MIT/LCS/TR-252

RECOVERY CF THE SWALLOW REPOSITORY

Gail C. Arens

Tius blank page was inserted to preserve pagination.

Recovery of the Swallow Repository

Gail C. Arens

January 1981

© Gail C. Arens 1981

The author hereby grants M.1.T. permission to reproduce and to
distribute publicly copies of this thesis document in whole or in part.

This research was supported by the Advanced Research Projects Agency of the Department
of Defense and was monitored by the Office of Naval Research under contract number
N00014-75-C-0661.

Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, Massachusetts 02139

Recovery of the Swallow Repository

by
Gail Arens

Submitted to the
Department of Elect:ical Engineering and Computer Science
on January 26, 1981 in partial fulfillment of the requirements
for the Dcgree of Master of Science

Abstract

This thesis presents the design of a set of recovery mechanisms for the Swallow repository.
Swallow is a distributed data storage system that supports highly reliable long term storage
of arbitrary sized data objects with special mechanisms for implementing multi-site atomic
actions. The Swallow repository is a data storage server that keeps permanent data in write-
once stable storage such as optical disk.

The recovery mechanisms provide on-line recovery for the repository’s internal data, as the
repository proceeds with its normal operations. In this way, users that wish to access any
“data that was not affected by the crash can do so while the damaged data is being recovered.
Included in the repository’s recovery mechanisms are recovery epochs and checkpoint
epochs, which facilitate the detection of damage to the data and minimize the amount of
recovery that is necessary. Also included are specialized hash table algorithms that are
immune to repository failures. In addition to describing these mechanisms, this thesis
discusses how they support the global recovery mechanisms of Swallow and analyzes how
they will affect the repository’s general performance.

Key Words: distributed data storage system, hash table, recovery, optical disk
computer system reliability

Acknowledgments

There are many people who were looking out for my interests throughout my two and a
half years at M.L.T. Since | cannot thank them all individually, let this be a general thank

you to all those people who arc not mentioned below.

I would like to thank my thesis <upervisor, Professor Reed, for all of ‘he guidance and
assistance he provided throughout the development and ‘preparation of this thesis.
Whenever | encountered a problems, no matter hoﬁ insignificant, he was always willing to
help resolve it. His suggestions and criticisms were extremcly helpful n solidifying the

ideas presented in this thesis.

In addition, | would like to express my gratitude to Frank Vallese, not only for his
patience in reading early drafts of this thesis ahd helping me to express my :idez_xs in a more

cohierent fashion, but also for being a true friend.

Thanks are also due to all of the members of the Swallow design group, in particular,
Professor Svobodova, Dan Theriault and Karen Sollins, who have aided me in my work
through numerous discussions of the various ideas related to this thesis. Furthermore, I
would like to extend my thanks to Professor Saltzer, who provided the encouragement 1
needed when I first came to M.LT. |

Finafly, I would especially like to thank my parents for the inspiration and guidance they
gave me throughout my entire academic career, and would like to thank Jim Chadwick for

his constant moral support.

To the memory of my brother, Jesse.

This empty page was substituted for a
blank page in the original document.

Table of Contents

Chapter One: Introduction 1 10

1.1 Related Work 13
1.2 Goals for Repository’s Recovery 15
1.3 Outline of Thesis ' 16
Chapter Two: Overview of Swallow ‘ 18
2.1 Swallow Mechanisms : 18
2.2 Swallow Protocols 23
2.2.1 Swallow Message Protocol _ ' 24
2.2.2 Request/Response Protocol 25
2.2.3 Atomic Action Protocol 25
2.2.3.1 Begin Atomic Action 27

2.2.3.2 Create Object ‘ 27

2.2.3.3 Delete Object : 29

2.2.3.4 Modify Object 29

2.2.3.5 Read Object 29

2.2.3.6 End Atomic Action 30

2.3 Reliability Requirements for Individual Repositories ‘ 31
2.3.1 Data Integrity _ k)|
2.3.2 Atomicity of Requests 31

2.4 Summary of Problems Caused by Failure of a Swallow Node 32
Chapter Three: Management of Data within the Repository 34
3.1 Objects : 34
3.2 Commit Records 36
3.3 Messages ' 37
3.4 Global State 38
3.5 Overview of Storage Organization 39
3.6 Version Storage 41
3.7 State Storage 45
3.8 Object Header Storage 47
Chapter Four: Recovery of the Repository 57
4.1 Recovery of Objects 57
4.1.1 Merged and Cyclic Hash Table Chains 58

4.1.2 A Modified Set of Hash Table Algorithms 69

4.1.3 Obsolete, Lost and Duplicated Object Headers 72
4.1.4 Recovery of Lost and Obsolete Object Headers | 76
4.1.5 Recovery Epochs 71
4.1.6 OHS Checkpoint Epochs 79

4.2 Recovery of Commit Recorcs 84
4.3 Recovery Manager 85
4.4 Justification for Lack of Recovery of Pending Messages 90
4.5 Summary 94
Chapter Five: Evaluation of Recovery Mechanisms 95
5.1 Cost of Recovery Manager - 95
5.2 Cost of Checkpoint Manager 100
5.3 Average Cost of Recovery Per Request 104
5.4 Comparative Cost of Another Type of Recovery 107
5.5 Summary 113
Chapter Six: Conclusion | 114
6.1 Summary of Original Goals 114
6.2 Future Work . ' 115
6.3 Generalizations 116

Table of Figures

Figure 1-1: Configuration of Swallow
Figure 2-1: Example of an Object History

Figure 2-2: Creation of a New Version as Described by Reed

Figure 2-3: Creation of a New Version in Swallow
- Figure 2-4: Repository Requests and Responses

Figure 2-5: Representation of A Distributed Commit Record
Figure 3-1: Structure of an Objcct Within the Repository
Figure 3-2: Structure of a Comnit Record within the Repository

Figure 3-3: Structure of a Create-Token Message
Figure 3-4: Storage Classification

Figure 3-5: Simple and Structured Versions

Figure 3-6: A Representative Hash Table Page

Figure 3-7: Initial State of Pages C and D

Figure 3-8: Page C After Ohl2 is Inserted

Figure 3-9: Page D After Oh77 is Inserted

Figure 3-10: Page C After Oh34 is Inserted

Figure 3-11: Page D After Oh37 is Deleted

Figure 4-1: A Merged Chain

Figure 4-2: Pages A and B Before Insertion of Oh$
Figure 4-3: Correct Insertion of OhS

Figure 4-4: Merged Chain with Interleaved Buckets
Figure 4-5: A Cyclic Chain

Figure 4-6: Pages A and B Before Cycle was Created
Figure 4-7: Deletion of Ohl

Figure 4-8: Delction of Oh101

Figure 4-9: Insertion of Oh65

Figure 4-10: Insertion of Oh105

Figure 4-11: Pages A, B and C Before Oh27 is Inscrted
Figure 4-12: Pages A, B and C After Oh27 is Inserted
Figure 4-13: Pages A and B Before Oh81 is Inserted
Figure 4-14: Pages A and B After Crash

Figure 4-15: Separation of A Merged Chain

Figure 4-16: Pages A, B and C After Insertion of Oh81
Figure 4-17: Pages A, B and C Before Oh 66 is Inserted
Figure 4-18: Correct Inscrtion of Oh66

Figure 4-19: Pages A, B and C After Crash

Figure 4-20: Recovery Epochs In VS

Figure 4-21: Checkpoint Tables In VS

11
21
22
22
26
28
35
36
38
39
43
49
50
52
33
33
54

61
61
62
63

65
65
67
67
68
68
73
73
74
75
75
79
82

Fioure 4-22: No Checkpoint Eatry for Object A 83

Fignre 4-23: Handling of Retransmitted Requests 91
Figure 5-1: Request Distribution 107
Figure 5-2: Extrapolated Valucs for Variables in Cost Equations 108

Chapter One

Introduction

As network communications become faster and chéaper it becomes more practical for a
single computer, or node, in a distributed computing network to maintain only the resources
that it can afford to dedicate, and to obtain all other resources that it may need from other
nodes that provide them through thz network. In this way, the network provides the benefit
of economy of scale through shariny;, Long term Storage and printing devices are examples
of resourcés that may be shared throughout the network. Thcl nodes that provide the
resources are called servers while the nodes that share and utilize these resources are called

clients.

Swallow [16], being developed at M.L.T., is an integrated system of servers that provides
reliable, secure and efficient storage for clients throughout a network. The components of
Swallow are repositories, authentication servers and brokers. A repository is a scrver that
provides very reliable storage for client data in Swallow. It is a processor that is connected
to a configuration of storage devices. An authentication server acts as intermediary to ensure
that all communications within Swallow are secure.! A broker is a module in the client node
that acts as an interpreter for client requests. It mediates interactions between the clients
and servers in Swallow. Figure 1-1 shows the general configuration of Swallow in

relationship to its clients.

Swallow has several basic features. First, it provides extremely reliable storage. Thus, the
probability that any clicnt objects will ever be lost is near zero. Second, Swallow enables the
clients to perform any number of accesses (read and write) on an arbitrary set of objects as a

single, indivisible (atomic) operation. Third, Swallow protects all objects from unauthorized

lThC authentication server is not directlly relevant to this thesis so it will not be discussed any further. All
future references to the components of Swallow include only brokers and repositories.

10

w
Il

broker
repository

AS = authentication server

By
i

Network

=/

Figure 1-1: Configuration of Swallow

11

access, using encryption-based mechanisms. Fourth, Swallow, provides a uniform interface
for accessing the objects, which may be distributed over a local node and/or several remote
repositories. In cffect, the clients can specify where they would like each object to be stored,
but need not remember the location in drder to access the object. Finally, Swallow supports
objects of any size, and in particular, very small objects. Thus, Swallow gives the client
ﬂexibility in structuring and managing its data, since each object is treated as a scparate
entity with respect to protection and synchronization as well as with respect to storage and

retrieval,

In order to provide these features, Swallow must preserve consistency between all related
client data (which may be distributed over several nodes). For cxample, suppose an
appointment scheduling system is a client of Swallow that sets up meetings between people
by reserving time slots in their personal calendars. Regardless of where these personal
calendars are stored (i.c., in one or more repositories), Swallow must ensurc that the
calendars are always consistent with one another. In other words, if, as the scheduler is
modifying 2 calendars (in order to set up a mecting), the repository in which one (or both)
calendar is stored crashes, then either both calendars should reflect the appointment or else
neither calendar should reflect the appointment. The state of these 2 calendars, in which
only one of them is modified, is internal to Swallow and should never be exposed to the
appointment scheduler or any other client that accesses the calendars. Swallow ensures this
consistency between related client data by providing a standard set of protocols for all
interactions between the brokers and servers, as well as for global recovery. The underlying
mechanisms for these protocols and global recovery are based on those developed by Reed
[14,15]).

In order for the Swallow protocols and global recovery to be effective, all repositories in
Swallow must survive both their own failures and those of other Swallow nodes. This
means that all data stored within a repository must remain internally consistent, regardless
of any errors that may occur due to an internal failure or the failure of another node. For
example, within the repository, an object consists of an object header plus the object, itself,
In order to update a single object, the repository must modify both the object header and

12

the object as well as a commit record, which is used to synchronize accesses to the object.
Thus, even if the repository crashes in the midst of making these changes, the repository
must recover itself to a state in which the object header, object and commit record are
consistent with each other, that is, cither the state before the update began or the state after
the update is completed. In addition, the internal recovery of the repository must support
the global recovery mechanisms developed by Reed [14, 15], which restore all related client

objects commit records to a consistent state.

This thesis provides the internal nechanisms by which the repository restores its internal
state, and integrates these internal mechanisms with the gencral recovery mechanisms of

Swallow in order to show that the rccovery of the repository is complete.

1.1 Related Work

WFS [19]. Juniper [6] and CFS [1] are other systems that are comparable to Swallow.
Each system provides long-term storage in a distributed computing network, but does not

have all of the same basic features as Swallow (described on page 10).

WFS was designed to be a more primitive storage system than Swallow. It is a single file
server as opposed to a collection of one or more of various types of servers, as in Swallow.
Unlike Swallow, WFS does not provide a uniform interface to any data distributed over the
local node and the remote file server nor does it restrict access to the data and ensure secure
communications. Also, Swallow provides access to objects of any size that do not have to be
viewed as standard "files”, and provides atomic actions for any arbitrary set of these objects.
WFES, on the other hand, provides page level access to files and only ensures atomicity of
operations that are executed on a single page (although a system that runs at the client node
to provide atomic actions for multiple page and multiple file operations can coexist with
WFS [11)). -

Juniper is more like Swallow in that it is a distributed data storage system (consists of
more than one data storage server) and enables the client to perform atomic actions over

multiple data objects at multiple sites, but it still does not have all of the features that

13

1%

Swallow has. First, Juniper does not provide a uniform interface to data distributed over
the local and remote nodes, or to any other types of servers (eg., authentication server).
Thus, in order to obtain additional but related services, the client must interface with a
different system. Note, though, that plans are in the works to make a system, the Cedar file
system, that uses Juniper as a component in a system of structure similar to Swallow.
Second, although Juniper provides access to arbitrary sequences of bytes, it does not
provide atomic actions for multiple arbitrary sequences of bytes, as does Swallow. In
Juniper, the smallest unit that can he treated as a separate cntity with respect to an atomic
action, is a page. This means that «tomic actions can only be performed on multiple pages
within a file or throughout several files. In other words, two unrelated data units stored
within the same page cannot be accessed in different atomic actions exé;:uted'at the same

time.

The Carnegie-Mellon Central File System project (CFS) is similar to Swallow in that it is
a collection of various types of servers that cooperate in order to provide a single, coherent
system. Also, CFS makes the location of the data distributed over the local and remote
nodes transparent to the clients, as does Swallow. However, the types of servers are not the
same in CFS as those in Swallow, and furthcrmore, the capabilities provided by each system
as a whole are quite different. The most fundamental difference between CFS and Swallow
lies in the amount of flexibility the client is given for structuring his data. (It is the same
fundamental difference that exists between Swallow and both WEFS and luniper). Swallow
supports arbitrarily small objects and allows the client to access these objects in :whatever |
fashion suits the particular application. CFS, on the other hand,;jfprccs the clientto
structure and access his objects within the confines a file system. Tllps; _Swallow,provides
separate protection for every object whereas CFS only provides pl'otcctioh fqr files é whole.
Furthermore, Swallow provides synchronization for accesses to any-arbitrary set of objects
(lacking any file structure, within a single file, or within several files) whereas CFS only

provides synchronization for access to arbitrary sets of objccts within a single file.

The only similarities that cxist between the internal recovery for the data storage server in

WES, Juniper, or CFS, and that described in this thesis for the Swallow repository, are that

14

all of these servers perform their internal operations atomically and maintain any
information that is deemed integral to the recovery process in atomic stable storage {except
for WFS, which does not support any stable storage). In all other respects, the recovery
mechanisms for the Swallow repository differ from those in the storage servers of WES,
Juniper and CFS. Some noted differences are the following. First, the Swallow recovery
mechanisms that the repository’s internal recovery mechanisms must support are based on
mechanisms developed by Reed [14, 15] whercas the other system’s global recovery
mechanisms are based on other mechanisms [8, 5. Second, the Swallow repository is the
only storage server that uses optical disks as sccondary storage, Thus, in Swallow
repositories, optimizations in time efficiency are made at the expense of space efficiency,
since physical storage is cheap. Finally, the Swallow repository is the only server with
append only storage. These, and other differences in the structure and function of the
storage servers and the systems as a whole, lead to different requirements for internal
recovery of the storage servers, thus, resulting in a unique set of internal recovery

mechanisms for the Swallow repository.

1.2 Goals for Repositary’s Recovery

The repository’s internal recovery mechanisms that are presented in this thesis were
designed with certain goals in mind. The first and most important goal was to ensure that
the recovery mechanisms return the repository to a state in which its data (client objects,
commit records, and object headers) are both internally and externally consistent? from
both the clients as well as the Swallow components’ perspectives. This is such an important
goal because, as stated before, the general Swallow mechanisms and protocols are based on

the assumption that the repositories function properly regardless of failures.

The second goal was to decrease the apparent mean time to repair by minimizing the

recovery that has to be done immediately after the repository crashes. Since clients store

2lnlemul consistency refers to the consistency between all related data that is fully contained within the
repository. External consistency refers to all related data that is distributed over several repositories.

15

information in the repositories that they requirc in order to carry on their regular activities,
it is important to minimize the delay that they experience due to a crash. The immediate
recovery is minimized by taking advantage of the fact that most crashes affect only a small
portion of the repository’s data. Thus, the repository restarts as soon as it restores its global
state and recovers all client data while receiving and servicing external requests. In this way,
the repository allows the clients to access the unaffected data while it is repairing the

damaged data.

The final goal was to develop rccovery mechanisms that have a minimal effect on the
response time for satisfying individual requests, above that which is required to perform the
request, since the rccovery mechan:sms may be in effect while the repository is processing
requests. The reponse time for individual requests is affected most significantly by
communications and disk transfer delays since the repository is a simple data storage server
and most of its work involves transferring the data between (he disks and the client nodes.
Since the repository’s internal recovery mechanisms have very little need for
communicating with other nodes, the main way in which they increase the response time is
by requiring additional disk accesses. Thus, the recovery mechanisms were designed with
the intention of minimizing the additional disk accesses that would affect the response time

for satisfying individual requests.

1.3 Outline of Thesis

In Chapter 2 we describe the general mechanisms and protocols that make Swallow a
reliable data storage system, and we specify the minimum requirements that individual
repositories must satisfy in order to support this reliability. In addition, we summarize the

various problems that may affect Swallow’s reliability when one of its nodes crashes.

In Chapter 3 we discuss how the repository structures and accesses the data, since it is the
data that requires recovery after a crash. 1In addition, we describe the organization of the

various types of storage in which this data is kept.

In Chapter 4 we present the mechanisms that the repository utilizes in order to recover its

16

data after a crash. For each type of data, we describe how a crash can damage it, and then, .
how the repository implements its recovery. Furthermore, we justify why some data does

not require any recovery at all.

In Chapter 5 we evaluate the recovery mechanisms with respect to psrformance. We
analyze the costs of the recovery mechanisms in terms of their effect on the repository’s
response time and then compare these cffects with the effects that an alternate set of

recovery mechanisms (that we could have chosen to use) would have on the response time.

Finally, in' Chapter 6 we look back at our original goals and review the strategies that are
used to fulfill them. Then we point out several areas where these mechanisms may require
improvement and briefly discuss several concepts that can be generalized and used in other

systems.

17

Chapter Two

Overview of Swallow

Swallow is intended to be a very rcliable storage system, Basically, it is a set of protocols
that allow for proper management of data that may distributed over the local node and
several remote rcpositories. There are various underlying mechanisms that are used in
order to implement these protocols. These mechanisms are based on those ('lcscribed' by
Reed [14,15]. In order for these mechanisms and protocols to ensurc reliability of the
system as a whole, the repositories themselves must function properly in the face of failures

(both their own, and those of other nodes),

This chapter discusses Swallow as it applies to the repositories. Section 2.1 describes the
mechanisms that are used to implement the atomic action protocol. Herein, an atomic
action is defined as well as other terms such as object history, pseudotime and possibility. In
Section 2.2, descriptions of the atomic action protocol and several other protocols, on top of
which the atomic action protocol is built, are presented. These protocols provide for
reliable interactions between repositories and brokers (the two éntities that store and
manage the data for the Swallow clients). Next, Section 2.3 outlines the minimum
requirements that individual repositories must satisfy in order to support the reliability
characteristics that Swallow intends to guarantee. (These requirements provided the
guidelines for developing the repository’s recovery mechanisms). Finally, Section 2.4 lists

the general types of problems that can occur when a Swallow node crashes.

18

2.1 Swallow Mechanisms

In Swallow, the functional unit of client data is called an object. Further, the
fundamental requests that a client can- submit to Swallow (through a broker) to be

performed on an object are:

Create Object: writes a new object into storage
Delete Object: climinates an obj:ct from storage
Read Object: returns the current valuc of an object in storage

Modify Object: assigns a new value to an object and writes it into storage

In addition, a client can submit (through the broker) a series of these requests to be
performed as a single atomic action {8, 9, 14, 17] by bounding the series with Begin Atomic

Action and End Atomic Action requcsts.

An atomic action is a set of operations (requests) that must satisfy the following two
requirements:
1. failure atomicity requirement - the operations of a single atomic action should

either be performed to completion or not be performed at all (i.e., aborted if
completion is not possible). :

2. concurrency atomicity requirement - the operations of single atomic action
should behave as if they are executed serially with respect to the operations of
other atomic actions even though atomic actions may be executed concurrently.

To satisfy the failure atomicity requirement, an atonvic action is structured so that at some
point the atomic action is committed, which means that it is irrevocably required to finish.
In other words, if there is a failure before the commit point and not all of the component |
requests have been satisfied then, upon recovery, th‘e system’s state must be backed up to
the state it had before any of the requests were fulfilled. On the other hand, if the failure
occurs after the commit point, then any of the component requests that were not satisfied
before the failure occurred must be satisfied upon recovery. To satisfy the concurrency
requirements, it is arranged so that the intermediate state of the system during the execution

of an atomic action (when only some but not all of the requests have been satisfied) is

19

protected from any processes performing a different atomic action.

For example, consider the appointment scheduling system described in the previous
chapter. The system would be implemented so that the scheduler would request that
Swallow read and update several people’s calendars as a single atomic action. Then, even if
one or more of the repositories (containing the calendars to be modified) crashes, the
calendars would either all reflect the scheduled meeting (if the crash occurs after the commit
point) or else none of them would reflect the meeting (if the crash occurs before the commit
point). Also, if one or more of the calcndzirs does not have the requeste 1 time slot open,
then ihe appointment scheduler czn explicitly abort the atomic action and none of the
calendars would be updated to reflect the meeting. Finally, if several su-h atomic actions
were executed simultaneously, and requested the same time slot. in several people’s
calendars, then one of these atomic actions would appear to execute first and thus, succeed

whereas the other would find that the requested slot was filled.

The remainder of this section summarizes the mechanisms developed by Reed [14, 15]

that are used in order to implement the atomic actions defined above.

Pseudotimes are numbers that are used to assign a total ordering of events in Swallow.
Pseudotimes do not directly correspond to real time, A global clock mechanism supplies a
unique, non-overlapping range. of pseudotimes, or pseudotempaoral environment, to every
atomic action. Each request that accesses an object is assigned a pseudotime from the

pseudotemporal environment of the atomic action.

Objects are implemented in the form of object histories. An object history is a sequence
of versions. Each version is a state that the object has assumed at some point in time. See
Figure 2-1. Each version of an object history is valid for a range of pseudotimes, For

example, version B in Figure 2-1, is valid from pseudotimes 5 to 10.

20

Pseudotime L
1 4 5 10 1 64 65 82
| | | |

.

Figure 2-1: Example of an Object History

A modify request créates a new version in the object history. The pseudotime of the
modify request provides the start pseudotime, which is the lower bound for the version’s
range of validity. If a version already exists in the object history at the pseudotime specified
in the modify request. then the modify request is demied. For example, a version could not
be created at pseudotime 8 in the object history illustrated in Figure 2-1 since version B
exists for that pseudotime. |

A read request selects the version that has the largest start pseudotime less than the
pseudotime specified in the request. Then, the upper ‘bound of the version’s validity is
extended, if necessary, to include the pseudotime of the read. According to Reed [14, 15],
the upper bound of a version is the last pseudc‘;titﬁe at which a request read the version.
This means that there can be pseudotimes in the middle of anobject history for which no-
versions exist. For example, if a modify request wishes fo creite a version in the object
history shown in Figure 2-1 at pseudotime 90, then version E would be created with a lower
pseudotime of validity of 90 and no version would exist for pseudotimes 83 - 89, as shown in
Figure 2-2. To simplify matters within Swallow, it has been-decided not to leave any holes
in an object history [18]. Therefore, when a new vession is c‘rea#ed at a specific pseudotime,
the previously current version’s upper pseudotime of validity is extended to the pseudotime
at which the new version is being created. Referring back to the previous example, the
upper pseudotime of validity for version D would be extended to 89, as shown in Figure 2-3

instcad of leaving a hole, as in Figurc 2-2,

21

Pseudotime

: »
1 4 5 10 11 64 65 82 90
[||]
I I | I
A B c D E
Figure 2-2: Creation of a New Version as Described by Reed
Pseudotime . >
1 4 5 10 14 64 65 89 90
[I | | |
I [
A B c D E

Figure 2-3: Creation of a New Version in Swallow

An atomic action ensures that a specified sequence of read and modify (as well as create
and delete) requests for one or more objects are performed as an indivisible unit. If any of
the requests are not successfully satisfied, then the atomic action is aborted. Abortions are
madé possible by making the versions created by an atomic action tentative until the atomic
action is explicitly committed. These tentative. versions are called fokens and are not
readable by other atomic actions. In other words, if some request within an atomic action
attempts to read a token created by another atomic action, then that request will be delayed
until the atomic action that create it either commits or aborts. Upon commiting, the tokens

made by an atomic action become versions.

All tokens created by a single atomic action are grouped into a sct called a possibility.

When all of the component requests of an atomic action are satisficd, the atomic action

22

commifs its possibility. This committing converts all of the tokens into actual versions. If, -
on the other hand, some of the requests are denied, then the atomic action aborts its

possibility, which deletes the tokens from the object history.

Possibilitics are implemented using commit records that record the rtate of an atomic
action. Initially, the state is unknown. All tokens in a possibility (or versions, once the
possibility is committed) contain a reference (pointer) to the commit record associated with
the possibility. Tokens are distinguished from versions by the state of their commit record.
When the state of the commit recurd is changed to committed the token; become versions
and can be examined 'by other atoric actions. If the state of the commit record is changed
o aborted then the tokens are deleted. Further, commit records must have timeouts
associated with them so that if a failure occurs that causes the commit records to neither be
committed nor aborted (this could happen, for example, when a client node crashes), then
the tokens will not become permanent fixtures in object histories, blocking future real
operations on that object. Possibilities enable Swallow to ensure that if an atomic action
cannot be completed then the state of the data will appear as if none of the component

updates were done.

2.2 Swallow Protocols

In order for Swallow reliably to satisfy the requests submitted by the clients, brokers and
repositories must interact in an orderly fashion. The broker must interpret a client request
and, in turn, generate requests that can be understood and fulfifled by the repositories. The
brokers and repositories communicate their needs to each other by sending and receiving
messages, which contain either requests or responses to some request. Swallow provides
standard protocols for sending and rcceiving these requests and responses under normal
circumstances. In addition, these Swallow protocols specify provisional actions that should
be taken if the status of communications between two nodes is disrupted by a crash of one

of these nodes.

The Swallow Message Protocol (or SMP) described in Section 2.2.1, provides for the

23

reliable transport of the messages through the network by detecting transmission errors that
méy occur. The request/response protocol, discussed in Section 2.2.2, provides a guarantee
to the requestor that its request has been received and fulfilled. The atomic action protocol,
discussed in Section 2.2.3 ensures global consistency of the data distributed over more than

one node as well as ensuring that alomic actions behave as if they are executed serially.

2.2.1 Swallow Message Protocol

Every Swallow message is sent through the network in the form of on¢: or more packets.
Each packet has a sequence number that indicates which part of the mes;age it contains so
that the complete message can be reconstructed at the receiving nodé. Swallow Message
Protocol, SMP, is a very simple protocol that specifies exactly how node A, for example,
must send the packets of a message to node B. The protocol is as follows:

1. A sends 1st pa_cket of message

2. B sends back a packet indicating that A can send X number of packets more
3. Asends X numbér of packets

4. B sends back a packet indicating that A can send Y number of packets more
5. A sends Y number of packets

6. etc.

This continues until the entire message is sent. If either node does not hear from the
other one within a reasonable amount of time then it aborts the message and discards any
remaining packets. Notice that this protocol is very simple for single packet messages
because no connection has to be established. For mulﬁplc packet messages, though, it

allows the receiving node to exert some flow control so that its buffers don’t overflow.

Currently, SMP is built on top of the User Datagram Protocol (UDP) [12]. UDP doesn’t
resequence the packets of a single message at the receiving node nor does it prevent their
duplication. Thercfore, SMP is responsible for reordering them and discarding all

24

duplicates so that the receiving nodes do not have to perform these tasks. SMP does not
prevent out of sequence or duplicate messages. though, nor does it guarantee delivery of the
messages. These problems are taken care of by the atomic action and request/response

protocols, respectively.

2.2.2 Request/Response Protocol

Since a requestor can never be certain that its request was received and/or satisficd unless
it receives a confirming response [27, there is an associated response for every request sent in
Swallow. The response either confirms both the delivery and the fulfillment of the request
or rejects the request. Il the requestor does not receive a response within a reasonable
amount of time then it can retransmit the original request or abort the transmission. The
table in FFigure 2-4 enumerates the various types of requests and associated responses that
can be sent and received by the repository. The next section describes what actions are

taken when these requests are received.

2.2.3 Atomic Action Protocol

The atomic action protocol specifies exactly how thé brokers and repositories should
cooperate in order to carry out atomic actions for Swallow clients. The broker manages the
local data, monitors the atomic action as a whole and decides whether to commit or abort
the atomic action. On the other hand, the repository stores and manages the object histdries
and commit records. That is, it reads and writes the actual data and carries out the final

phase of the atomic action, in which tokens are converted into versions or are deleted.

The objects updated by an atomic action may be entirely contained within a single
repository or distributed throughout an arbitrary number of them. In order to minimize the
number of external messages that have to be sent to the repositories, committing or aborting
a possibility, cach repository that contains tokens whose commit records reside in another
repository, maintains a single commit record representative for each commit record of an
atomic action. A commit record representative - contains ‘the state of the atomic action

(unknown, committed or aborted), as well as the refcrences to any tokens (creatéd by the

25

Figure 2-4: Repository Requests and Responses

REQUESTS

RESPONSES

COMMENTS

1. Create-Object

Object-Created

Response contains uid
of object (OID)

2.Delete-Object

Object-Deleted or
Can't-Delete-Object

Can't-Delete response indicates

a synchronization conflict

3. Read-Version

Versioa-Value

Rasponse contzins version

valid as of given pseudotime

4. Create-Token

Token-Created or
Can't-Create-Token

Can't-Create-Token indicates

a synchraoni :ation conflict

5. Test-Commit-Record

State-Is: Commilted or
Aborted

Response contains state of

commit record

6. Abort-Commit-Record

State-Is: Committed or
Aborted

If commit record already
comitted then returns
State-Is: Committed

7. Commit-Commit-Record

State-Is: Committed or

if commit record already

Aborted aborted then returns
State-Is: Aborted
8. Add-Reference Reference-Added Request is sent to

commit-record-representatives

9. State-is: Committed or
Aborted

Delete-Reference

26

Request sent to broadcast
final state of commit record.
Response confirms that final
state was encached in commit

record representative

atomic action) that reside in the same repository in which the commit record representative
is located. Thus, the actual commit record need only maintain references to each repository
that contains tokens created by the atomic action rather than to each individual token, as
illustrated in Figure 2-5. Further, when a repository has to broadcast the final state of a
commit record so that the tokens can be converted into versions or deleted from their objeét
histories, it has to send only one message per repository regardless of how many tokens each
repository contains. Then, each repository can act upon all tokens from that atomic action

that are referenced by the commit record representative.

Sections 2.2.3.1 through 2.2.3.6 describe the protocol for each type cf request that the

client may submit.

2.2.3.1 Begin Atomic Action

When a client begins an atomic action, the broker must send a message to some
repository, requesting the creation of a commit record. The repository creates it and returns
a response which contains the name of the commit record. Once the broker receives this
confirmation it can send to any repositories any sequence of create, read, modify or delete
object requests, depending u'pon the client’s needs. All of these subsequent requests must
include the name of the commit record as well as a pseudotime, so that the repositories can
identify the atomic action of which the request is a part and can synchronize all concurrent

accesses to the same objects.

2.2.3.2 Create Object

When a client wishes to create an object, the broker sends a create-object-history request
to the repository. Upon receiving the request, the repository creates all of the internal
structures needed for the object history in storage. Included is a reference to the specified

commit record or its local commit record representative.3 If neither exists in the repository

3 Both the creation and deletion of objects are also requests that belong to a possibility, that is, if the atomic
action creating (deleting) the object fails, then the creation (deletion) is not done. -

27

Repository 1

commit
record

aborted aborted
.%—.
o
commit record\
representative cemmit record

representative

Repository 2 Repository 3

Figure 2-5: Representation of A Distributed Commit Record

28

at that time, then the repository must create a representative with the correct reference to
the version and must send an external request to the remote repository that contains the
commit record, asking it to add a reference in the commit record to the commit record
representative. Once the local repository receives a response confirming that the reference
has been added then it must return a response to the broker, confirming the creation of the

object history.

2.2.3.3 Delete Object

When a client wishes to delete ar object, the broker sends a delete-object-history request
to the repository. When the repos:tory receives the request, it checks whether or not any
versions exist for a pseudotime greater than or equal to the one specified in the request. If
any exist, then it returns a negative response indicating that the object cannot be deleted. If
none exist, then the repository creates the final version of the object history that marks it as
being deleted, including a reference to the commit record (or representative) and returns a

response to the broker that confirms the object history’s deletion.

2.2.3.4 Modify Object:

When a client wishes to modify an object, the broker genérates a create-token request and
sends it to the repository. Upon receiving the request, the repository checks to see .if a
version already exists at a pscudotime greater than or equal to the one specified in-the
request. If one exists, then it returns a negative response indicating that the token can’t be
created at the given pseudotime. If none exists, then it creates the new token, adds a
reference to the commit record or representative and returns a response to the broker,

confirming the token’s creation.
2.2.3.5 Read Object

When a client wishes to read an object, the broker sends a read-version request to the

repository. Upon receiving the request, the repository must check whether or not the

29

version referenced by the pseudotime in the request is a token, an aborted token, or a
committed version. If it is a committed version or a token that was created by the same
atomic action that sent the read request, then it simply returns that version or token in the
confirmation. On the other hand, if the request is for a token that was created by a different
atomic action than the one that sent the request, then the repository must check the token’s
commit record to see whether or not it has been committed. If so, then the repository must
commit the token, extend its validity time to the pseudotime specified in the read request
and return that version in the response to the broker. Otherwise, if the commit record has
been aborted then the repository must abort the token, extend the validity time of the
current version to the pseudotime specified in the broker’s request, and finally, it must

return that version in the response to the broker.

2.2.3.6 End Atomic Action

If all of the component requests of the atomic action are confirmed then the broker
finishes the atomic action by sending a commit request to the repository in which the
commit record is stored. That repository then commits the commit record and returns a
positive response, marking the completion of the atomic action. On the other hand, if the
broker received any rejections to its requests then it may abort the atomic action by sending
an abort request to the repository, which must then abort the commit record and return a

response to the broker, confirming the abortion of the atomic action.

Once the final state of a commit record has been recorded, the repository storing the
commit record must broadcast this state to all of the repositories for which the commit
record has references. When each repository receives the state of an-atomic action it must
encache that state in the commit record representative and return a response indicating that
the its reference can be deleted from the commit record’s list of references. When the

commit record has no more references it can be dcleted.4

4Nole, that this description of the final phase of the atomic action (that is carried out by the repository) has
been simplified by ignoring the commit records of nested atomic actions. (See [Reed78))

30

2.3 Reliability Requirements for Individual Repositories

Now that the global mechanisms and protocols have been described, the two minimum
requirements that individual repositories must satisfy in order to ensure reliability of

Swallow. as a whole. can be defined as follows. in Sections 2.3.1 and 2.3.2.

2.3.1 Data Integrity

Since the repository stores the clients” objects as well as the commit records that are used
to synchronize access o those objict, it must protect these objects and cominit records
against any damage. loss. or inconsistency that may occur when it crashes. In other words,

the repository must protect the integrity of atl objects and commit records.

[n protecting the integrity of the dlient data. the repository must do more than just ensure
that this data isn’t lost or damaged. 1t must also ensure that the objects and commit records
are managed properly. This means that a crash shouid not alter the repository in any way
that would causc it to overlook the most current version or token of an object history or
create a version at a pseudotime for which a version already exists. It also means that a
crash should not cause a repository o rclcase the valuc of a token outside the atomic action

in which the token was created.

2.3.2 Atomicity of Requests

In addition to protecting the data integrity, a repository must satisfy all requests
atomically. That is, the multiple internal modifications that must be done as part of a single
request, must be done as an indivisible operation. This internal atomicity supports the more
general atomicity guaranteed by Swallow to its clients. In the same way that Swallow
guarantees not to leave client data in an inconsistent state, a repository must guarantee not

to leave its internal data in an inconsistent state.

For example, a version of a large object will span over more than one disk page. If the
repository crashes before it writes out all of the pages to the disk and these pages are not

written atomically, then the object history of which the incompiete version is a part will be

31

invalid. Thus, upon restarting, the repository must ensure that the incomplete version is not

included in the object history.

As another example, a create-token request involves both recording the new version and
adding, to the associated commit record. a reference to the new version. If these two
intcrnal tasks are not performed atomically then the Swallow mechanisms for providing
clicnts with the ability to exccute a set of requests atomically will not woek properly, since
the repository will never know whether the token should be converted to a version or

deleted from the object history.

2.4 Summary of Problems Caused by Failure of a Swallo v Node

We have seen how Swallow cnsures reliable storage of the data by providing the client
with the ability to exccute atomic actions and by insisting that its repositorics satisfy several
requirements. Before getting into the details of the repository, lct us briefly list the gencral

problems that might occur when a Swallow node crashes.

1. Global (or external) inconsistency of data - The related client objects stored
throughout Swallow may not be current with respect to one another. The
atomic action protocol ensures consistency with the support of the repositories,
which properly maintain and manage all commit records.

2. Internal inconsistency of data within the repository - The objects. commit records
and other data supporting these objects and commit records may not be
consistent with each other within the repository. The repository’s internal
recovery mcchanisms restore internal consistency of the data, as will be
described in this thesis.

3. Out of sequence packets w/in a message - Communications delays may cause
packets of a message to arrive in a different order than which they were sent.
SMP rescquences these packets.

4. Retransmitted packets w/in a message - A node sending a request may retransmit
packets if it thinks that the original packets were lost. SMP discards duplicate
packets.

5. Unconfirmed messages - A message may not be acknowledged if the receiving

node crashes. The combination of all three protocols and the repository’s

32

internal recovery mechanisms ensure recovery of any damage caused by
unconfirmed messages. How they ensure this will be clarified in this thesis.

6. Incomplete messages - A repository may not receive all of the packets of a
message if it or the sending node crashes. An incomplete message does not get
confirmed so it is recovered as an unconfirmed message. This problem affects
the repository since the data of a large object version is written into stable
storage as received, before the complete message is available.

7. Out of sequence messages - Due to the distribution of the nodes and real time
delays, requests may not be received in the same order that they are sent. The
atomic action protocol serializes all requests by using pseudotime: instead of
arrival order.

8. Retransmitted messages - If a node does not receive a confirmation for a request,
it may retransmit the request. Al requests that can be send to the repository are
repeatable; that is, the repository will make the requested modifications in
response to the same request only once (the repository can recognize
retransmitted requests). Upon receiving a retransmitted request, the repository
simply confirms it and does. not repeat the modifications that are requested.
This thesis will demonstrate how the repository properly handles retransmitted
requests,

This thesis deals directly with problems 2, S, 6 and 8. More discussion on the other
problems above will found in [14, 15, 16].

13-

Chapter Three

Management of Data within the Repository

The repository’s data can be classified as follows: object data, commit record data,
pending messages data, and data that describes the repository’s global state. In order to
understand how the repository reco sers this data after a crash, it is first necessary to explain
the internal structure and management of these four classes of data as well as the

organization of the storage in which the data is maintained.

Sections 3.1 and 3.2 describe tae object and commit record data, which consist of
sequences of versions plus a header thdt contains a rcference 1o the current version. Next,
Section 3.3 discusses the message datq which consists of sequences of packets Then,
Section 3.4 briefly describes the giobal state data, which is a record that describes the status

of the repository as a whole.

The remaining sections describe the various forms of secondary storage that the
repository supports as well as theirihteraction with primary storage. Section 3.5 gives an
overview of the organization of the storage in the repository and.then Sections 3.6, 3.7 and

3.8 describe Version Storage, State Storage, and Object Header Storage, respectively.

3.1 Objects

Within the repository, an object is represented by the versions of the object history plus
an object header, which contains a reference to the current version and other useful

information about the object. Figure 3-1 illustrates the internal structure of an object.

Thus, in order to crcate a token (assuming that no token alrcady exists) the repository
creates a version (as depicted in Figurc 3-1) in storage, and then modifics the object header,

as follows. The value of the token reference is changed from nil to the newly created

34

QID (object uid)

olb

——®
pt1

CRref1

versiont

token's address in storage, the value of the commit record reference is changed to the
unique identifier of the token’s commit record, and the end pseudotime value is changed to
the pseudotime at which the token is created. Subsequently, if the token becomes a version,
the repository changes the references within the object header: the value of the current
version reference is changed to the token's address in storage, and then the value of the
token reference becomes nil.
repository deletes it by simply changing the values of the token reference and commit
record reference in the object header to nil. Finally, in order to read a version of the object,

the repository obtains the location of the current version in storage from the object header.

35

current version L N
end pseudotime
token 07
CRref4 ¢
REN (for recovery)
delete flag
hash tabie link
OBJECT HI'ADER
OID (o]}n]
L@ —@
pt2 pt3
CRref2 CRref3
version2 version3
CURRENT
VERSION

Commit Record 4

oD

———e

ptd

CRref4

L

token

Figure 3-1: Structure of an Object Within the Repository

Alternatively, if the token becomes aborted, then the

Since the objects are accessed using the object headers, the repository organizes the
object headers in the form of a hash table, called the object header table. This object header
table will be discussed in more detail in Section 3.8

3.2 Commit Records

Conceptually, a commit record consists of the state of the atomic action that it represents,
and a list of references to the tokens created by that atomic action. Within the repository, a
commit record’s structure is similar to that of an object. A commit record {or commit record
representative) is structured as a thrcaded sequence of vérsions. Furthcrmore, the
repository maintains a hash table, called the commit record table, whose entries contain the

state of the commiit record and a reference to the current versions of the commit records,

Figure 3-2 depicts a commit record after the atomic action's final state has been decided.

Commit Record

Table
token tofken < tofken ‘
k < for R — or for —
unknown objectA object objectC aborted
state state
version version

Figure 3-2: Structure of a Commit Record within the Repository

36

When the commit record is first created, an initial version is created. This version contains
the unique identifier of the commit record, which is assigned by the repository, and the state-
of the atomic action. which is UNKNOWN. In addition, an entry (thal points to this
version) is created in the commit record table. Then, as tokens are created within the atomic
action, they are not only threaded into the sequence of versions for their object, but are also
threaded into the sequence of versions of the commit record. As each token is added to the |
commit recard's list of versions, the corresponding commit record table entry is modified to
refer to that token. Similarly, when a remote site adds a reference to the commit record, the
repository creates a representative version, which qomgxins the unique id's of the commit
record and the remote site, and then threads that veﬁton into the commit record’s sequence
of versions. Finally, when the atomic action is committed or aborted, the repository creates.

another commit record version that contains the commit record's uid plus the final state.”

in order to carry out the final phase of the atomic action, in which all tokens are
converted into, versions or aborted form the object history, the repository modifies the
object headers carresponding to each token in the commit record’s sequence of versions, to
reflect the final status of these tokens. The repository starts with the most current token in
the list (which it accesses through the commit record table and then the first version which is
the final state version) and when it reaches the initial state version of the commit record, it

deletes the entry for that commit record from the commit record table.

3.3 Messages

The various types of messages that the repository can send and receive were listed in the
table in Figure 2-4 in Chapter 2. Of these, all are single packet messages with the exception
of create-token or version-value messages, which may contain large objects that cannot fit
into a single packet. In these multiple packet messages, the sender places all of the

information in the first packet, except for the fragments of the actual value of the object that

5Nole that no object version will ever refer to a commit record that is created later than (hat object version.
This invariant is used 1o optimize recovery, as will be seen in Chapter 4.

37

do not fit in this first packet. These fragments are the only data that will be contained in the
subsequent packets. Figure 3-3 depicts both a multiple packet create-token message.

SMP Header
Messagel!D] MessagelD MessagelD MessagelD
Packet1 — Packet? Packet3 Packet4
oIb]
ComRec!D
Pseudotime VALUE VALUE VALUE
VALUE

Swallow Request

Figure 3-3: Structure of a Create-Token Message

Thus, when the repository receives a multiple packet create-token message, it does not
have to wait for all of the packets to arrive before it can start writing the fragments of the
object onto the disk. Instead, it can write the fragment contained within each packet as the

packet arrives, and then can discard the packet since it has been processed.

3.4 Global State

There is a small amount of data that describes the repository’s global state. Most of this
data consists of the logical mappings of the various types of storage into the physical
devices. The remaining data consists of values such as the last unique identifier that the
repository assigned to an object or commit record, and data that describes certain recovery

events. The nature of this data will become clearer by the end of the chapter.

38

3.5 Qverview of Storage Organization

The repository supports several kinds of storage. Two are kinds of atomic stable storage,
one is a kind of careful storage, and the remainder of the repository’s storage is volatile. See

Figure 3-4.

Stable Careful Volatile
V8 | X
State X
Cache » X
CHS X]
Temporary X
Page Buffer X

Figure 3-4: Storage Classification

Atomic stable storage, (henceforth referred to as stable storage), is secondary storage that
we ‘assume will never lose a value stored there. In practice, this means that stable storage
contains multipe copies of these values at all times. These copies are organized so that it is
unlikely that any one failure (such as a disk head crash) will destroy all copies of the same -
value. Furthermore, the repository’s stable storage is atomic ’becaixse a write to stable
storage fails in only two ways - having made no change or having fcompleted correctly. In
general, the read and write operations on stable storage are time consuming since the
muitiple capies must be accessed and checked to be correct. The two types of stable storage
in the repository are characterized as append-only and reusable stable storage. Append-
only stable storage is like a tape since data is always writen at the end. Also, no data is ever
overwritien in append-only stable storage. ‘On the other hand, in reusable stable storagé,

modifications made to the same data are rewritten in place.

Careful storage, is simply secondary storage in which there 'is'only" a single copy for each

value stored there (not multiple copies as in stable storage). Thus, careful storage has faster

39

data access time than stable storage. Generally, the data in careful storage survives crashes,
but it is not guaranteed to survive any crashes (as is guaranteed in stable storage). However,
in the repository, the loss of data in careful storage does not cause failure as long as this loss

can be detected, since the data can be recovered from the data in stable storage.

Finally, volatile storage is primary storage that is used as a temporary cache for the long
term information stored in stable and careful storage. Volatile storage has a much faster
access time than either type of secondary storage, but all data that it contains is lost when

the repository crashes.

Thus, all data that is needed to represent the externally visible state of the repository is
stored in stable storage so that if the repository crashes, none of this data will be lost. The
versions of the objects and commit records are kept in append-only stalile storage, called
Version Storage and the global state data is kept in reusable stable storage, called State

Storage.

The rest of the repository’s data, which is redundant of information in stable storage or
which does not have to be recovered at all after a crash, is kept in careful or volatile storage.
Since the object header table would be too time consuming to recover in its entirety, it is
kept in careful storage, called Object Header Storage. Then, if the repository crashes, only a
small part of the table, if any, is lost. Thus, careful storage is used to improve the
repository’s performance by eliminating excessive accesses to stable storage while reducing
the cost of recovery that would be required if the data were maintained in volatile storage.
The commit record table, though, is smaller and less dense than the object header table, so it
can be reconstructed much more easily after a crash. Therefore, it is only maintained in
volatile storage. Finally, the messages that are pending when the repository crashes do not
have to be recovered at all, since they are processed atomically and the protocols allow for

incomplete mesages. Thus, message data is also kept only in volatile storage.

The remaining sections describe in detail the logical mappings of the repository’s
secondary storage (Version Storage, State Storage and Object Header Storage) into the

physical devices as well as the methods used to encache in volatile storage the data that is

40

kept in secondary storage.

3.6 Version Storage

The main form of stable storage that the repository supports is Version Storage (VS)
which contains the versions of objects and commit records as well as two other types of data,
called checkpoint entries and epoch boundaries. (These checkpoint entries and epoch
boundaries contain data that is used for recovery and will be described in Chapter 4).
Abstractly, VS can be viewed as an infinite, append-only tape, but physica'ly, it consists of 2
sets of write-once optical‘disks.6 Each set is a backup for the other one in case some of the

data is destroyed.

Since VS is append-only storage, it is always increasing in size. Thus, only a fraction of it
can be kept on line. VS is managed in such a way that the current versions of objects and
commit records remain in the portion of VS that is online. This online VS consists of the
{wo or more most current disks of VS. The most current disk is called the high space and
the oldest is called the low space. Online VS is managed as a circular buffer [SVOB80], as
follows. When the high space is filled up, the current low space disk goes offline and a fresh
disk ‘becomes the mew high space. Furthermore, whenever a version is accessed in the low
space, it is copied into the high space. Thus, when the current low spacé disk goes offline,
the version will stifl remain online. |

Al data is stored in VS in units called version images. There are 5 different types of
version images: simple, root, fragment, boundary and-checkpoint version images. A version
image consists of'size, type and data fields, and resides wholly within one page of V5. A
version of .ah -obiect-or commit record that is small enough to fit-on a single disk page is
stored as a'simple version image, as illustrated in ‘Figure 3-5. :However, a version that is
larger than-a single ‘disk page needs a superstructure that points to all of the pieces of the

version that are interspersed throughout several pages. Therefare a large version is stored as

6Im'l~ially,-magneticndisks will be used 1o simulate optical disk. They will be.used in a write-oncc manaer,
however.

a structure consisting of some number of fragment version images, which make up the
version, plus a root version image, which has pointers to all of the fragments, as illustrated
in Figure 3-5. A large version is written to the disk atomically by writing the root version
image after all fragment version images are written and then, only linking the root into the
appropriate sequence of versions. Thus, fragments of incomplete version images are
ignored since they are unreachable. Finally, boundary and checkpoint version images look
just like simple version images, except for the data field, which consists of an epoch

boundary or checkpoint entry, respectively.

Several version images may be packed onto a VS page, which is the unit of physical reads
and writes. In order to pack these version images as efficiently as possible, several unwritten
VS pages are encached in a page buffer in volatile storage (recall that the disks are write-
once only). Since VS is stable storage, it does not return the VS address of a version image
(i.e., confirm the write to the repository process that initiated the writc) until both copies of
the VS page (on which the verison image resides) are written correctly from the buffer onto

the two disks.

An unwritten VS page in the buffer is written out to the disks when either of the

following three conditions holds true:

1. The page is full - Once a page is full, there is no need to wait any longer to write
it out since it is only left unwritten in order to pack version images in it as tightly
as possible. o

2. The page has been in the buffer for some extended period of time since the Sirst
version image was added to it - Since a repository process cannot confirm
external requests (that modify commit records or objects) until it receives a
confirmation from VS and in turn, VS cannot confirm the write until the VS
page is actually written on the disks, partially full pages are written out to the
disks after a predefined time-out period. In this way, when the repository is not
being heavily utilized, external requests will not remain unconfirmed for too
long.

42

sjze
type = sjmple ‘ . . _
FIEEs e size = sizg of version image
ot OID = unique identifier of object
8 pt ¢ starting pseudotime of version
CBre?f CRfef = pointer {o version's commit record
VersionRef or commit recard representative
VersionRef = pointer ta previous version of object
Simple Version ‘ S — ~
size
" e = fagment
o
type = root size
- op ® type = fragment
o e - o iree—re—
CRref
Vet.sionRgf-'
size.
> 'type = fragment
gy
1 type. = fragment
Structured Version g

Figure 3-5: Simple and Structured Versions

Another unwritten VS page with a higher VS uddress is full and must be written out to
the disks - This ensures that no version image is written at a lower VS address
than any other version image to which it refers, and thus, prescrves the abstract
view of VS as an append-only tape. For example, in order for a process to
create a version image, vi2, with a reference in it to another version image, vil, it
has to know the VS address of vil. Since the process gets that VS address when
VS confirms that vil has been written, then when the process requests that vi2
be written, all pages with VS addresses less than or equal to that of vil will
alrcady have been written on the disk and therefore vi2 cannot be written in any
of them (VS disk pages are write once).

In order to actually write a VS page from the buffer, a copy is writen to the same
addressed page on each of two disks. After each copy is written out, it is read back to make
sure that the correct data was writtcn. Then, if a copy was not written correctly, it must be
rewritten (and reread). However, it cannot be rewritten on the same disk page because the
disk is write-once. Therefore, if either of the copics is written incorrectly, then both copics

must be rewritten on another pair of pages.

In addition to maintaining several unwritten pages in the buffer, several of the most
recently written or read VS pages are also encached in this page buffer so that if these
encached pages are read again within a short time period, the disks will not have to be
accessed. However, if a process wishes to read a version image on a page that is not in the
buffer, then the disks have to be accessed, as follows. First, one copy is read from the disk
and verified to be correct, using a checksum. [f that copy is correct, then the second copy
does not have to be examined. On the other hand, if that copy is incorrect then it must be

recovered from the sccond copy.

In order to implement this recovery, both copies of the page must be rewritten on a new
set of identical disk pages, as is done when the write operation fails. However, all réferences
to the version images on a page that has been recovered in this way would become invalid:
Thus, in order to preserve the validity of these refercnces, the repository maintains a map
from the bad pages to their replacement pages. Then, when a process attempts to access a

version image on a bad page, VS will find the recovered copies of that page, using this map.

Once a page is determined to be bad, it should never be mistaken for a good page. Thus,

the page mhs{ be made detectably bad forever. 1f VS is implemented using op:tical disks, as
originally planned. then pages can be made bad permanently by wri{ihgcn them a seobnd
time, obliterating any marginal data. However, if another type of disk is used, then some
other method, such as keeping a table of bad pages, would have to be devised in order to
make pages detectably bad forever.

3.7 State Storage

The second form of stable storaze that the repository supports is called State Storage,
which contains the data that describes the reposito[ry’sﬁglobal state. Physically, state storage
consists of a small amount of reusatle magnetic disk storage. It is stable due to the fact that
the global state data is duplicated at separate locations on disk that have independent
probabilities of decaying. In other words, it is not probable that a single crash can destroy
both copies of the data.’

The repository supports State Storage in addition to VS for the combined reasons that the
location of the global state cannot change and VS is write-once only. If the global state was
kept in VS, then every time it was modified it ‘W()u]sd., be written into a new location in VS.
This would mean that when the repos_ilory’ was booting itself after a crash, it would not
know exactly where to find this data because its location could not be hardwired into the
bootstrapping procedure. By supporting reusable stable storage, this problem is avoided.

In order to write a State Storage page, each of the copies is written and then read back (to
verify that the copy was written correctly). However, since writing a State Storage page
overwrites older copies of the global state, the copies must be written and read back
sequentially instead of in parallel, as in VS. Then, if the re_pository crashes in the midst of
writing one copy, there will still be another valid copy from which. to recover the data that is
contained on that State Storage page. Furthermore, the copies are always written in the

same order so that if a failure occurs in between writing the two copies (leaving both copies

7In order to be cven more reliable, the actual implementation of State Storage may keep 3 copies of all data.

45

valid but different), the repository will know which copy is current.

In order to read a State Storage page, both copies on the disk must be verified to be
correct and identical to one another before allowing any repository processes to examine the
page. If either one is bad, then the bad copy is recovered from the good copy. Further, if
both copies are valid but not identical, then the second copy is recovered from the first
copy, which is the current copy. It is not sufficient to verify the correctness of only one
copy, when reading a State Storage page from the disk, because the repository may have
previously crashed before writing tiie second copy. If the second copy is not subsequently
updated when read, then another w “ite of that State Storage page could fail and damage the
first copy, leaving no valid copy from which to recover. (The second copy would be too far
out of date to be of any use). Thus, when reading a State Storage page, it is necessary to

compare both copies and recover one, if necessary.

Since the global state data is read fairly frequently, it is encached in volatile storage to
eliminate the time consuming accesses to State Storage. Thus, the only time the disk has to
be accessed in order to read the global state is when the repository first comes into existence,
and then, whenever the repository restarts after a crash. On the other hand, since most of
the State Storage data changes fairly infrequently, if at all, it is kept current in State Storage
(that is, every time it is updated in the cache it is also written onto the disk). There are two
values, though, that change too often to be practically kept up to date in State Storage.

~Thus, they are kept current in the cache, but are only periodically updated in State Storage.
These two values are the VS write pointer, which indicates the current end of VS and the
value of the last unique identifier that the repository assigned to an object or commit record.
The write pointer is only updated in State Storage every N time its value changes, where N
is a predefined constant. Similarly, the value of the last uid (unique identifier) assigned is
only updated in State Storage every X! time its value changes, where X is another
predefined constant. The recovery of these two values after a crash will be described in the

next chapter.

46

3.8 Object Header Storage

Object Header Storage, or OHS, is reusable careful storage in which the object header
table is maintained. The repository keeps this table of object headers so thatb it does not
have to scan sequentially through VS in order to find the versions of objects. An object}
header provides direct mappings to the current version and token as well as a reference to

the token’s commit record.

Even though object headers are not required in order for the repository to function
correctly (the repository can always resort to a sequential search throigh VS) they are
necessary in order for the repository to function éfﬁciently. Therefore, the object header
table must be organized so that the object headers are efficiently accessible. The two main
alternatives for the table structure were a B-tree or a hash table. A non-coalesced chain hash

table similar to the one described in [7] was selected.

This type of hash table was chosen for its simplicity of structure and ease of recovery, as
well as for its efficient search, insertion and deletion algorithms, The average search time of
the hash table is independent of the size of the table (providing that the table does not get
too fully while the average search time of a B-tree is directly proportional to the logarithm of
the table size [7, 4]. Also, the fundamental unit of a linked list in the hash table (a bucket)
contains only a single object header, whereas that of a linked list in the B-tree (a node) -
usually contains some number greater than one. Therefore, there is potential for losing
more information in a B-tree than in a hash table if a link is broken (e.g., when one of the
fundamental units gets lost or becomes obsolete after a crash). Finally, it is easier to
characterize the problems that can arise in the hash table as a result of a crash than in-a B-
tree. Therefore, the hash table was more easily adaptable to recovering itself in the

background as the repository fulfills requests.

The basic structure of the hash table is as follows. The OHS pages are divided into fixed
size units, each of which can accommodate a single object header. Each of these units is a'
bucket in the hash table and is uniquely identified by its OHS address. Further, only th‘ree
of the object header ficlds are relevant to the hash table: the OID, the delete flag and the
hash table link. The OID is used as a key in the hash table. Thus, a mathematical function

47

R R i) ot SR

is used to map or hash every OID to some bucket in the table. The bucket to which an
object header hashes will be referred to as its home bucket. Next, the delete flag is used to
indicate whether the object header is valid or has been deleted. Finally, the hash table link
is used to create linked lists of buckets, The remaining fields of the object header are

ignored by the hash table algorithms,

Even though only one object header can occupy a bucket at any given time, there exists
more than one object header (or more specifically, OID of an object header) that hashes to
each bucket in the table. Therefore, once a bucket is accupied, all other object headers that
are added to the tablc, whose home bucket is that bucket, are placed arbitrarily in other
empty buckets and linked together.8 The first bucket in each linked list is the one to which
all of the object headers in the othcr buckets hash, i.e., it is their home bucket. The linked

lists will be referred to as chains.

Figure 3-6 illustrates a page in the hash table to be used in examples throughout this
thesis. All figures that depict pages of the hash table will be of the same form but will show
only the contents of the pages and buckets that are relevant to the particular example.
There are four pages, A through D, in the hash table, each containing five buckets, The
object headers have OID’s of the form ohN, where N is the OID (an integer). Chains are
identified by the address of the home bucket. Also, the two states of the delete flag will be
represented by the letters V (valid) and D (deleted). The remaining fields within the actual
object header are not relevant to the discussion about the organization of OHS, so they will
simply be represented in cach bucket as an X mark. Finélly, the hash function selected for

the examples in this thesis is OID modulo 20.

The three hash table opcrations are search, insertion, and deletion. The search operation
finds the specified object header in the object header table. The insertion operation is used
for adding newly created object headers to the object header table. Finally, the dcletion

operation simply climinates an object header from the object header table.

8The choice of buckets is not completely arbitrary. The algorithm for finding a free bucket first looks for a
bucket on the same page as the home bucket since in this way, most linked lists will be constructed so that they
are fully contained within a page and thus, the amount of paging that must be done will be minimized.

48

Bucket # Object

Header
Data
Detets
Flag
Link

v \ 4

lo |

I 3

12

3

{4

Page A

Figure 3-6: A Representative Hash Table Page

The search-algorithm is as follows:
1.‘Hash'the given object-header to the home bucket, X.

2.1f bucket X is empty or contains an object header whose home bucket is not
‘bucket X ‘(ie., ‘hashes to another bucket), ithen terminate unsuccessfully,
‘Otheérwise continue searching down chain X: until the requested object header is
foundorthe ¢nd of the chain is reached.

3. 1f the end of the chain is reached then terminate unsuccessfully. Otherwise,
retumn'the object header that was found.

An example:

Suppose pages C and D of the hash table are as shown in Figure 3-7 and we wish to find
oh37. Oh37 hashes to bucket 17, so we first check to see if bucket 17 contains oh37. Since it
does not, we hash the object header in bucket 17 to see whether bucket 17 is the home
bucket for that object header. Since it is, we follow the links through successive buckets in
chain 17 and find oh37 in bucket 15.

10 15| oh37 \

| ®
<

n 16

12| oh42 DAL N 17 | oh1i7 V|04

13 > 18| oh&7 D | @

14 | oh82 \" 0-1 19

Page C Page D

wJ

Figure 3-7: Initial State of Pages Cand D

50

The insertion algorithm is as follows:
1. Perforni the search operation on the object headet.

2.1f the search terminates successfully, finding an older version of the object |
header it bucket B, then insrt the updated version of the object header in B
and terminate. Otherwise, hash the object header to the home bucket, X.

3. Do vite of the following:

a. If bucket X is empty, or contains a deleted object header whose home
bucket is bucket X, the1 simply insert the new object header into bucket
X. .

b. If bucket X contains a v ¥id object header whose home bucket is bucket X,
then check for another bucket on chain X that contains a deleted object
header. If one exists then insert the object header there. Otherwise, find
another avaitable bucket, Y, insert the object header in #, and.add it to the
end‘of chain X,

c. I bucket X contains an object header whose home bucket is'not bucket X,
then bucket X ‘must be part of another chain, beginning with bucket
Z. Thus, it is necessary to move ‘the object header: presently in bucket X to
'some other bucket. I #here is a bucket, D, on chain Z that contains a
deleted object header, then move the object header in bucket X to bucket
D. Otherwise move'the object'header in bucket X to a free:bucket, F, and
reéroute chain Z through bucket F. Once the old object header has been
removed from bucket X, insert the new object header:there.
The followirig is an example of three successive insertions that are executed on the hash
‘table shown in Figure 3-7. Fach inseition demonstrates one of the branches that can be

taken in Step 3 of the insertion algorithm.,

‘Suppose we ‘wish to insert ohl2 into the hash table. We perform the search through
‘chain12 in page C (Figure 3-7) and it terminates unsuccessfully. ‘Next we check the object
“header (oh42) in bucket 12 and discover that bucket 12 is its home ‘bucket but it is marked _
deleted. Therefore we execute step 3a of the insert algorithm by discarding oh42 and
inserting 6h12:n its place in bucket 12. See Figure 3-8 for the state of page C after this
insertion is done.

51

o AR RS e

HO

11

12| oht2 vie|

1o,

11| ohg2 | v.—l

Page C

Figure 3-8: Page C After Oh12 is Inscited

Now, suppose we wish to insert oh77 into the hash table. We cannot place it in bucket 17
in page D (Figure 3-7) because it is the home bucket for the object header that it contains
and that object header is still valid, Therefore we look for another bucket already on the
chain that contains a deleted object hq,adet Bucket 18 satisfies these requirements so we
. execute step 3b of the insertion algorithm and insert oh77 in bucket 18 in place of oh57.-
Figure 3-9 shows what page D of the hash table llooks like after this insertion is done.

- Finally, supppose we wish to insert oh34 into the hash table. We have to execute step 3c
of the insertion algorithm because bucket 14 in page C (Figure 3-8) is not the home bucket
for the object header that it contains, oh82. Therefore, we move oh82 to another free
bucket, bucket 10, then reroute chain 12 through bucket 10 and finally, insert oh34 into -
bucket 14. See Figure 3-10 for the final state of page C after this insertion is done.

The deletion algorithm is as follows:

1. Perform the search operation on the object header.
2. If the search terminates unsuccessfully (i.e. the object header is not found) then

terminate unsuccessfully. Otherwise change the state of the bucket in which the
object header was found to deleted.

52

15| oh37 v fj
16

17 | oh117 v %D
18] oh77 v | @]
19

Page D

Figure 3-9: Page D After On77 is Inscrted

10 oh82 ><V 9'“_1

12| oh12 V@]

13

14 1 oh34 v 0‘1
Page C

Figure 3-10: Page C After Oh34 is Inserted

53

An example (using the hashtable shown in Figure 3-9):

Suppose we want to delete oh37. We find it in bucket 15 and simply mark it deleted as

shown in Figure 3-11.

15| oha7 D .——l
16
:P oh117 Y &P
18| oh77 vVieT—
19

Page D

Figure 3-11: Page D After Oh37 is Dcleted

When an object header is deleted it is not removed from the bucket in which it resides
nor is the bucket removed from the chain of which it_ is a part. These actions are delayed
until some time in the future when another object header has to be inserted and an empty
bucket is needed. Then, if the deleted bucket is part of the chain to which the object header
to be inserted belongs, the object header can be inserted into the bucket in place of the
deleted object header without making any changes to the chain structure. (This was the case
in the first two examples of insertions). This eliminates the work involved in restructuring
the chain, for both the deletion and insertion algorithms. At worst, if a bucket is needed to
hold another object header that does not belong in the chain of which the bucket is a part,

then the restructuring has to be done anyhow.

The dcletion algorithm delays the actual removal of the object header from object header
table in order to alleviate the following problem. Since pseudotimes do not directly
correspond to real time, read requests for an object may arrive after that object has been

deleted with respect to real time but before the object has been deleted with respect to

54

pseudotime. Thus, it is hoped that in most cases where this situation arises, by delaying the
actual removal of the object header from OHS, the object header will still be available so
that the repository does not have to scan sequentially through VS in order to find the

appropriate version,

In OHS, like in VS. the fundamental unit of read and write is actually a page. Also,
several of the most recently read and written OHS pages are encached in the page buffer in
volatile storage. However. unlike in VS, an object header does not have to be written from
the page buffer to the disk before a vepository process can confirm an external request, since

data may get damaged even if it has oeen written on the disk (OHS is not stable storage).

Furthermore. the object header table may not be modified atomically, s'nce the insertion
algorithm sometimes modifics object headers on several pages, which arc 1ot written Lo the
disk in any related order nor all at once. The object header table is not modified atomically
because many independent processes may be concurrently inscrting object headers on the
pages in the buffer and thus, there may be no instant in time (except for when the repository
is idle) when all of the object headers on a page or set of pages are consistent and hence,
atomically writeable.

Therefore, a page that has been modified in the buffer is actually written out from the
buffer to the disk when one of the following conditions holds true:

1. The page is the least-recently-used page in the buffer and another page has to be

brought into the buffer - The OHS page buffer replacement scheme is a Least-
Recently-Used scheme.

2. An extended period of time has passed since the page was modified in the buffer -
This prevents pages that arc frequently being aceessed from getting too obsolete
on the disk.

3. The repository has no more outstanding requests - At this time, all pages in the
buffer that haven't been written to the disk since they were last modified, are
written. This brings OHS to a consistent state.

However, it would be very rare for the repository to crash in the midst of a non-atomic

inscrtion operation, for the following reasons. First, the insertion algorithm is only executed

when object headers arc initially created. Whenever they are modificd, the repository

55

process requesting the modification would have obtained the OHS address of the object
header when it read that object header. Thus, unless the object header was moved, the
insertion operation wouldn’t have to be executed since the object header could be modified
directly, using the OHS address. Second, most chains are completely contained within a
single page, so even if the insertion algorithms modifies several buckets on the chain, the

object header table will still be updated atomically (each page is written atomically).

Thus, in the few cases where a crash causes the object header table to be updated non-
atomically, the repository’s recovery mechanisms will restore consistency within the object

header table. This, and all other recovery will be described in the next chapter.

56

Chapter Four

iiccovery of the Repository

In order to recover from a crash, the repository must restore its global state. as well as the
state of the objects and commit records. to a state that is current with respect to that of
Swallow as a whole. On the other hand, the repository docs not have to recover the
messages that were left pending when it crashed. for reasons that will be described in this

chapter.

Since some of the global state da.a consists of recovery information that has not yet been
described, the discussion of the global state data’s recovery will be deferred until Section
4.3, at which point the recovery information will have been described. But first, Sections 4.1
and 4.2, respectively, discuss how the internal structure of the objects can be damaged by a
crashi and also describe the individual recovery mechanisms that are used to implement
their recovery. Then, Section 4.3, presents the recovery manager, which coordinates all
recovery activitics, This section cxplains how the global state data is recovered as well as
how the various recovery mechanisms are integrated into a coherent recovery process that
interfaces with the processes that are satisfying external requests, concurrently. Finally,

Section 4.4 explains why it is unnecessary to recover the pending messages.

4.1 Recovery of Objects

Due to the fact that VS is stable storage, and thus, maintains all of its data redundantly,
all object versions that are confirmed to have been written there will be found there after a
crash. [furthermore, all incomplete versions are ignored. Thus VS, in itself, contains the
current state of all objects. Were it not for a desire to improve performance, elaborate
recovery mechanisms would not have been neceded. However. to find the most current

version of an object in VS requires a lincar search, which would perform very poorly. To

57

overcome this performance problem, the repository accesses the objects’ versions in VS
through the object header table, which is maintained in OHS. Since OHS is only carcful
storage, a crash may damage the structure and/or contents of the object header table. Thus,
it is this object header table that must be recovered in order for the objects to be consistent

with the gencral state of Swallow.?

The various types of structural damage to which OHS is vulnerable are merged. cyclic
and incomplete chains (Section 4.1.1). The repository uses a modified set of hash table
algorithms (Section 4.1.2) in order 15 detect and correct these damaged chains. On the other
hand, the contents of the object he:.der table, that is the actual object headers, get damaged
by becoming lost or obsolete (Scctinn 4.1.3). Most of the information coniained in these lost
and obsolete object headers can be recovered from the data in VS, as described in Scction
4.1.4. Furthermore, the repository uses two mechanisms, recovery epochs and checkpoint
epochs (Scctions 4.1.5 and 4.1.6, respectively), in order to facilitate the recovery of these lost

and obsolete object headers.

4.1.1 Merged and Cyclic Hash Table Chains

When an object header is inserted into the object header table, several buckets may be
modified. If these buckets are not all located on the same disk page then ail of these
modifications may not be atomic, since the OHS page buffer management scheme docs not
write the separate pages out to the disk in any particular order nor all at once. [f it was
possible to write out the pages so that each bucket is written out before any other buckets
closer to the end of the chain then all problems except for incomplete chains would go
away. However, since many processes may be concurrently accessing buckets on different
chains but on the same OHS pages, it may not be possible to preserve any such order.

Furthermore, since the cost of the OHS operations (and thus, the repository’s response

9Nolc that implementing OHS as atomic stable storage would not really alleviate this problem. The lost
object header problem would go away but there would still be a problem of inconsistency between OHS and VS,
since every object history operation invoives touching both. The cost of this alternative is discussed in Chapter
5.

58

time) would increase if the concurrency of accesses to buckets on a single OHS page was
climinated. the OHS page buffer docs not ensure atomicity of insertions of object headers
into OHS. This non-atomic insertion of object headers is manifested after a crash in one of
three types of malformed hash able chains: merged, cyclic, or incomplete.

Merged Chains:

A c¢hain is considered to be merged when its Tast bucket contains a link to a bucket that is
part of another chain. In Figure 4-1. chain 1 is merged with chain 5. One way in which
choin 1 could have become merged with chain S is as follows.

Assume that the initiad state of pages. in both the buffer and on the disk, is as illustrated
in FFigure 4-2 and that oh5 is to be inserted. In order to insert ohS, oh1n1 would have to be
moved o another empty bucket and chainl would have to be rerouted through the new
bucket. Figure 4-3 show how pages A and B would appear in the page buffer after the
inscrt was done. However, if the repository crashed before page A was written on the disk
but after page B way written, then chain 1 would merge with chain 5 as originally illustrated

in Figure 4-1.

Stnce merged chains are longer than necessary, they tend to reduce the efficiency of the
hash iable algorithms. Furthermore, if a merged chain is not corrected before subsequent
operations modify it, then it may become merged with an additional chain cach time the
repository crashes, forming a single long chain. Thus, when merged chains are not
corrected, the original benefit of a hash table is lost, since the efficiency of the algorithms is

reduced.

In addition, the longer the repository waits, the more difficult it becomes to fix a merged
chain. It is casy to fix a chain when it initially becomes merged because all of the buckets
from one chain are located at one end of the merged chain and those from the other chain
are located at the other end. Thus, only one link has to be modified in order to correct the
situation. However, as additional insertions and deletions are exccuted on the merged
chain, the buckets of the two component chains become interleaved, as shown in Figure 4-4.
Thus, it would be necessary to break several links and then relink the buckets preperly in

order e reconstruct two separate chains.

59

5] oh5 Vv .—-1
oht Vv \ 6
7
oh21 vied “~ 8
9
Page A Page B

Figure 4-1: A Merged Chain

5| oh101 v .——1
oh1 v \ 6
7
oh21 V|ed 8
9
Page A PageB

Figure 4-2: Pages A and B Before Insertion of Oh$

5| ohs v .—~1

oh1 v \ 6

7
oh21 Ve 8
oh101 v ."'l 9
Page A Page B
Figure 4-3: Correct Insertion of OhS
5 oh5 V @
oh1 v ‘\\ 6 ’

‘ 7 . :
oh21 v ‘q‘/ 8| ohes ’ V. .“"1
ong1 | X|v o—wr e A

Page A PageB

Figure 4-4: Merged Chain with Interleaved Buckets

61

Cyclic Chains:.

A cyclic chain contains a bucket whose link points back to another bucket (also in that
chain) that is closer to the beginning of that chain, as illustrated in Figure 4-5. Cyclic chains
are undesirable because they prevent the hash table algorithms from terminating. In other
words, these algorithms become infinite loops when executing on cyclic chains because they

never encounter a null chain link, which signals that the end of the chain has been reached.

0 5| ohes ALN
1 oh21
2
3 oht
4
Page A

Figure 4-5: A Cyclic Chain

For example, assume that the state of pages A and B in the buffer and in OHS is as shown

in Figure 4-6, and that the following sequence of operations is executed.

62

0 5-oh1>0t7 vr—l
1] oh2t ‘AL N , 6 B
2 71
3 oh! V | @ 8
4 9
Page A : Page B

Figure 4-6: Pages A and B Before Cycle was Created

1. Ohl is deleted from chainl.
2. Oh101 is deleted from chainl.

3. Oh65 is inserted in chain 5. (In doing so, a collision occurs in buckets.
Normally, oh101 would have 10 be moved to another bucket and chain 1
rerouted through it, but since ohl was deleted, this is not necessary. Thus,
ohl01 is simply removed from the table, oh65 is inserted in bucket 5 and chain 1
is modified so that it no longer includes bucket 5)

4.0h105 is inserted in chain 5. (Again, a collision occurs but this time with an
object header that belongs on the chain. Therefore, oh105 has to be inserted
into another free bucket. Assuming that bucket 3 is the bucket that is found to
be free [ohl is deleted and therefore can, be removed from the. bucket], oh105 is
then inserted in bucket 3, which is then added to chain 5.)

Figures 4-7, 4-8, 4-9, and 4-10 show the pages as they would appear in the buffer after
each step is executed. Now, if a crash occurs at a point when page A (on the disk) is still in
the same state as before any of these operations were executed yet page B has becn written
out to the disk in the final state, then chain 1 becomes merged with chain 5, and the

resulting chain contains a cycle, as previously shown in Figure 4-5.

When a cycle is initially created in a chain, it is always accompanied by the merging of

63 .

' 5| oh101 v r—l
oh21 VAL N 6
7
oh1 D (@+—-— 8
N
| Page A _ Page B

Figure 4-7: Deletion of Ohl

5| oh101 X0 .—1
oh21 AL N 6
7
oh1) D {® ' 8
9,
Page A Page B

Figure 4-8: Deletion of Oh101

oh21

5| ohes AV ir—_:l

oh1

Page A

Pagé 8

Figure 4-9: inscrtion of Oh65

oli21

| ohtos

Page A

Pige B

Figare 4-10: Tnsertion of Oh165

65

two chains, as demonstrated in the previous example. Therefore it would seem that in order
to detect a cyclic chain, one would simply check for a merged chain. However, this
detection procedure would not catch all cyclic chains if they were not always corrected
before allowing subsequent operations to modify them. For example, suppose that oh27 is
to be inserted in the cylic chain illustrated in Figure 4-11. Since bucket 7 is not oh81's home
bucket but is 0h27's home bucket, ch81 must be removed from bucket 7 and oh27 must be
inserted in oh81's place. Furthermore, if possible, oh81 should be més)cd to another bucket
on chain 1 that contains a deleted object header. Since bucket 12 is on chain 1 and contains
a deleted object header, oh81 is inszrted there after the deleted oh72 is removed. Finally,
oh27 is inserted in bucket 7 and chain 1 is rerouted around it. The final stale of pages A, B,
and C is shown in Figure 4-12. Sit cc there is no merged chain anymore, the cycle would
not be detected by the simple detection procedure that was proposed above. Thus, as is the
case with merged chains, it is advantageous to correct the damage in cyclic chains before
allowing further operations to modify it.

Incomplete Chains:

An incomplete chain is one in which the tail end of the chain is unaccessible, that is, the
last reachable bucket in the chain contains a pointer to an empty bucket or a bucket on a
damaged page.10 For example, one way in which an incomplete chain could be created is as
follows. Assume that the initial state of the pages is as shown in Figure 4-13 and that oh8l is
to be inserted. In order to insert oh81, it is necessary to find a free bui:ket, insert oh81 in it
and then add the bucket to chain 1. However, if the only free bucket is bucket 5 and the
repository crashes before writing page B but after writing page A in OHS, then the chain

becomes incomplete, as shown in Figure 4-14.

loThus, incomplete chains are caused not only by non-atomic insertions of object headers, but also by bad
OHS pages.

66

oht [X|v e 6 1
f 7| ohst 1y | o————pliz]| oh72 pley
oht04 2L & 113
14
Page A Page C
A____-a/
Figure 4-11: Pages A, B and C Before Oh27 is Inserted
5 10
oht
oh 101
Page A

Figure 4-12: Pages A, B and C After Gh27 is Inserted

67

oht v \ 6

oh21 VAL o

"7

Page A Page B

Figure 4-13: Pages A and B Before Oh81 is Inserted

5
oh1 \' \‘ 6
> ;
oh21 | A|V {6 8
9

Page A PageB

Figure 4-14: Pages A and B After Crash

68

4.1.2 A Moedified Set of Hash Table Algorithms

Here we describe simple modifications (o the insertion. deletion and search algorithms
that make the hash table sclf-recovering with respect 1o the structural damage that has just
been described. First. suaightforward consistency checks are incorporated into the
algorithms in order o detect delects in a chain before any operations modify the chain.
Then. if a defect is discovered. a simple correction procedure is applied in order to return

the chain to a state in which it can be safely operated on.

In order to simplily the explanctions of the modified algorithms, a defective bucket is
defined to mean a bucket with one of the following properties:

1. The bucket is supposed o cor tain an object header but instead, is empty.

2. 'The bucket contains an objec header whose home bucket is not the first bucket
ol the chain o which itis linked, and therefore, does not belong in that chain.

3. The bucket is focated on a bad OHS page. and thus, cannot be accessed.

In the modified algorithms, every chain that is touched is checked to ensure that none of
its buckets are defective. I a defective bucket is found, then the link of the preceding
bucket (which points to the defective bucket) is changed to nil, thereby separating any
mcerged chains, breaking any cycles before the hash table algorithms become trapped in
them. and repairing the improper link in any incomplcete chains.

More specifically, the modified search algorithm is as follows (note that all of the changes

and additions are italicized):

1. Hash the given object header to the home bucket, X.

1892

A bucket X is empty or contains an object header whose home bucket is not
bucket X, then teriminate unsuccessfully, Otherwise, continue scarching
through chain X until either the object header in question is found , a defective
bucket is found. or until the end of the chain is reached.

3.1 the end of the chain is reached then terminate unsuccessfully. If a defective
bucket is found then change the link of the preceding bucket to nil, and terminate

unsuccessfully. Otherwise return the object header that was found.

"The search algorithm only checks the buckets that it touches during its normal course of

09

searching. In other words, when the search algorithm finds the object header in question, it
terminates at that point, instecad of continuing to check the remaining buckets towards the
end of the chain. Any errors that are located further down the chain can be detected and
corrected just as-easily by the next operation that touches the final part of the chain, since
the search algorithm does not modify the chain.

Next, the modified insertion algorithm is as follows (again, all changes and additions are

italicized):
1. Perform the search operation on the object header.

2. If the search terminates suc:essfully, finding an older version of the object
header in some bucket B, then insert the updated version of the object header in
B and terminate. Othcerwise, hash the object header to the home bucket, X. Do
one of the following:

a. If bucket X is empty, or contains a deleted object header whose home
bucket is bucket X, then simply insert the new object header into bucket
X. '

b. If bucket X contains a valid object header whose home bucket is bucket X,
then check for another bucket on chain X that contains a deleted object
header. If one exists then insert the object header there. Otherwise, find
another available bucket, Y, insert the object header in it, and add it to the
end of chain X, ‘

c. If bucket X contains an object hcader whose home bucket is not bucket X,
then bucket X must be part of another chain beginning with bucket
Z. Thus, it is necessary to move the object header presently in bucket X to
some other bucket. Starting with bucket Z, search down chain Z until
either a defective bucket is found, a non-defective bucket containing a
deleted object header is found, or until the end of the chain is reached. If
a non-defective bucket, D, containing a deleted object header is found,
then move the object header in bucket X to bucket D. If a defective bucket
is found then change the link of the preceding bucket to nil, and continue as
if the end of the chain was reached. If the end of the chain is rcached, then
move the object header in bucket X to a free bucket, F, and reroute chain
Z through bucket F. Then, once the old object header has been removed
from bucket X, insert the new object header there.

The insertion algorithm does not need to explicitly include a consistency check for chain

70

X because. as its first step. it exccutes the search algorithm (vhich checks for
inconsistencies) on chain X, On the other hand, it does have to check through the buckets in
chain Z. In fact, every bucket in chain 7 must be checked. regardless of the relative position
of bucket X in the chain (unlike the consistency check performed within the scarch
algorithm). "The reason for this is that chain 7 is to be modified in such a way that may
make a cycle invisible to the current cycle detection procedure. as was demonstrated on

page 63.

This might Tead one to believe that when performing an insertion, the check performed
mmplicitly within the search algorithm on chain X is not sufficient because chain X may still
contain a cycle when the insertion algorithm alters it. However, it is sufficient because if a
bucket is found to contain the object header before the end of the chain is reached, no
structural changes will be made to the hash table since the object header will only be
reinscrted in the same bucket. 'Thus, since nothing will be done to disturb any cycles or
merges further down the chain, the next operation that exceutes on the chain will still be
able to detect any inconsistencics. In addition, if the object header is not found to exist
alrcady in some bucket, then the scarch algorithm will have checked through the entire
chain in the process of looking for the object header and will have corrected any
inconsistencies that it found. For these reasons, it is not neccessary for the insertion

algorithm (o include an explicit consistency check for chain X.

Furthermore, since the deletion algorithm does not make any structural changes to the
hash table, it does not have to be modificd at all. Thus, since it is comparable to the search
algorithm in its requirements for error detection and correction and includes the search
algorithm as its first step, the chain that contains the object header to be deleted will be

implicitly checked and corrected.!!

H'["hc algorithm for finding a free bucket has not been described in detail because it searches through the disk
pages in some optimum order with respect to disk access time and is fairty implementation specific. Even
though it does not use chuaining to guide its scarches for buckets that can be freed up, whenever it actually
removes a bucket from a chain, it must do a consistency check on the entire chain (as is done in the insertion
aleorithm) and break the chain if any defective buckets are detected. In this way, it will not modify a cyclic
chain in such a way that would make the cycle transparent (o the simple detection procedure.,

71

Consider once again, the chain in Figurc 4-11 on page 67. 1t is a merged chain consisting
of chains 1 and 12. and also contains a cycle. I the insertion of oh27 had been done using the
modified algorithms instead of the old ones described in Chapter 3. then the cycle would
have been broken and the insertion would have proceeded properly. First, the scarch
algorithm would have terminated unsuccessfully. Thus, oh81 would have been moved and
its chain would have been rethreaded through the new bucket. In the process. cach object
header in chain 1 would have been checked in order to ensurce that its home bucket was
bucket 1. However. bucket 12 would have been found to contain oh72. Since oh72's home
bucket is bucket 1. the link from Fucket 7 to bucket 12 would have been changed to nil.
Then, once the two chains that were merged had been separated and the cycle had been
broken, as illustrated in Figure 4-15, oh81 would have been moved to another free bucket
(since there were no buckets alreadr on chainl with deleted object headers). Finally, chain
I would have been rerouted through the bucket containing oh81 and oh27 would have been
inserted into bucket 7. forming a new. separate chain, as shown in Figure 4-16. Note, that
cven though the cycle was broken. chain 12 and chain T werce still left merged at a second
link between bucket 12 and bucket 3. 1t was not critical to correct this merge during the
insertion of oh27, since the bad link would be broken the next time an object header was

inserted in chain 12,

All other examples that were given in Section 4.1.1 would also have worked correctly if
the modified algorithms were used. Since the changes made to the algorithms for searching
and inserting object hieaders in the hash table ensurce that the internal structure of the table
is always correct or detectably incorrect, crashes cannot alter the behavior of the hash table
algorithms. In other words, they cannot decrease the efficiency of the algorithms nor can

they prevent them from terminating.

4.1.3 Obsglete, Lost and Luplicated Object Headers
There are two ways in which the object header table can be damaged, making it
inconsistent with the current stale of the object versions in VS, First, an object header can

become obsolete if it is modificd in the page buffer but a crash occurs before the page is

5 10
oht V| 6 11
/ 7 | oh8t 12| oh72
ohi101 v {8 13
14
Page A Page C
__4-'—"""’,
Figure 4-15: Separation of A Merged Chain
5 0
oht ALN 6 11
7| oh27 12| oh72 D | e
oh101
Page A

Figure 4-16: Pages A, B and C After Insertion of Oh81

13

written out to the disk in the modified state. Even though the object header appcars to be

valid, it contains out of date information about the object.

Second, an object header can get lost if a failure causes the OHS page on which it is
located to go bad, or a failure occurs before all pages that have been modified by the
insertion algorithm have been written from the buffer into OHS. For example, consider

chain 1 in Figure 4-17 and suppose oh66 is to be inserted in the hash table.

0 5 10
1| oht V|@1T———| 6| oh21 ‘ V|eT——» |1 oh41 v .——l
2 7 i | 12
3 8 13
4 9 14
Page A Page B Page C

Figure 4-17: Pages A, B and C Before Oh 66 is Inserted

Before inserting oh66, oh21 has to be moved to another bucket and chain 1 has to be
rerouted through that new bucket. The final state of the pages in the buffer, after the
_ insertion is correctly executed, is illustrated in Figure 4-18. Now, suppose page B is written
on the disk in its new state but the repository crashes before page A is written out. Both
oh21 and oh41 become lost by virtue of the fact that they are no longer linked td the chain
in which they belong, as shown in Figure 4-19. The normat search procedure will not find

them because it will terminate after searching through buckets 1 and 6.

74

5 10
ol v ied oha1 v r*l ,
oh21 Vala
Page A Page C
Figure 4-18: Correct Insertion of Oh66
5 10
oht V | @t—p| 6 | ohe6 v 0—-1 11| oha1 v 0—-1
7 12
8 13
9 ' r‘*
Page A PageB PageC

Figure 4-19: Pages A, B and C After Crash

75

4.1.4 Recovery of Lost and Obsolete Object Headers

In order to recover a lost or obsolete object header. the repository must restore the
current version reference. the token reference. the commit record reference and the end
pscudotime. First, the three references can be determined from the current version or token
in VS, as follows. The repository scarches sequentially backwards through VS from the VS
write pointer until it finds a simple or root version image for the corresponding object. This
version image will cither be the current token, an aborted token or the current version. In
order 1o determine which of three “tis, the repository must check the state of the commit
record that is referenced by the version image (assuming for now, that the commit record

has alrcady been recovered).

If the state of the commit record is UNKNOWN, then the version image is a token and
the three references in the object header (current version reference, current token reference,
commit record reference) should be set to the token’s VS address, previous version
reference and commit record reference, respectively. On the other hand, if the state of the
commit record is ABORTED, then the version image is an aborted token and the object
header's token and commit record references should both be set to nil. Furthermore, the
previous version referenced by the aborted token is the object’s current version so the
current version reference of the object header should be sct 1o point to that previous version
image. Finally, if the state of the commit record is COMMITTED, then the version image
is a version and there is no token. Thus, the three references in the object header should be

set to the version image’s VS address. nil, and nil, respectively (using the order above).

Now. the remaining value that the repository must restore in the object header is the end
pseudotime of the current version or token. The repository simply sets this ficld to the
pseudotime of recovery because that pscudotime is the carlicst possible pseudotime at
which it is guaranteed that no request has read the version or token. The exact, original end
pscudotime may have been even earlicr but cannot be casily determined by the repository.
Thus, the psceudotime of recovery is satisfactory since it still ensures that all atomic actions
are properly synchronized in their accesses to the object even though some atomic actions

may be aborted unnecessarily due to the arbitrary extension of the end pscudotime. Section

76

4.3 will discuss how the repository determines the pseudotime of recovery.

Unfortunately. there are some complications to the recovery of Jost and obsolete object
headers. First of all. the repository cannot discriminate between an obsolete and current
object header, using only the information in the object header. Sccond ol all, the repository
docs not have any bound on its scarch through VS. when recovering a lost or obsolete object
header. Since VS is always increasing in size. it is not acceptable for the repository to do an
unbounded scarch every time it has 1o recover an object header, Thus, we need a means for
detection of obsolete object headers and an efficient means for correction of both obsolete
and lost object headers. For these reasons, recovery epochs and OHS checkpoint epochs

have been developed.

4.1.5 Recovery Epochs

A recovery epoch is the time period between two repository crashes. Each recovery
epoch is distinguishable from the others by its recovery epoch number, or REN, which is a
monotonically increasing number. Whenever the repository crashes and restarts, it
increases its REN, which it maintains as part of its global state. Also upon restarting, the
repository marks the beginning of the new recovery epoch in VS by writing (in VS) a
boundary version image, called a recovery epoch mark, or REM, which contains the new
REN. This REM enables the repository o determine in which recovery epoch any version

image was created.

Now, in order to determine whether an object header is current or obsolete, the
repository must check that the object header contains a reference to the most current simple
or root version image of the object in VS, 1f the object header does not contain a reference
to the most current version image of the object. then the repository must update the object
header. However, the repository only has to check cach object header once per recovery
epoch, since it marks the object header with its current REN after the first check. Thus,
whenever an object header is accessed. its REN is compared to the repository’s current
REN. If the two REN's are the same then the object header is current. Otherwise, the

object header is either obsolete or is still current as of the new recovery epoch but has not

71

been accessed since the last time the repository crashed. Therefore, if the REN of the object
hicader is not the same as that of the repository, then the object header must be certified to

be current.

The recovery manager, which wil' be discussed in Section 4.3, is responsible for certifying
the object headers, In order to certify an object header, the recovery manager scans
sequentially backwards through VS, scarching for a more current simple or root version
image of the object than the version image referenced in the object header. I it finds one,
then it updates the object header's references and end pscudotime and marks the object
header to be current by sctting the object header's REN o that of the repository. If the
recovery manager does not find one, then it just sets the object header’s REN to that of the

repository. since the object header is still current.

In order 1o certify a potentially obsolete object header, the recovery manager only has to
scarch through the portion of VS that is bounded by the REM of the current recovery

h'2 and the REM of the recovery epoch that corresponds to the object header’s REN,

epoc
The recovery manager docs not have to search through the current recovery epoch in VS
because if the object header had been accessed in this epoch its REN would be current.
Furthermore, the recovery manager does not have to scarch past the REM that corresponds
to the recovery epoch of the object header's REN since that REN indicates that the object
header was last certified to be current in that recovery epoch. Thus, if the recovery manager
does not find a version for that object by the time it reaches this REM in VS, then the object
header is still current, and the recovery manager only has to update the object header’s

REN.

The recovery manager's scarch through VS can be further minimized if recovery epochs
are artifically created whenever @/l OHS pages that have been modified in the buffer have
been written out to the disk (i.c., when the repository becomes idle), and if each REM s

marked as either a crash or non-crash REM. Using this scheme, the rccovery manager

12, . .
The current recovery epoch is (he new recovery cpoch that began when the repository restarted after the
maost recent crash.

18

would only have to scan through the non-crash recovery epoch immediately preceding the
crash recovery epoch. For example, suppose that the repository crashes during recovery
epoch 8 and upon restarting. writes a crash REM for recovery epoch 9 into VS, as shown in
Figure 4-20. H an object header with an REN equal to 5§ is accessed after the crash, then the
recovery manager only has to scan through recovery epoch 8 for a more current version
image because all OHS pages that were modified during recovery epochs 5, 6, and 7 are
known to have been written out by virtue of the fact ﬂml they all precede another non-crash

recovery epoch.

CRASH NON-CRA3H NON-CRASH NON-CRASH CRASH
REM #5 REM #6 REM #7 RI.M #8 REM #98
L
Recovery Epoch #5 Recovery Epoch #8

Figure 4-20: Recovery Epochs In VS

Thus, the benefits of recovery epochs are twofold. Each object header only has to be
checked for obsolescence once per recovery epoch and when it does have to be checked, the

search through VS for the current version image is bounded.

4.1.6 OHS Checkpoint Epochs

Even though rccovery cpochs exist, there is still a problem in bounding the recovery

manager’s scarch for the current version image of a lost object header, since there is no

79

object header to provide an REN. For example, if the OID of a supposedly lost object
header had never been assigned to any object because of a crash, then there would not be
any version images in VS with that OID and the recovery manager would have to search
through all of VS before it could finally figure this out. Similarly, if the object
corresponding to the lost object header is very old, then in order to find the current version
image, the recovery manager would have to scarch through a large portion of VS, In order
to prevent these unbounded scarches, a table that checkpoints the object header
information for cvery object that is current. is periodically created in VS thereby enabling
the recovery manager o bound its scarch through VS with the focation o " the most current
completed table. This table is called a checkpoint table and the period of time over which it

is created is called a checkpoint epoch.

Fach entry in a checkpoint table consists of the object’s OID as well as a reference to the
version that is current at the time the entry is created. Since the construction of a
checkpoint table may consume a large amount of time, it is not acceptablc for the repository
to temporarily discontinue scrvice in order to take a snapshot of the state of all object
headers at one specific point in time. Instead, the checkpoint table is created in the
background by a separate process, called the checkpoint manager while the repository
accepts and services external requests. Thus, a checkpoint table does not necessarily capture
the current state of every object header at one particular point in time but instead, it
captures some state that was current for each object header at some time during the
checkpoint epoch in which the table was created. Further, since the checkpoint table is
created in VS while versions are also being created, its entrics may be interleaved with the
versions. Thus, ali of the checkpoint entries are linked together in order to make it possible
to scarch through the version images of the checkpoint table exclusive of the rest of VS.
Finally, before the checkpoint manager starts to create a new table, it writes a checkpoint

epoch mark. or CEM, in VS in order to mark the beginning of the new checkpoint epoch.

The checkpoint manager has to be sure to include an entry in the checkpoint table for
every object that existed during that checkpoint epoch. However, the checkpoint manager

would not necessarily do so if it simply created a checkpoint entry for every object header in

80

OHS since some object headers may have been lost. On the other hand, it would do so if it
scarched through VS for all of the current version images and created a checkpoint entry for
cach one it found. However. this would be at least as bad as searching through VS for every
lost object header, if not worse, Since the original reason for creating a checkpoint table was
to minimize and bound the recovery manager’s search through VS. the checkpoint manager
should not have to make an unbounded search in order to create the table. Therefore. it was
necessary to come up with some other scheme that would account for every object that

existed during a checkpoint epoch.

The checkpoint manager creates the checkpoint table, as follows. When cach object is
first created in the repository. the heckpoint manager creates a checkpoint entry for it in
the current checkpoint table. Then, the checkpoint manager accounts for the remaining
objects existing in the checkpoint epoch by updating cach entry that exists in the checkpoint

table of the previous checkpoint epoch, and placing it in the new checkpoint table.

In order to update an old checkpoint table entry, the checkpoint manager examines the
corresponding object header and extracts the reference to the current version or token.
However, if the object header is lost or obsolete then the checkpoint manager must wait
until the recovery manager certifies the object header before updating the checkpoint entry.
Also, il the object header indicates that the object was deleted in the previous checkpoint
cpoch, then the checkpoint manager does not write any updated entry for it in the new
checkpoint table. Thus, it can be seen that this method of creating successive checkpoint
tables from previous ones is guaranteed (o include entries for all objects that ever existed in

cach checkpoint epoch, without having to scan through all of the version images in VS.

When scarching for the current version image of an object whose header appears to be
lost, the recovery manager should either find an actual version or a checkpoint table entry
containing a reference to the current version, by the time it reaches the CEM of the last
completed checkpoint epoch in VS (which will be referred to as the limiting CEM).
Otherwise, the object has been deleted in some previous checkpoint epoch or it never
existed. For example, consider the checkpoint epochs in VS that are ilfustrated in Figure 4-

21, Since the table for checkpoint epoch 73 is still being created, checkpoint table #2 is

81

LR

the last completed checkpoint epoch. This means that CEM #2 is the limiting CEM and
thus, the recovery manager would only have to scan through to CEM #2 before it could
conclude that an object never existed or was deleted. Thus, CEM's provide the lower limit

for the recovery manager’s scarch for lost object headers.

Current
CEM #2 _ CEM #3 End of VS
CPT #1 "CPT #2 CPT #3
sl Y o e r/\‘l AT NN }__V
oid oid oid joid oid oid oid oid oid oid |oid oid loid
139 6 10] 2 5 63 42 51 51 42 |63 5 o1
Clviclvivic|clviv]clvliviclviv|vicliviviciviclviv]clclviclc]v

C = checkpoint table entry
V = any other type of version image
CEM # X = beginning boundary of checkpoint epoch # X
CPT # X = checkpoint table for checkpoint epoch # X

Figure 4-21: Checkpoint Tables In VS

In order for CEM’s to be valid limits for the recovery manager’s searches through VS, the
repository’s processes must never confirm the creation of an object (to an external node)
until the checkpoint manager confirms that a checkpoint entry has been created in VS, since
if they did, then it would be possible for a crash to occur after a confirmation was sent out
but before the entry was made for it in the checkpoint table. In other words, it would be
possible for an object to exist without having a corresponding entry in the checkpoint table
and the recovery manager might incorrectly conclude that such an object never existed, if

the corresponding object header ever got lost.

For example, assume that the creation of object A is confirmed to an external node
before the checkpoint manager confirms the creation of the corresponding checkpoint

entry, and that the repository then crashes before the entry is created. Since each

82

subsequent table is created from the previous table, an entry for object A will never be
created in any of the checkpoint tables. Now, if the object header for A gets lost at some -
time when the current version of A is located further back in VS than the limiting CEM (see
Figure 4-22). and the repository receives a request to read A, then the recovery manager, in
attempting to find its current version in VS, would incorrectly conclude that the object was
previously deleted or never existed, since it would not find a version or checkpoint entry by
the time it reached the limiting CEM. However, if the process that created object A had not
sent out the confirmation in the first place. then the object still would have been nonexistent

and no external node would have sent any requests for it.

Current
CEM #2 CEM #3 End of VS
"CPT #2 CPT #3
V o TN .!.}.E\i...v
bid oid foid oid oid oid id id id{oid| loid |oid
A 10} 2 5 63 42 51 51 42163 5 fot
v vic|clviviclvliv]e|vivivic|vivicivlclviviciclvic|c|v
1 selmvaseveny .
current C = checkpoint table enlry
version
of A V = any other type of version image

CEM # X = beginning boundary af checkpoint epoch # X
CPT #X = chackpoint table for checkpoint epoch #X

Figure 4-22: No Checkpoint Entry for Object A

Finally, there is one decision that still has to be niade concerning checkpoint epochs, that
is how often should the checkpoint manager start a new checkpoint epoch? The only
constraint is that a new cpoch cannot be started until the checkpoint manager has made
updated entries in the current table for all of the entries in the previous checkpoint table.
As long as this requirement is met then the checkpointing mechanism will work‘ correctly.

The discussion of how this dccision should be made is deferred until Chapter 5, which

83

analyzes the costs of the necessary tradeoffs.

4.2 Recovery of Commit Records

Now that the recovery of objects has been described, it is necessary to explain how the
commit records are recovered. Recall that the versions of the commit records (as well as
those of the objects) are maintained in VS, which is stable storage. Thus, VS in itself also
contains the current state of the commit records. However, the repository accesses these
versions of a commit record throug the commit record table, which is only kept in volatile

storage. Thus, when the repository crashes, the commit record table is completely lost.

Upon restarting, the repository creates an empty table and adds entries as new commit
records are created. Also, when the repository restarts after a crash, it implicitly aborts all
commit records that were in the UNKNOWN state at the time of the crash, since there is a
good probability that the broker that created the commit record would have aborted it
anyway, due to the crash. However, this abortion is not done expilicitly, since the commit
record table no longer contains entries for any of the commit records that were created

before the crash. Instead, the abortions are done as follows.

As the recovery manager scans sequentially through VS in order to recover object
headers, it creates entries (unless they already exist) in the commit record table for any
version images that it encounters that contain the final state of a commit record. However,
it only creates these entries if the actual state is COMM [TTED.U Thus, when the recovery
manager is actually recovering an object header, if the corresponding token’s commit record
is not found in the commit record table then that commit record has been aborted. Either
the recovery manager had found the final state version before it reachcd’the token in VS but
did not create an entry for it in the commit'rccord table since its state was ABORTED, or

else there was no final state version in VS and thus, the commit record was aborted by

13Asynchronously. some other process will eventually delete these entries from the commit record table, after
rechecking that the object headers of all tokens in the linked list have been updated (o reflect the token's
(commit record’s) final state.

84

definition.

Furthermore, the broker that created a commit record that was automatically aborted is
eventually informed of this automatic abortion when it attempts to retransmit any
unconfirmed create-token requests, or tries to set the final state of the comit record. Upon
being informed, the broker retries the entire atomic action. Thus, the repository’s recovery

of commit records supports Swallow's atomic action protocol.

4.3 Recovery Manager

This section describes how the recovery manager coordinates the rep sitory’s recovery
activities and interfaces with the other repository processes when they accoss object headers
that have to be recovered. In a nutshell, the recovery manager restores tiae repository to a
state in which it can resume servicing requests from other Swallow nodes after a crash and
then runs in the background, during the repository’s normal course of activities, certifying
the object headers and temporarily creating entries in the commit record table that facilitate

the recovery of these object headers.

Thus, when the repository restarts after a crash, it does not start accepting messages until
the recovery manager signals that the global state data has been properly updated in State
Storage and encached in volatile storage. However, once this signal is received, the

repository resumes its communications with the other Swallow nodes.

The only values in State Storage that the recovery manager has to update are those of the
VS write pointer, the last uid assigned to an object or commit record, the latest pseudotime
specified by any request, and the repository’s REN. In order to simplify the description of
the recovery of the values of the VS write pointer and the last uid assigned, several terms are

defined as follows:

85

WP = valucin State Storage of the VS write pointer

X = the number of pages that must be written in VS before WP is updated
in State Storage

LUA = value in State Storage of the last uid assigned to an object or commit
record

Y = the total number of uid's that must be assigned to objects and commit

records before LUA is updated in State Storage

Both WP and LUA are periodically written into State Storage but the active copies are
updated in volatile storage. The values X and Y above control the frequency and thus the

cost of State Storage updates. Conversely, they also control the cost of recovery.

In order to restore the VS write pointer, the recovery manager must search sequentially
through the region in VS, bounded by the two pages, WP and WP+ X, until it finds the last
VS page that has been written. Furthermore, in order to restore the current value of last uid
assigned to an object or commit record, the recovery manager simply assumes that Y uid’s
were actually assigned before the crash, and increases LUA by Y. In this way the repository
is still guaranteed to assign unique id’s to the objects and commit records even though some
uid’s will never be assigned. (Since the uid is a 64 bit number, it is not critical if some uid’s

are wasted.)

Thus, X and Y are tuning parameters, A large X value increases recovery time and a
large Y value increases the waste of uid’s upon failure. Balancing these costs against the cost

of State Storage updates should be simple.

Next, the recovery manager must restore the latest pscudotime specificd by any request
since this pseudotime is used as the pseudotime of rccovéry. Although the working copy of
this value is kept in volatile storage, it is also stabilized by recording, on each VS page, the
value of the latest end pseudotime of all versions in V8 up to and including that page. Thus,
upon restarting, the recovery manager simply accesses this value from the last VS page

written into VS.

86

The remaining value of the global state that the recovery manager must update is the
repository’s REN. since the REN found in State Storage is obsolete duc to the fact that the
repository just crashed. Thus. the recovery manager increments the value of the REN
found in State Storage and writes an REM for the new recovery cpoch into VS,
Furthermore. a volatile copy of the current REN is maintained in primary memory to speed

up the process of checking object headers.

There is one final task that the recovery manager must perform before signalling that itis
safe for the repository to accept external messages. 1t must restore the checkpoint manager,
since the checkpoint manager musc continue creating the current checkpoint table from
where it left oft when the repositor 7 crashed. To speed recovery, it is arranged that every
VS page contains a pointer to the miost current checkpoint entry written into VS. ‘Thus, in
order to restore the checkpoint manager. the recovery manager obtains from the last page
written into VS, the location of the last checkpoint entry that was written into VS and passes
it on 1o the checkpoint manager. ‘Then, the checkpoint manager can actually access that
checkpoint entry. find the most current checkpoint entry (in the current checkpoint table)
that is also in the previous checkpoint table and resume updating the entries in the new

table, starting with that checkpoint entry in the previous table,

For example, assume that the repository is recovering after a crash and that the state of
VS is as depicted in Figure 4-21 on page 82. In this case, the recovery manager would pass
the VS address of the checkpoint entry for object 101 to the checkpoint manager since it
contains the most current checkpoint entry that was written into VS, Then, the checkpoint
manager would determine that the checkpoint entry for object 5 is the most current
checkpoint entry written into VS that is also found in the table created in checkpoint epoch
#2, and thus, would continue creating the table for checkpoint epoch #3, by starting with

the entry for object 2 found in the table for checkpoint epoch # 2.

Once the recovery manager completes all tasks, described thus far, the repository begins
to accept and fulfill external requests, even though some of the repository’s data may still be
incorrect. Thus, when another repository process accesses an object header that is lost or

contains an old REN, it must wait until the recovery manager certifies the object header.

87

Once the recovery manager completes the certification or concludes that the object header
corresponds 1o a deleted or non-existent object. it signals the waiting process. That process
then reaccesses the object header and simply continues with its regular tasks, if the object
header exists. However, if the object header is still lost. then the process (like the recovery
manager) concludes that the object header corresponds to a deleted or non-existent object

and takes the appropriate alternate action.

In order to avoid repetitious scanning through VS, the recovery manager certifies the
object headers for afl version images that it accesses as it searches sequeantially backwards
through VS. In addition. during th's sweep through VS, the recovery manager temporarily
creates entrics for all committed commit records that it encounters and removes the entries
when the scan passes the initial commit record versions. since earlier versions will not access
the commit record. Then. when the recovery manager is recovering an object header and is
trying to determine whether the current version image is a token or a version, it knows that
the version image is a token if there is an entry in the commit record table for the
corresponding commit record, and conversely, knows that the version image is an aborted

token if there is no entry in the commit record table.

However, the recovery manager does not perform its scan through VS continuously in the
background until it finishes. Instead, it scans through VS, certifying all corresponding
object headers until there are no more processes waiting for object headers to be certified.
Then it halts temporarily, remembering where it left off in VS and resumes cither when the
repository becomes idle (has no pending requests), or when some process needs another

object header that has not yet been certified. in order to fulfill a request.

Thus, while the repository has pending requests, the recovery manager only has to search
through the non-crash recovery epoch that precedes the most recent crash recovery epoch,
providing that there are no lost object headers. Only in the rare cases where an object
header is lost would the recovery manager have to search through VS up to the limiting
CEM while the repository has pending requests. However, since the recovery manager
continues to ccertify object header during the repository's idle periods, lost object headers

may be recovered before they arc required in order to satisfy a rcquest, and thus, their

83

recovery will not affect the repository’s response time for fulfilling requests.

Assuming, for now, that disk failures do not occur in OHS while thg recovery manager is
in the midst of certifying the object headers, the object header table will be completely valid
after the recovery manager has made one scan through all of of VS up to the limiting CEM.
Thus, it can signal all processes that are still waiting for lost object headers to be certified
after it completes this scan. and these processes will correctly conclude that the object

headers correspond to objects that were deleted.

However, there is a problem with this reasoning due to the fact that ditk failures are not
controlled events and can occur any time, stlzilly, when the repository detects a disk
failure (bad page) in OHS, it crashes itself and restarts all of its recovery mechanisms since
OHS may no longer be consistent with VS. But while the recovery manager is certifying all
of the object headers, the repository cannot determine whether a bad page is the result of a
disk failure from which the repository is presently recovering or whether a subsequent disk
failure occurred. Thercfore, the repository does not crash itself if it encounters a bad page

in OHS if the recovery manager is still certifying the object headers.

This means that the recovery manager can no longer simply signal any processes that are
still waiting for lost object headers, after it complegés its initial search through VS, since any
of these processes could be waiting for an object header that is on a disk page that was
destroyed by a disk _failure that occurred after thga recovery manager certified that object
header. Thus, if (and only if) there are still processes waiting for lost object headers to be
certified after the recovery manager makes its initial scan through VS, then the recovery
manager must recheck the object headers for all of the current objects. That is, it must |
check the object headers that correspond to the checkpoint entries up to the limiting CEM.
Then, if all of the object headers are still valid, the recovery manager can signal‘ any
processes that are still waiting. However, if the recovery manager encounters a bad disk
page in OHS during this second scan, then the repository will crash itself and restart its
recovery mechanisms so that it can, once again, restore consistency between OHS and VS.
Furthermore, the repository will crash itself if any repository process encounters a bad OHS

page after the recovery manager makes its initial scan through VS.

89

Thus. the portion of VS through which the recovery manager may have to scan while the
repository is servicing external requests, depends upon the extent of the damage that is done
to OHS. First, if no object headers arc lost then the recovery manager only has to search
through the non-crash recovery epoch that precedes the most recent crash recovery epoch.
Second. if some object headers are lost. then the recovery manager has to scan through to
the miting CEM. Finally, if some process tries to access an object header on an OHS page
that has gone bad since the recovery manager recovered that object header, or tries to access
a non-existent or previously deleted object header, then the recovery manager not only has
to scarch through to the limiting CHM, but also must reaccess all the checkpoint entries up

Lo that limiting CEM (in ordcer to recheck their corresponding object headers).

4.4 Justitication for Lack of Recovery of Pending Messages

Since all data describing the pending messages is kept in volatile storage, when the
repository restarts fter a crash, all this data is lost and the repository is left with no recall of
the prior state of these messages. However, the repository docs not have to remember the
prior state of pending messages since it does not continue to process these messages from
where it left off at the time of the crash. Instead, upon restarting, it accepts new messages

and starts from scratch.

Now that all of the repository’s recovery mechanisms have been described in detail, it is
possible to explain why the repository does not have to cxplicitly recover its pending
messages after a crash. Basically, there are three reasons. First, since the repository satisfies
all requests atomically, no data will remain partially modified. The data will cither be
completely modified or not modified at all. Second, since the protocols include provisions
for any communications errors that might occur, both the sender and recciver of the
message know exactly how to react when any of these errors occur. Finally. since all
repository requests are repeatable, as demonstrated in the table in Figure 4-23,

retransmissions do not causc the same modifications to be done twice to the same data.

The following example, in which the consequences of not recovering a multiple packet

90

N

<}

[@2]

.Create-Object: In order to decide whether or not a create-object request is a

retransmission. the repository would have to search through VS for a version that
contains the same pseudotime and commit record id as those named in the
request. However, this is totally unnecessary, since the original request was
unconfirmed the requestor does not have the oid and cannot access the object
that the repository originally created. Therefore. for all intents and purposes the
object still does not exist. so the repository can create a new object when it
receives a retransmitied creale-object request in the same way as if the request
was not a retransmission.

. Delete-Object: If the object is already deleted when the request is received

then repository just confirms the deletion. Otherwise, the deletion is performed.

_Read-Version: Does not mocdify data, so retransmission is confirmed in exactly

same way as original request.

. Create-token: When the repository receives the retransmission and tries to

create the token it will Tind that a token already exists in the objeci history. It
checks whether or not the request is a retransmission by checking the
pseudotime and commit record id of the token. If they are the same as the
pseudotime and commit record id named in the request then it knows that this
request is a retransmission and has already been satisfied. The repository simply
confirms the creaticon of the token.

. Test-Commit-Record: Same as Read-Version

. Abort-Commit-Record: Once state of commit record is decided it is never

changed 50 repository will simply respond with the final state of the commit
record.

. Commit-CommitRecord: Same as Abort-ComRec

. Add-Reference: Repository will not add a representative version to a commit

record’s reference list if that version is already on the list. Repository will simply
respond with confirmation that reference has been added.

. State-Is: If the repository has not already encached the final state in the commit

record representative then it does so. Then it returns a delete reference response
(even if the state had already been encached).

Figure 4-23: Handling of Retransmitted Requests

91

create-token request are described. should demonstrate that these reasons are valid. Since a
create-token request may be left in one of four inconsistent states after the repository

crashes, the example will consist of four explanations, one for each possible state.

State I The repository only received the initial packet of the message but had not yet

begun to process it. Furthermore. the repository did not send any response to the broker.

Since no data was modified. there are no inconsistencies in the repository’s data.
Furthermore, since a confirmation was never sent to the broker, the SMP module at the
broker's node will eventually time out and abort the message. at which peint the broker will
cither abort the atomic action (send an abort-commit-record request) or retransmit the
request. Subsequently. the repository will either start from scratch if the broker retransmits
the request, or will abort the conunit record as usual, if the broker sends an abort-commit-

record request.

State 2: The repository received some or all of the packets but did not write all of the VS
pages containing the version. Furthermore, the repository did not make the necessary

modifications to the object header table nor did it send any responsc to the broker.

In this case. the token still does not exist since the root version image, which is always
located on the most current VS page containing the token, was never written. In addition,
the token is not linked into the commit record’s list of tokens since the root version image is
the only version image of the token that contains the link. Furthermore, since the object
header table was not modified, the object header still points to the current version. During
recovery, the recovery manager will not change the object header to point to the partially
written token because it will not find a root version image and ignores the fragment version
images. Finally, since the confirmation was not sent to the broker, the broker will either
abort the atomic action or retransmit the request and the repository will react in the same

way as was described for State 1.

State 3: The repository received all packets and wrote all VS pages containing the token,
Thus. by definition, it also added the token to the commit record's list. However, it made

some or no modifications to the object header table and did not send a response to the

92

broker.

In this case, the recovery manager will eventually update the object headér to point to the
newly created token and the hash table algorithms will restore consistency to the object
header table. Furthermore, since no confirmation was sent to the broker, the broker will
either abort the atomic uc&ibn or retransmit the create-token request. If the broker sends an
abort-commit-record request, then the repository aborts the commit record (if it has not
already been aborted by the recovery manager) and confirms the request. On the other
hand. if the broker retransmits the create-token request, then the following sequence of
events occurs. First, the repository process that is handling the request accesses the
appropriate object header. If the recovery manager has not yet recovered the object header,
then the process must wait until the recovery manager sigxzaié that the object header has
been certified. Then, when the process reaccesses the object header it creates a token since
the rccovery manager deleted the existing onel* and attemp(s to add the token to the
appropriate commit record's list of versions. However, in attempting to add the token to the
commit record’s list, the process discovers that the commit record has been aborted. Thus,
the process deletes the token and sends a rejection reponse to the broker, specifying that the
commit record has becn aborted. Subsequently, the broker will retry the entire atomic

action,
State 4: The repository received all packets and made all of the necessary modifications,
but did not send a confirmation to the broker.

The repository handles this state in the same way as it handles State 3.

Thus, it can be seen from this cxample that all inconsistencies in the repository’s data
caused by partially processed creatc-token requests are eliminated by the repository’s
recovery mechanisms. Furthermore, the broker is not left hanging when the repository fails

to respond, since the SMp, request/response and atomic action protocols provide alternative

14When the recovery manager recovers the object header the commit record will have been aborted. Thus,
the recovery manager deletes the token that was created when the ofiginal create-token request was received, by
changing the object header’s token referenc (o nil.

93

modes of behavior. In fact, for all types of messages that may be sent to the repository, the
combination of the repository's internal recovery mechanisms and the Swallow protocols

ensure that the global consistency of all clients’ objects is restored.

4.5 Summary

Thus, the recovery mechanisms used to restore order within the repository were
presented in this chapter. First it was shown how the structure of the object header table is
recovered implicitly, using a speci: | set of hash table algorithms, instcad of by performing
an exhaustive consistency check on the entire table structure right after a crash. Next, it was
shown how the object headers themselves arc recovered from the current versions in VS,
using the recovery and checkpoint epoch mechanisms in order to detcrmine the need for
recovery and to bound the linear searches through VS. Then, it was shown how commit
records are implicitly aborted if their state was not finalized before the repository crashed,
and how committed commit records are temporarily entered in the new commit record table
in order to speed recovery of the object headers. Finally, it was shown how the recovery
manager restores the repository’s global state as well as how the recovery manager
coordinates all of the recovery activities so that it only has to perf‘orm a single scan through
VS.

94

Chapter Five

Evaluation of Recovery Mechanisms

The effects of the recovery mechanisms on the performance of the repository are
evaluated in this chapter. However, since the repository has not yet been implemented
there are no real statistics on how long it takes the repository to satisfy tke various types of
requests. Still, it is possible to estimate these 'vtimé costs iy terms of the number of
underbying disk accesses that must be done in order to do recovery and fu it requests. This
is a useful method of analysis since these disk accesses are likely to be the most time

consuming tasks that the repository performs.

First, Scctions 5.1 and 5.2, derive cquations that calculate the total number of disk
accesses that the recovery and checkpoint managers, respectively, require per recovery
epoch. Next, Section 5.3, calculates the average cost of of these recovery mechanisms per
request, for a typical example. From this calculation it is possible to gain some insight into
how much of the repository’s. response time can be attributed to the recovery mechanisms
and how scnsitive these response time costs of recovery are to the varying characteristics of
the requests and data sent to the repository. Finally, in order to put these calculations into
perspective, Section 5.4 compares the cost of the recovery mechanisms presented in this
thesis (for the repository) with an alternate set of recovery mechanisms that could have been

used, which are based upon OHS being reusable stable storage.

5.1 Cost of Recovery Manager

The cost of the recovery manager includes the cost of updating State Storage and
encaching it in Volatile Storage as well as the cost of certifying alt of the object headers.
Since the significant cost is that of certifying the object headers, this cost will be analyzed in

detail, but first, a brief description of the other costs is given, as follows.

95

The only noticable cost of recovering State Storage (with respect to disk accesses) is that
of restoring the VS write pointer, since the recovery manager has to search through some
number of pages in VS in order to find it. This number depends upon how frequently the
value of the VS write pointer is updated in State Storage: the more frequently the value of
the VS pointer is updated in State Storage, the f'ewer the number of VS pages through
which the recovery manager must search afler a crash will be. However, State Storage
updates are fairly costly (in terms of disk accesses) and should not be done too often while
the repository has pending requests. Thus, a tradeoff must be made. In the initial
implemention of the repository. the tradeoft will be made arbitruril& and then, once actual
costs can be measured, the parameter that specifics the frequency of updating the VS write

pointer in State Storage will be fine tuned for the optimum tradeofT.

The remaining costs of restoring State Storage depend on its size and what percentage of
it must be encached in volatile storage. However, since Statc Storage will be fairly small
(less than onc page), these costs should be insignificant compared to the cost of recovering

the write pointer.

9%

In order to derive an equation for the total cost of certifying all object headers in OHS

per crash, it is necessary to define the following variables:

CVr = the cost of rcading a VS page

va = the cost of writing a VS page

Cor = thecost of reading an OHS page

COW = the cost of writing an OHS page

X = thenumber of OHS pagés that have to be read in order tc find a

particular object header (using the hash table search algorithm)

P = average number o. version images per VS page
L = probability that any object header will get lost during a cl eckpoint
epoch

M = the REM (beginning mark in VS) of the non-crash recovery epoch
e that precedes the crash recovery epoch

M = thelimiting CEM (i.e. the beginning of the last terminated
ce checkpoint epoch)

D = the number of pages in the portion of VS between Mre and Mce

N = the number of VS pages in the non-crash recovery epoch that

precedes the crash recovery epoch
| = the number of version images per N

V. = the number of version images that are simple versions or
roots of structured versions for objects per N

O = the number of distinct objccts for which there are version
images contained within N

E = the number of checkpoint entries per N

97

| = the number of version images per D

I «1
(1, <)
\' = the number of version images that are simple versions or
D toots of structured versions for objects per D
(V. KV)
N D
OD = the number of distinct objects for which there are
version images contained within D
(0O «K0)
N D
E = the number of checkpoint entries per D
D (E_ <«E)
N D
AED = the number of new checkpoint entries that have been

created between repository restart time and the time when the
recovery manager finishes its initial scan through VS (up to the
limiting CEM)

Using the above definitions, the basic total cost, Cm, of the recovery manager per crash

assuming that no objéct headers are lost can be specified:
Crmb = CvrIN/P + XCOr(VN + EN) + COWON

The terms of the equation can be explained as follows. The first term in the equation
reflects the cost of reading and examining every version image within N. Since the recovery
manager scans sequentially through VS, it examines all of the version images on a single
page while that page is in the buffer. Thus, the cost of examining the version images is
reduced by a P factor due to the fact that the recovery manager docs not make a disk access
every time it examines a version image.

The second term represents the cost of reading the object headérs corresponding to every
version image that is a simple or root version image of an object, or a checkpoint entry, in
order to check that the object headers are current. The cost of reading an OHS page is
‘multiplied by X because in order to find a particular object header, the search algorithm
must be exccuted on the object header table, which might involve reacling more than one

OHS page if the object header being accessed is on a chain that crosses page boundaries or

98

was damaged. However, very few (if any) chains in the object header table will have these
properties since all of the buckets on a single chain are almost always located on the same
page. Thus, the vatue of X is so close to 1 that for al| analyses in this chapter it will be

assumed to be 1.

The final term represents the cost of the OHS writes that must be done in order to update
every object header. This term accounts for évcrbeiect header being written once since it
is assumed that the recovery manager reaches M»re before the repositary crashes again.15
Thus, for any recovery epochs for “vhich this assuniption is not true, this term will have to
be adjusted. Furthermore, the cosi of the OHS write in this term is not multiplied by a
factor similar to X since the recovery manager retains the location of the object header when
it first executes the search algorithm and can simply rewrite the object header in place

without having to perform the insertion algorithm.

Since object headers sometimes do get lost, C b is not the average total cost of the
m

’

recovery manager per crash. In order to calculate this cost it is necessary to add to Crmb

some percentage of the cost of scanning between M and M . This percentage, L,
e ce
represents the probability that a crash will cause object headers to get lost. Thus, the

average total cost, C ; of the recovery manager per crash is:
m

C = Crmb + L{CWID/P + XCor(VD + ED) + COWOD +

*16
[(Cvr + XCm)(ED + AED)] }

In the factor multiplied by L, all terms except for the starred term are costs that are

comparable to the costs in C b The only difference is that the scan through VS is done
o :

Ban object header is never wrilten more than once. even if there is more than one version for the object
contained within the recovery epoch in VS, hecause once an object header has been certified it contains a current
REN. The recovery manager does not rewrile any object headers that contain cusrent REN's.

m‘l’hroughout the resnainder of this analysis, the rcader can assume that any term. that is marked with an

asterisk, * | is included in the cost only in the worst case. A very low. probability event has to.occur. for the term
1o be relevant.

99

through the region bounded by M and M instead of through the non~érash recovery
epoch that precedes the lates crarsi1 recovg:y epoch. Funhermore, the starred term
represents the cost of rechecking (secohd scan through VS) all of the object headers for all
of the current objects. Recall that the recovery mahager only does this if, after it initially
checks and certifies all of the object headers, there still remain processes waiting for lost
object headers to be recovered (see page 89). Only if one or more OHS disk pages decayed
or if some external request erroneously specified an OID for a dcleted or non-cxistent
object will there be processes waiting after the initial scan, Thus, since both of these events

occur very rarely, this starred term will not usually be calculated into the cost.

Thus, Cnm is not only the average total cost of the recovery manager per crash but is also
the average response time cost of the recovery manager per crash. In other words, it
represents the cost of the work that the recovery manager must do in the background while
the repository is satisfying external requests. However, keep in mind that Crml is the worst
case average cost, since the repository may have idle periods in which the recovery manager
can do some of the object header certification. 'In Section 5.3 it will be shown how C

mt
affects the average response time of a request.

100

5.2 Cost of Checkpoint Manager

The sole cost of the checkpoint manager is that of creating the checkpoint tables. In
order to derive an equation that specifies this cost per crash, some additional variables must
first be defined as follows: | '

U = the number of checkpoint entries in the table for the last
terminated checkpoint epoch that correspond to objects that
were not deleted in that checkpoint epoch

B = the number of chcckpoint entr es in the table for the last
terminated checkpoint epoch that correspond to ob;x.cts that
were deleted in that checkpoint epoch

AC = the number of new objects that are created during the
average checkpoint epoch

R = the number of VS pages written since the previous crash

P = average nummber of checkpoint entries per VS page that
contains at least one checkpoint entry.

Using these newly defined variables and those defined in the'previous section, the

average total cost, Ccn“, of the checkpoint manager per crash caa be specified:

C = [C (U-AO +ByYP +C AO+XC (U+B)+
cmt vr | € vr or

U/P + C AOJR/D]
C vw

Since the updated checkpoint entries are grouped into blocks that occupy a VS page,
thercby eliminating the need to write one VS page for every checkpoint table entry that is
written, the costs of the VS page reads and writes of these updated checkpoint entries are
decreased by a P factor. However, since the checkpoint entries for newly created objects
are written as thecobj‘ccts are created, it is not possible to group these checkpoint entries into -
blocks on the VS pages. Thus, the cost of the VS reads and writes of the first checkpoint
entry created for every object is not reduced by any pageload factor.

The first two terms, C r(U-AO + B)/P + C AO, reflect the cost of examining all of the
\{ C vr B

101

. checkpoint entries in the previous checkpoint epoch table. The third term, XCM(U + B),
reflects the cost of examining the corresponding object header for every checkpoint entry in
- the previous table in order to obtain the current version of the object. The value of X in this
term is very close to 1, for the same reason as was given in the previous section.” The fourth
term, U/P K reflects the eost of writing an updated entry for every checkpoint entry that was
not ddelcd in the prevnous checkpuint epoch. The fifth term, C AO reflects the cost of
crcntmg new checkpoint entries for newly created objects. This term does not mclude the

cost of readmg an OHS page since that cost is dttnbuted to the creation of the object

The multiplie_r, R/D, represents the number of checkpoint epochs that exist in VS per
crash. Since checkpoint epochs bear no rclationship to crash events; this ratio is variable. In-
‘other words, cheekpoint epochs can be created at any arbitrary rate. Thus, since it is |
| desirable to minimize the repository's response time for satisfying requests, the decision
about when to create a new checkpoint epoch will probably be made dynamically by the
repository. It will not be a time dependent decision but instead will depend upon D (the
distance between the current end of VS and the hmltmg CEM) and upon the expected ‘

- usage of the rcposnory

The decision will depend upon D because the smaller D is, the smaller the values for ID,
VD, and OD will be. In other words, the faster new checkpoint epochs are created, the
smaller the total cost of the recovery manager will be since the recovery manager will have
fewer version images to examine in VS. Nevertheless, this will only decrease the total
response time cost if object headers get lost due to the crash, since if none are lost then the

recovery manager does not scan all the way to the limiting CEM. -

However, there is a disadvantage to creating checkpoint epochs at a fast rate: as the rate
of creation of checkpoint epochs increases, the ratio, R/D, increases, and therefore, so does
 the total cost of the checkpoint manager per crash recovery epoch. If the checkpoint

manager does its work in the background while the repository is satisfying external requests,
the checkpoint epochs should not be created at a very fast rate since the checkpoint manager
will be sharing the disk resources with the processes that are handling the external requests,

and thus, will increase the repository’s response: time. However, if the repository has

102

enough idle time so that the checkpoint manager.can do most of its work durin_g that time,
then checkpoint epochs can be created at a faster rate since the only cost of the checkpo_ixit .
manager that will affect the request response time is that of creating checkpoint entries for

newly created objects.

Thus. the repository decides to create a new checkpoint epoch if cither‘ of the following
two situations arise. First, if the repository expects to b.e’ idle for some time, the checkpoint
manager has finished updating the old table, and som¢ minimum number of new versions
have been created in the current checkpoint epoch, then thé 'i"e.v;v)osito‘y creales. a new

"‘cl'reckpoint epoch. Second, there s probably some maximum distance over which it is
~desirable for the recovery manager to ever have to search (because of the time it takes to do
all of the necessary disk accesses). so if D reaches half of this maximuin, the repbsitory

creates a new checkpoint epoch 7 Thus, the repository creatm new checkpoint epochs at the
 fastest rate that optimizes the repository’s time under alt conditions.

| ‘The parameters specifying the maximum size of D and the minimum number of new
versions that should have been created in the current checkpoini epoch will be chosen
arbitrarily in the initial implementation of the repository. Then, once it is possible to
measure the actual costs and response times of ‘the: repository, these parameters _wm be
adjusted.

The reason why the crucial distance is half of this maximum rather than the actual maximum is because the
" recovery manager has to search through all version images in- the previeus.checkpeint epoch in addition-to-the.
current epoch, (the mble for the current epoch is not complete until the epoch is terminated).

103-

Since the repository will probably have a rcasonable amount of idle time (at least in the
wee hours of the morning), the checkpoint manager will do most of its work at that time.
The only work that must be done while the repository. is satisfying requests is the creation of
new object headers. Thus, the average response time cost, C - of the checkpoint manager

cm
per crash is:

C =(C AOXR/D)
cmr vw
One should observe that only a small percentage of the total cost actually affects the

repository’s response time.

5.3 Average Cost of Recovery Per Request

It would be useful now, to analyze how much the recovery and checkpoint managers cost
per request that the repository processes because then we can analyze how these managers
affect the repository’s response time per request. First, it is necessary to calculate the costs

-of reading and writing VS and OHS pages.

The costs of VS page reads and writes are:

C = 1disk access + [page recovery]‘
vr

va = 4 disk access + [repeated diskacceses]*

Normally, only one disk access is done in order to read a VS page, since only one copy of
the page has to be read. However, if a bad VS page is encountered, then there is an
additional cost, represented by the term [page recovery], which is the number of disk
accesses that must be done in order to recover the page. Since the probability of disk pages

decaying is very small, this term will rarely be included in the cost.

In order to write a VS page, at least 4 disk accesses must normally be made, i.e., a read

and write for each of the 2 copies of the page that are maintained. However, these 4 disk

104

accesses represent the fotal cost of a VS write, i.e., the total work that must be done. Since
there will probably be two devices performing the writes of both copies in parallel, the
response time cost of a VS write will only be 2 disk accesses. Furthermore, only in the case
where the read back after a write indicates that the write was not done properly and has to
be repeated, will the term [repeated disk acesses] become a component cost of a VS page

write. Once again. the probability of the original write not succeeding is minimal.

On the other hand, the costs of OHS reads and writes are:

C = 1disk access
or

C =1 disk access
ow

Since OHS is careful (standard disk) storage, each page that is read or written requires

only a single disk access. 18

Now, the average total cost of the recovery and checkpoint managers per request

(excluding all starred terms) is:

(Clm + Ccnn)/Q = {IN/P + VN + EN + ON

t
Ii/P+V +E +0]+
D D D D
[R/DJ[SAO + 2U - AO + B)/Pc + U + BJ}/Q

where Q = the total number of requests satisfied per crash

18Note that the actual cost of the OHS read and write operations wil be less than or equal to'1 full disk access
since the OHS page are not réad (writien) from (to) the.disk every time a read (write) is done. Often, the page 0
be read (written) will be found in a primary buffer. However, if the object header table is big Lhen the reduction
in costs will be smail.

105

However the average response time cost of the recovery and checkpoint managers per

request is only:

(Cmm + Ccmr)/Q = [IN/P + VN + EN + L(ID/P + VD + ED) +

2A0R/D)/Q

From this equation one can observe how the response time delay that is attributed to
- recovery fluctuates with the varying characteristics of the requests and oﬁjects that are sent
to the repository. One thing to rotice is that this response time dclay decreases as the
average size of the clients’ objects increse, since the larger the 'objects are, the smaller the
value of VN and VD will be. Aunother thing to notice is that the response time delay
increases with the rate of object creation, since the faster new objects are ~reated, the larger
the value of AO will be,

The following example will give the reader a better feeling for what the actual response
time delay that is attribuled to recovery per request might be. By choosing an arbitrary but
reasonable number of requests that might be processed and a reasonable number of objects
that might be valid within a single recovery epoch, approximate values can be extrapolated
for all of the terms in the cost equations. Thus, for this example it will be assumed that the
repository processes 20,000 requests per crash and that 10.000 objects are current at any
given time. The table in Figure 5-1 shows the distribution of request types among the
20,000 requests that are processcd ahd the table in Figure 5-2 shows what values were

extrapolated for the variables used in the equations,

Using these values, the average total cost of recovery per request will be:

l

(C +C)Q 15410 disk accesses/20000 requests
rmt cmt , .

= .77 disk accesses/request

106

Amount
Type Processed
create-object 1000
delete-object ‘ 1000
create-token 5000
read-version 5000
create-comrec 2000
abort-comrec 200
commit-comrec 1750
add-ret 2000
delete-ref 2000
test ’ 50

Figure 5-1: Request Distribution

On the other hand, the average response time cost of recovery per request will be:

(C +C YQ 2050 disk accesses/20000 requests
mt cmr

= .1 disk accesses/request

Thus, in comparison with the average response time costs of processing read-version and
create-token requests, which are 2 disk accesses and 1.4 disk aceesses, respectively, the
additional response time cost attributable to recovery in the normal case, .1 disk accesses, is

not very significant.

5.4 Comparative Cost of Another Type of Recovery

To put these costs of recovery into perspective, it is necessary to compare them with
similar costs of an alternate method of recovery for the repository. The repository using the
recovery mechanisms described in this thesis will be called R, and the alternative will be

called R, Briefly, the design for R is to implement OHS as reusable stable storage. In R',

107

- KPR - R attr

Variable Value
o 15000
PB 5
VD 5500
ED 10000
OD 10000
a4t 200
U 9000
B 1000
X 1000
R/D 1
PC 50
NN 10
VN 50
IN 35
En 5

Figure 5-2: Extrapolated Values for Variables in Cost Equations

no request is confirmed until the appropriate changes are written into both OHS and VS.
Also, all changes made to OHS for a single request are written into OHS from the page
buffers in an atomic fashion and are not written until the necessary changes have been made
to VS.

Using this alternative design of the repository, it is possible to eliminate the checkpoint
manager since object headers will not get lost. Also, the recovery manager can be greatly
simplificd due to the fact that in fulfilling a request, the repository does not change OHS
until VS is modified. Thus, if the repository crashes before updating any part of OHS, then
the request will not have been confirmed, OHS will reflect the current state of the data, and
the version(s) added to VS will be ignored since the object headers were not changed to
include them. In other words, object headers will not become obsolete so there is no need

for the recovery manager to search through VS in order to examine the versions and certify

108

the corresponding object headers.

Therefore, the only responsibility of the recovery manager in R'isto update State Storage
before the repository resumes its normal activity. Howevet, since recovery of State Storage
is exactly the same for both R and R’, its cost will hot be iricluded in this comparative
analysis. Furthermore, for this analysis it is assumed that the only differences between the
two repositories are those that have been described above. Thus, all other costs, such as
those for communications, are assumed to be the same i both repositories and will not be

included in this analysis.

Superficially, it might appear as ir R uses a more cfficient method of recovery. However,
the cost of maintaining OHS as stable storage in R far outweighs the costs of the more
explicit recovery mechanisms used in R. This can best be shown, by comp aring the costs of
satisfying the same types of requests in both repositories (adding the average cost of the

recovery mechanisms per request to the cost of satisfying requests in R).

In order to compare these costs, the costs of reading and writing VS and OHS pages in R
must first be calculated. Since there is no difference in the structure of VS for R and R,
there is no difference in the costs of reading and writing the VS pages for both repositories.
Therefore, C and C will be used to represent the costs of VS writes and reads for both
repositories. VFHOWevgrr, for all other costs, any symbols with a prime mark added to them
apply to R).

The costs of the OHS read and write operations in R afe greater than those same costs in

R. These costs in R are;

C = 2 disk accesses + [1 disk access]”
or

C'oW = 4 disk accesses + [repeated disk access%]*

An OHS read in R requires at least 2 disk accesscs since OHS is reusabl_e stable storage:.19

19Note that in R the cost of an OHS read will probgbly be slightly tess than 2 disk ‘accesses since the page
might be found in the buffer. However, since OHS in R is stable storage, an OHS page has to be wntlen to the

disk every time it is modified. Thus, C will not be reduced at all.
ow

109

Thus, both copies of an OHS page must be read and compared, since it is possible for both
copies of an OHS page to be valid but different from one another (if the repository crashes
in between the writes of the two copies). In this case, where both pages are valid but
different, or in the case where one of the pages is bad, one additional disk access is required

in order to write the recovered copy of the page.20

On the other hand, the cost of the OHS write in R’ requires 4 disk accesses because two
copies of the page have to be written sequentially and each copy must be read back in order
to ensure that the writes were done correctly. However, the term, [repeat. d disk accesses] is
only included in the cost if one of the reads (after a write) indicates that the write was not

done correctly and has to be repeated.

Now that the underlying costs of the VS and OHS read and write opcrations in R are
understood, it is possible to analyze the comparative costs of processing the same type of
request in the two different repositories. Two comparisons will be done, one for a create-

token request and another for a create-object requesL21

The values from the example in
Section 5.3 will be used as the average costs of recovery per request in R. Thus, .77 will be
used as the average total cost per request and .1 will be used as the average response time
cost per request. In R’, there is no additional cost of recovery per request that has to be

added into the cost of satisfying a request.

20Note, that in order to simplify this analysis, the (rare) case where a chain crosses page boundaries is ignored.
Thus, it assumed that all buckets in a single chain are fully contained within a single page.

21”111:: difference in costs for read-version or delete-object requests is the same as for create-token requests,

even though the individual costs differ. Thus, the comparative analysis for these two types of requests will not
be done in this thesis.

110

The average total cost of processing a create-token request {assuming that the token fits
on a single page) is as follows:

C = cost of create-token request in R
crikn

=C +C +(C /P+
or ow vw
average total cost of recovery per request

= 3.57 disk accesses

L)

= cost of create-token request in R
crtkn

=C +C +(C /P
or ow yw

= 6.80 disk accesses

The total work that has to be done is less in R than in R, Furthermore, there is an even
greater difference in the average response time costs. In order to obtain the response time
cost of satisfying a create-token request in R’, the total cost is reduced by half of the cost of
the VS page write, since there will most likely be two devices performing the write and read
of both copies in parallel. Thus, the response time cost in R is 6.40 disk accesses. In R,
though, the total cost is not only reduced by 1/2 of the cost of the VS page write, but in
addition, is reduced by the decrease of .67 in the total recovery cost per request (from .77 to
.1 as described in Section 5.3) and by the cost of the OHS page write (which is 1 disk access),
since the repository doesn’t wait for OHS page writes to complete before responding to
requests. Thus, the resulting response time cost of satisfying a create-token request in R is
1.5 disk accesses. This is a significant improvement over the cost of 6.40 disk accesscs in R".
Fven for a given crash where object headers are lost, the average response time per request
would be 2.42, which is still much better than 6.40 for R . '

111

A

Next, in the case of a create-object request, the average total costs are:

cC = cost of create-object request in R
crobj

=C +C +(QC /P)+
or ow YW
average cost of recovery per r equest

= 4.37 disk accesses

. = cost of create-¢ bject request in R
crobj :

= C +C +C /P
or ow vw
= 6.80 disk accesses

Thus, even though the cost of creating an object in R includes two times the cost of
writing a VS page (a checkpoint entry has to be created for the new object in addition to
wriling the version), the total cost of creating an object in R is less than in'R’. Also, there is
an even greater difference in the two response time costs since thc cost in R drops to 1.90

disk accesses whereas it only drops to 6.40 disk accesses in R,

Thus, in this example, both the total costs and the response time costs are less for each
request satisfied in R than in R’ Even in a rare case where the recovery manager has to
recheck all object headers and an additional 2.12 disk accesses must be added to the costs
(the starred term in the total cost of the recovery manager, givén on pélge 99), the costs are
less in R than in R. The response time cost of the crcate-objéct reciuest, as well as both

types of costs of a create-token request are still significantly less in R than in R.

Note, that R' is not as sensitive to the average size of the objects and the read-
version/create-token ratio as R is, nor is it sensitive at all to the rate of object creation, since
it does not include a recovery cost term. However, in R, under normal circumstances
(where no object headers are lost), the sensitivity of the response time to these variables is
still not enough to make the recovery mechanisms inR’ more cfTicient than those in R, with

respect to response time.

112

5.5 Summary

In summary, it has been shown that on the average, although the total cost of these
recovery mechanisms is fairly steep. the response time costs of these recovery mechanisms is
insignificant. However, it is necessary to keep in mind that these costs are averages. These
delays will vary with the rcquests. The initial .requests that arrive after the crash will
experience much more response time delay due to the crash than the average delay costs.
Nevertheless, once the recovery manager completes its scan, no subsequent requests
experience any extra delay due to recovery, except for create-object requests, which require

that checkpoint entries be created before the response is sent.zz.

[t has also been shown that in the example environment, these recovery mechanisms are
more efficient than those used in R, in almost all respects (total and response time costs of
all types of requests). Even in the absolute worst case where unassigned or deleted uid’s are
specified in requests, R is more efficient than R. Tt is probable, though, that in an
environment where the repository is utilized very heavily, 24 hours a day, and where the
objects are fairly large, that R would provide a more efficient storage service. Although the
calculations are only valid for our one example, we have erred in a conservative direction
for the example numbers. In general, the recovery cost will prdbably be less than that in the

example.

Finally, if there is any bottleneck in these recovery mechanisms it will be the checkpoint
manager since it requires a lot of work to be done just to prevent the worst case from being

intolerable. It may have to be made more efficient if certain unfavorable conditions prevail.

2211 can be arranged so that checkpoint entries of newly created cbjects are written on the same page as the
versions of the objects. Then there will not even be any delay attributable to recovery for the create-object
requests

113

Chapter Six

Conclusion

In this thesis, a coherent set of recovery mechanisms for the Swallow repository was
presented. In order to sum things up, this final chapter reflects back on the original design

goals and then offers suggestions for further work.

6.1 Summary of Original Goals

Recall that the most important goals were to ensure that the repository’s data is restored
to an internally consistent state and to support the global recovery mechanisms in order to
ensure external consistency. The general strategy used to fulfill this goal is to maintain all of
the essential data (repository’s global state, values of clients’ objects and state of the commit
records) in stable storage and to restore all auxiliary data from this data in stable storage.
Thus, before any auxiliary data is used in order to satisfy external requests, it is always
compared with the stable storage data, either explicitly (by scanning sequentially through
VS) or implicitly (by comparing the REN's of the repository and the object header), and is
brought up to date, if necessary. Furthermore, no data is ever released to external nodes
until the state of the corresponding commit record is known to be committed, thus, abiding

by and supporting the global recovery mechanisms,

The next goal was to provide minimal disruption to the ongoing activities in the other
Swallow nodes by minimizing the immediate recovery that has to be done before the
repository can begin accepting requests. The strategy used here is to restore the VS write
pointer, the repository’s REN and the last uid assigned (to an object or commit record), then
to get the checkpoint manager started from where it Icft off before the crash and finally, to
encache the entire global state in volatile storage and start accepting requests, The

remaining data, consisting of the object header and commit record tables, are recovered

114

gradually during the course of the repository’s normal /acti‘vities. Thus, the immediate

recovery is trivial,

Of course, even though the repository begins accepting requests fairly soon after a crash,
there still may be further delay in returning a response, since the data required to satisfy the
request may require recovery. However, the third goal was to minimize this response time
delay attributable to recovery, Thus, this goal is niet by using non-crash recovery epochs in
addition to crash recovery epochs, in order to mark the last point in VS when OHS is
guaranteed to be consistent with VS (providing that no object headers are iost). Then, if the
repository has frequent idle period;, it will only b necessary to scan through a very small
region of VS before a request can be satisfied and confirmed. Furthermore, dnce that
region of VS has been scanned, there will be no additional respotise time delay attributable
to recovery. In other words, all requests will be satisfied at full speed.

6.2 Future Work

The first step that should be taken, now that the recovery mechanisms have been
designed, is to use these recovery mechanisms in the repository. Once this is done, the
repository’s performance can be gauged under various conditions, both normal and

stressful, so that all parameters can be fine tuned. -

ﬁe analysis in Chapter 5 was only intended to give a feel for the costs of recovery. A
better analysis could be made by measuring and comparing the actual response tinie delays
of requests arriving immediately after restarting and those artiving some time . later.
Another interesting measurément would be how the length of time in which the recovery
manager performs its required scan through the non-crash recovery epoch preceding the
crash recovery epoch varies with different levels of repository utilization. . These are iny

cxamples of the various anlyses that can be done once actual measurements can be taken.

In addition, the behavior patterns of the users can be monitored in order to figure out
what the weaknesses of these ‘mechanisms are. ~For example, if the repository is more

heavily utilized than expected, then the checkpoint and recovery epoch mechanisms may

115

require modification,. However if the usage is as expected, i.e., long periods of idle time
during the early morning hours and frequent short periods of idle time through the rest of

the day, then these mechanisms should work well.

Anothér interesting pattern to observe would be the ratio of retransmissions vs. abort-
commit-record requests that the repository receives after a crash. If this ratio heavily favdrs
retransmissions then it may be desirable to explore methods for recovering commit records
‘whose final state had not been decided before the crash, other than automatically aborting

them.

Finally, new classes of algorithms have been recently developed for hash tables whose '
size changes dynamically. Thesc algorithms may be incorporated into a subsequent
implementation of the object header table in the Swallow repository. [f so, then it will be
necessary to examine these algorithms for potential difficulties that may be caused by
" failures and then to modify them so that they can detect and correct any errors before thésé

errors wreak havoc within the repository.

6.3 Generalizations

In a more general sense, the techniques used in the repository for reliably storing,
accessing and recovering the data may be applicable to other systems. For example, in the
repository, critical data is maintained in stable storage while the optimized mappings to this
data are maintained in carcful storage. This type of strategy for storing data would be useful
in any system that contains some data that cannot be lost. The only deterrent to using this
strategy would be the expense of stable storage. Thus, future work should be directed
towards reducing‘the cost of the stable storage read and write operations without decreasing

the reliability of the storage.23

In addition, the hash table algorithms developed here may lead to convenient methods

23In fact, if the stable storage operations could be made sufficiently inexpensive, then there would be no need
to have careful storage, at all.

116

for keeping database indices, since these algorithms are efficient and self-recovering. The

essential property of the hash table that allows these algorithms to use trivial error detection
and correction procedures is that the hash table does not have to be perfectly reliable. In

other words. it is acceptable to lose data in the hash table, once in a while.. Thus, as long as

the hash table data can be recovered from more reliable data sources, if necessary, then a

database system can use these algorithms, thereby eliminating the need to check the entire

structure of the table of indices for potential damage afier a crash, since the hash table

algorithms do this check implicitly.

Finally. the notion of online recovery during the normal course of operations is one that

would be extremely uscful in all computing environments. in order for online recovery to

be practical in any given system, cheap methods for detecting the need for recovery as well

as for implementing recovery must be developed for that particular system.

In conclusion, there is still work that has to be done in order to fine-tune and perfect the
recovery mechanisms within the repository. Even so, these mechanisms can be generalized

and applied to other systems in order to improve the standard recovery pi'ocedures.

117

1

[2]

[3]

[4]

[51

[6]

[7]

Bibliography

Accetta, M., Robertson, G., et.al.
The Design of a Network-Besed Central File System.
Technical Report CMU-CS-80-134, Carnegie-Mellon University, August, 1980,

Akkoyunlu, E.S.. Ekanadham, K., Huber, R.V.

Some Constraints and Tradeoffs in the Design of Network Communications.

In Proceedings of the Fifth Symposium on Operating Systems Principles. ACM,
November, 1975.

Bernstein, P.A., Shipman, D.W., Rothnies, J.B.

Concurrency Control in SDD-1: A System for Distributed Databases; Part I:
Description.

Report CCA-03-79, Computer Corporation of America, Cambridge, Ma., January,
1979.

Comer, D.
The Ubiquitous B-Tree.
ACM Computing Surveys 11:121-137, June, 1979.

Gray, I, etal.

The Recovery Manager of a Data Management System. .

Research Report RJ2623 (33801), IBM Research Laboratory, San Jose, Ca., August,
1979.

Israel, J.E., Mitchell, J.G. and Sturgis, H.E.
Separating Data from Function in a Distributed File System.

In Procecdings of the Second International Symposium on Operating Systems. IRIA,
October, 1978.

Knuth, D.E,
The Art of Computer Programming - Sorting and Searching, Volume 3.
Addison-Wesley Publishing Company, 1973.

118

[8]

[91

[0}

[11]}

[12]

[13]

[14]

[15]

Lampson, B. and Sturgis, H.
Crash Recovery in a Distributed Data Storage System.
Xerox Palo Alto Research Center, Ca. April, 1979. To appear in CACM.

Lindsay, B.G., et. al.

Notes on Distributed Databases.

Technical Report RJ2571 (33471), IBM Research Laboratoty. San Jose, Ca., July,
1979,

Maurer, W.D., Lewis, T.G.
Hash Table Methods.
ACM Computing Surveys7(:):5-19, March, 1975.

Paxton, W.H.
A Client-Based Transaction. System. to. Maintaia. Data lntegrity.
In Proceedings of the Seventh Symposium on Operuling bystems Principles. ACM,
December, 1979.

Postel, J.
User Datagram Protocol. ,
Technical Report IEN-88, USC-Information Sciences Institute, May, 1979.

Randell, B., Lee, P.A., Treleaven, P.C.
Reliability Issues in Computing System Design.
ACM Ceomputing Surveys 10(2):123-165, June, 1978.

Reed, David-P.
Naming and Synchronization in a Decentralized. Conmmaf Systera.
PhD thesis, M:L.T., September, 1978.

Reed, D.P.

Implementing Atomic Actions on Decentralized Data.

Presented at the Seventh Symposium on Operating Systems Principles sponsosed by.
ACM. To appear in CACM.

119

[16]

[17]

(18]

[19]

[20]

Reed, D.P., Svobodova, L.

~ Swallow: A Distributed Data Storage System for a Local Network.

Presented at International Workshop on Local Networks sponsored by IBM Zurich
Research Laboratory in August, 1980.

Svobodova, L.

Reliability Issues in Distributed Information Processing Systems.

In Proceedings of the Ninth IEEE Fault Tolerant Computing Symposium, pages 9-16.
IEEE, June, 1979.

Svobodova, L.
Management of Object Histcries in the Swallow Repository.
Technical Report MIT/LCS/TR-243, M.L.T., July, 1930.

Swinehart, D., McDaniel, G., Boggs, D.
WFS: A Simple Shared File System for a Distributed Environment.

In Proceedings of the Seventh Symposium on Operating Systems Principles. ACM,
December, 1979.

Verhofstad, J.

Recovery and Crash Resistance in a Filing System. ;

In Proceedings of the ACM-SIGMOD Conference on Management of Data. ACM
August, 1977.

120

e e

SECURITY CLASSIFICATION OF THiS PAGE (When Defa Entered)

EENO 52 e R T SRR AN

fT REPORT NUMBER

REPORT DOCUMENTATION PAGE .

BEFORE COMPLETING FORM *
3. RECIPIENT'S CATALOG NUMBER ;

READ INSTRUCTIONS

MIT/ICS/TR-252

2. GOVT ACCESSION NOJ

4. TITLE (and Subtitle)

Recovery of the Swallow Repository

5. TYPE OF REPORT & PERIOD COVERED

S.M.Thesis - Jan.1981

6. PERFORMING ORG. REPORT NUMBER

MIT/ICS/TR-252

7. AUTHOR(s)

Gail C. Arens

8. CONTRACT OR GRANT NUMBER(s)

NO0014-75-C-0661

9. PERFORMING ORGAN!ZATYON NAME AND ADDRESS
MIT/Laboratory for Camputer Science
545 Technology Square
Cambridge, MA 02139

10. PROGRAM ELEMENT, PROJECT TASK
AREA & WORK UNIT NUMBE

11. CONTROLLING OFFICE NAME AND ADDRESS
ARPA/Department of Defense
1400 Wilson Boulevard
Arlington, VA 22209

12. REPORT DATE

January 1981

13. NUMBER OF PAGES

122

T4, MONITORING AGENCY NAME & AGDRESS(If different from Controlling Office)
ONR/Department of the Navy

Information Systems Program

Arlington, VA 22217

18. SECURITY CL ASS. (of thia report)

Unclassified

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

18. pngRIBUTION STATEMENT (of this Report)

its distribution is unlJ.mlted

This document has been approved for public release and sale;

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

L]
e

g

@istributed data storage system
" Besh table)
\

' gptical disk computer system reliability

Y WORDS (Continue an reverse side if necessary and identily by block number)

mﬁhmﬁ-oﬁdﬁ.

T 17 [

This thesis presents the design of a set of recovery mechanisms for the Swallow repository.
Swallow is a distributed data storage system thet supports highly refiable long term storage
of arbitrary sized data objects with special mechanisms for implementing multi-site atomie
actions. The Swallow repository is a data storage server that keeps permanent data in wnte-

ot ————

» .;'4;& MJ) smmener vmu-mp&_pg

Wi

