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ABSTRACT

In this thesis, the problem of designing the layout of integrated circuits is examined. The
layout of an integrated circuit specifies the position on the chip of functional components and wires
interconnecting the components. We use a general model under which components are represented by
rectangles, and wires are represented by lines. This model can be applied to circuit components
defined at any level of complexity, from a transistor to a programmable logic array (P1.A). We focus
on the standard decomposition of the layout problem into a placcment problem and a routing
problem.,

We examine problems encountered in layout design from the point of view of complexity
theory. The general layout problem under our model is shown to be NP-complete. In addition, two
problems encountered in a restricted version of the routing problem -- channel routing -- are shown to
be NP-complete. 'The analysis of heuristic algorithms for NP-complete problems is discussed, and the
analysis of onc common algorithm is presented.

'The major result presented in this dissertation is a polynomial time algorithm for a restricted
case of the routing problem. Given one rectangular component with terminals on its boundary, and
pairs of terminals to be connected, the algorithm will find a two-layer channel routing which
minimizcs the area of a rectangle circumscribing the component and the wire paths. Each terminal can
appear in only onc pair of terminals to be connected, and the rectangle uscd to determine the area
must have its boundaries parallel to those of the component. If any of the conditions of the problem
are removed, the algorithm is no longer guaranteed to find the optimal solution.

Thesis Supervisor: Ronald 1. Rivest
Title:  Associate Professor of Computer Science and Engincering

Key words:  VLSI (very large scale integrated) circuit layout, component placement (rectangles),
channel routing, NP-completeness, algorithm analysis, heuristic algorithms.
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Chapter 1. Introduction

The research reported in this thesis is an investigation of algorithms for the layout of integrated

c’ircuits.‘ Integrated circuits are formed on silicon chips by creating layers of different substances (e.g.
metal, polysilicon) in geometric patterns on' the chip through a variety _of fabrication techniques.
Electronic components are formed by the interaction of regions.in the different layers. ‘Wires connecting
components are simply regions between two coinpdnenis on a layer. Laying out a circuit consists of
dcfcrmining the patterns for each laye;; onthe chip :;“_’ , create the desarcd components and
interconnections. For example, in nMOS/FET technology; a designer croates a transistor by drawing a
reéion for the polysilicon layer and a region for the diffusion layer which-cross when the designs for the
two layers are superimposed [Me80]. In general, designing a layout reqmres knowledge of the
intcractions between layers for the technology being used and limitations of the fabrication process being
used. The goals of the designer are 10 put as much circultry as possiblc in as small an area as possible, and
to have it work correctly and as :fast as possible. A good example ?s the layout of auvmicmproqessor, where
the amount of information which can be processed, the number of functions which can be performed,
 and the speed of processing are important. .
The layout problem as described above contains a huge number of variables and leaves much

room for cleverness by the person designing the layout. It does not lend itsclf well to an algorithmic
approach where a well-defined model and sei of operations are employed. However, standard layouts can
be used for each component needed in a circuit. These components need not be simple electronic
. components such as trimsistors or resistors, but may be logic gates or even higher level circuit subsystems.
Given these components and the interconnections necessary to realize the desired circuit function, the
layout problem consists of allocating a proper-sized region of the chip for each component and
detcrmining the pattern of wires fonhing the interconncctions on each layer. This is the layout problem

as we will mean it. We have lost the flexibility of tailoring the layout of each component to the particular
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application, but have greatly simplified the problem. |
In general, we will wish to place a set of components on a-pessibly multi-layercd planar surface.
The components will contain (evminals, which ase points to-whick wires can connect. - The desired
interconnections will be specified by giving disjoint sets of torminals. Each et of terminals, called a net,
should be interconnected. The interconnections will e naade by wires which definc paths between
terminals in the layers. There will be constraints which: the layout must satisfy, such as a minimum
sepafation between unconngcied wines. - These constrainidarg called design rules. |
The major motivation for developing algorithms nm& the Jayowt problemtis the complexity
of the integrated circuits being designed. A chip may new-contain tens of theusands of transistors. Hand
layout of these integrated circuits, even with the aid of cemputerizod. graphics, is very costly, time
consuming, and errer prone, Standardized components, such as logic.gate oslls, are alrcady employed in
the industry to simplify citcuid.desiga. and layout, and layout by computerhas mmﬁmenwd {Fe76]
| Per77). The tradeoffs are similar 0 those in. computer pregramming. - Programming in assembly
language gives a programmer the freedom 1 devise clever \laytwmk:a.pmnnm faster or require
less storage. However, when meny: large, complicated progsams need to be writien, the savings in time
and the concepsual simplification:gained by using a high lovel language mm are worth the loss of
flexibility. Just as one might write an often used subroutine in: assembly language, one might do the
layout for a circuit subgystem {0 be used in many circuits by hand. However, for most. projects, the
savings in-time and. the added faith in the correciness of the design:due tn the simplified structure make
the component appeoach preferable.
 Although working automatod layout systems docxia; the problem of desigaing algorithms to do
integrated cincuit layout is net solved. - Many of the existing algorithms place fusther restrictions on the
problem. Typically, they require.that all.components be. the same size jn one dimension. Such an

algorithm places the components in rows, forming an aeray.” The wiring (called rousing) is done in the
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spaces between rows. Also, although several algorithms have been designed and implemented, little
analysis of the algorithms has been performed. Empirical evidence is often cited in the literature.
ﬁmver, papers describing algorithms which may not find optimal solutions rarely present mathematical
analyses of the quality of the solutions found. For example, one does not find statements of the form
"this algorithm always finds a solution within S0% of the optimal.” Tn. this dissertation, we discuss layout
algorithms from a complexity theory point of view. We focus on the performance of algorithms, both in
terms of the quality of the solutions they preduce and the running times they require. We work with
subproblems of the layout problem since they are easier:to approach and are commonly encountered. An
* example of such a subproblem is the routing problem when components have been placed in rows.

 The thesis is organized as follows. In Chapter 2, we-review the techniques used by cxisting
automatic layout systems. n Chapter 3. the model we will use for layout problems is presented. We also
describe a second model -~ the graph theoretie model ~ which Ras proves very uscful in characterizing
the area required by various interconpection patterns. In Chapter4, we discuss the complexity of a
number of versions and subproblems of the layout problem. A review of previously: known
NP-completeness results s given. We prove the NP-completeneas of # roctanighe placement problem and
two problems encountered in channel routing. We analyze a previously known heuristic algorithm for
one of the channel routing problems. In Chapter S, a new algorithm is presented for a special case of the
routing problem. In this problem, terminals tie on the bwﬁayyfmmmmhrcmponent. ‘Pairs of
temnnals must be interconnected. The algorithm finds a minimum area routing: for a-channel fouting
modcl and has running time O(t’), where t is the number of terminals: By developing this algerithm, we
have shown that there are non-trivial reuting problems which: are not NP-hard. ‘Most routing problems
are cither known o be NP<iard or are so closcly ‘rélated o' NP-hard pvablems a8 wbecemidefed
intractable without an actuat proof of NP-hardness. In Chapter6, we discuss properties of the algorithe,

ImChap(er?,wemnﬁmaiuand—‘prcscntopcnmm.m;m,m}aI,f; arch. A review of
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basic definitions and notation used throughout this thesis is presented in the appendix.
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Chapter 2! A Review of Layout Automation Techniques
2.1 Classical Approach to Layout

The problem of placing components on a surfacc‘and making the required interconnections in
one or more layers is not ncw. Research on the layout problem was initially done for printed circuit
boards in the 1960's. The layout problem for pﬁnted circuit boards is closely rclated to that for integrated
circuits -- components arc placed on a board and interconnections arc made by conducting strips (wires)
printed on two or more layers of the board. Wires on different h).leS are insulated from cach other, but
wires on the same layer must not cross unless a connection is intended. Depending on the manufacturing
technique, a conducting path may be able to change layers only at fixed positions on the board (called
fixed vias) or anywhere on the board (called floating vias). Some researchers have used models for the
layout problem which they intend to apply to both printed circuit boards and chips [Han76]). However, as
we shall discuss below, the objectives and assumptions for printed circuit boards and integrated circuits
are different. |

Traditionally, layout of circuits has been divided into two phases -- the placement phase and the
routing phase. Separatc algorithms have been designed for each. In the placement phase, components
are assigned positions; in the routing phésc, the paths which the wires will use are determined. For
printed circuit boards, the goal is usually to minimize the total length of wire used. Generally, the board
is divided by a rectilinear grid and components can be placed only at certain locations on the grid.
Terminals where wires must attach are at fixed positions on cach component; thcse positions match
locations on the grid. Automatic layout systems for integrated circuits have borrowed the algorithms and
modcls from printed circuit board research and expanded on them. Most systems usc standard cells of
uniform sizc which are arranged in rows and coluinns, leaving a grid of horizontal and vertical streets in

which connections can be made. Examples of standard cell systems can be found in [Fe76}, [Per77).
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For placement algorithms, components are gencrally modeled as points and, the board or chip as
an array of locations on which the components. Mb&plamd, For-printed circuits, components are
usually standard size packages 0 thal size s not a facter,, For integmated circuis, a size parameter may be
associated with each point and a capacity. with cach lacation. _For example, in [Sc76] cach location
represents a row of standard cells and has a capacity. whichis the length of the fow. In the majority of
placement problem formulations, the ob;iective is to find a placcment which mest facilitates the routing to
follow.: A function of the placemsm is chéqen as an abjective function to be optimized. The function is
supposed to be an indication of the difficulty of the routing given.the placement. Most ofien the function
is an estimate of the total wire length used for routiag. . Various estimates of the. wite length needed to
route one net (set of terminals to be intercomnected) are ysed, ¢.g. the half-perimeter of the smallest
rectangle enclosing all termipals of the net; the: length of the:shortest spanaing trec-of the net... The
estimate must be easy (o compute.

There are two types of placement algorithms -- constructive initial placement and iterative
improvement. Most ‘automawd kwaut syatems use. both, -although either can be used alone: iterative
improvement can be used with a random initial placement. . Consteuctive initial placemont algorithame
place components one by one based on, their condectivity 0 compapenis previously-placed. In many
systems, a designer may choose and place the first componenis. When: the first component is chosen by
the algorithm, a special component such as a bonding pad may-be chosen, or an asbitrary component may
be chosen. Given an initial placement, iterative improvement algorithms move components o impreve:
the objective function. Thesc algorithms are local gptimization algorithms, One common technique isto
exchange pairs or rearrange larger sets of components and test whether the valuc of the objective function.
has been improved. In another method, called Force-Directed Relaxation, a component is moved to a
point where the "forces” due to its connections to othcr componems are balanced. A descnpﬂon of

various placement algonthms of both types can be found in Chapter S of [Des72]. An experimental
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comparison of several of these algorithms is presented in [Han76}

The routing portion of the layout problem has received much attention in the past ten or fifteen
years. Many algorithms have been deveklpedwﬁm!'ncaropumai“mkrmmﬂmmutmgpmbhm
when sets of points which must be interconnected are given as input. Most of the algorithms attempt to
minimize total wire length. These algorithms almost exchusively use the rectifinear (also known s
Manhattan) measure ot'cﬁs(anms;1

Routing can be approached a mmmber of different ways. ‘Nets may be connected using Steiner
trecs, i.c allowing wires to branch at points between terminals; ornﬁyfbé-remmd to spanning trees,
where no branching wires are allowed. (Sec Figure 2.1) Connéctiospadn ‘may be allowed to change
layers at arbitrary points, at fixed points, or not at afl. The tree of connections for each net may be
determined before the acteal paths are found -~ calied wire Mist determination ~ or the trees may be
determined as paths are laid out. When each path must lie totally on one-Tayer, the layer assignment, Le.
determining which paths will lie on which fayer, noﬂendoncﬁm. Afi'paths on'a layer must be routed so
that they do not cross. However, many of the must recent touters for integrated circuits and printed
circuits use the restriction that horizontal wire segments and vertical wire segments are on' separate layefs,
(Horizontal and vertical are the perpendicular directions of the rectilinear metric.) Paths are composed of
horizontal and vertical segments. Each change of direction is a—dﬁngeoflay&. “Typicatly, two layers are
used -- one for each direction. In the projection of the layers on oné plane, two paths may intersect within
perpendicular scgments witheut being electrically comected. "When ‘paths can change layers only at fixed
points, cafied vias, the vias may be assigned to particular conricctions before routing. For printed circuits,
the number and location of vias is often restricted due o the fabrication technology. For intcgrated

1. Under the rectilinear metric, points (xl,yl) and (xz;yz) in a cartesian coordinate system are distance
& x,l+ly,-y,| apart. - ‘ ‘




-13-
circuits, vias are contact cuts [Me80}. They are vsually allowed anywhere, although it is desirable to
minimize the number used since they require extra area.

Most algonthms to do the actual routing of wire paths fall into one of the following four
categones maze routers, line rouu;rs, oell routers, and cham{;el' @mm The first algomhms used on
printed circuit boards were malSe routers. Maze routers find we path at at time. They zire based on Lee's
algorithm [[‘.ee61] for ﬁndi"ng"{he shortest path betweea tvmf nodes in a graph. In fafs:L a path can be
found between merhbers of two sets of nodcs rather than between two specific nodes. The graph used for
routing is a grid graph containing @fbldden regions. The algorﬁhm is a breadeh first scamh of the usable
gﬁd points. (See Figure 2.2.) Multiple layers may be modeled by using' one two-dimcnsignal grid for
~ each layer. Each grid point (for unrestricted vias) or each of a speciai set of gndpmnts(for ﬁxec[‘;yiag) on.
one planar grid is adjacent to corresponding grid points on other planar grids. N

. Cellular routers. [Hit69] also divide up the Touting: phne m&o a reguhr amngement o£ cells.
Again, each path is Eound, one a a ttme by a breadth ﬁm search over all cell& Each cell represents a
* region of the routing surﬁice mcludm; all layen Thw ﬁpmuﬁoﬁ%;obtmned bypmjectins all layers
on one plam, den partitioning tte phae into pieces of unifonn,siw mglqu, These pwces are the cells.
Each cell is hue enough to fit mm one wire vnddl oa;;aeh laycr. The muuntaiwnthm must
define the entrance and exit point; ofe‘each routing_zp;a:th mthe iet qf. cells traversed byﬁ@epa(h From a
given point on a.cell boundary, the mwmdmmanm mc%akulated taking into
accouni wires whlch have been previeﬁsly routed and haVedut off patts of the cell ﬁ'om other parts
(F‘igureld). The detenmnanon ot ﬂte at;tual paths used wwhi&eu:h oell is left for-a mnd algorithm.
Cellular routetsd&mt Foquire: the hm uumber of grid pcma whlth must be repruenled when using a
maze router. |

* Line rauters [Hi69) do ot partition the planc. These routers work directly with hoizonial and

vertical finc’ segments. They buitd ﬁp,a path between twépomtsdut of these segmcacs. A-line router
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Figure 2.1: Steincr tree conncctions versus spanning tree connections.
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finds paths only in one planc. Paths area determined one at a time. Given two. target points to be
connected, line segments are exiended from the targets until they hit obstacles. Points along these
segments from wmgh a lmgcm be extended which w;ll encape" an obstacle wvnously hit are found. In
this way, "escape lines” a;e‘henemmd umil a pmh béﬁeen the two tar'et pmﬁ can be constructed from
" segments of these escape lines. (Sees"mu) LR |
The channel mudlu techmquc [Has‘ll] waﬁ devek)ped for routings inth homontal and vertical

wires on separate layers. The area. ava:hble IOr s decd into horgomal and vert:cal streels.

#i:,,

‘Each horizontal or vcmél] stmet m eomain a smbe if honzomal @ vertical path scgments,
respectively. Paths are ﬁm found throuah the mwma mardip conﬂ:cﬁ wnhia each street. After
all connections have beeti globally. WM #he. sirects, &e W within each_ street are

arranged so that no two owrlap “The mmber of pwhnu or Mnﬁdsl m each street is minimized.

Short segments pemcndncafr to the street direcuoagw e used ﬁ'om each *'mmal out into the street.

For some algorithms, such short segments are also perdildied aligw 2 path segrhent to change channels.
(See Figure 2.5.) Theslohalmuuagamm uac;ual]agg pﬂh Mupwmmamh where more
that one path may use the same edae The local roatm; pmbhm (or ckannel anlgnmem problem)
resembles a packing problem rather than a path-finding problem. These problems ‘will be described in
more dotail in Chapter 4. -

The alaonthms deacnbed«. above are those most oﬂen used by layout automatioa systems. They
do notemonnpass allalaonﬂams. A survey ofrominsalmridumm be ﬁmnd in Chapler 6 of[l)mz]
and in [H:74] A smdy of routet performance l w;h [Kel'm. None of the. algorithms are
guaranteed to ﬁnd an optlmal sqhmon unlas thcy are aﬂowed to rjp up ud reroute -- exhaustively

searchmg all poasxble ‘routings. Furthcnnm ‘if the amount of area which can be used i bounded the

1. The use of the term channel has become confused in the litcrature. I is used by some authors to
denotc a street, by others to denote:a lanc within a street. We follow the terminology of [Has71).



Figure 2.3: Cellular routing.
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algorithms are not guaraniced to route ail connections, even though such a routing exists. In practice,
failed connections are completed manually. Many systems use a combination of algorithms, beginning
with faster algorithms to route moit connections and using slower but more successful algonthms to route
the final connections (e.g. see [Po‘B}) Some algonmtﬁs‘;: lﬁore suscepuble to the prablem of failing to
complcte all connections than others When each pomt-to—pmnt venmection: is assigned to a singlc layer
and then routed, the paths found ﬂrst may encnrc}e a minal not yet connected to anything. Itis
:mpossable to find a path to this terminal -without mwmn WW avreviously routed path.
(Sec Figure 26 For routers of this-type, the-order il%vhich the paths are asm;ned for & pmb!ém can
make a grcat difference in wmmmm i: mm&ﬁ i routing afl the cni’mecuons Given this,
it is mteretting that AbeI [Ab72] concludes from his emipiricat stidy lhat, overall, the pel‘fonnancc of such
routers is nqt significantly affected by various ordering-criteria; (The router used is a'maze router with an
added heuriétic so that paths do not run next to a row of terminals at minimum spacing from the
terminals. The paths being avoided would lead to a large number of blockéd terminals.) The channel
routing technique is less susceptible to the problem of failure to route:all: eonnecions siace the exact -
pbsition of each segment is determined aﬁér all paths arc globally assigned. In fact, if area is not limited,
the streets can contain an arbitrarily large number of channels and 100% routing can always be obtained.

Several characteristics of the modcls‘ugei‘i‘ for past resau'ch on thclayout | prbblem are very
restrictive, especially when considering the layout-of very farge scalc integrated (VLSI) circuits, where up |
to a million transistors are packed on one chip in a ucxx@uemgemcnt. The use of cells which have
one or both dimensions fixcd limits the type of com;mnemi which éan be used. One may imagine having
in the same circuit a very large component whichr u an array bf registers and a number of small
components reahung a special function. Once the componems being used are of varymg size, it is a waste

of space to place them in an array separatcd by “streexs run;ungthc length and width of the ch:p The

size of each component and the way the components fit together on the chip are important.
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When an array of locations is used for cell placement, it-is reasonable to use total wire length as

a measure of the worth of a particular layout. Diﬁ‘erex;t arrangements of components within the array'
only affect the area of the layout msom as they aﬂ’ect c&e inserconnec&mm taken. The total wm': _
length is an easily computed apprmhmte mumrc of the imoum of muﬁn;sarhce whlch thas been used
at any point while routing is being (i)ne 'nm in tum, ihn appmxlmate measurc of thc congestlon of
wires in routing areas. Con;estionm affect ﬂ\e mmbﬂﬁy of intemonaecﬁuns still to be made. When
the area used for routing between campoaeua is ﬁm& \ihich is usually true for printed: cmcult boards,
too much congestion may result in f‘ahufc o mmm G}' the intercnnnections When the area used for
routing can be expanded by moving the components (While keeping their relative positions fixed), as is

more likely for integrated circuit design; too'#uch comjisstion may result in a larger ovemnhyout size.

When components are not of relatively un!ﬁmn niat thcir phcement has great effect on total
layout size. Wire length is no longer a good appmxnmaien to layout size.  This is illustrated in
Figure 2.7. The placement of components and routing of wim interact in a much more complex manner
to detcrmine the total size of a Eyout. The most recently developed layout systems no longer treat
component size as a parameter which is of secondary importance. Components are modeled as rectangles
-- giving them shape as well as size -- rather than as points with a size parameter attached. When
- rectangles must be placed on a plane, the way they fit together influences the area used by the placement
and the shape of the spaces left for routing. Preas and Gwyn [Pr78] have retained a constructive initial
placcment based on connectivity but place rectangles in a plaae rather than points on a grid. Their
iterative improvement phase tries to minimize the area of the circuit by selecting s the candidate for
placement modification a component one of whose dimensions contributes to the widest part of the
layout in that dimension. This componcent may be rotated, reflected, shifted, or exchanged with another
component. A modification is accepted if the arca is reduced. In [La79}, the initial placement i

produced by dividing a squarc of area the same as the total area of the components into rectangles of the



Figure 2.7: Tradeoff of wire length versus area. .

total area: 15x1§ = 225 total aea; 17511 = 187 . .

total wire length: 2 . total wirelength: 16 . - .

where wire width is 1 unit, minimum spacing is 1 unit
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same area as the individual components. This gives an approximate placement which is modified to fit
the actual components. lmprovemena are made to tlte placement by usmg rotanons and shifts. Routing
13 taken into account in the improvement plme The wklth of each street is esomatcd based on global
routing and included i in the area calculation Brinkmann [Bﬂ&iaho uses thc techmque of. dlvidmg alarge
rectangle mto smaller ones to. ﬁnd an oppronimate ploeement. N

Routm; programs for the molt reoent systenu also try tao‘mtmmtze arca rather than wire length.
Channel routers are used in [Pr‘n] and [La79] Channel routen are easy to use when arca nsthe parameter
to be opomlzed since local routint minumzes street wm Streets can be allowed to shrink or expand a
nceded to complete the routing. In [Lo79}. componcntl m M to take pontions abovc the routing
area independent ofone another 0 ltet arca ls not wmd unmeeuaﬁly by aligning the edges of the
components.

Wire len;th remanu an lmportant pmmeter fot a layout because it dlrectly aﬂ"ects the quality
andspeedofstgnalsin mecimmt. lnasituation wehuthotﬁown in Flgure27 where both size and
total wire length cannot be mimmimd at the same time, a tmieoffmmt be made In thts context, it may
bedecxdedthatmrelencthls mostknponnntmm«lofthem&n;mmunme Atothernmes,only
a mmumum wu-e length mtcht be impotod on eertain in;monnecﬁom in the circuit. To make things
more complex we mt;ht unagme a sttuation in whtch the mulmt was that two mtemonnecﬂons have
approxunately the same len;th say when two outputs of one component are the mputs to another
component. lnshort.ﬂwdedredmemreﬁ)rﬂaewaﬂ:ohhyoutcanbemadeverymphcatedif
enouzh factors are coosndemd Phymcal quantioes rnay depend on other layout properties such as the
density of wires in an area. In [Agu’m and [Ru??l. a eystem h deecribed in which total power is

mmtmlzed and timmg constraints are observed ln [NoTG]. coonoctions whme delay must be mimrnized

can be desngnated "critical” and treated special



2.2 Alternate Approaches to Layout Automation

The approaches described in Sectron 21 separate the placement and routmg phases of layout.
The input is a set of components -- either specrﬁed as points or rectangles - and a set of mterconnections
to be made cither among thc componcnts as points or among terminal pomts on the components. There
* are alternate approachcs in the litcrature where the topologtcal aspects of layout arc modeled usmg graph
theory When finding the layout of a ctmurt, placement and routmg are consrdered together by ﬂndmg a
planar embeddmg of a graph modeling thc cm:utt. 'Ihe nmdels do not necessanly assoctate one node
with cach component. ‘Each cmnponent may bc modeled asa set of nodes and edses, e.g. a cycle.
lnterconnecttons among asetof tenninals may be modeled asa set of edges or a set of nodes and edges.
For example the branch point ofa wnre may be represented asa pomt under a Stemer tree reprcsentation
of connections. Several models have been suggested. A _summary can be found in [van76] Gmph
embedding techmques have the advantage that placement and routtng mteract eompletely at the
topological level. However geometry - the stze and shape of the components ~is eompletely ignored ,
andmustbeaecounted forseparately o R o
 Inthe standard approach and in the graph embeddirmapproach. tbeonly mfonnanon aboutthe

layout provided by the mput is the set of nes. ln an alternate @proach bmd on sttck dtagrams [MeSOL

topologtcal mfonnatwn about the desrred hyout is alen pmvtded. ln sﬁck rhagrams. regtons in vanoua

i ey
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layers ofthe mtegrated circuit are represemed as lmes. For example in nMOS technology a polysrlmn
line andadtﬂ‘usron linecrmngrepreaentatrmistor 'l'herelativepostlonsofeomponentsandthe
general path of each wire are tndtcatecl The layout automano; system muste;pand the "sttcks mto
rectangles of the proper dnnensnons based on demgn rules, and modtfy the layout 0 that eomponents and
wires fit together wrth thc propcr spaemg. F.xamples ol' such systems are Sl’lCKS [Wl77] and CABBAGE
[Hs79]. These programs attempt to pack the layout as mueh as possable whtle satisfytng the dwgn rulel

and maintaining the original relative positions of components and wires. This technique exploits the
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human designer’s ability to do-overell layeuts, i.e. rough sketches. The program FLOSS [Ch77] also
packs a rough manual layout it works from a hand drawn sketch Other syatems for whlch the desngner
| does the general layout use a symbolk npmnuﬁonof: the layout (Gi76] [Per73]. The symbolic layout
is pmduced by the deslgner and expmcled into a ﬁxlly speclﬂed layout automaucally Other technlques
: for design automatlon use specul ﬁtucmres such a Pl‘osmmable Loglc Arrays (PLAs) thh known

layouts. Functlonal speclﬁcauons can be automatleally converted mto PLA lmplemcntatlons [Ay79]

Specnal interconnection patterns can also be exploited to anlst ln desrgn (Jo79]
2.3 Summary

All of the above tcchmques have been developed to automate at least ln part, the desrgn of

cieis 5 3 FrETiE

circuit layouts The research rcponed in thls dmoemaon is mtncted to placement and routmg a8
described in lhe ﬁrst section. Although many slgorithms haye been dcslgned and tested, little
mathematu:al analysls of the almthms has been performed 'l‘he techmques of complexity theory are
not regularly applied to layout probtems, Onc notable exception is the work of So Ting, Kuh and others
([Ku‘l9] [So74], [Tl’l(;L [Tl78], l’l‘i79i, [1"3791) for pnnled cin:ult board mutmg. In this work a rouun;
problem for printed circuit boards with ﬁxed vtas in columns is brokcn up into several pmblems. endinx
thh a number of instances ol‘ a mutinj problem for a row ol' termlnals ona smgle layer The problems
are analyzed Necmry and sufﬁclent condltions For a slngle-row smgle-layer routmg to be optlmal are
developed. However the model is not well surted to mtegrated cnrcuit& 'I‘he meamh reported in this
dissertation also focuses on particular subproblems of ﬂ\e layout pfoblcm The problems are motlvawd

by the channel routmg modcl of interconnections.
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As is evrdent in thc dtscuss:on in the prevrous chapter most modcls of ctrcults for layout use
pomts or rectanglcs to model components. ln the rescamh pfeeented in Chapters4 through 6 we use
rectanglcs I‘he model is dcscnbed precteely below ln the wcond sectton of thts chaptcr, we dcscribe a

graph model in which components are potnts We dtscuss its use in provmg bounds on the arca requlred

.‘-t,l» Gk

by cnrcutts with certain mterconnectton pattem&
3.1 The Geometric Model

We have chosen to use a rectzmgle model of componems becausc it captures the geomctrtc and
topologlcal aspects of thc layout problcm Components are rectanguler in shape and vanable in size.
Wires lte on any of several layers and are of umform wldth The model was gurded by the desrzn rnles'

prcsented in [Mc80] for nMOS technology but tt is tnteoded to be applicable to meny technologta

Fonnally, the model isas lbllo\vs. _
The mput for a layout problem will conswt of a set of components amd a sct of nets. Fxh

: .,31;.;7;, ,3{4, :

componenl. Cr will bea rectangle wrth gtven dimemons X and yi At gtven lomtmns on thc boundary of

a component C are tcrmmals t s j l, ,n where n, is the numbcr of tcnmnals on componcnt C Each

jens stvorded

net is a set of tcrmmals, and t:he nets are pmrwme dngomt. Ea:h net repmsents a collecnon of tctminals‘

yel RS

whtch must be elcctncally connected 'Ihe layout pmblem lS\ to place the components on a pm and
«;‘{ ¥
form the mtcnconnecttons spcctﬁed by the ncts m the mtmmum pmble arca. The mtetconnecnonscan

O T N T U S
LIE {Lu’.\; ,;i,wv,, fisa v ,,ff.‘

be madc in any of N layers, where N is spectﬁcd a pnori The layem are numbcred l throuxh N layer i a
Yo

considered to be adjacent to laycrs i+1 and i1, for ZsisN-I 'l‘yptcaliy, N is two l‘he wircs used o

interconnect terminals have a uniform width w. l‘hcre is a minimum spacing between wires on a layer,

between components, and between a wire and a component of s.

The interconnections form paths which lie on the surface of the plane not covered by the
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components. These paths go between nodes. A node is a terminal.or an addidional paint on one or more
layers of the plane. Each path segment between two nodes has a designated layer. The paths induce a
partition of the MMMm of connected nodes; each set contains terminals from exactly one
net. Pith s‘ekments in different hxduma;, intersect. Path sesmenu in thc same layer cannot intersect
unless they-are: mmm the same net and intersect at a node. Addmonal points are allowed as
nodes so that one awire mmut into several and so that a path may changc layéxs A path may. .change
from layer ito layer . for any i anéj between 1 aad N‘ at any nodc; howéver &emd&must lie on all

layers between Iayersland!, iae!uuvc "'mepﬂthlsv ;

Therefore, no path mmeﬂ with a difkrenl»lmm; pilesdor % 1

*‘{"‘*’ =

and j. The set of nodcs and paths in any one lﬁyer rcpmgng ah Mmd a planar graph The area of
Figure 3 1 illusmtel.

Thc model described above takg mw i G

routing. We believe that resmctm; mmmeus toiave*mufar ﬂwes%snll provides a model that is

apphcable to the layout of VLSI cucuits. For thoﬁhghi componm wtgose layouts would fill only a

small portion-of a rectangle; g, "L"-shaped uyma nuybe
or three physmlcoﬂpomumthmmrlmhthw&
One of the advantucs of the model is M 3%

wﬁe&k;ﬂn component into two

*&a vartous leveh of modularizatmn.

Componcnts may represent transmors, logic gates, or even andzmeuc units, allowﬂiﬂty ooncepmat levcl S
of dmgn A hleramhlcal approach m layout such as ehat nsed by Preas and Gwyn [Pr78] can casnly be
taken using this model.

Additional parameters can be allowed as inputs to the layout problem in this model. Upper
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Fignre 3.1: Mustration of the gcometric modul for fayout design.
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Boinds go @e:bw"md width.or the total area used by the Jayout may be given. Altematively, a bound
OB, he aapact.rafio, L. the.mailo of “‘“’““WW width, 0f the layouk area may. be:given. This would
restrict the shape of the layout. -Any. of fhesc. imitstions-may be. necessary 10 imsure that the iayout
produced s usable. For wmaﬂ“m atonsalution resuled in an extremely long and
thin chip. The shape could prohibit the fabrieation of thepackaging of the ehip. Another possibility is
that the circuit being lid out s & compooen at & highos level in.# design hiccarchy. The bounds might be
derived Erom requirementa st Abe Bigher less). Wmsh 8- thone pravide a.range of solutions within
whic the algaithm should wk. 1 i alsc posibl 4. inoduce wire ength sequiremmcats 0 the ayout
problem. As mentioned in Chapier 2, wire.lkngsh is.an impartant fector in signal quality. Individual nets
may be given, upper boupda ea, the. fotal:wiro:Jength of, eeie. intesconeations. (Wire length can be
measuped using the center ling trrough 3 wire.). Rolasionahips ctwpenthe wire longihe for various ness
may also be imposed. | :

In the following chaptors, s will put restrictions.an- the typss:af Jayouts allowed: within the
above model. We will resirict ourmeives to rectilinear paths.and.orthegensl arisntations for companents.
Diiections "horizontel” and "vertical” perpendiculat 40 osl ather will be chosen, asd all componeats
will be placed so that their boundacics ase parailel p: one-of, these: dircestians. - Also, all: paths will be
composed of borizoatal and vertcal segments. This resiricton n isspesod for two resons.  First, the
problems examined are motivated by currendy. used laygut algorithma, - As discussed. in the previous
chapter, the rectlincar metricis sliwoat always used. Sepond, the sesrictian lisuits the. nusmber of possible
solutions and makes the problems easier o saalyze. Mast.of the time, we: also rastrict horizontal and
vertical scgments to.be an differcat layers. Given. that,only horiaonial and. vortical-wire: segiients are.
being used, this assumption aot only greatly simplifies the description of allewable paths (those that may
intersect at a point but do nat overlap) but is reasonable: when:only twe layers arc available. In this cass,

two segments runaing in paraii on diffeseat layers, avs.on, lop o the other, probibit any: path from.
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crossing from one side of these segments to the other. Ay pair of terminals, one on cach side of the
segments, which must be commected will reqilire a path Which-goes around the paralicl segments.
Therefore, one would raroly want such segments. ‘Also, if:the scgments a6 extremiely fong, they may
cause clectrical problems. due to:capacitance. Rétricting ‘adjacent layers' to contain segments in
perpendicular disections eliminates those potentisl problems: - !

There are scveral technical aspects of the layout probilem which the modol does not take into
account. ‘We discuss m below and indicate How the model can'bE extonded or modified to include
them. In actual component design; a component may have several termiinals to which a particular
connection can be made.  These terminals iy be cither physically equivalent, i.e. they are connected
inside the component, or logically equivalent, i.e. yoii ‘@ar’t tell theny spart fanctionally. An example of
legically cquivalent terminals is the set-of input terminals of an "and” gate. The problemof ‘deciding
which terminal to use in connecting a particular net is cafled the pin assignment problén for printed.
circuit boards, and is usually solved before mﬁngaigeﬂﬂﬁn ‘isused ). Both physicatly equivalent
and logically equivalent terminals can be modeled as seis of terminial. A set of equivalent terminals;
- rather than an individual terminal, would be a member of the set ‘defining a net. ‘A sct of physically
cquivalent tenminals-'would appear in-only one net, while:s mormlyeqﬁvaient terminals would
appear in several ncts, but o mere ncts: than the rumber of terrinal in the set - When layout is
complete, each sot of mwmm-mn&mutm at 1vost one’ termimal from each s¢t of
logically equivalent terminals. : This model of equivalent termisals is used by van Cleemput fvan76).

In integrated circuits; layers arc made of différent matérhils #hd diffcrent design rules may -
apply. Allowing the width of wircs tnd: sepaiwtion between objects 8- Vary between layers is a minor
modification to our model; aithough the fesaiting lhyout probles i mrcdiﬂ\cmt. However, the design
rules for various layers can be more complicated than' the ‘model will' aflow.  For exampk i nMGS :

technology [Me8O}, wircs in diffusion-and polysilicon layers cannot cross. Therefore, we model them as



-¥-

one layer. However;, the niinimum distance between two wires kon either polysilicon or diffusion i
different from the minimum distance mm of different layers. “This is not provided for in oui
model. We must use the kirgest of tie actial requirod sépsrations. Luckily, the metal layer in iMOS can
eross both diffusion and polysiticon wires. IF it couldt only: troks one, thew the actual layout problem
would net be captured by our m&ﬁ two layers could de 1sed for intefconncction, but a concept of
"coloring” wircs in cach layer according to-the design-rules woulid have to be added. Another design rule
which we have aot accounited: for conceins changing tayef;. ' Wheen &-conducting path chianges layers, a
contact cut must be made t: comneet the hnmﬂmmmmm nyer. m comact cut requires a
square area larger that mewldthafm wits, This is nittaken into secount in eurarea calculation.  Even
worse, some wircs on @ particular layer may bnsim‘imm then other: wires on the same layer;
depending on the electrical load on the wire. For example, the wires supplying power to'a Targe circut
usually ook like:the human amevial systom: there’ s nnm inaifi- wire and & network of wires of
docreasing wizp-roaching every part of.the circuit. ‘We-recogmice tfiat our model overiooks many detaity of
actual layout design, Bt we foet hat i Is & reasomable:appreaimation of the major eves in the layout of
32 A Graph Eboddiag Mods!

We now discuss the uses of a model in which a ciréult is represented asa graph. We cal this
model the graph embedding model. Each comiponent is represented a» a node-in the circuit graph, and
each conmection (o be made is represented as an edge betwoen two nedes. “The-layoirt problem is defined
as the problem of cmbodding the circult graph In & two-dimensional grid- graph.  An embedding maps
cach node represcating a component to & node of the-grid. - This mapping is one-to-onc. Fach edge
representing a connection is mapped to a path in the grid graph. TFivie-path can only contain two grid

nodes which correspond to component nodes - those that corvespond 1 the chdpolits of the edge being
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embedded. Faths corresponding to distinct edges are allowed to intersect at grid nodes but are not
allowed to use the same grid edge. To make mich an embodding. possibi, each node in the circuit graph
is restricted to having at most four edges adjacent to it, Lc it is resericted 40 be of degroe at most fous.
Such an embedding is an edge-disjoint homcomorphic embeddmc. Gimancuweddms. there are two
measures of arca which we will use. The first, which we will call the.node anea and denote A, is-a count
of the number of grid nodes used as magnsofmpencms and on paths which are jimages of edges. The
second, called rectangle.areq-and denoted Ay, is the Wﬂm&mﬁm a rectangle. whose
boundarics lic on grid cdges and which circumscribes alt nodes vacd.in the embedding. ic. all nodes
counted by Ay, For a circuit graph, C, let A(C) and AL (C) demote:the minimum node area-and
rectangle arca, respectivcly, over all cmbeddings of C. Obviously, AC) S AR(C). An embeddinc is
shown in Figure 3.2, '

The madel presented above can be vie\icd as describing a layout which ums:mlyviﬁ)dmtﬂ%zné.
vertical wire segments (segments in the two grid difecﬁm)i ‘each disoction ‘on 4 scparate: layer.:
Aiternaﬁvcly. the nodes of Ihe gnid may be_viewgd a8 mpmemina@u'n& &5oa squares on-a plape. Each
 grid edge adjacent to a node represents a boundary of the corresponding square. ‘Two paths. sz ,

node need not actually intersect on the plane -- they may run diagonally, cumng acnm oppostte comers

B
A

of the corresponding square. (See Figure 3.3.) Thompson [Th80] uses a model of cm:mt layout wh:ch
divides the plane into such unit squares. He views connections as running primarily in a:-singb layer of
metal. Crossovers.are achieved by using short runs in a second layes such as polysilicon. | ‘
The graph embedding model lumps all terminals. of 2 component- into onc point. The:
point-to-point conncctions made by wires are pre-determined and wﬂmmm for the circuit.
If Steiner trec interconnections of the terminals are desired {i.c. hranchau wires), these must be explicitly
modcled in the circuit graph by adding a node for cach branch point and edges from cach branch point to

components or other branch points. The model does not represent the arca roquired by camponeats or.
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CIRCUIT GRAPH Ci

Ay(C) = 17

- Figure 34t Fifcets of the order of terntinals arewnd u component.
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the fact that terminals have a specific order a@nd the'cdmponent. This arder cayses some routings for
the'graph cmbedding model to be impossible in the geometric model (see Figure 3.4.). Howcver, the
model is very useful for investigating the impl'mtions of-certain interconnection patterns. -

When node area is uses, cach circuit node mmbutes@ﬂy one untt ﬂf area. Thercfore, any
~ circuit graph vnth n nodcs whlch requjrcs morc than O(n) area! must hayé an mtgrconnectwn pattern
whach mqukuah&eiamwrm inwerboundson thcamountofaren regmmd by a graph are
provea using this mcasQrg o»f‘ama Note that any lower bound on Mafea ls a lo%r bamd on rectangle
arca. 'lhompse; [ rhsq provcs x lower bound on the arca required i ambed a gmph as~a funcnon of the
minimum biscction wi&ihofambsetofthe nodtsofthegraph. Givenagmph(}andasubset,s of the
nodes of G, a set of edges in G.bisects § if the removal of these edges partitions the nodes of G:in® two ’
sets such that : j : 7 : g
D LISY2] of the nodes of § are in one sct and FI8}/21 are in the other set;

it) After mmoviné the edges, there are no p#lhs belwecgnedes lndiﬂi:rentse;s. .

Let wg be the size of the smallest set of edges bisecting Sin G. Then:

Theorem (Thompson [Fh80]): Given a graph G with nodes of degree at most fouf, dida subset, 5, of the

) s, . i
e i, g HELE - d
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An n—supertoncentmwr is a graph with n designated mput nodes ang nmm output nodes
such that forany&:tsofk mputno‘esam! k output nodes, lSkSn. there are k node disjoint paths
connecting the k mpm ‘nodes to the k. output nodes [Val75}, For;%c w&aﬂl\pm nodes, E w2 Ln/2s,
'I‘hercfore for any n-mpemonccnu'ator G, A\G)2 (n-l)’/IG = gince for any n, there are

n-superconcentrators with ((n) nodes, all of bounded degree [Pi77], there are graphs with n nodes which



require node area 8(n?). Note that altheugh the superconcentrators in [Pi77] do not have degree at most
fou;. itis étraishtforward to reduce the degree of each node by adding a node for cach édge. The number
" of nodes added is then bounded by the original number of edges. Figure 3. 5 {fustrates.
Thompson also defines average and worst case mformaﬁon complexmcs of a function. He
derivesa lower bound ‘on the average or worst case time mguired by a graph m compute a function:
avcrage(or worst case) ﬂmc 2

(1/w,Xaverage (respectively worst case) information c?mplcxity of the function)

where | is a special set of input nodes in the graph. Combining the résults, Thompson obtains a lower -

bound on Ayx(average time)® for a graph which computes an n-point discrete fourier transform of

Ln/8J%l0g?n; he deﬂ\écs a lower bound of ﬂ(nzlogzn) on Ay x(worst case tiﬂft:e)2 for a graph which son n
numbers. The reade; should refer to [Th80} for details. Bﬁunds for othef functions have also been
derived by various au;gors usmg Thompson’s wchmque. eg. [AbsﬂO],{Sav?Q;.

Uppu boundscana!lo be obtaincd on the area to embed vm:dasses of graphs. Upper
" bounds are del:lved for mctande ares, A  Any such nppcf bound is @o an upper bqund for node area,
An- Flrstobservematanygraph wnhnnodes,cach ofdegreeatmtmur canbeembeddedin
rectangle area at most 6n2+3n. We give here a modification of th¢ proof presented in [Val79]. This
modification improves the bound from a (3n)x(3n) square area to.ii:‘(3n)x(2n+ 1) rectangular area. Since
n-superconcentrators requirc 9(n?) area, proportional 4o a% area is both necessary and: sufficient for
embedding an n-superconcentrator.

The embedding: achieving rectangle area of at most 5n2+3n is shown In Figure 3.6. The
directions used below refer to the figure. The nodes are embedded in onc vertical column of the grid --
one node every three grid points. There is a column for each edge, cither to the left or the right of the
_column in which the nodes are embedded. The path representing an edge must reach the column for the

edge from cach node representing an endpoini of the edge. Therefore, each path includes two horizontal

I W e L
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_ Figure 1.5: Reducing the degree of nodes in & superconcentrates. '+
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Figure 3.6: Fmboedding: an arbitrary gruply in Ond)arca.

* total

3inodes}| ' -

columns foredges -  nodes columns for edges -

———total of jedges] + 1 columns ————
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segments between the column containing the embedded nodes aad the column for.the edge.  The first -
(last) segment of the path is cither one of these segments or a vertical edge from the endpoint of the path’
to the grid node Just above or just bclow :t. Ifa vcrtical «edge begjns the path, me horizontal segment
going left or right: fmmemendnode:smed Aslon;asmcedgesofmccxmmtgraphcanbe

partitioned into two sets ~ thosc whose columns arem the lctt oFtbe nede column, and those whose

columns arc to the nght such that at most m » UG
embedding cxists. The edges ofany gtaph wm neag moimumm can be colorcd usmgat
most six colors such that %0 two edges ad;accm o m samemde gemm color [Be66 PR Let
edges with odd numbered colors have eolumn; to the left, ?d thase with even num_biked colors have
columns to the right. At most three cdges ad;aeent toanodcgure onithe sae side, as desired. Since any
graph with n nodes, all of degree at most four, can have al most 2n e@es, there aré, at mour 2n+1

ot RS £
: T

columns. ' »
Other classes of graphs can be embed@d nﬁmﬂmﬂ D(nz} area. Valmm [Val??] and Leiserson
[L¢i80] have independently shown that gven a mh G with a nodea. eachbfdegree at mw four, ifG is
planar, then A, (G)is O(nlpgn); it G i s, tre, then A!(G) it om Valiw ‘actualty shows that an O(n)

2

embcddmg for a tree can be aauievedm :;. ,ﬂ'»Wm crm Tt is an open quéstion whether
there is an n node planar graph which reqm(lnbg’n)m Lempmvesa general result which
relates a separator theorem-for any class of m{o an uppes. bound o8 the rectangle area required to
embed any graph of the class. 7 ' | o

The results which we have reviewed above illustrate that the graph embedding model is useful
for proving bounds on layouts for particular classes of graphs and for proving time/spécc bounds for
function implementation. Using it, we can identify easy and hard interconnection patterns to route. In

the rest of this disscrtation we will be interested in algorithms to actually do the layout. Therefore, we

will usc the rectangle modcl described in Section 3.1.




-37-

Chapter 4: Complexity of Layout Problems

Regardlm of the exact lhrmulation of the loyottt pfoblem. we arc mterested in ﬁndmg an
efficient algonthm which computel an opdmal layout. lf thls is not posstblc, we would llkc an eﬂlcnent
algonthm whlch computes an optimol layout much of thc tunc and a good layout the rest of the time.
This algorithm may actually be a colloction of al;orlthml to lolve subproblcms whlch togethcr glve a
layout. Aualn we would llkc the allorlthms for the subproblcms to ﬂnd soluuons eﬂlclcntly Howcver.
most problems assoclated wuh clrcult layout are NP—complete 'l‘hc dcﬂmtlon of an NP-completer

problem is given below. From a practml pomt ot‘ view, the NP~completcncss ofa problem lndlcates that

itis probably unpoutble to find an el’ﬂciem algonthm which solves the problem.

Two major classes of problems in complexlty thoory are the classcs P and NP A prohlem isin PV
(NP) if there is a deterministic (nondeterrmmstlc) Turlng machme and a polynomwl I’ such that the
Turning machmo solves any mstaace of thc problcm wlth an lnput of lensth nina number of steps noA
greater than P(n) 'Ihe tcngl}: ol’ an lnput is the lenath of its repmenmtion as a charactcr strmg ina
prcdetermmed chancter set. We wlll not l’ormally deﬂne 'l urlng maclunes here The mterested reader
should see (Ah74! Very oﬁen a nondeterministic Tunng machlne solves a problem by "sueoslng a
solution and testing to see if its guess is actually a solution When the prohltm of lntcrest is a
mmlmiutlon (or maximlzatron) problem, it is reformulated 80 thnt candrdate sohmom can be tested
independent of each other. In thc new problem, a paramcter lt ls part of thc input.i A solutlon to the new
problcm isa l‘eamblc solutlon to the old pmblem for which thc quautlty to be mmirmzcd (maximlzed) h
less than (respectively greater than) k. A feasible solution la one whlch sansﬁes all requlrcments of the |

old problem except optimality. For examplc if the onglnal problcm is to ﬁnd a mmlmum area layout of

a circuit, the new pmblcm given the circuit and paramcter k, is to ﬁnd a layout of the circuit of arca lcu
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than k. Under this formulation, a feasible wlmoo cah ‘b testod by criteria depending only on the
feasrble solution to sce if it is a solutlon When lhe mmimization formulauan of the problem is used,
fwsrble solutrons must be compared agamst each other to ﬂnd d:e actual soiuuons. |
The numbcr of steps taken by a dctcrmmm Tunna machroe is polynomrally rclatcd to the
number of stcps rakcn under a modcl of computauon that comspon& to the mstmcnon set of a

computcr |f‘ the lcngths of numbcrs opcrated on is taken mm accoum [Ah74] 'l‘hcrcforc any pmblcm
whrch is in P can be solvcd m a polynomial number of stcps byqan algorithm ina htgh lcvcl programming
languagc ﬁe numbcr of swps cxecuted by an algonthm is rcferred to ‘as thc umc taken by the
algorithm. We would like all the problems we e need 0 so!ve to bc mp.

The question of whethcr P NP is one of thc major opcn quc;uons in complcxlty theory lt is q
belicved that P # NP. Problems in NP have been found whese wontbership i P'implics NP = P.‘ These:
problems are called NP- camplete problcms. A pmblcm is NP-hard if for cach pmblcm in NP, there isa
polynomra! P and a transﬁmmuon computable by a dctemunisuc Tunna machmc in a polynomral
number of steps whrch transforms an instance of the problem in NP wnh an mput of Iength n to an/’
mstancc of the NP-hard probicm wrth an mput of length 1’(n) An NP-comp!ete pmblem rs one whach is
NP-hard and is in NP There are no known detenmmsuc algonthms for NP-cmrrole(e problems wh)ch
take a number of stcps polynomra! in the length of the mput. 'Ihe fact !hatwch wcl] studred problems as
mteger programmmg and the travemng saksman problcm are NP-completc [Gar79] strongly suggesls
that NP =P, Thcrefore provmg a problemNP—complete is very suong evndencc that any algomhmﬂ
which solves the problcm will be time consuming. R ! A, | | | |

| The most common way to provc that a probiem is NP—compictc is to ﬁnd a rcducuon from a'
Imown NP-complctc problcm to the new problcm whnch can be executod in dctcnmmstlc polynomml |
time. Then, since thc composmon of polynomra!s i8 sﬁli a polynomnal all problems in NP can be reduoed.

through the known NP-completc problcm to (hc new pmblmn ln detcminmic polynomral time
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When a problem has been proven NP-complete, the usual course is to try to find an algorithm
which runs in. polynomial time and fimis a solution mm time.  When' the problem proven’
NP-complete Is the pasamctoriscd vorsion of an- optimsization problem, an algorithm which. can find
solutions close to optimal, if not optimal is desired. Heuristics arc devcloped which can direct the
algorithm towards a aaodsaluﬂm. ‘When the ‘algorithm is-scarching through a large (exponential)
number. of possible sohutions, - m' remove large numbers of possible solutions based on the
likelihood that none will booptimabaciutions.

Very often a heuristic alzurithm is tested and validatcu by empirical evidence. AH of the
algorithms discussed in Chapter 2 are heuristic algomhms fbr placement and routlng. All have been
judged by comparing the solutions they produce to mauually pmduced solutions for the samg¢ problems
These algorithms are also compared te'each other to udge thelr worth. In-eontrast, in this thesis, heuristic
algorithms for optimization problems are judaed, by the relationship of the solutions they ‘produce to
optimal solutions. Consider a layout problem in whnch mmimum area is dcsnred Let area (C) be the
" area of the layout for circuit C found by a parﬁcular a!aorithm Let area (C) be the minimum area
layout of C. Then dcﬂne the wors! case perﬁmnance of the algonthm, denoted we u(“) as the maximum
over all circuits of size n of arca (C)/am ©). Deﬁne the average case performance of the algomhm.
avgw(n) as the averase over all circuits of size n of area (C)/area (C) where the average is taken with
respect to a predetermined distribution of circuits. The size of atireuit-can be defined in: various ways
depending on the circuit model e. g. the number of' tenmnals, or thc sum of the number of componentsr
and the number of nets. The size should be deﬂned 0 that the lcngth of the input specifying the circuit
to the algorithm is polynomial in the size.

Averagc case pcrﬁmnance is more likely to correspond to the observed performance of an
algorithm, especially if the average is taken over "realistic” circuits. -Ho'wevef; itis oﬁen very difficult to

analyze. In this disscrtation, the analysis is limited to worst case performance. If a lower bound on




-49-

arca ,, and. an-upper bound on area, can-be derived; an uppee bousnd: on we,, can be éoncluded.
| Ideally, a bound of 1+e¢ for small ¢ is desired. hm!ay we are happy with agy constant bound.
However, as will be sccn in Section 4.4, cm.vmﬁbmdumam..mm;by SOmE common
slgorithms. |

In the next soction, we will review NP-complesepcss fesuls for. proticms related o layout.. In
Section 4.3, we will ‘consider two. suhmablemofcw fouting : and . show Mdu'y -are’ both
NP-complete. In Section 4.4 we will analyze a heum w fx one: of the problems shown

NP-complicte in Section 4,3,
42 Placement and Routing: NP-complete Formulations

In this section we consider the camplexity of the problems resulting: from. the decompesition of
the layout problem into placement and routing.

ill“epmntmodel somekm-mlts.

First consider the ptxcmem pmblem used ﬁ)r pnnwd cm:unt boards and standand cells. Recall
L M EOURIR £

that componcnts are modclcd as pomts and lnta! wire lem; is ﬂac qua:mty m be mnmrmzed by me

Iayou(. The quadrattc aslgmnem prob!em is one fonnuhtian 9f piwem

53 . £ DUmas ey g
& s :

»Gwen Lmaummlmwmm)ddmmaggxq{; 55“‘("‘} betweenloqmom

componentslmroughnandcmnecuonwx {cuHSiJSn}mm ,

L 3 : sandia o oot s

Find: Aoneto—oncmappma.p.ofcomponemsmbcatmmm
COS'I‘(p) sumoven#;fromllonof(c F(* ismmmized.

Sahm and Gonzales [Sah76} prove that mc parametenmd quadranc mignmem problzm is

NP-complete. In fact, they prove that unless NP = P, therc is no approxmmuon aigorithm for quadratic

-
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assignment for which there isan ¢ > 0-such that for allinistances of the problem:

| COBT, JOOSTI,) S1+ ¢,
The proof does-rely on instances of the’ prebleny ith ‘oimection’ matrix values c; greater that en.
Consider only instances of the probiem for mmcﬁmw to a boundcd range of values. The
proof that the exisicnce of an amprockmation algorithe for which dié‘rativ of COSTp,.) to COST(p,)
is o more than 14 ¢ implics NP = P no lénger hokds fir ‘alt'é; - However, the restricted problem i
NP-complete as long as the ¢, are aﬁwcd to take on the valuc O or 1.

The quadratic assignment problem 6 a Formulation Of the placement problem in which all
point-tp-point comnections are spevified. - The witcunpmcm‘m nuinber of connections between
components i and j. The distanoe d,,"is the cstimate! o tie ire efigt néeded to-connect terminals at
locations ¥ Mh If a placemant problem formlation-in withéh an estiifiate Of the longth of wire needed
to connect whole nets is used, the quadratic assignment problem i is a specnal case m whwh all nets are of
size two [SahBOL 'Iherefore the qmdrauc assngnment pmblcm reduces to thls formulation of the
placement problem It follows that dm Formu!atxon of thc placement pmblem in NP-completc

Let us now turn to mutm& Ifa Stemer tree intm:oamctsoa patlem is dcs:red for cach net. theﬁ

e A

even ﬁndmg the connection paths t‘m one net is NPfomp!ete Formaﬂy

The Steiner Tree Problem
Given: A set of points, P, in the planc with integer cogrdinates.

Find: A set of integer points, Y, such that the minimun fengtispanning tree of PUY' is minimal
over all sets of integer poinis containing P. One of swa measures of distance may be used: :
(i) The discretized Fuclsdcan length r ((Jsl xz) +(y1-yz)2) 1 where (x 1.yl) and (xz,yz) are the
points. The pmblcm is then me l)iscretircd Euclidean Steiner Trec Problem

. () The rectilinear metsic: ix;-x,|+ Iy, y4l, giving the Reetilincar Steirier Tree Problem.

For either metric, the Steiner tree problem is NP-complete. If the standard Euclidean metric is
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used, the problem is NP-hard, but is sot known toboin NP JGar®9). .

The minimum spanning tree using cither mstric can-be solved in polynomial time [Ah74]. For

the rectilinear metric, the.longth of the Suaimum spansing.1roe is ot most /2 the Jength of a-minisoal
Steiner trec fw78]. Thercfore, any algorithm to find. minimuas, length spanning trees is a heuristic
algorithm for findiag minimurm jongth Steiner, theos with & wors case. o of longth, over Jength ., of
3/2. A discussion of heuristic. algorithms Jert!maanuhm mm;mmmmq{ in
[Hw78]. S R Oe IV SV

The above two problems apply 10 the modc) of yowk in whish componats arc goints and
minimum length. wiring is desire,. mmm toithis masiel ase-also NP-complete,- Ting ot..al.
[1i79) show that a via assignmant problem eacouniered in their approach so.tousing is NP-complets. A
summary of a nusmber of NP-completc problesas ssociaiod-with thi model cne be found.in {Sabtd).

JZZThcrectanglcaede! ammlt.

The above NP-complete results do not dnectly apply to the model of layout in wh:ch

e Sis. { Ly

componcnts are rectanglcs and mlmmum area is dwrcd. We shall now pmve that even \vhen no

Py

mtemonnectmns are ncedcd the placement of rectangular componcnts to mxmrmze area is NP—cumplete.

Since this is a special case of the layout problem when iniemonnecuons are reqmred, the more general

layout problcm is NP-complete. The proof we present beléw docs regiise. Some: cxisk: assusptions in
addition to those given in the description- of -our model iy Chapter iprer3. Al componetits and the
circumscribing rectangle mwmmmmmwmsm of their: s;des«as in the
direction’ ofonc of two' perpcﬁdimhr axes. This does. parme redtfitions-on thie’ plicements

but is consistent with the conccpt of "ﬁonwnta!" abd vcmeal" bemg qxecml dlrcctm wh:ch wires
follow. We also restrict all points and dimensions ta be.integer valugd-90;ikat the: problem: has discrete

solutions.



- 434
Problem P1: Discrote lapout with 20 latercommoctions
Given: A set of n rectangles and an integer, A. For1€in; each rectangle r; has dimensions h,
and w; which are positive integers.

Question: Is there 4 placement of the rectangles o the plane with a cartesian coordinate system -

imposed so that
(i) Fach boundary is pafallel to one of the coordinate system axes;

(i) Coeners of the rectangles He ondntoger poidts in‘the plane;
(iii)) No twg rectangles overhp

(iv) I‘hc boundanes of any two rectangles are separated by at lcast a unit dtstance

boundarics paraliel to the axes, and is:of area at-most A. The boundary of the
circumscribing rectangle is allows (0 ontain boundaries of placed restangles.

Lemma 4.1: Problem P1 -~ discrete layout with no intercanméctions - is NP-complete.

Proof: Consider only piacements for whtch the lowest leﬁmmt corner of any rectangle ts at (0, 0) All

othcr placements are just translatioas of thesc The coordiaates of the lower leﬁ corner of each rectangle

and the orientation of the rectan;le i.e. whether the side of lcngth h is in the x dlrectlon or the y
direction, determme its position. Since the coordmates of each lower left corner can only take on intcger
Avalues betwcen 0 and A- h -1, there are at most A2 choices for each pomt. A nondeterministic Turing
machme can guess a possxble placcment and write it down Given a placcment, conditions (i) through (v)

can be chccked deterministically in polynomial time Thts shom that Pl is in NP

The proof that Pl is NP-hard is accompltshcd by mducmg thc Bm Packing Problem to it. Sinoe

the Bin Packing Problem is NP—complete [Gar79}, this proves that P1 is NP—hard.

The Bin Packing Problem:
Given: A setof n items, each of size c; a positive mteser; also, positive integers B and C, the
number of bins and bin capactty, respecttvely

DY R - e R
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Question: h&mmm&d”&hﬁ&tﬁmﬁtlﬁkﬁﬂmﬂdqm
”anmmgmmhukmmudm :

Given any instance of the Rin Packing Problem, we willconstmtaamsﬂmce of P1 as follows.
There wilt de n+1 mttanglcs. One, called R, waeaflimhbyw wherew (ZB+IX31md
h =2Bw+1. mmmmmmwmmmwm Rectaasler Wt}lbave :
dimensions b, = (2B+1)c;-1.and w; = L. The hound on sres.aeilk be' A =wh+2Bw. Notc that the
lcugthofthempm&o&w&nhchng?robkmnﬂ(n+log€%hgﬂ).’f‘htﬁmcmsofmcrectansles
MAmmmmdmkmmmemmmmdMumm ‘

Wemmmmmsgamn&&ummmmmdy if there
Emmgmmt&hmm’ﬁ'mmmu:memmbh ‘Given a bin packing,
Figure 4.1 illustrates a satisfactory placement. Wcmm uwwmmawm

correspondsmalegalbmpachm Figure42wiﬂilkmue Wxﬁwuthsnﬁmclﬂny.lcimcddeof .

r&mgkkofmmmmhbcmdleydmctm m%n"mwwmmfnmmmmex
direction and nght dentxemwardshigmrnmnbers, k:t"above denotetmvar&hzﬁ\ernambersmthe '

,yd:recnonand"bebw dmotemardslowernmnbem Atmypmm,thenmkhofthelayoutmthex

v .y»

dxrecttomsstncﬂyicssmmw-l»l lfnot,tncnmz h(w-i-l)— hw+23\v+l)A. Thereforezﬂ '

rechnglcs, mustheahovcorbeiowk ch@;ﬁmdamhwadmekmhszdesoﬂl sothat

R A

RCER L T ";‘w'»—‘) At

foreachrectangle,mehnemhe ydsmcmnm&emes&emandﬁ Norecungle t isonemed

sothatnsbngszdelsmmcyduectm Odwmﬁe.ﬁmdimemnofﬂiemmmnbinammmmey

= “«, SE T T IR g

dxreannwou!dbeatlcasth+(IB+l)cil+l mmmxmmmmmmmm

arca 2> wih+(2B+1)x) > wh+2B+1)> A et andi{v)is mot stisfied.

Wenovkmﬁmaﬁmtmks,f areoﬁenm&w&athdrmﬁdcsmmmexd&mm

,‘f*: Fii
Fa p

Anyplacemntmnbem:dtﬁedshglalywmmmmmemmmamer fomrowsabovemd
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MM.AMW&&M
- ] [ Io s o0
pii} C-J -
I L X B J
- " el row coiitains rectangles corresponding to
items in one bin. Adjacent rectangles are scparated
* 7 ‘by-ose wait - Singe the ¢; of the bin sum (o at most
t | o o 'D - ChMolmemi:atmost |
‘ _ (R((2B+ l)c, 1» +(# ofrec!ansles in the row -1)
| n=28w=1 < @B+1)C-1
“area = wh+2B) = A
w=(2B+1)C-1
Fiuntl:Anckiudnllm

[ |

| T

&

i

) . R | |
rows corresponding | [Il D] |

. tobiss ~ —— I
|

if there is anything here,

| thearea is to large; | . R

50 all r; within broken lines.

rectangle the long way is too tall
resulting arca i; too large

d\ersmxbeqwlthcwpaadumcbom,_
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below R. (Any r, and g less than two units above or belovr%ms!%mtedﬁﬁmw&mher&yat
least one unit to the left and right. These can bcshmedmmfm thc ﬁmréws above andbelow R The
next rows ar¢ formed analogously abovg the upper boandnryofthe row above R and be!ow the lower
‘boundary-of the row below R. qu‘ed;l dhsmte&) ach row of rcctangles can be cons:dercd the
packmg of a bm If thc rows correspond to a lcgal bm packing, we are done. Suppose there are K rows.
Then the dnmcnsmn of the clrcumscnbmg W in thc y dzrecﬂon must bc h+2K, smce tbere must be
a unit space scparating rows ﬁ'em-each other and R». If l( > B, then arca > wfh'+ 28) = A, contradicting
(v). Therefore, at most B bins arc used. It remains for us to slmw.that !he sum of sizes ¢ of the items in

any bin is at most C. Fach item cosrespoads to a rectangle with h, = (2B+ i)ci-l.

X ((2B+1)c,-1) + the number of rectangles in the row - 1

rectangles in row : ‘ ‘
< the width of a row of rectangles< w+1 = C(2B+-1)
giving (2B+1)(sum of ¢, for r, in row) -1¢ é(ZB+ 1)
Therefore, -~ (sumofc, forrin row) <C+ 1/Q2B+1):

Since all ¢, and Care posmvc integers, the above nmplia

(sum ofc; inone bin und«eemapondmg bmpackmg) 5 C ﬂdesind R |
Co;ollary 4.1: The modification of‘?lfﬁremovi-ng the minimu_ni spacing rgguif‘em'ent i NP-oomplete

Praof: The same proofis used. Rectanglc R has dimenslomh Bw +‘1 and w = C(B+1). Faeach ir
has dimensions h, = c(B+1)and w, w. = 1. The NP-hardness pan ofmmpmofdoes not rcqulrc that any
of the dimensions be integers or that the rectangtcs bc placed so that theli corners are on mtcgc: pomts of

the coordinate system. TR . o (8]

Lemma 4.1 is prescnted with spacing required between rectangles to‘closcly mirror the pi'oblem

in circuit layout. The dimension of each componentcmi B¢ increased by one: unit' to adeotmt for the -




sectangle to be one unit too large-in each
dimension. When spacing is not exphicitly required, the peobloms remaine NP-complete even if the aspeet
ratio of the circumscribing rectangle is bounded.

Problem P2-a: Layout with haundod aspect ratien and ve intarcammections

Given: A set of n rectan;lcs and a posi(ive number A For 1515:1, each rcctanglc fp has

damcnslons h and wi

Question: Is there a placement of the rectangics on the planc with a cartesian coprdinjate system
impused so that: ’ V
(i) Each boundary is paraliel to one of the coordinate system axes,

(i) No two recmndes overlap;
(iii) There is a rectangle in the m which circumscribes thc placed rectangles, has

}' boundanapm\lhlm&ene&ke?maum:\ andhasaspectrauo(lons
* side)/(short sidey at moet u, Whete a’ls @ ratiihilt iumber not less than one. The
 boundary. of the cirowpacribiag rogtangle is:alewod i caniain boundaries of placed

u;mm 43 Prohhmmfcr, is NFM@IW a a rational sumber 00¢ less than one.

Prool" The proof is a rcductxon from bm packmg slmﬂar 0 thc proof of Lemma4 1. Givcn < for
1<i<n, C, and B, construct R mth w= aC(B+1‘i“and h w/a B. Each ris of dlmensnons
;= ac(B+1) and w; = 1. The bound on arca is A = wzla = ¢c2(3+1)2 The aspect ratio o implies
that the largcr side of the dcsared clrcumscribins rcctanglc is at most (aA) " =W, Therefom, assuming R
isonentedasm thcproofoflxmmaﬂ noneofthe ricanhetoﬂscleﬁornghtofll Thercstofthe’

proofnsana!ogoustothatforlcmma“andmleﬁmmr I Doenme L e T . D‘

Cosollary 4.2: If the bound on aspect ratio, a, is allowed: 9 ap input for problem P2-a, the problom

remaing NP-hard.
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Preof: The construction in the proof of Lemmia 4.2 can be complted in time polynomial in the length of

the represcntation of a; thercfore, @ can be an inpat. SN o : -0

Lemmas 4.1 and 4.2 prove that the layout prob!em we are studylm is NP-complete even in the

ufcemtmnems, s the routms

degcenerate case when only pﬁeemem i required. Gilven ‘o
problcm NP-complete" Wc do not have a proof of a gcneral NP—cmnplcteness vcsu!t for routing.

However, in the next scction, we will pment two NP—compictencss results fur subproblcms encountered

in channel routmg.
43 NP-completencss in Channcl Routing

In this scctmn we wnll provc that two pmblems encoumercd m a channel routmg approach are
NP-complcte Recall that in the channel muungappmagh‘mg rwﬁnutcazs@udcd into horizontal and
vertical slreets. Termmalsﬁcalongthemdcsofﬁem mm&mﬁewofa sctofparallel
channels in the dircction of the street. Each channel is wide enough to account for the width of a wire
and the required separation between wm& First the interconnection pahéfa ofﬁathsthfonﬂmﬂn streets
is choscn (strcct routmg) Thcn, wathm cach street, the actual mutes of thc pa!h scgments aasigucd 0 ﬂxe
street - usmg the channel - is dctcrmmcd (cham:el mgnmcm) 'Ihc goal ns to minimize the overall

layout area. (See Flgurc 43 )

P 4":'

'lhesuectmutmgpmblemcanberepmsentcdasagraphpmblem 'Ihcrewnllbeanodcmthc

Hlarid i 3

graph for cach posmon along a strect at Wthh them ns arc tcnmnals. (Two termmals dlrectly across from

!

each other on a street are rcpresenu:d by onc node) 'Ihem wm also be anode in the graph foreach

SRR I I R EETADE T PO 1Y

intersection of streets. Each cdge of the graph rcpmsents a porﬁon of a street bctwccn t\vo positions at

which there are térrhinals of intersoctions: For daifr fret; we wish to finkda #tibgraph Which is a tree whose’

nodes consist of the nodes representing terminals of the net and nodes representing strect iterscetions.

This is a Steiner tree problem on the graph. The intersection nodes in the graph are analogous to the



Fig_un 4.3: Streets and channels in the channe! routing appreach.
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added nodes in the planc for a Rectilinear or Euclidean Stciner tree problem. However, we do not wish
to find a minimum length Steiner tree in the graph for cach net. Using a minimum length Steiner tree’
for cach net docs not necessarily yicld a minimum area layout. ‘The eventual arca of a layout must be

cstimated when the Steiner tree for each net is being chosen.

T,‘hc‘second phase -- channel mgamem- dctcmuncs thc actual Arga ;)f thc Vlayqut. We are
assuming'éach street is of variable widtli. The numher of chanancls used in a stréct dircctly cah‘csponds to
the strect widih. Channel assignment dctcrrtt_;nes the actual paths in thc planc réalizing the
interconnection: pattern determinced by strect routilé._ The paths a'rc composed of horizontal and vertical
segments. The path segments within cach street are dctcm;acd.mdcpcmu;mept that ihe scgments
for paths which change strcets must be-conncctcd:‘at the intcrscctib_ns. The horimntal scﬁmcnts in a
horizontai sxrcct (and vertical scgmcnts hxya,venic;! strect) fic in chaiihﬂs. Each channel I8 the region
between two lines parallel to the stroct direction; the lines arc spaced so.that there is room for onc wire
width and requi?ed scparation between wires in any channel. Wirc scgmcnts perpendicular to the street

direction are used to connect scgmcnts in channels to each other aﬁd to ta'mhak.

4.3;1 Channel assignment within a street.

The first NP-completenesssesult which we present prqvcsf that, with certain restrictions, the

is NP-complete. The

routing of paths in a strect so that the number ofghanggl;.uaedu i
restrictions are that (i) all terminals to be interconnected lie in the street (i.e. there are no street
intersections to worry about), and (ii) cach set of wires interconnecting onc net uses exactly one channel.

This problem is represented as follows,

Problem P3: Channel Assignmcnt within a Street
Given: A linc segment, S, containing equally spaced points pumbered 1 through h, and a sct of
terminals, T. 'The line scgment represents the street. Fach terminal, ¢, is an ordered pair (i,b),

~ where i is a number between 1 and h indicating the position of the terminal along the street and
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b is an element of {0.1} representing the side of the street on-which the terminal fies. For any
two terminals (i.b,) and (1b,) with b, = b, |i-jl 2 8, wheresisa positive integer chosen a priori.
Integer s..rpresents - the wiec:widily' flas equivid separation.  Aleo/givert are a coffection of n
disjoint sets of terminals, N, for 1<i<n, f6ts, and @ parmater k.

§OIRT T g TLNTOAT

Question: For each net, N, let a, be the posttien of the terminal of lowest positionin N, and z;

be the position of the terminal of higheat position. Lat a,a} denute the set of all pointson S

between 3 and 7, inclusive. Is therc a mappms. ch whlch asstgns each net a numbcr between 1
and k inclusive such that for any N and N lSlen -

(i) Ifterminal (x,0) € N, and termmal 1€ Nj and lx-st, then ch(Nchh(Nj)

(i) If k‘r’ ]N [a’,rjl is not cmpty, then ch(Nis # ch(N})

The mappmg. ch, repnesents the auignment of a w:re segment between points 8 and z to one of k
channcls fnr each net N Tbg jp,terval (ﬂi’lﬂ is canad Q,lc W qf aet, Mp S;:smems perpcndlcular to
the direction of the street are assumed to go from each termint iff the net' N, to the segment in the
channel. The restriction that these segmeats must not ovcrlap»is represented as coadition (i) above.
©If there are no terminals satsfyiog the hyposhesis of condition £, i¢. condition (i is the only
relevant condition, then Problem P3 s the mzemlm;gnmpmmm interval colaring problem is:
' givén a finite set of intervals on a line and ,a:pos,itigg integer, k. assign a color {positive integer) to cach
_ interyal s0 that no two overlapping intervals have the same color and pe more thank colors are used.
Nets define intervals, and “channel” is just another name for "c@ﬂ" The.ingerval goloring problem can
be solved by a polynomial time algorithm {Giav72] {Has71}. .The solution to this problem uses the same
number of channels as the maximum over all points on § of the number of pets whase interval-fa.z]
intersects the point. ‘Therefore even if we allow wirgs for ong pet to use more than one chaanel, the
solution found using one channel iwmimal. S
Without additional restrictions, the channel assignment. problem. stated as Problem P) is

NP-complete.
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Lemma 4.3: Problem P3 is NP-complete.
Prool: lameam@MTmmmmanMmenf
(i) and (ii) are satisficd. Therefore, d’kpmblmﬁkh!? : o

We will m~mm=mm1pm“mmml to
Problem P3 to pmvcthat?hsNFhmt m&mhfwmmngprobkm :ssimd&rtoﬂtemu:rval

cokmngproblcm exceptd\alams on acm:lc ramerm imerya!sonahneamusc F:gurc‘iﬁﬂum

| TkeCircularArcCohmgm - : : c L
Given: Aﬁmtesctofarcsofacmlemdaposaﬁvehmk. o

T L R

Qucstnon lsthemanmgnmemofcobtsnumbered}ﬁmxghktoﬂ;carcsmhﬂmtanytwo
ares which Ovetfap are assigned different colors? mwhkhﬁ:mton!y aimeircndpointsare

Rot considered as gveriapping.
-~ Sinee arcs which intersect at endpoints afe nbt overlapping, we may modify any set of arcs so

that no arcs ‘have endpoints:in conmon(seei"lsmt‘l#). “Thie- aitual Tength of thé arcs is irrefevant

* Therefore, for n acs, we-can umber the endpolns o 1 throigh 34 WS travering the circe i some

direction. Each arc will be represented as'an ordered 'palf, (i), lsting the' endpoints of the arc as

encountcred in the traversal of the circle. - 4
i with h ars and k colors, we will produce

“Given an instance of the circular arc coloring pro
an‘instance of the chaihncl assignment problcin with ¥ chahiels S (2 + 2K+ 1)) dets, whert ¢ is the
romber of arcs which contain 4 (2h,1). Bach nét will Sontain exatly tho ferminals. Tntuitively, we cut
the circké between'points 21 and 1 mdsﬁ‘&dnm&tsﬂ‘ﬁa 'ﬁfiﬂeﬁx&sh A+ intcrvals, since  arcs
o' the it fine will Becomie Ehc

have been cut in two. The n-2c intervals which de not hav

intervals of nets.* Consideritig onty these nets, any Tegal assigh mﬁmofchmeh will b 4 fegal assignment

of colors to the corresponding arcs and vice versa.

L LAt
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Figure 4.4 Circulay Arc coloring,

abovc the circle)

arcs (ay.b)); (a5.b,); (a3.b3):(ag.by) traversing clockwise. . -

Figure 4.5 Construction of a chaml assignmcnt probiem »

- gives:a circular are colaving problom.
Given:
. &—7 represents (hcmtcrval ofanet.
cut Atrows point to the side of the street containing
the terminal.
C arcs
Construct for k colors ° ANk o §
| sipe O 1 | .
1 Né; for ¥ occ _ 7 No, j‘
. ' ’ ) . ‘ ;I
intervals NN e 2P
for accs — ‘°’-1‘L._1 K-y
o) T
. ‘ Oda\‘m\
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There are 2c intervals with endpoints on the cut line - two intervals peram If we can insure
that both intervals of each pair are asslgned the same channcl, then each- channel ass:gnmem wnll'
correspond to an arc coloring. We do this by e:wnd:ﬂg thc intervals bcy&mf’ﬂ!e cut line and adding nets
which force the pa:rs to bc mgaed to the same chagmel Figure 45 gwes ﬂw constmcuon The fonnal
definition is gwen below. 'Ihe pomts on which termina}s he will be numbcred fmm -c(k{cl)/2)+l to
2n+co(k-(c-1)/2) rathcr than from 1 to 2n +c(2k-c+1). -

For cach arc (a,z) which does not contain (2n,1), there will be a net {(a,0).(z,1)}. Order the arcs
which do contain (2n,1) by increasing starting pomt~ For the lm such arc, there will be 2(k-|+ l) nets --
half have terminals within the negatively numbercd m mm have &mﬁnals widnn the pomcs

numbered above 2n. For arc (a;, z), 1<z <3,<2n, the it" arc containing (2n.1), the nets are defined as

follows. For 1<i<c, let: ; . \ St
i1
sum(i) = 2 (k-j) = i (k-%(i-1))
j=0
= -sul"n(c) + suni(i-l)

pT = 2n + sum(c) - sutii(i-1)
Ng = {(p +10),(z 1)}m6
N = {(pi +j,1), (p, +J+1-9)} for ISJSH
= {(3,1). 0 0} and | |
= @TioeHa o gk
For each i bekween 1 and c, ;heapphcanon of coadmon (i) in thg,dcﬁmuan of problem P3
results in two chains of k-i inequalitics for the set:bf nots con'csponding to the i? arc containing 2n,1) -
one chain of inequalities ch(N;)<ch(N";;, ) and one of incqualitics Ach(N{}')(ch(N""ijﬂ) for

0<j<k-i-1. Therefore, nets N 16 and Nl"(’,' must be assigned channe! 1 if no more than k channcls are to
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be used. Nets Ng and N, 7 can be-assigned channel 1 or2 without violating condition (i), but their
intervals overlap those for nets Ny; and N, ¥, respeetively. ‘Therefore channel 2 s the only choice for
nets Nyg and N, . Proceeding in this way, we e thit ets N and N. T must be assigned channel i if
nomore thank chamncls arctobeused.

Given any channel Mgnmnt ﬁ)r mew:& set of nets, we color the arcs which do not
contain (Zn,l)}‘ by the same numbered color as:the conesponding channel. For the ™ arc which contains
(20.1), we use the number of the channol assigned 1 #ets N; and N,F. For any peir of arcs which
overlap, there is at least one coricsponding pair of etw:whasé intervals ovérfap. Thetefore, any legal
channcl assignment corresponds 1o & legal caleriig usitg the sme omber of colors aschannel.

. Given a coloring of the arcs using st most k colofs, we can assign the nicts to channels as foltows.
Permute the colors so that the #® arc containing ‘s (20,1) is assigied the #* color. - Assign nets N;; and
npj* to channet i+j, for 1<ic and 0<Cj<kl. The remaining niets drc assignéd the same numbered
channel as the color. of the corresponding ‘arc. Botween peints T and Zn, intervals overfap if and only if
their corresponding arcs overlap. '* Elsewhere, no' N, mnp;for Kp overlap except N*; and Np;
However, ch(N,y) =fi(~p+q,=.ch(?N’;f),:ﬂso no 'Ni; and Np;whi:h ‘overiap are assigned the same
channel. An analdgous argument Qlow that the Ni';' are properly assigned to channcls. Thercfore, for

*each coloring, there s a logal channel assignment using the satie number ofchannels sscolors. [
Since the construction uses only nets with two terminals, we have:

Corollary 4.3: Problem P3 restricted 1o nets containing cxactly iwo terminals is NP-complete.

4.3.2 Channel assignment with intersections,

The second problem which we prove NP-complete: deals strictly with: the ordering of paths in

intersections so that the resulting street widths minimize the area.” This problem is somewhat similar to
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the channel assignment problem in that if two paths are-approachiag an intersection from the same
direction in a street, and one path needs to go left at the intersection and the other nceds to-go right, then
they cannot share the same channel in the. new street unless thay.are in the prepor order when they reach
the intersection. The problem will be modcled using a graph to epresent the stroets.. Subgraphs which
are trees will be used to represent the interconnection pattesns resulting from street routing.

Let the strect graph, S, be some subset of a two dimessional grid graph. Each node in S-is
labeled with intcger cpordinates (p.g). Fach cdge is cither horizontak i, between nodes (p.g) and
(p+1.9), or vertical, i.e. botween nodes.(p,q) and (p,q+ 1), Theigragh s partitioned into streets. Each
street is a path in.S Using only vertical or mlyhmwwmammmmm
(ik) and (j,k) for some k and ij; a vertical street goes between nodes (k,i) and (kj) for some k and ij. A
node represents an intersection of two or mare streets, An. edge represents. the..portion of a stroet
between two intersections. The interconnection pattern for cach act-is represcnted by a tree in S. Each-
tree, T, will be called a net tree. We would. like to assign whocmmofanedgc in a nettree o &
channel, Let ch be a mapping from each occurrerice of an edge ia  net tree 10 a positive integer. The.
integer indicates the number of the chaancl containing that cdge in the street. to. which the cdge belongs.
We require: |

(1) If edge ¢ of S is in distinct trees Ty ead Ty then.the occurrence:of e in.T, is
assigned to a different channel than the occurrence of ein T (No overlappmg wifu.)
(2) Ife; and ezamad;acentedgesm anettree'l‘ andclandezbelongtoonewcetin

S, then d(c,). = chie,). (A conpection path cannet change chianntls within.a street.) |

(3) Suppose horizontal edges ¢) = (p-1.9)(p.0)) and ¢, = (p.)(p+ 1), for some

p and q, belong to astreet, s. Furthermore, supposc ¢, .and e, belong mm tees T, and

T,, respectively. If chle;) = che,), then;

(i) ¢, & notin T, and ¢, s not in T,. (This-follows from (1) aad (2) above.) -
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(ii) Suppose that vertical edges ((_p,q)qu-h-iﬁané@md).(p,q» are in onc. street; and each of
Ti and T, contains at least one of the edges. Then chi(x) < ch(x,), where X, represees. any’
occurrence in T, of tither of the edges and x, represents %any occur;‘ence in 'I‘2 of either of the
edges. This condition insures that the wirc segment repiescntéd by herizontal edge
((p-1,.9)(p.q)) does not overlap the wire scgment reprcscn?ed by horizontal‘ edge

((p.a)Mp+1.9).
(4) Analogous to (3) but fo vertca et (0 D(p.@) nd (PP + D) in T, and
T, respccuveiy If x, and x, are oocurrcnces of honzontal edges ((p-1,9).(p.q)) and/or

((p,q),(p + l,q)) in T and T,, respectively, then éh(x DA ch(xz)

We want to find an assignment of edges in trcec to channels so that the resulting overall area is
mlmrmzed. The assignment is called the intersection cl:a,nnel assxgumenl smce the intersections induce
the constraints on the assignment of channels within cach street. Area will be measured as follows. Fora
given channcl assignment, ch, let width(ch,q) be the sum over all vertical streets containing a node (i.q)
for some l of the number of channels used in the street; let height(ch,p) be the sum over all horizontal
streets containing a.node (p,j) for same j, of the number of channels used in the street. Let width(ch) be
the maximum of wsdth(ch,q) over all mtegexs, q, appeanng as the secoad coordimte of some node in the
street graph. S. Ifﬂ\emam then wndth(ch) isonc thhusni(@h)beme n‘\axmumof
height(ch,p):over an integers p whnch appear as the first coordinate of séme noie h S: Ifthe maxmlum is
zero, then he:ght(cﬁ) is'one. Then, ama(ch) is defined as the product ofmah(afi and heigbt(ch).

Using the anMn presentcd above, we have the k)llowug probicm, lﬂu!tmwd‘ in
Figureds. |

Problem P4: The Intersection Channel Assignment Problem

Given: A street graph, S, partitioned into streets; a collection of net trees, T;; and a positive
integer, A. ’
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Question: 1g there an assignment, ch, of the oceurrenses of edges in. net trees.to channels in
streets which satisfies conditions (1) through (4) above such that arca(ch) < A.

Lenmuna 4.4: The intersection channe_l,mwpth NP-complete.

Proof: Conditions (1) thmugh “@) and the area of an amtsnment can be checked by a nondctenmmsm
Turmg machme in polynomml time. Therefore, the pmblem is in NP o

We show that the problem in NP-hard by reducmg S-wUsﬁabxlity [Gar79) to it:

x,r,*,‘ NS

, leen A boolean expressmn cnmposed of the comuncnon of k clauses, < for 1515]& Each
; Vclause is the dmjuncuon of three dnstmct mera!kr where a htefal 1s a boolean vanable or its
complement, i.e. ¢, = (y;Vy,,Vy;;), where yg is x or = for some variable'k.

{ o4O

: ;Quesuon Is there én bassignment of iruth values to tbe b@lean van‘a‘blcs such that the
" expression s satisfied? 0 7 o oinoLtE e
| Given an instance of the 3 samﬁablhty problem \;'lth k clauses an& v lvanables, we will construct
an instance of the intersection channel asmgnment problem with 2k +1 honzontal streets, 2v+1 vertical
streetsand A = 2vk(3v+3). Let S be the (2v+1) by:(2k+:1) grid graph with sodes pumbered from (0.0)
~ through (2v,2k). Each path from (0.i) to (2v,i) is a horizontal street, for-any i betwecn 0 and 2k; each path
from (i,0) to (i,2k) is a vertical strect, for any i between 0 and 2v. Cértain streets are asgociated with the
clauscs and variables of the boolean expregsioa as follows:
(a). With each: clause ¢, LISk, associato the horizoatal strect from (92i-1) to (2v.2i-1) and
name it C.. The remaining horizontal streets are ugosmerd.
(b) For each variable x,, 15 v, associate:the. yettical strect from (j-1,0)to (-1,2k), named X,
and the vertical strect from (2v-j+1,0) to2v-j+ 1,2k), named Xy, *

() The one remaining vestical stroet, that from v.0) 0 (v.2K), is named street M.
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We construct two net-trees for each vaﬁab!e For variable xi, the first net tree, ’l’j, contains the
following edges: Y R

(1) In street C,, for each i from 1 to'k: all edges on the path from (-1,2i1) w
(2v-j+1,2i-1);

(2) In street X, theedge fmm 0 lﬂ)tooll)and forall cven ibctween l and k-l,
inclusive, the two cdges on (he pa(h fmm G- 121-1) to 0 12i+l) Mso 1fk i even, the edge
from (j-1,2k-1) to 0-1.21).

(3) In strect X,.: for all odd i between 1 and k-1 inclusive, the tw cdgds on the path
from Qv +1,261) to @vi+1, 2141 Ao, ik s 0dd, the edaebetween (v +1 21) and

(4) In street M: if vanable xj appears m clausc g umomp&cmemed then lf i is even the
edge between (v, 21-1) and (v,2i); if i is-odd, the edie between (v.2i-2)-and (v.2i-1). lfx appm :
inc complememed, then |fuscvcn meedxebctwecn(vﬂrZ)&nd(v,Zrl) 1fi sodd, theedue

»between (v,2i-1) and (v 21)

mmondnetmﬁ)rvaﬁaﬁlex T, contains the following cdges’

o
t)in mci.ﬁ)ruehi froii -1 to k: all edges on-the path- from (-1.2-1)

@vi+1201); |
(2) In street X;: for all odd | betwen: 1 and4C1 inchive; e 6w &8s on the path

~from -1, 2110 (-1, 2+ 1): Also; ik isotd; the edgo btween G-L -1y and G-, 2H),
(3) In strect X, the odigt froft (2v--+1.8Y8 v K1) and For it evén i between 1

and k-1 inclusive, the medsawwwﬁmﬂ*i%Im W+ 1.2141)0 Ao, if k is

even, the odge from (2vj#+ 12%-1) 0@+ LAY

(®) n-strdot M- if vasiable % appoars in clsusd e d, then if i is odd, the

edge between (v,2i-1) and (v,2i); if i is even, the edge between (v,2i-2) and (v,2i-1). If X, appears
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in ¢, complemented, then if i is odd, the edge between-(v,2i-2) and(v,2i-1)..Jf i is even, the edge

between (v,2i-1) and (v,2i).

The following observations are useful. For any coendinatc p; call-an cdge. fram (p,2i-1) to
(p.2i-2) an edge down from street C;; call an cdge from (p.2i-1) to (p,2i) an edge up from C, Eachnet tree‘
T, coatains a path which beging, with an edge i sirest X slown framgtreet C¢ The pagh gocs through C,

to sircet X, goes up from C, to sirect C,, and through C, W stroet X, The path continucs snaking

0
through the horizontal streets mmed wnhthmclmms. usms sttw. X. togo from street C; to street
C., whcn i is cven, and usm; stmt )(jo to go fmm q to‘(i‘i+1 when i is odd. Eath net tree Tp also
contains a path which snakes thmqgh the C, bm in, the opposue dilgcnon it begins with an edge in Xp
down from C,; uwswectx toc!mteﬁ'omc mC;“H w&eniiseven andusesstreetx to change
when i is. odd_ For any net tree T orT tf i aﬁp:;s uncomplem:nted in < thd edge in street M
| mterscctmg street C n in the same direction ﬁom C m the edge of the treé in street X if x; appears
complcmented the edge in street M is in the satle dmcéon from street C as the edge of the tree ia strect
jo (oppome to that in'street Xj). Figure 4.7 gives an cxamp}e of thefconsquuon.

For each i bétween 1 and k, each netiucé conjains the edjés between horizon(al positions v-1
and v+1 in street C,. Therefore, there mustb\'rac:hmmt:hﬂeachCi foreacl; net tree, gmngahelght of
2vk for any channel ass:gnment. Any channel assagnment whlch gives area at most 2vk(3v+ 3) must give
width at most 3v+3. | 5

At each iltersec_tidh of street M \yim‘ astreet C there are sa; net trees. which comam edges of M
incident on the node for the intersection - onc bair pf nct trecs, 'I‘j aﬁd for each variable X; appearing
inc. (We assunie that each variable occurs at‘ most oace in a clausc Noie that xV"vay is always
satisfied.) Half of thc cdges are up from street q and half arc down "I‘hcreforc, at lcast three channels

arc rcqulrcd for M. Three channels will be used in M ¢xactly when thc boolean expression of interest is

satisfiable.
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"Figure 4.7 Construction of the proof of Lemnia 44.
Espression: (x; V x5 V —x3) & (% V 13 Vx3)
o
Truth mxlf = X9 = X3 = true.
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1f:the: width is required 'to be at most v+ 3;-and sircet M-contributes at lcast thre, then the
width contributed coflectively by streets X; smd X, for 15jSv, must be’at most 3v. Consider the
intersections of streets X, m:x, with sweet 'C,, for im The edge from (-12-2) to (+£2i1) in X;
belongs (o T;, and the odge mm,zi-ia to G<1.21) iﬁﬂj‘éb&bﬁfﬁw"’l‘b.-"' Therefore, if only one channel is
used in X, the channel in C, contiining the cdges of ¥, mint have a lower number than the channel in C;
containing the edges of T, (by condlition mﬁveaffariwﬁe}%ssmgm): “However, in X,q the edge
from @v-j+ 1,2+2) wQvj+ 1».mam B T, antiehe-ctigt Foim (254 121 1o (2v-§ +120) belongs
0T, 1f only one channet is waod i X, the ehamnel i €, containifg 6dgos of T,y must havé the Tower
number. Therefore, only one of X; and X, can contain exactly one éhmﬁel:*’lﬂ is'even, the édges which
belong 0 T, and T, afe just interchanged ﬁ'omﬁmv we reach ' tie s&ne ‘conclusion. Therefore,
each pair of sireets, X; and X, contribute ut feast' threb m&mm width. “However, if collectively at
most 3v channcls are contributed by stfeets X, and X,y Bj<v, at most three channels must be used by
each pair: Note that 'l‘J an&‘Tjo "fit-together” so that-théy can always share onc channel in Xj or one
channel in X, In the other of X, and X, edges of T, ate assigned 1o one channel and edges of Ty are
assigned (0 a different chanmel. 'We will associate achannl assignmient in which X; has one channet with
a value assignment in witich %, has value "trwe”; ‘we will afsoctate a channél assignment in whictrX,; has
one channet with a vilue assignient of “false™ for X
| Given an assignment of tmth valites to the variables X, such that the boolean expression is
satisfied, the corresponding channel assignment giving width 3v-+3 is as foliows.” For ¢ach j between 1
and-v, if x; is true, one channel is used in X;; if , is false, one channct is usedin X, Strect M contains
three channels. We first determine what treés wilh share ehmmels at-each intersection of M and some C.
Note that only-adjacent cdges in a tree are roquired to ése the saie channcl: oliges of a trée which are in
' the same strect but net part of the same path in the street are xim?requirédfm use the same channcl. Let X

be a variable whose occurrcnce in c; i8 true under the given assignment of truth values. Thé edges bf"‘!‘j




and Ty in M at C; can share a chansel. This follows from the fact that i€ x, is uncomplemented in c,, the
edges arc.in the same direction 2 those in X, and the odges in X; share 4 chasnel; if x, is complomented,
the edges-are in the same direction s these in X,,, mmm»x,,m;m However, other
 pairs'of edges in M at G will ot be able 4o share 3 chasne] if the cormesponding litesal in ¢, is falee.
Thercfore, let the edge for %, in M down from G, share with the cdge.up-from C; far a second variable 1,
inc; Let the edge down fos; X share with the edge up-for. the MW kg Finally, the edge down
for x, shares with the odgo up for.x;. The new comstraints as, tw-mighmend of clisnncls i C, inducad by
this sharing are consistent. wmmmWMWMammmafc, with X, X, X
Xip Xopr and X o (Sce Figure4 ).
mwga:nuwhoﬂwnmmsmaqummMnm met:tre. Thesefore,
the only condition relevant at the interacctions,of M. with theso stroeis:is. that 2. path jn 2 net.troe which
gocs through an intersection cannot change channels: lm will:be a.path in.a net trec through such-an -
intersection if the same literal appears in clauses ¢, angd.c, , 1, Gousing an cdge;up from C, and down from
€y in One of T, and T,y The edges arc adjacent a (2} The agsignmens 40 chanacls lo M'can be
\, mMmammbm
each edge in a net tree incident an the inlersction. 0.2 diffsrpnt hannel srsong.chanasis ). through 3.
M cdges arc edges down from street C,. At C,, mmmmg heen-assigned; auign the edgos
up 50 they share with the dges daws as proviously delcrminnd,, Now consider the:iatersectias of M with
the stront betwocn C, and. G The chanaci.forau i, oae:9un Cy 4o Cy have becs. detcsmined.at.
Cys the remaining edges down from. Gy can be assigacd arditrarily, u:this way, odess siown: from cach Gy
can be assigaed channcis at the intarsection of M with the-heriaanial stoeet before C, 20 that: paths do not

determined as follows. At the intersection of My ith,

change channels, Edges up arc assigned at the iatcraookion of M- with €, s that: chanacls are- shared-
properly. Thus, if there is any assignment of bogloen vagisbies satisfying the.boolean cxpression, there is-
a channel assignment, ch, with widch) = 3v-+3 and arealeh) = 2vk(3v+ 3} A a8 dosired.
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Figure 4.8 Compatibility of the constraints at the intersection.of C; with M and wi
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y down mpmﬁwmm? and’l‘yowh%mw;smcdgcddwnfm{? for variable:
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U —-——"V indicatcs the chame! in C containing edscs of net tree U must havc alower numbcr
thapthatcontaining:edges of netee V.

—€—¥— indicates that the arder.could be either way,

Fer any choice of direction fot the two —*'—'T— edges, mo cycle iscreated. Therefore the
constraints are consistent.

up tcprescnts the trec com;nmg thc edse up
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Given a channel assignment with area(ch)' < A, we must show liow 10 construct-a boolean

assignment which satisfies the expression. 'We have shown that any such chanitel assignment induces a’

- truth assignment by choosing xj;rue if X. containsonlyibn&channel and K fahejf ontontmns only ope
channel. It remains to show that this assignment sansﬁeﬂhe emrmon. We know that cxactly three

* channels are used in M. At each mtcmectmn.pf M with some G cdges fmm two dm"cmnt net trces must

share cach channel. ‘Amqng the trees containing‘edggs in Pd at the mtetsecuon with Ci! consider the tree
whose cdges in C, are in the lqm numbered channel"v m tree must contain an cdge‘m M down from
C,. Suppose the treclsforvariablex 'l‘hccham\clsof'?mmcdwcdgmmT andTparemthe
proper order for theedgesofT apd T meMamnmbslfﬁmﬂumpbmmwdm
thentheedgesm MatC. forTjandeoarem d\esalneduecumnsmoumx atC ltmustbeweet Xj
which contains only one channel. Therefore X is tme and ¢ ls sausﬁed by hteral X lf X; appean
oomplemented in ¢, then the edges in M at C for 'l and'l'je ara«mﬂpm dmegsma&,ﬁewhxy it-
must be street on which contains only one channel. The vahe:of*x;is‘&&; andc is satisfied by fiteral
—w,. A literal satisfying each clause can'be idciitified by looking af the intersection of M with, the street

for the clause. Therefore, there is an assignment of truth values to the variables such that the boolean

. expression is satisfied. ‘ a

In the construction used to prove Lemma 4.4, height(ch) is the same for any channel assignment.

Therefore, we conclude:

Corollary 4.4: The modified Interscetion Channel Assignment Problem in which one desires a channel
assignment, ch, such that width(ch) < D for some given intéSer. D, (or such that height{ch) < D) is

NP-complete.

Lemma 4.4 shows that even ignoring terminals, assigning channels is a difficult problem. In the

next section we again consider channel assignment within onc street. A heuristic algorithm is analyzed.
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An example is constructed to show that:the. algerithm:can b nade o do arbitsarily badly with respect to

the optimal solution.

begin with a gencral discussion of various restncuom whose :_'emoval changcs the optimal chanpel
assignment. Then we prcse.nt a heuristtc algorithm and its analysis for Problem P3, the version of the ‘
problem proven NP-complete. . w& o . |

The ordering on ch(N,) required by. condifipn. (i), of the statement of, ProblemP3 can be
represented using a dirccted graph, which we will calt @e conmamt ;raph There will be one qode for

. - SRR

each net. If ch(N)< ch(N) is required under conditio:&oi&e Wblem P3 then there is
an edge directed from the node for N, tq the node for N Itis poss:ﬁlelpx me,gmph t0. be cychc In this
case, there is no channel assignment for the problem ng’}) ’lt: each net can use more than one
channel -- by using wire segmehts in the direction perpendicuhrm the street direction to connect
segments in different channels -- then a channel amismneat may exist. The segments perpcndlcular to
the street direction are called }ogs. Joss md iar diﬁemt aen, hke any other wire segments in the same
direction formﬁemutmm.muabesepmwdbymemmm T

Even when jogs are allowed at any polnt along asﬂreet, the dla«nei asugnment problem may
not have a solution. Figure 4.9 gives an example. However, ifmm,ﬂlowed anywhere between points
on a street rather than only at the poiats, then the channel aﬁianment problem is solvable in polynomial
time [Ka79). The model of a street used in [Ka79) differs slightly feom the Sormulation used ia P3. For
this discussion, we only need note that.vie {kammmsmwmwm stecet arc cither at the
same point along the street or are at points scparated by at least minimum spacing.

Allowing jogs betwcen points implics that an arbitrarily large number of scgments
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Figure 4.9 Channel assignment problems with no solution eves if jogs sreaBowed.
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Nets: {(10). 3.0} = N;  {(20). 4.1} = N3
{L). G0} =Ny {210} =N,

N

"IN} or Ny uses a jog at 2 to change chiarnels, neither N3 not N canus ajog at 3

- terminals-cffoctively aternate top and batfom:
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perpendicular to the street-direction may be inserted between any two terminals. The length of the street
~ the dimension of the strect in the direction'of the strect -~ must be vaiable, rather than just the street
width being variable. The algorithm in [Ka79] minimizes only strect width, nbrthe area of the strect. Let
the maximum overlap of a set of nets be the maximum over ail points on the street of the number of nets
whose intervals overlap at the point. An optimal solution under the model in [Ka79] requires at most one
more channel than the maximum ovérhp of the ncts. Recall that if there are no constraints due to
condition (i), the channel assignment problem P3 is solvable in polynomial time. Assume, as in [Ka79},
that terminals are cither at the same position along the street or have sufficient space between them. By
using one channel and inserting a jog bétween .eve‘ry-fp‘air ‘of éonse’cutive terminial positions, we can
effectively separate the terminals on oppositc sides-of the street 86 that there are trxo constraints under
condition (i): (See Figure 4.10.) We at most double the ‘strest length.  Then the number of channels
needed (excliuding the channel we-used to'create the efféct of witdb}y"md’tefmiaais) is the same as the
maximum overlap of the nets. This implies that one never need to 1eiltmenthestrcet by more than
double to get a channel assignment which uses within one-channel ‘6Fﬂié‘n;1inﬁmm.

Since we are thinking of a street as mmtinaakms the boundary of a component and we do not
wish to think of each component as expandab!e“.l' allowing streets to lengthen is'not satisfactory. An’
alternative is to use jogs in a street intersection. When a jog is needed, a segment which goes to the end of
the street and out into the street intersection is used. In the interseetion, the path can use a segment (the
jog) in the perpendicular street to change to another chattnel in the oﬂgmal street, and reenter the region
of the street it was previously in. This type of solution requires that perpendicular streets be'available and
that nets are aflowed to have wire scgments in two channels of a strect at the same position along the

street. Figure 4.11a illustrates. Such a routing not only affects the width of the strect containing the

1. In fact, some components are expan'dablc [3079).
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terminals being intercennected, but affects the width of the perpendicular. street as well.  Using this
scheine, any collection of nets consisting of tcrminals ia on styect can be injerconnected.  Figure 4116
shows the genemlconnecdanpm |

Let us.remn to our original channel assignment -problem, problom P3. The proof of
NP-completeness of problem P3 relics on the fact that jogs are.aat allowsd. .Figure 4,12 shows that even
for instances of the problem derived from circular arc coloring. allowing jogs reduces the number of
channcls accded. . We do not have a proof that the MWWEWN in NP-hard,.
although the author believes that this is the case. '

We now present a.simple. houristic algorithm for problem P3 aad analyze the quality of the
solutions it produces.! This algorithm is thebasic algorithm ysod.in [Den76} when jogs are not allowed.
We will assume that the constraint graph produced by applying, condition (i) does pot have any cycles so
that a solution without jogs does exist, We first defin the evel of 3 node in the comstraing. graph: |

(1) All nodes which have no edges into them are.on lovel 1. ,

(2) Assuming that the nodes on levels 1 through k-1 are defined for k0L, a node is on level k if

- all edges entering it are from nodes on lawer levels and it i3 not on a lowes level.

Since the constraint graph is acyclic, the levels.are well-defined. They can be computed by starting with
level 1 nodes and following cdges. We will say that a netis at level k if s ode s at level k. The nodes
from which there are edges 1o a given pode arc called. pradecessors of the given node, and the -
corresponding nets are called predecessors of the given net, |

Order the acts in-increasiag ocder.by the position, 3, of their tesminals. of lowest position. If
there are no constraints due to condition (i), then the following algarithm Sinds the pptimal solution: =

1. ‘This analysis is part of joint rescarch with Errol Lioyd.
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Figore 411 Probless requiring jogs.

A. Solving the Problem of Pigure 49

t a_ b c _d I

“ B U ——— s
sircet intersection / . —

I" e @A b 1 channels
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n chaniiel$ in the perpendicular seeét
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Figure 4.12: Use of jogs when not necessary.

We look at a problem derived from a set of circular arcs:

circular arcs (8,5), (3,7), (4.2), (6,1)
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~ Low to High Fill [Hu'lll
Repeat for each channel, begmnmg wtth chaml 1 and lncreasnns the channel number by one
for each new channel unil all nets are mm - | ‘
Choose the first unasslgned net uader the above ordenng Assngn it to a new channel.
Repeat until the channel is ﬁxli |
Choose the ﬁmt unassngned net whose terminal of lowest position is at a

higher position than the termlnal of htghest posmon in the last net to be

-assigned o the channcl. Assign this net o the channel.

Claim [Has71] When there are no constraints due to conditmn (i) the above algomhm uses exactly the

number of channcls as the maximum overlap of the m ”

Proof: Look at the lowest.point, ay, in the interval of the fiest net, N, assigned 1o the last channel. Each
lower numbered channel must Ma net whosg -interval contains point a;, I there were a channel, k,
which did not contain such a net, v.ihcn the net Nshpuklhﬂebnaalaeed i0. this chanael. This follows
bocause, in the net ordering, N is before the neta, if any, which were placed in channel k after poiat 3,
 Therefore, all lower pumbered channels are asigned ncts whose inervals contain point &, The overlap

at this point is equal to the number of channels used. , o

Algorithm "Low to High Fill" w:ll be the basis of the algorithm to assxgn nets to channels when

constraints are present. Channels are agam ﬁlled begmmng wrth channel 1 At any point during

8 )

execution of the algonthm let the set, A, of avazlable nets oontam those nets wluch are unassxgned and all

of whose predecessors are mgned. "Low to ngh Ftll" is modlﬁed to choose ncts to bc asslgned only

1. In [Has71], Hashimoto and Stevens use a different approach to prove the algorithm correct. They
prove a differcnt -but equivalent claim. “The proof given:bere-is-based on: the proof used by Gavril
[Gav72] to prove that his algonthm for chordal graph colonng is correct.
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from sct A (the nets are ordered as before) and to updae A after cvery assignment.

Lemma 4.5: For an instance lomeblemP3 letdkbe mcmaxnnumoverall pomtson thestreetofdle
numbcr of nets at level k whose interval over!aps the point. Let h be the hishest level Then |
{number of channels)‘h( )/(number of chaancls) 1)) 5 mm(h, avg(dk)) S n

where the algonthm is the modlﬁed Low to ngh Pm algonthm usmg sct A avg(dk) is the average of lhe

d, for 1<k5h and nisthe number ofncts in mmace l

Proof: We know that (number ofchusneh)m(!) 2 maximum of the d, andh.

We prove that (number of channels)‘,‘(l) < }th l(di) Let *C1 denote the set of chapnelq contaming a
net at level 1. For b1, let C, dcnocemesetofchanndsmmmghernmnbemmanmchstchannel
containing a net at level k-1 and which contain nets at kvcl k The number of channels used by the
algorithm is the sum-of the {C,| over all levels. Fora particulark, C, indy beiempty. IPC, is not empty,
ook at the first net at fevel k placed in the lug!nst numibered channel-in T, | denote thismet N,. Leta, be
the lowest point i is interval. If any.chanael in C, i nict asigried & net Whos Itérvat contains a,, then
N, should have been placed in this channel. This follows because Nkmhavebeeﬂ in A when the
channel was assignod - all level k-1 nets are places before chafincly in C, sre assigned — and'N, precedes
in the net ordering whatever net, if any, was assigned to Bic-channeh sftér point a,. Theréfore, |C,1<d,.

We have:

S max(h.ava(dk)) X minfwd‘))lmﬂ(hm(d,)) S min(iml(d,))
'I‘henumberofnetsatlevclhsaﬂeastdx Therefnm. - .

4= hxavs(dk)Sn and mm(n.mm,»; L SR =

lfmeabovcbomdonﬂmmweperfamefﬂwMMhmuz ﬂ!ealpm

can do very badly. Infach\cboundnsthcsameaswouidbcw(mnedforanatgonMthhapph
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"Low to High Fill" on nets of a fixed level, one level at a time; requiring all nets on level k (l<k$h9 to

be assigned to lowcr numbered channels than those of leyel k+ 1. Nonetheless, our bound is. uahx.

Lemma 4.6: There is an instance of Problem P3 for which modified Low to High Fill using set A

produccs a channel assignment whose ratio to the optimal selution is ﬁ(ﬁ*) fbrivg(dk) =h=n"

Proof: Figure 4.13 gives the instance. There are n groups of nets, each of which forms an n% level
chain. For all l_éi)él numbcrs, k, betwcen 1 and h incmsive the intervals of all nets on level k overlap,
giving d, = n#. The algorithm_assigns only. one net . Mchanncl However, there is a. channel
assignment which does not assign nets to chanaess ia am to hl;h ﬂfdﬂ' Amogg acts on a level, some
nets which are later in the net ordering are assigned- ta Jower aumbe{ed chaanels than nets which come
| before them in the ordenng. ‘The nets which camé Kist in’ ihc ordermg cin share channels with nets
which are on higher levels than they are, but whase predecessors have already been ass:gned Refer to the

figure for details. ' , (8]

The analyss presented above illuminates the fact that an algorithm used in practice s capable of
finding veryvbaél solutions. It forms a point of comparison for more "clever” or more complicated
algorithms. The "low to high fill" method can be used as the basis of an exponential time algorithm to
find optimal channel assignments by trying all possit;le choices for each assignment rather.than taking the
first net in an ordering [Ker73).

In the next chapter, we present an algorithm for a special case’of channel reutiﬁg which is not
NP-complete. The problem is to route interconnections among two ﬁm nets whose terminals lie on the
outside of one rebtangle. This problem is reminiscent of the circular arc coloring problem, which is

NP-complete. However, the paths around the outside of the rectangle arc allowed to change “color” as

they go around corners, i.c. the order of paths necd not be the same on adjacent sides of the rectangle. .

This order can change because horizontal and vertical wire segments are allowed to cross. Once the paths
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have been routed through the four streets surrounding the rectangle, the channel assignment is four
instances of the interval coloring problem. In the next chapter, we show how to do the street routing

optimally.
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Chapter 5: An Algorithm for Ronting Terminals on 2 Roctanguior Componeat

5.1 Preliminarics
We will now present an.algorimm which finds an optimal solution to the following routing

problem in polynomial time. Figurc 5.1 presents an example.

The One Rectangle Routing Problem

Given: a rectangular component with terminals around its outside edge. Terminals lic on
positions which have at least unit spacing along the cdge of the rectangle. ‘The unit spacing
represents the width of a wire plus the minimum spacing between wires. A list of nets, cach
containing a pair of terminals which must be connected, is gwen Each terminal belongs to

cxactly one net.

Find: An optimal routing of the wires between pairs. Paths must be composed of line segments

which are parallel to some side of the rectangle. Distinct paths may cross at right angles;

however, paralicl segments belonging to distinct paths must be separated by the minimum
spacing. (We arc assuming that there are two layers for interconnection. Onc layer is used for
the line scgments in one direction, and the other layer is uscd for line scgments in the second
direction.) Al paths must lic outside the rectangular arca of the component. An optimal
routing is one which minimizes the arca of the smallest rectangle which circumscribes the

component and all routing paths. The sides of the circumscribing rectangke must be paratiel t0

thosc of the component.

Placethcrechngularcmpﬁneﬂtmacamsianc@ﬂm&esyﬁuamﬁmimﬁdmarepamﬂdb
the axes. Arbitrarily choose one axis direction to be horizontal and one vertical. Label the horizontal
sides of the rectangle as top and bottom, the vertical sides as left and right.

Fach pair of terminals can be connccted either by a path which gocs clockwise from one of the
terminals or by a path which goes counterclockwisc fmﬂic&cnmnal. ‘The directions of the conncctions
detcrmine a set of intervals which path scgments will use along cach side. Omeq:ciamnalswbemd

by each path along a side arc determined, minimizing the fength added out from the side is a channel
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Figure 8.1 Example of the routing problesm for one roctangalar component.
L] , [
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1

Terminals are represented as points on the rectangle boundary. - .

Pairs of terminals with the same number must be connected.

An optimal solution is shown. : : o v ;

The height added: o i top-by thiFsolution-is' 2 initg: theNeight added to the bottom is 3 units.
The width added to the left side is 3 units; the width added to the right side is 2 units.

[
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assignment problem, Vemca! and honzomal segmems which beiong to onc path can bc cxtcmiod bcyoad

-----

channels in the strect along one side of the comptmcnt can bc asianed mdepcndcm oi the ass:gmnems-

within other s,trcg:_s\‘ Within cxh steect, there are no cofty ’to wmmalsacms&fmmmanod\cr
(condition (i) of §mﬁbl¢m P3 in Chapterd). We \‘héycgiﬁlnl)i?&@gfs of the intorval coloring problem -
one for cach sfde; "l'!:aéi'cfom, the length added out from each side is oqual o the miai.;}'&éaap%ofme
intcrvals on that side, and it suffices to use paths which only changc direction to round a comcrofthe ‘
componcnt of to connoct toa tcmunal

We must dctmnme the directian of each connccting path Soihat thc i‘é;l!ﬁnz.arc; will be
minimized. Wc consider two types of conncctions, Pairs of tcm)mals on thc same snde br xbaecm sides
of the component are called local connectums For !hesc it sut’ﬁces w chumc the dircutkm whlch goes

around the fewdst sides. A path which goes the Ions wny adds at Ieast one mm in cach dzmcnsmn to the

circumscribing rectmgle. A pam wmch goes thc short way Cannot’ m moré (han this. Therefore it is

never better to go the long way around.

The second type ofconmw»mnalus ﬂwse va:hm fmihcbﬁsldemthcm atde'm the
top to the bottom. Thc choice of dnrectum for top-bottom uosnecwns is ;depcndem of the directmn of
left-right connections and vice versa, since regardless of the dlrectkson.usedhfora wp-bottmn connecuon,
one unit is added to the horizontal dimension of the circumscribing rec:angte 'I‘hcreﬁwewe have two

instances of the following problem:

Top-Bottom Routing Problcm
Given: ’lcnmnalsonatopandabouom asetofmptobotkmwnmmandmbcd
connections on these sides.

Find: A direction -- left or right - for cach top to bottom connection so that the resulting total
-vertical dimension is minimized. Each connection is made by going around to the left or the
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right as indicated by the direction.
In this description, connections which Oﬂginamv went from the top or bottom to an adjacent side are
considered to be local connections which go'to'tﬁe vcry edgeofthe mﬁor bottom. (The portion used to
turn the corner is not of interest hé‘re.) | ' |

To solve the above prob!ém; we ﬁrst reduc it to a problem of assigning 0/1 values to clements
of two vectors so that a matching on the vectors ts maximized. The vectors represent the top and bottom
terminals. The represéntation removes unnecessary information about local connections. The value of
"0" or "1" represents the ':c;iire‘ct'ion --le‘ﬂ_, or nght of the connection at a terminal. The matching
identifies which segments will share the same channel m the final routing,

The major phases of the algorithm to solve the new ass;gnmeng problem are as follows:

1. Partition each vector into regions within which matchlni can be localized. After assigning
values within a region, the regions are recalculated. The algorithm iteratiyely assigns valucs within these

regions until there is only one unaséigned region for cach of the top and bottom vectors.

2. For the remaining top region and bottom region, the algorithm, assigns values from left to
right along the top region, maintainin‘g‘cgrtain pmpemes of the number of ,"_Qf,'fs,a,nd "1"s in partions of
the vectors. These propertics guarantée a maxlmum matching ﬂfogithe-r vectors. 1t may happen that not all
propenigs can be satisfied simultangoug! vwhc_nﬂsomcjeler_g;{cm lsasmgned a (va]pe,,‘ At this Vpoi;‘n.:wc say a
failure has occurred. When a failure occurs, the algorithm may sﬁll be able to determine an assignment
which suffices to_ guarantce a maximym matching. However, i,t( may beng:&nsary to-try both values for

the assignment.

3. When the algorithm must try both choices for an assignment, it docs not treat both choices

cquivalently. For the choice of value 1", the algorithm is applicd rdcufsivély to complete the
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assignment. For the choice of value "0", the algorithm is applied with modification. We assume that the
choice of "0" leads to a better solution, not just as good a solution, as the choice of 1", Thercfore, as
soon as there is cvidence that the "0" choncewtll l;:a‘(.i,’to‘ no betier a solution, the algorithm may stop
pursuing this choice.‘ In particular, if the situation in which the élgprimg; must try both choices rcoocurs,
it will turn out that the sccond "0" choicg;. leads ta no better solution that the first 1" choice. This sccond
"o choicg can be eliminatcd.k Only the "1" chgicc IS uscd and the scarch donc by the algorithm is thus

bounded.

Fhe technique of bounded search is crucial to the algorithm. Without the ability to bound the
search, the algorithm would have'éxbiihchﬁzil m\runni'ng time. The R)flé&ing sections described in more
detail the algorithm outlined above. ‘During this dcscriptum a large amount of notation will be

introduced. 'The appendix to this chapter summarizes that notation.
5.2 Reduction to Maximizing Matchings

The Top-Bottom Routing l;roblem is reduced to the problem of assigning valucs within two
vectors to maximize a matching. The vectors, T(1,m) and B(In)rcprescm the terminals at the top and
Bottom, respectively, numbered from Tef to right. (We will drop the T and B when it is clear from
context whether we are referring to a top 6r bottom tcnnmaI)A value of *0" or 1" is used to represent
the dircction of the connection at each terminal.” Dofine the valie Runction VT: T(Lm) — {0,17} as
follows: _ , | | o

VW)= 0 ifthe direction ofthe path fom'términal i to s paif s to the leRt

1 - ifitisto the right
? ifitis undetcrmined
Value:function VB: B(1,n) —» {0,1,?} is defined the same way.,

Let p:T(1,mUB(1,n) — T(1,m)UB(1,n)U{*} be the pairing function. Terminal p(x) should
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be connected to terminal x.. When p(x) = * (don’t care), the terminal x is.cannected to a terminal on an
adjacent side. Initially, the pairing function is known, and the.value functions have 0.or 1 values only for”
the local conncg#mns. We would like to find- VT and.VB for. which all directions arc determined and are
cqnsistcnt with the initial values given. Wg‘ will say_ that a value function V' is.consistent with V if
V'(i)= V(i) whenever V‘i)ﬂ. We also say,ﬁ;hat- V' extgnds V. For any pair of valuc functions we require
that V1(i) = V() if p(T (;'))= BG).

 We would like to balance paths to the leR with thosc to the right on the top and bottom
simuhancously.‘ let mVr be a function matching terminals in '[:(l,m)pf value "0 to terminals with
higher index in T(1,m) qnd of value "1", i.c. matching paths to the left and right. 'The function is formally
defined as a onc;to-‘oncv partial function from 'lfl,qnolwtsuch that if my(i)=j, then VT(i)=0,
VIG)=1,andj)i. Deﬁne my,, similarly. For a pamcular VT and VB lct Mw be the maximum over all
matching functions m; of lrangc(mv l.)I ic. M, yris the maina;zm numbcr of matches among T(1,m) for
agiven VT. Parameter M, is defincd similarly.

We will reduce our rdtlt’ing bmﬁlcrﬁ to a ﬁroblem' .o'f asvsi'gnirn‘g ;'Q‘fs and "1"s to maximize

M, +Myp. Thisis justificd by the following lemma: . : -

Lemma 5.1: Given a Top-Bottom Routing Problem with local connections represented by value
functions VT, and VB, the problem of finding VT, and VB, under which all disections are defined and
for which the vemcal dimension of the cnrcumscnbmg rcctangle ns mlmmlzcd is equlvalcnt to the
problem of finding VT, and VB, such that M. +M“ras ,nm{mzcd over all VT and VB which map T

and B to {0,1} and are consistent with VT,and VB,

Proof: 'The matching ﬁma:on Myr, corresponds to determining which horizontal scgments above the top
~ side will share the same channel. If mw.f(i): i (h.cn in some channel, the segment ending (going Teft to

right) at terminal i is followed directly by the segment .which starts at tcrmingl j Each chz_xnncl begins
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with a scgment running from the top et edge a scgment for whidi W) 0 énd pYER(.n) o p()=*
T f*ﬁ“j{ﬁf‘!'ﬂf &hid under: vrf The ‘E‘»:’; :f'»,[

or with a segment which beging at a 1-valued it
segment in each chariel i -3cgment funiring o the-i0b T Sdge (VT YT and plYEBMLA) or pC)="
o dnitdér’ Ty “Figure 3.2 illistrates
e the dille; thercfore, we have found an

or 4 segment ending-at a O-vahied -tetminal ‘whick’ is unmik

assignment of scgments to channels for cach mwr. The argument ca 'be Feversed'so that we find 2

matching for each assignmerit to chantith. ~ Thee 's"% otie-itioné corresp ¢ botwech channel

assignments and matchings giving:

number of channels used =n number of segmcnts gmng lo leﬁ odge + number of unmatched "l"
= number of sogifents gotig th right'cliBt’ + Huniber of inmatched 075

This gives: total vertical d?ﬂensaon correspondmg tomatchm ﬁmctnommw a"dmvn,
" = ht ofrectangle{déencted H)  # chiasing "Aamﬁftwm S
= h+ #topscgmcmsgomgmiefteder #um?i??M*

~~~~~ f, 5 By

h+ #topscgmcmsgoingmleﬁedse + #"1"5&&;: lmga(m"'l
+ #bocmmsegncmssomsmﬂsmedae+?“f it Bottoin " fridipe

Siriiise wtoa.cTE
d U';., :

Notc that: #"1"satop #mw&%ﬁ%a@rf #mmwsammmmw

and therefore: - # top segments going ‘iﬁéﬁz‘fﬁl-" # 1 satrp

HA N

SEERE s P ToEEEI

Thsg:ves mlmmumuxalvenmaldmwmoverﬂlmwmmmhw deBf
=N F #mpneyncm ¥4 Dettonh sefropel * (ifw"‘*‘ﬁ;"f Wy m: -~ Myp "‘Mvsfﬂ

fiiw as

Where C = (# local connections top and bottom) + X;top-b;mommwcm)nacommforany

instance of the routing probler. Thorcfare, minismiin nm::m»m
er"'“yw Tosis RS _'.;r.;fé;i ,;":f;’;.,! T S I R T E

© We now prescnt the various phascs of the algorithm which finds value functions VT, and VB,
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Figure 5.2: Possihle configurations when filling channels.

pi) = » ) =B
A channcl
1 i N
| VIn=0  VIG=1 ]
my (i) = ;
pi) = j e pl)=q | |
[ ] : ] | _channel
[ vid=1 Vig=0 VI =1 VI@=0 ]
unmaiched ‘mp@ =k unmaiched
p(i) = B(u) | pG) = k
channel

ViO=0 VIp=1  Vi®=0 ViQ=1

my (D) =j ' my,(k) = q




maximizing (wa + MVBf)'

5.3 Defining Regions

The following description will be in torms of T. An anamgoué‘d‘eve;opmcm is assumed for B.
Let T(x,y) denote the tcnmnals from x o Y mclusm In any leﬁ mtcnml. I‘(l.l). for any i<m, we would
like to maintain thc property that no more{han half the tcminals arc I-valued. This property must hold
if every I-valued terminal in (1.i) is to be matchcd {tt{‘a'Q-valucd terminal with smaller index. If more that
half the terminals in a leR interval are 1-valued; sumc of these 1-valued terminals cannot be matched
| under any m,,. If at least half the terminals are 1-valucd, any ?-valued terminals in the interval should
become O-valued if we are to maximize the number of matches. Sﬁhﬁaﬂy we want no morc than half
O-valued terminals in any right interval to insurc- that these &uﬁuedtcnmnals can be matched. Because
of the local connections, it is not alwayé posssbic to mammathwc .pW‘_m any left or right interval.
Instcad, we definc regions within which these bounds hold. Within mesereg:ons matching can be
localized. | |

For a given value function, VT, let ZEROS,(S) = ({i€S|VI(i)=0}; ONES(5) =
{i€S|VT()=1}; UNDET(S) = {iESIVF(i)::"} where SCT. Define the propeny DK-I(VT,x,y)
(similarly OK-0) whxch is true if and Dnly if jONhSw(x,x)j 5 L%{y-x+1)J (Wc us the notation
"ONES,{x,y)" rather than "ONF.SW(’I‘(x,y))") Also deﬁnc NI l(VT x,y) (similarly Full-0) wmch i
truc if and only if DNESvr(x,y)} 2 r%(y-x-l-l)‘l Property Full-"p"(V’l‘,x.y) is truc when at least balf
the terminals in T(x,y) have value "b" under VI. Note that Full-}(VTx,y) and OK l(VT.X.Y) mn be
simultancously true only if IONF.SW(x,y)I = (y-x+1), an integer. Full-l(VT.l,i) indicates that the
terminals in UN DET,,,(1,1) should become 0-valued if we are to maximize the numbe; of matches.

We will now define the regions of T within which.matching can be localized. uﬁ-wns under

VT arc formed scanning T from 1 to m. A new region begins when the previous region has at lcast half
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"1"s.. Similarly, right-regions under VT are intervals of T scanming from m to 1 and counting "0"s. -
First define functions /. and r,; mapping T tolsel;
Iyl =1
L =1 if Full-l(VT,Iw(i»-l),i-l)

lw(i-l) otherwise, fori>1l

rw.(m) =m
Td)) =j ifFFull-0(VTLi+ 15 (i+1)

rydi+ 1) otherwise, forj<m

The function 4, induces an equivalence:relations oa- T(1,m) under which two terminals i and j
are equivalent if and only if /(i) = /,(j). The resulting equivalence etamses are intervals of T(1,m); the
lowest element of each is an clement of the range of /. These equivalerice classes arc called lefi-regions
under V1. A new region begins when the previous region has at least haif "1"s.. Similarly, r,,,. induces

right-regions under VT which are intervals:whose highast element is an ‘element of the range of Ty

Lemma 5.2: (JJOK-1(VT.J, (i) unless 4,(0)=iand VT()=1

(B)OK-(VT,i, (1) unless ry (i) =i and VT()=0.

Proof.: We will prove (a). The proof for (b) is analogous.

IF Iy ()=i and VT()#, then JONES,;()=0=LU(H+ 1)t and OK-I(VT,ii). I L )i,
then not (Full-L(VT./,(i-1)1). In this case k(i) =ly{i-1) and
JONES. (i) < ONES, (-1 DI+1< i'/'b(i-lv;(i)i;l +1 = LG, )+ DI+1

and OK-1(VT.J,.,{i).). | O

On all the left-regions except possibly the last, at Icast half the terminals are 1-valued. Such

regions are called ﬁdl left-regions.  We definc a delimiter for the full regions. Let Ly,=m if
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Full- VT, /y(m),m) and i, (m)-totherwisc. -Let Ry =1 if Ful-(VT;Lr€3)) and r(1)+ ¥ otherwise.
Lemma 5.3 shows that the full left-regions can overlap the: Rull right-regionsonly whén alt terminals in the
interval of overlap are 0/1-valued.

Lemma 53: IfL, > R, then IUNDFTV](RVP ,w)l 0 ie. all dn'ecuons are known on (Ry.Lyp).

Proof: Assume Ly 2 Ry The proof counts the number of “0"s and “1"s necessarily in (RW I,VT)
using the definitions of R and Ly R
Case 1: JONESy (RypLy,)l 2 IZEROS ,(RVPL » Supposc L is in range(rw) Then
(Ryp:L.yp) is a set of right-regions of T. Since Pull-ﬂ is true for any right'rcgnon of termmals greater than |
Ry it must be that Full-0(VT.R Ly However, we have;sssumed that thereiare s Jeast as many "1"s
2 "0"s in (Ryplyp). This gives | |
IONES (R yp.Ly ) = IZEROS By Lyl = Wiz Ryp +1)
and no elements.of (RVT.LVT)have value "7 under VT.
We now suppose L. is-not in the range of ryp. 'l!hm
[ZEROS {1y +1, rw(l,w+ l))i < r%(rwﬂ +l)—(l.w+ 1)+ l)“l L gnd
rylLyr+ D= =ryp{Lyyp) Interval ( er"'via‘w» is a set of ngbt-rcgions and F ul|-0 holds. l‘hxs gwa
IZEROS (R p Ly = wpaosv,(awrw(me IZBROSW(LW+ l.rvr(Lw))i
IZEROS\ (R Lyl > PGyl Ryp +HPFUlry Ly L) T2 L%(Iw‘lwrwl)J e
Full (VT Ry ) again implsing no-eloments of(R; ’

Case 2: IONESW(RW.LVT)i < IZ}:ROSV[(RVPLW)I 'l‘h!s case is pmven m ﬂae same manner as case 1

H a—&% “ i' v r‘ » ‘f":,u.

with the oles of L and lef-regions interchanged with the roles of R, and rmt-rcgm o

The matchmg within the full Ieﬁ-negions (1 Lw) or the futl nght reglons (R‘,T,m) can bc.

maximized mdependent of the rest of T. Our alsomhm uses tms prowrty to break up the pmblem.
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Theorem 5.1 formally states the independence of the regions.

'l‘lmouu 5.1 Let VI bea nven initial value functxon dcﬂning RVr and L For every VT consistent
w:th VT and every matching l’unction mvr there is a matchins functmn m v asrcema with mvr on
0-valucd terminals in (Lw-o +1.m) but matching each 0—vaiued termmal in _(I,LVTO) to a 1l-valued
terminal in (LLy; ) and such that rangetm’y, )} > [fangc(m, ). ‘Anslogously, there is a matching
function m”,, agrecing. with 'lilv.r on Ivalued terminals in’-(l,’RVTo-l') ‘but matching each 1-valued

terminatin (By ;)10 2 0-valued serminal in (RVTO.mmwm range 1§ ot feast as targe.

Proof We will only prove the exmence of m'yp- The proof of the existence of m" is similar. The

_ pmof isby mduction on the number of leli'regiom in (I L\rr )

Basis: (I,LV.I. ) contains at most one region. o |

If L -0 then (1, LVT ) is empty. If L = 1, then V’l‘o(l)zl and (]’L;rro) does not contain
any "0"s. In either case, the theorem is trivially true.

If Lyp, > L then Iwéa,woj= L. Thefcfoee, OK-H(VI,LIyp).  We abo have
Fullbl(V’l“Q,l,LVTo) and can conclude KﬁNESon(l’,LWo)Q.& f‘bLV'r"). ‘For any value function, a
maximum matching.can be found by scanning T from 1 1o m. Each time a "1" is encountered, it is
matched to the lowest numbered yet unmatched "8”.  As.long 2 there arc no more "1"s than "0"s in an
interval (1.1), there: will be an yet unmatched 9" in (1,1-1) to-match a 1-valued terminal 1. In the case we
are considering, OK-l(V’l‘o.l.i) holds for every iSLVTo. Therefore every 1-valued terminal can be
matched to a O-valucd terminal if all *-valued terminals ia\»(l,l.v.r ) beeome O-vahied. Since there are
/nL 1 -valued terminals in. (1, "VT ) undor V' , such a faiching Rinction would match all 0-valued
terminals in (I,LVTO). For cach 0-valued or *-valued terminat under Vl‘o in (I,LvTo). we can associate the
I-valued terminal to which it would match under the above matching. Given any valﬁc function VT

consistent with VT, and any matching function, my, the desired mmatching function m’y; can be




created by matching each 0-valued terminal imﬂ.lw 157 m&e I*Mvmimlh is associated with
and usms the maa:hmg defined by “‘v1 for O-valued termmals in (l'vr .m) Smce m’ VT ma&ches at least'

as many "0"s as My lnngc(m )l is at least a lalxe a8 kange(mw)i (Rccail that matchmg ﬁmctnons

areone-to-(mesomatthcdmnamofamatchmgﬁmctmnisﬂ\csamestzcasmm)

Induction: Consiger the firs ksft-region. By the argument used in th b, the matchiog of the ""sin
this region can be restricted .to the *17s.in the féﬁpn; Fherefare, X\{ie mxcmew ‘thc_ﬂmn:msiennd
consider the remaining temunnls as a new ﬂfm :The Mmaﬁm Aminins terminals are
unchangcd and we apply the mducnvc assumption The desxred m’ Tyt uses the matchms of "0“3 in me
first left-region to "1 in  the first lcft-regnon and the matchmg of “ﬁ"s in thc rcmaming fun Ieﬂ-reglom

to "1"s in the remaining full left-regions obtamed by thc mducﬁve mmption - O

5.4 Assignment within Regloas

Given Theorem 5.1, we can show that it suffices t0 consider mw mn'utﬂit with ¥T,

.which assign all ?-valued terminals Q(l LVT )the value "0" méall ?-M termmalsm (er ;m) the

value "1". "This alsp holds for VB, mmszmmm aaewrmm fotassiamavﬂau |
begins by assigning thesc values t the originally. 3-valued terminals and mm,:whcna eomet
ariscs, ic. TH)E(LLyy, ) and BG) = PCIINER yp ) or mmkunwmmm@
either choice can be made. We chonse io.define the alparithes s thet amignments ace made In the

1 Make ani.?wamq terminal in(LLyy, ) and teir botom i Gvaluod.
2. Make all -valued terminals in Ry m)and theif bottem m;-m ‘
3. Make all?-valued terminalsin {1.Lyy }and their sop pairs O-valued.
4.Make ajl 2-valued &emnnals in (R.wo,a} ané their top pairs 1-valued.
This order gives a profercnce o assignments dictaiad.by the lop segions. Exccuting each of 1
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through 4 dcfines new. functions VT and. VB which extend VT, and VB, and which may be extended to
| yall_!e ﬁlﬁéﬁﬂm achieving the lmlmmm maiching (wa *—M“vn)"' These new functions may induce
new leR-regions and right-regions, The algerithm repeatediy computos new Lyp, Ry, Lyy, and Ryp,

and applics onc of 1 through 4, cach in wrn, until there are no full regions containing ?-valued tenminals.

uM f:!: Let VT and VB be ény i)éir of vélue ﬁmctiom :consisteﬁ't with V’I VB and the pﬁirfﬁg
function, p. If there are - -valued termmals under V’l‘ ln (1 L, Vi ) then thcre are functions VT' and VB’
consistent with Vl‘ VB, and p, such that all ?-valued termlnals m (1 I‘vr ) under V'l‘ are 0-valued
under VT', and Mypr + Mypr 2 M+ My Simihﬂy, mere are value functmns assigning 7-valued
terminals in (R",T .m), ({1, Lvno) or (Rvno ,A) the va%ues "l" "0" "1" resﬁecnvely, without dccreasing

the sum of the matchmgs onTand B,

Proef: We will only prove the statemgpt. for fixed va;upxin (LQLWG). Proofs for the other intervals are
analogous. Suppose there are ?vnlued temunals in \(LLV%} under VTg, 1 these terminals arc O-valued
under VT, we arc done._Suppon;_ there are such terminals which.are nat 6-valued under VT. Define
value function VT’ to agree with VT on (Lvro‘*'l"i“.);b‘“‘ assign each T-valued torminal under VT, in
(LLyy,) the value "0". Let myy be a maximum matching function for VT which:maiches each O-valued
terminal in (LLy; ) uader VT to a 1-valued terminal in (LLyy ). By Theorom 5.1, such a my; must
exist. Let my» be a maiching function for VT" whigh ggrees with mw;qaf(Lwﬂ+lJp) and mawheu
cach O-valued terminal in. (LLyy ) under V" to a 1-valued terminal in QUlyp). Again, my s
guaranteced to exist by Theorem 5.1, Then, ,
gy - rangsm = [ZEROSypdl oy M - IEROS (o ) = &

But, My 2 [range(myf and My = jrange(my, ). “{‘tmn:fom.M,‘,.l - Myr 2 d. The corresponding
VB differs from VB by changing at most d "?"s or "1"s to "0"&, This can destroy at most d range values

of any Myp, giving MVB' Mvn’ <d Therefore MVT' + Mvn' 2 MVT + MW -8
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It remains 10 asign O/1 values 10 any Fvalved wnhnal of TlLy; +1Ry; 1) and
n(me+ LRyp 1). where VT, and VB arc the last extensions of VT, anid VR, tbtained by the above
assignments. Intervals T(Lyy +1Ry7 T and By, + 1Ry, -1) may be empty. Given Theorem 5.1,
we can maximize the sum of matches within (L + y,kvt;}li ahd“h(l;sf ljﬁvae:iyiﬁdéﬁeﬁd‘e‘nt of
- the full regions. We remove the full fcéion; and define a new T anQBcontammg only the remaining
A‘tcmqli‘nals. We get a problem on vcctors 'l‘( I,m’) and B( Igp')lwfitlj new pamng f_unct‘iqn,vg"‘_ and new ipi,t:ial
vatue functions, V1" and VB'y, such that - | - |
| m' = RV]; Ly Tandn' = Ryp .-l w1
o(i) = VI(Lyy +i)and V(i) = VB (L,,B +:)
The pairing function, p’, corrcsponds to the the old pairing ﬁmctnon whcn both tcrmmals of a pair are
within (Lvre+ 1,Rv1.e-1) and (Lvne*" LRvae'l)' If a terminal wuthm one of these intervals was originally
paired with a terminal outside the Intervals, then the new: furk':tioh' pairs this terminal with * (don’t care).
Any terminal originally paired with a temninal outside thise' imervais is 0-valucd orl valued under VT
or VB,. Since the pairing ﬁmctum is only needed for ”valucd terminm changing the' paiﬁna of such a
terminal to * does not change the problem. The mew value functions, VT, and VB'y, induce exactly one
leR-region and one nght-rcgion on each of T(1,m") and B(1,n"). ‘None oftheae regtons is ﬁﬂi
The assignment to the new vectors is made using procedure SCAN-ASSIGN. - The procedure is
called with inputs (T(Lm')B(Ln)p VT, V). This phocédure mm “top- &écmr,i reassighing
top-bottom pairs of T-valued terminals the value “0" ‘whenever this amiamnent would nt cresté a
bottom right interval, B(s.n), with more that half 0-valued terminits. When sich an ingérval would Tesult,
SCAN-ASSIGN trics to reassign the terminale the value *1", “IF s wotd create 4 1op et interval,
T{1,), with more than half I-valued terminals, the procédare stops and retams "FAIL". The procedure
which called SCAN-ASSIGN must handlc the fallare. 1f no failufe oceurs, SCAN-ASSIGN continiies

assigning until there is a full top right-region, L.e. a right interval with at least haif *0"s. Any remaining
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?-valued terminals are assigned the value "1". The procedure SCAN-ASSIGN is defined in F igui'e 53.

The following two Jemmas. and theorem prove the correctness  of

SCAN-ASSIGN(T(l.m).B(l.n).P,VTO,VBo) when it succeedsA in éssignins "0"s or "1"s to all ?-valued

téminals in T(1,m) and B(l.n).‘

Lemma 5.4: Let V1, and VB, be the value functions algumcdby vadablcs vT and VB after considering
terminal  'T(i) in ‘ either the first or sgcqu , VFlel - ldop | during‘ the exccution of
SCAN-ASSIGN(TU, m). 1 I,m)?p.V' lfﬂ.,Vﬁé); {f 'VTO &ﬂdVBo do not define any full regions on T or B,
then for any i, 1<igm, VT, and VB, m&fy mcﬁﬁiawkwpmpem

Forallk, 1€k <m, OK-I(V'Fi.l.‘ﬁ) -

Forall k, 1Sk<n, 0K~0(%g;k,n)z |
Furthermore, if SCAN-ASSIGN(T(I,m),B(l.m),p.V'l’a.VBD) enters the second FOR_ loop, then for all

value functions VT, and VB, where T(G) is considered in this loop, IZEROSvrj(l,m)I =T%m1.

Proof: We first prove the propeniés for functions defined in the first FOR loop by induction on i.

Basis: The properties are true for VTo and VBO by hypothesis.

Induction: By inductive assumption, the propertics are true after considering terminal T(i-1), ie.
after the (i-i)“‘ execution of the loop. Function VT, differs from VT, , at most for T(i). For this to affect
OK-I(VT,Lk) for some k, the following must hold: IONESVTi_l(I,k)IxL%kJ, k2i, VT, ,(@)=?, and
VT()=1. However, if DNEswi_l(l’k)'= L%k, then VT (i) is not assigned "1". Therefore, for all k,
OK-1(VT,,1k) holds. For OK-0(VB, k,n) not to hold for some k, it must be that: IZEROSVBH(k,n)i=
L%(n-k+ 1), k<p(i), VB, (p(i))=?, and VB(p(i)=0. However, if IZEROSVB‘.l(k,n)I =L%(n-k+1)J,
then V'[‘i(i) and VBi(p(i)) arc not assigned "0". Therefore, OK-O(VBi,k,n) must hold for all k.

If SCAN-ASSIGN enters the second FOR loop, lct h be the first value of j considered in this

loop. Execution of the first FOR loop is completed bc;cause Full-0(VT,_,.q,m) holds for some q. We

e PR e ik



Figure 5.3: Definition of SCAN-ASSIGN

SCAN-ASSIGN(T(1,m), B(La)p.VT, vao)

/Asstgns 0/1 to ?-valued terminals mTandBwhereLw 0 RVT -m+1 L l;“--0 RVBo—n+l.and
no region is full./ R

VT:= VT, and VB:= VB,

FOR i = | STEP 1 UNTII, (3q)Full-0(VT.q,m);
IFVIG="THEN .
IF (35) D)€ ) and [ZEROS, (sl =L (ar-s-+ 1) THEN

1F(3g) i$q5m and mu-.s y{L.gi=L%eld THEN
RETURN (FAIL, VT VB)
ELSE V1G):= 1 .and YB(p(i)): =1
ELSE VI(i): =0 and Vﬂp(t}). =0
END RS R
FOR j = iSTEP 1 THROUGH m :
IF VI()="THEN VT():= 1 and VB{p(iB:=1
END ‘
RETURN (SUCCESS, VT, VB)
END SCAN-ASS!GN
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know that h 22 and qdiy since VT, , agrees with VT, an Féum) and for no k does Ful-0(VT k,m)hold.
If g#1, we know OK-I(VT, .}.q-1) holds by the fiiwt pari of this proof. 'This implics that
IZFROSﬁh_l(l,q-ll 2 %4(q-1)Vsince no terminals in T¢1 h-1) dre 7-valued under VT, . Then

IZEROS ;1 m) > (g7 + FA(mq-+1)71 2 '
However IZFROSW (1 m)} < F%m'l otherwue the ﬁm loop would not havc been repeatcd for h-1.
Therefore, l/ P-ROS (1 m) = Mam7. 'l'he second FOR loop does not asmgn any "0"s. Thercfore,
for all VT thSm I?FROSW(I m) = F%m’\ Also since OK- O(V - l.k m) holds for any k,
OK-(VB k ,m) holds for any k.

It remains to show that OK l(Vl‘ 1 k) holds for all k. Since any VT agrecs with VT, , on
T(Lh-1), OK-1(VT;,1,k) must hold for k<h. Suppow that for some kzh and some jzh OK- l(V lk)
does not hold Since the number of 1-valued terminah lncreases on each iteration, OK I(VT_,Lk) must
also not hold. Since no terminal is ?- valucd under VT lLEROSW (1 m)f = F%m7 implies
IONESVT (1, m)l L%m.l thereforo katm

For any i>h, ITEROSW (iim)| = {IEFJ'R\OSV.r (im)|<r %(m-i+1)1._

This implies » |ONES,, vi, (k+ l,m)l > L%(m-(k+l)+ .
Then IONESW a, k){ < L‘AmJ - L%{(m- k)J

giving IONFSVT (1,k}i< l'%k'! contradmdng our assumptlon that OK-I(VT 1 k) does not hold. 0
Lemma 5.5: For any call to SCAN-ASSIGN as ia Lemma 5.4, the first FOR loop is completed with i<m.

Proof: If the lemma does not hold, then afteri=min the first FOR loop:
[ZEROS,, Vi, (l m)l( r%m'l

However, by Lemma 5.4, IONFBV,. (1Lm)}i £ L%m.J, implying |Z FROSW (ILm) 2> AmY. 0
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Theorem 5.3: Let VTq and VB, be initial value functions which inducc no- full regions oo T and B If
SCAN-ASSIGN(T(Lm), B(Ls}. p, Vi, VBy) eturms (SUCCESS,VT, VB ) then VT, and VB_

maximize My + M over all VT and VB consistent with Vi,and VB,

Proof: Since OK- I(VF Ik)holds for 15k<mand I()NF.SV.r (1 mx L%m.l M VI, = L¥%ml, the
mxzmum posmble Smce OK-B(VB X n) m fnr tsts::, each O-Vdued botwm tcrmmal can be
matched, and M IIFROSVT (l n)l lf Mvn = L%n.l then no lafger ma(:bmg is pess:ble and
we are done Suppose M\,E < L%n.l Let Mvn =L%nlJ-A, A)ﬁ Let V’F and VB be any otbcr vahle
functions consistent with p, VT, and VBB, We must slww that
M, + MvaS Mvr + M n‘— L%nJ—A+t‘&mJ
Since the mmany ?-valued terminals are assmcd 0/1 v&lucs in wp-botmm pairs, we have
[ZEROS,, R IZFRGGV cux mos u,m» Vsuosw (l,nx
=F %m‘H%nJ-l»A and
[ZEROS, (1, m)i V,FROSVT (I,m)i }ZER(E“(I n} lZBROSWG(I.n)L
Let [ZFROS, (1,m)} = F%m't+z. whcrez:smymcacr T‘hca. '
IZEROS, (1 af = tZBROSVI.( 1 m)[ ({ZBROSV]\’(LMX EZEROSV%(I,;‘){}
=r %m1+z—(f‘%m1—t%n.!’+ A) L'éa.HrA
Case 1: 20, Then My + Myp < ZEROS, (L) + ZEROS,p(La)
€ PUm V2L %ad 4 e A LN+ LYK A,
Case 2: 0<z. Thea M + M <DN§EW(1,mx+m"ﬂ.tx - )
< L%mJ-zH.'AﬁJ-&z-A L%mJ+L%nJ-A | O

It remains for us to: deal with a rewrn of (FATL k,VT.VB): Before dcscribing how a falluve i
handled, we prove that for certain value functions, the value of a terminal can be switched from one of

"0" or "1" to the other without decreasing My +M,,. These value functions are consistent with the
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initial value functions used as input to SCAN- ASSKGN and assign only "0"s and "1"s. They assign an

imbalance of "0"s and "1"s in some left or right interval. We will use th:s ablhty to change the valucs of

terminals to prove that the value functions returned by SCAN-ASSIGN do not assign too many or too

few "0"s and "1"s to achieve ;ln optimai‘matchiu.‘ N

Lemma 5.6: Let VT, and VB, be initial value functions which define no full regions on T and B. Let VT
and VB be any function consistcm with VT VBO and p uader wmch no tcrmmal is ?-valued. :

A) For any x, ISxSm. if IONESW(l x){ IZbRQS lﬂ £y ) 1 thcn lhere is a terminal i in
T(1,x) such that VIg(i)=1, VI(i)=1, and the functions VT' and VB’ obtained by changing the values of i
and (i) 10 0" are such that Myps+ Myy 2Myp My

D) For any y, 1Sy<n, if [ZEROS (5.0} - IONES, (y,n)}l > 1, then there is a terminal i in
B(y,n) guch that VB ()=, VIXi) =0, and the functions VT’ and VB’ obtained by changing the values of i

and p(i) to "1" are such that M.+ My g 2 My + My

Proof: We will only prove A. The proof for B Is analogous. Since IONESvr(l,x)I-|ZBROSw(l,x)Pl,
there are at Ieast two "l"s in T(1,x) unmaiched under any maﬁchin&ﬂmcnon for V'i‘

Let there be a mau:hm; function achlevins MVT fm‘ which the termmal of lower mdcx among
two unmaiched "1"s is ?-valued under VT, We' will show by contradiction that such a matching function
must exist. Given such a matching function, change the valuc of the terminal of lower index to *0",
changing the value of its bottom pair as well. This defines VT' and VB'. The new "0" can match the
second unmatched "1", giving My-v=M,,+1. In B(1,n), at most one range value of any matching
function has been destroyed; therefore, MvﬂszVB-l. It Follbws that My +Mypr 2 My +Myp.

We now show that the matching function dcqcribed above must cxist. Figure 5.4 illustratcs.
Suppose that for any matching function achiev)ing' M\m at most one 1-valued terminal in T(1,x) which

was initially 7-valued (i.e. under V'l‘o) is unmatched, anci that if therc is such a terminal, it is the terminal



Figure 5.4: The prool of Lemma 5.6,

Claim exists:

VS . - e m
nln ) ulu oo
unmatched unmatched
7-valued under V'I'o :
Otherwise: -
any 1-valued terminal under VT, 0 is ma&chcd to a 0-valucd termmal herc
T: -1 - 1 : - _ «m
all 1-valued terminals under VT are also 1- valued tmder V'I‘o :
gmo many “1"s undcr Wo
all 0-valued terminals are ma(chcd tol- valued tcm\mals hem
Figure 5.5; Definition of C.
‘set Cincludesall 1%

assigned by SCAN-ASSIGN
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of highest index among all unmatched "1"5 in T(1,x). Then, for any matching function achicving My,
there is at least one 1-valued terminal under V'I‘ which is unmatched Constdcr all matchmg functions
achrevmg M t'or whteh a maxtmum numbcr of 1 valued termrnals in 'l(l,x) are matched Among these,
constder only those funeuona for which F maxtmum number of ongmally "-valued now 1 valued(
terminals in T(l X) are unmatched (ettber aero or one auch temunats) Fur each of these note the mdlccsﬁ
of any terminals in T(1 x) whtch are unmatchcd and are l-valued under VT Choose the matchms
function for whtch the htghest tndex say u, is obuined. Nn inmally ?-valued termmal in’l (1 u-1) which
is 1-valued under VT is unmatched Bach 0—valued termmal in T(l u-l) must match an mmally 1-valued
terminal in ’l(l u- 1) Otherwtse the matchtng t’unctton cnuld be modrﬁed S0 that the oft‘endmg 0—valued
terminal matchcd u. Ifthe offendma Bvalued terminal had been unmatchcd thts wm;ld produce a largers
matching; if it had matched a termtnzd in T(x +1 m) t!!is would produee a matchmg under whl(:h more
1- valued terminals in T(1, x) are matcbed If the offendtns tcrmmal had matched an mmally "-valued
terminal in T(1,x), matching it to u woutd produce a matchmg wrth a Iarger number of unmatched
+ 1-valued tenmnals whtch are "-valued under VT tf it had matched a terminal m T(u+] X) which is |
1-valued under:VT this would producc a matehlng wtth an unmatched termmal whtch is 1-valued under |
VT and of higher index than u. Any of thcse possnbtlrttes contradtct our chorce of matchtng functton
There can be no matched 1-valued terminals in T(l u-1) which are mtually "-valued nor any unmatched
termmals of this type. AII 1-valued termmals in T(l u- 1) are mmally 1- valued Smce all 0-valued
terminals in T(1,u-1) must match 1-valued terminals in T(l.u-l) we have:
IZEROS villw )l £ IONF.Sw(l u- l)l iONBSw (1 u- l)l
Since no terminals are ?-valued under VT, thls tmpltes IONI:SVI (l u- l)l 2r ‘A(u—l)‘l contradtctmg the

hypothesis that there arc no full regtons under VT ' . a
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5.5 Handling a "failare”

Let us suppose that SCAN ASSIGN remms (}'ML k VT VB), Wc wiﬂ now dwnbe what k

,;:n[__ :

known about T B and thclr value ﬁmct:ons aﬁer SCAN ASSIGN rceums. Wc wm usc thls mﬁmmnon

to handle the fallure Promdure SCAN—ASS!GN n:mms thc vaiuc, k. of loop vanable 1 when

Y 1 L THCE

SCAN- ASSIGN cncountered the fadure Thcref(me we km\v that VT and VB ke, are the valuc
functmns retumcd 'Ihcre sa q>k such ﬂm l()NF,S‘,.r (l q){ L%qJ Wc wm use mc smallmt sucht
q Therc is an s saﬁsfying thc ﬂﬂlowmg thrce pmperties (1) p(k)Zs. (n) VEROS nk (s,nﬂ =

L'/x(n-s+1).l and (m) each tcnmnal m '.l’(lk 1) whlch has hecn awsncd mc valuc "1" hy

l

SCAN ASSIGN is pasred wuh a lsermma! in B{s,n) ie. ON&W (i.bi}-ONESw (I k-l)gp(ﬁ(s,n))

{ TR

This last pmperty follows fmm thc fact that SCAN-ASSIGN only m%gns W(l):l when, at the timc,"
(3s)(p(l)€B(s.n) and QZEROS B(s,u)l = L‘/:(n~s+ I)J l‘herefwe we can assoctate an s, with eachj
"-valucd T(x) made 1 valued Oace IZBROSvnég nﬂ L'&(n—si+ 1)J mrssmc va the number of "O"sv

in the mtcrval does not change in later !tcranons. 'l'herefcu. choosimlhe ma!lest ofxmy such 5 and the‘ /

a

,skassocxatedmmmefaﬂure wehavcanmdcx s,whichsausﬁsa&ubmmm Int‘act.weuseme’

R i

Iargest ) whxch sansﬁes all three propenm. Note that VT _I(k) VB‘ }(ﬂt»zq We also know ﬂm egch 5

tcnmnai in &(s,n) whnch:smgneda"ﬂ“ora”l” valueby SCANASS!ONmustbepmmdwm:a

1oE ‘AH .

tcrmmal m T(l k-1), since no mmally "-valued wrmimh m T{k,m) on' “ﬂlelr bouom pﬁn hﬂe been_

Lethemesetofmmally?-valwdmgahm'l‘(lq)mwmminﬁw)(f’msﬁ

[RRE S S i/ 2 ?% il e <O

Foranopmnalmmmematmemp mmmu%wwmmmﬂwm@mv; Fug »

....... L 35525=\,5§“;; AT
an upumal assignment at mc bonom. afl remaining ?.vaiuw &emm Ns.n) shou!d beoome "1"
sabsnd ot HY G v iy ’
Obviously, on C these arc conflicting goals. We. wim to ﬁnd o/1 usignmcm for the mming 7-valued
termmals inC (mcindmg k) for which some extension will achm thc manmmn sum of matches. To do

this, we first prove that we need only consider value functions which assign a number of"O"sor "1"sinC
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within a certain range. Let:
G = .lQl!BS_W-k: ©
% 3,1133%;4(‘3*’
&= IUNDT,, (@)

To simplify the statement of thie lemmas to R)ﬂow let "assume the standard state after
'SCAN-ASSIGN returns "FAIL™ mean: "Assuming VT, and VB, are initial value functions which define
no full regions on T and B, let SCAN-ASSIGN{ I'(1,m), B(1,n), p. V'lo. V"o) return (I*AIL 'k, V'lk T

“) lctq,&C co.cl, mdc,beaswehavcdcﬁnedthcmabove.

Lemma 5.7 Assume the standard state aficr SCAN-ASSIGN: rowrns: "FAIL". Let VT and VB be
arbitrary value functions consistent with VT, VB, and p uader-which there are no 7-valued terminals. If
¢ 1, then for any x, L Sx <c,-1, there are valuc functions VT and VY’ also conaistent with VT, VBy, and
p under which there are no ?-valued terminals such that; -

| My + Myp’ Z.“\rr; + My, and ‘lONESwg(Gil;c ¢+t x
{fcy=1, there are such functions VT’ and VR’ for which ¢; £ [ONES Q) S ¢, +1.

Proof: 1fs> 1, let D be the set of initially ?-valued terminals in T(l.q) whosc pam are in B(1,5-1).
Then: |ONES, (1,9} = IONES,.(C) + IONESV.I(D)I + IONESVT (1 q)l
Note that IONESw.t.l(l.Q)l = DNFSVTO(I,q)l + lONBSWN(C)] = ’.%qJ |

Case 1 IONES, (O} 2 ¢, + x, whereifc,=1,x=1. |
We use induction on JONES_(C)| + lONFSw(b)I. o
Basis: JONES, (C) + IONBSW(D)l = ¢, +x. Then lONBSw(C)I = ¢, + x as desired.
Induction: Assume that the lemma holds if: ‘ o

¢, +x < JONES,(C) + JONES l(D)l(cl+x+i i)O

When JONES,;(C)] + IONES, (D) = ¢, +x+1, then:
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JONES, (L)l = ¢, + X +i + pNB_swo(l,qxe Lhqd +x +iDLUqi +2
If K)NESVI(C)I = ¢, + X, we are done. Othenme we use Lemma 5.6-A.

IONES, (1.} - [ZEROS (1.}t > L%qd + 2T lm -2)>3
Thercfore, b& Lemma 5.6-A, there are V1" and YB"such that My + My 2 My + M and
| JONES 10} + IONES, D) = IONESy;(C) + IONES D) - 1.
By inductive assumpuon there are vr’ and VB” such that M -+ MVB" 2 Myyp + Myy and
IONES 40N = ¢y . |

Case 2 IONF,SW(C)l<cl+x where |fc., 1, x= 0 ; o

Then l?EROSVT(C)I 2¢+ ¢t + x)) =Cy+ G- X lfq(m let E be the set of initially
?-valuod terminals on Bis.n) whose pairs'are in T(q-+ Lm). Lot p(C) denotethe bottom pairsof C.

IZEROS, (sm)] = [ZEROS, (p(C))} + |ZEROS (B + IZEROS yp (5.0
Weknow [ZEROSy, (i)l = [ZEROSy, (MW + PZEROS,, (sl = Lik(ns 1)
We use induction on [ZEROS va(PO) + |ZEROS (B} o
Basis: |ZEROS,(p(C)) + |ZEROS, (B} = ¢p+¢yx. Then {ZFROSw(p(C))I = ¢yHeyx, unplyuu
IONESo(p(C))] = ¢, +x as desired.
Induction: Assume the lcmma holds for'

cpte,x < IZPROS B(p((l‘))l + iZEROSva(E)Kco-f-c, x+1 fon)O
When [ZEROS,y(p(C)) + IZEROSVB(EM co+('1-x+i A N
IZEROSVB(s,n)I co+c,-x+l+l7l~ROS Bﬂ(s,n)l L%(n-s+ 1)J+c?-x+i 2 L%(n-s+l)J +2
If  |[ZEROSy,(pON = cy+cyx, then lONESw(C)l = c1+x a8 desired Otherwme ‘we use
Lemma 5.6-B. » | |

| |ZEROS, (s,n)| - ION‘ESVBV(s,n)I ZL %(n-s+ l)J+2~(f' %Qa-s+ 1)172); 3

By L.emma 5.6-B, there are VT and VB' such that My + MV#’ 2 My + Mygand

IZEROS p(C) + IZEROS\y(F) = IZEROSyg(p(CI} + [ZEROSyy(BN 1.
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By inductive ‘assumption, there are VT’ and VB" such that My~ + MQB': 2 My + My and

K)NESwvv(C)l = ¢+ ‘ o

We now know that there are valuc' functions sichieving the maximum sum of matches which
assign at least as many "1's in C as SCAN-ASSIGN has: asigned. ‘However, we do not know if the
particular chaices for L-vatued torminals witf tead to an'opthmal selution, We will now show that cxcept

for possibly ong torminal. which-we can caslly find, BCAM-ASSIGN has made’'good choices. Note that

the distinction made betwees:c, =1 and c, )} asin L.ommia 5.1 1 mecoasary. Whea c>1, regardicss of the

extensions of VT, and VR, being considered, there ars enough necossarily unmatched "1 in T(1,g) or
unmaiched "0"s in B(s,n) 8o that we can trade off tap matches-agsinal Bottom matches, When c,=1, we
know that an optimal assignment: willhave at lcast ane unmakéhed:"1™ on T(1,q) or one unmatched 0"
on 'B(!,ni;f,',ﬂéwam we ¢atiiot teathe thesc agtinst eacivativer because when a 0™ is unmaichiod in B(s.n),

the extra-"0" in T(1,q) may mach a "1" s Tq-+1,m). Bmﬁiaﬁyym extra “1" in B(s,n) may match a "0"

in B(1s-1). The algorilhm must try both choices -- leaving one unmatched "1" in T(l1,9) or one

unmatchcd "0" in B(s,n)

The terminal whu:h may have been mcorrectly migned is the smallest numbered 1 valued

terminal in B(s.n) which is ?-valued under VB Auume ﬂlis is termmal l Given two termmals u and v,

with u<v in T and p(u) < p(v) in B, assigning "0" to uand "1" to v is always preferable to assignmg "I"

to u and "0” to v. ‘This is because uny termiinal which v or ﬁ%}mma&fmﬁcyfm&vaﬁted, wor
p(u), respectively, can match when they are O-valued; any terminal which can-bie mdiched to u of p(u)
when they are 1-valued, can be maiched to v-or é(v).‘m; when they are 1-valded. Therefore,
assigning "0" tyu and p(u) and "1" 10 v-and pév) gives ut feast as langs aniatching: onvaeh of T and B as
the épposite assignment. Therefore, if torminal 1 and its' pair: are-smalfer numbered than p(k) and &,

respectively, then it 18 better to- have terminal | O-valwed and torminal & Twalued than vice versa.

However, the preferred assignmoent i8 not: cotsistont with VB, and VB, We dofinc new value -

TN T A TR 2



functions which maintain the important properties of VT, ; and VB, . but.allew the preferred

assignment.

Definition(sec Figure 5.6): Assume the standard state afier SCAN-ASSIGN returns "FAIL". Let i be the
terminal of smallest index in B(s,n) which is 7-valued-under VB&and I.,*vaillued under VB, ;. Certainly,
PGk, 1€ iKp(k), let h = i; otherwise, ket h = p(k). By definition of h, sll. I-valued terminals in C are
paired with torminals in B(hn), Define VT, and Vi, as follows. Ifh.= p(k), then VT, = VT, , and
VB, = VB,_,. Ifh# p(k), then VT, and VB, agree with VT, and VB, | exceptath, K, pl), and p(i,
where:

VT () = 1 O VI

VA, (o) = 1 VB M) =1
Note that OK-1(VT,.1x) holds for all x, 1Sx<q, and OK-0(VB,,.v.0) holds for all y, sSy<n. The

“standard state aRer SCAN-ASSIGN returns 'FAIL’" will now include h, VT, and VB, as just defined:

We will now prove that VT, and"VB are satisfactbry éxtcnsimns of VT, and VB,, i.c. they will
lead to a pair of value functions which achieve the maximum macchmg M I + M\,B Lcmma 58 gives
properties of cxtensnons of VT and VBfx whtch wnll be nccded to provc that n is sufﬁcient to consider

only these cxtensmns.

Lemma 58: Assume the standard state after SCAN-ASSIGN returns "FAIL", -Let VT and VB be
extensions of VT, and VB, |

A. If there is a ?-valued terminal in T(p(h).q) under VT& whichis I- vdvcdunder\"llm&\t f
any 1-valued terminal, i, in T(1,q) under VT, there is.a m function:my,- adnevmc M, which
matches cach 0-valued terminal in T(Lq) toa 1-valued terminalin T(1.¢) and leaves iunmatehed.

B I there is a *-valued terminal in ) undor VB,, which i O-valued under VI, then, for any

0-valued terminal, j, in (s,n) under VB, therc is.a maiching function myy achieving My, which maiches
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Figure 5.6: Definition of h.

Casel: h=i
T:
— T : |
1 p(i) m
! p(k) n
B:

all "1"s in here after SCAN-ASSIGN are "1"s
under VBO

Case 2: h = p(k)
T:

1

! S v p(k) i n

all "1"s in here after SCAN-ASSIGN are "1"s
under VBO



each 1-valued terminal in B(s,n) to a O-valued terminal in B(s.n) and leaves j uhmatched.

Proof of A: If suffices o show that [ZEROS,(x.q) < JONES, {xq} for all x in T(L,q). If this is true, '
then we can produce a matching on T(l.q!:\ghicﬁ matches each‘ 0" in T(1 q) to a "1" in T(1,q) and does
not match a given 1-valued tcmin.\‘hl’i. We define ;hcmé;chmg function by scanning T(1,q) fromq to 1
and matching cach "0" mountered fw..a yet umnam,f'lff;gf,hiﬂ\e: index other than i. ‘The fact that
IZEROS (1 < JONES,, (x.q) guarantees that we willfind such an unmaiched "1 for cach "0, This
matching can be extended to a matc’hiﬁg which achieves Mw»by letting the matching agree with any
matching function achicving Mv[ on "0"s in 'l‘(q+bl ,m).
For any x in T(1,q), we will show that }zsgosﬁfx.q)tgpggsﬁfx,qx byshoﬁin‘g that more
than half the terminals in T(x,q) arc 1-valued underVT Supposls X 5 p(h). Then, by hypothesis:
JONES (5.0} 2 IONES, 1 (sl + 1
Forx = 1 |ONESyy_(1a} = L%qJ. Forx> 1, we know that OK-1(VTy.Lx-1) holds. Therefor,
1ONES,; (ol zt@pi&(i’-m > L¥(qx-+1) and “
JONES, (x.qi > L%(q-w 1)1 + 1, as desired. "
Suppose pth) {x € q. We cla‘nh that lONESka(Lx-I)Q-( L(x-1)1. If ﬁng, this gives:
IONES,1(x.94 2 ONESyp (1)l > L¥g- LU(-1d 2 Lih(@r+1) ) as desired.
Ifx> k, then ONES,; (Lx-Dj = IONESyy _(1x-1)< L1, Otherwise, we would have chosen
1259, butx < . Ifx < k. then since x> p(h), peh)sek. Inthiscase,
JONES,; (13-} = ONESy; (La-Dj-1 |
since VT (p(h))=7and VT -1{(P(N))=1 and the value functions agree evcrywherc clse on T(1,k-1). Since

OK-1(VT,. . Lx-1) holds, JONESy (Lx-DI < LI(x-1).

Proof of B: It suffices to show that JONES, (s} < [ZEROS,g(s.y)l for all y in B(s.n) so that al

1-valued terminals in B(s.n) can be matched to 0-valucd terminals in B(s.) without using j.- Produce the
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matching by canning from 8 to.8.. As in.the proof of A, we prove that more than half the terminals in
B(s,y) are 0-valued. Fory > h, by hypothesis: . o _
|ZEROS, 5(sy) 2 lZEBQSv .h(“x PR
We know IZEROSQ»,(S-:}M =L %fg;g;)- 14 and, ity <, OKA(VRyy+1.0) holds. Therefore:
IZPIBO%nh(S-M§F%§n§{Q Jo LA+ D) 2 L%Gys+1)d and

VZEROS, (80 2 L%(y3+ 1) + 1, a8 desis

For y < h, iy+1,n) containg_p(k) and al] I1-valued terminals in C under VB, . Therefore, if

ZEROSyg, -+ L0 = LU(ay), we would have choen y + 1 955, buty g 8. Thorefore:
IZEROS g (y+LoN = JZEROS . (y +10NS LYY and -

bt

IZEROS () 2 ZEROBy, (s} f¥(rs+d: Lh(ayd 2 LhG-s+ DL, O

Now that we have Lemma 5.8, we can prové a two part theorém whiah, when combined with
Lemma 3.7, proves that In ouf séarch foF an ‘optimf pait 6F value Arnétions, it 5 suMficient 1o consider
only value functions consistent with extonsions of VT, and VB,. Ifc,> 1, the eatonsions give all
 terminals on T(LQ) aad Ban) 07 or "1 "‘““” if 6y = 1, the sarminals h and pih) are the oply terminals

in thesc intervals whose values are not fixed.

Theorem S.4-A: Assume the standard state after SCAN-ASSIGN returns "FAIL". Let VT and VB be
value functions conisicnt with VT, VB, and p for hich no terminal in"T-valued and such that
ONES, (O}l = ¢, +ci-L. There are extonsions, VT__ and VB, of VT, and VB, comsistent with p and
(i) no terminals are T-valued
(i all -vabued termimals ia ‘T(1.q) under VT, with pairs in B(1s-1) arc 0-valiied under VT,

(i) alt ?-valued terminals in B(s.n) under V3, with pairs in T(q+1,m) are 1-valued under VB,
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(iv) if ¢, 2 1, all -valued terminals in C.under VT:ﬁ.eacep: p(h) arcivalucﬁ’under VT, *(é._,*lfof
them), and VTu(p(h)z:O

VM +M > My + My,
() VTex VBuZ vT VB

Proof: Properties (ii) through (iv) define all valued of VT, and VB, on T(1.q) and B(s.n) cxcept those
of p(h) and h when c, = 1. Ifc, = 1, we will begin by letting VT (p(h)) = VB_(h) = 0. This may be

changed. The valucs of terminals in T(q+1,m) and B(151) whose pairs are in W(s.n) and T 1,q) arc also

Figure 5.7 illustrates. We stifl must specify the values under VT, ar;d VBex bf terminal pairs \iith one
terminal of cach pair in T(q+ 1,m) and thé other in B(L:s-1). For ?-valued terminals under Vfo and VB,
of this type, VT, and VB__agree with VT and VB. R

Wé prove MVT“ + M\'Tu P MVT + Mvn by comparing the,maximum ma,lchin_gs’ in various
intervals and combining. Let myy be a matching ﬁu;gtiog achicving Myp and my be a matching.

function achicving My

I Consider B(Ls-1). Let S, be the set of -valued terminals in B(1s-1) under VB, with pairs in T(1,q)
which are 1-valued under VB. The only terminals in B(1,5-1) whiéﬁ are ?-v'i‘al‘uecii‘unc‘l\ér VBo and 1-valued
under VBa are those which are 7-valued under VB, wi,tl)-pé’irs m T(q +_1,m,),. Th‘is ,_fol}lowsffrom thc faﬂ
that any ?-valued terminal under VB, which is ]-valued under VB, is. in B(s,n), and any ?-valued
terminal under VB, with a pair in (1,q) is 0-valucd under VB,_. Functions VB,, and VB agree on all
?-valued terminals in B(1,s-1) under VB, with pairs in T(q+1,m). Therefore, every 1-valued tenr}iml iu
B(1,s-1) under VBex is 1-valued under VB, Each of these terminals whlch mma:chedunder m,, can be
matched to the same O-valued terminal under a matr;hing :ﬁmgt‘io!\i;fot; Vl}a.,_ ]ct m“a,,bc a matching

function for VB, which matches "1"s in B(1,s-1) as my, does. The matching under m; . .on Bs.n) will

be dcfined later. We have:
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Figure 5.7: Assignments under Theorem A4-A.
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- ""s under V'l‘fx
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s under Vg
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"7"s under VBg,
"1"s under ¥By,
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Imatched "1"s in B(1,s-1) under mVB I =

Imatched "I"s in B(l s-l) usdcrmvnl lmatchcd "1"s in S under mvnl

Imatched *1"s in B(l,sl)undermyn- !Zlmamhcd "1 wﬁ(l,s l)undermv,,l IS,)-

11. Consider T(q+1 ,m). Let Sﬂ be the set of "-Vaiued tcxmmals under VT in T(q+1, m) with pairs in

B(s,n) which are O-valued under VT. Each &vatuedminal in T(q+1 m) under VT, sﬂ-valued under
VT, or is ?-valued under VTG and VT and is pmmd wuh a tcrmmal 0 B(l s-1). l‘hcrefm'e every
0-valued mmnnai in T(q+1 .m) under VT, i 0—valued under VT. Every such Qe ‘wmch is matched
under my, can be matched to the same 1" undcrama&:h‘ihﬁfuncﬁon for V’I‘“We et mw;beauch a
matching function on T(q+1,m). | '

| Imatched "0"s in T(q+1,m) under mVl‘ul =
jmatched "0"s in T(q+ Lm) under my,] - jmatched "0"s in S under m,|

__Imatched "0"s in T(q+1,m) undermy. | 2 |maiched "0"s in T(q+1,m) under myl- 1S,
. ,

HIL. Consider B(sn). Since VR (h) = 0, Lemma 5.8-B holds. Under VB._, cach 1-valued terminal in
B(s.n) can be maiched to a O-valucd terminal in B(s.n) while leaving any particular O-valued terminal
unmaiched. Complete the matching my, defined on B(15-1) m 1‘ by such a matching on B(s.n) which
leaves h unmatched. We know that: .
JONES\(C)| = IONES,;, (O} = ¢, +¢y1 and.
|1-valucd terminals in B(s,n) under VB, which are %-valued under VB, and have pairs in T(q+1m)}
= Jterminals in B(s,n) which are ?-valued under vh,, and have pairs in T(q+Lm)
= [1-valued terminals in B(s,n) under VB which arc >valuod under VR, and have pairs in T(q-+ Lm)|
+ ISl
Then, jmatched "1%s in B(s,n) under.mvrul = IONF.SVBu(a.n)l = JONES,(s.n)f + ts°|
2 Imatched "1"s in B(s,n) under mygl + 8.
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IV. Consider T(1,q). We gt consider ¢, = | and 621 separaisly.
For 21, there are other MQUNDEFW&(C)Mh These terminals must lie in

- T(k+1,q), since no terminal except h in T{L ) 2»vahyd WYP* Slm k2 p(h) and thesc terminals

are 1-valued under VT o Lemma S.B_-A‘ applies. E}mw“ every 10" in T{Lq) ifwbermamhed toa
1" in T(Lq). Completc the matching myz. deBagdon T(qs-1 myin 11 with such a matching on T(1,q).
We know that: B :

IZERQS (O} = [ERGSy, (O mey+ k. .
D_fvalued' terminals in T(1.q) undc;:;‘{[ﬁ*whigh are valued under Wé and:havc paitsin B(L3-1)|

= |?-valued tcmlmals in T(1,q) under. Vi, with pairsin (Lo} -

~ = {-valued terminals in T(1,q) under VT which. &ﬁ?’*ﬂhﬁd uader Y, and ‘have:pairs in B(Ls-1)}} -

+ 18,

* Then |matched "0"s in T(1.q) under "‘w&‘ = IZERQSW;(ME = {ZEROS{L.g} + IS,

2 |matched "0"s in T(hg)undermy | +18 )
Combining 1 through 1V gives: | |
My + My, 2 "““‘,"““"Ta)' + Imnae(mv,;;ﬂ;a kams(mwi+ rengetmy i = M1+ Myg
For ¢,=1, since ali -valued mmmals in T(Lq) under VE, are Ovalued under VT,
ONES,; (1 Q = ONEka(LQL:‘SM OK:1(VTy,1x)-holds for all x in W), all L¥%qd "1"s in
T(1,q) can be matched to ';9"8 in T(1.q) uader VT . The deflaition of mwn on T(l,q) is such a
matching. -
imatched "0"s on T(1,q) under mﬁ;l; =L%qd = EFROSV,:uél:.q)tr(F %q 1t kqd)
P2 |ZEWLQ)|*+ 5| - (Feq L Uqd)
2 Imatched "0% in (1.4) under myh-+ 8 T a M Hq ).

(i) If q is cven, the above implies, with | through 111, that My +Myp 2M+ Mg s
« ex

desired.

A

e



-
(ii) If any of the inequalitics doduced:in | through FV. b ifet wetiave
Mﬂ. +M\m ’Mw"‘ My - (T%q‘t-lﬂﬁqﬂs W
Myr_ +Myy 2 My My asdesired. ©

- Assame (i) and (i) dodot held.  IFIS 50 et
© L¥%qd = fmaiched 10 is T(1q) under d

terminal in° T(q+1,m) uader Vs 1%% W *A,bo ahy M&éﬂ temﬁnat‘m ‘l‘(q#- I,m)
matched under rn‘,.r is matched to i"ﬁ"la ’f(q+1mymd umhed toﬂleiamc"ﬂ” bry mw..
Therefore, there must be an unmatched: lwaiued tershingf unider: inf,f h”f(ﬁ-&‘i,ﬁﬁ We cm mend
myy 0 that the unmatched "0" in T(1.q) matches this "1". Then, '

jmatched "Qs in T(1 q)andermw l = imﬂ!eheé"ﬁ"sm 'l’(lq)underme ‘and

Myr_ + "'vn 2 My My, - |

We now suppose that 1,1>0. We know that
imatched '-1~mm¢nwm,m p= maemxm n(i,s-xmmermwt -84 Alsg
lZEROSW ()= !ZERGSVB(I D+ Bl ‘mm
- |ZEROBy, (ls1)- M"J*zﬁsnﬁ:ﬂw m“ ld
QZBRGSVB(R,D*})] * |8, W "!‘sks Hl}f) tmdermvg ¥ {81122.

There must be an unmatched *0" in B{1s-1) under m‘m since no "0" in B(I,s-l) ma&ches A"
B(s.n) under this matching function.. ‘When '“vn mdeﬁueﬂ o a(ia)ghi m W waﬂé& unmamhed. ‘
Modify VT, and VB_ so that VT (p(h) = VB_fhy= L. ot m (§+l,m), L
unchanged. On T(1,q), Lemma 5.8-A now applics and we can atﬁnem“ii mﬁa aﬂiﬂ-valued terminals
on T(1,g) arc matched to 1-valued termisials o0 T(Lg). o

Imatched "0"s in T(1,q) under my,. | = L%q.l_ as before.
- ,
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On ZBRQSVB&(L&-IL: m“;.&aw*ao that -8 préviously aminatched "0" is matched to h. On

ZE..RQQW;(&&). s, isunchanged.. Therefose
M“"Tu + ?Mvs;‘ & lrange(m, “z)t Hmﬁm"“ }mww + {rangemyp)l = My + Myp.
Note that we have changed VT, and VB,, so that p(h) and h are 1-valued. ' ’ -8

Now that we have Theorem s 4-A we klww how to handle "fadures whcn c.,)l By
Lemma 5. 7 there are vakoe mnctaons VT, and VB coaaimnt wtth p, Vl‘ and VBO for which
K)N!:Svr (C)l = ¢ +cy 1 and whu:h achieve the maxhnum af Mv'r + MVB évcr all funcnons consistent
with p, V’l and VB, Given these functions, we apply rbeurc;n 5 4-A 1) deducg that then; are extensions
of VT, and VB, consistent with p and satisfying (i) thmuda (iv) of l‘heorem S 4-A which achieve
M. + My ’l‘hcrcfnre for alf tetminals whicﬁ,m@viﬁ:éd of 1-Valuied tindér V'I‘fx and VBﬁ, we can
fix their values to be those under VT e Vi f’,ﬂ?“hlf ferminalt Whese véi'ﬁes are dictated by (li)
through (iv) of Theorem 5.4-A, we can fix their values as dictated. We now have new initihﬁalu'e
functions under which no terminal in T(1,q) or B(s,n) is 7-valued. We are guarameed that Qx;cgfe arcvduc
" functions which achieve wa + Mvar and which are consistent with these new initial value fuactions.
Some terminals within T(q+1,m) and B(1.s-1) foay have acqmred 0/1 valucs under the new initial Yalue
ﬁxnctiqng. We can rgcumjvgly apply t.healgomhm. begip?tpg w;th computation of left-regions and
right-regions, to find extensions of the new initial value ﬁmgti?nsv whach Jgaxnmaze the sum of mnchuou
T(1,m) and B(1,n). The number of "-vamcdteunmalshu decr@aged. smce atleast h and p(h) have
changed from "-valued to O-valued. . | R
When =1, we ﬁrst need a modnﬁed ve:slon of’lheorem 5 4-A Wheu c,-l Lemma 5.7 only
guarantees that there arc Runctions achicvmg the maximum maiching, M, + Mvn , with IONESW )
equal to ¢, or ¢, +1. Theorem S4-A can only be applied if bNBSﬁf'(C)[ & cl. “Thérefore, we prove a

modified version, Theorem 5.4-B, for the casc that IONESWf(CM =c,+1

" T AN AR, o S



-114-

Theorem S4-B: Assume the standasd statc aftcr SCAN-ASSIGN returns "FAIL". Let =1, Let VT
and VB be value functions consistent with VT, VB, and pfor whkhnowm:nal is Tvalued and sach
that |ONES,(C) = &;+1. There are exsonsions; VT, and VB, of VT, and VR, consistent with p
-and such that:

(i) no terminals are "-valucd, A 7 |

(ii) all "-valucd tcrmmals in l‘(l q) undcr VT with pairs in B(l s-l) are 0-valucd under VT

<(m) all "-valucd termmals in B(s,n) under VB with pairs in T(q+l m) are 1 valued under

VB,

ex'

Myr +Moo > Mow + Mo,
() VTex Vlfq— vT VB

Proof: We nced to modify the proof to Theorem 5.4-A so that the roles of intervals T(1.9) and B(s.n) are
interchanged. Functions VT, and VB are defined as before except that we begin with VT (p(h) =

VB, (h) =

1. In B(15-1), as for Theorem 54-A.

1f. In T(q+1.m), as for Theofem 5.4-A.

M. In B(sn). Lemma58B does not hold, but 7EROSVB s,n) = ZER()SVB (s,n) 'I‘herefore

OK-(V Bu,y,n) holds for aify in B(s.n) All L'&(n—s+ I)J “G"s in B(s,n) can be mamhed to "l"s in B(s,n)

under VB Asmmcproofof'l‘hemem“d\ T e e '
~ |ONES, vp&l + |30| DNBSVB (s,n)l and |

Imatched "1°s on s} under myp | = JONES, (s}l - (F Hiees+ D (s 1))

2 mached""sonHundr g + I (Pt + L34 1)

IV. Lemma 5.8-A does hold and we can define my,. - 30 that p(h) is left upmatched angd
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|matched "0"'s on T(1.q) under ,mwgl = lZE_KOSW“(MX y
= |ZEROS, (Lo} + IS;| 2 Imatched "0"s in TeL) under myyl + I8,]
We have Mwex + Mvsu, 2 MVT"" MVB -{r 'A(n-s»i-»l)'I-L%(n-sfl)J). Ifn-s+1isevenor
any of the inequalitics in I through 1V are surict, we have the desirediresult. Assume not. If|Sy|=0, then
L%(n-s+1)J + 1 =}matched "1"s on B(sé)nndcr myp|.
There must be a O-valued terminal in B(1,s-1) which matchesa 1-valued terminal in Ii(s,n) under my,,.
This O-vglugd»; terminal under VB i;:also&vplur;d»gndw ysﬂ and unmaiched under mvnex-. We can
modify mv% so that the unmatghed 1" in.B(s.n) maiches ,thfi,sv,"O.";;siwim, o
L Myp tMyp 2 My k My
IF|Syf > 0, we modify VT, and VB,,. We have:
&QNBSWa(q%r Lm)| - matched "0"s in T(g + L,m) under mwzﬂl :
= [ONESy{q+ 1Lm)| + lSol ¢imatched "0"s in T(q -+ Lm) under my | - 1Sy)) 2 2
We conclude that there js an unmatched 1-valued terminal in T(q -+ 1.m) under My - Let VT _ (p(h)) =
VB, (h) = 0. Now p(h) can match the ynmatched 1-valued terminal.in T(g+1,m) and lrause(mwﬁ)l is
increascd by 1. In B(s,n), l.emma 5.8-B now applieg and we still bave
Imatched "1"s in B{s,n) under mm;& = L%(n-s+1)d

Weconclude that My + My 2 Myp + Mg o - a
fe co » = T

Given Theorem 54-B in addition to Theorem S54-A, ‘we can dedﬁce that there are value
functions consistent with VT, and VB, and satisfying (ii) and (iii) of Theorem 54-A/B which achieve
the maximum pf‘ MVT + M, over all functions éo:'\ki;stcnt Qith p,i‘V"I‘Zo and ‘VBO. However, we do not
know what the value of p(h) and h should be. If the terminal pair is assigned "0, there is an extra "0” at
the top which may be matched to some terminal in T(q+ 1,m), but one 'O-vaiuéd: tcnhinal in B(s,n) yvill be
unmatched. If the pair is assigned "1", the opposite is true, Thercfore, we do not know which to choose

until we have completed assignments within T(q+ 1,m) and B(1,s-1). Sincc p(h) and h .may be the only
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*valued terminals in T(1,q) and B(s,n) under VT, and VB, we cannot use-a fecursive application of the
algorithm. Therefore, the algorithm must try both possibifities for K and:p(h). If we were to apply the
algorithm recursively for each choice, the running time-could be exponesitial in the number of terminals,
Therefore, we use a modification of the procedures wehavvﬁescfﬁved so far.’ The main proéédul'é, which
given VT, and VB, finds VT and VB which maximize My + M, is dalled MAX-MATCH. The
modificd version is caled BETTER-MATCH. -

When we arc trying value "1"' for h and pth), we will recursively apply MAX-MATCH,
beginning with the computation of left-regions and right-régions; on F{1:m) and‘B(1,n) for initial vatue
functions which extend V'I'fx and VBﬁ as dictated by pmpcmm{ﬁ) and (iii). of Theorem 5.4-A/B and
under which p(h) and h are 1-valued. When we are tryinig vahic "0* for h and pth), we use initial valued
functions which are the same as for the first choice except that pfh) ind h are 0-vatued. However, in this
case, BEFTER-MATCH 'is uscd. Proccdure BETTER-MATCH does not ook for a pair of value
functions consistent with the new initial value- functioris and which ‘maximizes My + My over all
consistent function pairs. R‘amer the procediire looks for a pairofcoudﬁnt ﬁmcﬁons which maximizes
My + My over all consistent ﬁ:mtiongmrsmdadﬁeves"a*m maliHing than any function pair
consistent with the initial value functions when péh) atid h are‘I-valued: ‘Consider all function pairs
which maiimizc the sum of matchings on T and B over afl ﬁmclioitth with 9, VT, and VB, ‘It
under one of thcse, h and p(h) are I-valucd. then a ﬁm’ction pair @kvh& a 'better matching with p(h)
andhO-valueddoesnotexnsl. Lookmg(mly forbettermhimaﬂowsusmboundﬂ\esearch spaceof
the algorithm so that exponenual runmnx mnc 1s avom Now mat we owld aqua!ly we!l have chosen
to look for maxlmlzmg matchmgs undcr the "0" chmcc and beucr ma&chmp undcr the "l" choice.

LcmmaS.91suscdtoboundd1escardl.
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Lemma 5.9 (see Figure 5.8): .Auum’e the standard state 4fter SCAN-ABSIGN returns "FAIL". Letc,=1.
Let VT, and VB, be value functions consistent with VT, Vi, p. and i) and (i of
Theorem 5.4-A/B under which p(h) and h are ﬂbvalued. If under some matchmg function mvn which
achieves MVB , there i an unmatched "0" in B(l 5 I) thcn them are vatued funcnons VT exl and VB,

consistent with all of the above and under which p(h) &nd h are 1-valued such that

My, + Mi 2 Myr + My

Proof: Let VT, and VB, agree with' V'l‘e,‘o and VB, everywhere cxcept at pth) and h, where
VT, (p(h)) = VB ,(h) = 1. Déﬂne mvr to assign cxactly those matches which ase assigned by
mVT 0anddonot involve p(h), wheumw achieves Myy VI g Then: .
My, 2 Irangetmyr i ? "?"‘_‘F‘?g,,g!“? =Myt o1
Since VB, is an extension of VB, and VB ,(h)=0, Lemma 5.8-B applies. Let m"mm0 be a
matching function for VBMo which agrees with mv%‘0 for each range value in B(l,s-}) but matches each
1" .in B(s,n) to a "0" in B(s,n) whdelemng h wuna&eﬁedrkny "%‘in*ix'},s-t)iwﬁich was unmatched
under my, 0 is unmatched under m'y, " i
|range{m’ vB )l = |matched "1's on B(1,s-1) under mVB l + IONESVB (s,n)l
= lrange(mVB = M“M
Let mvB be a matching function for VB oy1 Which assigns all matches that m’ VB, assigns, and. in
addition, matches h to an unmatched 0-valued terminal in B(l.s-l). Then
M"ul 2 Irange(m“ul)l = Iran;e(m'vnuo)Hl = MVBmH and

‘M +M M +M 0
VTexl vBe:xl 2 "Tuo V"uo

L.emma 5.9 allows us to modify the assignment procedures described so far while pursuing the
0-valued choice for p(h) and h. While pursuing this choice, supposc that MAX-MATCH would make an

assignment giving a new pair of value functions, cither after computing lef-regions and right-regions or
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Figure 5.8: Configuration in proof of LLemma 5.9.
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after proccssins a return of "FAIL" from a call of SCAN-ASSIGN. Suppose we can deduce that there is
a pair of value functions, VT and VBﬂ, consistent wtth painns function p and the new valuc functions, '
whlch maximizes MW+MVB over all such consistent ﬂmctions but for whlch a matchmg funcuon
achicving MVB Ieaves a"0" in B(l 8-1) unmatched Then BF]‘]‘ER MATCH necd not consuder any
pair of functions consistent with the new value functions, »Nogev_vgill ingucq be__tt_cr matchin;s than the
functions found wheh pursuing;thie ~'1eva;u¢d'cha;scefrci{gs(m;jagd‘h. This rue because Lomma 5.9 can be
applicd to VT, and VB to give functihnh ;ielélnt as good-asum of matichingsvund_cr which h and p(h)
are.1-valued. 7 ‘

If the pair of new value func;ion; whichhm hmrehued is one.of two' choices after a call on
-SCAN-ASSIGN which refuraed "FAIL", then this choice is eﬂmmmd BETTBR«MA I'CH never needs
to pursue two choices. If the pair of new value ﬁlmm l! dcfmed by assngnment to left-regions and
right-regions, then by Theorem 5.2, any pair of value ﬁmc!:fqgs;wmmg Mw+ MVB over value
functions c,ohsistent with p and the new valueh:mdomdnp maximizes MW+ MVB over value functions
consistent with p and the old value hancﬁbns Since there‘is such a function under \\;hich a2"0" in B(1,5-1)
can be leﬁ unmatched no ﬁmcmm conssstcnt with the old valucd fuhctlon wnll produce a sum of
matchlnss better that that pmduced under the l-valued chonce for h and p(h). Procedure
BETTER-MATCH necd not pursue functions conslstgnt-,rsh the old vain;e funcaons cither. Therefore,
BETTER-MATCH returns "(nullnull)", indicating that the 0-valued choice for and p(®h) will not yield
a larger sum of maichings than the 1-valued choice. Fouhe same _regqn,ﬁjam,a-MATCH returns
“(null,null)” if c,)l when SCAN-ASSIGN returns "ﬁﬂlﬁ".’ .

The main procedure, MAX MA l‘CH is prcsenﬁa&in Hgm'c$9 “Our original routing problem
is solved by calling MAX- MA I‘CH(T(Lm);B(l n),p,V' FD,VBO) whcre VT and VR, represent the local

conncctions. The modified pmcedure BEI'I‘ER-MA’ICH usced whcn processing a 0-valued choice for

p(h) and h, is presentcd mhgureSle. Supposc BE'ITER-MATCH('I‘(I,m),B(l,n).p,V’l‘o,VBo) returns
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* Figure 8.9 'The main procedure.

MAX- MATCH(T(I m) B(l n),p.VT VBo)

/Fmds extensions of VT and VB whlch maxmuze MVT"' Mv&over all such extensnons/

VT VTandVB VB

Cmnputélw VBR andR

END

TRy, HMLLyy.and AR yge8)

,V,f(u -.-Oaad,\él%a(w?”, =

'END

Compute Ry, and Ryp /assigning "0"s only affects riﬂwreg!ons/
FOR cach "-valued tcrmmal x in T(R‘mm) DO

“VHx):=tand Vgp(x: =T
END

- Compute LypandLyy. - o /asigning™1"s only affects fo-region/

FOR cach ?-valued lcrmmal y in B(l, Lv DO :
VBly): =0and Vip{y)fi=0 =

END

Compute Ry and R

FOR cach ?-valued tcrmmal yin ll(R“,n) DO

Vi(y): =1 and VT(P(.Y))
END

~ Compute LW and LVB

IF there are any valued termmals in T(Lv.r-l-l er 1) and B(L B+ 1 RVB 1)'[ HEN DO

~ (SYATUS, VT, VB):= SCAN-AS!

. m' R'vrl‘vrl

n:=R L\ml
V'I‘iss&rchﬂntﬂ’(x)*'waﬁm AT
VB’ ssuchma{VB' VB(LV +x)

" p’ ' maintains’ ‘pairs corrcspondlng to ﬂmse under p when both &ermmals of the palr are

in F(1,m’) and B(1,n'). For other term| TElm) and B1,0), p’ assigns "*"
; ?;T?M')Kl a‘),p’WVB’) .

IF STATUS = "FA]L k" THQH
VT = VT and VB = VB

Cakumﬂl.ﬂd% T o
I¥ p'(h)=k THEN V1 (k) l and VW(p (k))'-—l
FOR all x ia ‘T q)other that p'th)and K DO -
IF V'l"(x)»? THEN
P pla)is inA(1.5:1) THEN - 3
VT'(x): =0 and VB (p'(x)): 0
ELSEVT @) =1 and' VB (p'tx)):=1
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FOR all y in B(s,n’) DO b !
IF VB'(y)="and p'(y) is in 'l(q+1 m )THEN
VB(y): =l ad VF(p'(s)):=1"
END '
IF¢,> 1 THEN DO : : :
VB(h): =0 and VI{p'th)): =0
VT, vs) = (MAX*&M'! CH@(slm').x B(l.n‘) VT, VB))
END .
ch,—II‘HENDO Lo
VB'(h):=1and VT'(p'th)): = l
(VT,,.VB, ):= MAX-MATCHET(1m?), ML WV VB
VB'(h): =0 and VF'(W ~
(VT4 VB )i = BEFTER-MA &CH’!(l,m ),B(l,n ).s 1,p',V1',VB))
IF VI 5= null OR MV'l +M% gﬂw 'PMVB FHEN

(vr Vi ) =(VT, .vs
ELSE(VT, vn = (V'r,o,vs“,)
END
END SERRRPEN
FOR cach x in T(Ly+ LRy;-1) DO
| V"l‘(x): VT ((X",LVT) o
 END '
FOR each y in B(I. VB'HR I)DO
VBa):= VB (x-L, n) |
END
END
RETURN(VT,VB)
END MAX-MATCH
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Figure 5.10: The modlﬁed procedure for D-\mlned cblta.

BE'ITER -MATCH(T(1, m) B(l,a),d,p,vrn,vno}

/1f can guarantee that a pair of extensions of VT, and- VB, which maximize M. +M,q over all such
pairs of cxtensions allow an unmatched @-valied: termmal in:B(1,d) under a maxlmum matching, then
returns (null.null). Otherwise, returns a. pair of extensions of V1, and VB, If d <n, it is assumed that
B(d+1,n) has no ?-valucd terminals under VBO and that makhmp ﬁu B(d+l .n) and B(1,d) can be
maximized independent of each other./

V:= VT, a0d V= VB,

| Compute Ly, L.yp, RVP ande P :
IF there is a right-region in 8(1.d) cuntaimng ﬂxaét%y one termmal THEN

RETURN{null,nuil)

DO WHILE there are any -vafued termipals in T(1 L,n), T(Rym), B(L1yp), and B(RVB,n)

END

FOR each ?-valued tcrmmal k in 'T(u, v} PO; ‘
IF p(x) s in HRVB d) THFN RF’ TURN (pgll,nuil)
ELSE VI(x): =0 and Vll(p(x)) =0 :

END

Compute Ry, and R\p

fFthercisa nght-mgmn in B(1.d) conlammg exactly one termmal THEN
RETURN(null,null)

FOR ecach ?-valued terminal x in 'I‘(Rv.pm) BO
VT{x): =1 and VB(p(x)): = ‘

END _

Compute Ly and L,

FOR each ?-valued terminat y in B(u‘vn) DO
VB(y): =0 and VI(p(y)): =0

END

Compute Ry andR,p

IF there is a right-region in B(1.d) containing exactly one terminal THEN
RETURN(null,null)

FOR cach 7-valued terminal y in Bﬂl“,n) DO
VB(y): =1 and VT(p(y)): =1 ‘

END '

Compute Ly and Lvn

IF there arc any 7-valued terminals in T(LVT+ l'er 1§) and B(LVB+1 R I)THHN DO

m':= Ryplyl

n' = RygLyyl

VT is such that VT'(x) = VT(Lyp+x)

VB’ is such that VB'(x) = V(L5 +x)

p’ maintains pairs corresponding to those under p when both terminals of the pair are
in T(1,m’) and B(1,n"). For other terminals in T(1,m’ ) and B(1,n’), p’ assigns "*"

{STATUS, V'l' VB) = SCAN-ASSIGN(T(1.m'),B(1,0),p",VT",VB))



. IF STATUS. = "FAIL&" THEN DO .
VI':= VT, and VB': = VB

&Ienhtc mkh. andc,

IFc,> 1 THEN RETURN (lu!l,null)

IF ¢ = TTHENDO - :

FOR allx in DO
L1 . ».
‘ IF p'(x) is in B(1,s-1) THEN
VTI'(x):=0and VB(p (x)):=0
CRLSEVT(R): =1 and VB (p'(x)): =1
/Only k and P (k) are, assmned by. the ELSE statemeint/

“END
FOR auym‘%
y=1 and p'(y)is in T(q+1,m") THEN
S . Ylu)!) #,lﬂﬂdyl Po)=1
"END

(VTVB):= uw'mm MATCH(T(1m’),B(Ln’)n’ p' VT.VB))
IFVT = nunfmm Riﬁ‘URN (il null)
-, - END,
END '
VT(x): = VTr(x-LVT)
_ END - 4
FOR each y in B(Lyg+ LRy 1) DO
VBaK= VBfalyy
END
END
RETURN(VT,VB)
END BETTER-MATCH
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VT;and VB, which are not "null”. Functions VT and VBI may not maxmm My + MVB over all value
funcnons consistent with p, VT, and VB However, i “V'r +Mva hhemzr that the maximum sum of
matches for the 1-valued choice, then M "‘Mvn docs mumte MW+MVB Lemma 5.10 states the

property of MVTr+ Mvsf which allows us to m,akcj ﬂns_ cmc“iuﬁm

Lemma '5.10; Lf:t YBO ahd d be ~su¢h that if d<n, no terminal in B(d+1,n) is ’!-vglued,
fZEROSVBo(d+1,n)| = L‘/i(n-d).H 1. and for “’:’myi 0;valueq gt‘c;minal j in }B(d+1,n), each l'valﬁed
terminal in B(d-+ 1,n) can be matched to  0-valusd terminal in B(d -+ 1.0) while keaving j unmatched. IF
BETTER-MATCH(T(Lm) X(Ln)d,p.VT,,V,) returns “(nuflaufl)", then there is a pair of value
functions consistent with p VTG and VBQ max;mizing MVT+Mv-over al such consistéﬁt functions and
for which there is a matching function achicving the mﬁximum maachlﬂim B which does not match all
"0"s in B(1,d). 1f BETTER-MATCH(T(1,m),B(1. H)ﬂ,P.VTo.V Ba) netums ‘(’V’!‘ VBr) with VT and VB
not "null", then there are no ?-valued terminals under VT and VB aud xf ﬂle:e are VT and VB

consistent with p, VT, and VB, for which MW+M“>MW +Mw, m therc are. VT and VB |
 consistent with p, VT, and VR, for which MVT +Mvn 2 MVT+M VB aad under which mmhma

function achieving My, leavesa "0” in B(L.d) unmhed.
s

Proof: By induction on the number of recursive calls o BETTER-MATCH before the call being
considered returns. B

| Basis: no recursive calls. By Theorem 5.2, any extqnsiéns of VT, and VB, defined in the
WHILE loop, which assigns within full regions, can be extended o functions ’méximizing Myr+Myy
over all functions consistent with p. VT, and VB, We know thatifd(n.d-ﬂ must be the end of a full
nght-regxon Otherwise, we would have:

|ZEROS,,, (d+1,1(d+1)) <M%(r(d+1yrd)7, which implies

VBo(

IONESVBa(d +Ld+ 1)) > L¥%((d+1)-d)J.



- 128 -

In this case, not alt*1"s in B(d +1,%d + 1)) could be maxched to “0"s'in B{d+ 1,n), contradicting part of
the hypothesis. It follows that 4 > Ryg,- Lt VB & VT be aquslto Vi snd VT, o extensions of VB
and VT, definod inthe WHILE loop. 1f under VB there is a right-region containiing exactly one terminal,
say j, then: |
|ZEROS, (i, d) = |ZEROS i+ La)+1 2 FA@-)T+1 = Lh(df+ D+1

For any extension of VD, there will be a matching fiunction maximizing the maiching on B'which matches
all "1"s in B(d+1,n) to "0"s in Béd+1,n) and which leaves a "0" in B(j.d) unmatched. Therefore,
"(null,null)" is returned correctly when: there is a right-reglon comtaining cxactly one términal.

If under some VT defined as above thmis & Y-valued termiinal in TAL,;,) with its pair in
B(Ryy,d), then by Thoorem 5.2, there are extensions, VT, and'VB_, of VB:and VT which assign this
terminat the value "0" and maximize the sum of matchings on T.and B over all extensions of VT and VB.
Then:

IZEROS Ryl 2 FHER #1141 |
There is a matching Runction achieving M@Bufwhigﬁ$mm all "1"s in B(d+1,n) to "0"s in B(d+ 1.n)
and leaves a "0" in B(Rvn'd) unmatched. Therefore, "(null,null)" is mumedeomeﬁy

Let VT and VB be the final exteasions of VT, and VB, upon exiting the WHILE loop. Ifno
terminals in T(Lyy +LRyy -1) and Bllyp +LRy, -1) are Fvaluod, then VT, and VB, maximise
Myt M,y over all functions consistent with p, VT, and VB, There are ne functions consistent with p,
VT, and Vi, for which Myp+Myy > My;. +Myy , 3nd (VT VB,) is correcly returned. If there are
Tvalued terminal, let T(Lm) and B(L) be intervals Tyy +LRyy -1) and BlLyp +1Ryp 1)
when renumbered. Let VT and VB, be the reswiotions of VT, dnd VB, to these intervals. Let VT,
and VB_be a pair of valued functions which maximizes the sum of matchings on T¢1,m’) and B(1,n") over
all functions consistent with p’, V’I“'v and VBv'l. Theorem S.1 guarantces that the function pair which

agrecs with VT, and VB on Ly + LRVT‘wq) and Bl.y, +1Ryy; -1) and agrees with VT, and VB,
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clscwhere maximizes the sum of matchings on T and B over all fonctions consistent-with p, VT and

VB, Whea SCAN-ASSIGN. rcturms (SUCCESS.VT,LVB), VT,; snd. VB, maxkmize. the sum of

maichings on T(Lm) aad B(La) ad do mct Toswe: any- lorminals Pvaloed. . Thereiose,
BETTER-MATCH correctly retums functions which maximize My y+ My over all functions consistent
withp, VT and VB, .. . o ST ATRRER LU

IF SCAN-ASHIGN  returms - (FAIL GV, VB and ), thea by Lomma's7. and

Theotem 5.4-A, there is a terminal 5 and a pair of finctioss; VT : a&wﬁ%ch smaximiacs the sam of

matchings oa T(1,m") m&lﬁbmd&&mﬁw mmp VT, and VB andfor which

; , llmosv,;(&nfx:a Lmn&mzt;m
_ Any mawhials'ﬁ!nctiou for VB, Jeaves.a "gQ" mﬂm’)Mm fuctions.on T(Lm) and 1La)
 which agree with VT, and VB, 08 Tlyy_+1Byy, -1)aad Mloyy +LiRyy, 1) andagros with VT, and

VB, elsewhere maximize Mp+Myp over all functions consistent with p, VT, and VB, Given these

functions, there is a maximum mmmnmm each ’!'mﬂk-w ) to a 0" in
BRp n)(mvokszSI)md leunsa,"»e"ha(sthmnw )Gﬂlﬂm -In shis
case, "(null,null)” is returncd coroetly, - ‘ -

- Induction: Let yr;mdawbme;mm ssasions of VE] sad B/, defised when ¢,=1
upon the rewrn of SCANASSIGN(TILm')B(L o)\, VT, VB]
= VR(R) =1, Let Vg a0d VBg bethe gwmutvs,mvm #nd h 6-valved and
VT, ; and VB, be the extensions makiag them hvalyed: mmwmnwmm

to BETFER-MATCH -are VT, , and YBﬂq By Lm&%wsﬂm 5&:& and:5.4-R; any. fonction

pair maximizing My;+Myy ever all. functions consissent: with 3, VIT, sad VB, maxithizes M+ Myy
over all fuctions consistent with p’, VT_ and v&mmmﬂwmv&u

VB, there are LUn's+1d+1 "0"s in B(u),mreummmm-dmm
SCAN-ASSIGN resuras "FAIL". Onc such 0" must be uamaschiod underasly sukching:

mpmmmw‘ma»'-
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1 the recursive call to. BETTER-MATCH using T(1,m"), B(1n"). ', p’, VT,, and VB | returns
"(null,nuli)", then by inductive assumption, there is'a pair of valuod functbns which maximizes the sum
of matchings on fﬂ,m’) and I(Ln)) over aff wmmm with p’, VTxi and VB, and for which a
‘maximum masching of B(Ln’) !mna "0" in BCEA') mivitchied. Either this pair of functions also
manimizes- My + My, over ol ﬁmﬁaﬁmﬁs consistént with p’, VTX and VBX or a function pair for
which-p'th) and h-are 0-valued maximizés My+ My, over thess fanctions. In.efther case, there is a

value function pair which maximizes My +My over all functions consistent with p’, VT, and VB, and

for which-a "0" in (s.n’) is unmaiihed undet some makinuiti‘maiching for B(1,n'). As for the case when
¢y 1.in the -proof of the b&hfabave, "(null, ) ilebmtﬂyremmed by the original call to
BETTER-MATCH. |

~ ‘Suppose the recursive cafl to BETTER-MATCH feturns VT, and VB, which are not "null".
Those functions are consistent with VT, and VB! ﬁmwxlm VB, are consistent with VT and
VB,. Given any pair of value ﬁzncdons on T(1,m’) and B(1,n'), let the expansions of these functions
denote those functions on T(l,m) end- B(ln) - which ‘agret 'i!itk “the given . functions on
Flyp +LRyy -y and Blly, +LRyy -1) and sgree with VT, and VB, clsewhere. The original cal
to BETTER-MATCH returns VT and ¥, which are the expansions of VT and VB, Since no termiinal
is -valued under VTr and VB,, none is ?-valugfi under VT{ and VBrSuppose @efe ls a paif pf functions,
VT and VB, c’onsistc‘n;with P, YI‘Q- an;i VBO for whnch Mv.r-f- M!B )MVT{" er.wl)yu'lheomm 5.2,
there are functions VT, and VB, consistent with p, VT, and VB, for which Mvrl*'Mvnl b4
Myr+Myy. Since pairs VT), VB, and VT, VB, arc both consistent with VT, and VB_, we can use
Theorem 5.1 to deduce that the restrictions of these ‘functions to Ty +1Ryp D) and
BLyp +LRyp -1)must be such that - |

where VT, and VB, are the restrictions of VT, and VB,. By Lemma 5.7 and Theorems 5.4-A and 5.4-B,
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there are functions, VT; and VR, consistent with ', VT, and VB, aad esigning 10 ""s such that
Myr;+Myg @ Myp: + Myg: 2 Myp +Myg, oo
Case 1: Suppose VT, and VB, arc consistens with VI,j-and VB,o. -For VB;, there is an
unmatched "0" under any @mwng function on B(Ln’). ,LetV.Tz and VB}:bﬁe;ﬂ\e_-emmbm of VT and
VO Then My, +Myp, 2 My + My, and ther s, matching function achicving. My which
leaves a 0" in Bllyp_ +1R D ;a(l.d) unmaiched. Fuactions VE, and VB are: ‘the desired VT,
and VB, v .

Case 2: Suppose VT, and VB, a,rg.cpns,istem with VB, ; and VB,,. By inductive assumption,
there are ﬁmcﬂons VT and VB consistent with p’;. VB, and. \IB‘i for -which . wa+MVB P4
MVT:+MVB: and under which some matching function achnevmg Mvs' leavet a "0" i H(La)
unmatched. Since VB, and VB, are extensions.of W'gng-‘ygwyﬁrﬁagygiag,w with VT,
and VB, . Let VT, and VB, be the expanmofvr; QndYB"gTheya“ congisient with VI, and VB .
We have: “ N

M - . - : . E o S
Mvr‘*‘ vu'zuv:,"‘u‘ yxzz M Vr{*”u,a- = |
Under VB'. there is a maiching function achicving M w\\iuch ich leaves a "0%in. ALy, .+LRVB‘;f}), £ ]

subset of B(L,d), unmatched. mus. VI,fang»,V&B,mtbelm;

Lemma 5.10 completes the techmca! dcvelopmem needed to venfy thc cormctness of the

algonthm Theorem S.S states the correcmw of thc maia pmcédﬁm MAX-MATCH -

Wrun 55: Let VI, and vae._be valug mmuomwmm maa &mnpm such that the
only ?-valued terminals. are members of top-bottom. paiss.. Then MMﬂeﬂﬂﬂmXM
VT, VB returns functions VT, and VB, consistent with p, VT, and ¥y which maximize My +Myy

over all such consistent functions,

Proof: The correctness follows from the development M&d in thls chapter. The formal aiﬁumént s -
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by induction on the sumber of recursive calls; it is similar.to that used in proving Lemma 5.10 except that
verifying the correct return of "(null,nulf)" is not necessary. We only present the argument used whes’
¢,=1 after a call to SCAN- ASSIGN Itis um &h Mﬁm that BETTER-MATCH is called by
| MAX-MATCH and Lemma$. HNS nepdcd in ﬂl&mf

- Assume the mﬂlm afer the calk o WW!GN in MAX-MATCH returns "FAIL".
Let VT, and VB, be the extensions of the ﬁmcﬁgmm by SCAN-ASSIGN -under which all
terminals.in T(1,q) and B(s,n') except h and pih) arc O-valued or I-valued. Let VI and VB, extend
VT, and VB, 80 that p'th) anélt%&valued. and VT ;;ah&!éB 1 xead them so that p'th) and h are
1-valued, By inductive assumption, the functions YT, sad-¥B,; sernod by MAX-MATCH(T(,m’),
B(1,n),p',VT,,VB,) maximire Myy+ My, pver all-fungtionsconsisiont with p', VT, and VB, .

Suppose BETTER-MATCH(T(l.m’ ).ml,n),s Lp VTxo,VB 0) returns "(null null)". Then
there is a pair of functions VTuo and VB m consistent with' VT o and Von maxnmmng My + Mva over
all functions consistent with p', me, VBy far which the is 2 maiching function ackieving My,
which does, not maich.alf "0"s:in B(La-1p. By Lemmn £9, these are valuo: functions VT, ; and VB,
consistent with p, VT, and VR such that My +Myy 2 Myp +Myg . Then:

Mur, *Mva,, 2 Mvr *Mvs, 2 Myr, My

and VT,, and VB, maximize Myy+Myy over all functions consistent with p', VT, and VB,. The
expansions of VT, and VB ; maximize My + My, over all functions consistent with p, VT, and VB,

Suppose BEITER-MATCH(I‘(I mAB(1a).e1p VT, VB, ) returns VT, and VB, which are
not “null". Suppose VT, and VB,; do not maximize My-+My, over:ail fanctions consistent with p’,
VT,gand VB, Let VT_;and VB,q be value functions consistont with p, VT, and VB, which do
maximize My .+M,, over all such functions. Then, Mv-,- = v+M VB, > My, *"MVB‘O-' By
Lemma 5.10, there are f\sncuonsV'I‘ andVB cowstenimthp NT g and VB, ﬁxwhxch Mv.r +M

VB,
2 My 0+MVB » and for wmch a matchmg funcnon aclmvm; MVB leam a "0" - in Bls1)
€ex
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unmatched. By Lemmma 5.9, there are value functions VT, and VB, consistent with p', VT, and VB,
Myr Mg ZMW +uv3 2 My My “Therefore,
Myr, +Myg 2 Myp +Myg 2 Myp +Myy DMy +Myg
Functions VT, andvnlmimae %%ﬁwmrﬁmmmmmn VT, andVB and
are correctly cxpanded and retarned by MAX-MATCH. | |
HVT andvnmdomameuw+mwmma Mcﬁanmmmmhp VT, and VB,
then the maximum of My +Myy  20d Myr +Myg maxtinizes M+ M, p over dfl functions
consistent with p’, VT, and HB mmﬁﬁmm&mﬁM(Mﬁnbﬁenm

favor of VT, mvaﬂ)mmmmmwﬁw o
5.6 Running Timue of the Mgo:khn

 We will find an upper bound on the running time of the aigorithm wiiliout miaking assumptions
aboutthe details of the:data structnres used 40 imphement thie algoridin. We Wil assine that each of the

following takes one step: adclﬁontoaemmer MMymusmmu and Aesi
scalar variable.! Amnmmmammvm%mdwhzmmmwmmvaﬁablefu
cachdmumameomem ahmmmﬁoawmam&nﬁm mmberw

numbcrof’-mhmdtcmnimumﬁ,w*“‘ ~,: ‘4 B m,.
ma&aﬂ%vﬂuedmmmm“w” Lot dénglé thi umber oS
' PmcadnneSCAN—AﬁBthagmr’ e iHo0at

et i Ut AR,

1 Thsfoﬂomﬂwmueoﬁmodaﬁrmmnmmaﬁ\m e
The logarithmic cost model, whichta&esmmaucoummcnumberofbmmquifedwmpmtanumber

wo&ldmuluplymiymumﬁyhzm;ni e 3 o
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The prosedure considers each (erminal in T at most once, For each ?-valued terminal it considers, it must

test the sizes of aes of 0-valued kesminals,and 1-vajued tesminals and make an sssignment when possible.
I the sen are ecomputed for each -valed terminal onsidesed,the oumber of sieps use to processone
?-valued termial is af most k(m-+ 1) for some constant k. The siappiag test of the first FOR Joop must
also be computed, but only when an mimmeﬁt has been made. This test also requires cmnputingﬂ)e
size of a- set of terminals, Let SC(m,n,u.a} denote _the. maximum number of steps taken by

SCAN-ASSIGN o any.m {op terminals and n bostor terminals with u -valued terminal pairs when a,

™-valued terminals pairs are assigned by, SCAN-ASSIGN, Then

| SC(m,nua) $ kl(a.+1xm+n), for some constant k.
If a,Cu, SCAN-ASSIGN. teturns "FAIL" and (8, £1): 18 the nymber of 2-valued terminal pairs
considered. Let SC(m.n.u) denote the maximum nusaber of 3igps taken by SCAN-ASSIGN on any m
top terminals and n botiom termisals with u ?vamdmmalpgm o
SC(m,n.u) £ marimum over all a,Su.of C(m.n.uAa) § kyfu+ I(m-+n).= Ou(m+n)).

. Procedure BEI'IER-MA’I"CH may use progedure SCAN-ASSIGN and a recussive call to itself.

First BETTER-MATCH computes the full left-regions and :ismwmons and_ assigng to 2-valued
terminals within them. This is done in the WHILE Joop. . After assigning within any of (1.Lyp), (Rypm),
(1LLyp). and (Ryg.n), some regions must be recomputed,. This takes Okm+-8) steps. Once regions are
compuled, iesting. for the conditions under which ,'t(nvu@mn'is returned takes only a constant number
of steps. Suppose a,, initially ?-valued terminals are assignod 0/} values in the WHILE loop. Then its.
executiot{,,incluflihg the initial computation before gntering it, takes at most kya -+ 1Xm +n) steps, for
some constant ky. .

After the WHILE loop is-completed, if ,any,,z-;al,ued pairs remain, SCAN-ASSIGN is called.
Preparation for calling SCAN-ASSIGN takes O(m’+n’) steps to assign to V', VB, and p'. If

SCAN-ASSIGN returns "SUCCESS”, then merging the functions that SCAN-ASSIGN returns with the
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functions on the full regions to create the functions returnéd by BETTER-MATCH takés O(m’+n)

steps. If SCAN-ASSION returns "FAIL", it takes (' +n') steps 1o assign to VT and VB’ and ealculate

" q.5h, and c;. ‘Ifc,=1, BETTER-MATCH & calfed tecursively, returning funciions or *null%s.  If the

recursive call returns functions, then the procesSing required to retatn their ekpansions takes O(m'+n’) -

steps.
L.et B(m;n,u) be the maximum number of steps-taken ‘byaay call mBP‘ﬂ‘ER “MATCH wnth m

top terminals, n bottom terminals, and u mniaﬂy F-vatied paifs. Suéh a Cailfa BF’I‘I‘FR MATCH under

which a initially ?-valued pairs arc. assigned in the WﬂftEhﬂﬁaﬁd 4, pairs areassigned by
SCAN-ASSIGN takes at most |
k(a, +1Xm-+n) + SO’ e a) + B’ i, a,-r) + kym+n’) steps
for some constant k, where B{m.n,-1)=0 by definition for any'i and n. U'sini’the bound for SC gives:
< kyfa, +1)m+n) + kfa +1m+n) + g(ﬁ*#is’)# B n"ua, -2,°1) steps.
We know 1Sm'Sm and 1<n"<n. For k, =k, +k,+k;, the mimberof sepa s bounded above by
t;(aﬁa,*i‘)(ni%h)’% Bm'swa . 2 S = ‘expression 1
Then B(m.n,u) < (maximum over gn m'<m, nSmanﬂ’ﬂsi' -raSSnofﬁpteﬁion n
Order at tripkes (m.niuh, for ms1, 21, #hd w0 lexicographichlly. We prove by indiction
on this ordring that for afl Such triples, 'a(fm,kn:ﬁf és ks(u+l’)(nf+n).fol“mthccmm ks. “The basis,

(1,1,0), 1 thiviat. For any iple, (;10), B(m.1:0) S -k,eﬁi-ﬁ).‘ﬁﬁi‘;sz“ s Lt the propotsion be
true for any triple fexicographically smalter mt(m,ﬁ.ﬁ) wﬁdm u>0. %mm lgm Sm and

PR .,-":v\;-uw" o PR

I<n' &t whenever BETTER-MATCH s

we can usc the inductive assumption. When a +a =u, u-a_-a-1 = -1 but k u-a —a’Xm'-?-n‘)-: 0is
. W s _was } S W g

stHf an upper bound on the cuntribation of the recursive call ts BEFTER-MATCH, since no recursive

call is hade. Therefore:

expression I S K (a, +a,+1Xm P Ky(ua i a +n)

a‘,-‘H < 653-3' a;lSu-l and



Eyrs R v B 2

- m-.
expression 1 S k(a_+a +1)m+n) + ky(u-a-a)Xm+n)
Cuing kg 2 K, andny 40l 2 mtn
 Sk@+bEminy
and I(m.n,u) € ky(u+1)m+n) sradma}u)). | .
We now turn to MAX-MATCH. The bound on the number of steps used in the WHILE loop is
of the same order as that for BETTER-MATCH, by the same argument. Procedure MAX-MATCH does
not do the testing to return "(null,null)” whnch BE'I'I‘ER-MATCH does, but this only adds a cénsmnt per
assigament to the number of sieps used: by BETTER-MATCH, and: only affects the constant for
MAX-MATCH's bound. The pre-processing. for-SCAN-ASSIGN :and the - post-processing when
SCAN-ASSIGN returns "SUCCESS" havo the same bound on the number of ‘steps used as that for
BETTER-MATCH. However, if SCAN%ASS%GN?WM‘?FAH‘”, a résursive call to MAX-MATCH
and possibly a call to BETTER-MATCH are used. 'The pre-processing and post-processing for these calls
take O(m’+n’) steps. Let M(m,n,u) be the maximum number f stops used by any call 40 MAX-MATCH
with m top terminals; n bomm and u initially -valued pairs. Then for constants k, and k,
M(m,a,u) < maximom over ail m S, wEn, snd 0 +a Suof
ko, + IXm+n) +-S(m’ n'ua_0) + Bm'n'v-a acl)
+ M0’ o 0 1) + ki) expression 2
We sow prove by induction on the ordering of triples that | |
M(m.n,u) < ky(u+1)Xm +n) for some constant k.
The basis and cases where u = 0 are straightforward If ky> kg +k,. Suppose the proposition i e fo
triples lexicographically less than (m,n,u) where u > 0, Then |
expression 2 < k(a, +1)m+n) + ky(a +1)m'+n') + ky(u-a_-a)m'+n’)
+ ky(ua -a)m'+n) + k(m'+n) |

< ky(u+1Xm+n) + ky(u-a, -2 )2 (m+n) for kg=k¢+k +k,+k,




-‘ly.

Letting kg > kg, we have
expression 2 gkg(uz +u+1)m-+n) 5‘1"(n4$i)?('m+n)
and M(m.nu) < ku+ 1D m+n) = Oum+n)) = Om+a)) -
We have shown that our algorithm runs in a numbes of steps a&'wmstprop«rm_ioaal to the cube -

of the number of tcrnminals. -
5.7 Summary

In this chaper, we have prescnted an algorithm which foutes the connestions betwoen pairs of
terminals located on the outside of a rectangular eempmm& ‘The rauting assumes horizontal and vertical
wires are on separaic laycrs and uses minimum: area. The proklem 1§ réduces toanamgmnemm'oﬂem
on vectors.  Procedure MAX-MATCH- solves': the pmuc&t on. . vectors using- - procedures
BETTER-MATCH and SCAN-ASSIGN, - Procedurcs SCAN-ASSIGN and BETTER-MATCH have
O((m+n)?) running time and MAX-MATCH has G((m‘*sﬁjfmns mhme@uﬁAXMA’Iﬁi :
is actually used twice in rwﬁnuemimls‘on a tectangie--once mmwmm and once for
left-right connections. Before using MAX-MATFCH, local eommm assigned directions in a
predetermined manner. A_sﬁgaing .the local connections amats éxt)computatmn steps, wheie tk is the
npumber of terminals on the rectangle. :Each call :&»MAX*M%H uses O(t’) steps. Therefore, given a
rectangular component with t terminals atound its boundary, &emﬁmtdeéa Section‘$.1 can be

solved in polynomial time -0(t3).
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Amwxmcmms Notation |

The notation used in Chapter 5 is listed here, with deﬂmtions, in order ofappearance o
T(1,m) denotes top terminals 1 through m.
B(1.n) denotes bottom terminals 1 through n.

VT: T(Lm) — {0,1,7} and VB: Ii(l,h) — {0,L.?} indicate the dircctioas.of conpections from top and
bottom terminals, respectively, as_follows: N

VI /VB () = 0 if the direction of the path. from terminal i to its.paic is t0.the left
1 ifitinnﬁg right , '
? ifitis undéténuined

p:T(L.mUB(1,n) —» T(l.m)UB(l,n)U{‘} is the p,airfns function indicating what terminals should be
conhecied: : S e gt T e C

For the following deﬁnmons. there are analoaous definitions for B and VB:

my: T — Tand is the mmuon amahm aemumk in 'I‘(l,m)ofvaluc 0" mmmals wgmhl&hﬁt index
in T(1,m) and of value "1", given value function VT. If ’“vr“) j, then VT(:) : 0, VT()) =1, and i <j je

M is the maximum over all malching ﬁmctlons, mvr far a value ﬁmcuon VT, of Me(mv.r)l

N TR
MR P

ZEROSW(S) = {i€S|VT(i)= 0} for a value function VT and S C’l‘

ONES,(5) = {i€S|VT()=1} fora value funcuon VTaMdSCT.

UNDET,(8) = (ESIVTG)=1} rorg value function VT Msc:r o
ONESw(xa,y) is simplificd Wﬁon f;or (*“;Nssvﬁ,m:x.y),)‘,'m. S
OK-1(VT,x.y) (similarly OK-0) ltrue if and ony-if IONES(;(xy} € LW(-+-£1)..

Full-1(VT,x,y) (similarly Full-0) is true. if and only if JONES, (x.y)| 2 I'4(y-x+ 1))
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hpT = T and 1T — T are used to define leﬁ‘reswns and nght-regfon! onT unde‘r a given value
function VT: ,, ‘
Iw(l) =1
he)) = i if Full- (VT (i-1)ii-1)
h{i-1) otherwise, fori> 1

rv.l(m) =m
fp0) = § -if Full B(VT,i+ L4+ 1)
ry{i+1) otherwise, forj<m

Lefi-regions are defined as the equivalénce classes' induccd by chc equivaknce relation on T(1,in) under
which two terminals i and j are equivalent if and only if lw(t) Iwﬁ) - ‘

Right-regions are the equivalcace classes induced by the equwa!cnoe mlauon usmg "vr'

Ly is defined to equal m if Full-}(VT, Iw(m) m) and to equal lw(m)-l otherwise. (1L, ;) are the full
left-regions of T under VT -

Ry is defined to equal 1 if Full-O(VT,1 r,n(l)) and to equal er(1)+1 otherwise. (me) arc the full
nght egions of T lmdchT - ~ S
'lhc followmg definitions are made aﬁer SCAN-ASSIGN mtums "(FAIL | & V'I‘t r VBk 1)"

qismesmallesuzmmh thathNE.S,,.,r (l,l)l L‘iﬁiJ. ‘

stsdxemllest;sausfymgmefoﬁowingmmepmpemu B
(ii) IZ'.EROS.\,Bl G}l = L¥%(nj+ I)J ) . , -
(iii) each terminal in T(1,k-1) which has boen mgnod me vakle "l" by SCAN-ASS!GN is
paired m‘ha“’mm in B(j.a). 4 ."i A s ’ :

C is the set of initially 2-valued terminals nT(lg mm w&q m o
¢ = K)NESWt_I(C)I. :

C = IZEROSvrk_l(Cl
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¢, = IUNDETVTk ©)

h is defined as follows: Leti be the terminal of smallest index in B(s,n) which is ?-valued under VBO and

l-valued under VB, ,. Certainly, p(i)<k. Ifi<p(k), then h = i; otherwise, h = p(k).

Vfo and VBrx are defined as follows: If h = p(k), then Vfo = VTk_1 and Vfo = VBH. If h # p(k),
then V'l and VB, agree with VT, and \"Bk_1 except at h, k, p(h), and p(k), where:

VI (k) =1 VT (p(h) =7

VB (p(k)) = 1 VB (h) =2



 Chapter 6 Discussion of the Algorith

6.1 Removing Assmmiptions

~ In this chapter we makc some obscrvauons about the algorithm we h¢ve just prcscntcd The
algorithm is of the channel muang variety. Themw bg used by cﬁ\m&m path:are choson- by
the algorithm. Only one choice is considercd fur local connce&ons. For top-bottom and left-right
conncctions, the pmccdure MAX MAICH makes the dé;nswn : 'i‘hrcc assumptions are crucial to the |
working of the algorithm: (1) only pairs of terminals need to be conmctcd:(i!) there are only four routing |
areas - one parallel to cach side of the rectangle; (3) the segments from ea_éb terminal to the routing area
(perpendicular to the routing direction in this arca) cannot conflict regardicss of their len@th&

We do not necessarily need to have terminals around mcbdutsidc‘of one rectangle as long as the
above assumptions arc satisfied. In fact, terminals may alsuv lie -abngl a rectanguia;_ boundary -
circumscn'bing the rectangular eompanent. i.c. on the opposite side of .thc routing area. as long as.vthese
terminals can be projected on thc rectangle to obtain an instance of thc ongmal prublcm (sec hgurc 6.1.).
This configuration might be found when cannecting termanals of a fuacﬁonal component or set of
functional components to bondmg pads. The bonding pads he :akmg the uutside edges uf the chip, and
the routing regions lie bctwccn thesc pads and thc rest of thc intcgmwd circuit. Mnmmwing the area used
'for the interconnections minimizes thc sizc of the cmp | |

| When the third assumption above is rcm()\*cd, \vc ‘have al’rcn'dy secn in Chaptcr 4 that the
resulting routing problem is NP-complete evcn for one routing channcl wﬁh wrminals akmg its side.
When cither of assumptions (1) or (2) is mmoved our division imo local eonnectimm .md oppaosite side
 conncctions na longer limits the choice of directions lhr cach cmmection Comdcr the pmblcm for one

rectangular component when it may be necessary 0 mlcmmaect thrce or mnte mmnnah When three

terminals are mvolvcd there are throe choices instcad of two for &!e type uf path used to iswconnecl the
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Figure 6.1; Alternate configuration of terminals for our algorithm.
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terminals. Thascanbesecnbydmdmgmeboundayofmemcumkmwmrcepm eachp:eoegoes
bctwecnad;acennennmaisasmewuadmynmmd Anypaﬂwhmmowswoad;acentpmof'
meboundarycaaiacusedmeounectmemmmﬂs. Whenmetcminalsmmﬂwcdlﬂicmmdes, two
wmmmmummmmmmm Howerer, ;ecaawc!mmaﬁcmesepawbﬂim
ltsnotlmcﬂatmcﬂmdmswaysaspodasdteodhm Fw:rc62—A;ivesa
counterexampie. Corme;ung these terminals involves three sides of the mctawe Ihemﬁm:. we have
mmemmn&mdmemmnmwhkhwwwmmmm&ﬁm
conncections, lfﬂu'ecteraunalsareoniymtwoadmem&wpaﬁ:tyﬁemaﬁﬁmrﬂdescambc
climinated. mssﬁummﬁgumsz-a. ltisaacpenpmbimnwhe&tﬂ&m\ccmnpmmm&u
probicmcanbewlvedinpdymnimmwhenmdﬂmeormorémnalsnwdmbe
interconnected. o

. Considcrrctainiagmemrictimmatou}y;paimofminahmhmnecmdbuvtﬂiowi&'

eermmalstoheonmeofmommlarcowoaemwhthmplacedﬂdebym Ignomforthe

momcmanycmmcmnwhthvdmwnmmhwhidxﬁemmbmm&membaweaﬂw N

twomctanglc& mmmmmﬁajpmbkmsﬁnﬁwm&wmwmsmw
matpadtscantakea Mcwwmmmumm Howcwr.ﬂlkopﬁm
| addsmanychomofp&ﬂuwbemdmmmmm memmmmw
mdepcndcmd‘mckﬁaadnﬁtsidu Fimrcs.'i mmmmmmmm

memmuyofﬂmmummblems#om
62 A Special Case for Pracedure MAX-MATCH

The procedure MAX-MATCH, with is sub-pmceéum. solves the optimization problem
defined in Section S$.2. Wemmmmmmmzmmmmm
mnaions,amsdmysmmnmf"a”sm"l m“ﬂ»mdmmh
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Figure 6.2: “eOneCmmmmhm&amumbahhm
Temnnahwnmmemeaumbermoddbecmm R
A: Three terminals on three sides -- three choices.

1 2]} | 1T 1
2 ‘
BEST OF ‘
THE THREE
!...
path uses4 sides - — © pathuscs4sides
routing addes 2 unit to height — . S | routing adds 3 units to height
2 units to width S , ‘ 3 unit to width
2
_ path uses 3 sides
, 1 routmgacklﬂumtsmhe@t
i 2unitsto width

B: Three terminals on two sides - three choiges.

preferrecd wheah<{wl || h ‘ ‘ »
1 2 21 12 - 21
] 1 ) IR SO J MI
1 . } ‘ | o
(G +bX1+ w)=3+3Iw+h+hw = area
(2 + h)2 + W) = 4+2w+2h+hw = area I‘I
12 . 21

¥ %ﬁ:@ﬁﬂm@%uﬁ{:n il B L Py B e B g




Figure 6.3: Extending the routing problem of Cha’ter 54t‘o' twomm 5

1

1

preferred
for w<h

2_

|
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1

2

area'=(2+w)(h4—3) S S
=6+2h+3w+hw

area = GHw)2AN)
= 64+3h+2w+hw
but:

: l ) ' ’ B ,l pe .
. . 3 LY
B

1 . ,12 em ;* o | |
4 l = b e . - ! ) ’ 1: .
area = 2+ w)X2+h) L1

area = Q4 W)O+H)
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within one of the upper bound obiaimed whan the specific paising of tp wrmiaals to hottom terminals is

disrw. We alma.-m=mﬁ T-valucd. torminals. are-members of fopbettom bairs»under P
- When alt terminals are mmmm initial:valuc-fanctions, the numbdr of top terminals, m, must

lemma 61 Lot VT, and VB, assign "T"s to all terminals in T and B.  Then

MAX-MATCH(T(Lm).BLm).p.V T,V B reurns V', and VB such thai My +My, > m-L

si: i

- Proof: Initially, therc are no full regions and SCAN-ASSIGN: is called. If SCAN-ASSIGN returns
(SUCCESS, VI, VRB), then I %m '] terminale arc 0-vaiued.in each.of T-and B.. We know; OK-0(VRB, 1,m)

holds. Thercfore, m is even, 'The machings give My 'ﬁMw’ = Y%m+%m = m
- .- Suppose. SCAN-ASSION rewurns (FAHRVE . VB). Let . 8 h,and cy be as defined in

Chapter 5. Al terminals in T(k,m) are 1-valued undor VI, Therefore, @ = X, ¢y = 1, and ks odd. We

‘Imow:
JONES, . (1Lk-1)}:= 1|ONBSVB(s,m)§f:.,- L%kl = W(k-1)
4 Al . A

1 - o mo e P “~~i""3f,1 -
and | L%(m-s+1)J . IZER%rM)lvs, [AEROS, r{l kL= Ak-1) (a)
Also, L'%(m-s+1)d +%k-1) = |[ZEROS Em)l+ QONBS“i (sam)} £{m-s+1)-1

r i S

implying %kl £ Mm-s+D)1-1 (v). '

Combining (a) and (b) gives:

LiA(ms+1)d = W(m-s): = '(k-1) and QZERCEVB;(s.m)# = lZ_BROSVTr(l.k'l)I-
Either VB,(8) = 1, or 5 = p{X). Otherwise, IONESyp (5 1mik. = |ONESy (k- = () and
B(s+ 1.m) contains p(k) and. the pairs of all "1"s in T(1,q). ‘Fherofore, we would have chosen 5-+1 rather

than s. In either of the two possible cases, $. = h.

Let VT, and VB, be the valuc functions defined when the 1" value-is. tried for h. We know

[ZEROS,, 1(s+ Lm)| = Y(m-s). and OK-O(VB, , x,m)-hoids for all x in Bs,m). Therefore, s+ l,m) is
X



e
~ aset of full right-regions with m?-mm ‘Al Y(mes) "0"s in B(s+Lim) can be matched.
Unlesss = 1 or s = 2, interval. ﬂiﬁmmkkﬁmm&mm neither of which are
- full. Since JONES,; & k) = £ %k and OK- xwﬂ,i.x)mfm alt'x n T(K-1), TOK) s a sét of
full right-regions in which 1(k-1) "0 can be maiched to "1 in T(LK). When's &1, i which case
k=m,we have | » , | |
| 'Mw‘ My %(m-l)+%(m-l).-m- L -
and the desired result foﬂows. When s)l l‘(k+ l.m) comams one ic&-rcgmn and onc nght-region
neither of which are full. 1f5 =2, B(1L.2)8a ﬁxﬂe&»regﬁmtn&ﬂliis *valued-under VB, ; “Formials
(1) and p(B(1)) = "Hm) are essigned the value "0 by the retwrsive cal 60 MAX-MATCH. Tcrminal
B(l) can mawch B2), but F(m) is Wm mmmimnm matchings sumt 1o
(m-2)+ 14 %{m-2) = nr-1 a5 desired. (FsD 2, ko€ T{¥ni") bethe renumboring of Tk + Law). ' Procedure
SCAN-ASSIGN is caticd for T(1,m’) and B(1,s) usmwwappmpm restrictions of VT, and VB, .

If the sccond calt ui SCAN-ASSION rctums (SUCCFS&W‘,,,VB,,), then
|ZBROSVBH(1.3)§ = mﬁmsw;lu,mf)} = mmwmuwdvrﬂ%d =k W'l 4 M%m" = m',
Combining this with the matchings on e Al regidta gives ™ '

: Mwﬂ-oonﬂ =m" + wm)i +FHED =mh + ‘ke-alé = nrl
where VT, and VB, arc the expansions of ¥T | dnd ‘V sﬂmwmwu and VB, on E(1 k) and
B(s+ 1,m). | |
I the second calt to SCAN-ASSION mm{mm KW', VE), let q’, 8", and h’ be the special
terminals for this call. }:.mec initial. meﬁmm ﬁt%mﬂﬁi%ﬂ*ﬂﬁiﬁﬁ ﬁm in
“I{1,m’yand all terminals in B(1,s-1) are Mvalued and §%~il"-¥m: mq—' 2K isokland
. JONES, 4s's-1) = DNstf(l.k'-m-&: i L
[ZEROSy 45" 90 = L¥(ss"+ )3 S {ZFROS ALK = (k1)
Also, IONES, 8"} + [ZFROS, A8 = (k1) 4 14 LK 13 Qs +11,




fg....,oem mumwmwm » revimge
the paths will follow the boundaey of the rectangle. The on Wi v
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Figure 6.4: The One Component Routhg Problem mth no locli eolnecﬁou.
Terminals labcled with the same number shouiﬂ be eonﬂected.
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‘start later. The exchange causes the two originally conndctod segments overlap but no other scgments
(0 overlap. (Soe Figure 6:5) In this way, -we cun modify the routing 36 that thére is only enc horizontal
scgment for cach connéction, me&MﬁmM&m to which it needs to
be connected since some segment originally did, ahd scgments-have not been shortened, just merged.
The vertical scgmonts which conneet to wmmm e aifded on me verticat‘layer: Abso, after the
_modification has been made to each side; W@MWW at the corners ciin be iengthened

or shortened to do s without causing conflicts, BT I IR g |

1hi§ upper bound on the amount of hclght addedbyusmgseparatc Iaycrs vfpr the twodlrectiont
is actually achievable for a very simple routing problein shown in F”lghre 6.6. .

The argument used o prove Lemma 6.2 hﬂdsfonay region m ammpenem side as-long as
all wires are cither perpendicatar- wm&mmm W dfiiﬁintw &!ﬁgﬁh extending’ from _
different terminals perpcndlcu’laf to the side wm not intersect, and semwhk‘hmnparaﬁef to tht side |
can be extended at the ends of the s:dc wnthout causins ccmﬂm Any number of tennimk can be

mterconnccted not only pam.

» wmmmwmmmwnmmvmamemmmmwm

for interconnection. Temmmdrmmwmmm PiAON %0 T
 vertical wire segmvents,’ mmﬁawm&%&mw#m ‘e’ pomincction’ of
‘segmonts on:different layers a0 fonger arivial mewmmmmm

fegment Mummm&m “Yiwfbmem ﬁ?’hytrmfm oomiectin

0 MWMMMW U R SR e
Suppose that we do wish'to ratis'tNe "vopurate difection '~ Siiirate jer” straiegy for wofe
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Figure 6.5: Construction for Lemssa 6.2. B

A. Splitting positions.

becomes

B. Merging segments for one connection.
- for layer connection

—— - —

after splitting:
rightofl - - —
- rightof2
after merging:
= rightof2

rightofl - - —

~ one chanael, two layers

two channcls

for vertical connection

~——————— right of2 - -

right of2 - -

— — rightofl
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Figure 6.6: Instance of One Componcat Routing Problem realizing upper bound of Lemma 6.2.
~ When one layer for horizontal segments and one layer for vertical scgments;

[ —

',l.i i

' | ot n channels used
I o

I l 1 1 1 -

12 n n

“} - nf2 channels used
n even

layer 1 = mew =  jayer2
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than two layers. We will Jot ﬂﬁm layers be ﬁxhﬁmﬁmms and all cveﬁ numbered
layers be for vmicat mas. Mmb Mml&m cgntgiqiq;,f\yltes in the other direction.
Let "track” donote & gericuler lyer in o, chanmel, Whhen i i only one ayer for each dircction, the
number of channels used for mhg‘m.-uwyma{g the same as the i{ﬁmber of tracks
used. When there arc H mwmh M Mﬂu number of channels requ:red is as little
as 17H of the wmber of &m& W Mou than thh mher of channels may be needed to allow
segments to consect at’ cmMy. The connections at corncrs place constraipts on the layers used.
All layers in a channel may aet*btm Its impomm o otmrvc that there is no longcr guaranteed to
be an optimal routing in W ﬁk M uﬂl & mglt ugg ment rugnms alonz each side of the
rectangular component. Pemkﬁas a path to use more than one segment along a sidc allows the path to
change ayers. In thie way lyer may bebotr uilksed. mnmum )

Let us suppose we- 40 ‘wish wmﬂe mumbwnctmmt akmg each side per path. We
can choose which segments wll M ﬂn same track“ eg. uslnz the matchmg fanctlon of ChapterS
Given any such choice, we muat nntn the remulting scts of scgments to channels and*layers in the
chanaels 2o that mccmumnmpmpcﬂy made. A legal assignment minimizmg the area of
the layout is desired. Wcmmwmmﬁtoﬂmmnmmmksmw two phases:
| determining what scgments will share the same- mck ad&deeemiﬁm what track they will share, When
there is oaly one layer for each direction, the second part of this problem is trivial -- any assignment will
do. | |

If we require that all pairs ofconnoctins segments hg bﬂ édjacent layers, then we can model the
constraints imposed by me wnnectinm betwm mnml using a dlmd graph The graph contains
onc node for each set ofaemna m ati'aek Let a node representm;a set ofscgments above the
top of the component be called & top sode. ‘iimilady, the terms bottom node, lefl node, and right node

denote nodes representing scis of segments an-the lndieated sides. ‘There is an edge between two nodes
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Figure 6,7: Layer assignment for the Gnc Component Routing Probiem.

It is no longer true that one channel per street for each net is always optimal.

Given 4 layers, no assignment of laycrs uscs onfy one channél on-cach side.

One attempt is shown. e
e ) eayer 3

1 2 3 4

layer 2 .
layer 4 ‘ | | e laver2
' 4 ?

B 4 3 2
layer 19} L k4t

laycr 3*

chxsasucccssﬁnlassigrxmcht e
A : I ‘ - — : Hayeri’o

1 2 3

PN

layer2 ——
- layerd—4 |

/Aayeﬂ |
- 3 h%, A

o
= L)

S

~1

| layerl"" -

Graph representation of track connections for first track assignment
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when the sets of sopments represemied By the nodes costaln segments which must be connected at a

comner. Edges are dirasted as fallows: o, a 10p noide 404 KRt node, representing a connection in the
top fef comer; from a lcf node 10 & Battolt node, sepresenting a comnection in the bottom left corner:
~ from a bottom nads to a right sode; reprosnting & conmection in the bottom right corner; from a right
“node to a top node, Mw&Mh tbcw right caraer. The graphr consists of disjoint
chains and cycles. Figure 5:1-shows the graph for the segments of that oxample. Since connections are
always between adjacent layers, umm determine-the layer for cach sct of segments. The actual
channel used by each set of scgments can be arbitrarily ohosen, just as they could for enly two laers. The
only restriction is that there be onty-one set of segmentsion each layer in any channel. Therefore, we wish
‘to assign a layer aumber to each node mmmm keRt and right nodes have odd numbers and top
and bottom nodes have even fumbers. Adjacent modes in the graph must be numbered: with adjacent
| aumbers. For any given side, each oscurvence of a "W will be in-a different charinel. We wish to
find a numbering which minimives the area of the coresponding layout | |
| - ‘Let us now consider Mconmﬂonl'y of disjoint cycles. ‘We restrict our-attention to these
graphs to illustrate how cyclic constraints can be handles witheut werrying ‘about graphs with different
numbers of tracks on different siul. which can occur if ¢chadns are present. A method of assigning layers
t nodes in a graphcenm;my nftm is as follows. €hoou¢mecyclc begin with some top node
.of this cycle. Assign layer 1 to this node. Moving ia beth directions away from this node, assign the
nodes along the cycle -- ene node in each direction at cach step: = in the following pattem. Going in the
direction of the edges (clockwisc), beghining with =1, asign in comsecutive steps: i+1 to the next left
node; i to the next bottom rode; 1+ 1 10 the acxt right node; i+ to the fext top node. Increase i by two
and repeat the pattern. Going spposite to the diroction of the cdfies (counterclockwise), beginning with
i=1, in consccutive steps assign: i+ 1 to the next right node; i mﬂ!e next bottom node; i+ 1 to the next

Icft nede; i+2 to the next top node. increase § by. two and repeit the pattern. ‘Fhe first node reached by
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*both dirctions will cikher be a 1o or  besiom nde. Sinoe theee aee being amigned the same aumber a

* the same step, the cycle is completed properly. I the stup assigning2H 10 8 right node clockwise and a
lef node counercipckwise is reached before the cycle era)m.ofmm»m is
used. For clockwise, beginning with i=2H-1, assign: i t0 the nest top node; i-1 to the next left node;.ito

the next bottom node: i1 1 the pest right ade, ‘Deceeaso i by.wo and sepest. Fur counterclockwise,
beginning with i=2H-1, assign: 10 the nest top node; i1 to the mfrxﬁh node; i to:the next bottom
‘mode; i1 to the pext left node, Docm thymmémm.i{ht mmmlm a right
sode clockwisc and a loft pode coustercleckwise is -reached before: the cycle is finished; the original
pattem of axcending aumbers & ropeated. . By repeating the twox paticens therugh icreasing and
desteaing numbers kel & cycl of any i canbe abeied. (Soc Figuro6.8: Al he ey’
finished, a sccond cycle can be Mmammwtmofm pattern which assigas to a top
or bottom node. I the next step ﬁwmwm&hmmm& atop node; then-an
acbitrary top node of the new cycle is cheacn as the starting it I the aiep sigas 10 8 bottom node,
then an arbitrary boliom w&eh Muummhﬁkmmmm be assigned in
wm. Each passthrough. mwmmmwmm 1At-most one lyer
is unused .in any chaanel. Ouew WMM*:Mw&mdm
nodes. Fach group consists of consecutive top, Jefl. boltom; wm“’d& One pass thaough
mgmmmm»m nehm mwmmm
side W&nmm inat mant S P ) |

ax! M%M* Mbﬂ e cquation 1
 where nicycle) s the sumber of groups of fowrneden in e cydle) Nose:shat when 5 graph consiats of
anly cycles, it containg the same nuehies of ados for cach side. Thesefiee oquation Liscqualte: |
- 45T utn, + e sumbesobcycleayaiat b
| where n_is the numsber of nodes for each side. The number.of channels veed om ey s at lenst 18
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of the number of nodes for MI& Wﬁem of!um&dumdsused on a side'by
* the assignment technique to the the number of channcls sed on a side by an optimal assignment s at
most 4H/2H-1 + 4H/n_ For 2 € H < 1/12a,, this ratio is less than three. It s reasonable to expect n, to
be much larger that H, smce we do expect to hawmaug m’e ,imgmonhections. and therefore, segments, o
manlayemformﬁemonnect | T | o
The m&m pmted in Chapw 5 minimizes the number oftrxts usedmmmad a
rectangie. The aigonmm produccs the sets of segments which w;ll share tracks, cnl!cda packing of the
segmenis. However; the: packmg may not lead to a minimum arca routiua. An aitématc pack;ng of the
scgments may allow more layers to be used in some channels, resulting in less channels being used. Even
the distribution of tracks to the top and botiom or left and right may not be optimal._“Phe algorithns for
top-bottom routing does not try to optimize the distribution of top tracks and botton tracks usod. It only
minimizes their sum. The "wrbng" distribution might result in half-utilized chan,n&& In addition, our
original choice of paths for local connections is no longer sufficient to find mqilimal routing. Figure 6.9
shows that the optimal mmmmq mmak,wmmmm asgund all four sidcs of the -

ge T

6.4 Summary

The algorithm presented in Chapter 5 finds an optimal routing when certain restrictions are
placed on the problem and on the allowed routing pathe. In this chapter, we have discussod the
repercussions of removing some of these restrictions. Whenweaﬂowsohﬂomwhxh uaeon!y twélayeu
but allow horizontal and vemcalseguentsonbod\ layers orwhichase more ‘than two layers, the
| algorithm no longer always finds an optimal solution, In these cases, the algorithm may be considered a
heuristic algorithm. MMmﬁmmmmgéduﬂuMme~Mamm
within this limited set. When twohyéuueuaedﬁ)f‘both mawwmmemmm
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Figure 6.9: The One Compsnent Routing Problein with more thin two layers,

Conncction for 5 goes amund asides.
14  adds 2 units to horizontal dimension
] adds 2 units to vertical dimension
rf 4 -

Connection for § goes arouind 2 sides.

R N

adds 3 ﬁnits to horizontal dimension
- adds 3 units to vertical dimension

——— horizontal layer 1
—~—+ horizontal layer 2

| vertical layer 1
; vertical layer 2




. - 138 -
shown in Section 6.3 that the mmf Jengh adied fa each dimension by the routing produced by the
a}goﬁthm is never more that twice that added by the optimal routing. When sc‘pgraAte‘lgy’_c‘ly are used for
horizontal and vertical scgments but there is more. than one layer for each. direction, the algorithm
minimizes the number of tracks used in eachdimaum. 'However, a new prob!em is encéuntcrcd. Each
set of segmems shanng a track st beamigncd to achannel and. layer so that connecnom at corners can
be made properly and the area of the rcsuk#ns layout in minimized. Given sef§ of' scgments to, be
assigned, we do not know an algorithm to find an- nptlmal assignmem. Kiso, givcn a collection of
scgments, we do not know how to pack thcm into tracks $0 that the rcsulung arca, rather than the
resulting number of tracks, is minimized. Finally, given a OngComgoggm Routk\gProb}em,we do not
know how to choose directions for connection paths ‘rgg;thqt the resutting a;'ea rather than: the resulting

number of tracks used, is minimized.
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In lhls thesis, we have W mm ln clmuit layout from the perspective of
complexuy thoory Our .od has been 1o m better undemndin; of thc problems and discover better

technmes for ﬂtelr loluw We have pmlcm thm pmﬁ of NP-completeness -- one for an

ortho;onal layout probiem wltl\ mumlu compm ofatbitmy slze, one for the channel assignment
problem in a street, wd one l'br the lutemction eltanaol mlgnment problem i.e. channel assignment

over all streets and lntemctiom We aln luvc aaalyacd a common heunsttc algonthm for channel

mianmentwlthlnam mm&mmmmwm numberofchannelsusedin the

solution pmduccd by the nlgorlthm to the aptlmal numlm is not bounded by any constant. This

al;orlthm and its nnalysh provlée 2 referenec poltu lﬂhlt wltloll othcr alcorlthms can be compmd The

development ofbetter al;orlmms im'chat\acl aulmm«tt remalnl a topic for remrch
'The ptoof of Nl'—oompletem of tlte chmcl ml.mmnt problem holds only when each net h

reqmred tn use at most one dunnel. Le. channel ulcnmeat wlthout jogx 1‘he complcxity of the channel

Wmmmmmm mmmmmmﬂaepmbm is NP-complete.
In practloe jou are allowod within & M Tlterem tlte analysu of known channel asstgument
alwn&mwhchwjopmdmedwdmemofwmmmmmmlmofmemh Thc
lower bounds on optimal channel mem wltl\out jogs 4o ot ap apply when jogs aro allowed. Analysis
ofmmmmmuhmmmmwmmmmm ’ ’

In Chupter S we luve pmented an algorlthm whlch l’lnds thc optimal channel routing for a
special cne of the hyout pmblcm in polynomlal umc Amon; other requiremenu. thc layout problem
mun involve only one mtamlar component, and all neu muustoontaln exactly two tcnmnals We have
shown in G\aﬂerli that when any restrictions on the problem are removcd, the algonthm is no longer
gulmhed o find the optlmal lolmion Asumpﬂons about sattsfactory routlng paths no longer hold.

WheaucumallowedmhavemmthantwotcnninalsbutallotherreurlctlomofChaptch hold, the

i e N R R S R S R I AR S S T e DT T T S R R A
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complexity of the layout problem hm Aammmonﬂfﬁewmnwd in ChapterSora
completelydlfferentdmrmmmayﬁndmopnmnlsolummpolymnldme Theaumorhasbeen'
unabkmﬂndaxhanalaombmorpm&nceapmfofNP-hrdnem. Analtema&erelaxauonofﬂ:e

resu'lcumaﬂowslwocm:poaentswhnhﬁcudcbynde bmdoesnotallow&nmn&honmcac&m

sides. 1heresmctionmtwotcrmmalnesmrenhaed. Theahiiityofpadutomnbetweenmetwo o

rectangles:sadded mvemnofmepmbicmhasakodcﬁedaaalm Mmegenerally.memhmqw
usedmﬂmalgonﬂmmaybeumdashwisﬁcsﬁxthemlmmmpmbicm Furdlermeaxcha
nmssarytodetemmcﬂ\equahtyofthesewﬂmquesashwdnh L | |

An mtereﬂiagcombma&omlproblemhww thcmutiagpmbiem ofChmterS
meuwmmnagmmmmMammmmmmm tbrmcmtanaie
pﬁmmmmdtwowawmmwmmmm"m atanycomer Supponk_
'weextcndmrcuhratccdonumma ams mgoammdmecinﬂemummn Monpmchdy '
wemodtfymecuwhrmedomgpmlﬁwzm Pﬁnofpmnﬁonadﬂem;im 'I’hcptobiem
lstochooseoncofthemommmwewhmrmdmmmommmﬂwmewmww
coiommedisnﬁnunmd. Smdmhmmbﬂmnﬁm%mmmmwﬁemk

Wemmmmammmmswmmam:
wiﬂaumﬁnmwmunﬁﬁummm mmmmwmmm

e RS- éygé ,’35‘\, oy SIS };3 :

mmmoumpm mammﬁmhyamhm Umumwanmmm

ofmmquaedwmmmmbem mwmummhﬁmef
WMWMMWMMw&;&hMM Pmblen
which vary significantly from our model, such amandrmd m:wemw
Wem&umwmummmmmammmm'

mec&ﬁcm msnmmummmmamzmu,
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.. topelogical information as part of &ﬂm Both techniques have been found uscful in practice,but lead
1o d&ﬂcrm;mhlem . The study of algorithmns for. problems coeguntered in. alternate ;thes to
layout from that in MMUWWWM T e

In Chapter 3, ia addition (o prescnting the made] we bave.used, we discussed a graph theoretic
maodel for layout. This graph mmlhu proven very useful in-obtaining bounds-on-the arca
requir_cd by interconnection patterns represented by various classes of graphs.  Thore are many open
. problems in this arca of research. Two open pmblmafm intcrest are to- degermine tight upper and
- lower bounds on the arcammmmbgé ag.arbitrary. ghqargraphaadmﬂmamweded to embed a
shuffle exchange graph [Lei8G)}, FTh80} An aliernatc cost measupe. sa-these presenied in Chapter 3 has
recently been propased by Stoner {5i80].. He, slso proves the.NP-bardness.of optimally embedding a
-in Chaptes JN\H‘ Apneder his memurc
In the problems we have considered, placmnca; and:routing are restricted. to be orthogonal.

‘graphin. megﬁdbtnhundcrmceﬂ;

Resaqarch is needed on the cost of m assumption. How qmchspgeg is Jost ,hy allowing ooly horizomal
and vertical wires? How much is gained by addin;a third direction for- wires, €.g. 45 degree wires,
Tompa [To80] has shown that fog; onc street containing tcrminals o both sides such that all connections
are of the form "connect the I Mgal uhpng side mthc ™ tesminal gn the second side”, the optisgeal
routing uses arcs of circles as wire paths. We have alsumumd{thu horizental and vertical wires He en
.diﬁcrent layers. We have indicated how much this assumption costs for the problem of Chapter 5. How
much this assumption costs in general is an open problem.. When _.mcré arc.only twe: layers for
interconnect, running two wires in. paralicl, onc on top of meoﬂm,onseparaw layers: across a chip
separates the t;vo sides of the chip. This suggests that restricting each layer to wircs in onc direction is

desirable. | |
At present, most integrated circuit dcsigns arc done with only. two layers for interconnect.

Howcver, in the futurc, more layers may be_availahic.‘ When more than two laycrs are available
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restricting routing to two mmaammmy be very costly in teims of area of layouts: Should
more directions be introduced and one directionbe used for cach Liyer? Should thie different layer,
different direction” techaique be abandoned completely? - For more dhsis ‘two layers, a major area of
research Is 10 determine the resirictions whick siplify the routing problem sifficiently to aliow

“development ofgooa algorithms and which resalt in g00d tayouts in relation to the layoim?“ﬁrbdncéd
without the restrictions. | =

* The model we have used considers-only the area of layouts. fnpfacuce other characteristics of

circuit layouts; such as circuit Gming and power comsumiption; are o initerést. - Reseaich Is needod ifto

 ways of modeling these parsmetors. Very fow algorithms Rive ‘boét developed which take theae

tive model of components.

parameters into account in any way. ‘We would also ke to have a less restri
The extension of the mode! to mmﬂmmmm Wh :
Chapter 3. We would also fike the ability to-define variable sizé componeits mwmm could
streich o shrisk depending on the requirements of e fayost ‘A ‘very wsbfil concept s that of
mmm&m 'nmwouldbereﬂtﬁswhewm&lmmﬁmmm»be '
wsed by wires. mwammmmmmﬁ%wmnmmm
mm«wmmmwmmmnmmumm Wﬁmbeen
wsed by some systems, but hew Wmmmmm ex}

In&elndthvezpammmmhﬂcmmm 'ﬂn
interaction of placement and'routing is very complicated. myehofMimdnddpmmof -
«mmmwmmmmmnwwuwmmﬁmw
interact more. mmmwumm&mummmﬂ,

routing simultancously. memmhdomwm ﬁﬁew We

Bave scen in Chapter 4 that packing rectangics o it iy arca i I itac
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gecinetty of compeainenis adili-a mmﬁh problesh.  When placement and routing
‘are sepasated, i is not choas:whether it i:impibriant 45 ge1 ¥ J008 goomietric. packing or a packing which
facilitates routing. ‘At one extreme, & plavemsent whichi is & §008 packing of components as rectangies can
 besought. Mofmkm At MM&W&MW be governed by the
desired Mmmm mm for hbw the rectangles fit together.
One area for Asture remssth-is the study of the: tradeofs Between: the- two aipéets-of placement. Good
ﬁrit‘efia for judging whether a placement does facilitate the routing are needed. The criteria currently
mdmmnmw&ebmbsummuum ' |

We have intended our model to be independent of the particular technology of interest,
aithough we have used the design mhsofm.kt nMOS as our guide. These design rules are
mam»mm-mmmmmonmmmn«mdmm
objects. Thercfore, mmeédemwmmme&ctMmdmmmofmm
change frequently.

lameMn.mmwiﬂ\nunomemmnpmbm
encountered in layout. The criteria of camplexity teory are not the only criteria useful in judging an
wmmwmm.'hmmbemmmmmmm. They should aliow
some interaction with the human designer. The algorithm presented in Chapter S finds optimal solutions.
Therefore, interaction with the designer s not as important as i s for heuristic algorithms, where the
designer’s insight is sn important input. Nevertheless, the algorithm of Chapter 5 can be written to allow
ihe designer to predetermine the paths of some wires, It will find the optimal routing using these paths.
Another criterion for judging algorithms is the number of good sofutions which an algorithm can produce
efficiently. Aawmeamm.mmmmmmmbepnfemkmm
which presents one good sofution, unless the onc solution is substantially better than any of the cheices.
Even among algorithmes which find optimal solutions, ose which oblains more than one optimal solution
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in approximately the same running time may be giofeered.  Criteria other than the optimization criteria
may be used 1o choose among optienal, sohytions.. For.suample, the aigorithm of Chapter 5. s biased
towards assigning "0"s to leR top terminals, A dual version of the algorithm biased towards assigning
"1"s to bottom right terminals might also be num 1o find an aliernate solutian. -Complexity analysis can
assist in the development of betier algorithms for layout problews, | However, the usability of an
. algorithm must also be considered in cvaluating aew algorithis for layout design. .
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M Rasie Deflnitions

lnthinhetil.thcwﬂmmwtﬂﬂ'eqmﬂybeundmdewnbepmblem& All
definitions can be found in [LiU68). We review them heve.

AMGS(V&MO&&&%&(@!M(MW@&) Vv, andasetofedges,E Each
edge, ¢ = ("1"’2) il!pairofnodu. Bdcceiﬂaidwbe ncident on vcrtices v and v,; vertices v, and "
arethemdxmmofc Veﬂhu VI“VIMMWe.d\ other. If the cdges are ordered pairs, the
" graph is directed; otherwise, it 18 wndirected. lnadimcndmph anedse(vl,vz)goes ﬁum (or out of) v,
'la(orimo)vz Efnmdehad*ilc&mmit.mmmlofdexmed.

| Amlhinuﬂaphhammo!m - -
O Oyt

ﬂlenoduondupm"eﬂleneduvl,vr ,v ’!’hcpamisoftensthn Nodesv and v, arethe

n+1
en@olnuof&\epm them:mfnmvlmv“l Ifnouodeappearslnmewquenceofedmmon
mmom.ﬂupoﬁhlﬁdmbewc chm&wuylmn"simplepam whcnwesay"pam" Apath
iucnlcifvlsv.ﬂ Amhcyekbapaﬂ\onwmchmuyvl +1appeanmm'ethanom:e A
mphhacwlkifhfemuocychklmem Anacyclicundirectednnphhcaﬂedam A
subgraph, § = (Vg,Ey), of a graph, G = (V,,E,;), I a graph whose set of nodes, Vo, i a subset of Vi and
whose set of edges, E‘.hambdeamwnmquyedeeMpMnmth'. |

A graph, G, is planar if there is a mapping from the nodes of G to points in the planc and from
edges of G to curves in the plane such thet: '

(1) The endpoints of the curve correspondiag to an edge arc the images of the endpoint of the

edgs;

(2) No two curves intersect at any point other than their endpoints;

(3) A curve does not intersect the image of a node unless that node is an endpoint of the edge

corresponding to the curve.
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Informally,  planar graph s ode which cai be drawn i the plie without crossing edges.
- Anmbym v dimenond gk it ph ih o
V= {6l ndjare posive integen, 151 Sm and 150}
and cdge set: ' ’ | ‘
E = (v v, = () and v, = G+ D for 1<iSm and-ISjASn-l
= (u)snd ¥y = (|+ 1) for lsiSm-l and ISan}

To indicate ehe growth rate of ﬁmctluns when dxseuwing the pcrfmmame of an almnthm, we
need the foﬂowmg notauon Given real~valued functtons f and gon the same domam fis O(g) if there is
a positive constant, ¢, such that for all but a finite number of domam values, f(x) 5 cg(x). ‘The O notation
is used when discussing upper bounds on a ﬁlncnon A mnent of (he form "the running time is
O(g(n))" gives an upper bound on the running time. When discussing lower bounds, the Q notation is
used. Gwen real-valued f\meuons f and gon the same domain f is n(g) 1f there is a posmve conmn(, (Y
such that for all but a ﬂmte number of domain values, f(x) 2 cg(x) ’I’hen “the mnnma time is ﬂ(s(n)) h
| statmgalowerboundou d\e rumnn;time.

Tbeabovedeﬂmmmofmecmcepumostfreqnenﬂyumdmmism Otherdeﬁmtionl

are prescnted as needed.
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