Simulations among Multidimensional Turing Machines

Michael Conrad Loui

August 1980

© Michael Conrad Loui 1980

The author hereby grants to M.I.T. permission to reproduce and to distribute publicly copies of this thesis document in whole or in part.

This report was prepared with the support of the National Science Foundation Grant No. MCS-77-19754 and the Fannie and John Hertz Foundation.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE

CAMBRIDGE

MASSACHUSETTS 02139

The Branch Carlot & Section 80

garassanga (pagibaabad pagistas (Kjalikari reagil — 1941)

Said the built many this was a self-war.

by Michael Contact Land

Submitted to the Department of Electrical Engineering and Computer Science on August 17, 1988
in partial fullfillment of the togethering the degree of the degree of the degree of the continue of the continu

ALS MADE!

This thesis presents three independent papers: nearly optimal on-line simulations among multidimensional Turing machines, a space bound for one-tape multidimensional Turing machines, and new proofs in the pebble game.

For all $d \ge 1$, all e > d, and all e > 0, every deterministic multihead e-dimensional Turing machine of time complexity T(n) can be simulated on-line by a deterministic multihead d-dimensional Turing machine in time $(X(T(n)^{1+1/d-1/e}+e))$. This simulation almost achieves the known lower bound $\Omega(T(n)^{1+1/d-1/e})$ on the time required.

Every nondeterministic d-dimensional Turing machine with one worktage head of time complexity T(n) can be simulated by a deterministic Turing machine of space complexity $(T(n) \log T(n))^{d/d+1}$. The proof includes a generalization of counting sequences.

An overlap argument is used to design on a 1.1 M of street without rolling of 1 graph G with n vertices and bounded integers can be provided with S points in the $S \ge C(n/\log n)$, then G can be published with S points in the $S \ge C(n/\log n)$, then G can be published with S points in the $S \ge C(n/\log n)$, then G can be published with S points in the $S \ge C(n/\log n)$.

This report was prepared with the support of the National Science Foundation Grant No.

MCS. 37, 10354 and shell miles of Part Science Foundation Crant No.

MCS. 37, 10354 and shell miles of Part Science Foundation of Part Science Founda

THESIS SUPERVISOR: Albert R. Meyer

THERE Professor of Computer Science and Engineering

MASSACHUSITTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE

MASSACHUSITUS 02139

CAMBRIXIE

ACKNOWLEDGMENTS

For the last three years Albert Meyer has supervised my doctoral studies with patience and wisdom. Under his tutelage I have honed my research skills. I have benefited immeasurably from his advice on lecturing and technical writing. His exemplary fastidiousness bespeaks his high standards of excellence.

Harold Abelson and Leonard Adleman, the readers on my thesis committee, suffered through early drafts of this thesis. I appreciate their perspicacious recommendations. In addition, Professor Adleman suggested the generalization of crossing sequences used in Chapter 2.

I value the encouragement of Nicholas Pippenger and Joel Seiferas, who have taken particular interest in my work and have generously shared their time with me. Dr. Pippenger noticed the extension of the proof of Theorem 3.1 to the proof of Theorem 3.2. Marcover, Professor Seiferas and Robert Melville provided a copy of a paper by Grigoriev [4] that is related to Chapter 1.

My colleagues in the Theory of Computation Group have contributed to an intellectually exciting environment. Neil Immerman and Andrea LaPaugh suggested expository improvements to parts of this thesis. Daniel Weise devised the pebbling strategy in the proof of Lemma 3.1; and Christos Papadimitriou provided the proof of Lemma 4.1. Talso thank Alan Baratz, Errol Lloyd, Jeffrey Jaffe, Gary Miller, Ron Pinter, Vaughan Pratt, Ronald Rivest, Adi Shamir, Alan Sherman, Michael Sipser, and Karl Winklman for enlightening discussions.

I am fortunate that Ronald Book, James Munkres, and Alan Willsky guided my early professional development. I hope to emulate the clarity of their writing and the effectiveness of their teaching.

My family and friends have been kind and encouraging throughout my graduate study.

I am grateful for the fellowship provided by the Fannic and John Hertz Foundation for my five years at M.I.T. My research has also been supported by the National Science Foundation under Grant No. MCS-77-19754.

For the last three years Allout Mayor has augicevised my doctoral audics with patience and window with patience with patience with patience window. Under his turkings I fayor houself my research with. I have benefited introcustrably from his white on loctomist and achieved achieve. He exemples habitations are benefit his high appropriate of excitance.

ty March Abelsen and Lossing Authoriza, the tendors on my thesis committee and an including the feather of the stands of this thesis. I apprehime that activities are not an admitted the stands of the stands.

Product the encouragement of State due Engagement for Suffering, who have the trace of Cities and State of the my west and have graceoutly should their time with me. 13. Paperope, account to the proof of Theorem 3.3 to the proof of Theorem 3.4. Account to the proof of Theorem 3.5. Account to the proof of Theorem 3.5. Account to the proof of the pr

An colleagues in the Theory of Companies Linny have engineers about a series of the companies of the compani

Tan fortunate that Roudd Hook, Jones blooters, and Alan Willsky guided my early professional development. Elegrees combat the classical writing and the effectiveness of their writing and the effectiveness of their teaching.

My family and friends have been tind and encounging throughout my graduate study.

I am graichil for the followings position by the Pannie and John Hertz Foundation for my five years at M.I.T. My research has also hade suggested by the National Science Foundation under Creat No. MCS-77-19784.

PREFACE

ann and Eatherth Burgarati

The Section of the Section of the Control of the Co

grand from the second of the s

and the company of th

The four chapters of this thesis were written independently and may be read scapartely. Each has its own introduction, terminology, and notations, but all references have been collected at the end of the thesis.

Chapter 1 presents an on-line simulation of a deterministic multihead e-dimensional Turing machine of time complexity T(n) by a deterministic multihead d-dimensional machine of time complexity $O(T(n)^{1+1/d-1/e+\epsilon})$ for all $\epsilon > 0$. In Theorem 1,2 the ϵ in the exponent is replaced by o(1). This simulation nearly achieves the known lower bound $\Omega(T(n)^{1+1/d-1/e})$ on the time required.

Continuing the study of multidimensional machines, Chapter 2 presents an off-line simulation of a nondeterministic d-dimensional machine with one worktape head that runs in time T(n) by a deterministic machine in space $(T(n) \log T(n))^{d/(d+1)}$. An anonymous referee noticed the simulation by an alternating Turing machine in time $O((T(n) \log T(n))^{d/(d+1)})$ (Theorem 2.3). This chapter has been accepted for publication in Theoretical Computer Science. An earlier version appeared as Technical Memorandum TM-145 of the M.I.T. Laboratory for Computer Science [14].

Chapter 3 uses an overlap argument to derive new proofs in the pebble game. We develop a strategy that uses $O(n/\log n)$ pebbles to pebble every directed acyclic graph with n vertices and bounded indegree. A variation of this strategy uses S pebbles to pebble the graph in at most $2^{2^{O(n/S)}}$ steps. This note on the pebble game will appear in Information Processing Letters.

Chapter 4 recommends further research on automata with nonsequential storage structures. It includes a novel geometric argument that suggests a time-space tradeoff for simulating a multidimensional Turing machine by a tree machine.

Chapter 1. Simulations among Multidimensional Turing Machines

1.1. Background

Introduced by Hartmanis and Stearns [5], multidimensional Turing machines are natural generalizations of conventional Turing machines. Hennie and Grigoriev [3, 6] established a lower bound of $\Omega(T(n)^{1+1/d-1/e})$ on the time required by a multihead d-dimensional Turing machine to simulate an e-dimensional machine of time complexity T(n) on-line. We present a simulation that nearly achieves this bound.

Theorem 1.1. For all $d \ge 1$, all e > d, and all $\varepsilon > 0$, every multihead e-dimensional Turing machine of time complexity T(n) can be simulated on-line by a multihead d-dimensional Turing machine in time $O(T(n)^{1+1/d-1/e} + \varepsilon)$.

For the case d=1, Pippenger and Fischer [22] devised an optimal simulation that runs in time $O(T(n)^{2-1/\epsilon})$ on-line. Grigoriev [3] described an on-line simulation in time $O(T(n)^{1+1/\epsilon})$ when e=d+1; even in this special case. Theorem 1.1 provides a better upper bound. Also, Grigoriev proved that every storage modification machine of time complexity T(n) can be simulated on-line by a d-dimensional machine in time $O(T(n)^{1+1/(d-1)})$; since every multidimensional Turing machine can be simulated in real time by a storage modification machine [27], every e-dimensional machine can be simulated on-line by a d-dimensional machine in time $O(T(n)^{1+1/(d-1)})$. The time required by our simulation is smaller, however.

Grigoriev [4] demonstrated that every nondeterministic e-dimensional machine can be simulated off-line by a nondeterministic d-dimensional machine in time $O(T(n)^{T+1/d-1/e}+e)$ for every e>0. We consider only deterministic machines. Our simulation can be modified to yield this result about nondeterministic machines.

Paul, Sciferas, and Simon [19] studied simulations among multidimensional machines with limited numbers of worktape heads. They established nonlinear lower bounds on the time required to simulate multidimensional machines on-line by machines with fewer worktape heads. Furthermore, they presented simulations of multitape multidimensional machines by machines with just two worktapes having one head each. In contrast, we present a simulation by a machine with more worktape heads.

1.2. Simulation

Let us review definitions for multidimensional Turing machines. To each cell of a d-dimensional worktape assign in the usual way a d-tuple of integers called the *coordinates* of the cell. The coordinates of adjacent cells differ in just one component by ± 1 . The *origin* is the cell whose coordinates are all zero. A d-dimensional Turing machine has a finite-state control, a read-only input tape, a write-only output tape, and a finite number of d-dimensional worktapes, each of which has a finite number of heads. At each step the machine reads the symbols in the cells on which the input and worktape heads are positioned, writes symbols on these worktape cells and possibly on the output tape too, and shifts each worktape head in one of 2d + 1 possible directions – either to one of 2d adjacent cells or to the same cell. Initially, all worktape cells hold blanks, and every worktape head is positioned on the origin of its tape. Leong and Seiferas [12] proved that every d-dimensional Turing machine can be simulated in real time by a d-dimensional machine having just one head on each of its worktapes.

Fix integers $d \ge 1$ and e > d, a positive real number e, and a finite alphabet Δ . To establish Theorem 1.1, it suffices to exhibit an on-line simulation of a particular e-dimensional machine E with worktape alphabet Δ by a d-dimensional machine D in time $O(n^{1+1/d-1/e+e})$. Machine E has one head on one worktape and operates in real time as follows. At each step it reads another input symbol, called a *command*, that has the form $\langle b, \delta \rangle$, where $b \in \Delta$, and δ is one of the 2e+1 directions in which the worktape head can shift. Suppose E is in a configuration in which the cell y scanned by the worktape head contains b'. When E then reads the input symbol $\langle b, \delta \rangle$, it writes b on y, writes b' on its output tape, and shifts the worktape head in direction δ . Call symbols of Δ responses. Let Σ be the set of commands for E. Machine E defines a function from E* to Δ * that maps a string of commands into a string of responses of the same length. Machine E simulates E online in time E in time

On a given input string of commands, when E has processed just the first τ commands, we say that E is at time τ . When D has processed only the first τ commands (and produced the first τ output responses), D is at simulated time τ .

Consider a string of n commands. For simplicity we describe a simulation in which n is available off-line. The simulation can be converted routinely to an on-line simulation with time loss of only a

constant factor [19]. (For n' = 1, 2, 4, 8, ..., machine D repeats the simulation of initio unlike n for the Let us review definitions for equitedimensional Turing machines. To each cell of a Adimensional working as a first least way a design of margers called the coordinates of the cell. The condinates of action centre less that and component by ±1. The origin is the cell whose Mest. Cell y is at distance a from cell z if the shartest recifferent parts from y to z has length & man i undirected the state of the cquivalently, a worktape head requires exactly a steps to move from y to Z. Cell y is well within box C as sad drainly to does a equality in its angle of the confidence of th of side if it is at distance strictly greater than s/3 from every cell opticle (. The relative position of A in the independent of the independent cell y with respect to a box C is the list of coordinates of y when the base cell of C is taken as the stown box sugarment and the vice sequence of the color of origin; if y is at distance 5 from the base cell of C, then its relative position can be specified by a LL to 200 of 13 dis - 200 of 2013 and of 1 + LV to 200 of 10 cell report of 200 binary string of length proportional to log s. Write Ala. C) for the cell as the proportional to log s. Write Ala. C) for the cell as the cell as the cell with the cell with the cell should be sho respect to box C. The relative position of a box in C is the relative position of its base cell with respect gains i leads sound by view lead boxed [21] supplies but grant, the state of might but it in the manner. trachine can be **simulated in real time by a Adhrensionai m**aittilne ha ving just one do**ud o**ur cath of it**s** Set .750u**Ji**10-7 I'm megers d > 1 and e > d, a positive real number a find a findre alphabet A. To establish Theorem i.e. it suffices to exhibit an on-line simulation of a panicular edimensional machine E with working alphabet Δ by a definensional machine D in time $O(n^{1-1/d+1/d+1})$. We oblac E has one workings alphabet \$\Delta\$ by a dramensaman man, we say he as it reads an aber input the dome on the say in the say in the say on the say in th We may assume that e is an integer and that e is sufficiently small directions in which the workings bend can shift. Suppose F is in a configuration in which the cell.

(1.1) xamed by the workings head contains B. When E then reads the ingle symbol (1, 8) it wells also), writes b' on its output tape, and shifts the working there in directors δ . Call symbols of Δ Note that $C = a^* + a^$

maps a string of commands into a string of regregies of the same length. Machine O simulator E oninto in the cortain of a computes this function in time T(n) on inputes it length name [Movery input; ytand)
for every i machine D replaces the function in time T(n) on inputes it length name [Movery input; ytand)
for every i machine D replaces the first string to the first interest in the contract of converted when I had been also and instrumental instruments in the first to at time of the property of the first string of neutron and the commands. The simulation is which then a string of neutron for simulation is which then as the commands. For simulation we describe a simulation is which there has of only a

- (i) for every cell y, there are 5% blocks at level i that contain a cell at distance s_i or less from y;
- (ii) for every cell y in a block B at level i, if y is at distance strictly greater than s_{i+1} from every cell outside B, then there is a block $B' \subseteq B$ at level i-1 such that y is well within B'; the relative position of B' in B is easily calculated from the position of Y.

Reischuk [23] employs a similar covering. The blocks at level i+1 that are contained in a block B at level i are the subblocks of B. Every block at level i has at most $(3s/s_{i+1})^{n}$ subblocks.

Let n be the function defined by

$$\pi(x) = 2^{\lceil \log x \rceil}$$

if x is not a power of 2, then π maps x to the next larger power of 2. Let $m_L^* = n$, and for $i \le L$ let

$$m_i^* = (3s)^c$$
, a supervise a sense.

the volume of a block at level i. For each i set

$$\gamma_{i} = (3c)^{c} c_{0}^{i}, \quad \text{where } \quad \text{where }$$

A routine calculation shows that $u_L = O(n^{1/d + \epsilon})$, and for $i \le L$,

$$u_i \ge (c_0 s_i^e / s_{i-1}^e)^{1/d} u_{i-1} / 2.$$
 (1.3)

Contract to the angle of the contract of

participation and security

In D a page at level 0 is a box of side t_0 ; for i > 0, a page at level i is a box whose side is a power of 2 that has a mass store, a memory map, a free storage list, and a nonblank cell counter. If P is a page at level i and P' is a page at level i - 1 and $P' \subseteq P$, then P' is subpage of P. We describe how the contents of a page P at level i represent the contents of a block B at level i.

If i = 0, then P represents the contents of B literally: for each of the $(3s_0)^c$ cells y of B there is a representative cell z in P whose relative position in P is determined by the relative position of y in B, and z holds the same symbol as y. The details of this representation are unimportant, provided that relative position of z in P can be computed from the relative position of y in B in constant time.

If i > 0, then for every nonblank subblock B' of B, there is a subpage of P whose contents represent the contents of B' recursively. All subpages at level i - 1 are pairwise disjoint. Let P have side p. The mass store of P is a box of side p/2 in P that contains these subpages. The address of a box in the mass store is its relative position with respect to the mass store.

The memory map of P is a box of side $p/(4 \log s_i)$ in P. Its contents maintain the addresses of subpages of P whose contents represent the contents of subblocks of B. The relative positions of

natural way to a leaf of a binary tree of height Offing s). The number of leaves of this tree intile number of substantial productions in a natural way to a leaf of a binary tree of height Offing s). The number of leaves of this tree intile number of substantial productions of the tree intile number of substantial productions of the completely included the substantial production of the binary tree, there is a pointer her in plan number of the binary tree, there is a pointer her in plan number of the binary tree, there is a pointer her in plan number of the binary tree, there is a pointer her in plan number of the binary tree, there is a pointer her in plan number of the binary tree, there is a pointer her in plan number of the binary tree. The one metal the number of the binary tree, there is a pointer her in plan number of the binary tree. The one of the substantial number of the number of the substantial number of the number of the substantial number of the number o

The free storage list is a list of addresses that property has of side p/4 in P. For q = 1, 2, 4, ..., p/4, p/2, the free storage list has addresses of at most 2^d . Published the property of the free volume of P is the total volume of the binds white addresses are on the free storage list.

The nonblank cell counter specifies an integer bullette and m;" (inclusive). This value of the nonblank cell counter is at least as large as the number of minimum cells of #.

Page P represents block B at time τ if as contains represent the configuration of Eat time τ .

We present an informal overview of the simulation before ground the details. Suppose in a configuration of E the workspe head is well within back I at level I and the connects of page I at level I five the workspe head is well within back I at level I and the connects of page I at level I five the span a si I bene I level to a span a si I bene I level to a span a si I bene I level in s/s, phases of s, commands each. At the phase procedure I first the season in the I again a first phase procedure I first the memory map of the theorem is the phase procedure I first the season in the phase procedure I first the phase procedure I first the season of the season at the season of the season at the season of the subspace of Palacetters of the season of the subspace of Palacetters of the s

If i) 0, then for every noublank subblack if of h, there is a subpage of P whose contents represent the contents of if recursively. All subpages at level i - I are pairwise disjoint. Let P have side p. The mass store of P is a below lift of

subpages of P whose contents represent the contents of subblecks of \hat{u} . In relative positions of

Effects: The contents of the memory map are altered to associate a with k', and the free volume of P is reduced by r^d . (During this call to ALLOCATE, the free storage list may temporarily hold addresses of 2^d blank boxes of the same side.)

Method: A buddy system is used [10].

- Step 1. If the free storage list has an address of a box of side r, then skip to Step 2. Let q^* be the smallest power of 2 greater than r for which the free storage list does have an address of a box of side q^* ; if no such q^* exists, then terminate with failure. For $q = q^*$, $q^*/2$,..., 4r, 2r in order, select an address a_q of a box C_q of side q, delete a_q from the list) and add to the list the addresses of the 2^d pairwise disjoint boxes of side q/2 whose union is C_q . The free storage list now has addresses of $2^d 1$ blank boxes of sides 2r, 4r, ..., $q^*/2$ and of 2^d blank boxes of side r.
- Step 2. Let a be the address of a box of side r on the free storage list, and delete this address from the list. In the memory map of P, set up at most $O(\log s_i)$ pointer boxes of volume $O(\log u_i)$ for the binary tree (described above) to associate address a with K. If the pointer boxes for the binary tree no longer fit in a box of side $p/(4 \log s_i)$, then terminate with failure.

Procedure $a \leftarrow PAGEADDRESS(i, k')$:

Hypothesis: The worktape heads of D are on a page P at level i.

Parameters: k' is a binary string of length $O(\log s_i)$ that specifies the relative position of a subblock B' of a block at level i.

Value returned: The address a of subpage P' in P assigned to B' such that the side of P' is $\min \{\pi((\gamma_{i-1}(m'+s_{i-1}))^{1/d}), u_{i-1}\}$, where m' is the value of the nonblank cell counter of P'. If a call to ALLOCATE fails, then this call to PAGEADDRESS fails.

Effects: This procedure may alter the contents of the memory map and the free storage list by a call to ALLOCATE and may set up a new page in the mass store.

- Method: Using k' and the memory map of P, retrieve the address of the subpage P' of P assigned to B': visit the $O(\log s_i)$ pointer boxes for the nodes on the path in the binary tree (described above) from the root to the leaf that corresponds to k' to obtain the address associated with k'.
- If no address is associated with k', then call ALLOCATE to obtain a blank box of side l_{i+1} in the mass store. Initialize this box so that it becomes a subpage P' whose contents represent a block whose cells all hold blanks: the free storage list of P' contains just the address of the blank box of side $l_{i+1}/2$ in its mass store (namely, the mass store itself); the value of the nonblank cell counter of P' is 0. Return the address of P' in P as the value of a.

Let p' be the side of P' and m' be the value of its nonblank cell counter; by definition, p' is a power of 2. If $p' < \min \{w((\gamma_{i+1}(m'+s_{i+1}))^{1/d}), u_{i+1}\}$, then call ALLOCATE to obtain a new box of side $p'' = \min \{w((\gamma_{i+1}(m'+s_{i+1}))^{1/d}), u_{i+1}\} \ge 2p'$ in the mass store of P' assigned to B'. Copy the contents of P' into this box to produce a page P'' such that if the contents of P' represent the contents of B', then the contents of P'' also represent the contents of B'; in particular, to ensure that the addresses in the memory map remain valid, copy the contents of the mass store of P', which has side p'/2, into the box of side p'/2 whose base cell is the same as the base cell of the mass store of P''. Augment the free storage list of P''' with addresses of $2^{d'}-1$ blank boxes of side p''/4 in its mass store. In this case return the address of P''' in P as the value of a.

Let h be the relative position of a cell with respect to a box C on the worktape of E and σ be a sequence of commands. Procedure SHIFT on input (h, σ) produces the relative position of the head of E with respect to C that results from starting on cell x(h, C) and performing the shifts indicated by σ . SHIFT operates in time proportional to the sum of the lengths of its inputs: using e unary counters, one for each dimension to maintain the displacement of the head from x(h, C), change one of these counters by ± 1 for each of the shifts in σ ; finally, with e additions or subtractions, calculate the new relative position.

Procedure UPDATE (i, h, \sigma):

Hypotheses:

- (i) At the beginning and end of this call to *UPDATE*, the worktape heads of **D** are on the base cell of a page Q at level i.
- (ii) Let m be the value of the nonblank cell counter of Q at the beginning of this call; Q has side $\min \{\pi((\gamma_i(m+s_i))^{1/d}), u_i\}$.
- Parameters: h is a binary string of length $O(\log s)$ that specifies the relative position of a cell with respect to a block C at level i. σ is a sequence of s commands.
- Effects: If at the beginning of this procedure call Q represents C at time τ , the worktape head of E is on x(h, C) at time τ , and σ is the sequence of commands at times $\tau + 1, ..., \tau + s_{\tau}$ then at the end of the call, Q represents C at time $\tau + s_{\tau}$. The value of nonblank cell counter of Q is set to $m' = \min\{m + s_{\tau}, m_i^*\}$; the side of Q is $\pi((\gamma_i m')^{1/d})$. If any procedure that UPDATE calls fails, then this call to UPDATE fails.

- Method: If i = 0, then use σ to determine the new contents of every cell y in C that is visited by the worktape head of E when it starts from x(h, C) and shifts according to σ ; copy this new symbol into the representative of y in Q.
- Otherwise, if i > 0, then set k + h; add s_i to the value of the nonblank cell counter, unless it already equals m_i^* ; partition σ into s/s_{i+1} consecutive subsequences σ' of length s_{i+1} ; and perform Step 1 through Step 3 for each σ' , in order.
- Step 1. For each of the at most 5° subblocks C' of C that contains a cell within distance s_{i+1} of x(k, C), perform Steps 1.1 and 1.2.
 - Step 1.1. Call PAGEADDRESS to determine the address of the subpage Q' of Q assigned to C'. Let h' be the relative position of x(k,C) with respect to C'.
 - Step 1.2. Move the heads of D to the base cell of Q' and call UPDATE $(i-1, h', \sigma')$.

Step 2. Set $k \leftarrow SHIFT(k, \sigma')$.

Step 3. Return the heads of D to the base cell of Q.

Correctness: To check that UPDATE operates properly, show by induction that for each j, at the jth execution of Step 3, σ' is the sequence of commands at times $\tau + (j-1)s_{j+1} + 1$, ..., $\tau + js_{j+1}$, the worktape head of E is on x(k, C) at time $\tau + js_{j+1}$, and Q represents C at time $\tau + js_{j+1}$.

Procedure $\sigma + SIMULATE(i, h)$:

Hypotheses:

- (i) At the beginning and end of this call to SIMULATE, all heads of D are on the base cell of a page P at level i.
- (ii) At the beginning of this call let **D** be at simulated time τ and let *m* be the value of the nonblank cell counter of *P*; page *P* has side min $\{\pi((\gamma_i(m+s_i)^{1/d}), u_i\}$.
- (iii) At the beginning of this call, P represents block B at level i at time τ . At time τ the worktape head of E is on x(h, B), which is well within B. (Consequently, the worktape head of E is in B at times $\tau + 1, ..., \tau + s_r$)

Parameters: h is a binary string of length $O(\log s_i)$ that specifies the relative position of a cell in B. **Value returned:** σ is the sequence of commands at times $\tau + 1$, ..., $\tau + s_t$. If any procedure that SIMULATE calls fails, then this call to SIMULATE fails.

Method: It is a three uses a top destroyed the new conjustical surprise in minimal pathod rathing asserting to the surprise of the new blank o

Medial: If it = Quiden similar discouple Planty = proper than a college and the product the

appropriate responses. Let a be the sequence of a commentation of a tibes will (qui ? rignorth

Otherwise of 13 Stathani set down decade parties reduce deliberated deliberate

Star L. Man L'10 et hodge the addition position of the addition of the addition of the distribution of the

Step 2. Call PAGEADDRESS to retrieve the address of the subpage P of Paintaid to BA 102 1 9912

Step 1. Move the worktape heads of D to the base of the Mandetales and hat FE (151), 1940 process?

Correctness: The all proceedings of the control of

Sign 4. For each of the st square of a state of the state

Step 4.1. Call PAGEADDRESS to determine the address of the subpage Q' of P assigned to (k, k) 3TAJURAZ * o 910999019
C'. Let k' be the relative position of x(k, k) with suspect to C'.

Hypotheses:

(**o., 'A. 1-i) ATLACU Hashes (**D to the base of 0 to the base of 0. A. 1. i) ATLACU Hashes (**O. A. 1. i) Atlacts of 0. A. 1. ii) At the base of 0. A. 1. iii) Atlacts of 0. III) Atlacts of 0. A. 1. III) Atlacts of 0

Step 6. Append of to o.

Against and the sules of the state of the sta

Parameters: it is a binary string of length (Alog s), that specifies the relative position of a cell in R. False returned: σ is the sequence of commands at times $\tau + 1, ..., \tau + s_p$ if any procedure that SIMULATE fails.

To simulate E on an input string of n commands, move the worktape heads of D to the base cell of the page P_L of side u_L that represents B_L at time 0, and call SIMULATE with parameters (I_+, h_0) , where h_0 is the relative position of the origin with respect to B_L .

and the control of the second second

1.3. Analysis of the Simulation

We prove that every call to SIMULATE completes successfully; the proof for UPDATE is the same.

Lemma 1.1. Let r be a power of 2. Suppose the free volume of page P is at least r^d in a configuration of D at the beginning of a call to ALLOCATE on P. Then this call can produce the address of a blank box of side r in the mass store of P.

Proof. Let $q_1 \le q_2 \le ... \le q_m$ be the sides of boxes whose addresses are on the free storage list of P. Since the free storage list has at most $2^d - 1$ boxes of each distinct side, the free volume ν of P satisfies

 $v = q_m^d + ... + q_1^d \le (2^d - 1)q_m^d + (2^d - 1)(q_m/2)^d + ... + (2^d - 1)(1)^d < (2q_m)^d$. If $r^d \le v$, then $r^d < (2q_m)^d$, hence since r is a power of 2, $r \le q_m$. Consequently, $\Lambda LLOC\Lambda TE$ can find a blank box of side r in the mass store of P.

Let D be at simulated time τ at the beginning of a call to SIMULATE on a page P at level i > 0 that represents block B at time τ . Let m be the value of the nonblank cell counter of P in this configuration and $m' = \min\{m_i^*, m + s_i\}$. The side of P is $\pi((\gamma, m')^{1/4})$.

Lemma 1.2. Throughout this call to SIMULATE

- (i) P has at most $5^e m'/s_{i-1}$ active subpages, and
- (ii) the total of the nonblank cell counters of the active subpages of P never exceeds $5^e m'$.

Proof. First, suppose $m' = m_i^*$. Since B has at most $(3s/s_{i-1})^e$ subblocks, P has at most $(3s/s_{i-1})^e \le m_i^*/s_{i-1} \le 5^e m'/s_{i-1}$ active subpages, and the sum of their nonblank cell counters is at most

$$(3s_i/s_{i-1})^e m_{i-1}^* = 3^e m_i^* \le 5^e m'.$$

Now suppose $m' = m + s_r$. By induction on τ , at simulated time τ , P has at most $5^e m/s_{r+1}$ active subpages, and the total of their nonblank cell counters is at most $5^e m$. At each of s_r/s_{r+1} iterations during the execution of SIMULATE, at most 5^e new active subpages are created, and s_{r+1} is added to

the nonblank cell counters of at most 5^c subpages. Thus, the number of active subpages of P is always at most

$$5^{e}m/s_{i+1} + 5^{e}(s/s_{i+1}) = 5^{e}m'/s_{i+1}$$

The total of the nonblank cell counters of the active subpages of P is at most

$$5^e m + 5^e (s/s_{i-1}) s_{i-1} = 5^e m'$$
.

We show that during this call to SIMULATE, every call to PAGEADDRESS in Step 2 or Step 4.1 completes successfully. First, we verify that P has enough space for the free storage list and the memory map. Since the side of P is $\pi((\gamma_i m_i^*)^{1/d}) \le \pi((\gamma_i m_i^*)^{1/d}) = u_p$ the relative position of a box in P can be specified by a string of $O(\log u_p)$ symbols. (By choosing the size of the worktape alphabet of D, we can adjust the constant of proportionality to ensure that assertions (1.4) and (1.5) below are true.) The free storage list of P comprises $O(\log u_p)$ addresses of length $O(\log u_p)$; thus, the free storage list occupies a box of side

$$O((\log u_i)^{2/d}) \le O(t_i^{1/d}) \le \pi((\gamma_i m')^{1/d})/4$$
 (1.4)

because $m' \ge t_i$. In the memory map of P there are $O(\log s_i)$ pointer boxes of fixed volume $O(\log u_i)$ for each of the $O(m'/s_{i+1})$ active subpages of P. These pointer boxes fit in a box of volume

$$O((m'/s_{i-1})(\log s_i)(\log u_i)) \le (\pi((\gamma_i m')^{1/d})/(4\log s_i))^d, \tag{1.5}$$

the volume of the memory map of P. When PAGEADDRESS calls ALLOCATE, this call cannot fail for lack of space for the memory map.

Consider a configuration of D just before a call to PAGEADDRESS on P in Step 2 or Step 4.1 between simulated time τ and simulated time $\tau + \pi_j$. In this configuration let P_1 , P_2 , ... be the active subpages of P and let m_1' , m_2' , ... be the values of their nonblank cell counters; let P_j represent subblock B_j in B. The side of P_j is $\pi((\gamma_{j+1} m_j')^{1/d})$. The mass store of P holds the contents of smaller subpages that were assigned to B_j in previous configurations. Because the sides of these smaller subpages are powers of 2, their total volume is at most the volume of P_j namely, $(\pi((\gamma_{j+1} m_j')^{1/d}))^d$. Consequently, the volume of used boxes in the mass store of P in this configuration is bounded by

$$\Sigma_j \ 2(\pi((\gamma_{i:1} \ m_j')^{1/d}))^d.$$

Suppose PAGEADDRESS decides to assign to B_1 a new page of side $\pi((\gamma_{F1} m_1)^{1/4})$, where $m_1'' = m_1' + s_{F1}$; according to the definition of PAGEADDRESS,

$$\pi((\gamma_{i}, m_1, \gamma^{1/2}) \ge 2 \pi((\gamma_{i}, m_1)^{1/2}). \tag{1.6}$$

Lemma 1.2(ii) implies that

$$m_1'' + \Sigma_{j,1} m_j' \le S^c m'. \tag{1.7}$$

Because the mass store has side $\pi((\gamma_i m')^{1/d})/2$, the free volume of P in this configuration is at least

$$(\pi((\gamma_{i} m')^{1/d})/2)^{d} - \sum_{j} 2(\pi((\gamma_{i+1} m_{j}')^{1/d}))^{d}$$

$$\geq 4^{d}5^{e} \gamma_{i+1} m' - 2(\pi((\gamma_{i+1} m_{1}'')^{1/d})/2)^{d} - 2 \sum_{j \in I} (2^{d} \gamma_{i+1} m_{j}') \text{ by (1.6)}$$

$$\geq 4^{d} \gamma_{i+1} (5^{e}m') - 4^{d} \gamma_{i+1} (\sum_{j \in I} m_{j}') - 2 \gamma_{i+1} m_{1}''$$

$$\geq 4^{d} \gamma_{i+1} m_{1}'' - 2 \gamma_{i+1} m_{1}'' \text{ by (1.7)}$$

$$\geq (\pi((\gamma_{i+1} m_{1}'')^{1/d}))^{d}.$$

Lemma 1.1 guarantees that ALLOCATE can find a blank box of side $\pi((\gamma_{i1} m_1'')^{1/d})$ in the mass store of P. Therefore, this call to PAGEADDRESS completes successfully.

By induction on i, neither the recursive calls to SIMULATE nor the calls to UPDATE fail. Ergo, the call to SIMULATE at simulated time τ completes successfully.

In the memory map of a page at level i of side $p \le u_p$ to move a head from one pointer box to another takes time proportional to $p/(4 \log s_p)$, the side of the memory map. Thus, to determine the address of the subpage assigned to a subblock or to associate an address with the relative position of a subblock takes time

$$(O(\log u_i) + O(p/(4\log s_i)))O(\log s_i) = O(u_i)$$

because $O(\log s_i)$ pointer boxes, each of volume $O(\log u_i)$, are accessed.

Let $T_A(i)$ be the time used by ALLOCATE on a page at level i. Since time $O(u_i)$ is consumed in moving the heads around the page and in the memory map and time $O((\log u_i)^2)$ in handling the addresses in the free storage list,

$$T_A(i) = O(u_i) + O((\log u_i)^2) = O(u_i).$$

Let $T_p(i)$ be the time used by *PAGEADDRESS* on a page at level *i*, excluding the copying of subpages. This procedure retrieves an address from the memory map (time $O(u_i)$), performs some arithmetic calculations (time $O(\log u_i)$), moves heads around the mass store (time $O(u_i)$), and calls *ALLOCATE*:

$$T_p(i) = O(\log u_i) + O(u_i) + T_A(i) = O(u_i).$$

Let $T_U(i)$ be the time used by *UPDATE* on pages Q at level $i \le L$, excluding the copying of subpages in calls to *PAGEADDRESS*. Evidently, $T_U(0) = O(1)$. For i > 0 we assess the time taken by each Step.

Sup 1.1: Object to T. 10 for each learning Stay You China Planet and Stay 19 201

> / m (x m 1 / x)) m (<

for the call to PAGEADDRESS. $\frac{h_i h_i'(m_{i+1})^{1/2}}{2(\pi i (m_{i+1})^{1/2})^2} = \frac{2(\pi i (m_{i+1})^{1/2})^{1/2}}{2(\pi i (m_{i+1})^{1/2})^2}$

Step 1.2: (Ole) & Tyle; Is the each of stemmer of proposition Step 1.4 (Ole) to move the heads across Q, whose side host papel as investigated [3] 19 the adjusting to but.

Step 2: O(log s) + O(s,) for the cult to SMAPP for each including the (14 th) &

Step 3: O(n) for each iteration.

Thus, by industriantial (* (\$12), 400 (\$13), the extinct destinates (\$13) (\$100 (\$13)) (\$100 (\$1

By induction on a neither the recursive calls to SIMULATEMPROCEDATE tail. 1330. the call to SIMULATE at simulated time r companies contained the call to SIMULATE at simulated time r companies contained to the call to SIMULATE at simulated time r contained to the call to SIMULATE at simulated time r contained to the call to the c

In the memory map of a page at level I of side $p \le u_p$ to flow a wild think thick to memory map of a page at level I of side $p \le u_p$ to the memory map. Think the proportional to p/I in p/I in I the side of the memory map. Think is a determine the address of antisologic and page and page and page and page I. The side of the memory map I is a substant antisphenous an I of I in I in

recause O(log s) for each iteration of volunte O(log up, on referent tack of (s gol)O site

Let T_d(i) be the time used by ALLOCATE on a page at level Pointer the ALGA Tointer the imshowing that the the time used by ALLOCATE on a page at level Pointer the ALGA Tointer the imshowing that the time time the storage list.

Lies aviences

Step 4.1: $O(\log s) + T_j(t)$ for each investion of Sup $A(t) = (t)_k T$

Let T₁(3) be the time used by PACE Aband In miletal description in State of the Color of the Color of the State of the Color of the C

Then

 $T_{\mathbf{y}}(t) = C(\log u) + C(u) + T_{\mathbf{y}}(t) = C(u).$

The fill the object of the obj

We prove that during the simulation of E by D, the total time taken by copying the contents of pages in calls to procedure PAGEADDRESS is $O(n^{1+dE})$. Consider a configuration of D at simulated time τ at the end of a call to SIMULATE on a page P at level i of volume v. Let Q_1 , Q_2 , ..., $Q_f = P$ be the sequence of pages such that for each j > 1, prior to simulated time τ , PAGEADDRESS called ALLOCATE to obtain Q_j and copied the contents of Q_{j-1} into Q_j . Call the sum over j of the time for copying Q_{j-1} into Q_j the ancestral copying time for P. The sides of these Q_j are increasing powers of 2. Consequently, since the time to copy the contents of Q_{j-1} into Q_j is bounded above by the volume of Q_j , the ancestral copying time for P is at most twice the volume of P, namely, P. In this configuration of D let P_1 , P_2 , ... be the active subpages of P and P_1 , P_2 , ... be their volumes. Since these pairwise disjoint subpages lie in the mass store of P, whose volume is P.

$$\Sigma_i \ v_i \leq v/2^d$$
.

Call a page P' in P at any level active if either P' is an active subpage of P (at level i-1) or P' is active in an active subpage of P. Suppose inductively that there is a constant $k_5 \ge 4$ such that for each j, the sum of the ancestral copying times for all active pages in P_j over all levels is at most $k_5 v_j$. Then the sum of the ancestral copying times for all active pages in P over all levels is at most

$$2\nu + \Sigma_j k_5 \nu_j \leq 2\nu + k_5 \nu/2^d \leq k_5 \nu$$

In particular, when $P = P_L$, the page at level L assigned to B_L , this total copying time is at most $k_5 u_L^d = O(\gamma_L n) = O(n^{1+d\epsilon})$.

Therefore, by (1.1), the simulation uses time

$$T_{S}(L) + O(n^{1+d\epsilon}) \le (s_{L}/s_{L-1})(O(u_{L}) + T_{S}(L-1)) + O(n^{1+d\epsilon})$$

$$\le n^{1-1/\epsilon}(O(n^{1/d+\epsilon}) + O(u_{L-1})) + O(n^{1+d\epsilon})$$

$$\le O(n^{1+1/d-1/\epsilon+\epsilon}). \tag{1.8}$$

Theorem 1.2. For all $d \ge 1$ and all e > d, every multihead e-dimensional Turing machine of time complexity T(n) can be simulated on-line by a multihead d-dimensional Turing machine in time $O(T(n)^{1+1/d-1/e} + O((\log T(n))^{-1/2}))$.

Proof. The constant of proportionality in (1.8) can be bounded by $k_6k_7^{1/\epsilon}$, where k_6 and k_7 depend only on d and e. Choose ϵ as a function of n to minimize

$$k_6 k_7^{1/e} n^1 + 1/d - 1/e + e$$
;

 $\varepsilon = O((\log n)^{-1/2})$. Ergo, every e-dimensional Turing machine of time complexity T(n) can be simulated on-line by a d-dimensional machine in time $O(T(n)^{1+1/d-1/e} + O((\log T(n))^{-1/2}))$.

Chapter 2. A Space Bound for One-Tape Multidimensional Turing Machines

2.1. Introduction

It is generally believed that the computational resources time and space can be exchanged for each other. For instance, a program that saves space (storage) by compressing data spends extra time encoding the data and decoding the stored representation. Some data structures use minimum space, but require long access times; others reduce access times by occupying large amounts of memory.

Quantitative tradeoffs have been established between time and space for multitape Turing machines [7] and for straight-line programs [21, 26, 29].

Recently, Paul and Reischuk [18, 23] proved that the tradeoff of Hopcroft, Paul, and Valiant [7] is not an artifact of the linearity of the Turing machine tapes: every deterministic multitape multidimensional Turing machine of time complexity T(n) can be simulated by a deterministic Turing machine of space complexity $T(n) c^{\log^+} T(n) / \log T(n)$ for some constant c. We derive a space bound for a restricted class of multidimensional Turing machines: for every nondeterministic d-dimensional machine M with one worktape head that runs in time T(n), there is a deterministic Turing machine M' such that M' accepts the same language as M in space $(T(n) \log T(n))^{d/(d+1)}$, provided that T(n) is constructible in space $(T(n) \log T(n))^{d/(d+1)}$.

Section 2.2 introduces definitions, including a generalization of crossing sequences. Section 2.3 describes a deterministic simulation of a nondeterministic d-dimensional machine M with just one worktape head, and Section 2.4 proves that this simulation uses space $(T(n) \log T(n))^{d/(d+1)}$ when M runs in time T(n). (All logarithms are taken to base 2.) The simulation and proof generalize Paterson's [15] for the case d=1.

and the control of th

2.2. Definitions

Fix a finite alphabet Σ and a positive integer d. A worktape over Σ is a set of cells, each of which can contain a symbol in Σ . A worktape is d-dimensional if its cells are in bijective correspondence with \mathbb{Z}^d , the set of d-tuples of integers. For every x in \mathbb{Z}^d there is a unique worktape cell C(x) at location x. Location $(x_1, ..., x_d)$ is adjacent to locations $(x_1 \pm 1, x_2, ..., x_d)$, $(x_1, x_2 \pm 1, ..., x_d)$, ..., and $(x_1, x_2, ..., x_d \pm 1)$. In \mathbb{Z}^d let $\mathbf{e}_0 := (0, 0, ..., 0)$. A box B is a subset of \mathbb{Z}^d comprising the d-tuples

$[a_1, b_1] \times [a_2, b_2] \times \times \times [a_d, b_d]$

for some integers $a_1, b_1, ..., a_d, b_d$. The boundary of B is the subset of locations $(x_1, ..., x_d)$ such that for some i either $x_i = a_i$ or $x_i = b_i$. The volume of B, denoted B_i , is the number of locations that it comprises. A content function on a box B is a map from B to E; such a function specifies the contents of cells whose locations are in B.

A d-dimensional Turing machine (with alphabet Σ) has a d-dimensional worktape on which the worktape head can move one cell along any of the d orthogonal dimensions in either positive or negative direction at each step; if the head reads cell C(x) at step s, then at step s+1 it reads a cell at a location adjacent to x. In each cell the worktape head can write a symbol from Σ . The input to the machine is presented on a two-way read-only input tape. Initially, at step 0, the worktape is completely blank, the input head is positioned on the leftmest symbol of the input word, and the worktape head reads cell $C(e_0)$.

Let M be a nondeterministic d-dimensional Turing machine (with one worktape head) that runs in time T(n) on inputs of length n: for every word of length d that M accepts there is an accepting computation of at most T(n) steps. Assume that M reads all of its input $H(n) \ge n -$ and that T(n) is constructible in space $(T(n) \log T(n))d/(d+1)$. The worktape head remains on cells whose locations are in the box

$$B_0(n) := [-T(n), T(n)] \times [-T(n), T(n)] \times \mathbb{I}[T(n), T(n)] \times \mathbb{I}[T(n)] \times \mathbb{I}[T($$

We may assume without loss of generality that to accept an input word. At halts with its worktape entirely blank, its worktape bead positioned on C(e_B), and its input bodd on the leftmost symbol of the input word. (If necessary, M can be modified to grace its worktape by depth-first search on the cells that it has visited; the modified machine runs in time O(T(n)).) For the remainder of this chapter we consider the computation(s) of M on a fixed input word of length it.

A partial configuration w on a box. B consists of the same of the lands of the partial configuration w on a box.

- a content function on B, the part of the section of the masses of the section of
- a state,
- a step number,
- a position on the input tape, and
- a worktape cell location x_n such that either $x_n \in \mathbb{R}$ for $x_n = \pm (unspecified)$.

Let ι_0 be the partial configuration on $B_0(n)$ that specifies the initial configuration on M at step 0. For

A CARBOTT MAN COMBANGE COMPANY OF THE CONTRACTOR

and probable to the straight of the straight of the

is the market of because it is with the co

(supinus) the a, be the partial configuration of the fall of the subsect of local third application are in the subsect of local third application of the subsect of local third application of the subsect of local third application of the subsect of local third thi

A delimensional Turing angehine incline inclined incoming an area of the delimental inclined in a land and a field in working bead can move one cell along any of the delimental inclined in a landing in the delimental inclined in a landing in the delimental inclined in a landing in the landi

(i) Equilibrated as a produce and produced and the produc

in time T(n) an inputs of length n - for extraorabilities, when the explanation of length n - for extraorabilities, when the explanation of length n - for extraorabilities, when the explanation of a given T and T are the extraorabilities of T and T are the extraorabilit

 $P_0(n) := \{ P(n), T(n) \times \} \cap T(n) = x$ (vi)

Consideration and (Minerally mention of the problem of the problem

sequence of partial configurations $\pi = \pi_0, \pi_1, ..., \pi_k = \rho$ on B such that $\pi_i \vdash \pi_{i+1}$ for each i. A set of crossing records that enter or exit B can specify the entry and exit transitions of a partial computation. Let R be a set of crossing records that enter or exit B. The triple (π, ρ, R) is compatible if there is a partial computation from π to ρ for which R specifies the entry and exit transitions. Define the predicate Comp (π, ρ, R) to be true if and only if (π, ρ, R) is compatible.

Call (π, ρ, R) consistent if either (i) or (ii) holds:

(i)
$$R = \emptyset$$
 and either $x_{\pi} = \bot = x_{\rho}$ or both $x_{\pi} \in B$ and $x_{\rho} \in B$;

- (ii) (a) $R \neq \emptyset$:
 - (b) the records in R, strictly ordered by step number, alternate between records that enter B and records that exit B;
 - (c) if $x_{\overline{w}} \in B$, then the earliest record in R exits B; if $x_{\overline{w}} = \bot$, then the earliest record in R enters B; and
 - (d) if $x_{\rho} \in B$, then the latest record in R enters B; if $x_{\rho} = \bot$, then the latest record in R exits B.

When (π, ρ, R) is compatible, (π, ρ, R) is necessarily consistent.

Define a predicate for a box B, a positive integer t, and a set of crossing records R:

Blank-Comp
$$(B, t, R) := \text{Comp}(t_0, a_t \setminus B, R)$$

Machine M accepts the input word if and only if Blank-Comp $(B_0(n), t, \emptyset)$ is true for some t.

2.3. Simulation

To determine whether M accepts its input word, deterministic Turing machine M' checks whether Blank-Comp $(B_0(n), t, \emptyset)$ is true by repeatedly partitioning the box $B_0(n)$ and the step interval [1, t]. Using a balanced divide-and-conquer method, M' introduces either a set of crossing records or a partial configuration to ascertain recursively whether a partial computation on a box exists. The consistency condition ensures that partial computations on two boxes can be combined.

Lemma 2.1, which is straightforward to prove, guarantees that for each box, there is some partition into two boxes that induces a small number of crossing events. To simplify our arguments, we neglect to distinguish among z, LzJ, and $\Gamma z I$ for real numbers z; one can justify this simplification routinely.

Lemma 2.1. Let B be a box with volume v = |B|. Let $s_2 \ge s_1$ be steps during a computation of M and $s = s_2 - s_1$. There is a partition of B into two boxes B_1 and B_2 such that

- (i) the number of crossing events between B_1 and B_2 during $[s_1 + 1, s_2]$ is at most $3s/v^{1/d}$, and
- (ii) B_1 and B_2 have volumes between v/3 and 2v/3.

We describe the simulating machine M' informally. It is not difficult to verify that M' correctly simulates M.

When a procedure is invoked, it is constrained to operate within an amount of space determined by the calling procedure. If this amount of space is insufficient, then the invoked procedure reports a failure to the caller. Both procedures BI.ANK-COMP and COMP run strategies in "parallel space" with space bounds. For S=1,2,3,..., they give each strategy S cells to execute. If one strategy completes successfully (without failure of one of its procedure calls), then the value that it computes is the value returned.

MAIN PROGRAM FOR M'

For t = 1, ..., T(n) calculate BLANK- $COMP(B_0(n), t, \emptyset)$ with space bound $(T(n) \log T(n))^{d/(d+1)}$. If BLANK- $COMP(B_0(n), t, \emptyset)$ completes successfully and is true for some t, then accept the input word. Otherwise, reject the input word.

Procedure BI.ANK-COMP (B, 1, R):

Imputs: Box B, positive integer t, set of crossing records R that enter or exit B.

Output: The value of Blank-Comp (B, L, R).

Assumption: There is a space bound for this procedure call.

Method: Let v = |B|. Run the following two strategies in parallel space with space bounds. If this invocation of BLANK-COMP runs out of space, then report a failure.

Strategy B1: Return the value of COMP (10, a/B, R).

Strategy B2: If $(\iota_0, \alpha_1 \backslash B, R)$ is not consistent, then return false. Iterating through all partitions of B into two boxes B_1 , B_2 with volumes between $\nu/3$ and $2\nu/3$ and through all sets R' of at most $3\iota/\nu^{1/d}$ crossing records for crossing events between B_1 and B_2 , search for B_1 , B_2 , and R' for which both $Bl.ANK-COMP(B_1, \iota, (R \cup R') \backslash B_1)$ and $Bl.ANK-COMP(B_2, \iota, (R \cup R') \backslash B_2)$ are true. If suitable B_1 , B_2 , and R' are found, then return true; otherwise, return false.

Procedure $COMP(\pi_1, \pi_2, R)$:

Inputs: Partial configurations π_1 and π_2 on the same box B, set of crossing records R that enter or exit B.

Output: The value of Comp (π_1, π_2, R) .

Assumption: There is a space bound on this procedure call.

Method: Let v = |B| and r = |R|; let s_1 be the step number of π_1 and s_2 be the step number of π_2 and $s = s_1 - s_2$. Verify that (π_1, π_2, R) is consistent; if it is not, then return *false*. If v = 1, then return *true* if (π_1, π_2, R) is compatible on the one cell whose location is in B, *false* if not. If s = 1, then return *true* if $\pi_1 \vdash \pi_2$ and, if this is an entry or exit transition, R specifies the transition; otherwise, return *false*. For larger v and s, run the following three strategies in parallel space with space bounds. If this invocation of *COMP* runs out of space, then report a failure.

Strategy C1: Reduce r. Determine a step s' at which $|R \setminus [s_1 + 1, s']| = r/2$. Enumerating all partial configurations π' on B, search for π' with step number s' such that both $COMP(\pi_1, \pi', R \setminus [s_1 + 1, s'])$ and $COMP(\pi', \pi_2, R \setminus [s' + 1, s_2])$ are true. Return true if an appropriate π' is found, false if not.

Strategy C2: Reduce s. Set $s' = (s_1 + s_2)/2$. As in Strategy C1, search for π' with step number s' such that both $COMP(\pi_1, \pi', R\setminus[s_1+1, s'])$ and $COMP(\pi', \pi_2, R\setminus[s'+1, s_2])$ are true.

Strategy C3: Reduce v. Enumerating all partitions of B into two boxes B_1 , B_2 with volumes between v/3 and 2v/3 and through all sets R' of at most $3s/v^{1/d}$ crossing records for crossing events between B_1 and B_2 , search for B_1 , B_2 , and R' for which both $COMP(\pi_1 \backslash B_1, \pi_2 \backslash B_1, (R \cup R') \backslash B_1)$ and $COMP(\pi_1 \backslash B_2, \pi_2 \backslash B_2, (R \cup R') \backslash B_2)$ are true. If suitable B_1 , B_2 , and R' are found, then return true; otherwise, return false.

2.4. Analysis of the Simulation

We show that M' uses space $O((T(n) \log T(n))^{d/(d+1)})$. The amount of space used by procedures COMP and BLANK-COMP is dominated by the storage required for the input parameters.

Since every location of the *d*-dimensional worktape can be specified by a list of *d* integers written in binary, each box B in $B_0(n)$ can be specified in space $O(\log T(n))$. A content function on a box of volume ν requires space proportional to ν to store. Thus, each partial configuration can be stored in

space $O(v + \log T(n))$. Since each crossing record can be stored in space $O(\log T(n))$, a set of r crossing records can be stored in space $O(r \log T(n))$.

Let $S_C(v, r, s)$ denote the space required by *COMP* to run successfully on all inputs (π_1, π_2, R) such that π_1 and π_2 are partial configurations on a box B with step numbers s_1 and s_2 for which v = |B|, r = |R|, and $s = s_1 - s_2$. The definition of *COMP* implies

$$S_C(v,r,s) \le k_1(v+(r+1)\log T)$$

+ min
$$\{S_C(v, r/2, s), S_C(v, r, s/2), S_C(2v/3, r + 3s/v^{1/d}, s)\}$$

for a constant k_1 . Similarly, let $S_B(v, r)$ denote the maximum space required by BLANK-COMP on inputs (B, t, R) for which r = |B| and r = |R|. The definition of BLANK-COMP implies

$$S_B(v,r) \le k_2(r+1) \log T + \min \{S_C(v,r,T), S_B(2v/3,r+3T/v^{1/4})\}$$

for a constant k_2 .

Fix $\delta := dP(d+1)$ and

$$k_1 := 2 \times 10^3. \tag{2.1}$$

Choose constants k_4 , k_5 , k_6 , and k_7 such that

$$k_4 \ge 12k_1. \tag{2.2}$$

$$k_4 \ge k_1 k_3 + k_4 / 2^8$$
, (2.3)

$$k_5 \ge (2/3)^{1/4}(k_5 + 3),$$
 (2.4)

$$k_6 \le (3/2)^{1/4} k_6 - k_2 k_5$$
 (2.5)

$$k_7 \ge 4k_4 + (k_2 + k_4)k_5 + k_6.$$
 (2.6)

Lemma 2.2. $S_C(v, r, s) \le k_4(v + (r + 1 + \log s) \log T + (s \log T)^8)$.

Proof. By induction on (v, r, s), in lexicographic order. If v = 1 or s = 1, then *COMP* uses only the space occupied by the inputs, $k_1(v + (r + 1) \log T)$ space. Otherwise, there are four cases.

Case 1: $v \le (r+1) \log T$ and $r \ge 1$. Then

$$S_C(v, r, s) \le k_1(v + (r + 1)\log T) + S_C(v, r/2, s)$$

$$\le (2k_1(r + 1) + k_4r/2)\log T + k_4(v + (1 + \log s)\log T + (s\log T)^{\delta})$$

$$\le k_4r\log T + k_4(v + (1 + \log s)\log T + (s\log T)^{\delta})$$

because k_4 satisfies (2.2) and $r \ge 1$.

Case 2:
$$v \le \log T$$
 and $r = 0$. By (2.2) again,

$$S_{C}(v, 0, s) \leq k_{1}(v + \log T) + S_{C}(v, 0, s/2)$$

$$\leq 2k_{1} \log T + k_{4}(1 + \log (s/2)) \log T + k_{4}(v + (s \log T)^{\delta})$$

$$\leq k_{4} \log T + k_{4}(\log s) \log T + k_{4}(v + (s \log T)^{\delta}).$$

Case 3: $v + (r + 1) \log T \le k_3(s \log T)^{\delta}$. Use (2.3) to establish that

$$S_{C}(v, r, s) \leq k_{1}(v + (r + 1) \log T) + S_{C}(v, r, s/2)$$

$$\leq (k_{1}k_{3} + k_{4}/2^{\delta})(s \log T)^{\delta} + k_{4}(v + (r + 1 + \log(s/2)) \log T)$$

$$\leq k_{4}(s \log T)^{\delta} + k_{4}(v + (r + 1 + \log s) \log T).$$

Case 4: $v \ge (r+1) \log T$ and $v + (r+1) \log T \ge k_3 (s \log T)^{\delta}$. In this case,

 $k_{\overline{s}}(s \log T)^{\frac{1}{2}} \leq 2k_{\mathrm{part}}$ gains of the continuous of

hence since $\delta = d/(d+1)$,

$$(s \log T)/v^{1/d} \le (2/k_3)^{1/\delta} v.$$
 (2.7)

Therefore,

$$S_{C}(v, r, s) \leq k_{1}(v + (r + 1)\log T) + S_{C}(2v/3, r + 3s/v^{1/d}, s)$$

$$\leq (2k_{1} + 2k_{4}/3)v + k_{4}((r + 1 + 3s/v^{1/d} + \log s)\log T + (s\log T)^{\delta})$$

$$\leq (2k_{1} + 2k_{4}/3 + 3k_{4}(2/k_{3})^{1/\delta})v + k_{4}((r + 1 + \log s)\log T + (s\log T)^{\delta})$$

$$\leq k_{4}v + k_{4}((r + 1 + \log s)\log T + (s\log T)^{\delta})$$

by (2.7), (2.1), and (2.2).

Lemma 2.3. If
$$(T \log T)^{\delta} \leq v$$
 and $r + 1 \leq k_5 T/v^{1/d}$, then we still some interest of the state of the

Proof. By induction on v. There are two cases.

Case 1: $\nu \leq 3(T \log T)^{\delta}$. According to the hypotheses,

$$(r+1)\log T \le k_5(T\log T)/(T\log T)^{\delta/d} = k_5(T\log T)^{\delta}. \tag{2.8}$$

The Continue of the Continue of the

Lemma 2.2, (2.8), and (2.6) imply

$$S_B(v, r) \le k_2(r+1)\log T + S_C(v, r, T)$$

$$\le k_4v + k_4(r+1 + \log T)\log T + (k_2k_5 + k_4)(T\log T)^{\delta}$$

$$\le (3k_4 + (k_2 + k_4)k_5 + k_4)(T\log T)^{\delta} + k_4(\log T)^{2}$$

$$\le k_7(T\log T)^{\delta} - k_6(T\log T)/v^{1/d} + k_4(\log T)^{2}.$$

Case 2: $v > 3(T \log T)^6$. By definition, hypothesis, and (2.4). $r + 1 + 3T/r^{1/d} \le (k_5 + 3)T/r^{1/d} = (2/3)^{1/d}(k_5 + 3)T/(2w3)^{1/d} \le k_5T/(2w3)^{1/d}$ Thus, by induction and (2.5), $S_B(v, r) \le k_2(r + 1) \log T + S_B(2v/3, r + 37/r^{1/d})$ $\le k_7(T \log T)^6 + k_4(\log T)^6 + (k_2k_5 - (3/2)^6)^{1/d} + (k_1k_2 + k_2k_3)^{1/d}$ $\le k_7(T \log T)^6 + k_4(\log T)^6 + (k_2k_5 - (3/2)^6)^{1/d} + (k_1k_2 + k_2k_3)^{1/d}$ $\le k_7(T \log T)^6 + k_4(\log T)^6 + (k_2k_5 - (3/2)^6)^{1/d} + (k_2k_5 - (3/2)^6)^{1/d}$ $\le k_7(T \log T)^6 + k_4(\log T)^6 + (T \log T)^6$ $(1 \log ((5/2) \log 1 + 1 + 1) + v)_3 + (T \log T)^6$

Theorem 2.1. For all $T(n) \ge \log \log n$ be donot including space $T(n) \log T(n) d^{d}(d+1)$, every nondeterministic definenciated magnine, M with suite branching thind liquides in time T(n) can be simulated by a deterministic Turing magning \tilde{n} (space C(n) log T(n)) $d^{d}(d+1)$.

Proof. Section 2.3 presents a simulation of M by a deterministic modified M in Phoenistic profession (for M calls BLANK-COMP with achief parameter (afficient M). Since $|B_{ij}(n)| \geq T(n)^d \geq (T(n)\log T(n))^d$, Lemma 2.3 implies that M was space $S_{ij}(|B_{ij}(n)|, 0) = O((T(n)\log T(n))^d)^2/(n)^d$ constant-factor tape reduction to destroy the dependent $|B_{ij}(n)| = O((T(n)\log T(n))^d)^2/(n)^d$

 $\leq (2k_1 + 2k_4/3)v + k_4((r+1+3)/r)^{1/d} + \log s \log 7 + (r\log 7)^6)$ $\leq (2k_1 + 2k_4/3 + 3k_4(7/k_3)^{1/d})v + k_4(r+1+\log s) \log T + (r\log 7)^6$

The constructibility hypothesis in Theorem 2.1 seems essential because a modest emissistic smachine M may reject its input word by failing to both. The simulate disorder have a bound on the number of steps of M to simulate believed with the M as a bound on the however, then the combinately flexible particular indicates M as M as M as M as M as M as M.

Theorem 2.2. For all $T(u) \ge u$, every determination of the property of $T(u) \ge u$, every determination of the property of $T(u) \ge u$. The second of the property of the prop

Proof. Run the simulation in Section 2.3 for T=1,2,3,..., searching for both an accepting configuration and a rejecting configuration. If $(T,R) > 2 + T \gcd((t+1)c) \ge (T,R)c$ configuration and $(T,R) + T \gcd(T,R)c + T \gcd(T,R$

Like Paul, Prauss, and Reachget [17], we can devise a simulation by a simulat

Theorem 2.3. For all T(n), every nondeterministic d-dimensional machine with one worktape head that runs in time T(n) can be simulated by an alternating Turing machine in time $O(\max\{n, (T(n)\log T(n))^{d/(d+1)}\})$.

Proof. (Sketch) In the simulation in Section 2.3 make the following routine modifications.

- (i) Guess T(n) nondeterministically.
- (ii) Choose strategies existentially without imposing a bound on space.
- (iii) Replace iterations through partitions of B and through enumerations of R' and π' by existential choices.
- (iv) When a strategy makes two procedure calls, choose both universally.

 The time analysis of this modified simulation is identical to the space analysis of Section 2.4. ■

Chapter 3. A Note on the Pebble Game

A combinatorial "pebble" game on graphs has been used to establish tradeoffs between time and space required for arithmetic expression evaluation [21] and for Turing machine simulation [7]. One places pebbles on the vertices of a directed acyclic graph G in steps according to the following rules:

- (i) A step is either a placement of a pebble on an empty vertex or a removal of a pebble from a vertex.
- (ii) A pebble may be placed on a vertex only if there are pebbles on all immediate predecessors of the vertex. (Thus, a vertex with no predecessors can always be pebbled.)
 - (iii) A pebble may always be removed from a vertex.

A pebbling strategy is a sequence of steps in the pebble game. The goal is to find a pebbling strategy that places a pebble on every vertex of G at least once when the supply of pebbles is limited. This pebble game has been studied extensively; Lengauer and Tarjan [11] provide an exhaustive list of references.

This note develops an explicit strategy that uses $O(n/\log n)$ pebbles to pebble every directed acyclic graph G with n vertices and bounded indegree. Furthermore, for every $S \ge O(n/\log n)$, a variation of this strategy uses S pebbles to pebble G in at most $S 2^{O(n/S)}$ steps. The proofs of these upper bounds, which employ an overlap argument [16], seem more natural than the original proofs [7, 11, 29].

Fix a directed acyclic graph G = (V, E) with vertices V and edges E. Let n = |V| and d be the maximum indegree of the vertices. For subsets W_1 , W_2 of V let $E(W_1, W_2)$ be the set of edges from W_1 to W_2 :

$$E(W_1, W_2) = \{(x, y): (x, y) \in E, x \in W_1, \text{ and } y \in W_2\}.$$

Let $W \subseteq V$. A sequence $(W_1, ..., W_m)$ of subsets of W is a layered partition of W if $\{W_1, ..., W_m\}$ is a partition of W and $E(W_j, W_i) = \emptyset$ for all i and j such that i < j. Let $\omega(W)$ denote the internal overlap of W:

 $\omega(W) = \max\{|E(W_1, W_2)|: (W_1, W_2) \text{ is a layered partition of } W\}.$

Lemma 3.1. If $\omega(V) = r$, then G can be pebbled with r + 1 pebbles in 2n steps.

Proof. Our pebbling strategy comprises n Stages. Put $W_0 = \emptyset$. For j = 1, ..., n, assume inductively that W_{j-1} is the set of vertices that have been pebbled prior to Stage j. At Stage j place a pebble on a vertex x in $V \setminus W_{j-1}$, provided that all its immediate predecessors hold pebbles, and put $W_j = W_{j-1} \cup \{x\}$; then remove pebbles from all vertices y for which all immediate successors of y are in W_j . At the end of each Stage, a pebble remains on a vertex z if and only if some immediate successor of z has not been pebbled.

The rules of the pebble game guarantee that every $(W_j, V \setminus W_j)$ is a layered partition of V. By hypothesis, every $|E(W_j, V \setminus W_j)| \le r$. Therefore, at the end of each Stage there are at most r pebbles on the graph, and the strategy uses at most r+1 pebbles. The strategy has 2n steps because for every x, a pebble is placed on x and removed from x just once.

Lemma 3.2. Let $(W_1, ..., W_m)$ be a layered partition of V. There is a strategy that pebbles G with at most

$$\Sigma_i (\omega(W) + d + 1)$$

pebbles.

Proof. By induction on m. For m=1, Lemma 3.1 asserts a fortion that $\omega(W_1)$ pebbles suffice. Assume that the subgraph of G induced by $V \setminus W_m = W_1 \cup ... \cup W_{m-1}$ can be pebbled with

$$\frac{m-1}{\Sigma} (\omega(W) + d + 1)$$
and the desired for the second of the second second

pebbles via strategy S_{m-1} . We describe informally how to pebble vertices in W_m using $\omega(W_m) + d + 1$ more pebbles.

Let P_m be a set of $\omega(W_m) + 1$ pebbles and Q_m be a set of d pebbles. The pebbles in P_m are placed only on vertices in W_{mr} . The pebbles in Q_m are placed only on vertices in $V \setminus W_{mr}$.

As in the proof of Lemma 3.1, our strategy comprises $|W_m|$ Stages and uses at most $\omega(W_m)+1$ pebbles on W_m . At each Stage select a vertex x in W_m that has not yet been pebbled but all immediate predecessors of x in W_m hold pebbles. Use strategy S_{m-1} to place pebbles from Q_m on the immediate predecessors of x in $V \setminus W_m$. These Q_m -pebbles remain on the immediate predecessors of x until x is pebbled. (By hypothesis, no vertex in W_m is an immediate predecessor of a vertex in $V \setminus W_m$; thus, strategy S_{m-1} may always be employed.) Place a pebble from P_m on x.

Remove all Q_m -pebbles from the graph, returning them to Q_m for later use. Also, remove pebbles from all vertices y in W_m for which all immediate successors of y in W_m have been pebbled, and return these pebbles to P_m .

Lemma 3.3. For every r, there is a layered partition $(W_1, ..., W_m)$ of V such that $m \le 2^{\lceil dn/r \rceil}$ and $\sum_i \omega(W_i) \le r$.

Proof. Assume, to the contrary, that for every layered partition $(W_1, ..., W_m)$ of V, if $m \le 2^{\lceil dn/r \rceil}$, then $\Sigma_i \omega(W_i) > r$. Let $i_0 = \lceil dn/r \rceil$ and $V_{0,0} = V$. For $i = 0, ..., i_0 - 1$, inductively suppose sets $V_{i,j}$ for $j = 0, ..., 2^i - 1$ have been defined. For each j find a layered partition $(V_{i+1,2j}, V_{i+1,2j+1})$ of $V_{i,j}$ such that $|E(V_{i+1,2j}, V_{i+1,2j+1})| = \omega(V_{i,j})$. By assumption, for every i,

$$\Sigma_j \omega(V_{i,j}) > r$$

araya ka da Maya iy Bar.

化性物 医电影 医生物 经收益 化二二二

and consequently,

$$\Sigma_{i \in i_0} \Sigma_j \omega(V_{i,j}) > i_0 r \ge dn.$$

By definition of the sets $V_{i,j}$, the sets of edges $E(V_{i+1,2j}, V_{i+1,2j+1})$ are pairwise disjoint. Since G has at most dn edges,

$$\Sigma_{Ki_0} \Sigma_j \omega(V_{i,j}) = \Sigma_{Ki_0} \Sigma_j |E(V_{i+1,2j}, V_{i+1,2j+1})| \leq dn.$$

Contradiction.

Theorem 3.1. (Hopcroft, Paul, and Valiant [7]) Every directed acyclic graph with n vertices and bounded indegree can be pebbled with $O(n/\log n)$ pebbles.

Proof. Let G = (V, E) be a directed acyclic graph with n vertices and indegree d. Let S(n) satisfy

$$A_{i,j} S(n) = O(n/\log n), A_{i,j+1} A_{i,j+1}$$

$$\log_2\left(S(n)/(2d+2)\right) \ge \lceil 2dn/S(n)\rceil.$$

According to Lemma 3.3, there is a layered partition $(W_1, ..., W_M)$ of V such that $m \le 2^{\lceil 2dn/S(n) \rceil}$ and $\Sigma_i \omega(W_i) \le S(n)/2$. For this partition Lemma 3.2 asserts that some strategy pebbles G with

$$\sum_{i} (\omega(W_i) + d + 1) \leq S(\eta)/2 + m(d + 1) \leq S(\eta) + \frac{1}{2} (\omega(W_i) + d + 1) \leq S(\eta)/2 + \frac{1}{2} (\omega(W_i) + \omega(W_i) + \frac{1}{2} (\omega(W_i) + \frac{1}{2} (\omega(W$$

and the property of the state o

in a consequence of the property of

Contract to the way of grande and the con-

pebbles.

Theorem 3.2. (Lengauer and Tarjan [11]) For every n, d, and S and every directed acyclic graph G with n vertices and indegree d, if $(3d + 4)n/\log_2 n \le S \le n$, then there is a strategy that uses S pebbles to pebble G in at most $S \cdot 2^{O(n/S)}$ steps.

Proof. Let G = (V, E). Set $\alpha = 2d/(3d+2)$ and $\beta = (d+2)/(3d+4)$ and $\gamma = 1 - \alpha - \beta$. Evidently, $\log_2 \log_2 n \le (\log_2 n)/2$ because $(3d+4)n/\log_2 n \le n$ implies $n \ge 16$. It follows that $\log_2 (\beta S/(d+2)) \ge (\log_2 n)/2 \ge (3d+2)n/2S + n/S \ge dn/\alpha S + 1$, hence $(d+2)2^{\lceil dn/\alpha S \rceil} \le \beta S$.

Apply Lemma 3.3 with $r = \alpha S$ to obtain a layered partition $(W_1, ..., W_m)$ of V with $m \le 2^{\Gamma dn/\alpha S}$ such that $\Sigma_i \omega(W_i) \le \alpha S$. For i = 1, ..., m, let P_i be a set of $\omega(W_i) + 1$ pebbles. Distribute the remaining $\beta S - m + \gamma S$ pebbles among sets $Q_1, ..., Q_m$ such that each $|Q_i| \ge L\gamma S |W_i|/nJ + d + 1$.

We define the pebbling strategy inductively. Let T(k) be the number of steps used by this strategy on the subgraph induced by $W_1 \cup ... \cup W_k$. For k = 1, the strategy in the proof of Lemma 3.1 uses $\omega(W_1) + 1$ pebbles, and $T(1) = 2|W_1| \le 2n$.

Suppose that strategy S_{m-1} with T(m-1) steps uses the pebbles in $P_1 \cup ... \cup P_{m-1}$ and $Q_1 \cup ... \cup Q_{m-1}$ to pebble the subgraph of G induced by $V \setminus W_m$. To pebble vertices in W_{mr} carry out the strategy in the proof of Lemma 3.2 with the following modification. Whenever the immediate predecessors in $V \setminus W_m$ of a vertex in W_m must be pebbled, use strategy S_{m-1} to place pebbles from Q_m on the immediate predecessors in $V \setminus W_m$ of the $L[Q_m]/dJ$ vertices in W_m that are pebbled next. Strategy S_{m-1} is invoked at most $\Gamma[W_m]/L[Q_m]/dJ$ $\leq \Gamma dm\gamma S I$ times. Therefore,

$$T(m) \leq \lceil |W_{m}|/L|Q_{m}|/dA \sqcap T(m-1) + 2 |W_{m}|$$

$$\leq (1 + dn/\gamma S) T(m-1) + 2n$$

$$\leq 2n [1 + (1 + dn/\gamma S) + ... + (1 + dn/\gamma S)^{m-1}]$$

$$\leq 2n (1 + dn/\gamma S)^{m}/(dn/\gamma S)$$

$$\leq (2\gamma/d)S \exp_{2} \exp_{2} (\Gamma dn/\alpha S \sqcap + \log_{2} \log_{2} (1 + dn/\gamma S))$$

$$= S 2^{Q(n/S)}.$$

(In general, $\exp_2 u = 2^u$.)

Theorem 3.2. (Less and Janiar III) for even a death and v denoted an even v denoted an even v with v vertices and indegree v if $(3d+4)ut\log_2 u \le S \le u$, then there is a strategy that uses S pobletes to pehble v in at most S $2^2 O(u/S)$ steps.

It is important to understand how efficiently one data structure or mapping simulates applied in the sold of $1 \le n$ sold o

We will complete the property of the property

The suppose of the state of the state of the suppose of the suppos

AND DESCRIPTION OF THE ASSESSMENT OF THE PROPERTY OF THE ASSESSMENT OF THE ASSESSMEN

A simple controlling of a great group $G = \{V, P\}$ implified apply $M := \{P', E'\}$ is an injection $\psi : V \to P'$. Each $\max_{\{P', P'\}} f_{\{P'\}} f_{\{P$

for all x, y in V. This cost measures the time required specialty: y is so in a great data structure that is simulated by a host data structure. DeMillo, Phenson, and Lipson [1] payrighthrough control every!) simple embedding of Γ_{yy} into a binary tree is at least log y = 3/2. Receding and Snyder [24, 25] analyzed a more elaborate cost measure that incorporates "veights" on indicate F and "urage patterns" on G. We would like to extend these results on static embeddings among data structures to derive bounds on the time complexity of dynamic simulations among automata with different storage

structures.

A tree machine has a finite-state control and several heads on a worktape having the structure of a complete infinite binary tree. Section 4.2 presents an argument that suggests that to simulate a two-dimensional Turing machine by a tree machine on-line requires time $\Omega(n(\log n)^{1/2})$ if the simulator uses space O(n). Proofs omitted from Section 4.2 appear in Section 4.3.

Section 4.4 outlines further research problems on comparing automata with different storage structures.

4.2. Static Embeddings Versus Dynamic Simulations

Let ψ be a simple embedding of Γ_m into a binary tree B. Call a pair of vertices (x, y) a separated pair (for ψ) if

$$d_B(\psi(x), \psi(y)) \ge \log_2 m - (\log_2 \log_2 m)/2 - 3.$$

A path $(v_0, ..., v_p)$ includes a consecutive pair of vertices (x, y) if $x = v_i$ and $y = v_{i+1}$ for some i. DeMillo, Eisenstat, and Lipton [1] proved that separated pairs for ψ exist. Proposition 4.1, which is proved in Section 4.3, asserts that some path in Γ_m includes many consecutive separated pairs.

Proposition 4.1. For every binary tree B, every even $m \ge 32$, and every simple embedding ψ of Γ_m into B, there is a path in Γ_m of length at most 7m that includes at least

distinct consecutive separated pairs.

We employ Proposition 4.1 to argue informally that every tree machine that simulates a two-dimensional Turing machine on-line in space O(n) for inputs of length n may require time $\Omega(n(\log n)^{1/2})$ in the worst case. This argument has not been developed into a rigorous proof yet, however.

Consider a two-dimensional Turing machine M with one worktape head whose input alphabet consists of the eight pairs $\langle b, \delta \rangle$ where $b \in \{0, 1\}$ and δ is one of the four directions that the worktape head can move at each step. Machine M operates in real time – it processes one input symbol at every step. Suppose M is in a configuration in which the cell C scanned by the worktape head contains b'; on input $\langle b, \delta \rangle$, M writes b on C, writes b' on the output tape, and moves the worktape head in direction δ .

Let M' be a tree machine that simulates M on-line in space O(n). Assume that for every worktape cell C of M, machine M' assigns one of its tree tape cells to hold the contents of C. Thus, M' determines a simple embedding of every $\Gamma_{m'}$ into its binary tree structure.

Construct an input word wof length n as follows. The first n/2 symbols of w induce M to fill a square of side $m = (n/2)^{1/2}$ on its worktape with 0's and 1's. The last n/2 symbols drive the head of M on n/18m paths of length 9m that each includes at least $m/32(\log_2 m)^{1/2}$ distinct consecutive separated pairs of cells; each of these paths begins with a path of length 2m that drives the worktape head of M to the first cell of the path of length 7m whose existence is guaranteed by Proposition 4.1. Because M' has a finite-state control, it can remember the contents of only a finite number of separated pairs internally. Consequently, it is plausible that for each new separated pair (x, y) that M encounters, M' spends time $\Omega(\log m)$ moving a worktape head from the representative of x to the representative of y. Hence on input m, M' may require time

 $\Omega[(n/18m)(m/32(\log_2 m)^{1/2})(\log m)] = \Omega(n(\log m)^{1/2}) = \Omega(n(\log m)^{1/2}).$

A tree machine M" that uses superlinear space might simulate M. faster. Reischuk [23] devised an on-line simulation that operates in time $O(n e^{\log^4 n})$ for a constant c, but uses space $O(n e^{\log^4 n})$, Each cell that M uses has $O(e^{\log^4 n})$ representatives in the worktape of M".

Lipton, Fisenstat, and DeMillo [13] introduced a formulation of data structure embedding that permits multiple representatives of vertices of the guest graph. Let G = (V, E) and $H = (V^*, E^*)$ be graphs. An embedding of G into H is a map $\varphi \colon V^* \to V \cup \{\Lambda\}$, where $\Lambda \in V$, such that $|\varphi^{-1}(x)| \ge 1$ for every x in V. If $\varphi(x^*) = x$, then x^* is a representative of x. The space cost of φ is max $\{|\varphi^{-1}(x)|: x \in V\}$. The strong time cost $T_*(\varphi)$ of φ is the smallest T such that

for every x^* in V^* such that $\varphi(x^*) \neq \Lambda$ and every y in V such that $d_G(\varphi(x^*), y) < \infty$, there exists y^* in $\varphi^{-1}(y)$ and $d_H(x^*, y^*) \leq T d_G(\varphi(x^*), y)$.

The weak time cost $T_{\mathbf{N}}(\mathbf{p})$ of \mathbf{p} is the smallest T such that

for every x and y in V such that $d_G(x, y) \leqslant \infty$, there exist x^* in $\varphi^{-1}(x)$ and y^* in $\varphi^{-1}(y)$ such that $d_H(x^*, y^*) \le T d_G(x, y)$.

In general, $T_s(\varphi) \ge T_{\mathbf{p}}(\varphi)$. If φ has space cost 1, then $T_s(\varphi) = T_{\mathbf{p}}(\varphi)$.

Proposition 4.2. (Lipton, Eisenstat, and DeMillo [2].) If φ is an embedding of Γ_m into a binary tree with space cost S, then

$$T_s(\varphi) + \log_2 \log_2 S \ge \log_2 m - c' \log_2 \log_2 m$$

for a positive constant c' independent of m.

Reischuk's embedding of Γ_m into a binary tree [23] has space $\cos t \, c^{\log^* m}$, hence unbounded strong time cost by Proposition 4.2, but bounded weak time cost. His simulation runs quickly because the weak time cost of the embedding is constant. Therefore, Reischuk's simulation suggests that the strong time cost measure may be inappropriate for establishing a lower bound on the time required by a tree machine to simulate a multidimensional Turing machine on-line when the simulator is not confined to O(n) space.

4.3. Proof of Proposition 4.1

The graph G = (V, E) is connected if for every x, y in V there is a path from x to y. Let $U \subseteq V$. The boundary of U, denoted ∂U , is the set of vertices in U that have a neighbor in $V \setminus U$. Write G(U) for the subgraph of G induced U. A connected component of G is a subgraph G(W) induced by a set of vertices W such that G(W) is connected and $d_G(x, z) = \infty$ for all x in W and z in $V \setminus W$. The size of a component is the number of vertices that it has.

If P_1 is a path from x to y and P_2 is a path from y to z, then the concatenation of P_1 and P_2 , written $P_1 \cdot P_2$, is the path from x to z obtained from P_1 by replacing the last vertex y by P_2 . The concatenation operator \cdot is associative.

Lemma 4.1. For every set U of u vertices in Γ_{mr} there is a path of length at most $2m(u^{1/2}+1)$ in Γ_{mr} that includes all the vertices in U.

Proof. (Steiglitz and Papadimitriou [28].) Set $s = \lceil m/u^{1/2} \rceil$, $h^* = \lceil m/s \rceil - 1$, and for $h = 0, ..., h^*$,

$$U_h = \{(i, j): (i, j) \in U \text{ and } hs + 1 \le j \le (h + 1)s\};$$

 $\{U_0, ..., U_{h^*}\}\$ is a partition of U. Construct the path P as follows. First visit the vertices in U_0 in lexicographic order, then the vertices in U_1 in reverse lexicographic order, then the vertices in U_2 in lexicographic order, then U_3 in reverse lexicographic order, and so on. (In the usual lexicographic ordering of pairs of integers, (i, j) precedes (i', j') if either i < i' or i = i' and j < j'.) Index U according

to the order visited by P: $U = \{(i_1, j_1), (i_2, j_2), ..., (i_{k'}, j_{k'})\}$. Set $\Delta i_k = |i_{k+1} - i_k|$ and $\Delta j_k = |i_{k+1} - j_k|$. If (i_k, j_k) and (i_{k+1}, j_{k+1}) are in the same U_h , then $\Delta j_k \leq s-1$; if $(i_k, j_k) \in U_h$ but $(i_{k+1}, j_{k+1}) \in U_{h+1}$, then $\Delta j_k \leq 2s-1 = (s-1)+s$. Therefore,

$$\Sigma_k \Delta j_k \leq (u-1)(s-1) + h^*s \leq u(s-1) + m.$$

One verifies routinely that

$$\Sigma_k \Delta i_k \le (h^* + 1)m \le (1 + m/s)m = m + m^2/s$$
.

Ergo, P has length

$$\begin{split} \Sigma_k & (\Delta i_k + \Delta j_k) \leq 2m + u(s-1) + m^2/s \\ & \leq 2m + u(\Gamma m/u^{1/2} \gamma - 1) + m^2/\Gamma m/u^{1/2} \gamma \\ & \leq 2m + m u^{1/2} + m u^{1/2} \\ & \leq 2m (u^{1/2} + 1). \ \blacksquare \end{split}$$

Lemma 4.2. Let σ be a sequence of s symbols over $\{\alpha, \beta\}$ and let b be the number of β symbols in σ . For every $r \le b/2$ there is a consecutive subsequence of σ of $\lceil sr/(b-r) \rceil$ symbols that contains at least r symbols β .

Proof. Set $t = \lceil sr/(b-r) \rceil$; note that $t \ge sr/(b-r)$ implies $tb/(s+t) \ge r$. Form a sequence σ' of $t \lceil s/t \rceil$ symbols by appending $t \lceil s/t \rceil - s$ symbols σ to the end of σ . Partition σ' into $\lceil s/t \rceil$ consecutive subsequences of t symbols each. One of these consecutive subsequences σ'' must have at least $b/\lceil s/t \rceil \ge b/(s/t+1) = tb/(s+t) \ge r$ symbols β . If σ'' is not the final subsequence of σ' , then it is a subsequence of σ ; otherwise, if σ'' is the final subsequence of σ' , then the last t symbols of σ form a consecutive subsequence of σ with at least t symbols t.

Lemma 4.3. Let $m \ge 32$ and U be a nonempty set of vertices in Γ_m such that $|U| \le m^2/2$ and $\Gamma_m(U)$ is connected. For every $r \le (|U|/8)^{1/2}$, there is a path P of length at most 9r - 1 that includes at least r distinct vertices of ∂U .

Proof. Call (i, j) in Φ_m a boundary vertex if $(i, j) \in \partial U$; call other vertices of Φ_m nonboundary vertices. We shall find a path with at most 9r vertices that contains at least r distinct boundary vertices. Set

 $i^* = \max \{i: (i, j) \in U \text{ for some } j\},$ $i_* = \min \{i: (i, j) \in U \text{ for some } i\},$ $j^* = \max \{j: (i, j) \in U \text{ for some } i\},$ $j_* = \min \{j: (i, j) \in U \text{ for some } i\}.$

Case 1: Either $i_* > 0$ or $i^* < m$ and either $j_* > 0$ or $j^* < m$. Without loss of generality, assume $i^* - i_* \ge j^* - j_*$. Becasue

$$|U| \le (i^* - i_* + 1)(j^* - j_* + 1),$$

it follows that

$$i^* - i_* + 1 \ge |U|^{1/2}$$
.

We construct a path Q such that for every $r \le (|U|/8)^{1/2} \le (i^* - i_* + 1)/2$, there is a consecutive subsequence of Q with at most 4r vertices that contains at least r distinct boundary vertices.

Assume $j^* \le m$; the case $j_* \ge 0$ is similar. Since $\Gamma_m(U)$ is connected, for every i such that $i_* \le i \le i^*$ there is some j for which $(i,j) \in U$. For $i=i_*$, i_*+1 , ..., i^* , set

$$J(i) = \max \{j: (i,j) \in U\}.$$

By assumption, every $J(i) \le j^* \le m$; thus, every (i, J(i)) is a boundary vertex.

For $i = i_{\bullet}$, $i_{\bullet} + 1$, ..., $i^{\bullet} - 1$, construct a path Q(i) from (i, A(i)) to (i + 1, J(i + 1)) as follows. If J(i) > J(i + 1), then let Q(i) be the path

all vertices on this path except possibly $(i, \mathcal{N}(i+1))$ are boundary vertices. If $\mathcal{N}(i) \leq \mathcal{N}(i+1)$, then let Q(i) be the path

$$(i, J(i)), (i + 1, J(i)), (i + 1, J(i) + 1), ..., (i + 1, J(i + 1) - 1), (i + 1, J(i + 1));$$
 all vertices on this path except possibly $(i + 1, J(i))$ are boundary vertices.

Set $Q = Q(i_*) \cdot Q(i_* + 1) \cdot \dots \cdot Q(i^* - 1)$. Path Q contains the $i^* - i_* + 1$ boundary vertices (i, J(i)), which each occur exactly once in Q. Let b' be the number of other boundary vertices in Q; each of these occurs at most twice. There are at most $i^* - i_*$ occurrences of nonboundary vertices—one in each Q(i). Path Q has at most $2(i^* - i_*) + 2b' + 1$ vertices; including repetitions; it has at least $i^* - i_* + 1 + b'$ distinct boundary vertices. Apply Lemma 4.2 with $s \neq 2(i^* - i_*) + 2b' + 1$ and $b = i^* - i_* + 1 + b'$ to obtain a path with $\Gamma(2(i^* - i_*) + 2b' + 1)n/(i^* - i_* + 1 + b' - n)$? $\leq \Gamma(2(i^* - i_*) + 2b' + 1)/((i^* - i_* + 1)/(2 + b'))$? $\leq 4r$ vertices that contains at least r distinct boundary vertices.

Case 2:
$$i_* = 0$$
 and $i^* = m$. For $j = 1, ..., m$, set

$$U_j = U \cap \{(1, j), ..., (m, j)\};$$

 U_j is the jth column of U. There is at least one column U_k such that $|U_k| \le \Gamma m/2 \$; otherwise, all m columns of U would have at least $\Gamma m/2 \ + 1$ vertices, and $|U| \ge m (\Gamma m/2 \ + 1) > m^2/2$, contrary to hypothesis.

Let $|U_k| = u$, and let $i_1, ..., i_u$ be the i in increasing order for which $(i, k) \in U_k$. Define

$$J(i_t) = k$$
 for $t = 1, ..., k$.

We define J(i) for other i as follows. Set $i_0 = 0$ and $i_{u+1} = m$. Since $\Gamma_m(U)$ is connected, for every $0 \le t \le u$ either

- (a) for every i such that $i_1 < i < i_{j+1}$ there exists j < k such that $(i,j) \in U$; or
- (b) for every isuch that $i_1 < i < i_{t+1}$ there exists $j > i_t$ such that $(i, j) \in U$.

If condition (a) holds, then call
$$\{i_l, i_{l+1}\}$$
 an interval of i_l pe(h), and for $i_l < i < i_{l+1}$, set
$$A(i) = \max\{j: j < k \text{ and } (i, j) \in U\}.$$

If condition (b) holds, then call $[i_l, i_{l+1}]$ an interval of type (b), and for $i_l < i < i_{l+1}$, set

All = min $\{j, j > k \text{ and } (i_l) \in U\}$.

By definition, unless $i = i_1$ for some t, every $(i, J(i)) \in \partial U$. Thus, at least $m - u \ge Lm/2J$ vertices of the form (i, J(i)) are boundary vertices.

For i=1,...,m-1, we define a path Q(i) from (i,J(i)) to (i+1,J(i+1)) such that at most one interior vertex of Q(i) is a nonboundary vertex. Suppose [i,i+1] lies in an interval [i,i+1] of type (a); the definition of Q(i) for an interval of type (b) is similar. If J(i)>J(i+1), then let Q(i) be the path

all interior vertices on this path except possibly (i. $\mathcal{K}_i + 1$)) are boundary vertices. If $\mathcal{K}_i \leq \mathcal{K}_i + 1$), then let $\mathcal{Q}(i)$ be the path

(i, \mathcal{N}_i), (i + 1, \mathcal{N}_i), (i + 1, \mathcal{N}_i), ..., (i + 1, \mathcal{N}_i + 1)-1), (i + 1, \mathcal{N}_i + 1)); all interior vertices on this path except possibly (i + 1, \mathcal{N}_i) are boundary vertices.

Set $Q = Q(1) \cdot Q(2) \cdot ... \cdot Q(m-1)$. This path contains at least Lm/24 boundary vertices (i, J(i)) for $J(i) \neq k$. Let Q have b' other boundary vertices; each of these electrical most twice in Q. Path Q has m vertices (i, J(i)) that each occur once; it has m-1 occurrences of nonboundary interior vertices among the Q(i). Therefore, Q has at most m+2b'+m-1=2m+2b'-1 vertices, including repetitions; it has at least Lm/2J+b' distinct boundary vertices. By hypothesis, $r \leq (|U|/8)^{1/2} \leq$

 $m/4 \le Lm/2J/2 + 1/2$. Apply Lemma 4.2 to Q with s = 2m + 2b' - 1 and b = Lm/2J + b' to find a path with

$$\Gamma(2m + 2b' - 1)r/(\lfloor m/2 \rfloor + b' - r) \rceil \le \Gamma(2m + 2b' - 1)/(\lfloor m/2 \rfloor/2 + b' - 1/2) \rceil r$$

$$\le \Gamma(2m + 2b' - 1)/(m/4 - 1 + b') \rceil r$$

$$\le 9r \text{ (because } m > 32\text{)}$$

vertices that contains at least r distinct boundary vertices.

Case 3:
$$j_* = 0$$
 and $f^* = m$. Similar to Case 2.

Lemma 4.4. Let U^* be the vertices of a subtree of a binary tree. For every subset W^* of r vertices in U^* , at least r/2 vertices of W^* are at distance at least $\log r$ from vertices not in U^* .

Proof. Let $D = \log r - 1$. The maximum number of vertices of W^* that can be at distance at most D from a vertex not in U^* is $2^D - 1 = r/2 - 1$. At least $r - (r/2 - 1) \ge r/2$ vertices of W^* must be at distance at least D + 1 from vertices not in U^* .

Proof of Proposition 4.1. Let U^* be the vertices of a subtree of B such that $m^2/4 \le |\psi^{-1}(U^*)| \le m^2/2$; such a subtree exists because m is even. Set $U = \psi^{-1}(U^*)$. Let the subgraph $\Gamma_m(U)$ induced by U have c connected components, and let $u_1, u_2, ..., u_c$ be the sizes of these components in decreasing order.

Set $M = m^2$ and $k_0 = \log M - \log \log M - 2$. (All logarithms are taken to base 2.) For $k = 0, 1, ..., k_0$ set

$$t_k = M/4(2^k \log M) = m^2/8(2^k \log m).$$

By definition, $t_{k_0} = 1$.

We claim that for some k there are at least 2^k connected components of $\Gamma_m(U)$ of size at least t_k . Suppose, to the contrary, that for every k there are at most $2^k - 1$ components of $\Gamma_m(U)$ of size at least t_k . Then $u_1 < t_0$. Since there is at most 1 component of size at least t_1 and $u_1 \ge u_2 \ge u_3$, we infer that $u_2 < t_1$ and $u_3 < t_1$. In general, for all k and all $0 \le j \le 2^k - 1$,

$$u_{2k+j} < \iota_k$$

Consequently,

$$|U| = \sum_{i} u_{i} < \sum_{k=0}^{k_{0}} 2^{k} t_{k} = (k_{0} + 1)(M/4 \log M) \le M/4.$$

But $|U| \ge M/4$. Contradiction.

Let $U_1, ..., U_{2^k}$ be the sets of vertices of the 2^k largest components of $\Gamma_m(U)$ such that $|U_i| \ge t_k$ for each i. For each i, $|U_i| \le |U| \le m^2/2$. Apply Lemma 4.3 with $r = (t_k/8)^{1/2}$ to obtain a path P_i of length at most $9(t_k/8)^{1/2} - 1$ that contains a set W_i of at least $(t_k/8)^{1/2}$ vertices of ∂U_i . Put

$$W = W_1 \cup ... \cup W_{2k}$$

By definition, $|W| \ge 2^k (l_k/8)^{1/2} = 2^{k/2} m/8 (\log m)^{1/2}$, and every vertex in W has a neighbor in $\Phi_m \setminus U$.

By Lemma 4.4, since $\psi(W) \subseteq \psi(U) = U^*$, at least half of the vertices in $\psi(W)$ are at distance at least

$$\log |\mathcal{W}| \ge \log m - (\log \log m)/2 - 3$$

from all vertices in $\psi(\Phi_m \setminus U)$. Let W be a set of |W|/2 vertices x in W such that (x, y) is a separated pair for every y in $\Phi_m \setminus U$.

Let y_i be the first vertex in P_i and z_i be the last. Let P_i' be a path from z_i to y_i whose length is at most the length of P_i . Let $Q_i = P_i \cdot P_i'$; path Q_i from y_i to y_i has length at most $18(t_k/8)^{1/2} \cdot 2$. Invoke Lemma 4.1 to obtain a path R of length at most $2m(2^{k/2}) + 2m$ that visits every y_i . Construct a path R' from R by substituting Q_i for an occurrence of y_i in R for each i. Path R' has length at most

$$2m(2^{k/2} + 1) + 2^k(18(s_k/8)^{1/2} - 2) \le 4m2^{k/2} + 2^{k/2}18m/8(\log m)^{1/2} - 2$$

 $\le 4m2^{k/2} + 2^{k/2}18m/16 - 2 \text{ (because } m \ge 16)$
 $\le 6m2^{k/2} + 2$

and includes the vertices in W'. Apply Lemma 4.2 with $s = 6m2^{k/2}$, $b = |W'| \ge 2^{k/2}m/16(\log m)^{1/2}$ and $r = m/32(\log m)^{1/2}$ to obtain a subsequence S of R' of length at most 6m with a subset W''' of $m/32(\log m)^{1/2}$ vertices in W'. Construct path S' from S by replacing an occurrence in S of each vertex x in W''' by the sequence (x, y, x) for some neighbor y of x such that $y \in \Phi_m \setminus U$; by definition of W'', each (x, y) is a separated pair. Path S' has length at most $6m + 2|W''| \le 7m$ and includes at least $|W''| = m/32(\log m)^{1/2}$ distinct separated pairs.

4.4. Open Problems

A comparison of multidimensional Turing machines and machines with other storage structures describes quantitatively how the structures of the machines affect their efficiency. When studying these machines, we may attempt to generalize theorems about conventional one-dimensional machines. But we should not be interested in generalization for its own sake. Rather, we should determine what properties of conventional Turing machines are not artifacts of the linearity of the machine's tapes to demonstrate that phenomena such as the time-space tradeoff [7] occur ubiquitously in computations.

The following problems remain open.

- 1. Can a d-dimensional Turing machine simulate an e-dimensional Turing machine of time complexity T(n) in time $O(T(n)^{1+1/d-1/e})$ on-line? Or can the lower bound $\Omega(T(n)^{1+1/d-1/e})$ be increased?
- 2. Can Reischuk's simulation of a multidimensional machine by a tree machine [23] be improved? If the space used by the on-line simulator is restricted to O(n) when the d-dimensional machine runs for n steps, must the simulator use $\Omega(n) (\log n)^{1-1/d}$ time?
- 3. Can a d-dimensional machine simulate a tree machine of time complexity T(n) in time $O(T(n)^{1+1/d}/\log T(n))$ on-line?
- 4. Do similar time bounds hold for simulations among nondeterministic machines? Can a nondeterministic Turing machine of time complexity T(n) be simulated by a nondeterministic machine in space $T(n)/\log T(n)$?

References

- [1] R.A. DeMillo, S.C. Eisenstat, and R.J. Lipton. Preserving average proximity in arrays. Comm. ACM 21 (1978) 228-231.
- [2] R.A. DeMillo, S.C. Eisenstat, and R.J. Lipton. Space-time trade-offs in structured programming: An improved combinatorial embedding theorem. J. ACM 27 (1980) 123-127.
- [3] D. Ju. Grigor'ev. Imbedding theorems for Turing machines of different dimensions and Kolmogorov's algorithms. Soviet Math. Dokl. 18 (1977) 588-592.
- [4] D. Yu. Grigoriev. Time complexity of multidimensional Turing machines. Translated by A. Shvartsman, Cornell Univ., 1980.
- [5] J. Hartmanis and R.E. Stearns. On the computational complexity of algorithms. *Trans. Amer. Math. Soc.* 117 (1965) 285-306.
- [6] F.C. Hennie. On-line Turing machine computations. *IEEE Trans. Elec. Comp.* EC-15 (1966) 35-44.
- [7] J. Hopcroft, W. Paul, and L. Valiant. On time versus space. J. ACM 24 (1977) 332-337.
- [8] J.F. Hopcroft and J.D. Ullman. Relations between time and tape complexities. J. ACM 15 (1968) 414-427.
- [9] J.E. Hopcrost and J.D. Ulsman. Formal Languages and their Relation to Automata. Addison-Wesley, 1969.
- [10] D.E. Knuth. The Art of Computer Programming, vol. 1: Fundamental Algorithms. Addison-Wesley, 1968.
- [11] T. Lengauer and R.E. Tarjan. Upper and lower bounds on time-space tradeoffs. *Proc. 11th Ann. ACM Symp. on Theory of Computing*, 1979, pp. 262-277.
- [12] B. Leong and J. Seiferas. New real-time simulations of multihead tape units. *Proc. 9th Ann. ACM Symp. on Theory of Computing*, 1977, pp. 239-248.
- [13] R.J. Lipton, S.C. Eisenstat, and R.A. DeMillo. Space and time hierarchies for classes of control structures and data structures. *J. ACM* 23 (1976) 720-732.
- [14] M.C. Loui. A space bound for one-tape multidimensional Turing machines. Tech. Memo. TM-145, Lab. for Computer Science, Mass. Inst. Tech., Nov. 1979.
- [15] M.S. Paterson. Tape bounds for time-bounded Turing machines. J. Comp. Sys. Sci. 6 (1972) 116-124.
- [16] M.S. Paterson, M.J. Fischer, and A.R. Meyer. An improved overlap argument for on-line multiplication. *Complexity of Computation*, SIAM-AMS Proc. vol. 7, ed. R. Karp, Amer. Math. Soc., 1974, pp. 97-111.

- [17] W.J. Paul, E.J. Prauss, and R. Reischuk. On alternation. Proc. 19th Ann. Symp. on Foundations of Computer Science, 1978, pp. 113-122.
- [18] W.J. Paul and R. Reischuk. On time versus space II. Proc. 20th Ann. Symp. on Foundations of Computer Science, 1979, pp. 298-206.
- [19] W.J. Paul, J.I. Seiferas, and J. Simon. An information-theoretic approach to time bounds for on-line computation. *Proc. 12th Ann. ACM Symp. on Theory of Computing*, 1980, pp. 357-367.
- [20] W.J. Paul, R.E. Tarjan, and J.R. Celoni. Space bounds for a game on graphs. *Math. Systems Theory* 10 (1977) 239-251.
- [21] N. Pippenger. A time-space trade-off. J. ACM 25 (1978) 509-515.
- [22] N. Pippenger and M.J. Fischer. Relations among complexity measures. J. ACM 26 (1979) 361-381.
- [23] R. Reischuk. A fast implementation of a multidimensional storage into a tree storage. *Proc. 7th Intern. Colloq. on Automata, Languages, and Programming, Springer-Verlag, 1980, pp. 531-542.*
- [24] A.L. Rosenberg. Data encodings and their costs, Acta Informatica 9 (1978) 273-292.
- [25] A.L. Rosenberg and L. Snyder. Bounds on the costs of data encodings. *Math. Systems Theory* 12 (1978) 9-39.
- [26] J.E. Savage and S. Swamy. Space-time trade-offs on the FFT algorithm. *IEEE Trans. Info. Theory* IT-24 (1978) 563-568.
- [27] A. Schönhage. Real-time simulation of multidimensional Turing machines by storage modification machines. Tech. Memo. 37, Project MAC, Mass. Inst. Tech., Dec. 1973.
- [28] K. Steiglitz and C.H. Papadimitriou. The Computational Complexity of Combinatorial Optimization Problems. Prentice-Hall, to appear 1981.
- [29] M. Tompa. Time-space tradeoffs for computing functions, using connectivity properties of their circuits. *Proc. 10th Ann. ACM Symp. on Theory of Computing*, 1978, pp. 196-204.

BIOGRAPHICAL NOTE

Michael Conrad Loui was born June 1, 1955 in Philadelphia, Pewisylvania. He attended Punahou School in Honolulu. Hawaii and graduated June 1972 with awards in forensies, German, mathematics, and science.

At Yale University, which he entered in September 1972, Mr. Loui earned the B.S. degree in May 1975, summa cum laude, with distinction in Mathematics and Computer Science. He was elected to Phi Beta Kappa, Sigma Xi, and Tau Beta Pi. Also, he received a German prize and the Yale Science and Engineering Association High Scholarship Award. His Senior Essay took second place in the 1975-1976 ACM Forsythe Student Paper Competition. In 1975 he edited a collection of critiques of engineering and computer science courses at Yale.

In the summer of 1974 he performed research in adaptive control in the Department of Engineering and Applied Science at Yale. During the summers of 1973 and 1975 he was a data processing programmer at Industry Data Services in Honolulu.

Mr. Loui matriculated at M.I.T. in September 1975 and completed the S.M. degree in Electrical Engineering and Computer Science in February 1977. He served as an officer of the M.I.T. Graduate Student Council. Throughout his graduate study he has been supported by a fellowship from the Fannic and John Hertz Foundation.

His professional interests include the theory of computation (algebraic and combinatorial algorithms, automata, and computational complexity), software engineering, and other areas of modern applied mathematics, especially stochastic processes, optimization, and systems science. In addition to the papers in this thesis he has published the following:

Space-bounded simulation of multitage Turing machines, with k.M. Adleman. Tech. Memo. TM-148, Lab. for Comp. Sci., M.I.T., Jan. 1980. To appear in Mathematical Systems Theory.

The space complexity of two pebble games on trees: [Fech: Memo. TM-133, Fab. for Comp.]

Sci., M.I.T., May, 1979. Additional of the complete o

Minimum register allocation is complete in polynomial space. Tech. Memo. TM-128, Lab. for Comp. Sci., M.L.T., Mar. 1979.

Efficient multiplication in semisimple algebras, with A.S. Willisky. Proc. 1978 Conf. on Information Sciences and Systems, Johns Hopkins Univ., pp. 61-65.

lifficient multiplication in seminimple algebras 8.1d. Thenks W.F.T., Feb. 1977. Also Tech. Rep. R-700. Electronic Systems Lab., M.J.T., Nov. 1976.

Weighted derivation trees. Communications of the ACM 19 (1976) 509-513.

Comparison of learning automata operating in nonstationary environments, with K.S. Narendra. Becton Ctr. Tech. Rep. CT-65, Yale Univ., May 1975.

Mr. Loui regularly serves as a referee for scientific journals. Reginning September 1980 he will be a research associate in computer science at M.I.T.

Active in the performing arts, Mr. Loui plays the piano and writes music. At Punahou he composed and arranged several songs for an original musical comedy. His "Waltz-Fantasie" was performed at Yale in 1974. At M.I.T. he played the Boatswain in H.M.S. Pinafore and was stage manager for two one-act plays.

He enjoys running, sailing, squash, and ballroom dancing. In his spare time he cultivates interests in music, philosophy, and American history.