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Part I: Introduction

l I The HIBOL Lang‘uage A Brrcf lnlroducuon

‘ The notion of the data driven |oop arises in connection withour -work ’rn the Very High ]
. Level Language HIBOL and the automatic programming system (ProtoSystem l) that supports it.
Although the concept is of general interest outside of VHLL‘s and automatic programming we
find it profrtable to use HIBOL as a vehicie for our discussron and a means of narrowing the
~ scope of our discussion. Therefore we ﬂrst present a brief description of the domain which

HIBOL treats.

111 Flows
The HIBOL language concerns a r'estri&ed uut significant ‘subset ”‘of_‘ al data‘ processing
applications batch oriented systems involving the repetitive*processing of indexed records from
data files. It provudes a concise and- pouerﬁst way of dealing with data’ lggngates HIBOL has a1 '
single data type, the flow. This comstruct is a (possibly’ nsfmed) data iggregate and répresents a
collection of uniform records that are individually and uniquely indexed by a muitifcomponent; ’
| inde_x. ‘The components of a fiw’svindex are calied kéys and the sehoi”an index’s keys is called its
key-tuple.! Each record has a single data fieidf‘(damu) inadditlon to“the index infomatlm
(Reai world data- aggregates, such as i‘iies with more than one datum ‘per Iogial record are

abstrated in HIBOL as separate (bws.«nefol each datw field) -

' This term is historical. A more expressive term woukd be “key set”, but that has historically
been used to indicate the universe from which a key may take its values.



112 Flow Expressions

Flow expressions can be formed through the applicanon of amhmeuc opentors such as "+ -
~©or ¥ to flows. The meaning of such an application to mo ﬂows is that lhe operation is apphcd to
the data of correspondmg records (tbose with mz(chmg mdkes) of the argumem ﬂow& Tbe result
is a new flow, havmg a record for each matched pair for \ﬂnch the operauon was petformed The
index value of such a record is identical to that of the matcbed pah' and the damm value is thev
result of the operation performed on the data of the pair This ooncept is gencralilcd to an
arbitrary number of flow arguments. |
Flow expressions can ako be constructed using a conditional operator (similar to a 'CASE';

statement) which evaluates logical expressions in terms of corresponding flow records in orderto
sefect and then cqmpute an exprcssimras the individual:records of tbeﬂwsm proeessed The
| Jogical expressions are constructed using the arithmetic comparison operators %, "=", and "<". In-
_ additim;‘thengSEm operator may be.used: to test the pmm;o(a record in a flow for a given
value of the index of that flow. . These may bemmhgh logical connectives "AND", "OR”
and "NOT". |

" Finally, there is.a class. of seduction opcrampermmad on flows and flow expressions. The
function of such anopm%ousmnduceaﬂwuﬁhmniqiﬂutoeuiw%anm—kqmdex ;
wherem <n, and the key-tuple of the m-key index is:suhud‘thkq{npkd‘lhen-teym .
Al records of the argument flow that cmm;m;ma the resurlt forvn: 2 set 16 which'

a reduction operator {eg. ;maxim_um', “sum”) can be applied to obtain a single value.
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'I.L?{ F Igw‘ Equations
Relation;hips,betweeq flows are are expressed-by flew equations of the form:
<flou-name> IS <flou-expression>
where <Hou—name>' is a named flow and <flou-expression> is a flow expression in terms of

named flows. The right- and left-hand sides must have identical indices. -

114 Example

Consider a chain of stores whose items are supplied from a central warehouse.. The collection
of store orders for item restockiag on a given:day an be thcnght of 8 a ﬂow called, say,
CURRENTORDER. A record of that flow contains the quanmy ordcred by a pamcular store of a
pamcular item. Each record has as its datum the quantity ordered and a 2-component index
identifying the store making the order and the item ordered (the keys of the index are a store-id
and an item-id). Let BACKORDER be the name of a flow (of sitnilar structure) tepnsemlng the _
~collection of (quantities of) previous ordérs that could either net be filled or-filled only partially.
The HIBOL statement

DEMAND IS CURRENTORDER + BACKORDER
describes a new flow DEMAND representing the total demand of each'item by each store. That is,
eachﬁ 'fgcord, in DEMAND contains a 2-component (item-id, store-id) index identifying its datﬁm which
is the sum of the data fér.thgsame item and lstore in the CURRENTORBER and BACKGRDER flows.

The HI.BOI; statement |

ITEMDEMAND 1S THE SUM OF DEMAND -FOR EACH ITEN-ID

illustrates the use of the reduction operator SUN. It describes a:new flow | TEMDEMAND representing
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the total demand of each item from all stores. That is, each of its records has a singhe-component
index (item-id) identifying 2. particular item; and Ry tishismy it the total quantity i désiand summed _

across afl stores in the chain.

115 Additional Information

The computational part'of a daia processing syﬁmanﬁedecrﬂ)ed by giving a full set of
flow equations of the type shown above. To complete the system’s description additiorial:data and
timing information must be given:

- for each flaw, thewdism the type of #ts data nte,andthe
periodtmy with wluch it lscalw

-foreachkqatstype

-foreachpcrndnsﬂmrehtmmotherpeﬁods

1.2 Iteration Sets and Explicit RIBOL

A flow. expression, a5 explained above, represents a set of-récords cbtained by the record-by- f
record application of a formula to the records of the flows that appear as terms in the expression.
In this paper we sh;,n be interested in exactly for which' index vahies (and thus records) the
indicated formula s applied. The set of these index values i fervned the ieniion ser?

The HIBOL anguage is rather ‘mformal about’ specifying Reration sets. 1t contains

abundant provisiens Wrough the use of defaults) for imphcit sevitics based Ori the présence or

absence of records in the flows appearing in flow expressions. For éiample, the HIBOL flow
| expression
- CURRENTORDER + BACKORDER

2 After Baron {11



describes.a flow that has a record for each indéx value for which either CURRENTORDER or
BACKORDER (or both) has a recard:

if both flows have a record for a given index value, the resultant flow has a record with the
same index value, whose datum is the sum of those of the corresponding records in the two
ﬂOWS_;‘-- ‘. . P N B TSR U LY T RL S B P ey L AR SIS S L P AR

if only one flow-has a record fer a given index valué, thie resuRant flow has a record with the
same index value and the same datum value;

' otherwise there is no record in the resultant flow.

One way of Iooking at the semantics of additien in HIBOL, then, is to convene that the operation

+ is performed if and only if at least one of its operands is present and that each missing operand |

is treated as if it were the additive identity (0). » L e
. Although such conventions are convenient in writing HIB_O_LY,_for the sgk.es of e!erity and

- rigor, we require fully explicit iteration set spectftatlons Such an be obtained ,through the

thorough use of the HIBOL primuives IF and PRESENT Thus. the fuuy expliclt form of the B

.i.

above HIBOL flow expresslon would be

cmnemonnen + BACK(HCER IF CURRENTORDER Pnssgm
m BACKORDER  PRESENT

ELSE CURRENTORDER O CURRENTORDER PRESENT "

’L‘i

ELSE BACKORDER lF BACKMR _JPRESENT Ly

Here the index values for which the ﬂow expressions iormula is to be applied have been made, )

N

explicit by restructuring it as a threeclause conditional express!on in terms of three sub-,

expresstons each of whose iteration sets is speciﬁed by an associaud conditlon on the _presence of

,,,,,,

records m the ﬂows mvolved Thts is a legal HIBOL ﬂou expresien, although in view of the

existing conventions it is overspecified (redundant). For our purposes we wilt distinguish- a. '
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- description is declarative in nature: it describes the relationships among the flows. An implemented
da.ta‘ processing system is | procedural in nsmre: it must describe in detail how. the flows are
computed. The flow equations must be reinterpreted. as-basic computation steps(ﬁth an output
flow and one or more flows as inputs) and cqnsxgintssqn the order:in: which: thesecomputmom
can be performed (the computation produsing a flow must. he-performed before any compritations
using tha;t flow) must be made explicit.

Design:*

The implementation will make- use of files.of data to be processed- by job steps which wilf in
turn create other files. Each file wil{ conain-the-information.represented :by ‘'one- or mote flows;
each job step will perform the processing to satisfy one-or more-flow squations.  The design of each
file (information contained, organization, storage device, record sort: order) and ‘of each job step
(equations implemented, lobp structure, accessing methods used) should be made in such a way a$
to minimize some overall cost measure (eg. *do!hrssandmwcdst time u‘sed number3of secondary
storage 1/O events) for the execution of the data processmg system Typkally this requires dymmic
(behavnoral) analysis of tentative design conﬁguntions |

Code Generaglpn:,

The system'’s design must be coded in a supported high-level language so that it can be

executed.

1.4 Data Driven Loops

Each flow equation represents.a computation whose implementation is essentially iterative in

“? In ProtoSystem I the design process is performed by the Optimizing Designer module.
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any set of values for a pasticular. index an index set atid we distinguish two sﬁ&iai‘klnds of index
sets:® _ ’ o : P R |
The set of .index .va]uq for which a fb;v.Fianqnﬁu“a Tecord is called the index set of F-
(denoted IS (F)). |
The set of index values for which, an input flow ;-contaitis ‘a-fecord *ﬂli.t"wm be used in
generating a record of the output flow F .the tritisal index st of Fy with respéct to F (denoted
CISg (Fp).
fhese two, should not be confused. CISg(F) for some flow F: wifl oftén ‘be ‘a proper subset of
IstFp.” e el | '
The. problem we fage is that of fmdinf some ‘way sﬂfemmiﬁg the ctitical index sets of
each in»pu.t so.that bop;,cén. be».properiy'dﬁven;"é‘hf& generilly ‘tpriictical’ to use the set of il g
: possiﬁle (legal) index values for which an input might Kwwe w'retord: -For one thing this set may
be unbounded. Even if it is finite and enumerable, it will often be much larger than the critical
~ index ;r»et and thus grossly inefficient. In the DEMAND flow equation example given above, for
instance, the critical index set of the input flow CURRENTORDER is likely to be orders of magnitude
" smaller than its maximum possible size (the case where every store fm orders for every item).
A much more efficient way of 'c_numeﬁting a set of index values that is assured to cover the
critical index sets of the inputs is to use the union of the index sets of the input flows. This will

work because a record of the output can be produced ouly if there is some input flow in which that

® Unfortunately, this terminology is at variance with that used by Baron in his thesis [I].
Baron uses the term “critical index set” to mean what we call the “index set”. :

7 On no account, of course, can it be other than a proper or improper subset of IS(F)).

® This statement is somewhat oversimplified, but it will suffice for now. A fully precise
statement of the problem is given by the Fundamental Driving Constraint in Part IV, '
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Part II: Structure of Data Driven Loops
Before a general treatment of data driveriloops tan be-devefoped it s necessary to examine
the structures of .the loops encountered in the HIBOL system. We befgin by preseniing a taxonomy

of computation types-and their corresponding losp implenwntations. -

11.1 Loop T erminology

B'efpre discussing loop structures. it is useful to establish some terminology. By the term loop
we mean a control construct which somehow enumerates aset of vahses fer‘i loop-index and which
performs a fixed sequence of vstalements (its body), once for each value of the l‘ooh-‘index. A loop .
may coma.in ‘one .or more loops within its body. The inner foops are said to be nested within the
outer (enclosing) loop and the.structure as  whole Is called a nested loop structure. Each enclosure
defines a different level of the nested ‘bopv's'truttm. ~The degenerate case of a. nested loop structure,
where there is no loop. in the body of the outer loop, is called ‘4 singlé-level losp, since there is only
one lgop level.

A totally mested loop is a nested bop structure whoseeompbnem loops are totally ordered _ |

* under enclosure (i.e. for any two loops L, and L, either L, is inside L, or L, is'inside L)). ~

- 11.2 Kinds of Computations and T heir Loops

£§ch run (computation, job step, program) in the implementation produced for a HIBOL
description of a dat.a'processing system is essentially a loop that iterates over the records of its input
files to generate records of its output file(s). The structure of this loop depends on the nature of the
computation being performed. We will begin with computations that directly implement single
HIBOL flow equations of various types. Then we will consider computations that _lmplenient more

than one flow equation (aggregated computations) simultaneously.
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for each (employee-id) from HOURS
get ‘HOURS (empioyee-id}
. PAY(employee-id) =

. defined (HOURS (emp | oyee-id)]
and not(HlBS(elp!ogee id) > 40)

then FﬂﬂSlenplogee-cd) x 3.8 -’

else if defmedﬂ’ﬂ.ﬁS(elplogee-od)]
then 128.0 + (MRS(euplogee—ld) - 60) x 6 5
else undefmed |

it defined[PAY (employee-id)]
“then urite PAY{employee-id)

end
The for-end constrlsct represents the baslc itecation overrva!ues of the index enclogee-nd lt
specnfles that the values for the mdex are obtalned from the l{l.RS flow For each lndex value, the
correspondmg record of Hl]RS is read, the correspondmg record of PAY is generated and (if
generation was successful) that record is written out. Notice that the PAY calcuhtign. ss a direct

. . FNI R
Cla gl vl om o Lm0
W id R k2 B e

translat:on from the HIBOLM eque!m

{1

For reasons of exposmon the Ioop implemematlon presented here is of the most general form.

G

An actual |mp|ementat|on would mcorporate various efflciency *énhaﬂciﬂg improvements’ '

Nevertheless, we shall corme 3. mmcﬁ» forms to show expucitly where 1/O and testing occur

ar

~ conceptually.

9 For instance, since the for has to read the next record of the driver to get the current index
value, the get could be omitted. .Furthermore, the detined tests 4 the PAY calculation could be
omitted since they are testing the presence of record which must be present. Finally, in this.
computation, the check before output could also be omitted.



H.22 Matching Computations

A matching computation computes a non-reduction flew. expression involving two or more
flows. Thaus it is similar to a simple computation, but instead dcpaahgm asingle-record of a .
single input flow to produce an output record it mnaa&-ﬁmapending records, one
from each input flow. Correspmdmuestabhdndbymhdexvam The name
“matching computations” derives from the necessuy d‘ matching up the remrds of the inputs by
index values beforc theycan beopentedon »

" Two sub-classes of matching compuutms can be distinguished depending on whether all of

the inputs have indices with identical key-tuples or net.

11.2.2.1 Expressions Involving Flows with a Uniform Index

Consider the a pay cakuhtm similar to that gaven awve, bu where employees are pald
various hourly rates. Let MTE be a ﬂo- indexed by (mphyee-id),eacb of vhose reco«!s has as

its datum thehwﬂypaymefortheeuphpchdhmdbylsm vahe. Thepaycaicuhtion

eheubemmes
PAY IS HDURS s RATE  IF  HOURS PRESENT
NO WOT HORS > 48
ELSE
RATE 2 48 + R B
(HOURS - 48) = 1.5 s RATE IF . MRS PRESENT

-~ AN PANEE - PRESERT.
HOURS and RATE have identical indices, each m of the single key “"employec-id”. The foop
vakmmtsmchacuwatmhas:shghm

Mumamdﬁemawﬂihkam‘h&tmm that
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file alone is sufficient to drive the loop (Akternatively, by similar. reasoning, the RATE file could be
used to drive the loop.) This is thc snmplest case of a matching computation because only one
mput is needed to drlve the loop (The computation of the flow S above is also of this type) On .
each ueranon the next record of the HOURS file is read, the corresponding RATE reoord is fetchedr
. and the computation of gross pay performed
This loop is represented in the SEAL language thus:
-~ for oach {employee-id) from HOURS
get mS(enpfogoe4'id1
get RATE (employee-id)
PAY(enplogee—idr -
i f defined[HOURS (employee-id))
and defined [RATE (employee-id)]
and not (HOURS (emp 1 oyee-id) > 48)
then HOURS {emp I.ogee.-io) -% RATE (employes-id)

else if defined(mS(e.nologeo-rid')]
.and def ined[RATE (employee-id)}-

- then RATE (emptoyee-id) x 48 + k
(HOURS (empioyee) - 48) = RATE (employee-id) = 1.5

else undefined -

if defmed[PAY!enplogee-td)l
then urite PAY(enployee id)

end
Again, the defmed checks on the driver, HOURS, are superﬂuoua But thosc on RATE are necessary.
(to determine whether the corresponding get was s;xccessful) and thc doﬁned check on PAY is
necessary (so that a record is written if and only ifa datum mgm&ed). e

Now consider the HIBOL flow equation for the [EI'WIJ flow glven above
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These details are implicit in the SEAL representation of the foop which is simply:
for each litem-id, store-id) from CURRENTORDER, BACKORDER
get CURRENTORDER(i tem-id, store-id) -
get BACKORDER(item-id, stors-id)
DEMAND (i tew-id, st;)re—'rd),- oe

i f -defined (DEMAND (i tem-id, store-id)}
then urite DEMAND(item-id, store-id)

end

.11.2.2.2 General Discussion of Expressions Involving Flows with Mixed Indices

‘The treatment of mixed-index flow expressions in this paper will be restricted to those that
are legal in HIBOL. The res.trictions that HIBOL imposes are made for good reasons. A brief -
discussion of the varioes conceivable types of mixed-index flow expres_sions. is preSented h‘ete ln
order to show the motivation behind these restﬂctﬁns | - o

Tﬁe vertous cases where the ﬂows ina ﬂow expfession have mixed imiices (ie thelr indices
have dlfferent key- tuples) can be dlstmguished by the set interre!anonships among the key-tuples

" Consider the case where flows have dlsjomt key tuples (e.g (w, x) and (y. z)). :
Correspondence among records of such ﬂows is meanlngless SO we do not a“ow them to appear ln
" the same flow expresslon k» B - |

: No_w consider the- more general case where there is intefsection‘ among index key-tuples, bvut‘ )
the union of their pair-wise intersections is w identical to their (simple) union. In this case
correspondence is always ambiguous. For example, consider the two flows: A with index (x, y) and

‘B with index (y, z). Suppose that there are records in A for the particular index ﬁlues (x4, y9) and



(X y)) and that there are secords on B for index vakues &y,. z;}, (y;. 25) 80d (y;, ). Which of A's
records correspond te. which of B's records?’Z | |

For correspondence to be meaningful mmﬁmﬁtﬁe&tw the union of
the pair-wise intersections of the key-tuples of the indices inveived is identica to their union. This
is atways the’case when there exists an index among-the flows involved ‘whose key-tuple is a
superset of all Fhe key-tuples of the other flows.

To be sure, there are other ways of satisfying the condmonof the preceding Paragraph.
These involve conjunctions of three or more indices. Consider, for instance, the three flows: A with
index (x, y). 8 with index ¢y, z);-and C with index (x, 2). Corresponding triplets are all unique and
unambiguous, of the form (x. y), {y, %), {x. ) For:the suke of simplicity, however, this case is

prohibited in HIBOL.

11.2.2.3 Mixed-Index Flow Expressions Allowed in H!BOL

It is possible in HIBOL to apply operaton to two or more ﬂom having d:ﬂ'mnt indices as
long as each index is a sub-indcx dthchdexdmunmeﬂowimdved (ie. as long as the
key-tuple of each mdex is a mbset of lhe kq-mpk of the mdex o(‘ the unique flow). Ckatly, the
mdex of this umque now is idcmml to the Mcx of tht flow expusien as a whoie HIBOL
alows a mixed-index ﬂow expression only if its computation can be driven by the set of those ﬂows

involved having indices identical to that of the flow expression.

12 Of course, we could allow alf pairs: to ‘match (in Cartesian: product: fashion) so that the
expression A + B would represent the six possible combinations of additions for these 5 index
values; but this would change (extend) the semantics of HIBOL.
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For example, suppose we want to-cakufate the extended prices'® of the ‘current storé ‘ofders
(the flow CURRENTORDER) in our store chain example.- Let: PRIEE-be a flow indexed by (item-id),
each of whose records has as its datum the per-item price associated with Mm idfemified by its
index. The flow equation for EXTENDEDPRICE, indexed by (item-id, store-id) wwld be expressed in
HIBOL thus: . _ et Fa

EXTENDEDPRICE 1S CURRENTORDER x PRICE IF . = CURRENTORDER PRESENT
: AMJ PRICE PRESENT

A RUE S FPRSLE s BNE L I

- The intent here is: for every record in CURRENTORDER: mm mmmm in PRICE and,

_if the latter is present, multiply their respective dap to ca_lculate the datum of a corresponding
record in EXTENDEDRRICE. Notce that;because PRIGE and-SURRENIOROER: Save.differént-indices
((item-id) and '(item-id. store-id), respectively) the notion oﬁ correspendehce must be extended in 2
n/atu:ra!V way. from pure identity of index valwes.- We comvene that-for &Wwamfw M—id
the index (item-id) matches any index (item-id, M>M«m,xmfwmeﬁ:zamﬂ: regardiess -

of the value of store-id. This augmented definition of correspondence is extendedto' the general

casezwberefv*tht *key-tuple of one index is-a subset: of the: key-tuple of wivother. That is, for given
values of k, .., ky, the index (K, .., k) is said to-rhatch-awyinstance’of an Hidex (&, ik Ky
k,) with the same values of k.., k,,,. regardiess.of the values of k., ..o ky.

Since a set of input flows; each- with index identical to the flow expfmlon;s. cin be used to
drive a.mixed-index matching compuwien,':-ittWmffh'ﬁiﬂﬁfﬁ"tht for a uniform-
index matching computation: the sorted éﬂvers'iré read in:such 2 way as to entimerate the ctitical

index sets of all of the input flows; the resulting index values are used o fetch records from the reit '

of the inputs (including all those whose indices are mbéndlces of the flow 'ex'presﬂoﬁ's index).

13.The extended price of a quantity ordered is the product of the' qtiintity aid: the per-item' '
price.
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Basically, the outer loop chooses a value of the sib-dridex:(itemeid) and fetches the corresponding
PRICE record. Then it performs the inner foop. Within the inner loop-the value.of thé item-id key
is held constant. Al corresponding: records of 'CURRENTORDER aré read and' the computation
described in the flow equation is performed: using the data of these records together with the datum
of the PRICE record fetched in the outer loop. : The results-are used to Biild and output the
'correspondmg records of EXTENDEBPRICE. This pmcess is*repet!edmm me ﬂows are exhausted.

In detail the |mp!ementat|on is as fo“ows Before either bop is entered a record of
CURRENTORDER is read The outer loop uses this record to obtain the ﬁrst value of the sub-index
(item-id) and fetches the correspondmg record from PRICE Then it performs the inner loop. The
inner loop uses the current record .;ef_ cmm -an&eontimes‘to”md‘ records sequentially
from CURRENTORDER until the sub-index is obsetved ‘te‘change or an end-oﬁ-ﬁle“conrm‘ion"o‘c‘cur‘s;
When either of these conditions occurs, it exits ta-the outer loop. I an‘eof ‘has occurred, the outer
loop gx;ts. ; cherwi;e it iterates, using the :ub-riadelévebe of the current CURRENTORDER reco’rd as
the new value 1o be held constant in the inner loop kwhtagahe correspmdmg PRICE record and
pcrformmg the inner loop again. A 1

The correspor;ding SEAL code is:



for each fitew-id) from CURENIOWER o '
get PRICE (i ten-id)
for each {(store-idi ‘from CURRENVORDER(: tem-id)
gel CURRENIORDER (iten-id, stere-idF. - e
EXTENDEDPRICE (i ten-id, store-id) =

;f def ined [CURRENTORDER {1 ten- id, wiore—idl]
and defmed{PRlCEthu—zdﬂ

then cm{mmmu-sa store-idi t ] PR!II(HQ—M)
else undefined

it defined [EXTENDEDPRICE (i tew-id, store-id)]
then. urite EXTENDFDPRICEL] tem-id, store-id)

Notice that the outer loap is driven by CURRENTORDER {the whole flow), tart that the inner loop s
| driven by CURRENJORDER (i tew-id) w_;eisubem«scmm consisting of just those records
whose indices cornespond to the value of the sub-imlex:(itern-id) fixed by the oister foop). What
| this. means is that for the outer loop the mext value of the sb-indek {item-id) wift be taken from ™

the next record of the CURRENTORDER flow. But for the inner loop the next vatie for the subsindex

(store-id) will be taken from the next record of the sub-flow of CURRENTBRDER corresponding to

current value of (item-id); if there are no further records in CURRENTORDER for this fixed value of
~(item-id) this will be treated just like an end-of-file condition and the iteration of the inner loop
witl terminate. Thus the inner loop is driven by a succession of 'mb-ﬁows, one for each #eration of
the outer oop. S . :
 This nested-oop implementation scheme is easily extended to 3 or more loop levels when

appropriate sorting constraints hold among the flows involved. For example, suppose that there
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are 3 flows involved: A with index (ky, kg, k3) B with index (k,, ké), and C with ‘index (k;). ‘And
suppose further that B is sorted 't.)y k; and that A is sorted first by k; and, within ségments
corresponding to a fixed value of k), the records of A are furthér Softed’ by K, "THen the flow
equation can be implemented‘using a nested loop structure involving ¥ bbﬁsg’(iﬁn’ermost loop,
middle loop and outermost foop). The outermost Ioopecheoﬁa %%eﬂfr the key X, to be held
constant within the middle loop (and perforce in the'innermost‘@ loop, wHich is’ contained in the
middle loop). It also fetches the corresponding record ofC fbowith’kr ttie ‘contained loops.
Then it executes the middle loop, which, in turn, choose a‘vaiue loi!ﬁé*ltey K3 tobe held constant -
within the inner loop. The middle loop also fetches the corr’espo.nding. record of B for use within
the innermost loop. Then it executes the innermost loop. In the innermost loop the valaes of the
keys k; and k; are held constant. The innermost loop reads all corresponding records of A, usiitg
thelr data and those of the already read records to perform the alcuhtions ducribed in the ﬂole ..
equation and to build and output the records of the output ﬂow When the Innermost |oop has

' read and processed all records of A correspondlng to the fixed valuu of k, and kz, it exits to the" ‘

W _(lg S

middle Ioop whlch chooses a new value for kz and iterates. When the middie loop has exhausted_ ]

19 B PR S LR A

all pdsslbllines for the value of k ﬁxed In it It retums to the outermou loop whk:h chooses a new

}'

value of k, and iterates. This loop structure expressed ln the SEAL hnguage Iooks Iike- ,
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trexsed‘ as a single flow.

- Gonceptually, the argument flow" is partitioned Int6 subsets {sub-flows) by an equivalence |
relation defitied on the siub-index (a key or-keys) ifidicated ln ‘the ?m EACH clause then the'n
reduction operatér {s appli'eér‘to the dhenibers’ of each subset to generate the value of the a’am,g. of
the output record cotresponding to that subset. For instince. in the fir?t example grvenabove the
DEMAND flow s conteptuafy partitioried Into record sbsets by item-id. “Thus, al records in DEMAND
whose index cmtérns the value itemi-id, for the item-id Kej are in one subset, all records for ltem-td
= Hem-idy are iiF another, and 5o forth (empty subsets 47é ignored). The datum for the record in_
I TEMDEMAND with index < (item-id) 1s‘cakcifated by sumining alf of the data in the records in the -
subset corresponding to item-id = item-id. S i L F

Conceptually, the imp!ementing iteration for a simple reductionexpression in a single flaw
consists of two loops, one nested inside'the other. “THhe Thner loopimpiemems theapﬁlicanon of the
indicated reduction operation to a subset of the input’s records. Within this loop the value of the
sub-inc!ex defining the subset is held constant Retumtngto the §.I1 OF DEMAND example, the
inner loop implements the summauon of the data of the records of each subset of DEMAND. That is,
the inner loop is performed for each value of item- nd for whtch there are records in uemm
Within the inner loop the particular value of the,}e\y{ ;tem-id is held constant, all records of DEMAND .
corresponding to that key ra!ue are fetched and their chtakare summed. |

| The outer loop performs clerical work. It chooses a vale rhe subsetting sub-index (eg. a

© value of item- id), executes the inner |oop (which fetches records of the input corresponding to the.
chosen sub-index and, for exaMp?e,"adds them to!he icwmuhtor), and when the inner loop is
finished, it uses the resulting \ra!oe ss the datumﬁof the output record correspmding to the chosen

sub-index, and writes that record out.
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It may at first seem unnecessaﬂly baroque to mimlitc the accumuhtor sum to undeﬁned in the .
outér loop test it in the inner loop for deﬁnedneﬁ and then mﬁw ‘It 4f undefined. In this
simple example we could just imtiahze it to 0 irv the omer loop and rot bother wiih the defmedness )
checks.: We have chosen the former coursc for two reasons. First, we wish to make explncnt the
conditions under: which the sum (and thus a record of the outputvl‘m 1% defined for a
given value of the key item-id: Second, a- little thought Wil show ‘that ‘for other reduction
'opgratiqns (viz. HAX and HMIN)-initiakzation of -the’ sceumblator 'must (at least conceptually) be
postponed until the inner loop where the initializing value is obtained by the first-get.” Moreover,
in general, when computations are aggregated (see below) awd more than one activity is performed
in the inner loop, it is then possible (if some driver bestdes DEMAND is dsed) that for some values of |
item-id no sum is calculated in the inner-loop and s suw 1s undiefinéd on extt from that loop.

If the input flow is not sorted as above the computanon for a reduction operation becomes
‘somewhat more complex. Qne possibility is-to. create’and ‘maiitith Wparite sccumutators for each
value of the sub-index value occurring in the mput flow. Since the number of accumulators cannot
be known a. pxieri (2. at-compile time). storage.for-theiw thast be AHBLIET: on ‘the Ry (during
execution of the computanon) In PLIl for example the foﬂmvmg (rough!y omlined) scheme might
be used:

Declare an accumulator array-to have C(NTRG.LED storage

Make a pre-pass through the mput flow to count the number of dm‘erent sub-lndex
values occurring. = - _ ; i

Execute an ALLOCATE statement to define the size oféth‘eiimy; i
Make a second pass over the input flow to perform the accumulation.
~ Write all accumulated vahues out to the oitput flow.
In this scheme there are two separate loops instead of a totally nested loop structure.

Alternatively, a nested loop, multi-pass scheme could be Implementcd The outer Ioop would
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1131 Formal Representatton of Nested LoOp Structures

We have seen that the basic control structure itsd in impiemaiting a computation is the
totally nested loop. Associated with each loop in the nesting is a set of keys that it will fix and
which will remain constant in the loops it contains. It is easy to see that this constraint means that
the set of keys fixed within any loop is necessarily a (proper) superset of the set of keys fixed within
any of its enclosmg loops. Thus the set of keys f‘ixed mthin a loop is sufﬁctent to determine its
level in the nesting.

| Now notice that the body of every loop (erccept the innerrnost one) contains exactly one top- .
level loop; thus, the body is naturally divided into thiee:parts |

the prolog--those actions performed before the enclosed loop

the enclosed loop

the epilog--those actions performed after the enclosed Ioop

Conceptually, then, a totally nested loop can be represented as a list of loop descriptions, one
for each of the component loops. Each such description would consist of 2 Ievel identifierv
(lndlcatmg at which level of nesttng it occurs) and the prolog and the epilog However, during the
design stage while tmplementattons are betng develuped and. in particuhr, tvhen computation
aggregations are bemg ctmstdered it is useful to distinguish 3 classes of actions within the body oi‘ h

Prolog--those actions that must be performed before the enclosed loop
Epilog--those actions that must be performed after the enclosed :
- General--those actions that could end up in either the-proleg or the'epifog -
It is also useftrl,to separate 1/Q. actions from the other actions.  Thus, we répresent each loop

in the nesting as a structure of the following form:!%

'S This representatton and the theory of computatron aggregation assoclated with it are due
largely to the work of R. C. Fleischer [2], who improved on the earlier work of R. V. Baron.
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{Level, S
{Inputsp, Prolog, Outputsp)
tInputsg, General, Outputsg)
(Inputsg, Epilog, Outputsg))
where | | |
Level indicates the depth of the qup in the ncsting
lnputsp are the files (necessamy) read in the Protog section.
Inputsg are the files (necessanly) read in the Goneral section.
Inputsg are the files (mecessarily) read in the Epi log section.
Outputsp are the outputs generaiad. in the Prod og:section (possibly used in the encioséd loop
or in the Ep' log section)

Outputsg are the outputs gcnerated in the Genera( sectim

Dutputsg are the outputs genented in tbe Em log section

- H32 Cbmpmaiion }mmtm

‘The :mplemmtatm of a compmatm as a nested bup strmre reduoes to the probiem of
detcrm:ning how mny and wlndv fevels are to be in thc lotaly nemd bop and \vhere the lIO and
cemputatms go The answers to tbese qum are oomtmned by the foroes of necessuy and

efficiency.

H.321 Level Position of ¥O and Cakwiations

~ The levels at which. each input showld be read; each output should be written and each

calculation shoukd be performed are determined by the following guidelines:
Inputs: Each input flow of a computation shou!d be read at a loop level whoumhted
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'key-tu:ple,r is identieal to that of the flow's index (and og this.account the totally nested Joop for a
computation must contain a loop corresponding to the index of . cach MM);kmmbemd
a higher level because at such a leye}, ;he;kcy information is.incomplete: . To-read it at & fowet level
would be memcient because it would cause unnecessary. Fe-reads of- the flow's records. - LA
___l_l_ggy_t_S,Similarly each output flow.of 2 compaikation; musst-be written. at ailoop level whos
associated key-tuple is identical to that of the flgw’s jndex.. it canmot-be written-at'a higher:¥vet-
because of insufficient key information, and.{o outpuy it:at:a-lgwer Jevel would cause muitiple writes'
of tne records. | ' | ) Cimii s e
- WCaltcu_!atiqnus: A ﬁow. exp’reSsion:shou]d; alw pe caleulated at.a Joop Jevel:whose -assbtiated
key-tuple is identical to that of the flow expression's index. . Again, the ey information at w iigher-
 tevel would be insufficient to calcula_te the exp;esﬁm,,anﬂm»pﬂfmmituit lower level: would ‘be
redundant. Further economy can be realized, hawever, i 2. mixed-index. flow. expression if it
contains a sq!g-e;;prgﬁs_ion whose associated index is a sub-index. ofﬂ;eﬂowacpmﬁmas a whole;.

such a sub-expression should. be split off and cakulated at its approprinte (higher)devel. -

’ H.3.2.2 Position of 1/O and Calculations Within Thel.r Assigned Levels

1, P

The’ placement of a read, write or cakulatmn wlthin a gwen loop Ievel (ie In either the
Prolog, Epilog or General section) should be done with a vlew toward imposmg the minimum%.
constraint on implementation If done in this manner phcement preserves the maximal ﬂexlbility;-
in subsequent aggregation. For instance, if a calcuhtlon could go Into elther the Prolog ‘or thse
Epilog it should be placed in the General section. If instead it were arbitrarily phud;tnﬁve |
Epilog this unnecessary constraint would preclude subsequent.aggregations that would j-equu‘gxn to

be in tne Prolog (loop merging in computation aggregation .is dlsqqu below).
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PAY IS RATE x HOURS IF RATE PRESENT AND HOURS PRESENT
Here, both inputs have the same index (employee-id) so there is only one loop:
Level: (employee-id)
Inputsp: empty
Proiog: empty
Outputspempty
Inputsg: {HOURS, RATE}

General:calculate PAY
OutputsgAPAY}

Inputsg: empty
Epilog: empty
Outputsgempty .
As expiained above, Vevegéythix\g_: is placed in the general sections..
Now consider a_simple reduction flow equation:
ITEMDEMAND 1S THE. SUM OF DEMAND FOR EAGH:1TEM-1D

We have seen that the implementation of such a flow equation will. always have two loop levels:

‘Loopl {outer loop) . .

© 7 Level: (item-id)
Inputsps empty -
Prolog: initialize sum
Outputspempty '

Inputsg: empty
General ;empty
.Outputsgempty

Inputsg: empty
Epilog: empty
Outputsg:i] TEMDEMAND}
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Loop I (outer loop)
Level: (item-id)
Inputsp: {PRICE!}
Prolog: empty
Outputspempty

Inputsg: empty
General:empty
Outputsgempty

Inputsg: empty

Epilog: empty
Outputsgempty

Loop 2 (inner loop)

Level: (item-id, store-id)
Inputsp: empty
Prolog: empty

Outputspempty

Inputsg: {CURRENTORDER]
General:calculate EXTENDEDPRICE
OutputsgdEXTENDEDPRICE}.

Inputsg: empty
Epilog: empty
Outputsgempty

35
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If two computations have level compatible loops and if the, ordering constraints of the two

loops can be mutually satisfied in a single-totally nested loop, aggreéation is'possible.

I11L11 Level Compatibility Between Loops

ltv is easy to show that two loops are level compatible:if and only if their level structures are
identical or efnpty levels (levels at which ro actions are performed) can be inseried to. make their
level structﬁrgs identical. Some examples. of level compatible totally nested loops (TNL's) and the -

level structures of their aggregated results are:'®

!opg , leve_.-ls . levelg, in m te
™, o, KL o .
o ‘ Ky, «,0L)
™, &U |
™w, U

_ ®,L), ®,0100
™, KM :

W, ®. &0 . x e
: ), &K1, «L,m

m.z (K.L’, ‘K,L,m RIS
It is interesting to note that when aggregation occurs loop levels ire;atuhu-mddéd nor deleted; that
is, the set of loop levels in the aggregate is simply the union of the sets of loop levels in the

component computations.

Some examples of loops whose _lc\id structures are incompatible are:

loop levels
™, )
N, )

'¢ In this section the symbols K, L and M denote different keys.



m, K, w0
™, ), %

™, ), &L, ®L.m
N, K}, &,0%, &.L..m

1112 Order Constraint Corapatibitity Betweeii Loops o

TTEFDENAND |S THE SUIY OF TEMAND FOR EACI TYEN-10

FRACTION 1S DEMAND/ITENDETAND IF DEMAND PRESENT < - =7
It would seem immanently reasamabie.to aggrejate these two compeitations since they have a
common input (DEMAND) and the outpm of the first is an input 10 thé setond. Yet tﬁq cannot be
:aggregated into a totally nestec.l '!oop! T heir lmplunenunon m révealwhy Recal that -
the description of the first is:

Loop | (outer loop)
Level: {item-id)
- Inputsp: empty
Prolog: initialize sum
Outputspempty

Inputsg: empty
Generat:empty
Outputsgespty

< fputsgrempty
Epitog: enpty

Outputsg:ti TENDETWAD!
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Loog 2 {inner loop) v
Level: (item-id, store-id)
Inputsp: empty
Prolog: empty
Outputspempty

Inputsg: IDEMAND)
General:caiculate sum
Outputsgempty

Inputsg: empty
Epilog: empty
Outputvs;mptg

The FRACTION computation also has two nested loops:

Loop 1 {outer loop)
Level: (item-id}. :
' - Inputsp: IDEMANDE
Prolog: . empty
~ Outputspempty

Inputsg: empty
General:empty
Outputsgempty

Tnputsg: empty
 Epilog: emp ty
Outputsgempty

Loop 2 {inner M}_
Level : litem-id, store-id) -
Inputsp: empty
Prolog: empty
Outputspempty

1nputsg: IDEMAND!
General:do division

OutputsgdFRACTION)

Inputsg: ewpty ,
Epilog: empty
Outputsgempty

Clearly these computations are level compatible since they have identical level structures. But the
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‘Computations whose totally nested-loops are level compatible and satisfy the ibove order

constraints are aggregatable..

_l”.Z Merging Loog.t
| Because each action anti i /0 .m_uttab_e performed at the !‘ame*ie'vej ln theag'gregate as it
. was before aggregation the loop structure of the aggregation of two computations an be obtained
_through a level- by ~level merge of the loop ieveis of the t\;o computations to be aggregated
The algorithm for me:ging two totally- ne:td Abops 15!

For each loop in one:

If the other has no loop at the tbe same level, just add the- npmtion of that level to the
description of the aggregate

If there is a correspondmg loop the two ioops must be merged into one for the aggregate .
The full details of merging loops ' are complicated but a rongh sketch foﬂows Let the
corresponding loops be Ly and L,, where no output of L, is an input fo L,.'7 There aré three

cases:

1. Some outputF oftheEpvlogofL, isaninputtol.z
a.F is an input to Lzs Prolog section: aggregation impossible

b. F is used by an action in Lzs General section move that action to the Epilog of
the the correspanding level.in the aggsegate; alomy’ with diy ictions in L,’s General
section which use, as input, some output produced by.the action; all other actiomw
remain in the same sections in the aggregud asthepweré n Lyand £, -

c. All other cases; all other actions remain in: the: same sections ‘in the aggregate as they
were in'L, and L,. '

'7 Obviously, the case where no output ef L, is aninput to Iy wilt be handied exactly the same,
mutatis mutandis. Fhe remain case, where each has some output that is an input to the other. is

impossible.
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2. Some output F, generaudby some action A in-the Gener al -section of L, is an iniput to L,.
a.F is an input to L;’s Prolog section: move A from the Geneiat séction 1o the Prolog

section of the aggregate, along with any actions in the General section which have, as
output, something used as input to that computation; all other actions remain in the

-

same sections in the aggregate as they were in L, and L, REAAE B

b Mﬁumwammh the same sectibing fii the aggregate as they were
in L, and Lz.

3. Neither ! nor 2 an actions remain in the same sectlons in thc zggregate as they were in L,
and Lo PR

Basically, what this means is that 2 -Gersral <aetion ‘riiust’ @ove 1o the Prolog nof the
aggregate if it must come before some action in that Prolog or if it must W'Mme another
General action which must.be moved tothe Protog; a Generat actiun mu!t move to the Epi log if
it must come after some acuon in the Epi !og or if tt must come aﬁer another General _action

which must be moved to the Epl log

l{l.i_Non-T,_og!érNé;ted.-mes e e »
. In this report the treatment of data driven loop implementations is restricted to loop
stmcmres that are totally m.-sted Totally nested lmplemematkm are not only bfoadly appkcable

but generally simple and efficient as weﬂ ln fact they m provue the mt emcient and

expedltlous implementations, espedaliy when sequemiauy orgauized ﬁles, soned by key values, are
u;ed For the sake of ctmpletems, though. Mmg Mhe saum am non‘totally-nested

loops lndeed a gm deal could besaid abwt mh Mﬂmgh. certaindy, to make

one or. more. separate reports. - Because of mmm htr!ismssarﬂy brief and
| Most importantly, it should be said thatmmalrmbq}mfes are by no m@ns

il
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inefficient or uninteresting. They are used all the time and for good, solid reasons. Their use is
perhaps most interesting when two or more computations cannot be performed entirely concurfcmly'
(ie. in the same loop), but they mnbe;perfem,édawith partial concurrency. The following two

examples illustrate.

‘31 Exarhple . Aggregating Computations with Incompatible O_rdér Constraints
Recall the flow equations:
" ITEMDEMAND 1S THE SUF OF DEMAND FOR EACH ITEM-ID

FRACTION 1S DEMAND/ITEMOEMAND IF  DEMWAND  PRESENT
| “AND LTEMDEMAND: PRESENT -

and their implementing computations. We saw- in Section HLL2 that the implementing
'computations for these flow. cqu'audns could not-be merged into a totally nested loop structure
because the inner loop for the first had to be completed before the inner loop of the second could
be performed. They can, however, be aggregated into'a single loop with a structure lke:
for each (iteﬁ—id) from DEMAND
SUM = undefi;aed
for each (store-id) from DEMAND(i tem-id)
- «<calculate sum>» - . EARNN
end ‘
it defined{sum] then ITEMDEMAND(item-id) = sum
for each (store-id) from DEMAND!i tem-id¥
<calculate FRACTION>
end - o
end

. This is a non-totally nested loop structure, since two loops (the inner ones) appear at the same level.
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It s interesting to compare this aggregate implmentation Wwith the unaggregated
implementation. of the two computations involved (as separate Toops in separite job steps). Oh the
one hand, in mmnmmmmammﬁumwmbem twice, s0 no
accesses are eliminated by aggregation. dn the other hand, accesses of the records of fhe
1TEMDEHAND flow are eliminated by aggregamn if the compntatms are tmplemented separately.
every record of HENJE?WIJ must be written into a file by the ﬁrst mpmatnonr ;nd then read back |
| by the second; whereas in the aggregate impkmenmion the recotds are med as they are generated,
$0 no re-reading is necessary.'® | v L |

In general whakmthawﬁntwbwm;ﬁh&wt&b,mmlyasem
which their aggregate cannot be implemented ai: totaﬁy nested Wop ‘s’ where, for some loup level,
the output of the Epilog section of one is an input 1 theProlog seetion of the other (ajs:is the case’
 with 1 TENGEHAND above). In soch a case the corvesponding loop level of the aggregate can be
impkmﬁted (as above).as two loops of the same: level petformed B sequence, ind re-reads of the

!‘bw’in question will be saved.

lﬂ 3.2 Example 2. Aggregating C_ot_n@anms Tlnt Are Net wm

In Section lllllmnwthtc«wmwﬁhmm&w‘m'@emk«l

compatible with one another:

L, ), (KU, LM
™, KD, K10, LM

Thefactthattbeyanmkv&wtﬁbmtbnkism&lehdﬂmaml

V& 1 fact, If these records are not used by any , other oempmnun in ﬂn data processing system,
it is not necessary to write them out into a file either.
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nesting of loops that will implement their aggregate. . They might, however, be said to be partially
level—compatible, since the 'outermost_ levels have identical keys. If a common driver set 'cin be
found -for that level, they might. be implemented as a: non-totaly-nested loop structure. The
following is a possible implementation skeleton:
for each (K)' from.Og
for each (L) from.D,
for-each (M) from D,
end
- end
fer eaqh (M) from Dy
. for each (L) from D4
 end
end
wbere the D, are distinct drivers.
| This is another commonly found construct in file e!au processing | lt is the case where, for a
common set of values for the sub-index K, two or more independem computatlons are to be

- performed. As in the previous example, there is some lIO saving (over separate implementations

of the computations involved) because each record of Oy bas m be read only once.
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V.1 A Theory of Index Sets and Critical Index Sets for Data Driven Loops

Let us begin with some definitions and.useful consequences of these definitions.

1V 11 Definitions and Useful Lemmas

We .redefine the notions of ‘Lé flow's index sct and critical ;ndex set fom;ally and iqtrdciuce ’the
_operators P?oj., Inj and Restr: . ‘
_ Definition: The i;ldex set of a flow F witt‘\‘“lndex 1 fs‘ deﬁned as
IS(FY = {1 | thereis a record in F for 1}
Definition: The cri?i;al Li;ndex: set of a flow F (wifh ihdei‘i) w‘ith respect to a flow X is deﬁne& as

CiSx(F) = {I | there is a record in F for 1
that is necessary to generate some record in X} -

Definition: The projection of an index set S with index. (ky, ..., ks Kyiyo - - » ky) Onto the sub-
index (k,,..,k,) is defined as

ProjiS, (ky,..,k,)) = R e :
(kg k) | Tk, k) such that €Ky, .., Ke, Kpypo- -2 ke) € S}

_ Definition: The injection of an index set S with index 4ky . ., k,)-by the index set T with super-
index (k,, . ., kg :,u,,,,.’. .+ ky). is defined as .

Inj(S,T)- , -
{tg ke Kpope -2 Rg) | Ry, .., k) € S A

Ky Ky Kppegs o Kgd € T}
Definition: The restfiction of an index set 5 witht'kﬁex Ak . ., ky) Dy the condftion C {whose
truth depends on the values of the keys ky, . ., k,) is defined as

Restr (5,0) = {(k,,.., k) ¢S | C istrue}

From the last three definitions the following simple but useful results (stated without proof)

can be obtained: | o

Lemmal: IfAis an index set with index I, then
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Corollary f: Let F be defined as in Theorem I. Then for ariy flow F, with index identical to
that of F . - Py

CISE(F) = IS(F)

Theorem 2: IfRisa ﬂow (with index g} described by the apphieation of a. reduction operator

to a flow expression expr in terms of the flows Fy, .. ,F,,. where ncﬁ flow F; has index 1, (eg.

the flow equation for Ris: R IS SUM jl}' oxpr- FOR EACH. <lgs);then

‘Cng,(Fi;.) = P;-ejﬂs-(expr,)} I |

(Note that the index of expr must be a super-index of Iy)
This theorem snmply says that when a flow (as that dcscﬁhed by expr) is reduced every record of
that flow is used in calculating the resu!t From Theorem | we have in turn that the critical index
set of each F; with respect to the flow o be reduced is given by the expression on the right-hand
side of the above equation. | |

quoll;ry 21fRis a now (with index ln) described- bytheapplhthu of a reduction operator

toa flow F (eg.R IS Sm{l: F Ff.l’l EACH <kg>), then

CiSglF) = IS(F}

The followmg theorems concern the- nature of the{index tets of flow cxprmions First, a
simple result about flows described by reduction |
Theorem 3: IfRis a flow (with index [}g)‘ described by the application of A reduction operator.
toa ﬂéw expr‘éssi;m exptl-’(c.g. thé ﬂﬁw equation fﬁ Ris: R IS SUN OF expr FOR EACH <i§>),,
_then | o

IS(R) = Proj(IS(expr),ig)
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IStFilfn = 1
IS(safelF,,..,F,]) =
., L NISE) - #n> 1

i

As mentidhed above the only legal arithmetic flow exple;shn in FE-HIBOL is a safe or. a
safe further quamled by some condition. This Turther quauﬁuuou must take the form of a Iogical
expression ANDed with the safe. Thus, to complete our treatment of arithmetic flow expression we
_only need the following simple theorem: -

Theorem 5: The index set of a simple arithmetic flow expresslon safe qualified by the
condmon Cis glven by ‘
o lS(safe AND C) = Restr(lS(safe) C) ‘
- Consideration of special cases leads to three snmple coro!hries

~ Corollary 4: By Lemmas 2 and 5

IS(safe AND G PRESENT) = Inj(G, lS(safe”
= [S(safe) N Inj(G,1S(safe))

Corollary 5:
IS{safe AND (C, AND C)) = Restr(IS(safe),C,) i Restr ([S(sate),Cy)
Corollary 6: .‘

IStsafe AND (C, OR C,)) = Restr(IS(safe),C,) U Restr (IS(safe),Cy)

P

For conditional expressions with two cases'? we have the following result:
Theorem 6: Let E be a conditional flow expression of two terms:

£ - expry IF €,
ELSE expra ¥ Cz

19 The extension of this theorem to more than two cases is trivial.
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In level | we have the output R and the driver F. The index set D) enumerated by this driver at
this level is?°
Dy = ProjUSIF), (k))) = IS(R)  (by Theorems)
thus satisfying the drivlné cmﬁr;\int for the input R. -
In level 2 we have the input F énd the driver F. Tﬁ_e index set D, enumerated by this driver
at this level is |
0, = IS(F) = CiSy(F) ' (by Corollary 2)

thus satisfying the driving constraint for the output F.

Example 2:

PAY IS HOURS x 3.08 IF HOURS PRESENT AND
) o , NOT HOURS > 48

ELSE 128 + (HOURS - 48) * 4.5 IF HOURS PRESENT
We..shall use this example to illustrate Theorem 6. Define E; and Ez-,by

E; = HOURS % 3.8 IF HOURS PRESENT AND NOT HOURS > 48

and ,
~ E, = 128 + (HOURS - 48) x 4.5 IF HOURS PRESENT AND

. NOT - GHOURS PRESENT .

AND NOT HOURS > 48)

By pure logical simplification the last equation can be rewritten:

B, = 128 + (HOURS - 48) % 4.5 IF HOURS PRESENT AND

P 'M‘é.’;?‘.?f‘f A

From Theorem 6 we have that

20 Theorem 8 of the next sectionprovides a formal treatment of enumerated index sets.
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for each (item-id) from C
get Plitem-id)
for each (sfore—id) from Clitem-id)
get Clitem-id," s'tore-idf o
EPlitem-id, store-id) = ...

if defined(EP(iten-id, store-id¥)
then urite EP(item-id, store-id)

end
end
In level | the iﬁput is P and the driver is C The index set D, enumerated by this driver at.
this level is | | |

Dy = Proj(IS(C), item-id)} i :
w2 1SP) AProfIISICY, (item=id)) = ClSptP)

In fevel 2 the input is C, the output is EP and the driver is C. The index set Dz enumerated

Syt

bY this drlvcr at this level is L
D, = IS{C) .
> InjUIS(P),IS(C))  (by Lemma 3}
- Clsp© = 1SE)

Thus we see’ that the ﬂow C is (at least) adequate to drive both level&

IV 14 Driving Flow Set Sufficiency

‘We wlsh to 'be able to" determme whéther 2 set of input ﬂews’ i; mmcient to drive a
computation loop level. Let us begin by defining the notion of the necessary i;;;ex "set for a
computation level:

Deﬂnition "The i necmazy index set at fevel ifora comwmim c (denmad NlS,(El) is deﬁaed as-

the set of index values necessary to drive level i ﬂ the tota!l;nemd MWG
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IV.L5 Minimal Driving Flow Sets

| ‘The set of all inputs of a computation is sufficient.to drive that computation. We are
interested in 'finding the smallest subsets of -this set that. will —pmvidetsuﬁicient drivers for each
ievel. This interest sterns from our implementation comstraint. that all drivers must be read |
sequentially ond must have compatible sort orders. If all.contained: inputs were used to drive“mh
ieyei of a computati‘on_vlogp, all inputs to that computation would :have to have compatible sort
orders and.aii would hove to be read sequentiaily.;a;constrm that is often unnecessarily severe. -

Moreover. from an efficiency point of view, we generally-want the set of indices enumerated
by the drivers at any level to be as small as possible (while satisfytng the fundamentai drivrng
constraints) so as to minimize the number of iterations l-'or example if we are trying to minimile :
ITO accesses and we have a loop that reads some (non-driving) ﬂow by random access, the fewer
iterations there are the fewer attempts there wrii be to access records from that flow.

Consider, for example, the EP computatron (Exampie 3 above) The inputs contalned in the :
outer loop are P and C. Both together couid have been used asa driving ﬂow set for that level.
We were able to show, however, that C alone was sui'ficient to drive the outer Ioop Thus. we came
up with an impiementatlon in which only the ﬂow C had to be sor;ed ond read sequentially
Additionally, in this rmpiementation only those records of P that can actuaiiy be used are fetched

Tt is important to note that the usrng some smaliest drwing ﬁow set for'ea}cii Jevel does not ‘
always improve eﬂ‘rclency In the computation above it can be shown tisat P aione is sufﬁcient to
_drive the outer Ioop However, such an implementation would be no better than one in which the .
" outer loop is driven by both inputs Since the. inner Ioop must be drinn by C in any ase. we .
would still end up using both inputs as drrvers both wouid have to be sorted compatibly and read

sequentially; and more records of P would be read than woukd actuaily be used
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A>B & B, A,

'l'he expression on the right of the equivalence. symbel {+)-is a:formula in the first order
predicate calculus. If this formula can be shown to be a-tauivlogy the cofresponding set inclusion is
proved. Showlhg _that a formula is i,tamw_rli«,m' to%sbuwing‘that it simplifies toT.
Since powerful first order predicate cakculus simplifiers exist, the task of proving set inclusion. can
be solved by recasting the hypothesxs asa predicate calculus l‘ormula ;nd!irying to slmplll‘y it. If it
can be S|mpl|l‘ied to T inclusion is proved; |f it slmplifles toF lncluslon is dlsproved

When the formula cannot be slmplnfied to elther T or F thcmunlng ef the result is not
‘clear Either the simplification is cerrect (in which case the-formula is mot'a tautolegy. and thus set
mclusnon does nothold) or the simplifier has run up agaimt a l‘tmdamental hmntatlon” and has
failed to simpll?y the formula completely In the latter caae tlne fwaubmy in: fat:t be equivalent to
T (lmplymg set mcluslon) but the simphﬁer is unable to determine lt Because of this ambigulty.
the wisest assumpnon is the conservanve one: whemm shupliﬁmlm to l does not occur, set

" inclusion does not hold.

lV.2.l Characteristic Functions for Index Sets

‘

- In thls section the pamculars of the syntax and semam d cllatmﬂmt functions for
index sets are presented.
o ‘ Coage

The characteristic function for an index set is a logill‘;;{sexprm {predicate) in terms of its

_ the keys of its index that is true for an assignment of values. to those-keys in exactly those cases in

%It is a well-known fact that it is impossible to devise a procedure that will correctly simplify -
. everzy formula in the first order predicate cakulus.

® Because our work is implemented in the LISP prognmmlng hnguage lhe notation is -
unabashedly LISPish.
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which the index set contains a corresponding index valuve, ma&,as;tx,.-..x,) denotes the

 Saethy... k) = T #¥ S ocomtans an index valie with & = Ky, .., koo k,

L Standard logical aperaters™

. AND - MDp;, .. ,p) =T m:mw%m‘ﬂdthep,m
tmefnrthnnst:me

€. NOT  @OT p) = 1 ﬁrapﬁaﬂqummﬁ‘pt{abefmm
instance

d. FOR-SO'E  (FOR-SOME (k. . . , k) Ky, . . , Ky, Kmio - K)) =T fora
particular key-tupleimstance ., k.!ﬂ!tﬁﬂtexﬁﬁhuferﬂnizpk,,...k.
mchdutthepndntep{k,,“.k,’smtﬁsnamm

2 Standzrd arﬁmemMWmhaMapm
in terms of variables {see bulow) 208 canstants forwed using the arithmetic operators +, -,
xand /) . .
a. EQUAL (EQUAL expr, expr,) -Iﬂw,szhnanmml
value "

b. GREATERP !GIEATEH’expr, e:q:rzi =Tﬂt&ew'ahedw, is
-greater than thatof g, - _ .

3. The special operator DEFINED; (DEFINED IV per k,, .., k;)) = T #T there is a record
in the variable V in period per for the key-uple instance (&, . ., hy). The argument 1o 2

. DERINED operator vamst be:a variable.

The teraos intreduoed here ate explained in grester detail in th following sections.

2% The synﬂ)dspmdpimm.
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IV.2.11 Variables

A variable is a representation of a HIBOL ,fiow,wit,h_&;y and period information attached.
The period uniquely identifies the variable in time (i.e. it specifies a particular "incarnation” of:the - -
| flow). An assignmenr.of values to a variable's index. and .its period specifies an instance of that
~ variable and thls instance is said to be dgﬂned if there is a datum (an(i unu record) corresponding
to the key and perlod values named in the assignment.
The general form for a variable is
(flog—name period keyy ... key,)
where flou-name is the name of the assq;iatedv ﬂqw"” the, slot q,qriod:mmainsfthe name of the
period in whlch the variable is generated or input, and the siots kay; contain the names of the keys
of the variable.. An example of a variab!e speci!“lcation is | |
' (E’MLEU term student 'subject-nunbcr)
wrnere |
ENROLLED is the name of the vm:nable
term is the name of a period
student and subject-number ate the names of the varlables keys
An occurrence of ‘a variable.in a. pred:cate is. «M@ wubk ujcmm In-a variable’
reference the form in the period slot 1dennﬁes a partiquhr inamation of the variabk (e.g. if the

period slot contains TERH that means that this term’s incamation of the variable is belng referred

to; if it contains (PLUS TERM -1.), last term’s incarnation is referred to).

T

27 The variable and the flow have the same name.
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1V.212 (DEFINED variable-reference)

 This expression i3 true #f and only if variable-reference is defined. In particular an
expression like |
(DEFINED (ENROLLED term student subject-number))
is true for an assignment of constant valves to each of its keys and s period if and only if the
variable ENROLLED in the specified period contaifis 2 record corresponding o the specified index
v-alue; Qtﬁerwise it is false. Thus, for example, mé predicate above is true for wbjet:t—ri.iubee -
33 and term = TERM if and only if in this term’s incarmation of EMAOLLED there is 3 record for the

index value €J0E 33) (Le. # and only if Joe 15 enrofled in iulbjé

he3 during ng the current term).

IV. ZI 3 Correspondence Between Logical and Set Theotetic Netatim

EFE]

In our characteristic funcuonlmdex set dna!ity the geuent W between -logical |

and set operators is given by

logical operator

OR ‘ “ n o

(FOR-SOME (K, j,. ., K,) Sgo? " Projts, (k). . kJ}

(AND S, C) “ Restr(s (%]

HAND S, T ) T T Injes,n

(DEFINED (V ...)) « ISV

That is:

the characteristic function of the intersection ol‘ two sets is the kgial AND of their
characteristic functions;

the characteristic functmn of the union of two sets ts the logical OR of their characteristic
functions;

the characteristic function of the projection Proj (S, l ) of an index set S onto the sub-index

I* is the FOR-SOME operator applied mﬁnMMﬂSaﬁﬁ&mm
keys;
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the characteristic function of the restriction Restr (5,C):iof aw index set S by the condition C
is the logical AND of the charactenstic functlon of S and thc condltlon C

the charactenstic functlon of the mjection ln j (S AL of an mdex set S by the index set T is
the Jlogical AND_of their characteristic functions; - ki :

_ the characteristic function of the jndex. set: ISW) of a vsmbh V is the DEFINED operator
" applied to that variable.

This mapping can be used to determine the charar.terlstlc fum of any set exprnssinn
encoumered above o |
‘Examgles:
The index set
1StP)
| ’ has the charécteristic funtuon

([EFHED (P DAY 1teu-|dH

‘ The index set

IS(P) n Pro;(lS(Cl {item-id))
. has the chafacterlstic function

" (AND ((EFUEU ®P DAY ltel—idH '
(FOR-SOME  (store-id) (DEFINED ic W item~id store-id)}))

Tbc index set . - o S
‘Restr (ISTHOURS), NOT HOURS > 48)
~ has the characteristic functlon

(ANO (DEFINED (HOURS WEEK employes-id)) :
©(NOT {GREATERP (HOURS HEEK employee-id) 48)))
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lV.2.2 Ba(k-Submmmn of Chtaaetisa: l-‘miau

We wonld hke our charactensuc fmctms to coumn as mur.h mfommm as poss:ble
i
 soas tobeabkwdaﬂnmcasmhasposs&“ﬁw‘ cles Mdmﬂu sets.
The only possible sible characteristic funciion for'a varkablé: (¥ pu-k, .':","'u',)‘ tlm ’;s”'h system

input (ie. avariablewhosefwasmcmmdbyunsmhmkawwisthe

trwmlone werucn !Vper L YT ) N beamealthaunheuidistbatamimarmﬂ

iff it contains a record.

In some cases an mput variable may have the special property that it will aiways mmama
record for every allowable index valve. (mehdgednxhapmtyambededm from
the HIBOL specification of a data processing system; it must be supphed sepamel’) Such a
variable is tcrmed dense or full. An example might be the PRICE uriablg which in every
incarnation should have a record for every possible valagofthe m litem-id). In such a case
mechaimermt function of such 2 variable issimply T. | |

We could use the trivial characteristic function for a compmcd vanab!e as weﬂ, but more
(useful) mformatm can be obtained through the appﬂutim d‘ Tbeotem 3-6 to the defining
HIBOL ﬂowequzlm Mwmux%[mﬂ!mo&huﬂﬂcﬁnﬂm
functions for critical index sets. Characteristic functions thus obtained are caﬁed mmf
characteristic functions.

ft should be easy to see that for any characteristic function if ‘#fi occorrérice of (DEFINED
variable) is replaced by the chanaemtkm lbr variaﬂe ﬂde tmt ﬂ! be a logically
equivalent characteristic ﬁmctm This is temv:d back-substitution of characteristic fnnctlon& If

back-substitution is applied recursively, the resuk will be a characteristic function mm&tg only
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DEF INED's whose arguments are non-computed variables. This is called fotal back-substitution.
Total back-substitution of all characteristic functions has the advantage of making themv:all into a

uniform form, thus facilifating comparison and logical manipulation.

1V.23 Example
Consider the flow equations:
S IS M xR IF H PRESENT AND R PRESENT

X IS (H -48) xR / 2 IF H PRESENT AND R PRESENT AND H > 40

P IS S + X 1F S PRESENT AND X PRESENT
ELSE S IF S PRESENT
ELSE X IF X PRESENT

where the flows H and R are system inputs, all flow have the index (key) and all computations are
performed daily. The one-step characteristic functions of the necessary input sets are?*

NIS{(S) ,,, = (AND (DEFINED (H DAY key))
' (DEFINED (R DAY keyl))

NIS(X) 4y, = (AND (DEFINED (H DAY Key))
{DEFINED R DAY keyd) -
(GREATERP (H DAY key) 48))

NIS(P) 4, = (ORIDEFINED (S DAY key))
(DEFINED (X DAY key))})

From these we deduce (by Theorem 9) the following. results

1. Computation S can be driven by either H or R, since both

28 We use the outputs as the computation names and drop the level subscript since there is only
one level.
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NIStS) o = (DEFINED $H BAY keyl))
and

NIS(S),, - (DEFINED (R BAY key))

are troe

2. Computation X can be driven by either H or R, since both

NIS(X) 4, > (DEFINED (H DAY key))

and
NISEX) ., - (DEFINED (R DAY key))

are true

s

@b -

3. Computation P must be driven by both S and X, since neither

NIS(P) 4o  (DEFINED (S DAY key))
NISIPl,, > (DEFINED (X DAY keyl)

. are true, but

NISWPl ., + (OR (DEFINED (S DAY Weyd)
" (DEFINED 1K DAY: Keyd)

is true
However, we know that

1S(S) 4 = (ANDIDEFINED (H DAY key})
(DEFINED (R DAY &eylh)

IS(X} .y, = (ANDIDEFINED @LBAY keyl).
(EFINED (R DAY key))
(GREATERP (H DAY key) 48))

" so back-substitution of characteristic functions yields

(31)

il
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NISP) 4, = (OR (DEFINED (S DAY key})
{DEFINED (X DAY key)))

= (OR (AND (DEFINED (H DAY key))
.. (DEFINED 4R DAX kegd)) .
(AND (DEFINED (H DAY key))

- JOEETNED- (R DAY key}).
(GREATERP (H DAY key) 48)))

~ (AND (DEFINED (H DAY key))
(DEFINED. (R DAY keyM)}

Thus, formula (3a)
. NISP) gy, = IDEFINED (S DAY key)) -
becomes :
{AND (DEFINED. (H DAY key)) (DEFINED (R DAY key}})
-3
(AND (DEFINED (H DAY key)) (DEFINED (R DAY. keyt)) -
which is obviously true. Thus, back-substitution has revealed that computation P can be driven by

S alone.
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extract the data item (the number of hours worked) -
multiply it by 300, |
assemble the corresponding record ofPA¥ g

whose employee- id key is the sime as the record read

whose data- item‘s value is the resik of multnplying the value of the data item of
the record readbywo L R T VOPI P I o

write the newly created record to the file PAY

To support this iteration, there must be
declarations of the data objects to be used”
loop initiatization

EOF (end-of-file) checking (to terminate the loop)

V114 Necessary Data ‘Obj’ects and Their Declaration

First there must Be decharations for all input and output files. Assume that the files PAY and
HOURS are known by these names to the PL/I environment UCL code can be generated to make
. this happen). Then the following declarations must appear in the PL/1 code:

DECLARE HOURS INPUT FILE SEQUENTIAL RER
, PAY amm FTLE SEQUENTIAL

3
There must also be declarations for data struc*turés%ancﬂ;ary to the’:llo‘ andv control ’to be
performed. In particular, for every input file there must be a record image data structure into
which a record of that input can be read. leemse for’ every output file there must be a record
~ image data structure into which a record of that output can be built so that it can be wrltten out.
In our simple example, the HOURS and PAY files must have such a.ssuchted‘data objects. The PL/I

structure can be used for this purpose:
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.OECLARE 1 PAY_RECORD, ' '
Z EMPLOYEE FIXED DECIMAL (&),
2 PAY FIXED DECHWAL (4},
1 HOURS_RECORD,
2 EMPLOVEE FINED (ECHW. “)
2 Hllﬁ FIEB (ECIM. Qi

Fmal%y for each ktputa ﬂag is needed to indicate the. EQF m:gmm Thus, for the

H: BEPE B B I

I{IRS file we would have the declaration:

i ST SRS LR A T

DECLARE 1 EOF ALIGNED, \ .
2 HOURS BIT (1) UNALIGNED INITIAL "8°B);

When EOF occurs on the associated file this flag i st ‘“13 o

V.Li¢ Loop Initialization

Before iteration al flags must' be initialized. This can be done by the use of the INITIAL
statement in the declaration (as above for Elr !ﬂ.ﬂS}. Abnallddmm be read to-establish

imml values for thm mdm ln gur mmpie,ﬂnmm section: would consist of mevely: -
FEAD FILE (HXRS) INTO GRS FECORDY:

Vi1l EQF C"’C“"!Lmdlﬁp Téermination

To detect an EOF condition on am,eaulsg mmmm PL/1 ON construct
can be used For theKlRS file thc appropnatemde would be: .
CIN EMJFILE (F{lRSl E(F KIRS 1'B;

To enforce rteration termination upon EOF of the driver, the loop is constructed. using the

‘ formDO WILE (- E(F drwer)
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V.1L1.4 The Loop Itself

Given this supporting structure, the rest of the implementation.is eisy. The foop itself can be

written simply as: DEEE RIS =S TR P R A L
DO WHILE (~ EOF.HOURS): . S
'PAY_RECORD.PAY = HOURS_RECORD. &mas.;m g
PAY_RECORD. EMPLOYEE = HOURS RSCORD EIPLOVE, Y '
WRITE FILE (PAY) FROM (PAY Rscumn o |
READ FILE (HOURS) INTO. (HOWRS._RECORR) r st B—
END ; o
When the loop terminates, the job step is ended and the mput ;nd output ﬁlesk .are‘automatically
: O e vole g
closed. The complete PL/I program for the pay ca‘tuhﬁonédréuﬁthﬁisgivenhfig L o
AR YL Y . R
V 1.2 Uniform-Index Matching Co@utm o ST TR WD CA e

Let us extend our treatment of single-level loapimplementationd 36 thise liiﬁimdtciﬁan one
input We use as our vehicle the variation of the. mmm £0 Inchides & rate filé tindexed
by '-"“Pioveeﬂd) ' : . LTI R B+ CRNERER A o |

PAY IS RATE x HOURS IF RATE PRESENT AND "ﬂﬁs PRESENT |

CwpooATE el

Suppose that the input files RATE and HOURS are to be read sequenmliy, that their records are
sorted by employee-id and that I-DI.HS is used as the hjp dn;er o

- Again because the loop is driven by a single input file, it is implemented using the form DO
WHILE (- EOF.driver}. However, the computation description dictates that a record of the
output file PAY for a given value of the key employee-id is to be produced if and only if there is a
record for that employee in HOURS and there is a corrc;spondthg record in the RATE file. Therefore,
in the body of the loop, before the output record can be calculated, the record (if any) of the non-

driving input that matches the current value of the driver’s index must be found.
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To find the matching record of the non-drivieg imput we read:successive records from its file
comparing the index value of each record with_the current. loop..index. . The: general. matching

algorithm consists of the following loop:

For each non-driving input: .

I. If FOUND. input is true (indicating. tlm the record. currently. held. in the. input’s image -
structure has been used) read the next record of the roput

~ 2 if'an EOF condition has occurred on the input. set F(lm mput to falsc (0) and exit the

3. Otherwise, check the index, of the SHSTERt Inpu-record-againit theindex of the current
* driver record | _
lfs setFm mput mt#oea;; exrt R
“If <, read’ thc ‘next record of the in;ut and ;o }o"‘gep 2 )

I >, there is no corrcsoor';dmg?rccord in the input Set FCINJ mput to false (m case
_the mdex .of the record. just read mmy maich that-of some subsiquent mmm

- and exit

. ) TP [PEEN ERTEE TR S LN
g PR (SRR [P A S P s T L
AR S : B IR 4

To support this algorithm a flag FOUND. input must be declared: fios:each nem-driving input

At

and initialized toc.true,(l),huomummain loop. oo o ERCEA R N it
The imp%mentatlon of the rest of the main loop's body (followlng the matching code)

'consrsts of code that attempts to compute the omput record mtug only tlmc nou-drtung inputs

whose FOUND j}a;; are true. Basrcally. in this code, the PRESENT checks of thc HlBOL descrlption

S

become checks on the corresponding FU.NJ ﬂags\ '

This matching process must be:impkmented for every non-driving Ioput in a data driven
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PAY_COMP: PROCEDURE ;
{declarations)

ON ENDF ILE (RATE) EOF .RATE = '1'8:
ON ENDF ILE {HOURS) E£OF MOURS = *1'8;
READ FILE (RATE) INTO (RATE RECORD);
LEVEL_1_MINIMUM EMPLOYEE = RATE RECORD.EMPLOYEE;

DO WHILE { EOF RATE);
IF  EOF .HOURS “ :
THEN DO:/# THIS READS ITEMS, SEQUENTIALLY, FROM A ru.z UNTIL. mgtlf,aytsmp ;
RECORD IS FOUND (SET FLAGS TO TRUE) OR PASSED (stx Euﬁsgjo mm */
IF FOUMD.HOURS_RECORD NIt
THEN READ FILE (uouas; INT0 wwas neconi.

11
x

"HOURS_RECORD_COMPARE :
 IF -EOF .MDURS
THEN £DUMD HOURS_RECORD = '9'S; L
ELSE IF HOURS ncco&ymom . gﬁtmwm

THER FOUND. HOURS lzcm I B e E
ELSE IF HOURS_RECORY. !mom } L&YF,L,*; l!myi%!wﬂ!
CEGEIN RV E

B " men rm mm ., of;.‘,,,
ns; 00; w;m ngg jlgns) INT0 (nms RECORD) ;

END;

mrk rxliz'(nv:j mn ()m_umg

« Fe

Elb;

READ FILE (RATE) INTO (RATE_RECORD):
. LEVEL_1_MINIMUM.EWPLOVEE = RATE_RECORD.EMPLOYEE;
END;
END PAY_COMP;

Figure 2: PL/I code for PAY IS RATE = HOURS
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First, notice that the iteration structure is flindamemally different fropy:that for a single
driver loop. The index value determination and EOF. checking is now performed: at the beginning

of the loop body.3! As always, the iteration. is: termiinated wiien all deivers are exhausted (When the

flag EOF,_SO_FAR ands.up true efter-ali:drivers-have been read). Thus: the leop exit must appear

before.the output calculations. aud the form: DB MHILE: *1'BY is wsed: instesd “of DB WMILE (-

EOF. driver) (as in the single drivercam). ‘This is.just » minos: mﬁ&: on the bakic sthemme. = -

What is interesting in the implementation of Fig. 3 is the use of the PL/1 ACTIVE Structure

P
i< ERRIE SRR B M A

.and the ACTIVE_DRIVER CU.,NT variable in determining the proper next index value. The idea is

ii".?;é L T

to look through the drivers in succession. The first is used to establish a teutative index value for

!/Kulf‘ f* 3 R ELNTIL BE TR Si’ H i

the current iteration. The first driver is also given a number that marks it active {for the time

Rl o sipees o s Boad lgoed o ;

bemg) lf the next ariver has the same mdex value it is given the same number lnﬁéiﬁﬁgmat it

will. be af.xtye when, Mm i it hag«e lower index ualne:theloop indéx 5 veset: and‘the second'

) ;q.;x :ég%'yse’s’;f ‘Jr’f"ff‘é'“’ﬁ?f Eal TH
driver is assigned a higher number meaning that it is tentatively active {and, effectively. that the

& P i PR T R AL '%i,
Aol L R T PR LRt I s TR Lk

flrst is mactive) When all drivers have been examined those sharw WIEH’VE number

(held in ACT1VE_ORIYER.CQUNT ):are maasked. detimed; um‘wmkdwm

S P e T S I SN ERS SR RS £

V. Z;Mulu 2!,

Mump!e level loops introduce the peed .for maintemance of current index” values for:each
" distinct loop level and.for, contrgl structures. (o implement Joap;deiving. from loops at lowerJevets. ©
Multiple-level loops arise from two hasic sousces: reduction; compistations and: mixed-index

matching computations., Let us examine the i

3! It could be done at the end of the body if the same code were duplicated as an initialization
before the loop were entered. We have refrained from doing this to minimize code. ‘

mmoagrt U






1TEMDEMAND_COMP:. PROCEGURE ;
(declarations) »

ON ENOFILE (DEMAND) EOF QEWAND.» *1'8; & - . = .~ .
READ FILE (&mua INTO (DEMAND RECORD);
meu b0; LEV{L_Z_HI!M 1TEM = um uecm m«
l§¥§'=&!dWﬁl! T L5500 = LEVEL 2 NENININSTEN; .
END;
ELSE LEVEL_1 = '0'S;

O WHILE (LEVEL 2):. . :o0 - 0 o et
DEFINED. ITEMOEMAND = '8'S;

SR I o TR RN SRR ST IS 1 SIS AN

" BO WHILE (LEVEL 2); }
1 DEFIHED, 1YEm0EMAND s S Y senal dEes ThgERc g !
THER {TEMDEMAND | RECORD. 1TEMDEMAND = 1TENDENAND _RECORD. ITEMDENARD + DEWAND_RECORD. oEmAND ;

ELSE DO; ITENDEMAND, RECORD..ITEMOEMAND 12 AENANSIRECORS DEIMID;: - @1~ @ 4 o "
DEF INED. ITEMDEMAND = '1°8;
. €nD;

READ FILE (DEMAND) INTO (DEMAND_RECORD);
1F  EOF .DEMAND v e Dt
THEN DO; LEVEL_2_MINIMM. 1TEN ~ DENAND_RECORD. 1TEN;
 TEAGVEL 2 MBN0n. [TEN D LEVELR.Y w0 0diam iven
Copr,  THEN LENBRR oA,
. Ewp; _ D
ELSE DO: LEWEL 2. 00 ¢ ot g e DR 0T T e
LEVEL ] = '0'8; '
gy y
CEND; ’
- ITEMDEMAND_RECORD.. 1TEM = LEVEL 1NN, ITeN;
WRITE FILE (ITEMDENAND) FROM ( 1TEMDEMAND_RECORD): SRt

IF E«W N P s _f ek 57 e
THEN LEVELS_1_ THRU_2 MINIMOM.1TEN » LEVEL -2 _NINI. 1TEN;

END;
END ITEMDEMAND_COMP; ' -
SRR ORRIET e e s e T

Figure 4: PL/I code for 1 TEMDEMAND 1S THE SUM OF DEMAND FmEACH lTEH-lDW
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‘a. one is found that has an item-id value matchmg the driver’s cten—ud value m whjch
case all EXTENDEDPRICE records for that value an be generated o

!{

b. one is found that has an item-id value greater thin the driver's, or t’ﬁePRlCE file is
exhausted, in which case there is no matching vaﬁe?ﬂﬁd the inner loop can be skipped.

2. (Inner loep) Gmeua: all wpqwrecm for Mglm Fen-id vnlue reading records from the
driver as you go. When a driver record is read that has an Ttem-id value greater than that of the:
current PRICE record, or the driving file is exhausted; exit. * """

3. If neither input file is exhausted go to step 1 and repeat; otherwise exit.

1n this ~way-each record ofﬂwe PRICE ﬁk is read oniymee .l ‘
A PL/I implementatlon of m.s algomhm s shomﬂn ng ¥ Tﬁe mdér will notice that this
implemematuon is unnecessanly meffncuenf beciausé‘\vﬁcn t'Tiﬁﬁng*RlCE record is not found the
inner loop is executed ar;:;ay 'J‘Ms is mmm WW&! happens in the general case where
there may be cakulat:ons in the mmrluﬁp M«éab mﬂhwfmnwd without the use of a mlsslng

input.

V.3 Aggregated Computations

The aggregation of two or more cocﬁputations into one nested loop introduces a consideration
- not seen before: the synchronization of contputitions at ‘cifferéit” 1otp kvﬂg Consider the two

R SIS S SRR - T SR LRI CIIE SIF it S R TeRs 3T v
Yoo #ahT

HIBOL computations: ' e

EXTENDEDPRICE 1S PRICE * CURRENTORDER IF  PRICE PAESENT
| AND CURRENTORDER PRESENT

VALUESHIPPED IS PRICE » ITEMDEMAND IF ~ PRICE PRESENT™ /7 " °
: AND | TEMDEMAND® PRESENT

92 if CURRENTORDER had been unsorted or  sorted dlffereutly, records from PRICE would
generally be read more than once.
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where CURRENTORDER is the same as above (with-index (item-jd, s&e—id&) and 1 TEMDEMAND is
a file with index (item-id). Ase have scenabous, the firsh compatation. can be draplemented as
a _two-!ev_e!;ng;gedy loqp T hese:oudmmatm siterates aver-the: siugle-key .itensid and 50 has '

- When aggregated.the result.is a two-levebioop:> =

" levels htell—uﬂ

y imutq,ailPBLCE,, lmi ;e
Protog: caiculate vaim—ﬂupped
Outputspempty

CoAneutsg ety L
Epidog: empty

;- . : I Seoren

Looep 2 {inner loop) _ _ :
,Lzevg!‘v(i' temajd,. store-dd). .oop o i d o o7 aneihn cpe et e g T

" Inputsp: ICURRENTORDER) ’ :

nglogz 1in -Galouwlale wsteniddeprice oo Fo
Outputsps(EmeCEi

PR Pt

§
lwutsg. enptg .
Epilag: . - .emply . - e Lo e el R R
Dutputsgauptg

o B feua i S Tt

What is slgmflcant here is that the computations in the aggreg;te occur in dmerem levels.
S AV AL s pie e wsft W MWL sy

Suppose that the PRICE file is guaranteed to have a record forevery item-id. Then 1 TEMDEMAND

is the natural choice for a driver for the value-shippgd computation bechuse a ucu’djd‘mw

will be generated if apd only, if, there is.a. ecord in- 1 TERGENAD: fos-the Same key. :As for the

extended-price computation, cmﬂsmmahmmmbm the driver. | |
 Now the outer loop iteraes over i fan-igh values detesained by-bath drivess. Suppose the”

firs record of each driver is read. Thereare three cases, distinguished by the.retative values of the

item-id keys in these records:

33 Notice that in finalized loop description there is no General section.

7







{(decinrations)

{ON conditions)

(read CURRENTORDER snd initialize LEVEL_2 MININUN.ITEN = CURRENFORDER_RECORD ITEW;)
{read ITEMDEMAND ani initialize I.EVEL 1_MININUN. ITEN » mnuw- &M "Eﬂ )

"f;:f“ L 1 DN 5 gyi Y i
vt - B

(code to set the syndwonintlon tlag for sach level to ulu if ts drinr hed no morﬁ)'

(cwurism 97 1TEM velues Ly 3et syachrenizetten ﬂm
1F LEVEL_2_MINTMUN.ITEM > LEVEL_)_MININON. 1TEN

THEN D0; DOLEWEL S 1= E By g
LEVEL 2 = '9°'8; .
LCEVELS_ ] _TRRU 2. WINTINUM. [TEN = LEVEL_ 1 WIMINUM_ITEW; =

€EnD; .

ELSE TR LEVEL_ 2 SINIMUN. 1EEM  LEVEL Y WINIWN. [TEN

THER DO; DO_LEVEL_1 = '9'B; ’

4 AR AT S v

LEVELS_)_THRU_2_NINIMUM.TTEM = LEVEL_2_MININUM.ITEM;
. ELSE 90; DO_LEVEL 1 = '1'8; !
LEVEL_2 = *1'8; - 1
LEVELS _1_THRU_2 N1NJMm. mim m&w mm
;)
DO WHILE {LEVEL_1); iR
{resd PRICE record) o

IF DO_LEVEL 1 THEN (calculate value- m”ua ft'ivhiqum 1es;

DOAMILE (LEVEL_2); . ¢ % w0 Lo mmpfogmn CAS oo
IF FOUND.PRICE _RECORD THEN (cﬂcuhtc and write utmdci-priu) ,
e (resd CURRENTORDER sod sdset | LEVEL 20NN ETEN &ﬂ&mhﬁm ann;y
(check for ¢of) .
IF LEVEL_2 MININUM.1TEW > LEVELS_1TWRE.2:MINMIN TVEN: TR LEVRL H v 20%8;
_ ‘ ' ELSE LEVEL 2 » '1'8;
END /# LEVEL_2 */; ] .
S s ARY TR Y e Tt
© IF DO_LEVEL_1 THEW DO /+ Epileg LEVEL_I #/;
WP i LI DEGINED WALUESHIPPED TIEW {urtte Velueliikipped recerd)
{resd 1TEMOEMAND and reset
R NI TR o T NV _RecoRy TTEN;)
END /+ Epilog LEVEL I #/;

{synchronization code exectly as sbove)
END /o LEVEL_] «/;

Figure 6: Iustration of synchronization code for aggregated computations
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PAY_COMP: PROCEDURE;

DECLARE DSAGI INPUT FILE SEGUENTIAL RECORD,
PAY OUTPUT FILE SEOUENTIAL RECORD;
DECLARE 1 PAY_RECORD,
2 ENPEOVEE FIXED DECTMAL (&)
2 PAY FIXED DECIMAL (&),
1 BSAG1_RECORD, _
2 EMPLOYEE FIXED OECIVAL (&),
2 DEFINED ALIGNED,
3 HOURS BIT 119,
3 QVERTIPE 81T (1),
-2 HOURS FIXED (ECIMAL (3);
2 OVERTIME FIXED DECIMAL (3);
© 2 EMPLOVEE ‘FIXED OECIMAL (&),
2 HOURS FINED DECIMAL (31 .
DECLARE 1 EOF ALIGNED,
2 DSAGL ‘BIT {1) uauwso INITIAL ©°8°8);

© ON ENOFILE (DSAGL) EGF.DSAGI = B
READ FILE (DSAG1) INTO {DSAG1_RECORD);
B0 MHILE (~ EOF.DSAGL):

1F USAGI . DEF INED. HOURS
THEN DO; '

PAY _RECORD.PAY = DSAGI_BECG!D HOURS t 3.5;

 PAY_RECORD. EIPLOYEE = mxmmé
WRITE FILE (PAY) FRON. (PAY_RECORD); N
READ FILE (DSAGL) INTO (DSAGI_RECORD)

END:;
ELSE;

READ FILE (DSAGL) INTQ {0SAG1 RECORD); -

END ;
END PAV CGP

Figure 7: PL/I code for PAY 1S HOURS * 3,80 with Aggregated Flow

w5t - . B P
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used. If the sort orders are compatible the method of access |s completely analogous to sequential
- access except that “records” are "read” fmthﬁble mm efsetwary storage (see Fig. 8).

If the input file is randomly orgamzed (regleml (2))%1& -aecess code generates a hash index
and then mimics the PL/I access procedure: compare the key valu&"d‘”thclndic:ted table entry
with the desired ones; if |dent|cal stop; othermse examine mvéém‘ries in" wrap—around fashion
until an empty slot is found (end of the bucket) or a complete cyde has been .made. If the sort

orders are not compatlhkm more: eemp}icated bxmry search is impkmentéd

V 5.3 Random Access

When the records of an mput are dlrectly (regional (2)) organized the file is randomly
accessed. Instead of usmg a Ieop, as with: sequentlal access, a single read, using a cakulated key is
executed. For example if the PRICE file i the EKTEMHPRICE computation (above) were
randomly accessed, the accessmg part of the code would be

PRICE_RECORD_HASH_VALUE = MOD (5 x (MOD (LEVEL_2_MINIMUM. lTEH 1),

PRICE -RECORD_HASH_VALUE_STRING = PRICE_RECORD_HASH_VALUE;

PRICE_RECORD_HASH_KEY -

LEVEL_Z_MINIMUM. 1 TEM || PRICE_RECORD_HASH_VALUE SIRIM}‘-

FOUND.PRICE_RECORD = "1'B;

READ FILE (PRICE) INTO (PRICE_RECORD) KEY™ (PRICE_RECORD_HASH_KEY);

The first three stétemen;s cakeulate the source key string which has two parts: the region number
(rightmost 8 characters) and the comparison key (the remaining characters). The case where the
record is not present is handled by the statement:

ON KEY (PRICE) IF ONCODE = 51 THEN FOUND.PRICE_RECORD = '8'B;

which resets the FOUND flag if a "keyed record not found™ error occurs.

-



Data Driven Loops

IF  EOF .PRICE
THEN DO IF FOUND.PRICE_RECORD
THEN IF PRICE _RECORD_INBEX < = PRICE_RECORD SI1IE
THEN PRICE_RECORD_INDEX = PRICE ucon lm +1;
ELSE EOF PRICE = *]1°S;

- PRICE_RECORD_COMPARE : .
1F €0F .PRICE
- THER. FOUND PR ICE_RECORD = *9'8; ‘
" ELSE IF PRICE_RECORD.ITEM = LEVELS_1_TWRU_2_WINIMUM.ITER
™en rom.mcz_aicm =g
ELSE IF. PRICE_RECORD.FTEM > LEVELS. ) THRU 2 MSTMIMEN.ITEN

THER FOUND .PRICE_RECORD = '§'B;
ELSE DO; IF FOUND.PRICE_RECORD :
THEN IF PRICE_RECORD_INDEX ¢ = nlct nicm Size
o THES: PRICE MECORD_INDEN = :
PRICE_RECORS_INDEX + 1;
. ELSE EOF PRICE = '2°8%::" .-

&0 Tc'ﬂ!ﬁ_m_mw;:
11 B
£ND;

Figure 8: PL/I Code for Reading PRIGE by Cote Tablen the Extanded Price Computation
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V.6 The General Case--A Summary

We have seen that the basic code structure for a computation consists of thg fol!(_)wing four
parts:3% | | | o |
declarations
on-conditions
loép initialization
the ne;ted loop:m
The basic structure of the body ol‘ each loop in the nested loop is as follows
read & match non-drlvlng mputs
Prolog cal,cu!atlons
“inner loop (if any)
Epilog calulations
write outputs
read active drivers

determine new active drivers
and index values for the next iteration

-loop synchronization code

exit on EOF or (for inner loop) sub-index change

B 1 ‘may be mterestmg to note that ProtoSystem ls code generator generates these sections
simultaneously as four separate output streams (rather-than sequentiaify) that ave ¢atenated together
when they are all finished.

3¢ There is no clean- -up code following the loop because the end of ‘the job stép which is the -
computation does everything necessary, including the closing of files.



9 Data Driven Loops
Appendix I: The Simple Expositional Artificial Language (SEAL)

As an aid to discussing loops wc»il‘wem an amﬁdalhngmge similar in form to tradmonal
high-level languages such as ALGOL, PLl and FORTRAN. The baskc constructs of this
language are:
| Iteration: expressed by the construct:

for each <loop-index> from <driving-flou-set>
<body> :
end . i S .
which has the meaning perform the actions comamed in the <m> for each value of the <loop-
index> obtamed from the flows in the <dnvmg—flou-set> Adoop-mde» is the enher the
name of the index associated with the flows in the <dr|vung-flw5gg§> o: (fqrAre,asons that
become evident in this paper) a sub-index of corresponding sub-ﬂmu Thesetof values Ttbat the

<foop-index> takes on is the union of the index sets of the drivers. This set isenumented at

execution time by reading successive records of the drivers.

IO and defined: input (record fetching) is expressed by the get operator.thu&
get «variable-instance> |
where <variable-instance> specifies a flow and a i:anicuhr value for its index, represemed as a
variable (see below). A statement like this means: fetch: the indicated Wd_’-lf itexists,
Qutput is expressed by the ur i te operator, similarly:
write <variable-instance>
The defined operator is a loglcat opemor for use in conditioml expressions It is
applicable only to flow. var:able instances. The form

definedi<variable-instance>]
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evaluates to "true” if the specified record or the indicated:fiew exists. I particular, if the recerd Is
an input (obtajned through a get) it is "defined” if-and only if the! get:subceeded; if the record is

an output it is "defined” if and only if the generating code produced a datum for the record.

Conditional Execution: expressed by the-familiar i f-then-e|se construct:

i f <condition> then.<statement-liat>;:
eise <statement-list>,

which means that if the logical expression <cond|t|on> evaluates to true perform the statements

in <statement-list>,; otherwise, pefform the smemeuu m <etatennt—t isbz

Lo

Logical expressions can be fprmed usmg themthmltié coin -operators, the defined

YAy

operator, and the logical connectives and or and not

Conditional Expresslons: expressed by the construct:

if <condition> then <expression>,
else <expression>;.

which evaluates to the value of <expreasions, if the logical expression <condition> evaluates to

“true” and to the value of <expressions, otherwise.

Yariables and Assignment: expres;ed by the construet:
| <variable> = <expression>
where = is the assigth operator.

A variable can be either a scalar or an indexed variable. Flows ere represented as indexed
variables with Aan index identical to the flow's index. Thus, DEMAND{i tew id, store~id) is the
variable corresponding to the DENAND flow and an.instance of is index: stlects. the datﬁm"of the
corre_spo;,nding; flow record.. That.is, for example, the statement:

DEMAND (1234, S678) = CURRENTORDER (1234, 5678) +
: BACKORDER (1234, 5678)
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means that the datum of the record of DEMAND for it #1234 ordéred by store #5678 is to get the
value obtained by adding: the data of the  corresponding records froi’ CURRENTORDER and
BACKORDER. '
Typi.ca“y. the record-by-record computation implied>by a' HRIBOL flow equation would look
like that equation translated into our artificiak language {with a gmiﬂtzdm.wch as |
DEMAND(item-id, store-id) = .

" if defined [CURRENTORDER (i tem-id, store-id)]
and def.ined [BACKORDER (i tew-id, - store-id}] -

‘then CURRENTORDER (i tew-id, store=idl +
BACKORDER (i tem-id, store-id}

else ”' defined[uﬂiENYM(itét;id. storg-id)l |
then MNTMRiiteI;id; s‘tor“e-ﬁH |
else if deiined{BM(;i‘tu-ié.; ’;tére-idll
“then BACKORDER{itew<id, store-id)
else undefined -
and iwould appear somewhere in the body of loop.
- Sub-flows: A sub-flow (f&r use in the for each cm;tmcg) is expressed by:
| <flou-variable> {<sub-index>}
For example,
| CURRENTORDER L i tem-id}
denotes the sub-flow of CURRENTORDER consisting of just thse records whose indices correspond to
the value of the sub-index (item-id). Generally, the vale of 'me ndicated subsindex is fixed by an

enclosing loop.
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