MIT/LCS/TR-241
PEPRESENTATION AND ANALYSIS OF REAL-TIME
CONTROL STRUCTURES
Rowland F. Archer, Jr.

Auaust 1990



Tius blank page was inserted to preserve pagination.



REPRESENTATION AND ANALYSIS OF

© Massachusetts Institute of Tethiolégy 1978

September, 1978

'l‘his research was~supparted by the' Mvmed* Ressarch P‘m_ﬁcts Agency
of the Depart:ﬂent of ‘Defense aﬂﬂ ‘Was mbﬁiwﬂ“w tﬁe aﬂ‘lee of
Naval Research uniar c:;m:ét No’ m Mmi o

ixE

MASSACHUSETTS ms'rmm: OF TECHNOLOGY
LAMY m SCIENCE "

CAMBRIDGE 7 MASSACHUSETTS 02139



REPRESENTATION AND ANALYSIS OF REAL-TIME CONTROL STRUCTURES

by
ROWLAND FRANK ARCHER, JR.

Submitted to the Depanment of Electrical Engineering
on August 18, 1978 in partial fnlﬁllmnnt of the requirements
for the Degree of Master of Science

ABSTRACT

A new notation is introduced for representing real-time
scheduling at the task and event level. These schedules are called
control structures. The primary comstructs included which direct the
flow of control are sequencing, iteration, amd preemption. Additional
notation allows the representation of interrupt masking, task
termination by external events, task restart as well as resumption
from the point of preemption and codestripping. Algorithms are given
forfmdingthemmmanrenfaglmwm;dmamm
the notation.

The types of representable control structures are classified by
the topology of their Control Flow Graphs. It is shown that although
branching is allowed in the preemption structvre, a tree-shaped
preemption structure cannot be represented. Both partial and total
orderings of tasks and interrupt priorities are supported, however.

- A terminology for describing. resl-time properties of control
stmctu:esis,dmlnpad, and it is seem thzt Without Wn ammpﬁons
abouttaskexecnﬂenﬁmau&event 3 v _' ] be
drawn regarding real-time performance of a control structure. A series
of algorithms is presented which make use of these assumptions, and
find values for task execution times in the presence of preemption.
The algorithms can analyze control structures containing the principal
control features; suggestions are given for further development of
algorithms which can analyze any representable coatrol structure.
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1: Introduction
In an article entitted "Toward a discipline of reaktime programming" [Wwirth
77b], Niklaus Wirth has divided programming into three categories based on the.in-

creasing complexity of validating their programs:

1. Segquential programming
2. Muitiprogramming
3. Realtime programming

In a reat-time system, a program may be attempting to control or to react to
certain external processes which cannot bé forced to cooperate with /progr'ﬁmmééd
processes through use of a synchronization pHtive such as a semaphote [Dijkstra
68] or a monitor [Hoare 74]. In order to ‘cootdinate itself with these external,
non-programmable processes, the realtime “pm‘gn’m*mi“istf Know ébméiﬁihg about its
own execution speed. Thus Iits correctness will be dependent on the speed of the
processor on which It is run; but this Is not' a ‘property of the program Itseif; Wirth
identifies:this as the essential distingulshing featiire ‘of reaktime programming.

This thesis does not directly address the liié of valldatihg real-time programs.
Instead; It deals with the répresentation of schedilies foi real-time programs cafled

control structures, arid some aspects of Measurlhg ‘reaktime properties of the

R T T

resulting control structures. In the sense that % ‘of these real-time proper-
ties may be a prerequisite Tor vaiidation of 4 reil-tife program, the work presented

here does represent & contribution to one aspect of the validation problem.



Introduction Section 1

1.1: Related Research | .

Most of the previous studies in the field of realtime programming have ’Been
centered on one of two major areas, the design of languagesfor reak-time program-
ming, and scheduling to meet reak-time deadiines. S k 4

The development of languages for real-time prbgrammlng can be split between
two approaches; the extension of existing languages [Beénson 67; Freiburghouse
77; Ormicki 77; Phillips 78; Wirth 77a}, and tha creationi 6f entirely new languages
tailored to the requirements of realtime programs [Hennessy 75; Kieburtz 75;
Schoeffler 70]. The essence of these efforts has been to provide some interface
between the real-time program and the scheduling of itself and other programs, el
ther through access to the processor’s intetrupt system, clocks and/or timers, or
by Inﬂuenclng. the processor"g _scheduling routines. Such fg;ture,s. provide only -a
ow Ievgl capability for determining a process’ real-time bahavior; in some cases it
may be possible to think of all the timing interactions that. could impact on the
correctnesg of a .real-time system, but the burden of doing so has usually fallen
most heavily (and often totally) on the programmer. -Decisions as basic as .assign-
Ing priorities to different tasks must typically. be made by manual analysis, in the
hope that nothing has been overiooked. As the size of the s‘;_g,cvtem_,jnsrm the
complexity of the problem grows as well, until manual analysis becomes axtremely
tedious and error-prone, if nat impossible. . ‘ .

ldéa"y.., a programmer could submit his reaktime.response. requirements. along
with his programs, and elther have them scheduled.agpropriatsly, or ba.told that his
requirements cannot be met by that particular system. Some systems (such as the

CONSORT system of the Domain Specific Systems Research group at MIT) have




Relatad Research E Secton 1.1

been developed which can do this for .a limited class of ‘programs, but to the
author’'s knowledge no one has yet mmd a’' system to do-this in genéral.” Howev-
er, considarable research has besen done on scheduling tasks In the presence of
hard reak-time deadiines.

Most of the significant results cbtained have been:based on rdéstricting attén-
tion to limited classes of control- structure types.. For exampis; #n:a matiprocessor
epviropment where there is a partial ordering: of tasks:but no Iteration dutside -of
tasks, [Manacher 67] gives an algorithm-which wili:construct near-optimal task lists
(execution orderings) for almost any combination of task run: times and. deadinas.
if the schedule Is full to capacity  with -{asks whose completion times are
guaranteed, his strategy allows the systemito take op. additional ungusirenteed
tasks without affecting the guarantesd status-of:thost tasks already scheduled.
His schems does not consider the effects of preemptioh, however. "Serlin [Serlin
72] and Liu and Layland [Lis 73] have .indespendently. studied the problem of
scheduling tasks which ate {terated but hawe no:relative -orderings. Serfin gives
scheduling aigorithms based on fixed -priorities, ‘time: slicing, .and relative -urgency.
The last is a dynamic priority scheme, where the processor re-evaluates the priorl
ties of each task at every interrupt, and selects for execution the one wlth the
earlleast deadiine. This method is shown to produce a schedule wmch meets real-
time deadlines if any schedule wm, but Serlin’a analysis neglects the overhead of
context swltchlng B o A

A different approach is taken by [Hennessy 75 Kloburtz 75] ln thelr mlcropr&
cessor language TOMAL; instead of using an mtarrupt system, they have a com-

pller insert calis to a tnsk control monitor (whlch ls creatod along wlth the compua-

-



Related Research - Section 1:1

tion of a set of programs) at specific poifits in the compiled ¢ode. This provides
assurance:that the task comtrol monitor will get ‘controf within a finite ‘and bourided
interval, after sach codestrip, as the code between monitbr cells is named. This is
similar to a time slicing system which allocates execution time i fixed amounts to
each task, but the time ‘slices are synchronized with program execution. The
length of the codestrip is datermined by the response time requirements of the
task, and the cempiler can determine: whether the ‘programiver supplled require-
ments are in-conflict. The notation given -n: this thesie “has ' the  capabllity of
represeating codestrips,

A work which is relatad to the:present one and in fact complementary is that
of Teixeira [Teixeira 78]. Much of the-terminology usei: ﬁem was developed
there, particularly that of Chapter 5, whure. aigorithms for measuring real-time pro-
perties are dwdopnd. Teixeira aiso used the'regular “expression notdtion of
Chapter 2 to denote sequencing and:iteration of tasks. His study centers, howev-
er, on finding schedules -to meet resitime oCorstraints; the oriontation of the

present work is described in the foliowing secton.:

1.2: Objectives

The principal goal of this research is twofold to deveiop a convonlont
representat!on for real-tkae contml structwes, and to danonatrate how such a
representation is useful as a basis for an&lyﬂng rea!—time propertaes for apeciﬁc
eontml structures.

et sEs

The representaﬁon as dovebped nodals eontml stmcturu nt the task and ln-

-10-




Objectives - : Section 1.2

terrupt level; the tasks are assumed-to be seif-contsined program units whose ex-
ecution time is bounded, and interrupts are. representad as occufrences of event
variables. The event variables could be used io represent env.»event however,
which might be synchronous or asynchronous with respect to the executing task.
The notation can represent total and partial orderings among its tasks, ‘end,it:eretlon
of tasks at a single priority level. or across several priority ‘levels. As wel as
representing conventional single and multibevel interrupt structures, the control
structures,;qlven here can represent several unconventional preemption: structures,
including branched . structures where each. branch-has -an - individualpreemption
structure which may itseif be branched.

As well as representing this basic framewo?ﬁ “the capabmty is provided to

Topiih g

represent:

1. Codestripping as previously .described.

2. External termination of a task or group of tasks by an event
occurrence (es opposed to temporer!ly preemptlng them)

a. Indlcetion that a task or group of tasks Is not preemptlble by .
‘& set of eveiits.

4. The choice between reishrﬂﬁ¢~' a piéempted task or group of
tasks from the beginning vs. resuming execution from the point of
: W.w I G = .7»5 £, TRy SERe T - B . =

Thus a rather general notatlon is glven, whlch in addition represents all of thls in-

formatlon rather compect!y The notatlon may be used In any epp!lcatlon where it
is necessary to communicate somethlng ebout e control structure of thls sort be lt

human to human, human to machlne, or machine to machine In the second case,

the specific applications In mind are representation of a control structure for

11~ -



Objectives Section 1.2

analysis, and for describing to a reaktime system what -sort of control structure it
should establish for a set of tasks with reaktila constraints. in this veln, the no-
ﬁﬂm is quite independent of machine architecture; and ‘thus a subset of the
language can be chosen for a target machine which supports the control features
inciuded therein. ST .

This leads into the second goa! of the investigation, which is to demonstrate
how aigorithms can be developed which ascertdin realtimé propérties for control
structures of the language. There are severat time Intervats which are probably of

common interest to a large segment of users of realtime programs, such as:

1. The maximum delay between the occurrence of an event and
thelmthtlonofltapmgrm e o

2. The maximum time required to execute a set of tasks at a
given priority, with preemption.

3. The maximum time that may elapse without there being an ex-
ecution of a given set of tasks

This is not intended to be an exhaustive survey of rea-time propertles, but rather
an introduction to the usage of the notation as the foundaﬂon fer sucb qnalysls
Indeed, it is likely that each reak-time. system hasg. its. mppecm requimmmts and
characteristics; it ls hoped that an approprtate subset of the haw can be

chosen to model those chamcterlstlcs, and algoﬂthms developed whlch are suited

=)

to an appllcation [ special neods In addltlon mny appncatlons wm have nqtural

e ERGRT T BT e Tyl

rastrictlons whlch Iead to simpler algorlthms, It ls with lntent of ﬂluatrating this

polnt that saveral speclal case algorlthms are deveioped.

s

-13~
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3: Outline of the Thesis

The next chapter presents a context.free:grammar for:the: control structure.
langusge, as well as giving the semantics for each construct. Sequencing, iteration
and preemption are the principal features, with extensions added as descrlbed in
Section 1.2. Methods of determlmng the overall preemptlon structure of a control
structure are also presented o R l o ” |

Having lntroduced the notetlon, Chapter 3 presents the concept- of a Control
Flow Graph (CFG) [Allen 76 Fosdlck 76], whlchy:fglvies a graphlc representatlon for
the paths of control flow dictated by a dl\)rerl;tcontrel“structure A deflnltlon of ab-
solute priority levels s derived from a controf’ dtructire’s CFG representation. Then

bie Dy the notation Is given,

a classification of centrol-structure types represeits

based on the topelogy of thslr CF@’s ln sd'éllﬂbrr‘ ﬁm*e types o‘f control structures

which are not representeble are descﬂbed
A terminology for. reaktine properties. .of .control structures is developed in
Chapter 4; the requirements for knowing certain things:about event timings ln ad-
vance Is also discussed here.
This leads into Chapter 5, where a hierarchical series of algorithms is present—

ed whlch are designed to find the worst cases for some of the real-tlme propertles

of lncreeslngly complicated classes of control structures The most general algo-

rlthm given is appllceble to the set of control structures whlch lncludes the baslc
framework of sequenclng. lteretlon end preemptlon The types of modlﬂcetlons
MRS SV ENEN L
which would be required to enalyze eny representeble control structure are dls-
EERE PO Eger Gy el

cussed although detalled algorithms are not glven

=13=



2: A Notation for Real-time Control Structures

2.1: lntroductien

in this chapter a noteﬂon for representlng real-time control structures wm be
developed. The Intentbn is to provlde a genera! analytical tool which wm be suit-
eble for represenﬂng most of the posslble ways to share a processor among the,

members of a set of tuaks This wm inciude

1. Sequencing: a total ordering of tagks to ba executed.
2. Iteration: cyclic execution of some ordered set of tasks.
3. Preemption: a partial orde of tasks whare the occurrence

of an event forces termination of execution of the currently run-
ning task and starts executlon of a new tagk, . .

A context-free grammar will-be developed 1o deme the synitax of the representa-

tion. It is summarized in Appendix A,

2.2- The Besic Control Structure

The real-time system to be represented Is modelied as e set of procedures to “

s

be run, called tasks a eontrol structure whlch speclﬂes the order (or posslble ord-

) In whlch the tesks my be run, and a prooessor whlch executes the tesks ac-

pEA S S0 ~

cording to the schedullng constremts speciﬁed by the control structure

Thus the ﬂow of dete between taaks, lf there ls any, need not be a concem, i

it is assumed that any execution ordedng needed to preserve the intended seman-

-14~




The Basic .Control Structure “Section 2.2

tics of the computation (data flow) will be embodied in‘the comtrol structura.  For
example, if an output of task A ls an InPut ot ;g,ak G.Ahen?;;ho control structure as-
soclated with their execution should ensure _that- task A qqmplﬁeteswawxeqy}loqibe’-
fore task B begins. | R ’ |

Further, the detalled flow of Information and control within a task, Le. among
its Internal variables and instructions respecﬂvely,g;'need notbe rof: sc'dncern ‘either.
It is only. necessery that an upper bound on' the ‘exectitiol tie of a tisk be esta-
blished; this Is discussed further in Section 4.2,

A task will be represented by a task /dentifier (*<task id>"), which in most of
the examples will be a single capital letter (though it need not ‘(be)_: _EIqurg 2.1

shows the grammar which defines task identiflers.

<task Id> ::= (lotter)‘l Ctask id> <alphanumerlc>
detter> =f=A'IBlCl-.- ' |
Calphanuméric) ::= Qetterd> | Cdigity
Cdigity ::5 0 | 1°] 2]
“Hg. ‘2.1, Syntax for task ldentmers .
Next to a slngle task the s&mp!est tMng to reprmnt la the sequenclng of two :
or more tasks whlch are tota!ly ordered Thls is done ln the natural way, by Hstlng’ ’

R ,v(f

the task identiflers in the order of executlon of thelr corroopondha tasks, separat-

ed by blank spaces for parsing. A string of one or more tasks will be called a

basic control structure, or (basic cs) Note that it ls peﬂnlaslble to lfsf a task id -

more than once: hl&ﬁﬁlc éa) torﬁbrésdff‘tﬁﬁ*s’l Gation

task is executed more than once with zero or niore other task executions

-16-



The Basic Control Structure Section 2.2

sandwiched In between.! The syntax is:
~ <basic cs) :i= Ctask id> | Cbasic cs> B <task id>

where “¥" represents the blank space terminal symbol.

The simplest control structure Is just a basic control structure:
<{control structure)> ::= <{basic cs>

Thus the grammar given so far is sufficient to represent single task execution and
sequenced task execution control structures.

2.3: Flow of Control

It is useful to formalize the notion of controlﬂow with res;)ect ta contrd struc-
ture execution. The processor follows the “instructions® supplied by a control
structure, doing both "applications-oriented” work (wben tis actually executing the
statements of a task), and "systems-oriented" work (when It is determining which
task to execute next according to the constraintsi,embedeed in the coantral atruc-
ture). in either case, the actual machine lnstructlpna belng executed at any time
will be associated with a particular symhol ln the control structure representation
R will be sald that at that time the locus of control (abbreviated LC) ls at that A

ERRY

symbol. For example ln the fouowtng control structure

1. Every occurrence of a task d ln a control strucmre reprasents a separate n
stantiation of that task, with its awn private atate. . This is.msed tao model reen- -
trantly codéd routines.

-18-
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AB

when instructions of task A are executing, LC is af A; when Iinstructions of task B

are executing, LC is at B.

2.4: Closed Control Structures

itis deslrablg to ihtroduce parenthesfzatlon fbr the grouping of task id’s in the
natural way. In particular, this will be neaded to Indicate the scope of the various
special symbols which will be used for iteration, preemption, etc. It will also be
helpful in constraining the class of fegal tontrol structures to exclude nonsensical
ones, such as those in which some tasks can never execute, ragardiess of-preemp-
tbn timing considerations. Parenthesized (subr)control structures will be called
closed control structures, and the class will be added, to as necessary for addition-
al representational power. At the top level, closed control structures will be includ-
ed in the set of Ieggl control struqtures. flgure 2.2 gives the syntax for_ closed
control structures; a syntax is alsé glvéﬁ for cl&;d control strﬁcturé lists, which

will be needed later to represent more compiex control structures.

<control structure> ::= <basic cs> | {closed cs>
<closed cs)> ::= (<basic cs)>) | (<closed cs> <basic cs>) | (<closed cs list>)
<closed cs list> ::= {closed cs> | <closud s list) <{closed cs> -~

Fig. 2.2. Syntax: for olosed control structures.

«17-



Closed Control Structures Section 2.4

2.5: Iteration

Most real-time process control applications ‘mqulr_g the periodic rppgﬂtbp of a
éertaln task or ﬁmncc of tasks. Borrowina from the mﬂon ‘_of_rom‘_oxprqo-
sions, the asterisk is used to indicate a endless repetition of a control structure.

its BNF:
Citerative cs) ::= <basic csd>* | {closed cs>* | <basic cs) Citerative cs>
The use of "*" is most easlly expisined by examples:

AB*:NMB)*:ABBEBSEB..
AR =ABABAB..
From a flow of control viewpoint, when LC réachis an’ asterisk foliowing a right
parenthesis, It returns to the matching léft paiénthesis. If ft reaches an asterisk
following a task Id, it repeats that task.
The final expansion of the top-level definition of ‘cotitrol structure ls:

<eontrol structure ::= <basic cs> | <closed cs> | <iterative cs>
2.6: Preemption

2.6.1: Preemptibie Control Structures
With the class of control structures defined: aco far, the enly execution se-
quences possible are those in which the order of task execution is entirely

predetermined (static). In many situations, & processor will need to respond to

-18-




Preemptible Control Structures R Section 2:6.1

esynchronocs events such as interrupts, which may not occur at predictable times.
It may be desirable to have such events:trigger the estecititn of a different part
of ,,ttg,e -control structire than was previously iin contrel. * Informally, this will be
modelled by placing sub-control structures Into the overall control structure in ofder
of non-decreasing priority. Demarcation of the priority levels is achleved by indi-
cating that a control structure Is preemptlble Figure 2 3 glves the syntax for

LOYEE

preemptible control structures. Preemptlon Is ln!tlated by occurrence of a particu-

I SR -’

f 2o s ir

Iar event (which may be complex)1 so an event varlable Is lncluded which standg

for the event.

<preemptlble °3>. 1= (99"?’0' structure> / <event var> .

<event var> ::= edlinteger>

<integer> ::= (qml;) | Cinteger> <digit>

<closed ca) = (<basic cs)) | ((closed cs) (basic csd) | (Kclosed cs list)) |

((preemptlble cs)) | ((closed cs) (preemptible cs))

Fig. 2.3, Syntax for preemptible gontrol structures,.

Conslder the fdloMng slmple example. whlch models a control structure wlth a

s Rl

single level of interruption:

The interpretation of this controt structure. Is-that A runs repeatedly with avent e

1. The event variable itself is not complex, but it may represent a complex event.

~-19-
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happens; this initlates B, which executes once; then LC returns u‘:’ A*,

The aext section will describe: how more compiax eontrdl ‘structures are
representsd (using the above syntax), such -as those hawving muitiple levels of
interruption.

2.8.2: Multiple Priority Level Control su-ucmn

Informaily, event variables fie at the mtsrfnca betwoon contro! structures of
different priority, the control structure to tho left of the "l(ovont vnr)" construc-
tion having the fower priority. lfLCiskuﬂmlowwprlodtyuontro‘stmctunumm
the event happens, it will move tomeoontmlatrucmremantdytotmnghtof
the event variable.

Thus a control structure with three priority levels mlght appesar as:
(((((A a)*lﬂ ) D)Iaz)ﬁ)"

The preemption structure (for each event, the tasks which it may preempt) Is fairly
straightforward here; el preempts A or B, 82 praeapta A B C or D But the nota-
tion is capable of representing more comphx contml structuros, and a method of
precisely doteminfng tho preemption atructura b mded ‘ .

The "interrupts®™ or “"preempts™ relation is transitivd; "' ;1 interrupts A, initiat-
ing C, and C is interruptible by e2, then A s interruptible by e2. Moreover, all
tasks of a single basic control structure will vun at the Same Priority level, so basic

control structures can be considered as units, rather than examining the preemp-

1. Although a later section will introduce the capabuity of masking specific inter
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tion of individuai tasks.1

The "interrupts" relation wit now be forfetized, ieTt Wit be established clear-
ly for each event In a controi structure which basic control structures it may
preempt. The set of tasks which are Interruptible by a certain event wiil be re-
ferred to as the scope of that event The “interrupts" reiation for Aa control struc—
ture wilt be represented by a Boolean matrix | with n rows and columns, where nis
the number of basic controi etmctures iri the conti-oi structure Belng analyzed. A
single basic cs: is'esaeohted Mtﬁ each row I and cdiumn I fbr 1 s I s n. The
basic cs associeted with row (and ceiumn) I‘wﬁ Be’refei‘red to ad "basic cs /."

The first event to the left of each baste cs wilf-be Called that basic cs’s /ni-
tiating event. If I[i,j] = 1, it means that basic cs / runs at a higher priority than.
basic cs j; in particular, it means that besic cs l’s initietmq event can preempt
besic cs i The matrix l Is computed according to the eiqorithm gwen in Figure 2.4,

This matrix speciﬂes which events cause preemptions across the b"order:
between adjacent priority levels. Since the "interrupts" relation is transitive, the
transitive closure of this initial relation Is: the iiﬁi'.fri'ijbﬁai'f'e';fs‘i'ﬂeerm.ﬂ:ion suoéfﬁré; this
speciﬁes, for each event in the control structure, e;tactix which basic css it can.
preempt COmputing the transitive ciosure cf the reietien regresented by 1| is_v

straightforward. Let i+ be the transitive closure of 1. Then i+ =1+ 12 4 4",

where + is normal matiix addition. ~Beoiecn mtﬂx mAtipi i Is performed like

regular matrix muitipiication ;except mo is ;e_‘%abstitut'ed for 'TiﬁES' and ‘OR’ for

rupts while a particular task is executing.
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Algorithm 2.1:

1. Let 5 be the number of basic:-cs’s in.the control structure. As-
sootateauntquahtagerfm1tonmhuchbulecs

2. Initialize | to be an nxn mtﬁx of zorooa
8. For each basic cs i, do atops 4 .nd 5. ;

4. If basic cs / has no Inltlating event, lnw row / of I equal to
ail zeroes. . : ,

6. If basic ca / has an initiating event ¢, find the control struc-
ture Immediately preceding the construction */e.* Call this “con-
trol structure A." By the syntax of preemetible: goatrol structures,
control stiucture Xk will be either a basic, closed or iterative cs.
For each basic ca | in contral atructure &, set I[/,/] squal:to 1.

‘PLUS’.
~ Conaider an example of a control structuro which contalns preemptlble control
structures, and which can be used to mustratc the conatructlon of the "lntnrrupta"

relation:

Example 2.1. (A B/ e1)C) /a2)i(D/eR)EN

vic

Notice that this control structure contalns four bnslc contml structures, A B C, D

;e

and E. The Inltlating evants for thase basic css arc as specmod ln Figura 2 5

Basic CS Initiating Event

AR none i 1

| ¢ LI R -
B - 82 3
E a3 4

Fig. 2.5. Initiating events for Example 2.1,

sed
ERSE

The matrix | is formed following Aigorithm 2.1, and it appears in Figure 2.6. -
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1. ABhas no Inltiatlng event, so row 1 = [0 0o 0]

2. C’s initiating avent Is e1 The control s&ueture preceding e1
is (A B)*, which contains the basic ¢s A B. Thus:I[2,1] := 1.

3. D’s initiating event is 62 Thé gontrol Struciure preceding e2
iIs ((A B)*/e1)C)* which contalns the basic cs’s A B and C. Thus
I[3,1] := 1 and I[3,2] := 5 .

4. F’s initiating event is e3. The control structure preceding e3
is D. Thus 4,37 := 1.

| |[AB_ ¢ D _E
AB| 0 0 o0 o
c|1 o o 9]
D|l1 1 o o
EjJo o 1 o

Fig. 2.8. The 1 matrix for Example 2.1.

Now, to get the overall preemption structure, compute I+, the transitive closure

of |, as shown In Figure 2.7.

I+ 1AB C D E
l1ABj 0 0 ©0 o
cj1 o o . o0
D1 1 0 O

E ] 1 1 1.0

Fig. 2.7. 1+ for Exampie 2.1.

The preemption relations of the control structuré are summarized in Figure 2.8.
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LC at Proupt!blo by initiates
AorB et 3 €
AorB - e2 . B A
AorB 3 E

c o2 D

D e3 B

E none none

Fig. 2.8. Preemption structure for Exampie 2.1,

2.6.3: Occurrence of Events v

The notion of an event *hsppening” ia purpoufuny left vague; each appiica-
tion of the notation can lttach its own meanirja._ pr \thc purpose at hand it is
sufficient to assume that an event variable is like a m Mﬂch gets set when its
assoclated event occurs. The processor chacka all the ovent variables before be-
ginning execution of every instruction.. The following informally describes what hap-

pens Iif any flag is found to be set:

1. In the case where LC is to the right of the event variable
which has been set, no immediate effect on execution of the
currently running task results. The cumently_ ruhning task is of a
higher priority than that which Is rwwomd the interrupt,
!

2. The event vafiab!a remalns sat until mn time as LC is to the
left of it and in a basic cs whlch is pmﬂble by It, at which
time it will cause a pmnpﬁon

3. If more than one event correepondtng to event variables to
the right of LC has happened, then the rightmost one represents

1. Generally, a queue of requests is assoclated with a given event variable, so
that additional occurrences of the event will be remembered if they occur before
the initlal occurrence is noted by the processor. By specifying a length for this
queue, a system which remembers an arbitrary number of event occurrences can
be modelled.
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of it (assuming, of course, that LC was within a basic cs preempti-
ble by the event).

4. Completion of the control structure at a given priority "“resets"
the event variable which triggered its execution; note that this
must be done at completion rather than at initiation so that if the
control structure is preempted before it completes, then LC will

return to it when it is once again the highest priority control
structure requesting processor service.

2,6.4: Substructure at a Single Priority Level

A useful extension to the scheme is to provide for arbitrarily many control
structures1 to reside at the same priority level, but to be initiated by different
events. During execution of one of these control structures, occurrence of events
In the other(s) at the same priority level will have no (preemptive) effect. The
principle syntactic change is to allow replacement of an event variable by an event

coupled list, as shown in Figure 2.9.

<preemptible cs> ::= {contro! structured> / <event listd
<event list> ::= <event var)> | (<event coupled list>) |
(<event coupled list>)*
<event coupled list> ::= <event var>: <control structure> |
<event coupled list> |’ <event var>: <control structure)
where ‘|' means the terminal symbol |.

Fig. 2.9. Syntax for event coupled preemptible control structures.

1. Of arbitrary complexity, e.g. there may be additional local priority structure.
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Consider an exampie:
(A*/(e1: B | @2: C))*

Preemption rights are as follows:

LC at | Preemptible by | Initiates |

A al B
A a2 C
Bor C none I XY oone. . |

Execution of B or C continues uninterrupted to termination. Termination of B or C
returns LC to A (unless et or e2 has happened again).
A slight modification in the position of the termind! ‘™ leaves the intertupt struc-

ture the same but results in different behavior on tefnination of B or C:
(A*/(e1: B je2: C)*)
The idea here is that once either B or C has been initiated (through occurrence of

el or e2, respectively), control is never again returned to A. Instead, B and C will

be executed every time e1 or e2 occurs.

2.6.5: Determining the Interrupt Structure

Since arbitrary control structures may reside in.ap event coupled list, it follows
that such structures may contain additional avents {(or event coupled lists).which
trigger even more deeply nested control structures,

This ability to nest control structures raises a new semantic issue; what
should be the scope of events which are not-at the top leve! h&omat coupled |

list? The choice made here is to let any event In an event coupled list have the
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same scope external to the event coupled list that an event variable would have if

it were substituted for the event coupled list. Consider the following:
Example 2,2, (A/(e1:((B/e2)C)|e3:((D/ed)E)))*

The scope of el, e2, e3 and e4 external to the event coupled list

(e1:((B/e2)C)|e3:((D/e4)E)) is the same as that of e5 in:
(A/e5)

namely, the control structure to the left of the slash in the construction "/(<event
coupled list>)".

The Iinitiating events, as shown In Figure 2.10, are determined as before: the
first event variable to the left of each basic cs. The internal scope of the event
variables is somewhat different, though. Events in event coupled lists may not
preempt any task in the list which is separated from the event by a "|". Thus in
the above example, e3 and e4 may not preempt B or C. Therefore Algorithm 2.1

must be modified to reflect this. Figure 2.11 shows the resulting algorithm.

Basic cs | Initiating event
A : none
B el
C e2
D ed
E el

Fig. 2.10, Initiating events for Example 2.2.
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Algorithm 2.2;

1. Let n be the number of basic ca’s in the control structure
under examination. Associate a unique integer from 1 to n with
each basic cs.

2. initialize | to be an nxn matrix of zeroes.
3. For each basic cs /, do steps 4 end 5.

4, lfbulccsIhummmntingevom,havemlafinqudto-
all zeroes.

6. If basic cs / has an initiating event e, then this event appears
in either a "/e” construction or a "je* construction.

a. If e appears in a "/e" construction, call the
control structure Immediately preceding "/e"
"control structure k." For esch basic cs J in con
trol structure &, set if/,/] equal to 1.

b. If e appears in a “je" coristruction, then e
cannot preempt any other basic cs’s in the
event coupled list of which it is a member. Its
scope starts at the control structwre to the left
of the */* in the construction */(<event coupled
list>)". This will be the control structure
preceding the first unmatched feft parenthesis
to the left of e. Call this “contral stryctwre k.*
For each basic cs j In control structure k, set

i{i./] equal to 1.

Fig. 2.11. Computing | for cs’s containing event coupled lists.

The control structure of Example 2.2 has the following preemption relation-
ships: ) .

Preemptible by
et, 2, e3, o4
e2

none
e4
none

,.
moowm>»|®
a
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Since two or more tasks may reside at the same priority level, such as B and C

above, a natural question arises; what happens if both el and %aoccur :'eirngltane;

1

ously," at least wlthln the resolutlon of the Interrupt system Most systems adopt.

some arbltrary metrlc to resolve such sltuetbns A typlcel one Is the dlstance of.

the interrupting devlce from the CPU A elmller epproech ls teken here If more

yi“"’

;then one event is found to heve occurred at the same prlor_lty level then control is .
erbltrarlly glven to the Iirst (leftmost) one ln the event coupled Ilst

However, with the eddltlon of event coupled llste "forks" are Introduced lnto
the preemptlon st:ucture, ae shown ln Flgure 2 12 A dlegrem guch as, this ls called:
a COntroI Flow Graph and will be deflned formelly end ueed extenslvely in_the next
chepter For now It is sulﬂclent to note thet thls dlegrem “unravels" the preemp-
tion structure so that the relative prlorlty levels of each task are dlsplayed If two
or more events happen together, prlorlty ls nlven to the event whlch lnltletes the

task having higher priority, as was done before ln the ebove example, it el and

._..%l,\ -

e4 happen simultaneously control is glven ﬂrst to E (whlch e4 mltlates)

Flg. 2.12 Preemptlon atructure for Exemple 2 2.

1. Typlcally the praesence of interrupt requeete will be checked for once per In- .
struction: cycle, 5o ‘any inteémtipts happéning Bétween two Buth checks will be indis-
tinguishable as to their ordering in time. Co
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2.7: Non-presmptibie Tasks |
it is occasionally necessary to perform all or soma subset bf arciontro! structw'e‘s
tasks in a non-preemptible mode, even though in the Iatter case other tasks at that‘.
priority level may be preemptible. Smpiy ind!cat#ng that a task ls non-preemptlhle
Is equivaient to saying that the Interrupt system is "tumed oﬂ’" while that task is
in execution. For genenﬁty, the notation aaows as an altemaﬂve the spec:ﬁcatlon
of exactly those events which are not aliowed to interrupt the task Both capablln—
ties are provided with the auomented syntax, shown in Figure 2 13 The scope of
the symbol for non-preemptibllity extends to closed eontrol structurea in the natural

way, l.e. every task In the cioeod cs ls non-preamptkle

<basic cs> ::= <(task) | (baslc cs> ¥ <task>

<task> ::= {task id> | <non-preemptible tid>

<non-preemptible td> = ‘(task)rl '({ev list>)<task>

<av listd> ::= {event var> | <ev list),<event var)

<non-preemptible closed c8)> ::= ‘(closed csd | *(Kev lht))(closed csd>
{closed cs) ::= ...(same as before pits: )... ]} <non-preemptible ciosed cs>

Fig. 2.13. Syntax for non-preemptible tasks.

Prefixing a task id (or a closed cs) with an aposvophe {e.g. *A) indicates that that
task is not preemptible by any event. if there is an event ust nfter the apostrophe
(e.g. ‘(81)A), then that task is not precmpﬂbia by nny avant m the event list.
Furthermore, It Is not preemptibie by any eweat which coult lead to preemption by

an event in the event list. For example:
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(((((A*/e1)'(e3)B C)/e2)D/e3)E)*

Here .if LC is at B, it is not preemptible by e3 or e2, sinée e2 initiates D which /s
preemptible by e3. o

Aigorithm 2.2 can still be used to determlne‘ the MGnal preemption structure
for the control structure’s set of basic cs’s. However, the output of Algorithm 2.2

must then be modified by removing preemptibility relations as specified.

2,8: Stopping the Flow of Control

Although the emphasis has been on how LC moves within a control structure,
there may well be times when there is slmph/ nd ‘work 16 ‘be ‘dofie for the moment.
It is worth pointing out how tha existing- notation’ indicates ‘this with some exam-
ples.

Basically 1-.C will halt when it either:

1. Reaches the "end" of a control structure, and finds ‘no > or

2. Reaches a slash (/") beyond which no events (which are ca-
pable of interrupting :thev_gont(o! structure to the left of the siash)

have occurred.
Several examples are given In Figure 2.14 to clarify this concept; for conciseness,

a typical (but not unique) task string which may. be ggnerated by each control

structure Is given. Additional notation should be self-explanatory.
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((A*/e1)B)* —> AAAa1BAAAelB..
((A7e1)B)* —> A (wait) @1 B A (walt) o1 B ...
((A*/61)8) —> A AAel B (hait)
(((A*/e1)B)/e2)* -—> AAAelB (wait) @2 AA A ...

Fig. 2.14. Examples of processor Idiing.

2.8.1: Breaks in Event Coupled Lists

in light of the interpretation given to construets which result’ ln stopping the
flow of control, it will be noted that there is no way to apply iteration to a portion
of the control structure which includas all of a lower priority control structure and
part of an event coupled list. What is neaded is the concept of a break, which is
essentially a restricted “go to" statement; it directs LC to jump over the rest of
the event coupled list to the right pareﬁthesl&awtehlne the initial left parenthesis
of the event coupled list. Thus it e.naﬂb_les._the itgratjon at the end of the event
coupled list to be applied to any Intermedigte_ pgrt of the list as needed. The syn-
tax for a break is the up-arrow (1) at iha point where the break Is deé&ﬁd; it ak

ways follows a basic control struéture, so It can be incorporated into that BNF:
<basic cs> ::= {task> | <basic cs> ¥ (task)[ <basic cs)> 1

As an example, consider the control structure of Example 2.2 modified to Include

two hreaks:

(A/(e1:((Bt/e2)C)|e3:((D1/e4)E)))*
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Now, when LC reaches the and of B or D, it returns to A instead of waiting for e2

or e4, respectively.

2.9: External Termination of a Control Structure

Consider the cohtrol structure?
Example 2.3. ((((A*/e1)B%)/e2)C)*

Since B* is non-terminating and runs at a higher priority than A*, A will never be ex-
ecuted again once el occurs. ! There is nothing wrong with this per se, but with
the given notation it is not possible to.represent ‘the case where occurrence of e2
aborts the repetition of B, and returns control to A* after executing C rather than

To do this, the notation must be able to indicate that occurrence of an event
termlnétes execution of'a'particular control strucfn.;fe, and Jthu's LC does not return
to that control structure untli fts initiating é\ient occursv >agaln. Thé modified syn-

tax:
(task) = Ctask id> | (nmprqemptlbte tid> | <abort tid>
(abort tid> ::= @<task> | G((ev list))(task)

abort cs> ::= @<{closed cs> | Q((ev llst))(cloced cs>

<closed cs> ::= (same as before plus~ | (abort cs>

Thus it can be specified that any event abarts a task {e.g. @B) or set of tasks

1. Recall that an event "flag," in this case e, In pot turned off .until the end of
the control structure which its occurrence initiates. B* has no end.
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(e.g. @(A B C)) or that any set of events causes termination (e.g. 8(e2)B). The
event which aborts the task(s) need not be the same as the one which causes
preemption In a particular case; execut!or\ Is terminated as long as the aborting
event occurs sometime after preemption and before Lc rotums to the task

It the control structure of Example 2.3 ls changed to make B an <abort tid>,

the dasired behavior is obtained:
((((A*/81)@(02)B*)/a2)C)*

Now the string ‘A A A et BB B 82 C A A A ." can be gsnerated, where repetition

of A and B is for an arbitrary number of times.

2.10: Return of Control to a Preempted Task

There are two distlnct choicas of what to do when LC retums to a task which
was interrupted durmg |ts execution elther rasume executlon from where it Iafti
off, or start over again from the beginnlng of the task These two strategles will
be referred to as resumption and restarting respectlveiy. Each strategy has Itg
advantages and may be the best choice in different situations. A task which is rn-
terrupted often enough may never comp!ete lf it le ulways restarted from the begln-
ning. On the other hand, in a process control sltuatlon the Inputs to an Intarruptad
task may have changed rndlcally slnce It was preempted and resumlng tha compu-
tation started with the old inputs may lead tdiﬁa(:ﬁrbni&lc outputs which are not
relevant to the current control situation. Therefors, it Is desirable to lhcorpomte
means of ropresenﬂng both strateoiec ln the notatlon. For cbmplete generaﬂty it :

must be capable of handllng a sltuntlon where two diffarent tasks In the same con-
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trol structure may follow the two different strategies. Furthermore, it is necessary
to remember the point of interruption in the case of resumption, so the processor
will know where to resume execution.

When the problem of restarting a control structure Is examined carefully, it Is
saen that there are really two sub-cases which are of interest. First it must be
recognized that the actual unit which Is restarted is the task. At the next higher
level, a task appears in a control structure as part of a basic control structure.
Thus the problem is really how to restal;t a <basic cs>. If there is only one task in
the <basic cs>, the problem is easily solved--simply restart that task. If there Is
more than one task In the <basic cs>, then the entire <basic cs> could be restart-
ed from the beginning of its first task, or it could be restarted from the beginning
of the task which was partially finished when the preemption occurred. For exaﬁt—

ple, consider the following control structure:

(((A B)*/e1)C D)*

If event el occurs, and C D executes, (A B)* must be restarted (or resumed).

Here are the possibilities:

1. Resume from the point of interruption, in either A or B.
2. Restart from the beginning of A.
3. Restart at the beginning of A if LC was at A when el oc-

curred; restart at the beginning of B if LC was at B when e1 oc-
" curred.

The first case will be the default case, and !s assumed for all basic control struc-

tures as they have been so far defihed. The second case will be called global
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restart; the third case /local restart. it a syntiix. ls -defitiad for the concept of glo-
bd restart, it can be used o synthesize locetl restart us:a ‘special case. Thus a
syntax wili be given cafled "restart cs”, and it:‘will have semantics of “giobal res-

tart”, the second case above.
Crestart cs) :i= > <basic c¢s)

To control the scopc of the restart symbo! rcstart contro! structures are lntro-
duced lnto other control structuras strk:tty through thdr appearance ln closed con-

trol atmcturoo

<closed cs> ::= ( <basic cs> ) | ( <presmptible cs) ) |
( <closed cs> <praemptibie cs> ) | ( <closed cs> <basic ¢8> ) |
( <closed cs list> ) | ( <restart cs> )

Here is an example of a control structure containing restarts: - -

((((>A BXC DXOEXIEN) e 1)6)*

Execution of this control structure proceeds identically to that of the basic control
structure (A B C D E F) untit event e1 happens. This causes execution of G; after

G completes:

1. If LC was at A or B when e1 happensd, L.C retums to the be-
ginning of A (global restart of (DA B)).

2. lch wnut(:ernvmeao‘l happmot,wr«umfromthe
point of interruption In either C or D.

3. If LC was at E or F when e1 ‘happened, LC returns to the be-
ginning of E or F respectively (note that local restart of (E F) is
equivalent to (OGEYOF))). - :
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2.10.1: Conditional Restart of a Control Structure

There is another possibility which should be represeﬁted. In some instances, a
task should be restarted if it was preempted by one event (or one of a set of
events), but resumed if it was preempted by another. This is handled by explicitly
listing the events which would cause restart of a task. Thus a restart cs without
an event list is unconditionally restarted, while one with an event list is only res-

tarted if an event in its event list occurred since It was last run.1

{restart cs> ::= > <basic cs> | > (ev listd) <basic cs>
Example:
(((((>(e2)A)*/e1)(>B))*/a2)C)*
Here A is restarted If elther

1. A is preempted by e2 or

2. A Is preempted by e1, which starts B. B is then preempted by
e2 before completion.

B is unconditionally restarted, and A is resumed if e2 does not occur between the

time of A’'s preemption by e1 and the resumption of A.

1. Note that this means that the restart causing event need not be the ona which
caused the task’s preamption; there may have been a chain of preemptions which
included the restart causing event, and this Is deemed sufficient cause for restart.
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2.11: Codestripping
7 A time-sliced allocation of processor time can be representpd with the existing
notation by letting the event va’vdables' st‘avnd‘ for timer-generated !nterrupts.‘ 6ne
additional form of preemption which will bé e)ﬁpﬂcltly ;ééresanté;i here is codestrip-
ping, as outlined in Section 1.1. | |

rln codestripping, calls to the operating systam are inserted into a task by the
compller at .calculated intervals, resdlﬂnﬁ in prsempﬂoﬁ of the task when they are

executed. The syntax Is as foliows:

<codestripped cs> ::= <basic cs> / Cinteger>

<preemptible cs> ::= {control structure> / Cevent Hst> | <codestripped cs>

Thus codestripped control structures are introduced .into other control structures
under the same syntax as praemptible control structures. An example of a codes-

tripped control structure:
((A B/6)C)*

The meaning here is that the basic control structure A B Is executed 1/6 at a time,
based on its totai (estimated) execution time; it is then preemptsd and C is exe-
cuted. When C finishes, LC returns to the point of presmption, and executes
another 1/6 of the wu& through A B (whether this Is actually in A or in B depends
of course on their relative lengths). Thus C will be executed five times for every
single execution of A B.

Notice that control structures such as (>{A B/10) are syntactically Ilegal; the
notion of globally restarting (or locafly restarting, for that matter) A B is incompath
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ble with the semantics of codestripping. Furthermore, codestripping of closed con-
trol structures could lead to highly ambiguous or meaningless structures and is
disallowed. This prevents such structures as ((A B/5)/10) and (({(A B*/e1)C)/5).
Structures which execute until they either finish a codestrip or are Interrupted by
an event are allowed, as they should be, e.g. (({A B/5)/e1)C)* which executes C

for every 1/5 of A B executed and whenever e1 happens.
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3;: Representational Power of the Notation

3.1: introduction

This chapter presents a catalog of control structure types which the notation:
of the preceding chapter is capable of representing. It is not claimed that every
conceivable type of representable control structure is included, but the list at-
tempts to be comprehensive as to general forms. Some exampies are also given of

types of control structures which are not representable.

3.2: Control Flow Graphs

Control structures can bs conveniently categorized by the topology of their
Control Flow Graphs, or CFG's, A CFG is a directed graph; more precisely, it is a
set of nodes and directed arcs, where a node represents a basic cs and an arc
represents the movement of LC between two nodes. The nodes bear the names of
the basic cs’s which they represent.

Consider an arc A which originates at basic ¢cs o and has as a destination
basic cs d. If o occurs to the left of d in the control structure, then arc A is a
forward arc; otherwise, it is a backward or back arc. Either type of arc may bear

labels:

1. An arc which represents the uninterrupted flow of control due
to termination of a basic cs is a forward arc, and is unlabelled.
Note that this inciudes breaks as detalled in Section 2.8.1.

2. An arc which represents the flow of control due to preemption
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by an event occurring is a forward arc (an event arc) and is la-
belled with the corresponding event variable.

3. An arc which represents the flow of control due to iteration is
a back arc and Is labelled with an **",

It may seem that tasks rather than basic cs’s should be at the nodes of CFG’s,
and in fact the algorithms used for determining real-time latencies must sometimes
deal with control flow at the task level. However, this additional detail adds noth-
ing to the breadth of representable control structure types, and in fact detracts
from the readability of the CFG’s.!

Figure 3.1 gives an example of the CFG for a simple control structure.

AB el——>C

Fig. 3.1. CFG for ((A B)/e1)C)~.
A string naming the tasks and (optionally) the events encountered in a path taken
by LC through a CFG is called an execution of the corrasponding control structure.

ABel1 CABand Ael CAelC are both executions of the above c¢s.

1. i, for example, a basic cs is preemptible by event e/, then every task in the
basic cs would have a forward arc labelled e/.
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3.2,1: Priority Levels
~ As an extra benefit, the CFG notation provldes a convenicnt mechanism for for-
malizing the concept of priority level, which has bean dsed somewhat intuitively

thus far.’ To find the priority level of basic cs /, do the following: -

1. Let the leftmost basic os in the control striicture have priority
0 by definition.

2. Find the acycllc path from the priority 0 baslc cs to basic cs /
having the jargest number of event arcs.”

3. The priority of basic cs / is equal to thc numbeér of event arcs
in this path.

3.3: Interrupt Driven Control Structures

The CFG’s for control structures uslng only scquenclng and iteration are fairly
stralghtforward and do not expand the catalog of representable control structures
by much. The sequence of tasks within a basic cs is lmpucltly represented, and
forward control flow from one basic cs fo another simply translates to an unlabelled
arc In the CFG. : o |

"The morée Interesting CFG's are those which are derived from cantrol structures
having event variables. It is readily apparent that ﬁne notation has conslderably
more flexibility than that which is needed for representing traditional priority inter-
rupt schemes. This flexibiiity is derived principally through the placement of the
"A" tteration character and by use of the branching introduced by event coupled
Hists. The latter has been mentioned briefty; the former bears clarification.

VA back arc can be originated from any basic cs by following It with an "**,
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However, there is a degree of freedom in specifying the destination of the back
arc; t_his will be exercised in ernlarging the- eatalog of control structures. Funda
mentally, the back arc may return to the same priority level, a lower one, or the
lowest one. If it does not return to the Iowest Ievel a certain "shrlnkage“ ln the
future range of LC is experienced Thls wil bc ;I‘;borated on shortly. Additlonal
variations: on the fundamental types are achieved through-use of the interrupt mask

(non-preemptible tid), external abort and rostart/résumé: capabilities.

3.3.1: Globally Cyclic COntrol Structurcs , ,

7 Under this category is Included all control structures with CFG’s such that
every back arc, regardless of Its originating priorlty Ievel goes to the first task of
the lowest priority level. Informally, this means that upon completion of the tasks
at a given priority level, the processor will scan all the event variables In the con-
trol structure from the lowest Ievel to the hlghest and begin execution of the
highest level task pending. This is as oppqaed to contrcl structures with local cy-
cles, where the lower priority events ate‘ not necessarily considered ln each such
situation.

The traditional interrupt systcms% availlable - on most processors fall into this
category; such systems are furtheér subdivided into two' types, which are called
here the weak priority system and the strong priority system. In the weak priority
system, although arbitration between: lhterrupts from two or more events Is provid-
ed, there Is actually only & single true levet-of interruption.” There is a “user" or

"mein" program whicti runs at the lower priority, and any number of events may



Globaily Cyclic Control Structures . Section 3.3.1

each preempt It; however, no event may -interrupt. any task. which gained coatrol-it-
self via an Interrupt. .This type of control structwe is. represanted using event

coupled lists, as in Example 3.1.
Example 3.1. (MAIN/(e1: AJe2: Bje3: C))*

The CFG (Figure 3.2) has an interrupt branch from “main® for every interrupting
event, to the basic c¢s it initiates. Completion of A, B:or €. forces LC to retumn to
~ MAIN, so there is a back arc from each of them. For the sake of keeping the CFG’s
readable, muitiple back arcs with the same dosﬂnntions wﬂl be comblnad as is
done In Figure 3.2. It is worth keeplng in mlnd however. thatthla doea not Imply

that another type of node (juneﬁon) hac been ndded

MAIN—a2

Fig. 3.2. CFG.for Example 3.1,

. A strong priority system. supparts a processor: priodity;-the currantly running
task has a priority & assoclated with it, and-any events interrupting with priority m
> n may preempt it. With the exception of the ahility provided for masking inter-
rupts, the processor runs the highest priority .task .walting for service at any time.
This type of muitiple priority level interrupt system is repreasnted by strict nesting
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of preemptible (and Iterative) control structures, as shown in Example 3.2.
Example 3.2, ((((A*/e1)B)*/e2)C)*

The general form can be recursively constructed; each "layer" looks like:
((<iterative cs>/<event var>)<basic csd>)*

which is itself an iterative cs. The <basic cs)> ru,rig at the next higher priority than
. the rightmost basic cs in the <preemptible cs?. B
A CFG for Example 3.2 is given in Figure 3.3; it can be seen that the proper-

ties of nested interrupt systems have natural analogues In the graph:

1. Let @ and 8 be basic cs’s in the CFG. If there is an acyclic
path from a to B whose last arc is labelled e/, then there is an
arc from a to 8 Jabelled e/. This property stems from the transi
tivity of interruption In a nested, multiple priority system.

2. There is a back arc from the last basic cs at each priority lev-
el to the beginning of the onggtg priotty basic cs. After comple-
tion of the control structure at a given priority level, LC returns to
the highest level with a pending request.

b A/—‘e1—>:2———92—35‘(:
L/

Fig. 3.3. CFG for Example 3.2.
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3.3.2: Acyclic Control Structures

At the other end of the spectruin are founfi _control structuraes wlth no back
arcs; these represent completely non—lteratlve systams where the flow of cbntrol
terminates when it reaches the end of any path. Such control structures are furth-

er subdivided into two types:

1. Uinear control structures - control flow is straight-line and thus
entirely predeterinined, as in the example of Figure 3.4.

2. Branched control structués - realfime decisions based on

event occurrences determine the lctuql ﬂgw of control; see Fig-
ure 3.5., which provides an oxmpie

The subject of linear control structufes does no;: leave much room for discussion
and I Included mainly for completeness. Howeyai, there are some Interesting ob-
servations that can be made ahout branched control atmcmarepraswtuble with
the notation, and which apply Indepgf:tdenﬂyv of\lghatherthnm are cyecles present;

these will be considered in the fdlowlng secﬂon

A——el >8 C >D

Fig. 3.4. CFG for tha control structure ((A[§1 B C)D).
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e2—>¢
/e B\ea—ao
A—ed A

N

Fig. 3.56. CFG for the control structure (A/(e1:(B/(e2:Cled:D))|e4d:E)).

3.3.2.1: Branched Control Structures

It is interesting to note that while tree-shaped CFG’s such as the one In Figure
3.6 can be represented, a!lowlng arbitrary tree—shaped Interrupt structures is not
compatible with the transitlvlty of mterruptlon In fact the notation cannot
represent any tree of depth greater than one where the forward arcs are all event
arcs. Thus a CFG such as the one in Flgure 3.7 has no correspondlng control struc-

ture.

el—->B

<
\2——)0

Fig. 3.8. A tree-shaped CFG, for (A/(e1 :Bje2:C)).
For example, consider an attempt to derlv,e,a control structure for the CFG in
Figure 3.7, a tree with a depth of 2. By Mgorlthm 2. 2 It ls found that slnce Cin

terrupts B and B Interrupts A C must also Interrupt A. Thus an arc labelled o2
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must be added from A 10 C, and the tree structwre Is lost. Event e2 (and e3) cen
bomaskedfmmmﬁ MM&!&“M&WGRMB
Mbmﬂmﬁbhbyoz. WMMeﬁMmmmym:t-
mtmmaummwmmwwﬂmt

Fig. 3.7. ACFGMMMWW:MW&
Essentially, ﬁﬂsmﬁcﬁmaysﬂntmwbamustmcw”m
Mwonwhtdybcdpmﬂonmm andyetatﬂaemeﬁnebekiuateds
bymemt Tohwmtamstypeofmwdmmnmﬂonof“b
cal® and "global" events, with suitable restrictions on thelr scope. The additional
complexity this would introduce may be incompatible with the attempt to keep the
mtaﬁmwnchqmmhmboabdcﬂexmhndmmgofamw
Mﬁhsﬂmmammmmaam:aCFG
ﬁichhshﬂnrtoﬂntofﬂmre&? MMISWMM!:)'MW

CA B/e1:C ]az- D))

Macfmaml!repnsantsemudmmmumofa,buts\cmtbohr

terrupted.
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A2~

-
A__—)6\03—--}«0

Fig. 3.8. A representable tree-shaped CFG.

3.3.3: Locally Cyclic Control Structures

Included In this class are all those control structures having back arcs which
do not return LC to the lowest priority level task. - This group is further subdivided
into structures which never return control to the lowest priority task, and those
which may or may not make the return at some’point.” While the emphasis:-here is’
on returning to the Jowest priority level, the same sort of distinctions can be made

about any priority level and its superiors. Examples of each case will be given.

3.3.3.1: Dynamically Docriulng the Range of LC

Consider the following general form of control structure:
Example 3.3. ( ... <preemptible cs><closed cs>*/<avent var> ... )*

This has a non-terminating "<closed cs>*" construction, which corresponds to a
back arc In the CFG from the end to the beglnning of the closed cs Although the
rightmost "*" forces LC to return to the beglnnlng of the control structure (lf the

"=" s reached), the (preemptible cs> wIII not be resumed slnce the followlng ,
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{closed cs> runs at a higher priority, and Is non-terminating.
Figure 3.8 gives the CFG for the eonn'olm

Exampile 3.4, {({AJe1 XB C)*/e2)D)*

which has the above general form. It can be seen that once a non-terminating loop
is entered, although it may be preempted by higher priority tasks (either momentari-
ly or permanently), contro! will not return to any task mﬂshﬁ. Thiss ‘the control
structure has effactively "shnunk®, in that certain:tasks are no longer executable.
This shrinking may occur in stages, if there are severst events which inftiste tera-
tive control structures, and which occur in succession; or it may occtir afl-at once,

Fig. 3.9. CF@ for Exampie 3.4.

3.3.3.2: External T.rlninaﬂonof and Cyd.t o .

Abcdcydonoedmtdwayskﬂcateadecrmﬁmcumdwmctum 1f the
-<aboncs>-muucﬁmhmd,mmuymmmmm
time in a given sub-structure (local cycie), and finally return to lower priority leveis
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when the aborting event occurs. The controi struecture: of Examplie 3.4 can be

modifled by the addition of a single *@" symbol:
Example 3.5. (((A/e1)e(B C)"/eZ)D_)"

Now when e2 occurs, it "shuts off" o1 as well as infdating D. This is a dynamic
behavior and as such Is not well sulted to representatlon by a CFG; however the

IS

real-tlme latency algorithms must certalnly take account of it.

3.3.3.3: Restrictions on Local Cycles

- A back arc can be. formed from-the end to the beginning of ‘any élosed control
structure, and hence.therg is littie restriction on its range of possible destinations.
One notable exception occurs in the presence of event coupled lists. Figure 3.10
gives a CFG which does not have a corresponding control structure; its illegality Is
the presence of a back .arc which cuts across the *|":syntactic boundary in an

event coupled list.

<-2———>:3—¥\}:

Fig. 3.10, CFG with an ilegal back arc.
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Essentlally, this says that the forking caused by -event coupled flists forms two
or more independent sub-control structures, and LG cannot move fieely from one to
the other. However, it Is possible that an event external to all the branches may
preempt any of them; thus a CFG identical to that of Figure 3.10, except that it

has no back arc, corresponds to the legal control strueture:-

(((A/(e1: Ble2: C))/ed)D)

3.4: CFGs at the Task Level

There are several variations on the general clasaMiéations presented here
which arise principally when control flow at the intertask’levet is considered. As
previously mentioned, the complexity of the resufting CFG's limits their usefulness.
Thus these variations are more sultably discussed in the context of fatency algo-
rithms; furthermore, they do not introduce new genera! classes of controf structure
types as far as the topology of their CFGs is concerned, but instead résutt In per:
turbations of those aiready considered.

However, It is reasonable to examine thé changes which  would be Induced oh a
CFG which has single tasks at its nodes, rgther than basic cs’s. Use of the *<non-
preemptible closed cs>" or "(non-weéilflptivble tid)"; éi)astrpctlons results In the re-
moval of the appropriate event arcs. In Addltbﬁ,- tf the task immediately prior to
the "/<event var>" construétion Is masked, an unlabelied forward arc is added to
show the flow of control which occurs on termination of the masked task.

The default mode of control return to a preempted task is resumption, as dis-
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cussed in Chapter 2. Thus any arc (backward or forward) to a preemptible cs of
this type must be dynamically relocated ‘to. psint to the task which was in execu-
tion when preemption occurred. Agaln, this is not easily representable with a static
CFG, and in fact corresponds to the need to store some "state" Information yvhlle a
task is dormant.

If a task is to be restarted, thlé problem does ‘not arise; In 4fact, if an entire
closed cs is of restart type, there QIII be no arcs polntlnd to tasks internal tq the
closed cs which originate outsldé of it. The only entry point from‘ the external

world's point of view is the'beglnnlng of the Initial fask.



4: Real-time Properties of Control Structures

4.1 Introduction

A primary motivation behind developing the hnguaga progqntad in Chapter: 2is
to provide a representation of control stmcturos suitth for use as an anaiytical
tool. Specifically, it provides a cohvenicnt fonut for convcytng preemption and
control flow information to an algbrlthm which thon detormims raval—tlmg properties
of the given control structure. | o |

The dgonthms to be given hera are not intended to provide an exhaustive
analysis of a control structure, but rather to be reprasentative of the types of
analysis which may be performed. The real-time properties measured here are of
common interest; however, It will probably be the case that, depending on the
needs of the particular user, different real-time properties may be of special in-
terest. in many cases, the given algorithms can be adapted for measuring different
intervails with minimal changes. In other casaes totally new algorithms may be need-
ed, but parts of those given will still be useful.

Much of the terminology used hera was developed in [Teixeira 78] and the
reader is referred there for a complete discussion.

A principal goal here will be to develop aigorithms for determining the worst
case /atency of a list of tasks in a given control structure. informally, the worst
case latency of a fist of tasks « (written i(«)) is the longest time that can elapse

without there being a complete execution of each task in the list in the order
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glven. The list of tasks whose latency is being measured will be referred to as a
constraint. The latency of a constraint is measured with respect to an execution
of a glven control structure, where an execution is a list of tasks in the order in
which they are executed by the CPU in a particular invocation of that control
structure. Each element (task id) of the execution has a weight associated with
it, written as |€task id>]. The welght represents an upper bound on that task’s
execution time on a particular processor.

Note that depending on event timings, a number of different executions (of
finite or infinite length) may be generated by a single control structure. Consider

the control structure:
(((A B)*/e1)C)* (6.1)

Possible executions include:

ABABAB..
ABCABC..

ABABCABABC..

among many others. Also note that in the case of preemption a task may be
suspended and restarted, and thus partlal weighting (or Its effective equivalent)
must be accounted for.

The weight of a list of tasks is the sum of their individual weights. The worst
case latency of a constraint a with respect to an execution 8, is the sublist of 8
with greatest weight which does not contain «. The term "contains" as used here

means that the elements of a occur in order and with their full weights; there may
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be arbitrarlly many other tasks interleaved. For example, (A B C D) contains (A C)
as well-as (A 8), but it does not contain (C B).

The provision that the tasks be Included with their full weights is emphasized
for the following reason. in many reaktime process control appiications, the lnpdts
to a task may change at any time, but the scheduling of task initiation may not be
synchronized with the arrival of new Inputs. Thus it Is entirely possible that new
inputs may arrive immediately after the initistion of a t'ask,4l'.e';, after It has already
read the outdated inputs. Given this possibiiity, it may be that nearly two complete
occurrences of the constraint may be ‘exscuted in ah Intérval which stifl does not
contain (in the strict sense defined above) a single occurrence of the Hst.For ei—
ample, given the control structure (A B C)",” consider the execution ABC ABC. If
ﬁn input to A arrives immediately after‘A reads its old input;‘ then it is only after
the second occurrence of C has completed its execution thiit ali the tasks In the
constraint will have been executed in order (the constraint is satisfled by such an
execution). Thus a way Is needed to represent an execution whose end-tasks are
weighted just less than their nominal values; the notation chosen iIs: bracketing
such a task on its "short side”; [A means "begin just after the start of A", and C]
means “stop just before the finish of C*. The weight of such a task is its nominal
weight minus ¢, where ¢ is arbitrarfty smalf. Yhus the wofst case latency of (A C) in
(ABC)>is|[ABCABC]|

The list (A B C A B C) is an example of a critical window for (A C), where a

1. Unless It is known that the timings of such data arrivals can be synchronized
with task initiation, it must be assumed that this could occur at any time after A is
initiated.
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crliglcal window Is defined as a list « such: that «.costains two occurrences of a
constraint C but [a] contains no occurrences of. C.. In-many cases.the-worst case
latency of a constraint will turn out to be the weight of a critical window {(the most
_ critical window). The worst case latency of a constraint with fespect to a control
structure (as opposed to an execution) Is taken over all. the possible executions
that may be generated by thea control structure — no matter wm&»theeeweﬂtsthnlﬂlasz
(within specified limits), there can be no.longer iaterval which does not coatain the
list. Thus part of thé problem faced s to clessify the types of executions which.
may be generated by a control structure .and. narrow the .choice among them for
finding the worst case, since otherwise the combinational explosion: in the: number.

of possible executions would make the problem intractable.

4.2: Weights of Task ldentifiers

It was mentioned briefly above that a welght is asspclated -with every task
identifier, representing an upper bound on its execution time. -Naturally this must:
be with respect to a particular. pracessor, but aven with this restrigtion there are
some difficulties in determining a meaningful upper bound on execution time. Aside
from input dependent computation tlmas, there are processor dependent variables
such as memory access time In a virtual storage system. The worst case time
would occur when all memory raferences werq.to the slowest storage device, but
the prpt?gplllty of such a case actually occurring. may.be nearly zero. On the other.
hand, there may be an uncomfortably large variance assoclated with-the mean ac-.

cess time when critically time-dependant processes are .involved.. it seems then
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ﬂwathsuchacmmmtdﬂmtnmunsﬁtbﬂccﬂyrummwrbﬁund
on memory access time or change the storage aflscation perameters of time depen-
dent tasks to enswre their residence at a particular level or above (in access
speed) of the storage hierarchy. |

if an upper bound on the execution time for a task does not exist, this would
imply potentially infinite worst case latencies and there would be no purpose to ap-
plying the algorithms given here. If there is any question of the vakie of an upper
bound, then It must be chosen carefully in light of the particular application of the
latency information. The weight of each task will be an Input to the latency algo-
rithms along with the controf structure, and it wilt be assumed that a function (table

look-up) exists which returns this weight in response to the ndtation [<task id>|.

4.3: Properties of Event Variables
In order to arrive at worst case latency times for a‘control structure contilnlng
event variables it is necessary to know sométhing more about the timing of the

events represented. To Hlustrate, consider the control structure:
(((A B)*/e1)C D)= (6.2)

if @1 never occurs, the only possible execution of this cmtrol-structdra is(ABAB
A B ..). The latency KA B) in this case Is 2(JA]+[B]) - 1, since the longest sublist
which does not contain A B would be [A B A B]. On the other hand, If e1 occurs at
leas: onice every [C|+D} seconds; then KA B) is nfinite, since the only execution

generated Is (C D C D C D ..) (ignoting possibie initial executions of A and B). If
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the control structure contains more event variables it may become difficult to deter-
mine the worst case latency (the largest 1(A B)) by inspection, and the need for
additional Information about the event variables is clear.

In particular, what Is needed is the following:

(ei): the minimum period of event e;; it is guaranteed

(e,-)

1. Tmin

that e; will not occur more than once in any interval of T min

seconds.

2. 'max(ei ): the maximum period of event e;; it is guaranteed
that there will be at least one occurrence of e in any interval of
'max(ai) seconds.

It Is entirely plausible and indeed likely that In some situations » (e,.) will be

min
the same as 'max(ei ). This is the case for all regularly occurring cyclic events,
such as data sampling, processor time slicing, etc.

In general, it is impossible to distinguish a » (ei) which is less than the pro-

min
cessor Instruction cycle time from an infinitesimal one since the processor could not
possibly respond to an event which occurred at that rate in any meaningful way.

In fact, for a reasonable system, one would have to pick a » (ei) considerably

min
larger than the Instruction cycle time, but the actual value will be application
dependent. For most events of interest it will be possibie to determine a reason-

ably tight » (el. ); e.g., if the event represents an I/O service request, it cannot

min
occur more often than some time interval dependent on the 1/0 device’s maximum
character transmission rate.

Unfortunately, finding a good value for » (e,.) is more difficult in many cases.

max
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An event often represents an exceptional condition, which may never arise in par-
ticular executions. - Fortunately, most control structures will not pﬁt time critical

tasks in such a position that their initlation depends on ¥, (ei )2 but rather It is

more Hkely that the completion of a constraint miy be inmﬁéed by ﬂme loét'after

such an event occurs; and the time fost will be & fum‘:tion of ¥, (e ), not
M(e, ). If a good value of » (ei) s not available for a particdu svent, then

it is more ﬁke!y that the interval of interest wouid beé the maxmun time from the

occurrence of e, to the Initiation and/or completlon of Its mhted oontrol struc-

ture, rather than the longest time. between such executions (a latency value),




5: Algorithms

8.1: Introduction

A series of hierarchically related algorithms will be presented in this chapter,
which will be directed at the problem of finding the worst case latency of a con-
straint with respect to a given control structure. Each algorithm in the hierarchy is
applicable to a larger subset of the set of all representable control structures, and
may call upon the algorithms designed for solution of the problem on a lesser sub-
set as subroutines.

The overhead due to context switching is not explicitly taken into considera-
tion here. It may be accounted for by a fractional reduction of the effective pro-
cessing power of the CPU, when computing the worst case task weights. If this is
not satisfactory, then the algorithms could be ;djusted so that each event oc-
currence and corresponding initiation Is counted, and the overhead due to each
could be added to the delays attributed to interruption.

As the worst case latency algorithms are developed, it will be seen that the
determination of algorithms to measure several other real-time properties, Interest-
ing in thelr own right, ’is required. Finally, speclal cases may result in substantial

simplification to the algorithms, and examples of this effect are included.
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5.2: Latencles in the Absence of Preemption

The first step taken here toward the general solution of the wor;t;“cka;e' later;
cy problem s the development of algorithms to determine the latencles when no
preemptlon‘ Is present, L.e. when there are no event variables or codesttips in the
control stmcture. This leaves cgntrol structures wblcb gensrate finite. and. infinite
lists of tasks, in which all tasks execute to complation oace initiated.

Since only non-terminating iteration is ;sp:Mgd an the ahsence of presmp-
tion), ali finite lists must contain no iterative components. Furthermore, any finite
list L of tasks which contalns at least one occurrence of a constraint d may be

broken down into a series of possibly overlapping sublists:
By aq.apy -0, 8,) - (6.1)

with respect to a constraint C where:

1. B4 and B, each contalri one instance of C, butﬂ.']und[lz
contain no instances of C. : - ,

2. The «,’s are critical windows for C.:

The sublist ﬁ1 is the head of the st !. having mtn!mum wolght and whlch also
contains one instance of C- 52 is the taﬂ wlth Ienst welght whlch contains one ln-
stance of C. The list «, is the critical window which starts at the first instance in
L of the first task in C; o is the critical window whicl; starts at the /th instance

in L of the first task in C. If L contains no critical window, there will be no al’s;

1. If L does not contain C, then the latency of C in L is infinite.
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similarly, if L begins or ends with a critical window: then: By or 8, respectively may
also be empty.

Figure 5.1 gives an example of the breakdowp»fp; ‘thg’,li,s‘t {A BA_\ CDBCBCE)
and the constraint (B C). Note the overlapping of the sublists, and that in this

case |a,| # |-2]

oo

tT ey .2 ok o
A B ¢ D B ¢ B '€ E
—

L

pra——
-t
ha

Fig. 6,1. Breakdown of a finite task list Into sublists, .

Theorem 5.1. The latency ofr a constraint 'C with respect to a finite list L which
contains at least ope occurrence of C is the. WHMCd sublist in
the set of subfists {51. Mot }2}, mre ma a, ; m B,'a are as

deflnedabove

Proof. The proof will be given in two parts; Tirst, by showing that any list which
contains at least one occurrence of. C can be hroken, dow: in -the. abgve maoner to.
obtain such a set of subflsts ‘which Includes all the tasks In the original list; and
second; by showing that' no othér sublist: notéifi"!hd Me&n hve a“ﬁreatlr latency
for c. . Al : i -

- The proot of the first part is given by stiowlng ‘a method of constructlng the
Sat{’.', 1 2:" |n:’a}ﬂwm8uch‘,‘&§LMCth ) B i

Find each sublist of L which exactly contains one lnstance of C (i e, a subust
v such that vy contains C but [y and y] do not contain ,c)ﬂ\klghal each such sublist
v, forl =1 ton ;vmmc n 18 ‘the nmbef‘ofjm C nL The ll&tl. can.

thereby be consldered as a sorlos of sublists,

$1 782 7 by 2 Yy ¥y - G2y
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where the ¢,'s do not contain C and may be empty. ‘if 4, overlaps v, 4. then ¢, ,

will be empty. This set of sublists inciludes every task in L, and wlth no permuta-
tion of the original ordering. Then:

1. l1 Is¢1 nppondod to 11

2. « is the list startlng at v and continulng to the and of 1“1, )
Including ¢,+1 Note that since 7 and’ V.1 WAy overlap “i
not their concatenation.

3. 8,1s T,-1 @PpPended to ¢ .

Now for the proof that the worst case Iatency of C In L ls the maximum of
(83l legl ezl -~ - eyl oA)- 7o n

Since the al's are all the critical windows in L, they represent all the lists «

such that [«] cannot be expanded in either direc! fesulting interval
containing C. Simifarly, 8,7 and [8, cannot be expamfed on bucketad sides

without introducing € to the interval. Since the concatenation of
(By: @42 &g - - < 2%70 B) contalans:L,.and mons. of these subliéts can be“expanded
without the nmc*m contalriing €, the ‘Only pogsth %/ for the. existence of a
sublist: with: greater latency ‘is that:therd is such®a 8t Whi¢K Wncludes parts of two
of the above sublists. That such a sublist with greater lateacy doss not aexist Is
demonstrated by case analysis.

lﬁd md &l > ja, _ The. tubllgt vk eanmt bnﬂia im‘»,.sor mm m eoawn W
thing past v, (without containing C) and hence | < [8,]|. But if § starts at the
beginning of.v4, It could include no more.than e, and theretare. W< juyl. . If & be-
gins past the beginning of .y, it -cannot contain afytiing pastv,, and hence | <
|¢1| Thus such a subnst i does not exist.

The same ﬁne of regsomng ‘will ahow tiat, a amht m greater welght than
any of {f,, ay. ., !2} Gannot being conatructed fron\ parts of adjacent «," s,

L o Baeabio

or «, and B,. Thus the worst case Iatency ofCinL “Wifl be the maximum of (|p1 1,

I"' l’ I. I W2D a s = ‘ - oo "is”

Algorithm 5.1, FLATENCY, summarizes the procedure to be followed in finding the

-84~
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worst case latency of a constraint C with respect to a finite list L.
Algorithm 5.1. FLATENCY(L, C) S e e

inputs: l.,clistoftukldm (a basic eontrolswuma), I:Il]is the /th task
L

B

c, the conetulnt (aho a llst of tnk identmfs). C[f} is the tth task in C.
Outputs: (l(c), stnrt_lndex, ﬂnlsh_lndex),
l(C) is the worst case Iatency of C in L

start_index is the index of the first task of the sublist of L which displays
the worst latency for C.

finish_index s the lndex of the last task of the subllet of L whlch dlsplays
the worst latqncy for C. B T e T TR A e ot

Method: _
" 1. Scan L to find:

py. the head of L with least weight which contains C.

., I =1 to n where n Is‘ the number of occurrences of C in L
minus 1. .

’2’ the tail of L with least welght which contalns C.
This is accompﬂshad as follaws MI scans start from the mark polnt initial-
ly L[1]

a. Reset the mark point totbve- the first occurrence of C[1] found
during sach scan.:- i no:gcoutrenion .of. . Gft} is:found; the mark
point is set to the task past tho ond of the current :can

b. 8, is f°“"d by scannlng untll a complete occurrence of C has
been found: T : :
. The «;'s are the fists which” exactly contain two occurrences

of C; thay are found. by acanping-from the: merk point for one oc-
currence of C, and then scanning from the new mark point for the
second occurrence of C.

d. A, is the resuit of the final soan iIf-no tall.of L is a critical win-

-w" -
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dow,

e. If no occurrence of C is found in'L, return (e, -1, <1).5.
2. The weights of eech sublist are accumdiated dixing each scan, as well
as the start_index and finish_index for that scan. At the ent of each
scan the wsight Is compared to the largest found so far, and saved as the

new maximum. C) i it iis -greater:(in which  case staft_iidex and
finish_index are updated to the valuea for the just scanned ﬂst)

3. Return the final values (MAX!MUM(M” ]¢1| Y I-nl. rlﬁzl).
start_index, finish_index). : .

6. 3: Lntencles of Constrdnts in Cycﬂc Con‘tml Stm(:turu .,

In the spectﬁed Ianguage an infinite list of tasks is genorated by the Iteration
construct; iteration Is either applied to an entire contro} Structure or to the laSt
closed control structure h a (closed cs list) Thus Inmita llats are sither entirely

cyclic (the entire structure Is repeated)
(ABCDE)" - (6.3)
or have a start-up period followed by a steady state cycling:

(AB CXD E)* (6.4)
It would be indeed mtoﬂmtc if the onm hﬂn!ta llst had to Be examined to find
the worst case Iatency, but due to the restr!cttons on its cyclic nature only a rea-
sonably small number of cycles (to be determined) have to be axamined to find the
worst case. Thus the intention here is to reduce the case of an infinite list to a
finite list which contains the wont case, auduaumgorm 8.1, FLATENCY, on the
resuit. o | | |

The principle question is thus to determine how many cycles of the iterative
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portion of the list need be appended to the non-iterative portion (if there is one) in

order to generate a list containing the worst case latency of a specified constraint.

First, though, it must be determined whether or not the latency is infinite (assuming

no task id has infinite weight).

Lemma 5.1. Given a control structure (¢)(#)* and a constraint C, the worst case
latency of C in (¢)(¢)* is infinite iff C contains a task A which is not con-
tained in ¢.

Proof. If ¥ does not contaln a task A which is in C, then (¥)* is an infinitely long

list (and hence of infinite weight) which does not contain C, and thus in which C

has infinite latency.

If ¥ does contaln every task in C, then If C contains n tasks at least every n
repetitions of ¥ contains C and hence the latency of C in ($)(#)* could not be
infinite. O
Once it has been established that the latency is not infinite, the following theorem
can be applled to find the sublist which contains the sublist with the worst case la-
tency.

Theorem 8.2, Given an lterative control structure L = (¢){(¥)* and a constraint C
containing n task identifiers, then if the latency of C in L is not infinite,
the list formed by appending n + 1 coples of ¢ to ¢ contains the sublist

with the worst case latency for C in L.

Proof. Theorem 6.1 established that the worst case latency of a constraint in a
list of tasks was either a critical window @, or a head or tail of the list 61 or 32.

By Lemma 5.1, if the latency is not infinite then ¢ contains every task in C. There-
fore

51 & ‘s *n (5‘6)

where ¥ means n copies of ¥ appended to each other. This is true since n copies
of ¥ must contain C, since each ¥ contains each task identifier in C. Note that ﬂ1

might be wholly contained in ¢, nonetheless.
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By simllar reasoning:
'Y ZAA - (6.6)

contains the most critical window of ($}{#)*; if the ‘most critical windew is con-
tained in ¢, then equation (5.8) must contain It Otherwise, it is contained in
(#)($)*. If the most critical window starts in ¢ but erids ¥ 'Y then It éannot go

any further than 3" since the first o copies of ¥ must. cqntsln £;: thus eqyatlon
(5.8) coritains the most cmlcal window i t‘hls s the cago .also. e

Finally, suppose that (§)* contains the most critical window. Consider the list ¢
formed by starting at the first occurrence of sLl;Hn the first. copy of &, and ending
at the last occurrence of C[n] In_the n + 13t copy of ¥...The. list # must contain
two océurrenceas of C, since ¥, through v, contain €, and ‘2 ﬂimuab *nﬂ contain:

if [#] contains no occurrences of C, then ¢ is a critical window. If # is a critical
wlnnqm then. ne.critical window can exist:which i larger than # siheé it 'would have
to be .caonstructed out -of more than-a + 1 copldsiof §and:tius: would contain ¢
Thus if ¢ is a critical window, it is the most critical window in (§)*. But if ¢ is not'a’
critical window, then it must contain a critical window, and by the same logic this
critical window must be the most critlcal whdow in (f)"‘

EEH

h Mgorithm 5 2 ILATENCY shows how to use 'nneorem 52 coupled wi‘th the algo-
rithm FLATENCY to detemine the worst case latencsr of a constralnt with respect
to any control structure which does not contain preemption.

Algorithm §.2. WLATENCY(L, C)

lnpm L,acontmlstructurewhld:daasnotemtahmmpﬁm
C, a constraint (list of task identlﬁers)

Outputs: - (HC), start index, rwm.tasks) =
KC), the worst case latency of C in L.

start_index, the index in L of the ﬁ'st task of the list whose weight is
KC).
num_tasks, the number of tasks in the list whose weight is I(C).

1. If L is not lterative, let (I{C), atart.index,:finish.index) = FLATENCY(L, -
C); return(l{C), start_index, finish_index - start_index + 1).

Method:
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2. If L is iterative, then divide L into its iterative and non-iterative (if
any) parts: L = (¢)(¥)*.

a. If ¢ does not contain every task in C (not necessarily in ord-
er), return(s, -1, -1).

b. Let K = ¢, ¥?*1 where n is the number of tasks in C. Let
(I(C), start_index, finish_index) = FLATENCY(K, C); return(i(C),
start_index, finish_index - start_index + 1).

6.4: Latencies of Constraints in Preemptible Control Structures

The next complication to be dealt with is the presence of event variables and
muitiple priority levels, implying the possibility of preemption before completion of a
constraint, and thus additional weight for the worst case latency. In fact, at this
point the possibility of infinite latencies arises due to lockout by higher priority
tasks, even though the constraint may be contained in an iterative portion of the
control structure.

The general case of preemptible control structures contains many additional
complexities, If one Includes external termination of control structures, non-
preemptible tasks, codestripping, restarting, and idle time due to stopping the flow
of control. Thus, in keeping with the theme of building a hierarchy of algorithms
which handle increasing complexity with each new layer, the applicability of the
next algorithm is restricted to include all the control structures allowable as inputs
to ILATENCY, pius those containing <event list>’s (<event var)>’s and <event cou-

pled list>’s). Specifically there are the following restrictions:

1. No external termination (abort tid> or <abort cs>).

2. No restarting of control structures (<restart cs>).
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3. No codestripping (<codestripped cs>).

4. No non-preemptible tasks ((ntm-preemptlble tid) or <non-
preemptible ciosed cs)). ;

6. No stopping of LC. The highest priorlty ready task must al-
ways be.initlated without delay. Thus a control structure such

((((Ar7e)B)e2)C  (6D)
is illegal but
((((A*7e1)B)*/e2)C)r ‘ (6.8)

Is not. Event odupled Hsts must contain breaks (cf Section

2.8.1) to enaure .that waiting for higher . priority. events In the
"evenfcoupie&ﬁstdoesnotoccur

8. Constraints must be contained wholly in a subcontrol structure,
defined as a4 series of basic cs’s, an itgrative.gs, .or closed cs
sts at a single priority level. In CFG terms, a subcontrol struc-
‘ture is an. acyclic. path through the .conteol sttuctursis CEG.which
contalns no event arcs, back arcs or breaks. This allows all pro-
cessor time spent at any other level to be treated as an addition
to worst case latency, and lets the detalls of exactly which
. tasks are contributing. to the increase be ignored. . Additionally,
‘the tasks of the constraint must not be contained in more than
one subcontrg] structure. . If they are, then the worst case:laten =
cy in the entire control structure would be < the minimum of the
‘worst case latenclies in.each. sybgontrol Stuctips. which contains -
the constraint; thus the present doorlthms stil give an upper
_bound. The problem here is that if tha constraint can:be satisfled
by an execution which spans two or more priority levels, then the
tasks being executed during preemption: must.be Identiflad, and
can no longer be iumped together and treated as time lost to In-
terrupts.

7. Infinite event gueues. An ipfinite. number .(or some suitably -
high number representing the maximum possible number of pending
avents) of occurrences of each event are. remembered. This
means that If an event happens before the previous occurrence
has been cieared (by completion of the initiated control struc-
ture), the new occurrence will-be hold-in ‘a quete and not ignored.
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8.4.1: Definitions and General Approach
The addition of preemption to.a control structure introduces several interesting

timing questions. For. example:

1. The worst case latency of a constraint as previously defined,
i.e. the longest time that can pass wlthoug thelr baing .a..complete
‘execution "ot each task th the constraint in order. This may now
be prolonged by /nitiation delay as well a3 pregmption delay. Ini-
tiation’ defay Is time lost due to the initiating event not yet hevmg
occurred

2. The worst case latency of an event, defined as the longest
time that cah elapse Betwean the occufrence of an event and
the start of the subcontrol structure which it initiates. What ex-
actly constitutes:the initiation ‘of .a’ subcontrol struttare wit be im-
plementetlon dependent

3 Related to (2), lt may be desired to know the worst case exe-
cution time of ‘a list of tasks at a'given priority: level this is thelr
execution time in the absence of preemption plus the most possi-
ble time lost %o preemption. - This: may b6 moré” udefil then (1) in ~
cases where occurrence of an event signais the arrival of new
data, rather than sssuming that task MWtistion 18 “Gnsynchromized -
with data arrival times,

In all these cases it wm be-: neeeesery to meke seme assumptions which could
lead to an upper boomd whlnh is eomewh&t grentw mm eetuei werst case (In
addition to the uncertainty In the estimate of worst Q8%e- ;apk execution time). In
particular, Teixeira has shown [Teixeira 78] that.the worst case ocours when all
interrupting events happen at the beglrtning ofwervi interval end continue ‘heppenlng

st thelr maximum rate. It may be that the phase.relationships of-the events cou-

pled with the execution times of their subcontrol’ structures is such that the
evants couid never eﬂ happen together. lf thla is known in. e petﬂculer case then
its worst case may be dlfferent and the lnltle! phem of the ewente could be ad-

Justed accordingly. The algorithms do allow. specification- of event phases, as will
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be seen. In any case the algorithms do give an upper bound to the probiem.

~ The worst case. latency of a constraint which exacutes at priority 0 (the
lowest priority) can be determined in terms of nominel time in the absence of
preemption plus time lost to lntemapts the initiation delay need.not.be considered.
The fundamenta! dﬂference between tasks at prlority G and pﬂorttbs crqater than
0 is that if tha worst cuse ‘latency of a copstmht involvas m than obe execi-
tion of tasﬁs at a priority level greater than O, there may be delay due to initiation

of that pﬁoﬂty level (which must ‘be figured ac;;ordmg to gm of the Initiating

eventmmowstcm)fortheaddﬂmtdhﬂsxm Thempﬂoﬂty
level is assumed to be always running or ready, and thus has no such delay

In genmlthmwiﬂbesonethouahtmqﬁodtcpﬁmdﬂtﬂmmtcase for
any time lnterval of lnterest. deteﬂnlned, ﬁw dporm ‘to mme such a

time interval can. be coastmcted using the faﬂanino baalc technlque

1. Determine the relative priorities of every basic cs in the
overall control- structure, and associate with dich. event variable
the-subcontrol structure which It initiates (cf. Section 2.6.5). The
priority of a .subcontrol Qmura:ad dte ioitiating event are the:
same. It is assumed that Tm md ' are known for each

v . Max
~ avent (ct.- Section"4.8). - ,
2. Determine whether the time interval {latenéy or otherwise) Is
lnﬁnite. This may be done in two steps' L
a. If the time lntervd is infinite in the absence of

preemption (détermined as previodsly shown), then it is
'"““t’ in the presance °f preemption. :

b. Otherwise, find out whether higher priority tasks can
sufficlently foad down the processor so that the interval
of !nterest ls never conpleted. One method for doing

3. If it is not infinite, determine the interval In the absence of
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preemption and' ether delays.

4. Factor in the loss of time due tqmm;bn aqg other mleya.
lifting any of the restrictions given in Section 6.4 will usually be
seen as perturbations of this festor.,, ... ... .. .

5.4.2: Finding infinite tatencies

The control etmctqres represented hefe provide no a )g(iprl_method of guaran-
teeing fairness if preemption. is present; Le:, i is entirely possible that in the

worst case some tasks in the control structure may never be executed due to

presmption by ‘Tigher’ pﬁortty tasks AR Rl

Fortunately It is posalblo to determine whethe: this. h tbs easesh advance and
at low computational cost, and this must be done before contlnulng with the
analysis. If the lafency at a olven prlomy Ievel Is Inﬂnite then the iterative solu-
tions to be used for soMng for Ioss of tlme due to preemptlon do not converge.
The method used ls tQ- detoﬂlim a. load facter ﬂx aaclt aubconu'ol structure that
can preempt a glven one, and if the load is 2 1 then the glven control structure’s

SRS

tasks will MVer execute

£ A
By B

In order to ﬁ’ld the load factor due to a subcontrol structure ¥ with initiating

event e, it is necassary. to pariition: the:set of-svents-in.the overall. control struc-

%

ture as follows:

1. Edways; the set of events which can always preempt ¥, but
- can never be preempted by e‘ 'nlese arg the events of higher ‘
absolute priority than ey as found by Algorithm 2.2, N "

2. Ewln_tle‘ --This is the set of avemts which cannot preempt ¢
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and cannot be preemptad by e‘, but are: .chosen: over e’fx!f e'

and one of them are both pending at the same time Tms set is
the wﬁon of tﬁi fomg sets? :

a. Events which have the same absolute pﬂorlty ‘as e‘.
but occur to its left in the same event coupled list.

b. Events which have the same absolute priority as ey

but occur in a different event coupled list.which is entive-

ly to the left of the event coupled list containing ¢.
c. Events which have higher abaolute priority thah ey
but occur-in an event coupled list which #6638 not contain
ey
3. Em tie’ This is the set of events uzhlch cannot preempt ¥
and cannot be preempted by e*, but o' is chosen over one of

them ¥ ‘both are pending at'the same titie. This sat of events is

the union of the following sets-

a. Events which have the same absolute prloﬂty as e‘,
but occur to its rlght in tha same ovent coupled list.

b. Events which have the same absoiute prlorlty as @ Y

. but are in a different event" eoupfé&ﬁtmh is entirely
to the right of the avent coupled Ilst contalning &

c. Events which have a lower absolute prloﬂty than ey

but occur in an event coupled list which does not oontaln
8,. o G

i

4, Enallar 3
ey and initiate subcontrol structures which can always be
preempted by ey These are the events of lower absolute prior-

ty than e‘.
As an example, consider the controi stﬂicture:

(A/{e1:B/(e2:Cle3:D)|e4:Ef{a5:F|eB:G)))*

-74~
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Its preemption structure appears: In Figure 6:2, and the partitioning of Its events in

Figure 5.3.

A
H 31

Fig. 6.2. Preemption structure for (5.9).

Initiating Event B E - | E. e

/Task - dlways win_tle |  “lose_tie never
none/A el, a2, a3, o4, ab, 68 | none none none
al/B 82, 63 . 05, a8 ed none
a2/C none - nong .. |e3 eq, eb, e8| et

- e3/D none - > e2 84, o5, a6 el
ed/E e5, 68 e1, 62, 83 | none none
eb/F none a2, e3 e1, ob el
e8/G . | none .. o 0 a8, 86 ‘et 0 7 [ a4

Fig. 8.3. Partitioning the evants of (6.9).

To decide whether a task A at a given prlor'ltyﬂ level !n'a< control structure may
never execute, partition the events of the control structure relative to A as Just
described. Each event initiates a subcontrol structure (at a single priority level);

let € initiate subcontrol structure ¢ It The worst case load of a given subcontrol
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structure on the processor occurs when its initiating svent happens at its maximum
frequency:

|*]

Worst case load(y i) =
Ymin

(ei ) (6.10)

3

The total load factor is the sum of the worst case load factor for each event which

might participate in the blockout of A;. this is the set Emm

{Eahvays VE_.n tle}’ since these are exactiy thaoseiévants which consistently get
control over e A Mo matter how long e A may have been walting in queue. Of course,

If A is in the lowest priority control str&étufe,ft'heyr; Is no @ A and the set E_, ..o

Is empty; but the analysis of possible blockout due to preemption Is unchanged

Let the avents in E

preempts ba{e,.-".ej} thenthototalloadfactorls.

Total load factor{A) = (6.11)
If the total load factor is > 1.0, then the task A (and any other task in the same
basic cs as A) never gets executed; its worst case latency is infinite. All the fob
lowing algorithms assume that this check has been made before they are called, so

that a finite solution is known to exist.
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5.4.3: Delay Due to Preemption
The problem of determining the time taken up by preemption lends itself natur
ally to an iterative solution. In the worst case It must be assumed that every in-

min seconds).

terrupting e;lent happens at its maxuium fr‘quoncy (once every »
As the tasks Initiated by one interruption aré being executed, there may be addi
tional event ‘accurrences, causing. further delay, etc.: By equation (5.11), If the
load factor is < 1 it is guaranteed that at some peint the. task in question (the one
being preempted) will exeéute; but it Is not clear when and for how long before it
Is presmpted again,

The problem is then to solve for the}“?t'e’tui time taken to execute some set of
tasks ¥ of total weight W‘, in the pregence ef: a sﬁt of‘ lnt)errupti‘n‘g events
{e,---.e I} whlchr all happeﬁ at tlme' vzem 'a‘nd‘ rthen again every -x,e’—'mla“i)'
seconds, each initiating subcontrol structures with weights {W,, LRI ] }- The

i

total time, T‘, is:

T
ksJli %
T, =w, + %5 w (6.12)
A [i'min“k) k

The celling function is chosen since the Mﬂeht

T
I_—i—] C : (6.18)
I‘mm(ak)'

givas the number of occurrences for eku%n: the interval [T*; but since alt events
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happen at the beginning of the interval (in the worst case) oné additional oc-

1,1

r#n(l;;i

!  (618)

but If the event occurs at the exact end of the: terval 1" this occurrence must

not be counted since v will alréady be completed — thus the choice of

sl e

A quick iterative solution to (5.12) is had by noticing that an excellent iower bound

is the solution to

,w,
T,zw,”‘i’——-’——"— . (6.16)
k=1 Tmin(®)

5
v R, B
k=1 " min®x)

T

(5.17)

Notice' that the denominator is exactly 1 -Eqntion (5.11), the total load factor,
which has already been computed. Equation 6.17 implies that running ¥ with inter-

rupts is like running ¢ on & processor whose stzength- has been diminished by the



Deigy Due to Preemption Section §:4.3

load factor of the interrupting tasks.
Thus equation (5.12) is solved teratively by fetting L

We
LY el I Wy

u-r 'm:n‘?x’

£6.18)

T‘O

and then soiving for T, K
9 ) o A

] [ T‘ ] ]
T, =w,+5/{] a1 | W (6.19)
¥a v k 11| Tmint®x) k

and stopping when T ‘ ‘-T“ . The r!om-hmdﬂdeis onitcally Increasing

n-1

with T* and this process converges very rnpldly slnce the Inltlal guoss Is so near

the final vnlue

Given a computation whigh takes a kooum tthn the mence of mtarruption
Algorithm 6.3, PTIME, computes the total tlme taken to do the computation in the
presence of. lntermpts It»&s asuned thnt thott ls no lnlﬁnﬂon My lnvoived i.e.
PTIME finds the worst pqse lntmol wbich: mntdns t coeonds of tim ln which

preempting tasks are not executing.

Alqorlthm 5.3. PTIME(t Em)

inputs: t, a time which repraesents computation time in the absence of presemption.

Eproempts" a set of. events whtch-can preempt the computation which
takes t seconds.

~79-



Delay Due to Preemption " Section 5.4.3

Output: t , the time taken In the worst case with interripts to perform a computa:

mnwmchtakestmdsmmmh&e.,mmdme
mhinmmasmnﬂnmﬁonm and con-

tinue at their maximum rate)
Mathod:

1. Llet W, =t Let {&,-:-, J} be the events In EP'MP‘S’ Let
~(Wl. ree, l} be the weights of the subcontrol structures Initiated by
the corresponding events. Then solve equation (5.18) for an ipitial value
ofl", solve equation (5.10) repeatedyfarr‘ wg:ythe\hlueoff .

¥n-1
| ending when r* = T‘ . Retum(T*n).

a a-1

5.4.4: Applications of PTIME
Using the aigorithm PTIME one can determine sqverg! m&ﬂmm of in-
terest for control structures which meet the restﬂctions of 8ection 5.4 " must be

kept in mind that there Is a d!sﬂncﬁon between the fohwlng two sets of eveants:

a. The set of events which can preempt a task after it has been
‘initiated, as weil as take priority over its Wnitiiting ‘event white it
is pending.

b. The set of events which get priority over an event if it is
- pending but has not yet beert recognized by thé processor (no
tasks have been initiated due to its occurrence), but cannot
preempt any tasks Ih the subcontrel strobture which that évent
Initiates.

S Gt el

The worst case latency of any constralnt which is in the subcontrot structure
at priority O can aiso be directly determined. The @lstinction betweon this applice.
tion and the one just mentioned is that the constraint nee¥ not be contdined in a
single copy of the subcontrol structure. Since the priority © subcontrol structure

has no initiating event and hence no initiation delay, the worst éase latehcy of a

-80-
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constraint C can be determined in two steps:

Algorlthm 5.4. PRIOLATENCY(*, C)

Inputs i, a subcontrol structure which runs at prbr!ty 0.

C, a constralnt

Output- I(C), the worst case Iatoncy of C In i

Hothod
1. Find (I(C), start_index, num_tasks) = jLATENCY(t, C), the worst case la-
tency of C In the absenceé of preemption

2. L“'Eprédh'p‘ts ‘ba the set of ali-avents M the erftire contiol structire.”

The worst case latency of C is PTIME(I(C), Epreompt;)

Another application is to determine the latency of an event e, thgt_ is, how

L]
A

long Is It in the warst case between the occurence of ap event and the initlation

of the corresponding subcontrol structure. This can be found as follows:
Algorithm 6.5. ELATENCY(e, °i)

inputs: ¢, the least amount of time that can elapsp before a task can be con-
sidered iritiated.  : ,; gi v

' o, the everit whoso Iateney Is bahg detu'mtned

Output: i , the longest time that can elapse after °I occurs before its subcontrol

structure gets initiated. - SR RS R
Method:
1. Let the sqtﬁw M&m J‘éo} relative to the event
e. S Lo
2.t = PTIMEG,E, ). “

° preempts
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5.4.5: Adding Phase Reiationships to PTIME

For a more general formulation, it is useful to have avaﬁable the means of‘
determining execution tlma in the preaence of Mtermptions when the lnterruptlng»
events may have started happening at any lndiv!duauy detemtned tlme rather thanv
all starting at time zero. For this pqrposa, the phm of an avent is hare deﬂned as

;?3 ool -

the time since its last occurrence. Thus for a sat of events {e st j} there
may be assoclated a set of phases $= {’P R | }} i um Qvonta a(o occurring
at their maximum rates, then no mora than 'mn(ﬂl)"i’ ¢,umndscm elapsa before
the next occurrence of e,. - o |

In addition, there may be oné or more pending occurrence of any of the events

on the avant queue, so a set of tnmily pending occurrences 8 = {n,, .- -’;’n}}”

may be detemined Thue two factors atter the ﬂme due to preemption eguation

(5.12) as follows:

T,~{»_.; (0, )-¢
,’_w*+k ] “ v (mn K k)

z : ey (6.20)
k=1 (AL 7 Fypteyd
A good lower bound to this is &s solution without the cqiling. function;
k=i 'aun(’k)
Ty2 kzl - (6.21)
k=] mh')i k)
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The solution is again found by aolving {56.21) for the:initial value T*o and then
solving (5;20) for T‘ using the prevloﬁs Vaiﬁe T‘ ;mtﬂ fhey are equal. - A sum-
n ; A . 3 ll-“ B e B o

mary Is given below as Algorithm 5.8, PHTIME. ~Note that If}k,,m- '»'mlng‘ek) and nk =0

for all k, PHTIME computes the same value_ as PTIME.

Algorithm 6.8, PHTIME(t, E preempts’ ¢, 8)

Inputs: t, a time which represents computation time i the “Absence of preemption.

Epreempts’ a set of évents which can preempt the computation taking t
seconds.

$ a set of phases. ona for each event inE

Sl preampts

8, a set of initially pending occurrences, one for each event in E preempts”

Output: Ph’ the time taken in the worst case. to perform a computation which

takes t seconds to perform with no interrupts. The worst case involves

preemption by all the events in Eproompts as ofter as posaible, subject to

the conatralnts of ¢, 0, and Tm for each event.

Method:
1. Let W*-t Let {e,, erh e } be the events in Epraempts Let

w,, - W)} be the weights of ‘the’ subcontrol” structures Inftiated by

the corresponﬁng events. Then solve equation (5.21) for an Initial value .
T‘o~ solve ‘@quation (5.20) repeatedly Yor T‘ ‘using’ the previous value

of Ty, 5 » terminating when they are aequal T*, i8> the value to be re-
n- n
tuned as t,, .
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5.4.6: Task Execution Time with Presmption at Prorities > ©
Mgorithm 5.5 gives a method for determlning the maxlmum tlme that .can elapse

between the occurrence of an event e and Initiation of its’ subcontrol structure.
This is fairly shnp!y done since while el is pendinﬁ the ‘set of events that can

preempt it Is static. Once its subeontrd stfuciu;e 'has been lnlﬂeied, hewevei.

only events In Ealways can interrupt; however, lfany Ofthaal sveants does occur,
any event in Ewin tie Wil take priotity over resumption of;e,f'&eubcoatml struc-

ture.
This complicates the determination of worst case execuﬂon time (and laten-
cies, as will be seen In the next section) for a task subset Fi of the subcontrol

structure.  Note, however, ‘that if the set Ewln ..tle 3 empty (and therefore the set

of interrupting events is static), that PHTIME can be used to get the correct result.

lngenereltheuah,thnreautmustbehmdhm dmngwhenlcan
be executed. The next algorithm detern’ﬁnewthe worst case time to execute a set
of tasks 8, contained In a smgle subcontrol stmcmre. given the sets of events:

always and EmJia for § and their !nmal velues of. ¢ and ﬁf it assumes that §

has been Just inltiate,d_fand then finds the time t,» mmﬂontpcanpleuon of 8.

This is done by first finding how long it will be before all the pending -interrupts, if
any (based on ¢ and 8), are processed and § can be resuméd.. Then the earliest

occurrence of an event In Edmys marks the next preemption of §. At that point

any accumulated occurrences of events in E will cause executions of their

win_tie

subcontrol structures to be completed b_efore $ can be resumed. This partitioning
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of the total time taken to execute § is repeated until all of 8 Is completed. Note
that the method does not require determination of an ‘@xact schedule for ali the
tasks in the control structure, although the éﬁtaét"itme& when § wi“ be ‘vexecuted
are found. Algorithm 6.7, SCSTIME (for “sabtontrol structure execution time®) de-
talls the procedure. Note that -this aigotithm does not address the problem of
dctormlnlng executlon tlma for a set of tasfm Mﬂch may requlre more than one in-

vocation of a subcomml structure.

Alyomhm 8.7. SCSTIME(' Edwgys’ Ewln u’, O. AO)

lnputsx §, a sublist of the tasks In a subcontrol structure

Ealways' relatlvn to. a‘, &s lnmatlng avant

[ENE

Ewin_tle’ relative to e;.

¢, phases for events in Edwa and Ewln_tle"

8, initialty behdinu ‘occurrences for ‘e'\iem& In ;EM' and E—,,,,_ﬂe-

Output: the Iongest posslble time to execute 8 with interruptlons

3 o 3 P

p:

¢

win tle

win_tie’ the ﬂnal phases for all the events in E

ow,n _tie® the fhal number of pendlng occurrences for all the events in

- Bt

win_tle*

Method:
1. Set ‘cum = 0, the cumulative execution time for §. Set t1 = 0,

2. Find how long 3 can execute before it is preempted by an event from
Edways. This is:

t, = MINIMUM (, mint®x) - $x ) for all o €Epynn (6.22)
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Go to step (4).

3. Find how long § can be executed before an ewent from Egways
preempts It; this occurs at time

t, = (least mumple of 'min(ek) >t, for alig, ¢ EMS) - (6.23)

4. It ‘cmu +i-t, > W, § will complete in this intervel; compute ¢, =1,
+ m cum' compute ‘win tie | uslng equation (5 25) _and substituting ¢ £
for ty; compute 0_ using equation (5.24) and wbstltut!nq t_ for t,.

win_tie [
Return (t_,

nwin_tie) Otherwisa set:d - - =} 4:2 g

p’ wln tie’ cum cum

6. Set 8 = 1 for the event from EM‘ which caused the preemption.
Some events in Evin _tie ™Ay also be pendlng

a - .
k [ mln(ek)l [ * min’ ‘k)}m‘e Fwin_tie (6:24)

6. Update phases for all events:

t o
2
e IWJ “rmin (k) for al ey € (€ orunye ¥ Ewintio}  (6:26)

7. Find new value of t1, the next resumptlon ttma of §:

- t2 + PHTIME(G, u Ewin tie’ ¢, 0) (6.26)

Edways

8. Repeat steps (8) through (7) until termination of § is datectaé in step
(4).
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5.4.7: Latencies for. Cmstrd,n& &t Priorities > O

The worst case latency may-be desired for a constraint which is setisﬁe“'dg;g%
an execution of a subcontrol structure at a priority greater than 0. If the execu
tion which represents the greatest fatency invoivés two or more Invocations of that
subcontrol structure, the possibility of initiation delay must be considered as u?ell
as interruption delay. Each of these delays may Involve a @iffarent set of preempt-
Ing events.

There are thus several complexities to be dealt with in the general case, even
with control structures meeting the restrictions of Section 5.4; . heweéver there are
also several special cases with simpler solutions. An example is: wheri‘the sets

EM" tle and E,m tie are empty; .it will be shown how te ,mé',_(e;.. use ‘of this

%

slmpllﬂcatlon in a later sectlon
Recell the notatlon of Sectlon 5 2 where a subcontrol structure A was broken

down Into components @1. « Tt e, 52) relative to a constralnt C, where the
. . - i - . Ty ETa Lhow R
.,"‘s were critical windows and the ﬁl’s each contelned one occurrence of C.

3

The worst case latency of c In a control structure contalnlng ¢ at a priority

level gr‘eeter than zero is found ‘as Toflows. Lét e‘ ‘be’ tha Tn!tfatlng event for ¥.

There are two candidate time intervals which mey be the worst case letency for C.

The first, t’ , Is the maximum delay between occurrences of e‘ plus the maxlmum

delay to complete ﬁ1 wlth preemptlon The eecond t ls the maximum tlme taken
to complete e, the most critical window. of ¥, also with. preemption. Either one -

may involve more than one invocation of ¥, and hence initiation delay. . To show

-87-.

e
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that elther t’ or t. could be the worst case letency for C, .consider a simple ex-
1 m ,

ample:

Example 5.1. ((A*/e1)B C D C)* .
where

*max'€1) = 10 sec.

IAl = 1 sec.

{8} = 2 sec.

i€} = 1 sec.

. p{l 8 sec.

The most critical wlndow for the constraint (C) is (c D c), wlth a welght of 5
seconds. However, the longest time that elapses without an occurrence of C is 13

seconds, which Is t‘ or r (e1) + M + [C}. i 10] were chancad to be 16

seconds, though, (C D C) would stm be the most crltical window for (C), but now

t is 17 seconds, which is greater than t.
m . .

Thus the two candldcte tmes must be computed and their maximum returned
as I(C). Note that since the entire control structure is repeated, the task list

starting at ’2 and wrabping around throuch 51 is a critical_ wlndow call it -‘, andt
must have weight greater than 32, therefore 62 cannot take longer than it to exe-

cute, and need not be considéred as a candidate for I(C) Furthemore, it might be

thought that the welight of u; plus the delay due to initlation of its second part, Py

may in total be greater than the weight of an otherwise most critical window which
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Is contained in ¥ and hence has no Initiation delay assoclated.with it. To show- this

ls untrue, it Is only necessary to show that the weight of a, with Initjation delay

must be less than t. and t‘ , since the addition of delays due to Interruptions Is

a monotonically increasing fuact[on of the time taken without interruptions.

Thus assume that ¢‘ is not the most crltlcel wlndow of dv for c (f it is, it will

be considered by the algorlthms and thus there !s no need to juatify Its exclusion)

But if thisis the case, then there Is a crltlcal wlndow - In & with greater weight

than -i,’:" thus the time to e’xeéﬁteii""’le less than orequel o
l'ﬂ' + (tmax(O*)- km') o (522)

in the absence of interruptions. But since I-’I s < |¢ ] equatlon (5 22) is <

ﬁ%

max(ei) Thls in turn is less than t’, whlch lncludes 4 (e*) as one of its sum-

max

mands. Thus it Is sufficient to find the maximum of t‘ and t.
1 m

Conslder the computation of ty - First the most gritical window must be found ’
m - . E 3

for C in ¢ using the algoflthm"for iterative control sfii:ctures, ILATENCY.~ -Note that

In this case since the eﬁﬂte:'ﬁls}ubcontrol st'ructuffme"' gets repeated, the head (ﬂ1) of

(¥)* containing C cannot represent the worst latency for c by itself (without initia-

tion delay); there must be a crlticel wlndaw of oroeter welght whlch Includes ﬁ1

as its 88000(‘] occurrence of C.

Therefore ILATENCY will return I(C), the weight of the most critical window L
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In (#)*. HATENCY also retumns start_index, the index In # ‘of the first task of a_,
and num_tasks, the mmber of tasks in «,,. Knowing this, it can be determined how
many times o, the initiating event for #, must occur during «, s execution (L.e., by
knowing how mgny coples of ¢ mlnehdedint ‘¥, m. “into the sublists

{'m1"m2’ e, cmn}, where each ."'I b\.é portion of ih;ﬁ!tk:b is contained in (a

single copy of) ¢. Sinéet. is the longest possible time to execute « s It must

be assumed that all the interrupts happen immediately after. initiation of o and
cowﬂmeatmaknaxhumratu;mthemamwema*happmatlts

slowest rate.
Figure 5.4 shows the time line for part of a sample execytion of a critical win- -

dowcm which is not contained by a single copy of ¢.

R R Rty B e LT L SOUR . SRR EPRLL SRt |
e v - « e «
L starts m m ] m
ocours ' 1 : 1 " occurs 2
starts ends. second = starts
‘ ' time

Fig. 5.4. Partial exééutbn of i critical wlﬁdoﬁ L

in the worst case, the initiation delay of interval (4) mu be the maximum possi-
ble, with the constraint that interval (3) must be at m maximun too (greatest

amount of time lost to interrupts). Therefore the intervnls (1) and (2) must be
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computed- at their minimum, i.e. no preemption.  Thus dnterval (1) Is assumed to be
zero, and Interval (2) is 9| - "m" |- ‘This may givé'‘an inflated upper bound by

s

Iengthenlng interval (4); If it is known in a parﬂcular case thnt preemptlon must

Biraiiiag

oceur durlng lntorvals (1) and (2), an adjustmant can be made in the phases of the
Interruptlng events at the beglnning of mtorval (3) o
As was previdiisty stated, 1t I§ assumed that the worst “ca\sé‘is when hll events

occur right after -u‘," starts, "so the lanutft ‘of interval (“s) t(a), I found from

[t K s wed
ER T N sEE e

SCSTIME(« ¥’ Edways' Ewin tie* # 8) where and E are deter:.

Ealways win_tie
mined. relative to ar',:o =240, .., O) and'@ = (1, 7', )16 & the ‘Gvients.”

Once the interval fimes t(1)’ t(2), andt(a) are determlned t( 4) is found by

s S P St 2 TER S S E R RNteRs O

| Y(q)= MAXIMUM [o, wm(o') et o)t tﬁ)} (6.27):

it t( 4) > 0, there is an-initlation delﬂfmch must be factored Into the solutlon

"At this point anotiier décision must be made chh aﬁ‘ects ‘the ughtnm of the

upper bound determinad by the algorFthm ﬁuﬂng interval (4), any of ‘the events n

the control: structure ether. than e, may''¢ ol,'and thars may be arbitrarily

comgqu;g_pgﬁgcklnq out among the different sets. of gventa duye: to the exact order of

occurrences; le., to get the true picture, theu sets GIWS' El!lln,,,tm and
Eloue _tle relative to every event must be conaldered, since the reference polnt
provlded by knowledge that e* was pendlng has been lost Thls makes Mding an

analytic solution for the values of ¢ and § at the end of interval (4) quite compli-

‘el-,» e
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cated, and two alternatives are provided hers instead. Note that the relative im-
portance of this is dependent on the relative slzl of interval (4); in the extreme
case, if it is zero, then there is no probiem at all.

The simpler method (and the one usod here) is to assume that all events in

Edways and Ewin tie aet blocked out durlng lnterval (4), and thus thelr O s and n’

get updatod accord_lngly. This will provide_,fm upper_bound which is high by the
amount ofAexocutioo of pre_ompting tasks which could have taken place during inter-
val (4) and will now instead be added to the preemption delays of the next ioter-
val R el “ o

Unfortunately, this is not the only complication. In the wo;st case, an event:

from Elose _tie mlght get control just before the ond of interval (4) .and initiate a
subcontrol structure which could not be preempted by e' The event 8, in
Ejose_tie Which initiates a subcontrol structure jt\imt runs for the longest time

without being proemptod by an event in E

always. ™ wm_ue (given their o‘s and

s at the end of interval (4)) is chosen, since once it gets preempted. it has less

priority than ey by definition. Let the Ienath of this tlme be t,, and then the time

untll «

m,, Starts is given by PHTIME(t), {E e s U Eppin: 115} % B)- The #'s and

O’s are updated and the process is repeated as from the stiart of’-m‘ , terminating '
1

when the end of a_ is reached.
m,

The alternative method is to determine an axact schedule for Interval (4).

Then It will be known whether or not an event from Elooo tie Can get control and
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keep it past the end of interval (4), and the exact ¢'s and I's for all the events

can be determined. This Is the method of choice if the initiation delay Is known to

be significant. ‘
The interval t’1 Is measured on a sHghtly different time line:
R R L B ey R e B ) Ly sy
e [ s e [
v 1 1 v 1
occurs 1 -1 occurs 2
starts ends . secend starts
: : . time

Fig. 6.5. Partial execution of 51.

To find t‘1, the execution of 31‘ is broken down in’to parts which are contained in a

single copy of ¥, just as was done for L Here the worst case Is when all inter-

rupts happen at the beginning of interval (1) and continue at their maximum rate,

since the length of interval (0) is fixed at rm(e*); this gives the gregtéSt delay

during interval (1). Interval (1) is thus the m)bdmum initiation delay for ¢ with

preemption, including the possibility of an event from Elose tie getting control just
before e* happens and causing further delay as previously discussed. The times

of the remaining intervals are found as was done for the «_ s, computing the initial

m;

¢’s and s appropriately.
This procedure is detalled In Algorithm 6.8, LATENCY.

-93-
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Algorithm 5.8: LATENCY(C, ¥)
inputs: C, a constraint

¥, & subcontrol structure containing at the tasks in C, in a control struc-
ture meeting the restrictions of Section 5.4, and where the worst case la-
uncyobekmnothbem&rm%Jﬂ,

Output: I(C),theworstcaselatancyofththocontrdstructwecontahhmi.

Method:
1. Find I(C), start_index, and num_tasks by executing ILATENCY((#)*, C).
Lotc Mmemhdwmsmmatsmmexmdcmtmmm

mn_tasks.
2. Find the sublists of «,: (sm1..m2,---,- ) where eachctis
the completely contained in a sihgle cipy ofy. If the number of tasks In
ilak,then- iﬂfﬂMx}thmtmhf[k]c tm'oughc = ¢,

Mp-1
ande, =¢f1]} thmuoh ¢[num_tasks - k(n - 2) - (k - starUndex + 1)1

3. Since the worst case involves maximum initiation delay for ¢, assume
intervals (1) (2) (s.ee qume 5.4) m without preemption. Thus

(3).

4. Find the sets Ealways’ ‘ndsqu_tie rehﬂvggqa* Set ¢ = Oundn-i
't for all events in these sets. ththesetim_ﬂerelatwetoe* Set

t, . = 0. initislize the ceunter / = 0. -Repest steps (5) through (7) untit

m

the end c:f-n is reached in step (5).

6. Set . / = i + 1. Find ey =t ‘which Is returned by
scsrme(.: dms 'm_“e $. ). Settw-t +tg) Set#mdﬁt

for the events in Ewln_t}e to the vatues ‘win _tie and owln_tle returned

by SCSTIME. if / = a, go to step (8) MQ’1 ‘is éomputed.

8. Attheendoft(a),smcecm was in control, none of the events in
i
Edways was pending. Thus set 8 = O and:
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t.

_ m
* t.m l’min('k)

7. Let t( 7 i (a*) t(a) 0* if t“) > 0, there is an initiation delay
and the following must be done:

erm(ok).for each event e, € {Ealways} (6.28)

a.. Upda%ei aﬁd 8 for eachﬁevent __elt in {Edws VE in tie):
+
[_LL___( *x ] : (5.29)
"min‘®) I

b =Ya)t - k min(elp) | (6.30)

b. Find the event e € Eloae tie which initlates a subcontrol
structure that can run the longest before (or without) being

preempted by an event In {Edways u Ewin tle}‘ this can be done

by considering each event in E sia R tumn. let. t.  be the
time which elapses past the end of interval (4) due to 8.

c. Find the inithtioa delay of «
‘ “m

tdelay E PHTIME(t

{Edways UE,in_tie } ¢. 8) (6.31)

e. Set 0* =0, and: -

t.

" t"m i l mln(ak)

for all events o, in {Eahvays UE

wln _tie- }

e. Set ¢* ,dﬁldy'n

It t( a) is zero, set ¢* - O* + t(a) - 'max(ei)'
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"8. Find t' find 8, of (¥)* by scannlng until the first occurrence of C

hasbeenscanned. Divide 8, htoaubﬁstsasmsdoneforc “th step (2),
getting as a resuit (ﬂ1 ,51 s "t ,01 ), where thisnmay be different
1 2 7 :

from the n obtained for e, . '
8. Refer to Figure 5.6. The time of lntewd (o), ﬁ(o), s » (e‘) As-

sume all events in {Edlvays uelvin_tle} occur at the end of this Interval,

and continue at their maximum respective rates. Thus set@ =1 and¢ =0
for afl these events. Let 'F’ -t(o). let; = 0. Starting at step {7b), ex-

ecute just as for s suhstltutiﬁy t’1 for t,

,and f8, fore
- 1, m

i

10. Return MAXIMUM(t"\,, t ).
) m

5.6: Special Cases and Extensions |

There are many special cases which result in much sﬁﬁbier algorithms. Each ak
gorithm presented in the previous section is: directed’ towards a subset of control
structure types which contains the prevlous subqgt and some additional control
structure types; It is seen that in general as tha number of diﬂ;erent types in the
subset Increases, so does the complexity of the rgaultina aloodthms.

As an example of another important spechlcasp,coaﬂ.r finding any of the

reak-time properties for a subcontrol structure whose sets Eiose_tie 2Nd Ein tie

are  empty, e.g., as would be the cnse’“h é‘b:’entro&fsfmétwe containing no event
coupled lists. Now all of the complicatlons due to having the set of preempting
event varlables change dyna;ﬁcauy drop out - the staﬁcauy determined set

Edways is the only set that may preempt, and by’ deﬂrdﬁon it can always preempt.
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The simplifications this Introduces are subistantial; take the most complex of the
algorithms of the previcus section, Algorithm 8.8, LATENCY, for example. In step
(6), SCSTIME can be replaced by the simpler-PHTIME. There may stifl be an initia-

tion dalay t4), but there is no fonger the poesibiity of ‘an event from E, . .o

getting control and prolonging the initiation tlmé.

As far as extensions to the algoﬂthms go, thére are two principal areas to con-
sider: one Is the determination of algoritﬁnié for reak-time bribbertiés not discussed
here and which are germane to a specific application, and;fhé other is the lifting of
the restrictions of Séction 5.4 to allow any representable control structure to bé
analyzed. Since the first area requires an application relative to which suitabie ak
gorithms can be developed, only thefsec‘iifnd” area WIu:bé c&;/ered here. |

The difficulty involved In lifting the restrictions of Section 5.4 varies consider-
ably from one restriction to.the next, r_‘énd~héﬂei”tﬁey“aré discuissed here one at
time. The foliowing discussions sre not intended’to be the final word on the topic,
hor are all the detalls supplied for a pearticular inethed of Iifting each restriction.
instead, the intention is to point out the difﬂculties Inv‘ﬁlﬁd‘h" each case and to

make suggestions as to how they might be overcome.

85.5.1: External Tormination

Recall that there are two types of:iteration, in effect, that can be applied to a
subcontrol structure; local and global. if a subcorntrol structure is locally cyclic, it
means that that partioular subcontrol structure executes indefinitely, without requir-

ing reinitiation by Its Initiating event. This is equivalent, then, to having an event
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which initlates a subcontrol structure with infinite weight. If, instead, It is part of a
globally cyclic control structure, then it too will be repeated indefinitely, but only
one time per. Initiating event occurrence. Both-of these types are allowed under
the restrictions of Section 5.4, because the  welghts of the Initlated subcontrol
structures are fixed, even though they may pe infinite in the locally cyclic case.
However, there is the potential for a subcontrol structure which has infinite (and
thus fixed) weight with no external termination to hnvevuryimwelqht in the pres-
ence of external termination. Thus the del,a“ys_e;neduntqggd_ in the. execution of
lower priority control structures due to lnter'rup-ts%; \:vhlch..rlalrtlated, <abort cs)’s
(those which may be extpfmny ternunatgd)_wn‘l vary according to how long the
<abort cs)> executes before /t gets pregmted. An upper bound on this time can

be found if a good value is known for T max of ﬂ)e temlpg,ting event; if there is

more than one such event, the minimum of their meximum periods may be used.
Note that this also complicates the determination of ioad factor (equation
(6.11)), since that depends as well-on having a knawn upper beund for the weight

of each subcontrol structure.

56.5.2: Restart Contral Structures

This is another case which may lead to varlable subcoatrol structure -execution
times. Every time a {restart cs) gets preempted,.the time hfrrlu currant execution
Is extended by its nominal weight in the absemce of preemption; R.is essentially
the oppasite of external termination. Thus a: Crestart ‘8> fAeeds a non-preempted
interval equal to its nominal weight in which to meutel’oihdwhethar such an
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interval exists, one must sea whether the phases of all the events in the sets

Ealways and Ewln_tle relatlve to the (restart cs> can bg adjustad so that it gets

preempted at least once every |<restart cs>] - ¢« seconds. This can be either very
simple, as in the case where there is only one event that can preempt the <restart
cs)>, or very complex, if there are many events and their interrelationships must be

consldered.

5.56.3: Codosﬂlﬁping

This Is somewhat slnipler to handle. If one of the Interruptidg events initiates
a <{codestripped cs), then the delay it causes Is 's‘ﬁnply its nominal weight divided
by the number of codestrips, e.g. the weight of (A/6) Is just |A|/5. If the tasks
whose execution time is being measured are codestripped, though, it is as if they

were preempted by an event with variable *mi

n to get thls effect, a dummy
event can be substituted for the integer which tells how many codestrips there
are, and its phase can be adjusted every tjgne the <codestripped cs> Is resumed
so that it will cause preemption at the time when a at»n“gle:_ gp@es;ﬂp would have

finished.

5.6.4: Non-Preemptible Tasks

Let ¥,..,c D& a subcontrol structure whose realtime properties are being

includes

measured. Then If a subcontrol structure of higher priority than *meas

non-preemptible tasks, the effect on ¢ Is unnoticeable - these tasks would

meas
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have been executed to completion anyway before im was resumed. If all of
¥ eas I non-preemptible, then its computation time need not inciude the effects of

those interrupts which cannot preempt it, and the sets E and E can

always win_tie

be adjusted accord%ng!y. if only a part of‘i is non-preemptible, then the Os

and s of interruptlng events must be updated when the non-preemptible part has

been executed. If a subcontrol structure of lower priority than ‘meas is non-

preemptible, then if the Interval ¢ includes an initiation delay, it must be in-

creased by the maximum amount possible due to execution of tasks which e* can-

not preempt. This can be handled similarly to the case where an event from

Eiose_tie 90ts control just before 64 occurs.

5.5.5: Stopping the Flow of Control

This is another case which may result in effectlvély Varying' the weights of
subcontrol structures and hence the deﬁy due atrd ﬁeemptlona whlch include theirr
execution. 1t has some similarities ’to external férﬁiﬁ;ntlon; consldér the eXample

given in equation (5.7), repeated here:
((((A*/e1)B)/e2)C)*

The problem is that the effect of the delay in executing A due to e1’s occurrence
is dependent on the period of e2 ~ hence the simuarlty to external terminatlon
The difference is that the minimum effective weight of B is still |B, since an oc-

currence of e2 before the end of B preempts B, but leaves the remalnder of B to
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be resumed once C is done.
Thus the techniques for external termination ean be applied-here, with the con-

straint that the minimum weight of .a subcontrol structure Is stilf Iits nominal welght.

5.6.8: Constraints at More than One Priority Level

To be able to consider the worst case lctencles of constralnts whose member
teeks are found at different priority levels and thus in diffarent subcontrol struc-
tures is a difficult problem To determine this, the executions of tasks at lower and
higher priority levels can no longer be lumped together and treated as a delay,
since at the very least lt must be known when every teak whlch occurs in the con-
straint Is executed regardiess of what its prlorlty may be Thus algorithms of a
very different sort from thoee in the prevlous aectlons are probably required, and

the poeslblllty of slmulatlon to determine an exact schedule may provide a starting

point.

85.5.7: Finlte Event Queues
It only a finite number of event occurrences can be remembered, and this
number Iis small enough so that some event occurrences are Ignored then from

‘meas s point of vlew, the delays due to preemption computed prevloualy may be

too high but cannot be too low. The equatlons whlch determine the time lost to
preemption must be adjusted to Include a maxlmum value of 8.

When computlng initiation deley, lt must now be eeen whether, in the worst
case, the Iinitiation delay may be prolonged due the lnltlctlng svent’s occurrence

being Ignored.
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A new notation has been given which represents resl-time control structures at
a high (task and event) and implementation-free level, Including sequencing, itera-
tion and preemption as primary constructs. The notation cen represent conventlon—
al single and multiple level lnterrupt structures es weﬂ as non-tradltronel ones
where branchlng of the preemption structure is genereuzed A total priority order-
ing may be described, or erbttrerlly meny events end subcontrol structures mey re-
side at the same priority level. An algorithm ls g!ven for determlning the preemption
retlationship for eny {svent, task> couple in the control structure, es well as a comr
pletely deterministic method of selectlng a task for service if severel events with
arbitrary priorities are pending (posslb!y equel) It my be interesting to conslder
the modmcetlons necessary to the elgorlthms K lt is essumed thet the processor
chooses at random from among all the pendlng events of the highest priority

Additionally, notation is given for representing task termination by externai
event occurrences (as opposed to temporary proemptlon),‘ deecrlbin_g whether a
control structure should be restarted from lts ﬁ'st tesk or resumed from the point
of preemption codestripping, and mesking of a set of interrupts whlle any given
task Is executmg lt is shown that due to the essumed trensitlvrty of the
"preempts” relation, the sets of events chosen for these specie! cases might
necessarily include other events not expllcltly mentioned

The notation is compact, and provides a comlenlent fomat for conveylng a lot
of information about the control flow reletbnshipe emong the members of a set of

tasks. A complete BNF specmcetion is provlded, end e perser can be (and has




Conclusions and Directions for Future Research ‘ Section 6

been) constructed using any of a number of éxtant compiler-compilers which accept
BNF specifications.

Classes of representable control structures dre given, typed by the topology
of their control flow graphs. "It Is shown that partial as well as total ofderings of
tasks and events can be achieved through the use of the svent coupled list, which
Introduces forks into the control flow graph. A method for recursively con'siiuctind
a muitiple priority: levet control structure of the traditiofial type Is given. The dis-
tinction is made between & control structure which shpports a processor priority

ts; aven though there may

and one which actually has bnfy a’singlé tevel of intbitrug
be a sst of several interruptiig- events which are ordéred amorig themselves. It is
shown that ‘while in general the need for this type of control sttucture Is perceived
to be strongest In situations where representation of perlodic events and task exe-
cutions prevalls, aperiodic contiol structures ‘aré’ represéhtiible. However, a true
tree-shaped interrupt ‘structure cannot be achievéd due 16 the transitivity of the
"preempts® relation. in addition, while iteration can ‘be ‘applied to dny closed or
basic control structure, a back arc cannot origiiate from the middle of one event
coupled list-and terminate in the middie of another.” THis is hot felt to be a serious
restriction, however; since’ it Is Iikely that grédhs of ‘iiski In a siibcontrol structure’
are related and expected to be executed as a block. ” ‘

The second hatf of the thesfs concentrates on deseribing the sorts of reaktime
properties which may be of interest to a user of any reaktime syitem, and demon-
strating how they can be measured for control structures ‘reépreséntable using the
notation presented here. The worst case laténcy ‘of a tohstralnt Is found to be a

property whose determination involves computation of ‘several otlier properties as
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subroutines. The difficulty. of finding an.upper. bound on task. execution time Is-dis-
cussed, although with§Ut this knowiedge It is doubtful that much further.analysis of
value could be performed. Additionally, bounds on. the maximum and minimum- period
for each event are needed. The a!gorithmsrpﬂectmamgnthq-tif these periods
are not known, it will be difficult to forecast resi-time performance for the control
structure, . e

Next several aigorithms for measuring latencies are developed, each hendling a
larger set of control structure types, up to a level which.jncludes the entire basic
framework of sequencing, iteration and preemption. Along the way, it is: shown how
to determine if a response time might be. infinite, and it s aspumed that this is done
befare attempting to use any of the aigorithms: for messuring. the variaus time inter-
vals. An aigorithm is given which determines the loss of time due to preemption if
the set of preempting events is static, and by using it it is shown-how.to determine
the latency of a constraint contained ip a pricsity. 0. subcontrol. structure, and the
worst case initiation delay for an event at a given. priority level. . The worst case
assumed here is the occurrence at the beginning of an interval of all interrupts,
and their reoccurrence at thelr individual m rates, However, an algorithm is.
also given which determines preemption time. if the phase of sach event is known
at the beginning of the interval being measured.

The effects on these algorithms of -adding control structures: containing each of
the restricted items of Section 5.4 is considued, further investigetion is needed:
here to uncover the details of the problems which are pointed out. Another useful
thing would be to' develop analyses based on a probabilistic model rather than on
the worst case; e.g., what Is the probability that a given constraint will have a la-
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tency of no more than n seconds? Finally, an important result would be the
development of a general .a‘l'gorith‘m which could deternﬂhe the latency for any of
the representable control structures, . The difficulty of such a task should not be

underestimated; Indeed, In the words of Niklaus Wirth:

It does not appear feasible at this time to postulate any generally
valid and at the same time practically useful rules for the determi-
nation of execution time bounds for systems using processor shar-
Ing. [Wirth 77b]
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Appendix A: Summary of BNF for Real-time Control Structures

<control structured ::= (bnsic cs | (closled:cs)v{ (ite_’rativévcs)

<task id> ::= ietter) | Ctask id> <alphanumeric)

Cetter> :=A|B}]C]|..}Z

<alphanumeric) ::= Cletter> | <digit>

<digiy) :=0]1})2]..]9

<basic cs> ::= (task) | <basic cs> ¥ <taskd> | <basic cs> 1

{task> ::= Ctask id> | <non-preemptible tid> | Cabort tid>

<closed cs) ::= ( <basic cs> ) | { <preemptible cs> ) | ( <closed cs list> ) |
( <closed cs> <(preemptibie cs> ) | { <closed cs> <basic cs> ) |
( <restart cs> ) | <non-preemptible closed cs> ] <abort cs>

{closed cs list> ::= {closed cs> | <closed cs list> <closed cs)

<iterative csd ::= <basic csD>* | <closed cs>* | <basic cs> <iterative cs>

<preemptible cs> ::= Ccontrol structure> / <event list> | <codestripped cs>

<{event var> ::= e<integer>

integer> ::= <Ldigit> | <integer> <digit>
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<event list> ::= <event var> | (Cevent ‘coupted Hst>) |

(<event coupled list>)*
<event coupled listd> ::= <event var>: {(control structured )

<event coupba llst)'l‘ Cevent vaid: '(,cdri‘t_ml_‘ ,S’tructure‘)
<{non-praemptible t@) u= ‘Ctaskd | '((ovllnt))(task)
<non-presmptible closed cs> ::= ‘(closed ¢8> | (<ev list>)<closed cs>
<av list> ::= <event var> | <ev ﬂst),(ev’%p’t var)>
{abort tid> ::= @<task> | G((m( list)){task),
<abort cs> ::= @<closed cs)> | @(<ev Hst)v)f(éibsed--ci:)
Crestart cs> = > <basic cs> | > (Cev flst>) {b&sfc cs>

<codestripped cs)> ::= (basic cs)> / integer>
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