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ABSTRACT

The first part of this thesis considers the complexity of Boolean
functions. The main complexity medsures used are the number of gates in
combinational networks and the size of Boolean formulas. The case of
monotone realizations, using only the operations of AND and OR, of monotone
functions is emphasized. |

For a particular class of monotone functions, the“quadratic fuﬁctions,
the worst-case values for the monotone circuit complexity is shown to be
proportidnal to n2/1og n. The number of a-gates necessary to compute any
quadrastic function is also analyzed.

A technique for deriving bounds on monotone circuit size of threshold
functions is applied to the "majority" function (threshold n/2) to establish
a lower bound on its monotone circuit complexity of 3n-0(1). For the function
"threshold 2", previously known lower bounds on the number of v-gates required

are extended in the case of a circuit which has a minimal number of A-gates.
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As a result, it follows that no monotone circuit for "threshold 2" can
simu]taneous]y have both a minimal number of A-gates and a minimal number
of v-gates.

The complexity of combinations of functions oﬁ dféjoint'sets of variables
is studied, and a gap between the formula and circuit size of a particular
function is given.

Finally, we study the effect of allowing negation in a formula for mono-
tonic functions. Examples are given both of functions in which using negations
allows more succinct expressions, and functions in which it does not.

The second part of the thesis describes an algorithm for computing shortest
paths in a graph. These results show that an algorithm originally proposed
by Spira for this problem can have slow running time. The lacuna in his
algorithm is repaired, and it is shown to have O(nz(iog n)z) éverage running
time over wide classes of graphs as Spira originally claimed. As a special
case, a transitive closure algorithm with 0(h2 log n) average time is also

described.

Thesis Supervisor: - Albert R. Meyer, Professor of Computer Science.

Key Words: Boolean functions, circuit complexity, Boolean formula size,
monotone networks, threshold functions, quadratic functions,
algorithms, shortest paths, directed graphs, transitive closure,
computational complexity. :




-5-

ACKNOWLEDGEMENTS

This thesis is dedicated to my friend and companion Mary Ellen.
Thanks for everything. '

1'd like to thank all my friends who made my life more enjoyable
becauseIknéwthen. Thanks to Albert and Ron for showing me what
research was all about, and for having the faith and patience to
see me through this. Thanks to Paul and Mary for their own unique
contributions to the completion of this manuscriot. Thanks to Wendy
for typing this during her vacation, and Peter Elias for struggling

through many versions of this thesis.







-T=

TABLE OF CONTENTS

Title Page...eeeeneeesnrieceeeerneentcerustacaenecaannorescocens 1
Abstract.........................................; ....... PRI 3
Acknowledgements .......................... e eeeenaes 5
Table of Contents.........cvevnns ‘...;.; ........................ 7
Chapter 1. Introduction...... e """"i ........... 9
. Chapter 2. Definitions and Pre]iminéry Results.............;...19
Section A. Boolean Functions....... '....; .................... 19
Section B. Repfésentatibns of Boolean Functions ............. 24
Section C. Complexity Measures,..;....; ..................... 42
Section D. Circuits and Turing Machines.......eeeeee s 48
Section E. Miscellaneous thatiops ..... }.; ......... '.; ........ 50
Chapter 3. Worst-Case Values for the Complexity of
Quadratic Functions.......ccccceeeene EEEETRRRTER .53
Section A. The Total Number of Gates.......... RTRTERRRTTERR }55
Section B. Asymptotic Bounds on A-Gates.........éﬁ..; ....... Bi
Section C. A Graph T O [ERTRTPRRRRN -
Section D. Open Questions......cceeveveacenncnces e eereeaes 77
Chapter 4. Combinations of Functions.................; ......... 79‘
Section A. The Formula Size of v{fxg).eeeriiiireearicionnnnns 82
Section B. Monotone Functions........ccevvuieenns [RERTRRTTTY 86
Section C. Opan QUESEIONS.....veeeeiinnreereerenanrcenacones 92




Chapter 5. The Monotonic Circuit Complexity‘of

Threshold Functions..........c.ocvvvnevnnnnnnnns., .93
Section A. The Class of A11 Threshold Functions........... ‘e...98
Section B. The Monotonic Circuit Complexity of Threshold 2....113
Section C. M-Circuits for Threshold 2 which are A-minimel ..... 134
Section D. Efficient Circuits for Threshold Functions..' ....... 155
Saction E. Open Questions.................;..;.:.;..;;; ....... 158

Chapter 6 The Complexity of Monotone Functions in Other Bases...iSQ

Section A. A Case where a Complete Ba51s Doesn t Heip.; ....... 162
Section B. A Case where 82 Can Help........ s
Section C. Open Questions ............. '...:.7.;...;..:.{ ....... 175
Chapter 7. A Shortest-Path Algorithm...;...;..:;;.;.s.;;....;,.;.i77
Section A. Shortest Paths and Graph Distributions.:;;....:....178
Section B. The Algorithm..' ......................... ';;...‘ ...... 183
Section C. Analysis of the A]gorithm...;;Q.;....:.:;..r ........ 192
Section D. Implementation......:.;; ...... ;;:....;.;..........;.i98
Section E. A.I. Distributions......... t.:Q..................;.262
- Section F. Open Questions............... ;:.;;:...:...........4203
APDENATX T.eeueenereenniniininienennennnn, e eeeeriereeena, .205
Appendix 2............. Neenrevenisens eterereee——, eerenens 207
APPENATX 3. 'eeeentene et ee s e en.213
BIbTT0g APy . e it e et 219




-5
CHAPTER 1

Introduction

This thesis consists of two parts,ieach devoted to a different
area in the theory of computation. It is primarily devoted to a
study of the complexity of Boolean functions, with an emphasis on

monotone Boolean functions. A secondary objective is the analysis

. of algorithms which compute the shortest distances between all points

in a graph and which compute the transitive closure of a Boolean
matrix.

In general, computational complexity theory asks questions
about the computational resources required to solve a problem or
compute a function. Traditional complexity theory has been pri-
marily concerned with the difficulty of computing recursive functions
on various models of machines such as Turing Machines or Random
Access Machines; measures such as time or space on these machines
are considered. Finite functions (i.e. those with finite domain),
since'they are computable by finite state machines, are inherently
"easy" according to these definitions since they require only enocugh time
and space to read the input and print the output.: Several models
of computing machines for finite functions have been proposed over
the past years, and these have been studied as a means for defining
the complexity of finite functions. Some of these, such as

circuit complexity, receive ' their motivation from computer technol-




-10-
ogy, while others such as formula size -are more mathematical in
origin. In the work whiéh has~bgen_done so far, these models are
seen to have a rich mathematical structure which is only now begin-
ning to be understood to any extent. The bulk of the research con-
tained in this thesis is a study of several problems -in this area
of finite computation.

We restrict ourselves to the Boolean case in which the finite
domain and range are vector spaces over the set {0,1}. The original
work in this area was directed towards finding asymptotic results
about the worst-case complexity of all Boolean functions on n
variables. Work of Shannon [1949], Lupanov [1958,1962], and others
[Krichevskii 1961] established that “"most" Boolean functions on
n variables have minimal formulas of size éSymptotic with 2"/109 n,t
and minimal circuits of size asymptotic with 2"/n. During the
1950's attention was focused more on individual "practical® problems,
and on finding optimal or near-optimal canonical formulas and
circuits for a function with a given input-output specification.
Work of Quine [1952,1955] and others [McCluskey 1956, Karnaugh 1953]
explored methods for finding efficient ways.of computing or exﬁres-
sing a specific function.

Recent research has been directed primarily at finding exact
values for the complexity of individual functions in different

models of complexity. As an adjunct to this pursuit, other more

T In this report, all logarithms are to the base 2.
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~ basic questions such as-the relationship between complexity in

different models have been studied. This search for optimal
circuits and formulas is dnly indirectly motivated from an engi-
neering point of viewT, but is relevant to complexity theory.
Several authors [Pippenger and Fischer 1977, Schnorr 1976d]
have demonstrated a connection between the Turing ﬂachiné complexity
of a function and the circuit complexity oflfinite restrictions of
that function. These results essentially show that a fqnction is
easy to compute with respect to oracle Turing Machine time if and
only if it has a small circuit on each set of finite length inputs.
This work relates to recent studies of nen-detekminis;ic“po]ynoa
mial time (NP) and to the NP-complete problems of Cook [1971] and
Karp [1972] because it implies that if P = NP, then the finite
restriction of any problem in ¥P has a polynomial-sized circuit.
.while this latter question is obviously still open, this observation
has given impetus to many researchers to explore the*possibility of
proving large lower bounds on the complexity of specific Boo]eanl

functions.

1.
Considerations such as the number of gates in a circuit or the

delay time are not as important as other factors such as the inter-

connections between gates and the fan-out of the gates.
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The results obtained thus far have not been VEry encouraging

in pursuit of this goal. The lower bounds obtained may be divided
into two types. Diagonal-typé arguments can obtain exponential
Tower bounds on the complexity of specific functions. For example,
Stockmeyer [1974] and Meyer have shown that, sfince there are functions
which are recognizable on a deterministic Turing Machine in spéCe 2"
whose restrictions to inputs of fixed length have expenential cirguit
complexity, one can get a lower bound of <" on any circuit which
computes a restr{ction of certain logical languages. Thus far,
results of. this sort have been limited to Boolean functions which
are binary codings of problems which are provably difficult to compute
on a Turing Machine; the functions involved have not arisen as
Boolean functions in their own right. Moreover, since the NP-complete
problems are not yet provably difficult for a Turing Machine, these
techniques do not apply to them.
Direct arguments far particular functions have not yielded much

in the way of lower beunds. For single-output functions, no lower
bounds on circuit complexity larger than linear in the number of
inputs have yet been provén. |

" The order of these bounds has not been improved even when the
allowable gates in the circuit are highly restricted. For the
complete basis of all binary Boolean operations, the largest of

these lower bounds is 2.5n recently discovered by .Paul [1977]
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and Stockmeyer [1977]. +For restricted bases, the largest known lower
bound is 7n for particular fuhctions [Redkin 1973]. Work contained in
‘this thesis establishes lower bounds on the monotone circuit cemplexity
of a particular thfesho]d function which is equal to the'largest lower
bound achieved for this basis (namely 3n).

For multi-output functions, larger lower bounds have been achieved
on the circuit comp1ex1t& in certain bases by exploiting the interplay
between the functions computed by different‘dutputs; For example,
_ Paterson [1975] and Mehlhorn and Galil [1976], indepently extending earlier
work of Pratt [1974], have shown that the monotone circuit complexity of
the multiplication of two nxn matrices is 2n3-v2. Tseveral other
researchers have used different techniques to obtain lower bounds propor-
tional to n log n on functions related to sorting problems [Lamagna and
Savage 1974, Lamagna 1975].

" We observe that in both cases the bounds obtained are far short of

the exponential lower bounds theoretically possible for most functions.

T Recently, Lipton and farjon [1977] exhibited 1argér bbunds for
planar circuits, and Schnorr [1978b] has announced a 3n lower bound for
arbitrary circuits. ,

F Recently, these techniques have been extended to yield an.Q(nzlloan)
Tower bound on the monotone circuit complexity of certain functions

[Wegener 1978]
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For formulas the results are also limited. If arbitrary con-
nectives are allowed in the formula, the ‘targest lower bounds are
given by a general technique of Nefiporuk [1966] which he uses to
establish lower bounds proportional to nzllog'h for a speéific
function. Harper and Savage use Ne&iporuk's method to establish
lower bounds on the complexity of the marriage problem [1972]. |

This technique is used later in thiS»fhesis to exhibit a monotone
function for which negations don't allow a reduction in the formula
size by more than a constant factor. Other lower bounds for |
formulas .in which arbitrary binary connectives are allowed have
been reported by several authors [Hansel 1964, Hodes and Specker
1968, Vilfan 1972, and Fischer, Meyer and Paterson 1975].. For more
restricted sets of connectives, Khrapchenko [1971] established
lower bounds on the AA,v,m )} formula complexity for the parity

2, and this is the largest polynomial

function proportional to n
bound yet established for formula complexity.

The principal research contained in this thesis is the estab-
lishment of lower bounds on the comp]éxity of Specifit Boolean
functions, but includes more general WOrk on asymptotiC-bouhds on
the complexity classes of Boolean functions and on the’relation;
ship between several complexity measures. !n'pdrticu]ér, we begin

by studying the monotone circuit complexity of quadratic monbtone

Boolean functions. (Those for which each prime implicant 1s_a
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product of two distinct variables.) Using simple counting techniques
we show that most quadratic functions reguire at least @ (n2/log n)'
gates to compute in any circuit. On the other hand> we show that
a monotone circuit of size proportional to n llog n exists for
every quadratic function. When counting indiv1dya1 types of gates
in a monotone circuit, we show that n-i A-gateé suffice to compute
any quadratic function, and exh1b1t a specific funct1on for which
2n/3 a-gates are necessary in any monotone c1rcu1t |
In chapter 4 we examine the question of whether it may be
easier to compute combinations of several funct1ons than to compute
the individual functions and then combine them. Both monotone
and general circuits and formulas are considered, As a corollary
to the work reported there, we establish the existence of a function
of polynomial complexity which has smaller circuit complexity than
formula complexity -- in fact tﬁeir ratio is proportional to
n/log log n. ‘
Chapter 5 contains an examination of the monotone circuit
complexity of the threshold funct10ns, Us1ng techn1ques s1m11ar
to Paul [1977], Stockmeyer [1977], and Schnorr [1974], we establish
larger lower bounds on their complexity thah previously known.
These bounds are in some cases quite small in coﬁparison with the
best known upper bounds. In'particu]ar, for the funttion

"threshold n/2" of n variables, we establish a lower bound of

T For notation, see page 51.
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' 3n~7 gates necessary in ény monotone circuit; *on the other hand, the
smallest known circuit has a muber of gates proportional to n(log n)2.

For the function "threshold 2" of n varioblés,.we present exact
bourids on the number of A-gateéréhd v-gates for any monotone
circuit. These bounds were observed by F F. YaoH ,Ne extend
these bounds in the case of a c1rcu1trwith the minimal number of
a-gates for values of n which are a powék of'2 Ah& show that for
these values of n it is 1mposs1b1e to simu]taneously ach1eve the
minimum number of both types of gates The latter result was again
previously observed by F.F. Yao. o

Finally, we stody the’effect of differenoobasesAon the -formula
complexity of monotone functions. in wofk donovjoin£1y with M.
Paterson, we exhibit a function with monotone formu]a comp1ex1ty
proport10na1 to n /log n for which any fbrmu]a in an arb1trary
basis can be no more than a constant factor sma]]er. On the other
hand, in work done jointly with A. Meyer, we show:that there are
monotone Boolean functions for which tho’smallest monotone formuia
is larger by a factor of é(n) than a formula for the function in

the basis of all binary operators.

T Recently these techniques have been extended by the author to yield a 3n-0(1)
lower bound on the -{A, v, =} complexity of this function.

Tt Personal communication, 1975.
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The final part of this thesis deals with the problems of '
determining the transitive closure of a Boo]ean matrix and deter-
mining the shortest distances between all points of a non-negatively
weighted graph. P.M. Spira [1973] has published an algorithm to
find the shortest distance matrix which he claims has an average

running time (over a large class of weighted directed graphs) of

O(n2 1092 n). Research by A. Meyer, M.J. Fischer, and this author
has demonstrated classes for which his algorithm has slow average
running time. A revision of his algorithm does indeed have

2 n) average time, over even wider classes of graphs than

O(n2 log
Spira claimed. This result is presented in Chapter 7; it is also
shown there that a further revision yields a simple O(n2 log n)
average time algorithm to compute the Boolean transitive closure
over a wide class of probability distributions on matrices.

We begin by presenting some introductory remarks on Boolean

functions.
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CHAPTER 2

Definitions and Preliminary Results

Section A. Boolean Functions

An n-input, m-output Boolean function is a function with

domain {0,1}n and range {0,1}m . We will denote the set of all

n-input, m-ovtput Boolean functions by Bn We will generally be

n*
interested in one-output Boolean functions and denote the set Bn, 1 of
all such functions with n 1inputs as Bn' If ‘fEBn,m’ we usually
denote an arbitrary element of the domain of f by % = (x],xz,...,xn),
and refer to each X; for 1<i<n as avariable of f. Some
specific Boolean functions we will refer to are the unary function

negation or NOT (denoted = ), and the binary functions disjunction

or OR (v), conjunction or AND (A or -) T, EXCLUSIVE OR or mod 2 sum

(@ ), equivalence (=); and the constant functions 0 and 1.

The sets of functions Bn have been extensively studied.from

,m
a mathematical point of view [Harrison 1965, MacLane and Birkhoff
1967]. We assume that the reader is familiar with elementary
properties of these sets. We use notation which is standard and

refer the reader to Harrison [1965] for elaboration and proofs of

Frequently we will denote the conjunction of variables x and y

by their concatenation xy.
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results that we only state’.

-Boolean functions may be combined in standard fashion. In
particular the compositfon of functions is defjned'as usual. If
f and g are members of B for some n, wendéfﬁne’ifvgésn by
(fvg)(X) = f(X)vg(X) for any Re{0,1}". If a collection of functions
(f;| iel) is each a member of B , the disjunction ;g&fieBn is
defined in the obvious fashiong The conjunction of functions is
defined similarly. In addition, we may define, from the functions

feB and geB

, s the function fxgeB by
Ny o e |

ny+ny,m e,

fxg(x],xz,...,xnl,y],yz,...,ynz) = (f(x],...,xn]), g(y],...,ynz))

m m
(where we use the obvious isomorphism between {0,113 ]x{0,1} 2
my+m, e
172 )

The combination v(fxg) is defined, for feB_

and

{0,1}
1

t Examination of the properties of Boolean funcifbns indicates
strong simi]afities among them. In fact.rfhey;mhy-be'grouﬁed into
pairs in which occurrences of A and v are interchangéd, as well as
occurrences of 0 and i. Such statements éré ééllédiggélg of each
other. It is a well known fact that a Boolean statement is true if
and only if its dual is true. This is known as the pricipal of
duality, and permits some economy in proVing pfdperties.of Boolean

functions.
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and geBn » to be the obvious composition of v and x ; that is

2

v(fxg)(xT,...,xn],y],...,y ) = f(x],...,xni)vg(y],..f,ynz).

n
2
A(fxg) is defined similarly.

Two properties of these combinations which we will use are

‘stated in the following lemma:

2.1 Lemma: Suppose f and g are members of Bn for some n = 0.

Then (a) if fvg = 0, the constant function O, then f =0 and g = 0

and (b) if fag=1, then f=1and g=1.

One specific set of Bbolean functions is the set of projection
functions. The ith projection function of n variab]es, |
denoted n?, is defined by n?(x],...,xn) = X; for each i in
{1,2,...,n}, If f is an arbi?rahy member of Bn,m’ we denote

. m .th
by fi the function niof, the 1™ . component of f.

We say that a function feB functionally depends on its

n,m
ith variable X5 if there are constants ¢ and d in {0,1}n

which differ only in their i™™ positions for which £(&) # £(d).
Fiha]ly, if A is some set of input variables for f, and
cxe{ﬂ,]} is a constant defined for each xeA, then we denote the

restricted function of the remaining variables which is obtained

from f by setting each variable x in A to Cy by

f Ix = Cy for xeA °

We are particularly interested in one subclass of Boolean

functions, the monotone Bonlean functions {m.b.f.'s). Observe that
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the set {0,1}" is partially ordered by the rule

(x],.;.,xn) < (y],...,yn) iff X; ; ¥; f°r4,fné 1,2,...,9'
(where 0 < 1). S |

The set B, _ is partially ordered (in fact is a Boolean algebra)

by defining, for f’QEBn,m’

f<g iff f(X) < g(¥) for all %e10,13".

A Boolean function feB"*™ is monotonic increasing, or
monotone -for short, ff and only if it pfeSéfveS{the'ﬁartial |
ordering <; that is, if f(’) < f(y) for every pair of 1nputs X,ye{0, %
for which X < y
Specific examples of m.b.f.'s include the function

threshold k of n variables, denoted Tk’ which is defined by

-k(xl""’xn) =1 if and only if at least k of the variables
{(Xys...5%_) have the value 1. The thresho]d 1 function 15vthe
1 n , :
disjunction X]¥XpV...vX 3 the threshold n function is the
conjunction Xy AXpA s« e AX ; Andther m.b.f. is the Boolean
1M%er n
multlpllcation of two nxn matr1ces A and B a functlon in

-B which is defined by A B = C where c v (A )
202 *n? %3 7 oy i

for each i and j in {1,2,...,n}. A third set of m.b.f.'s

is Boolean convolution,: 1n whxcn we def1ne feBn ,20-1 by
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=V .
fk6<0,.,.,xn;],yo,....yn_x) i+j=k(xiij)

for each 0 < k < 2n-2.
The m.b.f.'s:satisfy several properties whjch are not true of

Boolean functions in general. The fo]1owingvfacts are easily

verified.

2.2 Lemma: Suppose f and geBn are monotone Boolean function§.

Then
(a) if fag=0, then f=0 or g=0

and (b) if fvg=1, then f=1 or g=1,

Further properties of the m.b.f.'s will be explored later in
this chapter. It is useful at this point to point cut one

property of the ordering relationship on Bn‘

2.3 Lemma: Suppose that f, g, and h are functions in Bn' If

f<h and g < h, then

(1) fah = f
(2) fvh =h
and (3) fag < f < fvg < h.vf

¥ We remark that the dual of an arbitrary function feBn is the function D(f) in

Bn defined by D(f)(f) =~*f(fm], “X5s e e a5 xp). The truth of a statement
' (cont. on next page)
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Section B. Representations of Boolean Functions

There are many different ways of representing Boolean functions,
some of which give rise to the complexity_mgasdfes;disqussed in this
thesis. One standard‘representatibn ﬂs the tfyfh‘féble_qf the value
of the function on different inputs. The unify%ng rebresenfatiqn

used in this thesis is that of a combinational (or gate-type)

switching circuit, and is identical wifh those studied by numerous

authors [Harrison 1965, Savage 1976, Paul 1977, Schnorr 1974 and

others]. The underlying structure is a graph, -which we now define.

A directed graph D consists of a pair of finite sets (V,E),

where V 1is a set whose members are called nodes er=verticés, and

E c VxV is a set whose members are called edgeé or arcs. Ahother
notation for V and E dis NODES(D) and EDGES(d) respectively.
If (v,w)k EDGES(D) we say there is an edge‘ffoh v to w in D.

A path or chain of length k in D is a séquencé df nodes

vo,v],...,vk(forfk:z 0) of D such that there is an edge from

Vi to V1-+]

if there is no path from any node A of D to itself other than

for every 1e{0,1,...,k-1}. A graph D 1is acyclic

like Lemma 2.3 is unchanged if every function is replaced by its
dual. : v
Observe that if f < g, then D(f) > D(g), and that the dual

of a monotone function is monotone.
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the trivial path of length 0. For any.node. A of an acyclic graph

D, we define the following Subsets of nodes of .D which pertain to
A:
Succ(A,D) = {BeNODES(D) | there is an edge from A to B} is

the set of immediate successors of A,

Succ (A,D) = {BeNODES(D) | there is a path from A to B in D},

Succ+(A,D) = {BeNODES(D) | there fis an path of length k 21
‘from A to B},

Pred(A,D) = {BeNODES(D) | there is‘an edge from B to A} is

the set of immediate predecessors of A,

Pred*(A,D) = {BeNODES(D) | there is a path from B‘tb A in D},

and Pred' (A,D) = {BeNODES(D) | there is a path of length k = 1
from B to A}.

If W is some subset of nodes of D, we may extend the above
devinitions to W - and speak, for example, of the set of immediate

successors of W ,defined by: Succ(W,D) = U Succ(A,D). Finally,
AcH .

the indegree or fan-in (respective]y outdegree or fan-out) of a

node A is the number of edges directedbinta (out of) A in D
and is denoted indeg(A,D) (outdég(A,D)). In general, we will omit
mention of the graph D in the above notation when the graph is

clear from context.




Suppose q is a finite set of primitive functions 91.1:!3n
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i

called the basis. A combinational circuit or‘hétwofk over the

basis @, in short an Q-circuit, is a directed‘acyclic graph N

together with a labelling of the nodes and edges of N. which is

subject to the following constraints and definitions:

(1)

(2)

(3)

and (4)

For some positive integer n, at most n of the nodes
with indegree zero are given disginct labels from the

set {x],xz,,..,xn}; wg.refer to such nodes as input nodes

~and denote their set by INPUTS(N).

There may be one node of indegree zero labelled with the
symbol ZERO, and there may be one node of 1ndegree zero
labelled with the symbol(]ﬁi such nodes are referred to

as oconstant nodes.

There are no other nodes of indegree zero other than those

mentioned in (1) or (2).

Each node with indegree one or more is.labelled with some
member g, of q. Each such node is a gate node, and
their set is deﬁoted GATES(N). Such a node G 1labelled
with g. must have indegree in N egugl td‘the.arity
ny of 9y furthermore,’éach'edge difected into G must
be labelled with one of the integers {1,2,...,15} in

such a way that every edge into G gets a different label.
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An example of such a network is given in Figure 2.1, where the
basis is the set {a,v,7 }. (For figures, the arcs. in the graph are
always directed downward. Arbitrary nodes are designated by triangles,

constants or inputs by rectangles, and gates by circles).

Fig. 2.1 A Combinational Circuit
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If the input nodes to an @-circuit N are labelled with members
of the set {x],...,xn}, Qe may associate a Boolean function in Bn .
with every node ‘A in N by the follewing inductive rule. WUe denote
the associated function by -Res(A;N). If A is:an input node
labelled with the variable X3 then Res(A,N) 1is the projection on

the ith

coordinate, i.e. the functin mi. If A is the constant
node ZERQ (respectively ONE), theng;%ES{A,N) = 0, the constant
function in Bn equé] to 0 on all i@puts’zfgspective]y RES(A,N)’= 1,
the constant function in B~ equal ;;?E).‘ Fina]iY},;yppose A is-
a gate fpr which every node in Pred(kf has an assoﬁ%aféd\function; ;
If we let Bk be the node in Pred(Af~sugh’that the edge from Bk ‘
to A is labelled with k, and ifF»A is labelled with the basis

element 94€9s then
Res(A,N) = gi(Res(B],N),Res(Bz,N)!...,Res(Bn#.N)).

We will say that an Q-circuit N comgdtes.? quction ﬁan’m
iff for each i, 1 < i s m, there is a node A; of N such that

th

Res(Ai,N) = fi_, the i component of f.. For example, the

circuit given in Figure 2.1 computes the function f(x],xz,x3) =
Xy M Xo [ X3 since the gate erit‘h outdegree 0 computes this function.
We may also §éy that the circuit computes the function

g(x],xz,x3) = (x], XjA = xz) since there are gates which compute

each component of ¢.. A node which computes a component of the

designated function will be called an output node.
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A basis 2 1is called semi-compiete iff given any function feBn

for arbitrary n, there is an Q-circuit as described above which
computes f. The basis is called complete if any f can be computed
by an @ - circuit which does not contain the nodes ZERO and
ONE (i.e. constants are not available). Three complete bases
in which we will be interested are BZ’ the set of all binary
Boolean functions, B. = B]u BZ’ and U = {a v}, Aniexample
of a semi—complete basis is the set {@,A} . An exhaustive
characterization of all complete bases has been made by Post [1941],
and the interested reader is referred to this work.

One - jncomplete basis which holds special interest is the

set M = {a,v} which is important for the following reason.

2.4 Theorem : A Boolean function feBn m is monotone iff there

is an M-circuit which computes f.

For a proof of Theorem 2.4 the reader is referred to [Harrison
1965 p. 189].
The bulk of this thesis is concerned with the results about

M-circuits (also called monotone circuits) computing monotone

Boolean functions.
One special class of circuits which holds special interest

is the set of Boolean formulas. An g@-formula is an Q-circuit

in which each node in the circuit has outdegree at most one, and

which has a unique node of fan-out zero corresponding to the unique
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output node. For a fbrmula, we remove‘the restriction on the |
circuit that there be only a single node f&r éachrinput Variable
and constant, and allow any number éfrnodes of_ihdggree zero
labelled with any input variable or constant, each node having
outdegree one. For an eXamp]é see Figure 2.2. The—gbaph of any
a-formula is a tree in thch each leaf node (one with indegree

zero) is labelled with a variable oriconstant; and each interior

Fig. 2.2 The Formula (x] v xz) A xg v x3)

node (every other node) is labelled with a gate. This formulation
is easily seen to be equivalent to the usual inductive definition
of an q-formula. Clearly a formula can compute only a single-output

function.
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Classically, Boolean formulas have been extensively studied
as a means of representing Bbo]ean\functiohs. Many formula schemes
have been proposed as canonical means for their representation,
including the classical disjunctive normal form. In this method,

a function feBn is represented as the formula

c, C B
V X] ]XZZ -.Xn n
(c]""‘cn)EAf
where xJ = x A=
-x if j=0

for any variable x, and Af is those set of constants Ee{o,l}"
for which () = 1. Other canonical forms are discussed in
[Savage 1976]. | | ‘

“If F dis a formula, and H is a node in  F, then FH will
denote the subformula of F aboVen{H; that is, Pred’ (H,F).

In this thesis, we will occasional]& replace'bart>of one

circuit by another circuit and speak of cgmbinations of circuits.
For example, suppose that N and N~ are‘,ﬁ-circuits which contain

nodes 'A, and A~ respective]y. The circuit obtained by replacing

A by A- 1is constructed by first identifying the corresponding
input and constant nodes of N and N- and considering them as
one network. Node A together with each arc directed into it is

removed from the graph, and each edge (A,B) originally in circuit




-32-
N 1is replaced by the edge (A”,B) (with the same label as previously).

For example, see Figure 2.3. The replacement of a node in a circuit N
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by a node in the same circujt is defined similarly, but substitution
~ must not be made in a manner which introduces a cycle into the
graph.

One may say little in general about the functions computed by
a circuit in which one gate has been replaced by another. Specific
situations may allow some conclusions to be drawn. For example,
ifnode A in N s rep]aced,hya;nodeA"in N°  for which
Res(A,N) = Res(A“,N”), then it is easy to prove by. induction on the
length of paths that every remaining node in N computes thg
same function as it did before the substitution.

One special replacement is the substitution of a constant -

for a variable. We say that N~ is the circuit obtained from N

by setting variable X; Eg_g_(respectively 1) if N- s obtained
by replacing variable node xi in - N by the constant node ZERO |
(respectively ONE). One inductively defines setting a collection
of variables to a constant. It is agafn easy fbmvgrify the .

following fact.

2.5 Lemma: Suppose N is aﬁ Q-circuit, and xieINPUTS(N). If

N“ is.the circuit obtained by setting variable X3 to 0 , then

for each remaining node A in N- ,

Res(A,N”) = Res(AN)|, _

=0
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A similar statement may be made if Xy is set to 1.
Observe. that, depending on.-the basis, if a-gate in-a circuit |
has one input which is constant, then some simplification of the

circuit may be made. For example, suppose the basis is the set B2

of all binary Booiean functions. If a'gaté has‘a'conStantJinpUtv
then, except for trivial cases, it may be eliminated from the
circuit since the output of that funttioﬁ“is‘theh a unary function
of the other predecessor. Since this unary function may be
absorbed into a preceding or succeding binary gate'(if one such
exists), then one may obtain a smaller circuit eqdivalent to the

original. See Figure 2.4 for an example. Such simplifications may

ONE

X3 . ONE ‘ x3w - ONE

A\

Fig. 2.4 Some Simplifications
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always be made in the basis M. This elimination of éates will be
a principal tool by which lbwer bounds- on circuit comp1ekity are
obtained. |

One additional, representation for a Boo]ean'function is as a
set of prime implicants. In the interest of brevity we restrict
ourselves to monotone Boolean functions, although a similar devel-
opmen may be made for all Boolean functions. o |

A monome or product is a product of distinct variables, e.qg.

Xy XoXe is a monome. In particular, we‘denote the empty monome
by e A monome m includes a monome' m~ if every variable
which appears in m- also appears in m. We denote the‘function
defined by a monome m by T(m), and if M 1is a set of monomes,

then T(M) will denote the function VfT(m). T(e) 1is the .
meM

constant function 1.

Suppose that f is a monotone Boolean function. A monome m
is an implicant of f {1ff T(m) < f; m is said to be a prime
implicant of f if m includes no other implicant of f. We
denote the set of all prime implicants of f by PI(f)*.

‘For example, suppose f(x] ,xz,x3) is the threshold 2 function
of three variables, namely Tg . "~ Then X XpXg 18

an implicant of f, but is not a prime implicant since the monome

One defines }é;?m) = 0. Hence PI(Q) = @, the empty set, and PI(1) = {c}.
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X\X; is also an implicant of f. PI(f) is the set {XX;, XyXys XTXéT~+
 The importance of the set of prime implicants is that they are
a canonical representation for the m.b.f.'s, and are fairly easy:
to manipulate mathematically. A straightforward proof (see
[Harrison 1965 p, ‘190] for,examp}e)«demdnstratesvthe»following fact

of their canonicity.

2.6 Lemma (Quine): Suppose' feBn is a mondtone Boolean_function.
Then f =V T(m). Moreover, if E is any set of monomes such

mePI{f} - , B IR R ‘
that no monome in P  includes another monome in P, and

f<T{P), then P = PI(f).

The set of prime implicants of a combinat%oﬁ 6f functions can
be obtéined from those of the constit;ént~funct16ns by means of the
following simple set of rules. Sdppose that f and g‘ are m.b.f.'s
in B . Then for any monome m, m {s an implicant of the function

fvg if and only if it is an implicant of f or an implicant of g.

* Note that we equate the monomes X1Xp and;’xzx]. Actually, the
set of all monomes is equivalent to_the‘fregumpnoid on: the elements
{X}3Xp5-..5% }modulo the relations of the commutativity (xy = yx
for all variables Xx,y) and idempotency (xx.= x. for all x).

€ is: the identity element for this algebraic system.




-37-
Moreover, PI(fvg) 1is obtained from the union PI{f)uPI(g) by

eliminating all monomes which include another monome in the union.
For example, if PI(fo) = {x],x2x3,x4} and PI(gO) = {X]5XysX3X, }s
then PI(fovgo) = {x],xz,x4}. If f and g are m,b.f.'s in

Bn’ and m 1is a monome such that mePI(fvg), then mePI(f) or
mePI(g), but the converse is not in general true. By Lemma 2.1(a),
if PI(fvg) = @, then both PI(f) and PI(g) are empty sets.

The set of prime implicants of the fuhction %Ag >may be
obtained by forming the set of all products men of a.monome
mePI(f) and a monome nePI(g) (where duplicate variables in n
and m are reduced by the rule Xx*X = x), and then eliminating
any products which include other products in the set.‘ For f0
and g, of the previous example, PI(foAgo) = {X)sXyXg2XyXg 1 X3%,} o
Again, if tePI(fag), then there are monomes mePI(f) and nePI(g)
such that men = t, but the converse is not in general true.

One may relate the ordering relation < on the m.b.f.'s with
their canonical representation using prime{imp]icénts'by the fﬁ]lowing

general result.

2.7 Lemma: Suppose f and geBn are m.b.f.'s. Then f<g iff

every monome mePI(f) includes some monome nePI(g).

Proof: Suppose f < g, and mePI(f). By Lemma 2.6 and

Lemma 2.3(c), T(m) s V T(n) = f < g, so by the transitivity of <,
nePI(f)
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T(m) s g. Hence by definition m is an implicant of g. Define

my to'be an implicant of g which is included in- m and which
includes no other implicant of g. Then mb,isfa»prime~impf1cant '
of g which is included in.. m.-

Conversely, suppose every monome in PI(f) includes some
monome in PI(g), and Tet <¢e{0,1}" be such that f(¢) = 1. By
Lemma 2.6, there is some monome -m ePI(f) ‘such that T(p )(2) = j.
By hypothesis, there is a monome n in ~PI(g)'incTudediin m;
By Lemma 2.3(c), we know that T(m ) < T(n). Hence T(n )(¥) =1,
and since n s an implicant of g, g(&) =1 as well.

0 Lemma 2.7.

One may define classes of'Booieaﬁ’function§ ih’féfms of
structural properties of their set'bf”b?fmé-impliiCanrt:sLi For example,
we will say that a m.b.f. feB is quadratic if every monome fn‘
PI(f) consists of the product of exactly two distinct variables;

a m.b.f. feBn;m‘ fs ‘quadratic iff every component Ufi s
quadratic (for 1< i s m).

The set of prime implicants of a function has been extensively |
used as a tool in explaining arguments in this field [Paterson 1975
Mehlhorn and Galil 1976, Lamagna 1975]. fThis representation’is
particularly helpful in describing several replacements which may be
Several general thecrems have been elucidated by Mehlhorn and
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Galil [1976] of which special cases have been used by other authors;

we will find use for one of-tﬁem later in the thesis. If N is
any M-circuit, and A 1is a node in N, then we will denote
PI(Res(A,N)) by PI(A,N), and as usual omit mention of N whenever

the circuit is obvious.

2.8 Lemma (Mehlhorn and Galil: Suppose N s an M-circuit, A is
any node in N, and PI(A) = {mo,m],{..,mki. If there is no
output node B of N with mofnePI(B) ‘for some monome n, then
one may replace A by a gate which cohputes the function

T(m],m ,...,mk) without changing ‘the function computed at any

output gate.

For a proof of this result and several other general replace-
ments for M-circuit§ the reader is referred to the paper [Mehlhorn
and Galil 1976]. -

One final topic which pertains to circuits in general is the
different notatis 's of.dependence. We will say that a node A in
a circuit N depends functionally on the variab1e' X, if

i
Res(A,N) depends:functionally on Xy A different notion of

structural (path or syntactic) dependence:holds if there is a path

from input node X to A in N, i.e. if. AeSucc*(xf,N).

Clearly if A depends functionally on X5 then it must also

depend structurally on ’xi. but in general the two notions do not
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coincide. It is not known whethef they cancide for minimal sized
circuits over particular bases (M for example}. However, it is

possible to prove the following useful observation.

2.9 Lemma: Suppose a function feBn depend; functiona]fy on aA
variable Xy and N is an Q-circuit.computing f with

Res(U,N) = f for a node U in N. Then there is. a path from

x; to U in N such that every gate in the path depends functiaon-

ally on X;
Proof: We construct the chain backwards from the outpytjgate ‘
U. Let U= UO' Inductively assume that we have constructed a |
path Uk’Uk-i""’Uo in N such that every node in the path
depends on x;. If U = X;s then the proof is complete. Other-
wise, Uk rmust be a gate since no other input or constant node
depends on x,. Hence, since ~R35§Uk) ,depends on x,, there
must be a node éeEred(yk) which depends functionally on. Xqe
We extend the path by defining .Uk*] = B.. (sée Figqre zis)

Since N contains no cycles, the.nodes selected are a]l '~
distinct. Since  there are only a finite number of nedes in N,
the above process must eventually halt.

0 Lemma 2.9
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Fig. 2.5 The Extension

2.10 Corollaryv: If a function feBn, which depends on Xs is not
the projection function H?, and if N is an @-circuit which computes

f, then outdeg(xi,N) > 1.
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Section C. Complexity Measures

The models of computing Boolean functions introduced in the
p}evious section naturally give rise to various complexity measures.
If @ 1is an arbitrary basis aﬂd'*@ is an n-circuit, then we

define EQ(N) to be the numbegﬁ§ﬁ¥gate-type nodes in N. If

feBn m® then we define the coﬂbiQaf*ona1 (or circuit) complexity of

f with respect to @, denoted lﬁh(f), to be the minimum value of
EQ(N) for all Q-Circuits‘ N which compute f. If f is not
definable by any n—cfrcuit55WEQQefjnei&Cﬁ(f) = o, \

For formulas, one posg}blg‘gggp{exity measure is to consider
the number of gates as was doné qpéve for circuits. We instead
use the number of occurrences ofi]itera]s as our complexity measure.
If F 1is an -formula, we dgfiné,fg(F) to be the number of occur-
rences of variable input n;de511n~fhe circuit associated with F
(the number of leaves of,theitregk;orrespgpding to F which are
labelled with variab]es).' Observé tﬁat if o is a binary basis,
and F contains no constant nodes, then -fn(fﬁ js one more than

the number of gates in F. The formula complexity of a function

feB, with respect to o, denoted L_(f), is the minimm of the

values of CQ(F);:forvall»n-fbvmmWas» F which define f. Again,

if f is not definable by an q-formula, we define -Ln(f)-s w, A
minimal q-formula (respectively f-circuit) for f is an g-formula

'F (respectively a-circuit N) which computes f such that
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EQ(F) = Ln(f) (respective1¥v<én(N)n= Cg(f)). ‘Where there is no
ambiguity we will use the same notations of complexity L for
formulas and C, for circuits as well as for functions.

For the particular monotone basis - M, we will use the alternate
notations MC and ML for CM and L" respectively. For this
basis, we also define a complexity measure which: depends on the
types of gates used in the circuit or formwla. If N is an M-
circuit, define MCV(N) and MC,(N) to be the number of v-gates
- and A-gates respectively in N. If f is a m,b.f., we define
MCv(f) (respectively MLv(f)) to be the minim&m value of ~MCV(N)
as N ranges over all M-circuits (respectively formulas) which
compute f (where here we consider a formula as a special type of
circuit). We similarly define MCA(f) and MLA(f). An  v-minimal
(re;pectiye]y A-minimal) M-circuit for a m.b.f. “f js one which
has the minimal number Mcv(f) of v-gates (respectively
MCA(f) of a-gates).

The above are the complexity measures considered in the thesis,
but other measures can be defined. For example,: the depth of a
circuit can be defined to be the length of the longest path in the
circuit. This measure has been studied by Spira [1971] and more
recently has been studied by several authors}[McC011,1977,

McCol1 and Paterson 1977; Paterson and Valiant 1976, and |
Borodin 1977].  One may similaf]y define the breadth of a circuit;
this measure has recently been. studied by Séhndrr?[1976b]; Finally,

one may choose to consider only circuits in which the outdegree of
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of each gate in the circuit is bounded above by some integef fk.
Johnson, Savage, and Welch established ‘the result ‘that 1f - k 22,
such a complexity measure is prOportfonéﬁtto c’ for any comp1ete
basis @, (for proof, see [Savage' 1976 p.24]). |

- The relationship between these .complexity measures of an
individual function is well understood In sohé“cfrcunstances and
unknown in others. Muller [1956] pointed out that in general, the
circuit complexity of a funetion in‘any complete Basis n is pro-
portional to its CBé complexity. -This i$ true-since any*gate in
B, may~be synthesized by an o-subeircuit and vice versa, so one
can replace a gate by a subcircuit with only a constant' factor”
increase in the total number of gates®. - For formiilas, the choice
of complete basis can make a diffefence'in*fofmﬂfa‘éfzeL FOrLthe‘
parity function fo(;xT,...;xn)7=-Xﬁkéq‘;‘.‘..eaiﬁ-;;ziﬁifapcheni(o [1971]
demonstrated that - L,(f;) s proportiofial to “H®, while fb”
clearly has a formula of size n in the basiS‘lbéi “ Pratt [1975]
has recently shown-that the maximal gap between the complexity in
any pafr of binary comp!ete'bases cannot be much Targer by demon-
strating that Lu(f) < [LB (F)): 093]Q for any - feB

" The relationship between the Bz-complexity of a monotone

function and its comp]ex1ty in the 1ncomp1ete basis M is not as

TIn fact CB(f) = CB (f) for any funct1on feBn, and if f depends on
more than one var1ab1e, then CB(f) is the min1ma] number of binary

gates in - any B- c1rcu1t wh1ch computes f See [S@voge‘1976 p. 39]
for a proof of this fact. \
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well understood. Specific results will be shown .in Chapter 6.

Resqlts about the maximum values'of‘these complexity measures
among all Boolean functions were mentioned in the introduction. In
brief, the number of distinct circuits with at most a fixed mumber
k of gates is bounded above by ckC‘k for some constants c¢ and
¢- depending on the basis.. From this fact, one can easily show
that if there are many different functions to compute, then there
are not enough small circuits to compute tﬁem all, so "most" of
them require a large number of gates. What is remarkable is that
soem clever constructions exist which enable one to compute .all’
vBoo]ean functions in certain classes with circuits or formulas
which are close to, or even asymptotic wifh, the lower bounds on
size obtained by the above argument.

For the class of all Boolean functions, Shannon [1949] and
Lupanov [1958] have shown that the maximal 82 circuit complexity
of any Boolean function feBn is asymptotically ann.' Similarly,
it is known [Krichevskii 1961, Lupanov 1962] that the maximal 82 |
formula complexity is proportional to anlog~n.

Recent attention has been focused on the class of monotone
Boolean functions. Kleitman and Markowsky [1976], extending work

of numerous authors, have shown that there are asymptotically

(Ra) .y
2 /2 m.b.f.'s of n variables, and one obtains a correspond-

ing lower bound of order 2"/n3/2 on the maximal Bé (and. M)
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circuit complexity of m.b.f.'s. Pippenger [1976] has shown that

mijubwmisnﬁmmuinmwmgwnawmmf.fwn

can be computed iﬁ a Bz—c1r¢uitfwithgasympﬁeticaFFy ()(Z"/nslt2

)
gates and an M-circuit with asymptotically 0(2"%10§7ﬁfﬁ3/22) gétes.

Lower bounds on the complexity of specifi¢ functions dominate
the bulk of this thesis. It will be helpful to point ‘out some
facts about minimal circuits. If fEBn;m and - 9 are arbjtrany,
then any minimal Q-circuit for f -hasfat~m05t fmi~gafes7of outdegree
0. This is so since any gate of outdegree O which is-not an output
gate may be eliminated from the circuit without changing the
functions computed at the output nodes.

In a similar;fashion;vene can show that no two gates in a
minimal a-circuit compute the same function. Suppose G and G*
were distinct gates in a minimal Q-circuit N ‘for which'
Res(G,N) = Res(G”,N). Since N is acycltic, eithef-*éééﬁcc*(e')
or,-G’ASucc*(G);'w.l,o.g. we assume ‘the former. - Then we eliminate
gate G, and replace -G- by G~ in . Pred(H,N) for each gate

H eSucc(G,N). It is easily shown that the resulting circuit is
acyclic, and that every remﬁining.gateiin the new circuit computes
the same function as it did originally. This is a- contradiction
since N was a minimal Q-circuit. |

Suppose that a function feB_  depends on at least two varfables

Then any @-circuit or formula for f must contain-at least one

binary gate (where q is BZ’ B, U, or M). By abéorbing any
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unary gates into the binary gates, one can show that ih any minimal
Q-circuit. for f there are~no edges directed out from any constant
nodes since each gate with one input constant can be simplified
and eliminated. Similarly, no node G has two edges directéd into
the same node H, so outdeg(G) is equaT‘towtthngmbér of nodes 1h
Succ(G). |

For minimal formulas, we point out thaf the;nogions of
structural and functional dependence on a vériabfe X5 coincide,
" To prove this, suppose that € {s an arbitrary basis, and F is
a minimal Q-formula for feB,. If H fj§.qwggtgm?g F which
does not depend functionally on the var‘iasié~ *1; then we claim
that there are no occurrences of the variable X; in FH. If
there were, then one could replace all occurrences of X, 1'n»FH
by the constant 0 (or 1) without changing the function. computed’
at H and hence by the entire formula F. Since this reduces the

number of occurrences of inputs in F, F, must not contain any

H
occurrences of X ‘ '
Finally, we bbint out one simple lower bound on the complexity

of most functions.

2.11 Lemma (Savage): Suppose anunction-»feBhv depends on each of

its variables. Then CB'(f) > n-1.
2




Proof: Suppose N is a minimal Bz?ciréuit for f which
has k gates. Observe that since each 1npuf‘n6de has‘dUtdegree

at least one and since there is at most one gaté of outdegree 0,

we have :
, E ~ indegree (A,N) = 2k
AeNodes(N) '
and - Y - outdegree(A,N).=. a#k<1: -
AcNodes(N) ‘
Hence, since
N indegree(A,N) = 5;5’ outdegree(A,N) ,
AeNodes (N) T Aetodes()

we obtain 2k 2 n+k-1 which establishes the lemma.

Q9 Lemma 2.11

Section D. Circuits and Turing Machines

One questioh which naturally arises concerns’thgwng]ati09§hjp;

»betwéen the measures of'complexity defined above and ordinary
Turing Machine (T.M.) complexity. As. mentioned -above, every finite
function is "easy" fof a Turing Nachinevtq compute since;itvmay be
computed by finite state machineQ When dne considers the finite

subproblems of an infinite problem, however, the situation is
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different. For concreteness, consider language recognition
problems,. i e, functions f?{o,l}f+ {0,1} (where {0, 1}* is.
the set of all finite-length words over the alphabet {0 11), and
let f be the restriction of f to words of 1ength n. Consider

the circuit complexity measure CB .
2

One can show that there are functions f wh1ch are computable
by a determ1n1st1c T.M. in space 2" (i.e.arelatively easy function)
for which CBz(fn) is near-maximal for all valuesof n (see
[Stockmeyer 19741 for proof). On the other hand, one can exhibit
arbitrarily complex, even/arbitrarily non-recursive, functiors f
such that CBZ(fn) is 1 for every neN. There thus appéafs to
be 1ittle correlation between the T.M. complexity of a function and
the circuit complexity of its finite pieces. -

A strong relationship between the two measures comes from a
result due to Pippenger and Fischer [1977] which asserts the following:
Suppose f 1is computable by a T.M. M operating inrtime T(n) for all n.
Then there is a constant ¢ (depending on M's state diagram) such that
C(fn) < cT(n)logT(n). The pfoof is obtained by simulating machine M by
an "oblivious" T.M. M- which operates in time T-logT - the positions
of the heads of M~ depend only on the input 1engph n. Then it is
sﬁ;wn that any oblivious T.M. can have its operation on an input of
length n simulated by a number of gates proportional to its ruhning

time.
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This remark has. many applicationsq[Pau1'19763. As an example,
Fischer and Meyer {197]]'have,shown that Strassen's fast integer
matrik mu]tip]icationfa]garitbm‘can.beausedﬁta~mﬂ!tiplyftwo_
Boolean nxn matrices in time ﬁa(n3°92?iggn loglogn ?GQIOglogn)
on a Turing Machiﬁe. Using the ob}iviousxeonstraction=of a
circuit simu]atlng the T.M., one thus obtains a_B,-circuit for natrix
mult1p11cat1on with O(n2 82) gates. (Recall that Paterson [1975] B
and Mehlhorn and Galil [1976] have Shgﬂg’, that any<M-cjrcuit,,.,
for this prob]ém muéf have é(ﬁf), gmtesﬂ)__ |
While Eischef's fésulp fswnicé as a ggchnical‘too]. it is
obvious by the‘eériier remarks ihat thgicqpyeréeéresug; does not
hold. Schnorr[1975d]ha$ strengtheﬁed the result by cohsidering
oracle T.M.'s in which one work tape initia]ly holds: some str1n9~'
A in {0, 1} . Define, for f:{0, l} + {0 1}._, , :
TC(f)(n) = min{|M}- TA(n) log SA(n) | M with oracle A computes f}

where M ranges over. all oracle T.M.'s (see [Schmorr 1976d] for

A

' conventions s T and SA are the time and space required by M,

and |M| is the number of instructions. in program. M. Then there

exists some fixed polynomial p and a constant ¢ such that'

C (F)is c-TC(f) and TC(f) <P (Cy (F)).
S L

Section E. Misceilaneous Notations

Frequently we will be concerned with the rate of growth of a

numeric function rather tnan its exact value. Suppose f and g
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are functions defined on the natural numbers. Then we write

0(g) iff there is a constant ¢ > 0 such that l1m | Sup (f(n)/g(n)) sc

-
n

(f.e. if f(n) < c g(n) for all suff1c1ent1y large n)

f =o(g) iff limit f(n)/g(nr) =0,

f = o(g) iff th::: is a constant ¢ > 0 such that 1im sUp (f(n)/g(n)) 2 ¢
(i.e. if f(n) 2 ¢ g(n) for all suff1C1ent1y 1arge n),

f = o(g) iff f = 0(qg) and f = a(g),

‘ i ' l i .t I "'

f<g iff limsup f(n)/g(n) < 1.
Moo :

If f =06(g) we say that f 1is proportional to g, if

f~g wesay that f is asymptotically equal to g, and if

f < g wesay that f 1is asymptotically less than g ..

If A is any finite set, then |A| , the cardinality of A,

is the number of elements in A. A partition of A is a collection

of pairwise disjoint sets B,,B,,...,B, such that UB, = A.’
_ 1’72 k i=1 k

If A and B are sets, then A-B = {x | xeA and x/B}.
If X 1is a set of variables, an X-variable is & member df X.
IN is the set of natural numbers, and R is the set of real’
numbérs; R = {reR | r=2 O}ufw}
If k < & are natural numbers, the set of consecutive natural

numbers {k,k+1,k+2,...,2-1,2} s denoted [k:2].
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If x is a real number, then | x; is the greatest integer less
thanvor equal to x; x1 is the Teast integer greater than or eaual
to x.

"Iff" is an abbreviation for "if and only if", and "w.l.0.g."
is an abbreviation for "without loss of generality".

¢ 1is the empty set.

k!

Ky =
If k and 2 are natural numbers, then (E) G
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CHAPTER 3

Worst-Case Values for the Complexity of Quadratic Functions

We begin by consider1ng several comp]exity measures for monotone
Boo]ean functions and examine the comp]ex1ty of quadratic m.b.f.'s

under these measures. Reca11 that a monotone funct1on feB o, is

quadratic iff for each 15[1 :m], component f of f has a set
of prime ihp]icants PI(fi) equal to {xj-xk | {j,k}gAi}, where
A is some collection of subsets of [1:n] of cardina]ity two;

equivalently, f (x], - X ) = The "threshon

{J,k}eA (x5 %)

two" function of n variables Tg is quadrat1c since

PI(T ) = {x. Xy | J,ke[]-n]: i # kl. Boolean matrix multiplication
and Boolean convolut1on are additional e'amples
In this chapter we primarily cons1der the measures MC, MC s
“and MC, for circuits, and correspond1ng measures ML, MLA, and '
MLv for formulas.' For any M-circuit N, we haVe the re]ationship
MCA(N) + MCV(N) = MC(N). For en M-formula F which does not contain
any constant inouts, we have the corresponding equation

*
MLA(F)‘+ MLv(F) = ML(F) - 1,‘ Hence for an arbitrary monotone

function feB, we have the relationships

*The number of gates in an M-formula is one less than the number of

occurrences of variable and constant inputs.
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KC,(F) + HC,(f) < MC()
and -

ML (f)+ML (f) < ML(f) -1,

but at least the first inequality may be strict for spec1fic
funct1ons f. For examp]e, in Chapter 5 we wil] show that
MC (T ) = fTog il and MC (TZ) = 2n-4 but ‘Wil also show that 1f
n 1is a power of 2, any M—circuit for T2 ewhich has exactly | |
Mog nl A-gates must also have at Ieast 2n + 3f1og 61 -9
v-gates, and hence any M-circuit for Tg must have at 1east one
more gate than the sum MC (T ) + H£ (Tz) ’for these values of n.
Two areas in the comp1ex1ty of sing]e-output quadratic m. b f S

are presented in this chapter " The asymptotic va]ue of the 1argest
complexity for all quadratic m.b.f.'s is explored first It is
shown that every quadratic m. b f. 1n B has an M-circuit
complexity of O(n /1og n) That this upper bound is w1th1n a
constant factor of the best possible result is shown by prov1ng that
"most“ quadratic m, b f S have circu1t complexwty over the 1arger
basis B2 of n(n /10g n). | h

~ The-other area is the determination of the number of A-gates
necessary and sufficient to cbmpﬂte”an?'duadhatic m.b.f. in B.
We show that n-1 a-gates are sufficient in any M-formula, and
exhibit a quadratic m.b.f. for Whichilgigg a-gates are necessary
in any M-circuit. By restricting the types of M-circuits allowed,

we can demonstrate a quadratic function for which n - o(n) A-gates
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are necessary in any restricted M-circuit, due to an observation by V.Chvatal.

Section A. The Total Number of Gates

We first demonstrate closely matching upper and lower bounds
for the worst-case complexity of quadratic monotone Boolean functions.
Definition: Suppose nelN . Define
QC(n) = max{MC(f)|f 1is a quadratic m.b.f. in B,

Qc,(n) = max{MC (f)[f dis a quadratic m.b.f. in ByJs

and QCv(n) = max{MCv(f)lf‘ is a quadratic m.b.f. in Bn}.
We similarly define QL(n), QL,(n), and QL (n).

We can use standard counting techniques as found in- numerous

proofs [Shannon 1949, Lupunov 1962, Fischer 1974] to establish lower bounds
on QC.

3.1 Theorem: Suppose e > 0. Then most'quadratic m.b.f.'s fin B

have
Cg (F) 2 (1 - e)n?/(4 Tog n)
2 .

for n sufficiently large, where B2 is the complete baSis of all

two -input Boolean functions.

Proof: Let Qn c Bn denote the set of all quadratfc m.b.f.'s
of n variables. Since there afe (g) subsets of the
variables {x],xz....xn} with two members, IQnI = 2(2) - 1.

Suppose ngn. We know that there is some Bz-circuit N which
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computes f since B2 is a complete basis. If N contains two
- gates which compute the same-function,'then as “in ‘Chapter 2, one of
these may be eliminated to yield a Bz-circuit with fewer gates which
also computes f. Also, if f is not a constant function, it is pos-
sib]e,to,construct»a Bz-circuit}foezff%gﬁniwhichaeachwconstent node
has outdegree zero. We thus consider onhy«afacincuitsfin'which\each
gate computes a distinct function, and in which.constant nodes have -
outdegree zero; wegcail,such-circuits;xggggggg;-,'~

Now suppose qeN and ‘N‘ isa reduced Bzecjrcuit; of siZze <q
which computes a function feQ, . By possib]y adding addit1ona1'ﬁummy
gates, we may assume that there is a reduced Bz-circuit of size ex-.
actly q 1in which one of the gates computes f. Let Rq denote the
number of quadratic m.b.f.'s computed by such reduced circuits of
size q. Since each gate has two 1nputs. and can be 1abe11ed with any
of the 16 binary Boolean functions, there are at most 16(q + n)2 -
possible assignments of function- input pair combinat1ons for each
gate in a reduced Bz-c1rcu1t, giving a total of at most [16(q + n) ]q
such assignments of reduced Bz-c1rcu1ts. However, many of these la-
bellings describe the same ciréuit -- fn;fact,tthéne are ql! differ-
ent enumerations of the computational_ngdgsFofegnyﬁf1xed€reauged circuit.
Hence, there ane at most 16q(q + n)zq/q! reduced circuits of size -
q. Since the (quadia_tid output function may be computed at any gate of

the circuit, we have
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Ry s a- 167 (q'+ n)29/qt

< (16q(q + n)2q ]aeq)/(vﬁ*ﬁ qq) (using Stirling's
approx1mat1on)

< M277)(64e)%q% (1/2)  (hen q 2 n)
< (cq)9, “(for some c 20 and q suf-

ficiently large )
Now, suppose that q s (]fe)(g) / log (2),' ‘Then

Ry < Lc (1-)(3) / Tog ()] (1-)(3) / 108 ()
<@ (G /108 G (hen 10 (M) = c1-))

< 2(1-)(D)

Hence the fraction of all quadratic m.b.f.'s counted in R_ is

q
Rﬁ/Z( 2 2““‘:) /2 (O <)

which tends to 0 as n -+ . Thus most quadratic functions have B2
complexity at least (]-e)(g)—/ 1097{2)~ ~ (158)(nd)/ (4 Tog n).
' 0 Theorem 3.1

3.2 Corollary: QC(n) = n(n?/log n).

Proof: For any quadratic m.b.f. f, MC(f) 2 CB (f) since
. ' 5
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Me By : 0 Corollary 3.2

We can prove that all ﬁuadﬁa£¥c§m&b;f.’§ can be computed using‘a
monotone circuit which is no more than a small constant factor larger
than this bound. The idea of the proof is similar to that used in
the Four Russian's algorithm for transit1ve closure [Ar]azarov et al |
19701, and has been used previously fbr constructing efficient cir-
cuits for other classes of functions [Tarjan 1976]
3.37Thgorem§ Suppose feBn fs~a1m6;otone'qu§¢ratic Boolean function.
Then

MC(f) < 4 n2/log n + 0(n).

Prodf' let m = |lpg QJ Ne partitioa the 1nput variables of
f into Mn/m? subsets, the ith subset Si cbnsisting of the set
Sy = xyl(1-1m < § s f-m, § < n} for 1e[lin/m). Each subset; with-
the possible exception.of the last, has' 'm variables:in it. If feQ

is given,ifor each input variable X and each subset Sj we define

Aij =-{xkeSj|k 21 and xixkePI(f)}.
Note that Ai j =0 for j <Mi/mL Let f\,‘ j be the Boolean function
of the disjunction of all variables in }Aij (recall that bﬁ-coﬁven-

tion Aij is the constant function 0 when AiJ = @§). We clearly




can express f as the factorization

n LLE
.f(x]-.....xn) AL (_j,g .p'-\/mnﬁii)) )

Our goal will be to compute the functions Kij: efficiently,»and
use the decomposition (1) to compute f. We make use of the following
result [Tarjan 1976] which allows efficient computation of sets of

disjunctions.

3.4 Lemma: Suppose X 1is a set of m variables, and f]’fZ""'fk
are monotone Boolean functions which are the disjunction of subsets

of variables of X. Then there exists a circuit "N consisting solely
of v-gates which computes F = {f]’fZ""’fk} such that

C{v}(N) < 4km/log k .

Proof of Temma: Let r =110g k. We decompose the set of X var-

jables into Mm/r1 subsets T],Tz,...,'r'l--m/r_1 each containing no more

than r variables. For each i, the circuit N initially computes

the disjunction of all possible subsets 6f Ti' This can be done in a
manner which has one disjunction for each subset of size = 2 by com-
puting the disjunction of smaller subsets first, and then constructing
the disjunction of a larger set with one additional variable by using
a single v-gate to add this variable to the previously constructed
disjunction of the smaller set. Hence, this can be performed using at

most 2~ r - 1 disjunctions for each iec[1fm/A], giving a total of
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(2" - r - 1)(Mw/r ) < K/r) disjunctions . Since each function

f

these previously computed functions {one per subset ‘Ti), we can com-

can be constructed by computing the disjunction of T'm/r1 of

pute F with at mOst an additional ka"m/r“l- 1) _v-gates.  Since
Mm/rl s 2mllog k, the tota] number of v-gates used 1n this constryc-
tion is at most 2H"h/f1 -k < 4km/1og k A
'D Lemma 3 4 -

Returning to the proof of Theorem 3.3, suppose that j  is
fixed. Note that Aij # 8 for at most -j-m values of i, namely
for each 1ie[l:jem]. Hence the computation of the functions Aij
for all j-m values of i can be accomplished using the method of -
Lemma 3.4 with at most ijmzllogfiim) “vegates. Thus, one can compute

all functions Ayy for de[1:n], je[1: /W] using at most

M/, 2 rn‘/:n o *
;3] (43m°)/(1og(jm)) = 4m™( 321 J/1og(jm)) -
J= = : L

4m2[n2/.(2m2 lggfn)nf O(nllog2 n)j

=72n2/169'n'+'0(h)' o vJQatés.

To sum the series, note that

Cn/mil n/m ‘ .
“I_T #/1og (im) < fz“/"kxllog(xm))dx + 2n/(m Tog n)

< (1/m2)'j2 x/Tog x dx + 2n/(m,lqg n)

(cont. -on next page)
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Finally, combining these disjunctions ‘to compute ~f using (1)
can be done using an additional n -1 :a-gates (since ﬁnj =0

for all j); the number of additional v -gates is at most

] -
L O/ =T/ 0 sii‘!((n,n‘m $1) +n -

n-1
=(Jim+2n-1
J=0

= n%/2m + 0(n).

Again, since nzlm s‘2n2/]og n, we have a total o?N'4hzllog'n‘+ 0(n)
gates in the M-circuit constructed. LT
S ; o ‘ 0 Theorem 3.3

Section B. Asymptotic Bounds on a-gates

In the remainder of this chapter, we consider the measures QC,

and QLA which arevthe minimal number of a-gates required in any

But

. 4 n S i '
j; x/1og x dx <) i/log i sz;z +1 [i/10g i + (n-i+2)/ 1log(n-i+2)]

Wn/24+1
< L. 20Cn/Z¥1)/10g(n/2 + 1)
=z o ,

2(Ln/24(Mn/2W1))/ (2 Tog (/2 #1))

n

n2/2 log n + 0(n/1og n).
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circuit or formula respectively to express a quadratic m.b.f. of

n variables. We do not consider tlie measures QC,, < and” QL , and
,consider determination. of their. va}nesfia'beAaﬁzinterestfng open
question. When arbitrary M-circuits are allowed, the bounds we obtain
on -complexity are not as. tight as those: ﬁn the previous section,

but tighter bounds are given in Section C when

A-gates are not allowed: thhave a path to another a-gate 1n the

circuit.

3.5 Lemma: Suppose n z 2. Then QC,(n) s-QL (n) &n-1.

Proof Obviously qc,(n) s qQu, (n)- “since a formula may be

considered a spec1a1 kind of a circuit

We prove that QL (n) < n-1 by tndiction on n.

If ne= 2, then clearly QL'(Z)‘-‘IZ since the only quadratic
m.b.f. of 2 variables is Tz(x],xz) £ x A x2. " '

Now assume inductively that QLA(n) < n-1, and suppose that (
f 1is a quadratic m.b.f.\of n+l. gq;@ab]eéiihge can express ; f )

‘as the factorization

‘f(xT""’xn+T)'{ (x ] A g(x], ,xn)) v h(x],...,xn)

where g = qui>|,x‘- a1€PI(F)} and
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h = \/{xi-xj | xi-xjepng), i#ml, §#neld

Clearly MLA(g) = 0 since it is simply a disjunction of single ‘
variables. Also MLA(h) s QL(n) since h is a quadratic m.b.f. of
n variables. Inductively, we then know that MLA(h) < n-1, so
ML (F) < ML (g) + M (h) #1 < n. |

0 Lemma 3.5

Remark: One can show that QL (4) = 2 by examining all quadratic
m.b.f.'s of 4 variables, and hence a sinﬁ1afipr65f demonstrates

that QL,(n) < n-2 for n = 4.

We would now like to determine whether there are quadratic |
m.b.f.'s which require a number of A-gates which is close to the
upper bound provided in Lerma 3.5.7 It is éasy to demthtrate a
quadratic m.b.f. in Bh for which @(n) a-gates are required.
For example, suppose n 1is even and conéf&éf the fﬁnction

fo(x],...,xn) = (X]AXZ) v (x3Ax4)’v’...‘v ﬂxn;]Axn); the proof that

T We remark that the number of prime implicants of a quadratic m.b.f.
correlates poorly with its A-comp1ékiiy s1nce‘(asyhe show in Chapter
5) the function Tg,"which has (2) ‘prime implicants, only requires

Mog n1 a-gates to compute.
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fQ requires n/2 a-gates to compute is relatively straightforward.
It is an open question whether QCA(n) is asymptotic with n.
Our objective is to show that the constant factor of the trivial

lower bound of n/2 may be improved to 2/3.

3.6. Theorem: Suppose n > 2. There is a guadratic m.b.f. feBn

such that MC (f) = 2n/3 .

Proof: We define f as follows: partition the n variables

into k = /3! subsets S],SZ,...,S , each containing 3 variables

k
(except possibly S,). We consider the function

3

2(S

Flxysennsk ) = T3

n 2(51) v T

Voo v T3(Sk) (2)

2) 2

where Tg (Si) is the threshold 2 function of the variables 1in Si

(for the set Sg» if n is not evenly divisible by 3, we consider there

to be 1 or 2 "dummy" variables set to the constant 0). We

claim that MCA(f) 2r/3 , and prove this result by induction on

k in the event n = Q(mod 3). The other cases n = 1{mod 3) and
n = 2(mod 3) are proven similarly. We first show that
MCA(f) > 2n/3 .
= - _+3
Suppose k =1 and n = 3. Then f(x],xz,x3) = T2(x],x2,x3).
By Theorem 5.9 1in which it is shown using other means that

MCA(Tg) = ITog nl , we have MCA(f) = [log, 3 = 2.

Now assume the statement true for k and n = 3k -- namely

that the function
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£(x x) = T3S} v veu v T3(S,)
1°°°""n "2t LERERA A §
has -MCA(f) > 2k. We are concerned with the function
- . == g : 3 "
- f (xli---’xn;y].’yzg,Y3) = f(x]’...’xﬂ) v Tz(.y] ,.Yz,.Y3)

where we have re-named the. variables for ease of description.
Suppose N is an M-cikcuit cdmpdting f-. The general

aim of the proof wi]]lbe to show that there are constants 2113y

and a; in {0,1} with the fo]lowing property: if y{ is

set to  a, (for i - 1,2, and 3), then’theAresulting circuit N-

computes f; moreover, it is possible to eliminate two ynnécessqny

A-gates from N~ ‘since each gate has ét least oﬁe pfédecessdr

which computes the constant function 1. We proéeed in a fashion

similar to Paterson [1976].

Definition: Suppose. N is a circuit which computes f~, and
. suppose 1,je{1,2,3}. We say a node G of N has property Pi.j
iff Y5 is a prime implicant of Res(G,N).

Definition: If P is any property on nodes of N; we-define the

initial occurrences of P, denoted I(P), to be

I(P) = {GeNodes(N) | G satisfies P, but no predecessor of G

satisfies P }.




~66-
3.7 Lemma: Suppose N 1is an M-circuit which;computes f, and
i,jE{‘ :?.3} 'y 1 f j. Then
(1) 1Py ) # 9

and (2) I(Eisj) consists selely of a-gates.

Proof; Since the 1nput var1ables do nut satisfy P“j and the
output gate of N does, by passing up the circuit N from the
output gate we must eventua]ly find a gate which sat1sf1es‘ P ’jb
but ‘none of whose predecessors do This establishes statement
(1). For statement (2), suppose that G 1s an V-gate wh1ch sat-

-~

isfies P i and let Pred(G N) = {J K} By the remarks in

Chapter 2 on prlme 1mp]1cants, we know that PI(G N) PI(J,N)UPI(K N),
and since y1yJEPI(G ,N), one of J or K must satisfy Pi,J

, Henoe G¢I(Pi.j).
R i B Lm 3.7
3.8 Leima: Suppose N,i, and § are‘as above, and~ Gel(?i’j);“,lfi

Pred(G) = {J,K}, then either ¥;€P1(J,N) ‘and y;ePI(K,N), or

vice versa.

Proof: By Lenma 3. 7, if GeI(P‘ j)’ then 6 is an A-gate
Every prime impYicant of 6 1is a product of a uenber of PI(J) and
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a member of PI(K). Since neither PI(J) nor PI(K) contains
Yi¥j we must have either yiePI(J) and YiePI(K),yor vice versa.

‘0 temma 3.8.
3.9 Lemma: If N is as above, then I(PT’Z)ur(P2’3)uI(P1’3) 2 2,

Proof: Suppose to the contrary that there is only a single gate
6 in '1(P1,2)u1(P2’3)u1(P]’3),. and suppose Pred(G,N) = {J,K} .
By Lemma 3.8, we may suppose w.1.0.g. that y]eP1635N0* and
yzePI(K,N) since GeI(P]’Z). Again by virtue of Lemma 3.8 and
the fact that GeI(P2’3), we must have ysePIjJ;N? since ‘
¥pePI(K,N) implies that y,ePI(6,N), and hence that yiyzéPI(G,N).
contrary to the assumption thatGeI(PT;z);.vsut‘then*ﬁéI(P1’3)
since ¥i¥3 cannot be i prime impifcant of '
Res(G,N) - (y]Vy3Vh])A(y]Vh2). This contradiction implies that the
union contains at least 2 gates. ’

0 Lemma 3.9.

We-are now in a position to prove the main theorem. Since
there are at least two distinct a-gates in I(P]’z)uI(P2’3)uI(P]’3)
and since none of these sets is‘empty;by Lemma 3.7, we pay~w:1.o.g.;
assume that there exist distinct gates G vand H in N such that

6eI(Py ,) and HeI(P, ;). Assume using Lemma 3.8 that




-68-

Pred(G,N) = {Kl :K;}  and --:izel?l(‘l(1 »N); -and similarly that

Pred(H,N) = (K3.K} and ¥5¢ePI{Kqy;N). (It may be possible that

some of the ‘;K,\‘.,:;ngd,esﬁre not distinct.) The aSsignment of the
variables Yy = 0, Yo = 1, and Y3 = 0 results in'a circuit N-
which computes vt4h,e function f. Moreover; in N- -the inputs K’ ;
and K3 to G and H respectively now compute the constant function
1, and hence gates G and H: may be eliminated #n N~ sihce
1agxrg for any Boolean function g.' Hence if the resulting

circuit is called N°”, we have .
MC,(N) = MC (N"7) +2 2 MC,(f) +2=2n+ 2

by inductiion,,' -and -the lower bound 'is’ complete.
To show that C (f) s (2/3)y , : it suffices to observe that:

Tg(x] ,Xz,xa) = ((x.lvxz)/\x3);v (x_l;\,xz) S '_
and hence C}\(TS) < 2. Thus using the definition (2) one can

compute f using ({2/3)y A-gates.
| 0O Theorem 3.6

3.10 Coroilary: Suppose n = 4. Then

-|_(_2/3)'g. < QCA.(n) < QLAr(n) s.n-z,.




Section C. A Graph Problem'

~ We close this chapter by describing a graph-théoretic problém
which is related to the A-complexity qf quadratic m.b.f.'s when
they are computed with a restricted class of M-circuits. The
research in the remainder of this chapter was done in cgnjunction
with Ronald Rivest. We introduce notatfon similar to Harary -[1969]

for undirected graphs.

Definition: An undirected graph G is a pair (V,E), where V is

a finite set whose members are called nodes .or vertices, and

Ec{BcV ] |B] =2} 1is a set whose members are called edges.
\A bipartite graph is a graph G = (V,E) whose vertices can

be partitioned into two non-empty sets V] -and Vzv such that if

edge {v;,v,}eE, then Vi€V ® VoeVy; that is, each edge coansts of

one point in V, and one point in Vz.v R '
A complete k-g bigar;i;g_gnaph.is a bdpartite graph

(V= VjuVpuE) such that [v;[ =k [V,] k'

2, and

E= {{V-I ’VZ} I V]E'vlp V2€v2} .

Definition: If G'='{(V],E]),(VQ,EZ),...,(Vk,Ek)} _is a collection
of undirected graphs, and G = (V,E) 1is an undirected graph, then

an exact covering C of G by G is a collection of one-to-one

mappings hy:Vy + ¥V for fe[1:k] such that E = 1e%3:k]ih(e) IeeEi}




=70~

where h({a,b}) = {h(a),h(b)} for any edge - {a,b}eE,. The cost of the

cover,. denoted 5(0), is k.

not bipartite bipartite

. complete
i 3-3 bipartite

Fig. 3.1 -Some Graphs |
ANPoints represent nodes and 1ines. represent edges.

We can now define a measure on graphs.

Definition: Suppose neN, and G is an nrnbﬂg‘yﬁd1rected ’

graph. _Then

- D(6) = min{B(C) | C is an exact cover of G by {61516, ),
where Gi is.a cgmplete bipartite graph - .
- for de[1:k]} .

Define t(n) = max{D(G) | G 1is an n-node undirected graph}.
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The connection between quadratic m.b.f.'s and graphs is as
follows: Suppose f is an n-variable Boolean func;ion, We can
assocfate a corresponding n-node undirected graph Gf = (V,E), .
where V = {1,2,...,n} and E = {{i,J} | xixjePI(f)} .‘ Conversely,
suppose G = (V,E) 1is an n-node undirected graph. By possibly
rénaming the vertices, we may assume V = [1:n]. Define the Boolean

function fG:{o.n" +40,1} by

fG(x],...,xn) = VQxi'xj;I {i,j)eE} .

The functions f » Gf and G > f, clearly demonstrate a
one-to-one correspondance between the set of quadratic m.b.f.'s in Bn
and the set of n-node undirected graphs with at least one edge.

See Figure 3.2 for some examples.

2
| 2 5 8
3 B 4 "6""”7 Ag
1B T3(x. XosXa) V T3(x XpsXp) V T3(x Xg s Xq)
2 2'"1°72°73 2'74°75°76 2)\"7°7°8°"9

Fig. 3.2 Some Functions and their Graphs
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In fact, we can get a more strict correspgondence in,mathematica] terms.

-~

ﬂQEEEiQﬁf‘ Q, = (f | f is a quadratic m.b.f. of n variables} u.

{93 the con;tant‘fupctjon 0 of- n variables}.

G, = {6 = (V,E) | G. is an undirected .graphy and V = [1:n]},
Z is the graph ([]ﬁn],ﬂ)f in G- o | ‘
If 6 = (V,E;) and ezj=:(v,sé)eéw¢ define G uG, to

be the graph (V.E]uEZ).
If A -is'any~SEt, and f:A + B, then f(A) = {f(a) | acAl.
If 6= (V,E) is an undirectéd graph; and h:¥Y +W,

then 'h(G) 1is the graph' (h(¥),h(E)).”

3.11 Lemma: Suppose n 2 0. Then

(1) (4,0 ) and (6.u.Z ) are monoids,

and (2) the fqnc;ion f - Gf is a monoid isomorphism wﬁd§e~

iinvgﬁsexig theAnﬁp G,*'fe°

Proof: Statement (1) is easily checked, as are the facts that

the maps in (2) are ofe-to-one, onto, and inverses of each other.

Moreover, if f] and 'fzeﬁn. then

PI(flvfz) = Pl(f]) u Pl(fz)




-73-

‘since each prime implicant is the product of two variables. Thus,

if
Gflvfz = ([1:n],E), Gfl = ([I:nJ,EIL and sz = ((lzn],Ez), it

is easy to check that E =‘E]uE2, and the claim is verified.

0 Lemma 3.11

3.12 Corollary: Suppose C = (h],...,hk) is a covering of the

graph_ € by graphs G]’GZ"°"Gk' Then
f = f v f V eee f g
G hl(G]) hz(Gz) hk(Gk)'

Proof: Prover inductively using Lemma 3.11.

O »Coro]]ary 3.12

We now' connect the complexity of functions and their graphs.

We will say an M-circuit or M-formula N is single-level if

there is no path between any pair of A-gates in N. Obviously, any
quadratic m.b.f. can be computed by a single-level M-formula and

hence a single-level M-circuit. Iq a sing]e-)evel M-circuit N,‘

each immediate predecessor of every k&-géte}cdnsists'bfithe
disjunction of some set of input and constant nodes. ‘Mofeover, if

N computes a quadratic m.no.f. f, then there is some subset a of
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the  a-gates of N such that f -5Kzé8esﬁﬂqn)l‘fTﬁ&s,’giVen a
sing]e-]evel M-circuit N computing a quaoratic m.b.f. f, one may
construct a single-level M-formula F which also computes f and
which has the same number of A-gates as! N since computing any:
number of disjunctions of variables takes no A-gates

If f is a quadratic m.b. f define

sLc, (f) = minIMcA(N) l N 1is a single-level M-circuit which computes f}.

We shall prove

3.13 Theorem: Suppose f is a quadratic m.b. f..; Then .SLCA(f) =
D(B EEE YR I :

i

£

Proof: Suppose f 1is a quadratic m.b.f., and that

D(Gf):= k. Let C= (h},...,hk) be an exact cover of G¢ by
complete bipartite graphs Gl“"‘ek‘ We will construct a'single—
Tevel M-formula for f which,has ane ~A-gate for. each.graph in

the cover of Gy Suppose Gi ( 5. “11“”12’5f) is the decompo- .
_sition of the vertices of G* .as in. the definitjoa of bipartite
graphs

Note that h (G ) is also a comp]ete b1partioe graph ~ Since each
graph is complete.
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g () ) = VIXgx, | (dokiehy (,))

Hence, using Corollany 3.12, we can expresS f as

f=f =f VE ey e Vf

k
- 1!{ [(v{xg ' jehi(vﬂ)}) A (V{xk l l»(e.hi»(viz)})],

which is a formula with & A-gates. Thus SLC,(f) < k.

Conversely, supposé f 1is a quadratic m.b.f., and SLC (f) = k.
By the remarks preceding the theorem, there is a single-level
M-formula F for f such that MQA(F)V= k. Since F 1is single-

Tevel, we may write

K .
F= Y [gZAi"j’ ALY X

for some subsets A1 and Bi' of [1:n] foriesch ie[1:k]. Since
PI(f) has no single variable terms, we know that AinB{ =p for
each 1e[1:k]. Thus

.

f(x) = 1,\=/]{xjxk | jeAi and keBil




~76-

So if we define G, to be the completeibipartite graph with vertex
set A;uB; (decomposed as Ay and B;) for each ie[1:Kk], we
obserQe that € =-(id,id,...,1dj is an exact cover of Gf by
complete bipartite graphs G;,6,,...,G,, where id 1is the identity
map. Hence D(Gf) <k | .
‘0. Theorem 3.13

If we define sLqc, (n) to be the maximum va]ue of SLC(f)
for qny quadratic m,b. f. of n variab!es. then bTheorem 3 13
implies that SLQC, (n) = ng). Singg,qnyis1nglg-1eve}wnsfermula S
is in fact an M-fo;mqia, we know QLA(n) < SLQCA(n). We note
that the proof given for Lemma 3.5 actually yiélds a:-single-level
M—formula,fon»anyaquadratic'uub.f,;'s#’SEQéA(nfgé*ﬁill Since
QL (n).= o(n), we knaw also that SLQC {n) ='&(n). For the latter
function, it was pointed out to the author by V. Chvatal™ tHat one
can actually get asymptotically matching upper and 1ower bounds on
H(n). ' o

3.14 Theoreg: : SLQC;(n)‘s,“(n):’«j and H{n) ~:'n.a

We include a sketch of the proof of Theorem 3.14 in Appendix 1.

TPrivate commnication, 1977. Recent work by Bermond [1978] has
tightened the bound given on H(n).
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Section D. Open Questions

At the end of each chapter, we 1ist some open questions pertaining

to that chapter.

1. Demonstrate a m.b.f. for which MLA(f) + MLA(f) < ML(f) - 1.

2. Is QL(n) = o(n2/1og n)? More generally, do o(nz)
monotone formulas exists for all quadratic m.b.f.'s? QL(n) is
obviously O(nz).

3. What is the asymptotic behavior of QLy(n) and QCy(n)?
Determine QLA and QCA more exactly than given in Corcllary 3.10.

4. If f 1ds a quadratic m.b.f., is SLCA(f) = MLA(f)? Is
MLA(f) = MCA(f)?

5. More generally, is SLQCA(n) = QLA(n)?
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ACHAPTER-4
Combinations of Functions

One fundamental problem of Boolean function complexity is deter-
mining the relationship between the complexity of individual func-
tions and the complexity of combinations of those functions. The
relationship depends not only on the type of ‘combination but alsq
on the model and measure of complexity used. In this chapter, we
explore several questions;in this‘area.

Given Boolean functionS f . and g, we consider primari]y the:
combinations fxg and v(fxg). Results abqut thé function A(fxg)
may be obtained by duality from those fbr v(fxg).k We do not consider
the composition of functions; this area has many'interesting open ques-
K tions. The measures which we consider are fonu!h and circuit size
over different bases.

As Paul [1976 p.383] points out, one might expect that
CBz(fxg) = CBé(f) + CBz(g) since the»évaiuatipn of f and g on

disjoint sets of variables "have nothing to do with each other." This,
however, is incorrect; Paul shows that for any ¢-> 0, there are ar-
bitrarily complex functions f in B, , such that

Cg_(fxf) < (1 + €)Cy (f). In addition, he exhibits arbitrarily com-
2 2

plex g in Bn such that CB,(v(gxg)) < (1 + s)CB (9).
2 | 2

For M-circuits computing monotone functidns, the results are

drastically different. ‘M. Fischer proved that
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MC(f>g) = MC(f) + MC(g) for any -m‘.ﬁ:f."s feB " and Q‘Bm,z |
[Paul 1976]. It is still unknown whether MC(v(fxg)) MC(F)+MC(g)+1.

In Appendix 2, we present an extension to Fischer s result, due to
Galbjati .and Fischer [1978] in .which the sets. of variables on which f and
g depend have one variable. in. common. . h! addition; we show that
Fischer's result holds when v-gates. amd A-gates ‘are counted separ-
ately; namely that MC {fxg) = M {f) + MC, (o) -and duaily:

MC,(fxg) = MC (f). + MC (g). ‘

We consider the question of formu]a s1ze add1t1 V1t.Y. the only
combination considered is v(fxg) Here, 1n contrast to Pau] s
results on circuit size, we show that fonmla size 1s additive under

v, namely
Lolvifsa)) = () +Lo(e) (1)

for any basis g which contains v, and any non-constant Boolean
functions feBr and geB ' Nhen countmg individual types of gates
in formulas over the monotone ba51s M, we show Ehat '

M (v(fxg) = ML (f) + M. (g) +1 for arbitrary monotone functions
f in B and g in B H the corresponding question

ML, (v(fxg) In (f) +M (9) remains open, even for simple classes of

+In fact, Fischer shows that any winimal M-circult for fxg is
composed of disjoint minimal circuits for f and q.
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functions such as quadratic functions. ‘ :
Fina]ly,rusing fact (1),“we demonstrate a gap between the c1rcﬁit
and formula complexity of soméyspecific funttions.,,lq particular, we |
show that there is a sequence of function§7gﬁgse Bz-tirguit compfex-
ity is O(n 1092 n), but whoseaBz;forﬁu1a co;plexity is
»n(nzllog ldg n). A slightly 1argerigap between these measures for'a
particular function had been previbus%y shown ‘using diffeérent techniques
by Paul [1977]+, who observed the imp]ications of fact (1).
The following chart summariié; the éﬁr;eﬁf gfate of what is known

about these problemsf+.

1'lrlor'st:-case results for these measures show_ that most functions

-fggﬁ have LB (f) = fXZ“/]og n) and CB (f) = 0(2"/n). Hence for
2 ra

most functions the ratio between these two measures is g(n/log n),

but the measures themselves are eXponentiaf in n.

™ Paul's result on the sub-additivity of x in the measure Cg used
2

multi-output functions.
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Combination Meaéurg‘
Class of Functions CBZ MC tc;;f ég- LBzii ML | Lvl L,
v(fxg) B, SuB j¥ IR ADD | ADD | ADD] 7
x B, 7| o) Ao | Ao - -] -]-
x Bh;m SUB- | ADD{.-ADD :fAnD'jf-"I - - -
Téb]e a.1. suﬁm;ny;of.rgéults._
Key ~ 'ADD: combinatioﬁ of m}ﬁiﬁai éircyits/formu]as

SUB:

Section A. The Formyla

‘gives optimal circqit/formula fbr combination
negation of ADD for some particular functions

open

: does not apply

Size of v(fxq)

In this section we show that one cannot economize when constructing

a formula for v(fxg) in an arbitrary binary basis.

4.1 Theorem: Suppose n

and mepy, feB, and geB, are non-

constant Boolean functions, and 9 is an arbitrary Boolean basis.




Then

Lo(vifxg)) = Lo(f) + Lo(g).

Proof: Suppose F(x],...,xn,y].....ym) is an ga-formula for
V(fxg)(x],...,xn,y],....ym) E f(x]...@,xn)vg(y],...,ym). Since f
and g are non-constant functions, there are constants 3e{0,]}n

and  Be{0,1}™ such that * f(3) = g(B) = 0. Thus F(x],q..,xn,g),
even when simplified by absorbing constants into gates, is an_

~ a-formula for f(X)vg(B) = £(%), and hence has at least Lé(f)
occurrences of variables from {x],...,xn}. -Similarly, since
F(E;y],...,ym) is a formula for g(y), F has at least Lﬂ(g)
occurrences of variables from {y]I..;,ym}. Since the sets
{xpseeesx ) and {y;,....y } are disjoint, F has at least
Ln(f) + Ln(g) total occurrences of variab]es. Since this is
true for any formula F for v(fxg), the theorem is brbved.

0 Theorem 4.1.

4.2 Corollary: If q is any basis containing v, and f and ¢

are as in Theorem 4.1, then LQ(V(fxg)) = Ld(f) + Ln(g). Particular

examples are Q = B2 and g =M .
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To obtain the next corollary, we state without proof the foTTbﬁ%ng

technical lemma due to Paul [1976].

Notation: For geBn, and kelN, k > 0, define V@k by the inductive
rules: . !

V9]=9

Vgk = v(gx(vgk1);.
(so Vg* is thé_disjunctibn of k copies of g on disjoint sets of

variables.)

4.3 Fact' (Paul) : There is a constant a.-such that, for all. k
and nelN, k21, and'all géBﬂg the following holds:-

CBZ(th) < uomaX(n-Z",nkrlogz'k) .

We also need the following fact due to Krichevskii [1961].

4.4 Fact: There is an ngeN such that for every ,n‘>‘n°;‘there is a

function feB, such that Lg (f) z¥29/(2vlpg n).
2 o s

We now can establish the following gap between circuit and for-

mula complexity.
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4.5 Corollary (Paul, Bloniarz): There are constants n. and o

0
such that if m > ny is a power of 2 and n = Zm/m, then there is

a fuﬁction feBn such that

M (0 (22 (202 10g m)
while
(2) Gy, (F) < aem 2"

Hence Lg (f) = Q(nz/(log log n)) whereas CB (f) = 0(n log2 n).
| 2 | | 2

Proof: For this proof, we assume that the basis of opekators
for all formulas and circuits is B,. Let Ny \be as in Fqét54.4;
There is thus a function geBm such that L(f)‘z 2M/(2 log m).

By induction on Theorem 4.1, it is.easy to show that L(VgX) = k-L(g),

so if we define
oM, 2
f=V(gZ /m)o‘
m, 2 m o
we know that L(f) = (2"/m")-(2"/(2 log m)),

On .the other hand.“by'Fact 4.3, there is a constant « such
that |

CB(f) < avmax(m-2", me2". (m-2 ldg m)z/m2
| = qeme2" . |

The final remark follows since f has n = (Zmymz)-m “variables and

since m < 2 log n. . : - I Corollary 4.5




Section Q;_Monotone:Functions

We now restrict ourselves to the class of sing]e-output monotone
Boolean functions and formulas over the bas1s M For the combin-
ation v(fxg), Corollnry 4.2‘pnoved,that,monqtone formula complex-
ity ML s additive ance veM. -Askfor coﬁnting individual gates,
clearly MLA(v(fxg))s MLA(f) + MLA(g) for any m.b.f.'s f and g.
It remains an open question as to whether *here'arEsany non-constant
m.b.f.'s f and g for which the 1nequa]1ty is strict The cor-

responding question for ML is answered by the following theorem

4.6 Theorem: Suppose n and memi, and feB and geBm are non-

constant m.b. f S. Then

uv(v'(fxw- M (f) + ML (g) +1

Proof: The fact that MLv(v(fxg));:MLv(f) + MLv(g) +1 is
easily verified by combining an v-miniMai Mtformula for f with
one for g by an v-gate. To show thevinéquaTity:fn thé nnposite
direction, suppose that F(X,¥) is a M-formula for (X)) vg(y)
with the minimal number of v-gates. We will prove that if H is
any a-gate of F, then H. depenﬂsf‘oniy,on_gaxjables_’from the set

X = {Xys...ox} oronly on variables from, Y =”{,\l]»,.--..)'m}-'

t We remark that in a minimal formula, the notfons of strictural

dependence and functional dependence coincide.
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Supposing this for the moment, we show that the theorem follows
from this claim. Let H = {H|H is avariable or a-gate of F such that
Succ+(H,F) contains no a-gates}. By assumption, gg_nOde in H depends dn
variables from both X and Y. We look at Succ™(H,F). If
Suéc+(H,F) were empty, then since F is a formula there would be a
unique node Hy in H. But then Res(HO,F) = v(fxg). Since v(fxg)
qepends on variables from both X and >Y, and by assumption Ho
does not, this is a contradiction. Hence Succ+(H,F) is a non-'
empty collection of v-gates, one of which is the output gate U

(see Figure 3.1(a)); moreover
Res(U,F) = H;’HRes(H,F) . (2)

We will replace Succ+(H;F) with a tree of v-gates which also
realizes the function (2) and obtain a (possibly different) formula
for Res(U,F). Let HX denote the set {HeH|H depends on variables
in X}, and let Hy = {HeH|H depends on variables in Y}; By assump-
tion, the pairs of sets HX énd HY is a partition_of H. Form

the subformulas

-V
Fy HeHXFH
and
LV
Fy HeHYFY

(where the disjunction may be associated arhitrarily), and finally




‘< = = V V
the formula F vaFY . Since Res(F) (HeHxRes(H,F)) v (HeHYReS(H F),

- F~ defines the same function v(fxg). as F. . Moreover, since F

was v-minimal, Succ+(H,F) contains: exactly |H]-1 v-gates;

(a) (b)

Fig. 4.1 The‘re—arrangemeﬁt

since |H|-1 v-gates were added in thé rgcgnstrugtibn, F- also
contains a minimal number of' végates. But“ f(x{,..;,xn)vg(yi,...,ym)
= Res(Fx)(ﬁ;y)vRes(FY)(i;?). Since Res(Fy) debends only on X and
Res(FY) depends only on Y, it is easy to show that f.= Res(Fx) and
g ='Res(FY). Since the subtrees Fx and EY :are‘disjointf there
must be at least M. (f) v-gates in Fx and ﬁtv(g) v-gates in Fy,
giving a total of ML (f) + ML (g) + 1 v-gates in F”, and hence in F.
“To show that all A-gates in F depend’oﬁ;oﬁly one of X or VY,

we suppose to the contrary that some a-gate depgpds on both X and Y

variables. lLet H be a top-most A-ga%e with this property, i.e. H




is an A-gate such that H depends on some variab]e in X and some
variable in Y, but any A-Qate H® in Pred+(H,F) depends only on
X-var%ab]es or only on Y-variables. ﬂe;will‘USe téChnjqﬁes similar
to the first portion of the proof to restructure the formula and
reduce the number of v-.gates in F.

Suppose that Pred(H,F)} = {I,J}. Define

A(I) = {GePred*(I,F)lG is an a-gate or an inpui and all interme-

diate gates (if any) on the path from G to H are v-gates}

and define A(J) similarly. Note that neither A(I) nor A(J) -

is empty by our selection of H. Since the portions of the tree
from A(I) to I and from A(J) to J consist solely of v-gates,
there are |A(I)|-1 v-gates in the subtrée from A(I) fof I and
[A(J)|-1 v-gates in the subtree from A(J)  to J. Functionally,

we have
Res(H,F) = [o¥y 1) (Res(8F))] A [0 gy (Res(G,F))] - (3).

We are now in a position to use Mehlhorn and Ga]i]'s lemma

(Lemma 2.8 ) to redﬁce the number of v-gates'in the formula.
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Define
Ay = {GeA(I)|G depends on some variable in X}
AY = {GeA(I)|G depends on some variable in Y}
BX = {GeA(J)|G depends on some variable in X}
and By = {GeA(J)|G depends on some variable in Y}

Observe that since H 1is a top-most a-gate depending on both
X and Y, AXnAY = BXnBY = @. We construct a new formula F~
by replacing the subformula FH in F by a subformuia FO

which realizes the function

= \% \Y V. Dpael Y \
fo = Llglp,Res(6)) » (gl Res(6))] vI(GYy Res(@)) a (g Res(6)],

If none of AX’ Ay, BX, nor BY is empty, then we define

Foa v
0 =LiYVa Fo) ~ (Y

\ P Mt Fo) (el Fo)] (4)

X Y

In this case FO/ has at least one fewer v-gate since the
|A(I)| + |A(J)] -2 v-gates we identified in deriving equation {3)

have been replaced by

([Ag]-1) + ([BXH) t([Ayl-1) + (]{;Y[..]) +1 = JALD)] +

A)] -3

v-gates.

If, for exampie, AX alone is empty, then we define Fn to be the
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obvious simplification of (4), namely
Fo = {gen, &) A Gep, 8- (5)

In this case, F, contains ([Ay|-1) + (1By[-1) = [A(I}] + [By]-2
v~-gates. But Bx # 8 since H depends on both X and Y vari-
ables by definition.. Thus |BY| < [A(J)] so F0 has fewer
v-gates then FH'
If one of the other sets is empty we proceed similarly. If
two of the sets are empty, then they must differ in their variable sets
since H depends on both X and Y variables. So suppose w.l.o.g. that
AX and By are empty. Then f0 = 0, the constant function zero, so we
may let F0 be the constant 0. In this case the closest v-gate in
+ ! . . . .
Succ (#,F) may be eliminated since one input to the gate is the constant
0;5-such a gate must exist since the formula F does not computé a constant

function.

. ' L
Hence in all cases F has at Teast one fewer v-gate than F.
Now if we can show that F~ also computes f(x) v g(y), then

" we will have a contradiction. But this is in fact the case. Observe
that f0 implies Res(H,F); in fact, PI(fo) consists of those
monomes.of PI(H,F} which consist solely of X-variables or solely
of Y-variables. Since PI(v(fxg)) has no monomes which contain
both variables from X and variabies from Y, by Lemma 2.8 we know

that each monome in PI(H,F) which contains variables from both X




-92-

and Y may be eliminated from PI(H,F) without changing the function
defined by the formula F. Since the replacement of FO for L
eliminates exactly all such monomes, F and F“ define the same
function v(fxg). But since F” has at least one fewer v-gate

than F, this is a contradiction to the v-minimality of F.

00 Theorem 4.6.

Section>£;_gpen Questions

(1) There are several open questions listed in Table 1. Are
any solvable in general? If the class of functions is restricted
(e.g. to quadratic functions) are any'of the questions solvable?

(2) More generally, for arbitrary single-output m.b.f.'s f
and g; is |

MC(F(9(X).9(9),...,9())) = MCLF) + MC(g) 2
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CHAPTER 5
The Monotonic Circuit Comp]exity of Threshold Functions

One important class of Boolean functions is the set of symmetric
functions, those which are invariant under any permutation of their
inputs. Formally, a Boolean function féBn;m is symmetric iff
f(x].xz,...,xn) = f(x"(}),x"(z);..,,x"(n))~ forﬂevery“permutatioqv
= of the set [1:n]. One interesting fact about the symmetric
Boolean functions is that they are fairly easy to compute by a
circuit over a complete basis. The value .of any symmetric function
on an argument depends solely on the number of inputs which are}
set to 1. ‘Sincé it is possible to construct a linear-sized circuit
which counts the number of 1's in an input and outputs that number
written in binary,.it is possible to use ‘the output of such a
“unary to binary" converter to compute the value of the symmetric
function on the input. The best known general schemes for
computing s&mmetric functions in this way over the complete basis
B, reduire ~6n gates in all [Muller and Preparata 1975]*.

As for lower bounds on the complexity of symmetric functions,
Lemma 2.11 shows that any non-constant symietric Boolean function -

has complexity at least n-1 over B, since the function depends

t We remark that using a similar idea, oné a1so obtains a fairiy small

3057--.))

formula (size O(n for expressing any tﬁresho]d function

[Peterson 1978].
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on each of its inputs. Schnorr shows that all but 8 of the symmetric
functions of n variables have B, circuit complexity of at.least
2n-3 [{974]. Recently, Stockmeyér showéd‘that at least half of the
2"+], symmetric-Boolean functions of ' n variables have 82 circuit
complexity of at least 5n/2 - 5 [1978]. The latter result, along
with an argument of Paul which establishes a similar- 5n/2 - 0(1)
lower -bound on the complexity of specific. functions [1977], are the
largest known lower bounds on the B, -cfrcuit comﬁiexity'of any
single-output Boolean function other than bounds obtained by
diagonal arguments [Stockmeyer 1974]. * |

In this chapter, we consider the collection of monotone ’
symetric Boolean functions, the threshold funct%ons; - The main
object of study will be the monotone circuit complexity of these

functions. Recall the definition of the threshold functions.

Definition: Suppose k,neN. Define the Boclean function threshold
k of n variables, denoted TjeB , by Tﬂ(x,,...,xn)~='1 iff at
least k of the inputs XpoeeesX, are 1.

In particular, Tg is the constant function 1 for all values of

n, and T; is the constant function 0 for all. m:> n. ,Sidée

n . n
n -\ n_

¥ Recently,'Schnorr [1978b] has announced a 3n - lower bound
on the Bz-c1rcuit complexity of a function.
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these extremal threshold functions have circuit complexity over M

of n-1. By observing that

n - .
Tk(x'l.’-. -’xn) ""'I(T:_k+1 hx-l ;—|X?, .o ,—1Xn))

we know that TE and T:-k+4 are dua]s of each other, so that in

ng‘n_ Moy o n
general  Cg (Ty) = Cg (Tp_yaq ) and MT) = MC(T ) for

ke[0:n+1].

For circuits over B,, the best known results are the following.
The general uppar bound of 6n for the BZECircﬁit Complexity of
any symmetric function obviously applies fo'the threshold functions.
(This general bound can be improved upon fo;hsméil values of Kk.)

Stockmeyer's techniques show that Cg (Tz) 2 2n + min(k, n-k+1) - 3
2 .

for any ke[2:n-1].

In this chapter, we present new lower bounds for the monotone
circuit complexity of the thresho]d functions. For arbitrary threshold
functions, we develop a generai4theorem using an approach similar to

Stockmeyer, Paul, and others'which shows that
MC(TP) = 2n + 2 min(k, n-k+1) - 0(1)

for any ke[2:n-1]. In particular, for the "majority function"

TWE/Zj » We show that




MC(T"E/Z—Q 2 3n-7.

Using different techniques, we also study lower bounds on the
monotone complexities for the functionﬂ»T;: We presegt proofs of

two results due to F. F. YaoT, namely that

MC (T2)=2n-4 and MC, (T )= f'og’l

We then show that these 1owerfhound§ are not aehieveb]e\simulten-
eously by proving that, for n a'nnwer,of 2.Aany_mgn9tpne circuit
for Tgriwith exaetiy ﬁBg nl v-gates mustvhave at least
2n + 4 log n- 9 v-gates. |

Before proceeding to proofs of the lower bounds, we first make
some remarks on upper bound§ for. the M-circnit comp]exity of the
threshold functions. As of the present, no linear (in k and n)
upper bound exists on MC(Tk) for arbitrary thresho]d funct1ons
Hence the gap between the lower bounds mentioned above and the best
known circuits are d1sappointin91y large For fixed va]ues of Ky
L. Adleman has developed a scheme for construct1ng an M-c1rcu1t for

T: which has kn + o(n) gates. b

t _
Private communication, 1976.

T Private communication, 1976.
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In particular, he shows that
MC(T3) = 2n + O(/n)

and thus that the high order term of Yao s lower bound is exact+
Nhlle Adleman's method yields the best known c1rcu1ts for small
fixed values of n, a result due to A. Yao and F.F. Yao’on
building selection networks from comparators [Yao 1974] can be used

to show that, for fixed k,
MC(TE) < Mog k+1n + o(n).

Finally, if k is allowed to vary.with n (for example if k = h/2),
the smallest known M-circuit which .computes Tk has 0O(n 1092 n)
gates. This bound is obtained by using an M-circuit of this size

to sort the inputs in increasing order (Batcher in [Knuth 1973 pp.
111-1141) and then observing that Tq(x;s-..sx ) = 1 iff the ki
largest input is 1.

T We remark that in addition, Adleman (private commuhication,]Q?G)
has provéd a lower bound of 2n + q(vn) gates for any M-circuit
which computes T2’ has exactly Tlog n A-gates and is synchronous

(for definition, see fSavage 1976],p124).




Section A. The Class of all Threshold Functions

In this section we show that the genera] lower bound techniques
used by numerous researchers [Stockmeyer 197Z Paul 1972, Schnorr 1974,
Khasin 1970] for circuit comp]ex1ty can y1e1d a larger bound when
the basis of allowable gates is restr1cted to M The basic method
of attack is as f61Tows: To prove a 1ower bound on the comb1nat1ona1
complexity of a particular Boolean funct1on f, one attempts to
show that there is a set of variables {x l 1eA c [1:n]} and
corresponding constants (c | i€A, ¢ ie{O 1}) such that the restricted

function f |x. icA is a function whose complexity is
i : , R

= ¢ for

known to be bounded below by some quantity. If, in addition, one
can show that in any minimal B-circuit or formula which computes
f. the setting x; = c; for 1ie¢A allows one to eliminate (as in
Chapter 2) k gates because these gates now have at least one

constant input, we then know that

CB(f) 2k + CB(f in =c¢; for ieA )i
hence a lower bound on CB(f) can be obtained.. This is the gener-
al approach we take; in particular, a Tower bound on the resticted

function f |, will be known by induction.

=c1




Before describing the inductive hypotheses needed to prove our
result, we first informally describe the method. The largest
lower bound obtained from this method is for the majority function

TWE]?‘ . We will reduce an M-circuit N- for an.arbitrary threshold

function T: to one for TE:] by.setting the input x_ toa

n
=0 results in-a ctrcuit for Tﬁfl

n
ﬂ-]

while the setting x =1 results in a circuit for Tey - If

the constant can be chosen arbitrarily and still allow a large

.constant. The setting x

number of gates to be eliminated, then the constant will be
chosen so that k”~ 1is as close to ﬁhrl)/it .as possible.

Some notation will :be useful.

Definition: The parity function, piw- {0,1}, is defined by

1 if n 1is odd
p(n) =

0 if n is even

The partial function 2:NxN > N is defined by

2(n,k) = |n+1-2k| whenéver k<n.

The sign function, denoted Sign:Z » {0,1} is defined by

' 1 if x=20
Sign (x) =
0 if x<0.
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The function S is defined by S(n,k):= Sign{n+1-2k)
for n;ke NN ., L

Note that &{n,k) is a'measure of the proximity of k to  °
(n+1)/2.  Observe that - p(n~2(n,k)) = 1, and:that for fixed n,
the solutjon in N to the equation. 2{k,n) = r 15 non-existent -
unless r < nfl and p(n-r) = 1, in which case :k = (n+l-r}/2

and k = (n+l+r)/2 are the only solutions.

Definition: Suppose- that k,%eN ,.Lrs‘né3gwaad p{n-2) = 1.
Define Tn g = {threshold functions mTazl !4n§k)x= 2?. ’ ’

For completéness, we.define ‘T = @. if.2 > n-3

or p(n-2) = 0.

Define MC(n,&) = max{MC(f)Al feTh -

We observe that by the above note, if % < n;3 4and nQi,\is '
| n e el ‘
odd, then Tn,z = fr(n+]_z)/2. T(n+1+z)/2 } , and the two mgmbers of

Th liare duals of each others.

The prinicpal result we prove is tﬁé‘fdilowing:
5.1 Theorem: Suppose n,teN , p(n-2) =1, and. & sn-3 (so n 23).
Then MC(n,2) = 3n-max(2,1) -6 .
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Before proving Theorem 5.1, we observe the fellowing corollaries:

5.2 Corollary: Suppose n = 3. Then MC(Tnﬁja') 23n - 7.

n
Proof: T 2 Tap(n#l) . . O Corollary 5.2

5.3 Corollary: Suppose n 2 3 , ke[2:n-1], k # (n+1)/2. Then
MC(TE) > 2n + 2(min(k,n-k+1)) - 7.

Proof: Assume ke[2:n-1] and k # {n+1)/2. Since

n . ..
€

2(n,k) < n-3 and p(n-2(n,k)) = ];'we'have' Tk But then,

2(n,k)
since k # (n+1)/2, 2(n,k) = |n+1-2k| = max(n+1-2k, 2k-n-1) # 0

and thus Theorem 5.1 implies
MC(TR) 2 3n - 2(n,k) - 6

= 3n - max(n+1-2k, 2k-n-1) - 6

2n + 2min(k,n-k+1) - 7.

0" Corollary 5.3.

The property of classes Tﬁ , Which we will exploit is the

following:

5.4 Lemma: Suppose n,zebd, n 273, and 2 = n-3;‘qu ‘feTh 2° then
»>

there is a constant se{0,1} such that
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@ fly o eTqm if Lsns

and

) f|

Xn_=-1S‘E Tn_},ltgf[ Lo NS

Proqf: Suppose f= [k. P

satisfies the properties claimed by the lemma Ihis is proven by o

. We claim that s = S(n,k)

examining both of the possible members of T . For example, if

o N _
= Tint1-2)2 € T,

then S(n,e) = 1, so

" T

The other case is similar. O Lemma 5.4.

f Ixn =] n- -1 z)/ an-l,zfl

We wil]vuse.ene additional lemma which gives information about
the structure of Bz-c1rcuits ( or M-circuits) computing threshold

functions.

5.5 Lemma [Schnorr 1974]: Let @ be the basis B, or M, and let
N bea m1nima1 n-cxrcuit for Tk for n > 3 and  ke[2:n-1].

- Then there exists a gate GeGates(N) and 1nd1ces i,de[1:n] such
that
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(1) Pred(G) = {xi;xj}*
2) i¢3

and  (3) 6utde9 (xj) s 2t,

" Proof Sketch (For complete proof see [Schnorr 1974} or [Stockmeyer

1977]): Since N is an acyclic graph, one can clearly find a
node G and indices i and j satisfying property (1). Since

N is minimal, i # j. We now proQé'théf oﬁe‘of'ixiy and x5 must
have outdegree of at least 2. Suppose to the contrary that G is
the unique gate in ‘Succ(xi)USucc(kj), and suppose Res(G,N) =
g(xi,xj). Then two of the values g(0,0), g(0,1), and g(1,1)

must be equal since they are all members of {0,1} .

¥ Actually, Lemma 5.5 holds for any function feBn with- the property

that, for any pair of distinct inputs x, and x

i 3’

{f'lxi - o | gpscy 0,11 3] 2 3.

1
X; = ¢,
Such a function is said to satisfy the "2-3 property". Lower bounds

on the complexity of functions with this and more generalized

properties have been previously studied [Savage 1976].
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. N R
Consequently two of the functions - T, |x1 =0 Tkglxi‘= 0o

=0. . X, =1
X5 =0, X5
and Tk | =1 Must be equa].=:Sﬂncé‘theseﬂth¥ee functions:-are
=]
"j
dxstinct, this 1s a contrad1ct1on, so one of xi or xJ must have
outdegree at least 2 | - f' 0 ' Lemma 5.5.

We can now return to the proof of Theorem 5.1.

Proof of Theorem 5.1: The proof is,broken;duuﬁ‘tntb two

stages: »
(1) the result is first proven for £ = n-3 for all n
and

(i) the result is proven for & 's n-5 by induction on n, using
as basis part (i).

Part (1): Suppose & = n-3. In this case, L {TZ’ n- ]}

Lower bounds of 2n-3 on ch, and hence MC, for both of these
functions have been proven previously by Schnorr [1974]. This
proof is repeated in [Stockmeyer 1977]. In fact, the jower bound
of 2n-3 on MC(T,) follows from. Theorems 5.6 and 5.9, which

will be proven later in this chapter indepepdehxly of these results.

The lower bound on MC(Tg_l) follows by duality.
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Part (ii): Suppose that 2% < n-5, feTn L’ and N is a minimal
M-circuit which computes f.. We break the proof up into several

cases.

Case 1: There is an input Xy with outdeg (xi)‘z 3. See Figure

5.1.

Fig. 5.1 Case 1

W.1.0.9., by renumbering the input nodes of N we assume that

i =n. In this case, by Lemma 5.4, there is a constant se{0,1}
such that f = f Ixn = s € Tn-T,In-ll + Bysetting x.  to
-~s in N, all gates in Succ(xn,N) may -be .eliminated, so the
resulting contracted network N- has at least 3 fewer gates than

N. Hence MC(f) = CM(N) > CM(N’)‘+ 3

> MC(f) + 3.

If 2 >1, then f’eT 1° SO by induction

n-] ’Ra"
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MC(f") + 3 2 3(n-1) - max (2-1,1) - 6 + 3

3n - max(&-1,1) - 6

3n - max(2,1) - 6.

v

On the other hand,
if 2 =0, then f~eT

n-1,1° S0

v

MC(f”) + 3 = 3(n-1) - max(1,1) - 6 + 3

i}

3n-7 = 3n - max(2,1) ~ 6

This proves the result if Case 1 holds. Assume in the
remainder that Case 1 does not apply. Assume in addition that
xi,xj, and G are as in Lemma 5.5; w.l.0.g., we assume that J = n.
Since Case 1 does not apply, outdeg <Xn) = 2, SO we may let

Succ(xn) {G,H}.

Case 2: G s an a-gate, and H is an v-gate. See Figure 5.2.
In this case neither G nor H is the output gate since

Res(H,N) | _ 1 s constant while f lx -1 s not; similarly

n n

X
Res(G,N) | _ o f ]X = o- Hence we can assume that A and B

X
n n
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afe arbitrary members of Succ(G) and Succ(H) - respectively.

(Note that we are not assuming that A # B.) See Figure 5.3.

Fig. 5.3 Two Gates
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We claim that A # H; that is, H#Succ(G). If it were

(see Figure 5.4) then Res(H,N) = xnv(anxi) = X and the circuit

X.
1 Xn

Fig. 5.4 An Impossible Situation

N is not minimal. Since Pred(G) =\{X1’Xn} » G£Succ(H) and thus
the gate(s) A and B are distinct from G and H. (In fact A # B
but we do not need this).

By Lemma 5.4, there is some constant s such that the restriction

= | . .
f f ’xn = g € T"‘]alﬂ-1|' By setting o to —s in N, one

of G or H now computes the constant function —s, and hence at
least one input to either A or B .is now constant. Hence the
resulting network N- , which computes f*, can have at least 3 gates
(G, H, and one of A or B) eliminated from it. As in Case 1, this

implies that MC(f) = 3n - max(2,1) - 6.

Case 3: G 1is an v-gate, and H 1is an Aa-gate.

This case is handled similarly to Case 2.



-109-

Case 4: Both G and H are A-gates. See Figure 5.5 .

Fig. 5.5 Case 4

In this case, the objective will be to show that by setting
Xn to the constant 0, at least 4 gates can be eliminated from N.

T

Observe that by Lemma 54, f |, n_],2+]‘u'Th_]’|2_]|-

- €
n 0
As in Case 2, it is clear that neither G nor ‘H fis the

' output gate since f |x =0 is not a constant function. Hence
n

outdeg (G) > 1 and outdeg (H) = 1. Also H{Succ(G) since if
this were so then Res(H,N) = an(anxi) = XA (see Figure 5.6).
But this means that two gates, G and H, compute the same function
anxi, é situation that never happens in a minimal circuit. In a
similar fashion, it is possible to show that G#Succ(H).

We now Show that there are at least 2 gates in Succ(G) u Succ(H).

Suppose to the contrary that there is only 1 gate A in
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: )

Fig. 5.6 Another Impossible Situation

Succ(G) u Succ(H). See Figure 5.7. Let Pred(H) = {xn,J_}, and
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suppose that A 1is an op-gate, where ope{a,v}. By using the .

identity (for any m.b.f. f)

(anxi) op (x,af) = X A (xi op f)u

we may obtain a smaller circuit by replacing the subcircuit in

Figure 5.7 by the following one with one fewer gate (Figure 5.8);

Fig. 5.8 The Rearréngement

that is, eliminate gates G, H, and A; add gates B and € as
above and replace A by © 1in Pred(K) for every gate K in
Succ(A,N). Thus, if N were minimal, there are at least two gates
in Succ(G) u Succ(H) (see Figure 5.9).

We now are in a position to show that at least 4 gates may Be
eliminated by setting X, = 0. Let N”° be the circuit obtained
by this evaluation, and note that ReS(G,N?) = Res(H,N”) = 0.

Hence all gates in Succ(G) u Succ(H) have at least one input
constant. Since this is at least 2 gates in addition to G and

H, this means that at least 4 gates in N~ have a constant input
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and may be eliminated, yielding a reduced circait - N--.

Fig. 5.9 “Two More Gates

Finally, we show that this e]iminagion'of 4 gates yields the

desired result. As mentioned f~ = f |x =0 € Thet.g41 Y Tn-lilk-ll .
. : ‘ n- ‘ ’

Since N°“ computes . f°, we obtain

MC(f)

EM(N) >4 + cM(N*')

4 + MC(f‘)

v

-2 4 + min(MC(n-1,2+1), MC(n-1,]2-1])

(since €T, | g v T'-l.ll-Tl)
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> 4 + min(3(n-1) - max(2+1,1)-6, 3(n-1) - max(]2-1],1)-6)
(by induction)

= 4 + 3(n-1) - max(2+1,|2-1],7) - 6
= 3n-2-6 > 3n - hax(i,l) -6

and the proof is complete for Case 4,

Case 5: Both G and H are v-gates.
This case is handled dually to Case 4.

0 Theorem 5.1

Section B. The Monotone Circuit Complexity of Threshold 2

We now consider a specific set of threshold functions, Tg

for n 2 2, and demonstrate some known lower bounds on the monotone
circuit complexity for this set of functions. We first obtain

Tower bounds on the number of v-gates and A-gates separately.

The general technique used in previous sections of setting

certain inputs to constants and eliminating gates will be used here
as well. For the specific function T2 we will be abte not only to

establish that a certain number of gates can be eliminated, but also
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to determine what types of gates can be eliminated.

5.6. Theorem: (F.F. Yaa): If n=.2. thene.mv(qgo 2 2n-4.

_ Proof' (Bloniarz): By inductiomon ‘N. The édse'n = 2 is

obvious. , e s _

For larger values of n, we use én a;guﬁeﬁt éiﬁi]ar to that
used previously. Assume the statement ot%the,thﬁgﬁemntrug.fpr -1,
and suppose N 1is an M-circuit cdmﬁutiné‘}Tg (x{;;..,xnj‘ Qith o
exactly the minimal numberv‘Mcngg)i dffivﬁgéﬁéstrf%§§ume'$UPtheF
that, N has the minimal total number of gates among all such
circu{ts-with MCV(Tg) v-gates. We show there is some variable,
which by symmetry we assume is Xps such that setting X to O
results in a circuit from which at least two v-gates may be elin-
ated. If the reéulting contracted éircu%i is 1N‘;A“£hén N; o

computés Tg'l(x],.;.,XB_]),f’and;we7obt%i%"the inequality

e, (T0) = M, (0) 2 M) + 2

zTMCv(T;%T) +2 (since N° computes

and the inductive. assumption compleies the proof.
We use Lemma 5.5 to establish thefrgsu]t;{wgl.q.g._we;maylassume

-that there is a gate G in N and inputs X and X, to N
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such that i # n, Pred(G) = {xi,xn} and'outdeg‘(xn) > 2. See
Figure 5.10. Clearly by setting X0 to 0 atrleast fwo‘gates may
be eliminated. We prove that at least two of thése gates are

v-gates, but first introduce some useful notation.

Suppose that G and H are nodes of N. Recall that a path from
G to H is a sequence of nodes GO!GI""’Gk (for k 2 0). of

N such that G, = G, G

0 Gy, = H and Gi+]eSucc(Gi) for ie[0:k-1] .
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Definition: An a-chain from G to H is a path G .»G

0’ """k

such that Gi is an  a-gate for all ie[1:k]. That is, an
A-chain is a path in the graph of N all of whose nodes, except
possibly the first, are a-gates. Note that a path consisting of a

single node is an a-chain regardless of the type of node.

Define

T(G,N) {HeSucc*(G,N) | there is an a-chain from G to H}

and

V(G,N) = {HeSucc*(G,N) | H is an v-gate and
Pred(H) n T(G) # @} .

(where again we omit mention of N if there is no ambiguity).
The importance of these definitions is as follows.

5.7 Lemma: Suppose N is an arbitrary M-circuit, and G and H
are nodes in N. Suppose further that Res(G,N) = 0. Then
(a) If HeT(G), Res(H,N) = 0;
(b) If HeV(G), then H has at least one constant input
and may be eliminated from N;
and

(c) If HcSucc*(G) and Res(H,N) # C, then every path from

G to H contains a node in V(G).
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Proof: (a) and (b) are obvious. "To prové‘(c),'suppose
Res(H,N) #.0. Then, by (a),.fhere 1s no" a-chain ffbm G to H.
Thus every path. from G to. H contains at least one v-gate, and
the first such is easily seen.to be a member of V(G).

'O Lemma 5.7.

-'?We'pfoceEd with the proof of Theorem 5.6. SUppose U is the
" output gate of N, and let N be the éifcuit“bbtained‘when the
constant Q_iS”substéﬁuted for ‘xn;"‘EiCLéﬁﬁa 5.765); this sefting
X =0 allows us to eliminate all tﬁé7}§—géteéiiﬁ' V(xn,N)‘ f}om |
N*s if |V(Xh,N5|'z 2, théh‘thé“prﬁbfiié cOmprtef. ?we'therefdre‘
need consider only { V{xnﬂ <2, N

n

Because Ts depends on x_, we know that UeSuCc*(xn,N).

n
Since Res(U,N”) is not the constant function 0, we know that

there is at least:one.gate in -¥(x ) "by Lemm 5 €Y.

T Note that T and V are defined in terms of the structural
properties of the circuit; in fact }V(xn,N) = V(ZERO,N'), and
T(xn,N) = T(ZERO,N"). We refer tc these sets of gates as V(xb)

and T(Xn) respectively.
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‘So we may assume tbat V(xn)' contains exactly one gate H.
Note thét UeSucc*(H;N) since N was an v-m&hinal\circuit for
Tg. Suppose that Res(H,N”) = 0. Again-usifig Lemma 5.7(c), we
know that V(H,N°) # §. .Since the graph of N :is acyclic, it is
impossible for H to be a member of V(H), so |{H}wW(H)| = 2. By
Lemma 5.7(b), all nodes in {H}uV(H) may be eliminated from N-,
constituting at least two v-gates. |

We may conclude the proof by demonstrating that the remaining
case, namely whén_ Vix,) = £H} and _Resiﬂgui);Jgél,vcannogjjbappen.
Since VH is a gate, we may assume thatj,Prgg(ﬂ)gi;{I.J}, (where. .
it is possible that G fsAone of .,i‘,_;J,_}i Qxﬁgﬂl,>‘§ince,,HéV(xn), ‘
at leas; one. of I or ‘J' must be 1n=1T(¥n); weiassuqerw.l.o.g‘ that
IeT(xn). The steps of the proof that:;hjsicépe ganpg;‘léggerare
embodied in the‘followingvlgmmq,

5.8 Lemma: Suppose G, H, I, and J are as above. Then
(a) Every path from X, to U 1in N must pass through H;
- (b) J does not depend structurally on Xn in N;
(c) G is an A-gate;
and |

(d) IeT(x,).

Proof of Lemma: Result (a) follows from the fact that

Res(U,N") # 0. By Lemma 5.7(c), we then know that every path from
ZERO to U in N” must pass through H; that is, every path from
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Xn to U in N must pass through H.
Since IeT(x ), we know ‘Res(I,N°) = 0 by Lemma 5.7(a).
Hence Res(J,N“) # O since Res{I,N”)vRes(J,N°) = Res(H,N*) # 0.
Thus by Lemma 5.7(c), any path from x, to J would contain H, g
the unique gate in ,V(xn); Since JePred(H) by definition, and
N. is acyclic, we conclude that thére'is no path from Xn to J.
Hence (b) is established.
If G were an v-gate,.then G would be equal to H and
_ there‘wou]d be exactly one path consisting of a single arc from
X Fo H. Since outdeg (xn) 2z 2, there is a gate G” # G in
Succ(xn). Since there is a path from G- to U in N-, there
must be a path from G* to H in N. Since both membérs of ‘
Pred(G,N) are input nodes, this is impossible,. so (c) is established.
Finally, since G is an a-gate, v(6) ¢ V(xn). By Lemma 5.7(c),
we know that V(G) # @ since there is a chain from G to U in
N- and since Res(G,N“) = 0. Hence HeV(G), sd by definition at
least one of I or J ‘is a member of T(G). If JeT(G), then
JeT(xn) in contradiction to Lemma 5.8(b); hence I<T(G). Since
T(G) ¢ T(xj), the proof of (d) is complete.
o o 0 Lema 5.8.

Now let N-- be the circuit obtained from N (not N-) by
setting x, to 0. Res(U,N""), being the threshold 2 function of
the remaining n-1 variables {x],...,xn} - {xi}, depends on X

By Lemna 2.9, we know that there is a path € in N°* from X0
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to U such that every gate in C .depends: functionally on X
Since H 1is on every path from x. to Y in-N Dby Lemma 5.8(a),
it must appear on.gvery path in N--  and hence on' €. Thus -
Res(H,N-“)  depends on X, - in N-7,

However, by Lemmas 5.7(a) and 5.8(4), Res{I;N-*) = 0 so
Res(I,N°“) does not depend,fgactionallyién~*xn:*5ESfmiiéf1y,“by’
Lemma 5.8(b), J cannot- depend functiona11y>0n‘fxﬁ—7fnf N, and -~
hence in N°°, so EeS(JgM‘:)fdoesanot»dépeud:ﬁnﬁctfénaleton, kﬁ.
Thus Res(H,N””) does not depend on 'xﬁ;fa*centﬁééicfﬁon}

- O'Theoren 5.6.

We can also get a lower bound on the number of A-gates in
any M-circuit which computes ,Tg.» Here the technique used is
similar, but we must set more than one input to a constant to

eliminate a single A-gate.
5.9 Theorem: (F.F. Yao): Suppose nz1. Then MCA(Tg) > -ﬁbgz n.

Proof: We prove this faétvby strong induction on n. For
n=1 the result is trivial.
Now suppoSe n 22 and the statement of the theorem is true

for all n” < n. Suppose N is. an .A-minimal M<circuit which '
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~ computes Tg. Since n =22 and since xiéPI(Tg)t fori,any index
ie[1:n], N must contain at least one a-gate. Let S be a_
top-most X—gate in N; that is, G 1is an A-gate‘such that every
gate in Pred+(G) is not an a-gate. C1eaf1y such a gate exists

since N 1is acyclic. Suppose Pred{(G) = {H,J}. See Figure 5.11.

Fig. 5.11 A Top-most a-Gate
Since G 1is a top-most a-gate, all gates in Pred+(G) are
either v-gates or inputs. Hence Res(H,N) = i\é:Axi“and

Res(J,N) = {!Exi for some non-empty subsets A and B of [1:n].
Observe that

 Res(GN) = (3 Xg X)) A (X (xyaxy)) (1)
: jeB-A

Let C denote the smaller of the sets A-B and B-A and let ¢
denote |C|. Then one can easily check that ¢ < n/2. By renum-
bering the inbuts, we may assume w.1.0.g. that C =N[n-p+1:n].

Let N” denote the circuit which results when the entire set

of variables {x; | ieC} 1is set to 0. Note that N - computes the
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function T'z‘ Ixi = 0 for ieC ° T'ZH,: . By (1) ~we know that

Res(6:N") = ; X ox,

'I(le now vm._odAify, N° to eliminate gate G. Construct a new
treie,, of v-gates and input nodes which computes the function:
ie\A/ani at a gate G- Eliminate G from N, and replace G
by G~ in Pred(K) for all} gates KeSucc,CG,,N ). (If G were
the output gate of N, then 6 »\'rliJ] now b’e the output gate )

Call the resulting circuit N--. anae\ G has been rep]aced in
N°“ by a node which computes the sa.me func ion, N-°° also computes
T'z' €. Since N°* has one fewer . A-gate than N and since N
had a minimal number of A-gates compuhng T2, we know that N-~

does not-compute Tg and thus c¢ 2 ] Hence

MC,(T7) = MC (N) =1 + 'M'EA(N»")'

v

T+ M, (1)

1 + log(n-¢) (by induction)

v

1+ log(n/Z) (smce c < n/2)

- N

109(n)
and the_theorem is proved. :

0 Theorem 5.9.
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In preparation for future results in the chapter, we note the
following additional facts gleaned from the proof of Theorem 5.9.
Suppose n is an exact power of 2, and N is an M-circuit for
Tg with exactly log n a-gates (which we later show-is possible).

If G is a top-most a-gate of N, then if ¢ (as defined in the
proof of Theorem 5.9) is less than n/2, the setting of the variables
{xi | ieC} to O leaves a circuit N for a function Tg'. where

n“> n/2, which has 1 fewer a-gate than N. But this is impossible

since then
log n = ME(N)
2 MG(N‘) + ]

2 Togn” +1

Tog (2n°)

logn .

v

Hence we have proved

5.10 Corollary: Suppose that n = 2" for reN ,'and that N is

an M-circuit for Tg with exactly log n a-gates. If G is a
top-most- A-gate of N and Pfed(G) = {H,J}, then there is a
partition of [1:n] into two sets A and B such that

= = f = V ’ - - V .
[A] = [B] = n/2 and such that Res(H) jopX; and Res(J) jeBY5*
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We proceed with our discussion of Tg' by demonstrating that
each of these lower bounds is attainable in some M-circuit comput-
ing Tg.

An M-circuit.with exactly 2n-4 v-gates fbr»~T2*'(for n 2))b
is ebtained?by use of the following reéursive constriictions. We:
will show inductively that, for. n 22, theré is a two-output
M-circuit on inputs '(x],...,xn} containing 2n-3 v-gates
which computes Tg(xl,.;.,xn) and fT?(x],..;:Xﬁ}{ :»For"'n =2,

the circuit is given in Figure 5.12.

Fig. 5.12 A circuit for n=2

Assuming the fact true for n, we may construct such a circuit

for n+l variables with 2 additional v-gates (and an. a-gate)
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by use of the recurrence relations .

) n
T’2‘+](x1l ,ng...,Xn,Xn_ﬂ) = le‘l(x-l,---‘,xn) v (xn+'l A ‘T]A(x"""

and

n+l _ n
T'I (X],.--,Xn,xn_H) = Xn+] v T](X],...,Xn).

See Figure 5.13.

n+l
+ T]

Fig. 5.13 The Recursive Construction .

2X )
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A circuit for T'Z‘ w{th exactly 2n-4 v-gates may be thus
obtained since at the last step in this construction of T2. there

is no need for the v-gate marked by * in Figure 5.13.

2) 2n-4.

5.11 Corollary: For n =22, MC (T

As for exhibiting an M-circuit for '-'2‘ with exactly !Togr?

A-gates, we first describe a general method for. such a construction
which was communicated to'the author by F.F. Yao and A. Yao. For
the remainder of this chapter it will be convenient to have the

variable indlices,: begin with 0 rather 1. (oo

Definition: Suppose 2N . For 0 s ¢ s 28’ and 1 < j < &, define

.th

(1); to be the j“' digit in the binary expansion of 1, that is,

1 if idmod 29) 2 2370,
oyl
0. othg,mise.

Suppese nelN . Defihé for each je[1: Mog (n)—‘il}ﬁfﬂ\e following
subsets of the variables {x; | ie[O:n'-]]}. T |

N _ e | ; 4 (3} =
n_ . o
and BJ. = {x; | 1e[0:n-1] and (1):] 1}
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Define corresponding Boolean functions aJ, bgeBn by -

n =V
aj(x ,...,xn_]) R

J
n -V
and bj(xo. ,xn_]) 1€’Bjx,i -

(We .omit mention of n if it is clear from context.) Finally, the

s ) n -
radix-join function F eBn’ 2 og W {5 defined by

n ~ X
= (12 by 2, bpseevs 2ffog e D ljgg 7 )

An M-circuit which computes F" is called a radix-join network.

It is easy to see the relationship between the radix-join
function and the function "Threshold 2." In fact, with the
definition given above. o

flog o

n ' ’
= Vv .. .).
T2 g (aJ A bJ) (2)

To prove (2), note that the sets of variables A. and Bj are

d1sao1nt for each Je[1:Mog n']. Hence, 1ett1ng h be the
function defined by the right hand side of (2), we know that h < T2'
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Conversely, for any pair of variables Xy -and xz; “with k # 2,
there is some position j» at which the binary representation of

k and & differ. Hencev‘xkxthi(aijj); 59 XX, h. This fact
being true for every k # ¢ in [0:n-1], we know that Tg < h.

See Figure 5.14.

X X *n-1

RADIX-JOIN

Fig. 5.14 An M-circuit for Tg '

Applying the decomposition (2) to complexities, we have the

following:
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5.12 Lemma: Suppose neN , and F" s the radix-join function.

Then
v .MC(Tg) < MC(F") + 2 flog il -1
and HCA(T'Z') < MCA(F“) + fog 1

Since. F" {s defined only in terms of v-gates, MCA(F") = 0;

hence we have:

5.13 Corollary: For n 21, MCA(Tg) = ﬁbg,E‘,

From the formula-definition of the radix-join function one can
c]eariy construct a radix-join network with 0(n log n) v-gates.
A straightforward recursive constructionlyfeIds a rad1x¥jdin network
with 3n - 2 log n - 4 v-gates, yielding an M-circuit for Tg
using Lemma 5.12 with a total of 3n-5 ‘gates. Several substan- .
tially different M-circuits for Tg"with this size'can be constructed, including
the circuit in Corollary 5.11. L. Adleman proved that asymptotically

fewer than 3n-5 gates are necessar:y+ » and usingNhis.tébhniQUes

T Personal communication, 1976
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one can prove the fbl]owingz

5.14 Theorem: Suppose nelN . Then

Cyy(F') s 2m +.0(vh).

Proof: Suppose n>4 and let 2 = ;EQQ;EL Let?*n1 =.2l&[§'
and n, = h/nl . We will use the following recursive expansion
to construct an efficient radix-join network for n variables. Let

X denote the set of variables {x;"| ie[0:n-1]1.
Suppose that p€[0:n1¥1] and -qétO:nz-l]. Define subsets
of the variables X forsuch p and gq by' Ly = {x, | ie[0:n-1],

P

i (mod ny) = p} and Hé = {xy | 1e[0:n-1], i/ny_ =.q}. Informally

if all variables are thought to have indices whose binary represen-
tation is padded to Tength exactly 2, then Ls - is the set of
variables which have a binary index whose lower order &/ bits
are ggua] to the binafy representation.of p. ,Sini}arly,,H& i;
the set of variables whose binary index has a high order /2

bits ‘equal to the binary represehtation of q. We have correspond-

ing functions L_ and H  in B“‘ where L_ 1is the disjunction

P q p

of all variables in Lﬁ' and Hq is the disjunction of all vari-

ables in Ha. Note that each variab}e xiex“iS»&,member'of_exactly

one of the sets {La | pe[o:n]-ll}, namely the unique p such
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that i (mod n]) = p. Similarly, it is-easy to verify that the

collection HO’HI""’Hn .1 Is a partition of t!2 set X and that

xiqu where q = ﬂ/n]_p Moreover,.none~of the sets .Hq is empty
for qe[O:nz-l] since q'ny < nyny- ny < andv'xq.n]qu.
We claim that -the relationship
n n ' Ny
= 1
F' = (F (LO,L],...,Ln]_]), F “(H ,...,an__-l)) (3)

holds, where we use the obvious 1isomorphism between {0,1}22and
10,1124%/2) 0,1,2(%/2)

Assuming this for the moment, we describe an efficient radix-
join network using (3). Using the definitions of Hp and Lq,'
we construct an independent {v} - circuit (which happens to be

fan-out free and is thus a formula) for éach of the functions

LgsLys++-sl, _y and the functions HO’HT""’H ; - To count

1 N2~
the number of v-gates which this takes, suppose Itbl = zp for

pe[O:n]-]]. Then, since Lp is a disjunction of single variables,
C{v}(Lp) = zp- 1 since 2p # 0.for each p. Hence, the total number of

v-gates required to compute all the functions LgsLyseeealy g s

1

pZ[O:n]-]](zp-]) - (pZ[O:n]-l] Lp) ) n]

=n-n
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since each -xiex is a member of exactly one-of the sets: tﬁ for some

pe[O:n]-]]. Similarly, ene can compute all the functions H

q
for qe[O:nz-l] with a total of n - nze*v-ggtes;;givfng:a?totgl

of 2n - Ny - Ny gates in all. H
We now use the n, functions LP‘ fqr»ﬂpe[Q:n171]rjas,inputs
t LR DL SV N n 23 : : .
to a recursively constructed radix-join network F 1, and likewise

the n, functions H for .éeEGInzgtl ~as}inpu€§'f6 a fécursively

_ q
constructed radix-join network Fnz. Using equation (3), this yields

a circuit for F", (See Figure 5.15.)

TREES OF v-GATES

R e , e
L e U DR ESTNE B

I

CrapIX | ] RADIX
JOIN JOIN
L =T

Fig. 5.15 The Recursive Radix-join Network
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If we let T(n) = C{v}(F"), then we have the fggurrence rela-

tionship

T(n) < 2n - ny-n,t T(n]) + T(nz).

Since ny < /Zn and n, < /2n and since T(4) =4, this recur-

rence can be bounded by

T(n) < 2n +4(n/2)1/% + 8(np2) /% + 16(n/2)!/8 P,
Y
(l0g Tog (a/2)  terms )

log lczvg (n/2)

4
< 2n + gkt ‘(‘n/Z)V2

k =1

which establishes the theorem since thé suﬁmation is 0(vn).
N n o .n .n
J J’

It remains to prove equation'(3). Supp§§¢ fhat‘ A
and bg are as in the definition of F". Suppose that is wa.

, Bg, a

r}: . i}. = = U“I'V”' = i . =
Then Ay = 1% | (1)J 0} (p) éOLp since (‘)jr 0 iff (p)J 0

. = n =‘ \/ L. : . ’
where 1 (mod ny) = p . Hence a3 (ii;;o 1?350-1ag "is the cor-
; ; _ ) )
responding component ag] of F ](LO"i”Ln _]). Similarly b;
B |
n n
1 1 1
is the component bj of F (Lo’ff”Lnﬁvl)’~“

A similar proof demonstrates that when | @jgi< J =, ag is
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n n :
2 . 2tu. n
the component a ¢ /2 ,df F (Ho....,an_‘) and bj is the

n
2
component bj_ %/2 .
O Theorem 5.14,

Applying Lemma 5.12, we have

5.15 Corollary: (Adleman) Suppose ne ™ . Then

MC(TD) s 2n + O(+h). |

We will have more to say about this method in Section D.

Section C - M-circuits for Threshold 2 which are a-minimal

In the previous section, we demonstrated lower bounds of 2n-4
and Fegz n' on the number of v-gates and A-gates respect1ve1y
neeessary to compute Tg by an M-c1rcu1t, and demonstrated c1rcu1ts
which achieved each of these bounds The quest1on natura]]y arises
of whether there is a 51ng1e M-c1rcuit wh1ch Computes T2 and
which simultaneously achieves this nnnimum number of A-gates and
V-gates and in this sect1on we show this is impossible for infinitely
many values of n. Our-technique will be tosestab11sh larger bounds
on the number of v.-gates necessary to compute T2 (for n a

power of 2) for any M-circuit whjch.has exactly log n a-gates.
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We begin by examining the structure of such circuits with
exactly 1§g n a-gates. In Section B, we saw that such a circuit
may be constructed from a radix-join netwerk. In this section, we
will show that it is possible to extract a radix-join network from
any M-circuit for Tg with ekactly log n a-gates. For now, we
assume that n = 2" is an exact power of 2 (for some r > 2), and
that N is an M-circuit which computes 1, has exactly r a-gates,

and among all such circuits has a minimal numbert ofi v-gates.

5.16-Thgorem: Suppose n,N, and t are as above. Then an
M-circuit Rn exists which computes F", the radix-jpihlfunction,

and which has t - logn+ 1 v-gates and no A-gates.

Proof: We show how to extract Rn from N. We first show:
that there is a restructuring N0 of N which also computes Tg
in which there is only a single a-gate on any path from an input
node to the output gate - that is, there are no a-gates “in
Pred+(G,N0) gSucc+(G,No) for any a-gate G. Call sq;h a circuit
a single-level circuit. Moreover, we show that it is)possib1e to
constru.ct;kN0 with no additional a-gates or v-gates.

Suppoée that N does not have this property, and let U
denote the (Uniqué) output gate of N. Let G be a top-most
a-gate in N which has at least one a-gate below it; that is,

Pred+(G,N) contains no aA-gates and Succ+(G;N) contains at
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at least one a-gate. Observe that G # U by definition since
Succ+(U,N) = §. We show how to re-wire.the circuit so that G is
no longer on a path with.any other a-gate.

o We first construct a circuit N-. s follows. Add an additional
v-gate U°, apd set »PredéUf,N’)_s\es,U};'fInaaddition -5 for

every gate HeSucc{G,N), replace"e, in Preé(H]tby thevconst;nt .
node ZERO. See Figure 5.16.

Fig. 5.16 The ReCOnstrhctjén'"

Then simplify this circuit to yield a third civcuit N-- by

simplifying any gates with at least one input a constant function.
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Since outdeg (G,N) = 1, this removes fram N- a}l gates in
V(ZERO,N“) (as defined in Section 58) and hence at least 1 v-gate,
so N- has at most t v-gates and at most r a-gates.

We claim that Res(U”,N”*) ='Tg, and hence N“7 has exactly
t v-gates and r a-gates. (Note that Res(U”,N-) = Res(U”,N"})).
To prove this, assume that & = (c3Cps.uenc,) s an arbitrary

constant in {0,1}". We show that
Res(U”,N") () = To(2).

Since N had 1log n A-gatés, by Corollary 5.10 we know that
there are subsets A and B of fO:n¥1] such that AnB = @ and

Res(G,N) = i\e/Ax
JeB

i* Hence .Res(G,N)'s Tg. Thus, in the case
that Tg(é) = 0, we know Res(G,N)(¢) = 0. In thi$ cﬁse it is

easy to prove by induction on Tength of paths thét’

Res(K,N) (<) = Res(K,N‘)(E)‘ for every keNodes(N).,AHencg
Res(6,N°)(8) v Res{U,N*)(3) = 0, and thus Res(U‘,N‘)(—;') =0. On the
other hand, suppose Res(U”,N”)(%) - 0. Then ,Res(U,N;)(E) =
Res(G;N‘)(E) = 0‘ so Res(G,N)(Z) = 0 since N and N° are
identical on the predecessors of G. Thus, it is again easy to
verify by induction that Res(K,N)(E} = Res(K,N“)(¢) for every node

KeNodes(N), so Res(U,N)(Z) = 0. Hence
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(Res(U,N)(E) = 0) = (Res(u-,N*)(Z) = 0)

so T) = Res(U,N) = Res(U*,N-).

The effect of th1s rew1r1ng 1s to remove G from any path
which has more than 1 a-gate on it. Since the transformation
decreases the number of a- gates with a-gate successors* by recur-
sively repeating this process for top-1eve1 a-gates with a-gates
below them, the result is a s1ngle-1eve1 M-c1rcu1t for T2 with
r A-gates and t v- gates. Call this modified circuit N0 We
remark in passing that every path from an input to the output in
Ny must have exactly one A-gate.on iﬁ since PI(T;) contains no

single variables.

We can now extract the radix;join network from NO.A let U

denote the output gate of Ny, Tlet G = {G .»6,.} denote

1° 2’
the set of (1ncomparab1e) a-gates in NO’ and let Pred(si) {I ,J }
for all ie[1:r]. See Figure 5.17. There 1s a gate in G on every

path from INPUTS(N) to U. Since N0 is minimal, there is a path |
from each node of G to UL Since there are’eﬁ]y v-gates on any
path from G to U, we know that Res(U) = Res(G) Moreover,

since N0 contained a minimal number t of v—gates s ‘we know that

t :
Observe that for arbitrary nodes A and B of N , if A
is a member of Succ*(B,N"). then A was a eember of Succ*(B,N’).
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the portion of the circuit between the a-gates G and the output
U consists of a tree of Vegaies. Thus there are r-1 v-gates

H = {Hs...;H. 1} (one of which is U) below G in the circuit.

Fig. 5.17 The Circuit N1

Fix je[1:r] and let ie[0:n-1]. By Corollary 5.10, sfnce N0
has r = log n a-gates, we know that there is a partition of the
input variables X = {xk | ke [0:n-1]} into two sets A and B

such that Res(Ij) is the disjunction of all variables in A and
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Res(Jj) is the disjunction of all variables in B. Hence,

since the circuit of the predecessors of G consists entirely of
v-gates, there is a path from the particular variable X; to exactly
one of I, and J..
J J
Moreover, suppose that X, and X, are two distinct variables

. n . n. \/
of X. Since x.x ePI(Tz), and since T2 G.sGGj’ there must be

17k
some gate Gj such that xixkePI(Gj). Hence there is either a
path from X; to Ij and a path from Xy to Jj or vice versa.

With these observations, we may renumber the inputs as follows:
If E 1is an input node to NO’ we label E by X5 where we

define the index 1e[0:n-1] for E bitwise by defining

J

(1), =

1 if there is a path from E to I. in NO
J {

0 if there is a path from E to Qj in N0
for each je[T:r]. By the above observations, it is easy to verify
that, since n = Zr, each input node gets labelled with a variable
from {xi | ie[0:n-11} . Moreover, each input node gets labelled
with a distinct variable since two distinct input nodes must have
paths to different predecessors of one of the a-gates Gj' We
assume w.1l.0.g. that this is the numbering of the inputs since T;
is a symmetric function.

Now let Rn be the circuit obtained from NO by deleting the
sets of gates G {(all the a-gates of NO) and #i {r-1 v-gates).

Since Rn is an {v}-circuit, we know that, for any gate D 1in Rn’
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N %* ) :
[xiePI(D)] « [DeSuce (xi)]. Hence, if the radix-join function 3k
has components (a],b1,az,bz...,ar,br),athen; for each je[1:r],
aj = Res(Jj,Rn) and bj = Res(lj,Rn). Hence Rn is a radix-join
network for n-variables.
Since Rn contains t - r + 1 v-gates, the theorem is proved.

[} Theorem 5.16.

Armed with this theorem, we proceed to obtain{bouhds on the
number of v-gates needed to compute the radix-sert function in

{v}-circuits. We first prove a general lemma about {v}-circuits.

Defintion: Suppose N 1is an M-circuit. Define the center of N,
denoted Zy,by Z = {GeGates(N) | Res(G,N) =0 }. Note that
ZN = @ unless outdeg(ZERQ) = 1.

5.17 Lemma: Suppose N is a {v}-¢ircuit with inputs {x;s%,,...x}
for which outdeg(ZERO,N) = 0 , and some subset A of inputs to
N is set to O, yielding a circuit N”. Then it is possible to

"remove from N~“ at least

T outdeg(I,N) + ] (outdeg(G) - 1)
IeA GeZNf

v-gates in Succ+(A,N).
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Proof: Recall that the operation "setting a variable x to
0" in a circuit involves replacing x by ZERO 1in the predecessors

of all gates in Succ(x). Hence outdeg(ZERO,N”) = } outdeg(I,N)
IeA

and it suffices to show that at least

outdeg(ZERO,N-) + §  (outdeg(G) - 1) (4)
GeZ,,.
N
v-gates in Succ+(ZERO,N’) may be removed from N” . We prove

this by induction on izl

If ZN’ = @, then every gate in S = Succ(ZERO,N”) may be
eliminated from N~ since each gate in S has at least one input
constant. If [S| < outdeg(ZERO,N"), then by the pigeon-hole
principle there must be some gate GeS with both nodes in Fred(G,N")
being the node ZERO. But then GgZN,, which is a contradiction.
Hence, at least outdeg(ZERO,N”) gates may be eliminated.

Now assume that IZN,I = k > 0, and that (4) is true for all
{v}-circuits with centers of size k-1. Let G, be a member of

0
I(ZN,), the set of initial gates of Zy-» and suppose Pred(G) = {J,K}.

See Figure 5.18. Since Res(GO,N’) = 0 and G0 is an v-gate,

we must have Res(J,N”) = Res(K,N”) = 0 by Lemma 2.1. Since J

and K are not members of ZN’ {(by definition of GO), it must be

the case that J = K = ZERO. See Figure 5.19.
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Fig. 5.18 Gye I(Zy)

ZERO

We construct a new circuit N from N~ by eliminating gate

GO’ and replacing GO by ZERO in Pred(H) fcr every gate
HeSucc(G

0,N’). For every node LeNodes(N), we know that
Res(L,N") = Res(L,ﬁ) since GO was replaced by a node which
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computes the same function. Furthermore, IZNI = |Zy-1- 1

(since GO was removed from the circuit); outdeg(G,ﬁ) = outdeg(G,N*)

for every gate GeZz; and outdeg(ZERQ,N) =

outdeg(ZERO,N") - 2 + outdeg(GO,N’). Thus, by induction, it is
possible to remove from N at least an additional
outdeg(ZERO,N) + I (outdeg(G,N) - 1) =

GG‘ZN

outdeg(ZERO,N") +[ §  (outdeg(G,N") - 1)]- 1 gates from
GEZN,
Succ+(ZERO,ﬁ) c Succ+(ZERO,N’), which, together with the elimination

of GO, proves the lemma.

0 Lemma 5.17.
One additional lemma will prove useful:

5.18 Lemma: Suppose nepl, n = 4, and n # 2"+ for any r-e N,
n
Let Rn be a minimal {v}-circuit for the radix-join function F .

If i €[0:n-1], then outdeg(xi,Rn) > 2.

Proof: Suppose n, Rn’ and i are as in the statement of the
n = . ca
lemma. Let F = (a],b],...a|Tog'H ,b Tog T ). Observe that
[PI(a;)| = /21 and [PI(b))]| = /2 and hence neither PI(a;)
nor PI(b]) consists of a single variable. Since X; is a member

of one of PI(a]) or PI(b]), we must have that outdeg(xi,Rn) > 1.
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Suppose that outdeg(xi,Rn) =1, and let VSucc(xi,Rn) = {G}

where Prgd(G,Rn) = {xi,H}.' See Figure 5.20. Since N is a {v}-circuit

Fig. 5.20 The Case outdeg(xi) = ]

PI(H,Rn) is a non-empty collection of single variables, so let
xkePI(H,Rn) be chosen arbitrarily. Note that Kk # i since the
graph of "Rn is acyclic. '

It is easy to verify that in any {v}-circuit N,
[KeSucc™(L,N)] = [PI(L,N) ¢ PI(K,N)] ~ (5)

for any K,LeNodes(N). Thus, in this case, since
Succ+(xi,Rn) = Succ*(G,Rn), we must have xkePI(K,Rn) for any gate
KeSucc+(xi,Rn). However, if we let j be a radix position such

that (i)jA= (k)j (which must exist since 1 # k), then one of
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PI(aj) or PI(bj) should contain X3 but not ‘xk}‘assumé w.1l.0.g.
that .xiePI(aj) and ikéPI(a3§.' Since Rn‘“COMﬁﬁtéS- F?, there

must be a node D in Rn which computes a ~ Since n # 2r+1, —

j'
no component of 3 (including aj) is the projection of a single
variable, so D must be an v-gate. Since D depends on X5

and hence is in S“cc+(xf!R6ii we must hiiéagxkePI(aj) which is a

contradiction. . K 0 Lemma 5.18

We are now ready to establish a lower bound on the complexity

of any {v}-circuit which computes the radix-join function.

[

5.19 Theorem: Suppose nelMN . Then C{v}(F") 2 2n + 2{logny - 8.

Proof: The theorem is easily verified for n < 4. For larger
values of n, we first solve the problem. in the case in which n is an
exact power of -2, say n =2" for some reBN .. -We proceed by
induction on r; the cases r =1 and 2 have?aiready’begn disposed
of. _

Assume the statement of the theorem true for r - 1, and that
ﬁ = 2", | |

Suppose that P . (31»b1»-q--ar:br)v and that R is a
minimal {v}-circyit which éomputes- Foe Gurngeneral'objgctive will
be to show that by setting half of the varjables {x,:Xps...sX }
to 0, one can eliminate at least n + 2. v-~gates from the resulting
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circuit and have a circuit R- which computes.: F"/Z. ~Assuming

this for the moment, we then know that

n
€y (F)

c{v}(Rn) 2nt+2+ C{v}(R‘)

n+ 2 + c{v}(Fn/Z)

n+2+ 2(n/2) + 2(log (n/2)) - 8
(by induction)

v

v

2n.+ 2 log n - 8,

thus proving the theorem. |

So supposé Rn is as above, and that Ik and. Jk are the
nodes in Rn which compute 3 and('bk‘ respectively, for
ke[1:r].

By fact (5) of page 145, in Rn each output node in
{I],J],...,Ir,Jr} mﬁst have outdegree zero since the sets of
prime implicants of each component of " are incomparéb]e.’ In
particu]ar; if Dl and. Dz are arbitfary output nodeé;‘then
|PI(Dy)nPI(Dy)| < n/4. Each output hode.fsap X—géte since each
cdmpbneht of F" has n/2 > 1 prime fmplftants. These are the
on]y;nodes in R, with outdegree zero sin;e R, is minimal.

| Let | | |
A=PI{IR) = tx; | (i), =0

and
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Observe that AnB

1

p and [A| = |B| = nj2. Let RA (resp. RB) denote
the circuit obtained by setting all variables in A (B) to O.

It is easy to see that Ry , with output nodes {11’J1”"’Ir-1’dr—1}’
is a radix-join network on n/2 variables. Similarly RA with

the same set {I],J],...,I } of output nodes is a radix-join

th

1791
network of the remaining variables in B if the r bit of the
index of each variable in B 1is changed from 1 to 0.

We show that n+2 gates may be eliminated from one of these
circuits RA or RB. In RA’ the only gate with outdegree zero
which computes the constant function 0 is Ir' By Lemmas 5.17
and 5.18, tihis means that at least 2:(n/2)-1 = n-1 gates in
Succ+(A,R) may be eliminated from RA (where the only node in

Zp being accounted for is Ir)' In addition, since

A
outdeg(Jr,RA) = Q, Jy also may be eliminated since it is no longer
+

(

an output gate in RA' Since JréSucc A,Rn), it was not eliminated

previously, so at least n gates may be eliminated from RA'

In a similar fashion one may count at least n gates eliminated
from RB'

To show that at least two additional gates may be eliminated
from RA or RB we must look at other gates in the circuit. Let
Pred(Ir,Rn) = {KA,LA} and Pred(Jr,Rn) = {KB,LB}. See Figure 5.21,



-149-

Fig. 5.21 The Predecessors

We consider several cases:

Case 1(a): KA and LA are v-gates with outdegree in Rn

more than one. See Figure 5.22.

Fig. 5.22 Case 1(a)
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In this case, two a&ditional gates in RA may be eliminated

by Lemma 5.17. Both .KA and LA are members of QZR and -both
A

are of outdegree at Je;%t two in RN’ .Thg équnt abové;bf -n

gates considered only those members of Zp

6f(outdegreé zero.
A E 4

Case 1(b): KB pnd LB are both v-gates of outdé@ree in Rn more

than one.

If this is the case,then in RB two additional gates may
be eliminated; the proof is handled as in 1(a) with A replaced
by B.

Case 2(a): Ka and La are both v-gates of outdegree one in ~RN’
See Figure 5.23

Fig. 5.23 Case 2(a)
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In this case, both KA and LA in addition may be eliminated
from RB‘ We have previously eliminated from- RB the unique gate
Ir in‘ Succ(KA,R“) =,Succ(LA,Rn)._v Sipce neither Ky nor La
is an output gate in RB’ each may also be eliminated from RB.

Case 2(b): Kg and Lg are both v-gates of outdegree one in Ry-

Proved similarly to 2(a).

Case 3(a): Cases 1 and 2 do not hold; one of {KA;LA} is an v-gate of out-
"degree more than one 1n”Rﬁ; and one of {KB,LB} is an
v-gate of outdegree one in Rn- (The’other‘nodésvmight

possibly be inputs.) See Figure 5.24,

Fig. 5.24 Case 3(a) -- One PossibiTity
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In this case two additional gates v-gates .may be eliminated

from RA' ZR has at least .one gate of .outdegree -at least two
: A

since both K, and L, are members of' Zp,s 50 Lemma 5.17 allows
us to eliminate at least one additional gate. The v-gate of
outdegree one in {KB,LB} may also be eliminated since its unique
successor J 'had been previously e1ﬁhﬁﬁa£édfahd since neither

KB and LB is an output gate in RA'

Case 3(b): Same as Case 3(a) with A and B interchanged.
Proof is similar.

Case 4: One of {KA,LA} is an input, the othét_i$~an;_v—gate of
outdegree one; one of '{KBQLB} s an input, and the

other is an v-gate of outdegree one.

Suppose w.1.0.g. that KA and KB are inputs. Let
Pred(LA.Rn) ={M,N}. See Figure 5.25. At least one of M or N must

Fig. 5.25 Case 4
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be an v-gate, for if both M and N were inputs, then
|PI(Ir;Rn)| = 3; but |PI(ar)| =(n/2) = 4 so this is impossible.
Suppose w.1.0.g. that M s an v-gate.

If outdeg(M,R ) = 2, then MeZ
n RA

gate in Succ+(M,Rn) may be eliminated by Lemma 5.17. Also Lg

» S0 in ARA one additional .

may be eliminated since it is not an output gate and its unique
successor has been eliminated. On the other hand, if oufdeg(M,Rn)
=1, then in Ry both L, and M may be eliminated in turn since
each of their successors has.been eliminated and neither is.an
output gate.

The above 1ist of cases exhéusts all possible arrangements of
KA’ LA’ KB’ and LB; the other arrangéments are not possible in a
minimal {v}-circuit. For example, it is impossible for KA to be
an input and LA to be an v-gate of outdegree'mcfe than 1. I%
so then since [PI(IR)| =n/2, [PI(LLR)| = (n/2) - 1.
However, the set of prime implicants of aﬁy“odtput other than Ir
has at most n/4 < (n/2) -1 variables in common with PI(Ir,Rn),
and hence. the only output in Sgcc#(LA,Rn) is Ir by fact (5) of
bpage 145. Similarly, it is not possible for both KA and LA
to be inputs.

This completes the proof of the theorem in the event n s

an exact power of 2.
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If n 1is not an exact power of 2, let r = {logn and
let Ny = 2", Suppose that Rn* is afmiﬁimaI {¥}=circuit for
. = (a],b],...,ar+],br+1) and~iet Iy and ka;be:nodes in. Ry
computing a, and bk respectively (fbr"ke[t;rtl}). Let B be
the set of variables ({x, | iétno;n-l]}j and observe that
PI(b- ) =B, If R” is the circuit obtained by setting all
variab]es in B to 0, then R‘, with outputs {050 lad Y
| is a radlx-Join network for "o variab1es ' _

If n¢ ng * 1, then by Lemma 5.18 each input xieB has
outdegree at least two in Rn' Hence by Lemma 5.17 at least
2|B|-1 gates in Succ+(B,Rn) may be eliminated from R~ (since
J r+] R‘ is of'outdegree zero). In addition, Ir+1’ which 1s an .
v-gate since |PI(ar+])| > 1, may also be eliminated from R~
since it is an v-gate of outdegree zero which is not an’output‘of
R- . Since |B| =n - Ng» this means that a total of at leastuz(n - "0)
gates may be eliminated from R”. '

If n= ng *+ 1, then PI(b_,;) = {xh_]}t Since
Xn-T PI(a]) and lPI(a])l > 1, we know that :outdgg(xn_]iRn) 2 1.

Since N 1is minimal, J is the input node x _,. The setting~

r+l

of x 1 to 0 results in a circuit R- from which at least one
gate in Succ+(xn_],Rn) may be éliminated (since there are no.
gates of outdegree zero in ZR,). Moreover, I ., is again a gate
and may be eliminated from R” in addition to the gate previously

mentioned, giving a total of two gates which may be eliminated from R-.
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In either case, R” may be simplified to be a radix-join network
R“* on n, variables with the elimination of ;2(n~n0)- v-gates.

Thus

n, _ . : . |
C{v}(F ) = C{v}(Rn) > C{v}(R. ) + 2(n-n0)

v

n . .

> 2n0 + 2 log'n0 -~ 8+ 2(n-n0)‘ (since

o is a power of 2)

2n +2r - 8

n

and the theorem is proven.
0 Theorem 5.19.

5.20 Corollary: Suppose that n=2", reN, r =2 and N is an

M-circuit for Tg with exactly Tlog n A-gates. Then

EM(N) > 2n+4 log n - 9.

Section D - Efficient Circuits for Threshold Functions

" As mentioned, the proof of theorem 5.14 is a modification)of

a method first discovered by L. Adleman for compﬁting threshold
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functions. A description of £h15>method;-whfch br0ves that
MC(TR) < kn+o(n) for arbitrary - fixed k, is to appear, and we sketch the
technique briefly in this section for “"threshold 2".
To compqte Tg, the n. variables are arranged 1n a
Ui xd  square matrix X. Let R. be the disjunction of the

i
variables of the ith ~row of X, and let Cj be the disjunction

th

of the variables of the j~ column. Then observe that

0 A
1o seeeax) = T 70 (Ruee R )y T8 (Gl i)

since each pair of different variables in the matrix differ either
in their row numbering or their column numberﬁng;:iThﬁs“conétractibn

givé r%se to the recurrence relations
r
MC(TD) < 2n - 2@ + 1 #-M(Fz{’-‘.' )+ 1

and nc(Tg) =1

since the row and cdlumn sums can be constructéd with at mogt
2n - 2f/n 1+ 1 gates. This method shows that
MC(TD) < 2n + 2/ + 0(n/4).

One problem with the above method is that it-does not necessarily
yield an M-circuit for Ig with the -minimum numbenw,'Tbg;ﬂ of
a-gates. For example, for n = 8 the resulting circuit has

4 a-gates. The circuit for F" described in Theorem 5.14 uses
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the same idea except. that the variables-are arranged into a
rectangle with sides which are an exact power of 2. While the
method of Theorem 5.14 yields an M-circuit with exactly" Wﬁg ;I
A-gates, it does so at the expence of 1ncrg§sing«slfght1y the:;;
total number of gates. A close examination of the recurrence
relationship for C{v}(F") ‘shows that, in the notdticn of ‘the
proof of Theorem 5.14, either ny s /n  and Ny s Y2n ,or
n;s7/2n and n, < /M. Hence this method-yietds an M-circuit
for Tg with at most 2n+(1+/2) Vi +éﬁ€h1[4)*“g%%es:"(50r some
values-of n. the recurrence fs'bettes;) * The table below describes
the best known constructions for soﬁe small values of n.

A

Cor. 5.20 Lower " Construction of .| Adleman's
n | Boqgfggzélog n .| Thms.5.12.and 5.4 .| Comstruction
(Total Gates) | (Total) . (a-Gates) | -(Total) (r-Gates)

2 o 1 o 1
4 7 7 2 7 2
8 19 ' 19 3 19 4
16 39 39 4 39 4
2 75 79 5 79 6
64 | 143 151 6 151 6
128 275 ‘ 291 7 290 8

Table 5.1 The Complexity of Tg
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Observe that for n = 128, the most efficient known M-circuit
for Tg does not use the minimal number ( 1og 128.) of ‘A-gates.

Section E. Open Questions

There are a host of open questions raised by the above
results: _
(1) We know that C{v}(Fn) <.2n + 0(v/n). “Dete-nm'ne
' C{;_v}(F") mare exactly.
(2). Does an optimal M-circuit for .T,;g;wh&m exactly flognl
_A_-gates? | ’
(3) 1Is there a minimal M-circuit for Tgb which is sing]e—]eye]?
Is there one for an arbitrary quadratic function?
(4) Is there an M-circuit of size ce-n-log n for T": < for
arbitrary k <n where ¢ Is ipdepérfldént.qf, k? Is
~ there an M-circuit of size <Mog k + Th for T: for
fixed Kk? ' o l
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CHAPTER 6
The Complexity of MonotonesFunctions fn Other Bases

The objective of this chapter is to study whether the complexity
of a monotone Boolean function can be reduced by using a basis other
than {#,v} in the formulas or circuits considered. That this is
the case for Boo]ean circuits and mu]ti output functions is well-known
and several examples exist. For 1nstance, Paterson [1975] and Mehlhorn
and Galil [1976], extending work originally done by Pratt[]974], have
shown that the M-circuit complexity of the Boolean matrix
multiplication of two nxn matrices is exactly 2n3 --nz. - On the
other hand, Fischer and Meyer [197H have shown that Strassen's fcst
integer matrix multiplication a]garithm can be usednio multiply two

Boolean nxn matrices on a Turing Machine in time ,0(n2.81...

}. Using
Fischer:anc Pippenger's results connecting time-bounded Turing Machine
computations and circuits, this means that a circuit with 0(n2'82) gates .
for matrix multiplication exists in any ccmp]ete»ﬁasis*. “Paul {1976]
has improved this gép by exhibiting a series of monotone functions
feB, . for which MC(f) = 2(n’/ (10g)¥/?) but for which Gy, (1)

= 0(n log n).

T Recall that the complexity over different complete bases is always
related by a constant factor, hence it does not matter which complete

basis is used.




It remains an open question as to whether such a gap between
CB2 and MC exists for a s1ng]e-outpu* function Pippenger
[1976] has shown that i one looks at the monotone funct1on in By
with the worst MC comp]exity among all m.b. f 's 1n B ’ then 1ts
MC complexity is no more than a factor of 0(log n) larger than
its CB2 complexity'. On the other hand severa] researchers have

conjectured that a large, even exponent1a1 gap may exist between the

MC and MB measures for a speciflc monotone Boolean function.

2

In contrast to this, it is possible to show that there are
specific m.b.f.'s for which allowing a complete basis in the circuit
does not allow a saving of more than a constant :factor over the
monotone case. This clearly the case for a .function of minimal
M-complexity which depends on all its arguments, and hence has
M-circuit complexity of n-1. The situation can occur for more
complex functions in addition. For example,. in Chapter 3, we
demonstrated that most quadratic m.b.f.'s of n- variables have
B, circuit complexity of n@n?/Iogon). Since each quadratic

m.b.f. can be realized in an M-circuit which has O(nzllog n)

"In fact, Pippenger conjectures that among 511 monotone functions
the worst case values for MC and for CB are asymptotic, and
2

offers a reward of $100 for ptoof of this conjecture.
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gates, it is not possible to save more than a constant factor in
circuit size for most quadrétic functions. ‘ )

We consider the formula sfze of functionsvin fhe rémainder of
this chapter. Here, the chqiéeof;cpmpigﬁebasis will have a
greater effect on complexity as pointed out by the work of Pratt
[1975] - we consigervthe bases M,;Bé, and U. Ong;may’makg comments
about the worst-case values fbr fﬁese meésuresmfor all monotqhe
Boolean funﬁtions similar to thoge Qofced fof’éircuit comb]éxities-
it is the complexity relationship:for«indiyidua] functions which
concerns us here. We show that this .relationship can erend.on
the functions involved. - Clearly, iherﬁ»areafuncti0n540f comp]exity
n-1"in all three measures for which no sawings can be had. In work
done jointly wifh M. Paterson, we do show . that there are m.b.f.'s
of M-formula complexityT e(nzllog'n) for which any formula in any
complete basis ﬁust'be of size *n(nzllog n), and hence for which
not more than a constant factor savings may be achieved. On the
other hand, we exhibit a particular sequence of m.b.f.'s which
have M—formu1a complexity e(nz). but for which Tinear sized formulas
exist over the basis B,. This sequence is derived as a coro]iary
of thapchenko's result that any U-fprmula7for the parity function
must have size nz. While this’exampie afffrms that the complete_basis 82
may allow mdre,succinct expressions for some m.b.f.'s, it does not
answer the quéstion of whéther the addition of negation to the basis
M allows a more compact expression fbrrsome'functions. This 1étter

question remains open.
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Section A. A Lase where a Complete Basis Doesn’t Help

We will utilize a method-intibduéed'by'ﬂezﬁﬁbruk [1966] to
establish a lower bound on the formula size of a particular mono-
tone function. This method has beeanSéd'by other authors in ref-
erence to other problems [Hafpér and Savage 1972, Paul 1977, and
Lamagna 1975]. While the’techh%qdé applies to formulas over arbit-
rary bases, wé restrict our théhtment‘ﬁe?é'tb‘fﬁe Bihany bégis B,
Notation: Suppose feBn {s an arbitrary Boolean function of the
variables XyseeosXos and suppose - Y S“{xi'l ief1:n]} is some
subset of variables. Let S(f,Y) denote the set of all restric-

tions of f to Y obtained-by setting al1 remaining variables not
in Y to be constant; that is, |

' -  n- Y
S(F.Y) = (F | - ¢, for xéY [Eget0:1 "1,

6.1 Lema: Suppose f,Y, and S are as above. If F is any B,-
fornula for f, and F contains k 2 2 occurrences of Y variables,
then

IS(F.Y)| < 16%7

Proof: We prove this fact by induction on k. Suppose f,Y,S,

and k are as in the theorem.

In the event k=2, let X; and xj be the. Y-variables occurrinj

in F (where possibly i = j}. Since no other Y-variables besides
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x; and x; appear in F, all restrictions f | T=2 for xdY
of f to Y are functions of the variables {xi,xj}_. Since there

are at most 16 such functions, this proves the lemma in this case.

Now suppose that k > 2, and tﬁe‘IEmﬁa is true for all smaller
values of k. In the tree corresponding fo F, there exists a
subtree of F with some number ¢ of occufréhtéé of Y variables,
where 2 < & < k-1. This is true since the sons of a node in a
binary tree create a partition of the leaves above the node.

- By passing upward+ from the root of F, one m&yffind*SUch'a»subtfee'
since each leaf contains at most 1 occurrence of a Y-variable.

Thus we can decompose the formula F as
F(x],...,xn) = G(H(x],...,xn),x],...,xn) (1)

where H has & occurrences ovK-variables and G‘ has k-% occur-
rences of Y-variables. Let g(z, sXpsXps e X ) and h(x1,x2,.. X )
be Boolean fucntions defined by G and H respect1ve1y

We may bound the number of restrictions of f to Y by bounding
the number of restrictions of g and ﬁ. Let Y© denote the set
of yafiab]es Yu{z}. Then G has exactly k-2+1 < k  occurrences

of Y- variables. By (1), since any restriction of f 'to Y

t ,
In a formula, as in all circuits, we think of the constant and input

nodes as being at the top of the formula and arcs directed

downward.
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satisfies

flz.z =g9h]| 3. 3,x],x2;...,xn) =2
for x£Y ' ¥or x£Y ?or‘xé¥

there can be no more restrictions of f to Y than the product

IS(I’i,Y)I . . Is(gsv‘)l .
By induction, this implies that
Is(£,7)] < 167« 16k2F1)-1 o kel

and the proof is complete. 0 Lemma 6.1

6.2 Theorem (Nediporuk): Suppose ,feBn ~is a Boolean function and
PisPps...,P. is a partition of the variables Ax; | de[l:n]}  such

that f depends on some Variable in Pi for each ie[1:r], Then

r
L, (f) = 1/4 log|S(f,Ps)
32 ) 2 jz'l q| 3 |

Proof: Suppose F is a minimal Bz-formula for f. For each
je[1:r], let ki be the number of occurrences of Pi-variab1es in

-1
F. If 'ki 2 2, then IS(f,Pi)l < lﬁki by Lemma 6.1, so

ke=1 2 10g;g|S(F.P,)| = 174 Tog,|S(f,Py)|.  If k; =1, then

i
IS(f,Pi)I < 4, so ki > 1/4 log ls(f,Pi)l; the case k1 = 0 cannot
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happen since f depends on some variable in Pi' In any event,
k. =2 1/4 1og |S(f,P;)|. Since T (F) = Evk » this proves the
i i , B, j=1 1

theorem, ' O Theorem 6.2

We may now use this theorem to establish lower bounds on the
complexity of | particular m.b.f.'s. Note that if n; = |pi| for
ie[1:r], then |S(f.P1)| < 22“1 since this is the number of Boolean
functions of n, variables, and LSif,Qi)ls 2""i since this is the
number of settings of variables ou%s%de'Pi{ Choosing nj ~ log n for

each i gives a partition of the variables into ~ n/log n sets with a
possible maximum value of logls(f,Pi)l of n-log n, to yield a

théoretica]ly possible Q(nzylog n) Tlower bound using Theorem 6.2.
It is possible to show that the maximal lower bound obtainable from
the theorem is Q(nzllog n). |

Using an example similar to NeZXiporuk's original fdnction, we

establish the following example:

6.3 Theorem (Paterson, Bloniarz): For every n, there is an m.b.f.

feBn such that

(A) Ly () = aln’/10g n)
and

(8) ML(f) = 0(n?/10g n),
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so that allowing a complete basis in a formula for f does not

allow more than a constant factor péduettén in size. -

: m
Proof: Suppose for the moment that n = ((mﬂ)/Z) where m

is an odd integer. Note that m <divides n. Ta define f, we
regard the n 1input variables as arranged in a (n/m)>m rectangu-

lar matrix ;i' For each ie[1:n/m] and je[1:m], we will fix

i
a . .
n/m ";ij
v

Fig. 6.1 The Inputs

Gij

elements (which is possible by our choice of n). Define
£:{0,1}" + {0,1} by

‘ m
to be a distinct subset of [1:m] of exactly (ﬂm+1)/2

+> A4 )
FXi3) = qefTanm) Dy o ( k\é1:n/m] (-Q,i:ixkd))] (2)
Je[1:m] k#i
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Intuitively, we may think of the o 's ‘a5 row patterns --

J
(m+1)/2 entr1es wh1ch w111 be chosen from a row .of .m  variables.
If ke[1:n/m] and qéqij 'xkq 1s true, we will say that row k

satisfies pattern on Note that this 1mp11es that row k has at

least (m+1)/2 ones in it. The clause

v
ke[1:/m] (qéb, . %iq)
K # 1 I

th  catisfies 0131"Fina11y. ‘

,f(zij) =1 1if there is some variable X5 ij “equdl ‘ta ' 'T whose cor-"

responding pattern °1j is satisfied by some row other than the

ith. We note in passing that f is monotone by Theorem 2.4.

is one if some row other than the i

To obta1n a 1ower bound us1ng Theorem §.2, cons1der the rows
{xij l Je[] m]} for ie[1:n/m] to be a partition of the input
variables. We obtain a lower bound on Is(f,P ). W.l.0.9.
assume that i = 1; we show that a 1arge number of settlngs of the
remaining variables yield d1fferent restricted funct1ons of f
to Py, In part1cu1ar, suppose i3 for 1e[2 n/m], jelt: m]
are constants such that each row of constants has fewer ‘than
(m1)/2 ones in it (that is, |{j | c 1}| < (m+1)/2 for each
ie[2:n/m]). We show that two different such settings of the

variables x,. = c,. for ie[2: n/m], Je[l m] y1e1d different

ij ij
restricted functions of the first row.
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Let fy denote the restriction 'f‘l*x for ié[Z:n/m].

=c
ooy .
je[1:m]. The first row is the 6h1?‘poé§fb1é row which can satisfy'
any pattern since each other row has fewer than (m+1)/2 ones 1n

it. Hence the inner conjunct1on is false for “k # 1, and o

= vV A x
fE ie[Z:n/msciJ g ey 4 1q)
Je[1:m] '

Now if € # ¢~ are two distinct such constants, w.1.0.g. let i
and Jj be indices such that c;; =1 and c;j;a 0. Define an

1nputrfor:the first row. by

’ :
1 if QEO’ij

for each Qe[];MJ

"

qQ

0 if qta ij
and note that the row X1q satisfies pattern %45 and no other.
Hence fé(?l ) =1 whereas f+’(§ ) = 0, and the two functions
f?. and fz, are different on the input x]q

Thus |S(f,P P is at least the number of such settings of the
remaining rows with fewer than (m1)/2 ones per row. Since there
are Zm" ‘length m binary vectors with fewer than (m+1)/2 ones,

we obtain
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|S(F,py) 2 [2M (VM1 < pn-(a/m)-med

"Hence, by theorem 2,

I i 2 . I.;n' n/m ]
3 % . 1 tot Ly .

= 1/4 L(nZ/m)'- (n2/m2) - n+ (n/m)].
By Stirling's formula, [Knuth 1968, p. 46],
| . |
n=0m”ﬂ)~&ﬁﬁﬂm

so m~ log n. Hence LBZ(f) = n(nZ/m) = Q(nzllog n) and the lower
bound is established. : 7

The upper bound on ML(f) 1is obtained by:exp&nding‘and fac-
toring the definition'(z) to get a more compact formula for f.
Since f' is not explicitly defined, we prove that an M-formula of
size ‘O(nzlldg n) exists without actually exhibiting it. Clearly,
f has an M-formula of size 0(n2), namely (2).

To get a smaller forhula for f, we can distribute the variables
in (2) to get the disjunctive form

#X) = jer1Yn/m] ke[1f}/mj (xg5 ARE T IINC)
je[1:m] k # 1 Y
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If we define, for ke[l:n/m},

fk(f) ® e 1)%;m] (xij'A dg%i; fk;)::!‘g (4)
i;tl:m] kIRt O

then by reversing the indexing in (3)’we'obtaia

G = V@
- k=1

n/m '
so ML(f) s } ML(fk). To bound ML(fk) for a fixed ke[1:n/m],

k=1
note that each monome in Pl(fk) consists of the distinct product
of (m+1)/2 variables from row k (which has m variables in all)
and a singlé’variable not in this set.f:Sinée‘the number of prime
implicants of fk far exceeds m, by factoring (4) on the vari-

ables in row k we obtain a smaller formula for Lfk.

6.4 Lemma: Suppose r,selN, and 9€Bp+g; is a function such that

s
CG(XyseeesX a¥qseees¥) =V (¥ A A X))
o r* s 4 ¥ ' e, j

where,.for each 1, Ai is a unique subset of size a of -[l:r].

Then

Mm(g) s (BH + (D) - 1.
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Proof of Lemma: We proceed by induction on r. If r =0, then since

there is a‘unique subset of size 0 of @, g(y]) is either y,

or the constant function 0. In either case, ML(g) <1 = (A} f\(g) - 1.
| If r >0 .and a =r, then clearly g(x],...,xr,y]) =

Y{AXyA..oAx O g =0, s0 ML(g) ﬁ'é+l{=*(r:})¥(:}il;

Similarly, if a =0, then ’againféML(g)‘é‘i =J(r3]) + (8) - 1.

Now suppose 0 < a < r. By factoring;the @éfinition of g by x.

we may express

g =(x.9)V 9, (5)
where
-\ |
97 qerly 2 je;fS{rj *j) '
oA , A
and

9 = ie[1:s]-T5 A ;:}ixj)

and T is the set of indices ie[1:s] ‘such that~]TeAi. . Note
that each subset Ay N\ (r} for ieT has a-1 members chosen

from [1:r-1], and héncelinductiVeTy

o) = () + (D -

Similarly, each set Ai for 1i¢T has a members chosen from [1:r-1],

and hence
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Mg) s (D+(H-1

Thus, by the expression (5),

ML(Q) s1+ ML(QI) + m-(gz)

: Y4 -1 4 (" -1 (b
sT+ ()¢ ‘ ) +a ) + ) inﬁuction)

= (r:I) *=(:9--“1" (usfng the fact that (k) (k‘]) + (k h
[knuth 1968, p. 54]).
O Lemma 6.4.

Now, sincelemma 6.4applies to fk(i) with r=m and a= (m+1)/2,

we obtain

ML(f,) < ((mn)/z) + ((m+1)/2)

((mﬂ)/z + (m-n/z) (\mﬂ)/z)
=3n -1,

n 2 2,y |
Hence ML(f) < k§](3n 1) = 3n°/m - n/m = 0(n“/Tog n).

To finish the proof, for n not of the form ,(0n+1)/2) (m odd),
we could choose L of this form with (n/4) < Ng's N and merely
ignore all but the first n, of the n arguments. '

0 Theorem 6.3
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‘Section B, A Case where

e L 2=

.A,U’

Can Help.

In a counterpo1nt to the prev1ous case, we present an example
where the larger complete ba51s 82 can al]ow a reduct1on 1n formula
size of more than a constant factor. The examp]e is a monotone

cover of the parity function.

Definition: Suppose feB ~is an arbitrary Boolean function. An.

m.b.f. geBZn is said to be a monotone cover of f if

[N

: f(x] Xn) = g(x.l,i X1 Xos xz,,.,x s X )

Example: If P"(x],...,x") = xiB X, O X is the parity . function,
then gn defined by |

gn("l”l”‘z,’yzw"Xn’yn) = [P"(x; ”n’A13t(y Vi )?v431(x vyl (6)

is easily verified to be a monotone cover of P".
We claim that the function g EXthTta the propnrt1es desired,
We use the following result of Khrapchenko [1971] which we state

without proof.

€.5 Theorem: If nedN, then

n? < LU(P“) < 2%
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The fact that L (Pn) < 2n? iSfeaSi]yiPrOVEﬂ“bJ/recdrsiveiy o

dividing P" (xq5- .,x) as (x]q; exﬂ@)e(x n/_q n8-ex).

The lower bound is established by a reharkable argument which uses
the isomorphism between series-paraiiei contact\networks and U-
formulas. o o 7 | _ |
Assuming Theorem 6.5, it is straightforward to show that
nz-s HL(g") srznz-* 4n

To derive the upper bound rsdppose that F is a minimal U-formula
for P". By applying DeMorgan s laws, we may distribute a11 nega-
tions in F to the variabies without changing the size of the for-
mula, so we assume w.1.0.g. that F has this proﬁerty; Let F-
Abe the formuTa obtained by repiaCing al] occurrences of -ﬂxi in |
"F by the literal /yi (for all ie[i.n]). A straightforward |

argument demonstrates that
n n
[F7 A 48y () vy (xavy)

is an M-formula for‘ g"(x],yi,...xn,yn).

For the lower bound on ML(g"), suppose that _F(xT,y],,..,xn,yn)
is any M-formula for g"; By replacing ;. by Xy in F for |
each ic[1:n], we obtain a U-formula for P"; which by Theorem 6.5
must have n2 occurrences of literals. . Thus F must have had

size nz.
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Since P" has a B, formula of size n-1, Lg (g") < 5n-1.
2

Since gn ‘has 2n variab]es} we have proven

6.6 Theorem(Bloniarz, Meyer): For every_ neN there is an m.b.f. feBn

such that
- 2
M.(f) = o(n®)
and
LB (f) <5n/2 +0(1) .
2
Note: Because of Theorem 6.5, any U-formula for gn

must also have at least n2 occurrences of variables. Thus this
example does not answer the question of whether the addition of

negation to the basis B allows more compact expressions for m.b.f.'s.

Section C. Open Questions

(1) Is there any single-output m.b.f. for which
LU(f) < ML(f); for which CBz(f) < MC(f) ?
(2) 1Is there a larger gap than that given in Theorem 6.6
betwegn ML and LBZ ?

(3) Do larger gaps between these measures exist for multi-output

functions?
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CHAPTER 7

A Shortest-Path Algorithm

This final chapter is.concerned with the preblem of finding
the shortest distance matrix for aanon—aegatfvely%weighted:direéted'
graph. Several algorithms to-solve this problem have been proposed
[Dijkstra 1959, Floyd-1962, Spira 1973, Fredman 1976], the best .
worst-case rumning time being O(ns(lcgtegﬁn)lé3i(lagfﬂ)1/3)
[Fredman.1976}. - However, Spira‘s algorithm which has a worst-case
time of Q(n3 log n), has average running time thzwclcg-n)zl;

Spira's algorithm.basicaily searches for the:nodes ctosest to -
a given source node. By searching along edges: of minimun weight first,
it is likely that.the shcrteﬁt.paths from- the source node to all
other nodes will be discovered before all:arcs.in the graph needfur
‘be traversed. - In fact, starting from any given source, on the
average only 0(n-log n} arcs need 1o be-traversed. By repeating
this process for all n source nodes, the shortest path matrix cam
be found.

In Appendix 3 we show that,§eyerq1LIacunag‘remain in Spira's
algorithm. In partf&u]af, Spira dbes’nAt specify any éeérch péttern
when there are paths from the source of equaltTéngth.‘ We observe
that arbitrary choices among paths of equal 1engtﬁ do ﬁot solve the
problem efficiéhtly;‘fnappropriate "tfé:Bréhkihg”;que§’céh result
in algorithms which have Q(n3) running time on almost all

matrices. One example of this phenomenom is presented in Appendix 3.
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Our main result (this work was done jointly with A. Meyer
and M. Fischer) is a correct version of Spira's algorithm, which
we prove does indeed run in O(nz(log n)z) average time for a
broad class of probability distributions on dfrécted graphs with
non-negative weights. These distributions properly include ‘the
distributions for which Spira originally made his:claims. Infors -
mally the cenditioﬁ characterizing distributions for which our
results hold is that information about the entire graph except
for the arcs emanating from any given node. 1, together with-
information about the weights of the arcs emanating from node { »
is not correlated with the assignment of the weights to those
arcs -- all permutations of assignments are equally likely.

Finally, a modification of this algorithm is noted which
computes the transitive closure of a Boolean matrix in average
time O(n2 log n). This result has recently been improved by
Schnorr [1978a]who exhibits an 0(n®) average-time algorithm for
this problem. |

Section A. Shortest Paths and Graph Distributions

Directed gréphs were defined in Chabter 2. We henceforth
assume that every n—node graph has a set of vertices V = [1:n].
A graph (V,E) is weighted if there is a cost function
c:E *R u{-=»,=»} which assigns a weight or cost to each edge in the

*
~graph; the graph is non-negatively weighted if range {c) ¢ R .
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We consider only weighted graphs of this latter type and refer to
them as weighted graphs. |

One étandard representation of a-weighted graph is the nxn
cost-matrix C, where C(i,j) is defined to be the:cost of edge
(1,3) 1f edge (i,j)cE, and C(i,§) == if (#:5)¢E’. One

additional representation will also be used. In the sorted list

of edges representation, an n-node graph G 1is represented as a

sequence of n adjacency lists. Each list element is a pair (a,w),

. *
where a 1is a vertex of G and w is a weight in R . The ith

list
L = ((aﬂ ,wn),(ai?_ 'wiz)"'.','(a'”‘i"w'iki))

represents the ki edges emanating in & from node i (including .
possibly an edge from i to itself); aij is the endpoint of the
arc and Wij is its corresponding weight. In addition, we

require that the weights in each adjacency list be arranged in

increasing order w., S W., < ... < W. ++. In the case where
il i2 1k.i

T We do not distinguish between missing edges and edges of weight .

++ : : ‘ %*
The definition of < and + on R+ are extended to R in

the usual manner.
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there are multiple edges in the adjacency 1ist of the same weight,
we assume that the endpoints are placed in the 1ist in some
prescrfbed order; for definitenmess we assume that they are in
order of .increasing node index. ' |

We will represent the adjacency 1istsfas’tw6 nxn- matrices -

the endpoint matrix A and the edgecost matrix W, where

a if k <k,
A(i,k) = , ik 1
NIL  if Kk > ki'
and »
o Wi if k< k,
W(i,k) =

(NIL is a special symbol ). Figure 7 1 exhlbits different represen—
tations of a partlcular weighted graph - _

Suppose p =(v],v2,..,,vk) is a path in G, that is,‘ar
sequence of k 2 1 nodes such that (vi,v1+])€E for ie[l;k-i].
The cost of path p 1is the sum of the costs of 1ts edges; that is,

k-1 ‘
.X]c((vi,vi+])1 where the cost of the trivial path (v) from v to
i= .

v is 0. The minimum'cost matrix M of G is the nxn matrix
which has M(1,j) equal to the minimum of the costs of all paths

in G from i to j. The shortest distance problem is that of

computing the minimum cost matrix M given the cost-matrix C of

a weighted graph.

i This assumption is actually unnecessary for either the correctness or
the timing of our algorithm.
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o . -
5 .5 10
- ® 0
2 = ]_J
Cost-Matrix
3 T . . o --
A: |1 2 3 : W 5 5 10
3 NIL NIL : J0 e =
3 1 NIL 11. 2 w

" Sorted List of Edges |
Fig. 7.1 Representatioﬁs of a Graph |

Gh .Wwill denote the set of all n-node weighted graphs. The
subscript n will usua}ly be omitted. Through the cost-matrix

' L %_n2
representation of graphs, we will identify G with [R*]n .

Amap 1:6-> 6 is a row permutation if it simply permutes the

endpoints offhefedéésemanating from a épecified node while leaving

the remainder of the graph intact; formally, there must be a permu-

tation p of [1:n] and an index i e[1:n] such that, if G is any graph

in G with cost-matrix C, and
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C, 1is the cost matrix of n(G), then

C(i,3) if i #1i
¢ (1,3) = , 0
| c(i.p(3)) if i =1,

for every (i,j)e[lznlz. The set of row permutations generates a
group Tn of transformations on G, each member of“ T“;'is called

an adjacency transformation.

If P is a probability measure on G, its distribution function

2 .
is the function FP:[ R*]n+-{XeR | 0 <x< 1) defined by

Fé(X) = P CeG‘-‘é(‘l,J’) sx” fbr L (i;Aj?s[]:n]z}

where X 1is any element (xia | (1,j)e[1 n] } of [ R ]
Every probability dlstrﬂbution is unxque]y chararter1zed by lts
distribution funct1on '

We will say that a probability measure P on G is adjacency

invariant (A.If) if any adjacency transformation -HeT is a

measure preserving transformation om. G; that is, - FP(H(x)) = Fp(x)
for all xe[ R*]"Z. We will consider specific examples of contin-

uous A.I. probability measures later in this chapter. For a
discrete probability measure  on . G, note'that the measure is A.I.

if and only if the probability of any graph is equal to the




-183-

probability of the graph obtained by permuting the endpoints of -
the edges emanating from an arbitrary node in the graph.
For any function f:G+Rand any probability measure P on G,

let Ep(f) denote the expected value of f withrfespéct to P.

Section B. The Algorithm

Beforeldeécribing ihe a]gorithm,’we make an qbseryation about
weighted graphs which serves aslﬁaéis for the algorithm. Suppose
that G fs1a:weighted directed graph, aﬁd th;t> i  is an arbitrary
"source" node of G. Définé.‘forvany node jeNODES(G), D(j)r -
to be the minimum of the costs of all paths in G from i to Jj, where
D(j) dis = if there is no path from”)f' tq“ j. Let NEAR be a |
subset of the nodes of G such that 5eNEAR; those nodes in NEAR
are called near nodes, and all other nodes are éal]ed/jéuggggggg
For each near node j, we define REALK(j) to be the ‘far node
k of G such that C(j,k), the cost of the edge fron j to k, is
minimal among the costs of any edge from j to a far node. If j
has ‘several edges of egual minimal cost emanating from it, then’
REALK(j) is arbitrarily éelected:to be one of them. REALK(J)"
is undefined if Jj has no arcs to any far node.

We make the fo]lowjng observation.

7.1 Lemma: Suppose that G 1is a directed graph, and that NEAR
satisfies the property that for every jeNEAR and k¢NEAR,

D(3) = D(k). Let jO ke a near node such that the sum
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D(jo) + C(joa REALK(JO))is minimal among all near nodes, and let

kg = REALK(jg).  Then

0

(1) Dlkg) = D(3g) + Cligsky),

"

and (2) D(ko) D(k) for every k¢NEAR.

Proof° Part(1). Since D(JO) is the cost of some path from
i to Jo, we know that D(Jo) + C(ju,ko) 1s the cost of a path
from i to ko, and hence D(ko) D(JO) + C(Jo,ko) qupose to
the contrary that D(k ) < D(jo) + C(Jg,ko), and let 7
be a path of weight D(k ) from i to k

0
be<the:1east index in

i-= v],vz,...,v2 = k0

Observe that 2 > 1 since {eNEAR. Let 10

[1:2] such that Ve #NEAR; obserVe that 1 < 2 S . Thus
0 .

‘vg 1€NEAR, and hence
o

D(v, _y) +C(v, _;>REALK(v, 1) < D(v, ) +C(v, 15V, ) (bydef. of REALK
2g-1 2g°1 %, 1 2-1 zp ] %9 Y )

g1

0
s 1 CvsVpyy)  (since v],...,vzo_j
m=1
- is a path to v, ;)
. lo
2-1

< mZ]C(vm,vm+])
= D(kO)

< D(jo) + c(joiko), |
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But this latter inequality contradicts our choice of jo and

part (1) is proven.

Part (2). Suppose to the contrary that k 1is a far node such
that D(k) < D(ko). Let 1§ = WysWoseensWy = k be a path of
length D(k) from i to k. Again choosing % to be the least

index in [1:2] such that W, #NEAR, we must have 1 < 25 <8

0
and w eNEAR. Thus
R.Gf] , ,
D(w, o) +C(w, _y REALK(w, 1)) < D(w, ;) + C(w ';‘, W,
20-1 % 1, % 1 % 1 %0 1 zo)
'2-1
< XC(Wm$wm+])
= D(k)
< D(kO)‘

which is again a contradiction to our choice of jo.

0 Lemma 7.1

By the above argument, if NEAR satisfies the hypotheses
of Lemma 7;1,theﬁ so does NEARu{jO}.
We may use Lemma 7.1 as basis for an algorithm for constructing

the minimum cost matrix M for a graph G. We first present a
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version of the algorithm which uses ‘certain simple operations on
finite sets. We later note how these set operations can be imple-
mentea in terms of standard operations and data structures on random-
acCess‘compUtérS. | ‘ o o

We assume that the graph is presented in its sorted list of
edges representation as'matfices Aa and W. Extraction of A and
W from the cost matrix C may be performed by éoifing the rowsrof
C in a stable fashion® using edge weights as keys. Thevé1gorithm
constructs the minimum cost matrix M one row at a time; this cor-
responds to findingvthe shortest distance’from one particular node,
say node i, to all other nodes in the graph. The algorithm
searches from node i in a manner dictated by the weights of the
edges; shorter paths are searched first.

In the algorithm, NEAR aﬁd MD Vare as described in the hypoth—
eses of Lemma 7.1 with one exception - D(j) fs only defined for
near nodes. If j is a far node, then D(j) = NIL. Initially
NEAR is set to {i} and D(i) to 0. The algorithm ha]ts with
NEAR equal to the set of nodes which are reachable by paths from 1.

T A-sort is stable if the relative order of elements with keys of
equal weightis preserved at the end of the sort (cf, Knuth [1973
th. 5 ]).
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Inductively, to add a new node to NEAR, the algorithm attempts
to find a node jo satisfyihg the hypothesis of Lemma 7.1. A
priority queue is used to direct this search (see [Aho, Hopcroft,
and Ullman '1974]vfor definition). In the course of execution of
this algorithm, certain edges on a near node's adjacency list will
be "examined"; initially no edges in the :graph have been examined.
Inductively we assume that all edges previousty: examined point
to near nodes, and that all examined edges on an adjacency
list will consist of those edges of least cost. A pointer P(j)
is maintained for each node j in [1:n]; its value is the index
in matrices A and W of the next (least-cost) unexamined .edge
on Jj's adjacency list. P(j) is initially set to 1 for all nodes.

Each near node j has an additional value associated with it,
‘which we will call KEY(j). For thesebnodes,~KE¥(j) is the sum
of D(j) and the weight of the next unexamined edge from node J;
that is, KEY(3) = D(J) + W(j,P(J)). Since the exemined edges on
J's adjacency list all point to near nodes, we know that
KEY(3) =< D(j) + C(j, REALK(J)).

_To add a new vertex to NEAR, the algorithm selects a near node:
j such that KEY(j) is minimal among all near nodes. Suppose
that k = A(j,P(j)) (the endpoint of the least-cost unexamined edge
from node j) is a far node. Then j = jo satisfies the conditions

of Lemma 7.1 since




-188-.

D(3) + C(3.k) = KEY(j) < KEY{j~)
< D(3-) + C(3-, REALK(]-))

for any other near node j°, and since C{j.,k) Is the least cost of any
edge from j to a far node{( all examined edges point:to néar nodes).
Hence k can be added to NEAR and “D(k) can be set to~ KEY(j)
and still preserve the inductive hypothéses&Of Lemma 7.1.
On the other hand, if node k were already a member of NEAR,
then its shortest distance is already khown, so nething is done.
In either case, since the edge from j to“k = A(j,P(j)) has been
examined, the pointer P(j) ts moved to the next-edge from §.
This search is continued until either all nbdes,aﬁe found to
be in NEAR or until there are no further edges to examine, in
which case it follows from: Lemma 7.1 that NEAR.is ‘the set of all
vertices which are reachable by'paﬁhs from 1(since a missing edge has weight =).
One additional requirement is imposed in order that the geheral
algorithm given above have fast running time. If the node j in
NEAR from which we are searching has several edges of equal weight,
then these edges are considered in consecutive executions of the
search loop. That is, if W(J,P(3)+1) = W(j,P(3)), then we require
that the algorithm se]gct J as the near node from which to search in

the next execution of the search loopf.

T Together with the specifications on the tie-breaking rules of the
priority queue below, this requirement avoids the difficulties in

Spira's algorithm noted in Appendix 3.
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To select nodes with appropriate KEY values, we use a priority
queue. Three priority queue operations are necessary.  CLEARQ
sets the queue to the émpty state. MINQ returns and removes from
the queue a pair (KEY(j),j) such that.j is a node in NEAR for
which KEY(j) is a minimum among all nodes in NEAR;A If the quéue
is empty, MINQ returns the pair (NIL,NIL). INSERTQ (d,j) inserts
node j into the priority queue and sets KEY(j) to .d.. In case
there are several ncdes in the queue with minimai KEY values,

MINQ selects and returns any one of them, (We‘agsumé ohly that fhe
queue operates so that the value returned by a MINQ dperqtion
depends solely on the previous sequence of queue operations.)

The fully specifie& algorithm, Ri’ which computes the shortest
distance D(j) from node i to node j’<is.given below in a

PASCAL-Tike language, where « is represented. by NIL:
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Algorithm R;
L:=1ton DOD(L) := NIL,
L:=1¢ton QQ_P(L) = 13

NEAR := {1} ; D(i) := 0; J := NIL; CLEARQ;
IF W(1,1) # NIL THEN <KEY,J> := <@i(1,1),i>;

Comment If there is an edge émanat1hg from 1; then KEY is set

to the minimum weight of all edges from i.

WHILE J # NIL DO |
Comment J-is the near node to be searched from. If REALK is

~defined for some near node, then J # NIL,

BEGIN REPEAT  := A(J,P(J));

END,

Comment K is a candidate for REALK(J).
IF KINEAR THEN | |
~ Corment X is REALK(J).
BEGIN NEAR := NEAR y (K};
D(K) := KEY;
IF |NEAR| = n THEN HALT;
IF W(K,1) # NIL THEN INSERTQ (-KEY+W(K,1),K)
END; "
P(J) := P(J) +1
UNTIL  W(3,P(J)) # W(J,P(3) - 1);
Comment Examine all equal-weight edges emanating from J
at the same time. o 5
IF W(J,P(J)) # NIL THEN INSERTQ (D(J) + W(J,(P(3)),d);
<KEY,J> := MINQ ‘
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To compute the shortest-distance matrix M, algorithm Ri is

run for each ie[l:n].

Shortesi-distance algorithm

FOR T :=1 ton DO
BEGIN

Ri;

FOR J :=1ton DO M(I,J) := D)
END .
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Section C. Analysis of the Algorithm

If G 1is a weighted graph, we will denote by Ni(G) the
number of times the test "IF K/NEAR" is executed by Ri on
graph G; that is, Ni(G) is the number of edges of G examined T
by algorithm Ri' Note that only a fixed number of operations are
perforied by Ri between successive executions of this test, so
that the total number of operations performed by Ri on graph G

is proportional to N,(G) + 1. Thus we try to estimate Ni(G)‘

7.2 Theorem: For any ie[1:n] and any adjacency invariant

probability measure P on G;
EP(Ni) < n log, n

Proof: Suppose that ie[1:n] and that P 'is an A.I. prob-
ability measure on G. If I is any adjacency transformation, then
n is a measure preserving transformation on G. Hence EP(Ni) =
EP(N1°H))~ Taking the sum of such expectations over all adjacency

transformations 1, we have

PAUREIRIUCCHUNER)
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7.1 -E(N.)

Formally, an edge from d is "examined" when the pointer P(J)

1S set to the next entry past the edge in the adjacency matrix.
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thus, to prove that E(Ni) s n ]oge n, it suffices to show that

Ep(nzjh(ﬂi ° n)/]]hl) £n Tog’e n.

We will prove the stronger statement that, for any graph GeG,

[né'rﬁﬂi(m)]/lfn[ s nlea.n. = (1)

So suppose that GeG is fixed, and let G] be the set
{n(6) | neTh}. 'Aﬁ easy argument demonstrates that the left-hand
side of inequality (1) is simply the average value of N%"Awith
respect to the prohability measure Py which assignsxeachﬁgrdph
in G] equal probability, and all'other graphg pygbab{]ity zero. Hence

ve must show that

EP](Ni) s Toge n. (2)

Proving inequality (2) requires analyzing the average
behavior of algorithm R1 over all inputs GeG]. A convenient way
to carry out this analysis is to consider a probapilistic algorithm
R{ which has no inputs. R{ is the same as Ri except that where
Ri would reference inputs describing a graph G, R{ generates the

inputs randomly. Note that every graon in G] has the same
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edge-wefght matrix W as @; it is only tﬁelendeint:matrices A
which. differ among the ﬁembers of Gy. Moreover, each possible
endpoint matrix is eQuallx 1ikely, modulo the reggirgment that
edges of equal weight in a fow be arfaﬁged’in 16creé$fﬁ§’node order.
Hence the probabilistic aIgorlthm Ri yh1ch we construct
selects at random and with equal probabil1tie§’one of these |
possible endpoint matrices and then executes R1 on the graph chosen.
The se]ectlon of the endpoint matrix -A - -is _not: dbﬂe 1nit?ally but
rather dynamically as Ri references A (wh1ch is done in left-
to-right»fashiqnvacfoss ;he rows of A).; At theifirs; rgfereDCe
by Ri to entry A(@,K)_ for any J and K in -L}:n], a Yalue
of the endpoint A(J,K) is chosen. If J hasiﬁevéral,gdggs of
equal weight emanating from it, then1§t:thé fif;t_rgference to
any of these 2 seie;tion qf the.endpoin;§ fériall,these edges of
equal wéight is madé and entered in the matrix A iﬂ;§h¢¢Rf°P¢r
order. In all cases, by selecting these endpoints ffom all poésible
unused endpoints in an independent ﬁaghten:uithfqugk probabilities,
one guarantees that'every graphvin G] will be chosen with equal
probability. |
R{ is obtained by replacing every reference A(J,K) in Ri
by the following probabilistic procedurc A*(J;K);'1Iﬁlthisflatter'
prbcedﬂré,_ C is an internal nxn matrix which A” uses to store
the endpoints which have already been selected; C(J,K) is
initially set to NIL for every J and K in [1:m]. L s

the number of endgoints to be selected, and -SET 1is a set variable
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which collects those endpoints. RANDOM 1is a probabilistic
procedure which returns an element of [1:n] independently and

with equal probability. MIN returns the minimal value of any set.



~196~

Prqéedure A~

A'(9.K): IF C(J,K) # NIL THEN RETURN (C(J,K))
ELSE | |
BEGIN

L := [{K"e[1:n] | W(J,K) = W(J,K")}|; Comment The number of edges
SET (= 9; to be selected.

REPEAT
B := RANDOM,
IF BA{C(J,K") | K e[1:K-1]12
THEN SET := SETu{B}
UNTIL [SET| = L,
Comment SET is now a random selection of L un-used
endpoints of edges from J.
For J* =0 to (J+L-1)D0
BEGIN
R := MIN(SET);
SET := SET-{R};
C(Jd°,K) :="R

END;
Comment These L edges are inserted into the graph

weight N(J,K) in the proper order.
RETURN (C(J,K))

END;
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We make the following obvious remark.

7.3 Lemma: Let E, be the average number of times the test "if
KENEAR" is executed over all possible runnings of algorithm R{.

Then E0 = EP](Ni)'

To analyze the probabilistic algorithm R; » hote that once a
node becomes a member of NEARuUSET, it will become a member of NEAR
before the next call of procedure MINQ.. This is true since
endpoints of equal-weight edges fromr J are considered in succes-
sive passes of the loop of RS- Hence, if NEARUSET = [1:n] at
any point in the algorithm, then at most n further executions of
the test "IF K/NEAR" will occuf before RI terminates.

Now let E be the expected number of times the procedure
RANDOM is -called in the execution of R{ until NEARUSET = [1:n].
At any point in a particular execution of R%, the number of times
the test "IF K#NEAR" has been executed is at most equal to the number

of times nodes have been selected by RANDOM  since the endpoint of
every examined edge was at some point returned by RANDOM. Hence

Ep () = s £+ n.

But E is nothing but the expected number of times nodes from
the set [1:n] must be chosen randomly with repetitions and placed
in the set NEARUSET until NEARUSET = [1:n]. This number is well
known to be asymptotic with n lTog, n [Feller 1968, p. 225] so ‘
Epl(Nj) 5 n logn.

O Theorem 7.2.




-198-

Section D. Implementation

There are several efficient ways of implementing a priority
queue on a random acceSS:machine'(R;A.M.) [Aho, Hopcrbfi, and
Ullman 1974]. In particular, one can use a heap and ensure that
every execution of MINQ and INSERTQ takes :
0(log n) steps. and every CLEARQ takes O(n) steps. Standard
implementations allow computing'membership”in; and cardinality of,
the set NEAR with fixed cost.  Under these impiementation assumptions
the average number of 5nstructive steps requfred to execute Ri (for any
is[l:nj) on a R.A.M. is O(n 1092 n) for any Aslf pfobabilitx~on G.
Since the shortest distance p;ablemfis'that of'cémputing the
shortest distance matrix M from the cost matrix C, we must
include the cost of extracting matrices A and W from C. This
can be done by sorting at a cost df O(n%.logvn) vbasic steps, and

we have the following theorem.

7.4 Theorem: Implemented as above, the shortest distance algorithm
take an average of _ﬂ'(n2 1092 n) basic steps on a R.A.M. o&er any

“A.I. probability measure on weighted graphs.

For may applications, one wants not only t6 compute the mini-
mum distance between é}] pairs of nodes i ‘énd J, But also to
find a path in the graph which achieves that minimum’cpst. A
simple addition to algorithm Ri enables one to retrieve such a.
path. A on>-dimensional array PATH is introduced and PATH(2) is

initialized .o NIL for every 2e¢{1:n]. When a far node k is
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added to NEAR by virtue of its be‘l‘ng_at the endpoint of an arc
from the near node j, then PAT;‘Ij(k)Y _1s set to j. This fully

specified version of algorithm R, is given below:
Algorithm P

FOR L :

1 ton DO PATH(L) := NIL;
T ton DO D(L) :

1ton DO P(L) :
NEAR := {i}; D(i) :=0; J :
PATH(1) = i;

n
-=

IL;

1

FOR L :

FOR L :

NIL; CLEARQ;

IF W(i,1) # NIL THEN <KEY,d> := <W(i,1),i>3
WHILE J # NIL po o

BEGIN REPEAT K := A(J,P(J));
IF K#NEAR .]1g31 |
BEGIN D(K) := KEY;
PATH(K) := J3
NEAR := NEARU{K};
IF |NEAR| = n " THEN HALT;
IF W(K,1) # NIL THEN INSERTQ( KEY + W(K,1),K)
END; |
P(J) := P(J)+]
UNTIL W(J,P(9)) # W(J,P(3) - 1)5.
IF W(J,P(3)) # NIL THEN INSERTQ(D(J) + W(J,P(J)),d);

<KEY»J> := MINQ.
END,




The paths from all source nodes may beiﬁtdred inthe obvious way.
A straight -forward inductive proof shows thé2f611dwihg:
Suppose keNEAR at some stage in algorithm P;- Then if we define

the sequence of nodes:
! =k
W, = PATH(W, _,) far 2211 N,

and if 20 is the least index in ™ such that "z = i, then

i=w

. ’"zo-]""’wzdﬂl =k

0
is a path of cost D(k) from i to k. .

A final application allows us to modify the algerithm to

compute the transitive closure of an (un-weighted) directed graph.

. %
If G is such a graph, thetransitive closure matrix I (G) is an

nxn -Boolean matrix defined so. that

1 if there is a path from i to j in G

0 otherwise .

1"(6)(1,3) = ,

: *
The transitive closure problem is that of computing I (G) from

the nxn 1incidence matrix I(G), where

1 if there is an arc from i to j in G

1(6)(1,4) = ;

v 0 otherwise.
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We ma}fidéntﬁfy an unweighted directed graph G = (V,E) with
the weighted directed graph G~ obtained by assfghing weighfs of
zero to all edges in E and weight = to-all missifg edges'.
We make the observation that the shortest distance matrix entry
M(i,j) 1s equal to 0 iff I*(f;j) =1,

Hence, any shortest path algorithm may be used to solve the
~ transitive closure problem. For a]gorfthhs ‘Rf 1and**Pi; since
all KEY's are equal to zero, onemay implement the priority queue
in such a way that every insertion and deTetion from the queue
can be performed with constant cost. As pointed out in a previous
paper [Bloniarz, Fischer, and Meyer 1976] this résu]ts in a

transitive closure algorithm with O(n2 10g n) average time.
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Section' E. A.I. Distributions

We conclude by presenting several examples of ;adjacency
invariant probability measures.

1. For each ie[l:n], suppose Py 1s a -prohability measure
on ra*. Let P be the probability measure.on G .obtained by
selecting each entry of the weight matrix C(i,j) independently
according to distribution Py. Then P, being the product measure
generated by the measures Pi, is A.IL. Thisfc]ass properly -
includes all distributions claimed in Spira [1973].

2. Suppose R is some probability measure on an arbitrary
set B, and f:G, » B 1is a function which is invariant under each.
TeT 3 that is, f o n(G) = f(G) fo;_gll_nefn\ and: Geg,. Then
the induced probability measure R o f on G is A.l. by construc-
tion. Some specific examples include cases in which the weights
of edges might be specified but all choices of endpoints are
equally likely. For example, in the discrete case, one might
specify a distribution on the sum of the weighfé of the edgés
leaving each node, and specify that each graph with the same sums
be equally likely. Or one might specify a distribution on the
maximum weight of any edge in the graph and specify that each graph

with the same maximum be equally likely.




-203-

Section F. Open Questions

1. Schnorr [1978a] has récently exhibited an O(nz) average-
time algorithm for transitive closure which improves on the ideas
above. His algorithm does not construct the paths between all
pairs of nodes; does a transitive closure algorithm exist which
does construct the paths (as the algoritmm P, does) and which has
o(n2 log n) average time?

2. Is there a larger lower bound to the worst-case running time
. of any shortest-path algorithm than the 9(n2) obtained by adVérsary
arguments? Can a Tower bound on the average-case running time of
such algorithms be established? For a related paper, see [Yao, Avis,
and Rivest 1977, Graham, Yao, and Yao 1978, and Yao and Rivest 197817,

3. The fastest known algorithm for computing the transitive -

2‘81") basic steps in the worst case [Fischer

closure requires O(n
and Meyer 1971]. Can this algorithm be improved upon?t Can Fredman's
(worst-case 0(n3)) shortest-distance algorithm be improved upon?

(Fredman [1975] has observed that Spira's algorithm may be
modified to compute the shortest-distance matrix M with a average total
number of comparisons of only O(n:Z log n) but at a significant increase

in total running time when all operations are considered.)

t Recently, Pan [1978] has improved on this result and has
announced (1979) an even further improvement.
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APPENDIX 1

In this appendix we sketch a proof pointed out to the author
by V. Chvatal® of the lower bound on- H{n) stated in Theorem 3.14.

We use notation as in Chapter 3.

Theorem: Suppose 0<e<1/8, Then, for arbitarily-large n, there
is an n-node undirected graph G, such that D(6) 2 nen{1-€)1.

Hence H(n) 2 n-n{1-€) 4.

Proof Sketch: Suppose 0<e<1/8,We will show the existence of an
n-node undirected graph Ge (for arbftrari}y large n) for which
D(6.) = n-n'"S+1 . First we make some observations. ‘
Suppose that G s an arbitrary undirected graph, and Tlet
C= (h],...,hm) be an exact cover‘of G by complete bipartite
graphs G],...,Gm. Suppose Gi is a complete ki-zi bipartite
graph for ie[1:m]. Cbserve that if both ki and %5 are at
least 2 for some ie[1:m], then G must contain a 4-cycle; that
is, there must be nodes a,b,c, and d 1in G such that edges
{a,b}, {b,c}, {c,d}, {d,a} are in G. Hence if G were a graph
with no 4-cycles, we may withcut loss of generality assume that

each graph G, iSCL(].Ri) complete bipartite graph. Let v,

Yprivate communication, 1977. Recent research by Bermnd and Chung

[Bermond 1978] have shown that

n-nm/24 * 5, g(n) <n - 1og3n + 0(1)

for arbitrary 6>0,




be the node in hi(Gi) corresponding to the singleton set in Gi'

It is clear that {91 | ie[1:m]} 1is a node cover of G,
that is, a subset of the vertices ¢f & such that every edge in
G contains at least one member of the set. : Hence, D(G) equals
the size of the smallest node cover of G, as long as. G contains
no 4-cycles. ‘

Ifr 0<e<1/84s arbitrary;'then*Erdds’leSﬁ] has proved the - -
existence of an arbitrarily large graph Ge””wfih ‘A “nodes which
has no 4-cycles, and for which every set of at least n]'e'
spans at least one edge. Hence any node cover for Ge, can omit
at most nl"S-1 nodes, so b(6,) > nen a1,

‘0 Theorem.

nodes
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APPENDIX 2

In tHis appendix we explore several questions in the M-circuit
complexity of combinations of functioné, A general theorem, due to
Galbiati and Fischer, is pfesenied in théhYd csmbihéfion of fUhétions
f and g is considered ih which f and g' depend on one vériab]e

*. This general proof includes as a Specia] case M. Fischer's

in common
result that MC(fxg) = MC(f) + Mc(g); [Paul 1976]. Finally, we

remark that these results also apply tOthé measures MQA' and MG, -
Additional research on combinations of functions which are.the dis-
junction of variables has been reported by Lamagna [1975], Neciporuk

[1971], and Tarjan [1976] .

1. Theorem (Galbiati and Fischer):

Suppose n,m,k, and 2elN, and feB

m.b.f.'s.

K and geB are

n+l m+l,2

Define ngeBn+m+1, K+ by

ng(x1,...,xn,y],.,.,ym,z) = (f(x],...,xn,z),g(y],...,ym,z)).

Then MC(fag) = MC(F) + MC(g).

Proof: Clearly MC(fag) < MC(f) + MC(g); we prove the reverse

t ot ‘ :
This result has been presented in [Galbiah and Fischer, 1978] since -

the writing of this paper,
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inequality.

Suppose N .is a minimal M-circuit which computes ng We
wi]] say a gate GeGates(N) is a mixed gate if G depends struc-
tufal1y | on some variable from X = {Xl’ .x } and some variab]e
from Y = {y],...,y }. We show that it is possible to re-structure
N to eliminate a]] mixed gates and result in a circuit N“ which
has no more gates than N and which stil] computes fag. If this
is the case, then N consists of two disaoint cxrcuits, one consists
of Succ (X, N)u{z} and contains a gate computing f(x z), ‘and the
other consists of Succ (Y N )u{z} and contains a gate which computes
g(¥,z). Hence the tota] number of gates in N~ (and therefore N)
is at least MC(f) + MC(g). '

So let MIX = {GeGates(N)|G 1is a mixed gate} and suppose
MIX # §. Then I(MIX) # @, so we can select an'arbitrary gate
GeI(MIX) and let Pred(G) = {H,J}. Since N is minimal; neither
H nor J is a constant node. We will replace G with another
gate which is not mixed and yet still have a circuitiuaigh'computes
fag. | |

Since H and J are not in MIX, but & 1is, either H depends
solely on Xu{z} and J depends on Yu{z}, or vice versa; suppose
w.l.0.9. that H depends on Xu{z} and J depends on Yu{z}.

We first consider the case that G 15 an a-gate. In this case

PI(6.N) ¢ PI(H,N)-PI(J.N) ; (1
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that is, every prime implicqnt of G 1is a product of a prime impli-
cant of H and a prime implicant of J. By Lemma 2.8 , since no
component of fag has a prime imp]iéaﬁt which ;oﬁﬁéins.both,a var-
iable from X and one from Y, we may e]ihinaterfrom PI(G,N) all
* such monomes which contain both a variable from X and a variable
from Y, and still have a circuit whicﬁ computes fag. We consider

seveal cases.

Case 1: Neither PI(H,N) nor PI(J,N) contains the monome z.

In this case, every monome in PI(H,N) contains an X-variable
and every monome in PI(J,N) contﬁins a Y-variable. Hence, by (1),
every monome in PI(G,N) contains both an X-variable and a
Y-variable so G may be replaced by a node which computes the
function V@, the constant function 0. Since this new network has
one fewer gate (naméiy G) than N, this contradicts N's minimality

and hence Case 1 can not occur.

Case 2: z is a member of both PI(H,N) and ﬁI(J,N).

In this case, z¢PI(G,N). By an argument similar to Case 1,
one can also show that all monomes in PI(G,N) different from 'z
contain both. an X-variable and a Y-variable and hence may be
eliminated froh PI(G,N) while still leaving a circuit which
computes fag. Hence G may be e]imiﬁated'and*répiaced by the

input node for the variable z, a contradiction to the minimality of
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Case 3: z 1{s a member of exactly one of PI(H.,N): or PI(J,N).

~ Assume w.T.0.g. that ZePI(H;N). Iﬁ thiS cése, every monome
of PI(H,N) other than z contains an X;var{éble; and every
monome of‘ PI(J,N) contains a Y-variable. Thuskevéry monomé ofr
PI(G) contains a Y-vafiab1e, and thdseVWhiCh do nbt cqhtainran
X-variable in addition are of the forﬁtz-t‘, ﬁhére t;ePi(J)
(hote that t may also contain the literal z). -

So let N” be the circuit obtained by replacing H in PreqﬂG,N)
by the input node for vafiab]e z. Théh  PI(G,N?) consists of those
monomes of PI(G,N) which do not contain both an X-variable and
a Y-variable, and we have a circuit N~ which sti11 computes
fag by Lenima 2.8 , Since G 1is not mixed in N”, we have reduced

the number of mixed gates in N by one.

In the event that 6 is an v-gate, we use an argument duél
to the one above to also replace G by a non-mixed gate. Recur-
sively repeating the above construction for each initial mixed gate,
we obtain a modified M-circuit for fag with no mixed Qates; and no
more total number of gates than the origiaal. Hence the theorem is

proven. 0 Theorem 1.

2. Corollary (Fischer): Suppose that -feBn K and geBm’z are
m.b.f's. Then MC(fxg) = MC(f) + MC(g), and any optimal circuit

for fxg contains no mixed gates.
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Proof: Define f‘(x1,.,.,xn,z)af f(xT,...,xh)ﬂ'and

g'(y],...;ym,z) = g(y],...,ym). Then MC(f-) = MC(f) gnd

MC(g”) = MC(g): Also f-ag” = fxg, so the first part of the
corollary holds. Moreover since f-ag” does not depend on variable
Z, cases 2 and 3 of the proof of Theorem 1 can never hold for a
minimal circuit, and hence no mixed gates can occur.

0 Corollary 2.

In a similar fashion to Theorem 1, one also proves that

the following holds.

3. Theorem: Suppose that feB | and geB . are m.b.f.'s. Then
and

(2) MC,(fxg) = MC (F) + MC,(g).

The proof of part (1) is similar to that of Theorem 1;
one considers an a-minimal circuit for fxg which among all such
also has a minimal number of v-gates. part (2) holds by duality.

A similar result holds to Theorem 3 holds for- fag.

Note: We observe that the analogous question to Theorems 1 and?2

when f and g have 2 variables in common is false as the example
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f(z],zz) = g(z],zz) =2 AL

demonstrates .
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_ APPENDIX 3

In this appendix we present a version”of Spira's algorithm
for computing shortest distances in a'gkaph fi973]'which has
9(n3) average running time oVer a ;értain ciagg‘of graphs.
This counter-example, which waskbreQioué1y repbrted‘ih [E]oh}arz,
Fischer, and Meyer 1976], reveals why we needed‘to revise, ;orrect,
and verify Spira's original approach. |

Spira's algorithm operates by cpmput%ng the disfance from a
particular "source" node i to a11'ofher hbdés in the Qraph. By
repeating the algorithm for each source node i, the shortest-
distance matrix may be found. Two differehces between this algor-
ithm, which we call S., and the algorithm R, of Chapter 7 are
noted. The first is that, in Si’ no assumptions a?é made about
‘the value returned by MINQ in the case in which»there are nodes
in the queue with equal KEY's; the queUe‘mighffufilize information
about the graph in breaking ties. This iéia minor difficulty.
The other difference is fhat when a near node has several edges
of equal weight emanating from it, then these edges are not nec-
essarily examined in successive passes‘of the algorithm. These}in-
complete specifications lead to the probTems we“deécriﬁe later. A

Pascal-like implementation of Si is given below: '
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FOR L :
FOR L :

1 ton DO D(L) := NIL;

]
-—

Tton DO P(L) :

NEAR := {i}; D(i) := o. J i= NIL; »CLEARQ; |
IEW(i,1) # MIL THEN <KEY,05 := @i(1,1),1>;
WHILE J # NIL DO .
BEGIN K := A(J,P(J));
IF K/NEAR THEN
BEGIN NEAR := NEARU{K},
D(K) ;= KEY;
INEAR[ = n THEN HALT;
IE (K, 1) f NIL THEN INSERTQ(KEY + WK, 1), ©

]

END ;
P(J) ?= P(J) + 1;
IF W(3,P(J)) # NIL THEN INSERTQ( KEY + H(K,1),K);
«&0> =M .
END

- The proof that S correct]y computes the shortest distance
D(J) from node i to node j is identlcal with that given in
Chapter 7.for algorithm Ri’ ‘ | |

To show.that algorithm S1 can be implemented poorly, for
simplicity we will restrict ourselves to the case in which all

edge weights are either 0 or «. This corresponds to computing
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the transitive closure of a graph as mentioned in Chapter 7.
In this case, every node in the priority queue has a KEY of zero,
and the value returned by MINQ 1is an arbitrary pair in the queue.

We present an example in which theﬂbriority queue is implemente&
so that the value returned by MINQ does not utilize any information
about the graph (i.e. the matrices A and W) other than that
~given it by previous INSERTQ operations. In particular, we maintain a
first-in, first-out queue to store the nodes in the priority queue. A node
is INSERT'ed at the end of the queue, and MINQ removes and retﬁrns

the node at the beginning of the queue.

Theorem: Let P be the uniform probabiltity distribution on n-node
weighted directed graphs in which all edge-weights are zero or «. "For
any graph GeGn. assume (as usual) that edges.of equal weight in

all adjacency lists are sorted by increas%ng node index. If

Ni(G) is the number of times the subroutine ~MINQ is called

in executing Si on G, then, when implemented as described above,
Ep(N;) = a(n?)
P i

’Brggf; A straightforward argument shows that an averagé
graph under this prbbabi]ity dfstribufion »

(1) has at least n/3 edges émahating from each node
and (2) has a path (of weight 0) from every node to every other

node in the graph.
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It suffices to show that there is a constant ¢ > 0 such that if
G 1is -a graph satisfying (1) and (2), then uaxa):z,ca?.
So suppose G satisfies (1) and {2). Then, in the execution
of S; on G, node n will be placed in NEAR at some point.
Hence, at some point in the execution we must-have: K = n; let jo :
be the value of J at the point (the edge from ,jol to--n pis
being "examined" at that peinf), Since jo.fhad-a;,ieast n/3
edges from it, and since the edge to n 1is the last edge listed
in the jéth- row of A and . W, we know. that 30‘ must have been
placed in NEAR, placed on the queue, and subsequently'neturned;by. .
MINQ at least n/3 times.

th time that jo ~is returned by MINQ, an

Following the: £
edge emanating from j, 1is examined, and its endpoint ’A(jo,z)
is addéd to the queue (unless that element. had-previously been
placed on the queue). The: queue discipline implies that A(Jo,z)
will be returned by MINQ inbetween suecessive returns of jo

by MINQ, starting from the zth

time thaty jo; is-returned by
MINQ and continuing at least until either node n is placed in
NEAR (after at least n/3 - ¢ further returns?hf‘jo’by MINQ) or
until every edge from A(jo,z) has been examined. Thus A(jo,z)
is returned by MINQ at least min(n/3 - 2 -1, n/3) =n/3 - ¢ -1
times. Since this is true at leaét for 1 s 2 < n/3, the total

number of calls to MINQ is at least
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n/3-1
I (/3 -0 -1) = a(nd)

2=1
and the statement is proved.

] Theorem,

Since this theorem is true for every ie¢[1:n], a transitive
closure (or shortest path) algorithm implemented as above will have

Q(n3) average time, contrary to Spira's original assertion.
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