MIT/LLCS/TR-237
TOWARDS A THEORY
FOR
ABSTRACT DATA TYPES

Deepak Kapur

Tius blank page was inserted to preserve pagination.

TOWARDS A THEORY FOR ABSTRACT DATA TYPES

DEEPAK KAPUR

Copyright Massachusetts Institute of Technology 1980

May 1980

This research was supported in part by the Advanced Research Projects Agency of the
Department of Defense, monitored by the Office of Naval Research under contract

N00014-75-C-0661, and in part by the National Science Foundation under grant
MCS'74-21892°A01.

Massachusetts Institute of Technology
Laboratory for Computer Science

Cambridge Massachusetts 02139

This empty page was substituted for a
blank page in the original document.

-2-
Towards a Theory for Abstmc&DataTypes
- Abstract

A rigorous framework for studying immutable data -types- having nondeterministic
operations and operations exhibiting exceptional behavior is: -developed. - The framework
embodies the view of a data type taken in: pmgmmmg iangaases and ‘supports
hlerarchica! and modular structure among dau types. | :

The central notion in this framework is the deﬁmum of a data type. An algebraic - und
behavioral approach for defining a data type is developed which focuses on the
input-output behavior of a data type as observed through its operations. The definition of
a data type abstracts from the representationalstricture:of its- values as'well us from the
multiple sepresentations of the values for mysepmntanonal structure.

A hierarchical specification language for data types is proposed. The semantics of a
specification is a set of related data types whose operations: have the behavior captured by
the specification. A Clear distinction is made between-u data type and its specification(s).
The normal- behavior ‘and- the exceptional ‘behavier :of ‘the ‘operations are specified
separately. - The specification:language providésmechanisms to specify (i) a precondition
for an operation thus stating its intended inputs, (i) #he'exceptiorts which must be signalled
by the operations, and (jii) the exceptions which the operations can optionally signal. Two
properties of a specification, consistency and behavioral completeness, are defined. A
consistent specification is guaranteed to specify at least one data type. A behaviorally
complete specification ‘completely’ specifies the observable behavnor of the operations on
their intended inputs.

A deductive syStem based on first order multi-sorted predicate calculus with identity is
developed for abstract data types. It embodies the general properties of data types, which
are not explicitly-stated in a specification. The theory of a data type, which consists of a
subset of the first order properties of the data type, is constructed from its specification.
The theory is used in verifying programs and designs expressed using the data type. Two
properties of a specification, well definedness and completeness, are defined based on what
.can be proved from it using different fragments of the deductive system. The sufficient
completeness property of Guttag: and Homihg is :aiso formalized and 71elated to -the
‘behavioral completeness property. The well definedness ‘property-is stronger than the
consistency property, because the well definedriess property: ot only requires that the
specification specifies at least one data type, but also captures the intuition that it preserves
other specifications used in it thus ensuring modular structure among specifications. The

-3-

completeness property is stronger than the sufficient::completeness: property, since in
addition to the requirement that the behavior of the observers can be deduced on any
intended input by equational reasoning, it also requires that the equivalence of the
observable effect of the constructors can be:deduced from the speaﬁcatmn by equational
reasoning.

A correctness criterion is proposed for an implementation. coded in a programming
~ language with respect 10 a specification. It is defined as a relation between the semantics of
an implementation and the semantics of a specification. It does not require a correct
implementation to have the maximum amount of noadeterminism specified by a
specification. A methodology for proving oorrectness of an lmplementatlon is developed
which embodtesthe correwtess cntenon, ' o

Name and Title of Thesis Supervisor: Barbara H. Liskov
Associate Professor of Electrical Engineering
and Computer Science

Key Words and Phrases: Abstract Data Type, Data Type, Data Abstraction, Type Algebras,
Nondeterminism, Exceptions, Specification Language, Semantics,
Consistency, Behavioral Completeness, Deductive System,
Verification, Proof Technique, Sufficient Completeness,
- Completeness, Well Definedness, Implementation Correctness

This report & a minor revision of a thesis of the same title submitted o the Department of
- Electrical Engineering and Computer Science in March, ‘80 in partial fulfillment of the
requirements for the degree of Doctor of Philosophy. :

-4-

Acknowledgments

| am thankful to my thesis supervisor, Professor Barbara Liskov, for her patience and
encouragement during the thesis research and especially during the later stages; to
Professor John Guttag for posing many challenges and for many suggestions leading to
improvements in the presentation of the thesis; to Professor Carl Hewitt for helping me
organize and present my ideas in the early stage of the research: and to Professor Hal
Abelson for diligently reading the final draft and making many helpful comments.

My officemates, Valdis Berzins, Srivas Mandayam, and Carl Seaquist have helped me in'
many ways during the thesis research. They gave me an audience whenever | needed,

helped me organize my ideas, and found time to read my work whenever | asked them

irrespective of their other important responsibilities. Carl and Srivas provided a very

stimulating and encouraging atmosphere during the last year. | am also thankful to Russ

Atkinson, Moms Krishnamurthy, Dave Musser, Gene Stark, and Jeannette Wing for their

helpful comments. Eliot Moss is to be thanked for producing and maintaining the software

necessary for the production of this document.

The graduate study at MIT has provided me a unique opportunity to live outside of my
own country which has been a tremendous learning experience. Besides computer science,
I have learnt a great deal about life, this country, my country, and myself, which has
fundamentally changed my attitude and outlook towards life. For this, 1 am indebted to
the students and staff of the Seminar on International Students and Their Participation in
Development, and my friends, especially Arvind, Ashok, Carl, Kanchan, Krishna,
Mukundan, Nagu, Ravi, Rashid, Sekhar, Srivas, Vaqar, and Vinod. Without their
encouragement and interest, continuing the thesis research would not have been possible.
Roli has contributed to the completion of the thesis in her own unique way; in no way can |
adequately express my gratitude to her.

This research was supported in part by the Advanced Research Projects Agency of the
Department .of Defense, monitored by the Office of Naval Research under contract
NO00014-75-C-0661, and in part by the National Science Foundation under grant
MCS*74-21892°A01. '

This empty page was substituted for a
blank page in the original document.

1. Introduction evseesesscesasesssannnsenns At 9.
1. Scope and Approachqf the msis crmasasempeersnasssesarannanase: 115
1. Scope and ASSUMPRIONS ...cccoiipiemriasiieieinimssinssssianessesntnisnsnninns 11.
2. Definition of aDa Type evereraivanel reerensrasens 11.
3. Specification Method esiidersaneiiinarhunisaibibaies eseeesatiennernrssonan 13.
4. Deductive Systemc.cvenveiinianieens tereeiinibresns erissesnisessarens 17.
5. Conectnessoﬂmplementatmn Gieiieernsessieneaaisasiliianiasiosernbeannnanns 18.
2. Related Work 19.
3. Outline of the Thesis teecieesnanmasasseenssnsssnnsnraseaacsssressannine 22,
2 Definition of an Abstractﬂﬂta Type 23.
1 - lnforma’ Descrlpt'on Of aoﬁta ?m w. t--b&-u.nc)iot.u-nt--u---- 26-
1- Te"’“ﬂmv samemym LY I XY YRR YERTLY Y] ssecsnpsasysusnsacspsvopanmicenassbessunsne 26
2. Hierarchical Structure reensien Eetarasuissstsunat rxeseransssussavassane e 28,
3. Minima'“! Plﬂﬂ‘ﬂy -------- i!tlt‘M"yﬁ;‘g-‘l.‘)ﬁ‘?hiii&{?@put‘i.d.p@-m----o; --------- 29-
2. Formalism reneesesssssasssenspesssesssanasannassassasiasens O s

1. TYP® AIGODIBS cepeensperensescsssessunsnerssmnsasssseppseemmsssssassssssasnasasses

2.. Examples of Type Alg.bras _‘
3. Interpretation of TeImWciciviwineisiovnieniden :

4. Observable Behaviorc.c.ciriieeimieecncssansnastcnninecascrarecasesosesans

1. Deﬂnmons of Observgble Equlvalenge md, 4
-5. Behamal&qmvahneo of: Iyg& le e ..., 45.
6. DeflnﬂIOﬂ Of a Data Typ’ pean a,-n.o””td\- bnnonnp);;.-.-g:-g-'i-.ou--g;,- ----- wesoue 49-
7. Observable Equivalence and Dist‘inguTsﬁabiﬂly of Terms 51.
3. Exceptional Behavior of aﬁat‘a R 1, ST }
1. Assumptions about Exception Handling Me (1Y) 53.
2. FOrmalismcoceeemicccenenniiisisnnananes paspaespanusysseastesaiaranesananassaas 56.
1. Terms, Exception Terms, and@lg;pmigﬁgns seamseseanansasssisnes 57.
2. Examples of Modified Type AlGARIAS -.oimunereirtean it sininianes . 58.
3. Observabie Behavior and Mﬂgmhmblmy 59.
4. Compauson with Goguen’s ApPPEQACRipeeeieerecssenceannaten 62.
3. A Simpler Approach viidanasers e aueekekskbrnR s araeratsevanansenarien 63.

Table of Contents = -

4. Mutually Recursive Data Types 66.

3. Specification of an Abstract Data Type 68.
1. Specification Languagec.cccccuuuue..e. errrerassesensenens 72.
1. Operationsccccereeeeene ceesenaves rraerseneeiessns et e e asnnearan st naen 73.
2. Auxiliary FUNCUOME ioiiviiveeeeninnesdiioneienennnnnesciminarssnerensannsnaes 74.
3. Restriclionscccceecimieiiimririisiiictiiieiinesesseannsesncssaiissersrsonases 77.
1. Precondilionsc.cciciiiiiiiiiiiicniccsnni sr et e e nee s e na ey 77.
2. Exceptlion Conditionscccorvievecniminerrerirenineriniiesenesinseese 79.
3. DiSCUSSIONccivoiiiiiiiciiriarentiiesresarsesassssessarsssserssssssnsensre 80.
B, AXIOMS ..cooveriiiirireiirereersivemmesissesreneeseassrearaessnnbotensantonsennnasesnsans 81.
5. Specifying Nondeterministic Operationscccerrrrereinnnanns 83.
6. Specificationof Mutuaﬂyﬂecursi%bﬁa‘“m evnsiresanes 85.
2. Semantics of Specification Langque rreemreseneeateassesianns 86.
1. Specifications without Auxiliary Funcuonn e 87.
1. Restrictionscccovvieciiiininieriienneens Acadetnagnmensssanssisnnerrensocnan 88.
2. Axiomsc.cocorvecenees SeperrrssebvsRseifaenensaveorpranturnansnsan st . 89.
2. Specifications with Auxiliary Functions 91.
3. Sem»antics of a Specification It 92.
3. Specification of a Data Type and - ‘
Equivalence of Specificationg.ic.i-upeverneencnnniiencnncan. 94.
4. Specificationof Boolcocceciiiiiiiiciininciiiccreans 98.
5. Properties of a Spceificaﬁen Ciserasdtensmasnassasanrasnans 99.
' 1. ConSiStentycccevvieirenrrenennieeensinees teaeteedessvesssnsieantaisiennnns 99.
2. BehavcocalComple!onoss N Giveiesireiressarerrarasssssenirasinase 102,
1. Parlial isomorphic Equivalence Cexesscdussensarrersssainessenns 103.
2. i1somorphic Embeddabilitycccocivimiiinciiiiisenrirerencenees 104.
3. Partial isomorphic Embeddability rresessreresaissassanaenns 106.
4. Definition of Behavioral Complotmss ,;.....; 106.

-6‘-

6. Comparison With Related WOm crensstsmensssasnssvanctinenas 109.

4. Deductive System , R 112.
1. Preliminariesccceeeeeeeeeeeseeresssesnens ereesmsmsseesssserene 115.
2. Theory of Data Types without Nondetemimsm and
without Exceptional Behavior retnansesasesesmmsssinenirasbesiees 119.
1. Derivation of Nonlogical AXIOmSccocerriiennincnneicsneeniicineas 121.
2. Equalional Subtheoryc.cc....o... teetmsssessesssssesssssssesnesrsnnssesas 122.
3. Distinguishabiiity Snbth‘eory .. ereees 123.
4. Inductive Subtheoryccceeeiireniininnnnnnnee asasissinssersassessecs 124.
1. Infinite INAUCTION RUPG ...cocoveeeeeneenirlenieiieeneerisererenmrnsacnenons 125.
2. Rationale for an‘infinite Induction’ Ruh vesemerrieeersnnnnserasereenns 126.
3. Useofthe InductionRuleivecuninenss nnnenes eeane 128.
4. Specifications with’ Nuntrfviﬁ«Proc‘ondmom '
for Constructorsccccrveeeiiieae ansesucuusvbesaseasestorssnsittisen 131.
5. The Full Theorycccoeccmverrvanans sreiraenasenne seeneansseensransasansonnannes 134.
6. Properties of a Specificationcoovirreuiinicniniinenicncieeinenine 1386.

-7-

1 . Sufﬁcieﬂt CDWS --':.-n;-Si-'c-i’o.-o-.ﬁ}--‘n“é“---..’"-’iu ---------- 1 38-
2. Completeness R TR eeereenreaeen 141.
3. Weli Definednessoiveies e eeee 142,
7. Automation of IND(S} - ..ug. 143.
3. Theory of Exceptions WIthout Nondetermmusm 144.
1. Derivation.of Nonlagical AXiOMS. ...cceeeenaseneesee Giliviressaivensnienne 148,
1. Restrictions Componentcocoiivivnrianiisenimesenaianie. 145.
2. AXiOMS COMPONGAL. «cc.eoeeuiiciiierivisesierenssssonsiossisssisssisnnnans 146.
3 DeflnlllOﬂ 0' N?D’ sussesasynesne T CI I T §avabegboveasaiincussnbnonenss 147
2. Equational Subtheoryc.ccceireiiiiiiirecineienienenniercsinnaanaae 149.
3. Distinguishability Subtheory S L s
4. Inductive SUDthEOTYcciiiciiiiiinerircrcenni s rae e e nenees 152.
5-: . ThQ FH" Ihmy v.o- sauw .cus vaeds . be v-b(guu rase o .6?-§c¢.¢ f--snypinpgun 1‘53-
6. Propertiesofa Specmcation eeresansarer 157.
1. Sufficient Completenesscccoeiiiiiinnimmnciiianiinee, 158.
2. Completeness and Well Dolinodmessiis.ioiviiviriiannion.. 160,
4- Theory Of Nondetermlnlsm l-r..n-si;‘-cb;loti’-.'-tiw.;‘-.- foasasnnss 161 -
1. Transformation Procedure TR rivesbiunesnnsrssbasiasesraveess ~ 1030
2. THh{S) .ceriierercericcrrarersisresmrsasasassansensansas seremmnsssagnnarsaesneses PR 167.

3. Data Types with Exceptional Behavior e . ?
4. Propertios ofa SPecHicatian .. c...c.cocimiviiioieiviinenninenancie, 173.
5. Strong Equivalence of Specmcatlons 175.

5. Correctness of Implementationccccceueeenen.. 176,

1. Correctness Criterion and S R
Overview of Correctness. Mathod ER TR I £ :
1. Semantics of animplemantationccoceesnnssinnnne P revares . 179.
2. Correctness Mathod eresnmcesessasnsesarassssassannnns cevecersssanasassuaras 181.
1. Nondeferminismcccecsiinrenniicannnnennes sreieneeneedninnsasannres 182.
2. Definition of Correctnessc..cceearsinensesersansnccssssnnceainane: 1885.
2. Implementation Structure and Semantics 187.
1. Procedures - Approach |ciiirreciiiinieriiecimecnininineneaa. 188.
2. Procedures - Approach il eesesessresusmeseenssseREtsrEnasaresauassannats 188.
3. Properties of the Encapsulation Mechanismcccceivueeciennn 191.
4. Semantics of an implementationc.ccccvmeeiiiiicnninnnniiciean 195.
3. Correctness Method ceereennn ersesassesensananas 196.
1. Auxiliary Functions in a Specificationc..ccccciemniiciniiiinnneees 196.
2. Preservalion of INVc.ceiiciiiiiiiincainiieniisiniiinecnnnaa e 196.
3. Termination of ProceduUrescc.ccceceveracrnnsinininanssensaracasencsans 197.
4. Proving Restrictions and AXiOMSccccoccieiemeisinenninnieaiiiennene: 197.
‘1. Preservation of Equivalence Relation reeensreraneecesies 198,
2. ReSHCHIONS ...ceeveveeermccciaiiiiettnricssaiiacensacaissarsensasesssacssens 199,
3. AXIOMS ..cccivicninniecnceinnnncennns resensisararersssennersnasernrs ererecersnes 201.
5. Nondeterministic Proceduresccceamecevseansscscnserossassancnnses 202.

-8'-

6. Pseudo-Nondeterministic Proceduresc.cceceeueercrnnnenennne 203.

4. Recursive and Mutually Recursive Jmplementations .. 205.

1. Recursive Implementations tersrsessrsgersssanssassasasetiitatisensaaanianas 2085.

2. Mutually Recursive |mmemematlons eeveeeecnsancaseeeseseattressererrnene 209.

6. Conclusions srereivesenisarniiisbobess rinnsisisnansans 210.
1. Summary of Contributions Moemeertensaeneeeitienaeeeanasens 210.
2. Directions for Further Research everereioeens 212.
References reerneenna feeseeniensense eviirarmsenees .. 216.

Appendix |. Etaboration of chpe_'gnd*ksysumptions 224.

1. Immutable and Mutable Da{a Tﬁybesr 224,

2. Exceptional Behavior Jeiseabevenansans wvesisnasiabonninnantans 225.
3. NONAGLEIMUNISM .reereneesereaemicinemornessmsasmssssssssssasens 225.
Appendix II. .D.eﬁnit,ic_ms.o.f.A,lggggajc@oqggpt_s‘iahd |
Proofs of Theorems in-Chapter 2 227.

1. Congruence Homomorphism, and !éd&norﬁﬁfsm vesnsaens 227.
2. Proof of ThEOTemM 2.2 i.........iviiiiuieiesessisiessnsssiosssncss 220,

3. Elaboration of the DefimtlmtMﬁtﬁratﬁqmvalence
and Proofs of Theorams 2.6 and- 2.6cc.cvveceennsnene... 230,
Appendix lll. Proofs of Théorems'in Charpter4 236.
Appenmx IV. Specifications of DataTypes used in
Chapterb rerisbdinadiren e Ko iabsan s venuanas 246.

1. Introduction

The role of abstraction, moduiarity and hierarchical structure has been well
recognized in the literature on prograni design and construction [12, 66, 73]. Data
abstraction, in particular, has been found to be a useful abstraction mechanism in the
design and coﬁstruction of well structured programs [51].l Most of the recent
programming languages encourage the use of abstract data types by providing an
encapsulation mechanism for implementing them [65, 49, 52, 75,45, 1]. It is necessary to
develop a rigorous foundation for abstract data types so that the informal concept of an
abstract data type can be placed on a firm and sound basis, and various aspects of this
concept c‘ah be studied and analyzed.2

In this thesis, we develop a framework for abstract data types. The central notion
in this framework is the definition of an abstract data type. We develop a behavioral
method for defining a class of abstract data types, called immutable data types [49, 52]. An
immutable data type is defined as a set of behaviorally equivalent algebras having‘
interpretations for the values and the operations of the data type. Behaviorally equivalent
algebras have the same behavior as observed through their operations. We propose a
specification language for abstract data types. The semantics of a speciﬁcatiop is a set of
related data types sharing the common behavior captured by thé spéciﬁcation. We make a
clear distinction between a data type and its specification(s). We develop a deductive
system for abstract data types embodying their general properties which are not explicitly
stated in a specification. We use the deductive éystem to prove properties of an abstract
data type from its specification. We propose a correctness criterion for an implementation
of an abstraét data type with respect to its specification, and develop a methodology for
proving correctness of an implementation with respect 10 a specification which embodies

the proposed criterion.

1. The terms abstract data type, data type, data abstraction, and type arc used synonymously in this thesis.
2. Liskov and Zilles [47] emphasize the nced for rigorously developing the mathematical foundation of the
specification methods for abstract data types.

3

The main contribution of this research is a framework for abStract data types that
is rigorous and that brings together various aspects of abstract data types in a unified and
coherent way. Our approach is better than other similar atterhpts in particutar the initial
algebra formalism of the ADJ group [231 and the eategory theory formalism of Goguen
[20,7, 30] because it is more in tune with the way programmmg Tanguages support the
mechamsm of abstract data type. The framéwork incorporates’ithportant and useful
features such as hierarchical structure and modularity.~ It i§ also-broader in scope as it
handles data types with nondeterministic operatronsand “with 'oper'titibns exhibiting
exceptional behavior. We had originally “developed the framework wrthout considering
nondeterminism and exceptronal behavior: however we dld fiot encounter any major
difficulties in extending it to mcorporate nondetermmM'aﬁd exceptloﬁa!‘behavror This
makes us believe that our framework is robust and’ extensible ’for’ studymg other aspects of
data type behavror not discussed in this thesis.

Our framework will be useful to a designer of a specification language for abstract
data types as it provides a semanﬁé'ba‘sis for studying and comparing such specification
lénguages It can be used to define the semantics of a specification Tanguage. It also
provrdes a formal basis of automatic deductive systems for abstract data types, such as
AFFIRM [60] It suggests an approach for Studying and ex‘tendmg the method of
reasomng about data types deve]oped in the thesis. Other methods ofreasonmgcan ‘also be
developed using it. Furthermore this research clarifies our intuitions about data type
behavror and provides a formal basis for them; as exammes, the notions of consistency and
sufficient oompletenes advocated by Guttag ‘and Hommg [28} and the correctness
cnterlorl for an im plementahon [29, 40] can be statedformaﬂy and analymd. o

o Our research has been highly influeniced by Peano’s method of defining natural
numbers and McCarthy's method of defining S-expressions [S7Y. * We are inteliectually
indebted to Zilles [77] and the ADJ group [23], for their work on the algebraic approach for
abstract data types, and to Gutiag et al. [25,28,29] for their work on specification
technique for abstract data types which emphasizes programmers’ intuitions about data
types. We cite other related works in Section 1.2, and state bow we plan to compare these
works with that discussed in the thesis. ’

-11-

1.1.Scope and Appsoach of the Thesis.

We first state the scope of the thesrs and the assumpttons made about the data
type behavror The scope and assumpttons are further dtscussed m Appendtx L Later we

v"k

specrﬁcatlon deducttve system and unplementatton cortectness.)
1.1.1 Scope and Assuuiptions

In our research, we -have ~considered immutable data types having
nondeterministic operations and operations eilﬁbitlngueateeptional;, behavior. Every
operation is assumed to-be-total and wmput‘able: see 42} for a-precise characterization of
computability on the values of a data type. It terminates on every mput in its domain either
normally by returning a value of its range type or by .signalling an exception. A
nondeterministic operation - has only finitely many- choices on an input. If a
nondeterministic operation signals on an input, it is assumed 10 behave deterministically on
that input. So, it does not have a choice between signalling and terminating normally on a
particular input. Henceforth, by a data type, we mean-an ‘immutable data type with the
above behavior; and by an‘object, we mean an immutable object or a value. .

1.1.2 Definition of aData Type -

, Our formalism for deﬁmng a data type is algebratc in the ﬁyle of Zilles [77] and
the ADJ group [23]. Algebras are a natural and elegant way 0 deﬁne an tmmutable data
type, because an tmmutable data type is mformally a set of values and a set of operattons.
In a programmmg language supportmg data types the most tmportant aspect of a data type
to its designer as well as its user is the mput output ‘behavior of its operattons [37, 47 25]
The values of a data type are manipulated only by its operations. Outside its
implementation module(s), the values are viewed abstractly as sequences of operations.
The details about the representations of values and theoperatlons of a data type are of no

-1}2‘-

relevance. To a user, two distinct representations are-behavierally identical f they cannot
be distinguished by the operatlons of the data type We call thls view the behavloral view
of a data type. The behavioral wew abstracts from the representattonal structure of the
values as well as from the multlple representatlons ‘of a value for any representanonal
structure. It is a further abstractlon on the view of a data type adopted by ADJ [23] and
Zilles [77] which abstracts only from the representattonal structure of the values.
In a programming language supporting modulantx and h;erarchlcal structure
such as CLU, EUCLID, etc, data types are implemented hlerarchncally one at a time
| except that m-utually recursive data types are implemented.together.as a group, data types
other than those being implemented are assumed to be implemented elsewhere We take
the same approach in defining a data type. -Our definitional method is hierarchical. We
distinguish between the data type(s) being defined and other data types used in the
definition. We call the data type(s) being defined the defined type(s) and other data types
in the definition the dejintng types. The distinction hetween the defined type and defining
types is significant because the behavior of the values of the dafined type is observed by the
operations which return the values ofmesdeﬁ;ping:tm - This was_first pointed out by
Guttag [25], and is the basis of his definition of the. sufficient completeness property, We
use the data type boolean, which is self-contained and does pet have-any defining types, as
_ the basis of our definitional method. We assume its definition and that all boolean values
are distinguishable. In fact, any data type whose vilues ‘can be distinguished a priori
(outside the formalism) can be used as the basis. For example any data type directly
supported in a programming language whose values are disnngulshable usmg the literal
(constant nammg) mechamsm in the programming language 1s a sultable candidate. ‘
We classnfy the opemtnons of a data type mto two eategones the constructors,
which construct the values of the data type, and the observers, Wthh return the values of

- 3. We will.not be concerned about other issucs, such as cfﬁClcncy of the operatnons, etc relevant to a user of
a data type. Our formalism is limited in this sense. .
4. Mutually recursive data types are different from mutually recursive unplcmentauons, sce Chapter S5fora

-13-

the defining types. A value of'a data type manifests its behavior thfough the observers with
the help of constructors. . o .
Our approach for modeling the exceptional behavior embodies a practical view of
exceptions. Each exception is named, and can have arguments that carry information to its
handler from the place where it is signalled,. The exceptional behavior, of the aperations
can also be used to distinguish among different. valyes. . An operation can distinguish
between two values by signalling.on one value and-terminating. normally on the other
value, or by signalling different exceptions on different values. N o
| The model used for. nondeterminism is simple. Jf a nondeterministic aperation
behaves nondeterministically on an input (i.e., it has a choice-to return one of the many
possible results), we expect it to return every possible result. We do not consider how these
results are scheduled by an implementation of the operation. -Two operations having
different amounts of nondeterminism are copsidered to have different observable behavior
because for some input, they can always return. distinguishable results. -Data types with
operations having different amounts of nondeterminism are thus considered different.. For
example, consider a data type finite set of integers Wwith ,g};pgndetgnninistic,opgration
Choose which nondeterministically picks an arbitrary-¢lement from a nonempty finite set
of integers given as an argument. This data type is. different from another similar data type
 with the same set of operations which also have the same behavior with the exception of
Choose which is deterministic and returns the maximum integer. of a nonempty set.
Furthermore, both data types are different from yet a thizrd.data type with the same set of
operations -as .the other- two types except that Cheose has a: limited amount of
nondeterminism: Cheese nondeterministically picks between the maximum and mini_m&m

integers from a nonempty set.
1 1 3 Specificatio»n Method

A specification is mainly used, among other things, for reasoning about a data
type. So, our specification method is axiomatic in the style of Standish [69], Hoare [38, 39],
Guttag [26, 29], Nakajima et al. [62}, etc. A specification embodies information hiding [66],
i.e., it only specifies the behavior of a data type. Our specification method is hierarchical.

-14-

Data types are specified incrementally, one at a time; a specification uses the specifications

~ of other data types. We believe that specifications should be modular and well structured

just like programs; otherw:se specifications of Iarge problems become unmanageable and
difficult to understand.’

A specification expresses the properties particular to the data type(s) being
specified. It specifies (i) the domain, range, and the exceptions with: the types of their
arguments, if any, signalled by every operation, (ii) the normal behavior as well as the
exceptional behavior of the operations. The general properties of data types which hold for .
every data type, for example, the minimalily properiy which reqlaires‘that' every value of a
data type is constructed by finitely many applu:atlons of its constructors, are not mcluded n
a specification. ‘ o

The normal behavior of the operations is SpeCiﬁed as a restricted set of formulas
of first order multi-sorted predicate calculus with identity. - A typical formula is a

“conditional equation relating different sequences of operations under a condition. A

specification can use a finite set of auxiliary functions so that any data type with a finite set
of total deterministic computable operations can be "spe‘eiﬁed in this -way [43}. A
properties of its possible resufts on an input, rather than by explicitly specifying its relation
which holds for all possible results of the operation-and the inpurt-and does not hold for any
other value and the input. For example, in case of the data type finite set of integers, the
nondeterministic operation Choose is specified by relating its: possible results 1o its set
argument, instead of explicitly specifying its relation Choose_p : Set-Int X Int --> Boel
which holds for a set and an integer if and only if Choose ‘¢an retum the integer when

applied on the set.
The exceptional behavior_ of the operations is speciﬁed as a separate layer on top

of the normal behavior. Following Guttag [31], if an operation signals an exception, we

5. Burstall and Gogucn [7] and Nakajima ct al. [62] also emphasizc:the need for structurcd specifications.

-15-

specify the condition on its nput under which'!the. -exception is: signerlled.‘—S ‘The
specification language provides mechanisms ‘to_specify the exceptions which must be
signalled by the operations as well as the eXceptions which the operations can optionally
signal. The specification also allows a precondition on an ‘operation to be specified, stating
that the behavior of the operation on inputs not satisfying the.precondition is not of any
interest. A formula expressing the normal behavior of the operations holds only-if the
input to the operations in the formula satisfy the: specified- preconditions and. if the

operations do not signal; it thus has a restricted interpretation.- A formula spgcifyi‘ng the
| normal behavior is called an axiom. The -preconditibns“ﬂnd'ﬂle éX‘ceptional b‘eb,avior of the
operations is specified using restrictions.

Our approach of specifying data types is thus different from those of leles [77] .
and the ADJ group [23]. In their approaches; a specification of a:data type is a finite set.of
identities (or conditional identities) presenting the set of algebras serving as the definition
of a data type. These iﬁentiti&s are interpreted -exactly the same way as in Universal
Algebra [4,10]. We are also not. constrained to employ anly "equational” reasoning;
instead, our reasoning method embodies the general properties of data types as is discussed

The semantics of a properly designed specification is a set of related data types
which differ in the behavior intentionally not captured by the specification. If an operation
is specified to be nondeterministic, the semantics of a specification includes data types in
which that operation can have as much nondeterminism as desired.insofar as the operation
behavior satisfies the axioms and restrictions expressed in ‘the specification. We define
equivalence among specifications. We also state whea a data type can be (precisely)
specified in the proposed specification language. We define two important properties ofa
specnﬁcatmn The consistency preperty, which states whether a specification specifies any
data type; the behavioral completeness propeﬂy, which guarantees that the observable
behavior of the operations is not left unintentionally unspeécified. These properties ensure

6. However, this way of specifying the exceptional behavior of the operations may be overly restrictive, as for
an operation, the subsct of inputs on which it signals a particular exccption:may be very complex to-specify.

-16 -

that various components of a specification:have the desired structure. Checking for these
properties is a step- towards ensurmg that the specxﬁcat:on mptures the intuition of -a
designer. . '
In our research, a clear distinction is made between a data type and its
specification. In most of the literature on: specification techniques for data: types
[47,25, 28,29, 61,77, 48, 37}, this distinction is-either not made or blurred-if it is implied.
Most of the literature does not explicitly define what a data type is. The ADJ group. (23]
was the first to our knowledge to explicitly state-in their formalism a definition-of a data
type and make this distinction. We believe the distinction between a data type and its
specification is useful and necessary in a formal treatment of data types. Given a definition
of a data type, different specification techniques can be developed to serve different
purposes, if needed, and their semantics can be-given- i terms of data types. Different
methods of reasoning about a data type can be developed -incorporating the general
properties of data types with the definition of a data type serving as their basis. The
question of whether a given data type can be specified using a particular specification
technique can arise only when this distinction is made; only then ¢an different specification
techniques be compared in their expressive power. Only then it is meaningful to discuss
the properties of a specification “technigue such . as: the .ease of 'expression,
comprehensibility, minimality, etc., [47}. (See {34} for a similar discussion for programs.)

A specification plays an important role in our research. 1tis used as a standard for
checking the correctness of an implementation as well as.for deriving properties of the data
typesspec:ﬁedas;s discussed in the next two subsections. it is an interface between the
programs using the data type and the program(s) mplementmg the data type. The
specifications of abstract data types are a.major component of a program verification
system. Our specification method can. be used to specify the behavior of the data
component of software designs; questions and ingquiries about the data in a design. can be
expressed and analyzed using the deductive system discussed in the nexi subsection. (See
the two survey papers on specification methods [47, 48], where the need for writing formal
specifications is discussed. Guttag and Horning [32] discuss the importance of formal
specifications as a design tool) - | |

-17-

1.1.4 Deductive System

As was stated earlier, one of the main reasons for designing a specification is to
have an implementation independent description of the data type that can be used to
reason about the data type as well as to reason about the designs and programs using the
data type. We propose a deductive system based on first order multisorted predicate
calcqlus with identity for deriving properties of a data type from its specification. The
deductive system embodies the general properties of data types which are not explicitly
stated in a specification but assumed in its semantics. These properties are derived from '
the syntactic structure of the operatibns. . .

The deductive system has an infinite rule which captures the minimality property
of data types. The deductive system is powerful enough to prove inequalities. We
axiomatize the general properties of the exceptional behavior of the operations. Properties
expressed using nondeterministic operations can be proved. We construct a theory of a
data type, which is a large subset of its first order properties, from its specification. If a
specification specifies a set of related data types, evcry theorem in the theory constructed
from the specification holds for each data type in the set.

We define three other structural properties of a specification, namely, sufficient
completeness, well definedness, and completeness, based on what properties of a data type
can be deduced from its speciﬁcati_on using different fragments of the deductive system.
We precisely state the sufficient completenéss property defined by Guttag and Homing
[28] for a restricted set of specifications and extend it to specifications in our specification
language. This property requires that the behavior of the observers on their intended
inputs can be completely determined from the specification by purely equational
reasoning. We relate this property to the behavioral completeness propeny stated in the
previous subsection, which is model theoretic and which requires that the speciﬁcation
completely specify the behavior of the observers on intended inputs. Recall that the

“behavioral completeness property does not say anything about what can be deduced from
the specification. In this sense, the relation between behavioral completeness and su fficient
completeness reflects the power of the equational fragment of the deductive sysfem. ‘

The well definedness property is stronger than the consistency property, because

-18-

the well definedness property not only requires that a specification specifies at feast one
data type, but also- that it (specrﬁcanon) is modular m the sense that it preserves the
specrﬁcatxons of other data types usedinit.

) _ The completeness property rs stronger than the sufﬁclent completeness property,
smce in addmon to the requnrement that the behavror of the observers can be deduoed on
any mtended mput by equatronal reasomng, rt also requrres that the equrvalence of the
observable effect of the constructors on mtended mputs can “be deduced from the

specification by equational reasoning. |

1.1.5 Correctness of Implementation

We state the correctness criterion for-an-implementation coded ina programming
language with respect to a. specification as a relation between the semantics of the
implementation and the.semantics of the specification. . Roughly speaking, a correct
implementation implements one of the datn types in the semantics of a specification. Our
correctness critesion is weak as it does not- require a. oorreetimplementatioa 1o have *he
maximum amount of nondeterminism specified by:a specification.. -

- We develop a method for proving correctaess of an:implementation wuh respect
to a specification which: embodies the correctness criterion: The method requires, among.
~ other things, that the procedures implementing the operations .satisfy .the axioms and

. restrictions in the specification when appropriately. interpreted. - We thus provide the.
formal basmofﬂrecorrecﬂwssme&odpmo&edby&metakﬂﬂmd extend it to
spmﬁcanom specxfymg nondeterministic: operﬁms&@opmns exhibiting exceptional
‘We distinguish among different procedures: Jmplememmg an: operauon specified |
. toehe nondeterministic, since the nondeterministic’ behiavior: of an operation on abstract

values éan be implemented by a deterministic: procedure .on- the: representation of these »
abstract, vahies that returns different results on different but equivalent representations.

We call a procedure nondeserministic (respectively, n’etemmmic) if it is nondeterministic

(respecmrdy _deterministic) and it returns mvaiene refiilts on equivalent representations.

Otherwise, if armmmwam\mhmwgwmmns.men itis

-19 -

called pseudo-nondeterministic irrespective of whether it is deterministic or
nondeterministic on the representations. We discuss the correctness method for these three

kinds of procedures implementing an operation specified to be nondeterministic.
1.2 Related Work

In this section, we discuss different definitional and specification methods for data
types, briefly stating the major differences as well as the main thrust of these works. The
detailed comparison of these works with ours is contained in the rest of the thesis where we
discuss various topics.

_The definitional methods for data types can be broadly classified as (i) the
algebraic or model approach, and (ii) the axiomatic approach. In the model approach, a
data type is defined as an algebra satisfying certain properties, or as a set of such algebras.
ADI [23] defines a data type in this way. Though Hoare [37), Zilles [77], Guttag [28], and
Berzins [3] do not explicitly define what a data type is, their apofoaches suggest that a data
type is defined using the model approach. Our approach is also the model approach.

Nakajima et al. [62] take the axiomatic approach; they define a data type as a first

order multi-sorted theory. Recently Nourani [63] has also discussed the use of a first order
theory for defining a data type. Though this view of a data type is useful in program
verification, there is no explicit model of a data type to match with the intuition of a
designer of the data type. If a first order theory is interpreted as in Logic [16] and its
“models are taken as the models of a data type being defined, then there are nonstardard
models for a data type, which are of no relevance to its designer. A nonstandard model
does not satisfy the minimality property of data types discussed in the next chapter. Hoare
[38, 39] has also used the axiomatic approach for defining a class of data types.

A survey of specification techniques for data types can be found in [47] and [48].
The specification techniques can be broadly classiﬁecl into three categories based on their
approach: (i) the-"model approach, (ii) the algebraic approach, and (ii) the axiomatic
approach The model approach is used only in case a data type is defined using the model

- approach A -data type is specified by presenting one of its models. Berzins [3] has
-formahzed and extended the model approach originally proposed by Hoare [37]. He has

-

also related his research to other works fallomng the model. approach We discuss here the
algbme and axiomatic approaches. ' . : :

The algebraic approach has been propesed by Zilles [77] and the AD] group. {23],
in this approach, a set of algebras defining a data type is presented as a finite set of
identities or conditional identities. Burstall and Goguen [7] and Gogaen [20F specify a data
type as an algebralc theory ,

, The axiomatic approach for speclfymg a data type can be used for elther of the
two definitional approaches drscussed above. If a data type is deﬁned usmg the model
approach, a spec:ﬁcatron using the axiomatic approach ‘consists of the propertles of the
models of a data type. 0therwrse a specrfrcatron consrsts of a subset of the theory serving
as the deﬁmtlon of the data type The axromauc approach followed by Nakajlma et al,
Hoare (38 39}, and Standish [69] uses the full ﬁrst order predrcate calculus tospecrfy data
types. The approach advocated by Guttag et al uses a restncted set of formulas, namely
equatrons and condmonal equat:ons _ ‘ o

Our approach is also axiomatic. A specrﬁcatron exprelses the normal behav1or of
a data type(s) (wluch isa set of algebras) as equattons and condmonal equatlons, and its
exceptional behavior as restnct:ons As rs stated m the prevrous wctlon ‘these formulas are
interpreted using the restncttons m a dl‘fferent way than m the algebralc approach In
contrast to the spec1ﬁcatton methods proposed by Nakajlma et al Hoare and Standlsh the
genera] propertres of data types are not expllcrtly stated in our method A spectﬁcatlon |
provrdes an incomplete (m the sense of Logc) ﬁrst order ax:omattzatton of the data types
bemg specrﬁed. From a proper;ly desrgned specrﬁcatron tt IS poss1ble to denve most of the
' mterestlng propemes of a data type needed in program venﬁeatron.

The major focus of leles work and the ADJ group s work has been to extend the
theory of heterogeneous algebras 10 capture the meanmg of data types They have not
" investigated how to use the del'mmon of a data type for provmg propertres of programs
usmg data types. Zilles [76] has suggested an ad hoc method for estabhshmg correctness of . |
an lmplementatron of a data type, however the method as well as rts foundatron ‘have not
been fully developed ‘The ADJ group and E'mg et al [15] have proposed an algebrarc
approach for estabhshmg the eorrectness of an 1mplementat10n of a data type in whrch ﬂtey

-21-

have attempted to incorporate the algebraic semantics:of the control structures of the
programming language used for the implementation. Although the ADJ group’s work is
rigorous, there are two main problems with it:
(i) it has not embodied the view of data types taken in programming languages, and is
thus useful only for a small set of data types, and ‘ '
(ii) it is complex.
The approach taken by Burstall and G'oguen" [7] seems more promising than the ADJ
group’s approach from the viewpoint of program verification, but, we have been told, its
* category theoretic semantics again seems to introdute unnecessary complexity [30].

Guttag et al. have focused on using specifications for proving properties of data
types and programs using data types The nice aspect of their approach is that it captures
the view of a data type taken in programming languages. Our research formalizes, provides
a mathematical basis for, and extends their approach. '

The ADJ group [23] has been the first to investigate rigorously the exceptional
behavior of a data type. In their methbd',*therset of values of every data type is extended to
include a distinguished value, called error. Using special auxiliary ‘functions which test
whether an arbitrary value is an error, they specify the exceptional and normal behavior of

a data type. Goguen [20] has enriched and structured their approach: 'Our approach is
' based on Guttag’s recerit suggestions for separating the exceptional behavior of a data type
from its normal behavior [31} |

1.3 Outline of the Thesis

The second chapter introduces a formalism for defining a data type. We first
discuss the formalism for data types assuming that the operations do:not signal exceptions.
Later, we extend the formalism to incorporate the exceptional behavior of the operations.

The third chapter describes the épeciﬁcation limguage, gives its semantics, and

defines the consistency and behavioral completeness properties of a speciﬁcation.
, The fourth chapter discusses the deductive system. We discuss how a theory of a
set of data types serving as the semantics of a specification can be constructed ftom the
specification. We first describe rme.deductive,-qzls}egi for_specifications specifying neither
nondeterministic operations nor the exceptional: behavior of theppcrations; later, we
discuss specifications specifying the ;e;,cgpﬁ(inql;bchavior of the operations, and finally, we
incorporate nondeterminism. We discuss the Qeducﬁngsywm;incr@@mlly introducing
its various components; we first discuss the equational theory, then the distinguishability
theory, later the inductive theory, and finally, the full theory. =~

The fiftis chapter discusses a correctness criterion. for an implementation with
 respect to a specification and a methodology .embodying the. criterion. The correctness of
recursive and mutually recursive implementations is alsa briefly dmused.

The sixth chapter presents conclusions and directions for future rewarch.

. type.

-23- '

2. Deﬁnition of an Abstract Data Type

In this chapter, we develop a formalism to define an abStract‘data type. We takea
behavioral view for defining a data type in which every value of the data type is constructed
by finitely many applications of its constructors and these. values are distinguishable only
by means of its operations. We adopt the mode[approach A data type is defined to be-a
set of behaviorally equivalent type algebras, where a type algebra .is- an gxten.dqd
heterogeneous algebra with additional properties. needed 0 model. data types. - The
syntactic structure of a data type determines the structure of type algebras in the §e1;.»_Eye_ry
type algebra in the set. is called a model of the data.type. A model provides an explicit-
‘meaning (interpretation) for the values and the gperations of a data type; in. this way, it
captures concretely. the informal. description. -of a_data type in our mmd The model
approach for defining a data type is closer to ;ghi«;_fmgy;ma_o,ff;a,;gr,ogmmmer .than the
axiomatic approach as in [62, 63], where a data type is defined as a first order theory.

: " The. crucial concept in the definition of a data type is that of ‘behavioral
equivalence of type algebras. The definition of behavioral equivalence captures the
- informal notion that two behaviorally equivalent-type algebras have the same behavior as
observed through their operations. We are interesied m how. the. interpretations of the
values and the operations of a data type in a modql behave, and npt in how they are
represented. We have decided not to pick a paticular model to be the definition of a data
type because we do not want the irrelevant details of the model to be assoclal,ed, wlththe
data type. We have only considered the input-output behavior of the.operations of a data

Behavioral equivalence abstracts from (i) multiple. mpsesentauons of a value for
a representational structure as well as from (ii) the. representatianal struture of the. values
in an algebra. Thus type algebras- differing only in the representational structure of their
values are behaviorally equivalent; furthermore, type,. algebras using the same
representational structure but differing in the number of representations a value has are
also behaviorally equivalent. The property (i) above is achieved by defining a congruence,
called the observable equivalence relation, on a type algebra, and the property (ii) is

2%4-

achieved by the standard algebraic: concept of isomarphism. - The distinguishability |
relation, which is the complement of the observable equivalence relation, on the
representations of the values of the data type is defined inductively in terms of the
‘distinguishability of the representations of the' values of the defining types of the data type.
(The basis of this induction is any data type with no-defining types, and in particular, the
data type boolean whose two values, #rue and false, ‘are assuméd to be distinguishable.)
Two ‘representations are distinguishable if and.only if there is a sequence of operations |
havmg an observer as the outermost operation; that prodm émmgmshabie results when
| applied separately on the representatmns. 3
If the operations of a data type signal exceptions, then' two -representations can
also be distinguished dise to the exceptioriat behavior of the operations. ' If a sequence of
operations signals on a representation: and °does not'signal on the other; of if it signals
d‘ fferent except:ons on the two representations; then they are distinguishable.
‘The model used for nondeterminism 'is’ ‘simple. | If a nondeterministic operation
‘behaves nondeterministically on an input Ge., n hes a choice-to return one of the many
poslble results), we expect it to return every- posablemult Wedo not consider how these
| results are scheduled by an implementation of the operation. Two ‘operations’ havmg
different amounts of nondeterminism are considered to have different observable behavior
because for some input; they can always returry distinigtishable results. The definition of
distinguishability relation on mpmﬁaﬁons of'the valua of 4 data type- mcomom this
‘vxewufnmdetermmism. ' o P '
‘ In the first section, we introduce lmmmolegy - define hierarchically structured
data types, and informally discuss the minimality property of a data type. We assume data
types to be hierarchically étruchired: and defined ‘one at a time. There are however no
technical problems i our formatism in handiing mutually recursive data types which are
not defined separately. We outline the simpl¢ éxtensions of the formalism to such-data
types in the last section of the chapter. ‘Until the point where we define a data type, we
have used the notion of a data type in an inférmal way to motivate the formatism
developed. ©
In the second section, we first ifitroduce the formalism for- defming a data type

-25-

assuming that its operations do not signal exceptions. Our definitional method 1s
hierarchical; we assume that the definitions of the defining types are given. We motivate
and discuss in detail the di'stinguiShability relation on the representations of the values. We
then precisely define the behavioral equiv:denée relation on type aigébras. :

| In the third section, we incorporate the exceptional behavior of a data type-and
drscuss extensions to the fonnahsm mtroduced m the second sectron We extend a type
algebra and the behavioral eqtuvalence relatlon on type algebras to capture ‘the normal as
well as the exceptional behavior of the operations. We compare -our approach with
Goguen's approach of modeling the exceptional behavior [20,21]. We also formalize a
simpler approach for modeling the exceptional behavior which has?been,zgenerally assumed
in the literature on algebraic specification of data types [25, 27, 77, 23]. -We compare our
definition of a data type wrth the deﬁnmon used by the ADJ group [23] which abstracts

only from the representatron structure of the values ina type algebra.

- ~26-

2.1 Informal Description of a D'at-aType '

We use the data type finite set of mtegers for Lllustrauon, let Set-Int be its name.
Set-Int has been widely discussed in the literature [37,76,74,31]. It has the following

operations:

Null a constant (or 0-ary operation) returning the empty set of mtegels)
Insert constructs a finite set of integers by adding a given mteger to a given finite ‘set of

integers; : .
Remove constructs a finite sct of mtcgcls by delcnng a gwcn integer from a glven finite set of

integers;
 Has checks whether a given integer is an clemcnt of a given-finite st of initegers;
Size results in an integer giving the sizc of a given finite st of integers '

In addmon we assume lhat Set-lnt has an additional operatlon Choose which has

-non-deterministic behawor Choose returns an arbltrary element of a glven non-empty set
of integers; for the time being, we arbitrarily assume that Choose returns the integer ‘0’ for
the empty set. This behavior of Choose for the emnty set may not be adequate for some
applicaﬁons. In Section 2.3, we mddify Choose so that it signals an exception for the empty
set.

2.1.1 Terminology

To simplify the mathematics, we assume that an operation has a cartesian product
(possibly empty) of data types as its domain and a single data type as its range; An
operation having a cartesian product of n data types (n > 1) as its range can be viewed in
one of 'the following two ways depending on whichever is more convenient: (i) The
operation is modeled as a family of n operations, each having the same domain as the
original operation and a different type in the cartesian product as the range, or (ii) the
cartesian product is viewed as a single type. We use the first method in the thesis.

Let D be the name of a new data type being defined, and 2 be the finite set of
symbols naming its operations. Let A’ stand for the set of names of data types appearing
either as a component of the domain or as the range of an operation in 2. Let A be

-77-

a-{D }.] D is the defined type and every datatype inAisa defining type of D.‘

In order to include the syntactic specification (i.e., the domain and range
specifications) of the operations, we index every operation o in @ by a pair (4, r), where d is
a string made from the alphabet A’ and r is an element of A". d specifies the domain of o
and r specifies its range. ‘ -

‘Let Int stand for the data type integers and Bool stand for the data type boolean.
For Set-Int, A = {Int, Bool }, A = {lnt Bool Set-Int } and
@ = { Null, Insert, Remove, Has, Size, Choose }. The index of Insert for example is
 (Set-1nt - Int, Inf). ‘

As is discussed in the first chapter, the operations of D can be classified:as
constructors and observers. Let @, be the subset of @ consisting of all constructors of D
(recall that a constructor is'an operatnon havmg D as its range) For example Null Insert,
and Remove are the constructors of Set-Int. The constructors construct all the values of D.
Some constructors construct a value of D using only the values of the defining types of D.
We call such a constructor a. basic constructor. For example, Natl is a basic constructor of

‘Set-Int. Every data type is required to have at least ene basic constructor; otherwise, D will
not have any values. ‘ -

Let @, be the subset of © consisting of all observers of D. An observer examines
the values of D: it takes at least one argument of type D, and retums-a value of a defining
type of D. For example; Has, Size, and Clioose are the observers of Set-lat. Every
interesting data type must have at least one observer, otherwise there is.no way to
distinguish among different values of D [25] other than by the operations signalling on the
values. ' An observer is also called an inquiry operation 7.

We thus assume-that every operation of B either results in a-value of D, or takes
an argument of type D, or both. We consider a data type having an operation not satisfying
this requirement to be not properly designed, because the behavior of such an operation
‘does not depend on the data type. | | :

1. Henceforth we will not distinguish between a data type and its name, and between an opcration and its
name, unless nceded. ‘

-

Let @, 4 stand for the sct of nondeterministic operations of D. We allow any kind
of operation, an observer or a constructor, to be nondeterministic. In our experience,
however, we have found that a nondeterministic operation is often an observer. 2

2.1.2 Hierarchical Structure

We define the followmg two relatlons on a set of data types for capturing the
dependency structure among the data types -

Def. 2.1 D directly depends on every D' € A, and does not dnrect!y depend on any other data
W- . '

Def. 2.2 D depends on D if (i) D directly depends on D', or (n) there is a D" such that D
directly depends on D" and D" depends onD. l ' '

The direct depen&ncy relation captures one level of. hlemmhical dependency. The
dependency relation is the transitive closure of the direct dependency selation. We define

(9)+ = {D’|Ddependson D },and

@ =®*u{D}
If data types are designed so thet every data type on which Ddependsnszmsumed to be
designed independently of D, then the dependency. relation on (D) will not have any
cycles and is a strict partial order on data types. . In such & case, daia types are said to be
hiesarchically structured, and they can be defined incrementally one at a time. Data types
on which D depends do not have to be designed in‘any pasticular order relative to D; any
approach, for example top-down, bottom-up, etc., is compatible. Unless stated otherwise,
we asaﬁne in the thesis that data types arehiefarchicaﬂy structured. =

We assume that the partial order induced by the: dependency relation on the set of

hierarchically structured data types has finite deseending chains. The bottom of every

2. In casc a constructor ¢ is nondcterministic, o is usually derived with respect to a subset ﬂg of detcrministic
comucwrs(ﬂggn)mmem&uadosmmaymmacmmbcmwmﬂmﬂw
comtructorsmﬂ

-9-

chain is a data type having no defining type. Throughout this thesis, we assume that the
data vtype boolean does not.have any defining typé; Bool serves as the bottom element of
the chains in the partial ordering for all interesting data types as will be clear from the
discussion in Section 2.2. (The definition of Beel i given in Section 2.2.) We will often use
the structure induced by the dependency relation on the set of data types for inductively
defining properties of data types, as well as for proving properties about data types. Bool
will often serve as the basis step of such ‘definitions-and proofs (in: general, data types
‘aving no defining type serve as the basis). '

2.1.3 Minimality Property

The requirement on a data type behavior imposed because of the modularity and
good program design considerations that its values be manipulated only by its operations
translates to requiring that its values be constructed only by its constructors, possibly using
abstractly the values of its defining types. Furthermore in a computer the values can be
constructed only by a finite sequence of operations, 50 the values of a data type constitute
the smallest set closed under finitely many applications of its constructors. We call this
property of a data type the minimality property.

. We require that every data type under consideration satisfy the minimality
property. This requirement constrains the implementations of a data type to be protected in
Morris's sense [59]. An implementation of a data type defined in a strongly typéd language
that hides the representation of its (data type) values from its users by providing an
encapsulation mechahism; as in CLU, ALPHARD, etc., is protected. The minimality
requirement does not rule out data types defining ‘infinite’ values, insofar as these values
can be finitely described. 3

3. For cxample, we can define a data type infinite sequence of squares; whose values arc infinite scquences of
consccutive squares starting from n2, for every n > 0. It has a constructor. Cons, which takes a natural
number as an argumoent and returns an infinitc sequence: - Jo-addition, it-has theeg observers - First, which
gives the first clement in the scquenec; Rest, which.gives:the remaining scquence: after suipping the first
sequence; and, Kqual, which thecks whether. twe infinite scquerices are equal or soL. - R

-30-

The minimality property serves as the basis of a-powerful- induction rule for a data
»type D: To prove that a_property. P-holds for D, i.e., for all values of D; we need to show
that P is preserved by every constructor of D.:: Weggmtmcf Spitzen :[72] called this
generalor induéiion, Gamg et al. 27) calléd- it data type : induction. We discuss this
induction rule in detail in Chapter 4 on the deductive system for data types. _ ,
Since every operation of D-is- assumed td be-computable, it can be easily shown by
-induction on data types, that the set:of values of I} is recursively enumemble This is
based on the fact that the set of sequences of construcsors is recursive. - Th:s,mes:s-conﬂdes
data types with a recursively enumerable set of values and a finite set of total computable _

-nx»»—ex< 3

operations.

-4, AsetSis mmynffiesdmacwrmw function;. mmmasmmu an;embérofs
‘or-not, is total computable: - A sct S: i recursively enurerable (sié.)ﬁt@-ﬂnwéww conwunﬂe
“function. In other words, s r.c.5ct:S can be listed by mum function.

-31-

2.2 Formalism

In this section, we describe the formalism to state precisely what a data type is. To
simplify the presentation, we assume that data types do not have any exceptional behavior,
i.e., their operations do not signal any exceptions. Every operation terminates non'nally on
every input in its domain. | |

This section is organized as foi}ows. We first extend the ndtiop of a
heterogeneous algebra as defined in [4] to model nondeterminism; then we define a type
algebra to be an extended heterogeneous algebra with additional properties. The domain
corresponding to the defined type D consists of the representations of the values of D and
lS called the principal domain of the type algebra To extract the behavior of a type algebra
as observed through its operations, we must ’ '

(i) abstract from the multiple representations of a value, -assuming a particular
representational structure, and ' : ‘ '

(i) abstract from the representation structure of the values and operations in a type
' | algebra. '

To do the first, we define an interpretation of a term in a type élgébra, where a term
expresses a sequence of operations. Terms are used to observe the behavior of the
representations of the values of the.defined type in a type» algebra .in texjins of the
representations of the vahies of the defining types: - We define the observable equivalence
and distinguishability relations on the principal domain of a type algebra. These relations
are defined inductively using the corresponding relations on the domains corresponding to
the defining types in the type algebra. Observable equivalence is an equivalence relation
and is presetved by the functions in a type algebra; it relates two- values having the same
behavior. We then define the behavioral equivalence felation on type algebras which relates
two type algebras having the-same observable behavior. A data type is an equivalence class
defined by the behavioral equivalence relation, ad every type dlgebra in the equivalence
class is a model of the data type. A model of a data type concretely defines the value set,
- which is the principal domain of the model, and the operations of the data type.

Most of the definitions throughout this section are inductive; they make use of

3.

the dependency relation, which is a strict partial order with finite déseending chains, on
.hierarchically structured data types. An inductive def nition of a concept has three parts:

(1) Basis part, which deals w1th the case of a data type D hav:ng no defmmg type, i. ., its A
1s the null set, '

(u) inductive part, which deals with the case of a data type ‘having deﬁnmg types, and

(m) closure part, whtch states that the above two ways are the only ways of def‘nmg a

concept.

To aveid repetition, we omlt the closure part, and if the basns part can be derived from the’
inductive part by assuming A to be the null set, we give only the inductive part of the
definition. Some of the definitions - the definitions of type algebra (Def.2.3),
distinguishability and observable equivalence telgtiens (DefsJ@and 27)anddata type
(Def. 2.14)) are mytually recursive. The definitions 2.3, 2.6, and 2.7 assume the definitions
of the defining types in A in their inductive part.) . | o els e

We would like to metivate various concepts and deﬁmtnons mtroduced on type
algebra& ‘So for exposition purposes, we may refer to a type algebra as though it is a modelv
of a data type being discussed.3 ‘

2.2.1 Type Algebras-

A heterogeneous algebra as defined by BirkhofT and Lipson [4] is a finite indexed
set of sets (called domains in the thesis) and a finite indexed set of total functions. We
extend this definition to model the nondeterministic operations of a data type. An
. extended heterogeneous algebra can have cither a total. (detemtmnstm) function or a total
nondeterministic function. - . , ,

A nondeterministic funetton f: X ¥ is similar to aﬁmctlen in mathematm with
the exception that it has a choice among: a subset of possible. results when applied on an
input x € X. Let f{x) stand for an arbitrary result of applying.fon x. fcan be characterized

5. We are technically justificd to do so as almost every type algebra is a model of some data type.

-33-

using a relation R C X X Y such that f{x) € R(x).ﬁ' If R(x) is a singleton set for some input
x, then f is said to be deterministic on x. By { () } we will'miean the set R(x);d in this way
we do not have to refer to R. Since we assume every nondeterministic operation to have
finitely many choices on a particular input, { f{x)} } is always a finite set. We admit that
calling f a nondeterministic function is an abuse of the term function; however, we féel this
term conveys the behavior of f well. Henceforth, by the term fiinction we mean either a
mathematical (deterministic) function or a nondeterministic finction, unless qualified. We
" have chosen a nondeterministic function over the corresponding deterministic refation for
| modeling a nondeterministic operation because “(i) ‘in- ¢ontrast to the nondeterministic
function, the relation models the nondeterministic opera‘tf‘on’ indirectly, and (ii) it is
inconivenient .and unnatural to express the behavior of a computation scheme involving
nondeterministic operations by means of the relations corresponding to - the
nondeterministic operatlons | t } | | "

The definitions of concepts such as congruence, homomorphnsm 1somorphlsm on
heterogeneous algebras [4] are revised for extended heterogeneous algebras in Appendix 11
Henceforth, we use the term heterogeneous. algebra to-mean an extended heterogeneous
algebra. ‘ ‘

A Iype algebra is a heterogeneous algebra with additional properties. For a data
type D, we are interested in type algebras having.a particular structure, which is determined
by A’ and @ of D. The sets A’ and @ serve as the index:sets of the type algebras of interest
for D. We call such an algebra as an algebra of type D ostsimnlya type aigebra when D is
evident from the context. The triple (D, A, 8) is called the (similarity) type. of such an
algebra. An algebra A of type D consists of a domain correSpo;ading to every typ€ name
D' € A’ and a function of the appropriate arity corresponding to every operation name in Q.
The domain-corresponding to D is the principal domam of A. The functlon correspondmg
1o ¢ is called the interpretation of the operatlon symbol cinA. “The domam corresponding

to a defining type D' € A is the interpretation of D'.

6. For a relation R, a subset of X X Y, R(x) stands for the subset {yl(x,y>€R}on for an x€X,and
R(A) stands for { y|<x, > E R, xE€ A}, where AC X.

-34-

We assume that every defining type D in A of D, js defined elsewhere. and we are -
given the models of I’ (see Subsection 2.2;6 for the definition of a.data type and a model of
a data type). The interpretation of a data type D’ € A in an algebra of type D is fixed, We
usc the models of each D’ € A to define type:algebsas of D. The domain. corresponding %o
D’ € A in a type algebra A of D is. the value set.of D' defined by some model A’ of I'. A
type algebra A of D explicitly includes only the interpretations.of the operation names of
D, and does not include the interpretations of the operation names-of any defining type D',
We assume that every operation. name-of a defining type I’ has the same interpretation in
A of D as its interpretation in the model A’ of D). In this way, ﬂe;deﬁnc the interpretation
of every opcration name of adat;i.,type D€ ,(»D)fn in.a type algebra. A of D. 7 Analgebra A
of type D is thus teally a huge structure having interpretations for every fdata;typﬁﬁins(l))f.

Def. 2.3 Analgebra A of type D is a heterogeneous algebra
[{VylDea} {f,loca}]
such that e e

@) for every defining type‘D‘ € A, VD1 is the value set: ofD defimed by a -
‘ model A’ of D, ,
= (1)) for every ¢ €9, l’a- is a total function ofmeapmpmwanty,le,lf ¢ has
D;x...xD, s its ‘domain and ‘D s its renge® then I has
VD1 X...X Vf,nasits domain-and .V, a& its range, and
- Qi) vy, is the smallest set. closed undeér: finitely: mmyapphcahons of the
funammcormﬂdmsmﬂw constructors of Bua =

Vb _.Jgova,whemvn—»ﬂand

'V’“—{f(v,.. v)lforeachaéﬂ suchﬂmt

an xDquéuv“lfD DandvevnlfD;éD}
; k=0
'

7. Reca)l{,hat(l)) suwse:mnsmngofnmdaumqmmwhuhbw
8. le., (D D , ') is the index of 0. i L Te

-35-

So, V is the principal domain of A, f is the interpretation in A of the operation name
s €92. We do not require the mterpretatlon f of ¢ to be a deterrmmsnc function if ¢ is
deterministic and f_ to be a nondeterministic function when o is nondetermmlstlc the
reason for this will become clear in Subsections 2.2.5 and 22.6 on the behav1oral
equivalence of type algebras and the definition of a data type respecuvely

If any l' in-A is a nondeterministic function, then A‘is called a ‘nondeterministic
type. algebra; otherwise, if every l' is deterministic, then A is called a deferministic type
algebra. Henceforth, in the context of an algebra A of type D, by*m operatlon o We mean .
its interpretation f and by a value of D we mean a‘n element of V |

The property (iii) above i is due 10 the reqmrement that D satisfies the minimality
property. For a constructor o, if f_ is nondeterministic, thea V,, is closed under f
assuming [could return any passible result foran ipput.- Onog the value set corresponding
to each defining type D' is fixed, ﬂaen obvieusly: ¥, is:uniquely ~determined - by
{f lo€cn.}, and is nonempty, - because 8, .is nonempty and has at least one ‘basic
. constructor (see Section 2.1). o ‘

2.2.2 Exan'gplggn{ A'l'yAp,e Algebrae

“We dlSCUSS below a type algebra A of Set-lnt A jisa natural model of Set-Int
in the sense that its prmcnpal’ domam is the set ol' all ﬁmte sets of mtegexs ‘and t]ie
mterpretanons of its operations are defined i m terms of itie standard set operatlons [16]

....{{S Z,B}; { Nu, In, Re;, Ha, Si, Ch}]
where = { true,:false }, a value set of Bool, |
Z=1{01L1-,2-2,}, avaluesetoflgband o
S = {4, {0},“} {1} {23, {2} {0 1} iﬁ -1}, {0, 2,
{0.-2},{1.-1}. {1 2} . 4 the clomam .carresponding ¢ tQ»Set-lnt.

The domains Z and B are defined elsewhéte by the models-of: hlt and Bool respectively.
The first two letters of an operation name are used to deno‘te it A, the total

function corresponding to the opération. These funét;ons aTe défined below. aWe will use

any convenient matiiematical formalism to give the: deﬁnmons of the functions. We use

-36.-

the symbol * e as the definition symbol; the sythbol *+* marks the beginning of a
comment in a definition, runnmg until the end of the line.

: Nu Q 2
D & suf{i}
Re(s, i) & . {i} ; - is the difference operator
Ha(s, i) é i€s |
Si(s) e #(s) - ; the cardmahty of the set
) 2(o ifs =g
{i such that i € s, otherwise.

Ch is a nondeterministic total function; if s is not &, then {CMs) } = s.

- We discuss another type algebra AJ, of Set-Int in which: the set values are
represénted as finite sequences of nonirepeating integeérs. '
Ay =[{SQ\Z,B}; { Ne, In', Re!, Ha',5i', Ch' }},
where SQ' = { O, <, <D, ¢, <D, ¢-D, €0, 1D, <0, - 10,40, 25,40,-D,

<1, 0,41, -, <1, D, <1, -D, <-1, 0, <1, D,¢L D, <, D,
2,0,42, D, ...,}, the domain corresponding to Set-Int.
: The set SQ’ contains all finite sequences ofi mtcgels, not havmg mult:ple occurrences of the
'same integer, for example, (0“0) 0,1, 1 1) are not m SQ1 Let s stand for an element of

SQ‘Sos—1>m201fm Othcns-o

Ne' A O ~

W,i0) & i«l,..:,z_y U gigmy =i

| <Ly ool D otherwise

'Re‘((tl, ...,i.),i) e i(il,.., l51,13‘\1,..,{) 31 Sjgm,g:
| Kool - otherwise

Ha's,) 2 (gue =~ Blsjsmll—n o

sie) @ m -

i, ...,i)) & (o m=0
| {g - 1gjsm0

-37-

Ch' is a nondeterministic function; { Ch'i, ..., i} = {§, ... i } form>0.
2.2.3 Interp retatiovh of Terms

A term is constructed using the operation names of types in '(D’). and the typed
variables. It expresses a sequence of operations, so it forms a straight line’ program. ‘The
interpretation of a term in a-type algebra is like the execution of such a p_mgf%m. The
interpretation of all terms characterizes the behavior. oflh&algebra o

We assume that we have as many vanables (possnbly mﬁmte) of every type
D€ (D) as needed. T

Del. 24 A term of type D' € ((D)' is defined inductively as follows:

@) A variable x,0f type I)' is a term of type D,

(ii) if o is an operatnon of some. type D€ (D) ‘such that its domam is
D x...xD andttsmnge:sl}thzn q(al,...,en} is a'term of type.

D’ ifand only if each e is a term of type D € (D)

If a term has no variables, it is called a ground term. A térm of type Bool is called a boolaun
term. When we wish to refer to the variables of e, we write eas e(x;, ..., X)(or e(X)),
“where the set { Xp oo X } (or X) consists of all vanabl& in e A subierm ofaterm that is
a variable is the term itself. The subterms of a term of the form- ‘oley.. .. €)" are (i) the
term ‘o(e,, ..., €) itself, (i) all subterms of e,, e, ‘and nething else. .

An interpretation-of a ground term e in awaigebra Aof type D is obtamed by
performing the sequence of operations. expressed by e. A ground ferm.e of type D-is
" interpreted in’ A ‘as follows: If e is a O-ary operation name s, an-interpretation of e is-the
result of applying the interpretation of o in A. If eis‘ ofe; ... €)) an interpretation of e
is the result of applying the interpretation of o in.A:on the interpretations of YERETL in
A. An interpretation of ¢ is an element of Vy,.. Since e may be constructed - using
nondeterministic operation names, ecan have many. interpretations. 4(Leﬂt ¢l p stand-for an
arbitrary interpretation of ein A.

For example, let us assume that the deﬁnmg type Int of Set lnt has the

.38-

constructors 0, 1, 2, and 3, and that they have thé%t%hdar&iﬁtéﬂér’éfﬂtion in a model of Int.
‘Then e = Insert(Insert(Null, 0), 1) and e, = Choose(e) are ground terms of types Set-lnt
and Int respectlvely We have, -
el A, " {0.1}, and
e} A, = 0orl

Smce every operation name of a data type D' € (B) has a total function as its
mterpretauon in an algebra A of type D we have o

Prop. 2.1 Every ground term of type D' € (D)‘ has an‘ fhterbfetétidn ii; A 1.

Furthermore, since every data type under consideration has the minimality property, we
bave , , P C .

Prop 2.2 Every value in VD isan mterpretat:on of somé ground term of type D.

Proof Stranghtferward, by mdm:non on type algubras mmgthédependency relation. 8

For a term e of type D' havmg vanables is mterpretanon isa functlon which is
denoted 'by. f,. If ‘e has nondeterministic operation: pames, . then f, is in general a
nondeterministic function. Let {.x,,...,x_} be the only variables in __e_—and D. be the type
of x.. Then f, has V, x xVD as its domain.and V;) its range. If the variables
X, x in.e are insmmiated in A t0 bé the:valuwes ¥...., v respectively, from the
appropriate domains in A, then e(x,...,x) is said to-be. instantiated in A 8s
[V..., x /v], and can-be interpreted-in: A. - The assignment [x /v, ..., x/v]is
caﬁed an A-instance-of x,...,x , and each v is called an instance of x.. (We will
“abbreviate the assignment as{Xf V], where ¥ 'stands fot (vpioss vn).} Aninterpretation.of
“e[X/V])in A, ‘written as e [X/V]] , , i8 defined as follows: -
- (i) If eis a variable x, , then e{XWBA = v,and:
(i) ifeisofthe form* o(e,,...,e,) '\ m20,
thene[X/VY g =T Ce{X/V]y.....e.0 X/vi x)
f(NiselX/Vl . o
Interpreting a ground term or an instantiated term in-A is thus like performing a

-39-

computatien;.an interpretation is the result of the cemputat:on
2.2.4 Observable Behavior

The behavior of a sequence of operations of a data type D, stnctly speakmg,
becomes externally observable rf the sequence has an effect on the outside world, for
'example the sequence of operations ulumately results in some output on an 170 device,
such as a line pnnter CRT, etc. In this sense, the dlstmctron between two values of D is
observable if and only if there exists a sequence of operatlons such that when applied on
the values separately, it returns drstmgurshable outputs on an 170 device. An output on an
170 devrce can be consrdered asa sequence of charactels and we can have a predxcate on
the outputs, resulting in the boolean constants T and F dependmg upon whether the two
given outputs are dlstmgmshablc or not. ln thls way, we can deﬁne the drstmgurshabrhty of
the values of D usmg the dlstmgmshablhty of the booiean constants We stop at Bool. As
was stated earlier, we use the definition of Bool ‘as the basrs of our formahsm In fact, any
data type (or a collection of data types) whose values can bé drstmgurshed a pl‘lOl‘l (outs de
the formalism) can be used as the basis. For instance, a data type directly supportedin a
programming language whose values are distinguishable using the fiteral mechanism in the
programmiing language can be used. N ' ‘

We structure the above informal definition of *distinguishability using the
dependency relation on data types. Instead of defining the diwngurshabllrty of the values
of D in terms of the dlstmgurshablhty of booléan values in a”single step, we do it
incremenitally. We assume that the distinguishability reltion is defined on the values of
every defining type D' € A, if any; in- this way, thé behavior of the values of D can be
incrementally observed through its observers. Except for Bool, if D does not have any
observers, Le., its @ is the empty set, then the values of D are not distinguishable, as there
is no way to tell whether any two values are different. That is why weé-remarked earlier that
| every mteresung data type must have at least one observer. o

For a D with a nonempty set of observers, it s generatly not sufficient to examine
the values of D directly by the observers due to the pessibte delayed cffects of the
constructors. The distinguishability of the values may-'not manifest itself ‘until some

-40 -

constructors are applied on them. For example; two différent nonempty. stacks of the data
type stack of integers may have the same integer as their top element, so they cannot be
distinguished directly by the observer Top. But if we apply the ‘Pbil operafron first on the
two stacks then the resultmg stacks may be drrectly drstmgurshable by the observer Top
thus exhrbrtmg that the original stacks are also dlstmgurshable There is generally a need to
perform a sequence of operatrons wrth an observer of D as the last operatron in the‘
sequence, to dlstrngursh two values of D , | »
o In formally, two values ol‘ D are drstmgurshable rf 'md only 1f erther
(i) there is a sequence of determrmstrc operatrons of D such that when |t rs apphed on
the two values assummg every other argument of the sequence ﬁxed rt results in
drstmgurshable values of some deﬁmng type D¢ A, or o
(i) there is a sequence mcludmg nondetermrnrstrc operatrons such that the result of
applymg it on a value for some chorce made by the nondetenmmstrc operatrons 1s
drstmgurshable from the result of applymg it on the other value no matter what chorce is
made by the nondetenmmsttc opemtrons. o

If two values are not distinguishable, they are: called absenubly eqmmlent _For better
exposition, we have delrberately,structured thedeﬁmnon ot;drstrqgur_s:habrhty,int,o;t‘wo
cases, though the second case can be modified to cover theﬁrstcase']he secondcase,ttlgy
appear to.be a very.stsong requirement, but a small.amaupt of thinking should convince
the reader that such is. not the case, as we definitely do not want a value. to be
distinguishable from itself. Furthermore, observable eqyivalence should-be an equivalence
relation and it must be preservegt by the operations of the data fype. We precisely state
below these requirements in the context of a type a!sr:bta and ai!lqstrateixhemt using
The operatrons of a data type must. also preserve. the .observable equivalence
relatron on the. values of every defining type. in the sense that the eperations cannot
distinguish among the observably equivalent values of a defining type. This requirement
on the operation behavior is necessary because of the modular structure of data%types. A
new data type should not impose any additional. structure on the values of any of its
defining data types. This property of a data. type is guaranteed in all programming

-4]-

languages supporting an abstract data type mechanism in which an. implementation of a
data type is hierarchically structured and the representation is hidden from the users of a
data type. o o
We would like the type algebras to have the above pmpem& Definition 2.3 of a
type algebra does not guarantee them, so we put an.additional constraint on a type algebra.
We first define the observable equivalence. relation E, on. thé:principal domain V, of a
type algebra A; we will assume that the observable equivalence relation ED' on_VD, in Ais
defined for each D' € A by a model A’ of D" having V,;, as.its principal domain. We show.
that E,) as defined below is an equwalence relation. Later we deﬁne a well formed type
algebra whose functions preserve the set E = { ED |D'€ A’ } of observable equwalence
relations. Only the well formed type algebras are of interest for defining a data type

In the above discussion, we have only considered the input-output behavior of the
operatlons for dlstmgmshmg different values. We haye - not ¢ consndered the ef’ﬁcnency of the
operatlons In case of nondetermnmstlc operatlons, we have not consrdered how possrble
values that a nondetermnmstlc operat:on can return on a partlcular mput are scheduled
0ur formahsm is llmlted in this senSe

2.2.4.1 Definitions of Observable Equivalence and bistinguishaﬁility

We give the bas:s and the mductwe parts of the mductwe def nmon of the
dlsnngunshabxllty relatlon The basns part 1s the case when D does not have any deﬁmng
type and the mductwe part is. the case yvhen D has deﬁmng typts In the ha51s part, there
are two subcases @@)Dis lfool and (n) Dis dlfferent from Bool. We ﬁrst deﬁne the data
type Bool and then define the: distinguishability relation on the ifodels of Bool.

The data type Bool does not have any defining types and is self-contained: "We\
present below a model of Bool and call it B. . S |

: -({{tme.talse}} {T.F, V. ,A =, =}) where :

T 8

F & faise
fa

~ true = false

-42-

~ false é true
true V true Q true
true V false Q true -
“taise Virve @ true
. false Vialse @ faige
XAy & ~(~1)V(~y)
x=y 8 (~x)vy
xemy & (~GVIVEAY)

The interpretation of Tis the lognca] value true and the mterpretanon of F is the logical
- value taise.

Def.- 2.5 The data type:Bool is the set of all type algebras isomorphic to-B. 8

We will often use B as ifit is the only model of Bool and mterchange between T and its
mterpretatlon true in B as well as between F and its mterpreta&on false. We assume that
the boolean constants T and F are distinguishable from each other a pnon meamng that
thelr mterpretatlon in every model of Bool is dlstmgu:shable Each boolean oonstant is
observably eq,un,valent to itself.

Def. 2.6.1 Let A be a model of Bool and V be the value set of Bool defined by A. The
observable equivalence relation on VBool is def ned to be ibe 1dennty relation on Vool
The dlstmguzshabzluy relation on VBMI is defmed to be the complement of the observable
equnvalence reIatIOn w1th respect to the umversal relatton on V (1 e V l X Vw)

The other oomponent of the basxs part of the geﬁmtmn -of dlstmgmsbabﬂlty is
‘now given.

Def. 2.6.2 For any data type D other than Bool not havmg any defmmg type no value in
Vy,of an algebra A of type D is distinguishable from any other vafue in

The inductive part is as follows:

-43-

Def. 2.6.3 Two values v, and v, in V, of a type algebra A are distinguishable iff there is a
term of type D' with exactly one variable of type D, expressed as c(x), such that the
instantiation ¢ [x/v] interprets in A to a value of a type. D’ € A (an element of VD) that is
- distinguishable from every possible value to whlch the mstantlat:oa c[x/ v2] interprets, or

-vice versa, 1
The case 2.6.2 above can be derived from the case 2.6.3.

Def. 27 v and v, are observably equivalent, ie., (v, v)€Ey iff v an d v, are not
distinguishable. § - :

It should also be obvious from the above definitions that if D.does not have any observers
and D is different from Bool, then all members of V; are observably equivalent.’ The
following definitions are useful in dealing with datatypes having . nondeterministic
operations. c ’

Def. 28 Given two subsets A and A, of VD , A is observably equalem to A and vice
versa, lﬂ‘(v vEA)(3 v,€EA)[(v v>€EDI,andvacevem l

Def. 29 A and A, are dislinguishable iff A and A,are ﬂot’ﬁbsewaply equivalent. [

Then the case 2.6.3 can be rephrased as:

v, and v are dxstmgu:shable iff there is a term o9 such that { c[x/ v][A } is
distinguishable from { dx/v.}| 5 }-

Consider the type algebra A_; of Set-Int (see Subsection 2.2:2). ‘1t can be proved
using the definition of Int that the observable equivalence relation on Z, the value set of Int
used in A_, . is the identity relation. Then the. sets {} and {0} are drstmgunshable since the
term Size(x) distinguishes them. The sets {0, 1} and {1,2} are also distinguighable since
the term Choose(x) distinguishes them: An interpretatioﬁ of Choose({O, 1}) is either 0 orl,
and if 0 is chosen as an interpretation, there is no interpretation of Choose({1, 2}) returning
0. By similar reasoning, {0, 1} is also distinguishable from {0}. {0, 1} is observably
equivalent to itself, The observable equivalence relation on the principal domain of A, is

the identity relation. However, it can be shown that the observable equivalence relation on

44~

the principal domain of A‘ is not the ldentxty relation, because for example, A,Dis
observably equivalent to <2, 1>]n fact. any two sequences having the same set of integers
_are observably equivalent. In A} .’ ' i
Esﬂ_l o = 1L s> | s1 is a permutation of s2 }..

Thm. 2.1 The observable equivalence relation E,, is an equivalence relation.
Proof That E, is reflexive and symmetric is obvious from the definition. The transitivity
of E,; can be shown by induction on type algebras using the dependency relation. #

The requirement that the functions in a well formed type algeb;a A pfeéerVe :the
observable equivalénce relation :E .. for ‘each DY € A" is ‘equivalent to requiring that
- E={E;;|D'€a’} be'a congruence on A., where a corigréence on a heterogeneous
algebrais defined i in Appendix I1.

Def. 2.10 A type algebra A is wel/ formed if and only if E is a congruenceon A. 1

Smce we are interested only in well formed type algebras by a type algebra we henceforth
mean a well formed type algebra uriless stated otherwise,
 For example, both A, and A, are well formed. E' = { Eg, . El_ttEM}

1
in case ofAﬂ s

where Elu and EBool are the ldentlty relatlon lS a congruence on A
Thm. 22 Assuming that Emol is the largest congrucnoe on a model of Bool, E is the

Iargest congruence on A.

Proof Sce AppendixIL §

The above theorem implies that the observable equivalence relations on the domains in A
completely extract ItS observable behavior in the sense that in ‘te quotient algebra A/E
induced by Eon A, every Va!ue is dtsﬁnguishable from: wch otber ‘

-45-

2.2.4.2 Reduced Algebras

It is technically cumbersome to deal with a type algebra having distiné’r but
observably equivalent values, so we introduce the notion of a reduced algebra.

Def. 2.11 An algebra A of type D is called reduced if and Onl)l;if for each D' € A", Epy, is the
identity relation. |

So all members in every domain of a reduced type algebra are distinguishable. For
example 5i IS reduced ‘whereas Al is not. B, the model of "Rool, is also reduced.

' leen an algebra A we can get us reduced algebra by takmg the quotient of A
wrt E={ E lD'EA} smce E is a congruence on A The reduced algebra
'correspondmgto Ais ' R

A/E = [{V, /E, D en};{g, |a€9}] where

g M) D = (R0 v,)r’ |
The prmcrpal domain of the reduced algebra correspondmg to an algebra of D havmg no
observers, where D is not Bool will have a smgle element. The reduced algeLra
correspondmgtol\1 has as its principal domain -

SQ/Egeq g = {{OLTD LD L{D, (<>},
(O.D.LOL{Q,D.CLOY. .}

2.2.5 Behavioral Equlvaience of Type Algebm

As was stated at the beginning of this section, in- order to abstract:th¢ observable
behavior of a type algebr, we must abstract from (i) muk,rple representations of the values
of a data type m the type algebra as well as from (i) dafferent regnmentatmnal structures
used for the values in different type algebras. The obsewable equwnlenee relation.
discussed above does the first task. It ldennﬁes representations having the same observable

‘behavior. For the second task, we employ the standard algebraic concept of isomorphism.

9. It can be casily shown that A/E is also a type algebra.

-

By combining the two, we define the behavioral equivalene"e”:rélgtiol.\" on ‘t’Ype:jal'gebrasas
follows: - '

Def. 2.12 Type algebras A, and A, are behaviorally equivalent if and.only if the reduced
algebra corresponding to A, is isomorphically equivalent to the reduced algebra
eorrespondingto A,. 1 . * _;

, We later show that the above deﬁmtron indeed captures the desrred mtumon that
two behavrorally equrvalent al,g,ebras have the same obsel;vable behavror By thls we mean
that ag mterpretatlon of a ground term e in one algebra behaves the same way as an
mterpretatlon of e m the other algebra when mampulated by the operatlons (lnformally
speaking, a eomputatlon results in equrvalent values in two related type algebras.) 7

The rsomorphlc eqmvalence .of two type algebras 1s stronger than t.het
isomorphism of the two type algebras if consrdergd as they are.. ll‘ D does not have any
defining type; then. 1somorph|c equwalence is the slme as the tSornorphrsm However if
two type algebras are consrdered in the expanded form m whlch tbey have a domam
correspondmg to every data type D" € (D) and a funenon comspondmg to every
operation of D", then isomorphic cqurvalence rs slme as lsomorphlsnr Smee we do not
wish to carry all this information in a, type, alggbra and consrder a type algebra in the
expanded form, we assume that for each D' in A, the models of D’ deﬁmng Vb ', and V2
the value sets of D’ are isomorphically equivalent, end. there.js.a, hijeetion % from % 1
V2 defined by the isomorphic equivalence relation. We thus do not use any arbltrary
buctn:rrlﬁ‘omv1 in A, to 'V} in' A, to show'iSomarphic squivalence between A, and A,
lnstead ‘we build the bueetrons bottom up establishing éorrespondeénce between' the values
mthetwoalgebras Theset{d» AD"€A} mdueesabummonﬁom VDmVDsothat-

-{enlD'€A}1samsomorphmnfromkmA ‘ ;

e e

-47-

Def. 2.13 Given two type algebras A, and A, such that for each D’ € A, the models
deﬁnmg V' and V2 as the value sets of D' are isomorphically equivalent, which defines a
bijection &, : Vj),— VD' A and A, are isomorphically equivalent if and.only if thereisa
bijection @, from V) to V2 such that & = { @, | D" € &' } is an isomorphism from A, to
A, ‘ ‘ -

Note that both A, and A, above are either deterministic-or the corresponding functions in
A and A, have the same amount of nondeterminism.

For examples, the models of Bool are rsomorphlcally equiyalent. The type
algebras A, and A of Set-Int are behaviorally equ;valent because A and A‘. /E are
rsomorphrcally equrvalent We can define three other type algebras of Sel -Int which are
similar to A}, . The type algebras A2 A :i . aad A“ have sets repx:esemed by finite
ordered sequences.of nonrepeating integers, finite ordered sequences of repeating integers,

and finite (unordered) sequences of repeating lr_rregers respectively; rlre k definitions of

various functions are appropriately given. It can be%sfrddwnthat thetype ?aigesras A,
Al A% (Al ,and Aj; are behaviorally equivalent, |
Note that two behavrorally equivalent type, algebras need not have the same
amount of nondeterrmmsm In fact, one could be detemnmstrc whereasthe other could be
nondetermmxstlc because the possrble resylts retumed by a nondetermmlsuc function on
an input in such a nondeterministic algebra are observab]y equxvalent.

From thedefinitions of isomorphic equivalence and behavroral equrvalenoe we

have the following:
Thm. 2.3 A_ is isomorphically equivalent to A, = A is behaviorally equivalentto A;.

Proof Assume A and A, are |somorph|cally equrvalenL Let E and E, be the sets of
observable equwalence relations on A and A r&pectrvely Then A /E ‘and A, /E can be

vshown to be rsomorphrcally equrvalent (By Theorem 2. 2, E is the largest congruence on

A and E is the largest congruenceon A,) So A and A are behavroraﬁy equrvalent. 1

-‘48;

Thm. 2.4 The behavioral equivalence relation on type élgébras is an equivalence relation. |

Proof The reflexivity énd:,symmetry p:opelty are obvious from thé, deﬁnitit;n. }Tyhe
transitivity can be proved from the fact that composition of twe isomorphisms is also an

isomorphism. 1 D

The behavioral equivalence of type algebras A and A, can be expressed as

such that the above dlagram commutes, ie.,

¢.H =H,.¥ ®
(The funcnon f. g has the same behavior as appfymg g fitst and’ ‘then a‘pplymg f on the
result.) E and E are congruences consisting of obsetvablé équivalence Telations on A ‘and
A, respectively; A /E, and AJE, are the reduced afgebras corresponding to A and A,
respectively; and, & is the isomorphism defined by the isomorphic eqmva!ence of A/E
and A/E,. H and H, are the homomorphisms induced by the congruences E, on A and’
E, on A, m@eenvcly The equation (}) defines the set. ¥ of many. to many jmappings
{¥,: v‘._. ViiD eau{D}} relating A, and A,. In Appendix I1, we discuss for two
bebaytoral]y equnvalent type algebras A, and A how a_many to .many mappmg
¥y Yy L V5 2 can be constructed from the set of many to many mappings { "’u IDea},
where for each D' € A, Yy 1s a mapy to.many mappmg from V‘, to V2 defmed by
'behav:orally equivalent models A and A, of D deﬁmng V‘. and V2 réspecuvely We |
also show that the above deﬁnmon of behavioral equivalence indeed captures the desired
property that the set of interpretations of a. ground term are ‘equivalent’ in behaviorally'
equivalent type algebras.

-49-

Thm. 2.5 For behaviorally equivalent algebras A and A, for every ground term e of type

D" ¢ (D)»‘, foreveryve€{d p }thereisave{e p }such mat< [vIIvDPee,. and
1 2

vice versa. * '

Proof See Appendix II. &

The following theorem expresses that the distinnguishability and observable

equivalence of ground terms are invariant over behaviorally equivalent type algebras. -

Thm. 2.6 For behaviorally equivalent A and A, for any ground terms e ‘and e, of type
D", {le, IA 1} ={le, IA 1} = {le IA]}*{[e IA l}
Proof See Appendrx 1. »

{[...1} stands for a set of equivalence classes.
2.2.6 Definition of a Data Type

The behavioral equivalence relation on typev,algebras abstracts V}t’heir obsery_able
behavior as shown abpve and captures the,meaning of a data type.

Def. 2.14 A data type D is an equivalence class of- algebras of typé D defined by the
behavioral equwalenoerelat!m) o ‘

4 Let MD stand for the set of all behavrorally equrvalent algebras of type D. Every
Ain My, is called a model of D as we have captured the semantrcs of the operatrons of D.
The prmcrpal domaln ofa model A defines a value set of D If a model inDisa reduced
algebra, then it is called a reduced model Since rsomorphrcally equrvalent algebras have'
the same amount of nondetenmmsm all reduced rnodels of D are elther determrmstrc orall
are nondetermrmstlc (see p- 47) lf a reduced model m D is, nondetermmrstrc then the
,mterpretatlon of an operation in every reduced model has mformally spedkmg, the same
amount of nondetermlmsm When we wrsh to present a data type D we wrll do o by
presenting an element of M as the representatwe of M _ We call thrs model the»
denotation of D. We often use a reduced model as the denotatron of a data type |

We can order algebras in MB usmg the onto homomorphlsm relatron Grven two

-50-

algebras A and A, € My, A < A, if and only if A, is an onto-homomorphic image of A,,
when A and A, are considered'in their expanded form. The relation < can be shown to be
a partial order. A reduced model A of D is the least model in M,, upto isomorphic
equivalence. It is also called final in M, because there is a onto homamorphlsm from
every model A’ of D in MD to A as deplcted in the followmg dragram

Al

| .
H V¥ vyv=0 H
| .

A/E > A
®

Def. 2.15 Set-Int is the set of all algebras behaviorally equivalentto A_,. 1

So, Ag. Ag A2 3 , and A‘ are models of Set-Int;: It can be verified that all
models of Bool are behavrorally equrvalent type algebras of Bool We wrll use B as the
denotation of Bool and A o; 3 the denotation of Set-nt.

It should be clear from thé above deﬁmuon that a data type D not having any
observers consists of all type algebras of D.. This is so. because the definition of behavioral
equivalence of type algebras depends only on the behavior,of.the gbservers, .

We now compare our definition of a data type with those of Zilles [77] and the
ADIJ group [23]. They requrre a data type to be a set of aﬂ rsomorphrc (lsomorphlcally
equivalent to be exact) type algebras, which abstracts only the repreeentatlon details from
the algebras. (They assume that a data type has only determrmstrc operatrons) In their
approach a data type whose models are the reduced algebras is dlstmct from another data
type whose models have dlstmct observably equwalent va]ues éven though both data types
have the same observable behavror ‘For example the data type consrstmg of models
1somorph|cally equwalent to A would be dlﬂ"erent From the data type consrstmg of
models isomorphically equrvalent to A From a programmer s pomt of view, both the
data types are the same and caﬁnot be drstmgu’rshed We do not undemtand the motivation
for making the above drstmcnon Our defimt:on ofa data type is stronger than theirs, and
it does not make the above distinction. It not on]y abstracts from the representatrons of the

-51-

values in a type algebra, but it also considers representations to be distinguishable only if |
they can be distinguished by the operations. It is based on the programming language view

of a data type.
2.2.7 Observable Equivalence and Distinguishability of Terms

Since every value in the value set V,, defined by a model A of D is an
interpretation of some ground term of type D, the observable equivalence relation and
distinguishability relation on YV, induce the observable equivalence relation and
distinguishability relation on the ground terms of type D as follows:

Two ground terms e, and e, of type D are observably equivalent w.r.t. A if and only if the
possible interpretations of ¢ in A are observably equivalent to the possible mterpretatlons of
e, in A. And, e, and e, are distinguishable w.r.t. A iff they are not observably equivalent

w.Ir.t. A.

For example, the ground terms Insert(Insert(Null, 2), 3) and Insert(Insert(Null, 1), 2) of
gi» 3 their interpretations {2, 3} and {1,2} in A i
are distinguishable, whereas Insert(Insert(Null,2),3) and Insert(Insert(Null, 3),2) are

observably equivalent w.r.t. A si because they have the same interpretation in A si- The

type Set-Int are distinguishable w.r.t. A

observable equivalence and distinguishability relations on ground terms of D w.r.t. A have
the properties of the observable equivalence and distinguishability relations on Vo in A;
remarks and observations made in Subsection 2.2.4 hold for them also. |

Using the fact that all models of D are behaviorally equivalent and Theorem 2.6,
it can be shown that 'every mode! of D induces the same observable equivalence relation on
the ground terms of D. So we can say that the above relations are independent of a model
and are relations on ground terms of D. We can use a reduced model to derive the
observable equivalence relation on the ground terms of D.

Distinguishability and observable equivalence of the ground terms of D are useful
in understanding the behavior of D. These relations characterize the behavior of D in the
same way as these relations on the values of a type algebra characterize the behavior of the

type algebra, Distinguishability captures the informal notion of the ground terms being

-52-

unequal. The models of a data type also induce observable equivalence and
distinguishability relations on ground terms of type D' € A involving the operations of D in
the same way as above. Understanding of the observable equivalence relation on the
ground terms is helpful in writing a specification of a data type, as discussed in the next
chapter. A specification of a data type can be viewed as a way to describe the observable
equivalence relations on ground terms.

We can also define the observable equivalence relation on terms (possibly
involving variables) as follows:

Given terms e, and e, of type D' € A', let X be the set of variables in e and e, € and e,
are observably equivalent if and only if for some A € My, , for every A-instance V of X, the
possible interpretations of el[X/V] in A are observably equivalent to the possible
interpretations of ez[X /V]in A. And, e, and e, are distinguishable if and only if they are not

observably equivalent.

-53-

2.3 Exceptional Behavior of a Data Type

So far we have assumed that every operation of a data type D returns a normal
value of its range type for any input in its domain. This assumption is not realistic, as it
glosses over an important component of the behavior of-a data type. In this section, we
discuss the exceptional behavior of a data type. We relax the constraint that every
operation terminates normally: An operation can terminate either normally by returning a
value or by signalling an exception. For example, we modify the behavior of the operation.
Choose on the empty set; henceforth, we assume that it signals an exception instead of
returning the integer 0. We discuss the assumptions made in the formalism about the
behavior of the exception handling mechanism of a host programming language supporting
the abstract data type mechanism. We extend the formalism introduced in the previous

section to model the exceptional behavior.
2.3.1 Assumptions about Exception Handling Mechanism

We consider the exceptioh handling mechanism an integral component of a host
programming language supporting the data type facility. The exception handling
mechanism performs two functions: Signalling the exceptions and handling the exceptions
[52]. Signalling is the way a program notifies its caller of an exceptional condition, and
handling is the way the caller responds to such a notification. A module implementing a
data type must provide an adequate interface with the rest of the programming language
for exception handling. Such an interface can be designed by naming the exceptions
signalled by the operations along with the specification of information carried as arguments
to the exception handlers. We will not be concerned with the semantics of the exceptional
handling mechanism. of a programming language in this thesis; we rather consider the
exceptional handling mechanism insofar as it interacts with the data type mechanism.

Liskov and Snyder [50] discuss two models of structured exception handling - the
resumption model and the fermination model. In the resumption model, it is possible to
resume the operation invocation signalling an exception after the exception has been

handled. In the termination model, the operation invocation is assumed to be completed

-54-

once it signals an exception. Liskov and Snyder describe many advantages of the
termination model over the resumption model. In particular, the behavior of the handlers
for the exceptions signalled by an operation is sepatated from the behavior of the operation
in the termination model approach; this maintains the moduhi’r structure of the operations.
In the resumption model, on the other hand, the behavior of the handlérs becomes a part of
the operation behavior. Though there is not sufficient experience to suggest which among
the two models is better suited for abstract data types, we have decided to adopt the

termination model approach because of its simplicity.
| In a language supporting call-by-name argament passing ine‘chanism (or in fact,
any mechanism in which the argument evaluation takes piaée inside the procedure body), it
is possible to implement a data type whose operations can-handle the exceptions signalled
by the evaluation of their arguments. Few recently -designed programming languages
support such an argument passing mechanism for ‘af 1ast two reasons: () Its-semantics is
quite complex, and (u) 1t ns mefﬁment to 1mplement Most programmmg Ianguagts
support call-by-value, call- by-object [52] or call- by-reference mechamsm with these
mechanisms, it is not possible to implement a data type having an operation that handles
,exceptions signalled by the ev,aluatiou of its arguments. _We assume in our work that an
operation does not handle any exception signalled by the evaluation of its arguments,
rather such exceptions are handled in ia mo,dule in which the Qperatipn is. invdked, as
arguments are evaluated inside this module. Every operatlon ISassumed to expect normal
values as argurnents.l° - \ |

If an operat:on takes muluple arguments, many arguments may s:gnal exceptions.

The order in which the exccpﬂons are signalled and handled depends upon the evaluation
order of the arguments of a procedure mvocatlon in the host p:ogrammmg language we do
not address this issue in the thesis. We would hke our. formahsm] be com pauble wnth any
reasonable ordermg scheme adopted in the host progmmmmg langua&e

10. However, our approach for defining a data type is gencral and flexible enough to modcl a data type
having operations that handlke exceptions signalled by its arguments. We simply have to extend the formalism -
proposed in this section. A data type with such behavior can also be spec:ﬁed by extending the specification

‘language to be proposcd in the next chapter.

-55-

We adopt CLU's view of a data type that the handlers ‘associated: with the -
excepiions signalled by the operations of a data type are not a part of the data type. This
view keeps the behavior of the handlers separate from the type behavior and maintains the
- modular structure of the type mechanism. A user of a 'datzi'type has the flexibility of
associating different handlers for an exception in dlf'ferent contexts We will not discuss
the behavior of the handlers in our research. '

Exceplions signalled by the operations are distingluished by namin‘g‘théih. “An-
exception can carry information as its arguments from the place where the ‘exception is
signalled, and this information can be used by a handler assocnated with the sngnalled
exception. An operatlon can signal many exceptlons to exhibit dlﬁ‘erent properties of an
input.

For illustration, we consider the data type boun’ded St‘ack of integers, of size < 100,
denoted by Stk- lnt-ﬂ)ﬂ ‘Stk-Int-100 is an mstantlatlon of the parameterzzed stack example
in {31] it has the follomng opemuons ' '

Null acmmdcn(ﬂngﬂnemptymdim

Push insenis a given integer i at the end of a given stack s. It signals the cxception
ovcrﬂow(s, i) if the given stack is of size 2 1(!) A handler for overflow may cxamine
the stack and remove the useless eIemcnts to make space for the fiew element, or it
may do something else. a

Pop removes the last integer inserted into a given- noncmpwstack s. When invoked on the;
empty stack, it returns the empty stack back.

Top returns the last integer insertéd into a given’ noncm“ﬁty stack s. It sngna1s the exception
“no-top() if s is cmpty. No-top does not takc any argument.

Replace rcplaces the last integer inserted into a given nonempty smck s by a glvcn mtegcr i It

signals the exception can "t-repldiced) on thé cmpty stack.
Empty tests whether a given stack is empty or not.

For Stk-Int-100, & = { Int, Bool } and @ = { Null, Push, Pop. Top. Replace, Empty }.

2.3.2 Formalism

, We dlscuss extensnons of the formahsm mtroduced in the prevnous section to
model the exceptlonal behavior of the Qperatnons We dtscuss modlﬁcatlons to the
deﬁmtlons and thelr lmphcatlons Sqme lmportant deﬁnmons wm be fully presented The
discussion and results of Section22 are apphcable om:e these modlﬁcatmns are
incorporated.

We first extend the deﬁmtlon of a type algebra gwen in Subsectlon 2 21 We
want to keep the normal values of every data type sepamte from the exceptrons. because.
the exceptions have tptally dtherent behavmr as compared to the normal valum, and
because the exceptions should not be typed In addmon to a domam corrcspondmg to
every D €A contammg the normal values of D a mod;ﬁed type algebra has anew domain
of exceptlons denoted as EXV EXV consnsts of all exqepttons (or gxceptton values)

.....

sngnalled by the operatlons of D" € (D) where for every excepftgn name ex of anty
D x ... xD, and each v, of type D, ex(v, .., v) is called al; e;:ceptlon value. The
exception domain EXV in a type.alggbra. A. of D..is-specifigd incrementally. EXY¥-in A
mhentsme exceptmn domain of a model A of D" € A whose’ pnmal domsain V,,.'is being
used i m A The exceptton values sagnalled by the ﬁmctlops &terp{etmg the operat:ons of D
are explxmtly specnﬁed. Let exv stand for an exception valuegaa(vfu..., v nL lf an operat:on ¢
signals, this is modeled as’its mtemretanoﬁ:f rdufmng anaanemef mtv N

We now present the modified type algebm

Def. 2.16 An algebra A of typeDtsaheterogeneous algebra
[{V 4D €A} EXV;. {I lgee} tm

)] for every deﬁmng type D' €A,V isa valueset of D’ deﬁned by a model _
7 of DY, V . ‘consists on]y of the nbrmal values retumed by the onstructors
of Iy, _
(ii) EXV is the exception domain including the exception domain of a model
: of D’ defining V,,, for each D’ € A, and the exception values signalled by
the operations of D,

-57-

(iii) for every o € @, its interpretation l' isa tdtal function of the appropriate
' arity. If D' is the range of . f elther results ina normal value in V . or
returns an exception value, If any argument to f_ is in EXV, f_is not

defined on these arguments," and

-~ (iv) Vp is the smallest set closed under finitely many apphcatlons of the
functionsicorresponding to the constructors of D (i.e., {f |a€ﬂ . V
only contains the normal values resulting from the constructors. 8 . =~

Recall that by assumpuon even if f is nondeterrmmstlc 1t behaves determlmstlcally on an
| input on which it signals.’ We assume that for every D € A it is possnble to dlstmgmsh the
nonnal values from the exceptlons this assumptlon IS 1mpﬁc1t in every programmmg
Ianguage supporting exceptlon handlmg. o

23.21 Tefms, Exception Terms, and Interpretations
. B L S R

In addition to tenns as deﬁned in Subsect:on 2, 2.3 we have exceptlon terms
deﬁned as follows. ‘

Def. 2.17 For every excepﬁon name ex of arity D, x ... x D ,.exte; ..., ¢)is an
exception term if each e.isat;em)fofmﬂ.‘-l Lo EITE b g C

An exception term nothavmg any variables is called a grolmd excepuon term

An interpretation of a ground term ein a type aléeibra A is not def' ned if any of
its subterms mterprets to an exceptlon value, So Proposmon 27 Subsectlon 2 23 gets
modified to - ' o

3¢ il ,\

11. An cquivalent interpretation tsto‘have f signal a d:stmgunﬁcd cxccpﬁon value say abort() for example.

Wehave nmdimnﬂﬁsmmmbmuse it gives theimprésiion of the ciooption value:boing passed as
~an argument to the operation. If we wnsh to madel a. data type with an operation, haudlmg cx;;cptlons,
signallcd by the cvaluation of its arguments. ‘wé-canniot take the above 4 ﬁnmphoﬁ “An’ operation o could
return normal values even: when its drguments signal exceptions, sof could return a normal value in that

case.

Prop: 2.3 An interpretation of a ground term of type D" € (D) in an algebra A of type D

is eithera norma] value an exceptlon value or undeﬁned. l

If an mterpretatlon of e is an exceptlon value OF-i§:, undeﬁned, then ¢ has a unique
interpretation in A. An interpretation of an isstantiated term as well as a ferm in A are
31m||ar1y deﬁned Proposmonr 2.2 in. &ubsecuon 223 @eeﬂx -extends tea modlﬁed type
algebra.

An mterpretatlon of an exceptlon ground term ex(e R) in A is deﬁned only if

each el A is a normal value of type D then ex(e,:..., en)l A = ex(el A - eI A)

_ mstantlated exception term and of an exceptlon term m A can be glven usmg the above
definitions. ‘

D G et

2.3.2.2 Examples of Modified Type Algehras"

:’ffhe type algebras A_; and A of Set Im glven in Subsectnon 2. 2 2 are modlﬁed‘

AREELTT B

to mcorporate the exceptxons We wrll use the symbols A_ ; and A to stand for the
=[{S,z, B} EXV; { Nu, In, nemgs,&s}:;,
The Choose operatnon slgnals the exceptlon no-clement, wh:ch smcluded in EXY; s0 .
. ONe) & nockement), - S
mstead of 0 Othenwse 1he deﬁnmons o£ the functlons remam the same. Slmnlarly, for
we have
Al, =[{SQ',Z B}, EXV; {Nu',In', Re', Ha', Si", Ch' }]
where Ch'(©) & no-element(), and the definitions of other functions remain the same.
We' present atype algebra A, of Stk-Int-100.

si'

B P P

otk = [{SQ.Z,B},EXV; {Nu,Pu, Po, To,Re;Em}] L
where Z and B are the value sets defined by the medelsef htandBool:especuvely And,
SQ' is the set of all sequenices of i integers of length < 100 o

-SQ' = {(), <0, <D, &, <D, <=2, €0, 05,40, I, ’@, ’I),; s
The interpretations of the operation names are defined as follows:

-59-

N € O :
Pu(<i, ..., >,) e %overﬂow((il,...,im),i) . ifm>100
| Kiyonny i, D | otherwise
Po(<i,...,i.>) &(O ifm =0
E Ciyoueri > otherwise
To(<iy-..,i3) 2 ({no-top) ifm =0
iim otherwise
Re(<i,...,i >, i) e can't-replace(f) ifm=10
| 5(: i # - otherwisc
Em(<i,...,i>) & (T ifm=0
%F otherwise.

Henceforth, by a type algebra, we mean a modified iype algebra uniess stated otherwise.
2.3.2.3 Observable Behavior and Distinguishability

The definition of Baol given in Subsection 2.2.4 remains the same, because no
boolean operation signals. ‘ ‘

As was stated earlier, if the operations of a data type exhibit exceptional behavior,
its values can also be distinguished due to its exceptional’ behavior. If a sequence of
operations signals'an exception on one value and does not signal on the other, then the two
values are distinguishable. If a sequerice of dpérations sighals”or: both values, the two
values are distinguishable if the sequence signals, dlfferent gxceptions. Thus the bchavxor
of the val,u&s of a data type can also be observed usmg the expeptlonﬂhandlmg mechamsm
of the host programming language. Even if a data type does not have any defmmg types,
its values can be distinguished if its operations signal exceptions.

We define the distinguishability relatiori on V,, arid the distinguishability relation
on the exception domain EXV in A mutually recursively, using the ‘distinguishability
relations on the domains corresponding to the.defining types.. It should be made sure that
arguments to exception names are such that the two definitions are well founded. The
definition of distinguishability on exception valuamcorpomtgs that (i) two exceptions

-60-

having dnfferent names are distinguishable, and (ii) two exceptlons having the same pame
but dlstmgmshable arguments are distinguishable.

Def 2.18 Given two excepﬂon values ex (v sveea ¥) and ex. (v vo-+s v) in EXV, they are
distinguishable iff (i) ex, # ex,,or @i) if ex, = ex, and m = n, then-for some 1 < i<myv,
is distinguishable from V.. ‘Two exception values are oéservably equivalent iff they are not
distinguishable, 1 | P T .

We denote the observable equivalence relation on EX_V byEExv

Def. 2.19 For an algebra A of type D havmg no defining types and whose operatlons do

not signal, all valuesin V, are observably equalent 1

Def 2.20 Two:normal values v, and v, in V, of an algebra A of type D are distinguishable
iff there exists a term wnth one variable of type D, expressed as c(x), such that one of the
following conditions holds: &

() - the instantiated terms c{x/v} and c[xtv] imerpret to distinguishable
exception values in A, S :

i) c[x/v} interpreis toa normal value tmd c{x/v,] mte:prets 1o an
exception value or vice versa, and o

(iii) clx/vliy and clx/v] 5 ;axe«nonnal_..values 'and\{ ‘["/",llA }is
distinguishable from { c{x/vJig }. 8

Note that in the above definition of distinguishability, we have not included the case in
which exacﬂy one of dva] and c[x/v2] is not defined because the condition (u) above
takes care of it. ‘

Def. 221 Two normal values v, and v, are observably equlvalenl iff they are not
distinguishable. 8

* Theorem 2.1 of Subsection 2.2.4 extends to the above deﬁnitinn of Observablé
equivalence relation. E,.xy is also an equivalence relation. ‘
We extend the definitions of congruerice, homomorphism, and isomorphism for

-61-

type algebras having exception domains The mappings from the normal domains of a type
algebra A to the correspondmg normal domams of another type algebra A, induce a
mapping Ppxy from the exception domain EXV 1n A, to the exceptron domain EXV, in
A, The exception names act like operations; they preserve these mappmgs Given

Ay =[{V)ID €&} EXV,; {f |s€a]}] |

Ay = [{vlz),u)'eA'},Exvz,{ff,loen}],
for every exception name ex of arity D, X ... X D

< ex(vl. es V), ex(d)“ (), ... d>D (v))> € dpyy - _

Theorem 2.2 modified to say that E = { En | D'e A} U { bev } is the largest
congruence in A holds; the proof is srmrlar to the proof of Theorem 2.2. E captures the
normal as well as the exceptional behavior of the functrons of a type algebra A.

" We define a reduced algebra in the same way as in Subsectron 224 usmg the
congruence E. The deﬁnmon of behavioral equivalence relatron on type algebras is the
same as in Subsectron225 The deﬁmtron of 1somorph1c equrvalence used in the
definition of behavioral equrvalence is extended by mcludmg the mappmg Ppxy in the
family @ and requiring Ppxy also to be a brjectron The theorems of Subsection 2.2.5
exhrbrtmg that the deﬁmtlon of behavroral equrvalence of unmodrf ed type algebras mdeed
captures the desrred intuition extend to the modified type algebras The results and proofs
are modified to incorporate the fact a ground term ‘e (respectrvely, an mstantrated term
e[X/ V]) may mterpret to a normal value an exceptlon value or be undeﬁned (see _
Appendlx In). ' ' '

A data type D is defined in the same way as m Subsectron226 as a set of
behaviorally equrvalent type algebras Let M stand for thls set Every ‘model in M now
has the exceptron domam EXV The observable equlvalence and drstmgurshabrhty
relations on the ground tenns of type D are deﬁned as in Subsectlon 2. 2 7. We incorporate
the facts that two ground terms whose mterpretatron in every model m M b are undefined,
are observably equrvalent, and that lf one of the ground terms has an undefined

interpretation whereas the other does not; then the two ground terms are drstmgurshable

- 62 -

2.3.2.4 Comparison with Goguen’s. Approach .

o Our approach is srmrlar to Goguen s approach [20, 21] of. modehng the
exeeptronal behavror ofa data type in the sense that exeeptrons are named and can have
arguments. However there are erueral dtfferences ttt the two desrgn phrlosophres lnv
Goguen s approach, the definition of a new data type can poss:bly extend the deﬁmtlons of
just hke the normal values (called ok values ln [20}) lnstead ol‘ havmg a smgle domatn of |
exceptrons, Goguen partmons a value set of D, mte the excepuon values and the normal'
values the exceptton value part of the value set expands as new types usmg D are deﬁned.
For example the deﬁmtron of Stk lnl-ll)ﬂ would extend the defmmon of lnt by deﬁmng a
new. mteger no-top (whrch is a not-ok value) We consrder tlns as vrolatrng the modular
structure of the defmmons. B

| The OBJ language of Goguen and Tardo {21] allows the handlers for the

lllll

thus makmg the type behav:er oom,plex We suspet:' that they adopt thrs appromh because
of therr attempt to develop the algebrarc semamtcs of a confplﬁe programmmg language
handhng mechantsm from the data type - S

B In contrast, we have concentmted on the behaxtor of data types only We have
separated the exceptlon handhng mecharusm from‘ the dafa :ype meclramsm We have'
iny eonsrdered eomponcnts of the excepnon han::llu:g meghangm tzrelated to the type
deﬁmtron mechamsm We do not consrder the behavror of exeeptton handlers as a part of
a data type for reasons dtseussed earher We ‘beheve that the type mechanrsm should only
provrde an adequate mterfaee to the excgeptton handhng mechamsm of the hm

rogr,arnmmg langpage We separate the exeept{g?' domartt;;f;oth the domam of nonnal
values as excepttons have dtfferent behavrorfrom the norrnal Availues We do not type
exeeptrons erther because domg so seems mearungless. ' thrs wayl' we have been able to
define the behavior of the operatrons of a data type completely and umfonnly, w1th0ut
extending the definition of any of its defining types thus preserving the modular structure

of the type mechanism.,

2.3.3 A Simpler ,Aappl{ho,ach‘

In this subsection, we discuss another approach for modelmg the exceptlon
behavior of a data type, which is snmpler than the appmh dlSCUSSCd earlier. This
approach has beén generally assumed in the literature ‘on dlgebraic specification of data
types when the authors do not wish to discuss the exception- behaviot of the operations
[29, 77). The ADJ group's work [23] is an attempt to formalize it arid Guttag [31) embeds it
in a rich way in a specification language. We discuss this approach for, two: reasons: (i) our
discussion is simpler and more natural than that of [23], (ii)-our discyssion would-place the
works of those who have implicitly or »exphcntly assumed this approach of modeling
exceptional behavior on a:firm basis, and (iii) our dnscassipggprgyldesa semantic basis of
Guttag's specification language. ' |

In this approach; exceptions signalled by ope[attoas haymg the same .range are
not distinguished and no mfo;aatlon is passed wnth an_exception to its handler. An
operation on an input either returns a normal value ar stgtals an exception failure. For
example, the opemtlons Push, Pop, and Replace s:gnal the same exception failure. Evcry
~ operation is assumed to expect normal valm as arguments. {fan argument to-an operation
signals fallure then the operation prepagates it by sxgnallmg it.

Such exceptlonal behavnor of the operatlons can be modeled by extendmg the -
‘domain of every D' ea’ m an algebra A of type D (as defmed in Subsectlon 22, 1) with a
: 'spec1al exceptlon failure we denote it by erryy . Whenever an operatton o sngnals l'allnre |
its mterpretatlon f,in A returns erry, where D’ is the mnge type of . So we have

= [{VBU{eer}}U{V U{eer }lD’GA} {f |a€0} |

If any of the xs is eer, then { (xl,. CaX) = errpy, iie, I, 1s strict with respect to its
arguments. We assume that for every D' € &', it is possible to distinguish between the
normal values and the exception value erry, .

We modtfy the definition of Bool gwen in Section2.2. The model B of Bool is
extended to have the exceptional value oy, o

= ({{tm,fahe,mb}} {T.F,V,~ A, =, u})

where the defmuons of the boolean operations remains the same opnormal values,

Besides, every function is strict. Bool is defined as the set ofaH ‘type slgebras isomorphic to
e '
We dlSCUSS a type algebra A of Stk lnt-lm
Ak —'[{SQ U{m‘*} Z B'}., {,Nu Pu’ Po Te Re’, Em’}],
where B =BuU{em 1 o L
zZ=1Zu{ewy} . e

N 2o
Py, .. i)i) (orr, a“w S ifm 2100
' T (i m’D . Conl o othierwise .
Po’«:l;.;.,i;;y 45 O ifmae
| s> otherwise
To’((il,.".i.,fi;‘))* 2 orr, S TEm=e
REKiy ..., ;1) Qimm S cifm=0
S Lo ..., m,b* o F o otherwise
©Emiy...,4)) QE U dim=0
P ohersiie

.,The theory discussed in. Sectnon 2 2 dlrectly extends to the above algebras also
'Ihe deﬁnmon of the mterpretatlon of a term in Subsectxon 2 2 3 easﬂy extends ‘A gmund
term of type D’ or an mstantlated tenn may mterpret to onu The deﬁnmon of .
d:stmgunshablhty of values of D in a type algebra also extends ina stralghtforward manner.
We want to add to the definition that (i) every: nofmal vidue of D is distinguishable from
the excepﬂonai ‘value ‘"D* and (ii). two normal. values' v sdnd.pin Vi ~.of -A are also
distinguishable if there is a term ¢(x) such that ¢ [xiv} interprets to an ;excepuoaal value,
whereas ¢ [x/ v2] interprets to a normal value, or.vice versa. - i we
The behavioral equivalence relation on modrﬂeé type aigehras is a simple
“extension of the definition given in Subsection225. . The -modified- definition. -of
isomorphic equivalence requdres that every mapping ¢yy-in- # maps:the exception value
ey in A 0err, in A, Other conditions remain the:same-in the definition. A data type

-6 -

D is a set consisting of all behaviorally equivalent type algebras of the above kind. The
observable equivalence and distinguishability relations on ground terms are defined in the

same way as in Subsection 2.2.7.

-

-2 4 Mutuauy Recursive Data 'Ewes

We have assumed SO far that data types can be deslgned hleran:hlcally one at a
time and that the data types on which a data type D depends can be dwgned
independently of D. These assumptions are not valid for a subclass of data types. In some
cases, it may be more meaningful to associate an operation with a collection of data types,
- instead of a single data type; for example the conversion opemt_ioizs between the data types
fixed point number and floating point number. Or a group of data types may be mutually
dependent such that they cannot be defined one at a time, for example, data types picture,
contents, component, and view in [32] are mutually recursive. In the latter case, the
dependency relation on data types as defined in Section 2.1 will have cycles.

For the above cases, we consider groupé of mutually recursive data types together
as one entity, and define direct dependency and dependency relation on such groups and
nonrecursive data types in an analogous manner so that the relations do not have any
cycles. A group of mutually recursive data types can be then defined higrarchically when
considered as one entity.

~ Let D stand for a group of new types being defined together. Let A stand for the
set of their defining types, assumed to be defined elsewhere, and @ stand for the set of their -
operation names. '

A type algebra for a group of new data types D is a straightforward extension of a
type algebra for a single data type D. It has a‘domain corresponding to every DeDin

addition to the domains corresponding to evéry defining type D' € A and the exception

domain EXV. It also has a total function (deterministic or nondeterministic) corresponding
to every operation name in . Instead of having a single principal domain as in case of a
type algebra for a single data type, we have many distinguished domains in a type algebra
for D; Every domain correspondingto D€ D is a disting'uishéd‘ domain: In order for the
distinguished domains to be nonempty, it is necessary that at least one of the data types in
D has a basic constructor (a constructor that do&s not take any argument of a type in D).
Furthermore, all the distinguished domains must be constructible mutual recursively. _
The theory developed for a single data type easily extends to a group of mutually
recursive data types. We can directly extend the definjtion of the interpretation of é term

-67-

in a type algebra defined above. The obdervable equivdtence and distinguishability
relations can be similarly defined on V| for each D€ D. They induce the observable
equn alence and dlstmgmshabﬂlty relatnons on the ground terms of ‘type D. Behavioral
equivalence relation on type algebras can also be defined analogously

A group of mutually recurswe data types D 1s a set of all behaviorally equivalent
type a]gebras of the above kind. Every type algebra i in the equwalence class is a model of
D. A model of D defines a value set of each D € D, whnch is the distmgunshed domain
correspondmg to D in the model.

3. Speclﬁcatmn of an Abstsact Data Type

In thxs chapter we dlscuss a method for spec:fymg ab,stract data types lee the
definition method, the spemﬁcatmn method is hterarchlcal and modular We descnbe a
specnﬁcat:on language in. whxch data types havmg nondetenmmstlc operatlons and havmg
operations exhlbmng exceptlona] behav:or can be spec1ﬁed The mam goal m desugmng
the Ianguage has. been 0 develop a good notatxon for expressmg the des:gn of the data
component of programs The spemﬁcatlon language should be as ﬂexlble as possnble to.
enable a designer to conveniently express his/her intent. We do not restrict a specnﬁcanon
to specify a single data type only, instead a specification in general specifies a set of related
data types sharing a common behavior. A specification only expresses properties particular
. to the data type(s) being specified. Properties common to. all data types, for instance, the
minimality property, are not specified. They are instead assurned in the semantics of the
specification language. '

Since a data type is a set of mode!s, its specification(s) must capture the properties
common to these models. The specification must specify the syntactic structure as well as
the observable behavior of these models. There can be many ways to do this. One Way is
to present a model that acts as a representati»ve of the above set. For instance, the definition
of a denotation of a data type D can serve as its specification; as an example, the model A
of Set-Int can serve as a sneciﬁcation of Set-Int. A data type is specified in this way in the
model approach [3), which is briefly discussed in Section12. This method has a
disadvantage that since a particular representation of the values of the data type is used to
specify the data type, there is a cianger of the irrelevant propenies of the model being
associated with the data type. This shoricoming of the model approach can be
circumvented by. choosing an appropriate semantics of the specification method as in [3).

Another way is to speeify the properties that characterize the observable behavior
of all models of a data type. We adopt this approach, which is called the axiomatic
approach in Section 1.2. We specify the observable behavior as a finite set of properties of
the operations of D. These properties are expressed abstractly without referring to any
particular model of D and without assuming any particular representation of the values of

-69 -

D. They are presented as first order formulas relating secjuences of operations that return
observably equivalent values. The reasons for choosing the axiomatic approach are:

(i) A theory of a data type can be directly developed from its axiomatic specification -
without referring to any 6ther:domain- of discourse, - '

(i) our work can be integrated with the work on the development of axiomatic systems
for reasoning about control structures [17,36}-and the automation of ‘the verification
process, and

(iii) the methodology for proving the correctness of an implementation of the data type
* with respect to its specification is simple and natural for & wide ¢lass of specifications.

Instead of allowing arbitrary first order formulas, we restrict the axioms to be
equations because ‘

A(i) an equational specification is amenable for deducing the properties of a data type (see
the next chapter, where the proof theory of a data type is developed from its specification;
also see Musser [60] for discussion of a theorem prover for equational specifications),

(ii) an equational speciﬁcatiori is easier for a programmer to understand (see [29] for a
discussion on viewing eq uatiohal axioms as recursive programs),

(iii) certain desirable properties of specifications can be guaranteed by putting constraints
on equations [28], k

(iv) an equational specification has been found to be more suitable for semi-automatically
deriving an implementation of a data type {64, 68}, and - " |

(v) a medel can be more easily constructed from-a equational specification than from a
specification whose axioms use existential quantifiers 16)}.

Our specification language allows a specification to introduce a finite set of
auxiliary functions to express the properties of the operations. An auxiliary function is not
an operation of a data type; rather it is a helping function in a.specification. So it is a part

-770'.

of a specification of a data type, and not a part of the data type itself.” ! The use of auxiliary
functions in a specification is a necessity, because if axioms are restricted to be equations
without auxiliary functions, many data types cannot be specified [2, 53, 71,43).2 With the
help of a finite set of auxiliary functions, one can.specify. using a finite set of equations,
(i) any data type with a recursively enumerable (r.e.) value set and a finite set of total
deterministic computable functions [28, 43}, and
(i) any data type that can be specified ljsing a recursively enumerable set of equations,
restricted conditional equations; or positive conditional equations {43).
In this sense, our specification language is. quite expressive. (For a detailed discussion-of
the expressivej power of an equational language with. auxiliary functions and ‘how it
compares with other algebraic languages for specifying data types; see [43}) Besides. we
have found auxiliary functions convenient and useful in exprassing the properties of
complex operations; the judicious choice of . mﬂaary? fuactlons often results in
specifications that are relatively easier to write and understand &compared with equivalent
specifications written without usmgthe auxiliary funmonts.3 ,
We discuss the specnﬁcatloa language in the first section. Drffcfent components
of a specification are described. The semantics of a specification- is: given in. the second
section. It is defined to be a set of related data types sharing the commen behavior
captured by the specification,: In the third section; we siate what it means for a data type to
be (precisely) specifiable by a specification; equivalence: among specifications is defined.
The fourth section discusses-the specification of the data type boolean. In:the fifthsection,
we discuss two structural propesties of a specification, consistency and behavioral

1. An auxiliary function should not be confused. with an internal procedure needed in an implementation of
a data type to implement its operations. (Chapter 5 discusses internal procedures.) An auxiliary function
however serves the same purpose in a specification as an internal procedure in an implementation. It is not
available to the users of a data type, and is used only for expressing and proving propertics of the data type
from its specification.

2. We conjecturcd in [43] that cven if axioms arc allowed to be conditional equations (restricted, positive, or
unrestricted), there are many interesting data types that cannot be specificd without auxiliary functions.

3. Guttag [31] rightly compares the usc of auxiliary functions in a specification with the usc of subroutine
(procedure) abstraction while writing a complex picce of software.

M-

completeness, expressed in terms of relationships ameng-the set of data-types specified by
the specification. The consistency property requires that a specification specifies at least
one data type. The behaviorat com'pleteness"property' ‘requires that a specification
completely specifies the observable behaviorof-the operanons on intended inputs; it rules
out only intentional mcompleteness in'a speciﬁcatron In the sixth section, we compare our
specification language with the works of Zilles [77), Guttag ét al. [29.31), the ADJ group
[23],-Goguen [20], Burstall and Goguen [7] Goguen and "I‘arﬂo [21] and Nakajlma et al.
[621

"K

. The sy | Siny sxmactnc unit, called a spectﬁcallort module |
(or sm:ply a speczf catton), whxch m genetal spec;ﬁes aset of re}atecl data types We ﬁrst
discuss. specifications of h;e_rarchtcaﬂy mred (nonrecurs;ve) dam types at thetend of .
B the section we dlscu&s a @ecmcanon@;,mumany recurswe datatypes. -)
| | ; name to stand for, any of the data types speaﬁed hy af’
spemﬁczmon We may use the same name as the name of its spec:ﬁcatton whenever tt ts‘

possible }0 disambiguate from the context whether a name refets to a data typ;e ,or 1ts
speciﬁcn“tion. When we consider more than one specification of a data type, ‘We use
different lnames for different specifications. Though a long name for a concept may convey
information about the behavior of the concept, the long name can be inconvenient ‘to use,
so we allow abbreviations for long names to be introduced in a Speciﬁcation prewded by
the symbol as. Let D stand for a type being specified by a spec:ﬁcahon S. ‘
A specification in general has four components
- V(t) Opemuons, b !

 (ii) Auxiliary Functious, o

(@iii} Restrictions; and

(iv) Axiwns. |
The operatrons component specxﬁes the syntacttc propemes of D, and the reetnctlons
component ‘and the axioms component spec:fy its semantic propemes We illustrate
different components ofa spectﬁcanon using the specifications § gwen in thures 3.1and 3.2.

- : Flgure 31is a specnﬁcatton of Set-Int. Figure32isa specxﬁcatton of a set Stk-Int of data

 types; the data type Stk-Int-100 defined in Chapter 2is in this set.
A spec:ﬁcatton is hterarchlcally ructured it refers to the specxf eatlons of data'

" '. types other than D assuming that these specrﬁcauons are given elsewhere Data types other |

e “; than D may have already been specified, or they will. be specified later. For example. the B

: speaﬁcatlon of Set-lnt in Figure 3.1 refers to a specnﬁcauon of a data type Int. We assiime

;‘L'that Int is specnﬁed elsewhere. Since a specification of Int can specnfy a set of data types,

R vvi‘\lnt in Flgure 3 1 stands for any data type in the set.

-713-

Figure 3.1. Specification of Set-Int

Operations

Null : — Set-Int | as @
Insert : Set-int X int — Set-int
Remove : Set-Int X int — Set-Int

Has : Set-int X int — Bool - asx€x
Size : Set-int — Int as - #(x) .
Choose .: Set-int — Int nondeterministic

— no-element()

- Restrictions

#(s) = 0 = Choosels) signals no-element:
Axioms

Remove(d,i) = &

Romovelinsert(s, i1),i2) = ifit = i2 then Remove(s, 11) else Inseri{Removels, i2},11)
i€ =F . o , S

i1 € Insert(s,i2) = ifi1 = i2thenTelsei1 €s

#2) =0

(Insert(s, i) = ifi € sthen #(s) else #(s) +1

Choose(s)€s =T

Whenever we introduce a new construct- of a specification in this section, we
informally discuss its' meaning: for motivation and clasity of exposition. -As was stated
above, the precise semantics of a specification will be given in the next section.

- 3.1.1 Operations

Thts component speaﬁes (l) the domam and range and (u) the names of the
exceptlons s:gnalled by every operation of D on lts mtended mputs along W|th the types of

the arguments to the exceptnons It is a sequence of specnﬁcatlons of the followmg form:

-4 -

o:D x...xD D S e T

T’ exl(Dn., ey Dlml)

— eX (Dkl’ . Dh"k) N
where D x... xD_is the domain of ¢ and D' is its rang& . sxgnals exceptions havmg
names ex,,.. , whose argument’ typa are also specified. If an opei*aﬂmm specnffed
to signal an excephon the exception must ‘e listed in lts syntactnc specnf ication. 1f o does
not take any argument, then it is a constant of its range type. If an exception name ex does .
not take any argument, it is expressed as ex() or simply ex. The operations comﬁiiheﬁt of ‘a
specification of D mdxrectly specifies the A and gof B © k

When an abbreviation is introduced for an n-ary operation name, we can specify
how the abbreviation distributes over the arguments using the argument place holders
x,, ... X .. For example, the operation Has of Set:Int is abbreviated to € and itis uscd as

J:2 €x. We discuss later (Subsection 3.1.5) how nonde;enmmg:t_rc opqratlon§ are spémﬁed

-

3.1.2 Auxiliary Functions

This component is optional; it exists if auxiliary functions are used in writing the
Axioms and the Restrictions. As was discussed before, auxiliary functions are introduced to
enhance the expressive power of the specification language and: o make the.language more
Biexible so that specifications are casiet, $o write And-undersiand... We: do not secommend
choosing auxiliary functions randomiy. toexmessthe behavier.of the operations. -Instead,
they should be chosen with care. An auxiliary function should embody a subsidiary
procedural abstraction needed to express the operation behavior. It s a'good design
practnce to completely specnfy an auxlhary funcuon even 1f its behav:or is needed only fora

,,,,,,,,

: should not have to oonstruct values that carmot be oonstructed by the oonstructors of D

_75 -

Every auxiliary function is deterministic, and there are ‘no festrictions ‘associated with'it4
For example, the specification of Stk-Int in Figure 3.2 uses the auxiliary function Size.

We specify: the domain and range of every auxiliary function used in the
specification in the same way as the operations. Let A, stand for the set of all au)iilia'ry
functions used in a specification. An auxiliary function may use a dafia_ typ_e- not in A’
(= A U D) as a component of its domain or as its:fange; we' call such a vdata‘ type as an
auxiliary type. Like a defining type, every auxiliary type is assumed to ‘be specified
. elsewhere. Let A, stand for the set of auxiliary types used by the eag);i}jary,funetions in A,
If a specification does not have the auxiliary functions com&”ﬁeht,'ﬂien"ﬂf\’f =@ and
A= 2. o :

We extend the definition of a term in Subsection 2.2.3 to include terms
constructed using the auxiliary functions an.d the eperation symbols of the auxiliary types.
Def. 3.1 An auxiliary term of type D' € U ")’ is defined inductively as

D" e{D}UA, |

(i) a term of type D, S

(i) i o € A, such that its domain is D, X ... X D, and its range is D", then ‘afe, &)
is an auxiliary term of type D' if and only if each ¢, is anauxifia{ytenn oftypeD. +
Clearly, if A; and A, are the empty sets, the definitions of an auxiliary term and a term

coincide. An auxiliary exception term can be defined by replacing terms by aux:hary terms

in the definition of an exception term in Subsection 2.3.2. Henceforth, by a term we mean
an auxiliary term, and by an exception term, we mean an auxiliary exception tetm, unless
stated otherwise. -

4. These constraints on auxiliary functions arc imposed for convenience and simpliciiy. Our formalism .
would work equally well if these constraints are not imposed.

- 76 -

Figure 3.2. Specification of ,Stk-lﬁt,
.S(k-lni as Stk

Operations

Null : 4—» Stk _,
Push : Stk X lnt — Stk

. — ourfm(s&g,ht)
Pop. = : Stk — Stk

¥

Top :Stk— it
‘ - —'no-top0 -

Replace : Stk X Int —. Stk
Empty : Stk — Bool

Auxiliary Functions -
Size : Stk — Int ~ as #(x)
Restrictions

PretPopls)) :: ~ Empty(s)
Pre(neplace(s, i)) o~ Empty(s)

Empty(s) = Top(s) sxgnals nq-;opo

Pushis, i) szgnaIs overflow(s, i) = #(s)> 100 |

Axiams

Pop(Push(s, N=s
ToplPustlils, D) = |
Replacels, i) = PushiPop(s), i)
Empty(Null) = T
Empty(Push(s,i)) = F
#(Null) =0

(Push(s,i)) = #(s) + 1

3.1.3 Restrictions

The restrictions and axioms components of a specification specify the normal as
well as the exceptional behavior of the operations. They also deﬁne the auxiliary functions,
if any, used in the specification. The axioms component vs.}peciﬁes the normal behaviorvof
the operations. 'Theexceptional behavior is speeiﬁed:as a separate layer over the normal
behavior. Thls is achieved by specifying restrieliens en‘ the operations in the restrictions
component. An axiom in the axioms component holds (only if the operations used in the. .
axiom satisfy the specified restrictions. The restrlcuons component is. an extension of the
Restrictions Specifications of Guttag [31]. :

The restrictions component is a set of restrictipi)s;. every ‘restrictio'n' is associated
with an operation. There are two kinds of restrictions: |

(i) Preconditions, and |
) E xeeption Conditions.

Every exception listed in the syntactic specification of an. operation should have an
associated restriction specifying the input condition when the exception is signalled or may
be signalked by the operation. The boolean cor}diﬂons inthe exception conditions for an
operation must be disjoint. Another constraint on: the beolean conditions when they use
nondeterministic operations is : discussed later. - As: is: stated- in the: first 'chapter, for
operations having complex behavior, it may be very: difficult to-specify conditions on their
inputs under which they signal a particular exception. This approach of specifying the
exceptional behavior is not suitable for such gperations. -

3.1.3.1 Preconditions

The preoondmon restnctlon for an operatlon specnﬁes the subset of 1ts mput
domain on which the operation behavior is of interest. The operatlon is expected to be
invoked on inputs in this subset; it is the user’s responsibility to ensure this. The operation
behavior is specified only on these inputs; it is left unspecified on inputs outside the subset
because it does not matter. An operatioﬁ can either signal an exception or return a value

on an input not satisfying the precondition. For example, in certain applications, we may
!

-178 -

not care how the operation Replace in Figure 3.2 behaves on the empty stack as it is never
going to be invoked on the empty stack. Tt could either return a stack value or signal an
exception. Also see [S1,32] for more examples of such operations. [f a specification
commits to a particular behavior on an input not satisfying the precondition, for instance
signalling an exception, mimy implementations would be nﬂéd out. Our approach is to
encourage a designer to specify only that portion of the data' type behavior which is of
interest to him and allow the rest of the type behavior to be left unspecnﬁed so that an
implementor has the maximum ﬂexnb'hty |

The precondition restriction for an operatlon o € ﬂ is spemﬁed as:

Pre(o(X)) : P(X),)

where P(X) is a boolean term having Xpsoues X (the input X) asits variables, and it cannot
signal on X. The axioms involving ¢ hold only if the input to every invocation of o satisfies
the precondition P(X). If the Restrictions component does not speéﬁ‘&"é:‘ﬁfec'(‘)ndi't‘ilénsfor
an operation, the operatioﬁ is assumed to be specified for its enti'r'é»éy‘nt‘ac‘*tic"’domain, i.e., its
precondition is T. For example, ~ Empty(s) is the precondition for Pop as well as Replace
in the specification of Stk-Int in Figure 3.2. The specification does not specify the behavior
of these operations for the empty stack. No precondition: is specified for any other
operation, so their preconditions are T. Similarly, no precondition is specified for any
operation in the specification of Set-Int in Figure:3.1. ‘If a precondition different from T is
specified for an operation ¢, o is said to have anontrivial precondition. Let P stand for
the precondition for ¢. o - . :

If an operation ¢ does not signal on an mput not sansfymg its precondition, it
cannot return an arbitrary value. If ¢ is a constructor, as for example, the operations Pop
and Replace in Figure 3.2, the result must be constructible by the ‘constructors of D using
mputs satisfying the associated precondmons Slmllarly, 1f o lS an observer then it must
retum a value of its result type.

-19-

-3.1.3.2 Exception Conditions

There are two kinds of exception conditions:
‘(i) Required exception conditions, and
(ii) optional exception conditions.

A required exception condition for an.operation o is expressed as
R(X) = of(X) signals exte,; ..., ek). A

stating that if the input X satisfies the precondition P_ and the boolean condition R(X)
which is a boolean term, then the operation v must signal the exception ex havinge,, ..., ¢
as the arguments to its handler(s). The exception name ex is of arity D, X ... X D, . and
each e is a term of type D_ having variables only from the set { x,..., x_}. For example,
in Figure 3.1, the operation Choose is specified to, signal the exception no-element on the
empty set. In Figure 3.2, the operation Tep signals:aertep:on the empty stack. We call the
above exception: condition required because-the operation is required to fsignal;- the
exception. It is possible to specify an operation signalling different exceptions for different
subsets of inputs.) | A

In certain applicaﬁons it may be restrictive to require that an ‘operation signal an
exceptlon when its input satisfies a condition. At the same Ume it may not be desirable to
Ieave the operatlon behavior complete]y unspec:ﬁed lnstead we would hke to place -
constramts on the behavior. If an input to the operatlon sausﬁes the specnﬁed condition,
the operatlon is specified to have the opuon of elther s:gnallmg the specnﬁed exception or
returning a normal value. In case the operatlon chooses not o sngnal it must behave as
specnf ied by the axioms. Optional exception condmons are mtroduced to capture such
behavior of an operatlon An optional exceptnon condmon is expressed as

“o(X) signals ex(.y €) = o),

stating that in case'd signals an exception ex having €)r - €, 8S arguments and the input X
satisfies the precondmon P, thcn the input X must also satlsfy the boolean condition
O(X) a boolean term. ’

Optional exceptions are especnally useful for spemfymg a set of snmllar data typ&s .
having values whose capacnty (size) has different upper bounds lt is possnble to state asize

-80-

requirement‘on the values of the data type, but at the Sanié time not be very restrictive
about the requirement. An rmplementor could decide on the exact bound based on
convenience insofar as the specified bound condmon rs met Such behavror of a data type
is specified by stating that the constructors have the optlon to srgnai exceptrons |

For example, in the data type Stk-Int-100 der ned in the prevrous chapter the
operation Push signals if its stack argument isof size 100; 1f the desived requirement is that
a stack value be able to store at least 100 integers, ﬁjis-behaw&ﬁz of Push:is very restrictive.
It ‘rules -out a:implementation supporting stack values of size > 100, even though: the .
implementation has the desired behaviorexcept that Push does not signal exactly on stacks -
of size 100, but rather on stacks of size 128.: We bpecify the desired requirement in
Figure 3.2 by stating that Push optionatly signals; whenever Push Signals overflow, its stack
argument must be-at-least-of sizé'108: " In this way, a speeification specifies the least upper
bound on the size of the values of a deta-type; anditise responsibility of deciding the exact
upper ‘bound is delegated toan impleméntor. - Such- a' specifieation:is flexible and: not

3.1.3.3 Discussion

Note that the nontnvral precondrtron restnctlons and the optronal exceptlonﬂ
condmons leave the specrﬁcatnon of the operatrons mcomplete because the operatron
behavior i is not completely specrﬁed on a subset of mputs An operatton could behave on, ;
such mputs in any. way consrstent wrth the specrﬁed behavror That JS why a specrﬁcatxon\'
in general spec1ﬁes a set of related data types the operatrons of these data types have the |
same behavior for a subset of therr syntactlc domams For example Stk-lnt specrﬁes data
types having stack values whose size has dlfferent upper bounds > 100 The operathns of
these data types behave the same way on stacks of srze < 100 except that Pop and Replace
of drfferent data types may behave drfferently on the empty stack We call such
mcompleteness ina specrﬁcatron as intentional mcompleteness in contrast to umntentlonal!
mcompleteness introduced because of the omrssron on the part of a desrgner in specrfymg
~the propemes of the operattons. | .

It should be mtumvely clear that rf no nontnvxal preoondmon and no optronal

-81-

exception condition are associated with any operation, and the axioms completely capture'
the observable behavior of the operations, then a specification specifies a single data type in
case the specification of every defining type also specifies a single data type. We elaborate

this informal statement later in the chapter.
3.1.4 Axioms

This component specifies the normal behavior of the operations in € and the
auxiliary functions in A if they are used in a specification. The behavior is specified as a
finite set of equations of the form ‘e = ez,’ where e, and e, are auxiliary terms of the same
type; at least one of e, and e, must have its outermost symbol in Q U At, otherwise an
equation would not be specifying a property of D. ‘e = e, informally' means that the
sequences of operations expressed by the terms e, and e, have the same behavior, i.e., when
values are substituted for variables in e and e, the instantiated terms interpret to
observably equivalent values. The symbol ‘=’ is interpreted as the observable equivalence
relation. The equations attempt to capture the observable gquivélencé relationsj on ground
terms defined by the data type(s) being specified, which is discussed in Chapter 2.

If a specification does not have the restrictions component (i.e., the operations do
not signal exceptions and there is no nontrivial precondition associated with any operation),
then the variables in an axiom are universally quantified: Any value of the appropriate type
can be freely substituted for a variable.

If a specification has a restrictions component, then an axiom is interpreted in a
different way; the variables in an axiom cannot be freely substituted. We must also
consider the restrictions imposed on the operations appearing in the axioms. The values
substituted for the variables must satisfy the following two conditions: |

(i) For every operation ¢ having a nontrivial precondition Pd , the arguments to every
invocation of ¢ in the axiom must satisfy Po ,and
~ (ii) an instantiation of any subexpression in the axiom must not interpret to an exception
value, '
The condition (ii) above is equivalent to requiring that an interpretation of an instantiation

of e ore, is neither undefined nor an exception value. For example, consider the axiom

-82-

Replace(s, i) = Push(Poplshd ®)
in the specification of Stk-Int in Figure 3.2. ‘It applies only for the values of s for which
~ Empty(s) holds, which is the precondition for both Replace arid Pop. Furthermore, Push
must not signal overflow on the result returned by Pop; which it eaninot in any case. The
equations characterize the normal behavior of the operations in this way. |

Itis often the case that two terms are observably equivalent only when é‘:cbnvditvi‘on‘
Is placed on their variables; for example in the second axiom in the specnﬁcatnon of Set-Int
in Fxgure 3.1, Remove(lnsen(s. il), |2) is observably eqmvalent to lnsert(Remove(s, i2), it)
only if il and i2 are not equal. So while writing the axioms, it is convenient to assume an
auxiliary function if-then-else correspondmg to every D €A'U Ay The deﬁm_tlon of
if-then-clse is given as: : o |
if-then-else : Bool X D' X D' — D' as if x, then x, else x,

ifTthenxelsey = x
|[Fthenxelsey =Y

-Since these functlons are used frequently, they are assumed to be implicitly defined

whenever needed. They are not explicitly stated in the auxiliary functions compenent of
the specification, and are not in A . 1f Bool is not a defining type, then Bool is assumed to
be an auxiliary type. An axiom of the form ‘e, = i bthen ¢, stands for the equation
‘e, = if-then-else(b, e, e,l).’ We call ‘e, = if b then -€; 8 conditional: equalion.s It is
equivalent in its interpretation to the formula ‘b = T= e = e.’ An axiom of the form
‘e, =if bthen e else e, Stands for the equation ‘e, = ‘il-then-else(d; e ep€,) It is
equivalent to the following two conditional equations

e =ilbthene ’

‘e, =if~bthene,’

5. Notc that a conditional cquation as defined above is different from a positive conditional equation of the
ADJ [71], in which the condition in the axiom can be expressed using = positively. A conditional cquation of

~the above form is called a restricted conditional cquation in [43]. We have chosen such axioms because of

simplieity, as cven using positive conditional equations+as-axiems does not add 6 the cxpressive power of the
specification language [43]. Furthcrmore, mmomurphngxls do not preserve pusitive conditional cquations.

-83-

3.1.5 Specifying Nondeterministic Operations

If an operation is nondetermmlstlc this is specified using the ‘symbol
nondelermmtsnc following its range specification, as for-the Choose operation of Set-Int in
Flgure 3.1. The behavior of a nondeterministic gperation.is speclﬁed in the same way as of
a deterministie operation. The restrictions component may: sgegi_fy a precondition, a set of
required exception conditions, and a set -of optional: exception .;eonditiens for a
nondetermi,nistie operation. For enondeténninis;ipob;,sergeg -Feturning -many possible
results on an input, th'e’_ axioms dyo_‘not. specify: the results; instead, they specify the
properties of the results. . For ex‘amp]e,‘, ,t‘l:gee:,,.a;,iom.,=s§ecifying the - behavior of the
ndndeterministjc operation Choose of Set-Int on an nonempty sct s states that a result :
returned })y Choose on s must, be an. element of the set.s. . For a nondeterministic
constfuctor its behavior is characterized by speci fying the results returned by the observers
on the possible values constructed by it. , L - .

If a boolean condition in a restriction is exp;essed using nondeterrmmstlc
operations, we require .that for every input X, the boolean condition behaves
deten*ninisticallly, i.e., it returns either T or F. It is meaningless:for abeolean condition to
return T as well as F on X: In case of a precondition, the instantiated boolean condition
returning T as well as F would mean that the inpit satisfies the precondition as well.as does.
not saﬁsfy the }precondition. ~In case of an exception condition, this would mgan that o
signals or may signal on the input as well as that. does not signal on the input. . -

o For an equational axiom ‘e, = é " expressed using nondetgm{aigti&@mijon& we
use the following mterpretauqn For an mstangamq of the variables-in the axiom.allowed
by the preconditions and restrictions, the set of possible. values feturned.by the instantiated
e, is observably equivalent to the set of possible:yalues returned by the instantiated-e, (ic.,
for every choice of nondeterministic operations jn ¢, the value seturacd by the instantiated
e is obseryab!y, equivaleht to a value rrewgged by Ahe ingtantiated e, for some choice of -
nondeterministic operations in e, and vice versa). We have rejected another possible

interpretation which is that for any chonce of nondetermnmst:c operatlons in both ¢, and e,

the vafues retumed by the mstantlated e and ¢ e ‘are observably equwalent, because under4‘
this’ mterpretatlon ‘the axxom does ot ho1d when e and e ' exhibit nondetermlmsnc

-84- ’

bchavior; an equational axiom thus does not express-any useful property. If an axiom is a |
conditional equation ‘e, = if b then e, where the boolean condition b involves
nondeterministic operations, then we require that for an instantiation of the variables b
X, b behaves deterministically. As in case of a boolean condition in a restriction, an
instantiation of 5 behaving nondetenmmstrca]ly and retummg ’l‘ as well as F does not make
any sense in a‘conditional equation. - B

An alternate approach for specifying a nondéterministic operation would be to
indirectly specify it by having the axioms specify its relation, which is deterministic. The
relation can be specified using equations and conditional equations. However, the
constraint that if the nondeterministic operation-returns a normal value on an input, then
the relation holds for the input and at least one result, cannot be expressed in terms of -
equations and conditional equations. This can’ be c:rcumvented by assuming that every
such refation satisfies the above constraint. 1f-a nondéterministic operation sngnals on an
input, some convention about the behavior of the’ rélation or such an input must be
decided. Using this approach, it is possible to 'spccify' the precise amount of
nondeterminism an operation should have. However, we have adopted the former
approach because of the following reasons: = S -

(i) We do not want the specification to specify the precise amount of nondeterminism an
operation should have; instead, we Teave this decision to the des:gner of an’
implementation, ' ‘

(n) it seems more natural to drrect]y Speclfy the behavior'of an operanon than specnfymg

(i) the semantics of a specif cation designed using the lattér approach would have to be
derived indirectly, as should be evident from the discussion in the next section, and

@iv) if we adopt the latter approach, the ‘normal’ behavior of the nondeterministic
oper-ation would be indinecﬂy 'speciﬁed by specff)fngltsrelatlonwhereas its ex‘c'eptibnal |

same. concept.

But one major advantage of adoptmg the latter approach is that we do not have to develop /
any addmonal formahsm for nondetermmlsnc operatwns The theory developed. for .

-85-

specifications specifying only deterministic operations applies to nondeterministic

operations also.
3.1.6 Specification of Mutually Recursive Data Types

A specification for mutually recursive data types is similar to a specification for
nonrecursive data types. Let P stand for.an.ipstance-of a group of mutually. recursive data
types being specified. ‘The specification is given either the name of some data type inDor
a name different from the names of data types in D. Like a specification of a nongecursive -
data type, it has four components;

(i) Operations,

- (ii) Auxiliary Functions,
(iii) Restrictions, and
(iv) Axioms.

The Operations component specifies the syntactic properties of the operations of D. It is
divided into subcomponents. There is a subcomponent entitled D corresponding to every
data type D in D specifying the operations of D. ‘So; a subcomiponent is like the operations
component of a nonrecursive data type as discussed above. Besides, there is another
subcomponent entitled Combined Operations, which spetifies the syntactic properties of the
operations not belonging to any particular data type, but rather to the whote group D. The
remaining three components are the same as in a specification of a single data type. IfD
does not have any combined operations, the specifications of data types in D'can be given
separately like nonrecursive data types. However, the ‘semantics of these specifications

must be given together.

Henceforth, we discuss only nonrecursive data types. From the following
discussion, it should be dear how to extend the results and'the theory to mutually recursive
data types. For instance, we can give the semantics of such a speciﬁcatibn'in a similar way -
as for nonrecursive data types (discussed in the next section) exccpt that 'we will need to use
type algebras defined in Section 2.4, ’ '

-86-

3.2 Semantics of Specification Language

The semantics of a specification S is defined to be a set of related data types.
Each data type in the set is.said to be-specified by S. et IXSY stand-for. this set. Since a
specification S refers to other spcciﬁcations assuming them to be given, for example, the
 specification of Set-nt refers to the specifications of Tut ahd: Bool, the semaritics of S is
given using their semantics. For a defining type' D’ € A used-n' S: we assume ‘that I hasa
specification S’ having a nonempty set of data types as ﬁsemamm D’ stands for any data '
type in D(S). . S . et .

If S does not specify any nbndetenninistic operation; then évery data type in DXS)
can be shown to be deterministic. Operations of different data types in XS) share the
common behavior specified by S. Different data types differ in the wiiy their operations
behave on inputs not satisfying the preconditions specified for the operations and/or on
inputs on which the operations are specified to have the option between signaffing and
returning a value. 1f the axioms do not completely capture the observable behavior of the
operations, then data types in DX(S) have operations naving different behavior on input.on
which the axioms leave. their behavior unspecified.

In case S specifies nondeterministic operations, then data types in D(S) also d}ffer
in the amount of nendeterminism. their opetations have. -BXS) has: data:types in which the
operations specified-to be nondeterministic are. deterministic as well. as data types in which
such operations have. the maximum amount of mondeterminism allowed by S. For
example, the semantics of the specification of Set-Int glvcn m Fl,gure 3.1 has a data type in
which the operation Choose is deterministic, retusning the maxlmum integer.in a nonempty .
set s passed as the argument to Choose. It also has the data type Set:lat defined in the .
. previous chapter in which the Choose nondeterministically. picks.any -element .of s. In
géneral,, a data type in D_(Sct:lgt) has the operation. Choase: return -an element from a:
nonempty subset of s, o , ,

& The semantics of a specification specifying mndetemumsuc operations is thus
necessanly a set of data types differing in the amount of sendeterminism these opcmt;ons;‘
have, even if the specification does not specify any precondition or any optional exception
condition for the operations and the specification oompletély specifies the observable

-87 -

behavior of the operations. This semantics of a specification is chosen because of our view
that a specification should not constrain an implementation to have any precise amount of
nondé{érminism, and that the decision about how much nondeterminism an
implementation should have, be left to the designer of the implementation. Since a
specification serves as an interface between the programs using the data type and the
implementation(s), every theorem derived from the specification, as discussed in the next
chapter, must hold for a correct implementation when interpreted appropriately.

It is possible to write a specification in our language which specifies unbounded
" nondeterminism. (The term unbounded nondeterminism used here is different from the
way it is used in [13, 35].) For example, in the specification of N; (a version of the data
type natural number) in Figure 3.3 specifies unbounded nondeterminism because the
operation Pick is specified to have unbounded nondeterminism. For such a specification
there does not exist any data type having maximal amount of nondeterminism. We will
precisely state the condition when a specification S specifies unbounded nondeterminism.
For a specification specifying bounded nondeterminism, we define data types having
maximal amount of nondeterminism allowed by the specification.

Instead of giving the semantics of S directly in terms of data types, we give its
semantics as a set of (well formed) type algebras. Let RS) stand for this set. We then
partition this set using the behavioral equivalence relation on type algebras and get the set
D(S) of data types. Each type algebra in RS) is a model of some data type specified by S.
"We first assume that S does not use any auxiliary functions, i.e., A= and A = 2.

Later, we discuss the semantics of S assuming that A; # g and At # @,
3.2.1 Specifications without Auxiliary Functions

A type algebra in AS) must have the syntactic structure as specified in the
operations component of S and the observable behavior as specified by the axioms and the
restrictions in S. FAS) is inductively defined; as in Chapter 2, we combine the basis and
inductive steps into a single step. FRS) consists of all (well formed) type algebras of the
form |

A = [{VD.ID’€A’},EXV;{fuloeﬂ}]

Figure 3.3. Specification of N;

Operations
. (4] . — Nl

P . Nl — Nl

— no-pred()

=z :NIXNI—'M asxl=x2

> : Nj XNy — Bool as x, 2 x,

Pick : — N; nondeterministic
Restrictions

x = 0 = P(x) signals no-pred()
Axioms

P(S{x)) = x

le =T

x>z =ifx>yAy>2)then T
SI>x =T

x2>S{x) = F

x>S(y) =H~x>ythen F
x=y=(x>2yAy2x

Pickl >0 =T

such that A smisﬁes the restrictions and the axioms in S, where for each D’ € A, V) is the
principal domain of an algebra A’ € KS'). A" is a model ofa data type D) in D(S).

“We first discuss when a type algebra A satisfi es restrictions; later we discuss the
axioms. Let X = {x, ..., x } stand for all variables in an axiom or a restriction. Let
V={ L A }, where each v, is a normal value of the appropnate type, stand for a
A-instance of X, i.e., each v is an instance of X,

3.2.1.1 Restrictions

If a nontrivial precondition P_ is specified for a constructor o, then on an input ¥V
such that Po"[X/V] interprets to F, fc(v s s V) either signals or returns a value
constructible by the constructor functions using arguments satisfying their preconditions.
It would be meaningless to allow f to retwm an arbitfary value that cannot even be

-89 -

-constructed. For example, if a data type satisfying the specification in Figure 3.2 has its
Push operation signal evesflow on stacks of size 128, it is absurd 1o let the operation Pop
return a stack of size 1000 when applied.on;the empty stack, the input that does not satisfy
the precondition specified for Poi). Similarly, if ¢ is an observer, then £ v,,..... v,) either
signals or returns a value in V., where D’ is the rc;dlt type of m
If the restrictions component specifies a required exception conditionon o as
R(X) = o(X) signals ex(e,,....e),

then for every V, if both P [X/ N and R [X/ V]mt,erpmt to 'I‘ then [a(V) must sngnal the .

exception value ex(e, [X/ V]I A 6 [X/ VY o) for A tosatisfy the above restriction.

If the restrictions component specifies o to optionally gggal an exception, ie.,

o(X) signals exe,,...,e) = = OX),. | ‘

then for every. V such that P_[X/V] mterprets to T and I (V) s:gnals the exceptnon ex with
the mterpretauons of ¢ [X/V],..., e [X/V] as arguments to its h@gdlgrs, O [X/V] must
mterpret toT for A to satisfy the above restriction. L

Since the restrictions are assumed to completely Spe(:lfy the exceptlonal bchavmr
of the operanons for every operation ¢, the Jnterpretatlon f in A must be such that
f,(v,...,v) s a normal value if (i) P [X/ n holds, (u) pone. of RJ,XIV] holds, and (ii)
none of 0 [X/ V] holds.
3.2.1.2 Axioms

A (behaviorally) satisfies an equation * e =e "{or* e = e * holdsin A) if and only 1f
for every V, one of the following conditions holds: | R ‘ o

(i) ' The instantiation of e, or of e, interprets t0 an exc'ep;iionr or is undefined,

() the input to an invocation of some £, on v/.... ., v does not satisfy the
precondition associated with ¢ €i.e.. P il L v’)interprets to F) when '
the mstantlatlons of e and e are mterpreted and

»

(iii) {e [X/ V]l Albis observably equnvalent to { e, [X/ V]I A }

In the previous section, we informally described the semantics of conditional

equations using the auxiliary functions if-then-else. Here we formalize the discussion. To

-90 -

check whether a conditional equation ‘e, = if b then ¢, holds in A, we extend A to include
the interpretation of the -auxiliary function if'-thenétise‘ ‘BoolxD'xD - D
corresponding to every I’ € A'. - The interpretation fﬁ» then-else in the extended algebra has
the following behavior: ' -

fif-then-etse(T- "y 2)

fif-then-etse(F: % ')
The interpretation of a conditional equation involving if-then-else can be verified to be

&
Qv.

equivalent to interpreting the formula 6 = T = (él =e)’ as we require that b behave
deterministically for every A-instance. Henceforth, we view a conditional equation as a
formula ‘b = e = e, so that we do not have to consider the auxiliary ffmction’s il-then-else.

If a type algebra A is in RS), thén we say that A be}ibviqrally satisfies S, and call
A a model of the specification S. Note that A satisfies the axioms under the interpretation
of the symbol ‘=" as the observable equivalence refation onztﬁé‘doma’ins of a type algebra.
1f a model A of S satisfies the axioms interpreting ‘=" as the identity relation as in Logic; we
say that A identically sati.\ﬂes S. BN ' ,

For example; the models A_, and Al, of the data type Set-Int discussed in
Chapter 2 can be shown to be in FASet-Int). So, they are also the ‘models of the
specification of Set-Int given in Figure 3.1. A; identically satisfies thie’specification of
Set-Int. It should be easy to see that every reduced algebra in RS) 1dent1cally satisfies a
specification S because the observable equivalence relations are the xdent.lty relations.

Using the fact that the set E of observable equivalence relations on the domains in

A above is a congruence, we have
Thm. 3.1 A € RS)iffA/E€ RS). 8

So, to check whether a type algebra A is in S), we can check whether its reduced algebra
A/E identically satisfies S. Using the above theorem, we:get

“Thm. 32 If A € RS), then every type algebra behaviorally equivalent to A is in RS). 1

-9} -

3.2.2 Specifications with Auxiliary Functions

An auxiliary function is not a part of a data type, so a model in AS) cannot have
any interpretation for the auxiliary functions. We"ﬁrsfada‘ine an’ extended.data: type:D,
from D, whose operation set is U A; and the set of defining types:is a U Ay - I the
Auxiliary Functions component is incladed in the Operations compornent in S, the modified
specification S, is a specification of data types’having the same syntactié structure as D,
and S, does not use any auxiliary fuunc_@iqhs‘:g We define F(Sl) for the modified
specification S| as discussed above. An algeb,ia A, Of\type D, in RS)is

A = V) ID enaUA TR lecaUA
So an auxiliary term can be interpreted'iti A . ’Tlie“axioms in S expressed using the
auxiliary functionsin A holdin A . I

For every algebra A, of type D, in RS) we obxain an algebra A of type D in

F(S) as follows:

= [{Vy D ea};{f, lo€a}) |
where for each D' € A, V|, = =V} D" and V Cc V1 A function f lS“zﬂ rcstncmn off] to the
domains of A such that ¥ is the smallwtsetcjcsed undc:ﬁm;tely many:applications of the
functions in {f, | €8.}. V) can be a proper.subset.of Yy hecause S may use an
auxiliary function having D as its range that constructs some extraneous values (see [79);for
an example of suchaswcxﬁcatmn).‘ P \ - .

For example, the model A, .of the data ;ype Slk lnLIOO dnscussed in Chaptcr 2
_can be shown to be in AStk:Int). We must CXLCDQA“‘WIMC the, gntespretamnSl of
the auiiliary function Size such that SK<i, ..., >) a m, anduse the extended algebra
for proving, that it satisfies the axioms and restrictions in Figure 3.2.

6. Howcver we do not encourage spcc:ﬁcauons in whlch auxmary functwns are. of rcsult typc D and
gencrate values not constructible by the constfuctors of b.

<92 -

3.2.3 Semantics of a Specification -

Using Theorem 3.2, we partition RS) using the behavioral equivalence relation
on type algebras, and get the set D(S) of data types as'the semantics of S. A reduced
algébra in every equivalesce class in the partition .on KS) can serve asa éepfesentative-of
the data type defined by the eguivalence class. This can be: pictomﬂy expressed as

W

RS) = { Ay-Ay, -~ AjoAy, o]

D(S)

where D, s D, ..., are the data typs in EKS) and A A““x ..., are the
mdelsofadatatypel) - '

It should be clear from the discussion in the last: two siubsections that the
operations of different data types in D(S) share the béhavior specified by S. However, they
differ in k e

(i) the amount of nondeierminism they have, if specnﬁedtobenond&nmmsﬂc byS,

(i) their behavior on inputs not satisfying the preconditions spécified by S,

~(iii) their behavior on m’ptm satisfying theé precondiﬁonﬁ ‘and optjonal exoepbon
conditions specified by S,and = :

(iv) their behavior on inputs on-which their behavior is unintentionally omitted in S.
If S specifies o to optionally signal on a subset of inputs. o for-different data types may or
may not signal for some of the iﬁputs in the subset. If the constructors are specified to
optionally signal for expressing the size requirement on the values of a data type, different
data types have different upper bounds on the size of their values.

For example, D(Set-Int) deﬁn&s different data types in which Choose behavw

differently because it has different amounts of nondeterm;msm as was discussed carlier.

-93 -

D(Stk-Int) has different data types whose operations Pop and Replace have different
behavior on the empty stack, and the operation Push behaves differently on stacks of

size > 100. Some of the data types differ in the maximum size allowed of the stacks. The

data type Stk-Int-100 defined in Chapter 2 is in D(S).

-94-

3.3 Specification of a Data Type and Equivalence of
Specifications ‘ o

Def. 3.2 A specification S specifies a data type D iff D € D(S) (iv,gi,:Mﬁ'g;E{S))."]

If a specification S specifies the data type D, the specification need not be precise in the
sense that it may not completely specify the behavior of D; a portion of the behavior may
not be, in fact, captured by S at all. There may be data types in D(S) different from D. We
introduce the following stronger definition for specifications specifying deterministic
operations only. '

Def. 33.1 S precisely specifies D iff D(S) = { D } (i.e.. My, = RS)). 1

The above definition requires that the specification of a defining type D’ € A also precisely
specifies I,

For a specification specifying nondeterministic operations, its semantics has data
types differing in the amount of nondeterminism their operations have. nondeterminism
allowed by S. We define a partial ordering on type algebras in RS) which orders data
types in D(S) based on the amount of nondeterminism in their operations that are specified
to be nondeterministic by S. Instead of comparing two arbitrary type algebras in RS), it is
convenient to compare algebras having the same domains but diffeﬁng in their functions.

Def. 34 Given two type algebras A and A’ of D
A = [{VD.ID'eA'},EXV;{fgloen}]
A = [{VD.|D'6A'},EXV;{f;laen}].
A' is at least as nondeterministic as A, expressed as A <pa A if and only if
for every operation ¢ € @, and for each v, ..., Vs
{fa(v,...,vn)}g{f;(v....,?n)}.]

Informally, the above means that every function in A’ is at least as much nondeterministic

7. Recall that My is the sct of all modcls of the data type D.

-95 -

as the corresponding function in A. We say that A<, A’ ifand only if A <, A’ and there

is at least one nondeterministic function f(’, in A’ such that for some Voo Voo

{fo(v,..., vn)}g{ft’,(vl,..'., vn)}and{fo(vl,...,vn)} £ {f("(v,...,vn)}.
We can order the reduced models in AS) using <4 relation.

Def. 3.5 A reduced model A in R(S) has maximal amount of nondeterminism allowed by S
if and only if there is no reduced model A" in K(S) such that A<, A’. 8

If a reduced algebra A € F(S) has maximal amount of nondeterminism allowed by S, then
it can be shown that any algebra behaviorally equivalent to A also has maximal amount of

nondeterminism allowed by S. Using this, we get

Def. 3.6 A data type D € D(S) has maximal amount of nondeterminism allbwed by S if its

reduced model has maximal amount of nondeterminism allowed by S. 1

For example, the model A si has maximal amount of nondeterminism allowed by
the specification of Set-Int in Figure 3.1, so the data type Set-Int defined in Chapter 2 has
maximal amount of nondeterminism allowed by the specification in Figure 3.1. It s easy to
see that no model of the specification of Nl in Figure 3.3 can have maximal amount of

nondeterminism; given any model A, we can find a A’ such that A<, A". .

Def. 3.7 A specification S specifies unbounded nondeterminism if and only if D(S) is not
empty and there does not exist a data type in D(S) with maximal amount of

nondeterminism allowed by S. 1

So, the specification of N; specifies unbounded nondeterminism because of the operation
Pick. The specification of Set-Int specifies bounded nondeterminism as there are data
types with maximal amount of nondeterminism allowed by the specification of Set-Int in
D(Set-Int). In this thesis, we have considered data types with operations having only finite
nondeterminism, so we are interested in specifications that specify bounded
nondeterminism. Henceforth, we assume that a specification S does not specify
unbounded nondeterminism.

In case of a specification specifying nondeterministic operations, we have

-9¢ -

Def. 3.3.2 S precisely specifiessD if { D } = {Dmx i D_m € D(S)and D___ has maximal
amount of nondeterminism allowed by S }. 1

The above definition also covers the case 3.3.1 above as in case of a Spec1ﬁcat|on specifying
only deterministic operations, the set {D_, 1 D € D(S)} is the same as D(S). For
example, the specification in Figure 3.1 precisely specifies the data type Set-Int defined in
Chapter 2, whereas the specification in Figure.» 32 does;notpretieely specify the data type
Stk-Int-100 defined in Chapter 2.

. We can also show that a spec1ﬁcatron Sis correct-W.r. t. a model A by showmg
“that A € RS).
We can define equivalence among specifications as follows:

Def. 38 Two specrﬁcatrons S and S are eqmvalenl expressed as S = S iff
BS) = DS) e RS) = AS). 0 |

Note that we do not make any dlstmctlon between a specrﬁcatlon in whlch the
constructors are completely specrf ed and another specrﬁcatnon m whreh some of rhe
propertres of the constructors are not specrﬁed For example the specrﬁeauon of Set-lnt\
does not specrfy the property of lnsert that theorder in whlch 1ntegers are mserted does not
matter. The specification in Figure 31k equwalent to the new specrﬁcatlon obtained by
adding the following axiom because both have the same sémvantics: - -

- Insert(Insert(s, i1), i2) = if il = i2then Insert(s; lt)ehe Insert(Insert(s, i2), i1).
However, as we discuss in Chapter 4, it is possible to prové nsore properties about Set-Int
using the specification with the above axiom than the specrﬁcanon glven m anure 31 We
dlstlngursh between the two specrﬁcattons there and deﬁne a stronger eqmvalenoe relatxm -
on specnﬁcatlons which incorporates this dlstmcuon. ,

We have drscussed above one way of precrsely specrfymg a data type D. As stated
in the begmmng of this chapter D can be presented in many ways. One way isto preeent

8. We have dcliberatcly used the word ‘presented’ instcad of. spcclﬁed 1D avoid confusion, as we have
precisely characterized above when a data type can be speciﬁed.

-97 -

a representative model A and define the semantics of such a presentation to be { A"| A’ is
behaviorally equivalent to A }, as in [3]. There could be other ways of presenting data
types. If the semantics of these methods can be given in terms of type algebras using our
formalism, we can relate specifications given using different methods (sec discussion in

Section 3.6).

-98 -

3.4 Specification of Bool

In Chapter 2, we defined the data type Bool which serves as the basis of our
formalism. Figure 3.4 contains a specification of Boel; this specification canpot be
expressed in the proposed specification language because it has an inequality '

T£F
as an axiom. This axiom is introduced to capture the property that the boolean constants T
and F are distinguishable from each other. The semantics of the specification is the data
type Bool: it can be verified that every axiom in the specification holds in a model of Bool.
Because of the inequality, we do not need to introduce inequalities in the specifications of
other data types; we will show in the next chapter (Subsection 4.2.3) how to deduce them
using the above inequality. The specification of Bool is assumed to be given.

Figure 3.4. Specification of Bool

Operations

T : — Bool

F : — Bool

not : Bool — Bool a~x
or : Bool X Bool — Bool aSXIsz
and : Bool X Bool — Bool asxAx,
implies : Bool X Bool — Bool as x, = Xx,
eqv : Bool X Bool — Bool) as x, = x,
- Axioms

THF

~T=F

~F=T

xVy=yVx

xVT =T

FVF=F

xAy= ~{{~x)Vi~y))
x=>y)=(~x)Vy
xeoy=x=2>y)Aly=1x

-99-

3.5 Properties of a Specification

We discuss two properties of a specrﬁcatron namely consistency and behaworal
completeness, based on its semantics. These’ prOpertles are drfferent from the consrstency
and sufficient completeness propertles defined by Guttag and Hormng [28] ‘which are
proof theoretic (l e., based on what can be deducéd from a specrﬁcatlon) We dlscuss the
relationships between the properties mtroduced |n thls sectron and the propertres deﬁned
by Guttag and Horning ifi the next chapter. .

‘Consisténcy and behavioral completeness are both strnetnral 'properties/" they
ensure proper relatnonshrps among dlfferent components of a specrﬁcatmn Generally
speaking, consrstency means that a property assumed already is not mvahdated In thls
casé, it means that propertres expressed in the specrﬁcatron of‘ a deﬁnmg type or an
auxiliary type, or the’ assumptrons ‘made about the way the exceptronal behavror of the
operations be specified; are not invalidated. lt ensures that a specrﬁcatron specrﬁes at least
one data type. o

' Behavteral completeness captures the mtumon that a specrﬁcatron compleh.ly

‘‘‘‘‘‘‘‘‘‘

-satrsfymg the associated preconditions). A desrgner of a specrf‘cat:on mtentlonally leaves
the operatron behavior unSpecrﬁed by assocra‘f‘ng preeondmons and optronal exceptlon
. conditions with thé Gperahons Apart from mtenttonal rneomple‘teness a specrﬁ'catlon may
be incompleté Becatise' the &srgner umntentronallgy omrtte& sbme axroms ;l“he Behavroral
completeness property ehsurés that a spécrﬁ“caﬂon i onl’y mtennonally mcomplete So it
warns against any omission._ It is a desirable property for most of the specifications. .. .

We: first discuss the consistency property; later LY we dlscu,ss the behavroral

A0 % IR P TE
completeness property.
3.5.1 Consistency

A specification S is, informally speaking, inconsistent
(i) if S specifies ground terms of a defining type (or an auxiliary type) that are specrﬁed
to be drstmgurshable by its specification, to be om?mna of: Lan g

- 100 -

(i) if S specifies ground terms of a defining type (or ‘an auxiliary type) that are specified
to be observably equivalent by its specnﬁcatxon to be dnstmgmshable

An example of the first case would be a spec1ﬁcapon Si usmg the specification of Bool and
specifying T and F to be observably equnvalent. An example of the second case is the
specification of EX1 glven in Figure 3 5. The data type, EXI has only one value The
predlcate P dlstmgunshes among observably equlvalent ground terms of Set-Int : P returns
Tifand only if in its set argument an integer has been msened mere. than.once; otherwlsa
it returns F. This property of the set values i is not observable by the operatlons of Set-Int as
specified in Flgure 31 '

In either case, S does not have any models e, F(S) = @. In the first case, no
type algebra can satisfy S because one of the ax:oms would want two dlstmgmshable values
in the domain of D' to be observably equwalent. .ln the secon,d case S does not have, any
models because of the well fonnedness property of atype algebra (wh;ch is that the set of
observable equlvalence relatnons is a congruence) ,

EX1 cannot be lmplemented in any programmmg language in whlch an
1mplementauon of a data type is hlerarchmlly structured and the represenmtlon of a-data
| type is hidden from the users of the data type smce on!y the ez;temq] behavior of Set-Int
can be observed Thus the predlcate P cannqt -be._ npplemented because the
lmplementatwn of P must dlstmgulsh between for example the, observably equivalent
; ground terms lnsert(lnsert(fa 0) 0) and lnsert(ﬁ 9) Pola_mar &7] has alsg dnscussed sucha
vrolatlon by a specxﬁcntnon S of the spec:ﬁcaupns of the dcﬁmng types.. He sald such a

Figure 3. Sbéciﬁcaﬁon of EXI

Operations

a : — EX1
P : EX1 X Set-int — Bool

Axioms

- Pla,@)=F
P(a, Insert(s, I)) = ifi€ s then Felse Pla, 8)

- 101 -

specnﬁcatlon had protection errors. .

A specification can also- be inconsistent because the exceptional behavior of the
operations is not properly specified, for exampie, the boolean’ conditions in exception
condition restrictions may not be disjoint. o ‘ ‘
Def. 3.9 A specification S is consistent if and only if (i) the specification S’ of D", for each
D' € A U A, , is consistent, and (ii) D(S) is not the empty set. §

A specification S defines observable equivalence relitions ofi-ground terms just
like a data type does. By a term here, we mean a term cons;ructed without using auxiliary

functions.

Def. 3.10 S specifies two ground terms e, and e, of type DeA tb be ;observc.zbb:,equivalent»
(or e, and e, are observably equivalent by S) iff ¢ -and e, are observably equivalent in every
data type in B(S) (i.c., the possible interpretations of € in a model A € FXS) are observably
equivalent to the poésiblc interpretations of ,ezvin A). §

Def. 3.11 S specifies e; and e, to be distinguishable iff e and e, ari_;.di‘stipgpish;able in every
data type in D(S) (i.e.,-the possible. interprg;gtions,of e, in a.model. A in RS) are
distinguishable from the possible interpretations of e, in A). 1

For example, Insert(Inseit(2, 1), 1) and Isert(&, 1) are spetified by the specification of
Set-Int to be observably equivalent. Hiseri(®; 1) and Insert(s, 2) arc distinguishable.
However the specification in Figure 3.2 does not’ specrh» Pop(Nuﬂ) and Nufl to be
observably equivalent or dtstmgu:shaﬁte Af S s inconsistent, there are ground terms which
are both obsérvably equivalent as well as distinguishable by S, because KS) is the empty
set. -
Since a specification S may leave the behavior of operations unspecified on
certain inputs using the precondition and/or optional exception restrictions, there may in
general exist ground terms of type D' € A’ which are neither specified by S to be observably
equivalent nor distinguishable. For example, Pop{NuH) iszﬂeithérébsc‘rvably ‘equivalent to
Null nor distinguishable from Null by the specification of Stk-Int in Figure 3.2, as a data
type in D(Stk-Int) may have FOp‘ return the empty stack itself when itivoked on the empty

-102 -

stack and another data type in D(S) may have Pop signal on the empty smck Ground
.terrns involving nondeterministic operations may also be neither observably equivalent nor
dislingu‘ishable by S; for-example, the ground term ‘Choese{Insert(Insert{Nuil, 1), 3)) is
neither observably equivalent nor distinguishable frony' 3. TFhe above observable
equivalence and distinguishability relations capture the common\behavior of data types in

D(S).
3.5.2 Behavioral Completeness .

In the definition of behavioral completen&ss we must capture the lntentmnal
incompleteness of a specification. If a specnﬁcanon S associates a nontrivial precondmon
with an operation, different data types in D(S) can have such an operatton behaving -
differently on an input not satisfying the precondition. If-an-operation is specified to have
an option to signal when its input satisfies a condition, different data typés in (S) can have
such an operation signalling the specified exception or terminating normally on an input
satisfying the associated condition. If S specifies a nondeterministic operation, differcnt
data types in D(S) can have such an operation having as much’ nondeterminism as desired.

_This incompleteness in S is intentional. Any other dxfference in the behavaor of data typ&s‘
in D(S) is unintentional. ' ‘ . “

The above means that for a specification S to be behaviarally complete, data types
in D(S) having maximal amount of nondeterminhmvalb\‘ved by S must have the same
observable behavior on intended mputs, except that if there is an- optlona} exception
condition specified for an operation, then the eperation has the option. of signalling or
terminating normally on an input satisfying the boolean condition in the optional exception
condition.

We define three relations on the models in ,F(S). The partial isomorphic
equivalence relation formalizes the ilite_ntional ingomplgtgn_e;ss introduced due to the

“nontrivial preconditions specified for the operations in S. The isomorphic embeddability
relation formalizes the intentional incompleteness due to the operations specified to have
the option to signal exceptions. Later we combine them to define the partial isomorphic
embeddability on reduced models in RS). We use, the partial isomorphic embeddability

- 103 -

relation to define the behavioral completeness of a specification by refating the reduced
models of data types in D(S) having the maximum amount of nondeterminism allowed by

the specification S.
3.5.2.1 Partial Isomorphic Equivalence

Let P_ be a precondmon specified for o in S Let S’ be the specrf' ication of a
defining type D’ €A in S. The partial isomorphic equivalence relation relates models
whose operations have the same behavior on inputs satisfying their preconditions.- The
definition is obtained by modifying the definition of isomorphic equivalence (Def. 2.13)
given in Chapter 2. As in Chapter 2, we assume that the domains correspofiding to each
D € A in models A and A, are defined by the isomorphically- équivalent models in RS’)
and that the - somorphye equwalence relation on' these: models: in F(?S') induices a- btjecucm
¢D VD-—» VD ' '

Def. 3.12 Given two algebras A and A, in F(S) |
A= [{V |D'€A 1 EXV {f1|c€ﬂ}]
A2:[{V2|D'€A}EXV {f2|o€0}] v o
such that for each D’ € A, V1 and VZ. ‘are the value sets deﬁned by 1somorphlcally
equwalent models A and A' in F(S) where S’ isa specrﬁcat:on of D' 'and ‘I’D ,-+ VD
is a buecuon mduced due to the 1somorph1c equnvalence of A and A2, A and A, are
zsomorphtcally eqmvalent w.r.L. {P lo € Q} (or w Tt S) 1ff there are buectlons
p:Vp— Vp and @gyy - EXV, - EXV, such that«b = { & ID'CA }U{«bExv}has
the followmg propemes
- (i) For each ex : D X..X D and for every v of type D .v_oftype D,
Duxy (éx(v s ¥)) = ex(d»u (v) d»u (y)) and
(u)foreachaeﬂo DX XD —+D’ , -
for every v of typeD,,..., v, of type D 1f P (v eres Vn): T, then
(a) if neither f; nor f ‘2' signals, then

{@D.(f;(v e v N} = {r;(onl(vl), ..., @ (v)) }; otherwise, ’
®) euyyE V... v =f3("’1)1("1)’ caep () 8

-104 -

We also call A, and A partially isomarphically equtvalent, when {P_|o € Q } is evident
from the context. . _ R

The reason for requiring @, to be a bijection (and not a partial -one to one
function) is the assumption that for the case when a constructor is specified to have a
nontrivial precondition, if it terminates normafly on an-ifiput 1ot satisfying its precondition,
the value returned can be constructed by the constructors usmg mputs satlsfymg their
precondmons ' /

3.5.2.2 Isomorphic Embeddability

- In the definition of . somorphae embeddability relation, we want to capture the
mtumon that. if a specification S associates an .optional .exception condition with an
operation o, then.on an input X satisfying the associated boglcan;eoudrtaon O(X), the
function corresponding to ¢ either behaves the same in different algebras in.~F(S) e, it
either returns the ‘same’ value or signals the same exceptton value) or the .function
behavior differs in different algebras to the extent tl'at m one algebra, the functlon signals
the desired exceptron value and in the other the functlon returns thc desrred normal value.
The condition (iii) i in the deﬁmtron below capturwthls. '

' If any constructor o is specrﬁed to opnonally srgnal then the value set of D
defined by one algebra in F(S) may be a subset of the value set of D defmed by another.
algebra in F(S) (ln fact, one value set may have a value that is dlstmgutshable from every
value in the other value set.) That is why m the deflmuon below we do not reqmre the
mappmg relatmg the value sets of D in two algebras tobea buectlon lnstead it lS requu'ed
to be a one to one parual function.? However the mappmg must be def ned for every
value constructed by the function oorrespondmg to a constructor o usmg mputs which
~ satisfy the associated precondmon ‘and do ot sattsfy any boolwn condmon stated in a

- required exception condition or an optlonal exceptron oondmon specnﬁed for o. Thts.

constraint is captured in the condition (i) below

9. That is also the reason for calling the relation isomorphically:emboddable.

-105 -

Def. 3.13 Given two algebras Al» and A, in RS) satisfying the requirement about the
domain_corresponding to D’ € A stated in Def 312,A,is zkb}noibhicdlly embed&able inA
w.r.t. S iff there exist 1-1 partial functions @y, ; vll};'j* VIZ) and &gy : EXV, - EXV,, with
the following properties: . o
(i) for every set of Valu&s L for a constructor e, if
(a) Pa[xll Vs oo X/ v] holds,
(b) for every required exception condition specified for o, its boolean condition
Rlx/v,, ...,x /v] doesnot hold, and R o
' (c) for every optional exception condmon spec:ﬁeﬁ for o, its boolean condltlon
0[x/v -+ x_/v] does not hold, ‘ I o
then (bD is defined for every.value fl(v s eees vn),
- (ii) for every. exception name ex : D X ... X D , ‘
®pxy (ex(y(,» e ¥) = ex(QDi(vl), 'DB (xm)) 1f QD,(V) lsxsdeﬁned for each
1<i<m,and .
(iii) for each ¢ € Q, for every set of values Visooos Vo such that °D.("i) is defined for each
1<i<n, L
@ifonv, ..., v, f; signals an exception value ex(v), ..., v;) specified to be
optional. by S, then the associated conditionfﬁj(ﬁtl;,;.;, 'xg)*?hows on v, ..., v, and
f;(‘«bbl(vl), e @D#(vh)) either signals ex(#ljls(vi),»;. ii ,'1!“: (vl;» or .retums*él"),(v’)? for
some V., or b N e ,
® if op). ... ¥ () are defined and f2 signals an * exception vahie
ex(oDi(v) d:D (v)) specxﬁed to be opt:ona& by S on mput ¢D (v) . ®p (v)
then the assomated ‘condition O(x, s X) holds on 6 (v) d»D (v) and |

£, .. v) either signals ejt(v', L vi)or retums V; otherwnse

NORTHCRNS m_{,z@,). «».,(v»} L

For example, let us modify the model A_, dlscussed in Subsection 2.3.2 so that
the function corresponding to Push signals overﬂow lf sequence size is 128, instead of 100,
and call the modified model A’ It can be shown that A_, Is isomorphically

stk’
embeddable in A, . Al IS is ‘bigger than A, because the value set corresponding to

- 106 -

Stk has more elements in A st than in A . When optional exception conditions for
constructors are specified to state a least upper bound on the size of the values of the data
type, as in case of the specification of Stk-Int in Figure 3 2, different algebras in F(S) may

have different upper bounds on the size of the values in their value sets.
3.5.2.3 Partial Isomorphic Embeddability

We combine the notions of partial isomorphic equivalence and isomorphic
embeddability to define another relation, The. new. relation captures both kinds of
intentional incompleteness, due to preconditions as wgll as due to optional exception
conditions.

Def. 3.14 A | I8 partially isomorphically embeddable w.r.t. S in A, if and only if there exists
a model A’ in RS) such that A’ Js partially- isomorphically’ equivalent to A, and A’ is
isomorphically embeddable in LV ' ‘

3.5.2.4 Definition of Behavioral Completeness

- We define behavioral completeness of a specification by relating the reduced
models of the data types having maximalnngountoﬁhmdetaﬁxi'nimmllowed by Sin D(S)
using the partial isomorphic embeddability relation. The definition of behavioral
completeness .is a single level definition in the sense. that a speciﬁcation S can be
behaviorally complete irrespective of - whether a. speafmt;on of a deﬁmng type in S is
behavnorally c;omplete If the specification of a defining type &behaworally incomplete, .
the mcompleteness will be reﬂected in the semarmcs of a behaworally complete S. So, in
the definition, we consider only reduced models m F(S) that have the domains
correspondmg to each D' € A defined by the nsomoq)hlcally eqmvalent models in RS,
wheseS’:saspec:ﬁcaﬂonofD’ ‘ T

- 107 -

Def. 3.15 A specification S is behaviorally complete iff (i) S is inconsistent, or (ii) for any
two reduced models A, and A, in RS) having maximum amount of nondéterminism
allowed by S and whose domains .corresponding to each D’ € A. are defined by the
isomorphically equivalent models in RS'), where §' is. aspecaﬁcatlon of I, A is pamally
isomorphicaily embeddable in A, or vice versa..

The reasons for having the first case this way in the above definition are that for
an inconsistent S, KS) = &, so any relation améngalgeb’ras in AS) holds, and that we
want our definitions to be compatible with the definitions of conSIstency and comp!eteness'
~in Ioglc in which an inconsistent theory is compfete '

~ For examples, the spécifications of Sct-int ‘Stk-Tit, and Bool in Figures 3.1, 3.2,
and 3.4 respecuvely can be shown to be behavnorany comp!ete ‘Note that any spech cation
not specifying any observers is mvnally behawom‘ny complefe We ¢an show the' foﬂowmg

Thm. 3.3 For a specification S specifying only deterministic opemtlons and not specnfymg
any precondition or an optional exception condition for an operation, a consistent Sis
behaviorally complete iff S precisely specifies a data type D assuming that the specification
S’ ofevery D' € A precisely specifies D'

Proof The above definition of behavioral completeness reduces under the stated
conditions to requiring that the reduced models in RS) are 1somorph|cally equnvalent.m
| This means that RS) = M,
Hence the theorem. 8

The behavioral completeness property guarantees that -the behavior of the
operations has not been left unintentionally unspecified. However, there are situations
when the behavioral completeness requirement on specifications is restrictive [31, 51}. For
example, consider a modified version of the specification of Set-Int in Figure 3.1 in which

Choose is not specified to nondeterministic. In such a specification also, we do not wish to

10. If a specification docs not specify a nontrivial precondition for an operation and also docs not specify any
optional exception condition, the partial isomorphic cmbeddability relation reduces to isomorphic
equivalence,

- 108 -

commit to the value Choese may retum on an nonempty set, so the axiom speafylng'

Choose is still

Choose(s)€s = T.
This specification is not behaviorally complete We would want such a specification to be
behaviorally incomplete, as otherwise Cheese must be completely specified. The
behavioral completeness requirement is restrictive in such a case because the reduced
algebras in the semantics of the modiﬁed specification ka‘re not isorgpfphically equivalent.
For _example, in one reduced élgebra, the function ;:orfcspond,ing to Choose when ap_plied

“on { 1,3} may return 1, while in another reduced algebra, the corresponding function may

return 3. For most specifications specifying nondeterministic operations, if we modify such
a spéciﬁcation so that an operaiibn speciﬁed originaliy to be nondeterministic is instead
specificd to be deterministic, then we would often. want the modlﬁed specification to be
behaviorally incomplete.

- 109 -

3.6 Comparison With Related Works

We compare our specification language with those of Guttag et al. [29] with
extensions proposed in [31], Zilles [77], the ADJ group [22, 23], Burstall and Goguen [7],
Goguen and Tardo [21], and Nakajima et al. [62]. We first discuss the capabilities of these
specification languages and the approach used to give their semantics. Later, we compare
the semantics of a specification in these languages.

Zilles [77] and ADJ [23] do not allow auxiliary functions in a specification, so their
languages have a limited expressive power. Zilles [77] assumes that the operations of a data
type are deterministic and that they do not signal exceptions. The ADJ [23] do not allow
nondeterministic operations either; they adopt the simpler approach discussed in
Subsection 2.3.3 for modeling exceptions, and discuss a specification language embodying
this approach. Goguen [20] extended the ADJ method of modeling exceptions, which we
compared with our approach in Subsection 2.3.2. His approach‘ for ‘specifying/exceptional
behavior of the operations is different from our approach; it is motivated by the view that
exception values are like normal values (and so they are typed). The exceptional behavior
of the operations is specified using equations. Our language is richer than his language
because of the preconditions and the distinction made between optional exception
conditions and required exception conditions. His semantics of the specification method is
complex. _ '

Burstall and Goguen’s [7] CLEAR language and its extension, the OBJ language,
support hierarchical structure and modularity like our language. However, Burstall and
Goguen "have ambitious goals; they are attempting té develop a general purpose
specification language based on algebraic semantics .in which the semantics of a
programming language can be specified. So they are forced to introduce complex
mechanisms, for instance, procedures'operating on theories, which make the specification
language hard to understand. The category -theoretic semantics of their language is also
.complex [30] Our approach instead has been to concentrate on the data component of
programs, and develop a specification language and a formalism for data types. Our
semantic method is simpler.

Guttag et al.’s work [29] is the closest to our work. Their language is limited as it

-110 -

cannot specify data types with nondetenninisticvoperations As was said in Section 3.1, our
specification language is an enrichment of the specification language in B1). Owur
formalism can provide a semantics for their speciﬁcation language. Our formalism can also
be used to provide a mathematical basis of the AFFIRM system [60 61]. In this sense, our
formalism places their work on a firm basis. |

Nakajima et al. [62] specify a data type, as discussed in Chapter 1, as a first order
theory. Their method differs from other methods including our method because they allow
any first order fonnula to be an axiom in a specrﬁcatron Auuhary functions are not.
~allowed in a specification. Operations are assumed to be detenmmstre they do not signal
exceptions. We have not yet seen the semantrcs of therr specification language. If we
assume that a first order theory is mterpreted in a standard way as in Logrc [16], the
problems with thrs approach are dxscussed in the related work. section ol‘ the ﬁrst chapter.
We further comment on their specrﬁcatron method in the next chapter from the point of
view of deducing propemes from a specrﬁcatton

Burstall and Goguen Nakajima et al., and Guttag [31] can specrfy a type scheme
(also called a parametenzed type) in their languages Recently, the ADJ group [71] has
given a category theoretic semantics of a parametenzed type. Our specification language,
as it is, cannot express a parameterized type. However it should be evident from the
discussion that our formalism as well as specrﬁcatton language can be easily extended to
parametenzed types We discuss these extensions in the last chapter of the thesis.

There are dxfferences between our semantrcs of a specrﬁcatron and those of
Zilles, the ADJ group, and Guttag et al. [28], whrch are motlvated by different definitions
of a data 4ype used in various foﬁnahsms leles and the ADJ assume that values not
specrﬁed to be related by the axioms are different, even if they are observably equivalent.
Guttag et al. on the contrary assume that the values are equwalent unless specified to be
different. We have taken a different approach; we consider the axroms as specifying the
observably equrvalence relation. Our approach towards the semantrcs of a specrﬁcatron is
similar to the one adopted in logic; we consrder all models of the axioms to be the
semantics of the specification. (Of course, we consider only the algebras satrsfymg the
mmrmahty property for modeling data types, and rule out nonstandard models) Our

-111 -

semantics thus subsumes Zilles's and the ADJ’s definitions, as well as Guitag et al’s
definition in the following way.

To understand the semantics of a specification in the ADJ group formalism as
well as in Zilles’s formalism, we introduce the following definition. As is stated in
Subsection 2.2.6, the models in KS) can be partially ordered using the onto
homomorphism relation, i.e., A <A, if and only if A mahomomorphnc image of A,.

Def. 3.16 A model A in RS) is called initial if A gs a maximal model wlth respect to the

homomorphism relation, and A identically satisfies S.’]

In an initial model A, V ' for each D’ € A is a value set defined by an initial model in KS’),
where §' is a specification of IV, Two members in-V,, are not the same unless they are
rélate'd by the axioms and restrictions. The ADJ group and Zilles define the semantics of a
specification S to be the set of initial models in AS). Guttag et al.; on the other hand,
define the semantics of a specification S to be the set 'of reduced models in RS).

-112 -

4. Deductive System

~In this chapter, we develop -a deductive system for abstract data types. The
deductive system embodies general properties of data types which are not explicitly. stated
in a specification but assumed in the semantics of the specification language. We construct
a theory of a data type, which is a collection of pmpert_ic_s of the data type, from its
specification. The theory of a data type can be used in reasoning about programs and
designs that use the data type in the same way as the propemes of natural numbers are used '
in reasoning about programs operatmg on natur'll numbers. In. particular; the correctness
proof of an implementation of a data type with respect to its specification as discussed in
the next chapter, involves the use of the theories of its defiring types and the theory of its
rep, the data type whose values are used t0 represent th‘é« values of D in the
imélememation. We can pose questions about the behavior of a data type and check
whether they can be answered from its specification according to our intentions using the
deductive system. In this sense, constructing the theory of a data type can enhance our
confidence in its specification.

The construction of the theory of a data type from its specification has an
important advantage that the theory does not depend on any particular implementation of
the data type. The correctness criterion used for lmplementanons in Chapter 5 guarantem
that every property.in the theory is satisfied by every correct implementation. We can thus
reason about programs using a data type abstractly without referring to any particular
implementation of the data type. This separation between the theory of a data type and its
implementations via the specification factors the proof process in to two indepehdent parts;
(i) Proof of use of a data type, and (ii) proof of correctness of implementation of a data type
[37]. In this chapter, we discuss the first part; we discuss the second part in the next
chapter. | .

The theory of a data type is constructed hierarchically from its specification, using
the theories of the types used in the specification, just like the specification of a data type is
designed. The design of our specification language has been influenced by the goal that a
specification should not have to state more than what is required and that it be structured

-113 -

in the sense that different components of the data type behavior are separately speciﬁed.'
To construct the theory of a data type from its specification, we combine these components.
For instance; as is discussed in the previous chapter, an axiom.in the axioms component has
a restricted interpretation: A variabie of type IV in the axiom cannot be freely substituted;
instead, the substitution should be such that the input to every operation symbol satisfies its
precondition as specified by the restrictions component, and no operation invocation
should signal. We first construct the unrestricted axioms from. the restricted axioms in. the
axioms component of a specification. using the gestrictions; these unrestricted axioms are
used to construct the theory. Henceforth, we refer to a (restricted) axiom in the axioms
component of a specification. as a formula and to an unrestricted axiom as an axiom to
avmd confusion. : . R |

The proposed deductive system is used 10, prove properties. m.mually We have
not investigated the possibilities of automating the deductive system, but we relate our
work to. Musser's work [60 61] on automatmg the. proof’: theory of data types from their
algebraic specifications. P FT IS PRTIETL IO A ‘

~ Instead of discussing the complete deducnvc system and the construction of a
theory from .a spegification _specifying nondeterministic, operatigns -and operations
exhibiting exceptional .‘bg‘l‘xavior in a single shot, we do so step by step., We first discuss the
theory of a data type with deterministic operations and without considering their
exceptional behavior. We then incorporate the exceptional behavior of data types into
their theory. Finally, we discuss data types with nondeterministic operations to exhibit the
extra machinery needed for in'troducing nondeterminism.

For specifications specifying only deterministic operations, we discuss various
subtheories, namely, the equational subtheory, distinguishability subtheory, inductive
“subtheory, constructed using different fragments of the deductive system. We define three
structural properties of a specification, namely, sufficient completeness, well definedness,
and completeness. Checking for these properties for a specification is a step towards
ensuring the correctness of the specification. We precisely state the sufficient completeness
property defined by Guttag and Horning [28] for a restricted set of specifications and
extend it to specifications in our specification language. This property requires that the

- 114-

behavior of the observers on their intended inputs can be completely determined from the

specification by purely equational reasoning. We relate this property to the behavioral

completeness property discussed in the previous chap'ter; ‘which is model theoretic'and
which requires that the specification completely specify the behavior of the observers on
intended inputs. Recall that the behavioral completeness property does not say anything
about what can be deduced from the specification. We show that sufficient completeness is
stronger than behavioral completeness.

The completeness property is even stronger than the sufficient completeness
property, since in addition to the requirement that the behavior of the observers can be
deduced on any intended input by equational reasoning, it -also requires that the
equivalence of the observable effect of the constructors on intended inputs can be QEduced
from the specification by equational reasoning. ' ’

The well definedness property constrains that a specification be modular in the
sense that it preserve the specifications of defining types and auxiliary types in it. This
property is stronger than the consistency property. ’

In the last section, we define a stronger equivalence on ‘sﬁeéiﬁc:itions than the
equivalence defined in Section 3.3. The stronger equivatence of specifications requires that
not only the two specifications have the same semantics, but their theoriés must also be the
same,

-115-

4.1 Preliminaries

A data type can have many different but equivalent specifications (sce Section 3.3

and Section 4.5). These specifications may differ because

(i) they may specify the properties of constructors to different extents,

(ii) the properties of the operations are specified in different ways, and

(iii) they may use different sets of hllxiliary functions.
Theories constructed from different equivalent specifications can be different, as will be
clear from the following discussion. Unless s_tated otherwise, we assume that a data type
- has a single fixed specification; in the last section of the chapter, we discuss theories
constructed from different but equivalent specifications of a data type.

If a specification S specifies only a single data type D, then the theory constructed
from S is the theory of D. If S specifies a set of related data types, then the theory
constructed from S is the theory of the set of related data types. The theory constructed
from S consists of properties characterizing the behavior of the algebras in F(S), the
semantics of S. Let Th(S) stand for the theory constructed from S.

The deductive system uses multi-sorted (or many sorted) first order predicate
calculus with identity [16] as the underlying logic. Though a first order theory cannot
completely characterize the ‘infinite’ models in K(S), we prefer first order logic over second
order logic because of the following reasons:

(i) First order logic is well studied, and is better understood than second order logic,

(ii) most of the programming logics developed for reasoning about the control structures
of programming languages are first order,

(iii) the recent work of Cartwright and McCarthy [8] has established that even the
termination proof, which was believed to employ second order reasoning, can be
adequately done in first order logié, _ _

(iv) most of the work in automatic verification uses first order logic as the underlying
basis, and

(v) we believe that the most of the interesting properties of programs can be expressed in
first order logic. |

Multi-sorted logic is more convenient than single-sorted logic as it avoids the use of type

-116 -

predicates, which must be introduced in a single-sorted logic to differentiate‘among terms
of different types. We use an induction rule having ml’ mtely many premrses which is some
what unusual; the proofs using this rule are mﬁmtary We mterpret the fomlulas in TK(S)
in the algebras in RS); we do not consider uncountable structures because they are not
type algebras and so they are of no interest. -

As was discussed in the previous chapter, a»ufo‘rmula is interpreted in a type
. algebra in the same way as a formula in a structure in Logic [16], eicept that the symbol =
is intérpreted as the observable equivalénce relation (see the definition in Sections 2.2 and
23)on a domain instead of the identity relation. Because the observable equivalence -
relation is an equivalence relation and is preserved by every l‘unetron m a type algebra, the
standard rules for identity hold (ie., the rules for |dentrty are sound under thls
interpretation). ' o

' We now discuss the structure of formulas expressmg propertres of the models in

RS). Following Enderton [16), we define the language of Th(S) as the set of nonloglcal.
symbols; the nonlogical symbols are used with the logrcal symbols to construct formulas |
Let 1(S) stand for the language of Th(S) Instead of deﬁnmg the complete language of
TH(S) here, we introduce it incrementally. We drseuss here L(S) for a specrﬁcatlon neither
specifying nondeterministic operatnons nor the exceptlonal behavlor of the operatlons. :
D(S) includes the operatron symbols of D specrﬁed by S as well as the auxlhary functron
symbols used in S. Since 'l‘h(S) is constructed usmg the theones of the deﬁmng types and'
the theories of the auxiliary types used in S, l.(S) mcludes L(S') where S' isa specrﬁcatlon
ofadatatypel)' fbreachD'eAUA .

In Section 4.3 on specrﬁcatrons specrfymg excepttonal behavnor of the operatrons,
we include the exception names in l(S) In Sect:o‘h 44 on speclﬁcatlons specrl'ymg
nondetennmrstrc operations, L(S) includes addmonal symbols needed for expressmg |

1. A symbol (or an axiom or a rule of infcrence) is called nonlogical if it is specific to a particular domain of
discourse whosc theory is being constructed. 'This is in cogtrast 10, loslcal,symbuls' which arc dctermined by
the underlying Togic used to' dévelop the theory. For instance, a logical axiom characterucs the logical
reasoning available in the underlying logic, whercas a nonlogical axiom characterizes a prm about the
domain of dnscounle

-117-

properties about nondeterministic operations.

Terms of various types can be constructed using the symbols in I(S) and vanabl&s
of various types as discussed in the previous chapter. Aa atomic formula is;an equation of
the form ‘e, =.¢,, where e, and e, are terms of the same type. Compound formulas are
constructed from atomic formulas using the standard rules-of construction for first order
predicate ealculus with the help of logical symbols. ..

We consider a boolean term as-a term; sather thap an atémic formula; in this
sense, we adopt a uniform view about the. symbols in 1(S); considering each as.a function
symbol. This view is especially ccnvegieatyhemwg_;iga@gpggaté; the exceptional behavior
of the operations.. In case we use a. boplean tekm b.as a formula,. b is considered as the
abbrevmtnon for the equation ‘b= T. R

Recall that ‘e, = if b then e, is an abbreviation for ‘e, = lf-then-else(b » €) and
‘e, = il b then e, else ¢, stands for the following two conditional equations
‘e, = ifbthene)’

‘e if ~ bthen e’

In the simple case when exceptional behavior is not considered, ‘e, = if b then e’ is

]

equivalentto ‘(b= T) = (e1 = ez).' When we incorporate exceptional behavior, the above
equivalence does not always hold, because b could possibly signal an exception. However,
if b is guaranteed not to signal, then the above equivalence holds in that case also

We use the abbreviation * e # e2 for the formula ‘~ (v Xppouos X) [e =e)
where x , ..., x_are the only variables in e and e, Note that if e and e, are - ground terms,
then ‘e £e is equivalent to ‘~ (el = ez).’ In fact, it is easy to see that

(vVx,....x)[~ e=¢el=(e#e)

Only a subset of Th(S) is useful in reasoning about programs and designs using D.
This subset consists of formulas in Th(S) expressed using only the operation symbols.
Formulas expressed using auxiliary functions are not directly {useful because the auxiliary
functions are not available to the users of the data type(s) being specified, but these
formulas help in proving formulas without auxiliary functioni The correctﬁess criterion
for implementations with respect to a specification S discussed in the next chapter does not

require a correct implementation to include implementations of auxiliary functions used in

- -118-

S. Even if an auxiliary function is implemented, it is not available to the users of a data
type. o

“Let L(D) stand for the language of a data type D, which is a subset of L(S)
consisting only of the operation symbols. L(S) - L(D) is then the set of auxiliary functions
used in specifications of various data types. Let Th(D) stand for the subsct of THS)
consisting of formulas in TK(S) expressed ‘using the nonlogical symbols in (D). We are
primarily interested in formulas in TIKD). The correctness criterion used in the next
chapter ensures that Th¢D) holds for all correct implemientations with respect to S. ThD) .
. serves as the interface between programs using D and the correct implementations of D.
Note that Th(D) does not include those nonlogical axioms of T(S) which are expressed
using auxiliary functions, ' ‘

-119-

4.2 Theory of Data Types without Nondeterminism and without
Exceptional Behavior '

We start with the simple case of specifications that do not specify
nondetermmlstlc operations and the exceptional behayior of the operations. The
restrictions component of such a specification may spemfy the nontrmal precondmons for
the operations. For illustration, we modify me_d‘alt:a type, Siet-lﬂn_t, so that Choose is
deterministic; let Set-Int’ stand for the modified Set-Int. ;Tft;e,:sp‘eciﬁcation of Set-Int’ is
~given in Figure 4.1, which is obtained by modifying» the spétiﬁczation of Sel-lnt, given in
Figure 3.1. The syntactlc spec:lﬁcauon of the operation Choose does not have the 1dentlf1er
nondeterministic. Instead of the required exception condition for Choose on the empty set,
we specify ‘~ #(s) =0 asits prpcondmon in the restriction component of the spec:ﬁcat;on'
of Set-Int'. | ,

We first discuss how to construct unrestncted nonlog:cal ax10ms of Th(S) from

Figure 4.1 Specification of Set-Int’
Operations -

Null : — Set- Int' P as@g.
insert : Set-Int’' Xint — ‘Set-Int" S
Remove : Set-Int’ X‘Jnt — Satint’ ,

Has : Set-Int’ X Int — Bool 7 as fx2€ X '
Size : Set-Int’ = Int o a5 #(x)
Choose : Set-int' — int ST

_Restrictions
Pre(Choose(s)) :: ~ (#(s) = 0)
Axioms

Remove(d, i) =

Removelinsert(s, iﬂ i2) = i1 =12 then Remove(s it) else Insérﬁﬂemove(s i2),i1)
i€Cld =F _—

i1 € insert(s, i2) = iti1 = i2 thenTelseH €s o

. #B) =0

#(Insert(s, i =ifi€ s then #(s) else #(s) +1

Choose(s)Es =T

.".‘”"‘:"‘PP.“

-120-

the formulas in the axioms componerit and the: preconditions specified in S. We then
discuss how to construct Th(S) from the nonlogical axioms thus obtained.” We do so step
by step exhibiting the power of various fragments of the deductive system. This will also
help in investigating how ea_sﬁy these friigments can be automated. We first discuss a
simple but useful subset of Th(S), ‘called the equational s:u‘b‘theory: and Writte‘n as EQ(S).
Formulas in EQ(S) are proved using the niles of = and the substitution rule of v. Most of
the work on developing the proof theory of data types from their algebranc speaﬁcanons
has focused on this subtheory {23, 71, 7, 21, 29] -

We discuss later a richer subtheory, called the disungulshabliuy subtheory and
written as DS(S), having inequalities * e # e in addition to’ equations. The inability to
prove an mcquahty has been a major limitation of the re¢ent works on proof theories based
on: algebra spec:ﬁcauons For instance, both in Zilles’s method as well as in’ ADJ’s method
two terms e, and e, are unequal, i.e., ‘e, # e, is provable, if and only if'e, = e2 is not'in the
equational subtheory, so the proof of mequ:xlity becomes mieta, Zifles l’761 récognizes this
limitation and suggests also using inequalities as axioms. -In-our deductive system,
inequalities can be proved from equations by the methad-of proof by contradiction. We
have this advantage because we view two abstract values (i.e., ground terms) of a dat_a type
to be distinguishable (so unequal) if and only if a sequence of operations can dnstmgmsh
them. This is in contrast to the view taken by the ADJ g[oup and le}ésiﬁai iwo« abstract ‘
values are distinguishable if and only if they are not specnﬁedtéfbe equal

We later include an mductnon mle Wthh captures the mmxmahty prqperty of a:
data type. This rule is ‘infinite’ and is derived from the syntactac specifications of the
operations and the restrictions components of the specnﬁcat:on More properties of a data’
type can be proved using the induction rule than without it. We discuss how .the rule is
used to prove other rules using the nonlogical axioms derived from the specification, whlch
simplify the proof of propcmes of the data type. The subset of equatlons and mcquahnes
provable using the mductton rule and the rules af the distingpishability subthcow is Calbd»
the inductive subtheory and written as IND(S). .

We finally construct the full theory Th(S) usmg the whole machmery ef ﬁrst;'
order predicate calculus and the ‘infinite’ induction rule. We demonstrateﬂzcnseof Tll(S) |

-121-

in verifying properties of programs. Every subtheory (as well as the full theory Th(S)) is
constructed hierarchically from the corresponding subtheOry. (or the full theory)
constructed from the specifications of the defining types and-the auxiliary types.used in S.
For instance, IND(S) is constructed - from lND(S) where S’ 1S a 8pemf ication of
D€eAU A

~ In the last subsection, we define sufficient: campleteness completeness and wel
definedness properties of a specification, and relate them to behavmral comipleteness and

consistency properties discussed in Section 3.5.
4.2.1 Derivation of Nonlogical Axioms

The unrestricted nonlogical axioms for a speciﬁcation S can be' derived ina
nonloglcal axioms are generally ccndmonaleqtmﬁﬁhs;-‘lset PCe_stand fora conjunctmrf of
conditions of the form ‘P (e,,...,) =T for every ‘occurrénce’ of ¢ having the input
e.....e in‘e. If an equiation * e, e ' is i the akioms:coimponént of S; the earresmndmg
nonloglcal axiom of Th(S) is the formula R

(PC, A PC,)-f»(e = e}
For: example ‘the formula
Choose(s) €s=
has an occutrence of the operation Chogse, ‘which is spetlffe‘d\‘t'd have the nontnv1al
precondition, so the confespOndrhg untréstricted nonloglcai axidm s -
~ (~#€s) = 0 h:((‘hoose(s) €s -'f) S e

“f a formuta‘in the: axioms’ cﬁmponem ‘does not have any operation spec1ﬁed o
have a nontrivial precondition, theri ‘the formuta itsélf sérves'as the” ndnidgrcal axiom. For
example, the formula o e)

#(Insert(s,i)) = ifi € sthen #(s)else #@) + L. 55000 o0
1tse|f serves as a nonloglcal axiom.

For any restricted quanu&er-free formula £, the: oorrespondmg umestneted
~ formula is * PC = [, where PC*ns a comunctnon of the formulas PC, p for’ every :te,rm e in.

the formula f.

-122 -

4.2.2 Equational Subtheory

The .equational subtheory EQ(S) consists of- -‘e‘qu:'nions derived from the
nonlogical axioms of S. An -equ‘ﬁtion o = ez' is in EQXS) if and only if it is provable from
the nonlogical axioms of S and EQ(S'), where S’ is a specification of I, for each
D' € AU A,, using the four rules of =, namely,

(i) reflexivity,

(ii) symmetry,

(iii) transitivity,

(iv) substitution property of every function symbol,
and,

- (v) the substitution rule for-the universal quantifier v (i.e., gnbstituting an appropriate

term for every occurrence of a-free variable.in a nonlogical axioin).
All five of the above mles are not necessary; some of them can be denved from the others
- [16}. As an illustration, we- gwe a proo£9f the equauon #(lnseﬁ(hsert&blﬂll,), =1"in
Figure 4.2.

EQ(S) defines a relation on ground terms of dtffgrent typﬁ Jet - EQD stand for
this relation on ground terms of type D). For any ground terms e and,ez, (gl,,eg. € EQDJf :
and only if ‘e, = e,” € EQX(S). : . : , '

If the nonlogical axioms are equations (possibly using if-ther-else functions), they
can be considered as unidirectional rewrite rules.by, defining.an approprate ordering on
terms. If a decision procedure for EQ(S) _exists (i.e.,. the rejation: EQpy for, each
D' € AU AU {D} is.decidable), then it is often possible. o, generate a convergent set of
rewrite rules from tlie. rioalogical axioms. using the Knuth-Bendix algorithm [44], which

R

Figure 4.2. Proof of ‘ # (Insert(Insert(Null, l),i»sa P

1. -i € Insert(Null, i) =T Substitution in Axlom 4 of Sct lm and thc (hcorcm of Int

2. #(InseriInscr(Null; i), i)) = #(Inscrt@Nol,i)) Stop L, mbsmmmh in Axiom 6 of Set-Int"
] =#Nul)+1 : v - Axiom), substitugé AmanoméofSe& Int’, and tansitivity.

=0+1 " Axiom'S of Set-Int.
=1 Theorem of Int.

bl

-123-

constitutes the decision procedure for EQ(S). The AFFIRM system [60] is designed in part
around this result. Though nonlogical axioms using if-then-else functions have been
studied [60,21, 5], there appears to be some difficulties in using the Knuth-Bendix
algorithm on them {61].

For automating the process of proving properties from the nonlogical axioms of S
using the above five rules, it may be helpful to view a formula of the form

PC= (¢ =¢),
where PC is a conjunction ‘b1 =TA...Ab =T asthe formula

e=ifbA...Ab thene,
as the two formulas are equivalent and the second formula can be considered as a rewrite
rule. For example,
A~ #GE5)=0=T) => Choose(s) €s=T
can be viewed as
Choose(s) €s=if ~ #(s) = 0 then T.

4.2.3 Distinguishability Subtheory

The distinguishability subtheory DS(S) is richer than EQ(S); it has two kinds of
formulas: (i) ‘e, = e, and (ii) ‘e, £ e,” Our approach for proving inequalities is simple; it is
based on the definition of distinguishability discussed in Sections2.2 and 2.3. The
distinguishability theory of Bool serves as the basis; since ‘T £ F' is a formula in the
specification of Bool, ‘T £ F' € DS(Bool). (Recall that only the specification of Bool
includes an inequality as an axiom.) ‘T £ F obviously holds in every model of Bool. This
inequality is used to prove inequalities of terms of type D by reductio ad absurdum (proof
by contradiction); this is the sixth logical rule, besides the five rules discussed in the
previous subsection, which is used to construct the subtheory DS(S). We of course use
inequalities in DS(S’), where S’ is a specification of D' € A U A,.

Given two terms e and-ez, we prove ‘e, # e2’ as follows:

We assume on the contrary that ‘e =e Y

2

= eé ’. where ‘ei £ ¢’ is already provable, ie., either

we then derive ‘e A

1

‘e e € DS(S), or “ e, £ e, € DS(S).

-124 -

We illustrate the above rule to prove the inequality ‘Null £ l‘hscrt(s i) in Figure 4.3. For
any ground terms e, and e the formula * e # e mterprets in & model in F(S) to whether

The method of proof by contradiction can be mtegrated into a rewrite rules
system like AFFIRM. If an inequality ‘e, £ e,’ is to’be”'b'rbi/’ed._\-ve' assume ‘e, = ez’ as an
axiom and add it to the set of nonlogical axioms. We get the rewrite rules corresponding
to the new set of axioms and run them to check whether a contratﬁctlon i.e., one of the
rules T—F and ‘F-T or “¢- €]’ is generated, where the mequahty e ée is already.

proved.
4.2.4 Inductive Subtheory

The subtheory DS(S) is still not rich enough because there are many useful
equational formulas which hold for every data type:ig, DfS), but.cannot:be proved using the
logical rules of DS(S). For example, the equation

Has(Remove(s, i), i) = F

cannot be proved because

(i) there is no nonlogicat axiom drrectly expressmg lhe behavror of }Ias on a set argument
having the structure Remove(s, i), and I

(ii) Remove(s, 1) is not equrvalent to Null or an expressron oT the form Insert(s i’) unless
some conditions are placed on s. 7 - '
But, ‘Has(Remove(s, i), i) = F holds in every ‘model in Rset-lnt') ‘Even if we use the
whole deductive system of first order predrcate calculus, this fbrmula carmot be proved
from the nonk)grcal axioms of Set-lnt’ : '

Figure 43 Proof of Null £ lnsen(s, i)

To prove Null # Inscrt (s, i)

assumc Null = Insert (s, i) o ; ,
Has (Null, i) = Has(Inseri(s, i), i), substitution property of Has
FaT, the axioms 3 and 4 of Sct-Int’,
which is a contradlcnon ' '

so Null # Insert(s, i) € DS(Sct-Int’).

-125 -

The above limitation is due to the fact that the minimality property of data types, |
which is captured in the definition of a type algebra, is neither captured in the underlying
logic nor expressed as a nonlogical axiom (see the discussion of the minimality property in
Section 2.1). We discuss below an induction rule which captures this property. The rule
can be constructed from the syntactic specifications of the operations in S. We compare
our rule with other similar rules proposed in the literature, and demonstrate the inadequacy
of some of these rules. We discuss how the ‘infinite’ rule can be used in proofs. For better
exposition, we first assume that no constructor of D is specified to have a nontrivial

precondition by S; we later relax this restriction.
4.2.4.1 Infinite Induction Rule

Def. 4.1 A ground term e is called a constructor ground term if e is expressed only using

constructor symbols. 1

() Induction Rule
Given a formula ®(x) with a free variable x of type D.

For every constructor ground term e of type D, o[x/¢] - (Vv x) ®(x).

The above inference rule is infinitary, as there are usually infinitely many constructor
ground terms of type D énd so, the rule requires infinitely many premises. The notion of a
proof is infinitary whenever the induction rule is used. Intuitively, the above rule states
that if a formula ®(x) holds in every case when a value of type D is substituted for x, then
we can deduce the formula ‘(V x) ®(x).” It is easy to see that the above rule is sound
because every type algebra by definition has the minimality property, which states that
every value o.f D is represented by some constructor ground term of type D. It is sufficient
to consider only constructor ground terms because these represent every value in a type

algebra.
Burstall and Goguen [7] also realized the limitation of the proof theory based on

- 126 -

the rules of =, 2 They introduced the induce operator on theorieS' the induced theory is
equwalent to the original theory with the above mduct:on rule The above |nduct|on rule is
a generahzauon of the structural mducuon rule of Burstall [6] The structural induction
rule is based on 1dent|f)mg a mlmmal set of constructors (mstead of all conslructors) whlch
generates the values of D and has the property that every ﬁmte sequence of constructors in
the subset generates a dlstmgmshable value To our knowledge, Wegbreit and Spltzen [72]
were the first to. generahze the structural mductlon mle but they presented it mformally .
The data induction rule of Guttag et al. [29] is the same as the mductlon rule of Wegbrelt
and Spitzen. Recently, Musser [61] has suggested a formalization similar to our

formulation of the rule.

4,2.4.2 Rationale for an Infinite Induction Rule. . .

Below, we discuss the rationale for using an infinite rule to).' capture the
minimality property of a data type. We demonstrate the inadequacy ‘of an induction
scheme seemingly suggested by Wegbreit and Spitzen [72], Guttag et'al. {29}, and Nakajima
et al. [62). For illustration, we use a simple ‘version of the' data type matural number,
denoted by N,. N, has four operations: 0, the constant zero; S, the successor operation; P,
the predecessor. operation; and, =, the equahty operation. - Its spegification. is given in.
Figure 4.4. The constructor P is ,_denved_ in thesensetl@tme values returned by P can be
constructed using 0 and S. We would like to prove from.the nonlogical axioms of N, .and.
the induction rule, the following normal form lemma in the full tlwory

M v)bk=0vanlx=SmIil .
In general we would like to have in T(N,) the scheme
@ @) AV) [(x) = &(S(x) D = (¥) #(x),. .
where ¢ is a first order formula with at least one free vanable
If we express the minimality praperty of N, with the following scheme:
) @0) A (¥ x) [&(x) = ($(P(x)) A &(S(x))]) = (V x) &(x),

2. However, ADJ [71] do not scem to agree that propertics provable using the induction rule are relevant.

-127 -

Figure 44. Specification of Data Type N,

Operations

0 : =Ny

S :Nz-ﬂNz

P :N2—’N2

= :N2XN2—"BOO|

Axioms

P(0) =

P(S(x)) = x
x=x=T
Xzy=y=zX
S{x)=0=F
Sx) =Slyl=x=y

where @ is a first order forrnula we can neither prove (lj nor (2), This is because there are:
nonstandard models of the nonlogical axioms given in Flguie 44 and the scheme (3) in
such model in whnch the nonloglcal ax;oms as, well as me scheme (3) holds but the formula
scheme (2) does not hold The model has an infinite chain gqmg from a constant symbol ¢
in both dll'eCtIOI)S in addition to the chain of ‘natural _pumbers, and there is a unary
predicate symbol M whose interpretation in the model is the; Jpredicate. whlch is false an,all
coustants on the negative side of ¢, and true otherwise. The figure shows the values in the
models on which the interpretation of M is false, =i oo o sl

The scheme (3) does not capture the property that the operation P when applied
on any natural number will hit in finitely many steps ‘dithér 0' dra rumber-that behaves hke
~ 0(in nonstandard models). This property is tieeded to detive (2) of (1‘) o

It should bé obviows that the schemé: 1¥4] as well as'the formuta’ (1) hold in every
model in AN,). Formutas of the kind (2) and the forinula (1) are very useful in proving
properties of programs using N,. ‘For example, using the formula scheme (2); the proof by
induction amounts to checking for the basis condition nnd a smgle case in the mductlve
step, where as (3) requires two cases in the inductive step. T

“We would like' the- induction nulé to~"be constructible from the syntacnc _

- 128 -

Figure 4.5. A Nonstandard Model of the Axioms in N with the Scheme (3)

S S S
0->1->=-2-)-3 =>4 ...
< < <-...
P P P
S S S S S
R ey L a3 o T o T S o 'S N
< < < < <-
P P P P P

F F

specification so that the rule does not have to be stated explicitly for every data type in its
specification. In addition, the induction rule should be strong enough so that, for example,
the formula scheme like (2) and ihe normal form theorem (1) can be derived in case of N2.

The above discussion shows that the scheme (3) is not powerful enough. However, the
infinite induction rule (3) for N, does the job. " It can bé shown that the scheme (2) and the
formula (1) are derivable from that rule. '

Another alternative for charactenzmg the mmnnality property is to use
multisorted second order predicate calculus as the underlymg Togic and express the
minimality property as a second order formula. But, this approach is not attractive because
of the reasons discussed in the first section. |

4.2.4.3 Use of the Induction Rule

For using the induction rule (), we must establish infinitely many premises. This
can be done by imposing a partial ordering on the set of constructor ground terms,and‘
using induction on ground terms. We discuss below a technique for doing this. We start
with an instantiation of this technique which uses the structure of the ground terms; this
method is kqown:as the structural induction [6]. We show-that

(i) for each basic constructor o : D, x...x D — D, which does not take any argument
of type D, «b[x/a(e ,...,e)]isprovable,and
(ii) for every other constructor o € @, ®{x/a(e,, ..., e)] is provable assuming ¢{x/e] for

- 129 -

every Di = D.
However, there are situations when the structural induction is not useful or convenient;
instead, a different partial ordering on ground terms-is preferable.

We present below a generalized technique. Let G stand for the set of all
constructor ground terms of type D. We can deﬁne an ordering relation (non reﬂexlve
antisymmetric, and transitive) < on G such ‘that (G, () satisfies the: minimum condmon

Defining < on G gives a generalized (Noetherian) induction rule [10] on G.

Def. 4.2 (G, <) satisfies the minimum condition lff for every nonempty subset A of G, A has
a minimal element with respectto<.3 8

Generalized Induction Rule:
If for every e € G such that for every element 4 € G 1hat is < e, d>[x/ e] = ¢[x/e]
then (V e € G) ®[x/¢]. ‘ ' ‘
So, in order to establish the infinitely many premlses of the mﬁmte mductlon rule (T) we“‘
define a partial ordering < on the constructor ground terms in G such that (G <) has the
minimum condition and use the generahzed induction rule, |
Using the nonlogical axloms of S, one can ldentlfy a subset C of“G such that for
every constructor ground term e € G, there is a ground term € in C such that
‘e=¢e" € EQ(S) We can then simplify the mductlon rule usmg the followmg rule of ﬁrst
order predicate calculus:
(e= €) - ¢[x/e] = #[x/¢]
We need to show only that for every ground term e €C, d>Ix/e] For example it can be
shown in case of Bool, that for every boolean ground term e, elther e=T € EQ(BooI) or
‘e=F ¢ EQ(Bool) So to prove a property havmg a free vanable of type Bool by
induction, it suffices to show that the property holds in case of T and F.
Let us consnder the example of Set-Int’. The mductlon rule (1) for Set-lnt' i

3. The property of a set A satisfying the minimum condition with respcct to an ordcring relation < is related
to the well foundedness prapesty of A with respect to <. 1t-can be shown that A is well founded with respect to
< if and only if (A, <) satisfics the minimum condition.

-130 -

For every constructor ground term e of type Set-Int', &[x/¢] - (v x) #(x).
The following theorem establishes that the constructor Remove is derived in the sense that
it does not construct any valie of Set-Int’ drstmgutshable from the values. constructed by
Null and Insert.

Thl_n. 4.1 Every constructor ground term e of typeSctlnt is equivalent by equational
reasoning to a ground term ¢ not having any occurrence of Remove, ie., the equation.
e= ¢’ € EQ(Set-Int’). |

Proof Using mductlon on the number of Remove (and subsequemly the number of Insert)
in a constructor ground term, we show the above with the help of the axioms l and 2 of
Set-Int’. For details, see Appendlx 1. '

Using this theorem, we get a snmpler induction rule for Set-Int': _
(4) For every constructor ground term e of type Set-lnt' havmg onl) thc occurrences of
Null and Insert, d>[x/e] - (v x) *(x). 7)
We can define an ordermg generated by the followmg relatlon on ground terms
constructed using Null and Insert. .
~ Null < Insert(x, /), and x< Insert(x,) |
for any constructor ground term x and mteger constructor ground term i, Using the
induction rule (4), we can prove for any formula &,
(5) (elx/Null] A (v x) [#(x) = (v i) o(Insert(x, D)]) = (V. x)O(X)
We also get the following normal form theorem for Set-lnt' usmg(S)
(Vs)[s-Null()V(Ss i) s-lnsert(il .
Note that the above formula is dlfferent from Theorem 41 (The above formula is not in
IN D(S) because of the use of the exlstentral quanhﬁer 3 m 1t, byt it 1s m Th(S) as discussed
later.) Theorem 4.1 cannot be expressed in ﬁ;st order predlcate calculus Using the
scheme (5) and the nonlogical axioms of Set-Int’, we prove ‘Has{Remove(s, i), i) = F in
Figure 4.6. Recall that this formula could not be proved in DS(Set-Int’). -
The mductlve subtheory IND(S) consists of equatlons and inequalities, and is
defined to be the set of formulas derived from the noniogaeal axioms using the six rules
discussed in the last subsection (meaning DS(S) C IND(S)) and the infinite induction rule

-131-

Figure 4.6. Proof of ‘Has(Remove(s, i),i) = F

We usc the formula scheme (5) above.
Basis. Has(Remove(Null, i), i) = Has(Null,.i) = F o Axioms 1, 3.
Inductive Step Assume Has(Remove(s, i), i) = F, ‘ ‘ ’ '
to show (V¥ ib)] Has(Remove(inscrt(s, il), i), i) = F]
Casel:1 =11
“Has(Rcmove(Inscrt(s, i1), i), i) = Has(Remove(s, i), l) = F, Axiom 2, and the assumption.

Case2. ~ (i = il)
Has(Remove(Insert(s, i1), i}, i} = Has(Inscrt{Remove(s, i),i1),i) - Axiom 2.
= Has(Remove(s, i), 1)) = F Axiom 4 and the assumption.

Using the scheme (5), we get Ha(Remove(s, i), i) = F.

(+). We later discuss the conditions under which formulas in IND(S) can be p;;)ved ljns?ing"
the Knuth-Bendix algorithm (Subsection 4.2.7). R

4.2.4.4 Specifications with Nontrivial Preggg@;;@gg@}bbngfru6ibrs

The induction rule (+) is also applicable to speciﬁcations%s[')}:Cifyirfé;inbntriviﬁi
preconditions for the constructors as it captures a general property’ of da(a types and nvt a '
property of specifications. It can be simplified depending on the semantlcs qsed for a
* constructor ¢ on inputs not satisfying its precondition. . \

If nontrivial preconditions are speciﬁeif for constructors, we are i‘nférested in”
constructor ground terms in which the input to every constructor invocation satisfies the"
specified precondition. This is so because a constructor is not likely tafbe invoked Mﬂum
input not satlsfymg the specnf ied precondition. Even if the constractor is mvoked on such

an mput, we are not interested in its behavior.

Def. 4.3 A constructor ground term e is called legal if and only if (i) e does not have.any
occurrence of an auxiliary function, and (ii) for every subterm of e of thq_fonn
.., ¢,), where g is a constructor, ‘P (e'u, ..,)— T € EQ(S) [

el = a(eu, .

The restriction that ‘P (€ eln) T’ € EQ(S) is for convemence, we. could have
required the formula to be in Th(S), the full theory constructed from-S. (Recalt that PU(X) ,

- -132-

is a boolean term without involving any quantiﬁer’;) ‘We are mostly interésted‘in formulas
involving legal ground terms.

Assuming the semantics used in Chapter 3 (1e on an mput not satisfying its
precondmon o returns a value of D constructible. by ‘the: constructors of D using ‘inputs

Figure 4.7. Specification of Stk-Int

Stk-int as Stk
Operations
Null : —+ Stk

Push : Slk Xint — Stk
: — overflow(Stk, int)

Pop : Stk — Stk
Top : Stk — Int

Replace : Stk X Int - Stk
Empty : Stk — Bool

Auxiliary Functions _
Size : Stk — Int) as #(x)
Restrictions

Pre(Popls)) :: ~ Emptyls)
Pre{Replace(s, i) :: ~ Empty(s)

Empty(s) = Top(s) signals no-top() :
Push(s, i) signals overflow(s, i) = #(s) > 100

Axioms

1. Pop(Push(s, i) = s

2. Top(Push(s; 1)) = |

3. Replacel(s, i) = Push(Pop(s), l)
4. Emptly(Null) = T 4

5. Empty(Push(s,i)) = F

6. #(Null) = 0

7.

#(Push(s,)) = #(s) + 1

-133 -

satisfying their preconditions4), the induction rule () gets simplified to
for every legal constructor ground term e of type D, o[x/¢e] + (Vv x) &(x).
This is so because every constructor ground term that is not legal is equivalent to some legal
constructor ground term by the above assumption.
If the above assumption about the behavior of ¢ is dropped and ndthing is
assumed about its behavior on inputs not satisfying the preconditions, then we have
- for every legal constructor ground term e of type D, ®[x/¢] -

v V @x....x)x=olx.....x JAP_(x.....x)=T)D -
i=lm 1 n th 'n, % 1 "n

= o), -

where { Oppnes O } is the set of constructors of D. The condition in the matrix of the
consequence of the above rule ensures that x ranges over values serving as the
interpretations of the legal ground terms of D. This is the strongest consequence we can
have because the interpretation of illegal constructor ground terms is not known. For
example, if we drop the restrictions in the specification of Stk-Int repeated in Figure 4.7
specifying the exceptional behavior of the operations, the modified specification associates
preconditions with the constructors Pop and Replace. The induction rule would then be

for every legal constructor ground term e of type Stk-Int, ®[s/¢] -

(vs)(s=Null) v (3s.i)s=Push(s, i) V(3s) [~ Empty(s) = T As=Pop(s’)]

v@s,i)[~Empty(s) =T A s = Replace(s’, ")]) = &(s).

We have discussed in Chapter 3 the reasons for assuming that a constructor o on
an input not satisfying its precondition can either signal an exception or return a value
constructible by the constructors using inputs satisfying their preconditions. An additional
reason for this assumption is that otherwise the induction rule gets complex, as should be

evident from the above discussion.

4. ¢ can also signal on such an input; since we are considering data types without exceptional behavior, this
choice is ruled out.

-134 -

4.2.5 The Full Theory

In provmg propertles of programs, one often uses, properties of data types other
than equations and mequalmes For example, we oﬁen need w prove properties of the
form (ell =eA...Ae = €y) = (fl = j;), Or,,wc may need a formula, involving
existential quantiﬁers For example, consider the umion procedure on sets of integers
written in a CLU-like language and given in Flgure 4.8. The integer variable i inside the
loop defines the range (- |+1 i-1) of integers which have been checked to be: members of
the first argument and if so, have been inserted into the result being computed. The
variable i is incremented every time the loop is executed. Tdkpjr-ove the termination of
union, we need to show that a set is either empty or there is an integer k such that every
element of the set lies in the range (-k, k). The following formula expresses this property

© (9)fs=Nulv@k) (v)[HasGs)=T=>(<kAjz%k)]] |
To prove such properties, we need the whole maéhinefy of first order prédicate calculus
with identity. The proof of (6) is given in Figure 49. . | |

The full theory Th(S) is the set of formulas denvable from the nonlogncal axioins
of S and Th(S’), where S' is a specification ofa deﬁmng type or an auxiliary type used i inS,
using the loglcal axioms and rules of inference of multl-soned ﬁtst order predicate calculus

Figure 4.8. Procedure Unioa - I

union = proc(sl, s2 : Set-Int") returns (Set-Int")

i:Int:=0

rl : Set-Int’ : = sl

12:Set-Int’: =52

~ while ~ Sct-Int’$Size(rl) =
if Sct-Int'SHas(r1, i) then rl : = Sct-Int’$Remove(rl, i)
12 := Sct-Int’$Inscrt(r2, i)
end :
if Sct-Int’$Has(rl, -i) then rl : = Sct-Int’'$Remove(rl, -i)
2 := Sct-Int'$insery(r2, -i)
end
=i+l

end

return (r2)

cnd union

-135-

Figure 4.9. Proof of the Formula (6)

Toprovc (Vs)[s=Null) V(3Ii) (Vj)[Has(&j)E'F’=(j<iAj>-i)]]
Using the scheme (5),)

&(s) = [s= Null V (3i) (Vj)[Hass, J)-T =2 (iLiAj2 !)l]

Basis ®(Null)<=>T

Inductive Step Assume 9(s), to show (V k) ®(Insert(s, k))
Since @s) < T, we have two cases,

Casel s=Null) ‘

(b(lnscrt(Null k) =T, bccauscnslkl thc absolute of k

Case2 (i) (VP[Hass,j)=T=>(j<iAj2+)]
Subcase | -i<k<i,

i itself serves to prove that ®(Insert(s, k)) «.T from &(s)
Subcase 2k >1V k<A

[k] serves as i to prove that ®(Insert(s, k)) = T from Q(s)
Using the scheme (5), we have (V s) $(s).

with identity, as well as the infinitary mductlon rule (T)

The following dnagram summarizes the relauonshlps among different subtheones
and the full theory: ~ S

Th(S) First Order Predicate Calculus, + Infinite Jnouction Ruler
IND(S) +In ﬁmte Inductlon Ruie |
. Dt;(S) - + Proofby Coptfadxcnon |
B®

~ Four Rules of = and the Substitution Rule of v
The following theorem shows that the above deductwe system is sound.

-136 -

Thm. 4.2 For any two ground terms e ande,

(i) if ‘e, = ¢, € Th(S), then. e, and e, are observably equivalent by S (i.e., observably
equivalent in the models in RS)), and

(i) if ‘e, £ ez‘ € TiKS), then_e1 and e, are distinguishable by 'S.

Proof The theorem follows from the facts that (a) the ﬂo;mlegjcal axioms. hdld in the
models in RS) with = interpreted as the observable equwalence re?anon (b) ﬂle
observable equwalence relations are preserved by the functwns in the models in F(S) |

4.2.6 Properties of a Specification

We can define properties desirable of a speciﬁczitien'by feqllliriii.g that various
subtheories and the full theory derived from the specification. satisfy certain conditions.
Guttag and Horning [28] have dlscussed the sufﬁclent completeness property for a
restncted class of specnﬁcatlons Wthh has been found useful We state that property in
our framework. We extend it to spec1ﬁcatlons usmg auxlhary funcuons and specrfymg
preconditions for the operations. The sufficient completeness property captures the
intuitive notion’ that the ‘behavior: of the observers 'is’ cdmpletely ‘specified on intended
inputs and that the result of an. .observer on an intended mp;st-,can be deduced by
equational reasoning. We relate this property to the behavioral completeness property
defined in the previous chapter-arid show' that sufficient completeness is stronger than
behavioral completeness (Theorem 4.4) because. behavmxa!complem only requires that
the behavior of the observers be completel_y specified on intended mputs and it does not
say anythmg about what can be deduced from the specification.

When specifications are used to prove: properties of programs using the data types
being specified, we often need to relate different constructor sequences. In that case, it is
desirable to have a specification satisfy a stronger property than sufficient completeness,
which in addition to the requirement that the behavior of the observers can be deduced by
equational reawniné on any intended input, also requires that the equivalence of the
observable effect of different constructors can be deduced by equational reasoning. We
call this property the completeness property of a specification and define it precisely. We

-137 -

later see that for a complete and consistent specification S, formulas in IND(S) can be
proved using the Knuth-Bendix algorithm (see Subsection 4.2.7).

Recall from Section3.5 that for a consistent and behaviorally complete
specification S, the models in RS) are behaviorally equivalent w.rt. { Pa le€ea}.
Furthermore, if S does not specify any nontrivial precondition for the operations, the
semantics of a specification S is a single data type, a set of behaviorally equivalent algebras.
In that case, for any two ground terms of type D, they are either observably equivalent by S
or distinguishable by S An obvious question is whether the proposed deductive system is
| powerful' enough to deduce this from a consistent and behaviorally complete specification.
We show that it is not the case. But if a specification is consistent and complete, then the
deductive system has this property. - _

Since S is hierarchical, S should preserve the specifications of the types used in S.
S should only specify the behavior of the operations of D, and it should not specify the
behavior of a type D’ used in S that is not captured by its specification S'. Specifications so
designed are modularly structured; they support the factoring and hierarchical structuring
of the proof of correctness of a hierarchically designed implementation. We define the well
definedness property of a specification which captures this modularity requirement.

Before we discuss these properties, we prove

Thm. 4.3 For a consistent S, for any two ground terms e, and e, of the same type, both ‘e1

= e, and ‘e £ e, cannot be in Th(S).

Proof If S is consistent, then AS) £ @.
Suppose for some e, and e,, both ‘e, = e2’ and ‘e, £ e, are in Th(S). ‘e, = ez’ € Th(S)
implies that e and e, are observably equivalent by S. Similarly, ‘e1 £e’ € Th(S) implies

that e, and e, are distinguishable by S, which is a contradiction. 8

-138 -

4.2.6.1 Sufficient Completeness

As was said earlier for constructors, for a specification specifying nontrivial
preconditions for the operations, one is interested in ground terms in which the input to
every occurrence of an bperation symbol satisfies the ass‘OCi_ate_,d.precondition. This is so
because an operation is not likely to be invoked with an input_not satisfying the specified
precondition. Even if the operation is invoked 6nsuch an.input, we are interested in its
behavior. Furthermore, if a specification uses auXil‘iary, functions, grouad terms in which
auxiliary functions appear aré also not of interest because they are not used in programs
using the data type. Earlier we defined a legal constructor ground term (Def. 4.3); below,
we extend the definition to a ground term.

Def. 4.4 A ground term eis called legal if and only if ()€ does not have any occurrence of
an auxiliary function, and (ii) for every subterm of e of thé form e = o (e, € ln)’

whereo € Q, ‘P (n,...,e)= T € EQS). l

For a specnf catlor using auxiliary functions and specnfymg nontrivial precondmons only
legal ground terms are mterestmg If such a specnﬁcauon is conSIstent and behavnora]ly
complete, any two legal ground terms are elther observably equnvalent by S or.
distinguishable by S (see Section 3.5). | :

In [28], Guttag and Homing define the sufficient completeness property of |
specifications which do not specify a nontrivial precondition:fot the operations’and do not -
use auxiliary functions. ‘We state their definition in our framework.

Def. 4.5 A specification S is sufficiently complete if and only if for every groun'd term e of
type D’ € A, there exists a théorem derivable from S of the form ‘e = ¢, where ¢ is a
ground term of type D' without any occurrence of anbpera{ibn’syrﬁbd!bf D 1

In [28], the deductive system to be used to derive a theorem is not specified. Guttag [33]
requires that the equation * e = ¢ * be in the equational subtheory EQ(S). (

The sufficient completeness property can be extended to specifications using
auxiliary functions and specifying nontrivial preconditions for the operations. For auxiliary

functions, there are two possible extensions:;

-139 -

(i) Consider only the ground terms expressed using the operation symbols, because only
these terms can be used in a program, or .

(i1) consider all ground terms, thus requiring that auxallary functlons also be completely
specified.
We take the former approach; however, we recommend that whenever an éuxiliary

function is used, it be completely specified.

Def. 4.6 A specification is suffi ctently complete if and only if for every leg'll ground term e
of type D' € A, a formula ‘e = ¢ € EQ(S), where ¢ is a legftl ground tcrm of type D'

wrthout havmg any operation symbol of D or dny aumllary functlon 1

For example, the specification of Set-Int’ is not sufficiently complete, because for instance,
a legal ground term C hoose(lnsert(lnserl(Null l) 2)) cannot be related to any ground term
of type lnt that does not have any occurrence ol' an operauon symbol of Set-Int'.

" The following theorem relates sul‘ﬁcrent completeness to behavioral
completeness. The intuition behind this result is that lf the behavior of observers on
intended inputs can be deduced by equational reasoning from S, then the observers must
be completely specified by S. S

Thm. 4.4 Ifa speciﬁcation Sis sul‘ﬁciently complete, then S is behavio’rally complete. |
Proof> See Appendlx III |

The converse of the above theorem however dees not hold So, the sufficient ,
completeness property is stnctly stronger than behavroral completeness as there are
specrﬁcatlons whrch are behavnorally complete but are not su fﬁclently complete Thrs is 50
because in the definition of sufficient completeness only a fragment of the deductlve
system of first order'predrcate calculus is used to derive properties from the specification.
There can exist a legal ground term-2of type B’ € A'siith that we cannot derive * e = ¢’ for
any ¢ of type D' not having any occurrence of an operation symbol of D in ,the equational
subtheory EQ(S). However, we can derive the above equation in Th(S) using other rules in
addition to the rules of the equational subtheory. We illustrate this point using the
specification of Set-Int’. We add another axiom defining Choose on sets of size > 1 as

- 140 -

returning the maximum integer in the set.
8. Choose(Insert(Insert(s, il), i2)) = if Size(s) = 0 then (if ~ il = i2 then Max(il, i2))
else (if ~ il = i2 then Max(Choose(lnserﬂ%. il)), i2) else Choese(Insert(s, il))).
The modified speciﬁ'cation i's not sufficiently complete, because Choose (Insert(Nall, i)) is
not directly specified. Nor can we deduce by equational: reasoning that
‘Choose(Insert(Null, i)) = i." However, using the theorem of Int, “(= 3 =TD=i=j’
derived using the induction rule for integers, the axioms 3, 4, and 7 of Set-Int’, and'case
analysis, we can prove by contradiction that o |
| Choose{Insert(Null, |))—i ’ |
It should be obvious that with a minor modification of the proof of Theorem 44, we can

prove the following generalization of Theorem 4.4:

Thm. 4.5 1f for every legal ground term e of type D’ € ‘A,’theye exists a ground term ¢ of
type D' not having any operation symbol of D and auxiliaiy flnnctiqn suchthat ‘e= ¢’ €
TI(S), then S is behaviorally complete. @ |

Theorem 4.4 can be derived as a corollary of the above theorem. - We conjecture that the
converse of the above theorem is also true, which says that the deductivé:system is
complete with respect to deducing the behavior of an obs_erver’og an intend_ed input ,

Conjecture 4.1 If S is behaviorally complete, then for every legal ground term e of type D’
€ A, there exists a ground term ¢ of type D’ not having any opemuon symbol and aux1hary
function such that * e = ¢’ € TI(S). ‘ '

We can prove ‘the following pamal comp]eteness result about the deducnve
system m provmg the dnstmgmshablhty of legal ground terms of type D’ D’ €A U { D }

Thm. 4.6 For a consistent and suﬁic:entl.y complete S, if any two legal ground termis e, and
e, of type D are distinguishable by S, then ‘e, % ¢;' € DS(S). -

Proof See Appendix I &

If conjecture 4.1 is true, then we can prove a similar result about behaviorally complete
specifications: For a consistent and behaviorally complete specifjeation. S, if any two legal

- 141-

ground terms e, and ¢, of type D are distinguishable by 8, then ‘e £ ez’ € Th(S).
4.2.6.2 Completeness

We cannot prove a similar result about the observable equivalence of legal
ground terms of type D, because we do not have a rule analogous to proof by contradiction
in the deductive system that enables us to prove thg observable equivalence of ground
terms unless explicitly specified by. the nonlogical axioms. . Different but equivalent
specifications of the same data type can diffol m th’e‘ extent to which ‘the observable
equivalence relation of legal ground terms of D can be proved.feom the nonlogical axioms.
For example, the terms Insert(Insert(Null, 2), 2) and Insert(Null, 2) are observably
eqtiivalent by Set-Int’, but ‘Insert(Insert(Nail, 2),2) = *lnsert(Nuﬂ 2) ¢ Th(Set lnt) If we
add the following axiom to the specification of Set-Int”: :

9. Insert(Insert(s, if), i2) = if il = i2 then Insert(s; il) else’Insert(Insert(s, i2), 1),

then ‘Insert(Insert(Nulf, 2), 2) = Insert(Null, 2)" € EO(Set-Int’). ‘The semantics of the
modified specification is the same as ‘the semantics of the ‘original specification of Set-Int’.
The more a speciﬁcation of D lcaptures the observable equivalence relation on terms of type
D, the more useful it is in deriving the theory of D and hence in’ proving properties of
programs using D. We define below a property of, a specification reguiring it to.completely
specify the observable equivalence relation, We: put a.stronger requirement: We want
EQ(S), instead of Th(S), to have a formula ‘e, = ez’ for two legal ground terms ¢, €, if and
only if e, and e, are observably equivalent by S, so that such fonnulas can be denved by

purely equatlonal reasomng (1 €., usmg the rules of and the substltutlon Tule for v)

Def. 4.7 A sufficiently complete spec;ﬁcauon Si is. complete if and only if assummg that the-
specification S’ of each D' € A U Ay is complete, for any two legal grounds termse; -and e
of the same type, ‘e, = e2 € EQ(S) if and only if ﬁﬁ.“d e, are olv)ser‘vably cquivalent by S.

The completeness property of a specification should not be confused with the completeness
property of a theory of an algebraic structure as defined in Logic [16]. Using Theorems 4.4
and 4.6, and the fact that for a consistent and behaviorally complete specification, any two

- 142 -

legal ground terms are either observably equivalent or distinguishable by S, we have

Thm. 4.7 For a consistent and complete specification S, for any legal ground terms e, and
e, of the same type, either ‘e, = e, € DS(S) or ‘e, £ ez’ € DS(S). 1

Musser [61] has called a specification from which-either ‘e, =e, or'e £e’ canbe
derived in DS(S) to be fully specified, though his view of a specification is somewhat
different. He views the operator ‘=’ as another operation of a data type, whereas we

consider ‘=" as a predicate in the underlying logic uséd to construct formulas.
4.2.6.3 Well Definedness

We would like a specification S to be modular, i.c., for-the speqiﬁcaﬁon S’ of each

D' € AU A, ThS) |L(S’) = TKS’). This means that Th(S) does not have a formula

expressed using symbols in L(S’) that is not in Th(S'). Only those properties which involve
an operation symbol of D and/or auxiliary funetions used in S can be proved fiom S; a
formula not having any operation symbol of D or an auxiliary function in S and not in
Th(S’) cannot be proved from S. '

For a consistent and sufficiently complete specification, the following holds:

Thm. 4.8 For a consistent and sufficiently complete S, for any fegal ground terms e, € of

type D’ € A constructed using the symbols in L(S?), if neither ‘e =€’ € TS') nor

‘e £ €;" € TI(S'), where S’ is a specification of I, * ¢] # ¢ € TIKS).

Proof By contradiction. | .
Suppose “ e, £ e,’ € TK(S) meaning that e, and e are distinguishable by S (as well as by

S') (by Theorem 4.2). By Theorem 4.6, e £e '€ TS, which is not the case. So the

theorem. 8

However, we could have a specification S such that ‘e; = e;' € Th(S) in the above case. The
following property of a specification rules out such cases.

- 143 -

Def. 4.8 A specification S is well defined if and only if for every D' € AU A, assuming that
S’ of D' is well defined, Th(S) lL(S’) = ThS'). &

We are usually interested in well defined and complete specifications.
Behaviorally incomplete specifications are occasionally of interest. Set-Int' is such an

example.
4.2.7 Automation of IND(S)

Recently Musser [61] has discussed how to automate IND(S) when S satisfies
certain conditions. If (i) S is consistent and complete, and (ii) the nonlogical axioms
derived from S can be written as equations (possibly using if-then-else operator), then the
Knuth-Bendix algorithm, which treats equational axioms as rewrite rules, can be used to
derive an equational formula ‘e, = e, in the inductive subtheory IND(S). The equation
‘e, = e, is input to the algorithm as a rewrite rule to get a new convergent set of rules
having the added rewrite rule. There are three possibilities:

(i) The algorithm succeeds implying that the new equation is consistent with the
nonlogical axioms and thus provable, '

(ii) an inconsistency, such as * e — eé’ where €] and e, can be proved to be not equal, in
particular ‘T — F or ‘'F — T, is generated as a rule, implying that the equation is not a
theorem, and

(iii) the algorithm does not terminate implying that (a) an additional lemma be proved
first, which could be guessed from the set of new rules generated, (b) the specified ordering
on terms used by the algorithm does not work, and some other ordering needs to be tried,

or (c) there does not exist a finite convergent set of rules to express IND(S).

The basis of deducing from (ii) that ‘e, = e," is not a theorem is the consistency of S and the
method of proof by contradiction; in fact ‘e, £ ez’ is a theorem in IND(S) in this case. The

‘basis of deducing from (i) that ‘e, = ez’ is a theorem in IND(S) is the completeness of the

specifications: For a substitution of all variables in ¢, and e, by ground terms, the resulting
. 1 p) o

¢ ’

ground terms e and e have the property that cither ‘e = e’ € IND(S) or
“e £ e)" € IND(S).

- 144 -

4.3 Theory of Exceptions Without Nondeterminism

We now incorporate the exceptional behavior of data types into their theories
with the assumption that specifications do not specify nondeterministic operations. New
atomic formulas are introduced to express the exceptional- Bchaiﬁor’ of the operations. We
describe how the nonlogical axioms of Th(S) can be derived in this case from a
specification S. We discuss how to construct EQ(S), DS_(:SA),{’!ND(S), and Th(S). New
‘logical’ axioms characterizing the exceptional behavior of Vt‘he' operations ;are presented..
We extend the properties of a specification discussed in the previous section to
specifications specifying the exceptional behavior. For .illustration, we modify the
specification of Set-Int’ so that the operation Choosg is required to signal no-element() on
the empty set; let Set-Int” stand for the modified Set-Int. -So, iristead of the Restrictions
component specifying a precondition for Choase, it specifies a required exception
condition as follows:

#(s) = 0 = Choose(s) signals no-element().
We also use the specification of Stk-Int. . _

Besides the operation symbols and auxiliary function symbols, the language 1(S)
also includes the names of exceptions signalled by the operations as specified in S.
Exception terms are constructed as discussed in Chapter 2, using terms and exception
names. There are two new sets of atomic formulas in addition to equations:

(a) e signals exs, ’ |
where ¢ is a term, ext is an exception term, and every vanable in ext is also in e; and

(b) ext, = exl,,
where ext, and ext, are exception terms. The predicate ‘signals’ is similar to = but its arity
is (D U EXV) x EXV.
- As in the previous section, we first discuss the denvatlon of the nonlogical axioms
of Th(S) from S. Then, we discuss the subtheories EQ(S) DS(S) and INIXS), and the full
theory Th(S). In the last subsection, we extend sufficient oompleteness, completeness, and
well definedness properties. | N B

- 145 -

4.3.1 Derivation of Nonlogical Axioms

The nonlogical axioms of TKS) are derived from the restrictions and axioms
components of the specification S in a slightly different way than discussed in
Subsection 4.2.1. We first discuss the restrictions, and later ‘the formutas in the axioms
component.

4.3.1.1 Restrictions Component

From a restriction specifying a required exceptibn signalled by an operation o,
R(X) = o(X) sigaals ext, o |

we get the followmg nonloglcal axlom

P (X) = (R (X) = a(X) sngnals ext)
because the rcstnctlon holds only if the input X sausﬁes the precondmon associated with

For example the restncuon on the operatmn Ton in the spemﬁcaﬂon of Stk- lnt

" Empty(s) = Top(s) sngnals no-top() |)
is a nonlogical axlom of Th(Stk-Int), as the preéondltlon for Top is T. Slmllarly, from a
restriction specnfymg an optlonal exceptlon sngnalled by an operatlon o,

a(X) s:gnals ext =» O(X), |
we get |

(X) = (o(X) signals ext = O(X))
asa nonloglcal axiom. For example, the restnctlon on Push,
| Push(s, i) signals overﬂow(s,)= #(s) 2 ml

is a nonloglcal axiom of Th(Stk-lnt)

5. Recall that the boolean term R(X) is an abbreviation for the formula RX) = T.

- -146-

4.3.1.2 Axioms Component

The preconditions in the restrictions component are also used in constructing the
nonlogical axioms from the formulas in the axioms'cempoaent of S.- As discussed in
Chapter 3, a variable in a formula in the axioms component ¢annot be freely substituted.
When the exceptional behavior was not considered in Subsection 4.2.1, the substitution was
conditional: The arguments to every operation in the axiom must satisfy the associated
precondition. Now, there is an additional requirement: The substitution should not result
in an operation signalling on its arguments.

To express the second condition, we introduce a unary auxlhary function
N?,, : D'U EXV — Bool forevery D'e AU {D } U A These auxllmry functlons are not

used in a specification. Informally, N? separates a nonnal value of D’ from an exceptton It

returns T if its argument mterprets to a normal value of D'; 1t returns F if its argument

signals an exception. Furthermore, N"D.(o(e ye s e)) is F 1f N (e) is false for any e;
this constraint on the behavior of N2, . enables us to get a snmpler transformatton of the
restncted formulas in the axioms component of S

Usmg N.D , we transform a restrtcted formula in the axloms component to an

unrestricted formula which serves as a nonlogtcal axiom of Tb(S) If an equatnqn e=e, 'is

in the axioms component, where e, and e, are of type D’ then the correspondmgﬁ

unrestricted axiom is
(N?pde) AN?yde)) = (PC, APCez)=>e=e,) | (
where PC is a conjunction of condmnns expressmg the m,nstramt that the mput to every
operation invocation in a term e satisfies the amocmted precopdmon Similarly, if a
restricted formula is ‘e, = if b then e,,’ then the correspondmg unrestricted formula is |
(N?300i(0) A N2 de) AN, {e)) = (PCy A PC e, APC e2) =(b=e¢ =¢))
If a restricted formula is ‘e, = if b then e, else e3,’ then the corresponding unrestricted
formulas are obtained using the fact that this formula is equivalent to two conditional
equations
e = ifbthene,

1

e = if ~ b then &

- 147 -

We illustrate the above transformation on the following equation in the axioms component
of the specification of Stk-Int: |
Repla-ce(s. i) = Push(Pep(s), 1).
The corresponding unrestricted axiom is
(N?Stk-lntme’h“(s*)HA N?Stk-l n((l’ush(l’op(s),« i) =
(~ Empty(s) = Replace(s, i) = Push(Pop(s),).

4.3.1.3 Definition of N?p»

A specnﬁcatlon of D implicitly defines N"D and cxtends N" for every defining
type D’ of D as well as any auxiliary types I)' uscd inS. N"D is d«.ﬁned by the specification
of D'. Since an operation ¢ has the arity D X...X D - D U EXV and N?,), has the arity
D' U EXV — Bool, we need to mtroduce vanables mngmg over v'llues of a type and
exceptions to characterize N?),,. We have two optlons () Introduce two kinds of variables
- variables of a single type D and variables of a umon type D u EXV or (i) mtroduce only
variables of a union type. If we adopt the second a'tematlve the formulas expresmg the
normal behavior of the operations get long because we make the condltmnal use of the
variables. Since we would mostly be using formulas expressmg normal behawor we have
adopted the first alternative. Often, we do not need to have a formula in which both kinds
of variables are mixed. Except in the axioms for N2y and the axnoms charactenzmg thev
general properties of the exceptional behavnor of the' data type, we would rarely use
variables of a union type. Terms as well as exceptlon terms are constructed using only
variables ranging over a single type (except'i‘ri’ fhe next sectlon) “Henceforth, we use xe,
X€p ooy X€ooves YO YeHouns Yooy , Ze, ze,..., ze, etc as vanables ofaumon type,
and exv, exv,, ..., exv, ... as variables of type EXV. -

We now discuss the axioms defining N?D.. First of all, for a variable x of type D,
we have the axiom | " | I

N?D(x) =T.

For an operation ¢, let PG(X) be its precondition. Let us assume that the restrictions
component specifies for o, / required exceptions and m optional exceptions. For each
1<ig/ let Ri(X) be the condition on input X when o is required to signal an exception;

- 148 -

similarly, foreach1 <j < m, let O(X) be the condition whaen o hasan option to'signal '
For every constructor o of D, we have an axiom deﬁnmg N? oorrespoadmg to.D,
NAXE) = (P (XE)A(~R(XE)A ... A~ Rﬁ(m;f\
(~OXD)A ... A=~ om(XE»)= NNA(XE))
where XE stands for the variables Xe€,,.., Xe,; Xe. is a variable af-union type Di U EXYV, and
N XE) is an abbreviation for N'.’D (xg) A ... A N?Da(xen); :

The above axiom captures the assumption in a specrﬁcatron thatif (i) an input to a
constructor ¢ is normal, (i) the input satisfies the precondrtrohf assocrated wrth o, (m) none
of the conditions associated with a requrred exception for o holds for the input, and (iv) the
condition an input must satisfy in case o srgnals an exceptlon specrﬁed 10 be optional, also
does not hold for the input, then o returns a nonnal value.]n other words “this assumptron.
states that the exceptronal behavror of the operatrons on therr mtended mputs must be
completely specifi ed by the Restnctlons component. I .

The extension of the deﬁnmon of N" for every D’ € A is also captured by a
srmrlar set of axioms correspondmg to every observer 0. €0 of result type D'. There i is an
axrom having the above structure correspondmg to every observer ° 1n Q. |

; In addmon to the above axioms, we have a rule for every operatton and auxrhary
functlon expressmg that if any argument to a functron is not nonnal then the result of the
functron invocation is also not normal.

(ND(xe) FV VN" (xen) F)I—N .(c(x P ..,xg)) F

Note that there is no axrom s0 far whrch states the condmon when N" (ds F In the next

subsectron on equatlonal subtheory, we mtroduce a rule charactenzrng such behavror of
N?y. ' .
o We use the nonlogrcal axroms derrved fr:om the restnctrons and axroms

components of S, and the axloms deﬁmng N . along wrth the addmonal axroms and rules» ‘
characterizing the general properties about the exceptronal behavror to burld vanous
‘subsets of Th(S) and finally Th(S) itself.

- 149 -

4.3.2 Equational Subtheory

As in case of specifications without nondeterminism .and without exceptional
behavior, we define the equational subtheory EQ(S) as';a, sct;of atomic formulas. Besides
equations of the kind discussed in Subsection 4.2.2, we also have the following -atomic
formulas:

(a) esignals ext, and
(b) ext, = ext, } :
In addition to the rules characterizing = discussed in Subsection4.2.2, we use the
substitution rule for v, and the rules characterizing ‘signals’ and capturing the obscrvable
equivalence relation on exception values. The substntulm& rjefor Vv, e E
(v x) &(x) = &{x/4], , o -
where x is a variable of type I)', and e is aterm of typeD'.and is subsm;utable for xin ®.[16],
is modified to :
(V) &(x) = (N2 {e) = T =-9[x/e), . |
since x is a variable ranging over normal \aluesand e can signal-an exception. _

.. Rule (i) below says when N?,.is false, which is if a-term of type:D! signals an
exception, then N?,,. on that term is false. Rale:(ii) states thatifitwo. MS;R{Q‘MI}"
equivalent and one signals an exception, then the.other. also; signals the ‘same exception.
Rule (jii) states that if a term: sighals two .exceptions; then the-sxceptions are observably
equivalent. Rule (iv) states how the observable equivalence relation on exception values is.
related to the observable equivalence relations ou.normal values; . ..

(l)xeSIgnalsexvl—N (xe);F :
(ii) xe, = xe,, xe, siguals exv xezﬂgaahfxr o
(ii1) xe signals exv,, xe signals exv, b exv, = exv, and
for every exception name ex of arity D‘l X... X D;.‘“
(V) x, =Xy, oo X = x, F oex(x i & dmedsy v X,)

It should be obvious that the above rules are sound under the followmg mterpretatlon Ina
type algebra A, for a ground term e and a ground excepnon term ext, the - formula”
‘e sngnals ext’ is mterpreted as: The interpretation of zin A is the exceptnon value that 18 the
interpretation of ext in A. For two ground exception terms ex/; and ex, the formula

- -150-

‘ext, = ext,’ is interpreted as: The interpretation of ext, is observably. equivalent to the
interpretation of ext,in EXV of A.

We now show how to use the above rules along with the nonlogical axioms and
the axioms and rules defining N2, , to prove some propemes of data types. Sincc many
nonlogical axioms and formulas are conditional having the form

(7) b= esignals ext,
where b is a boolean term, we use a trick similar to the one used in Subsection 4.2.2 to deal
with such formulas so that they can be proved in EQ(S). We introduce an auxiliary .
function if-then : Bool X EXV X D' — D’ U EXV Having the behavior defined by the
following axioms: - ' ' ' ’
if-then(T, exi, e) signals ext
if-then(F, ext, ¢) = e.
Using the auxiliary function if-then, the formula (7) is equivalent to
e = il-then(d, exi, e),
as for an instantiation of the variables in (7), if b interprets to E, then (7) is equivalent to
‘e signals ext.’ The boolean term b must not signal. ‘
‘As ‘an - illustration, we prove from the nonlogical axioms of Stk-Int that
“Top(Null) signals ne-top()’ € EQ(Stk-Int) in Figure 4.10. Slmllaﬂy, we can prove '
Top(Pop(Pusi(Nuft,) signals no-top(). '
Rerheé(l’usil(ﬁlsm“ i, 12), i?f)) PHSMPBSHNHE i'), i3)
However, ,
Replace(Push““((NulI 1),...,101),0) = h‘“'(«Nun, 1,...,100),0)
is not derivable because we cannot derive N?Stk-lﬁtﬂ'h‘&) = T due to the optional
exception specified for Push when its stack argument is of size > 100. But we can prove the

Figure 4.10. Proof of “Top(Null) signaks no-top()’

1. Top(s) = if- lhcn(Empty(s) no- top() Top(s)) - | Rcstﬁction on Top

2 Empy(Null) = T Axiom 4
3. if-then(Empty(Null), no-top(), Top(Null)) sngnals no-top() A Axiom of if-then

4. Top(Null) signals no-top() Substitution in 1, and rule (ii) above

-151 -

following formula:
N2k -1nc(Push " (Null, 1),, 101)) = | |
Replace(Push'®'((Null, 1), . . ., 101), 0) =-Push'"(((Null, 1), , 100), 0).
The formula
Pop(Null) = Null
is not derivable because of the precondition on Pop
It would be interesting to investigate the conditions under which
(i) an axiom of the form ‘e signals ex/’ can be treated as a rewrite rule ‘e — ext’ and the
* Knuth-Bendix algorithm be applicable to such-axioms, and
(ii) a conditional formula involying signals can be rewritten as an equation using the
il-then and if-then-else operators so that the Kauth-Bendix algorithm is. applicable to

conditional formulas also.
4.3.3 Distinguishability Subtheory

As in case of specifications without nondetenmmsm and thhout exceptloral
behavior, DS(S) is defined to be a set consisting of atomic formulas and the negatlons of
atomic formulas. DS(S) mcludes EQ(S) as well as formulas havmg the fogllowmg structure

@) e, * e, |
(b) ext, # ext,, and
(c) e sigdals ext,
where ‘e sighals ext is an abbreviation for ‘~ (v x,..., x) [,eggnalsexl I such that
X, .., x_are all the variables in the formula ‘e signals ext’ Besides the axioms and rules
of inference of DS(S) discussed in Subsection4:2.3, we have the following. additional
axioms and rules expressing praperties about the exceptional behavior of data types which
enable us to prove formula having the above structure. .
(v) for every exception name ex : «Dl X...X }Dn—.
(~ XpEXy Voo Vox, =X,)b~ ex(xn, cooi xln)s_;ex(yvcn,. ees x2n).
(vi) for different exception names ex, : D, x... XD andex,: B X... xD_in 1(S),
Xypp e es Kohh

~ex1(x . X)_ex(

e
(vii) for a union type D' U EXYV,

e e

-152-

N?ylxe) =T, N?D(xez) =F -~ xe = xe,
where xe and xe, are of type D' U EXV, and E
(viii) N¥xe) = T — ~ (v exv) | xesighals exs] ,
Rule (v) and axiom (vi) capture the distinguishability relation on exception values. Rule
(v) is the opposite of rule (iv) given in the previous subsection; it states-thattwo exeeption
values having the same name are distinguishable if any of the arguments in one: value is
- distinguishable from the corresponding argumeint i the other value. ' Axiom (vi) states that
- two exception values are distinguishable if their exception names are différent. Rule (vii)
states that two values are distinguishable if N?,; holds' for one and:does ot hold for:the
other. Rule (viii) says that if N?,, holds for a term; then it:cannot signal an-exception. The
above axiom and rules are clearly sound: Note that: these: rules ean be used to derive
formulas having the structure ‘~ xe, = xe,,’ which implies that "xe g'g;yng.’, 0 ‘
We can derive from the nonlogical axioms of Slk lnl usmg rule (vn) that
8) Top(Null) # i LR YRR |
because “Top(Null) s:gnals no-top() N"lm(i) = T and ‘N l.t(Top(Null)) = F ¢
DS(Slk lnt) The formula .
_ ‘ overﬂow(s, x)aé no-tow _ L .
is immediate from the axiom (vi) above Usmg the theorem (8) in DS(Stk lnt) we can
prove by contradiction that ’

Null £ Push(s, i).

4. 3 4 InductIve SHbtheoq'y

~ The inductive subtheory- iND(S) can-be eonsnmcwd a&in Subsecnon 4.2.4; we
can also use the dbove ‘axioms and rules charaeteriziig: the .exceptiohal behavior. The
induction rule (1) in Subsection 4.2.4 has40 bé-modified; ‘inmesd of requiring that for every
constructor ground term e of type D, ®[x/é] be derivable in:thepremise; ‘ﬂave‘bﬁ?y need to
consider constructor ground terms for which ‘N’D{e) =T is denvable So, we have:
Maodified Induction Rule S
Given a formula &(x) with a free variable x-of type D, , :
For every constructor ground term e of type D, N?(¢) = T £ ¢[x/e] = (vx)ax).

- 153 -

We can use the methods discussed in Subsubsection 4.2.4.3 to establish the infinitely many
premises. |

AAs in Subsubsection 4.2.4.4, if a specification $ specifies nontrivial precondmons
on constructors, then the above formula can be sumphﬁed to '

for every legal constructor ground term e of type D N?D(e) = T = d[x/€]

- (V x) &(x), | _
because of the assumption about the semantics of a constriictor on inputs not satisfying the
associated precondition, discussed in Chapter 3. |

" For example for Stk-Int, the mductlon mle is:
For every legal constructor ground term eof type Stk lnt
NXe)=T = os/e] - (¥ 3) &(s). ‘ |

The above rule can be snmphﬁed using the followmg theorem ina way similar to Sel-lnt in \

the prevnous section:

Thm. 49 Every legal constructor ground term e of type Stk-Imt such that
NGkt =T € EQ(Stk-Int), is equivalent by. equational reasoning to another legal
constructor ground term ¢ having only Null and Push le 1f N’Stk ‘m(e) T €
EQ(Stk-Int), then ‘e = ¢ ' € EQ(Stk-Int).

| Proof - By induction on the number of Pop and Replace in- a constructor ground term e
using axioms 1 and 3 in Figure 4.7. See the details in-Appendix Hl. 8

The simplified induction rule is: ; -
(9) For every legal constructor ground term e of type Stk-lnt havmg occurrences of
Null and Push only, N? Stk- lnt(e) T= ofs/e] — (Vs)&(s).

4.3.5 The Full Theory

-The full theory Th(S) is also constructed in a similar-way as for data types without
exceptional behavior. For example, we can prove the normal form theorem using the
simplified induction rule (9):

s=Nul) v (35,)]s =Pusis’, i)].

- -154-

The diagram summarizing the relationships among different subtheories for
specifications not specifying exceptional behavior on p. 135 also holds in this case.

For the extended deductive system, the following extension of Theorem 4.2
holds:

Thm. 4.10 (i)\For any two ground terms e and e, of the same type, if ‘e, =e, " € Th(S),
then e, and e, are observably equivalent by S and if * e e '€ Th(S) then A and e, are
distinguishable by S,

(ii) for a ground term e and a ground exceptioﬁ term exy, if ‘e Signals_ exi’ € TI(S), then
the interpretation of ein every model A in KS) is the ihteipretati«)h of extin A,

(iii) for two ground exception terms ext, and ext if* exl = exl, € TIl(S) then ext, and
ext, are observably equivalent by S and if ‘ext; aé ext € TII(S) then ext, and ext, are
distinguishable by S, and L ‘

(iv) for any ground temm e, if 'N2(e) = T" € TIS), then the interpretation of e in every
model A in RS) is a normal value, and if 'N?e) = F € TI(S), then the interpretation of e
in A is either an exception value or undefined.

Proof The theorem follows from the facts that 5

(a) the nonlogical axioms of Th(S) hold in every rﬁodel in RS),

(b) the observable equivalence relation used as‘the interpretation of = is a congruence,

(c) the exceptional behavior of an operation is completelysaecif@ by the restrictions
component of S on inputs satisfying its preconditions, and

(d) the axioms and rules deﬁmng N? and charactenzmg the excepnonal behav:or holds
in every type algebra. 8 '

" We demonstrate how the full theory constructed from a specification S can be
used to pfove properties of programs using the data types specified by S.: Figure 4.11 is
another implementation of union procedure using Choose in a CLU-like language. In this
‘implementation, an element of the first set argument to union is s%Jocessively selected using
the operation Choose, removed from the copy of the first argument, and inserted into the
copy of the second argument until the operation Choose signals no-element, indicating that
the set is empty. The handler for no-element associated with the loop is then invoked. In

-155 -

Figure 4.11. Procedure Union - II

union = proc(s, s2 : Set-Int”) returns (Set-Int”)
i:lnt .
rl : Set-Int” := sl
r2: Set-Int” ;= 52
{rl=slAn=s2}
whilc true do
{ (Size(r1) = 0 = F A IN(Remove(rl, Choose(r1)), Insert(r2, Choosc(rl)), sl, s2))
V (Size(r]) = 0= T A R jrionl. <2)) }
i 1= Sct-Int"$Choosc(rl)
{ IN(Remove(rl, i), Insert(r2, i), s1, s2) }
rl := Set-Int"$Remove(rl, i)
12 : = Sct-Int"$Insert(r2, i)
{ IN(rl, 12, 51,8 }

: end except when no-clement :

end
{ Rrgnion(sl. 52) }
rcturn (12)
{R}
end union

IN(rl, 12, 51, 52) = *(V j) [{Has(s], j) V Has(s2, j)) == (Has(r],) V Has(s2, B)aT] A
(Size(rl) + Size(r2)) < (Size(sl) + Sue(sZ)) =TASize(2)>0=T)

1/0 Specification for union
T=>R, whereR = RIEAR2 and

R1 = (Vi)[(Has(sl, i) V Hag(s2, i)) = Has(union(sl, 2),) =T}
- R2 = Size(union(s], s2)) < Size(s1) + Size(s2) = T)

the code, we have included formulas wnthm 4 } that express relations among different
variables at that point in the code. The F]oyd-Hoare mductrve assemon mcthod for
proving propemes of programs [17, 36, 55] can be extended to mcorporate the exceptronal
behavior of programs A statement in this case can termmate m more than one way either
normally or by signalling an exception. Correspondmg to every possrble way of
termmatron of a statement, we associate an input formula for an output formula.

Figure 4.11 includes the mput-output specrﬁcatron of umon We use the
following notation for specrfymg a procedure F(X). Correspondmg to every pbssible

- 156 -

outcome of F on an input X, there is a formula relating the input to the outcome. Since F
~ can terminate normally or by signalling an exception, we specrfy the weakest input

condition for normal termination, as well as for every exception srgnalled by F.

TC(X) = F(X) signals ext,

TC (X.) = F(X) signals ext
(X) = R, N,

m+l

where TC (X) 01 and. R are first order formulas and rstands for a possible
result returned by Fon lhe input X. ‘TC. (X) = F(X) sigriafs exl 1s mterpreted as: The
weakest input condition for F to terminate by s:gnallmg ext; s TC: (X).

C_. ()= R(X,) is similarly interpreted as: The weakest-input oondrtrog;for Fto
terminate normally returning a value r such that R(X,) holds is TC_~ (X). If F is
deterministic, then such an r is unique for every X otherwrse there can be many 7's such
that R(X,) holds. Instead of’ usmg ras denotmg a 1 t retumed ‘by F on X we can also
use FX). o

The formula ‘IN(rl, r2, sl, s2)' is used as an invariant of the lgpprn theprogram

in Figure 4.11. Using the backward substitution semantics of the control strQuctures we can
generate the verification conditions andshew the. reqmaed formulas ;obe n: Th(Set- t"),
The partial correctness proof of union is complete if'wé can show'that =~ -

CIN(rL, 12, s1,82) =
((Srze(rl) 0=FA lN(Remove(rl Choose(rl)), lnsert(rz, Choose(rl)), sl s2))

v (Swe(rl) =0=FA R““"’"‘” 10)

To prove the above’ formule, we need the theorem

Srze(rl) 0=T= Swe(Remove(rl Choose(rl))) + I = Slze(rl)
The while Ioop termmates because each trme in the loop, Srzc(rl) is reduced and
Choosc(rl) srgnals no-element when Slze(rl) 0=T. '

An altemate approach to the Floyd -Hoare method of reasomng ‘about programs

is to use the fnst order semanncs of control structures as suggested by Cartwnght and

- 157 -

McCarthy [8]. They have shown how reasoning about recursive programs can be
‘completely carried in first order logic. The definition of a recursive program can be
considered as an axiom defining the function computed by the program with an
appropriate condition on vari_ables.6 The termination of such a program can also be proved
by adding a minimization scheme corresponding to its function. For .example, the above
iterative union program can be transformed to an equivalent recursive program,land the
axiom characterizing the function computed by the program is derived from‘ the recursive
program. Th(Set-Int") is enriched by adding this axiom about union and a minimization
~ scheme corresponding to union. The input output' s'peciﬁc;ition of union can then be
proved as a theorem in the enriched theory. We use a similar approach in the next chapter

in showing the correctness of an implementation.
4.3.6 Properties of a Specification

It should be clear from the discussion in the previous_subsections that the
following extension of Theorem 4.3 holds:

Thm. 4.11 For a consistent S, ,

(i) for any ground terms e, and e, of the same type, both -“e'l :-=.‘ e’ and ‘e, £ e cannot be
in Th(S), and '

(i) for any two ground exception terms ext, and ext,, both ‘ext, = ext,’ and ‘ext, £ ext;’
cannot be in Th(S), and _

(iii) for any ground term e, both ‘N?(e) = T" and ‘N?(¢) = F’ cannot be in TH(S).]

We extend the definitions of sufficient completeness, completeness, and well
deﬁnedhess properties discussed in Subsection 4.2.6 to the specifications specifying
exceptional behavior. The results about these properties in Subsection 4.2.6 directly extend
when the modified definitions are used. '

6. The condition is that a variable is instantiated to a value of its type other than L, which is used to denote
non-termination.

- 158 -

4.3.6.1 Sufficient Completeness

Recall that the sufficient completeness property as defined in Subsection 4.2.6.
requires that the behavior of the observers on any intended input should be dcducnble by
equauonal reasoning. When a spec;ﬁcatlon specnﬁes data types having operations whlch

signal exceptions, then the observable behavnor of the operations also includes their
| exceptional behavior. Two values of a data type can also be distinguished in this case ifa
sequence of operatlons sxgnals one excepuon on one value and does not s:gnal on the other,
or if the sequence of operations signals different exceptions.on different values. In the
extended definition of sufficient cdmpleteness, we want to capture the intuition that in
addition to the normal behavior of the observers, a sumcirent_complet:e speciﬁcation must,
also completely specify the exceptional bchavior‘ of the operations when their input satisfy
the associated preconditions. :

If a specification has only required exception conditions for the operations, then
the above amounts to requiring that e

(i) for any legal zround term ¢, either ‘Ne) = T" €-EQ(S) or ‘NXe) = F" € EQ(S), and
(i) (@) if ‘'N2(e) = T' € EQ(S) and eis of type D’ € A, then the.condition stated in. Def. 4.6 -
must be satlsf ed (i.e., there is a ground term ¢ not having-any operauon symbol of D or
auxlhary functlons used in S such that ‘e = " € EQ(S)), and - -
(b) if N2(e) = F € EQ(S) and for every subterm ¢, of ¢, N?pde)) =T € EQ(S), fthen
the formula ‘e signals ex?/’ € EQ(S) for some ground exception term ext.

IfS specnﬁes optional exceptions also, then there are Jegal ground terms for whlch
neither N"(e) T nor NXNe) =F is provable For example we can nelther prove

N’I t(Top(Push“"((Nuﬂ n,....,100)N=T | ‘
nor

N, h('l‘op((l’ush‘"‘(((N!ilL 1,...,100))=F 7
from the specification of Stk-Int. For such a specification, the definition of sufficient
completeness must include the condition, that for such a ground term, if we assume
‘N?,{e) =T, then ‘e=¢€" is derivable using equational.r'easoning.’ This condition is
based on an aspect of the semantics of a specification, namely that if an operation does not
signal on an input for which it had the option to signal, then the formulas in the axioms

- 159 -

component for the operation behavior must hold.

Def. 4.9 A specification S is sufficiently complete if and only if

(i) for every e of type D' € 4, if ‘N2(e) = T' € EQS), then there is a theorem ‘e= €’ €
EQ(S) for some ¢, a ground term of type D’ not having any. operation symbol of D and
auxiliary function in S,

“(ii) for every e (= ofe,..., e)) oftype Deau{ D} if N"(e) = F’ € EQ(S), and
‘(N’(e JA ... ANXe)=T € EQ(S) then there is a theéorem ‘e SIgnals exl € EQ(S) for
some ground exception term ext, and . : '

(iii) for every legal ground term e of type D’ €AU { D }, if neither N"(e) T € EQ(S)
nor ‘N2(e) = F' € EQ(S), then there exists.a subterm e, of.¢ such that.e = a(erart)
and ‘O[J‘cl/eu, cees xn/em] = T € EQ(S), where ¢ is specified to optionally signal if its
input satisfies O(x,,..., x), and assuming ‘NXe) = T, there is'a theorem ‘e = ¢’ €
EQSU{NNe)=T }) where ¢ is a.ground term of type D" havmg no opcratlon symbol of
D and auxiliary functionusedin S. 8 CoE

Su{f} stands for the nonloglcal axioms denved from S plus the formula f, and
EQ(S U { I'}) stands for the equauonal subtheory denved usmg _S U { f } as the nonloglcal
axioms. The condmon (m) above amounts to provmg thcj: theo_renn nssummg ‘N"(e) T.
o | For example Stk-Int is sufﬁcnently completé Top(Null) S|gn.nls no-top() €
EQ(S). Assuming N"m (Top(Push'm((Null 1,..., 101))) ‘ “T we can derive
“Top(Push'?((Null, 1), .. ., 101)) = 101’ in EQ(S).

The specification of Set-Int” is not sufficiently complete, because, for instance,
though ‘N?, (Choose(Insert(Insert(Null, 0), 1))) = T' € EQ(S), there does not exist any
ground term ¢ of type Int not having any operation symbol of Set-Int” such that
‘Choose(Insert(Insert(Null, 0), 1)) = ¢” € EQ(S).

The results discussed about épeciﬁcations not specifying exceptional behavior in
Subsection 4.2.6 directly cxtend to specifications specifying exceptional behavior when

appropriately modified. We have

- - 160 -

Thm. 4.12 If S is sufficiently complete, then S is behaviorally complete.
Proof See Appendix L. » |

The obvious analog to Theorem 4.5 also holds; its converse is a conjecture analogous to
Conjecture 4.1. We also have '

Thm. 4.13 For a consistent and sufficiently complete S, if any two legal ‘ground terms e
and ¢, of type D are distinguishable by S, then ‘él # e, € DS(S).

Proof Sce Appendix 111. 8

4.3.6.2 Completeness and Well Definedness = =

The completeness property of a specification can be defined in: this case in the
~same way as in Subsection 42.6. Def. 4.7 in. Subsection 4.2.6 works for this case also.
Theorem 4.7 for this case can be. proved in the same way. as -for specifications without
exceptional behavior. It can be shown that the specrﬁcatnon of Stk lnt is complete whercas
the specrﬁcauon of Set- lnt" is not complete |

"The weli definedness property i also defmed in the same way as in case of
specrﬁcatrons wrthout exceptlonal behavror Def 4 8 m Subsectron 4, 2 6i is valid. It can be

~ shown that the specrf catrons of Set lnt" and Stk-lnt are well deﬁned.

- 161 -

4.4 Theory of Nondeterminism

In this section, we discuss specifications specifying nondeterministic operations.
Again, we first discuss specifications without exceptional behavior; later, we incorporate
the exceptional behavior also. For the first part, we modify the specification of Set-Int’
given in Figure 4.1 so that the operation Choose is specified to. be nondeterministic. Let
Set-Int" stand for the modified specification. In the second part, we use the specification
of Set-Int given in Figure 3.1. - _ f

We find it convenient to express properties of a data type with nondeterministic
operations as formulas using nondeterministic operation symbols (which is also. the reason
to allow a specification to have such formulas in the axioms. component), but such a
formula must be interpreted properly. A nondeterministic ;ﬁmction syinbol does not have
the substitution property with respect to = unless in!;e[pfctcd properly. We discussed this
in the previous chapter; we will repeat the discussion here.. For example, the formula
‘Choose(s) € s = T in the specification is to be interpreted as any .integer returned by
Choose on the argument s is in the set s, The formula

sl = 52 = Choose(s1) = Choose(s2)
need not hold if ‘Choose(s1) = Choose(s2)’ is interpreted as an integer fetmned’by Choose
on sl is the same as an integer returned by Choose on s2, because different invocations of
Choose on the same argument may return different integers. However, if we interpret
‘Choose(s]) = Choose(s2)’ as for every possible integer returned by Choose on sl, Choose
on s2 can return the same integer, and vice versa, then the formula
sl = 52 = Choose(s1) = Choose(s2)

holds. We adopt the latter interpretation, so that the substitution property continues to
hold.” The adopted interpretation is consistent with the definition of _observable
- equivalence on ground terms involving nondeterministic operations induced by S, given in
Sections 2.2 and 2.3. | |

7. As is discussed in the previous chapter, the reason for rejecting the former interpretation is that the
formula ‘e(x,, .. ., xn) =o(X,,.... X) fora nondcterministic symbol ¢ is almost always falsc under it.

-162 -

We cannot however express many in{e:estiag‘:prape‘nies ‘about” adata type |
because in a formula involving a nondeterministic operation symbol o, difTe._rent{
occurrences of atermo(e,, . . ., e,) may result in different vaim “We often need to express
properties-in which different occurrences of the term s(e,..., €)stzmd for the same valije.
For example, consider another version of the union procedure ngen in anure 4.12, which
is a slight modification of the version given i m Figure'4.11. In thfs case, the while loop has
the condition *~ (#(s) = 0), instead of ‘true ity F’}gure4 & In verifying this. vemxon ‘of |
union, we must use the properties of i, a result returned by Choose in such ‘a case; we ..

4natroduce an auxiliary function o_p: D x...x D ‘x D = Bool correspondmg to the
aondeterministic operation o, which is the relation describing the dehavior of o.
*) oyplx,..., xn,y) e if o can return yasa possnble result on Xpouus X,
| . %F ~ otherwise - " -
For example, we introduce Choose_p for Choose and use Choose.p to express a property of
i, a result returned by Choose. ‘

Since formutas in the -axioms componen‘t -of S are expressed uSing
nondeterministic operation symbols, we transform them to equwalent formulas havmg only'
deterministic symbols using the auxiliary functions corresptmdmg to the nondeterministic
symbol§. We discuss the transformation proce,dure TR below. I(S) now also includes thie
duxiliary function o_p éorreSpOndiﬁngéry nondeterministic operation symbol o. ‘The'
transformed formulas have a restricted interpretation just as the original formulas in’ ﬂie :
axioms component; so we derive unrestricted formulas from the transformed’ foridiied
using the method discussed in Section 4:2 for specifications with deterministic ‘Operationt
The precondition specified by a nondeterministic operation o'is taken as the precondition
for the corresponding auxiliary function op. So in the specification of‘sct-mt"'"'?
‘~ #(s) = 0 is the precondition for Choose_p. The unresmcted formulas serve as the'
nonfogical axioms of S. To prove a formula f mvotvmg nondetenmmstrc operation
symbols, we first transform fusing TR, and then prove TR(f) from the nonhglcal axioms
ofS. '

The transformation procedure TR must embed the sémantics,of S assumed in
Chapter 3. Recall that the semantics of S only requires that for every data type in-DXS), the

- 163 -

semantics of S, an operation specified to be nondeterministic must return an appropriate
value on every input; the operation in every data type in D(S) need not have the maximum

amount of nondeterminism specified by S.
4.4.1 Transformation Procedure TR

We first describe the procedure TR and later verify that TR(f) is semantically
equivalent to £ Before describing the transformzition procedure, we illustrate it using
examples. Consider the following formula in the axioms component of Set-Int":

Choose(s) €s=T | | '

Figure 4.12. Procedure Union - ITI

union = proc(sl, s2 : Set-Int™) returns (Set-Int™) -
i:Int
rl : Set-Int™ := sl
r2: Set-Int™ : = s2
{rl=sl1An=s2}
while ~ Sct-Int™$Size(rl) = 0 do
{ Choose_p(rl, i) = T A IN(Rcmove(rl, i), Insert(r2, i), s1, s2) }
i := Set-Int""$Choosc(rl) R
{ IN(Remove(rl, i), Insert(r2, i), s1, s2) }
rl ;= Sect-Int”"$Remove(rl, i)
r2 := Set-Int""Slasert(r2, i)
{IN(r1, 12, 51,52) }
end
{ R,g”i‘”'(‘l‘ 52) }
return (r2)
{R}

cnd union

IN(rl, 12, 51, 82) = (V¥ j) [(Has(s], j) V Has(s2, j)) = (Has(rl, j) V Has(r2,))) = T] A
(Size(r1) + Size(r2)) < (Size(sly + Size(s2)) = T A Size(r2)>0=T

170 Specification for union
T=> R, whereR = R1 A R2, and

R1 = (Vi)[(Has(sl, i) V Has(s2, 1)) = Has(union(sl, s2),1) =T]
R2 = Size(union(sl, s2)) < Size(sl) + Size(s2) = T '

- -164-

The above formula states that every value returned by Choese is in the set s. The
transformed formula obtained after applying the procedure would be

((v i) [Choose_p(s,) = T = i€s=T] A (3i)Choose_p(s, i) = T)
The second conjunct states that Choose returns at least one value on every input. The
unrestricted formula, which serves a nonlogical axiom of Set-lnt"' is obtained usmg the
precondition for Choose; it is glven below

(v D~ #@E)=0=T=> (Choose_p(s, |) T= |€s_.gT)]A

k] 1)[~ #(s) = 0_T=>Choose_p(s,|)=T)

Let us consider another formula * Chbose(sl)la ChooSé(sZ).’ -f"lhislstates that for every
value returned by Choose on sl, there is an observably equivalent value returned by
Choose on s2, and vice versa. TR transforms this formula to

~((v i} [Choose_p(s1, i1) = T = (3 i2) [Choose_p(s2, i2) A il = 2}] A

(v i2) [Choose_p(s2, i2) = T = (3 il) | Choose_p(sl, i) A il=2]])
We now present the transfonnation,prdcé&ﬁrre';l‘]l, which is defined inductively

making use of the structure of a formula,

Basis fis an atomic formula ‘e =e.

X
(a) fdoes not have any occurrence of a nondetenmmsnc Operauon symbol

TR() & f | | -

(b) both e, and e, have occurrences of nondeterministic of eration symbols:

“We wish TR(f) to roughly express that for every instancé pf tﬁe free vanabl&s in f, for
every possible choice made about the invocations of the nondetermnmstx: operation
symbols in e, there are choices for the invocations of the nondetermlmsm: operatlon
symbols in e, such that the instantiations of e, and e, return equivalent resalts, and vice

versa.
TR('e, = e,) has the following structure:
vz,.z)le,=Qy,..., yp) [e,Ae=¢€]]1A
(Vyl,...,yp)[c2=> €] zl,...,zm)[clA eise;]].
where z,..., z_are new variables such that corresponding to each occurrence of a
nondeterministic operation symbol ¢ in e, say the occurrence ‘@(_eﬂ, .-+), there is a
variable z to stand for the possible result returned by ¢ on its input. The formula-c isa

- 165 -

conjunction of the equations of the form ‘o_p(eﬂ, RN A zi) = T, stating conditions on z.
Similarly for ez,‘ new variables Yppee-s Y, are introduced, and c, is obtained from e,. € and
e, are obtained from e and 'ez respectively, by substituting z, ..., z andy,..., A for
subterms having nondeterministic operations as the outermost operation in e and e,
respectively. We discuss later how ¢, and e| are constructed from e, and c, and €, are
obtained}-from e,

(c) only one side of the equation ‘e, = ezi has occurrences of nondeterministic operation
symbols. Without any loss of generality, we assume that only the Lh.s. has occurrences of .
nondeterministic symbols. .

Construct ¢, and ¢, from e, as discussed above. Then,
TR(‘e_e’)—(Vz z)[c=>e'—e]A(Elz .. z4)‘c ,.
Thls completes the basis step of the definition of TR The second conjunct is to ensure that'

there is at least one value returned by e.

Inductive Step
Since all other logical symbols can be expressed in termsof A, V and v, we define
how TR works on formulas having these symbals.
(a) if fis ~ f, then TR(f) = ~ TR(f)
(b) if fis f; A f,, then TR(f) = TR(f)) A TR(f)
(c) if fis (¥ x) f,, then TR(f) = (¥ x) TR(/)).
This completes the definition of TR. -
For instance, a conditional equation *b = ¢, = e,,’ where b is a boolean term, is
transformed to
b= TR(¢ = ¢)),
if b does not have any nondeterministic operation symbols. If b has nondetermlmsnc
symbols, then the conditional equation is transform_ed to
TR(b=T)=> TR('e, = ¢))
=((vz),....2)[c=2b=TIA@Z\....,2)b)= TR(‘els e)).
Since such a b is assumed to behave deterministically (See Section 3.1), i.e, for an
instantiation of the free variables X in the coriditional equation, b interprets either to T or
to F, the above formula agrees with the interpretation of a conditional equation assumed in

_ -166'

Section 3.2 on the semantics of a specification.
' We now describe how to construct ¢ and ¢ from a term e by induction on the
number of occurrences of nondeterministic operation symbols in e. Let k stand for the
number of occurrences of nondeterministic operation symbols in e.

Basis k=1

Lete = o(é,..., el) be the subterm of e having the nondeterministic operation o as

its outermost operation symbol. Then ¢ is ‘o_p(e’ ;.. el .2y =T and ¢ is obtained by

replacmg e'in eby z, The type of 2, is the range type of . ‘

Inductive Step Assume ¢ and ¢ can be constructed ife has k’ <k occurrences of

nondeterministic symbols. Show fork. ,
| (1) If e has the subterm havmg k occurrences of nondetermimstrc opcratron symbols,

" let the subterm be & = o(e yeo e) where oisa nondetermrmstlc operatlon symbol
Each e has less than k .occurrences of nondetermrmstrc operauon symbols By the
inductive step, let Cpeves €, be the formulas obtained by applying this procedure on
€,..., e respectively, and let], ..., ¢ be the terms obtained by replacing subterms
having nondeterministic operation symbols by fiew -vatiables in e ..., e respectively.
Then e o

c=ople,....€.2)=TAc A... A n,f: ’
and ¢ is obtained by replacing e' in eby z,.

(ii) There is no such subterm of e. Consider all outermost ‘subterms of e having'a
nondeterministic operation' symbol as their outerimost ‘opétition: ‘let them be €r-ees €
Each of these subterms has less than k number of occurrences of nond%temrnmﬂc
operation symbols. By inductive step, let Cpoenes c be thé formalak obtained by
transforming e, . . ., e_respectively, and let e....e *be the terms obtained by replacing
subterms havmg nondeterministic’ operation symbols by new vanables ine,..., e,

respectively. Then

| c=¢A...Ac,

and ¢ is obtained by replacing e,,..., e bye] ,..., e respectively.
This completes the discussion about how ¢ and ¢ are obtained from e.

-167 -

Thm. 4.14 fand TR(f) are semantically equivalent.

Proof See Appehdix I1L. 1

4.4.2 Th(S)

The nonlogical axioms obtained as discussed above are used to prove properties
about the data type. A nonlogical axiom involves existential quantifiers in contrast to a
nonlogical axiom of a specification specifying only deterministic operations. Sd, the whole
machinery of first order predicate calculus is needed to prove an arbitrary equzition or an
inequality involving nondeterministic symbols. So it is not meaningful to discuss the
subtheories EQ(S), DS(S), and IND(S); we instead discuss the f_u“ theory Th(S); The
formulas are proved in the same way as in case of SpeCiﬁEdtiOns specifying deterministic
operations only. / | /' |

As an illustration of the use of Th(S), we verify the version of the procedure union
given in Figure 4.12. Note that the backward substitution semantics of the assignmenf

statement
i := Set-Int$Choose(rl)
is given as '
{ Choose_p(r1,) = T A P} } i:= Set-IntSChoose(r1) { P},
instead of .

{P 6%([1) }i:= Set-Int$Choose(rt) {P },
because dlfferent occurrences of the expression Choose(rl) could possibly return different
results. For example the verification condition
{lN(Remove(rl Choose(r1)), Insert(r2, Choosc(r1)), sl, 52)}
i := Set-Int$Choose(rl) { IN(Remove(rl, i), Insert(r2, i), sl, s2) }
is not true, where as
{ Choose_p(r1,7’) = T A IN(Remove(rl, i), Insert(r2, '), sl, s2) }
i := Set-Int$Choose(rt) { IN(Remove(rl, i), Insert(r2, i), sl, s2) }
is true. In this case also, ‘IN(rl, 12, sl, s2)’ serves as an invariant of the loop. Using the

backward substitution semantics of the control structures, we can generate the verification

- -168-

conditions and show the required formulas to be in Th(Set-Int"'). The partial correctness
proof of union is complete if we can show that

(~ Slze(rl) 0=TAIN(r1, r2 sl,s2)) =

(Choose_p(r1,i) =T A]N(Remove(rl i), Insert(r2, i), sl, s2))
To prove the above formula, we need the theorem '
Size(r1) >0 = T = Slze(Remove(rl Choose(rl))) + 1 = Size(rl).
The termination is also ensured because: each tlme in the loop, Slze(rl) is reduced, so the
loop condition will eventually become false. |
We think that m.my properties of nondeterfninisﬁc operations expressed as

equations and inequalities 'caAn be derived from the }un‘transfoﬁneq nonlogical axioms (the
nonlogical axioms‘ obtained from the fonﬁuﬁs in‘ ﬂi’e | AXiools comp'onent of the
specnﬁcatlon bcforc applymg TR) usmg techmques employed for determlmstlc operations,
for mstance vnewmg equauons as rewrite rules and using Knuth Bendlx algonthm for
deriving properties. We have not mvestngated the extent to which thls can be done This
hypothesis is another reason for prefernng to wnte specnf catlons dlrectly -using
nondeterministic operatxon symbo‘ls as compared to writing them mdlrectly using the

relations corresponding to nondeterministic operations.
4.4.3 Data Types with Exceptional Behavior

We discuss the modifications required to incorporate the exceptional behavior
specified by the specifications with nondeterthinistic operdtions. - We. describe. how to
derive the nonlogical axioms from a spécification.: We ' use the original specification of
Set-Int given in Figure 3.1 for illustration; the:spetification is vepeated in Figure 4.13.

" As before, an auxiliary function: o=p is associeted with every. nondeterministic
operation symbel s. o_p is not strict with respect-to'its last-argment. -

- 169 -

Figure 4.13. Specification of Set-Int
Opefations

Nuli : — Set-lnt " as @
insert : Set-Int XInt — Set-int .
Remove : Set-int X Int — Set-Int 7 iy

Has : Set-IntXint — Bool as x, € x, I
Size : Set-Int — Int as #(x))
Choose : Set-Int — Int nondeterministic

— no-element()
Restrictibns
#(s) = 0 = Choosel(s) signals no-element
Axioms

Remove(d,1) = & , Co
Remove(lnsert(s, i1), i2) = ifi1 = i2 then Remove(s, i1) eise Insert(Remove(s, i2),11)
icg=F : R
i1 €Insert(s,i2) = ifi1 = i2thenTelseit€s

#() =0 ‘ _

#(Insert(s,) = ifi € sthen #(s)olse #(s) +1

Choose(s)€Es =T

6:D x ... xD —D UEXV _
op:D X e X D_x(D'UEXV)— Boel,. o
op(x,...,x,ze) _’é T if N?(ze) = T and ¢ can return ze
as a possible resulton i, ..., x,
T if N2(z6) &= F and o signals zeon x,,..., x,
Recall that ze is of union type.
We extend the transformation procedure TR discussed in the previous subsection.
Besides equations, we have two additional kinds. of atomic formulas: ‘e signals ext’ and
‘ext, = ext,. TR for equations is same as in the previous subsection except that the new
variables introduced in the transformation are of union type.

-170 -

An exception name is treated like a deterministic opération symbol, so
ext = ext is treated like an equation e = e TR is extended to treat ‘e signals exr’-as
= ext.” TR is applied on ‘e = ext.” In the transformed. formula, a subformula of the form
‘€ = ext’’ wherever ext’ is an exception term and ¢ is a-non-variable te’rm, is replaced by
the subformula * ¢’ signals ex/’.’ Note that a transformed formula may involve terms
constructed using variables ranging over union types. - ‘
The restrictions on a nondeterministic operation ¢ are transformed to get the
nonlogical axioms as follows: A restriction specifying a réq’(lired.exCEption for o,
R(X) = o(X) signals ext,
is transformed to
PO(X) = (R(X) = o_p(X, ex)) = T).
For example, from the restriction on Choose,
#(s) = 0 = Choose(s) sngnals no-element(),
we get
#(s) = 0 = Choose_p(s, no-element()) = T.
A restriction specifying an optional exception for o,
o(X) signals ext = Oj(X),
is transformed to
P (X)=>(a_p(X exl) = T=>O(X) T).
Axioms defining N?),- are constructed the same way as - for the specnﬁcatnon with
deterministic operations except that thefe is no akiom due o 2 nondetefministic operation
o because the range of the corresponding auxiliary function o_p is ‘Bool and not
Bool U EXV. In addition to the axioms and rules ékpressing general properties of the
exceptnonal behavior of the operations discussed in the previous sections, we have another
rule. Recall that a nondeterministic ‘operation can either signal an exception or has the
choice to return one of many possible normal values. ' An operation does not have the
choice between returning a normal value and signalling an exception on the same input.
This property is captured by the following axiom for every nondeterministic operation o
~({(3ze)lomX,20=TANNz=T]A Q3 ze)‘[azi;(X, ze) = T'A N¥zé) = F)).
From the formulas in the axioms component of S, the nonlogical axioms are

-171-

derived as follows: We apply TR on a restricted formula to replace nondeterministic
operation symbol by the corresponding auxiliary functions. Since the restricted formula
expresses the normal behavior of the operations, the new variables introduced in the
transformation range only on normal values. So, we use variables of a single type instead of
the union type. For instance, for an equation ‘e, = e,” having nondeterministic operations
on both side, we get
(V.z,..,zm)[c1=>(:-!y1 y)[c Ae—e]]/\
(Vyl,...,yp)[c2=a(3 zl,...,zm)[c1 Ae=ell
To get the corresponding unrestricted formula incorporating the exceptional behavior of
the operations and the preconditions, we must réquire that
() *N?,(€)) = T and ‘N?,(¢}) = T" hold, and |
(i) every operation invocation in the formula must $atisfy the associated precondition.
The unréstricted formula for the above restricted formula ié
(Vzl,.,z)[N"D,(e)=(PC =(c,= I
@y)lN"D(e)=>((PC APC, rAPC)=>(c Ae=e))B)l‘/\
(Vyl,,y)[N’D(e)=(PC =>(c= U
Az,...,z)(N’D(e)=> ((PC APC,y A PCel)=a(c Ae =N
A similar transformation can be obtamed for a restrieted formu!a of the form -
‘e, =il bthen e, L
For example, the formula
Choose(s) €s=T
in the specification of Set-Int is transformed first to the restricted formula using TR,
((v i) [Choose_p(s,) =T=ies=T]A @3 |)|Choose_p(s, i)= T])
and later to
((V DIN?; (€9 = T»(Cboose_p(s,i) T= N (N=T=i€s=T)]
A (3 i) [Choose_p(s,i) = T .
which gets simplified to
((v) [Choose.p(s,) = T = i € s = T| A (3) [Choose_p(s,) = TD,
because ‘N?;_ (i €s) = T"and ‘N?g _ (T) = T’ are derivable. ,
Figure 4.14 is yet another nmplementauon of union usmg the nondetermlmstlc

- =172 -

operation Choose which signals on the empty set. This version is similar to the version
given in Figure 4.11 except that Choose is sondeterministic. It can also be verified using
the properties in Th(Set-Int).

Figure 4.14. Procedure Union-1IV

union = proc(sl, 52 : Sct-Int) returns (Set-Int)
izlnt
r] :Set-Int ;= sl
r2:Set-lnt := 2
C{rimslAR=mR}
whiletrue do Co '
{Size(rh) = 0=F A Choose__p(rl =T /\ IN(Remove(rl 1) Insert(rz 1) sl, s2))
V (Size(rl) = 0= T A R ionél. 22)) } : :
i := Set-Int§Choosce(rl) ,
{ IN(Remove(rl, i), Insert(r2, i) sl 82)}
rl := Sct-Int$Remave(rl, i) :
12 ;= Sct-Int$Insert(r2, i)
{IN(r}, 12,51, 82) }
end exccpt when no-clement :
. end
{ erzlmon(sl. 32)}
return (r2)
{R}

end union

IN(r1, 12, 51,52) = (¥ j) [(Has(sl,) V Has(s2, j))-= (Has(rl, j) V Hasfr2,)) = T] A-
(Size(r1) + Size(r2)) < (Sirets]) + Size(s2)) = T A Swe(r2) >0= 1')

170 Speq'ﬁcalioh Jfor union
T=>R, whereR = R1AR2 and -

Rl = (Vi) [(Has(sl, i) V Has(s2, i)} = Has(union(sl,2),i) = T}
R2 = Sizc(union(sl, s2)) < Size(s1) + Size(s2) = T

-173 -

4.4.4 Properties of a Specification

We can prove theorems analogous to Theorems 4.10 and 4.11 for speciﬁcations
specifying nondeterministic operatibns_ and exeeptiolnal; behavior, demonstrating the
soundness of the axioms capturing general properties of da‘ta' types. ‘

The definition of sufficient completeness | property has to be modified
significantly, because there is no meaningful definition of the equational subtheory for
such specifications. ‘Because of the semantics of S'as def' ned i in Section 3.2, it does not help
to consider only the formulas involving deterministic operatlons and the auxiliary functions
corresponding to nondeterministic operation symbols. Recall that for a behaviorally
complete specifieation, for every input X to a nondeterministic operation, the
corresponding auxiliary function is required to hold for at least one (X, ze), where ze is a
possible result returned by o on X, and the axioms do not precisely specify the values on
which the auxiliary function holds. This incompleteness is because the semantics of S does
not constrain an operation specified to be nondeterministic to have any fixed amount of
nondeterminism (-see Section 3.2).

A plausible modification to the definition of suﬁ'lcient completeness is to require
it to use the whole machinery. of first order predicate calculus for deduction. Instead of
requiring a theorem to be in EQ(S), we require it to be in TK(S). In addition, the definition
~of sufﬁcnent completeness.given in Subschon 4.3.6 must also be modlﬁed to déal with the
case when a legal ground term e mvolves nondeterministic operatlon symbols. For e of
type D' € A, if N?,{e) = T € Ti(S), it cannot usually be proved equivalent to a ground
term of type D’ having no operation symbol of D, as in case of
Choose(Insert(Insert(Null, 1), 2)) for example. Instead we must prove that there exists a set
ofgroundterms { e, ..., e_} of type D' not having any operation symbol of D such that

(321,...,zm)[cA(e’5 eVé=eV ... Ve'sek)],
where cis the conditionon z, ..., z_ generated due to e when we apply the procedure TR,
and ¢ is the term obtained from e by substituting z,..., z_ for the subterms having
nondeterministic operation symbols as their outermost opei'ation. {e,....,e } consistsof
all possible outcomes of e. (Since it is assumed that ‘N?,,{e) =T € Th(S), z, ..., 2z, are of
e single type instead of a union type) = For example, in case of

- 174 -

Choose(Insert(Insert(Null, 1), 2)), we can show that
(2 i) [Choose_p(Insert(Insert(Null, 1),2),) = TA(i=1Vi=2)]

We have not investigated the relatibnship between the above definition of
sufficient conipleteness and the behavioral completeness property for such specifications.
We conjecture that most of the results (Theorems4.12, and 413 in particular) of
Subsection 4.3.6, when appropriately modified, would hold for such specifications also. |

The definition of well definedness given in Subsection 4.2.6 directly extends to
this case also. The definition of completeness, -like the definition of sufficient
completeness, must require in this case that for any two legal ground terms ¢, and e, of the
same type, ‘e, = ez’ € TIKS) if and only if e and e are observably equivalent. The
definition 4.8 of well definedness given in Subsection 4.2.6 is valid in this case also.

-175-

4.5 Strong Equivalence of Specifications

, In Subsection 3.2.6, we defined the equivalence on specifications; the definition
required two equivalent specifications to have the same semantics. As discussed in
Subsection 4.2.6, two eq.uivalent speciﬁéations can be different in what properties of a data
type (a set of data types) can be deduced from'th,em. Below, we define a stronger
equivalence relation on specifications, which not only requires that the two specifications
have the same semantics, but also that the same properties can be deduced from the
specifications. | |
Def. 4.10 Two specifications S, and S, are strongly equivalent if and only if assuming that
for every type used in S, and Sz, we use the same theory,

S, ancl'S2 are equivalent, i.e., B(Sl') = ‘D(Sz), and

(ii) Th(S I D) = Th(S,)| Loy !

If'S, (or Sz) specifies a nondeterministic operation o, we assume that L(D) includes the

corresponding auxiliary function o_p in place of o.

- 176 -

5. Correctness of Implementation

One of the main purposes of designing a specification of a data type is to have a
standard that can be used to verify whether an alleged implementation of the data type is
correct. In this chapter, we propose a correctness criterion for an implementation of a data
type with respect to its specification, and discuss a method embodying the proposed
‘correctness criterion. In this process, we also exhibit how the theory of a data type
discussed in the previous chapter is used.

An implementation of a data type D is concerned with how to realize the behavior
of D, in contrast to its specification where the main concern is to precisely state its behavior.
Intuitively speaking, our correctness criterion is that a correct implementation with respect
to a specification must have the same observable behavior as prescribed by the
specification.

Our approach for proving correctness of an implementation is similar to that of
Hoare [37], Zilles [76] and Guttag et al. [29], and is radically different from the ADIJ group’s
approach [23]. We separate the correctness method from the semantics of the host
programming language in which an implementation is coded. We do not wish to concern
ourselves with the issue of semantics of the control structures in the programming
language, so we assume that the semantics of the procedures implementing the operations
of D is already derived from their code. In contrast, the ADJ group does not seem to
- separate the correctness method from the semantics of the host programming language. It
seems to be incorporating the semantics of the control structures used in implementing the
operations into the correctness method, for instance, see their definition of deriver, which is
a morphism from the specification algebra to the implementation algebra [23]. This makes
its approach complex and restrictive.

An implementation uses-data types abstractly; it does not refer to any particular
implementation of a data type used in it. A recursive implémeﬁtation of a data type D is an
exception because areference to D in the recursive implementation is interpreted as the
reference to the implementation itself. We discuss recursive implementations later in the

chapter; until then, we assume that an implementation of a data type does not use the data

-177-

type itself. For the time being, we also rule out mutually recurSive i‘mplement-ations ofa
collection of (recursive or non-recursive) data types in which an implementation I of a data
type D uses a data type D’ and an implementation I' of D' uses D. We discuss mutually
recursive implementations later with recursive implementations. ‘
While deriving the semantics of the procedures implementing the operations of D
in an implementation I, we do not use the semantics of any particular implementation of a
data type D’ used.in I. We instead use the theory constructed from the specification S’ of
D', abstracting from all correct implementations of D’ with respect to §'. The. proof of
 correctness of an implementation of D thus does not depend on any property specific of a
particular implementation of D'. It remains valid even whén an implementation of D' is
meodified or replaced, as long as the new implementation of I’ is correct with respect to the‘
specification of D'. This separation of the proof of use from the proef of implementation
hierarchically structures the correctness proof, reducing the complexity of the verification
process [37]. ' , SIS ‘
In the first section, we discuss the correctness-criterion and present an overview of
different steps in the correctness method. - In-.the second section, we . discuss the
implementation structure and the semantics of an:impJementation.. Inthe third section, we
describe in detail the method for proving correctness of an-implementation with respect to
a specification. In the fourth section, we discuss extensions 0 the proposed method for
proving correctness of recm;ive and mutually recursive implementations. :

-178 -

5.1 Correctness Criterion and Overview of Correctness Method

As discussed in Chapter 3, a specification S in general specifies a set D(S) of
related data types, because the behavior of some of the operations is intentionally left
unspecified on certain inputs. In an implementation; the behavior of the procedures
implementing these operations must be defined on all-inputs in their domains, because an
implementation in most programming languages realizes a single data type.l The designer
of an implementation must pick one data type from the set D{S) of data types.

If a specification specifies preconditions for the operations, the designer of an
implementation has the freedom to decide what the procedure implementing such an
operation should do on an input not satisfying.its precondition. This is because in defining
the semantics of a specification, it is assumed to be the:user's tesponsibility to ensure that
the input to the procedure satisfies the specified precondition. -If a precondition is specified
for constructor, the procedure implementing the constructor could either signal or return a
value of the defined type. However; the value’ returned must be eonstructible by a
procedure implelienting a comstructor using: inputs - satisfying its precondition (see
discussion on p. §9. for the elaboration of this assumption). : 1f a precondition is specified
for an observer, the procedure implementing the observer could return a value of:its range-
~ type, or signal. For example, the-operations Pop -and: Replaceé: of ‘Stk-Int are specified: to
have ‘~ (Empty(s) =9)" asthe precondition. An implententation:of Stk-Int could have; for
example, the procedure implementing the constructor Pop either signal on an empty stack
or return an arbitrary stack. _

For an operation specified to optionally signal exceptions, if the input to the
procedure implementiﬁg the operation satisfies the associated condition, the designer has a
choice between signalling the specified exception and returning a normal result that
satisfies the axioms. For example if optional exceptxons are used to specify the size
requirement on the values of a data type, as in case of Stk- lm an lmplementatlon must

decide the maximum size of the values. The procedure implementing the constructor Push

1. We are not considering parameterized impiementations.

-179 -

in an implementation of Stk-Int could either signal overflow or return a stack constructed
by pushing the integer argument on the stack argument. ‘

If a specification specifies nondeterministic operations, the requirement‘ that an
implementation of a nondeterministic operation must have maximum amount of
nondeterminism specified by the spec'iﬁcation is too strong.” (l‘h case of the speciﬁéation of
Set-Int given in Figure3.1, such a requirement would mean that the procedure
implementing the operation Choose must be able‘to nondéterministicatly pick any element
of the set.) It is more appropriate to leave it to the designer of an implementation to decide .
how much nondeterminism a procedure implementing a nondeterniinistic operation should
have: The procedure when viewed on ‘abstract’ values of the data type could be either
deterministic, returning a fixed result out of the many possible choices speciﬁed by the
specification for an input, or it could exhibit fimited: nondeterminism or maximﬁm amount
of nondeterminism specified by S, returning a subset of the set of possible results specified.
For example, a correct implementation with respect to the specification of Set-Int can have
the procedure implementing the operation Choose returni the maximum integer in the set,
say, or it could have the proceduré nondeterministically pick ‘between the minimum and
maximum integers in the set, etc. As is discussed later, a détermifiistic procedure can also
simutate nondeterministic behavior on ‘abstract’ values by réturning different values on
different values of the rep representing the same ‘abstract’ value of D. We call such a
procedure pseudo-nondeterministic. |

" 5.1.1 Semantics of an Implementation

By a procedure, henceforth, we mean a procedure in an implementation I of D
, nnplementmg an operation. of D, unless stated otherwise; by a constructor procedure and
-an observer procedure, we mean a procedure 1mplementmg a constructor and a procedure
|mplementmg an observer, respectwely We use the name of an operatlon of D in S written
in capital letters, as the name of the procedure 1mp]ementmg the operation in L. Outsnde I
we use an operatlon name instead of the name of the procedure 1mplementmg the

operation to sxgmfy that the data type is bemg used abstractly.
As data types are used abstractly in an implementation, the semantics of an

- 180 -

implementation I is a set of implementation algebras. These algebras can be constructed
hierarchically as in Chapter 2; we use in the construction, the implgmemation algebras
serving as the semantics of the implementations of the data types being used in I. Like a
type algebra, an implementation algebra has a domain corresponding to every defining
type D)’ € A, which is defined by an implementation algebra of an implementation I' of D'.
The domain corresponding to D is in.general a subset of a domain corresponding
to the rep defined by an implementation algebra of an implementation l . of the rep. It
cons:sts of the values of the rep used to represent the values of D. The subset is
characterized by a formula Inv(r) with exactly one free variable r of the rep type. The
formula Inv(r) represents the strongest unary relation on the values of the rep preserved by
the constructor procedures in 1. It captures the minimality property of the implementation,_
namely that a value of the rep that represents a value of D can be constructed by finitely
many applications of the constructor procedures 'and that these values. constitute the
smallest subset closed under the constructor procedures, ,

Let F(l) stand for the semantics of L. This set can be defined inductively. We '
assume that a set of primitive data types supported by the host programming language are
implemented correctly ‘with respect to their specificatians by its compiler., The semantics
of the specifications of such primitive types serves as; the basis step of the inductive
definition. 1f one wishes to prove the correctness of the. implementation of a primitive
type, the primitive type of the language in which the compiler. is coded would,tl;en SEFVE as
the basis. .

In the inductive step, an implementation algebra: A in' F'(f) -has the following
structure: ' ’ '

=[{V) u{Vy|DealEXV;: {i_lo€a}]l
={v]v €Vi A Inv(v) }, where V' is defined by an implementation algebra in
F‘(I)for an lmplemcntatnon l of the rep. For eachD' € A, V,yis défined by an algebra
in F‘(ID) for an vmplementzmon l . of D'. The specnﬁcat:on of the procedure
|mplementmg o is an abstract specifi cation of i i

In the next section, we discuss how to construct F‘(l) after the d:scussxon about

the implementation structure and about Inv(/). |

- 181 -

5.'1 .2 Correctness Method

If we consider specifications not specifying any nondeterministic operafions, then
the correctness criterion is simple: F‘(I), c. RS). So ‘to prove the correctness of, an
implementation I, we need to show that every implementation algebra in F‘(l) is also in
H(S), which can be done using the method discussed in Section 3.2 to show whether a type
algebra is in KS). Two main steps of this method are: '

(i) Construct the observable equivalence relation on V l a5 discussed in Sections 2.2 and
2.3, using the observable equivalence relation on V, corresponding to-each defining type
D’ € A and the observable equivalence relation on ercand

(ii) interpret the axioms and restrictions in the algcbra, and show that they are satisfied.

Smce the set of obscrvable equivalence relations is a congruence the observable
equivalence relations must be preserved by the procedures. The observable eqmva]ence
relation is the largest such congruence on the aIgebra ‘ ' '

The above discussion is the formal basis of the ¢orrectness method proposed by
Guitag et al. [29] and Kapur [40]. The obse"rvat‘sié‘e“c'nii"varence felation on the domain -
corresponding to D is Guttag et al.’ s equality mterpretatron " The above method in fact
extends the methods in [29] and [40] because it can handle procédures signalling exceptlons
as well as nondeterministic procedures implementing deterministic operations. 2 ‘

Note that if there exists a correct "im‘p‘lémehta;tion'gl"bf S, then S is consistent,
because then AS) is not empty. This is the basis of Guttag and Horning's statement [28]
that one way of showing consistency of S is to design a'correct implementation 1 of S.

2. A nondeterministic procedure can implement a detcrministic operation if all -possiblc results of the
procedure on cvery input arc obscrvably cquivalent.

- -182-

5.1.2.1 Nondeterminism

For a specification S specifying nondeterministic operations, the criterion that
F'(I) C RS) is too strong s it rules out implementations with pseudo-nondeterministic
procedures which ought to be correct. In such an' implementation, a nondeterministic
operation is- implemented either as a deterministic procedure or as a nondeterministic
procedure that does not preserve what should be the observable equivalence relation on the
values of the rep. It returns different values when applied on different rep values
representing the same “‘abstract’ value of D, but every value retumed nga‘ possible mult'
specified by S on the input; nondeterministic behavior of an operation is realized in this
way. If we take the largest equivalence relation on the rep.values that is preserved by the
procedures as the interpretation of = in the implemcntatjon (whic;h .is so in case of
specifications not specifying ndndéterministic o;p‘eratipqs){ the axioms and restrictions in S
may not hold for such an implementaﬁén. A quever if ‘zvm‘ cqui&alqncg relgtion preserved
only by the procedures implementing deterministic @erdtions is té,ken as the observable
equivalence relation, then the axioms and restrictions hold in S. .

Consider for example, the implementation of Set- lnt in a CLU-hke Ianguage
given in Figure 5.1. The procedure CHOOSE s,_dgt‘cnnmtﬁt‘lc agd returns the first element
of the sequence value used to represent the set argument. The }argqsg ;@iyalxenge:relat_ion
on the sequences preserved by all the procedures ,iskt_/hg_ﬁident(ityk relaﬁqn, and it can be
shown that the axioms of the specification of. Setlnt do-not hold if the identity relation is
taken as the observable equivalence relation.. However if we takc the relaion

Eqv(sl,s2) = (SISSize(sl) = SISSize(s2)) A (v i) [INGL, i) = IN(s2, i) |, where
INGs, i) = (3) [1 < j < SISSize(s) A SISFeteh(s, j) =il
and Sl stands for the data type Sequence of Integers, as the observable equivalence relation,
then the axioms hold. The procedure CIIOOSE returns 1, for example, on the sequence
@ddh(Addh(New, 1), 2) and 2 on Addi(Addi(New, 2), 1), so CHOOSE behaves differently
on members of the same equivalence class of sequences representing the same set value.
CHOOSE is an example of a pseudo-nondeterministic procedure - 7. |

‘To fully illustrate theé correctness method, ‘we_discuss two vanat:ons of the

implementation in Figure 5.1 differing in the lmplementauons of Choose. In the first,

- 183 -

Figure 5.1. An Implementation of Set-Int

SET-INT = cluster is NULL., INSERT, REMOVE, HAS, SIZE, CHOOSE
rcp = SEQUENCE-INT

NULL = proc() returns (cvt)

return (rep$New())
end NULL

INSERT = proc(s: cvt, i: Int) returns (cvt)
if INDEX(s, i) < rep$Size(s) then return (s) end
return (rep$Addh(s, i))
cnd INSERT

REMOVE = proc(s: cvt, i: Int) returns (cvt)
j: Int ;= INDEX(s, 1) :
if j < rep$Size(s) then return (rep$SRemh(rep$Replace(s, j, rep$Top(s)))) end
return (s) B o
cnd REMOVE

HAS = proc(s: cvt, i: Int) returns (Bool)
return (INDEX(s, i) < rep$Size(s))
end HAS

SIZE = proc(s: cvt) returns (Int)

return (rep$Size(s))
end SIZE

CHOOSE = proc(s: cvt) rcturns (Int) signals (no-clement)
if rep$Size(s) = 0 then signal no-clement end

return (rep$Bottomy(s))
end CHOOSE

INDEX = proc(s: cvt, i: Int) returns (Int)

c:int:=1

while ¢ < rep$Size(s) do
if rep$Fetch(s, ¢) = i then return (c) end
c:=c+l

end

return (c)

end INDEX

Choose is implemented as a deterministic procedure CHOOSE’ which returns the

maximum integer in the nonempty sequence; the procedure CHOOSE' is given in

-184 -

Figure 5.2. In the second, Choose is implemented as a nondeterministic procedure
CHOOSE” which returns the maximum or minimum mteger in the nonempty sequence.
CIHHOOSE” is given in Figure 5.3. The construct Selcct in the code of CIHIOOSE” behaves
nondeterministically: Select(Sl S2, ..., Sn), where Si is a staternent, arbitrarily picks one of
the statements given as its arguments for execution. Note that nenher of C HOOSE’ and
- CHOOSE” is pseudo-nondeterministic. " ‘

Figure 5.2. CIIOOSE’

CHOOSE' = proc(s: cvt) returns (Int) signals (no-clement)
if rep$Size(s) = 0 then signal no-clement end
rcturn (MAX(s))
end CHOOSE'

MAX = proc(s: rep® returns (Int)
m: = rep$Bottom(s)
for i: = 2 to rep$Size(s) do
if m < rep$Fetch(s, i) then m : = rep$Fetch(s, i) end
end
return (m)
end MAX

Figure 5.3. CHOOSE”

CHOOSE” = proc(s: cvt) rcturns (Int) signals (no-element)
" if rep$8Size(s) = 0 then signal no-clementend . .
Sclect(return (MAX(s)), return (MINGs)))
end CHOOSE”

MIN = proc(s: rep) returns (Int)
. m: = rep$Bottom(s)
for i: = 2 to rep$Sizc(s) do
~if m > rep$Fetch(s, i) then m : = rep$Feteii(s, i) end
end
return (m):
cnd MIN

- 185 -

5.1.2.2 Definition of Correctness

We can now state the correctness criterion. It has two parts. The ﬁrst part deals
with lmplementatnons not having pseudo-nondetermmlstm procedures, and the second part
takes care of pseudo-nondetenmmsuc procedures. In the second part, the equivalence
relation used on the rep is not required to be preserved by the procedures implementing
nondeterministic operations thus allowing them to be pseudo-nendeterministic; - the
equivalence relation is only required to be preserved by the procedures implementing

deterministic operations.

Def. 5.1 An implementation I is correct with respect to a specification S if and only if
assuming that every data type D' used in I has a correct |mp|ementatlon I wnh respect toits
specification S, A -
() (1) C AS), or
(i) for every algebra A € F(I), there is a set of equwalence relatlons
-*{EDID'GAU{D}}UEhxv,suchthat '
(a) for every defining type D’ € A, E , is the equnvalence relation on V . used to prove

correctness of the implementation Iy Jof D, and similarly, £~ is the equ‘iVafence relation

on Vrep used to prove correctness of an implementation 1 iep’;? the rep,
(.b)‘EEXV is the equivalence relation defined as follows: For an exception name ex of
arity,D1 X.xD, 1f<v v>€EB, ~ v, VD€ li‘.D then <ex(v - ,v) ex(v, .,v))eEExv,
©)E o, CEp. |
(d) E is preserved by the functions corresponding to deterministic operations in A, and

(e)A/E€ F(S)..]

A/E is the quotient algebra-of A induced by E except that E need notbe a congruence ‘the
function fo in A/E corresponding to f in A that does not preserve E behaves
nondeterministically. The formal ‘Chafactenzatlon above is complex because an
implementation of a. defining type or the rep could also have pseudo-nondetenmmsnc
procedures. ‘

In the correctness method, we do not explicitly construct the set F(I) of
implementation algebras defined by I. We reason about the set as a whole by not using any

- 186 -

property specific to any particular implementation of)’ € A or of the rep, and by instead
using the procedure specifications and the theories of the deﬁning typés and the rep. We
show that the axioms and restrictions of S hold when interpreted in I by deriving them
from the procedure specifications. _ |
Roughly speaking, the following steps need to be carried out to show correctness

of an implementation: | o

(i) Derive the specification of every procedure in the lmplementatlon as a function on

rep vatues from its code.” ' | '
| (ii) Design a formula Inv(r) characterizing the subset of the rep values needed to
represent the values of D. It must express the strongest unary selation preserved by the
constructor procedures. - | S , |

(i) Design the equivalence relation on the values of the rep satisfying lav. The
eqhivalence relation must be preserved by the procedures implementing the deterministic
operations, - L : : :

(iv) Interpret the restrictions and axioms using 1 the: procedures in plaee of the -operations.
Replace for a variable of type D, a variable of the rep iypes satisfying Inv. Interpret =
corresponding to D as the equivalence relation of step (iii). -

We discuss each of these steps in -detail in'the next-two sections: The second section
discusses the first two steps; the remaining steps and the torrectness method are illustrated
in the third section. We argue that a formula wédker than Tns often suffices; furthermore,
the equivalence relation needed in step (iv) is also often weaker than the strongest
equivalence relation preserved by the procedures implementing the deterministic
procédures. We also discuss what extra steps need to be performed if auxiliary functions -
are used in a specification. Co . o

| For recursive and mutually recurswe lmplcmentatlons there is. an addmonal step.
in the correctness proof. We need fo show that the ep (reps in case of mutually recursive
‘ 'lmplemcntatlons) def ned by a recurswe domam equatlon(s) is nonempty, The rest of the

proof is the same as in case of nonrecursive implementations.

- 187-

5.2 Implementation Structure and Semantics

Besides the procedures implementing the operations of D, an implementation I of
~ D may include helping procedures ﬁee‘ded in writing the procedures implementing the
operations. For example, INDEX is a helping procedure in the implementation of Set-Int
given in Figure 5.1. A helping procedure is not available outside the implementation, so
we call it an internal procedure of 1. Let ip stand for the set of alt internal procedures used
in I. The procedures in I may also use types other than the rep and the defining types of D,
if need be: we call such types internal types of 1 and denote the set of internal types inlas
1. Note that the internal procedures and internal types of an implementation I are
different from the auxiliary functions and auxiliary types used in its specification S.

In this thesis, we do not wish to be concerned about the semantics of ;he'control
structures used in coding the procedures. There are at least two ‘approaches to avoid
considering the control structures, which are discussed below. However, we illustrate the
correctness method using only the translational apprbach; We have worked the correctness
proofs using the ciher approach; the proofs in that case are ‘'similar in flavor to the proofs
using the translational approach. These proofs are not presented in the thesis. We believe
that the correctness method would work using any approach for specifying the procedures.

Most programming languages supporting user ‘defined data types provide a
mechanism that encapsulates a collection of procedures implementing the operations of a
data type and provides an abstract view of 'dat’zi‘dutSi-der the mechanism, for example,
* cluster in CLU, form in ALPHARD, etc. The encapsulation mechanism constrains the use
of the procedures. We dlscuss below the properties des:red of an’ encapsulatlon mechanism
that facilitate the correctness proof of an lmplementatlon Fmaﬂy, we discuss how we get
the semantics of an implementation I as a set F(l) of implementation algebras to complete

the formal aspects of the correctness method.

- 188 -

5.2.1 Procedures - Approach |

In Chapter 4, we discussed a method based on Floyd-Hoare approach for
specifying a procedure. In this method, a procedure is specified as a set of formulas
relating its input to the result(s) returned by it. The procedures implementing the
operations in an implementation 1 can be specified in this way; the specifications of
internal procedures are not included if they are. not referred .in the specifications of the
procedures implementing the operations. A proée,dute is specified as a transformation on
the values of the rep. To verify the correctness of a procedure with respect to its
specification, the thearies of the deﬁning types; the rep, and the internal types are used.

Figure 5.4 is the specification of the procedures in_,;thé implementation of Set-Int
given in Figure 5.1 using this method. It also has specifications of CHOOSE' and
CHOOSE”. Instead of using the procedure invocation itself to stand for the result (or a
possible result in case of a nondeterministic procedure), we have introduced, for
convenience, a name for thé result. For example,-the specification of the procedure
REMOVE uses r to stand for the result of REMOVE on inputs s.and i. The specification
captures that , .

(1) if the integer argument i is in the sequence argument 5, then r is the sequence obtained
by first replacing the first occurrence of i in s by the mpmost elemmt in the sequence and
then getting rid of the topmost.element; otherwise,

(1i) ris s itself, - In deriving | ﬂme specifications, we have used the specification. of the data
type Sequence-Int given in Appendix IV,

5.2.2 }'.Procedu’re‘s - Ap_‘prroa'ch [

We translate a brocedure implémented in a rich imperative programming
language to a simple applicative language similar to the 'spééi‘ﬁcatibh'I'ahgtlagé:proposed in
Chapter 3 using the method suggested by McCarthy [56] (see [54] where the method is well
explained). Use the translated procedures to prove the correctness of the i_mpiementation L
Guttag et al. [29] and Kapur [40] take this approach; they use a language supporting
conditional expressions, composition, recursion, and the use of auxiliary functions.

- 189 -

Figure 5.4. Specification of the Procedures in the Implementation of Set-Int Using Approach 1

NULLO : (=)
r= rep$Newl()

INSERT(s, i) : (=)
(s, d=>r=s)A(~In(s,i)=r= repSAddh(s, D)

REMOVE(s, i) : (= 1)
GilissfIANVPIP<i=~i=s["]]A
r= repsRemh(repsReplace(s 1, repSTop(s)))] Vi~In'(s,i) =>r=s)

HAS(s,i):(=b)
 (b=T) = In'(s, i)

SIZE(s) : (=1)
i = rep$Size(s)

CHOOSE(s) : (=1)
rep$Size(s) = 0 = CHOOSE(s) signals no-element()
rep$Size(s) >0 => i = s[1]

CHOOSE'(s) : (=1) ‘
rep$Size(s) = 0 = CHOOSE!(s) signals no-element()
rep$Size(s) >0 = (iIn(s, i) A (V j) [1 <| < repSS:ze(s) = s[l] < i])

CHOOSE”(S) (=1)
rep$Sizels) = 0 => CHOOSE(s) signals no-element() -
rep$Size(s) >0 = (In(s, D AUV j) [1 < j < rep$Size(s) = s[j] <i] .
VY D[1<]< rep$sizels) = i <sfi]l], -

where In(s,i) = (3)) [1 < j < rep$Size(s) As [[]=1] ' '
(s, i) = AN[1 <15repSSuﬁ(s)As[;]==aA(V1)[j’<|=>~u=s[j’]]]

We use an extended applicative language that has a signal primitive and guarded
expressions in addition to composition and recursion mechanisms, and the use of auxiliary
functions, so that the procedures» signalling exceptions and exhibiting nondeterministic
behavior can be specified. Conditional expressions can be simulated using guarded
expressions. The translation method proposed by McCarthy can be extended to deal with
the exception handling mechanism and the nondeterministic. construct in a programming
language.

An expression is similar to a term; it uses procedure names implementing the
operations, internal procedure names, the auxiliary procedure names introduced during the

-190 -

translation, and terms. _
The signal primitive takes arbitrarily many (nonzero) arguments; its first
argument is an exception name, and other arguments are expressiofis of various types. Its
syntax is signal(ex, e €peees €), where ex is an exception name‘With‘aﬁtY ‘l)1 X...X Dn
and each e, is an expression of type D. | o | '
A guarded expression is snmxlar to- Dukstra s guarded cemmands its syntax is

- <guarded expressmn) (expressnon)l (altemative) [|| (alternatwe)]
Calternatived> ::= <condition> = <{guarded expression)
<condition> ::= (boolean expression, “
where [X] stands for zero or finitely many repetitions, and the symbol II stands for
nondeterministic choice among varigus alternatives. Ha. guarded expfewon is simply an
expression, then its semantics is that of an expression. Otherwise, if a guarded expression is
a collection of alternatives, then for an instance of its variables, its -semantics is the
semantics of the guarded expressmn of an atbmarﬂy chosen zﬂternatwe whose boolean
conditionis T. If every alternative has its condition as F, then the semanucs of the guarded
expression is undefined. A guarded exprem exhabxts nmdeteMmlsac behawor because
for an instance of the variables, thereare in genera&many altefnatwcs whose condmon isT,
and one such alternative is arbltranly chosen. 3
We translate the pmcedufes in the nnpmenmtron of Set-Int in Figure 5.1 to the
above applicative language. Figure5.5 is their translation; we have also included the
translation of the proeedures CHOOSE’ and CHOOSE” as well as. of the internal
procedures MAX and MIN. In translating the internal procedure INDEX, the auxiliary
function f is introduced to simulate the éffect of thé while loop used in INDEX. Similarly,

. 3. An alternate approach to introducing guarded cxpressions for specifying the nondeterministic behavior of
a procedure OP is to specify its non-cxceptional behavior using a deterministic boolean auxiliary function
OP_P, similar to the function o_p corresponding to a nondeterministic operation o as discussed in the
previous chapter. For an input on which the nondeterministic procedure returns a normal valye, - the
corresponding auxiliary function holds for all possible valucs returned by the procedurc on that input and
docs not hold for other valucs. ‘Then the procedures can -be spcclﬁed using conditional cxpressions and
recursion. We have adopted the above approach for specifying thc proccdures, bccausc u is dlrcct and

simple.

-191 -

the auxiliary procedures f and I are introduced to simulate the for loop in MAX and MIN
respectively.

Cartwright and McCarthy's ﬁrst order semantrcs of recursrve programs [8] can be
used to prove properties about the procedures wmtten in the above apphcatlve language.
The recursive definition of a proceduse. is: eonsideaed as ‘an axiom defining the function

computed by the procedure Because Gf the non, ctern mrstlc behavior of a guarded

expression, we have to be careful in wusing. such. an.axiom, of we will. run into
inconsistencies. For a particular instantiation of vamgbles-in. &he -axiom, ' we -use every .
possible alternative whose condition is: T, .and weido natfrelaee any two nlternatives whose
conditions are T. For example, for CI TO()SE" there are two alternatnes MAX(s) and
MIN(s), for the case (~ rep$Size(s) = 0). We do not equate MAX(s) 0 MlN(s) as relating
them can cause inconsistency. The termination of a pmeédtues is proved separately either

using the method suggested by Cartwnght and McCartﬁy, or the method based on well
founded ordering [14]. S :

The translatronal approach is. purely hased on,a the semantrcs of the control
structures of the host programming ‘languiage in‘tatis OFtheé | primitives of the applicative
language incorporated into the translation methiod’ "¢’ prépertiés of the typés involved in
the implementation can be used in simplifying the resulting translations.

5.2.3 Properties of the Encapsulation Mechanism

As was stated earlier, in most of the prograrﬁr‘ﬁing whguages "ﬁsup‘porting user
defined data types, an 1mplementatron of a data tgp,ees akmsda&on of the procedures
implementing the operatrons that drscrplines dxgir use Su&r an i‘mplementatron is
protected: A procedure implementing an operatign szl)caaao; be pasaed, any arbitrary
value of the tep as a° represent:mon or‘ a value o? D raihér *‘Gﬂfy 2~ value of the rep
constructed earlier as a representation for a value of D b)r the constructor prbcedures of D
can be passed. Every value of the rep- need: net m geaeral‘beuwdio represent a value of D.
The procedures are mvoked only on those values of the rep whrch can be constructed by
finitely many applications of the constructor procedures of D. (For example, the procedure
REMOVE in the implementation of Set-Int in Figure 5.1 is never passed a sequence having

-192-

Figure 55. Translation of the Procedures in the Implementation of Set-Int

NULL () a rep$New()

INSERT(s,) £ INDEX(s, i) < rep$Size(s) = s i
: (~ INDEX(s, i} < rep$Size(s)) = rep$Addh(s,)

REMOVE(s,) 2 INDEX(s, i < rep$Size(s) =
- rep$Remh(rep$Replace(s, INDEX(s, i, repSTop(s)))l
(~ INDEX(s, 1) < rep§Sizéls)) => s

HAS(s,) @ INDEX(s,) < rep$Sizefs)
SizE(s;} © vep$Sizels)

CHOOSE(s) - e -rep$Siza(s) = 0 = signalthe-element) §
. ("' mpSSize(:) =0)= mpSBoltom(s)

iNoEx(s, DA is,i,1)

CHOOSE'(s) e rep$Size(s) = O = signakino-element) |}
(~ repSSizc(s) 0) =2 HAX(&)

MAx(s)) f’(s, repSBottom(s), 2)

CHOOSE"'(s) e rep$Size(s) = 0 = signal(po- olemom) l
I A~ rop$8izels) =°0) s> MAXIE) 1
(~ rep$Sizels) = 0) = MiN(s)

 MINGs) 4 p, rep$Bottamis), 2)

Auxiliary Functions

f :rep X Int X int — Int
f:repXint Xint — Int
175 rep XAt dnt — Int.

Mo b0 @ voCropSSizelsh) o} o 0
(c < rep$Size(s)) A (rep$Fetch(s, c) = I) = c'
e < rep$Size(s) A ~ (repsmehts o= i)-—-s fts Le+t)

(s, m, c) e f~c<rep§§i:o(ﬂ)=b my s e
, ((c < rep$Size(s) A (m< reuSFetqh(s, cl)) = f’(s, rep$Fetch(s, c),c+1) I
({c < rep$Sizels) A (~ m< repSFetch(s c))) = f’(s, m, c+ 1)

' (s, m, ¢) a (~c < repSSize(si) = 'm l '
- Ale < rep8Sizelsd) A (m > renSFQchs cm-» £"(s, rep$Fetch(s, c), c + 1) ||
(c < repSSize(s)) A (~ m> ropsFeicMs, c))) = f”(s, m, ¢+ 1)

-193 -

multiple occurrences of an integer, as such a sequence caonot be censtructed using NULL,

INSERT and REMOVE.) We are interested in the behavnor of the procedures only on this
subset of the values of the rep, The subset is charactenzed by the formula Inv(7) dnscused
in the previous section, which expresses the strongest unary relation on the values of the
rep preserved by the constructor procedtlres of D }lnv(’[) is expreSSed withou‘t alluding to

any particular implementation of the rep type.

Def. 5.2 A procedure OP 1mplementmg a constructor:o : D X X D - D preserves Inv
if and only if ' ’
whenever (v 1 <i<n)[D = D = lnv[x]]) then S
@) if OP(xl, cees xn) returns a normal value, lnv[OP(xl, “ee ,.,_xa)j;;q‘t‘herwise,;
(il) ifOP(x, ..., x) signals exte,, .., ¢,), then for eactt & of type D, hvfe).
If OP is nondeterministic, all possible resuits returned by OP must satisfy Inv. 1

For the implementaﬁon of Set-Int given in Figure 51 lnv(s) 1s

DI <Li<repsSize@) AT £ ST #]
where s[i] is an abbreviation for vepSFetch(s,). Tt ciin Verified that Tnv(s) is preserved by
the constructor procedures of Set-Int. Figure 5.6 is a proof that REMOVE preserves 1nv(s)
the most difficult among the three cases. ‘Any predteate stronger ‘than the one above is not
preserved by the constructor procedures. R o -

" Inv may be difficult to deduce from a complex implementation, but the desighe"r
of an implementation usually has a good idea about what Tnv is. Tii the correctness proof;
Inv is usually not necessary; a weaker property may suffice. ‘In'case Inv is available, a
property of the representing values needed in the correctness proof can be deduced directly
from Inv. Otherwise, if Inv is not available, then the propérty can be déduced by checking
whether the property is presewed by the constructor ﬁ‘rdeedureﬁ; since Inv is the strongest
unary relation preserved by the constructor procedures, any unary relation preserved by”
the constructor procedures is implied by Inv. ' o

If a module implementing an abstract data type in a programming language is not
protected, as would be the case if abstract data types are simulated in PASCAL or PL/I,

say, then

-194 -

Figure 5.6. Proof of REMOVE Preserving Inv

Assume Inv(s) holds. To show that Inv(REMOVE(s, i)) holds.
If type name is not included in the operation names below, we assume that the operation are of type rep.
There arc two cases.

Case 1:. INDEX(s, i) < Size(s) :

Size(s) > 0<==>T, from the spccnﬁcatlon of INDEX

In(REMOVE(s, i)) &= Inv(Remh(Replace(s, INDEX(, i). Top(s)))) from the specification of REMOVE
It can be shown using the specification of INDEX and the theory of .Sequence-lm that

() CInv(s) A 0Ck < Sivets) A s' = Replace(s. k. §)= v o
(((Vkl)[1<kl<S|ze(s)/\~k—k1]=9s'[k1]-q(k1])/\s[k]51)

(i) (Size(s) >0 A 5" = Remh(s)) = (V k) [(1 < k < Size(s')) = (sTk] = sfk] A Size(s”) = Size(s) -1)]
Using (i) and (ji), we have In(REMOVE(s, i)) = T Lo A |
Case 2: ~ INDEX(s, D) < Sire(s)
Inv(REMOVE(s, i)} & In¥(s), from the SpC‘Clﬁcanon of REMOVE

T

(i) restrictions must be lmposed on. the glabal vanables if any, as well as:on the use of the
procedures implementing the. operatnons {0 ensure. the mmxmalxty property of the
implementation, and ‘ , .

(i) Inv must be preserved wherever a procedure implementing an operation is invoked.
Such a proof is likely to be global and oomplex. (Guutag [31] discusses restrictions on the
Euclid implementation module to ensufe that the module satisfy the. minimality. property.)
In the following discussion, weAas‘sumé that the semantics of a:mechanism encapsulating
the procedures implementing the operations of a data ;ype ensures . the »minimalit_y :
property. | | B T
- Itis not necessary for the procedures to terminate over their entire input domain
if 'lnv(!r\) _vis other than T. To prove total correctness of an implementation, it is sufficient
that a procedure implementing an operation ¢ tha.t has its i-th argument x. to be of type D

terminates whenever Inv[x] holds.

- 195 -

5.2.4 Semantics of an Implementation

Now that we have the procedure specifications, we can construct the
implementation algebras of T using them. Since procedures specifications may use internal
types and internal and auxiliary procedures, we first construct the extended
implementation algebras and then derive the implementation algebras from them. For
every possible implementation I' of a type D’ used in the impleméntaiion I, we have the set
of its implementation algebras. In an implementation algebra of I, the domain
corresponding to D’ is the domain defined by an implementation algebra of I'. An
extended implementation algebra A' of I has the following structure:

Al=[{V }Uu{V,IDeaul LEXV;{i |ccoul }]*
Vl') ={v]ve Vrep ATnv(v) }. The function i is the interpretation of the specification of
the procedure corresponding to ¢ in A'. From A, we get an implementation algebra A
A=[{V u{V,ID€a}EXV:{i lo€a}]

4, In addition to the internal procedures, Ip is assumed to include the auxiliary procedures nceded in the
translation of the procedures into the applicative language discussed above.

A

- 196 -

53 Correcthess Method

We describe the remammg steps of the correctness method outlined in
Subsection 5.1.2. For completeness we repeat the steps discussed in the previous section
about the termination of the procedures and the preservation of the formula Inv. For a
specification specifying nondeterministic operations, we discuss the method for three cases:
. An implementation of a nondeterministic operation is (i) a deterministic procedure, (ii) a
nondeterministic procedure, and (iii) a pseudo-nondeterministic procedure. We first use
the imple‘memation of Set-Int given in Figure 5.1 with CHHOOSE replaced by CHOOSE’
for illustrating the method for the deterministic case. "‘Lat.er; we use CHOOSE™ as the
implementation of Choose to illustrate the method for the nondeterministic -case, and
finafly, we use CHOOSE 10 illustrate the method for the pséudo nondeterministic case.

5.3.1 Auxiliary Functions in a Specification -

If a specification S uses auxiliary functions and auxiliary types, we extend an
implementation 1 to include the implementations of the auxiliary functions in the
correctness proof. We include in the specifications of the procedure of 1, the specifications
of the implementations of the auxiliary functions. For shonn_g the correctness of I, we use
the extended implementation, instead of I in the following steps; an auxiliary functions is
treated like ah operation.. In the following discussion, whenever we say I, we mean the

extended implementation if S uses auxiliary functions.
5.3.2 Preservation of Inv

If the formula Inv(r), which characterizes the subset of values of the rep used to
represent the values of D, is available, verify that Inv(r) is preserved by every constructor
procedure. We showed in the previous section that for the implementation of Set-Int in
Figure 5.1, its Inv is preserved by every constructor procedure. ,

If Inv(7) is not available and cannot be guessed easily, we temporarily assume that
every value of the rep is being used to represent the values of D. In the dérivatiqn of the
axioms and restriction of S from the procedure specifications, in case wé need any property

-197 -

P(7) of the rep values, we deduce P(r). by showing thut P(r) is»pre,s_ewed.by the constructor
procedures of D, as in that case Inv(r) would imply P(r).

" In the derivation of an axiom or a restriction in S from the procedure
specifications, a variable of type D is instantiated 10 a-value ‘of the rep satisfying Inv(?) (or
P(7) if Inv(7) is not available). . |

5.3.3 Termination of Procedures

Prove that every procedure in l is total on the arguments it can expect ie., if an
argument to a procedure is of type D, prove that the procedure termmates lf these

arguments are values of the rep satlsfymg lnv(r)
5.‘3.4 Proving Restrictions and Axioms

Show that every restriction in S speeifying the exceptional beh‘avior and every
axiom in S speelfymg the normal behavuor can. be dersved ﬁom the spccrﬁcatlons of
procedures inl. The operatton symbols and the auxlhary functlon symbols in the axroms,
and restrictions are replaced by the names of procedures tmplementmg them. The theorm '
derived from the specifications of the deﬁmng types, the rep, upd.xuteruol types eanibe
usedmthedenvatlons. o P - - - }7

The symbol = in S is mterpreted as the observable equtvalence relatron =p IS
usually mterpreted as the largest equtvalence relatlon on the values of the Tep satrsfymg lnv .
preserved by the procedures. The exception is the case when a nondetermnmstle operatton
is implemented as a pseudo-nondetenmmsttc procedure Then, Ahe, observable equrvalence
relauon serving as the mterpretatton of =p. | is reqmred to be preserved only by the
procedures implementing determuustlc operatlons. and it need not be the largest such
equivalence relation.

- - 198 -

5.3.4.1 Preservation of Equivalence Relation

A deterministic procedure OP implementing an operation ¢ : D, X..X D — D'
preserves an equivalemerelatien .on the rep values, expressed as a first order formula
Eqv(s,, s,), where s and s, are of rep type, and are the only free. variables in the formula, if
and only if for each 1<i<n, (| D=D= Eqv(xi, yi)] A [Di #D=x= yi]), either

(i) 'OP(x,..., x) signals ext’ holds and ‘OP(y ., yn) signals exr’?h(ﬂds such that
‘ext; = ext,’ is provable. ln addmon to the rules dnscussed m the previous chapter, we
have: For an exceptlon name ex of arity D X...X D’ if for every D' D, Eqv(x;, y). and
for every D£D,x= y then ex(x',..., X ‘)= ex(y, ,y)lsprovable Or,

(i) if D' = D, then ‘Eqw(OP(x.,..., x) OP(y, " y)) is provable and if D' # D then
‘OP(x,.... xn) =) OP(yl,..., yn) is provable.

If OP is nondeterministic then (ii) above is modified to be: If D' = D, then for every
possible result n returned by OP(x yoons xn) OP(yl,. .“ y)can return’ r such that Eqv(’z) is
~ provable, and vice versa, and if D’ # D, for every r retumedby OP(x, 5 x) OP(yl, - yn)

can retum r, such that ‘s L =p fy 18 provable and vice versa. -

For example, qu(sl s2) for the 1mplementahon of Set-lnt in Figure 5.1 wrth"

CHOOSE ' replacing CHOOSE is ;

(SISSize(s1) = SISSize(s2)) A (v i) [INGs1, i) = IN(s2, i) 1. where

ING, i) = (3»(!<1<Slssize(s)/\slilzil o |

It relates sequences that are permutatlons of edch other. Eqv is preserved by every
procedure rmplementmg an operatron ‘of Set-Int. FigureS 7 has” the. proofs for the
procedures INSERT and HAS. Eqv(¥) is the 1argest equwa‘lence relatnon preserved by
the procedures 'Any equivalence relation strohger than qu w0qu have to re!ate sequencesf
that are not permutatlons and is thus fiot preserved by HAS. R |

- 199-

Figure 5.7. Proofs that INSERT and HAS Preserve Eqv

For INSERT .
assume Eqv(s], s2), to show that (V i) EQWINSERT(sl, i), INSERT(s2, 1))

Case 1: INDEX(s!, iy < SI$Size(sl) =T
Using Eqv(s1, s2), we have INDEX(s2, i) < SI$Size(s2) = T S0
INSER'T(sl, iy = sl, INSERT(s2, ?)—82 sohqv(lNSFRT(sl t) INSERT(s2, 1))=»T

Casc 2: INDEX(sl, i) < SI$Sizes2) = F -
Using Eqv(sl, s2), we have INDEX(s2, i) < S1$Size(s2) =. F S0
INSER'T(s1, i) = Addh(sl. i), INSERT(s2, i) = Addhs2, 1), so -
Egv(INSERT(sl, i), INSER 1(52, 1)) = Fqv(Addh(sl, i), Addh(s2,i)) == T

For HAS

From the scmantics of INDEX, we have
(i) INDEXG. i) >0=T,
(i) INDEX(s,) < SI$Size(s) = s [INDEX(s. 1)]= i,
(iii) INDEX(s, 1) > SI$Size(s) = [{V j)(] < j < SI$Size(s)) == ~slihs=il

assume Eqw(s, s2), to show (V i) HAS(s1, i) = HAS(82, i)
HAS(s], i) = lNl)l*X(sl i)< Sl$Slze(sl)

Case 1: lNDFX(sl i) < SISSlze(sl) =T
sI{INDEX(Gsl. i)} =i
Using Eqv(s], s2). weget Aj}[(1 K < Sl$S|ze(s2)) A s2 b] = 1],so
INDEX(s2, i) < SISSize(s2)=T
HAS(sl,i) = HAS(R2,) =T

Casc 2 INDEX(sl, i) < SI$Size(sl)= F
Using Eqv(sl, s2) and the above facts about lNDEX we get
INDEX(s2, i) < Si$Sizc(s2) sz ¥, 50 -
HAS(sl,i) = HAS(2,i) = F ~

5.3.4.2 Restrictiqns

For a restriction specifying a required cxceptlon condmon of o,
R; (X) = o(X) signals ext : '
show that whenever P _(X) and R; (X) interpreted in I hold, the procedure opP
implementing ¢ must signal ext. For example, the specification of Set-Int specifies the
following required exceptioh condition for Choose in its restrictions component:
#(s) = 0 = Choose(x) signals no-clement(). _ ,
So the procedure CHOOSE' must signal no-element() when SIZE(s) = 0

- =200 -

(=» SISSIZE(s) = 0) holds, which is indeed so (the precondmon specified for Choose is T).

For a restriction associating an optional exception condition with o,

o(X) signals ext = OI(X)
show that whenever the procedure OP implementing o stgnals ext, P (X) and O(X)
interpreted in I hold. For example, the specification of Stk-Int given in Flgure 3.2 specxﬁes
“the following optional exception condition for the operatlon Pnsh
. Push(s, i) signals overflow(s, i) = #(s)> lﬂﬂ 7

In an implementation of Stk-Int, if the procedure implementing Push signals overflow, then .
the size of the input stack must be > 100. ‘

We must also show that (i) if an input to a procedure OP implementing an
operation ¢ satisfies its precondition, does not satxsfy;hccgndltlonforany of its required
exceptions or optional excepiions’ then"the'pro'cej'dﬁré tenninites*norﬁmﬁ? ; Let-

X)) = (P, D A(~ R(X)A .. /\~R,(X))A(~9(X)/\ /\,"'0 X)),
where for 1<i</, R, is the condition when o is required to sngnal exl and for ISJSm O 1sr
the condition when o has the opt:on to SIgnal an except!on exl We show that C(x): lmphes
(X Where TC___(X) is the weakest input condition for OP to terminate normally.

For example for every procedure in the lmplementatlons of Set-lnt the above condltlon is
satisfied. ‘ L '

If a nontrivial precondition P is specxﬁed for a conwucmr o then the proccdure
OP implementing o either signals on input X not satisfying P , or retums a rep value
which can be. constructed by a constructor . procedure usmg an input satisfying its
precondition. For example, a correct implementation of Stk-Int can have the procedure;
implementing Pop return a stack when applied on an empty stack If the procedure'
implementing Push signals overflow on a stack of size 128, say, then the procedure
| implementing Pop can only return any stack of size < JZSlpcmm return a stack of size
1000, say; allowing it to do so would be meaninglms._ ,

- 201 -

5.3.4.3 Axioms

In the derivation of an axiom, we ensure that (i) for every occurrence of a
procedure name OP lmplementmg the operatlon a, the mput to OP must satlsfy the
precondition P associated with o, and (i) no subexpressnon sngnals any exceptlon

If an axlom is an equation of the form e1 =e, we prove that its mterpretatlon in

I is derivable. If e “and e, are of type D, =is interpreted as Eqv otherwnse the
interpretation of el = €2 in 1 can be derlved usmg the theones constructed from the
specifications of the rep, the defin mng types, and mtemal types.

If an axiom is of the form ‘e, = il b then e we ‘have to prove that ‘b = e =e
when interpreted in L is derivable. Similarly, for an, gxtom ‘e, = if bthen e, clse e, " we must
provethat'b=e¢ =e¢ and '~ b= ¢ = e3 are derivable in l. Recall that the condmon bis
assumed to behave deterministically even when: it -inxolv.os nondeterministic operation
symbols. - Figure 5.8 is a proof that the then: part of the axiom, - G

Remove(insert(s, il), i2) = if il = i2 Then Remexe(s, lZ)eIse lnsert(Remave(s, 12), ll)
is derivable.- The derivation of the else clause, . :
.{~ il = i2) = Remove(insert(s, il), i2) = htsertﬂlemve(s, B), it),
_ uses a property of the representing values that

(w)l(repsSue(s)mMn(s,»):(a';)llsssmssue(s)/\shlatn

Figure 5.8 Proof that an Axiom of Set-Int is Derivable

il=i2= Rcmove(lnscrt(s il), i2) = Remove(s, i2) ,
Assume il = i2, to show l*qv(Rl-MOVE(INSER I‘(s, 11) i2), RFMOVE(s, 12))

Case 1: lNl)l:X(s il) < rcpSSuc(s) T
INSERTEs, il) = s, so the above holds.

Casc 2: INDEX(s, i1) < rep$Size(s) = F
Leotr = INSERT(s, il) = Addh(s, il)
Using il = i2, INDEX(r, i2) = rcp$Size(Addh(s, 11)) S0
REMOVE(r, i2) = s, and
REMOVE(s, i2) = s, so the above holds.

-202 -

which is preserved by the constructor procedures. S

| " The axiom ‘Choose(s) € s = T’ under the condition ‘~ Size(s) = 0,” when
interpreted in 1 is ‘"HAS(CHOOSEXs),) = T. ~This is derivable, because
‘lNDEX(MAX(s), s) < repSSizc(s) T lS denvable The remaining axnoms in the
specification of Set-Int can also be shown to be denvable »

The above five steps constttute the correctness method. I an 1mplementatton I
can go through the above steps it is correct w1th respect to S. ,For example, the
1mplementat10n of Set-Int given in Flgure 5 1 wnh Cl !OOSE rep,laced by CI lOOSE’ _goes -
through the above steps, and is thus conect. ‘

5.3.5 Nondeterministic Procedures

We -now- consider the case when ‘an implementation: has a nondeterministic
procedure implementing an operation specified o be’ nondeterministic by §. We have
already discussed the conditions for a nondeterministic précédure: to preserve Inv and the
equivalence relation Eqv. Various steps-in the cotrietiiess proof discussed above remain:
the same except that if ai1 aéiont involves thenondéeteiministic procedurs, we must use the
interpretation of formulas involving nondetefiinistic : function: symbols - discussed ‘in
Chapter 4. 1n addition, it-must-be ensured: that for- ahy- imput;: the: nondeterministic
procedure does not have a choice of signaﬂing as well as terminating normally.

For example, if we consider the implementation of Set-Int in Figu.re,S.l with
CHOOSE replaced by CHOOSE”, most of the-above proof remains vatid: We have to
show that the axiom ‘Choose(s) € s = T’ is derivabje under the conditien. '~ Sizefs) = 0.
That is, if ‘rep$Size(s) > 0" holds, then

HAS(s, CHOOSE"@) = T (*)
is derivable. CHIOOSE™(s) can either return MAX(s) or MlN(s) For both possnbtlmes, (’)
is derivable, as

INDEX(MAX(s), s) < rep$Size(s) = T

IR IS €% T

- 5. (31 j) stands for ‘there exists a unique j such that.’ S

-203 -

is derivable from the specifications of MAX and INDEX, and
INDEX(MIN(s), s) < rep$Size(s) = T
is derivable from the specifications of MIN and INDEX. Note that CHOOSE” preserves |
the equivalence relation Egv.
The implementation of Set-Int in Figure 5.1 with : CHOOSE replaced by
CHOOQSE?” is also correct.

. 5.3..6 Pseudo-Nondeterministic Procedures

A pseudo- -nondeterministic procedure (which could be either deterministic or
. nondetermmlstrc) is not required to preserve the equrvalence relation Eqv6 The
correctness proof in this case also is carried as above dependmg on whether the procedure
is deterministic or nondeterministic. However we must ensure that if the procedure
terminates normally for any input X, then it must doso for all mput equlvalent to X and if
it signals on an input X, then it must signal equivalent exceptions for all input equivalent to
X. This ensures that a pseudo-nondeterministic procedure does not have a choice of
signalling as well as terminating normally on equivalent rep values.

We now take the implementation of Set-Int in Figure 5.1. CHOOSE is
deterministic; it returns the bottom element of the nonempty sequence. Egv is not
preserved by CHOOSE. If the axiom ‘Choose(s) € s = T is derivable under the condition
that ‘Size(s) # 0,’ then this implementation is also correct. The proof of the axiom is-
straightforward: If ‘rep$Size(s) > 0" holds, then |

HAS(s, CHOOSE(s)) = T = HAS(s, Bottom(s)) = T

When an implementation does not have any pseudo-nondeterministic procedures,
then the interpretation of = in I is the largest equivalence relation preserved by the
procedures. However, a weaker equivalence relation preserved by the procedures may

suffice to show that the restrictions and axioms of S hold in I.

6. For cxample, a proccdurc CHOOSE™ which nondcterministically picks between the top (last) and the
bottom (first) clement of the sequence is nondeterministic and docs not prcscrvc the cqulvalcncc relation Eqv.
So, CHOOSE™ is also pscudo-nondeterministic.

- 204 -

Though the designer of an implementation usually has an idea of what the
observable equivalence relation is, sometimes it may not bé known. In that case, we will
not know what procedures are psetdo-nondeterministic. Then, we choose an equivalence
relation preserved by the procedures yimplementing the deterministic operations, and-using
it as the interpretation of =, we attempt to show hat every axiom as interpreted in I s
derivable. If successful, the implementation 1 is correct; otherwise; a stronger equivalence
relation is chosen and the above process is repeated. If the correctness of 1 cannot be
established even when. the strongest equwalence relation preserved by ‘the procedures
implementing the detemnmsuc operations is chosen then l is mcoxTect.

Another way to vrew the above correctness mexhod is to consider the specification
of the procedures in an rmplementatron I as, axloms of the theory of 1, deﬁmng the
functions computed by the procedures, and show that every nonlogrcal axiom of Th(S) is in
the theory of L The theory of T also mcludes the theones of the types.used in I. Nakajima
et al [62] take a similar view.

- 208 -

5.4 Recursive and Mutually Recursive Implementations

Def. 5.3 An implementation I of D depends on a data type D’ 1ff only if
(i()D'isusedinl, or
(it) a data type D" used in I dependson D, 8

In Def. 5.3 above, it is assumed that data typés‘otﬁér than D are abstractly used in
an implementation I of D. In the correctness ‘method discussed in the .previous: two
sections, we have assumed that

(i) an implementation I of D does not depend on D, and

(i1) an implementation of a data type D’ used in 1 does not depeﬁd on D.
We relax these constraints. We call an 1mplcmentat|on I of D ‘recirsive’if and. oniy if the
rep used in I depends on D We call an lmplementauon l of D and another

SELf et
iRrd . agd

implementation I' of D’ mulually recursive if and only if I de and on D and I depends on
D. We assume that recursion is not due to internal types used in L. 1t should be‘niofed that
if the implementations of a set of data types are mutnally recursive, that does not:mean that -
data types are also mutually recursive (mutually recursiyg;ggt‘giftxpgs‘ are dlscussed in
Section 2.4). We first discuss how the method proposed in Section'$:3 be:modified to deal

with recursive implementation, later we consider mutually recursive implementation.

5.4.1 Recursive Implementations

In proving correctness of a recursive implementation-,.ivé‘conside‘r a refcfénce to

Figure 5.9. An Uninteresting Recursive Implementation of D

D = clusteris OP1 , OPZ) e
rep=D '
OP, = proc(...) retumns....
return (DSOP, (...))
end OP,

- 206-

D in I as a reference to its rep and an invocation of an eperation ¢ of D as a call to the
procedure OP implementing . The equate defining the rep inside I is considered as a
recursive domain equation, as the construction of the rep depends on D itself. For

Figure 5.10. Implementation of List-Int

LIST-INT = cluster is NIL, CONS, CAR, CDR, IS_IN, IS_EMPTY

rep = oncof [empty: Null, pair: Pair]
Pair = struct [car: Int, cdr: List-Int]

NIL = proc() rcturns (evt)
return (rep$make_cmpty(nil))
end NIL |

CONS = proc(i: Int,I: List-Int) returns (cvt)
return (rep$make_pair(Pair${car:i, cdr:1}))
end CONS

CAR = proc(l: cvt) returns (Int) signals (cmpty)
tagcase | .
tag pair (p: Pair): return (p.car)
tag empty: signal empty()
end
end CAR

. CDR = proc(l: cvt) returns (List-Int) signals (empty)
tagcase |

tag pair (p: Pair): return (p.cdr)

: em:d empty: signal empty()

end CDR

IS_IN = proc(i: Int, I: cvt) returns (Bool)
tngcase |)
tag pair (p: pair): if p.car = i then return (true)
cise return (List-Int$is_in(i, p.cdr)) end
tag cmpty: return (false)
end
cnd IS_IN

IS_EMPTY = proc(I: cvt) returns (Bool)
return (rep$is_cmpty(l))
end IS_LEMPTY

-207 -

example, consider the implementation of a data type list of integers, denoted by List-Int,
given in Figure 5.10; its rep is a recursive domain equation. A recursive domain equation
can be solved by defining an ordering on type algebras and using Kleene's Recursron
Theorem. The rep is the least fixed point solution of the equatlon (see [3] fgr detarls abcut
such an ordering). '

For a correct lmplementatron I, the type algebras of the rep should have a
some recursive implementation such as the one given in Flgure i&, 'the }easi ﬁxed pemt ls
the empty algebra an algebra having no domain and no functions. For well founded rep
be nonempty, the method proposed in the previous sectlem mbeased The proofmatﬂre
least fixed point of a domain equation defining the rep is nonempty is the only additional
step in proving the correctness of a recursive implementation.

Figure 5.11 has specifications of the procedures in the lmplemenmtrén of Llst'-hlt
(The specifications of Null, Struct [: D ~n:D,), and One-of {n;: D s D] are
given in Appendlx 1V.) Figure5.12isa specrﬁcatlon of List-Int. We grve below a s.kemh
of various steps in the correctness proof of the implementation of List-Int given in
Figure 5.10. . o -

Figure 5.11. Translation of the Procedures of List-Int

rep = oneof[empty Null, pair: Pair].
Pair = struct [‘car: Int, cdr: List-Int]

T NILD é repsmake_empty(nll)
'CONS(i, a: rep$make_pairlPair${car: i, cdr:1})

CARI(I) A rep$is_pair(l) => Pair$get_car(rep$value_pairil) |
~ rep$is_pair(l) = slgnal(emply)

a rep$is_pair(l) = Pair$get_ cdr(repSvalue_palr(l))l

o~ rep$is_pair() = signalfemﬁiy)

CIS_ING, 1) 4 repSis_pair(l) = (i = PaurSgeLcar(repSvawc_ﬁaMﬂ)V'
IS_IN(i, Pair$get_ cdr(repsvalue_pair(l))}l
~ repSis_pair(l) = false

IS_LEMPTY(I) e repSis_empty(l)

CDR(1)

Figure 5.12. Specification of List-Int

Operations
Nit : — List-Int
- Cons : Int X List-Int — List- Int

Car : List-int — Int

— empty ()
Cdr ¢+ List-Int — List-Int
: — empty ()
iIs_in : Int X List-Int — Bool

ts-Empty: List-int — Beol
Restrictions '

1s-Empty (1) => Car(l) signals empty ()
is-Empty.{l) = Cdr{l) signais empty ()

Axiomis

Car(Cons(i,)) =i

CdriCons(i,)) = |

Is-In (l NillsF

© im-In(it, Cons(i2, M =it i1 =2 then Tohe is-In (i1, 1)
Is- Empty(NH) =T .

u-&aptyﬂ:om(i N=F

(i) the least fixed point of the recursive domain equation is nonempty. For any model of
Int, the approximhtions to the rep canbeconstructed. L

iy I(®) i T Drife s et an:

(iii) The termination of procedures other than lS.JN lS bbvnous assummg that the
tagcase, and the operations of one-of terminate. For IS.JN,. ¢ can prove termination
using McCarthy and Cartwright’s 'appmabh or by -using. the Jfact. that the rep is-well
founded with respect to the ordering, /< on:-ol{pau fear:: ucdr, 1 for any i and Il

(iv) the equivalence relation on the rep is the ’id’ent!fy reTatlon | o :

(v) The procedures return normally on'an mput Qﬂ, WM Iha restncnon component does
not specify the corresponding, Qperatlon to Slgnal. ‘

(vi) Every restriction is derivable, o

(vii) Every axiom is derivable.

- 209 -

5.4.2 Mutually Recursive Implementations

We prove the correctness of mutually recursive implementations in.a way similar
as in case of a recursive rimplementatiqn. The. correctness of mutually recursive
implententatiohs must be proved together. The reps of the two .implementations are
_specified asrmu‘tu‘ally recursive domain equatians; the solution of these equations are. the
least fixed poipts,.whicb serve as the rep of D and the rep of D' Fbrthe implementations I
and I' to be correct, both reps must be nonempty. The sest of the proof is same as in case of
nonrecursive im plementations with the exception that the corregtness proof for all mutually
recursive implementations is done together. The implementations I and I' have to be
shown to satisfy the restrictions and axioms in S and S". The invoeation of an operation of
D' in 1 is considered as a call to the procedure iV~ implementing e operation; and:the
invocation of an operation of D inI'is consrdered as a call to the procedure in I
unplementmg theoperation. = ‘ B

' The correctness proof ‘cannot be hrerarchrcally structured in case of mutually
recursive rmp‘lementatrons because their correctniess Nas to be proved together. For +this
reason, we do not recomniend that hrerarchically structured (nOnrecurswe) data types be
|mpiemented mutually recursively. However, for’ a set of mutuéily r’ecursrve data types,
their implementations have to be ‘proved ‘correct together ‘s0 these data’ type can be
mp]emented mutually recursrvely without addmg to thé comp]’exrty of the correctn&s
proof, REURETRITE RIS .

-210-

6. Conclusions

\ We have presented a rigorous framework for abstract data types, and studied four
important aspects of abstract data types, nzimely' definition, specification, theory, and
implementation correctness, within this framework. An overview of the approach taken in
studying these issues is given in Chapter 1. The frameéwork has provided a base from
which to to ask many interesting and important questions about data types. Some of these
questions have been answered in the thesis, while others suggest directions for further
research. Below, we first summarize the contribitions of our work and then indicate areas
where further work is required. | ' |

“w

6.1 Summary of Contributions

We have made a cleér distinction between é data type and lts specification(s) in
our research. The behavioral approach for defining a data type,‘d,cvcvloped in the thesis
embodies the. view of a data type taken in programming languages. It cq}lsiders only the
input-output bchavior of 'th}eV operaiions. It abstracts fmrﬁ the representational structure of
the values and the operations bf a data type as weu;.,as)frgm fmyltiple;cp_ﬁr;cscntat\ions of
valus for a particular representational Strucwre‘ (_)urﬁ_,de,;ﬁni\tiona!mevthod can handle data
types wi& _nohdetenninistic, ope,rétiops -and wn;h operations . e*hibﬁgg -exceptional
behavior. It is independent of speci"ﬁcat'ion Hnllethods fdr data types. Speciﬁca,tigq:.?
languages other than the one proposed in the thesis can also be developed based on it. It
can be used to give the semantics of existing specification languages. In [43], we have
‘studied and compared the expressive power of various specification languages for data .
types. Using the definitional method, we have been able to characterize computability over
the values of a data type, and study the expressive power of the operation set of different
designs of a data type [42].

The specification language proposed in the thesis is structured and flexible. The
normal behavior and the exceptional behavior of the operations are specified separately.
The language provides mechanisms to specify (i) nondeterministic operations, (ii)

preconditions for operations stating what portion of the input domain of an operation is

-211-

interesting, (iii) exceptions which must be signalted by the operations, and (iv) exceptionsv
which the operations can optionally signal. In desrgmng the specrﬁcatron language one of
the goals has been to facilitate writing specrﬁcatrons as well as provrng propertles of data

.types from their specrﬁcatrons without havmg to express the propemes that can be_
“deduced. The semantics of a spec1ﬁcatron is given as a set of data types. Equrvalence

among specifications is defined. N

We have proposed a deductrve system for abstract data types and studied its
different components. A ﬁrst order theory of a data type is deﬁned whrch is constructed'
from its specification usmg the deductive system The well def nedness sufﬁcrent
completeness and completeness propertres of a specrf catron are del' fed based on what can
be deduced from it. These propertres are related to the model theoretrc propertres of a.
specn' catron A clear distmctron is made between the model theoretrc and proof theoretic
propertres ofa specrﬁcatron | o ' ’

We propose a correctness criterion for an rmplementatron of a data type wrth
respect to its specifi canon mdependent of lmplementatron correctness methods and
specrﬁcatron methods. Many rmplementatron correctness methods can be developed
embodying this cntenon We develop a correctness method whrch rs srmple and natural
for a wide class of specrﬁcatlons. R ‘

Throughout this research, we have emphasrzed modularrty and hrerarchrcal
structure be it the deﬁnrtron specrf catlon deductlve system or lmplementatlon of a data
type. , : g . :

‘ The development of the framework has also provrded useful msrghts into data
type behavior and the programming language features, such as the advantage of havmg a |
protected encapsulation mechamsm for rmplementmg a data type separatlon of the'
“exception handlers from the type behavior, srgmﬁcance of hrerarchreal structure and

modularity, etc.

-212-

6.2 Directions for Further Research

We first discuss topics of further research emerging from the dlscussmn in various
chapters. We later discuss other aspects of data type behavror not studled in the thesis, and
finally, the topics in whrch the assumptlons made about data type behavror in the thesis are
relaxed.

‘We have not mvestlgated how easily the deducttve system proposed in Chapter 4
can be automated or incorporated into an existing automatrc data type deductlon system
such as AFFIRM. We do not antrcrpate any major problems in mcorporatmg the
subsystem for reasomng about the exceptlonal bchavror of a data type, because the axJoms
describing the exceptlonal behavior are similar to equatlons and can be trausformed to
rewrite rules. However the subsystem for reasomng about nondetenmnlstlc operatlons
involves axioms using existential quantrﬁers A venﬁcatron system based on first order
predicate calculus can in principle mcorporate thls subsystem We feel that the full power
of first order predlcate calculus wrth rts complexrty is not requtred. An approach for
untransfonned ax.oms (m whrch propertles are expressed using nondetenmmstlc symbols)’
smular to rewrite rules for equauonal axioms needs to be mvestlgated. ,

" The 1mplementat10n correctness method dlscussed in Chapter 5 uses an
equrvalence relation on the values of the rep (representmg type) and requnres that the
rmplementatton be extended to mclude the deﬂmttons of auxrhary functrons used m a
specification, if any. It would be useful to develop a method that can derive thts -
information from the specnt' catron and the 1mplementat|on We do not anticipate any
problems in automatmg the remammg steps of the method however the interface between

ver:ﬁcatlon system embodymg proof rules for control structures and a data typev
deductnon system may need to be analyzed We are mvcstrgatmg another method that does
not requrre the equivalence relation and the definitions of auxrhary functlons for an
implementation. It is based on the behavioral equivalence relation on models For every
computation having an observer as its outermost operation, if the specification prescribes a
result, a value returned by the computation when interpreted in the implementation must

be one of the possible results prescribed by the specification.
‘The proposed implementation correctness method tells whether an

-213-

implementation is correct with respect to a specification. It would be interesting to extend
it so that the bug(s) in a incorrect implementation ¢an be located: this would help in
debugging the implementation. o o |

Another oomphmentary area- for further study is that of systematic testmg for
enhancing confidence in a piece of software. In addition to usmg it for testing programs
using the data type, a specification of a data type cafi'be used 16 design asct of test cases for
checking the implementations of the data type. 'Gannon et af. [19] discuss a system in
which a specification of a data type as a set of conditional equa’tibhs is presented along with.
a set of test cases which can be executed usmg ‘the lmpfementatlon to test for the
consistency of the nmp!ementatron with the specification. A methodotogy for designing an

adequate ‘set of test cases from a specification would be very usefut for stichia system. o

Specifications are often hard to write; and espwtatfy the writing of an ‘algebraic’
specification has been found to be hard [41, 3]. We are investigating a method for wrltmg a
specification in a systematic nianer: usmg ‘this method, we have been able ‘to. write
specifications of data types such’ as traversable stagk [41],“file [42), etc. A system that
embodies such a method and helps a’ designét in" wnhng a spetiﬁcatnoﬂ would be very
useful. Tt should assist the designer in dnalyzing a specnfcixdbn s0"as to enhance his
confidence in the specification.’ 1t should’ check for g‘enenﬂ structural’ propemes of a
specification such ‘as well definedness and compléteness, which enstire proper relations
among different components of the specification. The undecidability of completeness and
well definedness can be stiown by reducing them to the Post Corresporidence probler 58]
in Post systems. However, sufficient conditions on axioms and restrictions whiqh guarantee
well definedness and-compléteness of a specification ‘hekd 1o be investigated. The results of
Guttag and ‘Horning* [28] zmd Pola]nai' [67] wﬂi pmbab!y be heﬁiful in arnvmg at these
conditions.

It is equally importaht to‘e"nsure that a sbc'ciﬁcatidrﬁndeed”céptures the intent of
_the"designer. This can be checked in several' ways, s6mie of which are complimentary: The’
designer can express additional properties that a data type should satisfy. He then attempts
to prove these properties from its specification using the detluctive system. Another
approach is for the designer to come up with a model of the’data type and then chieck that

-214-

the axioms and restrictions hold in that model. Third epproach can be similar to progmm‘
testing; the specification can be validated on a set of test cases..

Guttag and Horning [32] have suggested how formal specifications can be used as
a tool for designing software. Our specification language can be used to aid.the design of
the data component‘of software. For it to be used for writing specifications of general
software, it must be extended to include mechamsms for specnfymg mutable behavxor
procedural abstractions, other control abstracnons. etc.

An important aspect ‘of data types .not 4s‘1u«d|e,d> in our framework is the
' relationships among different data types. One important relatignship is among the set of
data types defined by a type scheme (also called a-parameterized type). Data types in the
set defined by a type scheme have similar behavior except that the values of these data
types may have their consmuents belonging to different: types, and the values may have
different structural constrmnts, for example, different upper bounds on the size of the
values etc. This vanauon in the behavior of dlfferent types is expressed using two kinds of
parameters: Consian! parameters ranging over. the vajues of a data type, often used to
express the structural coﬁgtraints :Qf,‘i the values, such as bounds op the size of the values,
and type parameters stating the type of me,cgpsgtqengsf»gﬁ;ﬁg vajues, For-example, a type
scheme Stkfn : Int, 1 : Types] defines a set of datgi.t;xpe,s ;thqt:hayg;theAbehavior.qf stacks,
and that differ in the type of the elem_epts_zgf stacks and the upper bound on the size of
stacks. Types stands for the set of all data types, and is jtself not a data type. The data type
Sticlnt-100, for example, is an instance of the above type scheme with n = 100, and
A type scheme is in general a partial. function from the cartesian product of the
domains of its parameters to the set of al types, Types. For a partioular set of parameters,
this function either returns a data type or is undeﬁhed For exam;;)'l'e} the type scheme Stk
Howeve_r lf parameters pf a,.type scher_ne a;e requlredtosag;fy ;eergglqu;qge;ues, then: the_
function returns a data type only if the -ﬁa:g;nete:s.saﬁl_isfy@e,:desire@ properties. For
example, in case of the type scheme Setf: : Types]. its type parameter must have an equal
operation with standard properties.

-215-

The specification language proposed in Chapter 3 can be easily extended to
specify type schemes. A specification should have an‘ additional component, called
Regquires, stating conditions on the parameters ranging over types. The Reguires
component can specify both the operations that the type paraméter must have and their
properties. The semantics of such a specification can be easily’ given. How the deductive |
system proposed’ in Chapter 4 can be extended to type schema would need further
investigation. IR o '

Apart from a type scheme, thete are other-interesting relations among different
data types. There are standard mathematical relations, such as the relation between a
cartesian product of data types and its components; the relation between discriminated
unions and its components; etc. Some of these relations can be expressed as type schema.
The notion of a subtype of a type needs investigation. For exalf\ple; what relations exist
between integers, rationals, and algebraic reals? How do sets, multisets, ordered sets, and
sequences relate, and how do stacks and traversable stacks relate?

Our framework is limited in three respects. Firstly, the definition of a data type
only incorporates the input-output behavior of its operations. It does not consider another
aspect of the operations, namely how efficiently these operations can be performed. It is
not even clear whether the computational complexity of the operations should be included
in a definition of a data type, or whether it is an orthogonél constraint on the
implementations that should be included in a specification. We think that the inbut—output
behavior of the operations of a data type should be kept separate from their computational
complexity, but a specification should have another component stating the performance
‘requirements on the implementations of the operations.

Secondly, we have assumed a simple model of nondeterminism in analyzing the
input-output behavior of the operations. For an input on which a nondeterministic
operation can return many possible results, we have not considered how these results are
scheduled. It would be interesting to incorporate the scheduling information and extend
the definitions of observable behavior and distinguishability of values. It would also be
interesting to investigate how our formalism is affected if we relax the assumption that a

nondeterministic operation cannot have the choice of signalling as well as terminating

-216 -

normally on a particular input.

Thirdly, the definitional method handles only immutable data types. As is.
discussed in Appendix I, for a wide class of mutable data types, the states of their objects -
can be modeled as the values of an immutable data type. However, the framework needs-to
be extended to handle arbitrary mutable data types including data types having objects
whose state is also mutable, for example, the data type /ist.in MACLISP. The specification
language and a deductive system based on the extended fréfnev\fork need to be developed.
Bérzins's work [3] can be:useful in studying this extension.. '

-217-

References

1. Preliminary ADA Reference Manual and Ratlonale SIGPLAN Nouces
Vol. 14 No. 6, June, 1979 o

2. Berzins, V. Personal Communication. Lab for Computer Scrence MIT,
Dec 1976. o e

3. Berzins, V. Abstract Model Specifi catron forData A?bstmctrons
LCS-TR-221, Lab. for Computer Science, MIT, MA; 1979

4. Birkhoff, G., Lipson, J. D; Heterogeneous Algebras. Journal of
Combinatorial Theory Vol. 8, 1970, pp. 115-133. s

5. Brand D., Daringer, J.A., Joyner, W.H. Gompieteneskof Conditional
Reductions. 1BM Research ‘Report RC7464‘ Yorktown ﬂeights New York
Dec.;1978. ’

6. Burstall, R.M. Provmg Properties of Programs by Structural lnducnon
Computer Journal Vol. 12, Feb 1969 pp 41-48

7. Burstall, R. M Goguen, J.A. Puttmg Theories Together To Make
Specifications. Invited Paper at the Fifih Intemauonal Jomt Conf on Amf ch /
Imelllgence Cambnége. MA, Aug., 1977 »

8. Cartwright, R, and McCarthy, J. Recursive Programs as Functions in a Flrst
Order Theory. Report No STAN-CS 79-717 Stanford Uﬁiversrty '
March 1979.

9. Cohen, J. Nondetermmlstlc Algonthms Computmg Surveys Vol 11 No 2,
June, 1979 pp 79-94 :

10. Cohn P.M. Universal Algebra. Harper and Row New York 1965.

i1 Dahl O.-J., Nygaard, K., Myhrhaug, B. The Simula 67 Common Base
Language. Norweglan Compu‘tmg Center Fdrskmngsvem IB Oslo 1968

12. Dijkstra, E.W. Notes on Structured ngrammmg In' Structured
Programming (Dahl, O.-1., Dijkstra, E.W., Hoare, CAR)! ﬁAcademic Press,
London and New York, 1972, pp. 1-81.

-28-

13. Dijkstra, EW. A Discipline of Programming. Prentice Hall, Englewood
Cliffs, NJ, 1976. '

14. Dershowitz, N,, and Manﬁa, Z Proviné Tenﬁinatié;i,;\gith Mulnset
Ordering. Comm. ACM Vol. 22 No. 8, Aug., 1979, pp- 465-476.

15. Ehrig, H., Krecwski, H., Padawitz, P. Stepwise Specification and .
Implementation of Abstract Data Types. Proceedings of the Fifth International
Collq. on Automata, Language, and Programmivg. \idine, as.Lecture Notes in
Computer Science Vol. 62, Spnaget-»\!erlag' lgﬁl.m 20&226 co

'16. Enderton, H, B A Mathematical lntroductmrto&ﬁgtc Academ:c Press. ;
New York and London, 1972. ' . o

17. Floyd, R.W, Assigning Meanings to Brograms. Pracegding of
Symposiwm.in Appllfd Maik., \(01. 19.as 4 /
Science (ed. Schwartz, J.T.), American Mathematical Socwty. Provndem R.L,

1967, pp 19-32. ’

18 Friedman; DP Wise, D.S. QQNS shoglﬁnoLEyahate |tsArguments.
Technical Report No. 44, Computer Science Dept lndlana Umversnty
Nov., 1975. : ‘ R :

19. Gannon, J., McMullin, P., Hamlet.R Ardts.M TmtmgTrayersable
~ Stack. SIGPLAN Notices Vol. 15 No. 1, Jan:, 1980, pp 58-65.

20. Goguen J.A Abs;ract Euprs fer Abstms;t Byta Ty;ae& Pmeeedma of thc .
IFIP Working Conference on Formal Basis of ngmmmmg ConceplsVol 2,
Aug., 1977, pp. 21.1-21.32.

L. Goguen J.A., and Tardo, 1. An lntroductlon to OBJ ;A Language for .
Writing and Testing Formal Algebraic Program Specaﬁcanons Proceedmgs

IEEE Conf. on Specifications of Reliable Sinarg, (Cambridge, MA,
April, 1979, pp. 170-189.

22. Goguen, IA., Thatcher, J.W,, Wﬁgﬂﬁf, E.G,, Wragbt,d_B Absl;mct Data
Types as Initial Algebras and Correctness of Data Representanons .
Proceedings, Conference on Computer Gmphics. Pgtem Regogmlm and:Data
Structyre, May, 1975, pp.«8§'93 - P |

-219-

23. Goguen, J.A., Thatcher,].W., Wagner, E.G. Initial Algebra Approach to
the Specification, Correctness, and Implementation of Abstract Data Types. In
Current Trends in Programming Methodology, Vol. 1V, Data Structurmg, (ed
Yeh, R.T.), Prentice Hall, Englewood Cliffs; N.k 1978.

| 24. Goodenough, J.B. Except:on Handling: 3ssues and A Proposed Notatton
Comm. ACM Vol. 18 No. 12 Dec., 1975 pp. 683 696

' 25. Guttag, J.V. The Specification and Applmtlanto ngrammmg of
Abstract Data Types Ph. D. Thesis, Umvusny of Toronto CSRG -59, 1975.

26.- Guttag, J. V Abstract Data Types and the lcvelopmi.m of Data Structures.
Comm. ACM Vol. 20 No. 6, June, 1977, pp. 396-404. .~ ' * = :

27. Guttag, J.V., Horowitz, E., Musser, D.R. The Design of Data Type . -
Specification. In Current Trends,in Progranuming: .Meihodology; Vel IV, Data -
Structurmg, (ed Yeh, RT) Prentlce Hall Englewood Chffs NJ, 1978

28. Guttag,.l V Hommg JJ The Algehmc Speciffmwn of Abstract Data »
Types. Acta Informatica Vol. 10 No. 1, 1978, pp. 27-52.. ‘

29. Guttag, 1.V., Horowitz, E.-; ‘Musser, D:R. : Abstract Data Fypesand
Software Validation. Comm. ’ACM Vok 21 No-12,:Det, 1978; pp: 1048-1064.

30. Guﬁag, J.V. - Personal Comunmuon., May, I97§

31. Guttag, 1.V, Notes on Type Abstmction. 1EE£ Tmns. -on Software
Engineering Vol. SE-6 No. 1, Jan_, 1980, pp. 13-23.-. :

32. Guttag, J.V., Horning, J.J. Formal Specification as a Desxgn Tool.

Proceedings of the Seventh ACM Sybpasmm Primwnf ?rogzbmmg b
Languages, LasVegw ‘Nevada, Jan:; 1980. : : L

33. Guttag, J.V. Personal Commumcalzon Jan 1980
34. Harel, D Pratt, VR Qommemsen ngmm \lenﬁwtaon n Resaardt

Directions in Software Technology (ed. Wegner, P.), M.LT. Press;’ ‘Combridge,
MA, 1979 pp 387-391.

-220 -

35. Hewitt, C. Personal Commumcanon Lab. for Computer Science, MIT,
Dec., 1978.

36. Hoare, C.A.R. Procedures and Parameters: An Axiomatic Approach. In
Symposium on Semantics of Algorithmic Languages, {ed. Engeler, E.) as Lecture
Notes in Mathematics, No. 188, Springer Verlag, 1971, pp. 102-115.

37. Hoare, C.A.R. Proof of Correctness of Data Reprsént_ations. Acta
Informatica Vol. 1, No. 4, 1972, pp. 271-281.

38. Hoare, C.A.R. Notes 6n Data Structuring. In Structured Progfamming,
(Dahl, O.-1., Dijkstra, EW., Hoare, C.A.R:), Academic Press,’ London and New.
York, 1972, pp. 83-174.

39. Hoare, C.A.R. Recursive Data Structures. {ntl. Journal of Computer and -
Information Sciences Vol. 4 No. 2, June, 1975, pp. 105-132

40. Kapur, D. Proving Correctness of Implementation of a Data Abstraction
Using the Algebraic Method. Unpubltshcd l-«iandaut. M LT. Course 6.8391
Specification Techniques, Nov., 1975. '

41. Kapur, D. Specifications of Majster’s Traversable Stack and Veloso’s
Traversable Stack. STGPLAN Notices Vol. 14 No. 5, May, 1979, pp. 46-53.

42. Kapur, D, Srivas, M.K. Expressiveness of the Operation Set of A Data
Abstraction. Proceedings of the Seventh ACM Symposium on Principles of
Programming Languages, Las Vegas, Nevada, Jan., 1980. Anexpanded version
appeared as Computation Structures Group Memo 179-1,-Lab. for Computer
Science, MIT, Jan., 1980.

43. Kapur, D. The Expressive Power of Algebraic Languages for Specifying
Abstract Data Types. Draft Manuscript, Lab. for-Computer Science, MIT, .
June, 1979.

44. Knuth, D.E., Bendix, P.B. Simple Word Problems in Universal Algebra.
In Computational Problems in Abstract Algebm {ed Leech J). Pergamon Press,
1970, pp. 263-297. ‘

45. Lampson, B.W., Horning, 1.1, London, R.L., Mitchell, J.G., Popek, G.L.
Reporton the Programming Language Euclid. SIGPLAN Notices Vol. 12
No. 2, Feb., 1977.

- -1-

46. Levin, R. Program Structures for Exceptional Condition Handling. Ph.D.
Thesis, Dept. of Computer Science, Carnegie-Mellon University, June, 1977.

47. Liskov, B.H., Zilles, S.N. Specification Techniques for Data Abstractions.
IEEFE Trans. on Software Engg. Veol. SE-1 Ne. 1,1975, pp. 7-19.

48. Liskov, B.H., Berzins, V. An Appraisal of Program Specifications.
Computation Structures Group Memo 141-1, Lab. for Computer Science, MIT,
Jan., 1977. Also in Research Pirections in Software Techaology {ed. Wegnet,
P.), M.L.T. Press, Cambndge MA 1979, pp 276 301

49, Llskov B. H Snyder, A., Atkmson R Sdlaﬁfert, C. Abstractlon :
Mecchanisms in CLU. Comm. ACM Vﬂl ZONO.&Aug 1977, pp. 564~576.’~

50. Liskov, B.H., Snyder, A.S. Exceptlon Handling in CLU IEEE Tmns. on
Software Engg. Vol. SE-5 No. 6, Nov., 1979; pp: 54??-9557 ' ;

51. Liskov, B.H. Modular Program Construction Using Abstractlon
Computation Structures Grosq) Memo 184, hab fer’Cmaputér Scnem:e MIT,
Sept., 1979.

52. Liskov, B.H. et al. CLU Reference Manual MIT-LCS-TR 225 Lab. for
Computer Sctence MIT, Oct., 1979 _

53. Majster, M.E. Limits of the Algebraic Specnﬁcauon of Abstract Data
Types. SIGPLAN Notices Vol. 12 No 10 Oct. 1977 pp 37-42§

54. Manna, Z. Mathematical Theory of Computatlon McGraw Hlll
Computer Science Sens, 1974 = T

55. Manna, Z. Six Lectures on the Loglc of Computer Programmmg St:mford
A.l. Laboratory AIM-318, Nov., 1978. :

- 56. McCarthy, J. Towards a Mathematical Sctence Qf Computaﬁon
Proceedings IFIP Congress, 1962, pp. 27 28.

57. McCarthy, J. A Basis for a Mathematical Theory of Computation. In
Computer Programming and Farmal Systenss (eds. Braffort and Hirschberg),
North Holland Publishing Co., Amsterdam-Londos, 1963;pp. 33-70.

-222 -

58. Minsky, M. Computation: Finite and lnfmne Machines. Prentice Hall
Englewood Cliffs, NJ, 1967. . . .

59. Morris, J.H., Jr. Types Are Not Sets. Proceedings ofthe First ACM
Symposium on Prmcrples of Programming Languages Boston, Oct., 1,973
pp. 120-124, .

60. Musser, D. R Abstract Data Types in the AFFiR‘M Systcm IEEE Trans.
. on Saftware £ngg. Vol. SE=6 No.: 1 Jan., 19%, pp. 24'31; ;

61. Musser, D.R. Proving lnductrve Propemes of Abstract Data Types.
Proceedings of the Seventh ACM .S ympaswm on Pﬁnapm of Pragrammmg '
Languages, Las Végas, Nevada, Jan.; 1980.: SRR 2

62. Nakajima R., Nakahara, H., Honda, M. Hiesarchical Program -
Specification and Veriftcation --A: Many Sorted Logical Approach. ‘Preprint
RIMS 265, Nov., 1978. :

63. Nourani, F. Construcnw: Extewonmé Mnemnon of Abstmct Data
Types and Algorithms. Ph.D. Thesis, Dept. of Computer Scrence Unners:t.y of
California, Los Angeles, June 1979.

64. Okrent H F. Synthesrs of Data Structuresfrm Algwrmc Descnmons.
Ph.D. Thesrs Dept. ofEE &CS MIT Feb 1977

65. Palme L Pmtectedegram Modulcsnn Smmla67 Natk)nal Defem
Research lnstrtute Stockholm Sweden July, 1973 '

66. Parnas, DL lnformanon Drstnbutron Asp&:!sbf h«e
Information Processmg 71, Vol. l North Holland Amﬁerdam 1972
pp 339-344. T o

67. Polajnar, J. An Algebraic View of Protectron and Extendlbihty in Abstract '
Data Types: ‘Ph.DxThesis, Dept. of Compmer Sém,dlmversuy cf Smnhem
California, Sept., 78. / S .

68. Srivas, M.K. Preliminary Investigations of a Thesis ‘Fopic. on Automatic
Synthesis of Abstract: Data Types. Unpublhhed Manuscnpt. Lmh for
Computer Sciénce, MIF, Dec, 1978. - ¢ .

-223 -

69. Standish, T.A. Data Structures - An Axiomatic Approach. -Bolt, Boranek,
and Newman, Inc., Technical Report 2639, Aug., 1973.

70. Subrahmanyam, P. On a Finite Axnomatlzatlon of the Data Type L.
SIGPLAN Notices Vol. 13 No. 4, Apnl 1978 pp 80-84 o

71. Thatcher, J.W., Wagner, E.G., anht JW Data Type SpeCIﬁcauon
Parameterization and the Power:of Spetification Technigheés:: Proceedings.of -
the Tenth SIGACT Conference, May, 1978. Also an IBM Report RC7757,
July, 1979.

72. Wegbreit,; B., and Spitzen, J.M. Proving Properties of Complex Dam
Structures. JACM Val. 23 No, 2, April, 1976, PP 389-396, -

73. Wirth, N Program Development by Stepwnse Reﬁnement Comm. ACM
Vol. 14 No. 4, April; 1971,:pp. 221-227." = .

74. Wulf, W., bondon R. L and Shaw M. Abstracnon and Venﬁcatlon in
ALPHARD: Introduction to Language and Methodobgy USC 1nfonnat10n
Sciences Institute Research: Report, 1976.

75. Wulf, W., London, R.L.. and Shaw, M. An lntroducﬁbn to the
Construction and Verification of Alphard Programs. TEEE Trans. on Software
Engg. Vol. SE-2 No. 4, Dec., 1976, pp. 253-265. ,f

76. Zilles, S.N. Algebraic Specification of Data Types. Projeet MAC Progress
Report, 1974, pp. 52-58. Also-‘Computation Stru¢ture Group Mémo 119, Lab.
for Computer Science, MIT, 1974.

71. Zmes S.N. An Introduction to Data Algebra. Draﬁ Workmg Paper IBM
San Jose Reseamh Lab., Sept. 1975.

-224 -

Appendix | - Elaboration of Scope and-Assumptions

In this appendix, we e]aborate on the scope of the theS|s and the assumptlons
made about abstract data types and thelr operatlons.

1. Immutabie and Mutable Data Types -

We adopt the commonly accepted informal view of a data type as_‘a collection of -
objects with a-finite;collection of operations. to manipulate thseseobjects. The objects by
themselves are not meaningful and- the opetations ‘are ‘the only way to construct,
mampulate and observe the ob;ecxs as well as to extract in fotmauon stored in them.

Data types can be classnﬁed based on: metrgbmt wmwmr. An ﬁbject of a data
type may or may not exhibit time varymg behavior. An object exhlbmng time varying
behavior is called a mutable ObjCCl, whereas an Objel;t wh0§e behavnor does not change is
called an immutable object [49] We also ca%t an mumble object a.wvalue. A data type
having only immutable objects is called an tmmutable data type otherwnse a data type is
called a mulable data type.. A mutable data type may also have 1mmutable ob)ects, but at
least one of its objects must be mutahie A mmatﬁe object: can’ be-'factored into two
components () zdenmy, and (i1) siate [47] A mutable data type has at least one operatlon
constructing REw ob,lects Its opcmuons may changc tbﬁ gtate of a mutable obJect Mthout
affecting the object identity. At a given point in‘a <compitation,. there can exist many
different mutable objects havmg the same state. For a wide class of mutable data typm, the
state oomponent of the mutable objects can be deseﬁbed as an tmmutable data type.

* In this thesis, we have considered only immutable data types with a finite set of
computable operations. We have not considered immutable data types with iterators [49]
nor data types involving streams and lazy evaluation [18]. !

-225-

2. Exceptional Behavior

During the design and construction of reliable sorﬁwar_e_, there is often a need to -
have data types with operations exhibiting exceptional behavior. (See [24, 46, 52 _5,0] for a
discussion on the need for an exception handling mechanism in a programming language.)
It is only meaningful to apply such operations on a subset of their domains. If an input
falls outside the subset, such operations notify their callers indicating that the input is not
‘good,” by signalling exceptions. An exce_ptid_n is_assumed tg have two components, a
descriptive name and a possible set of arguments which carry information from the point
where the exception is sighalled, to its handlers. , ‘

We assume that every operation of a clata type termmates on every input in its
domain: it either terminates normally by returning a value of its ragp__ge_.typ:e or terminates
by signalling an exception. We think it is not a gquép,[gctj,‘ce gd dcsngndata ty'pesihavingi
operations that do not terminate on some iir;p:,uts._,,flf a pa}rtial_;fqgc,tipq,gn the values of a
data type needs to be realized, it can be programmed ip terms of the gperations of the data
type in a host programming language supportmg the Jata type mechanism.

4 The assumption of the operatlons bemg total simplifies the formalism. developed
in the thesis. Our formalism can be extended 1o partial operations without much difficulty
by introducing a special value ‘undefined’ for every data sype such that if a partial
operation is not defined on an input, ﬁ;en it returns ‘undefined’ on that inpiut,

3. Nondeterminism

There are data types some of whose operations exhibit nondeterministic behavior. -
These operafions return one of many possible values for a given input.. For example, the
Choose operation of the data type finite set of integers, which returns any element of a
given nonempty set, is nondeterministic. Similarly, the Index operation of the data type
finite sequence of elements, which returns a position of a given element in a given sequence,
is also nondetenmmstlc because the sequence can have more than one occurrence of the
same element. All prior work on data types has assumed the operations to be deterministic.
We feel that a formalism for data types must be capable of handling data types with

-226 -

nondeterministic operations, as nondeterminism is a powerful and elegant abstraction
mechanism for designing programs [13,9). Furthermore, allowing nondeterministic
operations permits the handling of data types with operations implemented in a parallel
environment. | :

We assume that a nondeterministic operation has only finitely many choices on a
particular input. - We rule out data types having"operaﬁons ‘with infinitely many choices.
Such an operation can be used to write programs having unboiinded nondeterminism [13].
There is a controversy about the the reahzabfhty of progmmmmg ‘constructs having
unbounded nondeterminism and about the ¥imitation of the expresswe power of a language
that rules out programs with unbounded nondeterminism [35].° Using our formalism, it is
possible to define a data type whose vilues are “infinite’ (e.g., “infinite’ sets, ‘infinite’
sequences, etc.) insofir as these values can be finitely constructed using the operations;
but, nondeterministic operations on these values that hive infinitely many choices are ruled
out. Our formalism would however extend without much difﬁéuity to the case where the
constraint that a nondeterministic opemtlon has only f‘mitely many chmces on an input, is
droppe d. : : .

We also assume that if a nondeterministic operation signals an exception on an
input, then the operation behaves detennmrsticaﬁy on the ﬂ'fput. “Fhus a nondeterministic
operation is riot ailowed to have a choice. bétween' srgnamng and términatmg normally on
_ any particular input. “This assumiption leads tG a snmpier and ‘modutar characterization of
the observable behavior of the data type than would otherwise bepossrble 7

-227 -

Appendix Il - Definitions of Algebxzaic‘Concépts and P:roofsv of
Theorems in Chapter 2

In the first section, we extend the definitions of congrilence, homomorphism, and
isomorphism to extended heterogeneous algebras having .nondeterministic fimctions. In
the second section, we present the proof of Theorem 2.2, In the third section; we explain
how the Definition 2.12 of behavioral equivalence on type algebras captures the desired
property that a computation (i.e., an interpretation of a groind téem) results in equivalent
values in two behaviorally equivalent type algebras. : '

1. Congruence, Homgnﬁorphislm, and lsomo;phlsm e

Def. A2.1' A congruence R on a conventlona} hetemgéneous algebra
A_[{VDIDeA}{f leea}l
in which each_ f is a total deterministic function, js a family of, equivalence relations
{ Ry, ID' €A’} such that |
foreveryo€2,0 : D, X... X D - D'
for all v1~€vDI"“‘vn€an T
v Rl) Vis o sV RD v = £ (Ve V) Ry L0 ouv). _ *)
We also say that R has the subslrtutlon property. e g
In an extended heterogeneous algebra having nondeterministic functions, when f
is a nondeterministic total function, then (*) is modifiedto.. - .- - . L
v R, cei sV RDnv; = (Vy€{fc(v,.. v)}32€{f'(v’,..:..~“y;)}[{y,RD.rzl
A Vz€{f (v .. v’)}3y€{f (v,... vm)}[yR ,z])
ITR,) is the identity relation (equality), then the above reduow to
- {0,-...v)} = {1, (v,.,,. v)}, A,

Congruences: on” an extended: heterogeneous: algebra: A ‘can also be pamaliy
ordered in the same way as in case of a conventional heterogeneous algebra:
Given two congruences E' and E2, E2 is larger than E!, expressed as E' < E2, if and only if
foreach D' € A', ED} C ED? . |

- -228-

Congruences form a lattice with respect to <, and have the least element (the identity |
congruence) and the greatest element (the universal congruence).

Def. A2.2 LetA and A, be .
Ap=[{VyIDen}:{fleca}]
Ay=[{VpIDen};{f joca}l
A family of total (deterministic) functions & = { &y : Vj— V. | D €4’} is called a
homemorphism from A oA, if ' : ’
foreacho:D X ... XD _«D, _
for cach v, of type D, (i.e.. v, € V)) .wav.oftypeD
@) if f ! is deterministic, then f 2 is also dctermlmsuc and
«bn(f;(\l,.. v))—fz(d:u (v) d’l) (v))and
(i) if f; is nondeterministic, then f ;‘fxts either }noqdqt,crmmrsgc,or,detcnnir}istic, and
oy ({0,....,v)}) =1 rf,(%l(vl); squn%‘(y;).); Le o
(Case (ii) above covers case (i) also.) We calt & afi ‘onto homomorphism-from A oA if
every function in @ is onto; in that case, A,is called a homomorpﬁzc tmage of” A ’If e\réril
function in & is a bijection, then @ is an 1somorphlsmﬁom A ‘to’ ‘A, and A, andv A, are
isomorphic. Note that, if A, and A, are isomorphic nondetermmlsuc algebras, then they
have the same amount of. nondet&ﬂmmsm ‘which - is. not"necemhly the case 1f A, isa
homomorphic image of A, vas L A e - '
It can bé shown that the results from conventional heterogeneous algebras in [4]
extend to the extended heterogeneoﬂs algebras. In particalar, we can show that

Prop A2 1IfRisa congruence on an extended heterogeneous algebra A then there exists

an onto homomorphism from A to A/R. l

Prop. A2.2 If ¢ is an onto homomorphismﬁfrohr?!hl_ to A, then the kernel R of #on A,
~ where R = { Ry, | D € &'} and Ry, = { <u v2{9pd9) = #{¥)] is-a congruence on A, .
' f

g -229 -

The following diagram in which & is an onto homomorphism from A to A,, R is
the kernel of @ on A, H is the homomorphism induced by R from A to A,/R, and ¢'is an
isomorphism from A /R to A, , commutes, i.e., & = ¢'- H,

¢
A—>—A,
H >

A /R

2. Proof of Theorem 2.2

Thm 2 2 Assummg that EBOOL is the Iargest congmcnce on a model of Bool E is the

largest congruence on A

Proofl By mductlon on type algcbm
Basis: A = @, the null set. | ‘
(1) Bool - the statement holds because of the assumption. . ¥
(i1) D other than Bool - since every value in VB is observably equnvalent to every other
value, the statement is true.

Inductive Step: A # @, 7

Assume that the statement holds for each D’ € A. | 4 .

To prove the statement for D, we must show that l;lu is the largest E;juivalence relation
such that E is a congruence on A. We prove this by contradiction. :

Suppose E,, is not the largest equivalence relatfgp and E', is a Farger equivalence
relation containing Ej, such that E = { E,, | D’ €A.} U{E, } is a c.ongruence on A.
There exists <v, v> € E’ p such that <v, v> € E" So, there is a c(x) of typ@ D’ € A such that
‘there is an interpretation of ¢[x/v] in A dlsunglushab}é from every mterprefauon of c[x/v]
in A or vice versa. But, this is contradictory to E‘ bemg a congruence Wthh requ:res that
for every interpretation v, of c[x/v] in A, there i is an mterprctatlon v of c[x/ v’] m A such
that<v, v> € K., and vice versa. So, E, is the largest equwalence relatlon '

-230 -

- Madification for type algebras having an exception domdin
’ The proof has the same structure as: above, except that we also-have to cons:der
the case when <v, v> € E,, implies that v and v are: distinguishable bedause n computation
e(x) (i) signals on v and returns a normal value on V ‘or- vice versa, or (ii) signals
distinguishable exceptional values on v and v. Io the. basas:,ep, for the case of D other
than Bool, E,, need not be the universal relation on Vp ‘ '

L300

3. Elaboration of the Definition of Behégjqjal Equivalence and
Proofs of Theorems 2.5 and 2.6 o

- In Section 2.2, we defined two type algebras to bébchaviomﬁyemuvafent if their
- reduced a!gebras are rsomorphlcally equwalem . We further elaborate on thls dgﬁnmon,
We prove Theorems 2 5 and 2.6 of Sectlon 22, Thc dlscu§§ibﬁ and theorems of lhlS sectlon .
extend to modified type algebras having the exception domain. The set of mappmgs ﬁ'omr
a modified type algebra A to another modified type aﬁébﬁ’ | Y ?ncludes a mappmg fmm?
the exception doiaain of A to the excephon domam of A’ Wﬁtch gets deﬁnéd by t‘he :
mappmgson the normal domains.” = ©t T e me

" As is discussed in Subsection 225, the behavioral eQuiva!cnce of type algebras A

and A, can be expressed as

A Ay
o
l |

l B N

H, V¥ YH,
| I
| -+

A/, > ARy

‘ "" H

such that the above dmgram commuts. Le

"e-H =H-v, @)

where A /E, and A /E are the reduoed algebras correspondlng to A, and" A rcspectlvely

-231-

and @ is the isomorphism defined by the isomorphic equivatence of A /E, and AZ/E2 . The
equation (1) above defines the set ¥ of miahy to many mappings, where
v={¥,: V- ViIDeau{D}} |
We first discuss how for twoisomorphicaily equivalent algebras A and A, the
bijection @, in an isomorphism ¢ can be constructed, and show that the imefpretatibnsofar
ground term e in A, and A, are ‘equivalent.’ Later, we discuss these properties for

behaviorally equivalent algebras.
3.1 ISomorphicaIIy Equivalent Type Algebras

For the case when the determlmstlc constructors of a data type l) can generate all

the values of D, we have '

Thm. A2l If A and A, are isomorphically equwnlent. then {QD | D€ A} umquely

- determines the buectlon o .

Proof By definition of isomorphic equivalence, there exists a b?jeetlcm &, V) - VD
such that & = { &, ID'€A’'} is an isomorphism. We prove the statément by
contradiction. Let us assume that @, is not unique; instead, there are two bijections q»ll)
and ¢, such that @' = { &g |D' €4} U{op}and e’ = {@)|D' €a}u ®p } are
1somorphnsms _ . L A .
Since d:l]) and @2 are dlfferent, there exists v € Vl) . l‘)(v)‘ £ d%(v) We pick a v
that can be constructed by the mmlmum numbgr (say k) of apphcauons of the
deterministic constructors and on which "D and d> dlffer We have y= fl(v R) for
some o, and if D, = D, v, can be constructed i)y k<K number of appllcanons of
constructors; thus, ¢D(v) = ¢D(v)
By the definition of |somorph|c equwalence,
¢|')(v) = f2(<b (v) d:ll)(vi), s "’l) (v)), and
o () = f2(¢,, O, ... e50), .. oy).

meaning that d»u(v) = u(") which is a contradlctlon

So, there are not any vsuch that @D(v) :ﬁ daD(v). ‘

Hence the proof of the theorem. 1 ' ‘

-232 -

We can construct the bijection @, as follows:
For every constructore: D, X ... xD D S
(tbl)l(vl) =¥V A...A ¢Dn(vn) =v)= oy, ...v) =020, ... %)
The case of ¢’s not taking any argument of type D serves as the basis step in the
construction of QD o .

The above theorem holds in case A and A, are peduced even if some of the
values of D cannot be constructed without using a nondetermmst.;ie construétor. 'However,
it does not hold in general; for example, consider a variation of the type algebra A :l for
Set-Int denoted by A}, . having everything else’ the satfie 4§ "fnsk‘ ‘exeépt that In’; the
mterpretatlon of the operatlon Insert is a nondetermnmstlc functnon whlch appends the
integer bemg mserted to the beginmng of the sequence representmg the gwen set or at the‘
end of the sequence.

Wiy i) 8 E(il, wd> 3 <,<m,1 =i
< [oDori i, .12 otherwise.: B
A5 is clearly jsomorphically equwalent to ttseif and there lsmorc thap one isomorphism
from A, toitself,

“Thm. A22 Given two 1somorphxcaliy equivalent @pe ‘algebras A, and A def’mmg an
isomorphism &, a value v of type D in A has the same cbddrvable behavnor in A asdin(’v)
in A\2 in the sense that for every term ¢{x) of type D" € (D) with one free vanable of t type

eyl D)= {dwayolly)
Proof By induction on the depth of X in c(x)
 depth(x) = | /y
depth(afe,, .. en)) = max(depth(e,), .. depth(e)) +1,
where e has xas a variable.

Basis depth(c(x)) = 0.
So, ¢(x) is x, and the statement of the theorem tnvnally holds. , ,
Inductive Step Assume the statement of the theorem for the case when
depth(c(x)) <k > 0, to show for the case when depth(c(x)) = k. Let

-233-

o(x) = ole, ... &),
where e is of type D. We assume that the statement holds for each e,so

¢|)i({elx/v A P =1 ei[X/¢D(V)]|";\2 |

&, { cfx/¥]| A 1) = op {1, {efx/v] A, e fx/ V]l'A hbhH

= { r2(¢" ¢ e[x/v]l A b, d>|) { efx/] A,)})} (smcedns an tsomorphlsm)
= {2({e [X/‘bl,(V)]lA | | e[x/d>D(v)]IA })}

= { ole, ... e)x/® ,(V)]l A, b =1 clx/‘b.,(v)ll A, |

For the case of modified type algebras,. we are interested in- terms that such that.o[x/]| A
and c[x/@,,(v)]| 5 are not undefined.
2 o

3.2 Behaviorally Equivalent Type Algebreyas“ | |

Thm. A23 IfA , and A_ are behaviorally equivalent,
then<v, v> €¥.= <P [V]>€dy.

Proof Obvious frum the diagram. Since ¢ - H = H \P from (v, V> € \PD, we get

@, (D) = V. o

We now present the proofs of Theorems 25 and 2.6 of Subsectwn 2.2.5.

Thm. 25 For behavnorally equwalent A, ~and A for every. ggound term e of type
D"G(D) forevery ve{eIA 1 therelsave{dAz}such that <[v], [v‘])E«bD., and
vice versa.
Proof By induction on the structure of type algebras.

1Basis A=9

(1) D is Bool: Since all behaviorally equivalent algebras are isomorphic and the
obscrvable equivalence relation is the identity relation, the aboye is true.

(i) D is other than Bool: Since the obscrvable equwdence relation is the umversal

relation, the above istrue.

1. Inductive Step A # @
Assume that the above statement holds for all ground terms of type D" € (D)+ not

-234 -

having any opcration symbol in Q. 1)
To show for a ground term e by induction.on number of operation symbol fromQine
2. The basis step holds because of the assumption.. -

2. Inductive Step Assume for ehaving k' < k.occurrences of operation symbols from g,
to show for e having k occurrences. i (2), o , .
This lS also proved by induction ¢ on Lhe depth of the outermost operatlon symbol

from Qin e. 7 .
depth(o(e,, ..., en)) =0 ife€nand
depth(o(e,. ... €)) = min(depth(e). ... depth(e)) + 1 ifo € 0.

3. Basis depth(e) = 0, i.e., e = c(e . e) ando€Q.

So, an e can have at most k-1 occurrences of operzmons from e

We prove the statement of the theorem in one dlrectlon the proof in the other
direction is the same except that vis to be seplaced for ¥/, S e En :

lfve{eIA Lie,iflve{elp /E, 1. themisachonceofg lhenuerpretat:onofa
inA /E , such that

' M= g([v],.,[v“]) where[vje{elA/E}foreachlsﬂgsn |

By inductive hypothesw (2), for every [vJ €{ef A JE, } there isa [vJ € {el A, /E } such
that ([vJ) [v’] Because ®isan lsomorphtsm there isa chome of ga ‘such that

¢D A = [¥) = g (@], [v']) meaning that v'e{ efA a3
3. Inductive Step Assume for ¢ having depth(é) <m>0, Goshbw for e having /
depth(e) = m. A3)
e= ofe,...e) o €0 ; -
The proof goes the same way as for the basis step exccpt that wg: use the madels
of the data type D’ that has the operatxon o. 1 :
For modified type algebras, we are intefésted i ground terms whose interpretations are not
undefined. Tt can be.shown for behaviorally equivalent-type igebras A 'and A, that if for
some ground term e, ¢ A, is undefined, then ¢ A, is also undefined’tind vice versa. 8~

Thm. 2.6 For behaviorally equivalent A, and A, for any ground terms e, and e, of type

-235-

D' Ao g 11 =Hleyl g 1Y = (Ll 1H=1le,] 5 T}
Proof From the above two theorems and the fact that AJ/E] and Az/Ez are isomorphically

equivalent, the statement is immediate. 8

-236 -

- Appendix i1l - Proofs of Theorems in Chapter 4

This appendix contains proofs of various theorems in Chapter 4.

1. Specifications without Nondeterminism and without
Exceptional Behavior

Thm. 4.1 Every constructor ground term e of type Set-Int’ is equivalent by equational
reasoning 10 a ground term ¢ not having any occurrence of Remove, i.c., the equation
‘e= ¢’ € EQ(Set-Int).

- Proof For every constructor ground term e of type Set-Int', there is a constructor ground
term ¢ such that

(*) ‘e=e" € EQ(Set-Int) A #re(e) = 0,
where #re(e) gives the number of occurrences of the operation symbel Remove in e
Similarly, the function #in gives the number of occurrénce of the operation symbol Insert
in a term. We show (*) by induction on #re(e).

Basis #re(e) = 0,
The above statement trivially holds, because ¢ is same as e.

Inductive Step Assume the statement holds for e such that #re(e) <k,
show for #re(e) = k. '
Consider the outermost subterm e in e such that e = Remove(en, il). Clearly,
#re(eu)< k, so there is a subterm e, such that ‘e, = eil > € EQ(Set-Int’) and
#re(e;,) = 0. Thus we have ‘e, = Remove(e, , il)’ € EQ(Set-Int’). We show that *)

holds for Rcmove(e; P

1 1]
il) by induction on #in(e],).
Basis #in(é;l) = 0.
‘e, = Remove(Null, il)
= Null’ € EQ(Set-Int’) using Axiom 1.
€ is obtained by substituting Null for e, in e.

-237 -

Inductive Step Assume the above holds for #in(e;1)<m,
to show for e, having m Insert’s.
e, = lnsert(eu, i2), so

‘e, = Remove(Insert(e, , i2), 1)’ € EQ(Set-Int’).

ar
There are two cases.
Casel i1 =12
‘e, = Remove(e, , i1)" € EQ(Set-Int’). Axiom 2.
By the inductive step, there is an e, such that

Remove(e,, i1) =) ~ € EQ(Set-Int") and #re(e;l) =0,
So, ‘e, =), "€ EQ(Set-Int’).

We get € by replacing e, by e;I .

Case2 ~il =12
e, = lnserl(Rcmove(eu, il), i2)’ € EQ(Set-Int’). Axiom 2,
By the inductive step, there is a e}, such that
il) = e;l " € EQ(Set-Int’), and thus ‘e, = Insert(e;, , 12)' € EQ(Set-Int’).

i2). n

‘Remove(e, ,

We get ¢ by replacing e, by Insert(e, ,

Thm. 4.4 If a specification S is sufficiently complete, then S is behaviorally complete.

Proof If S is inconsistent, then since {S) = @, so S is trivially behaviorally complete.

If S is consistent, we show that a sufficiently complete S is also behaviorally complete by
contradiction.

Suppose S is not behaviorally complete, so there exists two reduced algebras A and A, in
FA(S) that are not isomorphically equivalent w.r.t {Po e €Q}. Without any loss of
generality, we can assume that A, and A, share the same domain corresponding to a
defining type, so for each D’ € A, o, is the identity function. Since every constructor is
deterministic, there is a unique mapping o, Vl])‘* Vlz) which can possibly satisfy the
following for every ¢ in Q. |

for each set of values v, ..., v ,such thatP [x/v,....x /v]l o =T,
n o1l 1 n n Al

* ¢D,(f;(v v ¥)) = f§(¢Dl(v1), e 0p (V).

- -238-

If A, and A, are not isomorphically equivalent w.r.t. { P, | o € 0}, this means that there |
must exist an observer o and a set of values v, ..., v such that P o[xll vl. ey xn/vn]I A
holds and (*) is not satisfied. '
Using the minimality property, we can construct a legal ground term o(e,..., e) of
type D’ € A, where D' is the range of ¢, and foreach 1 <i < n, e is the ground term whose
interpretation is v. in A,. Since S is sufficiently compiete, there exists a ground term ¢ of
type D’ not having any operation symbol of D and:auxdliasry function used in S such that
‘o(e},...,en)sd‘eEQ(S). This means that ' '
e, .. e)IA = fz(el,....‘ee)lA- '="1A iy
because A and A, are reduced algebras. Thls isin comradleﬁm to(‘) not bcmg satisfied.
Hence the result. 8 ' ' '

Thm. 4.6 Fora consnstent and sufﬁcnently complete S, if any two legal ground tenns e , and
e, of type D are dlstmgunshable byS, then* e é e € DS(S) B

Proof: ¢ and e, are distinguishable by S, means that for any A € FAS), ¢| p and e} are
distinguishable, i.., there exists a term e(x) of type D' E.A with gn;;fr@eivatigbl@lxzof type
D such that cfx/v]| 5 is distinguishable from c[x/ vl 5 inA. -

Using the above fact, we prove the theorem by mductlon on specxﬁcanons.

Basis Specifi catlons with no def mng types
Case 1 Bool
‘T £ F € DS(Bool). Every ground term of type Bool is equwalent to enther T or F, so
the theorem holds.
Case 2 D other than Bool
~ All ground terms are observable eqmvalem, so the theorem holds.
Inductive Step Assume the above statement for the speuﬁcauon S' of a data type D’ used in
the specification S of D. Toshow forS. ‘
We can prove by contradiction that ‘e, £e € DS(S) as follows:
Assume e, = e.

2
~thendx/e] = cfx/e),

-239 -

since S is sufficiently complete, there exists-ground terms ¢, and ¢; of type D’ such that
e, € do not have any occurrence of an operation symbol of D, and* e =e € EQ(S) and
‘e,=e € EQ(S), so we have * e, =e’ € EQ(S) Smce e are dlstmgmshable by S', by
inductive hypothesis, ‘e, £ e € DS(S) 0 ‘e é €’ is also m DS(S) This is a
contradiction, as S is consistent. So,°‘e, £ e,’ € DS(S) 1

2. Specifications with Exceptional Behavior and without
Nondeterminism IR

Thm. 49 FEvery legal constructor ground temi ‘e of ‘;t’ypé ‘Stk-Int such that

Slk lm(e) T € EQ(Stk-Int), IS equivaleat by eguatxonai feasoning to anothexz legal
constructor ground term ¢ having only Null and Push, ie., if N’Slk lnt(e) =T €
EQ(Stk- lnt) then e=¢e’€ EQ(Slk Int).

Proof Proof‘ is similar to that of Theorem 4 1 above.

Let #poand #rep be the fiinctions on terms computinig number of occurrences of Pop
and Replace respectively. We show by induction on #po(e) + #rep(eythat =

* if ‘N"Stk lnt(e) T € EQ(Stk- lnt) then there exists an e’ such that ‘e=¢"’¢€
EQ(Stk-Int) and #po(é') + #rep(e‘) 0. '

Baszs #po(e) + #rep(e) =
eserves as €.

Inductive Siep Assume (*) above for the case #pofe) + #rep(e) <k, -
to show for #pe(e) + #reple) = k. ,

Consider. the ‘outermost subterm e in e having Pop or Replace as the outermost
operation. It is obvious that if ‘Ngy,. m(e) =T € EQ(Stk-lnt). then W’Stk rm(e) T
€ EQ(Stk-Int). . P

Casel e = l?op(ell)

Since ‘N?Stk-lnt(eu) = T € EQ(Stk-Int), by inductive step, there exists an eil such
that ‘e, = €}, * € EQ(Stk-Int) and #pofe]).+ #reple],) = 0. |

Since ‘N?gqp.[nt(e) = T € EQ(Stk-Int), eg;1 is not Null, aad 0 ¢, = Push(e,, i).

Thus ‘e, = Pop(Push(e €)) = ¢, € EQ(Stk-Int) . - Axiom 1,

- 240 -

By replacing e bye, ine we get the reqmred e.

Case 2 e, = Replace(e, , il)

Since ‘N? tk lnt(eu) =T¢€ EQ(Stk-lnt) by mducnve step, there exists an e -such
that'e, = e € EQ(Stk-Int) and #po(e) + #rep() 0.
 SineN? Ysikemnt(@) = T € EQ(Sti-lnt), 1snotNull andso ¢, = Pusie, ,i2).
- Thus e, = Replace(Push(e,,, i2), i1) e n -

' = Push(Pop(Push(e, , i2)), i1) Axiom 3
= Push(e, , i1) ' Axiom 1
So e = Push(e » il) € F,Q(S&k-lnt) :

Byfeplacmge ineby Push(e, II)'.’vie get the required A R

Thm. 4.12 Ifa specuﬁcatlon Sis sufﬁcnently complete then S is behavuorally complete

Prool' If S is inconsistent, then since F{S) = ﬂ soS usmvmlly behav:orally complete.

IS is consiStent, we show thn;,ga\;sufﬁe;cnﬂyiéegn,.;gle;efs‘}is; behaviorally complete: by

Suppose S is not- behav:orally complete SO there exists two reduced algebras A

and A, in F(S) such that for every D’ € A, the domain correspondmg to D in A and A, are
deﬁned by isomorphically equivalent algebras in RS’), whére S'isa spcmﬁcaﬁon of D’
and A, is not partially isomorphically embeddable w.r.t. S in A, Without™ any loss of |
generality, we can assume-that A and:A; mmesameﬂdmhmmﬂespondmgw a
defining type, so for every D' € A, @, is the identity-finction. Simecievery-constructor is
deterministic, there :are unique one to one parttai funetions ‘I) V)= VD and
mmorphlcally embeddable in A (see Def. 3 13 of rsomorphlc embeﬂdaﬁhty Ain
Section 3.5). The first two requirements there can be easily smﬁed . The: third
requlrement is complex and is restated below: - PR .

For every operation ¢ € @, for every set of vuluem v iy ¥ Sueh’ that cbD(v) is defined
foreach1<i<n,andP fx/v,...,x "’.MA =T, B

(a) if f; signals an’ exception value ex(v y Sees vm) specfﬁed o be opttonal by S on the

-241 -

input v, ..., v, then the associated condition O(x,,.., x) holds forv,...,v, and

ls-':
fi(d)l,l(vl), cens ¢Dn(vn)) either signals ex(th;(vi), - d;bD';(v‘;)) or returns &, .(v) for
some v, or 4
(b) if d»D.(vi), cees ®pi(v) are defined and fj signals an exception value
1 m " ‘
ex(«bl);(vi), s ®p .(v‘;‘)) specified to be optional by S on the input °Dl(v1)’ ceen ¢D£(v n),
xn) holds for ’diDl(?v]'), vy QDn(vn), anti

m
then the associated condition 0("1’"'

‘ f;(v seea ¥) either signals ex(v/, .. v') or returns v; otherwise,
@ p(fa(v, o v)) = (e (), ooy O (). ”
For A, not to be partlally lsomorphtcally embeddable in A, at least one of the
above conditions is not satisfied. Supposingly if the condition (a) is not sa‘tiSﬁe’d, u?e have
B@ 0 0y 0) £ ex(@y). 00, |
meaning that A, does not satisfy the optional. excepuon condition for o in S, which is
contradictory to the assumption.that A, € FS). So, the condition (a) could not have been
vrolated Similarly, it can be shown that the condrtlon (b) could not have been vrolated :
The vrolatlon of condmon (c) is then the only possrbrhty In that case for sot: 1e
o €0,
(i) exactly one of the two sides of the equatlon * srgnals an exceptlon,
(i) different sides signal dlfferent exceptrons, or '
(iii) dlfferent srdes return drfferent values. '
Using mmrmahty property, we can construct a Iegal ground term e=dle,..e) of type D,
where for each 1<i<n, e is the ground term whose mterpretatlon rs v.in A, The
possibilities (i) and (ii) above are ruled out because of the followmg reasons
For both (i) and (ii), the exception srgnalled by either snde must be dlfferent from the
optional exception. Since S is sufﬁcrently complete, elther N’D(e) = T € EQ(S) or
‘N? ,.(e) F ¢ EQS). If'N? (=T € EQ(S), then none of eIA and eIA can be an.
‘exception value, rulmg out (i) and (ii). If ‘N?jde)=F € EQ(S), then esrgnals ext’ €
EQ(S) for some ext meaning that
dp =dp =exly
agam rulmg out (i) and (u)
The only possibility is (iii). Then e must be type D’ € A, as if e is of type D, then

-242 -

the definition of &, ensures that the equation (*) is satisfied. 'We have either N2y =T -
€ EQ(S) or neither ‘N?,{e) = T € EQ(S).nor ‘N¥;{e) = F' € EQ(S). If ‘N e)=T €
EQ(S), then there is a ground term ¢ without any operation symbol of D and auxiliary
functions used in S such that * e = ¢ " € EQ(8); %0 ¢ il * ¢ A = ¢ A rulmg out (iii). If
neither ‘N2, {(e) = T € EQ(S) nor ‘N2{e)= F: € EQ(S), thenalsp there exists a ground
term ¢ without any operation symbol of D amd-auxiliary fictions used in-S such. that
‘e=¢’ € EQSU{N?de)=T}), which agam rules out (iii) . because of the reasans
similar to the ones discussed above., ‘ . , 1, e
The above thus implies that A, is. parually mmomhrcally embeddable in. A
Hence the result. 8 '

Fhm. 413 For a consistent and sufficiently completes rfany two legal ground terms elv
ande, ol‘typel)aredrstmgurshablebys then‘e & ¢’ €§WS) ‘ o

Prool' e and e, are drstmgurshable by S means that lbr any A € RS) e] A and eI A
drstmgurshable ie,

(@) el 5 isan exceptron value and e l Al is a nomal value, :

(b)el pande) 5 are drstmgurshable exceptron values, or »

() e p and e 5. are normal values and thereexrstsatenn c(x)oftype Dea U { D}
w1th one free vanable X of type D such that c[x/ v] I A is drstmguzshable from c[x/ v2] 1. Al m
A, '

Smce Sis sufﬁcrently oomplete rt can be shown that 1f

(1) a ground term e mterprets to an exceptton value m every algebra A € F(S) thenE
‘N’D.(e) Fe EQ(S) and also i ,

(n) rf e mterprets to a normal value m every algebra A € F(S) then ‘N’u(e)= T’ €

-243 -

Using the above facts, we prove the theorem by induction on specifications,

Basis - Specifications with no defining types.
Case 1 Bool
‘T £ F € DS(Bool). Every grcund term of type Beol ¢ 5 eqmvalent to either T or F, so
the theorem holds.
Case 2 D other than Bool
Subcase I 'S does not specify any operation to signal,
All ground terms are observable equivalent, so the theorem helds.
Subcase 2 S specifics operations to signal -
Assume e and.e, are distinguishable by S, 5o there.is one of the above three
possibilities. We show in each case how ‘e, % e’ can be derived in DS(S). |
(a) Since S is sufficiently complete, Nyle,)= F € EQ(S) and-.-‘N?D,(éz-)'a Te€
EQ(S), and by the axiom (vii) in Subsection 4.3.3, * e £e, ' € DS(S).
(b) by sufficient completeness of S, usmg ‘the axiom (vi) in Subsection 4.3.3 and
repeatedly using the argument in case 2, weget'e £ e € DS(S). o
(c) By the substltutlon property of the operatlons and the sufﬁcxent
completeness of S, we get ‘e, £ e, € DS(S), by the method of proof by contradlcnon .

Inductive Step Assume the above statement for the specn ﬁcatlon S of a data type D’ used
in the specification S of D. To show for S. -

Assume e and e, are dlstmgmshable by S. For the possnbllmes (a) and (b), the argument
used in the basis step applies. For the third pOSSlblllty, in addmon to the case considered in
the basis step, we have the case when the mterpretatlons of e and e, are dxstmgmshable in
A because of a computation ¢(x) returning dlstmgmshable results of type D € A. For this
case also, we can prove by contradiction that * e £e’ € DS(S) as follows:

Assumee =e, ' | | |

then c[x/e] = c[x/e}, (*)
We have three subcases:
Subcase | Both sides of (*) interpret to a normal value in A.
Since S is sufficiently complete, there exists:ground: terms e, and e of type D
such that e}, e, do not have any occurrence of an operation _symbol of D,and ‘e = ¢’,.

- -244-

‘e,=¢e’€ EQ(S), so we have ‘e! = e" € EQ(S). S‘inée e, €, are distinguishable by S', by |
inductive hypothesis, * | # e" € DS(S’) SO - e o e" is-also in DS(S). This is a
contradiction, as S is consment. So, ‘e, £ e, € DS(S).
Subcase 2 One of the two sides of (*) interprets t0-a normal value. - - |
Without any loss of generality, assume Lh.s. interprets to a normal value. By
sufficient completeness of S, there is a] such that ‘e, = e’ €-FQ(S), and there is an
exception ground term ext such that ‘e, signals exr” € EQ(8); so again, we have using the
axioms, ‘e, £e € DS(S). ' '
Subcase 3 Both sides of (*) interpret to distinguishable exception values.
. Using the sufficient completeness of S; we caa show using:a Similar argument that
‘e, £ e,” € DS(S). ‘ o

Heénce the theorem. &

3. . Specifications with _Exceptional Behavior and
Nondeterminism

_ Thm. 4.14 fand TR(f) are semantically equivalent.l,

Proof By induction on structure of £ We only need to show the basns step; the inductive
step is stralghtforward because the symbols ~, V, and V have the same, mterpretatlon So
we have fas ‘e, = e, ConS|der an extended type algebra AofDin whlch S/ and TR(f) can
be interpreted (x e.A has an mterpretauon for every nondetermnmstlc operathn symbol o
and the correspondmg auxiliary function symbol ap such that the mterpretatlon of the
auxnhary function is the relatlon computed by the mterpretatxon of the nondetermmlstlc

operation symbol).

Case (a). fdoes not have any occurrence of a nondeterministic operation symbol.
TR(f) = f, so the statement trivially holds. '

‘Case (b). Both e and e, have occurrences of nondeterministic symbols: -
It is obvious from the description of the procedure TR in Subsection 4.4.1 that the
interpretation of ‘e, = e,’ is equivalent to the interpretation of TR(f). '

Case (¢) Exactly one of e and e has occurrences of nor_l'detenninistic symbols: Again from

- 245 -

the description of TR in Subscction 4.4.1, the interpretation of‘eJ =e is equivalent to the

interpretation of TR(f). 1

- 246 -

Appendix IV - Specifications of Data Types used in Chapter 5

In this appendix, we give specifications of the data types Null,
Struct[n:D,,...,n:D J. Oneof[n:D,,..., n:D]} and Sequence-Int used in Chapter 3.
Struct, nd Oneof are type schema. Below,. we specify an instance of these schema -
assuming fixed but unspecified parameters, i.e., k as well as Dl, -, D,_are fixed. Since the
specification is given for an arbitrary k, we have used the ‘..." notation. The specification of
any particular instance, such as Oneof [empty: Null, pair: Pair],

Struct fcar: Int, cdr: List-Int] used in Chapter5, can be given without using the °...
notation. | ’

Figure A4.1. Specification of Null

Operations

Nil : — Null

Equal : Null X Null — Bool as x1 = x2
Axioms

Nil=Nil=T

-247 -

Figure A4.2. Specification of Struct[n:D,...,n:D]
Struct [n:D},...,n:D] as D
Operations

Create :D X ... xD, - D
Fetch_n, : D - D1 ¢

Fetch_n,: D — D,
Replace_n, : DXD, - D

Replace_n, : DxD, — D
Equal :DXD — Bool ' as x1 = x2

Axioms

Fetch_n (Create(x1, ..., xk)) = x1

Fetch_nk(Create(ﬂ y -eey XK)) = xk
Replace_n (Create(x1, ..., xk), y1) = Create(y1, ..., xk)

Replace_n,(Create(x1, ..., xk), yk) = Create(x1, ..., yk)
Createl(x1, ..., xk) = Create(y1, ..., yk) = (x1 = y1) A .. Ailxk = yk)

=248 -

Figure A4.3. Specification of Oneof[n:D,...,n:D]

Oneof [n;:D,,...,n:D,] as D
Operations '

Make_n, : D1 - D

Make_nk : Dk - D
Value_n, : D — D,
: — wrong-tag

value_n, : D — D,
— wrong-tag
is_n, : D — Bool

Is'__nk : D — Bool
Equal : DXxD — Bool

Restrictions

as x1

~ Is_n,(x) = Value_n,(x) signals wrong-tag

~ Is_n, (x) = Value_n,(x) signals wrong-tag

Axioms

Value_n,(Make_n,(x1)) = x1

V;Iue_nk(Make_nk(xk)) = xk
Is_n(Make_n(x1)) = T

ls_-_nl(Make_nk(xk)) =F

ls:nk(Make_nl(xﬂ) =F

: X2

Is_n (Make_n,(xk)) = T
Make_n,(x1) = Make_n,(y1)

Make_n,(x1) = Make_n,(yk)
Make_r1, (xk) = Make_n,(y1)

Make_n,(xk) = Make_n,(yk)
X=y=y=x

x1 = y1
F
F
xk = yk

- 249 -

- 250 -

Figure Ad.4. Specification of Sequence-Int

Sequence-lnt as Si

Operations
New : — Si
Addi : SIXiInt — St

Addh : SIXInt — SI

Restrictions

as x1-x2.

Concat : SIXSI — S
Subseq : SIXintXInt — Si
— bounds
‘ —+ negative-size !
" Fill :int X iInt — SI
— negalive-size
Fetch : SIXint — Int as x[i]
" — bounds o
Bottom : Si — iInt
. — bounds
Top : Sl — Int
'~ — bounds
Reml : S1 = Si
— bounds
Remh : Sl - SI
— bounds
Size : St — Int
Empty : S!I — Bool
Replace : SIXInt XInt — Si
— bounds
Index : SIXiInt — Int
-+ element-not-in
Member : Si X Int — Bool
Equal : SIXSI — Bool as x1 = x2

(i1<1Vi1)>(Size(s) + 1)) = Subseq(s, i1, i2) signals bounds
A~ (11 <1 Vi1)>(Sizel(s) + 1)) A (i2<0)) = Subseq(s, i1, i2) signals negative-size

i< 0 = Fill(i, j) signals negative-size

(i< 1 Vi>Size(s)) = Fetch(s, i) signals bounds
Size(s) = 0 = Bottom(s) signals bounds

Size(s) = 0 = Top(s) signals bounds

Size(s) = 0 = Reml(s) signals bounds

Size(s) = 0 = Remh(s) signals bounds

(i< 1Vi)>Sizels)) = Replacels, i, j) signals bounds
~ Member(s, j) = Index(s, j) signals element-not-in

Axioms

Addi(New, j) = Addh(New,)
Addi{(Addh(s, j1), j2) = Addh(AddlI(s, j2), j1)

-251-

S-New=s

s1-Addh(s2, j) = Addh(s1-s2, j)

Subseq(s, i1, 0) = New

Subseq(Addh(s, j),i1,i2 + 1) = if (i1 + i2) <(Size(s) + 1) then Subseq(s, i1,i2 + 1)
else if (i1 + i2) = (Size(s) + 1) then Addh(Subseq(s, i1, i2), j)

else Subseq(Addh(s, j), i1, Size(s) - i1 +2)

Fill(0, j) = New o

Fill{i + 1, j) = Addh(Fili(i, j), j)

Fetch(Addh(s, j), i) = ifi = Size(s) + 1 then j else Fetch(s, i)

Bottom(s) = Fetch(s, 1)

Top(s) = Fetch(s, Size(s))

Reml(s) = Subseq(s, 2, Size(s)-1)

Remh(s) = Subseq(s, 1, Size(s)-1)

Size(New)=0

Size(Addh(s, j)) = Size(s) + 1

Empty(New) =T

Empty(Addh(s, j)) =F

Member(New, j)=F :

Member(Addh(s, j1),j2) = if j1 = j2 then T else Member(s, j2)

Replace(Addhl(s, j1),i, j2) = if i = Size(s) + 1 then Addh(s, j2) else Addh(Replacels, i, j2), j1)

Fetch(s, Index(s, j)) = j

xX=x=T :

Xzy=y=x

New = Addh(s,j)=F

Addh(s1, j1) = Addh(s2, j2) = (j1 = j2) A(s1 = s2)

