MIT/LCS/TR-240

SAFETY AND OPTIMIZATION TRANSFORMATTIONS

FOR DATA FLOW PROGRAMS

Lynn Barbara Montz

Tius blank page was inserted to preserve pagination.

Safety and Optimization Transformations
for Data ['low Programs

by

L.ynn Barbara Montz

January, 1980

Copyright 1980 Massachusetts Institute of Technology

This rescarch was supported in part by the National Science Foundation under rescarch grant
MC575-04060 AO1 and in part by the Lawrence Livermore Faboratory of the University of California
under contract 8545403.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
[aboratory for Computer Science

Cambridge Massachusetts 02139

This empty page was substituted for a
blank page in the original document.

| Safety and Optimization Transformations -
for Data Flow Programs

by
Lynn Barbara Montz

Submitted to the Department of Electrical Enginecring and Computer Science
on January 31, 1980 in partial fulfillment of the requircments for
the Degree of Master of Science

ABSTRACT

The data flow concept of computation secks to achieve high performance by allowing
concurrent execution of instructions based on the availability of data. This thesis explores the
translation of a subsct of the high level language VAL to data flow graphs. 'The major problem in
performing this translation for the target machine, the Dennis-Misunas data flow computer, stems from
the restriction that graph cxecution sequences place at most one value on any given arc at any time.
The data/acknowledge arc pair transformation is introduced as a means of implementing this required
operational behavior. Its effect on data flow graph operation is subsequently explored as it relates to
correctness and performance. '

Though the arc transformation cnables graphs to be exccuted without the possibility of
deadlock, the resulting overhead and the potential loss of some concurrency represent significant costs.
Two techniques aimed at minimizing these problems are developed for optimizing transformed graphs.
‘The optimization to eliminate unneeded acknowledge arcs analyzes VAL constructs to identify arc pairs
which may permit removal of their acknowledge arc. 'The optimization to balance token flow specifies a
mcthod of inserting identity opcrators into a graph for the purpose of pipclining input scts, and thereby
increasing graph throughput. Though dcveloped within the context noted, the translation and
optimization issues described should prove applicable to other data flow architectures.

Thesis Supervisor: Jack B. Dennis

Title: Professor of Computer Science and Engineering

Keywords: data flow programming, data flow translation, optimization, asynchronous systems,
Petri nets.

This empty page was substituted for a
blank page in the original document.

ACKNOWLEDGEMENTS

‘Theodor Herzl said, 717720 W 'R 8O0 BR | that is, "if you will it, it is no drcan™; and
though this thesis represents the completion of a personal endeavor, its accomplishinent is owed in
large part to several individuals to whom I am greatly indebted.

I wish to thank my thesis advisor, Jack Dennis, for offering me the opportunity to join the
Computation Structures Group of the lLaboratory for Computer Science, and for his subsequent
guidance in the formulation and development of this rescarch. 1 have gained much from my
association with the members of his group, and am grateful for the very positive and warm working
atmosphcre which they have collectively created.

I would like to thank Clem Lcung for providing direction and encouragement during the early
stages of my work, and Dean Brock for his helpful editorial comments and suggestions concerning the
technical content,

I am especially grateful to Bitl Ackerman for countless invaluable discussions of the problems
and idcas which arose throughout this rescarch., His patience was truly remarkable, and his
cncouragement and confidence in my abilitics should prove a permancent benefit.

Of course, 1 must express my spcciul‘ thanks to Chris ‘T'erman whose excellent preparation of
the graphs in (his thesis scems quite minor in comparison to the sincerity and valuc of his fricndship.

Finally, I am most gratcful to my parents and family, who have always provided me with

support, encouragement, and love,

This empty page was substituted for a
blank page in the original document.

'TABLE OF CONTENTS

1. CHAPTER ONE

1.1 Introduction

2. CHAPTER TWO

3. CHAPTER THREE

3.1 Balancing Token Flow

3.2.4 Obscrvations

4. CHAPTER FOUR

6

6

1.2 Data Flow Graph Operation .1
1.3 Translation of VAI. to 1Data Flow Graphs 9
1.4 Safcty Transformations for Data Flow Graphs ... 12
1.5 Optimizing Transformed 1)ata FIow Graphscvveemensieenssessssssssnensuesessssssess 14
1.6 Structure of ThesSiscc.cceereeercemmeeeceesensnencseenens 15
16

2.1 The S/afety Transformation 16
2.2 The Petri Nct - Data Flow Graph ARalogycoveeccnisreenscnninnienscenersensessesasesness 17
2.2.1 History and Analogy 17
2.2.2 Modeclling Data Flow Graphs with Petri Nets 19
2.3 The Data/Acknowledge Arc Pair Transformation 22
2.3.1 Achicving Safe Data Flow Graph Operation ... 22
2.3.2 Preservation of Livencss . 24
35

35

3.2 Formulating the Optimization 36
3.2.1 Identifying the Source of Bottleneck 36
3.2.2 Preview of a Solution 31
3.2.3 Analyzing Token Flow to Characterize the Solution 38
42

3.3 Full vs. Limited Buffering 43
3.3.1 Achicving Limited Buffering .. 43
3.3.2 Examples of Full vs. Limited Buffering 45
3.3.3 Additional Considerationsccoceceeeceeserererenne 56
57

4.1 Eliminating Unnccded Acknowledge Arcs 57
4.2 Considerations for Acknowledge Arc Removal 58
4.3 Analysis of the Conditional Construct . 60
4.4 Analysis of the lteration Construct 66
66

44.1 Acknowledge Arc Removal

4.4.2 Acknowledge Arc Removal in lterative Programs ... 72

5. CHAPTER FIVE ettt ee s et e ens s s s b 79
S.1 SUITIITIATY oottt ee e ee et ee e e ee s s st ateb et sbestesaereene s eneseesesesenen 79

5.2 Dircctions for Future Research ..ot essnns 81

6. BIBLIOGRAPHY oottt st e see s sbsasibs s sas s ss b sssssas s esaesaenns 83

CHAPTER ONE
1.1 Introduction

The short history of computing as a:science is unique in its unparalleled rate of technological

growth. In response to this, the demand for greater levels of computing power has risen as rapidly.

s L
Lod Fis i

Anticipating the continuation of this trend, rescarch in the area of parallel computation sceks to achicve
high performance by manipulating programs to' exploit the -parallclism inherent in ' many problcms.
Though this has led to the introduction of "do in parallel” constructs within certain languages, the
sequential nature of conventional machine programming has proved to be a barrier to the formulation
of an adequatc and practical approach. The dafa flowtoneept'of compirtation: overcomes this difficulty
by allowing the availability of data to determine the exccution sequence, rather than a scquential
instruction counter: - In:the data flow model, an ‘operation’is‘executed as soor ‘as its required operands
have been computed. 'The development of this coneept has resulted ‘in the proposal of scveral data flow
machine architectures and associated ‘data flow languages. ‘This thesis addresses certain’ language
translation: problems which arise in translating the high level data flow language, VAL]2] for the
ennis-Misunas data flow machincf11].

'The concept of data flow is best illustrated by data flow graphs which explicitly show the data
dependencies of operations in a data flow program. The operators and ares of data flow graphs dre
viewed as an abstraction of the instruction cells and operand registers of the data flow machine and-as
such, provide a model for describing transtation problems. The chapter proceeds with a more detailed
look at the components and operation of data flow graphs, followed by a bricf look at the high level
data flow language, VAL and'its translation into graph form. The major problem, termed safety, which

arises in making the translation will be identified and discussed in 'section 1.4. While resolving: the

-7-

safety issuc is straightforward, the solution introdutes a secondary, more subtle sct of problems to the
graphs. Scction 1.5 identifies these along with several optimizations of the initial solution aimed at
minimizing such problems, an cxpanded discussion of which forms a major portion of this thesis. ‘The

chapter concludes with a synopsis. of the remainder of the thesis.
1.2 Data Flow Graph Operation

The basic componenis of directed data- flow..graphs. are aperators and arcs which join the
operators. When an.operator fires.. it absorbs values or. okens:from its input arcs and produccs kens
on its output arcs, ‘These are three upesator types. and corzesponding: rulcs defining their operation or
Jieing behavier. "the graph in-Figure 1.4 which ropresents the VAl -condigmnal .construct:

fexpthenfelseg |
contains instances of cach type. The exp node is an abbreviation for a VAL expression representing the
predicate of the conditional. thus, it should cvaluate o aboolean value, . - -

The most geperalized operatopr type is the functiopal operatar. represcated in the figure by
nodes fand g ‘These operators may perform simple : arithmetic -operations such as addition or
multiplication, or more complex functions such as square root. ‘Theisiag behavior rule for functional
operators specifics that a token be present on each input arc for the operator to fire, at which time all
inputs arc absorbed, the appropriate function is computed and a'result token is produced on cach of the
operator’s output arcs.

~ The ;mg and false control gates represented in Figure 1.1 by the T, and F nodes form a socond
opcrator type. FEach of these eperators fcquircs a control and a data input to-fire, and operatcs
acbotding to the following rule: If the control input matches the gate type,: the data.input is transmitted

to the gatc’s eutput arc, otherwisc the input data token is absorbed and no output is produced. Thus, a

Figure 1.1. Data flow graph of the VAL cxpression "if exp then f else &

inl_ in2 in3

T gate (F gate) will transmit its input data token to its output arc if and only if it receives a tryc (false)
input control token.
i

The remaining operator type is the M gate or m_gg_ ggn;rg ga;g whlch has {hrcc inputs; a

control.input, and two data inputs corresponding lo ng and falsg contml mput valucs To fire, an M

LR 1
4

gate rcqunrcs an mput control token and corrcspondmg mput data tokcn wh1ch is thcn transmlttcd to
Lhe gatcs output arc. A value prcscm on the input data arc not sclcctcd lS unaffcctcd by the gate’s
ﬁrmg Appropnately, the M gatc merges two paths in thc graph]‘hus. hgure 1.1 models the
condmonal construct behavior by allowmg an mput tokcn to ﬂow thmugh cnhcr the Tor F gate (based
on the cvaluatlon of exp) to the M gatc which mcrgcs the _Lm_q and false paths to producc a result token -

on the graph output port.

1.3 Translation of VAL to Data Flow Graphs

While daﬁ flow - grabhs CXPOSC CONCUTFCACY inhcrent in a computation by explicit
representation of operator dependencics, it is impractical to eXpress programs in Vvthis form. Instcad, we
introduce the high level data flow language VAL, acrunym for‘ml’t;je-oricl;icd algorithmic /anguage, and
a translation algorithm mapping VAL pfograms iﬁ;ordaia ﬂowl graphs. Developed by Ackerman and
Dennisf2] as a source language for data flow glfaphs, VAL is;an applicagivc lénguage containing
constructs well suited for expressing: parallelism in,ai;régram.:;A;B,NF specif%calion of the syntax of a
subsct of VAL, used in the development of this thesis foQows. P ; |

exp ::= id| const | exp. exp| oper(exp) | let idlist = expin exp|

il exp then exp else exp | for idlist = e;@ do iterbody

iterbody :: = exp |iter exp|let idlist = expin iterbody |
if exp then uerbo:br eclse llerbody

» !d | programmmg language ldcnuﬁexs

idlist ::= id{, id}

cons':l: ::= "programming language constants”

oper:.= ';pn)gr;fr;ming languaéc opcrators"

‘The recursive translation algorithm mapplné VAl cxprcs:ons into lhcxf data flow graph'
nnplcmcntatnons defined by J. . Brock[3], consists of the funcuons T and Tl whtch rcspectwcly map
VAL cxpressions and itcration bodics into their graph lmplcmcmanons. Both functnons produce graphs
which have an input port for cach free vanablc in thc cxprcssnon or iteration body bcmg translated.
T[eap] has an output port for cach value returned by the cxprcssmn Tlluerbody] has two ses of
output ports, I and R, used respectively to re-iterate or return a set of values, and an output port ifer? to

signal which possibility has occurred. Translations of the conditional and iteration expressions are used

-10-

cxtensively in. this thesis, and arc shown in Figures 1.2 and 1.3 respectively. -

Functioning of the conditional expression’in Figure 1.2 should be clear ‘f'rom the discussion of
Figurc 1.1. Evaluation of T[cxpl] should pl:oduée an ihput control value for all gates in the graph,
allowing tokens to flow through cither the T of F @:féé.;qglag;li;gggmfl;)lllati()ll of the graph represented
by Tlexp,] or Tlexp;] respectively. The ltcr;moncxpr\c&sum of Figj:rc 1.3 is formed by using M gates

to merge the values resulting from evaluation of exp, with the it_bratién, I outputs of T [iterbody]. 'The

control input port of cach M gate is connected torthe ifer? output:of Tl[ilerbody], initialized with a

]

falsc token to ensure that selection of the first sct of data valugs is from Tlexp]. A sct of data values
. will be iterated as long as successive iter? ()uibixis a_ri: truc imd will be rcturned at the first instance of a
false iter? output, which reinitializes the M gates. A more detailed explanation of the application of the

translation algorithm to the conditional :and iteration -cxpressions, as well as to the remaining

expressions specified in the VAL subsct defined above, can be found in [3]

Figure 1.2. T[if exp| then exp, else expy end)

.

5 e

Mexp2] Tlexp3]

-11-

“Figure 13. Tlfor idlist = expdo iierquyendl :

A major concem in generating data flow graph imblcihcmﬁiions of VAL cxpressions is cnsuring
correct modelling of the semantics of cach high level constriict. In fact; the imﬁsléﬁon‘élgoﬁthm‘ is part
of a two step process giving the opcratmnal scmantics for lhc VM subsct [‘hc operanonal semanltcs of |
a data flow program is a fermal modelling of the cxecution of the programs data flow graph The
operators composmg data flow graphs arc determinate, mcamng that cvery cm;:}plctc sct of inputs to an
operator (one for cach input port) produces a unique set of outpuls. Patif[25] proved that if the
operators of a graph arc dcterminate, the graph itslf is determinate. Dcvclqpifng opcrational scmantics
for VAL is possible duc to the dctcrminatc naturc of its corrcspondingfdam flow graphs. Thus, a
complete sct of i mputs 1o a data ﬂow graph will producc a umqnc sct of outputs, making it neccssary to
examine only one cxecution sequence of a graph to derive thc rcsult of its cxccution. The graphs in this
thesis are generated from Brock's translation algorithm and are thercforc assumed to be correct

scmantic representations based on the operational scmantics developed in [3].

-12-

‘1.4 Safety Transformations for Data Flow Graphs.

Though we acccpt the data ﬂuw graphs gcncratcd by thc’tramlatmn algnrlthm discussed in the
prc\nous scction as thcorcncally currcct, thcrr arcs arc assumcd to be mﬁnltc qugucs -- this pre\rcnts
their rcallmuon Whllc it mlght bc possnblc to implement thcr graphs usmg sufﬁcrcntly large finite
buﬂ”crs thls solution may not be acccpmble To examinc thc problcm cons:dcr the state of the graph
shown in ngrc 14. ‘l‘hc token configuration shown can be rcachc& by assummg rllnt rl\e graph occurs
within an itcration construct which ‘rccyclcs the output of the chnstruct. The second sct of mputs shown
could thcrcforc have been gcncrated in rcspunse to the ‘output rcshhmg from the ﬁrst set of mputs
Assummg that thc uutput uf this ﬁlst sct was produccd by propagatmg tokcns thruugh thc fgls_g branch

of thc graph it would bc possnble for thc corrcspundmg T galc mputs (wkcns lahellcd 1) to sull be

present when the second sct of tokens arrives, creating the computauon statc shown

s -

Figure 1.4. Unsafe token conﬁguratron rcsultmg I'rom mﬁmtc qucue arcs

R R O

inl in2 i3

-13-

~ While an implementation of graph arcs as-huiffers of some constant sizc (greatcr ‘than onc)
could accommodatc this configuration, the dcsign of a number of data ﬂow .architccturcs, including that
of the l)cnms Mmmas daw ﬂow machme cannot support [hlS Thc corrcspondcncc of graph arcs to
uuchmc registers in such designs makes it neccssary lo consndcr only thme cxccuuon scquenccs which
place al most one token on any gwm arc at any ume ln thc Dcnms-Mrsunas da(a ﬂow machme the
conscqucnccs of placmg t;\orc than one tokcn on un arc or corrcspondmgly, ‘<\:>m‘1puung a successive
rcg;stcr valuc bcforc it can bc stmcd are posmblc nondctcnmmsm and dcad!ock asa rcsult of ualucs
qucucmg up in its dlsmbuuon nctwork and blockmg other va!uc.v; from rcachmg their dcsmmuons[24].

tr TraTioa

Mcctmg the one- tokcn opcrauonal rcqulrcmcnt involves prcvcntmg data flow opcrators from

[[R

producmg new tokcns until their output arcs are empty This bchavnor is achlcvcd by deﬁmng the
following ﬁrmg rule for all graph opcrators

Operator Firing Rule: An operator is cnabled to fire when all of its needed inputs are
present and all of its output arcs are cmpty

BET L s ,9» r-'\v; “tpr. s : :::'}i";iv'.-’ -

Application of this rule prevents thc hgure] 4 slatc from occumng.

s 1]

While the operator firing rule defines the dcsared qstoken behavior, the problem of
implementation remains, By pcrformmg g transfonn;on wluch m{aces each arc of a data flow graph
by an appropriate data/acknowlcdgc arc pmr (d/a. amyatfrﬂw guph s infinitc queucs are replaced by
buffers of capacity onc, and the opcmtmﬁnng rule is cxpljcn]y bmlt into the graph. This is illustrated
in Figure 1.5, which shows the transformcd condllwga] constmct of Figure 1.4. The transformation
creates arc pairs which hold cither auuza;or ackuoh*iudge token, where the lator indicates that its
corresponding data arc is ecmpty. With the addmon of acknowlcdge arcs and tokens, firing rules revert

to their original specifications which dcpcnd only ‘on e pi‘éscncc of tokens on input, including

acknowledge, arcs: The opcrator firing rule requirement that output arcs be empty is ensured by the

-14-

Figure L5, Transformed Figure 1.4

@ data token
Q ack. token
——> ack.arc

cnabling condition that acknowlcdgc inputs be present.

The keyword used in describing this transformation is safety, where the underlying idea and

cilE EETR A SIS 5 U I o

the terminology is rooted in Petri net theory. Chaptcr 2 discusses the analogy between data flow graphs
and Petri nets, and the influence of Petri net theory on the safety transformation. Included in the same
chapter is a more detailed description of the transformation, and a consideration: of #ts effeet on:the -

correctness of graphs.
1.5 Optimizing Transformed Data Flow Graphs -

While the transformation of data arcs to d/a arc pairs cnables the implementation of data flow
graphs, it is imperative to qucstion the cost of the acknowledging scheme and dctcrmine the
- incfficiencies, if any, that are introduced. In fact, there is much to say concerning these issues., Aside

from the obvious overhead involved in incorporating acknowledge arcs and tokens, the constraints

-15-

which they imposc on graph-opcration may causc bottlenecks. In response to this, ‘we have developed
optimization techniques which focus on decreasing ovcrhcad‘ and incrcgsjng graph throughput. The
optimization to eliminate unneeded acknowledge arcs is aimcq ral‘dccrcasing overhead, thereby reducing
the cost of the lr'ansfonnation scheme. An analysis of data ﬂow graphs of VAL constructs indicates that
the cffect of certain acknowledge arcs arc rcalizod.by mcgraphs @nupl structure, making the arcs
unnccessary. On the other hand, increasing (hl"b(lﬂ’lput. the"'goai of the é;)timbation to balance token
Slow, is accomplished by introducing additional,idén(ily xmﬁjnm the graph and consequcently creating
more d/a arc pairs. " \ L |

Note that though %he term “optimization” may txkc ona vancty of mcanings, our usc of the
word is confined to the d/a arc pair transformation dcscnbed above: Both optimizations consider the
number of acknowledges uscd-in data flow graph transi'ﬁ"t’ions. We do not consider program dependent

optimizations which might typtcally involve modnﬁcanon of a graphs structure, ie, rcmoval of

unnccessary data arcs or opera[ors This lauer form of opummnon is analogous to standard

e IRt

opnmuatlon tcchmqucs for convcntnonal scqucntlal programs and though nnt yet fully cxplored. .

should prove rcadlly adaptable to data ﬂow
1.6 Structure of Thesis -

Having cstablished a foundation, we proceed to consider the main tasks identificd. Chapter 2
cxpands on the safety transformation introduced in-sacsion: 1.4; and: disousses relatcd: relovameithaory.
Chapters 3 and 4 respectively contain a development of the opummtmns to balancc token ﬂow and

climinate unnccdcd acknowlcdge arcs. Conclusnons arc prcscmcd in chaptcr S along wnth sugg&sted

areas for future research.

-16 -

' CHAPTER TWQ
2.1 The Safety Tranéformation |

The aim of the data/acknowledge arc- pair transformation of data flow programs is to
implement the operator firing behavior, defined in chapter 1, and restated here: -

Operator Firing Rulc An operator is cnablcd té fire when all of its nccdcd mputs are

present and all of its output arcs are empty. o o ‘

This rule reflects the correspondence of data flow: graph arcs to machine. registers, which requires that
the occurrence of more than one token on any arc be prevented: ~Restricting:data flow graph behavior
in this manner is' necessary (o cnsure deltcmﬁnatc‘.and.deadlmk:.ﬁte execution for the architecture
assumed. The analogy between the data flow graph characteristics of detcrminacy and deadlock and:
the Petri net theory propertics of safefy and liveness suggests the usc of Petri nct theorctical results ¢o
formulate and verify the d/a arc pair transforrnauon In fact, the strategy mkcn in devclopmg the safety
transformation is w extract rclcvam Petri.net conccpts ant mdeﬁacﬂm for data ﬂaw guphs.

This chapter procceds with-a closer Jook at the data flow-graph ~Potri act:analogy, particularly
focusing on the possibility of modclling the former: with the fater. Sectien 2.3 cxpands on:the safety -
transformation and its effect in guarantceing dcterminate (safe) and deadlock free (live) operation.
While shewing the cexistence of the former is straightforward;: a sigaificant:question concerns 'whether

or not the restrictions imposcd to cnisure safety affect iveness. . - .« ..

-17-

2.2 The Petri Net - Data Flow Graph-Asalogy *=
2.2.1 History and Analogy

‘The major contribution of Petri sets is to aid in understanding systems. A closer ook at the
components of Petri nets scems an cssential first step. - As shown in the Figure 2.1 example, a Petri net
isa graph composcd of transitions and Places with an mmal markmg dctemnmng the number of tokens

-{pieces of data) rcsndmg on cach place. Thc transitions Wﬁneesmmsponé ﬁcsf)t;éuvcly to- data flow
graph opcratorsiand arcs.. A token must reside on cach input place to & transition for & to'be enabled for
firing, where firing the transition causes a token-on cach-input: place 16 bo'removed, andvon.e to appear
on-each output placc. Figures2.1(a) and (b) respectively show ¢he Petriznet token:con figuration before
and aficr firing transition t1:- The operation of a Petri net is safeif it bohaves-dccording to the following
definition:

) I)cl'mitﬁi For a rﬁ#rkiné >M. a Pctridnet is safe :if for ;v.err.yv lﬁa;ﬁing M’ that caﬁ be |
rcachied by a sequence of firings from: M, therr: is:at:mest oné token on-any place.
This is preciscly the bohavior that we weuld dike dita flow graphs: o satisfy.- Notc that the Figure 2.1
graph is, in fact, not safe since the scquence of tramsition firings: t1:44; thwill place two tokens on place -
P.

We bricfly survey the evolution of Petri. nets:to- introduce the thcorctical results that could
prove applicable to data flow. Petri ncts were initially presented by Petri in 1962 iﬁﬂamﬁ modified by
Holt in 1968 [15]. Extensive study of safety and liveness for Petri nets of the marked graph and state
machine varictics has been done by Holt and Commoncr [16]. Each of these classes form a particular

subsct of free choice Petri nets. This work has been extended by Michel Hack [14] to include free

choice Petri nets. Hack introduces production schemas, similar to data flow graphs, and asserts that

-18-

Figure 2.1. Petri net token configuration before and after transition t1 firing

<

— transition
O place

® token

H

t3

(b)

te

cvcfy production schema can be rc_prcs&;mcd by a free choice Pétri net. A majm result known as the
livencss-an;i-safcncss thcorem statcs ci’rcumrstanccs under whlch a | frq? ‘chqiccr net display§ these
propertics. We cxplore the possibilit& of using such a result in producit)g dctcrminatg and deadlock
frcrc’data flow érqphs. Guarantecing safety for ffcc choice Pcktri nets inlvolves ¢nsuring that every place
is part éf some diréctcd cycle containing onc token. This fact s‘hould.p:rove useful in detcrminipg ifa
data flow graph is safc, or in xﬁodifying it to be safe: We scpk a modélling of data flow graphs by free

choice Petri nets which allows us to concludc that a data flow graph is safg and live if its corresponding

-19-

Petri nél is safe.
2.2.2 Modelling Data Flow Graphs with Petri Nets.

The data flow graph firing bchavmf rcqmrcmcm that no arc ever hold morc than one token,
forces us to focus on the correspondence of da(a ll;w graph arcs to Petn net p]accs Were the
correspondence of places to arcs 1-1, showing the Petri net madel places safef'yvould prove the data flow
graph arcs "safe”. Unfortunatcly, this is not always the case as is seen in modclling data flow graph
control structures.

Consider the graph of the conditional construct in Figure 2.2. Fvaluamm of the predicate
results in cnabling cither the T, o: F gate whlch respectively determmeswhethw thc input data value x
will be processed by /7 or f2. A free choice Pcln net model of thlsdata ﬂow graph must cnable a token
to proccde down one of two paths to reflect thc ‘two ‘branches of fhc condmondl and must melxc the
paths. A possible model is shown in Figure 2.3. Places and transitions eon'cspond_mg to parucular arcs -
and operators in the data flow graph arc so designated. In comparing the decision slructurcs of the
Petri net model and data flow graph, note that place aa’ in F“lgure 2.3 represents two arcs in the data

- flow graph. Although the mapping between pléccs and arcs is clearly not 1-1, the Petri net decision
structurc prcscntcd is cssential for allowmg a token to take one of two paths Unfonunatcly, this makes
it more difficult to determine how propcmcs of pIace ax’ correspond to those of arcsa and x. |

A sngmﬁcant difference in the actual control structurc is the abscnce of speclﬁc placcs and
transitions in the model to reprcscnt the data flow graph prcdlcatc and ns output control arcs. threas
the decision conccmmg which branch of the condmonal construct w:ll be executed is umquely

detcrmmed by the output of the prcdlcate thc Petri net is mndelenmmsm‘, rovndmg a model for all

possxblc decisions: Though each token arriving at place aa’ wxll caus¢ only onc path of the Petri net to

Figure 2.2. Conditional construct data flow. graph:

| o
: |t decision structure
T -F

b » ;

f1 7

c ¢

I :
-+ F| merge structure

-21-

become active, both-paths arc potential candidates. ‘This situation oniphasizes the use of Petri nets as
- general models for specific systems - in this case, data flow graphs [22). To remedy the modeclling
problems of the Figure 2.3 Petri net, a more spcciﬁc modcl Sh()\\(ﬁ ’ii’hFigurc 2.4 is built which attempts
to localize the nondeterminism in an added poniqn of ihc Pﬂn ‘nfpg‘mcant to represent the predicate
and control arcs of the data flow graph.} "I“th,,Al‘)cha'v.ior:of\.ﬂ?c F"lgurc 2.4 transitions modclling the data
flow graph T and F gates is conscqucnt]y!dciénninistic,is;ncc firing is now dictated by the portion of the

net labelled "predicate cvaluation”. A’ _@ch on pféi;é"aa' will gnable cither the T or F transition,
S T

Figure 24. Pctri net model of Figure 2.2

thereby determining its path.

Though this-Petri net modelling of the conditional construct more accuratcly caplures the data
flow graph behavior, the portion of the net representing the 1" and F gates violates the structure
defining the free choice subsct of Petri nets: I a transition following a particular place is firable at.a
marking M, then all transitions following that placc arc firable at M. - Informally, the definition of a frec
choice Petri net states that cvery arc from a place: must be either the unique output of the place or
unique input to a transition. Thus, the configuration involving-place aa’ and the T and F transitions in
Figure 2.4 violates. the free choice property. Since free choice nets form the largest subsct of Petri nets
for which a developed theory of liveness and safety exists, there is-no advantage to pursuing this
modelling route. For this rcason we change dircctions;. attempting: to - accomplish .our goals more

directly by extracting the relevant concepts of: Petri net theory and redefining them for data flow.
23 The Data/Acknowledge Arc Pair Tra‘nsl'orm:aﬁm
2.3.1 Achieving Safe Data Flow Graph Operation

Since the Petri nct propertics of safety and Iivcnéss reflect the behavior we want data flow
~ graphs to display, we attempt to redefine these terms for data flow via the correspondence of arcs and

i

operators to places and transitions.

Delinition.. For an initial configuration of tokens, a data flow graph is safe if every
configuration of tokens that can ‘be reached from the initial configuration-contains at
most onc token on any individual arc. :

Definition. An initialized dawa flow graph is live if a complete sct of inputs will
eventually cause a complete sct o_f values to appear on the output arcs of the graph.

To ensure safe operation in Petri nets, cvery transition in the net must be part of a onc-token directed

cycle. Adapting this for data flow is accomplished by introducing initialized data/acknowledge arc pairs

-23-

(d/a afc pairs) and cnsuring that every arc in a data-flow graph is part of such-a-pair.
"The mechanics of the transformation llustrated in Figure 2.5 involves replacing cach full data
-arc with an arc pair composcd of a full data ar¢ and cmpty acknowledge arc; and -cach empty data arc
“withan arc pair composed of an empty data arc and full-acknowledge arc. Alternatively, Brock's T
algorithm can be modified to producc graphs with d/a arc ‘pairs, rather than infinite-gueue arcs. We
distinguish the two by terming such an algoritwm Ty, 26 opposcdito Tog. The Figure 2.5 graph
scgincnt Tabelled, “pre-firing state™ ‘represents: the transformation: of the graph segment ' to s left.
‘Having dcfined this transformation we must verify that; in fact; it accomplishes its intended function -
to casure the safety and liveness of data flow graphs.
* An initiaHy transformed: graph is potentially safi:since -cach of its arc pairs holds only one
token. What must be shown is the-preservation of this preperty sndor firing. I the pre-firing state of

the Figure 2.5 graph scgment, OP1 is the only cnabled operator since it is the only operator which has
AR AN Trrid . §§§-“§ . iy ;,ﬁ ‘4‘?_'\’ . ‘ FES I .

Figure 2.5. ID/A arc pair transformation

——> uxk.arc
® datatoken
+ Q ack.token

tokens present on cach of its input arcs. Firing OP1 produces the post-firing state shown. The firing
action results in the absorption of a token from cach 0ffOPY's input arcs and the production of a token
on cach of its output arcs. Consequently, OP1 is disabled; and OP2 becomes the only enabled operator.
More importantly, OP1:cannot be feonabled until it receives both a data, and an acknowledge input,
where the appearance of the later is dopendent on firing:@P2:: - Firing OP2 will absorb its input'data
token and producc an acknowledge token, input to OPL. - Thus, OPY’s output data arc must be empty
for it to fire a successive time, producing a new data output. - This reasoning, shows the firing behavior

dictated by the data/acknowledge arc pair transformation is safe. . -
2.3.2 Preservation of Liveness

Verifying livencss of data flow graphs under the d/a arc pair transformation is more difficult.
Due toits determinate nature, a result obtained from aTd:/i'gimh witlmatch that of its corresponding
Toograph: Any T/, graph firing sequence is a legat fiving sequence i the T o graph. The question
to address is therefore, whether the firing rule constraint causes:some Ty, graph to deadlock that
would not have donc so in its T 5 version.

The intuitive fcclmg that Too graphs and thcnr corrcspondmg Td/ a graphs producc the same
results is cstabhshcd via thc theorem stalcd bclow l(s proof consists of a su'ucwral induction on the
size of data flow graph cxpressions. By asserting an induction hypothesis: for expression subgraphs, we
show that the liveness property holds for Td /a graphs composed of acyclic mtcrconncctmns of exp
subgraphs, or graphs whosc top lcvcl is a conditional or itcration expfcssxon |

In analyzing the Td/a itcration expression, we have to makc some assumption about the
behavior of its iterbody operator which represents an iteration subgraph. Rccall‘tvhat ;thc Tl translation

function produces iterative graphs which have one sct of input ports and two scts of output ports

throu§h which values can be iterated or returned, as well-as a control oastput. port Lo signal which of the
two occurs. The behavior of the ports of an‘iterative subgraph within o well-formed live T, graph can
be characterized as-follows: . When: prosented. with n scis iof inputs, the subgraph: will produce n iter?
control values-- k frue (0<k <n) and n-k fajse; and cofrcspondingly, & scts of |idata vatucs and n-k sots
of R data values for a total of a data output.sets. To prove liveness for Ty, geaph contdining an
ilerbady opetator, we must first show that the port behavior af:-fl:'a,‘ ‘iterative subgraphs is the same as
that displayed by Ty iterative subgeaphs. - This will-allow: us te-assume the desired. iterbody port
behavior, an cssential step in proving the expressionlive. - S

Proving the correct port behavior for Td /a itcrative subgraphs consnsts ofa subproof occumng
within the larger inductive proof. Since the iteration cxpmon,;o;t;anr;s Eit‘he only instance of an
iterlody operator, the subproof should natusally- appear. just.pfior.to : proving the Ty, iterative
expression live. ;. However, to stem aagfu%on orly-a Statement of: the assumed irerbody- operator port
behavior will be-made: An; outline- of the subpsoof follows: tho-ingductive proof.. Finally, inherent in
this discussion is the assumption that the equivalonce:of T g and corresponding Ty, graphs.is being
shown for graphs which are well-formed, wherc this term is defined as follows: -

Definition. A welI ﬁmned data ﬂow graph 7|s dcnkd from a syﬁ@tMly con'ect VAL

program using the T, translation algorithm. -~ . - -

We proceed with the liveness theorem.

'l‘heorem A well-formed live data ﬂow graph wnll remain hve under the d/a arc palr
transformation. , S ST

Statcd in operational terms;

-26-

Any Ty, graph corresponding to a well-formed live Ty, graph, ‘when presented with n
complcte input scts will either:
(1) have produced n complete output sets and absorbed n acknowledge scts on its
output d/a arc pairs, and emitted n acknowledge scts on #€ input d/a arc pairs, or
(2) contain some cnabled operator.

Proof?

Basis: A data flow graph consisting of a single functional opqrator wi“ remain live under the d/a arc
pair transfomtétion. : | . “ L

An initialized functional operator-is shown in Figurc 2.6. rOnf reccipt of a complete input set,
the opcrator will be enabled and when fired, will produce an output tol;cn qbs()rbing.&e acknowledge
tokcn on its output arc pair and emit acknowlcdgc tokens on its‘ ’i;:putﬁérc‘;pairs. Sincc the operator’s
output arc pair is thc graph output arc pair, wnthlu if xute time the output tokcn wm bc absorbed and a
currcspondmg acknowlcdgc token supphcd rcmltlahnug‘the graph. If an nth scl of mputs has been
prcscnted to the opcrator and an nth output has not appcarcd thcn' thc acknowlcdgc urcs of the mput:
arc pairs must have scen thcw nth acknowledgcs n- l of Wthh \ucrc produced by ﬁnng opcrator f 'l‘hls

I NTEETIS

implics that the state of the output d/a arc pair is onc of the followmg The data arc has its n-1st data .

Figure 2.6. Initialized data flow graph of a functional operator

Iy

value and the acknawledge arc.is cmpty but has seen n-1 acknowledge tokens; the data arc is empty and
the acknowledge arc is holding its nth acknowledge token. In the first case, within finite time the n-Ist
data valuc will be absorbed and an nth acknowledge lokcn produced rcenablmg the operator. In the

second case the opcrator is enabled.

Induction Hypothesis: In response to an nth complete input set, an exp operator (expression subgraph)
will either:
(1) have produced an nth complete output sct and absorbed an nth acknowledge set
on its output d/a arc pairs, and cmitted an nth acknowledge set on its inputd/a
arc pairs, or
) co.ntaAin sorﬁc enabled opcrator
Acyclic Interconnection of exp operators
Assume that the Flgure 27 graph has bccn prcscntcd wnh an nth sct of mputs and that it has
net produced an nth outpu{ scl. Wc wﬂl show that the graph must contain an cnabled operator.
Suppose the graph has pmduccd j outpul scts wherc 1<n and the output arc palrs have had
their jth data valucs absorbcd, and are holdmg thcu j+1st acknowk:dge tokens. l'hls implics that expz

must have scen at least j mput sets. ’l‘hrcc pOSSIbllltK.‘S arise. |

Figure 2.7. Acyclic interconnection of expression subgraphs

-28 -

Supbuse expy has not yet seen its j+ Ist input sct. Then by -the induction’ hypothesis, since
exp) has scen its nth input sct and only emitted j output scts where j<n, exp; contains an cnabled
operator.

Suppose exp4 has scen part of :ts j+ Istinput set. 'Then by the induction hypothesis since exp
2 ' 1

"

an cnabled operator.
Supposc exp, has scen its j+ Ist input set 'Then sing¢ exp, has its j+1st set of input
acknowledges available, it has not produced a j+ 1st output set: and by the ir}duction hypothesis

contains somc cnabled operator.

Conditional Expression
The conditional expression is shown_in Figu;"c 28. Inits »Too form, when presented with n
inputs, exp| will produce. n boolean outputs; k true where 0<k<n and.n-k falsc. In response to this,
-the M:gates will sce a total of m data input sets —- X on their truc data input arcs and n-k on their false
_arcs. -These are merged to produce the geaph outputs according to the.n M gate control inputs ¢k {rue;
n-k false) which correspond to the M:gate data inputs.

.- An important consequénce of the d/a firing restriction s that ‘onee ‘a control input value is
presented to the M gate, a successive control input cannot appear on’ that control.arc {between a and
the M gatc) uatil the M gate firts to absorb the previous value and emit an acknowledge token. The
implication of this is that a is.prevented from firing a successive time to recnable ahy gates in the graph
before the output sct corresponding to the previous control: value has been produced. 'This in turn

implies that only onc input set will be within the branches of the conditional expression at any time.

-29-

Figure 2.8. Conditional construct deta flow graph
inl in2 _ in3

i N TR TUTOIRTEES L VAP .

Assume the graph has reecived an nth set: of inputs. - Assamd further, that no-operator is
- .cuablcd within expy. By the-induetion hypothesis-exp) must have producced an nth.output set. The d/a
. arc-pair between a and the M. gate ean-be in one of two:states. Eisher the arc pair is holding its n-ist
control value, or it is holding an nth acknowledge token. - Asgume.the asc pair is bolding its n-Ist
control value. By the functioning of the graph described above, this:imptlies that the a-Ist-input set is
-being processed. . Since the graph has received its nth input set,tlns implics that the:T and F pates must
~have cmitted an n-1st sct of acknowicdges by firing in‘ responsc to.théir:n-1st'sct of inputs. We can
assume 25 a resull, that either exp, or expy becomes enabled. By the indyetion hypothesis, within finite
time. we will sec the n-1st output sct on the appropriate exp oulput data arcs and' an nth set of
acknowlcdges on the exp input. arc paiss. - This action :cnables the M: gates which when: fired - will
producc an n-1st set of graph outputs and emit acknowledge tokens along its data and control input

arcs. At this point, the arc pair between a and the M gate is in its second possible state-- holding its nth

acknowledge. Note that if a is fircd, which is now possible, the graph will bt in:the state it was in when
_ the arc pair between a and the M gatc held its n-]st control value. Since within finitc time the n-1st set
of graph outputs will be absorbed and cach gmph oulput wnll hold an nth acknowledge, we can repeat

the above reasoning to show that an nth sct of gmph outputs tslgroduced

Iterative Expression

‘We assert the following concerning the part behavior of the iterbody operator: When:
presented with an nth complete set of. inputs‘.mfc suhgraph rc;ircscnicd by iterbody will cither produce
n iter? control values -- k truc and n-k false. 'and tmcspondipgly k sets of I data valucs and n-k sets of

R data valucs or; will contain some cnabled opcrator.

- The itcrative data flow graph is ,sh_ownjn Figure 2.9. We can make the following observations
concerning the functioning of the graph in.its T/, form.-Note that firing copy opcratos 1. causcs cach
of the M gates to be presented with. the next control input.. The imiplication of this is-twofold:: Operator
L cannot fire until cvery M gate has fired, absorbing its- previous -control input -and emitting

-acknowledge tokens; the number of input scts processed by each M gate is:cither equal to,.or one less
‘than the number of control inputs that have been presented to cach, M:gate. The operation of an
iterative graph is such that a sct of input values will‘be itceated ﬁwsponse to. trac dter? outputs until
iterbody produces a false iter? output which signals return of the values. ‘We consider these two stages
of Td/a graph bchavior -- itcrating values and returning valucs, scparatcly. Since the synchmnizing
affect of copy opcrator L provcnts any mtercstmg ovcrlappmg of graph mput scts, it sufﬁccs to show
that when prcscntcd w1th one complcte lnput set thc graph wm produce an output set thhout

deadlocking. We bcgm with the return case.

-31-

Figure 29. Iterative data ow graph

Assume iter? produces-a false vatic. By’ the first implication above; 1.-cannot present the M
-gates with this value until cach has fired to acknowledge L and produec a-data input to iterbody. Thus
-iterbody must see a complete set-of inputs for the M gates to be reiaitislized.. The stated behavior of
#terbody- dictates that within' finitc time a completc- set of ‘ronwn values - will. be ‘produced in
correspondonce with thefalse irer?. Thus if the M- gates are réinitialized; a set of outputs is guarantoed
without the pussibility of deadiocking. The possible ways of a:deadlock occisrving are considered in the

iterative path argument which follows,

We proceed to show that a deadlock does not occur within the itcrativc path of the gtaph by
assummg the opposnte and rcachmg a contradlction supportmg the conclusnon that an cnablcd opcrator
cxists within the graph Assume that therc exists some wcll formcd hve itcrative data ﬂow graph which

deadlocks under the d/a arc pair transformation.. To see how thc dcadlock OCCUrs we apply the same

sequence of cumputation steps t0 a Tog graph and its corresponding Ty, graph, until we reach a state
where there exists some operator which is:enabled-in- the Ty graph and ‘not ¢nabled in the Td /a
graph. The causc of deadlock must be that an operator in the Ty, graph'has its inputs available, but
cannot firc duc to the presence of a token on its output arc. ‘We attémpt to locate this operator, which

must be an M gate-or a gate within iterbody. We procced to-cofsider cach case.”

Assume merge opcrator Mo is in such a statc and that it has lts j[h sct of ltcranon mputs
1 Sl
available. The tokcn on its output arc, labcllcd q, must: be used in pmducmg thc 1 ltcratlvc input value _
of some othcr M gatc say Ml Since the Td /a graph is dcadlocked onc of two sntuatxons must exist:
- (1) The path taken by token q through: iterbody to the [-input of gate Mi is:blocked

(cvcry arc is full)

(2) Token q is input to some opcrator whlch Iacks some mput and thcrcfore is not
cnabled. : : :

Assume (1). Recall from our preliminary discussion of itetative graph operation, that if token q
was produced as a result of the j-1st'input set, it will be ‘usedto produce thejth T input of some M gate
which, according to the assumption, is blocked. Thus, ‘the-toketi eurreritly residing on the f input ‘to
that M gate must be part of the j-1st input sct or some set previous to the j-Ist set. This implics thiat the
M gate has not yet fired j-1 times. But from our knowledge of iterative graph operation; this is not
possible since firing copy operator L to present cach M gate with a' jth control input réquired thé prior
firing of cach M gate a j-Ist time scnding j-lst ackn()wlcdgcs tol.--a contradiction.

Assume (2) Smcc fmng L a jlh time is only possxblc ‘|f>cach M gdtc has ﬁrcd i 1 Umcs it must ‘
be that a complctc set of mputs to rlerbody is avmlablc contradlctmg the assumptlon that some input is

not present.

Assume the disabled operator oceurs as a result of iterbody and that its output arc is an I cutput
arc. If the disabled operator has a jth set of inputs available, then they will be used to produce the
j+ st Linput of some M gate. The token on its output aec, must therefore be a:jth. F input of that M.
gatc. By the two{old impl@tjm_s@w.,anc,~mcf fact that the - disabled-operator: has.its jth inputs
available implics that every M gate was prescnted with a jth control iaput and has fired cither jor j-1
trmes. - Thus the M gate which has its jth 1 input available, must have fired j'l times. If we can show

_that this M gatc is cnabled, thcn within finite time it wﬂ} fire, scndmg an acknowlcdgc to thc blocked
opcrator Conscqucntly in f‘ nitc time thcre wﬂl bc an cnablcd operator wuhm nerbody |

Wc lmow mat the M gate has its mputs avmlablc 0 nt can only bc d|sablcd if its output arc is -
full. Assuming this situation;; the token on its output arc. muyst: be.from the j-lsz inpm st and: will be
used to produce the jth input of some other M gate But then we know that wnthm ﬁmtc Ume the
operator to whlch thts tokcn is mput will ﬁrc smce by the twofold lmphcauon cvcry M yc has fired
j-1 times: This simultancously. cnsures. that the operator has its inputs available and has an cmpty
output. arc. The acknowledge: neccssary to-enable the M gate will-be: seat.as:a result of firing the
operator. - Thus, within finitc time, the M gate and subscquently the blocked opcrator in iterbody will-be

It follows that if the Tqq graph is well-formed and live, the corresponding Tya 8raph is

well-formed and live. Q.ED.

The subproof conccmmg port behavior for ltcratwe subgraphs is also mductlvc in that it must
assume a behavior for ltcratlvc opcrators wnhm subgmphs and thcn prove the bchavnor for the top
level structures defining iterative subgraphs. The bchavmr to bc shown has becn stated above at the

start of the section of the proof dcaling with the iterative expression.

The simplest iterative structures, exp and iter exp, arc shown in Figure 2.10. Since the itcrative
subgraph proof is within. the inductive proof above, the induction hypothesis concerning exp subgraphs
is valid. As a consequecnce, proving that the Figure 2.10 graphs satisfy. the stated behavior is trivial.
Establishing this fact for the conditional iteration body, if exp then iteration; else iterationy, is tedious
and will not be presented.

Having dcvc;,lopcd the data/acknowledge arc pair transformation and shown Too and Td /a
graphs cquivalent, the task of determining the quality of this solution remains. Major concerns to
investigate focus on cost and cfficiency. Chapters 3 and 4 address these issucs and present
optimizati‘ons of the solution subscquently developed. FExample graphs in the remainder of this thesis
arc assumced to have been produced by algorithm Td /a ‘Therefore, though not cxplicitly shown, all

arcs represent d/a arc pairs unless otherwise stated.

Figure 2.10.

| I— | —

@9 Tlexpl false (Tlexp]

iter? Ii iter? Ri

(a) exp (b) iter exp

This empty page was substituted for a
blank page in the original document.

-35-

CHAPTER THREE
- 3.1 Balancing Token Flow

The optimization to balance token flow discussed -in this chapter: addresses certain
incfficicncics introduced by the acknowledging scheme ‘presented in chapter 2. Though the d/a arc
'pzinir transformation prcvcnis the occurrencc‘ tof rrion"c than onec token onan avr}c:‘at any ﬁme, the firing
rcétrictions it impbscs aré sévcré. and may sféniﬁcantly curta;l comﬁr}cnéy. vSpcciﬁcally, the
requircment that an opcraior reccive acknochdgc signals on cach of its outﬁ;;t: ports l;éf{)rc fcﬁﬁng,
unnccessarily delays computati‘on of successive ihput sets thfIc ensuring tﬁc s,zn.fé-;)p;:f:.xtion Vo‘f thc
graph is essential, it is possible to identify which umpm arcs arc potential bottlenecks, and modify each
so that it can be safely implemented as a fixed size buffer. The purpose of this change is to effectively
cnable arcs to hold more than onc token, thereby climinating bottlenccks by allowing computation of
successive sets of inputs to "pipcline” through the graph. Safe impkmcnlétion of these buffers involves
the use of identity opcrators which, when inserted alor;g 'a;r;alrc,‘é’ct' a;placc hol(icrs. 'ld;nﬁfyihg arcs
within a graph that may causc bottlcnccks, and determining the extent to which they should be
buffered arc prerequisites to xhéir modification. While the former of thesc tasks is straightforward,
deciding on a buffering strategy is subject to a number of éonsidcrat.ions; including graph configuration.
~ and cost of buffering.

| A simplc cxample is prcscmcci in section 3.2 ‘which clearly illuslfatcs the problcm addressed in
this chapter, and serves to motivate the subsequent <§p6‘;;1izati()n. This. discussion is formalized in an
algorithm which produces optimized graphs. The, scction concludes by "pointi'ng out certain subtletics
of graph operation and factors not accountcdxfor in formulating the proposed solution. In response to

this, scction 3.3 introduces a modified version of the section 3.2 algotithm, along with several

compafativc studics of graphs in their limited and ful!y bufféred configurations.
3.2 Formulating the Optimization
3.2.1 ldentifying the Source of Bottleneck -

| Thc géal of thc optlmuatlon to balance tokcn ﬂow -&lrough a graph is to mcrcasc lhroughﬁut
by modlfymg a gmph to allow for maximum plpclmmg. Thc bomcneck problcm and therefore
apphcauon of the optlmuatmn arises in acychc scgmcnts of a data flow graph A clcar mustranon of
the problcm is shown in ﬁgurc 3.1, thc graph translatmn of thc VAL cxpresswn

Jf—llhcnﬂebeﬂ

Figure 3.1. Buffering for a conditional expression

-37-

'l‘hé interesting and. problematic issues arisc when considering the conscquence of presenting
the graph with multiple input sets. Hopefully, processing of a.second sct of inputs can begin before
- outputs of the previous set. appear, with the. optimum situation being one in which sets of .inputs
pipeline through the graph. Unfortunately, the control structurc-of the graph dictates that the overlap
in processing of successive scts of inputs be minimal: Only:one set of values may be within the -
branches of the outer conditional at any time, Rcfcmng to F:gure 3.1, we sce that in order for a second
sct of values to enter the branches of the condm(mal both a and B mﬁst?fijrc a sc.cond time presenting
thc scts of T and F gates with new control inputs. - However, & cannet fire a sccond time until the M
gate to which it also sends-a control. input has fired to emit an ackpowledge. Thus, the d/a arc
.connecting a and the M gate (marked in Figure 3,1 by:slashes), prevents sets of values from pipclining
{through the graph, creating a bottleneck ‘whase severity depends on-the depth: of the:computation
performed within the branches of the conditional. - -

Eliminating this undecsirable behavior so that successive sets of values may pipeline through the
graph involves finding a method of cnablif{é iiédc"a sooncr’conscqucntly éiiBWiiig thc slasﬁéd érc t(;

hold morc than one token. The ldcal situation would be onc in which the arc could hold as many

tokens as the number of sets of valuf‘cs um could be plpclmcd through the graph
3.2.2 Preview of a Solution

Introducing identity opc;atoyrs inio the grap‘h;'provid;ﬁs:ia means - of (éalizing the desired
behavior. Specifically, inscrting idcﬁtity operators along the slashcd arc (Figure 3.1) would break it into
d/a arc pair scgments, allowing node « to fire scveral timqs, tjb‘lf‘ore forcing the M gate to fire. Using this
technique on Figure 3.1 to attain maximum pipelining is aocomplishgd by replacing the slashed arc

with the arc scgment shown to its immediate left. “As a consequence of this change, the state shown in

Figurc 3.2 in which threc sets of tokenis are pipelining through the graph, can be reached. (The token
sets have been numbered: accordingly for élarity.) ‘Thus the introduttion of identity nodes has
climinated theibottiencck: - Generatizing: this optimization ‘technique’ fequires a determination ‘of the
ideal number and focation of buffers to be inscrted. To responid o such consideratiotis, we atiempt to

analyze how tokens flow through the graph.
323 Analyzihg Token Flow to Characigrize the Soldtion o

~Though . the -data: flow computer - operates: -asynchronously’ arid ‘data flow programs
nonsequentially; ‘we can model optimum token flow' through the ‘graph by assuming a ‘somewhat
synchronous behavior. To-do this, we analyze-the firings within the graph in terms of time units where
during any given unit of time all cnabled actors must fire and produce a result. This assumption

attempts to approximate optimum behavior by preventing aii enabled ‘actor’ from rémaining enabled

Figure 3.2. Token configuration aliowej by Ilul’l’crmgscllene)

-39-

and thercby | slowing up processing for any length of time Roealling that our sim is.to pipcline
computation throughsmc graph, we wish to dcvclop amethod of modtf”ymg the graph S0 that under this
“synchronous behavior” aasumptson it displays maximum: pfpelnmng and coanucntly. best
throughput. “r
Referring back t0 hgurc 3.1, we note that cvcry mput sct to the graph*rcsul(s in the production
of a token on the control (slashcd) arc, and tokens that will either be proccsscd by f7 or f2. While under
the synchronous behavior assumption the tokens being proccsscd by thcsc functional opcrators can
move onc stcp through the graph during evcry time unit, thc control tokcn on‘ the slashed arc cannot,
and must-remain smnonary unul its corrcspondmg tokcns pron'lgatc througn (};c graph to cnable the M
gate. | As orewously seen, the mablhty of thc control arc to accept a sccond token prevcnts any tokens in
a successive input set from bcmg plpclmcd Thc dcpcndency bctwccn the control arc and thc branches
of the condmonal and thc conscqucnt nccd to cqnahzc thc1r buffenné oapacntlos to attam maximum
plpclmmg has bccn rccogm/cd by the addmon of 1dcnuty nodcs shown in hgurc 3 2 An algonthm to
cquahze buffcnng along graph paths must be ablc to ldcnufy dcpcndcncws wnthm a graph and plpelme
thcnr paths. This can bc accomphshcd by an arc numbcnng schcme whlch comparcs and equahzes
buffcnng capacitics of dcpcndcnt paths rccogm/cd by |dent|fy|ng functnonal opcratms or gates which

join two or more paths An lllustrauon of thc algonthm whnch pcrforms thls optlmuatlon follows its

it

prcsentahon.

Algorithm to Maximize Pipelining -- 1
Starting from cach graph input; descend through. the gmnh assigning consccutive
numbers to arcs joining successive scts of operators until a multi-input operator is
--encountered.- Compare the: arc numbers on the input ares of the apcrator and:
{(a) if cqual, continuc the arc numbecring process
(b) if not equal, balance the.arcs by inserting idcntity operators into
the lower numbered arcs. Renumber the modlﬁcd arcs and
continue the arc numbcring process. : Y :
~ Note that lf the opcrator is an M gate, the comparison and balancing described above must involve all
thrce mput arcs, usmg thc htghcst numbered arc as thc goal |
The result of applymg thls algonthm to the graph translatlon of(hc followmg program segment
nsshnwn in Flgure33 - R
lf f-l then if s=1 then x‘(y+ 1) clsc x“(y 1) end else x‘y end
For rcfcrcncc purposes, thc addcd ldcnmy nodes havc bcen numbcred l'hc seven numbcrs shown at
the extrcme lcft of the graph rcsult fmm the arc numbcnng process, and apply respccuvely to
appropnatc arcs movmg hun/omally across the graph Nodcs Il and 12 havc bccn addcd in responsc to
the lmbalanccs whlch occur whcn companng arc numbcrs on thc mput arcs to thc muluphcatmn
operators, 13 through IS arc addcd in rcsponse to the companson of thc mput arcs to thc mner M gate.
Notc that, as spccnﬁcd in the algon(hm, arc numbcr compansons mvolvc all thrce M gate mput arcs.
Finally, opcrators 16 through 115 arc introduced as a result of comparing input arcs to the outer M
gate.
Onc essential question to ask is whether or not the addition of identity operators changes the
functionality of a data flow graph. This can be answered by recognizing that the essence of the change

resulting from the application of Algorithm 1 is to replace some of the one-token arcs of a graph with

. queues of a given finite length. Since successive identity operators along the arc are separated by d/a

-4] -

Figure 3.3. Example of maximal pipelining

arc pdll‘S the graph remains dctcrmlmsnc and since an ldcnmy actor mercly passcs its mput to its
output arc, the functionality of the graph is unaffected Thcse observatmns ensurc the functlonal

cquivalcncc of an optimizcd graph.

-42-

3.2.4 Observations

In dcvclopmg this cxample there are scveral interesting obscrvatmns to: makc concerning the
.optimization and the spcctﬁcd algorithm. As statcd above, the optimiration is accomphshcd by first
identifying and then ptpchmng dcpendent paths in the graph. Whtic dcpcndencncs detected at
functional opcrators and T and F gates can be handled as chcnbcd thosc resuiting from M gates hold
some hidden conSIdcrattuns Recall from the algorithm that M gate cmnpnnsons ‘must involve the two
data arcs and the control arc. I‘hc algonthm modtﬁcs the graph to achtcve maxnmum pipclining by
equalizing buffcnng capacmes of the paths through the graph to thc ctmtrol arc and two data arcs.
However, while the M':gatc sngnals the dependency ef t:ach btfanch «f\of the coutiitional operating in
conjunction with the ;t:ontnol arc, the branches themselves are indcpcﬁt%mt, Thus, while cach branch
must pipcline with th_e control path, they need not ncecéttarily pipclimé with cach other. If the two
conditional paths age.of diffcrent lengths, the ‘buffering choices avaﬂahle arc to:cc';ualizc the control
path with cither the shungr or the longer condttional branch, or to equalize all threc. The latter of
these, implemented by the ttfgorithm gbovc. achieves best throughput but has %thc disadvantage of
causing the inscrtion of additiohz'it’ identity operators in the shorter comtitional branch. Thus,
maximum pipclining may be achlcvcd at the expense of including a number of unncccssary ldcnttty
operations. The othcr two chotccs recogmm the mdcpcndcncc of thc two«condtttunal paths and avoid
€XCess buffcnng, but posstbly at the cost of rcduccd throughput. |

o A factor not yet consndercd whtch interacts with this ptpelmtng choute is the tokcn dlstnbutlon
cffect on the graph of a particular succession of input sets. In Figure 3.3 cach mput set can take any of
three paths corresponding to thc three possible states of fand s. This makes it unlikely that any one of

the three paths will be filled with tokens, more likely that the control arc to the inner M gate will be

filled and certain that a continuing succession of input sets will fill the control arc to the outer M gate,

-43 -

If we consider a pattern of input sets such that no one of the theee paths is taken twice in a row, identity
nodes 11 and 12 would be unnccessary and could.be removed without decreasing the throughput. In
fact, many of the identity nodes could be removed with no effect. Certainly, the frequency with which
graph paths arc taken is an important factor in choosing a buffering strategy. - An illustration of this
point will be scen in the examples in section 3.3.2.

In identifying some tradeoffs and options to consider-ip maximally pipelining data flow graphs,
it has become unclear whether or not this approach is always optimak.. Perhaps the advantages:of a less
pipelined graph are worth a decrease in throughput. Seme key issucs influcncing such a decision might
include cost of identity operations, processor utilixauq/nz, token flow:patterns and. width and depth of
program. ‘Though complete consideration of these would require kagwledge. of the machine and

particular application, we attempt to illustrate the type of analysis that might be qséful and necessary in

making the choice. -
3.3 Full vs. Limited Buffering
3.3.1 Achieving Limited Buffering

Having qwstioncd thihcr ‘ful'ly baléﬁcing a g‘raph> is;lwéys'ncqtj:»c;ss:aryho'r optimél, we proceed
by comparing sévcral graphs in both their]imitcd and fully buf:fc}cci; vcm:ms to ﬁhcbvcr‘ﬂme tradcoff
issues. A discussion of lkimitcici buffcrihg mcludmg ﬁdw it carfl‘ bc achlevcd ia;nd tb!wl-l‘at éx‘tént T?i/a
grhphs dispiay in is a nccessary prchmmary -‘ . - |

The difference between full and limited buffering in a data flow graph is scen in the time delay
between successive firings of its operators. In a fully buffered graph, assuming synchronous behavior,

the time delay between repcated firings of any particular operator should be one unit: An operator

which fires at time one should receive acknowledges from its successive operators during time unit two,

-44 -

rccnabling it to firc during time unit three. In a graph displaying limited B’uﬁ'cring. the delay between
an operater’s firing. and receiving appropriate acknewledge signals ‘may be several time units, thereby
slowing repeated firings of the particular operator as well as'all successive operators.

Preseatly, the Ty, translation algorithm produces data flow graphs in which cvery data arc is
paired with an acknowledge arc. We could however, ‘have considered an’ algorithn which' caused
acknowlcdge ares to span two data ‘arcs'by having cach acknowledge arc link altérnate rather than
successive operators. The consequence of such a scheme would be @ delay in the sending of
acknowledge signals and hence, a-graph displaying lmited bufforing: While scction 3.3.2 discusses an
example data flow graph so configured, this approach is' undesirable since it requires a significant
modification to-the prescat translation-sigorithm. - The necessity for siich an action is-also unjustified:
mfhrm cmes;Td,a graphs alrcady display Hmited buffering, ‘as'did the Figure 3.3 graph which

was maodificd to achieve full pipelining via Algorithm 1. A slight revision of this algorithin will alfow s

o~

[SRE R

to produce data flow graphs which display limited buffering to some predQ‘Qned dcgree Fgr cggtpp}e.
it is possible to specify that the delay in sending acknowledge signals bc no greater than two time units,
The algorithm shown below produces graphs meeting this #équitemont. “Whilc: the ‘purpose of
Algorithm I was to cqualize buffering of dependent paths wighin a graph th(c)rmodiﬁcatioq to the
aléorithm cl;surés that dcpcndcnt-p‘;uh lcngths arc wnhm ra speciééd bound. By z;llowing a graph to be
casily reconfigured to disi)hy different degrees of pipclining. thcalgonthmprov:dcs a feasible and
praétical conirol method of studying varying levels of’ buffcnng magraph Thc modlﬁcd algorimm is

presented below as Algorithm I1:

-45-

Algorithm to Limit Pipelining - 11

Starting from cach graph input, descend through the graph . assigning - consccutive
numbers to arcs joining successive scts of operators until a multi-input operator is
cncountered. Compare the arc numbers on the inputarcs uf the operator and:

(a) if the difference is less than or cqual to 2, continue the arc
numbering process

(b) if the difference is greater than 2, insert identity opcerators into
the lower numbered arcs to reducc the difference to 2.
Renumber the modified arcs and contmue the arc numbcnng
process. -

An application of Algorithm Il appcars in scctmn 3 3 2 wherc it is apphcd to the Figure 3.3

graph We arc now prcparcd to procecd with sevcral graph compansons uf full and limited buffcnng
3.3.2 Examples of Full vs. Limited Buffering

This scction ﬁrcscnts two data flow graphs in bofh their fully and pamally buffered versions;
The first cxamplc achicves hmltcd plpclmmg by rclmkmg acknowlcdge arcs bctwccn alternate actors as
described in section 3.3.1 ab()ve, while the sccond cxamplc is h()dlﬁ(&d for llmltcd pipclining via
Alg()rithm I1. >O;Il' aim ih cach casc is. to comparcﬂ d;c functioning of cach cxample’s graph
conﬁgurationsr with respect to- throughput, acknowlcdgcmcntvu"v-e‘rhcad, énd >o‘v’<':rall concufrency. | The
ﬂ)ll(;wing assumptions arc¢ made conécming the grabﬁs’ opcr;xdoﬁ: .’ | |

(1) Graph firings occur according to the "synchronous bchavior” pattern described in

scction 3.2.3

(2) All graphs are produced by Td 7a With data/acknowlcdgc arc pairs used
throughout.

We begin with a simple example in an cffort to cstablish ‘somc analysis guoidelines. The
program sog.men&shown inFigure 34 isa composntlon of hmaryapm which, if prodnnccdty Td/a’
should display full ptpchnmg. Thus, thcrc is no nced to apply cnthcr atgonthm to this .program
scgment. Rather, studying this graph -in limitcd pipelined: form will aeqmm its restructuring so that
acknowledge arcs link alternate opcrators. The flow of tokcns through the graph for multtplc input sets
can be followcd usmg 'l'able th (For comcmenm dm opnmm in th::»gmph J\avc been numbcered.)
The initial state of the graph givenin T able 3 1 at time 0 shows mputs (IN) avathblc to OP1 and OP2,
and acknowlcdges (A) present on all other arc patrs Progressmg through the table along the time axis,
we sce that at time l 0}’1 and OP2 fire and acknowlcdge (F/A) makmg mputs avatlablc to OP3 and
producmg acknowlcdgcs on thclr mput arc palrs Dunng time unit 2 OP3 ﬁres scndmg a result token
to OP4, which consequently becomes cnablcd and.ackndwittpe tokens t0:OP1 and OP2. At the Saime
time, a new set of inputs can appear on the input arcs to OP1 and OP2 SO that they become rccnabled.
In umc unit 3, OPl or2 and OP4 ﬁrc scndmg appmpnatc data and acknowlcdgc tokcns \Vthh enable
OP3 and OPS. Thcsc then fire in umc unit 4 cnablmg 0P4 as wcll as OPl and 0P2 whtch as in time
unit 2, concurrcntly receive a new set of mputs Thts time unitis s:gmﬁcant since dunng tt, the output
resuiting from the first input sct is produccd Foltttt\}rlng tnrough the next fcw ttmc units showsthat due
to the acknowlcdgmg schemc the best throughput powblc fora fully ptpehncd graph is an output
every sccond time unit: Outputs resultmg from thc sccond and thtrd mput sets appear in time units 6
and 8 respectively.-

An examination of the table shows that once the ™ ptpe is ﬁ:ll" (ume unit 3) the operator
firings of the graph can be groupcd into two altcmatmg sets, and conscqucntly, thc graph s operation is

characterized by two alternating states. SET] consists of OP1, OP2 and OP4 firings, or those of the first

and third levels of the graph shown in Figure 3.4. SET2 consists of OP3 and OP5 firings which

-47-

Figure 3.4. Maximum pipelining in a simple data flow graph

1 IN1 - A2 IN2 :
‘ ’ , —> dataan:

~=2"ack. arc

N\ C# constant gencrator
level 1 @ A# " acknowledge - '
IN# input
level 2
level 3
level 4

Table 3.1. Flow of tokens for Figure 3.4
outiut 1 ou»t‘ ut 2 ‘ouulut‘ 3
operators - = =¥

OPS| A A A IN-'IN'-'IN- —

OP4l A A IN F/A IN! P/A INFE/A -
OP3| A IN F/A IN F/A' IN'F/A! A A < set 2
- OP2| IN F/A IN F/A IN'F/Ab A A A e
OP1| IN F/A IN F/A IN:F/A: A: A A <+ setl

0 1 2 3 4's5161 7 8 time
sctlwset2 { |
state statz

IN inputs present
F/A firc and acknowledge
A acknowledgces present on input and output arc pairs

compose the second and fourth levels of the graph. Using the fact that alternating levels of the graph

fire concurrently, we sce that the minimum number of concurrent operations (assuming a full pipe) is

the number of levels divided by 2. “The maximum nemiber s found by confprting the sum of the width
of cach firable level for cach of the two sets to dctcnninerﬂxc hngcr. For the F“lgurc 3.4 graph, SET1
and SET?2 consist of three and two concurrent opcmuuns rcspcctivcly l’hls information should prove
uscful in analyungproccssur uullzauon
Having gathered these statistics, we proceed by considering Figure 3.5 which shows the same
~graph, but in its limited pipclined configuration. —,St;eciflca!ly, ackgnwledge arcs link alternate rather
than successive actors. Comparisons to the Figurc 3.4 graﬂ\eafi)‘bc madc by analyzing the information
contained in Table 3.2, which follows the ﬂov; of Ttokcns*&;l;duéh this graph. The initial configuration
of the graph, specificd in Table 3.2 at time 0, shows inputs present on OP1 and OP2 input arcs, and
acknowledges available to OP3 and OPS. During time unit one, OP1 and OP?Z fire to cnable OoP3.
Notc however, that the OPI and OP2 input arcs are not acknowledged at this time as they were in the
Figure 3.4 configuration. Acknowlcdgement of OP1 and OP? is now dependent on OP3's ﬁring which
occurs during time unit 2, delaying thc arrival of a new set of A inputs' until time unit 3. Firing of OP4
which also occurs dunng time 3 cnd)lcs OPS which can ﬁrc to produce an output at tme 4 - Again,
recnabling of OP3 has been delaycd 1o this time umt, 4. w!mnn receives a&ackmwlcdgc fromx OPS and
.. inputs as a result of oPI1 and-OP2 firing, T ime unit 4 i$ sgmﬁcant m”that an’ outpm 5 pmduced.
However, following the operatien of the graph for ﬂirce mput sets shows that the -delay in.
acknowledging operators has rcduccd the throughput fo an output every third time unit: The second
and third input sets produce outputs in time units 7 and 10 respectively.
Analyzing the operation of the graph using Table 3.2,' we see that dle acknowlcdging scheme
allows cvery third level in the graph to fire concurrently, thereby partitioning the graph into three
mtcrlcavmg sets of operators. Rcfcmng to Figure 3.5, levels 1 and 4 fire together, as would levels 2 and

5 and levels 3 and 6, werc the graph to be extcndcd Comespondmg respectively to these three groups

-49..

Figure 3.5. Limited pipelining in a simple data flow. graph

fevel 1 —"\\

level 2

level 3

level 4

‘Tahle 3.2. Flow of tokens I'or Flgurc 35

output1 “output2 output3
operators —L—:—"""‘ i l ‘
ors| A A IN '-' 'lN '- IN
OP4| — IN FI "INl FL R
op3i| A IN F7A - ! IN'F/Al 'IN F/A A
“OP2{ IN F N R VNLb R
OPl| IN F m:F'L :IN:F
0 1 2 3'4tsteglt7 8 9 10 time

S P s

state state state
1 2 3

IN all inputs available
F/A fire and acknowledge
A acknowledges avaﬂable
F fire :

= R b oe 0 Ta i o
A HALSRS R RN I £ {1

arc three states, shown in Table 32 Were the graph to be presented with continuous sets of inputs, its
opcration would rotatc among these three states. For this graph, the number of concurrent ()pf:raﬁons
per state beginning with state 1 are: three, one, and one, (dctq(nnir‘led‘ by computing the sun;‘of the

width of each firable level for each of the states.) Using the "concurrent operations per state™ statistic

shows that the Figure 3.4 graph alternates betwéen processing three and-two epcrations while the
Figure 3.5 graph processes three opcrations cvgry (hrrd* timc unit_ and only onc during cach of the
intermediate two time units. The lower variance in thc nurnbbr ofconcurrcnt opcréﬁon’s per state in
the Figure 3.4 graph suggests that it will be more cffielcmwrth mpcct to processor utilization.
Conscquently, the enly main advantage of the l‘imitc(’_iﬁ pibcﬁﬁéd configuration is a rcduction in the
overhead associated with acknowledge srgnals. ’

A second morc'involvcd rmdl- m‘ore c@mplcte :.c;amp}e, applics this analysis, to the Figure 3.3
graph, which appcars in-its fully pipclincd éiérrﬁguration. Note that unlike the previous example, which

translates directly into its fully buffered state under T the producnon of the Flgure 3 3 graph
d/a

4 »m—?,
! _s!“g -:r‘.f

required the application. of Algnmhm I The most sngmﬁcam bomt to notc is thc nced to msert 15
identity operators to atta?n full plpclmmg. Thrs rcprcsents apﬁmxrmatcly a 50% i increase m lhe autnber
of operators in the graph maiing tb cost of rdcntlty sperators vs the bencﬁt of mcrcascd ﬂwoughput
and concurrency an cxtremcly 1mportant lssw *to considci for an a(:tual dtta ﬂbw mzichmc and
application. | ; | | !) ‘ 7 ;

Table 3.3: presents a summar;r of ch tokcn ﬂmv throughthc fully ;pipclined graph (Figure 3.3),
assuming the control token produced by the prridkatc tcst invr)lving f is rue. For cach time unit, the
level of operators firing rather than the particular opcrators wi’ﬁ bequﬁiﬁr;d whcrc the assignment of

levels to operators is indicated in Figure 3.6. The total ;iumﬁerofopcm;ms fo; cach level as well as

given. Thus, referring to Table 3.3, the second fine stawc that during time unit 1, the first levcl of
operators fired, all four of which werc graph operations. During time ‘unit 2, the second level of
operators fired, one 6f which was an 1dennty operator and five, graph operators. From the previous

example, we know that successive sets of inputs will step through the graph with alicrnate levels firing

-51-

Figure 3.6. Fully pipelined data flow graph

TaMe 33. Token flow through Figure 36
. . total ia
time firing level ‘ . oporations © |- _identity/graph
0 inputs available e :
1 ‘ 1 ' 4 0/4 < odd levels
2 2 6 145 | <=1 . even levels
3 3 4 173]
4 4 6 >4 Sal
5 5 4 3/1]
6 6 3 2/1 S
7 7 2 171 e
8 8 1 0/1 —

concuﬁ'cmly to produce an output cvery sgp_n_d. time unit. :-In terms of ‘the: table this behavior
corresponds to the alternate firing of even and odd levels, where for cach of these firing states, the total
number of operations and their makeup are:
oDD 14 ()pcmm - Siidentity and 9 graph
EVEN 16 operations -- 5 idcn&,ty‘ and 11 graph

The Table 33 summary is oﬁly valid for two of«me'threc possible fép@fs statesmm and {ruc-false.
A scparate analysis is neccmarx for the case \d:crc f s m .A

As in the previous example we w:sh to- compare thesc stanwcs with an analysas of the
functioning of the graph in hmued buffered form ‘The apprjwnatc(gmph shown in hgure 37
-obtained by applying Algorithm 11 rather thaa Algomhm I to;:‘thg jT‘,a gmph‘ translanon of the
expression: | { |

iff=1 m ifs=1 then x*(y+1)ehex‘(y -1)end else x*y end

The most striking contrast between the fully buffercd graph (Figure 3.3) and this partially buffered
version is the large reduction in mscrtc& ldcnuty__;opcmtors from 15 to 7: ‘What remains to be explored
is whether the cost of this reduction is an Mbanying decrease in performance (sce also 27D. To
determine this, we examine several token ﬂow analyscs for the hgurc 3 7 graph dcnvcd by cons:dcnng '
different successions of input sets. The first cxample pcrfonns thc ana!ysls for four sets of inputs whlch
all follow the same computation path; true-trye. The mmon of tokens through mp graph can be
followed via Table 3.4. The numbers in cach box in the table represent the speciﬂcopemols which fire
di:ring‘ﬁatﬁ_me umt (given by the horizontal axis), as a result of tokens from the appropriate input set
(given by the vertical axis), where the operators have been numbcrcd asshown in Fi igure 3.8. Referring
to this graph, Table 3.4 shows that, (assuming input set 1 is initially available), during the first time unit

actors 1, 2, 3, and 4 will fire cnabling actors 5 through 10 ;vhkh will fire during the second time unit.

-53-

Figure 3.7. Fxample of limited pipelining . L . 3

The second input sct becomes present (P) during the sccond time unitso that opcrators 1 through 4
may firc in response to this second set during the third time unit along with opcrators 11 through 14
which fire-in response to the first set. In this manner, the progress of the: four sets of inputs through the
graph can be followed. The time units during which the corresponding outputs appear have been
noted in Table 3.4 along the top horizontal axis. This information reveals the expected - decrease in:

throughput which may or may not be acceptable depending on the application. .

Figure 38. Numbered Figure 3.7 graph to be uscd in conjunction with Fubles 3.4 and 35. .

bo o
9 0
® @ © .

D | e @'@
Cs) @ ?

~ 26)

[

@
()

\ O

As mcntioned carlier, the probability of a succession of input scts taking the same computation
path is small. Therefore, a second analysis for. this partially: pipelinod-graph appcass: in Table 3.5
assuming input sts 1 through 4 take the computation: paths truc-true, -truc-false. fase and trué-true
respectively. The table roveals that for this pattorn of input sets the fimited: buffering scheme has po
cffect on the throughput, which remains optimal at an output produced: cvery second time unit. This

example confirms the point previously made concerning the significance of a sequence of input sets, A

-55-

ool 43,158, 89,
4 10

tt) f

IN3| L23,(5617,

N2 1,2,3, LIS 183% (905 | 1624 |
P | 14 17.22°| 1624

{
NI 1,2, 3, | 5. 6 7, | LL1Z,13[15,16,1
ime 1 2 3 4 s 6 1T 8

| ,gugut , PR T QU?\“;;@.] _Qu?ut_!
7 | 6 Ugasyi®! 1naa | 1624 | 2026 | 27
N2 2526 | 27|]

Pl
ul
tme 9 10 M 12 13 14 .. 15 16

Table 3.4. Token flow of four input sets through Figure 3.8 for ggnﬁgy{a»tiqni path ml_g-g_rgg ,

. (RPN PR ISERVRE R o\;t})ut
IN4 p |L23.]567

I X IR O TPRTIEER I SN SHRNCITT! CRGnlT v 1S Heton 89401 -
I¥3 P :v 2! 3' 5: 6’ 7, 11’28 29
IN2] 11,23, 15, 6,7 [1LI2 13} ES 18190 w5301 62
o P 14 16 114 158 17.23°| 1625
INi. 1,2, 3, 5,:»6'&.- VLA303u45.0600) 9499 4 24 | 26 | 27
tme 1 2 - 3 4 .5 .6 T .. 8
output ou?ut ou?ut

IN4'~7’12’13' 16,17,18 - . 7
14 11920 1122 | 15.24 2126 | 27
I? 30 '1'5 -t L 27 i I —
IN2] P

] 26 27

Tl

Table 3.5. Token flow of four input sets through Figure 3.8 for computation paths truc-frug, true-false,
false, truc-true. '

SN

9 10 11 12 13 14 15 16

further ‘analysis of ippu; sets for this data flow graph may reveal that, in fact, it is rarely nccessary or
best o transform the graph into Aully buffered form.
333 Additional Considerations ~ .

Once an actual datav‘ﬁdw maéhiné IS ava&hbk‘astudy“pfthelradcoﬂ (')f lhmngbput for
number of mscrtcd mnmy opcmims should pruvu!c ms;ght mto thc ﬂirccnoll to take concermng
optimization. Perhaps bes mfornmtian in cnmbmajlon wnm pam;:u-h: appﬁcauon will mdlate other
optimization pnmbﬂme; “for mstance conccmranng cﬂbm arr mﬂyﬁém*soumf of bonleneck
within a graph. For thc condnmnal constmct thts pomt appmrs to bc the contml arc o ﬂle M gate. -

Maodifications-of Algorithm 1 similar to the onc*which prbduced ﬁlgomhnf 11 could also be weighed

ot Lemis bade o8 e wed

more realistically as ahemaave approwha. A

A final poinrto mte m thc comadcrauon of thls buffermg opmnmtmn sratcgy is! the type of
~ construct for wlnclr unappmpme. ‘Ihc cxamplcs above wlmh mvdyc condmonal Qonsmacts and
general composmons of opcra}om. mm eut 0 be fatﬁyrrépresentquﬂ mc"typq of gmph for which
.this optnmlzatwn is appllcable In t‘act. this op.qnzamn m!ms mlty anappwpﬂae for an
ttcratwc process whose function is to modlfy and rccyc!c a single set of i mpms at.a time -~ a process
- which docs not invelve pipclining (howcvcr, subgraphs wmm may beaplpebncd). For such.
constructs, a different optimization technique must be devcloped. Tlns altcmatnvc stral;:gy whth aims
. to minimize the numbpr pf acknowlcdgcs ina graph by ghmmﬁt;pg thoie v!hlth a)r_eﬁmeocssgry, is the

topic of the next chapter.

-57-

CHAPTER FOUR
4.1 Eliminating Usnceded Acknowledge Arcs -

This chapter cxplores an uptimui;anltion téchniquc for removing unncccssary acknowlcdgc arcs
in a data flow graph. Thuﬁgh thc umf‘onﬁ substitution of dam/aékn;)w]cdgc arc palrs for d;xié arcs
yields a correct lmplcmcntatlon of a data ﬂ()w graph the dckr;ow;vlcdg'lng scheme is costly. 'l‘he
overhead of proccssmg ackn()wlcdgc packcts is felt in thc routmg nctworks ;\nd mstmcuon cells of the
data flow computcr which must rcspcctﬁ/cly handle the resultmg increase m trafﬁc ahd b(;okkecplt;g
Thus, there is valuc in questioning whether or not all acknowlcdgc arcs arc nccded Whlle it is casy to
ﬁnd examplc data ﬂqw graﬁhs ?:onullnlﬁg arcs er Whlch an a;:l(‘nov;lcxdgc is unncccssary,' methodical
identi ﬁcatiohl()f sucﬁ ‘instzm;s is cxtrcr;c] y difﬁcult duc t;) al;‘;ﬂcn C()n.t(;);t.ACpcn.(iéll-t decision: The
grabh é;;nﬁgurati()n aﬁd parti&ular éonslfuct ‘uhder consicicratiéh are kcybfactors m détcrmining
dcknéwlcdge arc removal. In response to thls fact, the sﬁatcgy fo chmmatcb unncccicd ;c.knowlcdge arcs
focuscs on |r;d|v1dual VAL constructs, attc;mptlng to |dcnufy candldate d/é arc pzurs and provnde a
cérrCSp()ndlng sct of rules spcc1fymg condmons Rccurswc appllcatmn ;)f !thc rcsultmg sct of rules to a

.’data flow graph derived from a VAL program can then bc uscd to test each candldate arc pair f(;r
removal of its acknowledge arc.- | | | - |

The following section considers thc possnblhty of usmg Pcm net thcory to govem acknowledge
arc rcmo;/al and subsequently discloses certain data ﬂow graph opcratlonal charactcnstxcs mportaht to
the optimization process. Scctions 4.3 and 4.4 develop acknowlcdge arc removal rules for the VAL

conditional and iteration constructs respectively. The later section includes scveral example graphs

illustrating applications of the rules formulated for the iteration construct.

4.2 Considerations for Acknowledge Arc Removal -

The cr)nccrn in removing acknowledge -arcs from . a:data flow graph is” whether the safe
opcratlon which the arcs ensure is maintained. Though we attempt once agam to usc Petn net theory as
a gurde this strategy is dlscouraged not only as a mnsequenccof the chaptcr 2 dtscussmn but as a
result of exammmg T and F gatc opcrators whlch drsplay a fundamcntally dlffenent bchavror than that
of transmons A look at the opcratton of these gates and thclr el'fect on token ﬂow shows the dlfﬁculty '
in usmg l’etn Net theory and motivates the fonnulatton of new ‘rcqturements for safc removal of
acknowledgearcsmdataﬂowgraphs. | o _- R |

: The role of the transmon in Petn net theory is analogous to that of thc ﬁms;tmml data flow
operator ang a transmon moves tokcns on mput places to output plaees of the transition. l‘he T
and F g.ate functron whteh allows a computzmon to proceed in one of two ways, is accompltshed by the
l’etn net conﬂguratron shown in l-lgurc 23 and repeated below in F gure 4 1 'l‘hc essennal dlfference
in the opcratlon of this Petn nctis. that once onc of its T or F transitions fircs to place the input token
on a pamcular path the transntwn controllmg cntranceto the altematc path isno longcr enablcd. ln a
condruonal data ﬂow graph when the gatcs conespondmg to thc control mput firc, the opposite gates
remain enabled and must fire to absorb their i mputs asis shown in Figule 4.2

Here the assumption is that the control input to the Figure 42 g.ates was ng allowmg a token
to flow through the T gate to enablc operator ﬂ Thc data ﬂow graph bchavaor wrll allow an output to
be produccd at the M gatc mdcpcndent of whether or not the mput prescnted to the F gate has been
absorbed. This phenomcnon docs not occur in the Fgure 4 1 Pctn net since an tnput token is swntehed
down one of the two paths lcavmg no cxtra tokens bchlnd. Thc srgnlﬁcancc of this drffcrcnce beoomes

clear when considering the possnblllty of iterative graph conﬁguratrons. lf we focus on the input arcs to

-the F gatc, and view the Figure 4.2 graph as the body of an iteration construct which recycles its output

-59 -

Figure 4.1. Petri net model of the conditional construct

Figure 4.2. Conditional construct data flow graph

token, ensuring conflict-free operation requirces that the-input-arcs to the Fgate bed/a are pairs.

Since the possibility of a similar conflict is absent from the Petri net modelling of the data flow
graph, the difference in operation of the two rcndcrs Petri nets insufficient as a guide for acknowledge
arc removal in data flow graphs. As a result, the applicability of Petri net theory to the process of
identifying candidate arc pairs is limited. lnstcad, the strategy followed cxamines the various VAL
constructs to develop rules specifying conditions for xkéowlcdge arc removal for eéch candidate arc
pair identified in a construct.

An implication of this conditional cuhstmct behavior is that the acknowledge arcs of the input
arc pairs to a T or F gate cannot be removed since the prepcncc of a token on an acknowlcdge arc is the
only way to guarantce the absence of a mkeﬁ op a corresponding data arc: A T or F.igatc. output arc
gives no indication of the state of the gate's input arcs since firing may or may not produce an output
token. An 1llustrauon of addmonal problcms rcsultmg from T and F gate bchawor in combmatnon with

the possibility of nesting conditionals appears in the next sccnon
4.3 Analysis of the Conditional Construct

. To illustrate the analysis nceded for finding removablc acknowledgc arcs we consider the data
flow graph translation of a gencral cundmonaf construct,shown in hgunc 4.3. Wc begin by focusing on
the slashed arc pair connecting a and the M ggtc. Rccall‘that thc behavior of this arc pair is such that it
cannot accept a sccond token until the M gat_e'ﬁrcs to process the previous control token, and send an
acknowledge token to a. This guarantecs that a sccond set of tokens cannot be within the branches of
the conditional until processing of the preceding-sct ha‘s*\completcd. While overcéming the restricting
behavior of this arc pair was the aim of the chapter 3 optimization designed to balance token flow in the

graph, it is an advantage to the process of rcmoving:acknowlcdgc arcs as is seen by following an input

-61-

Figure 4.3. Tlif exp then /7 else /2]

o B ot
1 A)
b

sct through the graph. Each inputset (procci?cd by cither f7 of j?) places a'tb%k’cn on the control input

b

i P

arc of the M gatc and a déta token on cach of the arcs labeled eﬁhcr aand b, orc and d, depending on
whether the control token lS true or falsc. /\Ssurﬁing that f7 :;ndf? ércwdkfmmcd an output should
appear on arc g (assuming the control token is @gf):withiln ﬁm{c timewsvnm no possibility of a second
token appearing on arc g, or of any token appicaring on arc. h Lnniil the M gate ﬁrcs ~This cvent
simultancously processes the token on arc g and sénds an acknt;wicdgé token to a, conscquent to which
a successive input set may enter a branch of the conditional, Tﬁé ttokcn flow Bchavior guarantees that
the acknowledge arc of arc pair g can be safcly removed, as can that of arc pair h (by an analogous

argument).

-62-

~ One might be tempted to remove the acknowicdge arcs from are pairs a, b, c, and d under the
assumption that on,cé a sct of tokens has cntered a branch gf the conditional, the tokens must be used
by the appropriate function to produce the corrcspondixgg oﬁtpul. Hosywc\""ér‘ a consideration of the
Figure 4.4 data flow graph will show that fcmo‘vé;tl'vof acknowlcdgc arcs for thcsc arc pairs is dependent

on the subgraphs represented by £7 and ﬂ

‘igure 44. Unsafc token configuration resulting from remeval of ¢’s acknowledge arc

-63-

The I"igurc 4.4 graph is a translation of the following VAL program segment:
if f=1 then if s=1 then x*(y +1) clse x end cise x*y cnd

Consider a sct of tokens ﬂoWing through the graph' which causes the outer pr;:dicatc, f=1, to cvaluate
to truc and that of the inner cundiﬁnnal construct, s=1, to cvalua;t"c:tx) false. The tokens on inputs s, x,
and y should appcar on arcs a, b, and ¢, and cvcntuaﬁy become th;ckda(a and éontrol input tokens to the
inner conditional construct’s 'I' and F gates. Since the inner conditional’s control token is false, the
computation proceeds through its false branch. The important point to note is that continuation of the
computation, only requires the tokens which appcaréd on arcs a and b. The token on arc ¢ nced not
| propagatc through the graph, and may in fact still be on arc ¢ whén the outer M gatc fires to produce an
output and an acknow!cdgc token, allowing the processing of a succcssjvé sct of valucs to begin. Were
a sct of inputs to flow through the graph in this manncr, removal of ¢'s acknowledge arc would make it
possible to reach the unsafe token configuration shown in Figure 4.4. (The tokens are numbcered to
indicate the input sct to which they belong). This behavior is a consequence of T and .F gate
functioning, the foundation of the conditional construct structure.

Understanding the analysis is aided by Figure 4.5 which gencralizes the Figure 4.4 graph to
expose the subgraph structure. The Figurce 4.4 cxample shows that the nccessity of acknowledge arcs
for d/a arc pairs a through c is dependent on whether or not their values arc guarantced to be used in
producing the dutputs of the appropriatc subgraph (/7 or £2 of Figure 4.5). ‘Fxamining subgraphs fI
and f2, which respectively represent the inner conditional construct and -multiplication operator of
Figurc 4.4, reveals that tokens arriving on arcs a, b, d, and e myst be used to produce their
corresponding output, whilc the need of a token arriving on arc ¢ is dependent on the outcome of the
inner decision operator. Therefore, ¢’s acknowledge arc must remain but those of arc pairs a, b, d, and

¢ can be removed.

Figure 4.5. Generalized version of Figure 4.4 data flow graph

~ - This analysis, specific to the conditional ‘Comstruct; resiis in ‘Bcsignating all input arc pairs to
the f1or f2 subgraphs subject to rulé Cl, shown in Figiire 4.6, for determining acknowledge arc
removal. While the rule serves to identify: and state conditions utider which certain arcs within the
conditional construct may not need ackowledges, it gives fio ictfiod for tésting the conditions. "This
requires a recursive look at the constructs cumposing subgfaphs /7 and ﬂ,‘thé'stratc'gy just used in
analyzig arc pairs a through e in the Figurc 4.4 cxample. It is intefésting to note that mé:analysis can
be applicd at the source level by first recognizing that subgraph /1 was a conditional construct, and then
taking the imtersection of variables appearing in its then and else Clauses. Variables found in the
intersection are guarantced to be used-in producing the output of the cmu Therefore, arcs in the
data flow graph corresponding to these yariablcs should not require acknowlcdges.
Finally, we look at the only arc in the conditional construct of Figure 3.3 not yet analyzed - the
control (slashed) arc connecting a and the M gate. While the climination of acknowledge arcs within

- our example conditional construct has been largely dependent on the existence of this controlling arc

Figure 4.6. Acknowlcdge arc removal rules for the conditional construct

Gron)
G

Axs ~ Removal rule - -
gh unconditional

07]

C1: The acknowlcdge arc of an input arc pair to subgraph f7 or f2 may bhe rc:hoved if
any token arriving on the arc must be used in producing the output of ithe
subgraph.

C2: The aéknowicdgc arc of the control arc coﬁnccting a and the M gate can be
removed if the acknowlcdge arcs of the output arc pairs of the M gate has been
removed.

pair’s acknowledge, its presence cnables the acknowledge of an inner conditional construct’s control arc
to be removed. The argument to justify this is the same:as that used to explain the removal of arc g's

acknowledge. Consequently, in the general conditional construct the control arc between a and the M

gate is marked as candidatc for acknowledge arc-removal, and is subject: te rulc C2 shown in Figure 46.
This completes the analysis. necessary for performing thc optimization to rcmove unnceded
acknowledge arcs within the condntsonal construct. As a second examplc, wc discuss the itcration

construct for which this opumwtmn !s particularly appropnate
-4.4 Analysis of (he Iteration Construet
4.4.1 Acknowledge Arc Removal

The fact that the opximiétiﬁ ”prescmed in chaptes 3"3;sp§ciﬁc to acy;:lk segments of a data
flow graph, cmptmucs the significance of hmﬂymng thé ‘iterat)on construct for annccdcd acknowledge
arcs. Figure 4.7 shows the data flow graph transTa(lQm of me VAL itcration expression:

for idlist = expdo :lerbodyud
The function of this constmce !sm emluate exp and then pcrfain iterbody, which outputs an iter?
comrol valuc and a sct of data valucs on éithcr its I (itcration) er- l (rcturn) output arcs, depending
respectively on whether the iter? outputkvaluc is trye or false. Suocesswe cvaluations of iterbody are
made unul a falx iter? valuc is produccd at whtch time cvaluanon of thc construct w:th a new sct of
inputs can- begm ‘ | | N

The function of the iter? arc is to prowde thc control value to thc group of M gam which
present successive sets ofmpsm to the xtcrat:qn body The arcis: mmdmed with am contml value to
ensure proper sclection of the first set of data values. Assuming that the iter? value is dcpcndcnt on at’
least some of the M gate inputs, a number of them must fire before a second iter? valuce is produced.
This necessarily implics the firing of copy operator "L" in Figare 4.7, to present the M-gates with ifer?
control inputs needed to enable them - consequently ensuring that the iter? output asc of iterbody must

-be empty for a successive ifer? value to be produced. As a result, the acknowledge are of this.arc pair

-67-

Figure 4.7. Acknowledge arc removal rules for the interation censtruct

TI:

T2:

T3:

Arc © Removalnile
iter? uncondmonal
L o T,l o
o | Sy

The acknowledge arc for an arc pair between operator L and the sequence of M
gates can be rcmuvcd if its data value must be used in producing the iter? value.

The acknowledge arc of an I (iteration) arc pair can be removed if either
(1) The iteration body cannot emit a valuc on that output arc until it has
absorbed the corresponding input value on the corresponding input arc.

(2) The iter? value dcp;nds on the corrcsponding input arc.

The acknowledge arc of a v; arc pair can be removed if the arc palr is not mput to
aT, or F gate, and the iter? output valuc of uerbody dcpcnds on the v; arc value.

(between iterbody and 1.) can be remeved.

No such guarantee can be made for the arcs between copy operator L and the M gatcs. since
the iter? valuc need not be a function of gvery M élalc:input. 'This implics the possibility of producing a
sccond iter? value before every instance of the prchous uer’ \alu‘cjppcanng on the arc pairs between L
and the M gatcs has been absorbed. Shoul¢ L ﬁre uncondmonal ;rcmoval of the acknowledge arcs of
these arc pairs could cause a conflict. Conscqucndy acknowlcﬂzc arcs of these arc pairs are marked as
conditionally removable subject to rule Tl, Vspcaﬁgd l_:clow Flgu_;e 4.7: M gatcs whose data value
inputs arc used in producing the iter? contmlwmc ﬁlust ﬁré}absprbmg the current iter? value, their
control input) before a successive iter? valuc iSzproduccd atyiconsexjuently need no acknowledge arcs.

Fxamining the form of the itcration coi;stnxctA; m;terbod; is a neccssary prcliminary to
determining acknowledge arc rcmoval ﬁr the rcmaining arc paiss in the itcrative graph. Since the
function of the construct is to |tcratc or remm a sct of values bascd .on some boolean function, irerbody
must contain a-conditional. The BNF specgﬁcatmn of VAL conﬁnns_‘,;his via the production:

iterbody :: = if exp then irerbody, clse iterbody, end

Figure 4.8 shows the data flow. graph translation of this conditional iteration body. Graph inputs are
respectively presented to the subgraph mﬁrégénling éitﬁcr iterbody, or ité;hxi}z via T, or F gates, as a
result of cvaluating exp. The selected subgraph will produce a sct of outputs at either its I (itcration) or
R (return) output por(s according to its iter? output value: tru¢ forl outputs falsc for R outputs. The
iter? output valucs of the iteration body subgraphs, along with the output of the predicate subgraph,
exp, arc the "i‘h;;uts:to the IC gatc whi,ch‘comrofé'm‘c graph output pons. ThelC gatc" has three outputs:
A graph iter?, and an I control valué and R control value which provide control inputs to two scts of M

gates respectively merging the 1 and R data outputs of the iteration body subgraphs to produce graph

outputs. A more detailed specification of the IC gate is given in Table 4.1. Functioning of the

-69 -

Figure 4.8. Tllif exp then iterbady) else iterbody, ond]

Tlexp] E)
e b

2

ST

Ifiterbody1]}

Table 4.1. Functioning of the IC gate.

predicate Tliterationi} T literation,] ~graph I R
control iter? iter? iter? control control
true true -- true true -

true false - false - true
false - true tue false -

false - false false - false

error - - ' false - - error

conditional iteration body is secn through scveral cxamples presented in section 4.4.2.
By replacing iterbody in the Figure 4.7 graph of the itcration copstruct with the Figure 4,8
conditional iteration body to produce Figure 4.9, the.I output arcs of the iteration construct can be

analyzed for acknowledge arc removal.

-70-

Figure 4.9. Iterative data flow graph containing iterbody subgraphi of Figure 48

Recall ;hat a set of output valucs should appear on the I arcs for cach true iter? value produced.
The acknowledge arc of a particular I output arc may be removed ifeﬁhcr of two cpnditions is sausﬁed.
The first is the:case in which production of the output value is dependent on the corresponding input
valuc; appearance of a ncw value Amphesabsorptnm of the previous value. At first glance this would
seem to occur always. In fact, it is possible to produce a second eutput on some I arc without using the
previous value, as is seen in the example in scction 4.4.2. The second condition under which an 1

acknowledge arc can be removed is dependence of the iter? value on the corresponding I input.

-71-

To understand this we look at the IC gdté in Figure 49, one-of whose outpitt arcs is iter?.
Firing the IC gate will produce valucs on two of its three output arcs; the .ifer? arc and cither the
itcration or retu tn contrdl arcs which respectively ptovidc contmt input values for M gates connected to
the graph I and R outtht ;‘)orts.r Until the IC gate ﬁtcs, thcse M gatcs witli not be ctmblcd. A set of
values appcaring on the graph 1 output ports thercfore! rcquit;s,ﬁh\c "'priot tC gate firing to produce the
M gate contrt)l values, as well as an iter? value. It is clear that if th‘isvi’lelr;? valuc is dependent on a
particular 1 arc input valuc, that I arc must be cmpt)t for it to rtct:ivc a suctcs;ive itcration value.
Conscqucﬁtly, acknowlcdge arcs of I aré palrs satlsfylng [hlS 11er7 dcpendcncc are not necded. The two
condmons under which the acknowlcdgc arc of anlarc pan' can be removc,d are summarized in rule
[‘2 of I-lgure 4, 7 I

To complete analysis of the iteration constntct we dlscuss the input arc patrs to the iteration
body labcllcd vie m Figurc 4.7. Tcstmg for acknowlcdgc arc rcmoval must be donc mdmdually for
cach v; accordmg to the followtng gutdclmcs If the arc pmr is mput toa T‘ orF gatc the acknowledge
arc must rcmain: This follows from the discussion of T and F gatc bchawor. If the arc pair is input to a
functional opcrator or M gate, the ackno“tlcdge arc c‘tn be rcmuvcd lf thc uer? output of the iterbody is
dcpcndcnt on the v; arc value. Thc v; arc pairs arc outputs of a sct of M gatcs controllcd by the graph
iter? valuc. In order to remove the acknowledge arc of a particular Vi arc pair, it is not sufficient that
the v; taluc be necded in computing a sucécssive itcrattvc value it: tcsponsc to a truc iter? output. The
vi valuc must also havc been used bcfore a new input value rcsultmé from a _(_lg iter? value appears.

This is cnsured if uer? dcpcnds on the vi valuc. Rule T3 shown in F |gurc 4 7 states the acknowledge arc

removal rule for the v; arc pairs.

442 [Acknolledge Arc Removal inlterative Programs . -

To apply thc acknowlcdgc arc rcmoval mlcs dcvclopcd in the pmvums section, we bcgm with
the snmplc but famrllar factorial algomhm cxpmsscd as thc ﬂﬂlowmg VAl program
foriy=11do |

HiLnthoaiterit+ Ly islseyend
end

The data flow graph rcprescnmtron of tlus program is shown in Frgurc 4 10 Thc graph is composed of
an rtcranon construct whosc :lerbod; isa samphﬁed form of the condmonal ltcranon cxpressaon shown
in anure 4 8. The mmplnﬁcau(m oceurs since only thc then chusc ol'tl;e condmonal ltcrauon body wﬂl
: ’actually itcrate valucs Though both bmnchcs havc lhe abthty m ucrate and return valum, the tail

recursive structure of the algomhm causes valucs to be itcrated thmugh one branch and retumed

throughthcodler

If a sctof rules c:ustcd for each VAL c0nstmct. dctcrmmmg whrch acknowledgc arcs to remove

for the fag_mm[data ﬂow graph would begm mth analysrs of thc mner condmonal rtcratlon body
However since we have only dcvclopcd mlcs for (hc condmonal and !tcr;tlon constructs, we mus
keave thc condmonal iteration body as is, and procecd to thcwrroundmg ltcrauon construct. |
Clearly, thc acknowledgc arc bctwccn thc lC gate and operator L can bc rcmoved. Rule T1
govcmstheancparrsbctwccn LandtheMgatcs. Ihcrandndmavaluesmustbeuscdmproducmg
the uer’ concrol valuc; thercforc only the acknowlcdgc arcs of thc arc pan's betwecn L and the M gates
controllmg thciandn data values may be rcmovcd ll 12, and l3 (wcranon) arc paus sausfy the first
condition of rule T2; a successive value cannot bc produccd on thc l output arc unul the con'espondmg
input value on the corrcsponding input arc has been absorbed. 'I'hus, none of tlme needs an
acknowledge arc. Finally, we cxamine the v; arc pairs, which in the Figurc 4.10 graph rcpresent all six

-arc pairs cmanating from the three M gates controlling the i, y and n data values. According to rule T3,

-13 -

Figure 4.10. Data flow graph of the factorial algorithm

only the two arc pairs input to:the predicatc of the conditiofial icration body can have their
acknowledge arcs removed. The other four are input to 'F and F gates, making their acknowledge arcs
essential. The results of this analysns arc shown in ngrc 4.11 where each arc requiring an acknowledge
arc has been marked with a double bar || thosc not markcd arc assumcd to bc smglc data arcs.

While the M data flow graph shown in: Faswe 4,1&13 produced by the T algorithm, the
simplified form of the conditional itcration body is mgmﬁcant in that thc M gatcs which merge iteration
and return values of the coﬁstruct, though present, serve no functlon The tcmptatlon is to optimize the
graph by removing these M gates as well as the.IC gate | and R control .outputs. Though possible, rule
T2 must be reevaluated as a difect consequence of this action since the analysis used to formulate rule

T2 relies on the standard form of the conditienal iteration body shown in Figure 4.8. Spccifically, the

-74 -

Figure 4.11. Optimized factorial data flow graph -

reasoning behind casc (2) of rule: T2 is dependent on the presence of theband R'M gates. We state rule

T2 and procoed to reexamine cach of its cases. -

T2: The acknowledge arc of an | arc pair can be removed if either:
(1) 'The iteration body cannot cmit a valuc on that output arc
until it has abserbed the corresponding imput value on
corresponding input arc. ‘

(2) The iter? value depends on the corresponding input arc.

Condition (1) of this rule still apphies; since it: describes the situration in which each successive
itcration value is a function of its previous vatue. Clearly, only one valuc can appear on an arc which

-satisfies this condition at-any time. Remioving the M gates does not:affect this case. - To recvaluate case

-75-

(2) of rule T2, we focus on the data flow. graph shown in Figure 4.12, the represcntation of the VAL

program:
fori,y=114do
ifi <nthenitery+1,i+2eclseyend
end :
This graph, similar in structure to the factorial graph, displays the same M gatc phcnomenon, but is

significant in its reassignment of iteration variables. Fach of these two variables is a function.of the

other: ltcration variable i is a function of y, and iteration variable y is a function of i.

Figure 4.12.. Example data flow program

-76-

| Iteration arcs of the factorial data flow graph satisficd case (1) of rule T2 - dependence of a
successive value on.its previous value, allowing their acknowledge arcs to be removed. Case (1) does
not apply to the 11 and 12 arc pmrs m the graph in F'gurc 4 12 duc torthe "crossover” reassignment of
itcration variables. However, their acknowlcdgc arcs can bc rcmo;/cd sice casc (2) of rule T2 is
satisficd: Production of the irer? value depends on both { and y. - Variable i i nceded toicompute the IC
gate control input, and variable y generates the gate’s tryc dataisput. -

The structure of the Figure 4:12 data flow graph‘cnables us to examine whether case (2)-of rule.
T2 correctly determines acknowledge arc removal if the graph is optimized by removing its1 and RM
gates and IC output control arcs (portion of the graph shown in the dashed box). Consider the state of
the graph shown in Figure 4.13, the optimized version of the Figire 4.12 graph.

| It is now possible for a sequence of opcrator firings to S?Scea ".é‘u;c:ccssiv'év"'z'xr\i’éf()rli lZ; rcsultiii’g;

in the unsafec state shown in Figure 4.14. Even though ﬂle IC gate is dependent on the y value, the
production of succc%ﬁve ‘iwrétion vall;es is no longer "&cpéiidc;n,twp;ny the_prior firing of the IC gate.
Thus, the i value can Mtc through thc ~gra‘ph to- prodycé"a;ijcccs;ive y value bcfbré the previous y
valuc has been absorbegl. We see that as a result rof optimiiiné the mrd grqph form. the case (2)
condition is no longer adcquate for eﬁsurin? safe removal bfitérétiOﬁj‘ét%:knowlcdge arcs. |

One approach to this prébl‘cin. is to specify this type of graph optimization as illegal. Such a
restriction favoré the an] of kcﬁtim aeknowlcégearcs over the removal of unncfceésaﬁry operators.
At the same time, it cnables uniform application .of thé present acknowledge arc fcfnoval rule. A
sccond approach involves rcdeﬁmng rule T2 for optimized gl’aphs whosé M gatcs have been
climinated. Removal of I acknowledge ares bocomes dcpendcm on the prcdlcate value rather than the
iter? value. The functioning of the graph dictates that dam used in producing I or R values must come

through the T or F gatcs controlled by the graph predicate. This ensures that M gates controlling

Figure 4.13. Modificd data flow program from Figure 4.12

variables-used in computing the predicate must fire before new itoration: values can be produced. Fhe
modificd version of rule T2, case (2) reflcets this-analysis by specifying that an-itcratien acknowledge

arc may be removed if its corresponding input arc must beused in producing the: predicate value.

T2: The acknowlcdgc arc of anlarc palr can be removed if

(1) The iteration body cannot emit a valuc on that output arc
until it has absorbed the cotresponding input valic:on the
corrcspondmg mput arc.

(2) the predicate output value depcnds on the correspondmg
nput arc: '

Figure 4.14. Unsafe token configuration for Figure 4.13 -

Using this rule, the acknowledge arc of iteratign ar paig 12 can sos be removed since computation of
the predicate valuc docsmet involve y, the variable controlled by itsicorresponding input arc.

This analysis of the factorial algotithm cmphasizes the aptions and problems which quickly
surface in considering rather basic cxamples. The acknowledgc arc rcmoval rules, whllc adequate for
graph conﬁguranons derived by straughtforwardly applymg thc l’ algonthm could rcqulrc significant
cxpansion to be nampaubly usedenh 'othcr- opamﬂam»rs:swdx- ef qore complex graphs or of
those requiring this optimization in conjunctmn wnh othcr optmmmons would be useful in
determining the general apphcablmy of these rules, and is desagnaied as-aa area of interest for future

research,

CHAPTER FIVE
5.1 Summary

The aim of this thesis has been to address problems which arise in translating a high level
language for a machinc architecture designed for paralie]l processing. While the high level language is
nearly indistinguishable from source languages :for. standard scquential processors, the data driven
cxecution of its instructions requires a radically. different form of translation. This study of data flow
translation uses the high Ievel language VAL and the Dennis-Misunas architctture. While standard
methods of data flow processing do not yet exist, the model used refiects the typc of translation issues to
be tacklcd. in the realm of data flow. The problems unveiled and solutions proposed- are illustrated
using data flow graphs;-which result-from applying thoF translation:algorithm:to VAL programs.
Though these data flow graphs closely correspond to. the machine tanguage represemation of VAL
programs, their level of abstraction and explicit represention “of - data -dependencies imake them a
gencerally accepted model of data flow.

Chapter 2 focuscs on-the firing behavior:of data flow graph operators which must ensure a
‘maximum capacity of one value per arc as dictated by the ‘Dennis-Misunas architecture. While
restrictions of other data flow architectures may be less severe, the need to place some finite limit on arc
capacity is common to most. The transformation of ar¢s within data flew graphs to data/acknowledge
arc pairsis introduced as a micans of implemcnting the desired operator behavier. A formal argument
cstablishes that the safe operation resulting from the transformation is guarantecd, and that the liveness
and functionality of the graphr-is not altered. The usc of data/acknowledge arc pairs does however have
a profound cffect on operator firing scquences within a given graph, and thercfore on its throughput.

The remainder of the thesis explores the consequences of incorporating d/a arc pairs and suggests -

methods of modifying the transformation algerithm to improic graph performance.
Though safe operation is achicved by pchcnting any given operator from firing until
appropriate acknowledges are reccived, the delayed firing of an operator may causc a subscquent and
" unnceessary delay. to:operators dependent-on its putput. ‘This phenomcnon is the subject of chapter 3.
The algorithm developed i this chapter climinates petential bottlenecks within a graph by buffering
arcs with identity operators:so that all paths through the graph-arc aa .cqual length. Analyscs of
performance show that this approach maximizes: througliput,-but at:2 potcatially kigh cost interms of
identity operations.. While performance . statistics: indicate -that. this latter. sifategy. 'is promising, the
choice of an optimum buffcring scieme is complicated by the number of interacting factors. -
‘A sccond approach: for optimizing -a transformed:data flow graph, which aims to decrease
. overhead by climinating unnceded -acknowledge arcs; isndiscussed in: chapier 4. By identifying
situations: in- which - particulas arcs do' not dependd .on-an.acknewledgemont to prevent multiple token
occurrances, the number of acknowledge arcs can be minimized.. This is accomplished by analyzing the
data flow graph implementation of cach VAL construct to find are pairs that may be sybject to
acknowledge: arc removal, and specifying’rules which enable these situations 0 be rocegaized. The
chapter oondudcs:_ with scveral examples illustrating: thisupmlaﬁm -While the techniques . of
balancing token flow and removing unnecessary acknowiedge arcs have beea developed independently,
the optimum. configuration for any given data flow: gmphls reached: by application of both
optimizations. The absencc of specific information: abont hardwasc: (cg. opcrater execution: times, ctc.),
prevents the develepment of an algorithm combining the two at this time; however, an attempt is made
to identify the major factors contributing to the choice of optimizations. - These issucs develaped. in
chapters 3 and 4 should prove applicable to transiation and optimization problems arising in other data

-81-

5.2 Dircctions for Future Research

Three arcas of rescarch are natural cxtcnsions of the work prcmn&d. The first focﬁscs on
further development of the chapter 4 optimization. 4'ic wc;r)kﬂlyarcscntcd anai‘yzed the VAL conditional
and ‘ileratian constructs to detcrmine the circumstaﬁces undcr which ;cmin arc pairs could safely

_ function without an acknowlcdgc arc. A more extensive study of data ﬂow graphs contammg these

constructs would be useful in dctcrmmmg the completeness of the rulcs prescntcd Certam graph
configurations may reveal additional cases to test for in removing acknowledge arcs, thus Iead;ng to an
extension of the proposed rules. A more straightforward task involves application of the chapter 4
analysis to the remaining VAL constructs. This work is required for the development of a recursive
algorithm which could perform acknowledge arc removal for the data flow graph representation of a
program.

A second avenue of research centers on performance cvaluation of data flow graphs. As data
flow computer prototypes become available, the type of performance analysis shown in chapter 3
should produce more accurate data. Statistical studics can be made of token flow patterns for various
graph configurations, and corresponding optimization schemes. Information gathered should
determine when or whether the bencfits of an optimized graph outweigh the cost incurred. A study of
different configurations of a single daté flow graph should provide valuable data on optimization
tradeoffs. This would contribute invaluable information toward formulating an algorithm integrating
the optimizationé of chapters 3 and 4.

Finally, the rescarch can be cxtended to include more traditional optimization techniques.
This would initially require a determination of which of these optimization strategics are applicable
and adaptable to data flow. While redefining optimizatiqns such as strength reduction scems possible

and fairly straightforward, the adaptation of other traditional optimizations to a parallel processing

context may require a different set of considerations. A data flow version of these optimizations could
depend on the development of certain tools, such as a catcgorization of cquivalent graph
conﬁgufations. A comﬁrchcnsive cxamination of the application and mcanihg of such traditional
optimizations in data flow rcmaiﬁs. ic potential fn ﬁ;lloWi:hg this route,- z.md‘of furﬁfcr developing
optimiﬁ:tions particular to data flow computétioh ISjUSt beginning to be taﬁpca. Thc cxtcnsi’ve hiétory
of scqucntiél programming optimimtioh tcchniqﬁcs wiﬁ no doubt hav; ifs countcrpaﬁ in the ‘world of

data flow.

8

2l

31

[4]

5

[6}

m

[8]

9]

{10

[}

-83-

BIBLIOGRAPHY

Ackerman, W. B., "Interconnections of Determinate Systems”, Computation Structures: Group
(Note 31), Laboratory for Computer Science, MIT, Cambridge, Massachusetts, July 1977.

Ackerman, W. B., and J.B.Dennis, VAL -- A Value-Oriented - Algorithmic Language:
Preliminary Reference Aanual, Laboratory for Computcr Scmncc (I‘ R-218), MIT, Cambridge,
Massachusctts, June 1979.-

Brock, J: ., Operational Semantics of a Data Flow L.anguage, Laboratory for Cumputcr Science
(TM-120). MIT, Cambridge, Massachusetts, December 1978, : «

Brock,J.D., and L.B.Montz, “Translation and' Optimization of Data Flow Programs”,
Proceedings of the 1979 International Conference on: Parallel Processing (O:N.Garcia, Ed.),
August 1979, 46-54. Also, Computation Structurcs Group (Mcmo 181), Iaboratory for
Computer Science, MH Cambndgc Massachusetts.

Chamberlin, D. I) " I‘he *Single-Assignment’ Approach to Parallcl Processing”, AFIPS
Conference l’roceedmgs 39 B7t Fall Jom! Cmnputer(‘onference Nuvcmber 1971, 263»‘269 ’

Commoner, F., "l)cadlocks in Pctn Nets", Research Report of Applied Data Reseamh Inc,,
Lakeside Office Park, Wakeficld, Mass., June 1972.

cbedgF

Commioner, F,, S.Even, A.W.Holt,. and A.Priveli:- "Marked Direct = Graphs”,

Journal of (’ ompuler and S’yslem Sciences 5, October 1975 511~523

Dcnnmg P J "On Lhc Dctcrmmacy of Schcmata" Record. af the I’ro;ett MAC Conference on
Concurrent .Syslem and I’arallel C ompulatwn. ACM, Ncw York 1970, 143- 147

Denais, J. B "First Version of a [)ata Flow Pmcedupe Laﬂguagc" ngrammmg Symposium:
Proceedings, Collogue sur la Programmation (B.Robinet, Ed.), Lecture Notes in Computer
Science 19, 1974, 362-376. Also, Laberatory for. Computcr SBICIICC ('lM 615 MIT, Cambndge

- Massachusetts.

Dennis, J. B., "A Language Design for Structured Concurrency”,. Design and Implementation of
Programming Languages: . Proceedings of a DoD Sponsored Workshop (J.H. Witliams and
D. A. Fisher, Eds.), Lecture Notes in Computer Science 54, October 1976. Also, Computation
Structures: Group* (Note 28-1)," l;abofawry for. -Computoer -Scicnce, . MIT; - Cambridge,
Massachusetts. ' 3 o IR

Dennis, 1. B., and D. P. Misunas, "A Preliminary Architecture for a-Basic Data-Flow Processor”,
The Second Annual Symposium on Computer Architecture: Conference Proceedings,
January 1975, 126-132. Also, Computation Structures Group (Memo 102), Laboratory for
Computer Science, MIT, Cambridge, Massachusetts.

(12]

{13

[14}
(15}
16}

Y|

(18]

Dennis, J. B.,). P. Misunas, and C: K. C.Leng. "A:Highly Parallel Processor Using a Data
Flow Machinc Language”, Computation Structurcs Group (Mcemo 134-1), Laboratory for
Computer Science, MIT, Cambridge, Mssachusctts. June1979. To appcar in IEEE

”TmmamsarCamias. ST

Dennis, J. B and K.-S. chg "An Abstract Implcmcntnuon for Concurrcnt Computatwn with
Streams”, Proceedings of the : 1979 - International: Comference: on. Parallel - Processing
(O.N. Garcia, Ed.); August 1979, 3545, Also; Computation:: Smam Gmup (Memo 180),
Laboratory for Computer Science, MIT, Cambridge, Massachusettse! . ..«

Hack, M., Analysis: of Production Schemdia by Petei: Nels,; lf.lbanwry fer C’ompu!er Sc:enne
(TR-94), MIT, Cambridgc, Mmﬁebmwim as L

- Holt, A. W., Final Report of the Informations System. Theory Project, Technical Report

RADS- I'R-68-305‘ Rome Air uesdopmemﬁeam‘ mm Eome Blse New York. 1968.

Holt,/\ w., and F Commoner "Evems m& @mz. Raead qf ﬂze Pmpcl MAC

C onference on Concurrem S, ysmns and Pamllel (‘mnmlalwa, ACM New York, 1970 3-52

" Seffe.d. M, andt'L. Mosits, Tive Taie o Solutioas of 1.aplace's: Equation”, Computation

Structures Group. (Note37), laborawry ﬁ)r (‘ompueer Science, M!T Cambndae.
Massachusetts, July 1978, - .« : 5 T PO 3

Karp. R. M.. and R. E. Miller, Pmpem 5r'a Modcl f&hrﬂiéiéo.ﬁbﬁmﬁéns Determinacy,

.~ Termination, Qoeueing™, SIAH}oumal d Applwﬂwaémmﬂcﬂovcmktm HBD-I&L

(19]

120}

pi}
)

23}

i SR

Kessels, J. L. W, "Parallel Progralmmng Concep(s in a Dcﬁuitional Language SIGPLAN
Notices, Utlﬂ),@cmbef% T ¢t SR :
B g s R

Kosinski, P R., A Data FIow Progmnmmg Languagc, IBM T J Watson Rcscarch Center (RC

,;(4264),Yorkmnﬂc:gimNowYmmm B SR RRETI .?., f 4
’«Kosmsh.PR "AMMWMWWWMM Pmeeadmgsaf

ACM SIGPLAN-SIGOPS Interface Meetings, SIGPLAN Notices 8, XScptember:1973); 89-94.

‘Leung, C. K.C., Fomal Properties of - Welk-Farmed: Basd -Elaw :Schemas; labemary for

Camputchcmncc(l‘M%&Ml’I\&mﬁdg:, Mlmmi L el

Leung, C K C, D.P.ann.z&.Neezmd;MJ. B.sDcnn& "Ai;‘onmrs:mum&mhty
for Packet Communication Architecture®, The Third Annual Symposiws:-on Cemputer
Architecture, Computer Architecture News 4, 4(January 1979), 58-63. Also, Computation

- Structucey ﬁmup (Licmn;-ia. wmszar Cw m ill'f Cambndze,

[24]

[25]

[26]

27

[28]

[29]

-85 -

Misunas, DD. P., "Deadlock Avoidance in Data-Flow Architecture”, Proceedings of the Third
Milwaukee Symposium on Automatic Computation and Control, April 1975. Also, Computation
Structures Group (Memo 116), Laboratory for Computer Scicnce, MIT, Cambridge,
Massachusetts. ' :

Patil, S. S., "Closure Propertics of Interconnections of Determinate Systems”, Record of the
Project M AC Conference on Concurrent Systems and Parallel Computation, 1970, 107-116.

-Petri, C. A., Communication with Automata, Supplement 1 to Technical Report

RADC-TR-65-377, Vol. 1, Griffiss Air Force Base, New York 1966. [Originally published in
German: Kommunikation mit Automaten, University of Bonn, 1962.]

Ramchandani, C.. Analysis of Asynchronous Concurrent Systems by Petri Nets, Laboratory for
Computer Science (TR-120), MIT, Cambridge, Massachusetts, February 1974.

Tesler, L. G., and H. J. Enca, "A Language Design for Concurrent Processes”, Proceedings of the
AFIPS Conference 32, 1968, 403-408.

Weng, K.-S., Stream-Oriented Computation in Recursive Data Flow Schemas, 1Laboratory for
Computer Science (TM-68), MIT, Cambridge, Massachusetts, October 1975.

