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The four chapters of this thesis were written independently and may be read scapartely. Each has
its own introduction, terminology, and notations, but all references have been collected at the"cnd of
the thesis. 7 | ’ _

Chapter 1 presents an on-line simulation of a deterministic multihga@( e-dimensional Turing
machinc of time complexity 7{n) by a deterministic muh@be}gd d-dimegpsional machine of time
complexity O(Iin)‘ tVd-Ve+ € forall e > 0. In I‘hcorcm 1,2 the ¢ in the.exponent is replaced by
of1). This simﬁla_tion nearly achicves the known lower bound Q_(T(n)‘ + "'y ‘) on the time ‘
required. |

Continuing the study of multidimensional machines, Chapter 2 prcécms an off-line simulation of
a nondeterministic d-dimensional machine with onc worktape hcad that runs in time 7{(n) by a
deterministic machine in space (T{n) log T(m)¥9+ 1, An anonymous rcfcree nouccd the simulation
by an alternating Turing machine in time O((T(n) log T(y)¥@* 1)) (Theorem2.3). This chapter has
been acccpted‘ fdr publicaﬁon in Theoretical Computer S¢ience,, An carhcr _\‘(ggs,ion‘ appcaredas
Technical Memorandum TM-145 of the M.LT..Laboratory for Cp;nb‘utkcE!Sc.i,cpce g4l

Chapter 3‘uses an overlap argument to derive new pronfs in the pebble game. Wé develop a
strategy that uses ((/log n) pebbles to pebble every directed a;,ychg graph with n.vertiges and
boundcd indegree. A variation of this strategy uscs S pebbles tg, pcbblc ;he graph in at most 220("/?) .
steps. This note on the pebble game will appear in Irybnnauon Processing Letters.

Chapter 4 reccommends further research on automata with nons;qucntxal,storage structures. It
includes a novel geometric argument that suggests a time-space tradcoff for simulating a
multidimensional Tl;ﬁng~.ﬁléchinc byatreemachine, . .

]
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Chapter 1. Simulations among Multidimensional Turing Machines

L1. Background

Introduccd by Hartmanis and Stcarns [S}, multidimensional Turing machines arc natural
generafizations of ¢onventiohal Ty uring machincs. chmc and Grigoriev (3 6I cstablished a lower
bound of HTTm) * V- ey4 the time required by a mulihead d-dnmcnsmnal Furing machine to
simutatc an e-dimensionat machine of time com;ﬂcmy 7(:1) on—!ine Wc prcscm a snnulanon that

ncarly achieves this bound.

Theorem L1, Foralld> 1, alle> d. and all € > 0, every multihead e-dimensional Turing
machine of time complexity 7{) can be simulated on-line by a multihcad ¢ dimensional Turing
machine in time OX Tin)! + Vd-Ve+ ey

For the case d = 1, Pippenger and Fischer [22] devised an optimal simulation that runs in time
XT(n)? " Yy on-tine. Grigoriev [3] described an on-Thic simutation in time (Tt + 174y whcn
e = d + 1; cven in this spocial case, Theorem 1.1 provndm abcucr upper bound.’ Also, Gngonev
proved that every storage modification machine of ime compfcmy TUa) can be simulated on-line by
a d-dlmcnsmna! machinc in time O(T{n)t + 14 @y since cvcry muludimcns:onal Turing machme
can be simulated in real timc by a storage mbd‘iﬁcatmn machine [27], every édimensional machme
can be simulated on-lirie by a Fdiriensional machmc in tife O('Il’n)‘ + 1A I’f “The time reqmred o
by our simtitition is smaller, however. ‘

Grigoricy [4] déitirstrated that every nondcterministic e dimensionalmachine can be simulated
off-finc by a nondeterministic ¢ dimensional maching in time O(RR)! + V4-¥2+ &) for every e 50,
We consider only deterministic machines. Our simulation can be modified to yicld this result about
nondeterministic machines.

Paul, Sciferas, and Simon [19] studied simulations among multidimensional machincs with
limited numbcrs of worktape heads. They established nonfincar lower bounds on the time required
to simulate multidimensional machines on-line by machines with fewer worktape heads.
Furthcrmore, they presented simulations of multitape multidimensional machincs by machincs \mh
just two worktapes having onc head each. In contrast, we present a simulation by a machine with
more worktape heads.




1.2. Simulation

DorE

Let us review definitions for multldlmcnsmnal Tunng machmcs To cach cell of a d-dxmensmnal
worktape assign in the usual way a d—tuple of mtcgcrs called the coordmales of the celi I‘he
coordinates of adjacent cells diffeér | in’just oné componcnt by :!:1 ']'he ongm is thc ccll whose
coordinates aré all z¢ro. A d- dimensional Turmg machme ha)s‘a ﬁmté statc control a read only mput )
tape, a writc-only output tape, and a finite riumber of'd-d'uncnsnonal wOrktapcs cach of which has a
finite number of heads. At each stcp the machine reads thc symbo!s in (hc cclls on whlch thc mput
and worktape heads are positioried, writes symbols on thcsc worktapc cclls and possnbly on thc output
tapc too, and shifts cach worktape head in oné of 2d + 1 possrb!c dlrecuons cnthcr tooneof2d
adjacent cefls or to the same cell. Tnitially, all worktapc cells hold blank& and cv“efy worktape hcad is |
positioned on the origin of its tape. Leong and Sciferas |1 2} provcd that cvery d- dlmcnswnal ™ unng
machinc can be simulated in real time by a d-dimensional machine having just one head on each of its
worktapes. | ‘ -

Fix integers d > 1 and > d, a positive real number ¢, and a finitc alphabet A. To cstablish
Theorem 1.1, it suffices to exhibit an on-line s:mulatlon of a pamcular e-dimensional machine E with
worktape alphabet A by a d-dimensional machine D in time ()(n1 + 1/d-1/e + &) Machine E has one
head on one worktape and operatcs in rcal time as follows At cach step it reads another input
symbol, called a command, that has the form <b, §>, whcre b € A and 8 is one of the 2e +1 4
directions in which the worktape head can shift. Supposc E is m a conﬁguratlon in which the cell y
scanned by the worktape head contains b'. When E thcn reads the input symbol <b, 8>, it writes bon
¥, writes b on its output tape, and shifts the worktapc head in direction 8. Call symbols of A
responses. Let Z be the set of commands for E. Machmc E deﬁnes a function from Z*w A* that
maps a string of commands into a string of responscs of thc samc length Machine D simulates E on-
line in time 7{(n) if it computcs this function in time ﬂn) on mputs of length n, and ‘fogggvgry input, o
for cvery j, machiuc D produces the jth rcsponscbeforcrcadmg the [F] +l)§t¢command.

Ona éivcn input string of colnmands.,wtl,cuaE has processed just the first, 7 commands, we say
that Eis af time 7. When D has processed only the first.y commands (and produced the first z output -
responses), D is ot simulated time's. T

Consider a string of n commands. For simplicity we describe a simulation in which z isavailable - -

off-line. The simulation can be converted routincly to an on-linc simulation with time loss of only a
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(1) for cvery cell y, there are 5¢blocks at level ithat contais a coll at dﬁfances orless
(ii) for every.col yin a block Batlevel i, ify is at distance strietly greater than s, ) from
-every ccll outside B, then there is a.block 8° QB atilevet i- 1 sueh that y is-well within B'; the
relative position of 8’ in B is casily calculated: ﬁ‘emthe;iesnian ofy. R
Reischuk [23}cmploys a similar-covering. The blocks:at lovel i<} thaiimféomaincé in'ablock Bat
level i are the subblocks of B. Every block at level i has at mest (35,/ 1)” gubblocks.
let # be the function defined by - SR SIS
: w(x) = 2Mlogx].
if x is not a power of 2, then # maps x to the next largerpower of 2. 1.ct my* = n,and for i< Llet
m® = (35)%,

the volume of a block at level i. For cach iset

| ¥; = Gdfeq

;= w((y 9,
= w((y, V9.
A routine calculation shows that u; = ()(n?/ d +£),and for i< L, o
u; 2> (cq si‘/sflé)ll d u.,/2. - (L)

In D a page at level 0 is a box of side oy for i>0,a page at level i js a box whose side is a power of
2thathasa mass store, a memory map, a free storage lzsl, and a nonblank ceII counter. If Pis a page at
level iand P isa page at lcvcl i-1and PCP thcn 1" is subpqge of . We describe how the contents
of a page P at Jevel i represent thc contents of a block B at leveli, :

Ifi i= = 0, then P represents the contents of B literally: for each of tha(:ise)’ cclls yof Bthereisa
representative cell zin P whose rclative position in P is dc;tcrmmc.g by kt&h,icir;e.la:uvg:;poeat;on_of yin B, -
and z holds the same symbbl asy. 'lhc details of ﬂus represendation are unimportant, provided that.
relative pbsitibn of zin P can be computed from the relative pagition of yin B in constant time,.

1f i> 0, then for every nonblank éubbiock B of B, there is a‘subpagc of P whose contents
represent the contents of B recursively. All subpages atlevel i- 1 ar¢ panrﬁx&dis;omt. vtl;‘ci}‘}(’kii‘z‘ﬁ/;‘é : ‘
side p. 'The mass store of P is a box Uf side p/2 i in P that Containg these suﬁpages Thc acklressofa
box in the mass store is its rclauve posntion with rcspc;t (1) the mass storc B ” o

subpages of P whosc contents represent the contents of subblocks of B. The relative posmons of ,
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Efffects: The contents of the memory map are altercd to.assaciate a-with &',.and the frec volume of P
is reduced by ~, (During this call to ALLOCATE, the freesteragc list may temporarily hold
addresses of 27 blank boxes of the same side), | -

- Method;. A buddy.system is used {10},

Step 1. 1f the free storage list has.an address of a box of side r; then skigrio Step 2. Letg* bethe
smallest power of 2 greater. than 7 for which the .freé:sﬁmgg,}is&mmwan address of a box of
side ¢*; if no such ¢* exists, then terminate-with faiture, Forg =.-¢*%q*/2....., 4r, 2rin order; -
sclcct an address a, of abox C of sidc g, delete a from the list; anid add-tg.the list the addresses
of the 24 pairwise.disjoint boxes of side ¢/2 whese union-is:G; - Theifrec storage list now has-
addresses of 22- 1 blank boxes of sides 2r 4r, ..., ¢*/2 and of 29 blank boxcs of snde r.

Step 2. Lct a'be thie address of a box of side 7 on the frec slorage hst, and dclcte this address from the
list. In the memory map of P set up at most ()(log s,) pomtcr boxes of volume O(Iog u) for the B
binary tree (dcgcnbcd above) to associate address @ with & 1f the pumtcr boxes for the bmary )

tree no longer fit in a box-of side p/(4 tog s). ‘then terwiinate with Failure.

Proccdure av I’AGI' A DDRI'SS (i Ky
Hypothesxs The worktape heads of D are on a page Pat !evel i. R
Parameters: k' isa binary string of length O(log s) that spccnﬁcs the rclauve posmon of a subblock B’
of a block at level i. | R AR
Value returned: The address a of subpage P in P assigned to & such that the side of P’ is
‘min {411((7r1 n' +'s l))l d, "rl} where m' is the value of the nonfilanf’ccll coutiter6f ', IFa’
call to ALLOCATE fails, then this call to PAGEADDRESS fails. R o
Effects: ‘This:procedare may altor the contents of the meitiory map and the froe storage fist by acal
to ALLOCATE and may sct up a ncw page in the mass store. LBy
Method: ‘Using &'and the-mémory map of P, retrieve fhic:address ef the subpage P of Passighed to
B': visit the Olog s) pointer boxes for the nodes orf the path in thc bifiafy ¥ free (describcd above)
from the rout to tie leaf that corresponds t K'to obtiln the addfess assoeiated with K. B
1 no address is asseciated with k', then call ALLOCATE to dbtain 4 bUrk Box of sidé 1 i1 in the mass
store. Initialize this box so that it becomes a subpage P whose ¢ ¢ontents i‘eprcscnt ablock whose
cells all hold blanks: the free storage list of P' contmtrhjuﬁﬁfe 48drcss of the blank box of side ‘
{.1/2 in its mass storc (namcly, the mass storc itsclf); the vznlué;b;fE thc ;l(;;lbldnk c%ll countcr of P'

is 0. Return the address of 77 in P as the value of a.
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Let 5" be the side of P and m’ be the value of its nonblank colf counter: by definition, p’ is a power of
2 Wp' Cmim fully,, (' + 5, V9, u.,). then calt ALLOCATE %o obtzinn 2 néw box of side
P = min {ally;; (m" + 5, NV, u.,} > 2p' in the tnass store of P astigncd w B'. Copy the
contents of 7 into this box to produce a page P~ such that if thé cositents of /' represent the”
contents of B, then the contenits of P~ also represent the contents of &' in pasticular; (o ensure
that the addresses in the memeory map remain valid, copy the coments of the mass store of P,
which hasside p'/2, intv the box of side p'/2 whosc hase ecll is the same a5 the base cell of the
mass storc of P*. Augment the frec storage fist of P with addressésof 27 - 1 blank boxes of side
P"/4 i ns mass store. Tn this case return the address of P7in P as the valod of 2.

Let & be the relative position of a celf with respect to a‘boxi;_,C .on the worktapc of Eand o be a
sequence of commands. Procedure SHIFT on input (h, o) producs the relative position of the head
of E mm respect to € that results from starting on écnggh, O andpcmng the shifts indicated by
. SH’IF"I‘ 6pcfatcs' ir; time pmpdnkmal to the sum of, the lcngths ofits inputs: using ¢ unary
counters, one for cach dimension to maintain the displacement of the head from x(h (), change one
of these counters by 1 for each of the shifts in o finally, with ead‘ditnons orsubtrmuons, calculate
the new relative position. '

Procedure UPDATE (i, h, o):

(i) At the beginning and end of this call to UPDATE, the workiape heads of D arc on the base cell of
apage Qatlevel i _ S o

(i1} Let m be the value of the noablank cell counter of Q at the beginning of this call, Q hasside
min {x((y;(m + sP'4. u}.

Parameters: | isa binary string of length qm:)qmspmﬁesshc;elawemmoﬁcenmm
respect to a block Catlevel i o is a sequence of 5, commands, e

Effects: lfatthebcg:mmgofamprm&uccaanCatmnmehwefEn
onx(k, () at timae 7, and g is the scquence of commands at timess + L, 7 + s, then at the
end of the call, QrcprcscasCanmcr + 5, The value of nosblark coll counter of Qs set (o
wi = min{m+ s, mS}; ﬂ)es&dcqus'((x,m')U‘L K any pmceduse that UPDATE calls
fails, then this call to UPDATE fails.



Method: 1f i = 0, then use o to determine the new, contents of every cell pin C that is visited:by the -
worktape hcad of € when it starts from x(h, C) an@ﬁhiﬁs according to ¢; copy this ncw symbol
into the representative of yin Q. , , :

Otherwise, if i > 0, then sct & « k; add 5; to the value of the nonblank ccll counter, unless it already
cquals m;*; partition g into s/s, , consecutive subsequcncesc of length.s, ,; and perform Step 1
through Step 3 for cach ¢’, in order. : e : '

Step L. For cach of the at must 5¢ subblocks C” of C that contains a cell within distance s, of
x(k, C); perform Steps 1.1 and 1.2. ‘

Step 1.1. Call PAGFE ADDRESS to-determine the address of the subpage @ of Q assigned to
C’. Let i be the.relative position of x(k,-C) with ecspect to €
Step 1.2. Move the heads of D to the base ccll of Q’ and call UPDATE(i- 1, K, o).

Step 2. Sct k « SHIFT (k, o'). ‘

Step 3. Return the heads of D to the base ccll of ©:

Correctness: To check that UPDATE opesates properly, show by induction that for each j, at the gh
exccution of Step 3, o' is the sequence of commands attimesr +G-Bsy + 1.1+ )5, the
worktape head of E is on x(k, () at time:r + j's;,, and Q ropresents C attime s + js, ;.

Procedure o « SIMULATE (i, h):

Hypotheses: N ) ;

(i) At the beginning and end of this call to SIMUL ATE, all heads of 5,;@ on the base cell of a page
Patlevel i o o ’ |

(ii) Atthe beginning of this call let D be at s:mulated tnme T and lct m bc thc valuc of the nonblank
cell counter of P; page P"has side min {m((y, (m + s,))l’ ") u‘,} . .

(iii) Atthe begmmng of this call, P reprcscnts block B at levcl zat tlmc T. At tlme T the worktape
head of Eison x(h B) whxch is wcll within B (Conscqucnﬂy thc worktapc hcad of E is m B at
timest + 1,..,7 + 5;) B

Parameters: h is a binary string of length ((log s,) that specifies the relative position of acell in B.

Value returned: ¢ is the sequence of commands at times T+l T+ s, Ifany procedure that ’
SIMULATI calls fails, then this call to SIMULATE fails.
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To simulate E on an input string of n commangs, mave:the-worktape heads of D to the base cell -
of the page P, of side u 1 that represents B, at time 0, and call SIMULATE with parameters (/,, hg, .
where A, is the relative position of thc; Qrigi;x with respect {o BL*.:‘ N

1.3. Analysis of the Simulation

We prove that every call to S/MULATI completes succossfilly; the proof.for UPDATE is the

same.

Tl

Lemma L1, Let rbe a power of 2 Supposc the free volume: of pagc Pisat lcast r" ina
configuration of D at the beginning of a call to ALL 0(' ATF on P l‘hcn ﬂm call can produce the
address of a blank box of side rin the mass store of P :

Proof. letq < ¢, <. £ q,, be the sides of: boxes whosc addrcsses are on the frcc storage list
of P. Since the free storage list has at most 2" ‘1 boxes of eax.h dlstmct 5|de the frec volume v of P
satisfies ' ' o

v=q9+ .+ q?< (- l)q 4y (24 1)(q./2)"+ 4+ (24 l)(l)"((qu)"
If 4 < v, then < (2q,, 4 hence since ris a powet of 2,r< oy Conscquemly, ALLOCATE can find
a blank box of sidc rin the mass store of P [ )

Let D be at simulated time 7 at thc bcginning of acall to SIMULATE on apage Patlevel i>0
that represents block B at time r. Let m be the valueof the nonblankecll counter-of Pin this
configuration and m' = min {mi .m+ s} 'Ihestdc of Pmﬂ(’l,m j"‘)

Lemma 1.2. Throughout this call to SIMULATE
(i) Phas at most 5¢ '/, lacuvc subpages.and -
(u) the total of the nonblank cell cuuntcm of thc actlve subpagcs of P never excccds S _
Proof. hrst, supposc m = m?*. Since B has at most (33/ 1)‘ subblocks. P has at most (3s/sﬂ)‘
Sm*/sp, <5m' /s, active subpagcs, and Lhc sum of thclr nqpblank cell counters is at most
(3s/ ) My 3'm . < Sem’. 5 . -
Now suppose i’ = m + s, By mductmn onr, at s:mulalcd t,;me 0t l’ has at most S‘m/s #1 actwe )
subpages, and the total of their nonblank cell counters ;s agmost S‘m At each of S/SH itcrations :
dunng the exccution of SIMULATE, at most 5' new active subpagcs arc crcatcd, and Sia K is addpd o,
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the nonblank coll counters of at most ¢ subpages. Thus, the number of &tive subpagcs of Pis always
Smts + SUs /s )= S5, “"
The total of the nonblank ccll counters of the active subpages of P is at most
Sm 4 SUs/s, Js, =S 0

We show that during this call to SIMUTATE, cvery call to PAGEADDRESS in Step 2 or Step
4.1 completes successfully. First, we verify that 2 has enough space for the free storage list and the
memory map. Since the side of Pis w((y, m W< wlty;m mh = u, the relative position of abox
in Pcan be spccnﬁcd by astring of Xlog u) symbols. (By chousing the sizc of the worktape alphabet
of D, we can adjust the constant of proportionality to ensure that asscmons (14) and (l.S) below are
tmc) ‘The free storage list of P comprises O(log u) addre&scs oﬂength alogu,) thus, the free
stomgchstoccuplcsabmofﬂde , o .
Olog u)'% < 0G; 1"’) < :«y, m )"‘)/4 19
because m’' > 1, In the memory map of P there are O(k)g 3) pomtcr bous of fixed volume O(k)g u)
for cach of thc O(m /s .1) active subpagcs of P. Thcse pom:er boxcs ﬁt ina box of volume .

075, Xlog sXiog u) < (x(Cym) Ydtog ). a9)
the volume of the memory map of P. When PAGEA DDRESS caﬂs ALLOCA TL llm call cannot fail
for lack of space for the memory map.

Consider a configuration of D just before a call to PAGEADDRESS on Pin Siep 2'0r Step 4.1
between simulated time 7 and simulated time ¢ + x,;e-ln’lhts tonfigucation kot P;, Py, ... be-the active
subpages of P and let ml '”2 . ... be the values of thcsr nonblank cell counters; lct P rcpresent
subblock B;in B. The side of P;is w((y,, m)""4). The mass storeofl’holds thccontems of smaller
subpages that were assigned to B in previous conﬁguratm anse thc sadts of thcsc snaller
subpages are powers of 2, their ml volume is at most the volume ofl’ namely, (««yt1 ,')W))"
Consequently, the vdlwmofnscdboxesm thcmassstomof?m mtswnﬁguramn lsbounded by

3, Anllr,, m)V4Y. |
Suppose PAGEADDRESS decides to assngn to B, ancw pagc orsidc -r((v,, ;") /9. where
"= m + S aecouling to thc definition of PAGEADDRI'XS‘. o
B et mY ‘»>2-«1,,—,‘)‘"; R )
Lemima 1.2(ii) implics that
m~+Z 01 M ' < S‘-’ an
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Becausc the mass store has side w((y; m')/9)/2; the froe volume of Pi. this configuration is at least
)Y - B 2y )V
2AB = Ay g P HRY =2 B 2y, ) by (16)

> 48y, (5} 47, #1 (T ) = 2,7,, m" s

> 44 Yy My w2y " by (LY

> (wlly;y m "))
L.emma 1.1 guaranteces that A7.1.OC ATE can find:a blank box of side w((y 1My 34y iry the mass
store of P. 'Therefore, this call to PAGEADDRESS completcs:suecessfutly. ‘

By induction on i ncither the recursive calls to SIM ULATL nof the callsto UPDATE fail. Ergo,
the call to SIMULATE at simulated time 1 complctcs saccessfully. -

In the memory map of a page at level / of side p< u, to move ahead from onc pointer box to
another takes time proportional to p/(4 log s)), the side of the memory map. 'I‘hﬂs; to determine the
address of the subpage assignied to a subblock or to associate an addtess with the relative position of a
subblock takes time ISR o

(Oflog u) + O(p/(410g s)))Xlog s) = Ku)
because O(log s) pointer boxces, cach of volume O(log up, are accessed.

Let T (i) be the time used by ALLOCATEona page at level i. ‘Sincé timie O(u) is consumed in
moving:the heads around the page and in the memory map and time O((iog ur)z) in handlmg the
addresses in the free storage list, '

T () = Ofu) + O(log u) = Ow).

Let T((i) be the time used by PAGEADDRESS o1 a page at I¢vel I, exclading the copying of
subpages. This procedure retricves an address from the methory map (time O(u ), performs some
arithmetic calculations (time O(log u ), moves heads around the mass store {tim¢ (Xai)’) and caﬂs
ALLOCATE: R '

Ti) = Olog u) + Ou) + T L) = Ou).

Let Ty() be the time used by YPDATE on pages Q at level < L, exctuding the copying of
subpages in calls to PAGE AI)DRF SS. Evidently, T {0) = O% l) For 1>0 we assess the time taken ,
by each Step. ' e ' ‘
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W¢ prove that during the simulation of E by D, the total timé sakest by copying the contents of
pages in calls to procedure PAGEADDRESS fs O(n! + %€), Consider a configuration of D at
simulated time 7 at the end of a call to SIMULATE on-a page P at level i of volume ». Let 0, 0y, s
Qf = P be the sequence of pages such that for each 1 > 1, prior to smmlatcd time k8 PAGEADDRESS
called ALL OCATE to obtain Q and copicd the contcnts of Q i1 into Qf Call the sum over jofthe
time for copying Q. £3 into: Q the ancestral copying tinte for P. “The sidés'of these Q are mcrcasmg
powers of 2. Consequently; since the time to copy the cont_ems of Qf. | mto Qj is bounded above by
the volume of QJ, the ancestral copying time for P is at most twice the volume of P, namely, 2v. In
this configuration of D let Py, P, ... be the active subpages of Pand v, v,, ... be their volumes. Since
these pairwise disjoint subpages lic in the mass store of P, whose volume is w2,

< w2l

Call a page P in P at any level active if either P’ is an active subpage of P (at tevel i - 1) or P is active
in an active subpage of P, Suppose inductively that there is a constant:ky-2>4 such that for each j, the
sum of the ancestral copying times for all active pages in PJ over all'levels is at most ksv] Then the
sum of the ancestral copying times for all active pagesin P over.ail levels isat most -

v+ Z, kgv £ 2y + kw20 S k.
In particular, when P =P/, the page at Igvel L assigned to B,, this total-copying time is at: most
ksu? = Oy n) = Ot * %),

Thcrefore by (1.1), the simulation uses time

TYL) + O * %) < (s,/5, XOW,) + TeL- 1)) + O(nl + de)
' < nl- l/e(o( nlld tey 0(“1:1» + O nl + de)
< O(nl + l/d 1/e+ e) o o (.1.8)

Theorem 1.2. Foralld > landalle> d, every multihead e-dimensionat Turing machine of time
complexity 7{n) can be simulated on-line by a multihead d-dimensional Turing machine in time

O(T(n)! + 1/d- /e + Oltiog Tim) 1’2))
Proof fhc constant of proportionality i in a 8) can be boundcd by k k71/ € where k¢ and k,

dcpend only ondand e. Choosc easa functum of n to m:mmlze
k k71/e”l + l/d l/e+ e

e = X(log n) 172y Ergo, every e-dnmcnsnonal 'l uring machmc of time complcxlty 7(n) can be
simulated on- lme bya d-dimcnsnonal machme in Ume O(T(n)1 + Vd-Ve * 0«"’8 7(”» m’) I
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 Chapter 2. A Space Bownd for One-Tape Milidimensionsl Furing Machines

21. !ntmdmﬁon

Itis gcncrany bclicvcd that the compul;aiional rcsoutécs time and spacé ¢an be exchanged for
cach other. h)r ms(ancc a program that saves space (§torage) by compressmg data spends extra time: -
cncodmg thc data and decoding the stored representation, Some data. siuCtures usc minimym space,
but require Jong access times; others reduce access times by occupying large ameunts of memory.
Quantitative tradcoffs have been cstablished between time.and space for multitapc ‘Taring machincs
[7] and for straight-linc programs {21, 26, 29].

Recently, Paul and Reischuk [18, 23] proved that the tradeoff of Hopcroft, Paul, and Valiant [7] is

. not an astifact of the linearity ‘of the Turing machine tape;'s:‘ every detesministic multitape '
multidimensional Turing machine of time complexity 7tn) can be simdated by a deterministic -
Turing machinc of space complexity 7tn) do8° m"ﬂog T{n) for some constant ¢. We derive a space
bound for a restricted class of multidimensionat ‘Furing machines® for cvery nondetefministic &
dimensional machine M with onc worktape head that nuns in tithe T{n), therc is a deterministic
Turing machine M such that M -aécepts the samd tanguage aSM-in spacc'ﬂ]n) Iog Nit))d“(d +h
provided that T{n) is constructible in space (7{n) log T(n))d/ (d+ l) ‘ ‘
describes a deterministic simulation of 2 nondctéhmmsnc dedfrﬁcnsmnal machme ‘M with just one
worktape head, and Scctmn 24 provcs that thls sxmufatum uscs space () log 'I(n))d/ (d+1) when
M runs in time T{n). (All logarithms arc taken to base 2) Thc simulation and proof gencralize
Patersoa’s [15} for thecase d=1

2.2. Definitions

Fix a finitc-alphabet = anda posmvc integerd. A worklape over E 1s a set of cells. each of whnch
can contain a symbol in 2. A worktape is d—dzmenswna} ifi 1ts cells are in b:jecnvc con'cspondcnce '
with Zd. the set of d—tuplcs of integers. For every x in I 4\ thcrc is a umquc workmpe cell C(x) at
location x. Locatton (xl,. " xd) lsad;acenl to locaﬂons ("1 :t I x2 "d) (xl x2 :t 1., x‘)
and (xp. X, . gt 1). In Z9Ict e 1= (0,0, ., 0). A box Bisaa subsct of 29 comprising the
d-tuples
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lap By} X [ag, byl X Xolag b4

for some integers aj, by ..., ag bz The boundary of B is the subset of locatibhg(xl'-, - X ) Stiehithat - -
for some i cither x; = a;0r x;= b;. The volume of B, dendted $8); is the-number of locations that it
comprises. A content function on a box Bisamap frem 8 1o By such d function speéi‘ﬁés thie contents -
of cclls whose locations are in B. AN Pt

A d-dimensional Turing machine (with alphabet.Z) has a d-dimersiong)‘worktape on. which the
worktape head can move one cell aln;lg any of thc d dﬂlmgom&d’mensﬁi‘enﬁ in cith‘crpositive or
a location adjacent to x. In cach cs;uﬂthe,wmme In¢ad can vmw a smbol fom Z.‘Theinpatto the
machine is presented on:a two~way, read-enly ;ianpué tape. rnitplly, atstep 0 tﬁe:wérﬁtapé is
completely blank, the. mput headu positioned on the lcfmeit symboliof thsinput woid; and the
worktapc head reads cell Cleg). ., v . : RRCRRE '

LetMbea nendemmumsm d*ﬁhmﬁn&ond T urm nadgu}wnhme vioﬂttapcthcad) ‘that funs
in time 7{n) on inputs of length n: for every word of Jength WJ{.&@W theieiis agraceepting
computation.of at. most T(n) steps. -Assume that i magk st ofits inpudtr=+ T i) D' = and ‘that T{n) is
constructible in space (1) log T{a) ¥+ 1), The, weeknipe: hoid semiiitis On cells whose locations

are in the box ~ s o ﬂgﬂ, Co
B = T, T X [-nn;.atu);x L.a%xi-mqmw)l. bk
We may assume without loss of generality that to acoaptsn input woird, At halts with its worktape
entirely blank, its worktapg bead positianed.on E(chwiﬁm:zhﬁdsmﬁé Hfinost symbot of *
the input word. (1f necessary, M can be-modified:toisrase: its wesktape by depth-firstsearch on the
cells that t has visited: the modified maching rues in sisne O(A ) ‘Fortherchainder of this' ©
chapter we consider the computation(s) of M.en aﬁmmm&MB. it ’
A partial configuration = on a box B comsists of ‘- B adl L d o
+ . acontent function & on 8, |
astate, ’
a step.number,
a position on the input tape, and
a worktape cell location x, such that cither Xy ERopx, = L (uhspoetﬂed)

Let ¢y be the partial configuration on. Bofs) that specifies the initialconfiguration on M at step 0. For
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sequence of partial configurations # = Q. T} W = poOn Bsuch that w;b— o, ; forcachi. A
set of crossing records that enter or exit B can specify. the entry and exit transitions of a partial
computation. Let R be a set of crossmg rctqrds that cnter orexit B. The triple (w, p. R) is compatible
if there is a partial computation from w to p for which R specifies the entry and exit transitions.
Define the predicate Comp (#r, p, R) to be truc if and only if (w, p, R) iscompatible.
Call (. p, R) consistent if cither (i) or (ii) holds: |
(i) R = @ and citherx, = 1 = xp or both Xy E‘Bandxp €8
(ii) (a) R+ @,
(b) the records in- R, strictly ordcrcd by stép number, altcmate between rccords
that enter B and records that exit B; |
(c) if Xy € B, then the carfiest record in R exits B if x = .Lk, then the earliest
record in R enters B; and \ R |
(d) if x; € B, then the latest record in R enters B; if x p = L. thenthe latest
record in R exits 8.
When (1, p, R) is compatible, (x, p. R) is necessarily consistent.
Define a predicate for abox B, apositive in&egcr {, and a set of cressing regords R:
Blank-Comp (B, 4 R) : = Comp (sg. @\ R):
Machme Af accepts the input word if and only if Blank-Comp (Bo(n), 1, B) is true for some .

2.3. Simulation

To determine whether M accepts its input word, deterministic Turjng nhehim M’ checks .
interval [1, 4. Usmg a balanced/dnynd}c-and-gonquc{,mg;l;od. _M' ;;;;{.rp‘dsag;es mtl)cr a set of crossing
records or a partial configuration to aéccrtain recursively whqg_,be}{a__pani‘alcomputatim onabaox
exists. ‘The consistency condition cnsures that partial computations on two boxes can be combined.

Lemma 2.1, which is straightt_‘(_)r)vard to prove, guarantccsmat for cach box, .ghgre is some
partition into twa boxes that induces a small number of crossing evepts. Tg;sirﬁp!ify our arguments,
we neglect to distinguish among 2, LzJ, and [z for real numbers z; onc can justify thiis simplification

routinely.



y.

Lemmma 2.1, Let Bbe a box with volume v = §8]. Lot n2 5 besteps duﬁng a computation of
Mand s = 3)- 5. There is & partition of Binto two boaes B} and By such that
€ the mumber of crossing events between B and B, diring [s; + 1, 5] is at most 3s/v1/4
(i) By and B) have volumes between »/3 and 2v/3.

We describe the simulating machine Af’ informally. Itis not difficult to verify that AL correctly
simulates M, n L
‘ 'Whenaproccdurcisinvokcd, it is constrained to opcrate within an amount of space determined
by the calling procedure. If this amount of space is insufficicat, then the invoked procedure reports a
fa:!urc to the caller. Both procedures BL.ANK-C OMP and ('OMan Ws n " parallel space™
.mmspaccbounds. For$=1, 2.3,...,(hcygweeachstrau:gy,$cc$mcxewte. I one strategy
completes successfully (without failure of onc of its procedure calls), then the valuc that it computes s

MAIN PROGRAM FOR M’
For 1 = 1,..., n) cakiulite BEANK-COMP (Bifn), 1, @) with spacc bound m'n)bg Tapd/@+)),
if BLANK-COMP (Befn). 1, ﬂ}cmapléﬁséﬂa:essﬁ:ﬂy and is true ﬁxm ¢, then accept the input
word. Otherwise, reject the input word. e

Procedure BLANK-COMP(B, 1, R):

Inputs: Box B, positive integer 1, sct of crossing records R that enter or exit B.

Output: The valuc of Blauk-Cou (B, 1, B} S

Assumption: There is a space bound for this procedure call.

Method: Let v = |B]. Runﬁmmtngmmhpalﬂdmwﬁhmcbounds. If this
imvocation of BL. ANK-COMP rans out of space, then report a &ilum. o

Strategy BI: Retumn the value of COMP (1, a \B. ).

Strategy B2: 1f(zg, a \B, R} is not consistent, then return fafse. Tterating through all partitions
of B into two boxes B}, B, with vohmmes between w3 and 233 and through all scts R’ of at most
31714 crossing records for crossing events between By and stcamh for By, B). and R’ for which
both BLANK-COMP (By, 1, (R U R')\B)) and BLANK-COMP (B, 1, (R U R')\B) arc true. If
suitable B), B), and R’ are found, then return trwe; otherwise, return false.
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Procedure COMP (71, 72, R):

Inputs: Partial configurations o 1 and 7, on the same box B, sct of crossing records R that enter or
exit B.

Output: 'The value of Comp (n 1> ™. R).

Assumption: There is a space bound on this procedure call.

Method: Lct v = | Bl and r = |R|; Ict 51 be the step number of 7} and s, be the step number of a5
ands = sy - $y. Verify that (7, 79, R) is consistent; if itis not, then return false. If v = 1, then
return true if (w |, w5, R) is compatible on the one cell whose location is in B, falseifnot. If s = 1,
then return trueif o 1 + w5 and, if this is an entry or cxit transition, R specifies the transition;
otherwise, return false. For larger vand s, run the following three strategics in parallel space with
spacc bounds. If this invocation of COMP runs out of space, then report a failure.

Strategy CI: Reduce r. Determine a step s’ at which |R\[s; +1, s')| = /2. Enumecrating all
partial configurations =" on B, search for #' with step number s’ such that both
COMP(my,n', R\Isy +1, 57) and COMP (w', 79, R\[s +1, s9]) are true. Return frueif an
appropriate ' is found, false if not.

Strategy C2: Reduces. Sets’ = (s] + 5)/2. Asin Strategy C1, scarch for a' with step number
s' such that both COMP (w1, ', R\[s; +1, 5')) and COMP (', 7, RS + 1. 5y]) are true.

Strategy C3: Reduce v. Enumerating all partitions of B into two boxes By, B, with volumes
between v/3 and 2v/3 and through all sets R’ of at most 35/ v/ dcrossing records for crossing cvents
between By and By, scarch for B|, By, and R’ for which both COMP (m(\B}, my\B]. (RU R'\By)
and COMP (m\B), m)\B,, (R U R)\B,) are true. If suitable By, By, and R’ are found, then return

{rue; otherwise, return false.

2.4. Analysis of the Simulation

We show that M’ uses space O((7(n) log T(n))d/ (d+ 1)), ‘The amount of space used by
procedures COMP and BLANK-COM P is dominated by the storage required for the input
parameters. _

Since every location of the d-dimensional worktape can be specified by a list of d integers written
in binary, each box B in By(n) can be specified in space O(log T{n)). A content function on a box of

volume v requircs spacc proportional to v to store. Thus, cach partial configuration can be stored in
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spacc Xv + log T{n)). Sincc each crossing record can be stored mspaceO(k)g ﬂn)),asetofr
crossing records can be stored in space O(r log Ttn)). ] -
Let Ac(v r, 5) denote the space required by COMP to run successfully on all inputs (x|, 7,

R)

such that w ; and - are partial configurations on a box B witt $tep mmbcﬁfxl andszforwhlch '

v=|B,,r=|R},ands = 5;- 5. The definition of COMP implies
S <kv+ (r+ Diog N
+ min {Sc(v, 172, 3). Sv. v; 70, S 0913, r 4 37919, 9}

for aconstant k. Similarly, let S g(x, ) deniote the maximum spacc roquired by BLANK- COMl'on

inputs (B, 1, R) for which r = |Bland r = {R|. The defiition of BI_ ANK:- ~COMP implies
Spn ) kol + Dlog T+ min {5 ¢(r n. 9,,(2;»/} r+ 31'/'1’4)}
for aconstant k.
Fix & 1= dA(d + 1) and
2xn‘
c:msemmms&4 ks,kﬁ.andi-,sncﬁﬂm o
kg > 12Ky,
k> kky + k28,
kszmi"‘hs#n -
k—,>4t4+(k2+ k4)t5+ ts.

Lemma22. Se(v, 7,9 < kglv 4 (r + I+kg:)kgT+(xth)‘).

2.D

s
Q3
29
s
(26)

Proof. BymGannon(v. r, 5), in lexicographic order. If vy = lors = I,thenCOMPusc&oab

mespaceoocupiedbydneinpms,kl(ﬂ-(r-f 1) log T) space. Otherwise, there are four cases.
Case1: v<(r+ 1)log Tand r> 1. Thea
Scnrn) <k(v+ (r+ l)logT)-i—Sdr 172, 5)
SClyr+ D+ kgD log T+ ke + (1 + vogsnngrusmn‘)
Shyriog T+ kv +'( + g log T+ (s1g %
because kg satisfies (2.2) and r > 1.
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Case2: v<logTandr = 0. By(22)agam,
Sc(0.9 < ky(v + log ) + sc(v.o s/z) |
< 2qlog T+ ky(L + log (/2) log T + ky(v + (slog 1)5)
Skylog T+ kylog og T+ ky(v + (slog ).
Case 3: v+ (r+ Dlog TS ky(slog NP Use @) to cstabhsh that
Scv r.s) < k(v + (r + l)log 7) + Sc(vﬁ.r s/2)
<Ukpky + ky/Xslog T + ky(v + (41 + log (2)10g T
S kgtslog DY+ ky(v +(r+ 1 4+ log I8 T, -
Cased: v2 (r+ 1) log Tand v +.(r + 1Mog T2 kﬁxhg’f)& ‘Inthiscase,
kj(slogz)&gzs SR |

hencesince § = d/(d+ B, - : RS
(slog 7)/91"’ < (m3)1/5 @D
SC(v r5) < ky(¥+ 1)40; D+ sdw}, r awW
< (kg + 2kg/3)v + kg((r + 1 + 35791/ 4 1og s)log T + (slog TP)
< Qky + 2eg/3 + 3ky2/k) 8y + ky(r + 1 + log 5) log T + (3% 105 -
Shyy+ kg + 1+ log ) log T+ (slog 7)‘)
by 2.7), (2 1) and(2 2). |

Lomma 23 Jf(nogntsgvmwrs ksmw L
S N < k(T log B+ lyllog B ws(’mgwﬁlfd
Proof By induction on v. 'Iherearctwocases. SR T
Case 1: 5 3Tlog 7)8 Aocordmg tothehypotheses, - o o
(4 D)ok T< ky(Tlog T(Tiog HV4 = ks(Tlog 7)5Q. e
Lemma 2.2,(2.8), and (2. 6) nnply ' |
" SB(vr)<k2(r+1)logT+Sc(vr7) C o |
< kgy + kylr + 1+ 1o TYlog T + (kyks + k4)(Tlog 7)3
< Ghy + (ky + ks + kgXTlog TS + ky(log 2 -
< k(Tlog NP ~ kg(Tlog TVv1/¥ + kyflog TR,

it
11
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Theorem 2.3. For all T{n), every nondeterministic d-dimensional machine with one worktape
head that runs in time 7{n) can be simulated by an alternating Turing machine in time
O(max {n, (T(n) log Hn))d/ (d+ 1)}).
Proof. {Sketch) In the simulation in Section 2.3 make the following routine modifications.
(i) Guess T{n) nondeterministically.
(i1) Choose strategies existentially without imposing a bound on space.
(iii) Replace itcrations through partitions of B and through cnumerations of R" and =’
by existential choices.
(iv) When a strategy makes two proccdurc calls, choose both universally.

‘The time analysis of this modificd simulation is identical to the space analysis of Section 2.4.
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Chapter 3. A Nst’eonthem(hie

A combinatonial "pebble” game on graphs has been uscdwcsmbﬁsﬁ tradeofTs between time and
space required for arithmetic capression cvahiation [21] and for Turing machine simutation [T, One
places pebbles on the vertices of a directed acyclic gmph"(ixi steps according 1o the following rules:
| (i) A step is cither a placement ofapcbblconancmpty veriex orarcm(wal of a pcbble

from a vertex. '
(i1} A pcbble may be placed on a vertex only if there arcpchbfcson all xmmcdiate
predecessors of the vertex. (Thus, a vertex with ro predcccssats can a&waysbc pcbbled.)
(iiiy A pcbblc may always be reinoved from a vertex.
A pebbling strategy is a scquence of steps in the pebble game. The goal is to find a pebbling strategy
that places a pebble on every vertex of 6 at Ieast once when the supply of pebbles is limited. This
pebble game has been studicd cxtensively; F.engauer and Tarjan [1 1] provide an exhaustive list of
refcrences. .

This note develops an cxplicit strategy that uses {n/log n) pebbices to pebble cvery direcied
acychic graph G with » vertices and bounded indegree. Fusthermore, for every S > Xn/log n), a
variation of this strategy uscs S pebbies to pebble Gmamszﬂ ‘steps. 'Fhe proofs of these
upper bounds, which employ an overlap argument [16] seem more natural than the original proofs
piLm

Fix a directed acyclic graph G = (¥, E) with vertices ¥V and cdges E. Let # = [V and dbe the
miaximum indegsee of the vertices. For subsets Wy, W, of ¥ ket EXW;, W) be the set of edges from
Wio Wy

AWy, Wy) = {(x. 7 (x D€ E, x€ Wy, and y € W}
Lot WC V. A scquence (W), —, W) of subsets of W is a layered partition of Wif (W), ..., W, } isa
partition of W and E\W;, W) = @ for all i and jsuch that i< j. Let o(W)} denote the internal overlap
of W- |
W(W) = max {JEA W], Wo: (W;, W,)isa layered partition of W}.
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Lemma 3.1 If (V) = r, then G can be pebbled with:r 4+ 1.pebbles in 2n steps.

Proof. Our pebbling strategy compriscs n Stages.: Put Wy = @. Forj = 1, .., n, assume
inductively that Wj‘l is the set of vertices that have been pebbled priot to Stage j. At Stage f place a
pebble on a vertex xin ¥\ Wj—l’ provided that all its immediate predecessors hold pebbles, and put
Wj = Wj—l U {x}; then remove pcbblcs from all vertices y for which all immediatc successors of y
arcin W 7 Atthe end of cach Stage, a pebble remains on a vertex z if and only if some immediate
successor of z has not deen pebbled.

The rules of the pebble game guarantee that every (Wj,;,-V‘\ w. j)iis a layered pattition of V. By
hypothesis, every |[:i‘(W,-, Y\ Wj)l < r. Therefore; at the.ond of eachi Stage there arc at most 7
pebbles on the graph, and:the strategy uses at most 7 + /1 pebbles. ‘The strategy: has 2n steps because

for every x, a pebble is placed on x and removed from x just once. B

Lemma 3.2. Let (W}, ..., W, )bea layeredﬂ partition of V. There is a strategy that pebbles G'with
at most ' fote e
Z; @+ d+ 1)
pebbles.

Proof. By inductionon m. Form =1, Lemma HMn Jortieri th‘ht, ya(Wl) pebbles suffice.

Assume that the subgraph of G induced by ¥\ W,, = W} U ... U W,,,| can be pebbled with -

z (w(w,)+d+ D

pebbles via strategy S,,,.;- We describe mfbﬂnaﬂyhoﬁv to’f)ebﬁle vertices in W usmg
W,) + d + Lmorepebbles. i

LetI’ beasctofw(W ) + lpebbiesand(z‘ beésctofdpebblcs. The pcbblesmP are
placcd only on vertices in W), Thepebblesin 0, ar¢-plakéonly on vertices in ¥ \ W,

" Asin'the proof of 1.emma 3.1, our strategy éonipriscs W"}Sta’ésand‘ uses at most w(W, ) + 1
pebbles on W,,. At each Stagé selett a vertex x in W, Mﬁﬁ‘ﬁ(ﬁy& been pebbledbutall
immediate predecessorsof x i W, hold pebbles:: Ule strategy S, w1t blaCe pebbles from Qm
the immediate predecessors of x in ¥\ W, These Q,,-pcbbles remain on the immediate -
predecessors of x until x is pcbbled. (By hypothcst& no vertex in W, is an immediate predecessor of

avertex in V'\ W), ; thus, strategy S, | may always be cmployed.) Place a pebble from P, onx
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Remove all Q,,-pebbles from the graph, retuming them o Q,,, fordater use. Also, remove pebbles
from all vertices y in W, for which all immediate sucoessors of y in W, have been pebbled, and
return these pebbles to P, t '

Lemuma 3.3. For every r, therc is a layercd partition (W, ... W, }ostichmatm<2rd""’ﬂ
and Z; (W) <. A
Prool. Assumc, to the contrary, that for every layered pmtiﬁeu'(#t. W yef Vif
m <M then 3 (W)> 1 Letig = Tdw/Fiand ¥y g = V. For i = 0, . iy - 1 inductively
SUPPUSC sets yij forj=0, ... 2."~lxhavebcendeﬁnod. Frer cach jfind a layefed'baiﬁtion
Fivr25-Viv12j4 D 0of Vyj mmm’zuzy Virt2j+ 4= ""‘:} By assumption, for
every i, o
Ej"’(yl‘.l’>r'
and consequently, .
}:,-(,-021- u(ViJ-))ier>dn.
Bydcﬁnnmnofthcsemy , the scts of edges (¥ +121 ,+12}+l)mpmwxsedmnt Since G -
has at most dn cdges, S
xxﬁ;%“"’-} 2&93 18 1) 1+L21+1x<"‘

| 'I‘beomm&l.(Hopcm&.Paui.and»‘Ela!iamf?b-F;féndﬁectedxycﬁcgmphwimaveﬁiccsand
bounded indegroc can be pebbled with (Xa/log &) pebbles. . '
Proof. Let G = (¥, E}bcadmctedacychcgtwhwﬁnmmaﬁnweed Let S(n) satisfy
- S = O(uflogm).
log, (S(ﬂ)/(24+ 2p2 "24#5(&)1
According to Lemma 3.3, there is a layered partition (Wy, . W) of ¥V.such that m < 2”""/3(")1
and 2 (W) < S(a)V2. Formsml.cmmnmﬂwmm pebblesGwith. -
Zi@W)+ d+ DSR2+ mid+ < Km).
pebbies. 3
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Theorem 3.2. (Lengaucr and Tarjan [11]) For every a, d, and:S and every-directed acyclic graph
G with n vertices and indegree d if (3d + 4)n/logz n<§$ Sﬁn, then there is a strategy that uses S
pcbbles to pebble G in at most $ 220("/S) steps. ,

Proof. let G = (V,E). Seta = 2d/(3d + 2)and B = (d + 2)/(3d+ 4)andy l-a- B
Evidently, log; logy n < (logy n)/2 because (3d + 4)n/log2 n<n lmpllcs n > 16. 1t follows that

log, BS/d+ 2> (log2 n)/2 > (3d + 2)n/2S’ + n/S > dn/aS +1,
hence (d + 2)2 /@S <BS. '

Apply Lemima 3.3 with r = aS to obtain zilaycredfporbtiztion ( Wl W,,) of V with
m < MM aSVguch that S, (W) < aS. Fori= 1, .. m, Ict r bea'sctof w(W,) + 1 pcbbles
Distribute the remaining BS-m + S pcbblcs among sets Ql Qm such that each
Q> LySIW{/nd +d+ 1. '

We define the pebbling strategy inductively. Lct 7lk) be thc numbcr of stcps used by l.hlS
strategy on the subgraph induced by Wy U ..U Wk For k = 1 thc stratcgy m the proof of Lemma
3.1 uses w(W}) + 1 pebbles, and T(1) = 2|W1I52n. ’_ ’ ' )

Suppose that strategy S m-1 With ’Ilm 1) stcps uscs the pcbbles in Pl U. U P -1 and
oju.. U Q,y-1 to pebble the subgraph of Ginduced by 1% \ W To pebble vemces m W
out the'strategy in the proof of Lemma 3.2 with the followmg modmcauan Whencvcr thc immediate
predecessorsin V'\ W of avertex in W must be pcbblcd, use strategy sm—l to place pcbblcs from
0,;, on the immediate predecessors in ¥\ W, of the L[le/d.l vemccs in W that arc pcbbled next.
Strategy S,,,.; is invoked at most I" m ,I/LIQ nlld.l'l <f dn?-yS‘l Umes. Therefore

T(m) < T ,J/LIQmI/dJ'l 7(m 1) + 2 | Wml
e dn/yS)nm 1) +2n s
<l A+ dy)+ .+ A+ dn/yS)’"'l]
< 2n a+ dn/yS)’”l(cba/yS) )
< (21/(1}6 Cxpj exp2 (l' dn/'aS‘l + logz l032 a + dn/yS))
= 522009 |

(In general, expy u = 24) 8
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structures.

A tree machine has a finite-state control and several heads on a worktape havingythe structure of a
complete infinite binary trec. Scction 4.2 presents an argument that suggests that to simulate a two-
dimensional Turing machine by a trec machine on-line requires time S »(log n)V 2) if the simulator
uses space (Xn). Proofs om»ittcd,from Scction 4.2 appear in Section 4.3,

Scction 4.4 outlines further rescarch problems on comparing automata with different storage

structures,

4.2. Static Fmbeddings Versus Dynamic Simulations,

Let ¢ be a simple embedding of l" intoa bmary tree B Call a palr of vcmces (x, y) a separaled
pair (for ) if I ‘
dp((x). $()) 2 > logy - (logz log2 m)/2 3.
A path (vg. ..., v)) includes a consecutive pairof vertices (x y) ifx = v and Y= + 1 for some 1
DeMillo, Eisenstat, and Lipton {1 proved that scparatcd pairs for \I: cxlst. Proposmon 4. 1 whlch is

proved in Section 4.3, asserts that som¢ path in l‘ mcludes many consecutlve separated palrs

Proposition 4.1. For cvery binary tree B. every.even mg, 32,' and every simple embedding ¥ of
F ipm B, there is a path in T\, of length at moSt m thauncludeﬁ at least.
w/ 3260323’)1/2 =

distinct consecutive separated pairs.

We employ Proposition 4.1 to argue mformally that every tree machmc that simulates a two-
dimensional Turing machine on-line in space O(n) for i mputs ofTength n may requnre time
Q(n (log n)1 / 2) in the worst case. This argument hmot been devclopcd intoa ngorous  proof yet,
however. )

Consider a two-dimensional Turing machinc M with one worktape head whose inpuf alphabet
consists of the cight pairs <b, §> where b € {0, 1} and 8 is oné of the f&u'r:c'iirccti(;ms that thé worktape
head can move at cach step. Machine M operates in real time = it prdcéésesbﬁﬂnpﬁ‘t symbol at
- every step. Suppose M is in a configuration in which the cell C scanned by the worktape head
contains 4'; on input <b, 8>, M writes b on C, writes b’ on the output tape, and moves the worktape

head in dircction 8.
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Let M’ be a tree machince that simulates M on-linc in space ((n). Assume that for cvery worktape
-cell C of M, machine M' mgasoncofmucctapcccﬁs mlwidﬁ:ecomcmsof(‘ Thus, M

determinesa simple cmbedding of cvery T, into its binary free sériscture. o

- Construct an mpm wortd wof length m as follows. “The first n/2 symbois‘of w induce M 1o fill a
square of side m = (n/2)1/2 on its worktape with 0's dnd 1's.*"'hé Tst #/2 $ymbols drive the head of
M on n/18m pathis of icngth 9 that each includes at teast nir3%log #)%2 distinct consccutive
scparated pairs of cells; cach of these paths begins with a path of length 2m that drives the \mﬂﬁapc
hecad of M to the first cell of the path of length 7m whose cxistence is guaranteed by Pmposmon 4. 1
Because M’ has a finite-state control, it can remerfitits the contéhls ofun!y a ﬁnﬁc numbcr of )
scpamlcd palrs mtcmally Conscqqcnﬂy, it !S plausxhip ih@{ forcach oew W P2ig (¥, ) that M
encmm{crs, M’ spcnds time Q(log n1) moving a worktape hcad fmm the representative of x 40 he -
representative of y. Hence on m.,put w, M may reqmrc mpc ;

N ﬂ{( n/ ]8»1)(m/32( k)g2 m)V "Xk)g m)] ﬂ(n (log m)” 2) ﬂ(n (log. a)yz).

A trce machmc M- mat uscs supcﬂmcar space mlghl simulaic M, &slg{. Reischuk {23} devised an
on-linc snmulzmon that opcrates in nme O(n ‘Jog M for a cpnsiant , but uses space Xn dos? n. .
Each cell that M uscs has (Xc“’g ") representatives in the worktape of M™,

# Lipton, Bisenstat, and DeMiflo {13] introdiéed  forminkition 6f data'strisciure cmbedding that
permits multiple represcntatives of veftices of the gucst gfaph. Let G = (¥ Eyand H'Z (V*, E*3be
graphs. An embedding of G into H is a map ¢: ¥ < V{U{A}, where A € ¥, such that jo ) > 1
for every xin V. If @(x*) = x, then x* is a represeniative of x. mwcasmfp s
max {]w ](x)i x €V} Theszmng tmaecosi Ts(f)cfga glbcsmaﬂcsi Tsupbthat .

forcvcry x* in V‘suchttmtp(x*);t Aand, cvetyym Vanhthatddqa(x‘).y}( 00,
 there exists y*in @' and dpx®, y*) < T dglepx) ).
The meak time cost T"(y) of @ is the smallest 7 such that
. forevery xand yin ¥ such that dg(x, )) 90, there exist x* i @ 1(x) and y* in 9710
mchmad,,(x*y'xrddx,y) L '
In gcncml_ T_‘(p) > T o). Ifp haSSpacc cost,l thcn Ts‘” T, ‘(,).
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Proposition 4.2. (Lipton, Eiscnstat, and DeMillo [2)) If g is an embedding of T, into a binary
trec with space cost S, then '
Tdp) + logy logy S > Iogz m-c'logy logy m

for a positive constant ¢’ independent of m.

Reischuk’s cmbedding of F ,into a binary trec [23} has space cost clo8* M pence unbounded
strong time cost by Proposition 4.2, but bounded wcak nmc cost. His simulation runs quxckly
because the weak time cost of the cmbcddmg is constant [’hcrcforc chsahuk s simulation suggests
that the strong time cost measure may be i mappropnatc for csmbhshmg a lowcr bound on the time
required by a tree machine to simulate a muludlmcnswnal T urmg machmc on-linc when the

simulator is not confined to ((n) space.

4.3. Proof of Proposition 4.1

The graph G = (V. ) is comected if for every x, yin ¥ there is apath from x to . Let UC V.
The boundary of U, denoted 9 U, is the set of vcmces m U that have a ncnghbor in V\ U. Wntc )
for the subgraph of G induced U. A connected componenl of Gis a subgraph o W) mduced by a set
of vertices W such that (W) is connected and d(,(x z) 00 for all x m Wand zin V \ W The size
of acomponent is the number of vertices that lt has.

If Py is a path from x to y and P, is a path from y to z, thcn the concatcnalzon of Pl and P,
written Py « Py, is the path from X to z obtained from Pl by replacmg thc last vcrtex y by P,. The

concatcnation operator » is associative.

Lemma 4.1. For every set U of u vertices in I‘m théfe is la path of length at most 2m (vull 2 +1)
in T, that includes all the vertices in U. : - " |

Proof. (Steiglitz and Papadimitriou [28].) Sets = F m/ul’ 21 h‘ f' m/s'l 1 and for
h=0,.. A"

Uy =) (.)€ Uandhs+ 1 <j< (h+ Dsfs

{Ug. - Uy+} is a partition of U. Construct the path Paﬁ follows. First visit the vertices in Upin
lexicographic order, then the vertices in Uj in reverse lexicographic order, then the vertices in Uy in
lexicographic order, then Uj in reverse lexicographic order, and so on. (In the usual lexicographic

ordering of pairs of integers, (i, /) precedes (i, j') if cither i< { or i = / and j< ) Index U according



to the order visited by P2 U = {(iy. jik (i g - Giyp ). Ser Aig = lijpy 1 - ixband Ajy =
Vi +1 - (g i) and Gig 1-Jk+1) arc in the same Uy, then Ajy < 5-13 i (i) ;) € Uy bt
Crs 1 k41 € Upy g then Ajp < 2s-1 = (9-1) + s ‘Therefore,
Zp Ajp S u-1Ns-D + Bs < w(s=H +m.
One verifies routinely that .
i Aig S (h* + l)m <A+ m/s)m -+ m2/s.
Ergo. P has length
S (Big + A <2+ u(s-1) + miss

<2m+ u(l'm/u"z'l D+ mZ/rm/ul,z'l

< 2m + mu 1/2 + mullz

<me 2+

Lemma 4.2. Let o be a sequence of s symbols over {a, B} and let b bé the number of B symbols’
in o. Forevery r < b/2 mcfeisaconsecutive_,mbsemuc:pccof o of Fsrfgb-QW symbglsthatgonnins
allms!rsymbokﬂ . - -

Proof. Sett = Msr/(b- NY: note that 1 > sr/(b r)mlpheslb/(s-l- t)>r 'Form a scquence ¢
oflrs/ﬂsymbolsbyappcndmglfs/ﬂ ssymbolsato#gecndofc Pamuoaa imols/1
consacumeammmcsoﬁsymbolseach Oneofdmcomunvcmbseqamac musthaveat
least WTS/11 > bA(s/t + 1) = tb/(s + 1) > rsymbols 8. lfu"isiuxu.eﬁnaimbsequenceofc,
thenmsawbscquenccofa othennse,lfc nstheﬁmlsubmucnccofa menthelasuxymbdsof

aﬁrmaconmcnnvcsubseqnenceofownhazmrsynmﬁ 2

Lemena 43. Letm 2 32 and U be a nonempty sct of vesticrs in T, mmm<m2/zmd
(U} is connected. For every r < (UV/8)1/2, thctensapathl’oﬁenglhatmm&‘)r I that includes
at kcast 7 distinct vertices of dU. 7 v ’

Proof. Call (i, ) in ®, 2 doundary vestex if (i, ) € QU call other vertices of oy POMboundary
vertices. We shall find a path mtlmlmost%vcmcwlhacommasaﬂmstrd&mabonndm
vertices. Set
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7 = max {i: (i ) € U for seme j},
i, = min {i: (§ j) € U for some j},
J* = max {j: (i, )€ U forsome i},
Y J, =min {j: (i, € Uforsome i}. - .

Case 1: Eitheri_>0or < m and cither j , > 0 or j* Cm. Without loss of gencrality, assume
*-i 2 J*-J,. Becasue . : B
NS (i, + -4, + D),
it follows that e |
| #-i, + 12> 02
We construct a path Q such that-for every rg:(jWS)l/ 2 S *- i, + 1)/2, there is a consecutive
subsequence of Q with.at most 4r vertices that contains at least r distinct boundary vertices.

Assume j* < m; the case j , » 0is similar. Since-T’ ## 1) is connected, for every i such that
i, < i< * there is some j for which (i; ) € U. For.i =i b+ ko, P set

- A) = max {£ G NEUL.
By assumption, every Ki) < j* < m; thus, every ¢i,\i)) is a:boundasy vertex.

Fori=i,i + 1 . -1 construct a path ) frem (i D) (i + 1, Xi + 1)) as follows. If
Xi)> Xi + 1), then let (i) be the path o T T P

D) KD - 1), oy (L Ki A ) + DX+ D) G+ LK+ D),
all vertices on this path except possibly (i, Xi + 1)).art boundary vertices. I Xi) < Xi+ 1), then let’
(7 be the path L s e an e f .
GANG+ LA G+ LAY+ 1), (i + LK+ D-1),G+ 1L, Ki + D);
all vertices on this path except possibly (i + 1, X#) ar¢ bountdary vc:iic&t’.

Set @ = Q)+ Xi, + 1) o ... » Q(* - 1). Pathh Qroaitaimsthe:*- i+ 1 boundary vertices
(i, X)), which each occur cxactly once in Q. Let &' be the number of other boutidary verticesin @; -
each of these accurs at most twice. There arc at most & - i, eceurences oftnonboundary vértices -
one in cach (/). Path @ has at most 2(7* - i) + 25+ 1 vesticos; inchoding repetitions; it has at least
™ -i, + 1+ b distinct boundary vertices. Apply Lemmad4.2 with s = 2(* - i)+ 26+ land b=
*-i, + 1+ b toobtain a path with FQ(*- i) + 20+ k- EET+ -9
FQA*-i) + 26 + DA - i, + 1)/2 + 5)r < 4r vertiees that contains at least r distinct boundary
vertices, - Co o
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Case2: i, =0andi* = m. Forj=1, . mset
U= UNHL . . (m, P);
U ;18 the jth column of U. ‘There is at deast one column Uy such that U} < Tm/27; otherwise, all m
columns of U would have at least Fm/27 + 1 vertices, and [ > m (Tm/27 + 1)> /2, contrary to
hypothesis. . i
Let|Uyl = u, and et iy, ..., i, be the i in increasing order for which (i, k) € U} Define
Kip=kbort="1, i
We dcfine K i) for other i as follows. Set j to Gandi iy41 = m. Since [‘m(U) is connccted, for CVcry
0 < < ucither
(a) for every isuch that i, < i< i, , | there exists j< ksuch-tha(é A€ V:or
(b) for every.isuch that i, < i<y, | thereexists j> & such that (i JE U
Ifcondition (2) holds, then call iy, i, 1}an intervat of gype ), and for i, << i, ). set
; © KD =ma {f j<kand(; PE VY.
If condition (b) holds, then call lip iy jlaninterval of sype () and for i <i< tH_ o set
- Ay = min {7 kand (i Y€ U} '
By definition, unless i = i, for some ¢, every (& AD) € 3L Thus; at least ni1- 1> Lm/2J vertices of
the form (i, X)) arc boundary vertices. o R

Fori = 1,..,m- 1, we dofitic apiath (i) from (i XD 16 (i -+ 1, X7 +1)) siach that at most one
ierior vertex of O(4) & a nonboundary vertex. Suppose [ii-+ 1 ties in an interval i, i, , 1] of type
(a); the definition of 0) for an interval of type (b) is similar. If Xi)> Ai + 1), then let (i) be the

(G XD G A~ 1), . (i, Ki 1)+ I (0 K + DR G+ L Ki+ DY
all interios vertices on this pahemcptmtn..&z + l))amhonndarv vertices. n'.ag}< Xi+ 1),
then Jet (A be the path - 7 o
G AN+ LEAP A+ LK) + D G+ LA+ D-D G+ LK+ D)
all interior vertices o this path except pessibly (7 + I, X3) are boundsry vestices.

- Set@ = 1o X2) - .. « (m - 1). Thispath contains at least La#2:4 boundaty vertices (i, X))
for Xi) # k. LetQ have & otherboundary vertices; caéh of thésc eicurs at mostitwice in Q. Path 0
has m vertices (i, A1) that cach occur once; it has mi~ 1 occurrenced of nanboundary interior vertices
among the (/). Thercfore, Qhasat most m + 25' + m-1 = 2m + 25’ - 1 vertices, including -
repetitions; it has at least Lm/2.1 + B’ distinct boundary vertices. By hypothesis, 7 < (UVB)/2 <
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m/4 <Lm/23/2 + 1/2. Apply Lemma4.2t0 Q withs = 2m + 26'-1and b = Lm/21 + &' to find
a path with :
F2m + 26 - Dr/(Lm/21 + b - D1 < TQm + 26 - 1)/(Lm/2472 + 6 - 1/2)r
<T@m+ 25 - 1/(msd-1 + B)Ir
< 9r (because m > 32)
vertices that contains at least r distinct boundary vcrtiées;

Case 3: j, = 0and /* = m. Similar to Case 2 s

Lemma 4.4. 1.ct U* be the vertices of a subtree ofa binary tree. For every subset IV* of rverticcs
in U*, at least r/2 vertices of W"‘ are at d|stancc at lcast log r fmm vertices not in U*,

Proof. l.ct D = log r- 1. The maxnmum number of vertices of W* lhat can be at distance at
most D from a vertex notin U*is2P-1 = 12 : 1 At lcast r- (r/2 2 r/2 vemccs of W"‘ mustbe
at distance at least D + 1 fmm vertices not in U" l '

Proof of Proposition 4.1. Let U* be the vertices of a subtm‘bf'ﬁmeh that m?/4 < 7Y (UM <
m/2; such a subtroe exists because mis even. Set U = $XU%): Lot the subgraph T ", (U) induced

by U have ¢ connected components; and et Uy u2. + U, bethe sizesiof these comiponents in
decreasing order. "

Set M = m? and kg = log M - log log Af- 2. {All logarithms arc taken to base 2.) For k = 0, 1,
- K set R T S - |
4 = Mrak ‘mm = »h’is@&:bg m):; :
By definition, lkO =1L | o : A

We claim that for some k there are at least 2" connected componcnts of T, (U) of size at least ;.
Suppose, to the contrary, that for every k there are at most 2% - I componenits of ', (U) of size at least
{y- Then uy < 5. Since there is at most 1 component-of size at teast 1 ;hﬁd‘hlgz 'iiz > w3, we infer
that u < #; and u3 < 1). Ingeneral, forall kand all 0 < j < 2%- 1,

u 2 k+j < U
Consequently,
ko

0= %; u;< = 2Ky, = (kg + 1(M/4 Tog M) < M/4,
k=0

But |{U} > M/4. Contradiction.
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Let Uy, . U, be the sets of vertices of the 2 Largest compancnts of I (U such thak |U} > &
for cach i For cach i, [U} < [U] < m?/2. Apply Lemma 4.3 with r = (1/8)1/ to obtain a path P;
of length at most 1;/8)1/2 - 1 that conmains a set. W; of at least ¢1378)1/2 vertices of 3U; Put
W=WU.UW,
By definition, |/} > 2‘(:,/3)1’2 2524 /80008 m)1 /2, and every vertex in W has a neighbor in
o \U. o | - o
. By Lemma 4.4, since () C (1) = U*, at least-half of the vertices ifs $( W) arc at distance at
least .
| hg!w:mgm (loglogmy2-3
from alf vertices in &(Q \N . !.et Wbcasctoﬂlﬂnvcnr.esxm Wsuchthat(x ))lsaSEpatated
parﬁ)remymt \¥ /A
Lc{y‘bcthcﬁrstvcncxml' and z; bcthclast. LetP bcapathfmmz tu},whoselcngtblsat
most the length of P, Let ; = P;« P/ path Q,fmcn),mythaslengbatnlostlﬁtkm)ln
Invoke .cmma 4.1t oblain a path R of length at most 20¢28/2) 4 2 thiat visits cvery y; Construct
apath R’ from R by substititing ©; for s occurrence of y;in & for estvi. Path R bas longth at miokt
20282 1 1) + 28012 -2) < 4mdt2 4 28 Dagursiog wip 2 2 |
< 4m2kt/2 4 A g6 -2 (beamen)lG)
< 6e2W2.3
and includes the vertices in W', Apply Lmuna4.2wuhs=6lt2m.b= w1
222416108 m)!/2 and r = m32(log )72 10.0btain & ssbsequence S of R of length at mast 6a
with a subset W~ of m/32(log m)/2 verticesin W. Construct path S from Sby replacingan
occurrence: in S of each veriex x in W™ by the sequence (x. 3, x) for some neighboi y of xsuch that
¥ € ®,,\ U: by defimition of W™ each (x. y)is 2 scparated pair. Path 5 hat longtivat most
6w + W] < T and inchudcs a least [I™]. = m/32(log m)V/2 distinct separated pairs. §
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4.4. Open Problems

A comparison of multidimensional Turing machines and machines withrothclf storage structures
describes quantitatively how the structures of the machines affect their cf'ﬁci.cncy When studying
these machines, we may attempt to gencralize thcorems about convcntmnal one- dlmcnsnonal '
machmes But we should not be interested in gcncralnatmn for I(S own sake. Rathcr we should

 determine what properties of conventional I uring machmcs are not amfacts of thc lincarity of the
machinc’s tapes to demonstrate lha; phenomena such as the time-space tradcoff [7} occur ,
ubiquimﬁsly in computhtions.

‘The following problems remain open. ,

1. Can a d-dimensional Turing machine simulate an e—dimén§ional\"l‘uring machinc of time
complexity T{n) in time O(Rn)l' + 1/ d-u 9 mrline??Oman:me‘léwcrbﬁlinqmﬂn)l +/d-1/ )
be increased? o

2. Can Reischuk’s simulation of a multidimcnsional machine By a tree machine [23] be
improved? If the spacc used by.the on-line simulator is'restrieted to O(n) when the gi-dimensional
machine runs for » steps, must the simulator usc & (log n)1 - d) time? T

3. Can a d-dimensional machine simulate a tree machine of time éomplexity 7(n) in time
O(T(n)l +V d/log (n)) on‘lme" N

4. Do similar time bounds hold for s:mulatmns among nondetcrmtmsuc mwinnes" Cana .
nondeterministic Turing machine of time complexity ’Rn)be simulated by a nondeterministic

machine in space T)/log T(W? = - e e
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