = join
then 3 J € Index_set(H): ; A
( Leave_follows(H, 1, J)
& v K € Index_set(H):
ifK<J)
then ~Leave follows(H l K))

Leave_follows (H, I, J) is true iff Nth{(H,3) is a feiﬂé’cvent'that’ follows the
event Nth(H, ), and belongs to the same transaction as Ntb(H, b.

Leave_follows(H, 1, 1) =
I < J & Same_trans(H, l .l) & Nth(H, J). kmd Ieave

3.7 Serializer Induction

in CLU, acluster that implements a data type docs so by provndmg opcmlums
that manipulate objects of a representation type. for. chry .tbstmcl objcct lhurc is a
representation object. In designing and verifying clusters, it has been found to be
uscful to make usc of a representation invariant [Guttag, Horowitz and Musser 78] that
must hold for all objects supported by the cluster. This representation invariant should

be true whenever a representation object is created, and it should be maintained by all
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operations.

To prove that the representation invariant holds, we need to use induction oh
the sequence of operations performed. The induction principle we use is that if P is
true at the start of the abstract object’s lifetime, and assuming P for an object at the start
of an operation implies t-haf P is true at the end of the operation, then P is true of that
object before and after every operation. As in [Guttag, Horowitz and Musser 78], we

will call this dara type induction.!!

To show the soundness of data type induction, we need to show that if P is
true of an object after any operation of the clust;et tben P ;s true of the object before
any other operation of the cluster, provided that there were no intervening operations
of the cluster. Informally, to use data type induction using some predicate P, it should
not be possible for actions of other programs to-make P invalid. It ls Mble in CLU to
write clusters such that data type induction can be used to prove reasonable predicates
about their objects. A cluster with this property is said to have an isolated representation
[Atkinson 76]. While the cluster construct is not stricily ‘necessary if one wishes to-use:

data type induction, it facilitates the determination of an isolated representation.

As presented in this thesis; the seriafizer construct is quite similar to the cluster
construct. Both can implement abstract types, and both do so By'manipulziting objects

of a representation type through operations that can have sole access to the

11. Also know as generalor induction in chghrcit and Spitzen 76).
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representation objects. Since serializers provide the same kind of representation

protection as clusters do, we can use data type induction, in part, to verify serializers.

We call the application of data type induction to histories serializer induction.

For any complete history H, serializer induction can be expressed as:

if
( P(Head(H, 0))
& v 1} € Index_set(H):
(if (Gains(H, 1)

& Corresponding_release(H, 1, J)
& P(Head(H, I-1))
then P(Head(H, 1))))

then

v K € Index_set(H):
if Gains(Nth(H, K)) then P(Head(H, K-1))

'The predicate P is intended (o be defined on finite histories where no transaction is in

possession of the scrializer at the end of the history.

History induction is applicable for any serializer where the predicate P will
hold from the event where possession is released to the next event where possession is

gained. We can express this condition as:

-71 -



v I,J € Index_set(H):
if ( Gains(Nth(H, 1))
& Releases(Nth(H, J))
& Nth(H, J).node.next = Nth(H, 1).node
& P(Head(H, J-1)))
then P(Head(H, 1))

We call this the isolation condition. Just as the cluster construct facilitates but does not
fully enforce an isolated representation, the serializer construct does not necessarily

enforce the isolation condition.

The serializers we will be specifying and proving satisfy the .isolation
condition. In view of this, there is no provision in the histories for events that occur
external to serializers. We have not provided for situations that we have been unable to

prohibit in the programming fanguage, but believe to be bad practice.

An example of serializer induction is the use of a representation invariant for
the FlI FQ readers-writers problem presented in the p\rgvigus chap_ter.' A simple
invariant for an objcct X of type rep for any finite history H is:

Csize(X.rc, H) = 0 Csize(X.we, H) = 0

While this invariant is not the strongest we can prove, it is a uscful property that can be

proven simply.

-72-



As a reminder, the code for the read operation is (briefly):

enqueue x.q until crowdSempty(x.wc)
join x.rc; ... end

while the code for the write operation is:

enqueue x.q until crowdSempty(x.wc) & crowdSempty(x rc)
join x.wc; ... end ‘

Informally, we can prove the invariant by cases. First, suppose that we have

C1 = Csize(H, X.rc) > 0 D Csize(H, X.w¢) =
C2 = Csize(H, X.wc) > 0 D Csize(H, X.rc) =

where the history prefix is.understood. Since Csize always resulis in a non-negative
integer, the condition C1 & C2 implies the invariant. Initially, both ecrowds are empty,
so: the invariant is triviallytrue. To prove Cl, we assume that €1 is true immediately
prior to some gaining event, and show that-it js- maintaised: immediately after any
releasing event. An examination of the code shows that the only sequence of events
that can ihéréziéé Csize(X.wc) is where some wnterdcqueucs and joins the writer crowd.
Therefore, the only way that Cl could be false is to d“OW some wnter to dequeue when
Gsize(X.rc) > 0. However, the guaramu, for the wntcr transactmn prohibits the cvent
from occurring until Csize(X.rc) = 0. 'Thercfore, Cl1 is-.-maima'mcd. Condition C2 is

proved similacly. Therefore the invariant is maintained.. . -
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3.8 Comments on enter and leave events

One simplification made in the model is based oh the use o:f enter and leave
events. A reasonable requirement on enter events is that they will occur if they have
been requested. The only requirement-that we have oﬁirjlﬂvé;ve events is :th'at':they‘ will
eventually occur if the corresponding join has occurred. Yet after completing the
resource operation, the leave event must be requested, since some other transaction may
be in possession. The simplification we have made is not to represent requcsts fo;_'enter

or leave events as scparate events.

One requircment that this places on serializers is that code executed while a

transaction has possession of the serializer must terminate, since otherwise a request for
AU ST

possession could not be satisfied. Termination while in possession is trivially satisfied

for simple serializers.

We have also assumed that there is some schcdulmg dlsmplme on requests for
possession of the serializer so that a rcqucst for an enfer or leave event will not be
forever dclaycd by olhc.r such requests. A HFO dm:phne on d" such requcsts may be
overly strict in some sysluns and we do not rcqum |t Any dlsclphm that guamntu.s
service to quuLbls for possusslon wull b«. &msﬂwmry WL makc. no atlcmpt to prow this

requircment in general.

Adding prClﬁC events to the model lo mdlCdlL when enter and leave cvents
thL bLLn ruquuslcd is only mccmury 1o n,pruuu unduslmblu cases such as

non-lcmnnulmn while in possession, or a putlmlngtcul scheduler. Further, it is not
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reasonable to include such events in the specifications.or proof techniques, since their

order of occurrence is not affected by possession of the serializer object.

[

3.9 Message passing semantics

The model we have presented in ‘this chapter has been deliberately
incomplete. The larger semantic model we have assumed uses procedure calls and
processes, and is well-suited for describing the use of serializers in a system where
multiple processes communicate through shared memory. While “having a certain
intuitive appeal, pamcularly to those famlhar wnth momtors, the techmques we: have
uscd (and will use) are appllc'xble when a larger programmmg language and larger

semantic model arc used.

In this section we will sketch a model based on message passing. Such a model
~ has been proposed by vanous peop!e [Greifand me 75 Hewitt and Baker 77,
Good, Cohen and Kecton- Wllhams 79] A mmllar modcl is uscd to descnbc distributed
systems [Svobodova, | lSkOV and Clark 79 | lskov 79] WL bChLVL lhal the structuu of
serializers is quite uscful in or, ;,amzmg prog,rams m lhw, dlslnbulcd 3ystum .md will
address some furthu implications of scrmlmm in smh an mvnmmmnl in our

conclusions.

ln the mcssagc-pa%mg modd %pamu Lnuuc:s commumcalu by passing
messages rather lh.m by sharmg memory among nmny pfoccsscs OI cours, whm (Iu
same physical entity rucuvcs MICSSages frnm various sources, lh«. uﬁut of a slmn,d

memory is achicved. We can think of a scmh/cr Obju,t as one such entity, the resource
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object as another entity, and the originators of messages to the serializer as other
entities. In such a model, serializer objects are message switchers: They affect when a

message gets passed 10 a resource, but not the message itself, nor its reply.

- We.imagine that scnahzers are used in ar programmmg }anguage that supports
a logical network, where there are logical sites, each of wluch has |ts own local objects
Each site can communicate with another site only by sending messages to that other
site. We assume that each site can send messages to any other site without regard to
physical connectiéns. ; ‘/Unlike,, physical sites. in a nt.twarklogncalsatcs can. be freely

created at relatively low cost, up to the limitations of thé implementation.

“In such a- —l;ﬁgical n,etwork;»eacvh’ semhzerolmct ts;a scparatesate Further,
cach resource object is a séparat.g site, Instcad ‘of" say’ii{g:,uuit‘}il process is executing
serializer code however, we say that a site executes code! fm! smm transacnon Local
variables are assocnau,d with- the tmnsactm and reprcscﬂtaﬂon components are

associated with the site.

I‘hc. followmg descnplu)n of the scrializer coastruct: in a message passing
model gives an outlmc of an abatmct m;plumunmtmn for scmllzus. Al bermhzu ubject
creation, lhc representation object is nmmhud and tlu. scnaluu sm. wmls I'or cxtt.rnal

messages to arrive. We describe the scrmluer LVE‘ﬂlS as {olbws

L

* enter - An enfer event represents the acceptance of an initial request
message for service at the serializer site. At this acceptance, a unique
transaction identificr is gnumlud to name the transaction that this event

“starts. ‘The request message “identiffes” the C)mrmwn to execute, the
arguments to that operation, and the destination for the reply. A

-76 -



destination is a sitc name and a transaction identifier relative to that site. .

* enqueue - The enqueue event represents the completion of a series of
actions. First, the transaction identifier, the guarantee, and  the
continuation point are placed in the named queue. Then the guarantees
at the head of the internal queues are evaluated to determine the next
transaction to service. 1f there are ready queues, the serializer site selects
one of them as the next to process and releases possession. If there-are no
ready queues, the serializer site releases possession’ and accepts the next'
external message. S

* dequeue - After the dequeue event, possession has been regained by the o
transaction, the enqueued information has been removed from the queue,
and the scrializer site will' continue to execute eode for that transaction at
the given continuation point. :

* join - The join event also represents completion of a series of actions. -
First, the transaction identifier and the continuation peint are placediin
the named crowd. Then a message is' sent to the resource site, 12
requesting the operation and arguments desired. The message sent to the
resource site indicates the serializer site- as the destination, and also names
the transaction being processed. Finally, as for the enqueue event, the
guarantees arc examined and possession is released:’ - :

* Jeave - A leave event represents an acceptance of a reply message from.
the resource site. Possession is regained by the transaction named in the
reply. The information associated. with that: transaetion: in the named
crowd is removed from that crowd. The scrializer site contmucs o
execute code for the transaction at the continaation ‘point.

* exit - An exit event represents the completion of a series of actions. First,
a reply message is sent-to the destination given in the enter cvent. For
simple serializers, the information in this reply is taken from the reply
reccived at the leave event. ‘Then the guarantees arc evaluated and

12. For simplicity, we will assume that the only code that can appear in the body of a join statement will
be an invacation of a resouree operation. '
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- possession released, as for the enqueue and join events.

The above discussion has presented a very simple view of serializers in a
distributed system. However, we believe that exténsions to this model will not greatly
affect our description of serializer evénts. For example, we have assumed that there }is
no more than one request outstanding at a time, so that the site name and transaction
identifier are sufTicient to spec{fy a destination. | A natural extension would be to allow
several. requests to be outstanding. Iﬁ such a case, a request number relative to the

transaction can be included in the destination.

3.10 Infinite histories revisited

We noted in our introduction that states can be regarded as equivalence
classes of histories, a view advocated in [Greif 75] (although Greif discusses partial
orders of events rather than scquences of events). However, this approach does not
casily deal with infinite histories, since the state predicates (such as Csize and Qsizc) are
not defined on infinite histories. 1t would be convenient if we could avoid introducing
infinite histories, but we have not yet discovered a method that does not require ;hem.
We introduced infinite histories to model what happens to a serializer object over its
entire lifetime. Some serializer objects are intended to have unbounded lifetimes, évcn

though any physically realizable system must have a finite lifetime.
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If we reject the use of infinite histories, then we consider the specification
clauses to be requirements that all finite complete histories must satisfy. Unfortunately,
this leads to difficultics with showing that the "'starving” readers-writers solution could
not satisfy the guaranteed service speciﬁcations’, since the counterexamples involve -
infinite histories where certain events are not required to occur. If the only histories
considered to be complete are finite histories where after the last event all crowds are
empty and no queues are ready, then the starving readers-writers solution can be
proven to guarantee service. The system designer who relied on this proof would be

unpleasantly surprised to discover that starvation actually occurred under heavy loads.
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4. Specification language

One method of specifying a programming language is to provide rules for
translating programs written in that language into‘ fdnctidns on some mathematical
domain. This method can also be applied to specification languages. The specification
language for serializers is composed  of clauses in which certain relations between
serializer events imply other relations between serializer events. The meaning of
specification clauses is given by ‘stating rules 'fo‘r trransfovnning the kclaus,es into

specification predicates on histories.

Senahzer code is said to meet its- spc.c:ﬁcwlons if every complete hlstery that
can be Iegally gencrated by the serializer code (accordmg to the parual legality pred:cate
discussed in the plewous chapter) SdlISﬁt.S all of thc specnﬁcatlon pledlcales thdt result

from the specnﬁcatlon claus«.s for that smahzer eode

It is not our intention to require that the specthcatlon Ian;,uage have s fMicient
power to deﬁnc abstract data types. We -are only - c&meerncd ‘with spemfymg
concurrency control. We bLlILVL that the d|fﬁcully of ar rwmg at good qpccn[' cation
mc,thods dlCtdlLb that we aftack a tmcmblc prt)bk,m, zmd mlq,m(u thc. virious

dpprmchcs as thLy are su mcu,mly well undcrstood

In this chapter we discuss the kinds of serializer specifications supported, and
present the syntax and semantics of the specification: language. Then we give a full
specification for the FIFO readers-writers serializer, some specifications for variations

on the rcaders-writers problem, and a partial specification for the bounded bufler
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problem.

4.1 Kinds of serializer specifications

The specification language is a notation for requiring a serializer abstraction to
have certain-pmperties. These properties are classified as:
* Exclusion - where one kind of access excludes another, such as readers
excluding writers in a simple data base. THis kind of ‘specification is

necessary to prevent concurrent requests from interfering with each
other. o I

* Priority - where one transaction is served : preferentially over another.
This may occur because of the order of enter events, the kind of‘
 transaction, or other rcasons or combinations of reasons. :

* Concurrency - where some  accesses are required to be served
concurrently. The presence of concurrent processing for requests often -
affects the performance of system, and may even affect the correctness.

* Service - where some (or all) accesses aré required .td‘ru'n to completion

(analogous to requiring termination for scquential programs). =
Wc make no claim that all mtcrcstmg synchrommmn prop(.rtlcs fall mm lhe above
categories, although many do. Wc also. maku no clmm lh.ul all pmpmlcs m lhe abovu
classes can be expressed in the spucnﬁcauon ngu.q,c or that the bpccn' ications are -
especially concise in our language. The classes we have chosen are not necessarily
distinct; some propertics may be considered to be in more than»ong: class. We are more
interested in making the specification language usable by both programmers and

verification systems than attaining some kind of formal completencss.
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The specification language has nothing to say about performance, either for
real time, comput'mon time or storage. Although performance characterlstlcs can be
inferred from some of our specnﬁcatlons spec:lﬁcattons and proofs of performance are

beyond the scope of this thesis.

The simple form of the spec’iﬁeation language doés not deal with the values
passed-to or-from serializer operatlons Thls smphﬁcatton has been made to avoid -
dlscussmg what the exact meanmg of ' value is m the language The form of the
specification language in thlS chapter has events nodes boolean and mteger values We
also mclude limited predtc'ltes on these values and SImple anthmettc expressnons as
functlons on mtegers It is poss:ble to extend the specnﬁcatlon Ianguage that the user
sces to include further values and funcuons but such extenslons mvolve more of the
semantics of the complete programming language than we wish to handle in thlS the 3is.
In the next chapter, certain extensions are made to the specification language to support
our verification techniques, but these extensions.are still: quite. limited, and -do not

support user-defined values and functions.
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4.2 Specification language

The spec1ﬁcat|on language is deﬁned by speafymg a mapping from
specification clauses to unbound specification predlcales Each unbound specnﬁcatlon
predicate takes a symbol map and a history into a boolean that mdlcates whether the

specification clause is satisfied for that symbol map and that history.

A symbol map is a functlon from event symbols to events, and from node
symbols to nodes. It prov1des an mlerprelauon in our semantlc model of the symbols in
the specification clause. A valid symbol map provndes a consxstent mterpretatlon of
symbols for a given hlstory, and will be: dtscussed further later in th|s chapter “The
symbol map is an important d:stmctmn between the spec:ﬁcatlon language and the

definition language.

Each specification clause defines - a specification predicate, which maps
~ histories to boolean values: true if the clausc is satisfied for that history, and false if it is
not. The specification predicate for a clause is the value of the unbound speeification

predicate for that clause taken over every valid symbol map for a given history.
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4.2.1 Syntax of specification language

The specification language has a simple syntax. The specifications for
serializer code are expressed :as a set-of clauses, each clause being expressed as an
implication. The syntax of the spéciﬁcation languﬁige is gi\'ieﬁ informally below, issues

of parenthesization and precedence being neglected.

Clause = Clause "D" Clause

| Ordering clause

| Clause "&" Clause

| Clause "|" Clause

| "~" Clause
| "GX" "(" Event_symbol "," Event_symbol *," Node_symbol ")"
{. "GX" "(" Event_symbol “," Event synbol "o Event symbol )"
| "@" Eveat_symbol - : S P
| Expr Order_Op Expr . - i

Ordering clause = Event_symbol "<" Evont_symbol
| Event_symbol "<" Ordering_ clause

Order op = "<" | ">" | """ "2 " | ="

Expr = 1literal

Expr "-" Expr

- Expr "+" Expr
Expr "*" Expr
Expr "/" Expr
"#" Event_symbol

An cvent symbol (Event_symt;ol above) is written by writing a transaction
symbol followed by the event kind followed by optional information indicating other
components of the event (with optional digits for further disambiguation). A
transaction symbol is written by giving the first letter of the operation name (or enough

letters 1o be unambiguous) followed by optional digits if more than one transaction for
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that operation is needed in the clause. Examples of event-symbols for an operation

whose name starts with "X’ are:

~*X-enter: This symbol denotes an enter- event for transaction X. By
convention, if there is only one transacpon appearmg in a specification
clause for the operation, no digits are necessary in the transaction symbol
There can be only one enter event for any transaction. .

* X-join: This symbol denotes a join event for transaction X. For simple
serializers, this join event is associated with performing the cmtwpondmg
operation on the resource. Also, for simple’ senahzers We are ﬁmlted to
having one join event for any given transaction. i

* X1-exit: This symbol denotes an exit event for trapsaction X1. Note the
use of the digit "1’ to indicate a transaction thag is distinct from- X (or X2).
By convention, we give different transactionscdifferent  digits in
specification clauses where more than one transacion-for- an operation is
mentioned.

* X2-enqueue(s.q): This symbol denotes a ‘enqueue event for transaction
X2, where the queue denoted by sqis-used.

A node symbol (Node symbol above) is writlen by gmng lhe fwst letter(s) of
the transaction name, l‘olluwcd by a "*", followed by the mm kind. For cxampk,. the
enter node for operation X is written as X*-cnter. ‘Any furth’cr infommlion givcn is the -

same as the corresponding cvent.



4.2.2 Semantics of specification language

We first must describe the domains over which the specification language is
defined.!3 The syntax given above mentions event and node symbols, but does not
~ explicitly demand that the symbols apply to a single serializer. Therefore, we need to
limit ourselves to nodes and events chosen from sﬁm&pa;r’tieulanse’rializ@r,’ S. We name
these domains (and representative elements) by:

~

ne€ ;IS -- node symbols for S

g € ES -- event symbols for S

ceCq - speciﬁcation clauses for S. -

x€Xg - expressions for S
Note that we have provided single character names.for sample elements of the domains.
We will follov. the leading character conventien used in naming events for naming
elements of these domains in the later equations, including using trailing digits where

more than one element is desired.

The semantic domains are those domains described in the previaus chapter on

the semantic model.

n€ NS -- nodes for S

e€ ES -- events for S

13. Although the denotational method used in this thesis to-define the specification. language owes much
o work by Scott and Strachey [Scott and Strachey 71, Strachey and Wadsworth 74], the domains we use
are simply sets, not lattices. : T
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h € Hg -- complete histories for S
(Hg: Int-> Eg)

In specifying the meaning of the specification language it is necessary to
provide a symbol map that takes node and event symbols into their meanings. We will

discuss this function at greater length below.

p € Pg: maps symbols to events or nodéé

The following functions take syntactic values into semantic values. We say‘
that they define the meaning of the syntactic constrﬁétsi.ih&espmiﬁcation language.
We have avoided parsing and precedence:issues to more clearly present these functions.
Note that the braces "{ }" are used to bracketsyntactic construets and distinguish them
from the semantic éxpresibns.

~

E({e}.p) - event corresponding to e in map p
N({n},p) - node corresponding to n in map p
C({c}.p.h) -- validity of specification clause ¢ in map p, his@ory h
(true if ¢ is satisficd, false il not) |
C: (Cq, Pg. Hg) -> Bool
- X({x}.p.h) - value of expression x in map p, history h

(an integer value)
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X: (Xs, Ps, Hs) - Int

O({op}.p) -- binary predicate corresponding to op

Op=1{<.>.%.2,=.#})

O: Op -> ((Int, Int) -> Bool )

The definition of C({C},p,h) for specification clause C is given below by cases.

C({c1 D c2},p.h)
C({el < 2},p.h)
C({cl & c2},p.h)
C({cl|c2}.p.h)
C({~c}.p.h)
CUGX(el, €2, n)}.p.h)
CUGX(el, €2, e)}.p.h)
Cc{ @e! }.p.h)

C(§x1 opx2}.p.h)

C(ic1}.ph) > C{2}ph)
Precedes(E({e1 }.p), E({e2}.p), h)
C(fc1}.p.h) & C({c2}ph)
C({cl}.p.h) | Clic2} p.h)

~Clctph) |
Excludes_node(E({e1 }.p). Ee2}.p). N({n}.p), h)
Excludes(E({fel}.p), E({e2}.p). E(fc}.p), h)
OccursE({el}.p) h)
O({opt.pXC({x1}.p.1). C({x2}.p.h)
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The definition of X({x}.p,h) is given below by cases:
X({x1 + x2},p,h) = X({x1}.p.h) + X({x2}.p.h)
X({x1-x2}.p,n) = X({x1}.p.h) - X({x2}.p.h)
X({x1*x2}ph) = X({x1}.p.h) * X({x2}.p.h)
X({x1/x2}ph) = X({x1}.p,h) / X({x2}.p.h)
X({literal},p,h) = constant
X({#elph) = Rank(h, E(fel.p)

As a notational convenience, the clause "E1<E2<E3" is equivalent ‘to

"E1< E2 & E2 < E3". Longer clauses of the same form are defined similarly. -
Some examples of specification clauSes follow:

X 1-join < X2-join D X1-leave < X2-join

This clause mentions two transactions, X1 and X2. The intention is
to specify that having transaction X1 aceess the resource prohibits X2
from accessing the resource.

@X-enter D @X-exit

This clause is a specification of service for transaction X. The
occurrence of the X-enter event implies that the X-exit event occurs
in any complete history.

@G-enter & (# G-enter < #P-enter) D @G-exit

If the enter event for transaction G occurs, and the rank of G-enter is
not greater than the rank of the enter event for transaction P, then
the exit event for transaction G must occur. In (slightly) more
intuitive terms, a transaction for operation G is only required to
receive service if there are at least as many transactions for operation
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P as transactions for operation G.

4.3 The symbol map

Mapping symbols in the specification clauses to ‘mathematical entities is a
necessary part of translating specification clauses into functions on histories. It is
necessary to map event symbols into events, node symbols: into nodes, and syntactic

expressions into their value domains.

The rﬁeanmg ofa speelﬁcatlon clause is taken to be a pl‘LdlCthC that glven a
history, returns true if a history satlsf' ies the spemﬂcanon and false lf' it does not.
Serializer code is said to satisfy a specﬂ' catlon clause 1f for every complete hlstory and
every valid symbol map for that history, the specification- predicate’ defined by that

clause is true for the history.
A valid symbol map for serializer S must satisfy the following restrictions:

* Distinct cvent symbols must map to distinet cvents, and distinct node
symbols must map to distinct nodes.

* Event symbols must be consistent with nodeisymbols. ‘For example, the
~ e¢vent symbol "R-enter” must map to an event that is COI]'slbant with the
nodc symbol "R*-enter”.

* Event and node symbols map to cvents and nodes that are consistent in
kind to the symbol Kkinds. For example, the node symbol "R*-enter”
must map to a node that is an enter node in the scrializer S.



* Event and node symbols map to events and nodes that are consistent in
transactions to the transaction symbols. For example, the event symbols
"R1-enter” and “R1-exit" must map to events with the same transaction.

* Event symbols mentioned in ordering clauses (E1 < E2) and GX clauses
(GX(E1, E2, F)) must map to events that actually occur in*the history.
Event symbols mentioned in rank expressions (#E) and occurrence
clauses (@E) need not occur in the history. ‘

The last restriction on symbol maps needs further explanation. The
motivation for introducing it is to. keep spccifications of order - separate from
specifications of service. For example suppose that we are attempting to specify a
rcadus—w: |ters serializer WhCI’L wntus are gnven pnomy ovx,r other writers solely on the

basis of wh«.n cnter events occurred To do thls we use the l'ollowmg specnﬁcatlon

Wl-enter < W2-enter D W1-exit < W2-exit
However, if the last restriction does not hold, and we therefore: allow .symbol maps
where the events corresponding to Wl-enter and W2-enter occur in the given order for
some history, but cither of ’lh‘e events ciirrcsponding to Wl~éxil or W2-exit have not
occurred, then the specification clause will have a much different meaning. . If the cvent
occurrence is optional for the symbol map, then a séfi:nlizér will satisfy the clause if the
givcﬁ order holds, and the serializer guarantecs service to writers, but nor il writers can |
starve. In this rather surprising way, a priority spcciﬁmﬁo:} hasx implicd_'_ a scrvice;

specification,

-9] -



We believe that keeping the specification of order separate from the
specification of service simplifies both spccifications and proofs. Therefore, we have
required that a symbol map is valid for some history only.if an event symbol in an

ordering or GX clause maps to an event that.actually eccurs in the history.

4.4 Readers-writers specifications

Our first examples deal with the recaders-writers problem. In this problem, a
serializer abstraction should allow concurrent access to a simple data base for
transactions that simply read from the data base, but should not allow transactions that

write to the data base to overlap, since that could destroy the integrity of the data.

The same exclusion specifications apply to all versions of the readers-writers
problem.
* Readers exclude Writers - A reader ‘accessing the resource prevents a
writer from accessing the resource,
R-join < W-join D R-lcave < W-join

* Writers exclude Readers - A writer accessing the resource prevents a -
reader from accessing the resource.

W-join < R-join D W-leave < R-join
* Writers exclude Writers - A writer accessing the resource prevents
another writer from accessing the resource.,

Wl-join < W2-join D Wl-lcave < W2-join
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For the FIFO readers-writers serializer shown in-Chapter 2, the priority given
to a transaction is based on when it arrived with: réspect to other transactions. We
expect strict FIFO ordering: between readers and’ writers, and between writers and
writers. Strict priority between readers is not required, because readers may access the

resource concurrently. Therefore, we have the following priority specifications:

* Readers not pre-empted by writers.
R-enter < W-enter D R-join < W-join

* Writers not pre-empted by readers.
W-enter € R-enter 3 W—join < R-join

' Writers not pre-empted by other writers.

W1l-enter < W2-enter D W1-join < W2-joii

The above priority specifications only require. the order of requests to be preserved
from enter cvents to join events, not from leave events to exil events. IF the order of
service matters after the resource operation is performed, theh we would include the
following clauses:

R-enter < W-enter D R-exit < W-exit

W-cater < R-enter D W-exit < R-exit

Wl-cnter < W2-enter D W1-exit < W2-exit



In the readers-writers case, we specify concurrency for -readers by the

following specification:

GX(R1-enter, R2-enter, W*-enter) & R2-enter € R1-leave
D R2-join Rl leave

This clause is interpreted as requiring that for any two readers. R1 and R2, that enter
the resource without a writer entering the resource between R1 and R2, if R2 enters
before R1 has comptetedacceSsing the resource; ‘then R2: will begin to access the

resource before R1 completes its access.

We cannot requnre that two readers are actually concurrently executing
resource operations, since actual concurrency may dcpend on the scheduhng policy
followed on a multi-processed machine, or on the relative speeds of two processors If
the requests are executed by separate machines, oron farther concurrency limitations
imposed by the resource. The kind of fspeeiﬁcationithatwenmustsetﬂc for is to require
that both requests are sent to the rescnrrce (in join-cvents) before-eithier reply from the
resource is acknowledged (in leave events). A -concursency.specification only requires

the opportunity for concurrent exccution, unhindered by the serializer.

The specifications of service for readers and writers are simply that for every
enter event there should be a corresponding exit event, and that this should hold for
both readers and writers. The specification clauses are:

@R-enter D @R-exit
@W-enter D @W-exit




4.5 Variations of the readers-writers problem

Other versions of the readers-writers problem exist [Courtois, Heymans
and Parnas 71, Greif 75]. Aside from differences based on the’ programmmz, language
used, the vemrons dr ffer mostly because of the kinds of priority they glve to readers or

writers and the presence or absence of starvatlon

The simplest pribrity specifications often conflict with other specifications.
For example, suppose that the person specifying :the serializet wants to give writers:
priority. The intention might be: "whenever a writer enters a serializer before a reader
- has been serviced, the writer should be servrced before the reader T'hrs specification

can be written as:

W-enter € R-join D W-join € R-join
Further, we can write scrializer code that will realize this specification. Unfortunately,

if writers arrive at the scrializer at a sufficiently. high: rate:with- respect to the length of

- time the resource$write takes, readers can: be indefinitely prohibited- from joining the

resource. This would conflict. with the-guarantecd serviee requirement given above,

since there can be no specification that prohibits writers from arriving at the resource.

A ‘morc reasonable specification of writer's-priority is to require "if a reader
and a writer enter the serializer while a particular other writer is being serviced, then the

writer will be serviced before the reader.” "This specification can be written as:
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(W1-join < W2-enter < W1-leave & W1-join < R-enter < Wl-leave)

D Wl-join < R-join
This specification does not conflict with our service specifications. Regardless of the
number of writers that enter ‘while resource$write is being performed for W1, the
readers that entered in that period nieed not be delayed for any writers arriving after

that period.

The guaranteed concurrency specifications may also differ from serializer to
serializer. We may wish to require for the readers-priority serializer that all readers that
enter while a writer is accessing the resource will be allowed, 1o concurrently. access the

resource. This specification can be written as:

(W-join < R1-enter < W-leave & W-join < R2- -enter < W- Ieave)
"D (RZ‘JOIH < R1-leave & R1-join € R2- leave‘

This clause requm.s that for every pair of readers Rl and R2 entermg the senahzcr

while a writer is acccssmg the resource, Lhat both reddus bugm to access lht. rcsource

IR I LU A S A

before cither reply is acknowledged.
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4.6 Bounded Buffer Specifications

| The bounded buffer problem14 is based on operating system }I/O buffering,
We assume that there is a producer of information, and a consumer of information.
The producer issues put requests to the system to p,ass_the; infpgnaﬁcn» to the consuher,
and the consumer issues ger requests to obtain the items of information from the
system. In order to allow both producer and consumer to operate in parallel, the system
provides a bounded bufTer of length N to store items of information that the producer
has delivered to the system before the consumer has requested them: The producer can

proceed as long as it is no more than N items ahead of the consumer.

We have somewhat generalized the problem by allowing mulnple consumer
and producer processes for each bounded buffer lf the producer conslsts of several
processes, then each process can proceed untﬂ it performs a put request where the
request is made on a full bufl‘u Slmllarly, each consumer process can procecd unul it

performs a gel request on an empty bu ffcr

We assume that the resource acts as a bounded sequence of information -
items,® where the sequence cannot be more than N items long.- The pur operation
-appends an item to the head of the sequence, while get operation removes an item from

the tail of the sequence.

~ 14, A maonitor approach to this problem appears in [Howard 76).  Serializer code for this problem
appears in the appendix to this thesis, and is discussed in our conclusions.

15. Although this kind of sequence is also known as a queue, weavoid the use of the term to distinguish
between the queucs used by the serializer code for scheduling, and the queue used for the data,
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The following specifications are conditional service specifications for the

bounded buffer problem.
((#G:-enter + N> #P-enter) & @P-enter) D @P-éxit

((#P-enter > #G-enter) & @G-enter) D @G-exit
The G-enter event is the initial event of sofne get transactibﬁ, and the P-enter event is
the initial event of some put transaction. We require that the P transaction comhple"te if
there have been enough G transactions to use the data, or if there is sufficient room in
the buffer to store the data. If the'G-e'nté‘rﬂ event is Lthe“i-th: event using the G*-enter
node, and the P-enter event is the j-th event using the P*-enter node, then P must
complete if j < i+ N. Similarly, we require that a G transaction complete if there havé'
been enough P transactions started to supply.the data. Therefore,- G will complete if

i<j.

Note that the above spcciﬁczlii()ns; need to use @G-enter and (@P-enter
- because we only automatically require events appc.anng in ordt.rmg spcc1ﬁcatlons to
occur in the historics. This choice was made based on ‘th convenience of wntmg
certain examples. To illustrate, if the use of #G-enter required @G-enter, then the

specification of service for P transactions above would have. been written as two clauscs:
(~@G-enter & (#P-enter < N)) D @P-exit

(#G-enter + N > #P-cnter) D @P-exit
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Another specification of the bounded buffer problem is that the order of get
requests and put requests cannot be interchanged, cither in forwarding the request to
the resource, or in returning the result. These specifications are similar to the FIFO

readers-writers priority specifications.
Gl-enter < G2-enter D (G1-join < G2-join & Gl-exit < G2—exit) -
Pl-enter < P2-enter D, (P1-join < P2-join & Pl-exit < P2-exit)
We have chosen the exclusion speciﬁchtidns to be .qﬁixe simple: accessing the

resource is exclusive. The exclusion specifications are expressed by the following four

¢lauses.

G1-join < G2-join D Gl-leave  G2-join -

G-join < P-join D G-leave < P-join

P1-join < P2-join D Pl-leave < P2-join-

P-join < G-join D P-leave < G-join

We have said that the serializer operations:shoutd, us:fiir as practical, have the

same effect as the resource operations. In the bourided buffer problem, the serializer
operations have the same cffect as the cluster operations provided that the cluster -
operations return normally. In executing a put operation for the serializer, if there is no
room in the bounded buffer for the item, the othJliiin, pzkiscsﬁ until there is reom. In

exceuting a gef operation, the operation will not proceed until an item is available. For

‘the operations of the resource, however, an exception is signalled if there is no room in
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the buffer when executing a pur operation, or if no item is present when executing a get
operation. The signals of the resource operations have become the non-terminations of
the serializer operations. This raises the question of how well we have separated

concurrency control from data access. We will discuss this question in the conclusions.

We have presented the bounded buffer: problem: as- an illustration of the
specification language and as an example of a serializer that is sllghtly beyond simple

serializers. We will return to this example to |Itustmte how we can perform extensnons

in the program-provmg domain as well,
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S. Verification Rules

ln previous chapters we have used a deﬁnmon language based on ﬁlst-order
predlcate calculus to gwe th meanmg of both Ihe sermhzcr oonstruct and the s«.nahzer

specification language. In theory, we need nothmg else to venfy that a senahzer mects

its specifications. In practice, a certain amountofintermeédiate work is necessary.

We have chosen to bunld a venf' fer that operat§s m a restrlcted domam The
. verifier apphes rules that are specnﬁc to thls domam to data |t has descnbmg a senallzer

and specifications for that senahzer Fhis chapter states and prov&s those rules. Our

choice of rules is based on their utility in verifying a number of variations of the .

readers-writers problem (these examples are presented in the next chapter). No claims
will be made for their completeness. Other classes of problems would most likely lead
to different sets of rules, although we would expect most such rule sets. to have

substantial intersections with the set we have chosen.

~In this chapter, we first argue that proofs can be reasonably performed in an

extended specification language. We then state and prove a number of verification:

rules expressed in the extended specification language. These rules are used in a

program that performs automatic verification of serializers, o be discussed in. the nekt
chapter. A method for proving service specifications is then presented that is pzmiulfy

bascd on these rules, and its correctness argued. To illustrate the use of the verification

rules, an cxample of a rule-based proof is given. Finally, certain weaknesses of our

methods are examined.
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5.1 Proving in lhe specification language

In proving that a serializer meets its speeiﬁcations we start with the text for a
senalwer and a number of specnﬁcanon clauses In provmg that senallzer code meets its
specifications we need to state intermediate proposmons about the serlallzer code and
the specnﬁcatlons To do so we need a language to state the proposmons and rules of

mference that can be used for the language.

One candidate for such a language is the dialect of predicate calculus that we
used to define serializer semantics. If we used this definition language as the proof
language of the verification program, then we would be faced: with the following tasks:
translating specifications into their meanings, reasoning in the definition language
about propositions expressed in the definition language, and translating the results into
some humanly leadable form. The translation from : speciﬁcation language into
definition language is relatively easy: we have already described it in the previous
chapter. The translation from dcfinition language into specviﬁcati(v)n language is more

difficult.

We considered it to be preferable to carry out our reasoning, as far as
practical, in the specification language. It is the language that the user is most likely to
understand. Further, we find that most of the inference rules are casier to state and

manipulate in the specification language than in the definition language,
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The verification program can be simply viewed as a data base. about the
serializer code, a set of algorithms that are used to examine and modify the data base,
and a set of speciﬁcatioh clauses to prove about the serializer. The data base can be
expressed as a set of node graphs representing the scﬁalizer operétions, and a set of
assertions about the serializer,.expresscd as‘s'p-e-ciﬁcatibn ’clauses. The algorithms are
largely rule-driven, where a rule is used to Vinfér a speciﬁcaiion clause from known
clauses. The rules we preéent in this chapter are treated as axidmsk by the verification

program; this chapter states-and proves the rules.

5.2 Extensions to the specification language

As ii stands, the specification Iimguage prescnted in thé previdus chapter is
oriented towards describing external properties of serializers. It has no constructs for
describing the internal structure of a serializer, The rules we define ih this chapter
require a means for describing the node graphs for the operations, and rclating evénts'

to the node graphs. Therefore, we propose extensions to the specification language.
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5.2.1 New symbols and clauses

The extensions to the specification language pase no special problems. They
extend the domain of discourse for the language to include symbols that can represent
any event (or node), and to include oomponentszof events and nodes: For the sake of

simplicity, we will not formally define these extensions, although we could do so.

* general event-symbols - E, E1,E2,. .. are event symbols that can be
assocnated with any senahzer event through the symbol map

* general node symbols - N, NI, N2,... are node symbols that can be
assocnated wnh any senallzer node in the node graphs

* extended expressions - E.trans, E.node, E.kind are added as expressions
that represent the components of events. N. kind, N.next, N.expr, and
N.mob expressions are also added. An extension to the domain of
expression values . to - include: events;: transackion:: ideatifiers, nodes,
syntactic cxpressions, and node kmds IS necessdry Wc, d|80 mclude
literats for nodekinds. -~ RN S

*GX  (Guarantee  Fxclusion)  specification  extensions -
-~ GX(Node, Node, Node) is added as ‘a syntactic form... The function -
Node_excludes_node is used as its me.mmgr GX(N1, N2, N3) expresses
thic fostriction “that no transaction” cair ‘exXtCHOLE I N3 whife” somie - other

transaction is exccuting between N1 and N2 (inclusive). .

*PX- (Posscssion" deusion) smc'rﬁcaiion ' claétqu - We  use

.....

some othu lmlmcuon is exceuting belwu.n N1 and N2 (mcluswe) We
will define the meaning of PX clauses below. :
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5.2.2 Marked and unmarked cvents

In defining the verification m!emin this chapter we have occasionally found it
necessary to write ordering clauses where one or more of the events appearing in those

clause are not required to occur. To achieve this, we introduce the notation

'E
to indicate a marked event symbol in the specification clausc. We then modify the
definition of a valid symbol map tg‘ require that all unmarked event symbols appearing
in ordering clauses and GX clauses must map m events that occur in the complete
history for which the map is defined. In all other respects, a marked event symbol is the

same as an unmarked event symbol.

" The altematwe to introducing the 'E nctation is to not- nequm.. a valid symbol
map flor some hlstory to take event symbols appearmg in ordenqg and GX clauses into

events that must oceur in thc hnstor . We would lhen exphculy rcquu‘e the use of @E

to require cvent occurrence in clames‘whcre such 0ecurrence was impor tant. We have
previously rejected suchs an'upp_roagh, becups,evn quds toe smp;:smg%l_m,phcauons for
some specifications. We believe that it is still the right chaice; we prefer o have some
additional complication in-the language for defining the ,vcriﬁcatidn rules so we can

retain some simplicity in the specification language at th«, user fevel.

We note here that the Precedes predicate used to give the nicaning of ordering
clauses is well-defined even when the events do not occur in the histories. Note that the

clause

- 105 -



'E1<E2

can only be true for some history if both events denoted occur in that history. This can

be stated as the clause:

IE1< !'E2 D @FE1 & @E2
Also note that if an ordering clause mentioning two events that need not occur 1 1s f'tlse

it could be due to either the opposite order-helding, the two: gvents bemg Ihe same, or

non-occurrence of either event, as is expressed by:

~('E1< 1E2) D (E2 < 'E1) | ~@E1 | ~@E2

5.3 Some simple infcerence rules

In this section we present proofs for several ?mference rules stated in the
specification language. These rules are prcsented as spccnﬁcatlon clauses where one
sub-clause implies another. Note that the rules are ‘actually rule generators: free
variables are permitted to appear to denote:nodes and events.. The free node symbols
are chosen from the set {N, N1, N2, ..}, and the free évchtzs'y’i‘ifbbls‘ arc chosen from the

sct {E, E1, E2, ...}
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5.3.1 Transaction order

Events belonging to the same transaction ‘must occur in the order prescribed
by the node graph for that transaction. We can write this restriction as an inference

rule:

Transactioli order rule:
El.node.next = EF2.node & Fl.trans = E2.trans
D EI<E2

Proof: For every valid symbol map p and complete history h; since El and E2 are
mentioned in an ordering clause, p maps El and E2 to events that occur in h.
Therefore, there must be events el and €2 (with indices I and J), such that the
above rule is equivalent to:

(el = Nth(h, 1) = E({El}.p)
‘& ez = Nth(h, J) = E({E2}.p)
& Same_trans(l, J, h)
& el.node.next = e2.node )
1< ’

Since an enter node can not be the next component of any node, ¢2.kind # enter.
“Therefore, by the definition. of 1egal_transaction_step, there must be some index
K € Index_set(h) such that . o .
(K<
& Nth(h, K).node.next = e2.node
& Nth(h, K).trans = c2.trans )

Further, K = 1 by Legal_transaction_step, which proves that 1 <J.
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5.3.2 Transitivity
The event ordering is transitive. This can be expressed by-the following rule:

Transitivity rule:
(E1<E2& F2<E3) D E1<E3

Proof:. By the definitions given in chapter-3, the above specification clause is defined to
be equivalent to: '

( Precedes(E({E1}.p), E({E2}.p), h)
& Precedes(E({E2},p), f({E3},P) hy )
D Precedes(E({E1}, p) E({ES} p), h)
where p is any vahd symbol map for the com'méte hrstury ‘h. By the definition of a
valid symbol map, there must be three distinct events (el, €2, e3) that occur in h,
which implies that therc are three dlstmct mdu:es (I .l K) such that the above rule
is equivalentto: AR AR A
(el = Nthth, D) = E§E1}p)
& e2.= Nthth, )) = EQE2}.p).
&e3 = Nth(h, K) = E({[:3},p)
& Precedes(el, €2, h) & Pn.cedes(e.'Z e3 h))
D Precedes(el, €3, h)
By the definition of Precedes and the existence of: the indices 1 and J,
Precedes(el, €2, h) is cquivalent to 1<J. The other Precedes cxbﬁ*ﬁfm\s”have "
similar simplifications. ‘Therefore, the specification clause is cquiifﬁlcnf o
(1<I&I<CK)D(<K)

which is truc by the axioms of integer ordering. lhucﬁm, lhc spwd':callon clause
is a true statement,
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5.3.3 PX clauses

A PX clause is used to spécify posses&iqn exclusion. The meaning of a PX

clause is given by:

‘where

PX_defNI,N2,H) =
v L,J,K € Index_séy(H): "
if (Nth(H, I).node = N‘i&Nth(H f)nodc =}
& Same_trans(H, I, J)) ' : L
then Exclud%(N{NH 1)} NLh(H J). Nth(H K)) :

",l‘he clause PX(N1, N2).speciﬁes ‘thdt a. transaction executing iq@des vaand.
N2 has possession (of the serializer containing Nl and N2).after-executing N1 and up to
the completion of exccuting N2, and that N1. na(t N2 Nm: that while a transaction
has possession no events from another transactton may occur Thcre are two rulcs used

to imply PX clauses:

PX from gain mule:
(NLnext = N2
& ( Nl.kind = enter
| NLkind = dequeue
“INLkind = leave))
D PX(N1, N2)
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PX from PX rule:
( PX(N1, N2)
& N2.next = N3
& N2.kind = join
& N2.kind # enqueue )
D PX(N2, N3)

Proof: By contradiction. For the first rule, suppose that the precondition implies
~PX(N2,N3). By the definition of'a. vahdf syvﬁbal ‘thap, there ntast be three
distinct events (el, €2, ¢3) that occur m aini éte ﬁ:ét&ry’ﬁ whlch implies that

R ?1

there are three distinct indices (1, J, K) su 'LhaL

el = Nth(h, 1) & €2 = Nth(h, J)&e} Nax(h &;
& el.node = N({N1}.p) & e2.node SNENDYPY
7 _& el trans = e2 trans & el node next = e2 node

& ~ Excludes(el e2 e3 h) o | . .
At the finite history Head(h ), whtch is the Sﬂ]il“(.:t p;e}'ii of h that contams el,
we know that Legal_step(Head(h, 1), €2, S) IS true, """
graphs for the serializer operations). Funher beca sc B’ilsy(HEead(h l)) |s true (by
the definition of Busy and Gains), €2 is the only event {hat is a Teg'nl step.
Therefore, no events can occur between el and e'Z whxch contradlcts
~FExcludes(cl, e2, d h). lhc,rcforc, the PX trom g'\m ruk is lrue A snmllar proof

holds for the PX from PX rule. -

The PX clauses are useful as intermediate steps that imply event ordering.
The following rule is used to imply an event ordering from a PX rule and other

preconditions.
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Event before PX rule:
(PX(N1, N2) & E<E2 & El.trans = E2.trans
& El.node = N1 & E2.node = N2)
DE<El

Proof: The above clause is equivalent to the following (for every valid symbol map p
and complete history h): '

(PX_defiN({N1}.p), N({N2}.p).-h)
- & PrecedestE({ E}Lp), E(1E2}.p). h)
& E({E1}.p).trans = E({ EZ},p) trans

& E({E1},p).node = N({N1}.p)
& E({E2},p).node = M({N2}.p)) ..
D Precedes(E({ E}.p). £({EFLp). h)

Because E, El, and E2 are mentloned m ordenng cjauses there must be three

,,,,,,,

‘indices (I, J K) such that by Lhc deﬁmtlon of PX def
(el = Nth(h I) = E({El},p)
 &e2=Nih(h,J) = f({Ez}.p)
&e= Nth(h K) E({E} p)
& Precedes(e. €2, h)
& I:xcludcs(c.l c2,¢.h))
which implies Precedes(c, ¢1, h), whlch 1mphcs that the ruk. is true.
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The other PX rule is quite similar, and can be stated as:

Event after PX rule:
-(PX(N1, N2) & E1 < E & El.trans = E2.trans
& El.node = N1 & E2.node = N2)
DE2<CE

Proof: Similar to proof for Event before PX.

5.3.4 GRE clauses

'Ihe GRE (G uarantee Requnres Empty) clause is an mtennedlate step used to

mfer GX G uaranteed Exclusnon) clauses The deﬁmtlon of the GRE clause is:

C({GRE(N1, N2)},p,h) = GRE def(N({Nl},p) N({N2} p) h)

where

GRE_def(nl, n2,h) =
v 1,J,K € Index_sct¢h):
if ( Neh¢h, 1).node = n2 .
& Nth(h, J).node = n2.match
&l <K<
& Same_trans(h, 1, 1))
then ~Eval( Head(h, K), nl.expr)

The intuitive meaning of GRE(N1, N2) is that the queuc or crowd denoted by N2.mob

must be empty in order for the expression Nl.expr to be true.
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There are two rules that can be used to infer GRE clauses:

GRE from empty rule:
Nl.expr = Empty_expr(N2.mob)
D GRE(N1, N2)

GRE from expression rule:
( Nlexpr = And_expr(Empty_expr(N2.mob), G)
| Nl.expr = And_expr(G, Empty_expr(N2.mob)) )
D GRE(N1, N2)

Note that we have had to add some ad hoc extensions to the specification language. G-
denot¢s a boolean valued exprewon Empty expl(N mob) denotes “either
queue$empty(N mob) or‘ crowdScmpty(N mob) l\as‘ . appropnate and

-~ And_expr(G1, G2) denotes the expressnon that is the con_;unchon of lhe two guarantets.

Prool: By definition of GRE_def and the Eval function. For the first rule, suppose-that
the guarantce is crowd$empty(C). Then for-any history that contains a join event
for that crowd but does not contain the corresponding leake event the guarantee
will evaluate to false, which proves the rule. Similar feusoning holds for: the first
rule if the guarantee is quuuu&.mpty(Q) A samil&rpn%éf lwids for the GRE from
expression rule. S
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5.3.5 Using GX clauses

GX clauses are used to indicate where events are excluded because of
guarantecs being false. For example, if a guarantee for a queue is crowd$empty(C)
where C is a crowd, then a dequecue event with that guarantee is prohlblted from
occurring between a join and a leave event for any. transaction for that crowd. The
following rule is used to infer GX clauses.

GX from GRE rule
(Nimatch = N2& N2 N
-& (N1.kind = join | N1.kind = enqueue)
& N.kind = dequeue
& GRE(N.expr, N2.mob))
D GX(N1, N2, N)
The clause GRE(N1, N2) used above is true i1 the expression Nl.expr requires the

queue or crowd N2.mob to be cmpty for the expressionsto be true.

Proof: By contradiction. Suppose that GX(NI,N2,N). is not true, yet the
preconditions are met. By the definitiop of a vahd symbol map, there must be
three distinct events (el, ¢2, ¢) that occur m any compleu. histm 'y h, WhICh lmphes
that there are three distinct indices (1, J, K) such that:
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(el = Nth(h, 1) = E({N1},p)
& €2 = Nth(h, J) = E({N2}.p)
- & € = Nth(h, K) = E({N}.p)
& el.node.match = e2.node
& (el.kind = join | eL.kind = enqueue) '
& e kind = dequeue : R
& Precedes(el, e, h) & Precedes(e, €2, h) ) ,
Further, from the GRE clause we know tha the, guarantee for event e must be false
for any prefix of h that contains ¢1 but does not contain €2. Since e occurs after el,
we have a contradiction (due to Legal_dequeue), since e is a dequeue event that-
occurs when its guarantee is false. Therefore, the GX from GRE rult:‘is)r_.rt!r,ue._

GX clauses are a useful intermediate step that cmhi'ébé}us«:d tfp_?infer event

orderings.

Event before GX rule:
(GX(N1,N2,N) & E<E2 & El.trans = E2traps =
- & E.node = N & El.node = N1 & E2.node = N2)
D E<CEl

- Proof: Because F, El, and E2 are’ mentioned in ()i‘deﬁng"clmses for any valid symbol

map p and complete history h, there must’ bc wutls (el c2 ¢) occm'rmg at distinct
indices (1, J, K) such that: : .
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(el = Nth(h, 1) = E¢{E1}.p)
& e2 = Nth(h, J) = E({E2}.p)
& ¢.= Nth(h, K) = E({E}.p)

~ &enode = N({N}p)

~ & el.node = N({N1},p)

& e2.node = N({N2}.p)
& Precedes(e, €2, h) .
& Same_trans(h, [, J)
& Node_excludes_node(el.node, €2. node e.pode, h))

By the definition of Node_excludes_node we can.infer: - -
Excludes(el, €2, ¢) & Precedes(e, €2, h) & e = el

which implies that Precedes(e el h) Wthh 1mphes that the clause E< El and
thercfore the rule is true ' '

As with the PX clause, there is a symmetrie rule to. Event before GX.
Event after GX rule:
(GX(N1, N2, N) & E1 < E & El.trans = EZ&mﬁs

& E.node = N & El.node = N1 & E2.node = N2)
DE2<E

Proof: Similar to prool for Event before GX.
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5.3.6 FIFO queues

Serializer queues are served strictly first-in-first-out. The following rule is

used to infer event orders from the use of FIFO queues in serfalizers. -

Event from FIFO rule:
( E1 < E2 & El.kind = enqueue & E2.kind = enqueue
& El.node.mob = E2.node.mob :
& E3.trans = El.trans & FA.trans = E2. trans '
& E3.node = El.node.next & Ed.node = E2. nodenext)
DIE3<EA

Proof: By contradiction. Fust, suppose that E3 occurs (we are not requrred to do so by
the clause). - As in the above proofs, E1, F2 and E4 are unmarked events mentioned
in ordering clauses; so they must.occur. There must be four events (el, €2, €3, c4)
with distinct indices(1, J, K, L) such that:

(el = Nth(h, ) = E({El},p)

& €2 = Nth(h, J) = E({E2}.p)

& e3 = Nth(h, K) = E({E3}.p)

& e4 = Nth(h, L) = E({E4}.p)

& Precedes(el, €2, h)

& el kind = enqueue & ¢2.kind = cnqueue

& Same_trans(l, K, h) & Same_trans(J, L h)

& e3.node = el.node.ncext & ed.node = c2.node.next )

We need to prove that Precedes(e3, c4,h), which we do by assuming
Precedes(ed, e3,h), and finding a contradiction. By the definition of
L cgal_transaction_step we know that Precedes(el, ¢3, h) and Precedes(ce2, e4, h).
Let hl be the largest prefix of h that does not contain e4. We will show the
contradiction by considering the pi‘cdicnlc Legal_step(h’, ¢4, S), where S is the set
of node graphs for the serializer.

- 17 -



~Since edkind =  dequeue, Legal_step(hl,e4,S) requires that
Legal_dequeue(hl, e4) be true, which requires that Eval be true for the guarantee,
and that Head_enqueuc(hl, J) be true. Head_enqueue(hl, J) is only true if gvery.
other transaction with an enqueue event .for; the: queue: ed.node:mob that occurred
in h1 prior to e4 has a corresponding dequeuc event:that has occusred in hl.
However, we know that e3 has not occurred in hl. by our assumption of
Precedes(e4, 3, h). Therefore, either Precedes(e3, e4, h), or €3 does not ocqur.

The proof that €3 occurs is simple. We know that e4 occurs in h, since it is
dLnOtt.d by an unmarked event mentioned in an ordering clause. Therefore, when
e4 occurs, €3 must have occurred _in the hlstory hl by the definition of

Legal_dequeue.

5.4 Evaluation of guarantees

In further rules we will need to express the evaluation of guarantees. The
clause EVT(G, E) is used to specify that expression G. always evaluates to true
immediately before event E. The clause EVF(G, E) is uscd to specify that expression G
always evaluates to false immediately before event E. In translating from spccfﬁc@ntion |
~language to definition language we will assume that, if the event denoted by E occurs at
index 1 in history h, then

CHEVT(G, E)}.p.,h) = Eval(Head(h, I-1), {G)H
C({ EVF(G, E)}.p.h) = ~Eval(Hcad(h, I-1), {G})
When the event denoted by E does not occur, the EVT and EVF clauses are undefined.

We are careful to.only use these clauses.in contexts where such an cvent does occur.
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The following rule can be used to infer EVF clauses:

EVF rule:
( (El.kind = enqueue | El.kind = jom) e
& El.node.next = F2.node Lol
& El.trans = E2.trans
& E1<E<E2)
D EVF(Empty_expr(El.mob), E)

~Proof Suppose that M is a queue By the defi nmon of chal transactlon step, there
can never-be more dequeue events than enqueue events for any tr'msactlon
Thercfore, by the definition of Csize, the queue is empty (Csne(M) = 0) oniy if all

transactions - have the same number of enqueue cvents as dequeue events -

immediately preceding E. However, the transaction El.trans has an enqueue event -
(E1) that has occurred without the matching dequeue gyent: (E2). 'I‘ne&fo;e, sthe®
queue must not be cmpty. A similar proof holds if M is-a crowd. .

The following rule can be used to infer EVT clauses:

EVT rule:
~ (VELEX:
if ( ELtrans = E.trans & El.node.mob = M-
& El.node.match = E2.node) |
then E<ELH'E2<E)
D EVI(Empty_cxpr(M), E)

Proofl: First, we note that within the quanhhcalmn thc events F and [-l are uqumd o
occur, yct the cvent E2 is not required to occur, since it is marked. ‘The condition
that we arc expressing with the quantified clause is that for cvery pair of cvents
denoted by El and E2 the event denoted by E cither occurs before (or is-the same
as) E1, or occurs after E2. Note that if E1 CE is true, then 'E2 <CE is false if E2
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does not occur. In order for Empty_expr(M) to be false when evaluated
immediately before E there must be some transaction that is in M ‘immediately
before E, which means that the enqueue (or join) event (call-it E1) occurs before E,
but the dequeue (or leave) event (call it E2) does not occur before E. MWe can
express this requirement as

E1<E<!E2 -
which is prohibited by the precondition
E<El}'E2<E

and therefore the clauses always evaluates to true immediately before E.

The above clause uses internal quantlﬁcatlon over alf evcnts which'is another
extension to the specification language. It is dlfﬁcult to use the above rule as it |s ina
verification program due to the mterndl qmntlﬁcatlon The set of all events is infinite,
and cannot be enumerated. We can prove that the quantlﬁcatlon clause is satlsﬁcd by
contradiction: proving that there can not exist a transacuon w:th events E1 and E2 (as
given above) where the clause within the quantification is not satisfied. This method

will be further discussed in the next chapter.

The following “rules can be used for guarantees that are conjunctions or
disjunctions. These rules are sufficiently simple that we will omit the proofs.
EVT from conjunclion rule:
(G = And_cxpr(Gl,G2) .

& EVI(G1, E) & EVT(G2, E))
D EVI(G., E)

120



EVT from disjunction rule:
(G = Or_expr(G1, G2)
& (EVT(G1, E)| EVT(G2,E)))
5 EVT(G, E)

EVF from conjunction rule:
(G = And_expr{G1, G2)
& (EVF(G1, E) | EVF(G2,E)))
D EVF(G, E) '

EVF from disjuncﬁon rule:
(G = Or_expr(Gl1, G2)
& EVF(G1, E) & EVF(G2, E)) -
D EVK(G, E) "

We have used G, Gl, and G2 to denote guarantees, and And_éXpr an‘d' Or_expr to

denote conjunctions and disjunctions of gu:irantees.

5.5 Priority of dequeue over enter and leave

i tht,re are queues w:th true guaramees whcn posscssmn is relcased, a

- dequeue event for onc of those queucs wm occur buforu an cntcr or Ieave evcnt

Suppose we know that an enqueue cvent E1 occurs before an external gaining.
event E. To show that E must occue aficr the dequeue cevent E2 corresponding to E1, we
must know that the guarantee for El is true immediately pnor to F, and llml lhuc can
be no transaction with a false guarantee that is in the queue ahead of tln transaction for

E1 when E occurs.
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Event from ready qucue rule:
((E kind = enter | Ekind = leave)
& El.node.next = E2 & El.trans = E2.trans
& El.kind = enqueue
& EVT(El.expr, E) & E1 <E
& ¥ E3 E4:
if ( E3. kind = enqueue & E3 mob El rnob
& E3.trans = FAtrans
& E3.node.next = F4.node
- & E3<EL) RS I TS
then EVT(E3 expr E) | !E4 ( E )
SIE2<E o

Proof: We will outline a proof by contradiction. Assume that the gaining event E

- precedes the dequeue event E2 s,uch that El <E < E.Z The quanu ﬁcatlon over E3

and E4 is a precondmon that rcqunres every transacuon that has entered the qucue

‘before El.trans to either have a true guaraﬁtee (tmmediately ‘before F) or to have

left the queue before. the gaining event: E. Therefore, there can:be no transaction
with 3 false guarantee in the queue ; ahnad oL‘ Fl trans Howevur the gammg event

E cannot occur while there is a queue with a true guaramec ‘which is true for

El.mob. This is a contradiction, so we can infer that if B occurs, it must oceur

before E. By similar regsoning, E2 must.occur, sincg. if it dogs. nat occur; there will

be a ready queue when E occurs (E-must occur, since it is an unm;xrk}ed{ event). |

Note that the above rule was expressed as implying 'E2 < E, which not only

implics an ordering between events, but also implics that the event denoted by E2

occurs, since any cvent the precedes an event that occurs must also occur.
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The above rule is admittedly long and complex. We can shed some more light

on the reasoning behind its form by considering some examples.

* Suppose that there are events E3 and E4 such that E3’C El, and E4 does
not occur (using E, El, E2, E3, and F4 as in the above rule).: Then the
precondition expressed by the quantification must be false, which means -
that we cannot infer E2 € E. ‘Fhis should:seem. reasanable, since by the
FIFO queue rule we know that E4 must precede EZ if EZ occurs which
implies that E2 does not occur.

* Suppose that there are events E3 and E4 such that EVF(E3.expr, E) and
E3 <El. Then it is possible for E3.transto be at-the head.of the queue
when E is ready to occur, which would imply that E< E4, or that EA. dld‘
not occur at all. '

The reader may note that we have only co'nsidér(;d a single queue in the above
rule. It may be imagined that all of the precondivions were met for twdqugues. yét one -~
queue was arbitrarily chosen to proceed, whichthea'madefme head guarantee of the
mher qmue false, whlch lhen allowcd the g,.umng ev«.m E to occur Such a Sltlldtlon is
covercd by our rule, since we do- not spec:fy evaluatm of the guaramec at anyu
particular time, but rather immediately-before the event E in "any context. Intervening
dequeue events from other queues are unimportant, since they will only postpone the . .

occurrence of E, not change the precondition EVIT(ELexpr, E).



5.6- A method for proving service

A service spccnﬁcatlon typically states that for every compk.te Instory and
valid symbol map, the occurrence of an enter event for some tmnsactlon lmphes the -
occurrence of the exit event for that transactlon In provmg thls we typlcally need to
prove that the occurrence of any event (exnt events excluded) in a transaction lmplles |
the occurrence of the. next event in the transaction. Another way to state that the
occurrence of one event implies the occusrence of another is to say. that every complete

history that contains the first event contains the second.

For most eventsin a transaction, if an event oceurs, the successor event in that
transaction must occur. For simple’,serialize'rs, the ‘(:)'l'c‘(;urr'gﬁce‘, :otf an cvent that gains
possession implies the occurrence of a corresponding zeﬁeeni‘{hat releases possession.
Further, we have assumed that accesses to the resource terminate, 50 the occurrence ofa
join event |mpth the occurrence of the correspdndmg ieave eVem 111ere are only two
kinds of events where the occurrence of an event does not lmply the occurrence of the
SUCCESSor: exu cvcnts, bgcause they have no successors, and enqueue cvents, because
they might never have true guarantees whenever possession is feleased, or because there

might always be another queue ready whenever possession is released.

The method we propose for .provin'gflhm an en@ﬁeﬂe event requires a dequeue
event is to first supposc that the dequeue event does not occur, then prove a
contradiction: that a complete finite history cxists where there is a ready queue at the

end of the history.
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Suppose that we want to prove @E1 D @E2, where E1 and-E2 belong to the
same transaction, and El prc,cedes E2 if both events occur (Wthh can be written as
@E1 & @E2 D 'El< 'E2) We need to show for every enqueuc event E3 with
corresponding dequcue event E4 that 1f E3 trans = El trans then 1he occurrence of E3

1mpl|es the occurrence of E4 (@E3 D @E4)

* If an enqueue event occurs for some queue and the dequeue event does not
occur, then we say that its queue is blocked. 1fa queuié isbletked, then we can infer the .
following:

* If every join event for some crowd requires a preceding dequeue event
from a blocked queue, then the crowd will Lventuaﬂy become empty. -
This is true because when the queue is biocked, there can be no further
join events, and every join event requires that a leave event oceur.

~*If every enqueue event for some queue'Q requires that a dequeuc event
for a blocked queue B must occur. (because the enqueue event must -
follow some other dequeue event ‘that is ‘waiting for B to empty), then Q
will eventually become either blocked or empty. Since.the-cnqueue eveat
for Q will not occur, then no new transactions-will be added to Q, which
implies that only’ dequeue events for Q can possibly-eecur. ‘Eventually - -
- either Q is empty or a transaction with a falsc guarantee is at-the head of -

Q.

* If every occurrence of an enqueue cvent for some gucuce implies the

- occurrence of a corresponding dcqucue event, and the queuc will
eventually become cither blocked oF ‘empty, then’ the -quene will -
eventually becomeempty.

By saying that a condition "eventually becomes™ true, we mean that for every complete

history there is a event where the condition is true at cvery event after that event,
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The method is now clear: to prove the 'mntmdiction, we assume that the
dequeue event (E) does not occur, that certain queues and’crowds will beéome empty,
and that certain queues will become either empty or blocked. [f these additional
assertions are sufficient to prove that the guarantee for E is true, and that. there is no
other dequeue event with a false guarantee that is blockihg E;?thgn’We‘ havc found a

contradiction, and actually proved that E must occur.

) We w1ll not prescnt rules for proving service. The number of supportmg rules
is relatlvdy high, and the additional matenal would not mtroduce any new concepts

The method of proving service will be further explamed in the next chapter.

5.7 Rule-based proving of FIFO priority specification

In this section we preSent a proof based on successive applications of the rules
we have presented in this chapter. As presented in the previous chapter, the FIFO

readers-writers problem has the following (partial) priority specification:

R1-enter < Wl-enter D R1-exit € Wl-éxit
A tule-based proof of the above clause takes two stages: derivation of intcrmediate
clauses (such as PX, GRE, and GX clauses), and use of the rules that imply event
orders. Note that the first stage need only be performed once for any particular

serializer, while the second stage is usually different for every specification clause.
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In the first stage, we examine the node graphs-and use the PX from gain rule

to derive the following PX clauses, which indicate possession exclusion: .

PX(R*-enter, R*-enqucue(x.xq))
PX(R*-dequeue(x.xg), R*-join(x.rc))
PX(R*-leave(x.rc), R*-exit)
PX(W*-enter, W*-enqueue(x.xq))
PX(W*-dequene(x.xq), W*-join(x.wc))
PX(W*-leave(x.wc), W*-exit)

We then examine the node graphs and use the GRE from empty rule and the GRE
from expression rule to derive the followmg GRE claus&s |
GRE(R*-dequeue, W*-join)

GRE(W*-dequeue, R*-join)
GRE(W*-dequeue, W*-join)

Using the GRE clauses and the GX from GRE rule, we derive the following GX
clauses:
GX(W*-join, W*-leave, R*-dequeue)

GX(R*-join, R*-leave, W*-dequeue)
GX(W*-join, W*-leave, W*-dequeue)

In the sccond stage of the proof, we prove the implication by assuming the
precondition, and deriving the consequence.. We: use the Transaction order rule to.

derive:

- 127 -



(R1-enter < R1-enqueue < R1-dequeue
< R1-join < R1-feave < R1-exit)

&

(Wl-enter < W1- -enqueue <Wl- dequeue
< Wl-Jom < Wl-leave < W1- exnt)

- Then we perform the following mferences usmg the mdlcated rules:

Event order

R1-enter < Wl-enter
R1-enqueue < Wl-enter-
R1-enqueue < Wl-enqueue
R1-dequeue < Wl-dequeue
R1-join < Wl-dequeue
R1-leave < Wl-dequeue
R1-exit < Wl-dequeue
R1-exit < Wl-exit

Rule appllcd
Assumed |
Event after PX
Transitivity
Event from FIFO
Event after PX
Event after GX
Event after PX

Transitivity

5.8 Comments on the verification rules

While the intent of defining inference-rules in the specification language is to
simplify verification, one unfortunate side-effect has been to add numerous clauses to
the apccnf‘ ication language. These additions have made the specification language far
closer to our definition language than we would like. As we add more extensions we
begin to lose the simplicity that proofs in the specification language have over proofs in

the definition language. Despite these misgivings, the rules do appear to work at a

higher level than could be obtained from the definition language.
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We have added a means for avondmg the requlrement that every event

t J :

mentioned in the ordering clauses must map (vxa @e symbol mgp) to an event that

occurs in the complete history on which the map :s based. There is no inherent reason

e
¢

why this ability should not be extended to the't user, élmough we ;have‘chosen not to do

M«J‘ R

so. This feature is only rarely used and contmues to have potentlally surpnsmg _

interpretations, as evndenced by the Event fmm mady queue mle where the occurnence

£
‘féq ,iﬁ;f' ‘;;"’»s} fop

of an event was proved without resortmg to the @E notation.

‘"!f
27 ;if
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6. Automatic Serializer Prover

The previous chapter presented verification rules that were defined in an
extended spccrﬁcatton language. This chapter dwcnb&s a program that makes use of
those rules. While limited to dealing with: snmple senahzers and sspecification clauses
that do not mention the rank of an ,,evcht, many :of the pr'fiiﬁc’j;iﬁles;;qsed are appIiCabIe to
more general serializers. The program, called ASP (Automattc Senahzer Prover), has

been tested on a number of versions of the readers‘rwrlters problem

In this chapter we dlscuss the structure of ASP ﬁrst by gwmg an overvnew
then by" detarlmg some of the algorithms used 'ﬂte resrrlts for the readcrs-wnters
examples are given, and we discuss how ASP could be extended to accommodate

various extensions to simple serializers.

6.1 Overview of ASP

The input to ASP is a description of each operation of a serializer and the
specification clauses for the scrializer. We use. ASP interactively to prove that the
specification clauses are satisfied, or to examine why they are not. The exccution of

ASP has the following phases:

* Initialization: This phase builds rt,prcscnt.ttmns of the node graphs for
the serializer operations given the text for th op«.ratlot’ts 16 In the

16. In the actual program, the text must undergo an initial translation by hand in order to be processed.
This allowed us (o concentrate our efforts on verification rather than parsing.
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remainder of this chapter, we will make no distinction between the. node, :
graph representations used by the program and the node graphs uséd in
the semantic model.

* Static - analysis: This phase examines the node graphs to determine
possession exclusion, represented by the PX clauses mentioned in the
previous chapter, and guarantee excliision; represented by ‘GX iclauses.
Note that we also make no distinction between the, spemﬁcatlon clause
representatlons used by the program and the actuai clauses. |

* Verification: [n this phase we attempt to prove each specification clause
given. Typically, a- specification clause is given as anmimplication -
consisting of a precondition clause and a consequent clause. Proving such
a clause involves assuming | the precondition and usmg the inference rules
described in the previous chapter to derive the consequent clause. When
a consequent clause is derived, further. rules may be: apphed to denve new
clauses.

The uode gi'aphs, specification clauses, and other data are kept.in a structure

called the data base, which is composed of the following parts:

* Node graphs: There is-a node graph for cach operation of the serializer.
Each node has a structure as described in Chapter 3. Data’ structures
representing expressions (as in N.expr), queucs: and crowds (as in
N.mob), and kinds (as in N.kind) are referred to by the node graphs. '

* Transaction stack: Therc is a stack of trunsacllons that rcprcscnt the
‘transactions mentioned in the specification clauses. - Each transaction
symbol in a specification clause has a corresponding transaction in this
stack. Further transactions may be added to this stack due (o attempted
proof by contradiction, as mentioned in the prcwuus chapter. When such
an attempt succeeds or fails, such a transaction is remoyed from the stack.
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* Assertion stack: There is a stack of specification clauses that have been
asserted and the rules used to assert the clauses. The asserted clauses are
those that have been assumed to be true or have been added by
application of the inference rules to the clauses.in the assertion stack.
This stack provides a record of which rules led to particular event
ordermgs as well as an efficient mechamsm for removmg assemons

* Event stack: There is a stack of the events that exist (although do not
necessarily occur) for the transactions in the transaction stack. This stack
is closely coupled to the stack of knowa transactiens, since each event in-
this stack must have a known transaction. Whenever a transaction is
added to the transaction stack, an'event for évery “node that the
transaction may.gxecute is added to the event stack. When a transaction
is removed from’ the transaction stack, ail’ events for that transaction are
removed from the event stack.

 *Event order matrix: There is an extensible square matrix used to
represent event orders. There is a row and a column for each event, with
the entries indicating the ordering between the events. “The row and -
column index for a particular event are identical, and the index for an
event in this matrix corresponds to the index in the event stack for the
event. The matrix is extended or retracted (in both dimensions).as the
event stack is extended or retracted.

6.2 Static analysis phase

The static ahalysis phase inserts PX and GX clauses into the data base
according to the node structure of the (ipcrzltic)ns;' It is'"pcrfonncd in advance of
cxamining the specification clauses. The purposc of the static analysis phase is to
perform steps that can be done once for a given serializer, and avoid performing these

steps for every clause we wish to prove.,
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The PX (Possession Exclusion) clauses are generated by examining the node
graph to determine when a transaction is in possession of the serializer. For simple

serializers only the PX from gain rule is needed.

The GX (Guarantee Exclusiun) clauSes are genei'ated by exan1ining the
guarantees on enqueue statements during ,the initial pa‘ssbver the serializer. They are
generated according to the GX from GRE rule Wthh depends on the GRE from
empty rule and the GRE from expression rule. As lengas the guaram;ees only mvolves
testing the emptiness of crowds or queues. or conjunctlons (Gl &Gz) of tests for
emptiness, GX clauses can be generated for the guarantees during static analysis.
Guarantees that are disjunctions (GIIGZ) or neganons (~G) do not generate. GX

clause durmg static analysis.

6.3 Verification phase

A specification clause is usually written as P2 Q, where P and Q are
specification clauses that do not use implication clauses. Verifying that PO Q is
satisfied involves assuming that the precondition clause P is true, and showing that the
consequent clause Q is therefore true. Note that the cvlause P is assumed to be true fora
particular choice. of complete :history and valid symbol map. The verification

methodology allows us to prove:

vp.h:(PDQ)

The assumption and proof should not be viewed as:
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(v p,h: P) O (v p,h: Q)

- When a clause not previously in the assertlon stack is asserted we say that it is
inserted into the data base. When a clause is mserted ASP checks certain rules to
determine whether they are immediately applrcable These rules are called insertion
rules, and are; Transrtrvrty, Event before PX, Event after PX Event before GX Event
after GX, and Event from FIFQ. If any are applicable, we assert the event order clauses
they imply. This, in turn, may lead to the assertion of further clauses and so.on. This

process is complete when no fu rther insertion rules are applrcable

In assertmg an event ordermg, we necd to have computer representatrons of
events. In order to have event representatlons we need transactron and node |
representatrons The mrtralrlatron phase burlt the nodes The transacttons and events
are built by exammmg the specrﬁcatlon CldUSC to determme whrch transactrons are

mentroned in the clause Thcsc transactrons and therr dssocrated events are ndded to

the data base.

For each transaction that is added duc to beingﬂ_expl}icitly‘ named in the
specification clause, the Transaction order rule is used to dctermme the order of the
events that belong to the transaction. This leads to the msertron of evcnt ordu cluuscs »;
but does not irnmcdiulcly lead to the application of any rules-uther than the transaction
order rule and the transitivity rule, since there is no known initial ordering between

events from different transactions.
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To prove an implication, we assert the precondition:and attempt to derive the
result. The precondition for a specification clause is asserted by performing operations
on the data base to assume the various parts of the clausé. For example, one
component of the specification clause rrlay be an ’eVeﬁi'orrlering,' El ¢ E2. This'clause is
asserted by callmg the add_ order operatnon "of the data base. 1f this ¢lause was not

previously asserted, the insertion rules are applied by this operatlon

6.4 Evaluation of guarantees and anonyluous‘transaetlorls‘ |

In several places in ASP it is necessary to evaluate a guarantee to determine if
a queue is ready The EVT and EVF clauses mennoned in the prevrous chapter are
used to mdrcate the evaluatron of guarantees EV'I (G E) is true for some htstory that
contams E if the guarantee G evaluates to true in the largest preﬁx of the hlstory not
contammg E. EVF(G E) is true if G evaluates to false rrl that preﬁx For example |f
the event E occurs bctween correspondmg enqueue and dcqueue events for some

transaction, as in:

X-enqueue(Q) < E< X- dequeue(Q)

then we can assert the clause

EVT(queueSempty(Q), E)

In some cases, it is not sufficient to simply use the EVT and EVF rules
presented in the previous chapter. Consider the following concurrency specification for

the FIFO rcaders-writers serializer:
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R1-enter < R2-enter < R1-feave & GX(R 1-enter, R2-enter, W*-enter)
D R2-join < R1-leave

In proving this specification, we need to prove

EVT({crowd$empty(x.wc)}, R1-leave)

The insertion rules are sufficient to prove that the writers crowd (x.wc) is empty when
the readers crowd (x.rc) is not empty. However, the rules we have presented do not
immediately allow us to conclude that the EVT clause above |s true smce we must

prove the clause for all writers.

A more general method of proof is available to us, based on proof by
contradiction. If we assume that a writer is in the writers crowd, and that leads to‘a
contradiction, then the writers crowd must be empty. To be ekhaustive in choosing the

writer, we have two cases:

1: The writer can be a writer that alrcady exists in the transaction stack. To
assume that some writer W is in the writers crowd when R1-leave occurs,
we assert: | ( o

W-join < R 1-lcave ¢ W-leave
and apply the inscrtion rules as necessary. A contr adiction occurs if this .
leads to E<E being asserted for any event E (cyclic event orders are
prohibited by 1.egal_transaction_step). 1fno contradiction occurs, then
we cannot prove the EVT clause. If all writer transactions in the
transaction stack cannot be in the writers crowd, it is necessary to apply
the second case.

2: If no writer in the transaction stack can be assumed to be in the writers
crowd, it is still possible that there is some other writer-that can be in the
crowd. Therefore, we invent an anonymous transaction and place it in the
transaction stack, and assume thatthe new writer is-in the crowd, as in the
first case. If assuming that the anonymous transaction in in the crowd
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leads to a contradiction, then we can assume that the writers crowd is
empty at R1-leave, and therefore the EVT clause is true

The above method is easily generalized to proving any queue or crowd empty.

6.5 Checking for ready queues

The Event from ready queue rule is difficult to apply, sirice there is nested
quantiﬁéatidn. We start By examining the data base ‘fOr';dequ:eué' events where the
guarantees are true immediately preceding enter or leave events. Consider some
transaction X, where X-dequeue has a true guarantce ;mgjggjagglqufore some enter or
leaye event, which we will call E. Il E is known tg qccuir;gﬁe_,r_{);(fgnqugue, then the only
way that E can occur before X-dequeue is for there to be a transaction in the same
queue, ahead of X, with a false guarantee. If such a transaction exists, we say that it

blocks X-dequeue.

If no known transaction can block X-dequietie,’ it may still be possible that
some other transaction not mentioned in the specification: clause cambléc‘k »sX-déQUeue.
Thercfore, we create an anonymous lr'msaclwnl for an operalron (provided that that
transaction can have an enqueuc cvcnt-for:lhe;s:im»x}%:q;teue &Xﬂequcuc), and assert

that

Z- cnqucuc ( X anuuu < Z- duquwe

where X ~anucuc. and /-cnquclu oceur for: lhe same. queue lf the guarantee for

Z—dcquuz,c is truc xmmud;;m_Jy belore l* thun / c;umut block X l*urthcr il asserting
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that Z-dequeue occurs after E causes a conflict, then there can be no such transaction Z.
If there is no Z, for any operation of the serializer, that can block X, then X-dequeue

must occur before E.

6.6 Proving by cases

One potential drawback of using the insertion rules is that some relatively
simple proofs will be unachievable because there are not enough assertions. In
particular, if enter events E1 and E2 are known to occur, yet the order of El and E2 is
unknown, we may be able to prove a clause if we assume either E1< E2 or E2 < El, yet
be unable to prove the clause if no order is assumed. ASP can perform some of thgse
proofs by cases: where the order of E1 and E2 is unknown, first assume E1< E2 and
perform the proof, then retract the assumption of E1<E2, assume E2<El, and
perform the proof. If the desired result is obtained in both cases, the proof is valid,

provided that E1 and E2 are known to occur.

The concurrency specification clause given for the FIFO serializer was overly
restrictive, since it specified that
R1-enter < R2-enter < R1-leave
and the result (R2-join < R1-leave) can be shown to be true even if R2-enter < R1-enter.

The following clause is a stronger version of the concurrency specification that requires

proof by cases:



 GX(R1-enter, R2-enter, W*-enter) & R2-enter < R1-leave
D R2-join € R1-lcave S
Note that the GX clause does not specify that R1-enter < R2-enter, although the GX -
clause is trivially satisfied if R2-enter < R1-enter. Initially the precondition is asserted.
Then ASP first assumes R1-enter < R2-enter, proves the consequent clause, petracts.the -
assumption, then assumes R2-enter < R1-enter, and proves the consequent clause. That
R1-enter and R2-enter occur can be sh'o'wﬁ‘ in two waysthey are mentioned in a QX
clau;se, and events subsequent to them (b;' Lég:a]:t‘ra‘n:sé‘ét)fc’)h_"_&éb)‘are fm‘ent'iioned in an

ordering clause.

6.7 Proving guarantecd service |

In many serializers we would like to prove that every transaction feceives. -
- service, i.e., for every enter eévent there is an exit event. ?heﬁjlbwingé-is*a ‘typical

service specification clause:

- @T-enter D @T-exit
Proving guaranteed service for a transaction is performed by proving that cach dequeue
~event that the transaction can execute is guaranteed to occur, since we have assumed for
simple serializers that all other kinds of events will occur in complete historics given

their predecessors.

Proving that a dequeue cvent occurs is largely done by contradiction: We
assume that the dequeue cvent does not occur, which implics that its queue is not

empty, and that any crowds that require dequeue cvents from that queue will empty.
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This is generally enough to show that the guarantee for the dequeue event is true. The

dequeue event must occur if no other queue is ready.

In this method, evaluating the guarantees must take place immediately prior
to some event, since that is the basis of our evaluation mechanism. But there may be no
actual event occurring, especially if no further enter events occur. Therefdre, we invent
a fictitious event with certain properties. We assume that some "quiet point” event QP
occurs, such that the event QP gains possession of the serializer only when no queues
are ready, and QP occurs late enough such that every crowd or queue that must empty
has emptied. If the guarantee for the dequeue event in question is true at QP, and there
can be no blocking of the dequeue event, then the dequeue event must precede QP,
provided that QP does occur. We can guarantee that QP does occur if every other
queue is not rrady at QP. At this point we have proved that QP does occur, and the
dequeue event precedes QP, but we assumed that the dequeue event does not occur.

This is the contradiction that proves that the dequeue event does occur.
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For extended serializers, it is possible for a request kind to have guaranteed B

service, yet the quiet-point method is too weak. To lllustrate suppose a senahzer has

the following operation:
op = proc (x; cvt)
if queueSempty(x. q)
" then % O-enql S
enqueue Xx.q unt11 crowdSempty(x c)
else X O-enn2 :
enqueus x.q until crowdSenpty(x c) & ~crowd$empty(x cc)
end
join x.c % O-joint
. end
join x.cc % 0-join2
end -
end op :

For simplicity, we will suppose that op is the only operation of the scrializer that canget.
sole possession (uses cvt). The QP:event will not occur until x.c is empty and x.cc is
empty. However, at QP the guarantee for O-enq2:is false. Therefore, it seems possible
for QP to occur before O-enq2; so guaranteed service eannot be proven. -~

One way to prove guarantecd serwce for the above senahzer 1s to spht the
proof into two cases dcpundent on the test queueSemply(x q) in the lf statcment If the’
test was true, the QP method will work. IFf the test is false just before O-enq2.occurs,
then there must be at least one other transaction, call it Ol, that is in x.q when the
O-enq2 occurs. But then there are two more cases, based on whether or not
crowdSempiy(x.c). If x.c is empty, then the guarantecs for x.q must be true, and O-deq2
must occur before Ol-leave, which must occur before QP, which guarantees service. If
x.cc is not empty, then there is yet another transaction, call it 02, such that x.c will be
empty at O2-join2, which implies that the guarantees for x.g will be true before

02-lcave2, which must precede QP. Although this analysis by case would be expensive,
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it would be possible to add to ASP.

The reader might object that the above examplé is: quite éontrived, and we
would agree. We have discovered no- eeﬂvmcmg maitsuc exam\pies that requu:e more
“than the simple QP method, even when extensions to' senﬁh‘lérs are conSIdered For

this reason, ASP supports only the simple QP method..

6.8 A sample verification

This section presents a sample veriﬁcatibhﬁvﬁéffk)rr‘néd by ASP Fxgure 4 figure
shows the results produced by using ASP to verify a priority clause for the FIFO
readers-writers serializer presented in Chapter 2. Input from the user is indicated by
un&crlining. The user starts the session by fypingf in"the ‘fame “of the serializer that
should be used. That name is interprétéd a5 a file naine, wheré the fite should contain a
descnptlon of the senaﬁzu in the format requm.d "by ASP “Then the user types the

clause to be verified.

The response from ASP indicates whether the clause could be proved, and
shows the assertion stack after the insertion rules have been applied (the first clause
printed is the most recently asserted clause). This: information is usu:;l)y sufficient to
cnumerate the steps of: the-proof, or to demonstrate why the clause could not be proved.
While we will not describe them in this thesis, additional.aids are present for more.

detailed inspection of the steps that ASP uses to prove clauses.
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Figure 4. A sample verification by ASP

Name of serializer: FIFQ
1.012 seconds .to setup.

specification clause: Rl-enter < Wi-gater => Rl-exit < Wi-exit
Proved Implies(Rl1-enter < Wl-enter,
~ Ri-exit < Wi-exit)

base[39:
Rl-exit < Wil-dequeue- xq Possess10n axclusion,
R1-leave-rc < Wi-dequeue-xq: Guarantee exclusion,
Ri-join-rc < Wi-dequeue-xq: Possession exclusion,
R1-dequeue-xq < Wi-dequeue-xq: FIFO queues,
R1-enqueue-xq < Wl-enter: Possession exclusion,
Ri-enter < Wl-enter: Assumed,
TR: Wl-enter: From clause,
TR: R1l-enter: From clause]

1.576 seconds. : S

Note in Figure 4 that not all of the rules .are shown Thc default used is tou
omit showing the clauses asserted in thc statlc analysm phase and use of the Transacnon\
order and Transitivity rules. The nomuon "baqe[sg." appezmng m the mlddle of the
figurc indicates that the assertion stack has 39 members. At the end of the ﬁgure the |
amount of processor time needed for the proof is given. This ﬁgure includes the
processor time necessary to-parse the expression, apply the verification rules, and to
print the results. The notation "TR: Wi-enter: From cYause” is-uscd to indicate that'
the ‘transaction W1 was added to the transuction stuck ‘sine¢” the ‘transaction was
~ mentioned in the specification clause (for uniformity in the prograin' this is treated as an

assertion).



6.9 Performance results

In this section we present a number of veriﬁcations performed by ASP on
variation of the readers-wntem problem Each test is gwen as a specification clause to
be venﬁed (or not verified) for different readers-wnters serrahzers Flgure 5 presents‘”
‘these specnﬁcatrons most of Wthh have been mentroned in prevnous chapters as

specifications of drfferent propemes for the readers-wrlters problem.

Figure 5. Readers-writers tests for ASP

Wpri: Writer's priority
R1-join < Wi-enter < R2-enter < W2-enter < Rl-leave
D W2-join < R2-join

(NWPRI): Modified Writer's priority
Wi-enter < RI-enter < W2-enter < Wl-leave
D w2join < rljoin

Rpri: Reader's priority
Wi-enter < W2-enter < Rl-enter < Wil-join
D Ri1-join < W2-join

(NRPRI): Modified Reader's priority
Ri-enter < Wil-enter < R2-enter < Rl-leave
D r2join < wljoin

I] R: Concurrency for Readers
GX(R1-enter, R2-enter, W*-enter) & R2-enter < Rl-leave
D R2-join < R1l-leave

XexY: X busy excludes Y busy
X-join < Y-join D X-leave < Y-leave

XpoY: X not by-passed by Y
B X-enter < Y-enter D Xexit < Yexit

GS(X): Guaranteed service for X
@x-enter D @Xexit '
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An abbreviation for each specification is given prior to each ctause. The Wpri
and Rpri clauses specify writer's and reader’s priority propcrtles The (NWPRl) and
(NRPRI) clauses specify alternate versions of these propcmes to be proved for the
NWPRI and NRPRI senallzers (to be shown below) The XexY clause actually denotes
three clauses: RexW, WexR, and WlexW2 where appropnate substltutlons apply The

XpoY clause also denotes three clauses, with the same SubStltljthllS. ’
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Figure 6 presents the code, in abbreviated form, for 'e'aeh""’of'the seven
readers-writers serializers tested. The create operations and headers have been omitted,
as is the trailing code after any join. The use of crowdsempty and: queue$empty is
implicit where empty is used. There is one FIFO senahzer two readers priority
serializers (RPRI & NRPRI), three wntets pnoﬁty ' senahzers (WPRI1, -
'WPRI2 & NWPRI), and one serializer that, albws s&arvamn (STARVE) Note that the
priority specifications for RPRI and NRPRI «dliffer,,and that there are also two distinct

writers priority specifications.

The various serializers above were developed at dlfferent tlmes In pamcular
NRPRI and NWPR1 were writter-after: Aﬂ‘ ‘had beeome relaavely reliable. We -
originally attempted o prove the Rpﬁ sbeciﬁézftibﬁ clause for the NRPRI serializer.
The attempt 'vas made much more -diffieuit by 8 preetmaépaon ‘4due to a fauity .
informal proof) that the clause could be proved After much effort to determine the
cause of the fault in the program, we ﬁnaﬂy hottced lhat the pfogfalh was correct: not -
only was the clause net satisfied, but the mtermadla&e sa.ps followed by ASP provided a
counterexample. It was this example more ’than odyiolgher t}l?mt‘ convinced us of the

worth of automatic verification aids.

l‘he m()dlﬁtd wrllus pnonly spec:ﬁ«.allon came. about as a lest of the

speculatlon lhdt NWPRI musﬁed a prlorny claus«. that was symmemc to NWPRl since

the serializers were (rou;,hly) symmelrlc Fhe unmodlﬁed wnlus pnomy clause is also

satisficd by the NWPRI scrializer.

e



Figure 6.

Name

FIFO

RPRI

© WPRI1

WPRI2

STARVE

NRPRI

NWPRI

Code for test serializers -

Oper Code

"R enqueue xq until empty(wc); join.rc. -
] enqueue xq until empty(wc)&empty(rc); join wc
R enfueue rq until empty(wc); join rc. ..
W enqueue wq until empty(rq)

enqueue rg until empty(we)&empty(rc)s join we

R engueue rq hntil'empty(iq)lemptyirt)'

enqueue wq until empty(wc); join rc _
W - enqueue wq until empty(rc)&empty(wc); join wc
R enqueue rq until empty(rc)
" enqueue wg untit empty(wc)dempty(rq); joim rc-
W ~enqueue wq unti) empty(rc)iempty(wc): join wc
R enqueue rq until empty(wc); join ec =
W ~enqueue wq until empty(wc)&emp;y(rc): join wec
R enqueye xq until ampty(wc): jgin;r;'
w enqueue xq until empty(wc)&empty(rc)

enqueue xg until empty(wc)empty{rc): join wc

i

R enqueue xq until empty(wc)f“

enqueue xq until empty(wc); join:hC"'u: " -
W enqueue xq until empty(wc)&empty(rc); join wc

The results in Figure 7 were obtained on 23 August 1979, The times given are
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Figure 7. CPU times for ASP tests

Name Time WexR WexW RexW RpoW WpoR WpoW Wpri Rpri || R GS(R) GS(W)

FIFO 21 T T T T T T F S | T T
RPRI 3 T T T T ?* ©v F T T T T
WPRI1 47 T T T ? 1T T T F ? T T
WPRIZ 67 T T T 72 1 1T v F ¥ 77 T
STARVE- 24 T T T 't .? T . F 2 .7 ? ?
NRPRI 36 T T T 1T ? 1T F T T T T
NWPRI 30 T T T 2 T “1 T " F: 7 T

Time is given in CPU seconds.
T 1nd1cates a proved clause F 1nd1cates a dlsproved clause.

CPU. sc.conds for running all of the tests shown. 17 “The testeases are explamed m detail
at the bottom of the figure. Each column after the Time column represents a dlﬂ"erent
test, given by a specxﬁcatlon clause. A T represents A ,aroven specuﬁcatnon clause AnF
rep rescnts a speci ification dause proven 0 be always false A? represents a speel ification
that could not proven true or faise. In the- senahzus represented in the table below
there were no cases where the program was not capable cnough to prove or disprove a
clause that was always true or false In g«.nera} if the pmgmm can not pmve or
disprove a result itis uiher due toa cl.xuse that is: lrae for some historics and falbe for

others, or it is due to a weakness in the VCI‘IﬁCd(IOﬂ methodoloz,y, and ASP will be

17. These tests were performed on 23 August 1979, using a l)ee.mystem'ZO(nOI ASP oecupacs about 100K
36-bit words of memory. of which about 68K words are duc (o mc Cl U support system: No appreciable
paging activity took place.
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unable to distinguish the two.

6.10 Summary of ?mclhcds used

This section provides a concise summafy of t.he me;hodswe haye used in ASP‘.
In this summary we follow the order of steps used in ASP rather than- precnseiy

following the order of presentation for thls chap&er

* Static analysis is performed once for any gnven serializer code to
detcrmine initial clauses that are- derivable solely from*the ‘node graphs
for the serializer operations. The’ remaindef of the stéps are performed
for any gwen specnﬁcatlon clause .

* Representations are introduced for the tmnsagnons mentnoned m the
specification clause.

* For any specification clause of the form P D Q thc clause P is asserted
and we attempt to derive © through wse of the insértion rufes, which are
the rules Transitivity, Event before PX, Event afier PX, Event before GX,
‘Event after GX, and Event from FIFO. Ir these ‘rules are not sufficient to -
prove Q, further methods must be used.. - ST :

* The Event from ready qucue rule, which reflects the priority of service
given o internal- queues over  the. external gueue,, 1s apphed wherg
feasible. This is known as chcckm;, for ready quules " This rule may
result in the invention of anonymous transactions, which are essential 10
the prool by conmdlcuon that the prccundmons for the rule are met.
Anonymious transactions may afso be “Used’ in the” BVT ‘rule; ‘which is
subsidiary to the checking for ready queues.

* When the clause Q is still not proved, and the order of certain enter
events is not known, although the events are knowa to occur; ASP tries all
permutations of - stich * events. - O Qheun e proven' for every such :
permutation, then P D Q has bu,n proved.
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* Proof of guaranteed service is performed by assuming that a transaction is
blocked in a queue, then proving that a ready queue must result at some
"quiet point.” Although this method is limited, it can be proven to be
correct, and works for a variety of cases.
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7. Interaction of Serializers

In previous chapters, we introduced the serialii‘zérv gon§(rucnfpresented a
specification language for serializers, and demonstrated some verification techniques.
Our discussion has been limited to single instances of simple serializers. Yet if we are to

- reach our objective of modularity, we must examine how serializers interact.

In this chapter we present an application of serializers that incorporates the
use of multiple serializers. - We are especially concerned that serializer use can be
nested, so that the techniques for modular decomposition of programs in a single

process domain can be applied to a multiple process domain.

The example we have chosen is the use of serializers to control concurrent
access to a simple file system. For this example we will assume that objects in primary
memory can be shared by several processes running on a single processor. This choice
is made to keep the example simple enough to be tractable, since presenting a

distributed version of a filing system involves issues well beyond the scope of this thesis.

We start this chapter with a presentation of the simple file system, including a
discussion of the abstractions involved. We then show two of the serializers used to
control concurrent access to the file system, and show how the specifications are similar
to the readers priority variant of the readers-writers problem. Further sections concern
methods for introducing scrializers for abstractions that were written for single process

environments, and a discussion of higher-level transactions.
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7.1 The file system

The structure of the file system is based on directories and files, A directory is
a map from names (expressed by strings) to entries, which are either files or directories.
If directory Y is named in directory X, then Y is a child directory of X, and X is the
parent directory of Y. There is a single directory, ,célled- the root direcgory,, that has no
parent - directory. Files and child directories may be added to. or deleted from
directories. A simple provision is made for iterating over the names of a directory. It is
possible to get the number of entries in a directory, and to determine w,hjcbhdir,ectory (f
any) is the parent of a given directory. For,mpstgpgqmgm{p directory must be open
for the user to perform those operations. Opening a directory .is accomplished by the

directory$open_dir operation. The directory structure is acyclic.

A file is an array of pages, where a page is some fixed 'Iéngth unit of data.
Pages on primary memory may be read from or written to any existing page in a file.
Pages may be added to or removed from the end of a file. A file may be named by only
one directory. It is possible to get the number of pages in a file, and to determine which
directory names the file. As with directories, a-file must be open for the user to perform
most operations. A file opened by directory$open_privaie can only be accessed by a
single process, while a file opchcdrby directory$open_public can be accessed by any
number of processes (although a prhcticu] system might impose some reasonable fimit).

A file is closed by the file$close operation.
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At this point, some additional explanation of the open and close operations is
in order. First, we have made the open operations work on directories, sinse directories
are the logical means for initially accessing files and child directories. We have made
the close operatidn work only on the object that the o;‘sbntfpmv’ides,'which‘prevéms
users from closing a file (or directory) except when they have -acquired that file or -
directory object through an open operation. Second, we have two different kinds of
open operafion on files: vopen _public, for simultaneous decess:among several ptocmses
(or users), a.nd‘ open _private, for sole access. We ¢an associate an open count with each
file or dire‘ct‘or')" object. This count is increased for every open operation, and decreased
by every close operation. The directory$open: private operatm ‘will only succeed when
the count is zero, and upon successful completion,-prevents-any increase in the count.
The directory$open_dir operation opens a éhifd'di’rectew such that multiple processes

can access it concurrently.

In presenting the file system example we will eaneemtmte on showing the .
interface of the file and directory data abstractions and the code for the file and
dircctory serializers. It will not be necessary to show the im’pleiﬁémation of the file and

directory data abstractions, although we will discuss some of the details as necessary. -

Figurcs 8 and 9 present the mu,rface spccnﬁcatwns I'or the dlrcclory and file
clusters. As a first approxlm.luon lhcsu are tho. same mturfac» spw:ﬁcallons that are
used for the corresponding directory and file sc.rmhurs hxch opt.muon mtc,rface
names the operation, the types of the arguments, the types of the murnud ObjCClS, and

thc types of exceptions that can be signalled. We include some comments that indicate
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Figure 8. File interface

A file may be described as an array of pages that exists on remote
storage. It can be randomly accessed, and can  be extended or retracted
at one end. An open file can only be obtained through use’ “of a directory
open_private or open_public operation. No operatlous can be performed on
a closed file except for is_open.. _The following fiIe operations are
available to the user (ofhers will be discussed 1ater 1n the chapter):.

get_parent (file) returns (directory) signals (flle c1osed)
Get parent directory of file if file is open, otherwise signa]

file_closed.

get_name (file) returns (sfridg) signals (file_closed)
' Get name of file as a string if file 1is open, otherwise signal
file_closed. \

get_size (file) returns (int) signals (file_closed)
Get number of pages in the file if it is open, otherwise signal
file_closed. '

is_open (file) returns (bool)
Return true if file is open, false if it is not.

read_page (file, int, page) signals (file_closed, bounds)
Copy a page of information from the given location in the file i-to
the given page in primary memory, provided that the file is open.
Signal bounds if the location is invalid (less than 0, greater than
or equal to the size). Signal file_closed if the file is closed.

write page (file, int, page) signals (file_closed, bounds)
Copy a page of information from the given page in primary memory to
the given location in the file. Signal bounds if the location is
invalid, file_closed if the file is closed. :

close (file) signals (file_closed)
Close file if it is open, otherwise signal file_closed.

add_page (file., page) signals (file_closed, no_room)
Add a page to end of file, signalling if the file is closed or there
is insufficient room to complete. :

rem_page (file) signals (file_closed, empty)

Remove a page from the end of the file, signai]ing if the file is
closed or the file has no pages.
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For concurrent access, there are the following classes of operations:

Info: can overlap with any but sole access
Read: can overlap with read or info access
Write: can overlap with info access

Sole: can not overlap

The operations in each class are:

Info: get parent, get name, get_size, is_open
Read: read page

Write: write page

Sole: close, add page, rem_page



Figure 9. Directory interface

A d1rectory functtons as a symbbl tan]e of antr1es.,where each entry is
either a file or andther directory. Entries can ba created,. de1eted or
opened using the directory. The follow1ng operations are pub1ic1y
available: I S
roat () returns (directory). o P
Get root directory, which is a]ways oﬁen (this operaxion does not
require possess10n)

gst_parent (dlrectory) returns (d1rectfmy)'sirnals (nana ‘dir_closed)
Get parent directory, signa1ymn .naneg. jw ﬁfif iven’ ¢frthog¥ is the
root directory, and dir_closed 1f the given direc tory i5'¢10€8d. °

get_size (directory) returns (int) sxgnglg,(digﬂ¢ze gd)
Get number of entries. in the ngen. 9 reqtqng sig

f” ing if the
. directory. 1s closad - S ing i

get_name (d1rectory) returns (string) svgnals (dir CIOSed)
Get name of the given dlrectory, signalltan if the directorg is
closed. , : , . o s

is open (d1rectory) returns (bool) , ‘
Return true if the given directory. 1s open. fa1se if it is not

info (directory, string) returns (hool, int, bqol)
signals (none, dir_closed) ,
Return_information ahout the . named eq;ny a hnnfean indicgting the
kind of entry (true if entry is a tite, raise it fot), the size (in
pages if a file, onumber of entrig&wif qﬂp1rec;p;y),ﬁand a boolean
indicating whether. the entry is. opon. SigndT‘qufopriate errors if
they .qoccur. i P s . L N

next (directory, str1ng) returns (stringl sggnals (néne dir closed)
Get next entry name after named entry, using string ordering.

open_private (directory, string) returns (f1le)
signals (none, opqned dir closed) o :
Open named file in glven.gﬂlrectory for so?e use, signalling
appropriate errors; lf they . occur.“‘ : o

SR
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open_public (directory, string) returas (file)
signals (none, locked, dir_closed)
Open named file in given directary for shared use, signalling
appropriate errors if they occar’ (1octhd 1s sf@nal%ad 1f ontry is-
open for sole usn) o - ,

open_dir (directory, string) returns (directory)
signals (none, dir_closed)
Open named child d1rectory in given diroctory. sigua]ling appropriate
errors if they occur.

close (directory) signals (dir_ closed, open_entries, root) A )
Close the given director;. sigha11iag ff 1t 1: the roct or 4t is
alregdy closed, qr open entries ‘efst. , o

add_dir (directory, strinq)
signals (no_rcom, ‘duplicate, bad namie, “dir_ crcsad) ' :
Add new (empty) chitd “directory entry with' givcn ‘mame-. Signa1 if
there is insufficient room, an existing file or @irectory of the same
name, a bad d:rqctory‘namqﬂgiven orithgxdiqgcggrykis closed,

add_file (directory, string) B o T
signals (no_room, duplicate, bad_name, dir _closed) ‘
Add new (empty) file entry to directory Signal if there is
insufficient room, an existing file or" d#ractdry’of the ‘same nawe, @
bad file name given, or the directory is closed.

delete (directory, string) signa1s (none opened, d¥r _closed)"

Delete named entry in given dxrectory,}sign&11iqg,apprnpriate errors.
If entry is a directory, amnl of its entries are d%1etod as well,

There are four classes of operatxons roqurring po:sassfon'

Fixed info: can overTap with any but solé accéss’
Variable info: can overlap with variable or fixed info access
Opening: -can overlap with fixed info access
Sole: . can not overlap ‘ e T
The operations in each class are:
Fixed info: get_parent, get_name, is_opén
variable info: get_size, info, next =~
Opening: open_ private, open pubtic opan dir
Sole: close, add_dir, add_fite,/ délete,
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the intended effects of the operation. After the operationsﬁave been described, we
divide the operations into classes based on which operations may overlap in execution

with which other operations (when executed on the satne seriafizer object).

One way to design a system that involves concurrency is to design. it for a
single-process system first, then add multiple processes for portions.of tpskgimat_:cap be
performed concurrently, and add serializers to control access to shared objects. In the
file system example, however, we have assumed that the ﬁle system would be accessed
by multiple processes. This assumption has mﬂueneed the chonce of operatxons,
especially in providing for opening and.closing:of filesc Even:so, the single-process
model of design is useful. Concurrent execution‘of operations-is only permitted where
the effects on the state of the files are the same ‘as some-serial execution of operations
where concurtent execution is prohibited. It may -not be: possible to obtain the.
maximum concurrency in ‘this fashion, since certain operations could be allowed to
execute concurrently in part. But increased comcurrency is purchased at-the cost of

increased complexity.

One simplifying assumption has been made regarding file objects thap may
appear to be unrealistic. That is, a file on secondary memory has at most onc file objeet
in primary memory controlling access (this is also true for directories). Unfortunately,
this allows a user to open a file once to obtain the controlling object, then close the file
several times, thereby completely closing the file to access by other processes. To
remedy this, in a real system it would be desirable to have a second level of indircction

for files such that every successful execution of an open_public opceration returned a
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unique controlling file object. The additional level of file object would be used to
create a separate {ile object for each open_public operation, such that the ﬁlé, abstraction
presented to the user would only allow a file object to be closed once. A full
presentation of both levels of file has no advantage over a presentation of a single level,
so we only discuss the system_file vérsion of files, which is snppom:d by the file cluster

and its associated serializer.

7.2 File and directory serializers

Figures 10 and 11 on the following pages. present. the ‘directory and. file
serializers. Note that we have added several operations that are "hidden” to the
"normal” user. We would expect access to these operations to be regulated through
some library mechanism, such that a normal user would see a subset of the-interface of
an abstraction, while a "privileged” userwould be allowed to access more of that
interface. In some cases, and in particular for this file system, aceess to privileged
operations would be restricted to only allowing use by implementations of particular
abstractions, rather than allowing access based on the identity of the pcrsoh using the

systcm.18

18. Such protection could also be provided to some extent by establishing a block structure for clusters
and serializers. We have chosen to rc(.un CLUs .Ippmnh o moduk:s. and assume that protection is
accomplished by other means.,
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Figure 10. File serializer

file = seria]izer is

% The following operations are publica]Ix ava11ab]e

get_parent, % get parent directory

get_name, % get name of file

get_size, . % get # of pages in file . ;

is_open, % test open-ness of file *~ ® :
read_page, % read a page .
write_page, % write a page i
close, % close file

add_page, % add a page to end of fila =~ L
rem_page, % remove a page, from end of ?iIe W

% Note: delete can only be called from directogy}ﬂe1ete
delete, % delete the contants of a file

% The wrap operation can only be used by the _file tiuktﬁ?*
% to turn a _file object 1nto a ftle serjal1zer ob;gct
wrap : . “

PogranaiEnr s Teos opmo Pood b cgmenns

I

% The operations with cvt arguments .can be split 1ntd'four

% classes, depending on which operations can’ overiap” ih
% execution with which other operations.

% - Class - -.Overlap - .

% Info: Info, Read, Hrlte L

% Read: Info, Read "~ .=~ "~ . =

% Write: Info IR T e e

% Sole: e s T

ER 2

% - Class - - Mewbers -~ Ve

% Info: get_parent, get_name, get_ size,‘1s ﬁPan

% Read: read_page :

% Mrite: write page. Gt el al

% Sole: close, add page 'r%hWQQQQ.;leptg:

rep = struct[slow q.~ fast _q: queue '“i o AmE R wetaL T e e
- sole_c, write_c, read_c, info_c: crowd, - =
f: _file) IR

wrap = proc (_f: file) returns (évt) :
return (rep${f: _f, fast_q, slow_q: queueScreate(),

R E R I

RE
Y

sole_c, info_c, read_c, write_c: erowd$create()))

end wrap

get_parent = proc (f: cvt) returas (d1rectory)
signals (file_ closed)
enqueue f.fast_q until crowdsempty(f soie e)
join f.info_c
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return (_file$get_parent(f.f)) resignal file cltosed
end
end get_parent

get_name = proc (f: cvt) returns (string)
signals (file_closed)
enqueue f.fast_q until crowdsempty(f sole c)
join f.info_c
return (f.f.name) res1qna1 Iile ciosad
end
end get_name

get_size = proc (f: cvt) returns (int)
signals (file_closed) :
enqueue f.fast_q until crowdSempty(f sole_c)
join f.info ¢
return (T.f.size) resignal fi1¢ closad a
end
end getusize

is_open = proc (f: cvt) returns (bool)
enqueue f.fast_q until crowdSempty(f.sole c)
join f,info_c¢ L
return_ (_ fileSis open(f f))
end
end is_open

read_page = proc (f: cvt, index: int, p"pAQQ)
signals (file_closed, bounds)
enqueue f.fast _q until crowdSempty(f sole c)
& crowdSempty(f.write_c)
join f.read_c '
f1le$raad(f f, index, page) resignal file_closed, bounds
Qnd , bz ‘ .
end read page

write_page = proc (f: cvt, index: int, p: page)
signals (file_closed, bounds)
enqueue f.slow_q until queueSemptx(f fast_q)
enqueue f.fast_q until crowdSempty(f. sole c) '
& crowdSempty(f.read c) & crowdSeﬂpty(f write c)
join f.write_c
_fileSurite(f;f. index, p) resignal file_closed, bounds
end
end write_page

close = proc (f: cvt) signals (file_closed)
enqueue f.slow_q until queueSempty(f.fast_q)
enqueue f.fast_q until crowdSempty(f.sole _c)
& crowdSempty(f.info_c) & crovdSeupty(f read_c)-
& crowdSempty(f.write_c)
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join f.sole_c
f1le$close(f f) resignal file closed
end

end close

add_page = proc (f: cvt, p: page)
signals (file_closed, no_room) o
enqueue f,slow_gq until queueSempty(f.fast_q)
-enqueue f.fast_q until crowdSempty(f.sole_c)
& crowdSempty(¥.info'c) & crbwétehpty(f read: c)
& crowdSempty(f. write ey ,
join f.sole_c ‘ R
_fileSadd_page(f.f, p) res1gnal f11e c%bsod nozroom ;
end
end add_page

rem_page = proc (f: cvt)

signals (file_closed, no room) - :

enqueue f.slow_gq until queueSeapty(f fast q)

enqueue f.Tast-q ontil crewdSempty{f.sole ¢)

- & erowdSempty{f:¥nfo_c) & crowdSempty{T.vead_c)

& crowdSempty(f.write_c) \

join f.sole_c

f11¢8rem page(f f. p) reslgnal file caosed no room

end-

end rem_page

% Note: called by _dirSdelete

delete = proc (f: evt) A o
signals (file_open, file_deleted) -
enqueue f.slow_q until queuelempty¢f.fast g)
enqueue T.fast_q until crowdSempty(f.sole ‘¢c)
& crowdSempty(f.info_c) & crowdSempty(f read_c)
& crowdSempty(f.write_c) :
Jo1n f.sole_c
% Note: use hidden fi%ede?bfe opevatxon
% to delete contents of file. ' _fite$delete is
% -only: sseégﬂ,uﬁtl«tésleeee~::+,ﬁ*f !
_fileSdetéte(f ., ip} réstghd} THlte open, file_ delehed'
end
end delete R

end file
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Figure 11. Directory serializer

directory = serializer is

root, % get root directory

get_parent, % get parent directory.

get_name, % get name of direciory

is_open, % test open-ness of directory

get_size, % get # of entries :

info, % return.iafo. about namcd antry g
next, % get next entry name after. aanadAantry o
open_private, % open file for sole use Lo
open_public, % open. file far sharing : - .. ..

open_dir, % open sub-directory ‘

close, % close this directory

add_dir, % add new sub-directory entry

add_file, % add new file entry

delete, % delete named entry.

% The wrap operation can only. be- used by ;bg dsfectory cluster
% to turn a _directory object into g djfpcteryﬂ xﬁaiizar object.
wrap e T A

% The operations can.be split into six classes, dependtng on
% which operations can overlap in execution with whicﬂ other
% operations. . .

%2 - Class - - Overlap -

% Root: Root, Fixed, Variable, Opening, Sole

% Fixed info: Root, Fixed, Variable, Opening

% Variable info: Root, Fiuej, Varaable :

% Opening: Root, Fixed -

% Sole: Root

% - Class - - Members -

% Root: root

% Fixed .info: .. get_parent, get_ na-o. is apen get size
% Variable info: -info, next. .

% Opening: open_ private}:Oﬁcu'pubtgcﬁgepen;dxr
% Sole; - © . clase, add dir; add_file, delete .

rep = struct[slow_q, fast_q: queue, :
sole_c, open_c, var_c, fixed_c: crowd,
dir: _directory]

% The wrap procedure is used by the _directory cluster

% to turn a _directory object into a directory serializer
%1 object. This operation can only be used by the

% _directory$root and _directory$add_dir operations.

~urap = proc (d: _directory) returns (cvt)
return (repScreate{dir: _d,
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slow_q, fast_q: queueScreate(),
sole_c, open_c, var_c, fix_c:
crowd$create()})
end wrap A o

root = proc () returns (d1reetory) s
% note: - directory$root uses the wrap operation
return (_ directorySroét()) At Foud Tudavaib
end root P RS

get_parent = proc (d: cvt) returns (directory)
signals (none, dir_closed)
enqueue d.fast_q nnt11 crowdSeﬁﬁﬁy(d sOIe c)
join d.fix_c
return (_ d1rectory$gat parénted,dir))
resignal none, dir e1osed*' S
end BRI
end get_parent

get_name = proc (d: cvt) returns (string)
signals (dir_closed)
enqueue d.fast_q until crowdSempty(d.sole_c)
join d.fixed_gq
return ( directorysget name(d dir)) resigna! dir closed;.;
end ;
end get_name
is_open = proc (d: cvt) returns (boo]) S
enqueue d.fast _q until crowdSempty(d sole c)
join d.fixed. q
return (_directory$is_ closod(d dir))
end
end is_open

get_size = proc (d: cvt) returns (1ﬂt)
signals (dir_closed) ’
enqueue d.fast_q unt11 crnwdSémpty(d sole c)
join d.var_c et
return (_ d1rectory$get swze(d d!r)) resvgaal d1r closed
end TR ,
end get_size

info = proc (d: cvt, name: str1ng)
returns (bool, int, bool) signals (none, div closed)
enqueue d.fast_q until crowdSempty(d.sole c)
& crowd$empty(d. open c) S
join d.var_c R ERE oo
file_ness: ‘bool, 'size: ‘int, opan ‘ness: boo] .
1= d1rectory5info(n dir) resignal dir_closed, none
return (file_ness, size, open ness)
end
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end info

next = proc (d: cvt, name: string) returns (string)

signals (none, dir_closed)

enqueue d.fast_q until crowd$Sempty(d.sole_c)
& crowdSempty(d.open_c) . e

join d.var_c- i oson ue e e o
return (_directory$get_next(d.dir)). ... . - .

resignal dir_closed, none ‘

end

end next

open_private = proc (d: cvt, qaae;ﬁ;;ping),pe;utngg({ile)
signals (none, opened, dir_closed) ‘ -
enqueue d.slow_q until queveSempty(d:fast _q) .
enqueue d.fast_q until crowdSampty(d.sole.c)
& crowdSempty(d.open_c) ) '
join d.open_c
return (_directorySopen_private(d.dir, name))
resignal dir_closed, none, locked .
end .
end open_private

open_public = proc (d: cvt, name: - string) returns (file)

signals (none, locked, dir_closed) : A

enqueue d.slow_q until queueSempty(d.fast_q)

enqueue d.fast_q until crowdSempty(d.sole_c)
& crowdSempty(d.open_c) . :

join d.open_c : . - E
return (- directorySopen_public(d.dir, name))

resignal dir_closed, none, locked =

end

end open_public

open_dir = proc (d: cvt, name: string) returns (directory)
signals (none, dir_closed) T
enqueue d.slow_q until queueSempty(d.fast_q)
" enqueue d.fast_q until crowdSempty(d.sole_c)
& crowdSempty(d.open_c). e
join d.open_c
- return (_directorySopen_dir(d.dir, name))
resignal dir_closed, none
end
end open_dir

close = proc (d: cvt) S
signals (dir_closed, open_entries)
enqueue d.sFow-q until queueSempty(d.fast_q)
enqueue d.fast_q until crowdSempty(d.sole c)
" & crowdSempty(d.var_c) & crowdSempty(d.fix_c)
& crowdSempty(d.open_c)
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join d.sole_c
d1rectory$close(d d1r) resignal d1r closed, open entries
end : ‘
end close

*add_d1r proc (d:"cvt, name: string) ‘ e
signals (no_room, duplicate, bad_name, dir_ closed)
" % note: _directery$add_div uses -the wrap ‘opsvdtion
enqueue d.slow_q until queueiempty(d fast_q)
enqueue d.fast. ¢ until crowiSemgtyfd.sole c)
& crowdSempty(d.var_c) & crowdSempty(d. open c)
join d.sole_c
dlrectorySadd dir(d. dir) '
resignal no_room, dup1icate bad_ ‘name, dir_ closed
, end :
end add_dir

‘add._file = proc {(d: cvt, name: string) - = -
signals (no_room, duplicate, bad name, dir_closed)
engueue d.slow_q until queuelenpty(d.fass q) . :
enqueue d.fast_q until crowdSempty(d.sole_c)
& crowdSempty(d.var_c) & crewdSempty(d.open_ c)
join d.sole_c
directorySadd f1le(d dir) .
' resignal no_room, dupl icate; ﬁad naﬁé ‘dir_closed
end
end add_file

delete = proc (d: cvt, name: striag) -
signals (none, opened, dir_closed)
 enqueue d.slow'q until gueusSempty(d.fast_q)

enqueue d.fast_q until crowdSempty(d.sole_c)
& crowdSempty(d.var c). & crowdSempty(d.fix_c)
& crowdSempty(d.open_c)

join d.sole_c¢

d1rectory$delete(d d1r) resignal dir closed, ‘open_ entries

end

end delete

end directory'
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To dlstmgmsh between the d.)ta abstracuons anAd thg scmhzer abstractions of
the saﬁxe mterface we will use the names directo.’rya“nd fi le fdi‘ the senalnzer
abstractions, and _directory and _file for thﬂ data q)qsgactmxs. - he user. in a multiple
process system would auly be allowed © acm ;hc qggmuons o£ the senahzer

abstractions, which would uulme the :opelmﬁxe dam.abstracaons.

In the above twa serializers, there areclass&eofopémions ;ﬂiat can be strictly
ordered on fhe basis of the execution of any operation from 6nq ;lnss excluding the
execution of any operatlon from another class. Theeorder is: Emm most pcmnss:ve to
least permnsswe with opemuans that: retam mfommtm gznamlty bang the most
permissive, since they can be execﬁted concumently 'Fhis ordenng allows us to
construct serializers that follow the general p“tah ogj thg readms-wnters problem. If an
operation can ::Xecute éoncurrently with another invoc#tion of th;sa;ngoperatnon it is
considered to be a.reader; otherwnse it nsa wntcr ln thg gbovcs senahzers .we. have.
adopted a readers priority approach wutmhe mfomaum gathenng opemuons having
higher priority. 1t would be’ equaély eerfect ‘to ad@t‘ ii Fim apmach or a writers
priority approach, but different perform.mcc would resylt. "

The restrictions on simple serializers must be relaxed sllghtly to allow us to
write the file and directory serializers. The most important uddluon is lhc LXCLplIOﬂ

mechanism, which includes a signals clause in the operation interface and a resignal

“clause at the end of any statcment. This addition does not greatly add to the complexity

of our model, since we only use the exception mechanism in the same manner as the
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return statement.19

‘We retain the important limitation, which},f;s:.goirgtum or signal directly after
“invoking the operation of the data abstraction.. The Q_thcg ggdi;ion is. no" allow local
variables, which we use-in directory$info to hold the results of an énvoca;ion that returns
multiple objects. The effect of this addition is also mingr, since we ir_nmgdiatg!y return

those results unchanged.

7.3 Specifications for file and directory serializers.

The specifications for the file and. directory serializers are similar to the
readers priority readers-writers problem. Therefore, we will :only present illustrative
examples, rather than full specifications. One useful abbreviation is to use the first
letters of the operation classes, rather than the opefé{tidns, toname t‘rahsabtions.‘ This

gives us the following transaction names for file operation classes:

I:  an Info class transaction
R: aRead class transaction .
W: a Write class transaction
S:  aSolc class transaction

For dircctory operation classes, we can use the same spegifications, except that the

19. In CL.U, when an operation signals an exception. the invocation terminates, and the immcdiale
caller is given the opportunity to handle the exception. A common micthed of handfing an exception‘is o
reflect it to yet another level via resignal. An invocation that signals an exception is not resumed. For
further details, see [1.iskov 79a).
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transaction symbols have the following interpretation:

I:  aFixed Info class transaction

R: a Variable Info transaction

W: an Opening class transaction '~

S:  aSole class transaction
In the remainder of this section we use the class names of the file setializer (info, Read,
Write, and Sole) with the understanding that the remarks alés apply to ‘the

corresponding directory classes.

The most important specifications are those that relate to the exclusion of
certain operations by others. If these-specifications are viokited we-obtain: invalid result

values. The complete exclusion specifications are:

I-join < S-join D I-leave < S-join

R-join < W-join D R-leave < W-join

R-join < S-join D R-leave € S-join

W-join < R-join D W-leave < R-join

Wl-join < W2-join D W1-leave < W2-join

W-join < S-join D W-leave < S-join

S-join < I-join D S-leave < I-join

S-join €< R-join D S-leave < R-join

S-join < W-join D S-leave < W-join
“S1-join € §2-join D Sldeave < S2<join

A number of priority specifications might bc’proposvcrd. The readers priority

specification used in Chapter 6 is;
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W1i-enter < W2-enter < R1-eater < Wl-join D R1-join < W2-join
The same specification clause Holds for the-file Mér;clireétary‘SCﬁaﬁiers; “To give more
complete priority specifications, we introduce two new claseg of ;ransactipns: SW,
which contains all Sole and Write transactions; and IR, which contains all .Info: and
Read transactions. Using these new classes, the priority specnﬁcatlonbecomes o

SW1-enter < SW2-enter < IR1-enter < SW1-join
D IR1-join ¢SWrjoin. P e

The following specification specifies concurrency for Read transactions, and is

aslight adaptation of the concurrency specification in Chapter 6:

R1-enter < R2-enter < R1-leave
& GX(R1-enter, R2-enter, W*-enter)
& GX¢R1-enter, R2-enter, S*-enter)
D R2-join < R1-leave .
The difference lies.in the addition of the exclusion of enter events from the Sole class of
transactions. The above specification can also be proven for Read and Info transgctjqns
by substituting R for R1 and I for R2 to get one clause, and 1 for R1 and R for R2 to get
the other. Finally, the following specification indicates wheré a Write transaction must
overlap with an Info transaction: o |
W-enter < I-enter < W-leave

& GX(W enter, l-enter, S*-cntLr)& GX(W~Lmer I- entu W*-c.ntcr)
3 I-join < W-leave : «, -
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The service specifications are as simple as:for the readers-writers problem:
each request must receive a reply.. The service specifications.are:.
~ @l-enter D @I-exit
@R-enter D @R-exit

@W- enter J @W-exit
@S-enter D @S'exn

We have shown that the specifications for the file and:directory serializers are
similar to the readers priority example used in Chapter 6. This may not be surpnsmg.
since the problems and solutlons are sxmﬂar but the lack of such a surpnse is precmely

one of our goals.

One point about the specifications tt}a;_wg havedlscoye[ed throughthe ;above
example is the usefulness of dividing the opmnn@mwrdm,ﬂprmidmg the
specifications for the classes rather than for the single operatiohs. Usmg class-ofiented
i while! retoining’ the

specifications promises to provide more: concise ‘specifient

precision we desire.

The ycriﬁqatipn techniques wedlscussedm ;‘Clggp}e_t !Sgsapd,_ (,hapter 6 rg;mznir;
valid for both the file and directory serializers. The only :@gjiliong‘\ye would make
would be to introduce classes of operations into the verification as we have for the
specification. When two suualmr opc.rallons are sufﬁcwmly snmﬂar it should be
possible to usc the proof of one in the proof of Lhc other as ls the case. for file
operations in the samc specification class. We will not propose techniques for

~ determining how much similarity is sufficient, although we regard the issue as being
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worthy of further research.

‘1.4 Guidelines for-addition of serializers

In a system whefe data abstractions are used, we believe it likely that some
library of abstractions will become useful, and- eventually ipdigpensgble. Fur‘ther, we
consider it likely that- many of these abstractions will be iﬁitiall& designerdw for a
single-process environment.2® If we are to use these data abstractlons in a
~multiple-process environment, and the correspondmg ob]ects are to be shared between
processes, we can either-rework the abstractions for that purpese, or we can-provide a
mechanism for controlling concurrent access that' requires: no -change to the data
abstractions. The serializer construct was designéd along the latter lines. ‘This section

discusses how that approach could be made-largely automatic.

As a first approximation, we assume that each operatioﬁ has exclusive use of
the resource, then introduce serializer abstractions as replacements for data abstractions
in order to permit concurrency whlle prohlbltmg conflict’ and deadlock ~This is a simple
strategy, and is not mtendcd to cover all sntuauons. althﬂugh we b&heve it to be an

important first step.

When a serializer abstraction is substituted for a data abstraction in a program,

yet the data abstraction is retained as part of the.implementation -of the serializer

20. Even if for no other reason than programmer inertia.
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abstraction, we may be faced with problems that result from havingtwo abstractions in-
the place of one. If we wish to integrate a newly serialized abstraction into a system that
has been created with the old data abstraction, we:need-a liaking mechanism that will-
allow the operations of the serializer abstraction to be substituted for operations of the
- original abstraction in old user programs. If the interface to the serializer abstraction is
compatnb]e with' the interface of the original data abstractlon ‘and ‘both abstractions
have isolated representauons then this linkage mechanism allows graceful upgradmg of

programs that use the orlgmal data abstraction.

However, the representation of the original data abstraction is exposed to the
operations of that data abstraction. Here the splitting.of the original abstraction is more
difficult. In most cases, we expect that an .automatic “rewrite” of the data abstraction.
would be easi'y made by a program. If we call the. type introduced by the data
abstraction DA, and the type .introduced by the serializer abstraction SA, then the

followmg rules allow such an automatic rewrite:

* Occurrences of DA in the cluster for DA are changed.to. SA, including
occurrences of DA in the interface of operations of DA, provided that
they do not result from uses of cvt. Thus, ‘a' componcnt of the
representation of DA that was an object of type DA would become an
object of type SA. In the file system example, this would be true for the
case of the get_parent operation of the directory abstraction, since the
get_parcat operation of _directory (DA) must return a directory object
(SA), and not a dmctory object (DA). This is AISO truc of the
open_private, open_public, und open_dir operations, :

* Opcrations of DA that have cvt appearing in their headers must have DA
appear in the interface specifications where a corresponding cvl appears
in the operation header. These are operations that explicitly access the
representation of DA, so a conversion of DA 1o SA is not reasonable.
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* The up and down operations convert between the representation and the
DA type, not the SA type 'I‘hls is cons:stent w1th the treatment of cvt.

* We introduce an operation, called wrap,. that.takes a. DA object and
returns a newly created SA object that encapsulates the DA object. The:

- wrap operation is used to create a new SA object in operations that create
new DA objects and need (due to our first transaformation) to use SA
objects,

If the above translation results in a type error then the agltqmatig:‘rewrité is not
performed, and a manual rewrite must be performed. Suchacasecould arise from an
operationfthat accepted an argument of type DA,thenexpltcntly }zxs:egl_}dowp to attempt
to access the representation. The transformation would have changed the use of. DA
into SA, but the down operation would only work for an object of type DA, and fails
(due to static type checking) with an SA object. |

In addition, a data abstraction may have to be rewrittén if it supports cyclic
objects. If operations of DA call operations of SA, which in turn call operations of DA,
a cyclic data structure can cause deadlock byf,,haviggg access {0 an object being blocked
by.an incomplete access to the same object ;b»y/ the same process. Access to cyclic objects

is discussed later in this chapter.

’LThére are two reasons to believe that a 'rew‘r'ite of the originalrda'ta "abs‘stractidn'j
will not be a difficult process even if it cannot be done automatically. First, the amount
of detail to be }‘c’hahge’d is likely 1o be small. After all, the intent of the data abstraction
has not changed. There is only the additional distinction between serializer abslri’iction‘

and data abstraction. Second, we believe that it will be rare that any code cxcept for the

—
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plcmentanon of the senakzer and data abstracuons will be aik)wed to use: the data
~ abstraction. The mtentxon of this transformatlon xs to make the rest of the system use
the serializer abstraction. Therefore, the riumber of places't be changed is also likely

to be small.

In the file system example, there is a case where the use of the 5L;tomatic
splitting of types may provide serializers where none are needed.  In particular, if the
directory information is implemented using a file, then the sefializer for the directory
may provide sufficient protection for the file object used to implemént the direttory. In
such a case, the transformation from DA to SA would provide an unnecessary level of
serializer. A rewrite of thé _directory cluster would then be desirabl¢ to promote:
efficiency. This efficiency argument actually works in favor of our separation of data
and serializer abstractions, since if they were inextricable; the optimization descrided

could not be performed.

The above rewrite process has been applied to the file ‘and _directory
scrializers.  In ~ particular, the ~ operandns *_ditectory$open_private  and
_directory$open_public now return file objects, which “dte “siipported by the file:
serializer. Further, the operation _directory$open_dir returns a directory object, Which
is supported by the directory scrializer. The ;yrap_ppenulioqs;shown in the file and
directqry sc_r‘ializeyrs are used to enclose a _ﬁle or __di,rectpfy abjcct in a l"ﬂ:cj or dircctony
serializer. The wrap operations are used whenéygr_a new _ﬁle :’Ql‘ _»_difg:ctory db_ject is

created.
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In any reasonable implementation of the: _directory-cluster there will be a list
of the open files and child directories’ for any _directory.object. . In this case, the
automatic rewrite we mentioned-above informs us of a type iconflict: the list of open
files and directories mustbe for the file and disectory; objects supported : by - the
serializers, and not the _file-and _directory abjects supported by the clusters. '

7.5 Higher-level transactions

‘Suppose procedures P and Q use operations on a shgggg zda_tapbj.eqx of type
T. We have recommended that a serializer object should be introduced for X to ensure
that the opérations of T performed on X do not interfere with each other. However, the
user may intend that P and Q do not overlap. The serializer for object X does not
enforce this restriction. One solution is to introduce a further encapsulation of X in

order to perform operations P and Q such that they do not overlap.

A difficulty with the introduction of further abstraction levels is that the
designer of a system may not know how the user will be using the system, and cannot
provide the appropriatc abstractions in advance. This inability to forecast is certainly
present in our file system example, since the user may wish to have a process perform
severalroperations on a file (or on several files) such that no other process will access the
file (or files) while those operations are being performed. The file system example
provides no solution to this problem in general, although we can attack certain special

Cascs.

-176_



* - A limited solution to the:above problem-can: be aghieved by adding a new
operation, update, to the file seriatizer. The textof this operation is:shown in Figure 12..
The update operation performs a sequence-of read operations.on:a file; then performs.a.
computation supplied as a procedase by:the ‘userion:date supplied by: the user, then
performs a sequence of writes on the same file. 11 oun:siniple solution, the entire.
update operation is performed without allowing overlapping reads or writes on the file.
If more concurrency is desired, update operations that do not have overlapping sets of
pages can be permitted to proceed in parallel, providing that the underlying _file

abstraction will permit this.
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Figure 12. Update operation

N#EN&N):END\‘

The update operation is intended to perform a sequence of
reads, an arbitrary computation, and a saquence of writes.
The entire procedure should executed without overlapping
other write. oparations .or otber upgdate pperations. This
procedure resignals an error on reading or writing, or an
abort error from the arb pracedyre. - An error that is
resignalled after the first writé has been finfshed will |
leave the wr1tes,on1y.partwally completed.

EEE

update = proc [dt: type]

(f: cvt, reads, writes: spair. arb:!pt, data: dt)
s1gnals (f11e closed bounds abort)
pair = struct [pgnum 1nt pg page] »
spair = sequence [pair]
pt = proctype (dt, spair, spa1r) signa!s (abort)

% wait for write access to resource to be 0K
enqueue f.sTow g until: ‘queueSampty.(f.fast _g)
enqueue f. fast q until crowdSempty (f.sole_c)

‘& crowdSdmpty: (it wrike c)
& crowdSenpty (f read c)

g

% 301n the crowd to show that we' are going to wrlte

join f.write c

% perform the reads into the g1ven memoyy pages
% from the gfvaﬁ Tile pades ~
for p: pair in spa1r$elements(reads) do
_fileSraad(f.f, ‘p.pghum, ‘pipg)
end

% perform the arbitrarj éompdtiiioh
% (modifying the given memory pages)
arb(data, reads, writes) :

% perform the writes from the given memory pages
% into thé given fite pages -~ '
. for p: pair in spairSelements(writes) do
CfiTaSwrite(T.f, pipghul; p.pg)is
end
end resignal file_closed, bounds, abort

end update
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8. Conclusions

In this thesns we have been concemed thh verlﬁable conirol of comcurrent
access t0 Fesources. In this pursuit we have presenteé & !tmguage eonstmct for
controlling concurrent access, a defgj_unon of the .:sex:r:ggn:tlcs rof‘  this qonstrucn a
specification ianguage for describing varieties of ;et;neijﬁen:(;,yfedntfel'lfo‘r mstances of
the construct, methods- to venfy that mstancm of the mnstruct satisfy their
specifications, a program for performmg thlS venﬁcatton automatlcally, and a

discussion of some of the mteractwns possnble between thsaamef thls construct.

- In separating the control of ccmcurrency from me data access, we have
attempted to apply this: separatlon to the pmgmmmmg language the semantic model,
the specifications, and the venﬁcatlon system The objectwe has been to modularize
the construction and verification of programs involving concurrency By this:
modularization, the problems associated with construction ﬁqu verification become
more ‘tractable. The results ofv.our reseach indicate thatithls modularity can be

achieved, at least for the simple serializers we have discussed.

In this chapter we discuss how extensions to sérializers require extensions to
our verification techniques. Most of these extensions require significant further

research. Then we present closing remarks to sum up the contsibutions of this thesis. .

-179 -



8.1 Verification of serializer extensions

In this section we brleﬂy consrder how extensions to serrahzers affect our
semantlc model and venﬁcatron methods Th18 is the area where further research is
most necessary and most dlfﬁcult. Our success in verlfymg srmple senahzers can ber
largely attributed to the limitations we have imposed. We belreve that fu rther SUCcess in

verifying concurrency control lies in selective relaxation oﬂthese limitations.

8.1.1 Adding boolean variables and boolean expressions -

To add simple boolean variables and boolean expressiens to serializers

requires the following changes to the semantic model:

M
i

* The node graphs must be extended to handle dt,claratlon and assignment
of boolean variables. These variables must further be dfstmgmshed as
either local variables, which are instantiated on. eagh. frapsagtion; or
global variables, which are components of the serializer representation.

* The semantic equations must be extended to handle” evaluation of
‘boolean expressions. This will require: examining, figite, historics for the
last assignment to any boolean variable. One of the most rmportant
changesto évaluation is:that evattiatiornanusttoki placd inithe contextofa
transaction, since expressions may involve local variables.

* There must be some indication of the inifial state-of a seriakizer object.
This is casily accomplished by representing the serializer stale as the
result of some initiaf assignntents to representatidn’ components.:
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To illustrate the kinds of serializers and verifications that-are possible-with the-
addition of boolean variables, consnder the case where we are hmlted to boolean
varlables as part of the representaﬂon and the only legal boolean expresions are true,
false, and snmple compcments of the representanon As an example we present the'
following abbreviated senahzer R | o

xop = proc (x: cvt, ...)
enqueve x.ql until x.B'¥ crowdSempty({x.c)
join x.c; ...; end
x.b := false
end xop

yop = proc {x: cvt, ...) 7 0 Lt
enqueue x.q2 until ~x.b & croudSenpty(x c)
join x.c; ...; end
x.b 1= true -
end yop

Suppose that x.b is initially true. We would like to prove that the number of
executions of xop is equal 10 or one greater thai the'Huiiber of executions of yop. This

speciﬁcation" emild be Written as:'
(#X-exit = #Y -exit) | (#X exnt = #Y-exlt + 1)

Informalty, suppose that the abovc spemﬁcaﬁen is not mnsﬁed :md thai itis due to
#X-exit > #Y-exit + 1 T‘hm there mast be twu evems leﬁ&lt(XZ-exlt that occur
without an intervening Y-exit. Note lhat the xb is set to false afer X1lieave, and
remains false untif’ﬁhers@ne Y- Ieave If ‘no such Y-leave event OCClIl'S, theﬂ the
guarantee remains false, and X2~dequcue cannot .OCCUr, 'Ihcrcforc, there. can be no
such cvents. To prove that # Y-exit cannot excecd # X-exit, we note that the only way
that #Y-exit could cxceed # X-exit is for the initial exit event to be some Y-exit.

However, we assumed that the variable x.b was initially true, which prohibits
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Y-dequeue from occurring.

The addmon of boolean v'mables provndes addmonal mformatlon about the
-past execution of operatlons As the above mformal proof shows the semantlc model
can capture this information as well. Extending the vemﬁcatlon rules to handle such

situations is left as a topic for future research.

8.1.2 Conditionals

The addition of boolean variables and expressions is of limited usefulness if
the only test of a boolean expression: remains linited to.-the guarantee-on a queue.
Another extension that can be:added at this. paint is: conditional statements, with the
form

if expression

then body_of_statements

clse body_of statemenis

end
The ‘else part is optional. In the semantic' modet we need-to intreduce a new kind.of
node, the if node. The if node tests the resufts-of the booleah expression (we will
discuss a more general model for evaluation below), and conditionally executes the
appropriate body of statements based on the result. The next node after the last node of
cither the then body or the else body is the node that corresponds to the statement

directly following the if statement. By the introduction of conditionals, the

"node graph™ has become a true directed graph.
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Although the modelling of conditionals poses nQAse,vcfe,..difﬁcuth;igs,, the.

addmon of condmonals comphcates the specxﬁcanon language Consnder the followmg

,s."

senahzer and mource operatlons)

xct = proc (x: cvt, d: data)
enqueue x.q until crowdSempty(x.c)
if dataScond(d) '
then join x.c
resource$fast_xct(x.res, d)
end
else join x.c¢
resource$slow_xct(x.res, d)
end
end
"end xct

What event does X:join denote? There are potentiatly two different events, and the.
event to oceur depends on the data presented to mmmn S

The solution we recommend is simple: for every test in a conditibnal
statement, assume that the test evaluates to a particular boolean value (true or false). If
the specification clause can be verified for every permutation of the condmongl tests,
then it is verified for the operation. In the above example, we would effectively need to
verify two operatigns: one where dataScond(d). was true immediately after the enter
event, and one where data$cond(d) was false,
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" 8.1.3 Loops in serializer operations

- Just as-conditional statements introduce ambiguity about which nodes can be
executed, iteration and recursion introduce ambiguity about how often a node is
- executed.. The doubt is significantly worse, however, since the number of possible

executions of a loop is not bounded.

When a point in a seﬁalizer operation can be passed many times during the
execution of a transaction, an event is not just ar‘\> execution of a node for that .
transaction, but a particular execuaon of that node‘ We can adapt .the method of
handling eondmonals to handhng Ioeps by assqmmg ganmular numbers of lteratlons
for each loop. If the specifications can be ‘shown to hold for ahy choice of such
numbers then the specnﬁcatlons are venﬁed for:the epcmnoa as a whole; provided that
all of the loops terminate, lnductxon can be used by asummg that the specnf cation
holds for some particular number N of executions around a loop, then showing that the
specification holds for N+1 executions (plus a basis proof for N = 0). In order to
prove service specifications, an additional proof that each loop terminated would be

necessary.
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8.1.4 Arbitrary expressions and invocations

“The introduction’ of arbitrary expréssions- fiito seriatizers ‘has-the  following

effects:

* The semantic model must include arbltrary types and valuw of those
types, including user-defined types. ”

- *The semantic mode! must be provided with events to.mark both the start
and the end of an mvocatlon

“*The: specnﬁcatnon language must. be merged with. a larger specification
language. Values must be named and functions on those values defined.
Concurrency = specifications, data absteaétion’ ‘spécifications, and
procedyral specifications may be mutually interdependent.

*The serializer verification system must be joined t0 a more general
verification system. While it is our hope that the two kinds of verification

* systems ¢an be kept modular, we have no-evidence at this time to support’
this hope.

With arbitrary expressions and invocations, -some of the verification

techniques we have described may be invalid for some situations, some of which are:

* Some invocations may not always terminate. [f we use such invocations,
then we must be prepared to prove service where applicable. If we
cannot prove service, then we are faced with a new potential source of
lack of service: indefinite possession of the scrializer object. In terms of
our current model we would be faced with a finite complete history (since
it would be possible for no further serializer events to occur) where a
transaction would be in possession at the end of the history. Since many
of our verification rules depend on no transaction being in possession at
the end of a finite complete history, and no crowds being occupied, our
technigues are not applicable where termination cannot be proved. The
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problems of combining our techniques with proofs of termination for
invocations remain for future research. '

* If we allow side effects in the evaluation of guarantees evaluation it
becomes necessary to introduce events to model the beginning of such
evaluation, and to indicate the order in which guarantee evaluation is

performed.

* Recursive operations provide one more problem. When we assume that
an invocation used by a serializer terminates, and thereby prove service
for the serializer operation, such a proof must not be circular. If the
invocation termination depends on the service proof, then the service
proof is not valid unless one can prove that the level of recursion is

bounded.

All of the above issues are left for further research.

8.1.5 Priority queues

The monitor construct presented in [Hoare 74] permits the use of priority
queues, which obey a "first in, best out” discipline. A serializer example that makes use

of priority queues is presented in Appendix III.

In using priority queues, we do not (usually) wish to allow the addition of
requests to a queue to indefinitely postpone the progress of earlier requests. For the
disk serializer we can prove that the request operation guarantees service since, when we
are serving one queue, its size decreases with every fulfilled request, and we assume that
the resource operation terminates. Therefore, the queue being served must empty, the
dircction must change, and the other queue becomes the served queue. Another proof

of service can be based on never adding requests o a queue at a priority number less
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than or equal to the lowest number request m the ch?g We can stm prove serwce
even if we allow a bounded number of requests to be added at a lower or equal number
priority. ’ : Tl R L S AT ST S L Wi H

8.2 Closing remarks

Thls thesns has pmmd a mde mge &aspm 0!‘ 2 smsle language

construct. mcludmg ptqgrammm MW dﬁ% m“l PLLUL
programming languages, and verification techniques. We were able to oopew:ﬂtsuch a -
wide range because we were interested i in hmtted techmqgeg forwa hmlted construct, and_'
our design philosophy emphasizes mlmmal mterfershce b;;veen constructs. We'
believe that our results show that such an approach has merit.

ln several places we have ment;oned that |t is poss:ble to view senahzer
operzmons elther as procedures&or as n;mge handlers. T'hls ﬂexnblhty is made possible
through the des:gn of the senahzer oonstruct. and through lhe use of a semanuc mode]"

“1 ! At % EE is 3 ;.»q s

that is limited to describing scrializers. Even though details may change as. senahzers

are embedded in. a proceduse-orignted Or &, message-pagsing, languagp. ‘the basic .

approach to proving serializers should remain sound. .

21. Thisis the approach that Hoarp fakes in [Hoare 74} -
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We have only attempted to vetify aurtomatically a number of variants of the
readers-writers problem. Partially due to this limitation we have been able to handle
several rmportant specnﬁcatlons regarding concurrency control Even thmgh the
specrﬁcatlon categones have been chosen for use w,lth acwss to r&ources, propertles
such as exclusion, priority, and termination are generaily recognized as nnportant 1n

- dealing with concurrent programs.

We have demonstrated the feasibility of proving a form of termination that is
applicable to transactions, rather than programs or objects. This technique is especially
useful when resources (or objects in general) have unbounded lifetimes and the number

of active transactions (or processes) is unbounded.

Our approach to verification has not been orientedioward presentingfeither a
mmrmal or a compiete set of axioms and mference nﬁe& Ra('her we have 1dent1ﬁed
some higher-level theorems, expressed as mference rules, that are useful in proving
serializers, and have justified these theorems by direct -agpeal.lto the semantic model.
Should further examples |dentify othcr useful theorems more Jusnﬁcatron through the
model is called for. While the study of the completeness of an axiom system is
intersting in its-own right, it is rare for a )ve_r};vﬁer‘,(eru;egautogmuc\or manual) ftoruppeal
to the axioms if more general and more powerful theorems dre known. The test we
value most for such a selection of theorems is their utility in vcriﬁeation, a test that our

theorcms have passed.

- 188 -



Atkinson 76 S o ’ -
R. Atkinson, Optimization Techmques for a Structured Programmmg Language
S.M thesis, Massachusetts Institute of Técknology, May 1976. -

Baker 78
H. Baker, Actor Systems for Real-Time Computation;; M.L.T. Laboratory for
Computer Science TR 197 (Ph.D. thesrs) March 1978.

Bloom 79 R o
T. Bloom, Synchronization Mechanisms for Modular Programmmg Languages,
SM. Thesns Massachusetts Institute of Techno!ogy January 1979.

Boyer and Moore 75
'R. Boyer, J. Moore, Proving Theorems About LISPPrograms, JACM, vol. 22,
January 1974, 129-144. .

Campbell and Hibermann 74
' R. Campbell, A. Habermann, The Specification of .Process Synchronization by
Path Expressions, Lecture Notes in Computer Science 16, Spnnger—Verlag 1974,
89-102. '

Courtois, Heymans and Parnas 71 o ‘ '
P. Courtois, F. Heymans, D, Pamas. Concurrent. Cpntrol with Readers and
Writers, CACM 14, 10, October 1971 667-668.

Dahl 72
0. Dahl, Hierarchical Program- Structures, Structured’ Programming, Academic
Press, New York, 1972, ,

Deutsch 73

P. Deutsch, An Interactive Program Verifier, Ph.D. thcsxs Umversxty of
California at Berkely, Berkeley CA, 1973. i ;

- 189 -



Dijkstra 68 :
E.. Dijkstra, Cooperating Sequenual Process&s. Pra,grammmg Languages
Academic Press, New York, 1968.. - . S :

Dijkstra 71
_E.Dijkstra; Hierarchical Ordering of Sequential Processes, Acta; Infannatlca, vol.
1, 1971, 115 138. o

Dijkstra 75
E. Dijkstra, Guarded Commands,: Noadeseun&acy, and. Formal Derwatmn of
Programs. CACM 18, 8, August 1975,:453+457. i i

Eswaren et. al. 76
K. Eswaren,- J. Gray, R. Lorie, 1. Traiger, The Neation of Cans:stency and
Predicate Locks in a-Database System, CACM:19, 11, Mmbcr ],976, 624-633

Feldman 79
J. Feldman, High Level Programmmg for Dlsmbuted Computmg, CACM 22,6,

-June 1979, 353+367.

Good, London and Bledsoe 75
D. Good, R. London, W. Bledsoe, An Interactive Program. Verification System,
- Proeeedings of the International Conferenge: (m Relmble Soﬂware. Los Angeles
CA, April 1975, 482-492. : S Coe

Good, Cohen and Keeton-Williams 79
D. Good, R. Cohen, J. Keeton-Williams, Prmcnples of.-Proving Concurrent
. Programs..in Gypsy. -Sixth ACM: Sympq&gm on Pﬂp@plgs of Programmmg
Languages, San Antonio, January 1979,42-52. -. C

Greif and Hewitt 75
1. Greif, C. Hewitt, Actor Semanties of PLANNER-73, Proceedings of ACM
SIGPLAN-SIGACT Conference, Palo Alto CA, January 1975. -

Greif 75

I. Greif, Semantics of Communicating Pgralk:} Processes,-M.LT. Laboratary for
Computer Science TR 154 (Ph.D. thesis), September 1975. ,

-190 -



Guttag, Horowitz and Musser 78
1. Guttag, E. Horowitz, D. Musser, Abstract Bata Types and Software
Validation, CACM 21, 12, December 1978, 1648-1064. - -

Bnnch Hansen 72 ; e
P, Btirich ‘ Hansen, - Structured multiprogramming,- GACM‘ 15 7 July 1972
574-571.

Brinch Hansen 78 o
“P: Brinch Hansen, Distributed Pmeesses A Goneurfeathgrammmg Concept,
CACM 21, 11, November 1978, 934941 - -

Hewitt and Atkinson 77 ' a
C. Hewitt, R. Atkinson, Synchremzanow in' Actor: Systems, Feunh ACM
~ Symposium on Priticiples of Programimwing’ Languages, ‘Los -Angeles, January
1977, 267 280.

Hemtt and Baker 77 B ‘ "
‘ C. Hewitt, H. Baker, Actors and Continuous Functlonals, M‘IT 1nbommry for
Computer Science TR 194, December 1977.

Hewitt, Attardi, and Lieberman 79
- C. Hewitt, G. Attardi, H. Lieberman, Spectfymg and Ptovmg Propem of
Guardians for Distributed Systems, A. 1. Mémo505, M.LT. Artificial
Intelligence Laboratory, June 1979.

Hew:tt and Atkinson 79
© C. Hewitt, R. Atkinson, Specification-and’ ProofTechmqnes for Senahzers. lFEE
Transactions on Software Engineering, Jantaey 1979:10:23. - ,

Hoare 74
: -C. Hoare, Monitors: An: Opcmtmg System S&mcmrmg Concept, CACM 17 10
October 1974, 549-557. "

Hoare 78

C. Hoare, Communicat’mg Sequentlal Pmcm CACM 21 8 Aaxgust 1978
666-671.

- 191 -



Howard 76
‘ . J. Howard, Proving Monitors, CACM 19, 5, May 1976.

Ingalls 78
D. Ingalls, The Smalitalk-76 Programming System Design and Implementation,
" Fifth. ACM - Symposium - on Principles of P:qgrammmg Languages, "Fucson,
January 1978, 9-15.

Igurashi, London, and Luckham 72
S. Tgurashi, R. London, D.. Luckham, Automatic. Program Verification,
AIM-200, Stanford Artificial Intelligence Praject; Stanford University, Stanford
CA, 1974.

Lampaort 80
- L. Lamport, "Sometime" is sometimes "not never” - On the temporal logic of
programs, Seventh ACM Symposium on Principles of Programming Languages,

Las Vegas, January 1980, 174-185.

Lampson and Redetl 79.
B. Lampson, D. Redell, Fxperlence w1th momtors and processes in Mesa,
CACM 22, 2, February 1980.

Laventhal 78
M. Laventhal, Synthesis of' Synchrommtlan Code for Data Abstractions, M.L.T.
~Laboratory for Computer Science TR 203 (Ph.D. thes:s) June 1978

Liskov et. al, 77
- B. Liskov, A. Snyder, R. Atkinson, C. Schaffert, Abstractlon Mechanisms in
CLU, CACM 20, 8, August 1977, 564-576. o o

Liskov 79 )
' B. Liskov, Primitives for Distributed Computing, Gomputation Structures
Group Memo 175, Massachusetts Institute of Technology Laboratory for
Computer Science, May 1979.

Liskov 79a
B. Liskov, R. Atkinson, T. Bleom. E. Moss.C ismuﬂ'ert. B Schelﬂer A. Snyder,
CLU Reference Manual, M.I.T. Laboratory for Computer Scienee TR 225,
October 1979.

-192 -



Metcalfe and Boggs 76
R. Metcalfe, D Boggs, Ethemet: Distributed -Packet ' Switching for Local
Computer Networks, CACM 19, 7, July 1976, 395-404,

Morris 74
J. Morris, ’fowards More Flexlble Systems Lecture Noies in Computer ‘S‘cxence
19, Springer-Verlag, 377-383, 1974,

Owicki 75
S. Owicki, Axiomatic Proof Techniques for Paraﬂel Programs; Ph. D.. thesxs,
Department of Comnputer Seience; Comelt University; Cortiel} NY }uly 1975

Owicki and Gries 76
S. Owicki, D. Gries, Verifying Properties of Parallel Programs An Axiomatlc "

Approach CACM 19, 5, May 1976, 279-285

Reed 78 P : :
D. Reed, Naming and Synchromzatlon ina Decentrahzed Computer System,
M.LT. Laboratory for Computer Saence TR 205 (Ph D thﬁnﬂ, fSepmmber 1978.

Scott and Strachey 71 B ‘ KR
D. Scott and C. Strachey, Toward .a Mathemattcal Semantm for Computer
Languages, Proceedings of the Symposmm on Computers and Automam,’
Polytechnic institite of Brooklyn, 1971

Strachey and Wadsworth 74
C. Strachey and C. Wadsworth, Continuations - A Mathemancal Semantics:for
~ Handling Fult Jumps, Techiical Monograph ‘PRG-H1; @xfofd ‘Untversity
Computing Laboratory, Programming Research Group, 1974." ,

Scheifler 77
" R. Scheifler, An Analysis of Inline Substitation for a- Structnred Programmmg
Language, CACM 20, 9, September 1977, 647-654. LT

Suzuki 74
N. Suzuki, Verification of Programs by Algebr'uc and Logical Reduction, -
AIM-255, Stanford Artificiil mteﬂigenée Pmﬁﬁ, S&'ﬁm Unwcrsny, Stanford
CA, 1974,

-193 -



Svobodova, Liskov and Clarki?9: = ..; :
L. Svobodova, B. Liskov, D. Clark, Dlstnbuted Computer Systems: Structure
and Semantics, M.L.T. Laboratory for Computer Science TR 215, March 1979.

- Waldinger and Leévitt 74 SEERE RS i :
R. Waldinger, K. Levitt, Reasonmg Abou.t ngrams, {\mﬁcml Jntelhgence 5.3,
Fall 1974,235:316. :

Wegbreit and Spitzen 76
B. Wegbreit, J. Spitzen, Proving pmpe#ties of complex structures; JACM 23, 2,
Aprll 1976, 389-396. ( . ,

Wulf78 '

W. Wulf, et al., An Infonnal Deﬁnmon of Alphard (prehmmary)
_Carhegic-Mellon  University;, Computer - Science  Depastment, - Report
CMU -CS§-78-105 ;Pnlttsbyrg’h‘ PA, February 1978. :

Yonezawa 77 A
A. Yonezawa, Specxf' cation and Venf cation Techmques for Parallel Programs
Based on Message Passing Semantics, M.LT. Laboratory for Computer Science
TR 203 (Ph.D. thesis), December 1977.

-194 -



Appendix I - Bounded buffer serialuer

A bounded buffer is intended to smooth variations in processing, speed.
between a producer and a consumer of items-of information, aﬂd mereby .affOI'a more
concurrency between the two processes.” 22 A bounded buffer is accessed by get and puti
operations, where . the Nth.get, operation retrieves: the- qu;manm ;hat the Nth put:,
operation deposited. A bounded buffer object is eonstructed "'b‘y’ “callm'g ) the create
operatlon thh a posmve number specnfymg the number of 1tems of mformatlon* to°
buffer The buffexed mfomation 18 mnsferred by @ylag ;hc wﬂtents (via
ztem$move) from one item to another ‘Weh assume that thls copymg takes some
sigmﬁca'nt, amount of ,tlme.23 Pama! specnﬁcatlons for this ggob!gm appear ipChapterf
4.

The bounded_buffer serializer given below uses only. slight extensions over
-serializers. We assume that performing a put operation on a full buffer causes an
exception to be signalled for the data abstraction (called bbuf'in this example), but that
the serializer operation simply pauses until the buffer is not full. If several processes
perform get operations, there is no overlap between the operations, since a modification.
to the buffer is made in the data abstraction, and the modifications made by two

invocations could conflict. A similar conflict arises for put operations.

22. A solution to this problem using monitors appears in [Hoare 74). A verification of a similar monitor
appcars in [Howard 76).

23. Although such copying is normally forcign to CLU, we have used copying in.an attempt to remain
comparable to the monitor statement of the problem.
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The combined_bounded. buﬁ@r scrializer shown in Appendix Il combmes the
function of the bounded buffer serlahzer and the bbuf eluster The mterface remams
the same, but the implementation does not use the bbuf cluster Besudes the obvnous
savings afforded by the elimination of operatiot calls ﬂ?om' the senallzer to the cluster,
there is additional concurrency. possible because get opemtipns are allowed to ‘overlap

~with other get operations, and put operations .are allowed to overlap. with other put

operations.

We- have presented this pioblefn as an illumn of hmv the modularity
provided by serializers allows such opmm,mtmn w:thout cbangmg the interface that the
user sees. Further, any verification of programs that use the bwded bu?fer serializer
remain valid, provided that they are unaffgcted by-the addttmahoomummcy
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% The bounded buffer serializer protects the ‘bbuf abstraction
% against damag1ng concurrent access. Get and Put operations
% may only overlap with get. size operations. . AlY eaﬁying .of
% 1tem to 1tem is done in the bbuf cluster.

bounded_buffer = serializer is
create, get_size, got, put ..

. rep = structfres: bbuf, c; crowd max. 1nt.
‘ 4. pq: queuel

create = proc {n: int) returns (¢cvt): siqna1s ‘(bad_size)
return (rep${res: bbuf$create(n),
max: n,
c: crowdScreate().
9q. Pq: queueScreate()})
resignal bad, slze 4 o
end create

'get size = proc (x: cvt) returns (1nt)
~return (x.res.size)
- enlh get sigé

get = proc {x: cet, dst: item) . . ‘
enqueue x.gq until crowdSempty(x. c) & X. res.size ) 0

join x.c
bbuf$get(x.res, dst)
end

end get

put = proc (x: cvt, src: item)
enqueue x.pq until crowd3empty(x.c) & x.res.size <= x.max

join x.c
bbuf$put(x.res, src)
end

“end put

end bounded_buffer
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Appendix 1I - Corabined bounded buffer serializer

% The combined bounded buffer permits th opcratéons to overlap with
% other get -operations, and put operations to overlap with other put
"% operations, but get .and put operations.capnot overlap. Gat size
% operations can overTap with efther get or put dperations..

combined biounded buffer = serializer is
.create, get_size, get, put

buf = array[item]
rep = struct[res: buf, gc,pc: crowd, - -
next, size, max: int,

sq, gq. Pq: queue]

create = proc (n: int) returns (cvt) signals (bad_size)
if n < 1 then signal bad_size end
return (rep${res: buf$till _copy(0,-n, itemScredte()),
next: 1, size: 0, max: n,
gc. pc: crowd§createl), - L
g9, pq, sq: queue$croate()})
end croate - , i

get_size = proc (x: cvt) returns (int;.
return (x.size) ’ '
end get_size

get = proc (x: cvt, dst: item)

) enqueue x.gq until x.size > 0 & crowdSempty(x.pc)
src: item := x.res[x.next]
x.size := x.size - 1

x.next := (x.next+1) // x.max % take increment mod N
join x.gc
item$move(dst, src) % copy data from src to dst
end
end get

put = proc (x: cvt, src: item)
.- engueue x.pq until crowdSempty(x.gc) & x.size (= x.max
dst: item := x.res[(x.next+x.size) // x.max]
x.size := x.size + 1
join x.pc
item$move(dst, src)
end
end put

end combined_bounded_buffer

- 198 -



" Appendix 11 - Disk head scheduler

In [Hoate 4] the disk head seheduler problem is discussed for moritors.
Below we give a serialjzer solition to mcproblemwmch Uses ﬂie ?ttbﬁiy.‘.du’euew;
A priority_queue is a queue where the order of. dequene evens.is gependent on the
priority. We will assume that the lowest numerical value of the pnonty is served before

any others. Equal pnormes are served FIFO

The algorithm used depends on havmg two. queues, one which is served in
increasing order of disk: addsess, mlled x.up_,q, amkene whleh ss.«served in, decreasmg
order of disk address, called x. down_q. Onmatantﬁun work&by adding requests to one

‘queue, and serving the other. We change dnrection whenever the queue-for-the current

NSRS

direction is empty and the other queue is net emipty.
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disk = serializer is
create,
request

‘rep = record[increasing: bool,
up_q, down_q: priority_queue,
disk: _disk]

create = proc () returns (cvt)
return (rep${increasing: true, :
up_q, down_q: priority_ queueScrgﬂte().
‘disk: _diskScreate()}) :
end create

request = proc (d: cvt, address: int, kind: int. p. page)
: signals (bad_address, disk_error)

if d.increasing
then enqueue d.down_q
until crowdSempty(d.c) &
(~d.increasing |
priority_queueSempty(d.up_ q))
priority address
d.increasing := false
else enqueue d.up_q
until crowd$empty(d.c) &
(d.increasing | ’ ~
priority_queueSempty(d.down q)y
priority -address
d.increasing := true

Teoat

j»

end
JOIH d.c
_disk$request(d.disk, address, kind, p)
end resignal bad_.address, disk_error
end request

end disk
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Appendix 1V - Table of definitions

Definition or rule name -

Occurs

: Precedes

Same_trans

Excludes
Excludes_node
Node:excludes_node -
Front

Gains

Releases

Busy

Qsize

Csize

Rank

Rank_scan

Eval’ o e T

Legal

Legal_step
Legal_dequeue
Head_enqueue
In_queue -
In_same_queue
None_ready
Legal_transaction_step
Complete
Gain_complete
Corresponding_release
Release_follows
Join_complete
Leave_follows
Transaction order rule
Transitivity rule

PX from gain rule

PX from PX rule



111:
112:
112:
112:
113:
113:
114:
115:
116:
117:
118:
119:
119:
120:
121:
121:
121:
122:

Event before PX rule
Event after PX rule

GRE clause

GRE_def

GRE from empty rule
GRE from expression rule
GX from GRE rule

Event before GX rule
Event after GX rule

Event from FIFO rule
EVT and EVF meaning
EVF rule

EVT rule

EVT from conjunction rule
EVT from disjunction rule
EVF from conjunction rule
EVF from disjunction rule
Event from ready queue rule
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