MIT/ICS/TR-256

SEMTAUTOMATIC TRANSLATION
OF
COBOL INTO HIBOL

Gregory Gerard Faust

Tius blank page was inserted to preserve pagination.

j
5
\
!
|
i

smmm

to
Jonirieba %{35 Ay

COBOL intg HIBOL

o
&5
]
et
et}
wia
P

g YIopes)

§ b tnaraigootd st ol ety
Q! AR, 10 SOABIOE wwlugmoD

R R P , e g y,;{,sangsn %m‘g& swgetios smves A

‘ & insteya A Zizos sonsoeitiom aldgloing of S :so%»

Py g JOERH olm snwitoe 0 xe 1o

m atal by syt sipiie & eesu | ;(.;réf.éééi SHEHBIN
SIS IR0 Sk BBeES x::m & mr% meres eeulev aish

O it

s

s o e <61 bodem & no 2uileY sEenY Roilsizns

Swrsuue olbngeid o e FEAPDN) 2seee s Hoidy er0igW
cGoot mzierus s st tinigaa sbem ai woll ,é:mg bz lo1nos
| ol BT owE o Mg’"‘g SiSeqe mese

HLEOD o ot g Desvigns g wort & st al ae2uoeil wasa a'{ T

e .mejm ot sfeiansil of silesog vihuzvs 8t L metyog OdiH 8 ol
. . . . SR 18 {bﬁm?;ﬁ: o ﬂnﬁ; P

¥ sfpucwdt bebaeaxe ed bluos

ok Joauy

Semiautomatic Translation
of
COBOL into HIBOL

, b.y
Gregory Gerard Faust

.

Submitted to the Department of Electrical Engineering and

Computer Science on January 21, 1881 in partial fulfiliment

of the requirements for the Degree of Master of Science in
Computer Science '

ABSTRACT

A severe software crisis is currently being experienced by the data processing community
due to intolerable maintenance costs. A system is introduced to reduce those costs by the translation
of existing COBOL software into HIBOL; a very high level language that is significantly easier to
maintain. HIBOL, uses a single type of data object, called a “flow", which is an indexed stream of
data values. Computation is expressed as operations acting on flows.

The translation process relies on a method for program abstraction developed by Richard
Waters which expresses programs as a hierarchical structure, called an analyzed plan, in which
control and data flow is made explicit. in this formalism, loops are expressed as a composition of
stream operators acting on stream data fiow. '

This paper discusses in detail how an analyzed plan for a COBOL program can be translated
into a HIBOL program. It is currently possible to transiate into HIBOL analyzed plans for a relatively
small (but weli defined) subset of COBOL programs. Suggestions are. made as to how that subset
could be expanded through further research. ’ ' o

Thesis Supervisor: Dr. William A. Martin A
Title: Associate Professor of Electrical Engineering and Computer Science
and Associate Professor of Management

Thesis Supervisor: Dr. Richard C. Waters
Title: Research Scientist, Artificial Intelligence Laboratory

Keywords: program translation, prdgram,understanding,‘COBOL, HIBOL. automatié programiming

Acknowledgments

I would like to thank the following people without whose help this thesis would not have
become areality.

- Bill Martin for the seminal idea that launched the entire project

- Dick Waters for the help he gave me in writing programs which interact with his plan formalism, and
for his constant guidance throughout this project

- Glenn Burke for the time he spent writing the COBOL parser, and helping he eliminate bugs in my
programs which no else could fathom

- Ramesh Patil and Harold Goldberger for their assistance in'de'\'?isin'g algbrithms to perform various
tasks

- Dick Waters and Bill Martin, my thesis advisors, and Chuck Rich for theu' constructive criticism of
several previous drafts of this paper : ‘

- Howard Sherman, Brij Masand, Glenn Burke, Ramesh Patil, Lowell Hawkinson, Haroki Goldberger,
irwin Asbell, Bill Long, Bill Swartout, and Ken Church for their lively discussnons, both over lunch and
when my mind refused to apply itseif to the problem at hand

- Ann Sexton for her companionship and understanding throughout th(erpast'year

- and especially, my parents, Alice and Vincent Faust, and the rest of my family for their constant
moral support throughout my academic career

Table of Contents -4- Gregory G. Faust

CONTENTS

1. Introductionciiineivinininnnns s EreEeeresesns e s s b R s es e s e RS RS R R E e e s Re e cRnnanns 9
1.1 MOBIVAHON ooveenrircccciciccete s ees e sssanns eeeteneris et rs e b rennaber 9

1.2 SYSIEM OVEIVIEW .oivviiiiriiiiinccccriinncsoneeiiresceeessesstessscsssssasssssssnossensssssssissssnss sovasenonsns 10

1.3 Related WOrKccoovierrececr s seeresmae e ettt 12

1.4 Example Programs and Their Translationsccccee vt 13

1.5 Qutline of Remaining Chaptersccereneccninnisssnsrnec e 22

2. COBOL ...ovciietiseiniesisessnssnssneisssseinessessssssssssesssessessssssntesssserassssssssassssssssssesssesstossassossonesrssssssssnses 23
2.1 EXAMPIE PIOGIBIMS ...c.ce.iivoiereeseseseesesssesibasssesssisssssssssssisssasssessssessssssossisssasasssassases 23
2.2 ENVIRONMENT DIVISIONc..comiiirinniininrimsssnssssissessnessnessassarens vrerennertees 26

2.3 DATA DIVISIONccooieiriirnrrenoresnrsnescsssssssssssosssesssnssnsssssssstassnssssssasstsasorsasssssessassns 27

2.4 PROCEDURE DIVISIONc0ciicee werreriessssisatees verreatnesentrsasnnsentasiessesete 20

8. HIBOL ...ttt cts e saraais brerersereisreeratetietnssresyare dare vemveerersmrrrenasiaranse 32
3.1 DATA DIVISIONecrircninsensnserennscasaanas 3 ceevetsreraesesaaessanansessrsesitannsasit 32

3.2 COMPUTATION DIVISIONooviiveiiieimsncnrnnssasinmseessssssssssssssssssasssssssssassssssasassses 33

3.3 Features of HIBOL Revisited ressestesssensseans s s banas rersessinesssnesssasaes 38

4. Plans and Plan Building Methodsccoo..... IR, eersesesssstssesetser st st e s sassnares 40
4.1 SUACE PIANScccvvereernesernrirnsssesssaessessesssssessens reereenes i e rnee s ar e ae e e s asasanaraen 40

4.2 Analyzed Plans and Plan Building Methodscccccvinrimrcriinninnnisneceniens 43

4.3 ConcluSIonccciiiiesieinirmrinennssnseeesssnessnes eiemreresieereseerssnsIessRessRsesRssR st nesans 54

5. Current Implementation of the Translation ProCessc.cccecerecrseencesmcescmressessnsssssssenssios 99
5.1 General DESCHPHONcc.cccvceerercrrcerrniercressesersrerssrsassncosassssnssnsssssasssassssssssssssssasanss 55

5.2 Range of COBOL Programs Currently Translatable ..., 57

5.3 Brief EXAMPIGcccceeevverrreerennerencensssesserssssssrssssesessressssassessssnessnsessssnsnssnsesasssnssensesses 59

5.4 Symbolic Evaluation of an Analyzed Plan ..., 62

5.5 DATA DIVISION QUETYcoveunnrirnnnimmssissmmnisinsioniessessnsmsssmssesssessssssssssssssesssss 78

5.6 HIBOL ProdUCHIONcccciiernremrcnrencseersessnssemsesnereronssnesssssenssssssessssnasassassss seasssssans 78

6. Critique of the Current Implementation of the Translation ProCeSSeemsessssssenes 88
6.1 Problems Arising in the Current implementationc.ccoecvvvereerercnnrcinnens S 88

6.2 POSSIDIE EXIENSIONScoreviieerinrecmssrsnisisssssnnsasersesesssseresssssnsssnssssssssensissanessssananesssas 98

Gregory G. Faust -5~ _ Table of Contents

7. Critique OF the SATCH SYSIEMccvviriiieiceesiretessetssssssresireesieesissessesrsssereesssasssssnerssrresenssessns 103
7.1 Semiautomatic versus Automatic Translationcccoveeeeiriiireeiienssrirensieenes e 103
7.2 Using Analyzed Plans sttt enr e es e se e e eranas rreetesrnestrsstreresraennnans 103
7.3 Future Direction for the Translation ProCesscwieivisissiemensisesessossnnne veereres - 108
7.4 Translation of HIBOL into COBOLccoovtiieenerenrnnnsssessionsmnssssossssssssrssssnsassesss. 107
Appendix |. Plan Primitives for COBOL Programs bebessacinrsrareraases resrqrernsarerrens eeereesen veeeresasne 109
1.1. Boolean PrimitivEscccoeveeeiiiieirccresrciecsieenseeeees saneseas e e deredennererinnrrnnrensrnraresersrrsene 109
L2, Arithmetic Primitivescccciiiii et ee s s i s sanens resergriasesraseesrenns 110
L3, SHHNG OPEIATOIS ...occeeivirinreerirriireriir e creerceee e eresesseeesssesestrsssesinssans ssssnne sobonsssrennasensnssses crereres 110
L4, File OPBIALOTScociieiciniicrit e sseirssner s s sas e sesssesessssasssas e sasmens saeeneassasassoraesaes 111
Appendix 1. How t0 RUN SATCHcciiiviiirrriiisiniesnsssissesssesseesasncens sansasesren aeesranarasssssnnnes 113

RBIETBNCESoooeeeeeetescrisssare s ssese s srsssesssaenssessassnessesenesansannessesarrons rrasssnunn spreerersannes 115

- Table of Figures -6- Gregory G. Faust

FIGURES
Fig. 1. SATCH OVEIVIBW ..cuuvveveieststssisisssssessisssssssssssssssssssssssssasssesssssssesssssssesssssssessassasssesaes 1
Fig. 2. COBOL Program for PAYROLL ... sssnssessssssrssssssssesessrssssssssasessssns 14
Fig. 3. HIBOL Program for PAYROLLcviivoircccrvcnnnnrssiseerinisssisrsiosassssesssnessesssessnsssenssns 15
Fig. 4. COBOL Program for PAYROLL2corecrrrerinnesreseevrersssessesssssnssstesseranesseseenss 16
Fig. 4. COBOL Program for PAYROLL2 (CONTINUED)cccecvivtrvevnnesesesennesessneseesnsesesanssssnens 17
Fig. 5. HIBOL Program for PAYROLLZ2cociinimniniiniicenncecese s s e st sasaseas 17
Fig. 6. COBOL Program for DBINIT e eeisar et ree e e re bt R re s R e bR s o R s s terab e R s et e nn 18
Fig. 7. HIBOL Program for DBINITc.ccoeiiiincinrereennrer s cesessesesessasas s sesensssassassans e 19
Fig. 8. COBOL Program for LOC-LIST ..o sesesssssssssssssssssssssssssmsssssssssssssses 20
Fig. 8. COBOL Program for LOC-LIST (CONTINUED)cccviniiirrrcericerennecneiesnnssnesresneessessenens 21
Fig. 9. HIBOL Program for LOC-LISTcccccevicrcrriccnneesrnnnnnensicseermnneserssssssssessessasssssnsesensesensns 21
Fig. 10. COBOL Program for PAYROLLccrevririierrnnccnsenenrssmssssrsreseressesessenssssssssesesssessessnens 24
Fig. 10. COBOL Program for PAYROLL (CONTINUED) ...c.ccccecmreininrrenssiensinonsiessnonsesssvenss reresesnens 25
Fig. 11. PICTURE EIBMBNLScoccmiirerceeeritieriesesscsceneeccssasscasssseissssnsesssnssessastssnsssneronsesssnasnnns 27
Fig. 12. Example Use of B8 Variablesc..cccciiiincrticccrmcccernscescevesnenessesccessnssesesssnessissans 28
Fig. 13. Simple Statements that Affect CONrol FIOWcccrvirvrivivrssrnerseesnneessenenenssnssssessnnns 29
Fig. 14. PERFORM Syntax when Used to Implement a Subroutine Callccccccceveeireercanrennns 29
Fig. 156. PERFORM Syntax when Used as a Loop CONStructcccccvmmvcnnciinenniennineneoninsnns 30
Fig. 16. Data Manipulation Statementscccccevieeccrniisninnciircnnsrereersenessessssenessessersseresssens 30
Fig. 17. File Manipulation Statementsccceeeveernernnssessiniessssesnsasessserenss erseesairs s s rinens 31
Fig. 18. HIBOL Program for PAYROLL ... irrrcrmecrerennisnsrsensesessessssasessscnmssnssnsessarssssans RZ
Fig. 19. HIBOL Syntax for Conditional EXpreSSionscirrciinercsmncrmnicsssseseenrisessessanses 34
Fig. 20. HIBOL Program Fragment with Conditional FOrmcc.uceeerrvrecrnrenmecoenienenend. 39
Fig. 21. HIBOL Syntax for Arithmetic Operatorsccvnmcmnnensnnniienas 35
Fig. 22. Expanded Forms of ArithmetiC FIOW EXPreSSioNnscceciverieerserirerseresasesserensrssnnessneres 38
Fig. 23. HIBOL Syntax for Reduction Operators ... 37
Fig. 24. Sample HIBOL Program Fragment with Reduction Operatorc.cceeeecesmnmssssrersanns 37
Fig. 25. Partial Surface Plan for PAYROLL ... oviciivrccerncnnersrescnssseressessssvssesinsssessasns . 42
Fig. 26. Taxonomy of Plan Building Methodscccccccmrivinnnenncercinreecnecsmcrmseesionsesserssetrenssessss. 44
Fig. 27. Generating Augmentation in the Analyzed Plan for PAYROLLcccoevncivmncniinnencene 47
Fig. 28. Termination in the Analyzed Plan for PAYROLLc.civcvreeererinenennnnsesersnsenenaes reeeenen 49
Fig. 20. Example Filterccccccevvvereerrcenevenerinenseses tresseasarennseseninsnnsens 51
Fig. 30. Temporal Composition in the Analyzed Plan for PAYROLL .. 52
Fig. 31. Analyzed Plan for PAYROLLccoconcerciniunnnacenns sesssnsaserasassne prssssasasinsnsasasasanasasneanns 53
Fig. 32. Current SATCH Implementationccccciccrerinenaressnnsnsresesseeresssisnesasessersssnsessssasen 56
Fig. 33. Partial Analyzed Plan for PAYROLLooicievmvrecreneeevennearnonsaessasessennasanssrsssssns 60
Fig. 34. Transform to Remove XCASEs in Comparative FUNCHONScccrvnersnniincrnnreseneesarns 70
Fig. 35. Example Predicate Simplification from PAYROLLZccceveetereicersisiscsssnnssssessssonsesinans 71
Fig. 36. Transform to Remove XCASEs in Arithmetic EXPressionscc.eeuvermnieneessnesnniensnne 72
Fig. 37. Transform to Eliminate Nested XCASEScccvvuertenmsnsnnsnsnirsssrmresmmssssssnisssssessesessesns 73

Fig. 38. Transform to Condense Predicate-object Pairs containing Identacal Objectsecuu. 73

Gregory G. Faust -7- Table of Figures

Fig. 39. Example Simplification of an Object ASSertionc.ccccvcicvirinivivnineeresnrseee. 75
Fig. 39. Example Simplitication of an Cbject Assertion (Continued)c.cccoceeecerncmninincnseenens 76
Fig. 40. Information Transferred Between Phases in PAYROLLcocccovvrvirveicmrvenesinnneecccenns 77
Fig. 41. Steps in the Production of the COMPUTATION DIVISIONcovvevvrnvmeerinicnrensesenses 79
Fig. 42. Sketch of Analyzed Plan for File Merge Operationcccessvessecrnronrnnesssersessmsevsaseoras 82
Fig. 43. Predicates Contained in XCASEs in a File Merge et e 83
Fig. 44. Replacement PrEQICAIAScccecivrniinnieisiniiisessississseassssssnesssssessossessssssanssessessasasssnss 83
Fig. 45. Exampie of Predicate ReplacemMentcccvccvuieeicnnneninicneiiisnessienssssersessssesensesssnssses 85
Fig. 46. COBOL Fragment with One Sequential and One Indexed Fileccoceevveeeiviccreneeenns 99

Fig. 47. COBOL Fragment with Two INdexed FIlESc.cccvcevevevieersrsrnenerrevsrmsrensenesnsen 100

Gregory G. Faust : -9- Introduction

1. Introduction

In the last ten years, there have been many efforts to simplify the task of producing large
error-free software systems. Although no one would argue with the merits of such efforts, they alone
are not sufficient to relieve the current software crisis that is being gxperienced by the data
processing community. In additioﬁ to aids in the production of new software systems, aids in the
maintenance of exigting software are needed. This thesis is a step toward such an aid.

The system, SATCH, is designed to perform the SemjAutomatic Translation of COBOL into
HIBOL. HIBOL is a very high level specification language in-which daia precessing applications are
not prdgrammed procedurally, but simply described as a groub of stereotyped operations acting on
streams [3,18,27]. 'Since the HIBOL repressimation explicitiy-embodies the tunctional specifications
of the application system, it is relatively easy to -understand “and maintain. The HIBOL can
subsequently be ‘transiated back imo COBOL [27]. The.intbnt is that the COBOL produced by the
system wifl be considerably more structured, and potentiafly more efficient, than the input COBOL
program. More importantly, the HIBOL specification of the-program can ‘be retained $o that future
changes to the functionatl specifications of the program ¢en be imphmnted by modifying: the HIBOL
program and automatically regenerating the corresponding L program. '

1.1 Motivation

In order to see the long term potential of a system such as SATCH, the following scenario
can be envigioned. ' The maneger of a data précessing faciiity recopnizes that one of his systems has
reached the point where the code is - so convoluted ‘that it -tan no longer be maintained in a
reasonabie fashion. "He would: like 1o have ‘the: system rewritisn from ‘scratch, but hereafizes the
tremeridous cost iavolved. -in additior; he- simply dows not Hieve the-personnel 1o place on such a -
project. Without SATCH, he is doomed to live with the current systent deBpie its shortcomings.

However, if a production: version of the" SATCH system: did - exist;'ve would have another
alternative. He can input the COBOL prégrams imo-SATCH one at ‘a time. ‘For eachi-program so
proGessed, he gets an output of another COBOL program:tiat is easier to understand and is: probably
more- efficient. - More importantly, he receives @ MIBOL. program. which -embodies the functional
specifications for the apphication. (For' thoss: COBOL progiams that ambody computations that -
cannot eashy be expressed in HIBOL, the ofiginal COBOL prograni-is retained). ' The HIBOL program
can also be utilized as documentation for the system, and can therefore reduce the need for the time-
consuming production of bulky documents for the system written in some less concise form.

Introduction -10- A Gregory G. Faust

Future modification to the functional specifications can then be implemented as direct
alterations of the HIBOL code; the need to maintain the system via modifications to COBOL programs
is (largely) eliminated. The updated HIBOL program can then be used to automatically produce the
newly desired COBOL program. Note that this process-also-updates the ‘documentation for the
system with no additional effort. ‘ '

Although the process of initially converting from the existing COBOL programs to the HIBOL
programs would be expensive and somewhat difficult, it would not be nearly as bad as a total system
rewrite in COBOL. In either case, it is a one time expense. The benefit of the conversion to HIBOL is
that the incremental cost of system maintenance is greatly reduced.

Admittedly, the above scenario will not be actualized. in the immediate future. However, the
technology needed to produce such a system should be available within the foreseeable future, as
indicated by the level of the current technology discussed in this thesis. The component of the
system introduced in this paper represents an attempt to overcome the only evident theoretical
barrier. Now that this component has been shown feasible, it should be possible to resolve the
remaining difficulties by further research and a lot of hard -work in the form of some excellent
engineering. The obvious merits of the production of such a system should make the effort
* worthwhile. '

1.2 Systiem Overview

Figure 1 is a schematic representation of the entire system. First, a surface plan is extracted
from the raw COBOL code. The surface plan is then.analyzed in terms of Plan Building Methods
(PBMs). The analyzed plan is then translated into a valid HIBOL program. From this HIBOL program,
a new COBOL program can be produced. The procass that translates an analyzed plan into a HIBOL
program is the novel companent of the system.

The first process exiracts a surface pian from the raw COBOL code. A surface plan contains
all the information contained in the original cade, but in a janguage independent form. it is a direct
abstraction of the control and data flow in the original program. Enough information is explicit in the
surface plan that it is theoretically possible to execute it.. The original notion of a plan was developed
by Rich and Shrobe [25]. The detailed structure of a surlace plan was developed by Waters as part of
his PhD research [31,32]. Burke and Waters have written a program that produces surface plans for

-COBOL programs.

The real interest in the surface plan representation of the COBOL program lies in the fact that
it can be automatically analyzed further in terms of PBMs. The PBMs, the type and form of which
were developed by Waters [31,32], are a small set of well defined control and data flow structures into

Gregory G. Faust . -11- Introduction

Fig. 1. SATCH Overview

ANALYZED TRANSLATION _HIBOL
PLAN " _PROGRAM
ANALYSIS »
SURFACE - - CODE
PLAN . GENERATION
PLAN
EXTRACTION ,
COBOL CoBOL
PROGRAM PROGRAM

which programs-can be analyzed. He has implemented a program that produces an analyzed plan
from a surface plan. : ’

The next compaonent of the syétem embodies the cutrent research.. It is responsible for the
transiation of the analyzed plan for the COBOL program inte. a. HIBOL program that performs the
same data processing function.)t is intended to. produce HIBOL code:that faithfully embodies the
original functional specification implicitly contained m the COBQL program. .

Once the HIBOL is produced, it is used as input to a codegenerator The target Iangdage
can be any conventional high level Imguage such -as COBOL or PL/1. Currently, PL/1 can be
produced from HIBOL by.the use of an. automahc programming system called PROTOSYSTEM | [27].
There are some preblems with the unconstrained use of. PROTOSYSTEM |.to produce. PL/1 from
HIBOL. Within the current scenario, however, the system can-be constrained to avoid these
difficulties. 1t would be relatively straightforward to reimplement the portion of the PROTOSYSTEM |
which produces the target language- oyntax 80 that COBOL. could be. pmduoed instead of PL/1.

It must be stressed that this thesis should be v:ewed asa feassbimy study The major thmst of
this thesis is to show that it is possible to produce HIBOL from..COBOL with very litle human
intervention using technology that is either currently available or. which should become.available in
the foreseeable future. itis not the intention of this thesis to present a final solution to the problem of
COBOL to HIBOL translation.

Introduction -12 - Gregory G. Faust

1.3 Related Work

There have been three general approaches to the elimination of the software maintenance
crisis. First, many attempts have been made to reduce the maintenance burden through the creation
of more structured and constréined prbgramming languages [15,35] that are intended to facilitate the
writing of more correct programs. A second approach has been to désign languages in which the
program is written in a form that-resembles functional specifications for the progrém, and then have a
system automatically produce the actual code for the program. Many of these languages fall into the
category of the so called "very high level" languages [7,8,27]. A third approach has been to design
interactive systems in which the programmer and the system assist one another in the design of a
program [4,6,16,25].

The first approach, constrained programming Ianguages,. has the advantage that once a
program is written that is accepted by the compiler for the language, it has a higher probability of
executing correctly. This rediices the .need for maintenance aimed at assuring that the program -
operates according to the functional specifications. It does nothing to reduce the maintenance
required when the functional specifications are changed. The second approach, very high level
languages, has the advantage that the resultant programs are easief to maintain when the functional
specifications cirarige. This is a result of the fact that the programs represent the functional
specifications in a-more straightiorward and therefore more perspicuous manner. The last approach,
interactive systems, reduces both types of maintenance becaisse the interactive system used to -
produce the software can be employed for its maintenance as well.

Unfortunately, though all of these approaches can be used to reduce the cost of
maintenance of software systems that are implemented using thém, they cannot be used to reduce
_ the'maintenance of preexisting software systems. The system described in this document, SATCH, is
aimed at the reduction of the cost of maintaining existing software.

The reason that these approaches cannat be used to reduce the maintenance of existing
software is that they attempt to automatically translate increasingly high level program descriptions
into some lower level description. They do not attempt to translate from lower level languages to
higtrer fevel ones. To my knowledge, the work of Rich, Waters, and the other members of the
Programmer Apprentice Group at MIT [28,31,32] is the only effort that has been made to date to
automatically produce any type of an abstraction from an existing program. It is this work that is the
theoretical foundation of the SATCH system.

Some work has been done at the University of Texas at Austin by John Hartman [9] in an
attempt to provide a methodology for restructuring COBOL programs into abstract data modules.
Such a methodology could be applied by programmers to restructure existing COBOL programs prior

Gregory G. Faust -13- Introduction

to performing maintenance on them thereby reducing maintenance costs for those cases in which the
methodology is applicable. The goals of the work by Hartman differ from the goals of this thesis in
that Hartman's methodology is designed to be applied by a person, while we wish to abstract from an
existing program via a machine. Perhaps, through further research, his methodology could be made
precise enough to be automated. In any case, a HIBOL program is ¢asier }0, maintain than a
restructured COBOL program for the same computation. ‘

Within the data processing community, several systems have been designed to produce
COBOL from some "higher level” language based on the notion of stereotyped operations.in COBOL
[5,34]. None of them, however, are in the form of specification languages; rather, they are essentially
macro packages or structured preprocessors. One of these, MetaCOBOL [2], can be used to
translate from a COBOL program written to be executed on one vendor's machme into a COBOL
program that can be run on angther vendor's machine. This is merely a syntactic "6hpnge. however,
and does not involve either abstraction or non-trivial control qr datﬂ ﬂbwdwraelom ' '

Another project in language to language translation was recently: oompleted by Kent Pitman
at MIT [23]. He wrote a program to translate FORTRAN programs into MSP Theﬂansiahon is done
in two steps. First, the FORTRAN is translated into a LISP formin whechBOioopsand other standard
FORTRAN constructs are expressed as LISP macros. In the second phase, the«macms are expanded
into an interpretable and/or compilable form. The two step process has the advantage that the form
containing the macros is somewhat maintainable, while the expanded farm is much less so. Still, in
Pitman's project, maintainability (end- therefore readability) of the resuMtant code was only a
secondary goal, while the maintainability of the HIBOL produced from a COB@L program wasa major
goal of the research described in this thesis. A more imporuntrdhtmcmn is thatthe FORTRAN to
LISP translation is done almost entirely on a syntactic basis, while !he CQBOL 10 HlBOL translation is
not.

1.4 Example Programs and Their Translations.

This section presents four COBOL programs: and the. correwondmg ‘HIBOL programs
generated by the current implementation of the SATCH system. Two ouhcae examﬁs DBINIT and
LOC-LIST, are programs taken from running software systems currently.in uw ln the data processing
community. Although the reader is not expected to understand the progr&ms at this point, they are
included here to give the reader a feel for the task at hand. ln patticular; hote the large compression
that takes place, especially in the translation of the PROCEBUHE BMSVGNM & COBOL program into
the COMPUTATION DIVISION of the corresponding HIBOL pmgm Mmmpks will be referred
to throughout the remainder of the document. The reader is invited to turn back to these listings
whenever it seems appropriate to do so.

Introduction

14 -

Fig. 2. COBOL Program for PAYROLL

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-QUTPUT SECTION.
FILE-CONTROL .

SELECT HOURLY-WAGE-IN ASSIGN TO DA-2301-S-HWI.

SELECT GROSS-PAY-OUT ASSIGN TO DA-2301-S-GPO.

SELECT EMPLOYEE-COUNT-OUT ASSIGN TO DA-2301-S-ECO.
SELECT TOTAL-GROSS-PAY-OUT ASSIGN TQ:DA-2301-S-TGPO.

DATA DIVISION.
FILE SECTION.

FD

01

FD

01

FD

01

FD

01

hourly-wage~in

LABEL RECORD IS OMITTED

DATA RECORD 1S hourly-wage-rec.

hourly-wage-rec. ‘ .
02 employee-number ' PICTURE IS 9(9).
02 hourly-wage . - PICTURE IS. 990V09.
gross-pay-out

LABEL RECORD: IS .OMITTED

DATA RECORD IS gross-pay-rec.

gross-pay-rec.

02 employee-number . PICTURE IS 9(9).
02 gross-pay PICTURE 1S 999V99
employee-count-out :

LABEL RECORD IS OMITTED

DATA RECORD IS onploytn-conat-roc

employee-count-rec. L ’
02 -employee-count ' PICTURE IS 9(8).
total-gross-pay-out

LABEL -RECORD IS -OMITTED

. DATA RECORD IS total-gross-pay-rec.

total-gross-pay-rec.
02 total-gross-pay PICTURE IS 9(7)v99.

PROCEDURE - -DIVISION.
1n1t1a111at10n SECTION.

‘MOVE. ZERO TO total-gross-pay.
MOVE ZERO TO employee-count.
OPEN INPUT hourly-<wage-in.
OPEN OUTPUT gross-pay-out.

mainline SECTION.

READ hourly-wage-1in AT END GO TO end-of-job.
MOVE employee-number OF hourly-wage-rec

TO employee-number OF gross-pay+rec,
MULTIPLY hourly-wage BY 40 GIVING gross-pay.
ADD 1 TO employee-count.
ABD gross-pay TQ. total-gross-pay.
WRITE gross-pay-rec.
60 TO mainline.

end-of-job SECTION.

CLOSE hourly-wage-1in.

CLOSE gross-pay-out,

OPEN OUTPUT ‘employee-count-out.
WRITE employee-count-rec.

CLOSE employes-count-out.

OPEN OUTPUT. -total~gross-pay-out,
WRITE total-gross-pay-rec.
CLOSE total-gross-pay-out.

STOP RUN.

Gregory G. Faust

Gregory G. Faust -15- Introduction

Fig. 3. HIBOL Program for PAYROLL

DATA DIVISION

KEY SECTION
KEY EMPLOYEE-NUMBER
FILLD TYPE IS NUMBER
FIELD LENGTH IS 9

INPUT SECTION
FILE HOURLY-WAGE
KEY IS EMPLOYEE-NUMBER
OUTPUT SECTION
FILE GROSS-PAY
KEY IS EMPLOYEE-NUMBER
FILE EMPLOYEE-COUNT
FILE TOTAL-GROSS-PAY
COMPUTATION DIVISION
TOTAL-GROSS-PAY IS (SUM OF (HOURLY-WAGE * 40.))
EMPLOYEE-COUNT IS (COUNT OF HOURLY-WAGE) -

GROSS-PAY IS (HOURLY-WAGE * 40.)

Introduction - 16 - _ » Gregory G. Faust

Fig. 4. COBOL Program for PAYROLL2

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.
SELECT HOURLY-WAGE-IN ASSIGN TO DA-2301-S-HWI.
SELECT HOURS-WORKED-IN ASSIGN TO DA-2301-S-WH.
SELECT GROSS-PAY-OUT ASSIGN TO DA-2301-S-GPO.
SELECT TOTAL-GROSS-PAY-QUT ASSIGN TO DA-2301-S-TGPO.

DATA DIVISION.
FILE SECTION.
FD hourly-wage-in
LABEL RECORD IS OMITTED
DATA RECORD IS hourly-wage-rec.
01 hourly-wage-rec.
02 employee-number PICTURE IS 9(9).
02 hourly-wage PICTURE IS 999Vv99.
FD hours-worked-in
LABEL RECORD IS OMITTED
DATA RECORD 1S hours-worked-rec.
01 hours-worked-rec.
02 employee-number PICTURE IS 9(9).
02 hours-worked PICTURE IS 999.
FD total-gross-pay-out :
LABEL RECORD IS OMITTED
DATA RECORD IS total-gross-pay-rec.
01 total-gross-pay-rec.
02 total-gross-pay PICTURE IS 9(7)v99.
FD gross-pay-out
LABEL RECORD IS OMITTED
DATA RECORD IS gross-pay-rec.
01 gross-pay-rec.
02 employee-number PICTURE IS 9(9).
02 gross-pay PICTURE 1S 999V99.
WORKING-STORAGE SECTION.
77 end-of-hours-ind PICTURE 9 VALUE ZERO.
88 end-of-hours VALUE 1.
77 eond-of-wage-ind PICTURE 9 VALUE ZERO.
88 end-of-wage VALUE 1.
77 compare-ind PICTURE 9.
88 wage-eq-hours VALUE 1.
88 wage-1t-hours VALUE 2.
88 wage-gt-hours VALUE 3.

PROCEDURE DIVISION.
initialization SECTION.
MOVE ZERO TO total-gross-pay.
OPEN INPUT hours-worked-in
hourly-wage-in
QUTPUT gross-pay-out.
PERFORM read-wage.
PERFORM read-hours.
mainline SECTION.
IF end-of-wage OR end-of-hours THEN GO TO end-of-job.
PERFORM compare.
IF wage-eq-hours THEN PERFORM wage-eq-hours-proc.
IF wage-1t-hours THEN PERFORM wage-l1t-hours-proc.
IF wage-gt-hours THEN PERFORM wage-gt-hours-proc.
GO TO mainline,
read-wage. :
READ hourly-wage-in AT END MOVE 1 TO end-of-wage-ind.
read-hours.
READ hours-worked-in AT END MOVE 1 TO end-of-hours-ind.

Gregory G. Faust -17 -

Fig. 4. COBOL Program for PAYROLL2 (CONTINUED)

compare.
IF employee-number OF hourly-wage-rec
> employee-number OF hours-worked-rec

THEN MOVE 3 TO compare-ind

ELSE IF empioyee-number OF hourly-uagohroc

< employee-number OF hours-worksed-rec
THEN MOVE 2 to compare-ind
ELSE MOVE 1 TO compare-ind.
wage-eq-hours-proc.
PERFORM produce-output.
PERFORM read-wage.
PERFORM read-hours.
wage-1t-hours-proc.
PERFORM read-wage.
wage-gt-hours-proc.
PERFORM read-hours.
produce-output.
MOVE employee-number OF hourly-wage-rac
TO employee-number OF gross-pay-rec.

MULTIPLY hourly-wage BY hours-worked GIVING grOts-piy¢‘

ADD gross-pay TO total-gross-pay.
WRITE gross-pay-rec.
end-of-job SECTION.
CLOSE hourly-wage-1in.
CLOSE hours-worked-1in.
CLOSE gross-pay-out.
OPEN OUTPUT total-gross-pay-out.
WRITE total-gross-pay-rec.
CLOSE total-gross-pay-out.
STOP RUN.

Introduction

Fig. 5. HIBOL Program for PAYROLL2

DATA DIVISION

-KEY SECTION
KEY EMPLOYEE-NUMBER
FIELD TYPE IS NUMBER
FIELD LENGTH IS 9

INPUT SECTION _
FILE HOURLY-WAGE v
KEY IS EMPLOYEE-NUMBER
FILE HOURS-WORKED v
KEY IS EMPLOYEE-NUMBER

OUTPUT SECTION
FILE TOTAL-GROSS-PAY
FILE GROSS-PAY
KEY IS EMPLOYEE-NUMBER

COMPUTATION DIVISION

TOTAL-GROSS-PAY IS (SUM OF (MOURLY-WAGE ** HOURS-WORKED))'

GROSS-PAY IS (HOURLY-WAGE * HOURS~WORKED)

Introduction -18 - Gregory G. Faust

Fig. 6. COBOL Program for DBINIT

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CRADATE ASSIGN TO UT-S-LCRADATE.
SELECT CRADB ASSIGN TO DA-I-LCRADB
ACCESS IS SEQUENTIAL
RECORD KEY IS CRADB-RECORD-KEY.
DATA DIVISION.
FILE SECTION.
FD CRADATE
LABEL RECORD IS OMITTED
DATA RECORD IS DATEREC.
01 DATEREC.
03 BILLING-PERIOD PICTURE X.
88 BEGINNING-NEW-PERIOD VALUE '1°.
FD CRADSB
LABEL RECORDS ARE STANDARD
RECORDING MODE IS F
BLOCK CONTAINS 0. RECORBS
RECORD CONTAINS 44 CHARACTERS
DATA RECORD IS DBREC.
01 CRADBREC.
03 DELETE-OR-DATE-INDICATOR PICTURE X.
88 DATE-RECORD VALUE 'D'.
88 RECORD-DELETED VALUE HIGH-VALUE.
03 CRADB-RECORD-KEY.
06 CRADB-DEPARTMENT PICTURE XX.
05 CRADB-EMP-CLASS PICTURE XX.
05 CRADB-EMP-NO PICTURE X(5).
03 CRADB-YTD-HOURS PICTURE S9(4)VS.
03 CRADB-JTD-HOURS PICTURE S9(4)V9.
03 CRADB-WEEK-HGURS PICTURE S8(4)V9.
03 CRADB-WEEK-LABOR-COST PICTURE SO(5)V60.
03 CRADB-PERIOD-HOURS PICTURE S9(4)V9.
03 CRADB-PERIOD-LABOR-COST PICTURE S9(5)V99.
WORKING-STORAGE SECTION.
77 END-OF-CRADB-INDICATOR PICTURE S8 VALUE ZERO.
88 END-OF-CRADB VALUE 1.
77 END-CRADATE-INDICATOR PICTURE SO VALUE ZERO.
88 NO-CRADATE VALUE 1.

PROCEDURE DIVISION.
initialization SECTION.

OPEN INPUT CRADATE.

OPEN I-0 CRADS.

READ CRADATE AT END MOVE +1 TQ END-CRADATE-INDICATOR.

IF NO-CRADATE THEN NEXT SENTENCE

ELSE PERFORM control-010 UNTIL END-OGF-~CRADB.

CLOSE CRADATE CRADB.

STOP RUN.
control-010.

PERFORM read-cradb-020.

IF END-OF-CRADB THEN NEXT SENTENCE

ELSE PERFORM initialize- 030
PERFORM rewrite-040,

read-cradb-020.

READ CRADB NEXT RECORD AT END:MOVE ~+1 TQ. END-OF-CRADB-INDICATOR.
initialize-030.)

“MOVE ZEROES TO CRADB-WEEK-HOURS CRADB-WEEK-LABOR-COST.

IF BEGINNING-NEW-PERIOD

THEN MOVE ZEROS TO CRADB- PER]OD-HOURS
CRADB-PERIOD-LABOR-COST.

rewrite-040.

REWRITE CRADBREC.

Gregory G. Faust

Fig. 7. HIBOL Program for DBINIT

DATA DIVISION
KEY SECTION
KEY

KEY

KEY

INPUT SECTION
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE

OUTPUT SECTION
FILE

FILE
FILE
FILE
FILE
FILE

FILE

CRADB-EMP-NO

FIELD TYPE IS STRING
FIELD LENGTH IS 6
CRADB-EMP-CLASS
FIELD TYPE IS STRING
FIELD LENGTH IS 2
CRADB-DEPARTMENT
FIELD TYPE IS STRING
FIELD LENGTH IS 2

BILLING-PERIOD
DELETE-OR-DATE-INDICATOR
KEYS ARE CRADB-DEPARTMENT
CRADB-YTD-HOURS

KEYS ARE CRADB-DEPARTMENT
CRADB-JTD-HOURS

KEYS ARE CRADB-DEPARTMENT
CRADB -WEEK-HOURS

KEYS ARE CRADB-DEPARTMENT
CRADB-WEEK-LABOR-COST
KEYS ARE CRADB-DEPARTMENT
CRADB-PERIOD-HOURS

KEYS ARE CRADB-DEPARTMENT
CRADB-PERIOD-LABOR-COST
KEYS ARE CRADB-DEPARTMENT

DELETE-OR-DATE-INDICATOR
KEYS ARE CRADB-DEPARTMENT
CRADB-YTD-HQURS

KEYS ARE CRADB-DEPARTMENT
CRADB-JTD-HOURS

KEYS ARE CRADB-DEPARTMENT
CRADB -WEEK ~HOURS

KEYS ARE CRADB-DEPARTMENT
CRADB-WEEK-LABOR-COST
KEYS ARE CRADD-DEPARTMENT
CRADB-PERIOD-HOURS

KEYS ARE CRADB-DEPARTMENT
CRADB-PERIOD-LABOR-COST
KEYS ARE CRADB-DEPARTMENT

COMPUTATION DIVISION

DELETE-OR-DATE-INDICATOR IS DELETE-OR-DATE-INDICATOR IF (BILLING-PERIOD PRESENT)

-19-

CRADB -EMP-CLASS

CRADB-EMP-CLASS

CRADB-EMP-CLASS
CRADB-EMP-CLASS
CRADB-EMP-CLASS
CRADB-EMP-CLASS

CRADB-EMP-CLASS.

CRADB-EMP-CLASS
CRADB-EMP-CLASS
CRADB#EIP-CLASS
CRADB-EMP-CLASS

CRADB-EMP-NO
CRADB-EMP~NO

GRADB-EMP-NO

CRADB-EMP-NO

CRADB - ENP-NO
CRADB-EMP~NO _
CRADB-ENP-ND

.CRADS-EMP-NO
CRADB-EMP-NO
CBADB EﬂP*IDv

CRADB-EMP-N0

CRADB-EMP-CLASS CRADB-EMP-NO

CRADB-EMP-CLASS CRADB-EMP~NO_
CRADB-EMP-CLASS, CRADB-ENP-NO -

CRADB~YTD-HOURS IS CRADB-YTD-HOURS IF (BILLING-PERIOD PRESENT)

CRADB-JTD-HOURS IS CRADB-JTD-HOURS If (BILLING-PERIOD PRESENT) .

CRADB-WEEK-HOURS IS 0.

IF ((BILLING-PERIOD PRESENT) AND ’
(C(LAST PERIOD'S CRADB-WEEK- HOURS) PRESEIT))

CRADB WEEK-LABOR-COST IS 0. IF ((BILLING-PERLOQD PRESEHT) AHD

((LAST PERIOD'S CRADB- HEEK-LABOR COSJ) PRESEHT))

CRADB-PERIOD-HOURS IS
CRADB-PERIOD-HOURS IF (NOT (BILLING- PERIOD = "1"))

E

LSE 0. IF ((BILLING-PERIOD

((LAST PERIOD'S CRADB-PERIOD-HOURS) PRESENT))

CRADB-PERIOD-LABOR-COST IS

CRADB-PERIOD-LABOR-COST IF (NOT (BILLING-PERIOD = "17))
IF ((BILLING-PERIOD = "1") AND
((LAST PERIOD'S CRADB-PERIOD-LABOR-COST) PRESENT))

ELSE 0.

= "17) AND

Introduction

Introduction

.20-

Fig. 8. COBOL Program for LOC-LIST

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
INPUT-OQUTPUT SECTION.

FILE-CONTROL.

SELECT LIB-IN ASSIGN TO LOCIN.
SELECT LIB-TRANS ASSIGN TO LOCTRANS.
SELECT LIB-OUT ASSIGN TO LOCOUT.

DATA DIVISION.
FILE SECTION.

FD

01

FD

01

FD

01

LIB-IN

LABEL RECORDS ARE OMITTED

DATA RECORDS ARE LIBIN-REC.
LIBIN-REC.

02 IN-REC.

03 LOCATION-ONE PICTURE 99.

03 LOCATION-TWO PICTURE 99.

03 LIB-BUILBING-NAME PICTURE X(35).
LIB-0UT

LABEL RECORDS ARE OMITTED

DATA RECORDS ARE LIBOUT-REC.
LIBOUT-REC. '

02 OUT-REC.)

03 LOCATION-OME PICTURE 99.

03 LOCATION-TWO PICTURE 99,

03 "BUILDING-NAME PICTURE X(36).
L1B-TRANS ;

LABEL RECORDS ARE OMITTED

DATA RECORDS ARE LIBTRANS-REC.
LIBTRANS-REC.

02 DELETE-IND-IN PICTURE X.

02 TRANS-REC.

03 LOCATION-ONE PICYURE 99.

03 LOCATION-TWO PICTURE 99.

03 TRANS-BUILDING-NAME PICTURE X(35).

WORKING-STORAGE SECTION.

77

77

77

77

DELETE-IND PICTURE X VALUE SPACE.
88 DELETE-FLAG VALUE 'D'.
END-OF-LIB-IND PICTURE 9 VALUE ZERO.
88 END-OF-LIB VALUE 1.
END-OF -TRANS-IND PICTURE 9 VALUE ZERO.
88 END-OF-TRANS VALUE 1.
COMPARE-IND PICTURE © VALUE ZERO.
88 TRANS-EQ-LIB VALUE 1.
88 TRANS-LT-LIB VALUE 2.
88 TRANS-GT-LIB VALUE 3.

PROCEDURE DIVISION.
HOUSEKEEPING SECTION.

OPEN INPUT LIB-IN LIB-TRANS
OUTPUT LIB-OUT.

PERFORM READ-TRANSACTION.

PERFORM READ-LIBRARY.

MAINLINE. :

If END-OF-TRANS THEN 60 TO FINISH-LIB.

IF END-OF-LIB THEN GO TO FINISH-TRANS.

PERFORM COMPARE .

IF TRANS-EQ-LIB THEN PERFORM TRANS-EQ-LIB-PROC.
IF TRANS-LT-LIB THEN PERFORM TRANS-LT-LIB-PROC.
IF TRANS-GT-LIB THEN PERFORM TRANS-GT-LIB-PROC.
PERFORM PRODUCE-OUTPUT. ‘ ’
GO TO MAINLINE.

READ-LIBRARY.

READ LIB-IN AT END MOVE 1 TO END-OF-LIB-IND.

READ-TRANSACTION.

READ LIB-TRANS AT END MOVE 1 TO END-OF-TRANS-IND.

Gregory G. Faust

Gregory G. Faust ' -21- Introduction

Fig. 8. COBOL Program for LOC-LIST (CONTINUED)

COMPARE .
IF LOCATION-ONE OF TRANS-REC > LOCATION ONE OF IN-REC
THEN MOVE 3 TO COMPARE-IND’
ELSE IF LOCATION-ONE OF JRANS-REC < LOCATION-ONE OF IN-REC
THEN MOVE 2 TO COMPARE-IND
ELSE IF LOCATION-TWO . OF TRANS-REC > LOGATION-TWQ OF . .IN-REC
THEN MOVE 3 TO COMPARE-IND
ELSE IF LOCATION-TWO OF TRANS-REC < LOCATION-IWO OF :IN-REC
THEN MOVE 2 TO COMPARE-IND
ELSE MOVE 1 TO COMPARE-INMD .-
TRANS-EQ-LIB-PROC.
MOVE DELETE-IND-IN TO DELETE-IND.
MOVE TRANS-REC TO OUT-REC.
PERFORM READ-LIBRARY.
PERFORM READ-TRANSACTION.
TRANS-LT-LIB-PROC.
MOVE DELETE-IND-IN TO DELETE-IND.
MOVE TRANS-REC TO OUT-REC.
PERFORM READ-TRANSACTION.
TRANS-GT-LIB-PROC.
MOVE IN-REC TO OUT-REC.
PERFORM READ- -LIBRARY.
PRODUCE-QUTPUT.
IF NOT DELETE-FLAG THEN WRITE LIBOUT-REC.
MOVE SPACE TO DELETE-IND.
FINISH-LIB.
IF END-OF-LIB THEN GO TO EOJ.
MOVE IN-REC TO QUT-REC.
PERFORM PRODUCE-QUTPUT.
PERFORM READ-LIBRARY.
GO TO FINISH-LIB.
FINISH-TRANS.
IF END-OF-TRANS THEN GO TO EOJ.
MOVE DELETE-IND-~IN TO DELETE-IND.
MOVE TRANS-REC TO OUT-REC.
PERFORM PRODUCE-OQUTPUT.
PERFORM READ-TRANSACTION,
GO TO FINISH-TRANS.
EOJ.
CLOSE LIB-IN LIB-TRANS LIB-OQUT.
STOP RUN.

Fig. 9. HIBOL Program for LOC-LIST

DATA DIVISION
KEY SECTION
KEY LOCATION-ONE
FIELD TYPE IS NUMBER
, FIELD LENGTH IS 2
INPUT SECTION
FILE LIB-BUILDING-NAME
KEY IS LOCATION-ONE
FILE DELETE-IND-IN _
KEY IS LOCATION-ONE -
FILE TRANS-BUILDING-NAME
- KEY IS LOCATION-ONE
OUTPUT SECTION
FILE BUILDING-NAME
: KEY IS LOCATION-ONE
COMPUTATION DIVISION
BUILDING-NAME IS LIB-BUILDING-NAME IF (NOT (TRANS-BUILDING-NAME PRESENT))
ELSE TRANS-BUILDING-NAME IF (NOT (DELETE-IND-IN = "D*))

Introduction -22 - Gregory G. Fauét

1.5 Outline of Remaining Chapters

The remainder of this document is broken into six chapters. Chapters 2 and 3 give brief
introductions to COBOL and HIBOL, respectively. Chapter 4 provides an in-depth description of
analyzed plans. Chapter § discusses the current impt‘ementatidn of the ponibn of the system that
translates the analyzed plans into HIBOL. Chapter 6 dtscusses possible methods’ of improving and
expanding the translation process. Chapter 7 dlSCUSS&& the entire system from a more global
perspective and suggests directions for further research.

Gregory G. Faust - -23- COBOL

2. COBOL

Since COBOL is a very widely known language, and references for COBOL abound, this
chapter will give the briefest possible introduction of those features. of COBOL: that must be
understood by the reader in order to comprehend the remainder of this document. Readers familiar
with COBOL are invited to skip all but the first section of this chapter. Readers who want further
information about COBOL are referred to [22] and [11]. S '

COBOL (COmmon Business Oriented Language) is a high level programming language
designed by the Conference On DAta SYstems Languages (CODASYL) for uSem dété processing
tasks. It now has several standard versions supported by the Arﬁéik:éﬂ Nattond S&andérd Institute
(ANSI) The COBOL syntax used in this document does not exactly match any of the ANSI standards
or any particular vendor’s syntax. all of whieh vary in mmer ways. lnﬂead it follows a common
subset, and certain esoteric syntax mqmmema are ignored: altogém. '

2.1 Example Programs

A sample COBOL program is shown in Figure 10. This program, entitied "PAYROLL", will be
used for many examples throughout this document, and therefore abould be understood by the
reader. To this end, a short discussion of the functlon mﬁmnm&by this » firis apprOpnate

PAYROLL is a relatively trivial program which might appeat in asunple payroll system. It
uses a single input- file cafled "HOURLY-WAGE-IN". HOURLY-WKAGE-IN contains two fields,
"EMPLOYEE-NUMBER" and "HOURLY-WAGE". EMPLOYEE-NUMBER is the key field for this file. It
is a nine digit social security number that is used to spectfy wh:dmmp&oyee a gWen record in the file
is associated with. HOURLY-WAGE is the single data field that speciﬁea#)e hourly wage earned by
the corresponding employee. : PN

PAYROLL produces three output files. The first of these, GRQSS-PAY-OUT, contains a
record for each record contained in HOURLY- WAGE-IN. GHOSB PAY-OUT has two fields:
EMPLOYEE-NUMBER and GROSS-PAY. EMPLOYEE-NUMBER teggam ﬁ;e key field. GBOSS-PAY is
a data field that contains the weekly gross pay earned by the emptoyes.: The program assumes all
employees work forty hours per week. The other two output files,. &MPLOYEECOUNT -OUT and
TOTAL-GROSS-PAY-OUT, ‘each contain only a single recesd. Movﬁz Whlvé no key fields.
EMPLOYEE-COUNT-OUT has a single data fieid, EMPLOYEE wm‘ﬂ' 3y thch cbntwna the number of
employee records processed by the program. TOTAL-GROSS- w;-mm has'a singie data ﬁeld
TOTAL-GROSS-PAY, which contains the total gross pay earned by all the employees whose records
are processed by the program.

COBOL

.24 -

Fig. 10. COBOL Program for PAYROLL

IDENTIFICATION DIVISION.
PROGRAM-ID. PAYROLL,

AUTHOR. G. FAUST.
INSTALLATION, PDP10.
DATE-WRITTEN. 2/20/80.
DATE-COMPILED. NEVER.

ENVIRONMENT DIVISION,
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
- FILE-CONTROL.
SELECT HOURLY-WAGE-IN ASSIGN 10 DA-2301- S-HWI,
SELECT GROSS~PAY-OUT ASSIGN TO' DA-2301-S-GPO.
SELECT EMPLOYEE-COUNT-OUT ASSIGN-TO DA-2301-S-ECO.
- SELECT TOTAL-GROSS-PAY-QUT ASSIGN TO DA-2301-S-TGPO.

DATA DIVISION.
FILE SECTION.

FD

01

FD

01

FD

ot

FD

01

hourly-wage-in

LABEL RECORD IS OMITTED

DATA RECORD IS hourly-wage-rec.
hourly-wage-rec.

02 employee-number

02 hourly-wage

gross-pay-out

- LABEL RECORD IS OMITTED

DATA RECORD IS gross- pay rec.
gross-pay-rec.

02 employee-number

02 gross-pay

employee-count-out

LABEL RECORD IS OMITTED :
DATA RECORD IS employee- count rec.
employee-count-rec.

02 employee-count

total-gross-pay-out
LABEL RECORD 1S OMITTED

DATA RECORD IS total-gross- pay-rec.

total-gross-pay-rec.
02 - total-gross-pay .

PICTURE

PICTURE..

PICTURE
PICTURE

. PICTURE

PICTURE

Gregory G. Faust

1S 9(9).

IS 999V99.

1S 9(9).
IS 999V99.

IS 9(8).

IS 9(7)ve9.

Gregory G. Faust -25- | coBoL

Fig. 10. COBOL Program for PAYROLL (CONTINUED)

PROCEDURE DIVISION.
initialization SECTION.
MOVE ZERO TO total-gross-pay.
MOVE ZERO TO employee-count.
OPEN INPUT hourly-wage-in.
OPEN OUTPUT gross-pay-out.
mainiine SECTION.
READ :hourly-wage-in AT END GO TO end-of-job.
MOVE employee-number OF hourly+wage-rec
TO employee-number OF gross-pay-rec.
MULTIPLY hourly-wage BY 40 GIVING gross-pay.
ADD 1 TO employee-count.
ADD gross-pay TO total-gross-pay.
WRITE gross-pay-rec.
- GO TO mainline, '
end-of-job SECTION. .
CLOSE hourly-wage-in.
CLOSE gross~pay-out.
OPEN -OUTPUT . employee- count out,
WRITE employee-count-rec.
CLOSE employee-count-out.
OPEN OUTPUT total-gross-pay-out.
WRITE total-gross-pay-rec.
CLOSE total-gross-pay-out.
STOP RUN.

COBOL programs for the other examples used in this document (PAYROLL2, DBINIT, and
LOC-LIST) can be found in Section 1.4. The second example, PAYROLLé, isan expanded version of
PAYROLL which eliminates the.assumption that every employee worka:forty hours.a week. Instead,
HOURS-WORKED, a data field in the. HOURS-WORKED-IN file, is used.in the computation of GROSS-
PAY. PAYROLLZ2 is an important teet.case bacause it mﬂmammnmt ‘uses data fieids
from two different files.

The third program, DBIN!T isa sumpie data base initialization program wmch uses two mput
files. The first of these files, CRADATE, has only a single record with a smgle data field. This
singleton piece of information, called "BILLING-PERIOR", contrals the initialization of certain data
fields in the second file. The second file, CRADSB, is an indexed.file: that is accessed sequentially.
Note that the program doaes nothing at.all il CRADATE is initially empty; i if the.value of BILLING-
PERIOD is. unknown, This program was .included because of its. use .of REWRITE to perform a file-
update operation.

COBOL .26 - Gregory G. Faust

The fourth program, LOC-LIST is an example of a file update program using a transaction
file. The first input file, LIB-IN, is a library file containing building names associated with. location
code key fields. The second input file, LIB-TRANS, is the transaction file used to update the library.
The updated library is output into the only output file, ’LIBLQUT."The updat;ed library will contain a
record for every set of key values that appears in only 6ne of the two input files. In addition, if a set of
key values appears in both input files, then the data values in the updafed tibrary file are taken from
the transaction flile, except when the first field of the transaction file, called "DELETE-IND-IN",
contains a "D" (mnemonic for delete) in which case no record wifl appear in the updated library file
for that set of key values. This program is.an important exanip!e because it performs a file merge
operation. h

As can be seen in Figure 10, a COBOL program |s brokén up into four main divisions;
IDENTIFICATION, ENVIRONMENT, DATA, and PROCEDURE. The IDENTIFICATION DIVISION is
primarily for documentation of the program, and contains no ;ixitottt‘!"\,:'ationithat is pertinent to the
current discussion. The only information that is contained in the "ENVfRONMENT DIVISION that is
pertinent is the information concerning file organizations andfileaccess methods. (None of this
information is shown in Figure 10 because all files accessed by this program take the default value for
these two parameters.) The DATA DIVISION contains iﬁforlha’tiqn about the stm¢ture of files in terms
of the data tields that comprise a record in those files, as well as intofmation*about' all other variables
used within the program. The PROCEDURE DIVISION contains a procedural representation of the
algorithm used to implement the desired computation.

2.2 ENVIRONMENT DIVISION

For the purposes of this document; there are two possible organizations for a file that is used
within a COBOL program; sequential and indexed: A séquential file can either originate from a
magnetic tape, or from a rendom access device such as & magnetic disk. In@ither case, the feature of
a file that makes it a sequential file is that the records in that file are stored (or can be viewed as being
stored) in contiguous locations on a memory device.” Whether for input or output, they can only be
processed in that order. o S |

An indexed file is broken into two components; the data itself, and an indexed list of pointers
into that data. How each of these componerits is actually stored on ‘a inemory device is not important.
The important point is that the data can be-accessed-sequentiéilly, a5'i5 doneé with a sequential file, or -
randomly using an index to-point to a particular record. The iethdd used to access records in an
indexed file is, appropriately, called the "access method".

Gregory G. Faust -27 - CcOBOL

The file organization for each file that is accessed by a COBOL program is specified in the
ENVIRONMENT DIVISION, with the default being sequential organization. In addition, if the file is
specified to be organized as an indexed file, the RECORD KEY.-must be épecified as well as the
access method for that file. The RECORD KEY is used to specify the portion of the record structure
that contains the key fields for that file. (The record structure for a file will be discussed below). If the
access method for an indexed file is random access, the NOMINAL KEY. must also be speéiﬁed. The
NOMINAL KEY is a storage area used in the PROCEDURE DIVISION of the program to contain the
index which specifies the location in the file that should be accessed by the next INPUT/OQUTPUT
operation.

2.3 DATA DIVISION

The DATA DIVISION of a COBOL program is broken into two sécfiohs—, FILE and WORKING-
STORAGE. The FILE SECTION contains, for each file that will be accegsed. by the program,
information about the structure of an individual record within that file. The WORKING-STORAGE
SECTION contains information about all other variables and storage. areas used during the execution
of the program. -

Associated with each file accessed by a COBOL program is a buffer area. Al .
INPUT/QUTPUT operations performed ona ﬁle place mformatron in, or take unformatlon from, that ‘
buffer area. The buffer area for a file is glven a structure. called the “buffer structure" or "record
structure”, in the FILE SECTION whnch specmes the fields that are contamed wnthm a record in that
file. Definitions of the record structures for the files accessed by PAYROLL are shown m F”ogure 10. A
record structure can be an arbitrary tree structure The level of a pamcular structure element is |
indicated by the number that precedes the name glven to that structure element Lower numbers are
closer to the root of the tree. For example, consgider the structure deflmtmn for the buffer associated
with HOURLY-WAGE-IN. HOURLY \WAGE-REC #& the name ufven to the structure element that
corresponds to the entire buffer area. The leaves of the tree are the mdividual fields in the file. In this
exampie, they are EMPLOYEE NUMBER and HOURLY WAGE. C '

Fig. 11. PICTURE Elements

PICTURE ELEMENT MEANING
9 Decimal Digit
v Implied Dacimal Point
X Any ASCII Charagter .
(num) Repeat Count: The precedlng PICIURE element

-is repeated num times.

COBOL -28 - Gregory G. Faust

Each leaf element in the structure is given a PICTURE clause. The PICTURE clause specifies
the data type and length of the particular field by giving a picture of the typical value stored in that
field. Figure 11 gives a list of common picture elements and their meaning. An examination of
Figures 10 and 11 will reveal, for example, that EMPLOYEE-NUMBER is a nine digit integer and
HOURLY-WAGE is a five digit number with two of the digits to the right of the decimat point.

The WORKING:-STORAGE SECTION defines all data areas used during the execution of the
program except those corresponding to file buffer areas. Data areas defined in WORKING-STORAGE
can have tree structures exactly like the structures associated with file buffers. In addition, there are
two variable types that are unique to WORKING-STORAGE: 77 variables, and 88 variables (so named
because of the numbers used to designate them). A 77 variable is a simple variable with no structure
whose type and length is specified in a PICTURE clause.

An 88 variable is used to set up a flag. It does not define an additional storage area, but
provides a named way to refer to a predicate; one that decides whether or not a given area contains a
particular value. For example, consider the portion of WORKING:STORAGE defined in Figure 12.
Initially, the COMPARE-FLAG-AREA contains a 0, so specified by the VALUE clause which can be
used anywhere within the WORKING-STORAGE SECTION to initialize storage areas. The two 88
variables, NEGATIVE and NON NECATIVE are used in the PROCEDURE DIVISION to test if that area
currently contains a 1 or a 2. When the area contains a 1, NEGATIVE will evaluate to TRUE.
Otherwise it will evaluate to FALSE. Svmxlarly. NON- NEGATWE will evaluate to TRUE when the area
contains a 2, and to FALSE otherwise. Initially, they will both evaluate to FALSE (since the area
contains a 0) and will contifue to do so until a 1 or 2 is moved into COMPARE-FLAG-AREA. In order
to make all this work, a COBOL’ program that includes the defmmon of COMPARE FLAG-AREA shown
in Figure 12 may well contain a statement of the form -

IF variable < 0 THEN MOVE 1 To COMPARE FLAG-AREA

ELSE MOVE 2 TO COMPARE -FLAG-AREA.
somewhere within the PROCEDURE DIVISION. The reader should note that the mcluslon of 88
variables in COBOL makes using flags trivial, and they will, therefore, appear often in COBOL
programs. Any system that hopes to transiate COBOL programs needs to be able to handie fiags in a
reasonabile fashion.

Fig. 12. Example Use of 88 Variables

77 COMPARE-FLAG-AREA PICTURE 9 VALUE ZERO.
88 NEGATIVE VALUE 1.
88 NON-NEGATIVE VALUE 2.

Gregory G. Faust .29 | coBoL

2.4 PROCEDURE DIVISION

The PROCEDURE DIVISION contains a procedural representation of the particular algorithm
used to implement the desired computation. For the purposes of this document, it is only necessary
to understand a small subset of the possible statement forms that can appear in. the PROCEDURE
DIVISION.

A variable name ysed in the PROCEDURE DIVISION must provide a unique reference to a
data storage area. Names that correspond to 77 and 88 variables must alWays be unique. Names that
refer to substructures, however, may not be unique. To eliminate this difficulty, COBOL supplies the
OF clause to be used in references to data areas in structures. For example, suppose that two
structures both contain substructure data areas asgqciated with the same name. Then a unique
reference to the substructure area in the first structure is:

substructure-name OF structure-name-1
while a unique reference to the substructure area in the second structure .is_:;

stubstructure-name OF structure-name-2

There are four main statements that affect control low within a COBOL program; STOP RUN,
GO TO, IF-THEN-ELSE, and PERFORM. Three of hem are very simphe and are shown in Figure 13.
(The square brackets are used to signify an eptional parémeter). “The STOP RUN statement’
terminates execution of the program. . The COBOL GO TO and IF-THEN-ELSE constructs are no
different from their counterparts used in procedural languages in general and need no further
explanation. : ' '

Fig. 13. Simple Statements that Affect Cantrol Flow
STOP RUN ’
GO TO Tabel

IF predicate THEN imperative-statement-1
[ELSE imperative-statement-2]

Fig. 14. PERFORM Syntax when Used to Implement a Subroutine Call

PERFORM paragraph-one [THROUGH baragraph-two]

i

CoBOL ‘ .30 - Gregory G. Faust

The PERFORM ctatement, however, is unique to COBOL. It is used to implement two
different constructs: a loop construct and a weak form of subroutine call. The syntax of the
PERFORM statement when used as a subroutine call is shown in Figure 14. In COBOL, a paragraph
is all the code starting at a label, which is used as the paragraph name, and continuing up to but not
including the next label. The PERFORM statement in Figure 14 indicates that control should be
passed to the label signified by paragraph-one and that processing will continue either to the end of
that paragraph, or to the end of para graph two if the optlonal THROUGH clause is used. In either
case, control is returned to the statement followmg the PERFORM after the above stated processmg
is completed. This is a weak form of subroutine call because no arguments are passed; the
paragraphs that are processed use only global values and recursion :s not allowed.

Used as a loop construct, the PERFORM statement has three possible forms as shown in

Figure 15. These forms should be self expianatory. Note that these forms aftow for both the indexed

loop construct and the DO-WHILE construct.

COBOL has a number of statements used to manipulate data. The data manipulation
statements used in this document are shown in Figure 16:In-the:MULTIPLY.and DIVIDE statements
using the BY clause, if the GIVING clause is omitted the result of the operation is placed in
operand-1. If the GIVING clause is included, both operands remain as they-were, and the result is
placed into result. The DIVIDE statement usiag the INTQ clause is the same as the DIVIDE
statement. using the BY clause except that the operands are.reversed. In the ADD and SUBTRACT

Fig. 15. PERFORM Syntax when Used as a Loop Construct

PERFORM paragraph-one [T.HROUGH paragraph-two] | integer TIMES
PERFORM paragraph-one [THROUGH paragraph-two] UNTIL predicate
PERFORM paragraph-one [THROUGH paragraph-two]

VARYING variable FROM integer-1 TO 1ntegor-2
BY integer-3 UNTIL predicate :

Fig. 16. Data Manipulation Statements

MULTIPLY operand-1 BY operand-2 [GIVING result]
DIVIDE operand-1 -BY operand-2 [GIVING result}
DIVIDE operand-1 INTO operand-2 [GIVING result]
ADD operand-1 TO operand-2 [GIVING result]
SUBTRACT operand-1 FROM operand-2 [GIVING result]
MOVE source TO daestination

Gregory G. Faust .31- COBOL

Statements, if the GIVING clause is omitted, the result is placed into operand-2. If the GIVING clause
is included, both operands remain as they were and the result is placed into result. The MOVE
statement is used 1o move information from one data area inte another.

Statements used to manipulate files are shown in Figure 17. The OPEN statement is used to
prepare files to be accessed. There are three possible access types; INPUT, QUTRUT, and 1-O. A file
‘ opened for INPUT is read only. A file opened for OUTPUT is write only. A file opened for I-O can be
read from and written to. The CLOSE statement is used to release afile when it is no longer needed.

The three different forms of the READ statement are uéed to access information in different
types af files. The first form is used to access files that have. a sequential file organization. The
second form is used to access-files that have an indexed file organization when the access method is
random access. .The third form is used to.access files that have anindexed file organization when the
access method is sequential access. The AT END and INVALID ‘KEY clauses specify that the
imperative-statement should be performed when the requested record cannot be read from the
file. ‘ S _ :

The WRITE statement is used to place information into a file. It can be used on any of the file
types. When applied to a sequential file, the WRITE statemant always appends.records to the end of
the file, When used on an indexed file accessed randomly, it writes a record at the place in the file
designated by the NOMINAL KEY. When used on an indeked file accessed sequentially, it writes over
the record most recently read. The REWRITE statement:can only be used on files opened with an
io-type of 1-0. It alwdys writes over the record most-recently accessed. Note Hhat (for esoteric
reasons not discussed hers) a READ statement takes:a file-name as its argument whille a WRITE or
REWRITE statement takes a file-buffer-structure-name as its argument.

Fig. 17. File Manipulation Stat«emen'ts

OPEN fo- type file- nama 1 [f17e name-z .]
[fo-type file-name-3 [f1le-name-4 . . .J] . . .
Where ijo-type is one of: INPUT, OUTPUT, or I-0

CLOSE file-name-1 [file-name-2 . . .]

'READ file-name AT END imperative- statqmant

READ file-name INVALID KEY fmperative-statement

READ file-name NEXT RECORD AT END 1mperat1ve statement

WRITE file- buffer structure name _
RENRITE file-buffer- structure name [INVALID KEY fmparatfve statemant]

TheImems

HIBOL -32 - Gregory G. Faust

3. HIBOL

HIBOL is a very high level single assignment programming tanguage designed for expressing
data processing application programs in such a way that the form of the program closely resembles
functional specifications for the application. It is intended to'be automatically translated into a
conventional high level language such as PL/1 or COBOL via an automatic programming system

calied PROTOSYSTEM 1 [27]. It is a descriptive rather than a ‘procedural language; the exact
procedures used to effect the actual processing are not explicitly represented A HIBOL program for
the PAYROLL example is presented in Figure 18.

The kernel idea for PROTOSYSTEM 1 was initially conceived by Wiltiam Martin [17]. Martin
and Ruth [27,18,8,28] then developed PROTOSYSTEM | (which produces compitable PL/1 programs
and the necessary IBM JCL from HIBOL) with the help of bthers most ﬂotably Baron, Burke, Komnfeld,
Morgenstern, and Thomas [3,14,21 30]

HIBOL can be viewed as a language in which algorithms are expressed in terms of
computations performed on streams. It is important to keep this viewpaint in mind for two reasons.
First, it will aid in the understanding of HIBOL primitives and tow they interact. Second, it will be used
in a later chapter to relate HIBOL to-other programming languages. '

The basic elements of description of a data processing application can be broken into two
categories: those that describe data and those that describe operations performed on that data. In
HIBOL, the descriptive elements are correspondingly divided -into .a DATA DIVISION and a
COMPUTATION DIVISION. The next two sections of this chapter are sirmilarly divided.

3.1 DATA DIVISION

HIBOL uses a single data type called a "How". A flow is a set of related data items each of
which is associated with a unique multi-component index. Each index component is called a "key".
The set of all possible sets of values for the keys of a particular flow is called the "universal key
space" of that flow. The set of sets of key values that actuaily appear ina. given mstance of a flow is
called the "actual key space" for that instance of the flow. For exampile, i a flow has a single key that
is a four digit integer representing a client identification number, then the cardinality of the universal
key space for that flow is 10,000, while the cardmahty of the actual key space for that flow is the
number of clients that actually exist and might be as low aszero or as high as 10,000.

Each element of a fiow has a set of key values and a single data value. The typical data
processing concept of a file record containing a set of key values and multiple data values (such as a
COBOL file record) is abstracted in HIBOL as separate flow elements from different flows, all of which

Gregory G. Faust -33- HIBbL

have the same set of key values, and each of which has one of the data values. This method of
describing the organization of sets of data values disassociates the logical organization of the data
from the physical organization of the data; the semantics of HIBOL describe the logical brganization
while leaving the physical organization unspecified. '

A named flow is calied a "data-set". Data-sets are divrded mto three categones, input,
output, and variable. Input and output data-sets define the i’npﬁts to and outputs from the
computation represented by a HIBOL program. The variable data-sets are used for intermediate
values formed in the computation.

The DATA DIVISION at the top of the HIBOL program for PAYROLL shown in Figure 18 gives
an example of the specification of data-sets. The first part of the DATA DIVISION is the KEY
SECTION. In this section, each key that is going to be used in the specification-of.any of the data-sets
must be specified along with its field type and length. In this‘éxampie; EMPY OYEE-NUKBER is the
sole key and is an integer with a field length of nine (a social security numbet). .. -

The next two sections of the DATA DIVISION specify the input‘éhﬁ‘oﬁtbut data-sets that are
going to be used in the program (see Figure 18). Each data-set specification is preceded by the
keyword "FILE". The HOURLY-WAGE, and GROSS-PAY data -sets both use the key EMPLOYEE ‘
NUMBER, while TOTAL-GROSS-PAY and EMPLOYEE- OOUNT do not have any key at ‘all. In thls ’
latter case, the cardinality of the universal key space is one; and the-actaal key space will contain at’
most a singleton value. If the PAYROLL example used any variable data-sets..a VARIABLE SECTION,:
identical in format to the INPUT and QUTPUT sectlons. would appear in the DATA DIVISION right
after the INPUT SECTION.

3.2 COMPUTATION DIVISION

Following the DATA DIVISION is the COMPUTAT!ON omStoN The COMPUTATION
DIVISION contains a single definition for each output-and Mﬂbmisel Each data-get definition
is of the form

data-set-name IS flow-expression

The flow expression on the right hand side of a data-set definftion’ must have the same universal key
space as the data-set referred to by the name on the left hand ‘skis:” The ssimantics of a flow '
expression dictate that there is an impﬁélt I‘t@raﬁon overaﬁ#ﬁw%of*ﬁwncmalkoyspace ofﬂveﬁow" "
representedbymataxpreaslon IR X

HIBOL -34 - Gregory G. Faust

Fig. 18. HIBOL Program for PAYROLL

DATA DIVISION
KEY SECTION
KEY EMPLOYEE-NUMBER
FIELD TYPE IS NUMBER
FIELD LENGTH IS 9
INPUT SECTION

FILE HOURLY-WAGE
KEY IS EMPLOYEE-NUMBER

OUTPUT. SECTION

FILE GROSS-PAY
KEY IS EMPLOYEE-NUMBER

FILE EMPLOYEE<COUNT

FILE TOTAL-GROSS-PAY
COMPUTATION DIVISION
TofALfeRoss—PAv IS (SUM OF (HOURLY-WAGE * 40.))
EMPLOYEE-COUNT IS (COUNT OF HOURLY-WAGE)

GROSS-PAY IS (HOURLY-WAGE * %0.)

Fig. 19. HIBOL Syntax for Conditional Expressions

- data-set-name IS flow-expression-1 IF predicate-1
[ELSE flow-expression-2 IF predicate-Z]
[ELSE flow-expression-n] .

There is only one statement form in HIBOL that can cause conditional computation. This
statement form is shown in Figure 18. The syntax of this form resembles an IF-THEN-ELSE, but it has
the semantics of a CASE construct, Since data-sel-name can be given the value corresponding to
the flow expression 6f any of the clauses, those flow expressions must all express flows that have the
same universal key space as the data-set referred to by data-set-name. The conditional form is
defined over the union of the actual key spaces of the flow expressions used in the clauses. When
such a conditional form is evaluated for a particular index value in that union, the predicates are

Gregary G. Faust ' -35 - HIBOL

evaluated in order, starting with predicate-1. As soon as.any of them evaluates to TRUE, the
conditional form is given the value.of the flow expression corresponding {o it for-that set of key values.
If none of the predicates evaluates to TRUE and the optional final,,Eg§£ clause is included, the
conditional form is given the value of the final fiow expression. -If none of.the predicates evaluates to
- TRUE and the optional final ELSE clause is not included, the value ol the-conditional form is
undefined and the corresponding index is excluded from the actual key space of the resultant flow.

For example, consider the HIBOL program fragment shown in Figure 20. In this example, the
output data-set PROFITABLE-DEPARTMENT contains an element for every element in the input
- data-set, DEPARTMENT-BALANCE, which has a balance greater than zero. The elements in the
actual key space of DEPARTMENT-BALANCE that have a balance less- than or equal to zero are
excluded from the dctual key space of PROFITABLE-DEPARTMENT.

Flow expressions can contain the usual arithmetic operations appearing in any programming
_ language. The syntax for:Buch arithmetic-operators, shown in Figire: 21, is exactly what one might
expect: The semantics of such expressions, however, is quite different from the semaitics of similar
looking expressions in other languages. The two flow exprassions used as operands to the arithmetic

Fig. 20. HIBOL Progrém Fragment with Conditional ‘Forryn'
DATA DIVISION |
INPUT SECTION

- FILE DEPARTMENT-BALANCE
KEY IS DEPARTMENT-NUMBER

OUTPUT SECTION

FILE PROFITABLE-DEPARTMENT
KEY IS DEPARTMENT-NUMBER

COMPUTATION DIVISION

PROFITABLE-DEPARTMENT IS DEPARTM;NT-BALANCE IF DEPARTMENT-BALANCE > 0.

Fig. 21. HIBOL Syntax for Arithmetic Operators

flow-expression-1 * flow-expressjon-2
flow-expression-1 / flow-expression-2
flow-expression~1 + flow-expressioa-2
flow-expression-1 - flow-expression-2

HIBOL -36 - Gregory G. Faust

operators must have the same universal key space. In the case of the multiplicative operators, the
actual key space of the resultant fiow is the intersection of the actual key spaces of the two operands.
In the case of the additive operators, the actual key space of the resultant flow is the union of the
actual key spaces of the operands. To understand this in more detail, the concept of a PRESENT
predicate must be introduced.

A PRESENT predicate, applied to a flow, evaluates to TRUE for all index values that are
elements of the actual key space of that flow, and to FALSE for all other possible index values for that
flow. So, for example, the predicate '

HOURLY-WAGE PRESENT

is TRUE for all values of the key (EMPLOYEE-NUMBER) which:correspond to actual employees, and
FALSE for all other possible employee numbers.

Returning to the discussion of arithmetic operators, the semantics of flow expressions
involving arithmetic operators are easier to understand in the form into which they are expanded by
the automatic programming system. Examples are shown in Figure 22. It should be clear that the
expanded expressions do produce the desired intersection and union of the actual key spaces. In
either case, elements in the resultant flow are given key values that correspond fo the key values of,
the elements in the operand flows from whuch they are produced

Arithmetic operators can be used with operand flows that are not simply data-sets. In a case
in which one of the operand flows is a constant, the resultant flow has the same actual key spacé as
the non-constant operand flow. In a case in which either of-the «’“tipgr&nd fiows is some flow

Fig. 22. Expanded Forms of Arithmetic Flow Expressions

data-set-name-1 IS data-set-name-2 * data-set-name-3
is expanded into:

data-set-name-1 IS data-set-name-2 * dqta-set-nano~3’IF -data~set-name-2 PRESENT
AND data-set-name-3 PRESENT

data-set-name-1 IS data-set-name-2 + data-set-name-3
is expanded into:

data-set-name-1 IS data-set-name-2 + data-set-name-3 IF . data-set-~name-2 PRESENT
AND dats-set-name-3 PRESENT

data-set-name-~2 IF . data-set~-name-2 PRESENT

data-set-name-3 IF da;é-sefzname-3 PRESENT

Gregory G. Faust -37- HIBOL

expression, the semantics are just as if that flow had been a data-set, although the PRESENT
predicates appearing in the expanded form of the expression will be more complex because the flow
expression does not have a name associated with it. An axample of the use of an arithmetic operator
in a flow expression appears in the definition for the GROSS-PAY data-set in Figure 18.

In addition to arithmetic aperators, HIBOL programs can include reduction operators. The
reduction operators, the syntax of which is shown in Figure 23, produce resultant flows with indices
composed of fewer key components. The key components of the resultant flow must be a subset of .
the key components of the flow used as the operand of the reduction operator. A data element.in the
resultant flow with a particular index derives its value from all the data elements in the operand fiow
with the same values for all key components in the common subset. For example, consider the HIBOL
program fragment shown in Figure 24. The input data-set, CHECK-AMOUNTS, contains an element
for each check written by each bank customer during one accounting period. The output data-set,
CUSTOMER-TOTAL, contains an element for each customer that is the sum of the amounts of the
checks written by that customer in that accounting period.

Fig. 23. HIBOL Syntax for Reduction Ope‘ratms

SUM OF flow-expression
COUNT OF flow-expression
MAX OF flow-expression
MIN OF flow-expression

Fig. 24. Sample HIBOL Program Fragment with Reduction Operator
DATA DIVISION
INPUT SECTION

FILE CHECK-AMOUNTS
KEYS ARE CUSTOMER-NUMBER CHECK-NUMBER

OUTPUT SECTION

FILE CUSTOMER-TOTAL
KEY IS CUSTOMER-NUMBER

COMPUTATION DIVISIOR

CUSTOMER-TOTAL IS SUM OF CHECK-AMOUNTS

HIBOL -38 - Gregory G. Faust

Two other examples of the use of reduction operators can be seen in the definitions for
TOTAL-GROSS-PAY and EMPLOYEE-COUNT in Figure 18. Note that in both these cases, the
resultant data-sets have no key components at all, and therefore contain: only a single element.

, Another feature of HIBOL is that the same data-set can appear in both the INPUT and
QUTPUT sections of the DATA DIVISION. This is done when the HIBOL program performs an update
operation on that data-set. It must be possible in the COMPUTATION DIVISION, however, to
distinguish references to the input data-set from references to thve output data-set. This is done
through the use of the LAST PERIOD construct. References to the input data-set use the syntax

LAST PERIOD'S data-set-name
while references to the output data set simply use the syntax

data-set-name

There are many other features of HIBOL, including specifications for time intervals at which
certain data sets should be generated, running totals, and formatted output reports, which will not be
presented here. Although the set of HIBOL statement forms described above is not exhaustive, it is
sufficient for the purposes of this document. All HIBOL code that has been produced by the SATCH
system to date uses only those HIBOL constructs that:-hiave alre&dybeen discussed. The reader is
invited to turn now to Section 1.4 where corresponding COBOL and HIBOL programs are given far
four examples (including PAYROLL), before returning to a discussion:of some of the more global
features of the HIBOL language. '

. 3.3 Features of HIBOL Revisited

The specifications given in the COMPUTAT!ON DIVISION of a HIBOL program need not be
ordered in any special way by the programmer. Each can be viewed as a definition of the values that
will be produced for a certain data-set. The autoprogramming system, PROTOSYSTEM |, will
correctly order those computations for which the ordering is important. Note that this view of
computation as definition requires that any data set name can appear at most once on the left hand
side of a computation specification; i.e. HIBOL is.a single assignment lanauage Another ramification
of this view is that potential concurrency of computation can be recognized by the system and could
be exploited if the target code were generated for a parallel hardware configuration.

Perhaps the most far reaching effect of this programming style is that there is no ‘éxplicit
notion of iteration or recursion. The only implicit iteration is that which iterates over the elements (or
subsets of the elements) of an actual key space. Since‘HIBOL vdoesnot have explicit iteration,
recursion, GOTOs, or a jump of any kind, it cannot be used to expféss certain computable functions

Gregory G. Faust -39 - , ' _ HIBOL

in any reasonable fashion. These functions, however, rarely appear.in business data processing
applications, and therefore, this lack of expressive power should not be considered a major
drawback. The semantics of HIBOL were designed by Hammer et. ai. o express exactly the functions
that appear most often in business data processing applications.

In fact, it is in just this restriction of expression that the great utility of HIBOL lies. The beauty
of the language lies in the fact that the programmer is not required 1o worry about the details of the -

iterations. The necessity to deal with these details is.one of the things that makes the maintenance
task so difficult in .other languages. -In addition, the number of identifiers that the programmer has to
deal with is substantially reduced, and the ones that do appear usually have a direct correspondence
to some quantity- in the real world. - These are the features of HIBOL: that make it well suited for
increased programmer productivity and program -clarity in the domain of data processing
applications. ‘ o ARt ‘

Plans and PBMs -40 - Gregory G. Faust

4. Plans and Plan Building Methods

Now that the essential features of HIBOL have been discussed, we can take a closer look at
the analyzed plan from which the HIBOL is produced. While reading this chapter, it is important to
consider the key features of HIBOL as we go along in order to grasp the applicability of the structure
of an analyzed plan to the transiation process. This chapter is ‘meant to contain enough information
to make the applicability apparent and to render the following chapters comprehensible. A much
more detailed account of plans, Plan Building Methods, the process which creates a surface plan,
and the process that analyzes a plan in terms of PBMS, can be found irt Waters’ PhD thesis [31,32].

A plan is a detailed representation of a program designed to have several useful properties.
First, the plan represents the program completely; it contains all the information necessary. for
execution. Second, it is language independent. Therefore, it can be used to represent a program
originally written in many different languages. Third, much of the information that is implicit in the
program is made explicit. in particular, the control flow and data flow between different sections of
the program are explicitly represented. Finally, the plan exhibits locality; features of a component of a
plan can be discerned by examining information local to that component.

4.1 Surface Plans

The basic unit of a plan is a "segment". Different segments of a plan are hierarchically
linked via subsegment and supersegment relations. A surface plan, an example of which is shown in
Figure 25, is a representation of a program that is logically organized in much the same way as the
original source language representation of the program. It has only the simplest hierarchical
structure: a root segment that has all other segments in the plan as immediate inferiors. Each of the
subsegments has no internal structure. They all represent primitive logical, arithmetic, or control
operations.

' These primitive segments, and in fact segments in general, can be placed in one of three
categories, "simple”, "split" or "join", depending on their interaction with control flow. A simpie
segment accepts control flow from eiactly one place and produces control flow to exactly one other
place. Examples of primitive simple segments include primitive arithmetic functions such as PLUS or
TIMES, and primitive logical functions such as EQUAL or GREATER-THAN. Exactly which primitive
logical and arithmetic functions can occur in a plan depends upon the source language from which -
the plan was built, but a standard set of primitive functions is shared by most programming
languages. bThe library of primitive function used when the source language is COBOL is given in
Appendix |.

Gregory G. Faust -41- Plans and PBMs

Also included among the simple segments are .constants. - They differ from other simple
segments in that they do not have any incoming data flow. They can be viewed as functions with no
arguments that have a singleton value for their range.

A split accepts control flow from exactly one place. and produces control flow to more than
one place. There are only two different primitive spht segments PIF and PIFNULL. PIF takes a single
bit boolean argument and transfers control to a first segment if the boolean is TRUE and'to a second
segment if the boolean is FALSE. PIFNULL is simply the converse of PIF.

A join accepts control flow from more than one place and produces control flow to exactly
one other place. There is only one primitive join segment. It is called '}JOIN".

The segments of a surface plan are connected via control ﬂow !inks and data flow links, A
data flow link is a link batween two data "ports”. A port can be though’t of as a pilace where an
incoming or outgoing data value can be stored. Each segment has a;socnated with-# a unique port
for each input and output data value. Data flow between any two subsegments-of the surface plan, or
between a port of the supersegment and a port of one of ikts“subsegments, is represented by an
explicit data flow link.

A control flow link is a link between two segment “"cases”. Each ease corresponds to a
particular control environment. Each segment has assocmted with it a umque casa for each possible
control flow path into and out of the segment. A case for incoming control flow is called an “in-case”
and a case for outgoing cantrol flow is called an "out-case". For example, a sptiu:es a-sinhgle-in-case,
and at least two out-cases. As with data flow, control flow. information is known only within the.
supersegment of the two segments involved in the flow.

Consider the simplified surface plan for PAYROLL shown in Figure 28. The boxes represent
segments, solid fines represent data flow;and dotted- fines rgpresent -controt flow: Fhe outermost
large box represents the segment for PAYROLL itself. (This examme has been simplified in several
ways. First, the computation of EMPLOYEE COUNT has baen entirely eliminated. Second, for
brevity, the file open and file close functions have been nemoved Third, the data flow for all of the file
objects except for the flow associated with the HOURLY WAGE FILE-OBJECT (HWF) has been
removed. The HOURLY-WAGE FILE- OBJECT was. left in 80 tnaf Yﬁe operation of the EOFP predicate
could be understood)

Several of the features of surface pians can be seen in this e:éample ‘First of all, note the
control flow throughout the plan. There is a large control flow !oop fhat enéompasses most of the
program; namely the main read/write loop. Control remains within this loop as long as control passes
through the NO case of the PIF, which in turn occurs for as long as EOFP yields a FALSE boolean.

Gregory G. Faust

Plans and PBMs -42 -
Fig. 25. Partial Surface Plan for PAYROLL
: Lol b
N HWF PAYROLL
<05
' [mm S e S e e o e -~
: TGP ; !
| t
i : CWRITE 1
] t
! '
' ! TGP
' 1 ZON
R ANAN /AN ;
CASEl CASE2 - : i
JOIN
H
: TGP
'
1
1
' HWF
! » ‘ 0 .
N/ N ;
EOFP 4D
i ! HW [HWF
N AV /4 i
PIF | CREAD
YES NO 7N
: HWF
: = ‘
X PP SO [y PR NS, 1
| .‘
R R ~ _pep
' NSNS
| CWRITE2
HWF —
HWF => HOURLY-WAGE FILE-OBJECT TGP => TOTAL-GROSS-PAY
HW => HOURLY-~WAGE 6P => GROSS-PAY
EN => EMPLOYEE-NUMBER

Gregory G. Faust -43 - Plans and.PBMs

This process is initiated when control is passed to CASE1: of the JOIN and terminates the first time
control passes to the YES case of the PIF.

Now examine the data flow. In particular, note the flow associated with TOTAL-GROSS-PAY
-(TGP) or HOURLY-WAGE-FILE (HWF). The initial value for. the flow is passed through CASE1 of the
JOIN into the main loop. Subsequent values are passed around the loop through CASE2 of the JOIN.
This looping of the data continues, with each new value for the flow depending on its preVlous value,
until the loop terminates in which case the final value is received outside the loop.

Given that the plan shown in Figure 25 needed to be simplified from the actual surface pian
for PAYROLL (a relatively trivial program) in order to make it at all comprehensible to the human eye,
it should be obvious that the surface plan contains large quantities of relatively mundane and
unorganized information. It would be a very difficult and expensive task to try to match portions of the
surface plan with any patterns that might represent fairly global features of the program. What is
needed is more organization of the available information.

4.2 Analyzed Plans and Plan Building Methods

A surface plan can be analyzed in terms of plan building methods (PBMs). The PBMs are a
set of stereotyped ways in which plan segments can be aggregated into canonical groupings. An
instance of a PBM corresponds to a logical lbcaliiy in the program, not necessarily a locality in the
actual code for the program. Each PBM has a unique set of "roles" associated with it. A segment
created to represent an instance of a PBM has a set of subsegments each of which fills one of the
roles of the PBM. Each subsegment can only fill one role of one PBM Tharefore, each segment in
the analyzed plan will have exactly one lmmedlate supenor except for me smgla most superior
segment.

The analysis process begins by searching for a set of subsegments of the surface plan that
can be grouped together atcording to the restrictions of one'of the PBMs. A new segment s created
to represent the grouping. All of the data flow and control flow information pertammg to any of the
subsegments is included in the description of the new segment, and the descnpnon of the original
supersegment is appropriately modified. The search process is then repaated with the newly created
segment considered to be indivisible. The process continues until a.grouping subsumes the entire-
plan. The result is a hierarchical structure in which each segment, except those corresponding to
pnmltwe functrons, is an instance of one of the PBMs. The leaves of this hierarghy are the same
primitive segments that comprised the surface plan for the program. -

Plans and PBMs -44 - Gregory G. Faust

Fig. 26. Taxonomy of Plan Building Methods

composition
STRAIGHT-LINE PBMs predicaté :
conditional
PBMs
augmentation
single se]firecursion filter

RECURSIVE PBMs . “termination

temporal composition

Figure 26 gives a taxonomy of PBMs As can be seen in the figure, PBMs can be broken into
two major categories: "straight- ine" and "recurswe This dtstmctlon is based upon the manner in
which the segments that instantiate the PBMs interact with control flow. The recursive PBMs i}e
used to express the portions of programs that invoive loops of control fiow while the straight-line
PBMs are used to express the portions of programs that do nat involve loops.

4.2.1 Straight-line PBMs

There are three straight-line PBMs: "composition”, "predicate”, and “conditional®. The
PBM "composition"” allows for the cdmbi‘ﬁation of an arbitrary number of simple segments into a
single simple segment; no splits or joins can be included. In the general case, the data flow links ina
composition will form a collection of (poss:bly unconnected) directed acyclic graphs. Each of the
subsegments of the composition fills an “action*® role.

Gregory G. Faust -45- Plans and PBMs

The PBM "predicate"” is a generalization of the primitive split. It has a single in-case, but an
arbitrary number (at least 2) of out-cases. The control flow links of a predicate will form a directed
acyclic graph. The subsegments can.be either primitive splits or other predicates, or primitive joins,
which fill roles called "pred" and "join", respectively. A join subsegment acts to form the logical OR
of the predicates that supply it with control flow. A predicate subsegment that receives control flow
from another predicate subsegment forms the logical AND.of itself and the predicate that supplies the
control flow. By using these constructs in.combination, predicates of arbitrary complexity can be
buiit.

The PBM "conditional" is an embodiment of the structured programming concept of a
conditional. It has a single "pred" role, filled by a subsegment that is an instantiation of the PBM
predicate, that controls which of several "actions" will be executed. The action roles can be filled by
any simple segment. In addition, it contains a single "join" role; fiffed by a join segment, that collects
the control fiow from all of the actions. An instance of the' PBM cond%tlaﬁa! has a single in-case, and a
smgle out-case; it is a simple segment. A conditional also has the veryuseM property that during any
given execution of the condifional exactly one of the actions wilt be executed. ‘A conditional can have
an optional "initialization" role wﬁich can be filled by any simple segment. The iniﬂaﬁzation
subsegment is executed before the predicate and therefore is executed regardless of the result of the
execution of the predlcate

4.2.2 Recursive PBMs

The recursive PBMs are designed to handie loops and other forms.of single self recursion. A
-program is single self recursive if it contains exactly one recursive call to itself, sither directly or
indirectly. A-loop is an eatample of‘singla self recursion since it ‘can’ be éxprassed in terms of tail
recursion. Other forms of recursion cannot curreritly be dnalyzed ifi tefins of PBMs. However, since
COBOL does ot support any type of recursion excéﬁl‘ Toops, the cummt PBMS are sufﬁcientfor the
analysis of COBOL programs. :

The most general recursive PBM is simply called "single self recursion” (SSR). An SSR has
three roles; an optional "initialization”, a "body", and a "recurrence”. The initialization is a simple
segment that is only executed -once, while the body 1 executed repeatedly. The récurrence
represents a recursive instance’ of the body. Therefore, it is placéd"inr the body at the point of the
rewrswecaﬂtothebody.andnwmhavemesamepor&mmmt’mboayhas ‘ '

Since the recurrence subsegment is a recursive instance of thebody. and the recursion can
potentially occur to infinite depth, inciusion within the recusrence:of the entire structure of the body -
would result in an infinite graph. To allow the graph to:remain finite-while still capturing the notion of
a potentially infinite recurse, the recurrence is given no internal structure, but instead is linked to the

Plans and PBMs - 46 - Gregory G. Faust

body by a special recurrence link. Then, during execution of the body, if the next seément to be

executed is the recurrence, the values in the incoming data flow ports of the recurrence are
transterred to the corresponding ports of the body and control is passed to the body via the
recurrence link and the ‘body is executed again. In:this way, control and data flow is circulated
around in the execution without the existence of any explicit-control or data flow cycles in the plan.
This lack of control and data fiow-cycles is very helpful in gertain types of symbolic evaluation in
which symbolic values are pushed along control and data flow links. -

The drawback of the PBM SSR is that its body can be arbitrarity complex and the recurrence
buried arbitrarily deep within. it.- It would be useful to:be able to.break single self recursions into
smaller, less complex pleces. This is:done via the PBM "temporai composition”.

~ The PBM "temporal composition” is similar to the straight-line PBM composition except that
all of its subsegments are instances of the PBM SSR instead of straight-line PBMs. In addition, since
some of the subsegments may prpduce;'da!a values recursively that are used in other subsegments,
some of the data fiows between subsegmems represent a temporal sequence of values instead of a
single value, ' '

The temporal séquencés of values are called "temboral data flows" . A tempofal data flow
into a segment is called a "temporal input”, while a temporal data flow out 6f a segmeht is called a
“temporal output”. These temporal flows can be viewed as streams, and the subsegments of a
temporal composition that interact with them can be viewed as stream operators. More will be said
later about this view of temporal.composition Mtedlpwal data Hows.

~ Three restricted forms of the PBM SSR c;elled "augmentati ,A," "fmer" and "termination”,
are used to form meaningful fragments of temporal composmons .in order. for an SSR to be an
augmentation, the body of the SSR must bacon@tramedmme following ways. First, the body of the
augmentation must have a single in-case and a single out-case. Second the body must have only two
subsegments. One of them must be the recurrence. The other, called the "augmentation function®,
can be any simple segment. ' SRR PARSTR I RN

The augmentation function is executed once tor each recursive execution of the
augmentation. The execution.of the augmentation funetion may use and/or produce data values that
are passed into and/or out of the augmentation. These data.valugs are passed. via.temporal data
flows. If the augmentation function only uses data v&lues that are produced within the augmentation,
then. the augmentation is called’ a' "generating sugmentation” or simply a “generator”. If the
augmentation function uses some data values thatiare produced: outside: the augmentation; then the
augmentation is called a "consuming augmentation” orsimply a "consumer®. -

Gregory G. Faust | -47 - Plans and PBMs

Fig. 27. Generating Augmentation in the Analyzed Pian for PAYROLL

GENERATING \kfur
AUGMENTATION

COPENI -

BODY . 5

N\

| CREAD

!
]
t
t
1
]

N

REC ’

S

DFJOIN

HWF

Plans and PBMs -48 - Gregory G. Faust

Consider the simple example of an augmentation shown in Figure 27. The bold lines
represent temporal data flow and the curly line represents the recurrence link., This augmentation is
the generator for the temporal composition in PAYROLL. The initialization of the augmentation opens
the file HOURLY-WAGE FILE-OBJECT (HWF) for input. The augmentation function is a CREAD
acting on the HWF. Temporal outputs are created for each of the outputs of the CREAD function, as
well as for the HOURLY-WAGE FILE-OBJECT itseilf.

Let us examine the data flow associated with the HOURLY-WAGE FILE-OBJECT in more
detail.' The HWF is {ed into the CREAD the first time from the COPENI initialization. All subsequent
values of the HWF used by the CREAD actually come from the output of the CREAD itself through the
recurrence segment. In this way, the values for the HWF are fed back in a loop without any loop in the
data flow itself. Note that the non-temporal output for the HWF (coming out of the bottom of the
augmentation) is the value of the HWF that is-produced the last time the augmentation is executed,
while the temporal output for the HWF is a teniébrai sequence of all the values that the HWF data flow
assumes at the input to the CREAD. The DFJOIN is not a control flow join but is merely used as a data
flow join.

Note that since there is no way for control flow to be passed to the out-case of the body,
execution of an augmentation in isolation will never terminate. In addition, a consumer cannot be
repeatedly executed in isolation as it needs to receive temporal data flow from outside itself.
Therefore, an augmentation cannot stand alone within a plan. it is meant to be a meaningful fragment
of a temporal composiﬁon; and can only be used as such.

A "termination” is the second restricted form of the more general SSR. The body of a
termination' is constrained in the following ways. First, as subsegments, it has a recurrence and a split
segment. The split sagment filis the "pred” role and is addi’tionally'called the "termination test".
. Second, one of the out-cases of the termination tést must 'pass control to thein-case of the
recurrence, and at least one of the out-cases of the termination test must pass control to an out-case
of the body. An out-case of the body will receive control flow from both an out-case of the recurrence
and an out-case of the termination test. This calls for the inclusion of the appropriate number of joins
as subsegments of the body. '

!;‘or example, consider the termination for the temporal composition in PAYROLL shown in
Figure 28. The termination function, EOFP, tests the temporal input HOURLY-WAGE FILE-OBJECT
(HWF) to determine whether to pass control to the recurrence or to the out-case of the body.
Execution of the termination will continué as long as end of file has not yet been reached. As soon as
the EOFP predicate senses that end of file has been reached on the HWF, control is passed to the
out-case of the body, and the recursive execution of the termination stops. The DUMMY temporal
data flow will be explained later.

Gregory G, Faust | -49: Pigns and PBMs

Fig. 28. Termination in the Analyzed Pian for PAYROLL :

| TERMINATION

BODY

"PRED

HWE , HYIF; "EOFP ‘ B

A4 N

REC]‘pngg o

<&.-..s......‘.*.

o~

K==

T TERNINATES LOOP

il

Plans and PBMs - 50 - Gregory G. Faust

A termination is the only fragment of a temporal-composition that can terminate by itself, and
is the only fragment that can cause the temporal composition as a whole to terminate. Therefore, it is
the only fragment that passes control flow to an out-case of the temporal composition. Nonetheless,
since it requires temporal input, it cannot stand alone, and is only used as a fragmerit of a temporal
composition.

A filter is the third constrained form of the more general SSR.- The body of a filter is
constrained in the following ways. First, it must have only one in-case and one out-case. Second, it
must have exactly three subsegments. One of them must be the recurrence. The other two segments
are a split and a join. The split has the same number of out -cases ‘as the join has in-cases. Each
out-case of the split directly passes control to a corresponding in-case of the j }om.

The filter has the effect that some of the temporal inputs to the filter are broken up into
temporal outputs. Each of the temporal outputs of a fitter-is associated with one of the out-cases of
the split. A given value in a temporal input will be contained in a corresponding temporal output if
control is passed to the out-case of the split with which that temporal output is associated.

For example, consider the filtar shown inFigure 29. It has a temporal input which is a stream
of numbers. The split segment is a predicate that tests each ai thé‘ifa'tue's in the temporal input to see
if they are less than zero or nt. The two temporal outputs contain the negative and non-negative
values in the temporal input respectively.

Note that a filter is similar to an augmentation in that it cannot terminate in isolation and it
requires temporal input. Therefore, a filter cannot to be used.in .isolation but only asa fragment of a
temporal composition.

In many respects the operation of a termination is very similar to the operation of a filter. A '
termination can have temporal outputs that are eath-associated with an out-case of the termination
test, similar to the temporal outputs of filters. The difference lies in the fact that a filter will select
certain values interspersed within a temporal data flow, while a termination will truncate \;l‘alues off of
the end of a temporal data flow. This dnfference can be ‘seen by viewmg the difference between the
DUMMY data flow produced in the termination shown in Figure 28 and the two temporal outputs of
the filter shown in Figure 29. In addition, a termination can cause the execution of thenennr.e temporal
composition in which it appears to terminate, while a filtar cannot.

Although it is easier to understand the internal structure of the fragments of a temporal
composition in terms of their function during execution, it is often easier to describe the contribution
of each subsegment of a temporal composition to the entire operation of that temporal composition
by viewing the subsegments as stream operators. In this way, the external properties of the

Gregory G. Faust -51- Plans and PBMs

Fig. 29. Example Filter

FILTER

BODY \f/

PRED

INPUT . , }t LESSP
L
STREAM | . 1 ; — R (PRREE

PIF

NO | YES

[

\!/
CASE1 | CASE2

JOIN

NEGATIVE
NON-NEGATIVE

Plans and PBMs -52 - Gregory G. Faust

subsegments can be expressed in a much more succinct manner. In additiory, the function that the
temporal composition represents can often be described without considering the values of certain of
the input data values; information without which execution is not possible. This allows for a
description of the general function represented by a particular temporal composition.

For example, consider the temporal composition in the analyzed plan for PAYROLL shown in
Figure 30. A detailed view of the analyzed plan fof the first Atwo subsegments,. the generating
augmentation and the termination, have already been given above. The other augmentations have
internal structures very similar to the CREAD augmentation and therefore will not be shown in detail.
The first of these takes the HOURLY-WAGE (HW) temporal output of 'fhe CREAD augmentation as its
temporal input and multiplies it by the constant 40, producing a temporal output for GROSS-PAY
(GP). This temporal output is, in turn, passed to two additional aggmefgggions. One of them is the
CWRITE augmentation that has an initialization that performs a COPENQ operation on the GROSS-
PAY FILE-OBJECT (GPF), and an augmentation function that writes the values of GROSS-PAY into
that file. The other one has an initiélization that produces the constant ZERO and an augmentation

Fig. 30. Tempcral Composition in the Analyzed Plan for PAYROLL

HWF ’ "~ TEMPORAL COMPOSITION GPF

CONSUMER
CWRITE

GENERATOR JE CONSUMER |
CREAD TIMES(40)
" GPF|
“CONSUMER
HWF] o PLUS
TERMINAT ION CONSUMER (SUM)
EOFP DUMMY i PLUS
#| (COUNT)
TGP
5 EC
\/

Gregory G. Faust -53- _ Plans and PBMs

function of PLUS that computes the sum of GROSS-PAY. The non-temporal output of this
augmentation is TOTAL-GROSS-PAY (TGP) and is passed to an output port of the temporal
composition to be written outside of the temporal compos#ion. R

The remaining augmentiation performs the computation for EMPLOYEE-COUNT (EC) and
also has an initialization that produces ZERO and an augmentation function of PLUS. The difference
is that the second argument to the PLUS is the constant ONE. Therefore, all data values that are
needed by the augmentation are internally generated. The function of the DUMMY temporal data
flow, generated in the termination and associated with the NO case of the EOFP predicate, is to
provide a control signal to the consuming augmentation which tells it how many times to execute.
The non-temporal output EC is passed 'out of the temporal composition. :

Fig. 31. Analyzed Plan for PAYROLL

COMPOSITION ‘ PAYROLL

- TGPF i '
TGPF l COPENO — CWRITE vore o CCUO5E i

_a,

TEMPORAL

|COMPOSIT103, ————
IGPF - , pE) CCLOSE]GPF

liwF | ccrose I“u* BN

COPENO CWRITE | CCLOSE]
ECF : ECF - ECF
| 7 ECF _ > | Z

Plans and PBMs -54. ' _ Gregory G. Faust

4.2.3 Analyzed Plan for PAYROLL

Now that most of the components of the analyzed plan for PAYROLL have been described,
we can take a look at the entire plan shown in Figure 31. The top level segment of the analyzed plan
is a composition in which most of the subsegments perform primitive file operations. The only
exception is the central temporal composition, the internal structure of which has atready been given.

This example shouid make it clear that although the entire hierarchy of the analyzed plan for
a program can be quite complex, any particular level in the -hierarchy is fairly simple. It is the
hierarchical nature of an analyzed plan, as well as the Simplicity at each level in the hierarchy, that
contribute to the fact that an analyzed plan is a much more orémizad source of information about a
program than either the original code for the program or the surface pian for the program.

4.3 Conclusion

By comparing the COBOL code for PAYROLL with the analyzed plan for that program, it can
be seen that the analyzed ptan is much easier to reason gbaut:' The PBMs group intormation that may
be contained in distant parts of the actual code into neat functional localities. This |ocality makes it
possible to make conclusions about certain compumfons without considering the-entire program. In
addition, a programming Ianguage like COBOL has many constructs for the transfer of data values
from one place in the program to another. The analyzed p!an for the same compulatlon uses data
flow as the single construct for data value transfer. The stereotymcality of the analyzed plan further
reduces the number of distinct possibilities that need to be consndcred at any one step in a deductive
process. It is the reduction in the number of facts about the progm whsch need to be considered
simultaneously that makes the PBM representahon of a program parhcularly useful- for abstract
processing.

A given computation can be subdivided into smaller chunks in several ways including
processes, subprograms, streams, and data abstractions. The analysis described here, via the PBM
temporal composition, uses the streams abstraction. This is critical to the translation of the COBOL
programs into HIBOL. Since HIBOL is ééééntially a method of exp;fiééing data processing functions
in terms of operations on streams (data sets), the initial analysis of the COBOL programs in terms of
stream operators (augmentatnons, termmattons, and ﬂlters) ls a signifucant first step in the tranglation
. of COBOL into HIBOL ‘

Gregory G. Faust -55- Transtation Process

5. Current Implementation of the Translation-Process

The three formalisms for the description of data processing programs discussed so far,
COBOL, HIBOL, and analyzed plans, are the result of the work of others. This and the following two
chapters describe the research effort of this thesis.

5.1 General Description

The diagram shown in Figure 32 highlights the current implementation of the SATCH system.
Starting with a COBOL program, the COBOL parser (mplemented by -Burke) produces two distinct
outputs. First, information is extracted from the DATA DIVISION and p!aced in_a file to be used later in
the data division query phase of the translataon process. Second, the PROCEDURE DIVISION is
transformed into a lisp-like format that represents the computatuon in terms of the primitive functtons
described in Appendix |. This represantatlon of the PROCEDURE DIVISION is then used by the plan
extraction and analysis phase (implemented by Waters) to produce thelgnalyzed plan as described in
the previous chapter. o

The translation process is divided into three subprocesseé; ‘The first two subprocesses, the
symbolic evaluation of the analyzed p!én and the data division query, can theoretically proceed in
either order. For reasons that will become clear, the symbolic evaluation of the analyzed pian is done
before the data division query. Since the third subprocess, HIBOL production, uses the results of the
first two subprocesses, it cannot proceed until they are completed. : T ‘

The symbolic evaluation of the analyzed plan is by _fa‘r‘the most time- consummg of the three

subprocesses. It proceeds by making an assertion about the value of overy output daxa pon on every
segment, and an assertion about every out-case of every split segment.’

A key feature of COBOL programs is that they do not return values Therefore, the c;nly way
they can produce results is by the side effect of writing data values into files: “This means that the only
information that needs to be transferred from the symbolic evaluation of the analyzed plan for the
program to the HIBOL production phase are the values of the data flows that are used as arguments
to CWRITE and CREWRITE. AHer this information is gathered from the analyzed plan, the plan is no
longer needed in the translation process. The syntax and semantics of the intermediate language
that is used for assertions and to transfer information to the HIBOL production phase will be
discussed later in some detall. - |

Much of the information that is originally contained in the DATA DIVISION of the COBOL
program is transferred to the translation phase directly from the COBOL parser and is not passed to
the plan analysis phase at all. Unfortunately, some specific information that is needed in order to

Translation Process

-56 -

Fig. 32. Current SATCH Implementation

Gregory G. Faust |

TRANSLATION PROCESS

Analyzed
Plan of

PROCEDURE
DIVISION

Analyzed Plan
Symbolic

Intermediate
Assertion

Language

Evaluation

DATA

HmBoL
Production

DIVISION
Query
7K

DATA DIVISION
and Key Field
Information

> HIBOL

Plan Extraction
And
Analysis

ZN
LISP-1ike
Representation
of PROCEDURE
DIVISION

DATA DIVISION
Information‘

COBOL Parser

COBOL program

Gregofy G. Faust -57- Translation Process

produce the HIBOL is not directly contained in the the DATA DIVISION:of the. COBOL program, nor
can it be gleaned from the analyzed plan for the PROCEDURE DIVISION. .in particular, in -most
instances it is impossible to tell which. fields in-a data file repwesentfkey;rﬁe_'lds and which are data
fiekjs. This information is gathered in the data division-query subprocess.

The subprocess that produces the actual HIBOL uses the uxformatlon gathered in the
previous two subprocesses. In doing sp, it makes certain agsumptions about the form of the original
COBOL program. These assumptions will be discussed in.the next section. It also uses extensive
knowledge about the semantics of HIBOL in an attempt to produce HIBOL that is a faithful translation
of the semantics of the original COBOL program without redundantly specifying restrictions that are
implicit in HIBOL. Elimination of the specification of implicit restrictions leads to the production of
HIBOL code that might be harder for a HIBOL parser to:process, but mm&ris‘éasier for:a human reader
to understand. '

5.2 Range of COBOL Programs Currently Transiatable

The current implementation of the Ftranslation process m'akes dé.e‘of certain assumptions
about the type of COBOL program that is reprssented m the analyzed plan Some of these’
assumpnons stem from the lrmﬂs of the expressibtmy of HlBOL Others stem froma desnre to reduce
the domam to a manageable size.

The translation process is designed to work on thres basic types of programs The simplest -
type of program is one which reads in a file and outputs another file. The input and output files mast
have the same key fields. I addition, the output file contains ‘exactly one record for each record in
the input file and eachi record in the output flle has the same values 167 thie'key fisids as the record in
the input file that was used to create it. In HIBOL terms, this means that the actual key space of each
output file is identical to the actual key space of the mput ﬁle The PAYROLL and DBINIT programs
shown in Sechon 1 4are exampies of thrs type of program

The second type of program is an extension of the first in which the computation of the value
of the data fields in the output e requires information contained i the data fiéids of two (or more)
input files. The input files'and the output fife must all have'the same key mda Since the computation
for a data field in the output file requires information from a record in each of the Input files, the
output file only contains a record ifa record with identical key fieid values appears in ali of the input
frles In HIBOL terms, this means that the actual key space of the output ﬁie ls the mtersectlon of the
actual key spaces of the input files. The PAYROLL2 progrgm shown rn Secuon 14is an example of
this type of program *

Translation Process . -58- Gregory G. Faust

The third type of program also produces an output file using information contained in two {or
more) input files but each record in the output file only uses information contained in a record from
one of the input files. This occurs, for example, when a program fpeﬁornrs a file merge operation. The
input files and the output file must have the same key fields. Since a value for a data ﬁeldfin the
output file can be computed from information contained in a record in any one of the input files, the
output file contains a record for each unique set of Key field values appearing in any of the input files.
A record in the output fite' isgiven the same values for the key fields as the record in one of the input
files from which'it was created. in HIBOL terms, this means that the actual key space of the output file
is the union of the actual key spaces of the input files. The LOC- LIST program shown in Section 1.4 is
an example of this type of program.

: All of these types of programs have certain features in common. First, all top-level loops in
| the COBOL program are logically driven by file reads and terminated by end of file predicates. Since
HIBOL has no explicit loop construct, loops other than these cannot in general be reasonably
expressed in HIBOL. Second, these types of programs do not contairi non-focal error exits from any
of the loops or from the program itself. Such non- Iocal wmps are usually not expressrble in HIBOL
and also are not well expressed within analyzed plans Thrrd all mput data fnes (and therefore all
output data files) are homogeneous That is, all records in a file are assumed to have data and key
fields which contain the same type of information as the correspondmg data and key fields in all the
rest of the records in that file. This means that the file cannot contain any smgular header or trailer
records with a different interpretation from the rest of the recards. It might be possible to produce
HIBOL from COBOL programs that .do access files that. cqntam header or . trajler records, but the
translation process would have to, generate data-sets, for these recosds that were independent from
the data-sets generated for the rest of the records.. Currently, a single data-set is. generated for each
data field in each data file.

Certain additional restrictions are also requured Frrst it rs assumed that all input | files are
read sequentially, and all output files are written sequentia!ly in a later ohapter suggeshons are made
as to how this constraint might be eliminated as long asmeprggmmstmfansmtoane ofthethree
basic categories. Note that it follows from this constraing that, in programs of the second and thard _
type (intersection and union), the input data files used in canjunction to.produce the output file must
be sorted in the same key field order.

Second, it is assumed that the COBOL program contams no nested Ioops Thisis a rather
harsh constraint and wou!d have to be ehmmated betore translatron from COBOL into HIBOL could be
applicable to the real world. One group of programs ehmmated by this assumphon are those that
produce subtotals for certain data fields in a record as a secondary key field changes value

Gregory G. Faust -89 - Translation Process

Third, it is assumed that no output is performed on any.files other than datafiles. Thatis, itis
assumed that the program produces no formatted output reports. ‘Although HIBOL does have a
report generation feature, the generation of formatted reports is an drthogonal issue to the rest of the

semantics of HIBOL. In a later chapter, some suggesttons are” made as to how translatlon of
' formatted reports might proceed ' ' ‘

Fourth, for simplicity, it is currently assumed that, within a given program, all key field names
from different files that actually correspond to the same key are identical. This constraint is
particularly easy to eliminate, and a method for doing so will be discussed in a later chapter.

The above constraints are not as restrictive as they might seem. The three basic program
structures discussed above represent the heart of the domain of programs that can be expressed in
HIBOL. In addition, programs which incorporate other fsatures that dﬂ not’ wﬂarfere with the main
read loops can still be tranglated. For example, a single program can pfoduce output files from input
files using any or all of the three basic strategies, so long as the read/write loops used to produce
those output files are completely separate from one another and therefore cannot interact. Also,
reduction operations that produce grand totals are allowed because they do.not require nested loops.
. It is also possible to translate programs which do not produce a. record inthe Output file for each set
of key values that could cause a record to be produced. For example in the LOC-LIST program, a
output record is not produced for a record in the transaction file if that record contains a "D" in the
delete-flag field. (Note that it is not permissible to add records-to the output file in a similar tashion).

Unfortunately, the current implementation of the translation process does not verify that the
program that it is processing adheres 1o-the assumptions amd7or-restrictions discussed sbove. A
more robust system would have to do significant. checking to determine ‘if the program that it is
processing fell within the domain of programs that it was des:qned to transiate.

N e

5.3 Brief Example

Before delving into all of the detail of the current tmplemenmn prucess let us examine its
operation on a simple example program; namely PAYROLL.. on iﬁnplicity only the processing’
needed to produce the HIBOL for the output data-set GROSS- PAY wiif be discussed TOTAL-GROSS- :
PAY and EMPLOYEE-COUNT will not be considered. This discussion is not meant to make the:
operation of the translation process crystal clear, but merely ta give a flavor for the type of processing
that is taking place. ; ‘ '

Translation Process - 60 - Gregory G. Faust

5.3.1 Symbolic Evaluation of the Analyzed Plan

Let us consider the portion of the analyzéd plan for PAYROLL shown in Figure 33. This
figure shows an abbreviated version of the analyzed plan for the main temporal composition (and is,
in fact, a subset of Figure 30). The subsegments are symbolically evaluated in an order that is
consistent with their control and data flow dependencies (left to right in Figure 33).

The first subsegment of the temporal composition ta be symbolically evaluated is the
generating augmentation, which has CREAD as its central function. The assertion that is formed for
the HOURLY-WAGE (HW) output port of that subsegment is:

(CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE)

This assertion specifies that the value at this output port is the result of reading the HOURLY-WAGE
data field in the HOURLY-WAGE-IN file.

Fig. 33. Partial Analyzed Plan for PAYROLL

HWF TEMPORAL COMPOSITION ' GPF

CONSUMER
CWRITE

GENERATOR CONSUMER
CREAD e TIMES(40) -
GPF
HWE
HWF ;lg |
TERMINAT ION
EOFP

<.-__

Gregory G. Faust -61- Translation Process

Also pertinent to this discussion is the assertion that is formed for the HOURLY-WAGE-FILE-
OBJECT (HWF) output port of this augmentation:

(SEFO HOURLY-WAGE-IN)

This assertion specifies that the value at this output port is the file-object HOURLY-WAGE-IN that has
been side-effected by the read operation {(SEFQ-is an acronym for "Side Effected File Object”).

The next subsegment to be evaluated is the termmatron subsegment which has EOFP as its
central function. The assertion that is formed for the single out-case of the fermination is:

(EOFP (SEFO HOURLY-WAGE-IN))

This assertion specifies that the termination 'subsegment {and, therefora; the temporal composition as
a whole) terminates when end-of-file has been reached on the HOURLY-WAGE-IN file.

The next subsegment to be evaluated is the consummg:ugmentatron fri;t has TIMES as its
central function. This: augmentation has the effect that the valug, for the incoming data flow is
muitiplied by forty. Accardingly, the assertion that is formed for the GROSS-PAY . (GP).autput port of
that subseamem is:

(TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE) 40.)

The last subsegment to be symbolica!ly evaluated ls the consummg augmentatlon that has
CWRITE as its central funchon When thrs augmentahon ns evaluated a record is made of the fact
that the output data ﬂeld GROSS PAY is associated with the asoartlon shown above In apdmon the
predncate whsch controls how often rt is wntten (the predrcate asserhon taken from the out case of tha |
termmatnon) is stored

5.3.2 DATA DIVISIONHQuory

In the DATA DIVISION Quéry phase, the user of the SATCH system Is asked to supplytha key
fields for each of the' mes&ppaaﬂng in the COBOL program. ‘in ihisexampla the userspeciﬁésm
EMPLOYEE-NUMBER is the keyﬁe!d for both the noum.v vm%em me aﬂo‘ the anss P‘AY our
file. e
5.3.3 HIBOL Production

In the HIBOL production phase, a new assertion for GROSS.-PAY is:formed by combining the
old assertion for GROSS-PAY with the predicate which specifies under what circumstances it is
written. Since GROSS-PAY is written within a temporal composition, the predicate that is used is the
negation of the predicate which terminated that temporal composition (stored during the symbolic

Translation Process -62 - | Gregory G. Faust

evaluation phase). Therefore, the predicate that is used is:

(NOT (EOFP (SEFO HOURLY-WAGE-IN)))

The new asse(tion {the form of which is not important here) specifies that the value of
(TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE) '40.)

is written into the output data field GROSS-PAY for every value of the input data field HOURLY-WAGE
that appears in the HOURLY-WAGE-IN file. ‘

This assertion is then translated into the corresponding HIBOL statement:

GROSS-PAY IS (HOURLY-WAGE * 40.)

5.4 Symbolic Evaluation of an Analyzed Plan

As stated above, the symbolic evaluation of an analyred plan for the PROCEDURE DIVISION
of a COBOL program proceeds by making' assertions about each oitbutiport for each segment. The
form of an assertion depends on the PBM that was used to form the segment. In some cases, more
specific patterns are used to make special case assertions. This is particularly true for augmentation
segments.

In addmon to assertions for output ports. an assemon is ‘made for each out- -case of every
spm segment The assemons specnty under what conditson control wiﬂ be passed to that case These
assertions dlffer from the assertlons for data ports in that they take the form of predlcates mstead of
object descnpttons That is, they are expressions that use boolean operators instead of the anthmenc
and other special form operators that are used to describe objects.

When a given segment is symbolically evaluated, first its subsegments are symbolically
evaluated in an order consistent their control flow and data flow dependencies, starting with a
‘subsegment which depends on none of the other subsegments tor eithey control.or data flow. Then,
after the symbolic evaluation of the-subsegments is compleMd,qnmemon is made about each of
the segment's output ports, or if it is a split segment, each of its out-sasss

Both predicate and object assertions are made in terms of primitive objects. Therefore,
primitive objects will be discussed in the next section. The two sections after that w:ll discuss
predicate and object assertions, raspectively.

Gregory G. Faust -63- Translation Process

5.4.1 Primitive Objects

The only explicit inputs to a COBOL program are file objects, However, there are also
implicit inputs to the prografn; namely the data and key fields'in thé files. These two types of input
produce two of the three types of primitive objects. The syntax (literals are in bold face and
non-terminal symbols are in italics while primitive functioh names are in the normal font) for file
objects is:

(SEFO file-name)

where SEF0 is an acronym for Side Effected File Object. The syntax for the primitive objects resulting
from CREAD operations is: '

(CREAD-VAL file-name field-name)

Since several files may have fields that have the same name, the field-names that are used are
actuafly buffer-structure path names that uniguely tdenhﬁya particular ﬁe&d

The third type of primitive abject is a constant. These fall into two subtypes, numeric and
literal. The syntax for numeric constants is simply the:numera! itself. The syntax.for literal constants
is:

(STRING some4sequenca--of—-characrter's)

In addition, there is a special constant, UNDEFINED, which is the initial value given to every data area
that is not explicitly initialized in the DATA DIVISION of the COBOL. program. '

5.4.2 Predicate Assertions

The simplest instance of the PBM predicate will have two subsegments: an initialization that
is one of the primitive boolean iuncuons for example EQUAL combinad with a PIF. The assertion
that specifies the value for the output data port of the initialization is built in an obvious manner. The
primitive boolean function is simply combined:in prefix:order with the ‘vawes for the objects that it-
uses as arguments. For example, the predicate assertion that would be formed from a primitive
EQUAL function acting on two primitive CREAD~VAL objects would be:

(EQUAL (CREAD-VAL filel field-nami) (CREAD-VM. fﬂcz fier-nameZ))
Note that file1 and f1le2 might be the same if the fields to be compared are both from the same

file.

The output data port of the initialization will be Iinl;ed via data flow to the input port of the PIF.
(Recall that PIF is the split primitive that tests a simplé boolean operand). The PIF will have two
out-cases. An assertion will be made about one of the cases, called the YES case, that is the same as

Translation Process -64 - Gregory G. Faust

the assertion that was made about the output data port of the initialization. An assertion will be made
about the other case, called the NO case, that is the negation of the assertion made for the YES case.
Using the above example, these assertions state that contro! will be passed to the YES case of the PIF
when

(EQUAL (CREAD-VAL filel field-namel) (CREAD-VAL file2 field-namel))
is true, and control will be passed to the NO case when
(NOT (EQUAL (CREAD-VAL filel field-namel) (CREAD-VAL file2 field-namel)))

is true.

If the primitive split were a PIFNULL instead of a PIF, then the assertions associated with the
YES and NO cases would simply be reversed. ‘ ‘

The simple predicate described above will only have two out-cases,.each c&respoMing to
one of the out-cases of its PIF subsegment. Symbolic evaluation of the predicate is completed by
simply making an assertion about each of the out-cases that is identical to the assertion that was
made about the corresponding out-case of the PIF. '

As stated in Chapter 4, compound predicates are built out qf simpler predicates in two ways.
One way is for a predicate, call it PRED2, to receive control flow from an out-case of another
predicate, call it CASE1 of PRED1. Because of the order in ‘which segments are symbolically
evaluated, PRED1 will always be evaluated before PRED2. PRED?2 is then evaluated as usual except :
that the normal assertions that would have been made had it occurred in isolation are each ANDed
with the assertion governing CASE1 of PRED1. For example, suppose that PRED2 |svthe simple
EQUAL predicate discussed above, and CASE1 of PRED1 was asserted to be abtive when some
arbitrary predicate, call it predi, is ifue. Then assertions will be made stating that control will be
passed to one case of PRED2 when ‘ ' |

(AND pred1 (EQUAL (CREAD-VAL filel field-namel)
(CREAD-VAL file2 field-name2)))

is true, and to the other case when

(NOT (AND predl (EQUAL (CREAD-VAL filel field-namel)
(CREAD-VAL file2 field-name2))))

is true.
The other way in which compound predicates are formed is when a join segment receives

control flow from an out-case of two different predicates. In this event, an assertion is made about the
single out-case of the join that is the OR of the two assertions that govern the two in-cases of the join,

Gregory G. Faust -65 - Translation Process

which in turn are governed by the two predicates that pass control to the join. For example, suppose
that the join is passed control from an out-case of two predicates, and that those cases are asserted
to be active when two predicates, call them pred1 and pred?2, are true. Then an assertion will be
made about the out-case of the join that is of the form:)

(OR pred! pred2)

. A compound predicate, in general, can have many joins -and simpler predicates as
subsegments. 1t can also have many out-cases, each of which is passed control from-an out-case of
one of its subsegments. When a compound predicate is. symbolically evaluated, first all of the
subsegments are evaluated, and. then an assertion is made about-sach of its out-cases which is
identical to the assertion that was made about the out-case of thg subsegment that passes control to
it.

it should be clear that the expressions:for the.assertions in-a compound predicate can be
very complex. If the assertions for compound predicates wers made according to the rules that have
been given so far, they would be in an unreadable form. This is also true of the assertions that are’
made about comiplex objects. To reduce this problem, several simpHﬂcaﬂon techmques have been
used. These \mlrbe discussed in a later section. '

5.4.3 Object Assertions

The assertions formed for primitive objects were discussed above. The following three
sections will discuss assertions made in primitive segments, segments that are instances of straaght-
line PBMs, and segments that are instances of recursivem ‘respectively.

5.4.3.1 Primitive Function Assertions

Assertions about output ports of primitive arithrestic tunctions that do not fall into any special
category are formed in an obvious manher. The primitive function of the segment is combined, in
prefix order, with the assertions about the input ports to thessgments. For-example, suppose that
there is a primitive TIMES function that has two input ports. By.follewing data flow links to each of the -
input ports-back to the.previous: segment, an assertion.can-be found for each of the input objects.
Suppose that the assertions found in this manner are ob j1 and objz. Then the assertion that will be
formed for the output port of the segment is: ‘

(TIMES obj1 obj2)

Translation Process - 66 - Gregory G. Faust

Special assertions are formed for the primitive functions that perqum simple operations on
file objects: COPENI, COPENO, COPENIO, CCLOSE, and NTERPRI. Al of these functions have the
property that they take a file object as their only input and produce a file object as their only output. In
all cases, the assertion that is formed for the output is just the primitive object:

(SEFO file-name)

In addition, special assertions are formed for CREAD functions. The CREAD function is
unique in that it takes a single input, a file object, and produces many outputs. One of the outputs is
the file object, and the others are ali field values. The output assertion for the file object is as above.
An assertion is made for each of the other output ports that is of the form:

(CREAD-VAL file-name field-name)

where the field-name is one of the names in the buffer-structure associated with the file in the
DATA DIVISION of the COBOL program. - These field names are contained within the analyzed plan
and do not come from the DATA DIVISION information produced in-the:COBOL. parser.

CWRITE and CREWRITE functions are also handled specially. These functions take a file
object as well as a number of other inputs that correspond to fields of that file. The single output is
the file object and is given the usual assertion. Symbolic evaluation of these functions also has the
side-effect that the assertions that correspond to the fields, along with the associated fiéid names, are
placed in a file to be used by the HIBOL production phase of the trans!atlon process The transferal of
this information wil be discussed in a !ater section. -

5.4.3.2 Object Assertions-Formed in Straight-line PBMs

More complex dbject assertions are formed within segments that .represent straight-line
PBMs. The assertions formed within predicate segments have already been discussed. The
assertions formed in composifion segments and condnionat segmems*arediscussed in this ‘section.

in a composition, the assertions that are made about the ‘output ports come from the
subsegments that make up the composition. After ali the subsegments of the composition have been
symboiically evaluated, an assertion is made about each-of the eutput ports that is identical to the
assertion associated with the output port of the subssgment marprodwes data flow to that port. The
composition itself lends no specnal form to the assertions. R

A conditional, on the ether hand, does cause the formation of a particular type of assertion.
Recall that a conditional is composed of a predicate, a group of actions, and a join. The join
subsegment not only joins control flow, but also joins data flow. Each output port of the join is
associated with as many input ports as the join has in-cases. For example, if the join has three output

Gregory G. Faust ' -67- Translation Process

ports, and four in-cases, then it will also have twelve input ports, three for each of the four in-cases.

Also recall that each of the in- -cases of the jom is associated with an out- -case of the
predrcate Because the predlcate has the property that exactty one of lts out -cases will be active on
any given execution of the condmonal the join has the property that exactly one of its |n cases will be

“active. This causes exactly one of the input ports associated wnth a particular output port of the join
to receive a data value on any given execution.

Since the assertions about the output ports of the join are made during a symbolic evaluation
of the conditional, they need to include all the poss:ble values that that output port can assume. This
is done by forming a set of predicate-object pairs for each output port The set fora particular output ,
port is found by associating the predicate that corresponds to each in-case of the join with the data
value that the output port would receive had that predicate been true. The syntax of such an cbject

is:
(XCASE (pred1 obj1) (pred2 obj2) . . . (predn objn))
The keyword. XCASE is included as an indicator of the type of object.

Atthough the syntax of an XCASE construct ctpsely resembtes the syntax ot a LISP COND |
construct, the semantics of an XCASE and a COND differ i m that the order m whtch the clauses appear
in a COND matters, while in an XCASE the order in whtch the predtcate«obiect palrs appear does not
matter

5.4.3.3 Object Assertions Formed in Recursive PBMs

The initialization of an augmentation is a simpte segment. Therefore, the assertions that are
made about its output ports are just those that have been discussed above. The augmentation
function is also a simple segment and is atso gwen asserttons that are the same as those discussed
above. The exception occurs when the augmentetcon functton is a temporal composmon This
happens as a resutt of the nestmg of loops The current mptementatton of the translatton process
does not handte this case

After the initialization and augmentation function have been symbolically evaluated and
assertions made about their output ports, assertlons ere made about the output ports of the
augmentation -body. These are made by simply carrylng torward the assertlons made about the
output ports of the augmentatton function that correspond to them Note that thas ts srmslar to the way |
in which assertions are made about the output ports of composition segments

Translation Process - 68 - Gregory G. Faust

It is also necessary to make assertions about the temporal and non-temporal outputs of the
augmentation. Currently, the temporal outputs are given assertions that are identical to the
assertions given to the data ports from which they get their values. Unfortunately, this means that
these assertions are indistinguishable from assertions made about non’-temporal data flows. The pros
and cons of this choice are discussed in another section. ‘

In addition to temparal outputs, an augmentation can also have non-temporal outputs. In the
analyzed plans for COBOL programs, these arise in two ways. First, a file object can be side-effected
in an augmentation and then passed out of the augmentation to be used in another segment in the
plan. In this event, the output port that corresponds to the file object is given the usual file object
assertion, namely: ‘ '

(SEFO file-name)

The second non-temporal output type results from reduction operators such as COUNT or
SUM. The reduction operators are recognized when the augmentationbsatisfies special criteria. For
example, a SUM operation can be recognized when an augmentation has an initialization that
produces the constant zero and an augmentation function that is a PLUS. The PLUS function will
take one argument from an input to the body that first gets its value from the initialization and
subsequently gets its values from the output of the PLUS function. The second argument will be a
temporal i'nput to the augmentation. The non-temporal 'outbut of the augmehtation isthen the SUM'of
the temporal input to the augmentation. The assertion that would be formed in this event is:

(SUM obj)

where obj is the assertion found by following data flow back from the temporal input port to its
source.

Terminations and filters are handled in much the same way as augmentations. The
subsegments of the filters and terminations that represent straight-line PBMs are ev'éiuhted as always
and the usual assertions formed. However, the temporal outputs df terminations ;md filters need to be
handled in a special way. These temporal outputs represent stream values, générated in some
augmentation, that have been changed by the action of the termination or filter.

Recall that each temporal output of a termination or filter corresponds to a temporal input
that has been associated with a certain predicate. In the case of a termination, this predicate
indicates at which place the temporal input shou!d be truncated. In‘a filter',’this predicate indicates
under what circumstances a value from the temporal input is included in the temporal output.

Gregory G. Faust -69 - ~ Transfation Process

Both of these situations are handled by forming an XCASE construct with two predicate-
object pairs. One of the pairs is formed by associating the predicate with the object assertion that is
associated with the corresponding temporat input.'_ The other predicate-object pair is formed by
associating the negation of the predicate with the special primitive object UNDEFINED. ~Note that
XCASEs formed in this way have the same properties as XCASEs formed in conditionals. Clearly, given
any predicate and its negation, exactly one of them will be true. Also note that in the case of a
temporal qutput of a termmatlon this assertlon form assumes that the termlnatnon predncate is such
‘that once it |s TRUE for some value in the mput stream, it is TRUE for all remammg values in the input
stream This assumptnon is met by EOFP predicates (which are assumed to termmate all loops).

For example, suppose there is a filter with a tempbral' inpdt that is associated with the
assertion obj1, and which has a temporal output that corresponds to that temporal input and which is
associated with the predicate pred1. Then an assertion will be made about the temporal output that
is of the form

(XCASE (predi obj1) ((NOT pfed!) UNDEFINED))

In-this way assertions are made about the temporal outputs of terminations and filters that
state that, when a given predicate is true, the temporai data flow has a value that is the same as it had
before it was operated on by the termination or filter. The assertions also state that when that
predicate is not true, the temporal data flow has no value. Unfortunafefy. tike the assertions produced
for temporal output ports of augmentations, thesé assert:ons are industinguashabte from assertnons
represenﬁng singte values

5.4.4 Assertion Simplification Methods

It can be seen from the above discussion that there are only three types of assértions in the
system; primitive objects, expressions composed of primitive functions (both-arithmetic and boolean)
acting on other objects, and XCASEs. The XCASEs are the only complex objects. Unfortunately, the
way the assertions are built, XCASEs can appear in expressions and in predicste-object pairs of other
XCASEs. This causes unnecessary eomplextty in all-the assertion types. -

All assertions in the system are kept as simple as'possibté by transforming the ones that
contain XCASEs as componenté so that either the XCASE is eliminated or the XCASE is at the top level
“only. This is done for each assertion that is made in the system. This means that when a new
assertion |s formed, XCASEs can be nested at most one level deep in the assertnon This fact is used
in the s:mplmcauon process.

Translation Process -70- Gregory G. Faust

The transforms are such that predicates are often built which are not in simplest terms.
These predicates are simplified through the use of a disjunctive normal form predicate simplifier that
was designed by Deepak Kapur [12]. This predicate simplifier lies at the heart of the assertion
simplification process.

5.4.4.1 Simplification of Predicate Assertions

When a predicate assertion is first formed in the system, it may contain an XCASE as an
argument to a boolean function. Since an XCASE is an object, it will never éppear as an argument to
AND, OR, or NOT, but can only appear as an argument to corhpafdiiQ/e function such as EQUAL,
GREATERP, etc. What is needed is a transform that will eliminate the XCASE from the expression.
The transform that is used is given m Figure 34,

In this example, the second argurﬁent toa comparafi\)e function is an XCASE. It is assumed
that this XCASE is already simplified. This means that obj1 through ob jn are not XCASES. Note that
if the first argument to the comparative function had’ alse been. ane:XCl&ir, then the same translorm
could have been applied to each of the clauses that were produced in the first application of the
transform, thereby eliminating all XCASEs from the expression. An inspection of Figure- 34 should
reveal that the resuitant predicate has the intended truth. value.

Once the transform has been applied, the expression is furthe} Simplified The disiunctive
normal form predicate sumphher does not know about the type of pnmmve objects that a given
predicate will be expressed in terms of. Therefore, before the predfcate is passed to the snmplmer it
undergoes a prepass in which some of the subexpressions that are composed of a comparatlve_
function operating on two constants are replaced by TRUE or FALSE. «For.zexmple.

(EQUAL (STRING abc)(STRING def))

can be replaced with FALSE.

Fig. 34. Transform to Remove XCASEs in Comparative Functions

(comparative-function obj (XCASE (predl obj1)
(pred2 obj2)
{predn obijn)))

Becomes:
(OR (AND pred1 (comparative-function obj obj1))

(AND pred2 (comparative-function obj obj2))
(AND predn (comparative-function obj objn)))

Gregory G. Faust: -71- | Translation Process

In addition, any subexpression that involved a comparative function in which one of the
arguments is the constant UNDEF INED is replaced with FALSE. This replacement is done because
objects can be undefined but predicates cannot. Note that this replacement with FALSE (followed by
simplitication) is équivalent”t’o first converting the XCASE to one in which at most one of the predicates
is TRUE by removing the predicate-object pair in which the objéct is UNDEFINED (if any), and then
performing the transform to eliminate the XCASE from the comparative function.

The expression is then passed to the general predicate simplifier. The resutlt is a disjunctive
normal form in which the clauses are as simple as possibie and are in a tanonicat order.

As an example of the use of the predicate simplification transforms, let use consider the
predicate in the termination of the temporal composition in PAYROLLZ (see Section 1.4). In this
example, a flag is used to store the information about whethet or not end of file has been reached.
Because COBOL allows 88 variables to be used; fiags of this type dre. very common in ‘COBOL
programs. Let us simplify the example by considering only the portion of the termination test that
tests whether end of file has been reached on the HOURLY-WAGE file. The actual predvcate in the
analyzed plan checks for the value of the flag. The initial expression for the predicate as well as the
final assertion actually formed for the predicate are shown in Figure 35.

5.4.4.2 Simplification of Object Assertions

~ The first transform for object assertions is-used to simplify arithmetic expressions. Arithmetic
expressions, as initially formied, can contain XCASEs as ‘argliménts-to arithmetic functions such as
TIMES and PLUS. What is needed is a transform that will change arithmenc expresstons that contain
XCASEs mto an XCASE in whnch the ob;ects of the pred'acaté oblect pairs are antﬁmehc expressuons

Fig. 36. Example Predicate Simplification from PAYROLL2:

The expression bafore simplification is: a '
(EQUAL 1. (XCASE ((EOFP (SEFO HOURLY-WAGE-IN)) 1.)
((NOT (EOFP (SEFO HOURLY-WAGE-IN))) 0.)))

The expression after transform to elim1nate the XCASE
(OR (AND (EOFP (SEF0 HOURLY-WAGE-IN)) (EQUAL 1. 1.))-
(AND (NOT (EOFP (SEFO»HGEELY%UAGE-IN))) (EQUAL 1. 0.)))

The expression after the prepas#
(OR (AND (EOFP (SEFO HOURLY-WAGE-IN)) TRUE) _
(AND (NOT (EOFP (SEFO HOURLY HAGE ~-IN))) FALSE))

The final assertion after simp]iflcatIOn:
(EOFP (SEFO HOURLY-WAGE-IN))

Transiation Process -72 - Gregory G. Faust

that do not contain XCASEs. This keeps the XCASE forms at top level instead of nested within the
arithmetic expressions. The transform that is used is shown in Figure 36.

In this example, the second argument to a binary arithmetic function is an XCASE. As before,
it is assumed that the XCASE was already szmplmed and that ob JI through ob jn are, therefore, not
XCASEs. Had the first argument also been an XCASE then the same transform could be applied to
each of the objects in the predicate-object pairs resulting from the first application of the transform.
The result is an expression that will have XCASEs nested at most one level deep, but in which none of
the arithmetic expressions contain an XCASEs. The nested XCASEs, if any, are later removed with
another transform.

The arithmetic expressions that result from the transform shown in Figure 36 can be reduced
further by replacing any subexpression that contains an arithmetic function in which the constant
UNDEF INED is used as an argument with the constant UNDEFINED. For example,

(TIMES arg1 UNDEFINED)

is replaced with UNDEFINED.

XCASEs that are nested one level deep can result in two ways. One is by the épplication of
the transform discussed above. The other occurs when a conditional segment is nested within an
action of another conditional segment in the analyzed plan. In either case, it is desirable to eliminate
the nested XCASE. If this were not done, then XCASEs nested to an arbitrary depth would eventually

be formed. The transform that is used to eliminate nested XCASEs is shown in Figure 37.

In this example, one of the ob;ects ina preducate object pair of an XCASE is. another XCASE.
It is assumed that this nested XCASE is already simplified and that, therefore, ob j21 through ob jZn
do not contain XCASEs. Note that the same transform can be applied to any of the predicate-object
pairs in the top level XCASE in which the objactis an XCASE: The resuit of applying this transform is
an XCASE that contains no nested XCASEs anywhere in the objects of the predicate-object pairs. An

Fig. 36. Transform to Remove XCASEs in A‘rithmetic Expressions ‘

(arithmetic-function obj (XCASE (predi obji1)
“(pred2 obj2)
(predn objn)))

Becomes:

(XCASE (predl (arithmetic-function obj obj1))
(pred2 (arithmetic-function obj obj2))
(predn (arithmetic-function obj abjn)))

Gregory G. Faust -73 - Translation Process

Fig. 37. Transform to Eliminate Nested XCASEs

(XCASE (pred11 obj11)
(prediz (XCASE (pred21 obj21)
(pred22 obj22)
-(pred2n obj2n)))
(predin objin)))

Becomes:

(XCASE (pred11 obj11)
{((AND pred12 pred21) obj21)
((AND pred12 pred22) obj22)
((AND pred12 pred2n) obj2n)
(predin objin))

examination of Figure 37 should réfreal that the resultant XCAS& has the §ame semantics as the initial '
- XCASE. | | S

There is one remaining transform that can be applied to XCASEs. This transform is used
when two or more predicate-obiect pairs contain the same object. Such an XCASE contains more
prédicate-object pairs than is necessary. In this event, the nﬁﬁ\ber' of predicate-object' pairs can be |
reduced by applying the transform shown in Figure 38. This transform can be used to condense all
sets of predicate-object pairs that contain the same object. The result is an XCASE in which all of the
objects are distinct. In order to see that this transform retains the semantics of the initial XCASE, it
-must be recalled that the predicates in the initial XCASE have the property that exactly one of them will
be true at a time. Therefore, the ORs that are formed have as arguments a set.of predicates in which
at most one of them is true. This property ensures that the resultant XCASE is equivalent to the initial
one. PR

Fig. 38. Transform to Condense Predicate-object Pairs containing identical Objects

(XCASE (pred1 obj1)
(pred2 obj1)
(predn objn))

Becomes:

(XCASE ((OR predl pred2) obj1)
(predn objn)) '

Translation Process ’ -74 - Gregory G. Faust

After all of the above transforms are applied to a given XCASE, then each of the predicates in
the predicate-object pairs is passed to the disjunctive normal form predicate simplifier. Some of the
predicates may be identically FALSE. In this case, the predicate-object pair containing that predicate
is simply removed from the XCASE. Removal of predlcate object pairs in this fashion. can result in an
XCASE in which all predicate-object pairs except one have been removed, and the single remaining
pair may contain a predicate that is identically TRUE. In this event, the entire XCASE is eliminated and
the object of the last remaining pair is used as the final form of the assertion. -

In all cases, the final result of the application of all the transforms discussed above is an
assertion for an object that is either a primitive object; an arifhmetic expression in simplest form that
contains no XCASEs, or an XCASE in which all of the predicates are in canonical form and do not
contain XCASEs, and all of the objects are in simplest form and do not contain XCASEs.

For example, cons:der the simplification steps taken to simplify an expressnon for GROSS-
PAY, taken from PAYROLL2 (see Section 1.4) shown in Flgure 39. This express:on is first built at the
end of the conditional that checks to see if the key fields are equal before calculating GROSS-PAY.

Because this simplification is done to each asSertionk ‘befo're it is added to the plan for the
program, all object assertions in the system are always in simplest form. This is not only a great aid in
debugging, but aiso ensures that the expressions that are passed on to the HIBOL production phase
are as simple as possible. -

5.4.5 Communication between Symbglic Evaluation and HIBOL Production

As indicated above, when a CWRITE or CREWRITE function is evaluated in the symbolic
evaluation of the analyzed plan, the assertions that had been formed for the non-file-object arguments
to the write function are stored so they can be used in the HIBOL production phase. However, just
this information is not quite enough. It is also necessary to store the control environment in which the
write function is evaluated.

The control environment is kept in a stack that is manipulated during the symbolic
evaluation. Each:time an action of a conditional is evaluated, the predicate that determines under
what conditions that action will take place is pushed on the stack. The stack is then popped after the
evaluation of that action is complete. -

In addition, within a temporal com'position, it is sometimes the case that certain
augmentations receive dummy temporal data flow from a termination or filter. These dummy temporal
data flows do not contain any data values, but simply cause the augmentation to dnly be executed
when the predicate of the termination or filter with which they are associated is true. To take this fact

Gregory G. Faust -75- Translation Process

Fig. 39. Example Simplification of an Object Assertion
Expression initially formed:

(XCASE ((EQUAL (CREAD-VAL HOURLY-WAGE-IN EMPLOYEE-NUMBER)
{ CREAD-VAL HOURS-WORKED-TN EMPLOYEE -NUMBER))
(TIMES (XCASE ((NOT (EOFP {SEFO' HOURLY-WAGE-IN)))
(CREAD-VAL 'HOURLY-WAGE-IN HOURLY- waef))
((EOFP (SEFO- HounLY uass IN)) R
- UNBEFINED)) = '
(XCASE (¢MOT (EOFP {SEFO Houns~wonn£n 1»)))
(CREAD~VAL 'HOURS=WORKED= IN nouns WORKED))
((EOFP (SEFO HOURS~VORKED*!N)) o
UNDEFINED))))
((NOT (EQUAL (CREAD“VAL HOURLY-WAGE-IN EanevEE-nunaen)
(CREAD-VAL HOURS-WORKED-IN EMPLOYEE- NUMBER)))
UNDEFINED))

Expression after simplification of arithmetic expression:

(XCASE ((EQUAL (CREAD-VAL HOURLY-WAGE<~IN EMPLOYEE-NUMBER) .
(CREAD-VAL HOURS-WORKED~1N EMPLOYEE- nuassn))
(XCASE ((AND (NOT (EOFP {SEFO HOURLY-WAGE-~IN}))) "
(NOT (EOFP (SEFQ HOURS-WORKED-1IN))))
(TIMES (CREAD-VAL HOURLY-WAGE-IN’ nounevuwAGE)
. (CREAD~VAL HOURS-WORKEH-IN* Houas—wuﬂneo)))
((OR (EOFP (SEFO HOURLY-WAGE<¥RY) -
(EOFP (SEFO Houns—waaxsn-!n)))
UNDEFINED))) =~
((NOT (EQUAL (CREAD-VAL HOURLY-WAGE- . INPEMPLOYEE- ~NUMBER)
(CREAD-VAL HOURS-WORKED-IN EMPLOYEE-NUMBER)))
UNDEFINED))

Expression after transform to eliminate nested XCASE:

(XCASE ((AND (EQUAL (CREAD-VAL HOURLY-WAGE-=IN EMPLOYEE-NUMBER)
(CREAD=VAL HOURS-WORKED~IN EMPLOYEE~NUMBER))
(AND (NOT (EOFP (SEFO HOURLY-WAGE-IN)))
__(NOT (EOFP (SEFO HOURS-WORKED-IN)))))
(TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE)
(CREAD~VAL- ‘HOURS -WORKED- IN.: HOURS-WORKED).})
((AND (EQUAL (CREAD-VAL HOURLY-WAGE-IN EMPLOYEE -NUMBER)
(CREAD-VAL HOURS-WORKED-IN EﬂPLOYEE-RUﬂBER))
(OR (EOFP (SEFD HOURLY-WAGE <1M)})
(EOFP (SEFQ HOURS-WORKED-IN))))
UNDEFINED)
((NOT (EQUAL (CREAD-VAL HOURLY-WAGE-IN EMPLOYEE-NUMBER)
(CREAD-VAL HBURS~NOR&ED~Iﬁ:Eﬂ?LOVEE*IUMBER)))
UNDEFINED)) - A

Translation Process -76 - Gregory G. Faust

Fig. 39. Example Simplification of an Object Assertion (Continued)

Expression after condensing clauses with identical objects:

(XCASE ((AND (EQUAL (CREAD-VAL HOURLY-WAGE-IN EMPLOYEE~NUMBER)
(CREAD-VAL HOURS-WORKED~-IN EMPLOYEE-NUMBER))
(AND (NOT (EOFP (SEFQ HOURLY-WAGE-IN))) -
(NOT (EOFP (SEFO HOURS~WORKED-IN)))))
(TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE)
(CREAD-VAL HOURS-WORKED-IN HOURS-WORKED)))
((OR (AND (EQUAL (CREAD-VAL HOURLY+-WAGE-IN EMPLOYEE-NUMBER)
. (CREAD-VAL HOURS-WORKED-IN EMPLOYEE-NUMBER))
(OR (EOFP (SEFO HOURLY~WAGE~IN))
(EOFP (SEFO HOURS-WORKED-~IN}))) -
(NOT (EQUAL (CREAD-VAL HOURLY~-WAGE~-IN EMPLOYEE- NUMBER) -
(CREAD-VAL HOURS-WORKED-IN EMPLOYEE-NUMBER))))
UNDEFINED)) :

Final assertion after predicate simplification:

(XCASE ((AND (EQUAL (CREAD-VAL HOURLY-WAGE=~IN EMPLOYEE-NUMBER)
“(CREAD-VAL . HOURS-WORKED~ I8 EMPLOYEE -NUMBER))
(NOT (EOFP. (SEFO HOURLY~WAGE~IN))) =~ -
(NOT (EOFP (SEFO .HOURS-WORKED=IN)))) .
(TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE)
(CREAD-VAL: HOURS-WORKED- IN. nouns-wexxeo)))
((OR (EOFP (SEFO HOURLY-WAGE-~IN)) S
(EOFP (SEFO HOURS-WORKED-IN)) .
(NOT (EQUAL (CREAD-VAL HOURLY-WAGE-IN EMPLQ¥EE~NUMBER)
-~ (CREAD=VAL - HOURS -WORKED-IN EMPLOYEE-NUMBER)))))
UNDEFINED) o g : :

into account, when an augmentation that has a dummy temporal input is-symbolically evaluated, the
predicate that is assoctated with that dummy input, ts pushedonto thecpmro! enwronment stack. The
stack is then popped whan evatuatmn of that augmenﬂtm ta compleu.

Within temporal composlﬁons, there is an addmonal Imphcut factor in the control
environment. Recall that an. augmantation within. a tempomt oomposntmn is-only executed if none of
the terminations in the temp‘ora] composition have caused the loop o terminate. Therefore, the
negat:on of the predncates that cause the loop to tanmmmmustba eonmdered part of the control
environment. s

The control environment of write functions is saved through the following mechanisms. A list
is kept of all temporal compositions in the plan along with the predicates that cause each fo terminate.
When a write function is symbolically evaluated, the control environment stack is saved as well as the

Gregory G. Faust -77- Translation Process

Fig. 40. Information Transferred Between Phases in PAYROLL

Temporal Composition: TEMPCOMP-1 7
Termination Predicate: (EOFP (SEFO HOURLY-WAGE-IN))
Output Expressions:
(GROSS-PAY-REC_EMPLOYEE-NUMBER IS
~ (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE- REC EMPLOYEE ~-NUMBER))
(GROSS-PAY IS (TIMES (CREAD-VAL HOURLY-WAGE- IN‘HOURLY-WAGE) 40.))

Temporal Composition: OUTPUT-NOT-IN- TEMPCOMP
Termination Predicate: NIL
Output Expressions:
(EMPLOYEE-COUNT IS (COUNT (NOT (EOFP (SEFO HOURLY-WAGE- IN)))))
(TOTAL=GROSS-PAY 1S
(SUM (TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE) 40.)))

Filename: HOURLY-WAGE-IN
Open Type: COPENI

Filename: GROSS-PAY-OUT
Opentype: COPENO

Filename: EMPLOYEE-COUNT-OUT
Opentype: COPERNO

Filename: TOTAL-GROSS-PAY-OUT
Opentype: COPENO

name of the temporal composition in which it is located. Write functions not located within temporal
compositions are associated with a special dummy temporal composition calied OUTPUT-NOT-IN
TEMPCOMP.

Before the termination of the symbolic evaluation phase, the jist of temporal composition.
names and their associated predicates as wetl as the information stored during the evaluation of write -
functions are stored in a file to be used in the HIBOL production phase. The only remaining
information that is transferred to the HIBOL production phase is the type of open function that was
used to open each file in the COBOL program. As an‘exampie, the information transferred from the
symbotic evaluation phase to the: HiBOL productlon phase in the translaﬁan of PAYROLL is shown in
Figure 40.

Translation Process -78- Gregory G. Faust

"5.5 DATA DIVISION Query

A file is input to the translation process directly from the COBOL parser that contains virtually
all of the information that appears in the DATA DIVISION 6f the COBOL program. included is the
structure of the buffer area associated with each file as well as the PICTURE clause for each atomic
variable name in these structures. The only needed .inf_armétj@n that is not included in this file,
because it does not appear anywhere in the COBOL program, is which of the atomic variable names
in the buffer structure for each file are key fields, and in which order those key fieids were used to sort
the file. An exception occurs when a file is specified in the DATA DIVISION of the COBOL program to
be used for random access. In this case, the syntax and semantics of COBOL demand that the
needed information about key fislds and sort order be explicitly -given in the DATA DIVISION.
However, the current implementation of the translation process does not handle random access files.

This information is gathered by simply asking the user of the SATCH system to supply it. For
each file, a list of the atomic variable names of the corresponding buffer structure. is displayed on the
screen along with associated numbers. The user then simply types in the list of numbers that
correspond to the key fields in the order that they were used to sort the f’le This mformatlon is then
added to the file of DATA DIVISION information to be used in the HIBOL production phase.

The fact that this information needs to be gathered from the SATCH system user is not a
major drawback of the system. Anyone that is at all familiar with the files that are used in a production
COBOL system should at least know which fields in each file are key fields even if they do not know
what the particular‘ program in question is doing.

5.6 HIBOL Production

The information gathered in the analyzed plan symbolic evaluation and the data division
query is used to produce the actual HIBOL for the COBOL program. This process is further
subdivided into two subprocesses; one which produces the DATA DIVISION of the HIBOL program,
and one which produces the COMPUTATION DIVISION.

The subprocess that produces the DATA DIVISION of the HIBOL program is relatively trivial.
The names of the key ﬁelds.,gatha.red in the data division query, as well as the information about the
corresponding PICTURE clauses, received directly from the COBOL parser, are used to produce the
~ KEY SECTION. ,'The information about the type of OPEN function used for each file, gathered in the
analyzed plan symbolic evaluation, and the information about the buffer-structure and corresponding
data and key fields, received directly from the COBOL parser, are used to produce the INPUT and
OUTPUT SECTIONs. Each data field name in the buffer-structure for every file in the COBOL
program is made into an individual data-set in either the INPUT SECTION or OQUTPUT SECTION

Gregory G. Faust S -79- | Translation Process

Fig. 41. Steps in the Production of the COMPUTATION DIVISION
1. Remove assertions for key fields from further consideration.

2. Add to each assertion the negation of the predlcates that termmate the temporal
compoaosition in which they were formed.

3. Remove predicate-object pairs with an object that is UNDEF TNED from XCASES.

4. Consofidate the assertions for a given output data field formed in separate temporal
compositions into one assertion.

5. Replace EOFP and comparative predicates with FILE-PRESENT predicates.

6. Eliminate FILE-PRESENT predicates that are redundant with the semantics of HIBC)L.
7. Convert object assertions into HIBOL syntax.

8. Replace aﬁy remaining FILE-PRESENT predicates with PBESENT predicatde.

9. Convert predicate assertions into HIBOL syntax. .

10. Qutput final HIBOL expressions inta HIBOL file.

depending on whether the OPEN function used on the file was COPENI or COPENO. A data-setis
created in both sections if the file was opened via COPENIO. Currently, a VARIABLE SECTION is
never used. ' ’ ‘

The subprocess that produces the COMPUTATION DIVISION of the HIBOL program is much
more complex. The largest difficulty in performing this. taek is the mtermanon of the correct
predicates to be used in the conditional expressions. Therefore, this sibprocess consists mainly of
the manipulation of various 'predicates in various ways, starting from the assertions received from the
symbolic evaluation of the analyzed plan. An overview of mmmﬁomed inthe produchon of the
COMPUTATION DIVISION is given in Figure 41.

The first four steps result in a single conditional assertion for every data field of every output
file. These assertions will be in one-to-one correspondence. with. the desired output data-set
definitions that will appear in the final HIBOL program. The next six steps convert each of the
resuitant assertions into the corresponding output data-set definition.

Translation Process -80- Gregory G. Faust

5.6.1 Remove Key Field Assertions from Further Consideration

First, all assertions for key fields are dropped at this point and not processed further. The
key field expressions are dropped because the HIBOL CQMPUTATION DIVISION does not contain
expressions for key fields. It is safe to drop‘them beciause, basad on our assumptions about the type
of COBOL programs being processed, the assertions for the key fields are controlled by the same
basic predicates that control the data fields and, therefore, no needed information is contained within
them.

5.6.2 Assert Negation of Termination Predicates

Then, for each remaining assertion that was produced in a temporal composition, it is
asserted that the assertion holds whenever the predncates that would cause the temporal composition
to terminate are FALSE. This is done by forming an XCASE with two predicate-object pairs. The first
pair consists of the negation of the logical OR of the predicates that cause the temporal composition
to terminate and the original assertion for the object, and the second pair consists of the logical OR of
those same predicates combined with the object UNDEFINED.

Consider an example from PAYROLL. The original assertion associated with the variable
GROSS-PAY is:

¢

(TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE) 40.)
and the predicate causing the temporai compdsition to terminate is:
(EOFP (SEFO HOURLY-WAGE-IN))

The XCASE that would be produced is:

(XCASE ((NOT (EOFP (SEFO HOURLY-WAGE-IN)))
(TIMES (CREAD~VAL HOURLY-WAGE-IN HOURLY-WAGE) 40.))
((EOFP (SEFO HOURLY-WAGE-IN)) UNDEFINED))

This XCASE would then be simpiified using all of the simplification techniques discussed in
previous sections. Note that if the original assertion had already been an XCASE, then this process
would have the effect of ANDing the predicate in every predicate-object pair with the negation of the
predicates that terminate the temporal composition. A ‘further ¢ffect of this transformatmn is that all

assertions formed within tempm'a% composiﬁons are now XCASEs.

Gregory G. Faust -81- Translation Process

5.6.3 Remove UNDEFINED from XCASEs

Next, the predicate-object pair of the XCASE, if any, that has an object of UNDEFINED is
removed from the XCASE. The resultant XCASE no longer has the property that exactly one of the
predicates will be true at a time, but still has the propeny that at most one of the predicates will be
true at a time. It is safe to remove these pairs for two reasons, First, from this point on in the
translation, no transform will be applned o the XCASEs which reqmms that the predicates be all
inclusive, although transforms will be applied that require that they be mutually exclusive. Second,
the semantics of HIBOL conditional statements (into which the XCASEs will be translated) state that,
for any given element in the key space, if none of the predicates in the conditional are TRUE, the
conditional will be undefined for that element, and the elemé,nt, will not be included in the actual key
space of the result. In addition, thesa.predicate-object pairs-need to-be eliminated at this time so that
the next operation to be performed on theassertimwvﬁlfuncﬁonproMy: e

- 5.6.4 Consolidate Different Assertions for the Same Data Field into One

The last thing that is done to praoduce a single condhional expression for every data field of
every file is to look for assertions for a particular data field in more than one tefnporal composmon if
more than one assertion s found for a given data field, the predmnte obiect pairs of one are simply
~ appended to the predicate-object pairs of the other, formmq a largar XCASE which is then simplified.
It is important that the resultant XCASE-have the same predwate excslusimw of all-6ther XCASEs. For
this to be the case, the predicates’in the two XCASEs must bémutuwy exclirsive.” This will, in turn, be
true if the initial COBOL program adheres to the current assumptions of the system.

This transform is necessary to trandate’éprogra'm(mxe@\ar_s) which perform a file merge
operation. (See the LOC-LIST example in Section 1.4). A high level view of the typical analyzed plan
for a file merge operation is shown in Figure 42. The analyzed plan is a conditional with a temporal
compasition acting as the predicate and two additional temporal compositions acting as the ﬁcﬁons.
Note that only the termination subsegments of ths temSoral compositions are shown.

A summary of the predicates that will be included in every predicate-object pair-in an XCASE
in each of the three temporal compositions is shown in Figure 43 {Recait that the predicates in these
XCASEs are no longer all inclusive since the predicate-object pairs:geataining :UNDEFINED have -
already been removed). These predicates are included in the XCASEs either because they are the
negation of the loop terminator; Iff which case tivey were inderted by 4 phéViéus stey step in-the-HIBOL
production phase as described above, or because they were on the control stack when the tempoml
composition was symboiically evaluated in whlch case they ared in the assertions
transferred from that phase to the HIBOL production phase.’ By examining this hgure it 'should be
easy to see that these predicates are in fact mutuaﬁy exclusive and mﬁ! therefore, the transform

Translation Process : -82 - Gregory G. Faust

Fig. 42. Sketch of Analyzed Plan for File Merge Operation

CONDITIONAL i
|
\/
TC1 v/ | N\
TERM TERM -
EOFP EOFP
FILE-A FILE=B
N N¢
] 1
] [}
}]
N Y
TC2 \/ 1C3 R
TERM | TERM.
EOFP _EOFP
FILE-B FILE-A
\/ N
i T ’
t]
! 1
N N
JOIN
i
t
N

functions properly in this example.
5.6.5 Replace EOFP and Comparative Predicates with FILE-PRESENT Predicates

The next transform replaces all EOFP predicates and all comparative functions applied to
key fields by FILE-PRESENT predicates. The replacement scheme is shown in Figure 44. The
replacement for EOFP predicates should be fairly obvious.

Gregory G. Faust -83- Translation Procéss

Fig. 43. Predicates Contained in XCASEs in a File Merge
TEMPCOMP-1: (AND (NOT (EOFP (SEFO FILE-A)))
(NOT (EOFP (SEFQ FILE-B))))
TEMPCOMP-2: (AND (EOFP (SEFO FILE-A))
(NOT (EOFP (SEFO FILE-B))))

TEMPCOMP-3: (AND (NOT (EOFP (SEFO FILE-A)))
(EQFP (SEFO FILE-B))) »

Fig. 44. Replacement Predicates

(EOFP (SEFO file-name))
Becomes: .
(NOT (FILE-PRESENT file-name))

(EQUAL (CREAD-VAL file-namel key-field-name)
(CREAD-VAL file-name2 key-field-name))
Becomes: . v
(OR (AND (FILE-PRESENT file-namel)
(FILE-PRESENT file-name2))
(AND (NOT (FILE-PRESENT file-namel))
(NOT (FILE-PRESENT file-name2))))

(LESSP (CREAD-VAL file-namel key-field-name)
(CREAD-VAL file-name2 key-field-name))
Becomes: o -
(AND (FILE-PRESENT file-namel)
(NOT (FILE-PRESENT file-name2)))

(GREATERP (CREAD-VAL file-namel key-field-name)
(CREAD-VAL file-name2 key-field-name))
Becomes: _
(AND (NOT (FILE-PRESENT file-namel))
(FILE<PRESENT file-name2))

The replacemerits for the comparative functions, however, are less obvious. it should first be
noted that in order for the replacement to be performed, it mustbe the case that the key fields that are
acted on by the comparative function must be the same. Currertly, two key fiekds from different files
are considered the same if they have the same name. Later, a suggestion is made as to how this v
constraint could be relaxed. | o ’

Translation Process -84 - Gregory G. Faust

The replacement predicates for comparative functions on key fields rely heavily on the
assumption that the program in which they are formed is one of the three basic types, and that the two
files under consideration are being read sequentially and are sorted in key field order. The number of
key fields, however, is unimportant. Let us look more closely at thesg replacemer}t predicates. if the
value of the key field read from file-name-1 is less than the value of the key field read from file-
name-2, then that means that the record in file-name-2 corresponding to the key value read in
file-name-1 is missing while it does appear in file-name-1. On the other hand, if the value of the
key field read from file-name-1 is greater than the value of the key field from file-name-2, then '
that means that the record in file-name-1 that corresponds to the key value read in file-name-2
is missing while it does appear in file-name-2. These facts are reflected in the replacement
predicates for LESSP and GREATERP respectively. -

If the values of the key fields read from both files are equal, then both records'appear for that
key value. This fact is reflected in the first clause of the replacérhént predicate for EQUAL. The
second ‘clause of the replacement predicate for EQUAL is included so that the the replacement
predicates considered as a whole will exhibit a very useful broperty.' ‘Namely, they exhibit all of the
tautologies that are exhibited by GREATERP, LESSP, EQUAL and NOT-EQUAL. For example, after
simplification with the disjunctive normal form predicate simplifier, the predicate produced from

(NCT (LESSP (CREAD-VAL file-namel key-field-name)
(CREAD-VAL fils-nama2 key—fiald-name-)))

should be logically equivalent to the predicate produced from

(OR (GREATERP (CREAD-VAL file-namel key-field-name)
(CREAD-VAL file-name2 key-field-name))
(EQUAL (CREAD-VAL file-namel key-field-name)
(CREAD-VAL file-name2 key-field-name)))

both before and after the réplacement has been made. The replacement predicates currently used do
produces the equivalent result. Both the predicates shown above, after replacement, reduce to
(OR (NOT (FILE-PRESENT file-name-1))

(FILE-PRESENT file-name-2))
The fact that the replacement predicates-exhibit this property eliminates the possibility that different
predicates could be produced after replacement simply because the programmer of the original
COBOL program chose a particular form for a predicate: over an equivalent form. .

As an example of the use of predicate replacement, consider the expressions, taken from
PAYROLL2 (see Section 1.4}, for GROSS-PAY both before and after predicate replacement as shown
in Figure 45. Note that after the replacement, the resultant predicates are simplified.

Gregory G. Faust -85- Transtation Process

Fig. 45. Example of Predicate Replacement

Expression for GROSS-PAY before replacement:
(XCASE ((AND (EQUAL (CREAD-VAL HOURLY-WAGE-IN EMPLOYEE-NUMBER)
(CREAD-VAL HOURS-WORKED-IN EMPLOYEE- -NUMBER))
(NOT (EOFP (SEFO HOURLY-WAGE-IN))):
(NOT (EOFP (SEFO HOURS-WORKED-IN))))
(TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE)
(CREAD-VAL HOURS-WORKED-IN HOURS-WORKED))))

Expression for GROSS-PAY after replacement:
(XCASE ((AND (FILE-PRESENT HOURLY-WAGE-IN)
(FILE-PRESENT HOURS-WORKED-1IN))
(TIMES (CREAD-VAL HOURLY-WAGE - IN HOURLY-WAGE)
(CREAD-VAL HOURS- WORKED-IN HOURS NORKED))))

5.6.6 Eliminate Redundant FILE-PRESENT Predicates

The next transform ehmmates the FILE PRESEHT preducates that are redundant with the
semantics of HIBOL. The F ILE PRESENT predncates in the pred:cate of each predlcate object palr
that refer to the same file as any of the remaining CREAD VAL ob)ects m etther the preducate or ob|ect _‘
of that particular predicate-object pair are eliminated by replacmg them wnh TRUE, and then
simplifying the predicate. These predicates are redundant with.the semantics:of HIBOL because all
HIBOL expressions contain an implicit PRESENT predicate for every data-set name that appears in
the expression. All predicate-object pairs with a resultant predicate of FALSE are dropped from the
XCASE. It often happens that the resultant XCASE has only a single predicate-object pair with a
predicate of TRUE. If this occurs, the XCASE is;edugad to the object of ma.tpredlcateabgect pair.

Continuing the example from PAYROLL2 shown in Flgure 45 the expressron for GROSS
PAY at this pomt in the processmg lssnmply-

(TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE) ,
(CREAD-VAL HOURS-WORKED-IN HOURS-WORKED)).

5.6.7 Express Objects in HIBOL Syntax

Next, the object portion of each predicate-object pair as Well as those object' expressions
that are not part of XCASEs are transformed.into HIBQLsymx; Sevecal things must be done. First, all
of the arithmetic operation expressions are converted from.prefix 0 -fully parenthesized infix: form. -
Second, certain forms are converted to match the HIBOL syntax..For example; TIMES is converted to
- "*" and STRING objects are-converted into character strings. - Third, CREAD-VAL expressions are
converted into the abpropriate data-set references. If the file.referred to in the CREAD-VAL

Translation Process -86 - Gregory G. Faust

expression is opened for input then the resultant expression is simply the data-set name that
corresponds to the data field. If the file is opened for input-output, then the resultant expression is:

(LAST PERIOD'S data-set-name)

to reflect the fact that the data-set name refers to the data-set in the INPUT SECTION and not the
data-set in the OUTPUT SECTION. (See the DBINIT example in Section 1.4.)

5.6.8 Replace Remaining FILE-PRESENT Predicates with PRESENT Predicates

Next, any remaining FILE-PRESENT predicates are replaced with PRESENT predicates
acting on data-set names. If the file that the FI LE-PRESENT predicate refers to has a single data
field, then the data-set name that corresponds to that data field is used as the argument to the
PRESENT predicate. However, if the file haé more than one data field, then there is no way to
automatically determine which data-set name(s), corresponding to particular data field(s), should be
used in PRESENT predicate(s). From the perspective of the COBOL program, it does not matter
because if any of the data fields are present fora gwen index, then all of the data helds will be present
for that index. But, from the perspective of the HIBOL, all of the data f:elds for a given COBOL file
have each been glven an individual data-set name and the mformatnon that dictates that if one is
present they all are present has been lost.

On the other hand, it is usually not desirable to demand that all of the data-sets that
correspond to the original COBOL data fields for the file be included in PRESENT predicates in the
HIBOL. Therefore, the user of the SATCH system is queried to determine which of the possible
" PRESENT predicates acting on data-set names should be included. This ptocess is simplified by the
fact that the objects of the predicate-object pairs have ah'eady been ‘coriverted to HIBOL syhtax, and
therefore can be shown to the user m a more readabie form. The user is shown the HIBOL for the
object in the predlcate object pair as well as a list of the data ﬁelds for each of the files mcluded ina
FILE-PRESENT predicate, and asked to supply a list of data ﬁeld names for which PRESENT
pred|cates should be formed. These PRESENT predicates ‘are then formed and placed into the
predicates of the predicate-object pairs in place of the FILE- PRESEHT predicates which are then
simplified.

5.6.9 Express Predicates in HIBOL Syntax

The resultant predicates-are now converted into HIBOL syntax. This is very similar to the
conversion to HIBOL of the object expressions. One difference is that the logical functions AND and
OR are n-ary operators. Therefore, when they are converted imo infix notation, copies of the operator
are placed between every two operands. In addition, PRESENT predicates acting on data fields from
a file opened via COPENIO are converted into

Gregory G. Faust -87 - - Translation Process

(LAST PERIOD'S field-name PRESENT)

instead of the usual PRESENT predicate. (See the DBINIT example in Sect‘ion, 1.4).
' 5.6.10 Output Final HIBOL for COMPUTATION DIVISION

The last step in the production of the COMPUTATION DIVISION of the HIBOL program
consists of outputting the expressions into the HIBOL file. This consists of outputting an expression
for every data-set defined in the OUTPUT SECTION. The name of the out.but data-set is followed by
"I1S" and then followed by the HIBOL expression produced above. XCASEs are processed by running
through the predicate-object pairs first outputting the expression for the object and then the one for
the predicaie, inserting IF and ELSE in the appropriate p!abes. Currently, little effort has been spent
to get the indentation of conditional expressions correct, and the examples shown in Section 1.4 have
been reformatted by hand. | | ’

Translation Process Critique - 88 - Gregory G. Faust

6. Critique of the Current Implementation of the Translation Process

in the first part of this chapter, several problems that arise in the current implementation of
the translation process will be discussed, and suggestions made as to how they might be eliminated.
in the second part of this chapter, suggestions are made“as to how the tfanslaﬁon process could be‘
expanded to handle a larger domain of COBOL programs.

6.1 Problems Arising in the Current Implementation

Perhaps the most glaring problem with the current implementation of the translation process
is that it does not recognize when it has gbhe astray. It blindly assumes that the program with which it
is dealing adheres to all the implicit restrictions. If the program does not‘.adﬁere to the appropriate
assumptions, the program will still iry to produce some HIBOL vprog‘f'a"m even thougﬁ it prdbably wiil
not be correct. Obviously, a more robust system needs to recognize when it is given a COBOL
program that it cannot translate and then act accordingly. Later in this chapter, a few minor
suggestions are made as to how this problem could be somewhat reduced although not eliminated.
in the next chapter, a suggestion is made about a second generation system that would significantly
reduce this problem, if not eliminate it.

The remainder of this section discusses four more specific problem areas in the current
implementation of the translation process. For some of the problem aréas, satisfactory solutions are
proposed. For others, no satisfactory solutions have yet been determined, although partial solutions
are proposed. The first subsection discusses issues concerning the assertions formed in the
symbolic evaluation of the analyzed plan. The second subsection discusses the issue of variable
names, and how more mnemonic HIBOL code can be produced by the renaming of variables. The
third subsection discusses the problems encountered in the production of readable HIBOL code for
count 'operations. The last subsection discusses the issue of the use of output data-set names on the
right hand side of data-set definitions in the COMPUTATION DIVISION of the HIBOL code.

6.1.1 Assertions Formed During the Symbolic Evaluation

One problem with the current method used to form assertions during the symbolic evaluation
of the analyzed pian is that the assertions formed for temporal data ports are indistinguishable froni
those formed for non-temporal ports. The information that the temporal port contains a stream of
values instead of a single value is discarded. Therefore, the assertions formed for temporal data ports
are not semantically correct.

Gregory G. Faust - 89 - Transiation Process Critique

Assertions that- are semantically correct could be formed for temporal outbuts of
aUgmentations.by including in the assertian the information that the object is in fact a stream as well
as the information that indicates for which values of a predicate values in the stream are defined.
Temporal outputs from augmentations obtain their values from two different places relative to the -
augmentation function: from an output of the augmentation function or from an input to the
augmentation function. (See the generating augmentation from PAYROLL shown.rhr" Figure 27.)
These two cases have similar, but slightly different, semantics. ‘Let us éxamine these two cases in
more detail.

‘Temporal outputs that obtain their values from an output of the augméntation function
represent streams of values in which all of the values are produced the same way, via the
augmentation function. These streams have the addmonal charactensnc that they are truncated at a
point that is determined by the predicates that control the mmatlon subsegments of the temporal
composition in which they appear. Therefore, semantically correct assertions for these streams must
contain three pieces of information. First, the assertions should indicate that they do in fact referto a
stream, and not a single value. Second, they should impart the notion that all of the values in the.
stream follow the same prototype. Third, they should include a predicate that indicates. under what
circumstances the values in the stream are defined. This predicate is the conjunction of the
negations of the predicates that terminate the loop.’ »

For example, in PAYROLL, the temporal output that contams values for HOURLY WAGE is
currently given the following assertion: : p :

(CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE)
However, a more semantlcally correct assertnon might be

(FOR-ALL TRUE- OCCURREHCES-OF (NOT (EOFP (SEFO HOURLY-WAGE-IN)))

(CREAD-VAL HOURLY-WAGE ~ IN HOURLY wAGE))
The inclusion of the old object assertion within the FOR-ALL- TRUE-OCCURREHCES OF dausa
indicates that the object is in fact a stream, that all of the values in that stream follow the CREAD-VAL
prototype, and that it has defined values until the end of file is reached on HOURLY-WAGE ~ IN.

.~ Temporal outputs that obtain their values from an input to the augmentation function have . -
the same semantics as temporal outputs that obtain their values from an output of the augmentation
function except that the first value in the stream is different from the rest of ﬁe values in that it takes
its value from either the initialization of the augméntatiqn or from outside the augmentation
altogether. Therefore, a semantically correct assertion for such a temporal output might be:

((FIRST-VALUE object1) .
(FOR-ALL-TRUE-OCCURRENCES-OF predicate object2))

Transiation Process Critique , -90 - Gregory G. Faust

Such an assertion indicates that the first value of the stream is.distinct from the rest of the values of
the stream, and therefore does not follow the same prototype. For example, a semantically correct
assertion for the tempaoral output of the augmentation that performs the SUM operation in PAYROLL'
would be:

((FIRST-VALUE 0.)

(FOR-ALL-TRUE~OCCURRENCES-OF (NOT (EOFP (SEFO HOURLY-WAGE-IN)))
(SUM (TIMES (CREAD-VAL HOURLY-WAGE-IN HOURLY-WAGE) 40.))))

Semantically correct assertions could be formed for the temporal outputs of terminations by
using the forms described above. For example, the temporal output of:the termination in PAYROLL
(see Figure 28) wouid be : :

(FOR ALL TRUE OCCURRENCES-OF (NOT (EOFP (SEFO HOURLY WAGE IN)))
DUMNY)

Assertions formed for the temporal outputs of fiters need to incorporate the predicate
assertion that corresponds to the out-case of the filter predrcate ‘with whith they are assoclated as
well as the predicates discussed above. This could bé done by forming the logical AND of the filter
predicate and the one which already appears in the input temporal flow in the FOR~ALL~TRUE-
OCCURRENCES-OF clause. Using the filter example from a prévibus chapter (see Figure 29), the
temporal output for the negatwe values could be gwen the assertron
(FOR-ALL-TRUE- OCCURRENCES-OF (AND (NOT straam truncation-predicate)

(LESSP num 0.))
num) :

it should be stated that the assertron forms tor temporal outputs descnbed above are strll
stream used as mput to the termrnatron after they are TFtUE for some initial value. EOFP predicates
havethrsproparty(andareassumedtotemﬂnatealﬂoops) -

Although the assertions for temporal data ports described above would.be more semantically
correct than the ones currently formed, they would be of limited use to the translation process. The
main reason for this is that the augmentation functions that eventually Consume the temporal flows,
and in particular the augmentation Tunctions that corréspond to write functions with which we are
especially interested, only have non-temporal iputs. The temporal tiows arrive at the input temporal °
data ports of the augmentation, but are then-decomposed into individual values before being passed

1. Note that since the partial sums formed in this augmentation are not actually used anywhere, this temporat output does not
appear in the diagrams for PAYROLL shown in a previous chapter.

Gregory G. Faust ' -91- Translation Process Critique

on to the augmentation function. During this decomposition, the information that states that the
ébject is a stream would have to be stripped back off, and an assertion formed that again represents a
single value. This is because the augmentation function operates on a typical value of the input
stream. Assertions that are currently formed exactly express the typical value that is desired.

In addition, use of the more complex assertions described above would call for the
development of additional assertion simplification techniques to handle them. The number of
simplification techniques required goes up as the cross-product of the number of different object
types in the system. This fact creates a desire to limit the number of different object types as much as
possible. ' ' '

Another problem with the creation of the more complex asgsertions described above is that,
because of the order in which:subsegments of the temporal composition: are symbolically evaluated,
the predicates that terminate the loop. are not generally known-at the time. that the assertions are
formed for the temporal outputs of the generating:augmentations. Further, it is net possible to
change the order in which the subsegments are symbolically evaluated because the termination -
cannot be evaluated until something is known about the values of lts mputs which are, in general
produced within some generating augmentation. '

In- summary, it would be difﬁcuit to produce more semantically correct. assertions for
temporal data ports, their inclusion wouid cali for the deveiopment of more simplification technigues,
and they would be of limited usefulness to the translation process. Therefore, the current
implementation retains the loop termination information by storing the predicates that termiriate each
temporal composition, and associdting with -every assertion passed on to the MIBOL production
phase the name of the temporal composition in which it was formed This technique has proved' '
adequate for the COBOL: pmgrams examined to date.

Another shortcoming of the current.assertion technique is that assertions formed for file-
objects do not contain any history of the operations that have been performed on them. This"
eliminates the ability. to.detect non-standard read sequences on the file that could skip over records
or perform other forbidden operations. A more robust system would have to examine the sequence of
operations performed on file-objects fairly closely in order to guarantee that the HIBOL produced isa
correct translation of the initiat COBOL program ' '

6.1.2 Variable Names

In the previous chapter, it was mentioned that currently key field names referring to the same
key field in different files must be identical, and that structure.names are sometimes added to data
field names by the COBOL parser in order to make them unique. It is desirable to eliminate this

Translation Process Critique -92 - Gregory G. Faust

constraint on key field names and to make the names used for both data and key fields more

mnemonic.

The DATA DIVISION of a HIBOL program uses a.single name for a particular key field no
matter how many data-sets use that key field. This is not a feature that simply increases the
readability of the HIBOL, but is demanded by the semantics of the language. Currently it is easy to
produce HIBOL that conforms to this constraint as it is assumed that all key fields that refer to a
particular key are given the same name i the COBOL program.

This constraint could be eliminated by the following change to the data division query
subprocess. The key field query for the first file proceeds as always. Then, for each subsequent file,
after the key fields and sort order have been given, a list of the currently known key fields is presented
and the user is asked to make correspondences between the key fields in the current file and the key
fields in the accumulated list. ~ After all input files are processed in this manner, the sets of
corresponding key fieids are presented one at a time and the user asked 10 supply a mnemonic name -
that should be used forthat key field in the final HIBOL code.

This process demands information from the user of the SATCH system that is no different in
kind than that demanded by the current data division query. If the user is able to recognize which
fields in a given file are key fields, then it should also be possible to-recognize the same key field in
different files.

The semantics of HIBOL demand, as one might expect, that all data-set names be unique.
The exception occurs when an input and an output data-set have the same name and the HIBOL
program performs an update operation on that data-set (see the DBINIT example in Section 1.4). The
data field names given in a COBOL program, however, might not be unigue, alttmugh the data field
name together with the name of the structure that it is contained in is aMays unique. Currently, to
avoid ambiguity, the COBOL parser always produces unique identifiers for-data felds by adding the
structure name when it is necessary to do so. in general, the data field names produced from tive
COBOQOL program might not be particutarly mnemonic especldw when ‘the parse: has to add the
structure name. '

It is possible to produce a HIBOL program that is. much more readable and maintainable if the
data-set names are given mnemonic names. The later is made easier by the fact that the HIBOL
program is sufﬁciehtly abstract that each of the data-sets should correspond:to some real world .
parameter in the system that the program is an implementation of. Therefore, it may be desirable to
give the data-sets in the HIBOL program names that ditfer from the names for the data fields in the
COBOL program to which they correspond. T

Gregory G. Faust ' -93- ' Translation Process Critique

These data-set names must be supplied by the SATCH system user. The user should not be
expected to supply a data-set name without being shown a context in which that data-set will be used.
However, it is undesirable to ever show the user of the SATCH system any expressions in the syntax
of the assertions formed in the symbolic evaluation of the analyzed plan because, as is clear from the
eﬁ(amples given above, it is cumbersome and difﬁcult to read. Therelore, the best time to query the
user of the SATCH system for data-set names is after the phase of the HIBOL production subprocess
in which the expressions are converted into HIBOL syntax, but before the user is queried for the
data-set names to include in PRESENT predicates used to repiace the FILE-PRESENT predicates. -

The user would be shown one expression at a time. As each expression was presented, the
user would be asked to supply replacement names for each of the data fields that are referenced
which have not already been given a data-set name. - All .date fields that have already been given a
name by the user would appear as that new name. The process would be continued until all data
fields had been given a data:setnams. '

It is not known exactly how difficult it will be for the user of the SATCH system to recognize
the context that is presented for a given data field. Undoubtedly, this portion of the system will require '
some human engineering before the query process could proceed smoothly. 1t is hoped that, if
properly engineered, this query process will not be too difficult for the user.

It should be noted that the above discussion, as well as the current system implementation,
makes the implicit assumption that.ali the data fields in the varigus input and output files do in fact
contain different information even though their names (minus structure name) may not be unique. If
this assumption is not met by a particular COBOL program, then it is still. possible to produce correct

- HIBOL, but the renaming process will be made more difficult and the HIBOL that is produced may be
redundant in some respects. It might be better in this case t simply drop all but one of the definitions
for the data-sets that correspond to data fields that do not contain dmerent mformatlon However,
recognizing when two data fields are redundant would be quite difficult.

6.1.3 The COUNT Operation

The COUNT reduction opserator is a source of difficulty. for the current implementation. It.is
unlike any of the other reduction operators in that it does not require any dafg values as input. Thisis
reﬂécted in the analyzed plan by the fact that an augmentation that calculaies, a count will have a ‘
DUMMY temporal input (see, for example, Figore 30). All: that-controis: the ‘operation of the count -
augmentation is the predicate associated with that DUMMY temporal input. Logically, the COUNT
operation in the analyzed plan takes a predicate as an argument and not an object.

Translation Process Critique -94 - Gregory G. Faust

The semantics of HIBOL also acts as if the COUNT operator took a predicate as its argument.
The syntax of HIBOL, however, demands that the COUNT operator take a data-set as its argument.
The COUNT operator works as if it counts the number of times that the predicate:

(PRESENT data-set-name)

is TRUE.

There are two reasons why the syntax of HIBOL demands that the COUNT operator take a
data-set instead of a predicate as its argument. First, it is consistent with the syntax for the other
reduction operators. Second, and more importantly, it is very difficult, in.general, to count the number
of times an arbitrary predicate is TRUE. For example, in order to calculate the number of times the
negation of a' PRESENT predicate for &:particular data-set is TRUE; the program would have to
subtract the number of data items that actually appear for that data-set from the total number of
possible data items for that data-set. It is not obvious how the-program could calculate the total
number of possible data items for a data-set, in general. Additionally, it is fairly easy to produce
predicates that are even more difficult to handle than the negation of a PRESENT predicate.

Since a COBOL program can count up arbitrary things, it will not be possible to produce
HIBOL COUNT operators in a reasonable fashion for all possible counts appearing in COBOL
programs. Even in the cases in which the count is expreSsible in HIBOL, it is difficult to produce a
data-set name to use as the argument to the HIBOL COUNT ‘operator. Currently, the symbolic
evaluation phase uses the predicate associated with the DUMMY temporal input to the count
~ augmentation as the argument to the COUNT operator. The HIBOL production phase then attempts
to convert that predicate into a PRESENT predicate, and then use the data-set that is the argument to
the PRESENT predicate as the argument to the COUNT operation. For example, in PAYROLL, the
predicate that is associated with the DUMMY temporal input to the count augmentation is

(NOT (EOFP (SEFO HOURLY-HAGE;IN)))
This predicate easily converts to
(PRESENT HOURLY-WAGE)
using the techniqvues discussed in the previous chapter, and evehtuaﬂy produces
(COUNT OF HOURLY-WAGE) |
as the final form of the COUNT operator in HIBOL. syntax.
This technique, however, is not very robust.‘ In some instances, the predicate produced may
contain the conjunction or disjunction of several PRESENT predicates. In other cases the predicate

may contain a predicate that cannot be reduced to any PRESENT form. There are two other
processes that might be used instead of the one discussed above to determine the data-set that

Grego}y G. Faust ‘ -95- Transiation Process Critique

should be used as the argument to a COUNT operator, although neither of them are very appealing.

First, itis possible to make an assertion for the in-case of each segment of the analyzed plan
which indicates its control environment.? Then, when an augmentation is located during the symbolic
evaluation which performs a count operation, the predicate that controls the count could be
compared to the control environment of all the other augmentations with the hopes that it will find one
with the same truth value. Then, if that augmentation has any output that already corresponds to a
data-set, then that data-set could be used as the argument to the HIBOL COUNT operator.

This technique has two shortcomings. First, it is difficult in general to tell when two
predicates have the same truth value unless their surface syntax happens to be identical. This is
inade easier by the fact that the simplification techniques that are used tend to canonicalize the
predicate expresstons ‘but this alone is not sufﬂclent to insure that prédicates with the same truth
value will be recognized as such. ‘Second, even if a controi environmem is found that does match the
controlling predicate of the count, the data-set that is produced by that augmentation might have no
conceptual connection with the count operation whatsoever. The use of that data-set name as the
argument to the COUNT operation might, therefore, be highly aon-mnemonic, ﬂmough- at jeast it will
be a data-set name that already appears in the HIBOL program.

A second possible technique is to simply build a dummy data-set, defined in the VARIABLE
SECTION of the HIBOL program, that can be used as the argumem to the COUNT operator. The
express:on for this dummy data-set that would appear in the COMPUTATION DIVISION as a
conditional with a single clause in which the predicate is exactly the one that controlled the count

augmentation in the analyzed plan; and the object ismsemedumw constant.

This techmque has the advantage that n wm work whenever rt is posslble to produce a H!BOL
COUNT expression at all because it is. always poss;ble in those circumstances to produce the needed
conditional expression in HIBOL. It has the disadvantage that it mtroduces a data-set name that is
alien to the original program for which the. SATCH system user. will not be.able to supply a mnemonic
name because it has no real world analogue.. Algo. the canditional. expression for this newly
introduced data-set contains an arbitrary constant that -also has. no real world significance.
Alternately, the conditional expression could be used. directly. as the- argument to the COUNT
operator. This eliminates the necessity for the extra. data-set name, .but does. not eliminate the
arbitrary constant. . Also, the resultant data-set.definitien for. the CQUINT would appear needlessly
complex. Either way, the HIBOL code produced using this technique may look rather stilted to a

2. This is a possible change to the current system that has certain advantages independent of the problem with COUNT
operations.

Translation Process Critique -96 - Gregory G. Faust

human reader.

In summary, there is no single technique for producing COUNT expressions that is
satisfactory in all cases. Perhaps the best approach to this problem is to.use the three techniques
described above in order, first trying the technique that is- most specific but which produces the most
mnemonic HIBOL code, and going to ingreasingly general technigues that produce less and less
mnemonic code as the more specific techniques fail. In this way, the best possible code will always
be produced, although the average cost of producing HIBOL-code for COUNT operators will be
substantially increased. '

6.1.4 Subexpression Aliasing

It is often desirable to define output c_lata,-sets in terms of other output data-sets. This can
simplify the definition and increase its readability. For example, the definition of TOTAL-GROSS-PAY
in the HIBOL program for the PAYROLL example (see Section 1.4), without the use of other output
data-sets is:

TOTAL-GROSS-PAY IS SUM: OF (HOURLY-WAGE * 40.)
Through the use of output data-sets in this definition, it can be simplified to:
TOTAL-GROSS-PAY IS SUM OF GROSS-PAY

The second expression is both simpler and more mnemonic. Both expresseon are totally valid HIBOL
expressions for the same computation. The dnﬁerence is strlcﬂy one of style

Unfortunately, it is difficult to use output data-sets-in the definition of other output data-sets.
The difficulty lies in the recognition of those cases where lt is possible and/or des:rable to do 0.
Several techniques have been tried to date, none of which was found acceptable After a few of jhese
have been discussed, a new but untried solutlon wﬂl be presemod o

One possibie solution to this problem is to use the-output data field names corresponding to
the desired output data-sst names in the assertions formed in the symbolfi¢ evaluation of the analyzed
plan whenever possible. The analyzed plan for a program contains information that indicates at
which points in the program assignment of values-to data fieids takes place. Therefore, every time an
assertion is made, it is possible to replace any subexpression of thit assertion with a data field name if
that data field has been assigned the value of that subsxpression. Then, in the HIBOL production
phase, it is simple to form definitions for output data-sets in terms of other output data-sets because
the assertions for data fields will aiready be expressed in terms of other output data fields.

Gregory G. Faust ' -97- Translation Proces's Critique

. However, there are two problems with this technique. First, there is the trivial problem that
‘many data-sets will end up being defined as themselves. For exampie, the HIBOL expression for
GROSS-PAY in the example above will be

GROSS-PAY IS GROSS-PAY

This can be eliminated by a special check in the symbolic evaluation phase to see that this does not
occur, but the check is messy and not very elegant. A second and more difﬁcult problem is that there

is no guarantee that after a data field is used to define another data field it is not assigned a different

value before it is written. If such redefinition does occur, then ene data-set will:end tp defined in

terms of some data-set name that no longer corresponds to the same subexpression that it replaced.
Elimination of this problem would be quite difficult.

Another possible technigue is to keep a global assocnatson list between subexpressions and
data field names. This list would be complled during’ the symbollc evaluetlon of the analyzed plan.
Each time an assignment point is reached in the analyzed plan, an entfy is made in the table Then, in
the HIBOL production phase, the expressions are scanned for any subexpresslons for which there is
an entry in the association list, and if one is found, it is replaced with the correspondmg data field
name.

This technigue makes it easy to eliminate the problems clted for the other technique above,
but it mtroduces new problems of its own. First, a subexpw&lon that could have been replaced with
a data fiefd name while in the symbollc evaluation phasemay not still be in’ lts ongmal form by the time
the expression makes it to the HIBOL production phase, because it has been’ modlf'ed by one ol the
snmpliﬁcatlon transtorms discussed iri Chapter 5. Therelore a‘lthough it would have been deslrable to
replace a given stibexpression, it no longer appears verbatlin and can no longer be found Second it
is now possible to find subexpressions that do match expfesslons in the association Tist that it is not
desirable to replace with the corresponding data fisld name ‘bocause the expression In which it is
fotind conceptually has nothing to do with that data ﬁeld narne and the resultiint code would not be
mnemonic at all.’

A third technique that has not as yet been tried is to samply check all data-set definitions
against one another just before the final HlBOl. expressions are written into the COMPUTAT!ON
DIVISION looking for matchmg expresslons As compared to the technlque described above, this
technique reduces the chance that a subexpressior that should be mplaced by d data-set name will
be missed, but still has the problent that certain subexpresslons may be replaced by data-set names
to which they do not conceptually correspond. A second” problem ‘is that the search for matching
expression is quite expensive.

Translation Process Critique -98 - Gregory G. Faust

In summary, although it would be nice to be able to produce HIBOL in which some output
data-sets are defined in terms of other output data-sets, until and unless some technique for doing so
is developed that is better than any of the techniques discussed above it is probably not worth the
trouble. The current implementation of the translation process expresses all cutput data-set
definitions in terms of input data-sets only.

6.2 Possible Extensions -

This section contains a discussion of two possible extensions to the current domain of
applicability of the translation process; indexed file access and formatted output reports.

6.2.1 Indexed File Access

One construct that is often used in COBOL programs that cannot currently be transiated into
HIBOL is the use of indexed data files. Indexed files can be accessed in either sequential or random
order. Both of these usages can be translated into HIBOL fairly easily as long as the COBOL program
in which they appear still falls into one of the three basic catégories of progfams that the translation
procéss is currently designed to handle.

The most significant difference between the translation of COBOL programs that access an
indexed file and those that don’t is that the predicates that are,produo.ed in the symbolic evaiuation of
the analyzed plan will contain INVALID-KEYP predicates as subex@essions when the indexed file is
accessed randomly. Recall that the INVALID-KEYP predicate is TRUE if the record associated with
the NOMINAL KEY requested by the random read does not’oppear in the file. The INVALID-KEYP
concept in COBOL very closely corresponds to the HIBOL congept of a data value not appearmg in
the actual key space for a particular data-set. Therefore, the INVALID KEYP predncates are handled
by simply replacing them with the negation of FILE PRESENT pred»cates in the HIBOL production
phase as is currently done with EOFP predicates, and ;he remainder of the translation process
continues as always. The accessing of indexed files in sequential order should require only the most
trivial changes (if any) to the translation process.

Translation into HIBOL of COBOL. programs that include the random access of an indexed
file that does not contribute to the main read loop of the program is made trivial by the change given
above. This construct will most often arise in programs that access library files that contain certain
additional pleces of information. For example, a program that processes payroll, in addition to
calculating GROSS-PAY, may need to access the employee name that corresponds to a given
employee-number. The employee names might be kept in a library file mdexed by employee -number.
The INVALID-KEYP predicates that result from the accessing of the library file would be handled as
described above, and the translation of such a program should proceed smoothly. This is an example

Gregory G. Faust -99 - Translation Process Critique

of a construct that can be added to a COBOL program without changing the basic structure of the
program and therefore could be incorparated into programs of any of the three basic types without
affecting the basic ¢ategory into which the program falls. A

There are two additioﬁél COBOL program scenarios that involve indexed files which do
-appear in the main read loop of the program (and !hefdcre do affeet the basic structure of the
program) that could be translated into HIBOL it the simple change described above were
incorporated into the translation process. The first of these involves the random accessing of an
indexed file combined with sequential access of a normal sequential file. The second involves the
random accessing of an indexed file combined with sequential access of an indexed file. Both of
these constructs can only be incorporated into programs which perform intersections and have the
effect that a progrem-into- which one of them is incorporated can now-be viewed as a program which
uses only a single data file ta drive the.computation instead of two {or more) as is usually the case in a
program which performs -an intersection. - Therefore, two programs which perform the same
computation, one of which:uses only sequential files and the other.of which fails into one of the above
scenarios, have a different basic structure and do not fal! into the same hasic program category.

In the first possible scenario, two main data base files contribute data field values to the same
computation as discussed in the preyious chapter except that.ene of the files is an indexed file that is .
randomly accessed. In this scenario, the program loops through thé sequential file. For each record
in-that file, it performs-a random read.on the indexed file using the key field values obtained from the
record read in:-the sequential, file. as the NOMINAL KEY for: the random access read. For example,
consider-the COBOL code fragment for.a modilied version of PAYROLL. shown in Figure 46. In this
exampie, HOURS-WORKED.-IN bis a sequential file, while HOURLY-WAGE-iN is an.indexed file that is.
" randomly accessed. Note that the figure does not contain the components of the DATA DIVISION that
are required to specify that: HOURLY-WAGE-IN-is an and’meﬁth houﬂy wage-key acting as the
NOMINAL KEY. :

Fig. 46. CQBOL Fragment with One Sequential and One.indexed File

mainline SECTION.
READ hours-worked-in AT END GO TO end-of-job.
MOVE employee-number OF hours-worked-rec TO hourly-wage-key.
_READ hourly-wage-in INVALID KEY GO TO maijnline, '
MULTIPEY hourly-wage BY hours-worked GIVING gross pay
MOVE ‘employee~numbér OF hoars~worked~reec . . :
. _T0 employee-number. OF gross-pay-rec..
WRITE gross-pay-rec.
- GO TO mainline..
end- of Job SECTION.

Transiation Process Critique - 100 - Gregory G. Faust

Fig. 47. COBOL Fragment with Two indexed Files

mainline SECTION.
READ hours-worked-in NEXT RECORD AT END GO TO end-of-job.
MOVE employee-number OF hours-worked-rec TO hourly-wage-key.
READ hourly-wage-in INVALID KEY GO 70 mainline.
MULTIPLY hourly-wage BY hours-worked GIVING gross*ﬁay
MOVE employee-number OF hours-warked-rec. -
TO employee-number OF gross-pay-rec.
WRITE gross-pay-rec.
GO TO mainline.
end-of-job SECTION.

The second possible scenario is aimost identical to the first scenario except that both files
are indexed files, although one of them is read sequentially. -COBOL provides:for the sequential
access of indexed files through the use of ithe NEXT:RECORD ‘clauge in.the READ statement (see
[22]). The other file is read in random order, using the key fisid:values from the record read in the first
file as the NOMINAL KEY for the random read. For exampie, see the: COBOL code fragment shown in -
Figure 47. Again note that the figure does not contain the components of the DATA DIVISION that are
required to specify that HOURLY-WAGE-IN is an indexed fit with hourly-wage key acting as the
NOMINAL KEY and that HOURS-WORKED-IN is an indexeﬂ file mat w‘iﬂ be accessed sequentially.

it is important to note that in both of these: two scensrios, although two input files are
contributing data values to the same computation, the two files need: not be sorted in the same order.
These are probably the two cases in which mwmmmmed in thepmvmuscmpter
can be most easily eliminated. i

In summary, the important point:that makes. posaibie the transiation of COBOL programs that .
incorporate indexed access reads that are randomly accessed is that the INVALID-KEYP predicates
are replaced with the negation of FILE-PRESENT predicates. As long as the NOMINAL KEYs that are
used to access an indexed file are generated in a fashion that allow the program to be classified as
one of the three allowable types, and all:of the other agsimiptions about thé COBOL progrdm aré'met;
the inclusion of indexed files in a COBOL program should pose no significant problems to the
translation process.

. An interesting by-product of the use of an indexed file in a COBOL. pgogramls that the
COBOL programmer must specify the key ﬁelds fdrs!hatt ﬁh@infﬁﬁe%ﬁﬂiki BM&@N@ -The translation
process can make use of this information to avoid the necessity of askmgmé’SATCHsysge:g user for
the key fields or sort order for that file, reducing the length of the data dlvasm weryfsubpracess

Gregory G. Faust - 101 - ' Translation Process Critique

6.2.2 Formatted Output Reports

COBOL programs. that produce formatted output reports differ_from the COBOL programs
considered so far in two important ways. First, it is most often the case that the preduction of the
formatted report will call for CWRITE ‘operations in ‘Several different places in the program (or
analyzed plan for the program) all acting on the same file-object; whilé & data-file is usually produced
with one or at'‘most a few different CWRITE operations in-the prograny {alt 'of which are executed in
mutually extlusive control environments). Second; in addition 1o the usual computation to derive the
values of the data fields in the formatted report, there-will-also be computstion used solely to control
spacing, page ejects, choice of literal strings, etc.

Because of these differences, it will no longer ‘be sufficient to-symbolically evaluate the
analyzed plan and then simply pass on the assertions for data fiows used ‘as arguments:to CWRITE
operations to the HIBOL production phase. The symbolic ‘évafuation oan proceed as siways, but a

.second pass over the analyzed plan will have to be made in which the pattern of CWRITES performed
on a given file-object is examined. The different portions of the pattern 6f CWRITES that are found
will contribute to different compohe‘nts of the HIBOL formatted rébdff' fea!ure "

in HIBOL, a formatted report is broken -down into several components, such as report
headings, report footings, page headings, page footings; typical-tines; etc. (See [30] or [18] for & '
discussion of the HIBOL document facility.) A typical-pattern:of CWRITE for a formatted report might
be broken into these components as foliows. Report headings and footings would appear as a series
of CWRITEs that occur outside of the main loop of the program, with headings coming before and
footings after the temporal composition that represents that loop. The main CREAD loop that drives
the entire computation may appear nested within a second loop that counts up to fifty (or some similar
constant) in order to control page ejects. Page headings and footings would appear as a series of
CWRITEs within the temporal composition that represents the page eject loop, but not within the
nested CREAD temporal composition. The CWRITE that produces the typical line would then appear
within the nested loop.

The second pass over the analyzed plan would have to keep track of its current location in
the analyzed plan relative to the main temporal compositions. Then, when a CWRITE is located, this
information would be used to determine which component of the report the output of the CWRITE '
should be relegated to.” The assertions about the input data ports to the CWRITESs, formed during the
first pass, are used as always to determine the nature of the data values output by each CWRITE.
After the second pass is complete, the overall pattern of the CWRITEs, and therefore of the report,
can be determined.

Translation Process Critique - 102 - Gregory G. Faust

This entire process should be simplified by the fact that there probably are not very many
different overall patterns that need to be recognized; perhaps at most a few dozen or so. The exact
number needed is not now known, but can be empirically determined through further research.

The translation of COBOL programs that produce formatted reports also calls for a simplifier
for expressions that contain combinations of SUBSTRING and CONCATENATE operations acting on
STRING objects. These expressions will arise in the program for the control of spacing and choice of
literal strings. The simplifier would reduce such expressions into literal constants whenever possible.
Such a simplifier should not be difficult to produce. '

As the final step in the translation of COBOL progran{s that produce formatted reports, the
HIBOL syntax for the DOCUMENT SECTION of the DATA DIVISION would have to be produced. This
syntax is somewhat elaborate, but should not be overly difficult to produce once the pattern of the
reports is known and the expressions for the string operations have been simplified.

In summary, although the translation of COBOL programs that produce formatted output
reports into HIBOL requires more elaborate‘processing, of the analyzed plan, additional simplification
techniques, and a more elaborate HIBOL producﬁdn phase, itis noi beyond the reaches of current
technology. None of the new features of the translation process described above should be overly
difficult to produce. Thus, this increase in the domain of applicability of COBOL. to HIBOL translation
could be achieved through a moderate engineering effort.

Gregory G. Faust - 103 - SATCH System Critique

7. Critique of the SATCH System

In the previous chapter, several features of the current rmptementatnon of the translation
process were discussed, and suggestions made as to how the translatron process could be modlfred
to improve its performance in this chapter, the current mplementatron of the entrre SATCH system is
discussed, with some suggestions as to how the system portormance (:,oyld be rmproved by making
changes at this more global level.

7.1 Semiautomatic versus Automatic Translation

Although the word "semiautomatic" 'appears in the title of this thesis, the current
implementation of the SATCH system essentially performs the automatrc translatlon of COBOL
programs into HIBOL. Of the three major components in the system, the COBOL parser, the plan'
analyzer, and the transiation process, only the translatron process utilrzes any human mput -

The translation process utilizes human input in two places. First, the key*ﬁetds for the files
manipulated by the COBOL programs must be specified. ‘Altidugh the SATCH user is currently asked
to supply this information for every COBOL program that is transiated; the Key felds for the data fites -
remain constant throughout an entire data processing systemi. Therélore, the SATCH system could
. be changed so that the key field information for a data processing system is input only once, and then -
used in the transiation of all the COBOL programs-in that’ system “This would srgmfncaﬂﬂy reduce the
amount of human input required by the system

The second form of human input is utilized in the HIBOL production phage of the transiation .
process to specify which data field(s) in a file should be used to repince FiLE-PRESENT predicates -
with. PRESENT predicates. This information, however, is .only: needed to:increase the readability of
the resultant HIBOL program, and is not required to insure the correct semantics of the HIBOL
program. Therefore, it would be possible to eliminate this input without aftecttng the correctness of
the transtatton T ‘ ’

Therefore, the human input required by the system to_translate the-current domain of COBOL
programs is minimal. The expansion of the domain, howevsr, might call for-an:increase.in the-amount
of human intervention as discussed below,

7.2 _Usi_ng Analyzed Plans

Given that the task at hand is to translate a process described in one language (COBOL), mto
the same process described in a more abstract tanguage (HIBOL), the abstractron process is of the
utmost importance. Currently, most of the abstractron is performed by the component of the SATCH
system that produces the analyzed plan. This component uses general methods to abstract away the

SATCH System Critique -104 - Gregory G. Faust

details of implementation in the source language (in this case, COBOL). The component of the
system that translates the analyzed plans into HIBOL does a certain amount of abstraction, however it
uses special case techniques that are specifically designed around the features of the target
language (l-llBOL). The breakdown of the abstraction process into these two components raises a
key question; Are the general method abstractions that are made in the analysis of plans useful for the
translation of COBOL programs into HIBOL, or would it be better to apply special case abstraction
techniques right from the beginning?

The answer is that the abstractions contained in an analyzed plan are exactly those that are
needed for the transiation of COBOL programs into HIBOL. In general, programs can be abstracted
in several different ways producing program representations containing very different types of objects
and operatlons on those objects. For example, a program can be broken down mto subprograms that
each perform a specific task as lS done in FORTRAN [19] and Pl./1 [33] Orit can be broken down in
terms of increasingly abstract data oblects and operatrons defmed to operate on those objects as is
done in Alphard.[35], SMALLTALK [1 3], and CLU [15]. .Or it can be broken down into independently
acting agents that wait to be activated depending on the current environment as is done in
CONNIVER [20] and PLASMA[10]. Finally, it can be broken down into data flows and operators that .
act on values carried by those flows as is done in VAL [1] and HIBOL. Analyzed plans also express
programs using this last paradigm. Therefore, a program expressed as an analyzed plan is broken
down into the same abstract components as a program expressed in HIBOL. This does not mean that
any program that can be expressed as an analyzed plan can be.expressed in HIBOL, but it does mean
that for those programs that can be expressed in HIBOL the analyzed plan representation of that

~ program more closely corresponds to the HIBOL représentation.than could any representation which

is'based on one of the other dhstraction techniques. This makes the abstraction of a COBOL

program into an analyzed plan a very provocative first step in the translation of that program into

HIBOL.

In spite of the fact that an analyzed plan is ideally suited to the transiation of COBOL
programs into HIBOL for the reason stated above, the usevof analyzed plans in this process has
certain drawbacks. First, an analyzed plan is: an- unwieldy representation of a program from the
standpoint of human interaction. It was designed to make it easier for a computer program to
understand another program, not to make it easier for a“person: to understand that program.
Therefore, should. it become necessary or desirable to involve a human in the portion of the
translation process that involves the analyzed plan, the plan itself would be a particularly poor chmce |
for the vehicle of discourse between the human and the _program. Either the analyzed plan would
have to be temporanly translated into some form that the human can interact with, or the possibility of
human mteractron in that portlon of the translation process would most lrkely have to be abandoned.
Of lesser lmportance. the fact that the analyzed plan representatlon is unwieldy increases the

Gregory G. Faust - 105 - SATCH System Critique

difficulty of debugging the portion of the translation process that interacts with it.

A second shortcoming of the use of analyzed plans in the translation of COBOL programs
into HIBOl_. is that the program that produces the analyzed plan from the surface plan does not
currently incorporate enough knowledge about the interaiction of input/sutput operations with the
data flows that represent file-objects.: The original test bed for ariglyzed plans was the FORTRAN'
Scientific Subroutine Package. These subroutines, i general, perform numerical analysis operations
on matrices and other data objects, but do not perform any input/obtput operations: Therefore,
sufficient knowledge about such operations was never incofporated into the analysis process. This
shortcoming has led to the production of analyzed plans, in-both the DBINIT -and PAYROLL2
examples, containing temporal compositions with a single generating augmentation, which contains
essentially all of the computation performed by the program, and a single termination as their only two
subssgments. Such analyzed plans dre more difficult to- work'‘with than onés in which there are
several generating and/or sonsuming-augmentations each of which performs a simpler function. The
analysis process could be ‘modified to intorporate the ‘necessary kivowledge with @' (hopefuily)
moderate amount of effort.

Notwithstanding the shortcomings of analyzed plans cited above, the transtation of COBOL
programs into HIBOL would be much more difticult, if not rmpesaibie ‘without the use of them or soine
similar program irepresentation. The current implementation of ‘the Warsiation process relies upon
them implicitly and could notbe neasonebly modmed’te MMM%W@G -

7.3 Fulure Dlrection for the Translatlon Process

The current unplamonmon of the \—tranalatiwmm was-designed with the subset of
CQBOL programs that it currently can transiate in-mind. . Expension of the transladion process 1o
operate.on & larger domain of COBOL. pragrams; axcept in.those-ceses:eited in the previous chapter,
might be very difficuit. . The purpese of this thesia was.to-ghow-the. feaeibility-of the. franslation of
COBOL into HIBOL, not to present a final solution to the problem. The next attempt to build a COBOL
to HIBOL translator should replace’ the cuffent implementiition of the transiation: process with one
that incorporates the work: curréntly being done'by Rich and'Brotsiy &FMIT. The remainder of this -
secﬁmdescﬂbeshowmahmplumﬁtaﬂmtsfﬂwebm&nmmmm - ;

Charlesﬂich. mhsPthmhwW&m dmmacﬂm&mlyzedm
by recognizing standard program-cliches within them. He calis.such Wm“ﬁm recognition by -
inspection"’. - The. process proceeds -as-follows. - First,: the . anelyzed: plan is converted into another
representation called the "plan calculus”. This process.is relatively-simple. The plan calculus is a-
way of expressing & program:in a hierarchical structure-identical to snalyzed. plans except that the
primitive elements in the calculus are essentially propositigns in first-order predicate calculys, The.

SATCH System Critique - 106 - Gregory G. Faust -

plan is converted into this representation to aid in the recognition of the plan cliches and facilitate
logical reasoning about the plan.

After the plan is transiated into the plan calculus, the recognition process attempts to match
structures in the plan for the program with precompiled patterns taken from a plan library. The plan
library contains cliches for both common computatiqna_l abstractions and common data.abstractions.
A key feature of the matching process is that a given fragment of the plan can simultaneously be used
to fill roles in several different library cliches. This allows the program to be examined from multiple
viewpoints. A key feature of the plan library itself is that the plan cliches are built into a taxonomy so
that certain cliches can be viewed as extensions of other cliches or as specializations of more general
cliches with added specifications. Another key feature of the plan library is that there are names
associated with all of the cdmputation.md'data abstractiens.. . Thersfore, a system using this plan
recognition scheme can converse with a human using the.same vocabulary that is used in everyday
conversations among expert programmers. Finally, it is:intended-that the plan cliches that appear in
the library could be used equally easily for program analysis or program synthesis.

As part of his PhD research, Rich designed the plan calculus and the taxonomy for library
cliches, and constructed a sample library containing a couple hundred entries. Currently, a joint
effort is underway by Rich and Brotsky to implement a program to convert analyzed plans into the
plan caiculus. They are also putiing the plan library into an.on-line data base. Brotsky, as part of his
Master's research, .intends to design and implement a. program.that will automatically recognize
instances of library cliches in a program represented in the plan calculus.

When the programs described above are implemented, the translation process of analyzed
plans into HIBOL can be rewritten to take advantage ofthem. In the sitnpiest view of this scheme, all
that would be required is that the plan Hbrary be expanded to incliide the cliches that appear in
COBOL programs which closely correspond to HIBOL constructs. - Then, once the cliches are
recognized, it would be a fairly trivial process to convert themirito HIBOL syntax.

This scheme has several advantages over the current-technique.usad in the translation
process. First, instead of having all the special case knowledge needed for tbertrdnalation embedded .
within LISP code, that knowledge would .be contained within the plan library. This makes the
knowledge much more accessible, and far easier to extend and modify. Second, it is hoped that this
scheme could capture more pertinent kniowledge and thetefore provide for-the translation of a much
larger scope of COBOL programs. This was foreshadowed in the earlier discussion of a possible
extension to the current translation process that would allow programs that produce formatted output
reports to be translated. The second pass over the analyzed plan that was described'in that
discussion can be viewed as an intermediate point betweean the current techniquée and the one
described in this section. A third advantage of this'scheme:is that the knowledge gained during its

Gregory G. Faust - 107 - SATCH System Critique

implementation could be applied to the translation of other procedural languages into other higher
level languages, with the implementation of these translation systems requiring a relatively minor
amount of additional effort. For example, it might be. possible to apply such techmques to the
translation of a certain subset of FORTRAN programs into APL {24).

Unfortunately, it is doubtful that it will be possible 'to transiate COBOL programs into HIBOL
smg just the simple scheme outlined above Flrst it JS doubtful that the ~component of the system
that is responsible for the recogmtlon ol plan clrches in the plan calculus could successfully operate
on a plan calculus representation produced from an analyzed plan in which almost all of the
computation of the program is contained within a single augmentation. Such analyzed plans were
mentioned in the previous section. The analysis- process would have to be extended to_ produce
better analyzed plans for programs that perform input/output operations on file-objects before this
scheme would be possible. As stated betore, this extension of the analysis process should not be
overly difficult. ’

_ Even if the analysis process were.so extended, it is doubtful that the recognition process
would ever recognize all of a plan in terms of known cliches for anything other than the most trivial
programs. Therelore, this system wouid probably call .lor.,human, asslstance for part-of the recognition
process. Unfortunately, the plan calculus is no better suited as. a vehicle of discourse with humans
than. the analyzed plan representation. An interface would have to be built to intercede between the
recognition process and the human user. The construction of guch an interface is made easier by the
lactthatthechchesmthellbraryhavenamesaesoclqtodmhmemmatcanbeusedmthe
man/machine dialogue. A program synthesis system curreatly being worked on by Rich and Waters
requires a similar interface. The interface routine developed as part of that project could conceivably
be modified-and transported to the COBOL to HIBOL translation process.

_~ In summary, the possibility of applying the method of plan recognition by inspection to-the
translation of COBOL. programs to HIBOL is a provocative pne. Although it-posss some problems that ..
need 1o be overcome, it offers promise for the production of a system.with- much greater performance
than the current system. Such a system might well incorporate both a symbolic evaluation of the

analyzed plan, similar to the one used in the current system, as well as the recognition of plah cliches.

7.4 Translation of HIBOL inte.COBOL

Although the predommant motwatlon for thns thesrs ls to show the feasrblllty of translating
COBOL programs into HIBOL, lt is necessary to menhon the possibility of the translatlon of HlBOL‘
programs back into COBOL in order to impart an overall perspectlve

SATCH System Critique - 108 - Gregory G. Faust

PROTOSYSTEM | [27] is an automatic programming system, developed by the Automatic
Programming Group at MIT, which can translate HIBOL programs:into compilable PL/1 code and the
corresponding IBM JCL needed to run the resultant programs. in general, the only assumptions
made by the system about the target language is that it is some high level procedural language that
supports input/output operations to sequential and indexed data files. The exception is the final
component of the system which produces the actua'l‘ﬁi_‘h syntax for the computatron All that is
required to allow the system to produce COBOL programs s to repiace the PL/ 1 syntax generator
with a COBOL syntax generator. A syntax generator for COBOL sh0uld not be overly difficult to

produce.

As stated in Chapter 1, there are some- problems with- the unconstrained use of
PROTOSYSTEM ! to produce COBOL programs frofh FIBOL. ‘To-understand the problems and how
they can be circumvented, a slightly more detalled view of PROTOSYSTEM | is needed.

-A primary design goal of PROTOSYSTEM | was the ability to produce highly efficient code
from a HIBOL program. To accomplish this end, PROTOSYSTEM 1 is broken into two major
components. The-first of these, the "desiqn' optimizer™, is responsible for determining the desired
"data aggregation” and "computdtion dggregation® for the application. The data aggregation
specifies which data-sets should be groupd togethier in the sdme ‘file; and what type of files there
should be (indexed or sequential). The computalron -aggregation speciiies which operations on‘the
data files should be grouped together in the same program. “The second major component of the
system, the “code optimizer”, uses the oufput of thé*desrgn oﬁtrﬁiter and determines the desired
implementation of the programs themselves. B w ‘

The design optimizer represents the portion of the system that does.most of what is usually
called automatic programming. The code optimizer performs a more well understood function; one
strongly resembling that of an optimizing compiler. Upon completionof the PROTOSYSTEM |
project, there remained Certain research idsues with respect to the ‘désidn optimizer that were not
completely resoived. The codé optimizes marm““ eloped produiced PL/1 code with very good
run-time characteristics. B R -

Within the context of the use of PROTOSYSTEM | as a component of the SAICH system, itis
highly desirable to produce a single COBOL. program for a sifigle- HIBOL program, and the COBOL
program should operate on the same data files that were used by the ongmal COBOL program from
which the HIBOL was produced Therefore, the design opiimizer componem of ﬁROTOSYSTEM lis
not required, since the data and computatron aggregaﬁon usad by ’the code optlmrzer should be
exactly those specified in the original COBOL program. " This constrained use of PROTOSYSTEM 1,
within the context of the SATCH system, should result in output COBOL programs that are highly
run-time efficient.

Gregory G. Faust -109 - Plan Primitives
Appendix | - Plan Primitives for COBOL Programs

in this appendix, all of the primitive functions that can appear in a plan that is produced from
a COBOL program are explained along with the number and type of ‘t{heir"arél:ments. Most of these
primitive functions perform standard operations that commonly "appéark i'n any programming
formalism. These:standard functions are included here for:completeness. - The remainder of the
functions perform operations that are much less standard. Particular attention’ will be given to the
latter.

Each of these functions can be viewed as a black box, with a number of explicit inputs and
outputs where the outputs are related tothe inputs via the functioa given.. They should not be thought
to return a value in the usual LISP sense, but rather to produce a value that is carried from the
function via explicit data flow. Also, Some of the funcﬁons mayﬁroduce mare ‘than one value as a
result .of their operation. In addition, certain of the functtons that pefform operatlons on file objects
cause side effects. This will be discussed in greater detail below.- For these reasons, these.primitives
are not actually functions in the usual sense.

1.1. Boolean ,Primltives

Each of the following funcnons resutt in the ptoducnon of a smgle bst boolean. The mput
arguments are of various types.

AND: Binary operator that performs the standard logical AND. Both arguments
are booleans.

EOFP: Takes a file object as input and produces TRUE if the next CREAD of the
file will produce an end of file condition, and FALSE otherwrse The
fite object #tsetf is unaumby Oaic tost. : '

EQUAL: Binary operator that performs the standard EQUAL funcnon The mput
arguments can be either both numbefs or both slnngs When the
arguments. are strmgs, a standard conatmg sequence i used ' '

GREATERP: Binary operator that performs th# “standard GREATER-THAN
function. The input arguments can be either both numbers or both
strings. When the ‘arguments™ aré ‘&trings, & standard” collating
~ sequence is used.

INVALID-KEYP: Takes a file object as mput and produces TRUE if the next
'CREAD of the. ﬁle will prbduce an invaﬁd key cohdmon and FALSE
otherwise. The file object itself is undltered by this fest. This is used
with indexed files only.

Plan Primitives -110 - Gregory G. Faust

LESSP: Binary operator that performs the standard LESS-THAN function. The
input arguments can be either both numbers or both strings. When
the arguments are strings, a standard collating sequence is used.

NOT:. Unary operator that performs the standard !c}gical NOT Th‘e input argument
is a boolean. o '

OR: Binary operator that performs the standard logical QR. Both arguments are

booleans.

1.2. Arithmetic Primitives
All arguments to and results from the following functions are numbers.

DIFFERENCE: Binary operator that produc% the result of subtractmg the second-
argument from the first.

MINUS: Standard unary minus operation.

PLUS: Binary operator that produces the sum of twb nhmbers;

REMAINDER: Binary operator that produces the remainder after dividing the first
argument by the second argument an integer number of times. In
other words, it produces the first argument MODULO the second

argument.

TIMES: Binary operator that produces the rasult of multiplying the two arguments.

1.3. String Operators

_ Each of the following functions result in the.production of a string. In this system, a string is
a special object type formed by an invocation of STRING. The input ar_guments are of varying types. '

CONCATENATE Binary operator that produces a stnng formed by immediately
following the value of the first argument with the value of the second
argument. Both arguments are stnpqs. ‘

STRING: Unary operator that forms a string object from a sequence of characters.

SUBSTRING: Takes three arguments and produces a string. The first argument
is the string from which the substring will be taken. The second and
third arguments specify the ﬁrst ‘and last characters of the flrst
argument to be mcluded in the resultant substrmg, respectively.

Gregory G. Faust -111- Plan Primitives

1.4. File Operators

All of the following functions take a file object as their first argument. The file object shouid
be looked upon as a pointer into a file of data records. The pointer contains information about the
next record to be accessed (if any) as well as certain status jnformation about the file. Some of the
following fum:hons update the file object as a resuit of therr operation. - This i is done by merely having
an output data flow produced that i IS different than the mcommg data ﬂow for the file object. This is
analogous to the way in which all other data values are handied wuthm .a plan. '

in addition, however, the file that is pointed to by the file object may be side effected by the
operation of the function. For example, the CREWRITE function will destroy information stored in a
particular record of a file and replace it with new information. The file is permanently altered by this
operation, and the okt version of the file is no longer available. These are the only functions
produced from a OOBOL program that can cause side- aftects. 1t is c&eaﬂy stated in the following
function descnptnons exactly which functions cause side effecta.

CCLOSE: Takes a file object as its only argument and produces an updated file
object. In addition, the file is side efiected: such that.it can no longer
be accessed via any file- eperatbr except one of .the {aﬂowing OPEN
functiens. ,

COPENI: Takes a file object as its only argument asnd:produﬁesﬂm updated file
object. In addition, the file is side effected such that it can now be
accessed by CREAD. That.is; the file is apened for input only. The file
-object is set to point to-just before the position of the-first record.

COPENIO: Takes a file object as its only argument and produces an updated file
object. In addition, the file is side effected such that.it.can now be
-accessed by CREAD and CREWRITE. Thet is, the file is_ opened for
input/output access. The file object is set to point.to just:before the
first record.

COPENO: Takes a file object as its only argument and produces an updated file
object. In addition, the file is side effected such that it can now be
accessed by CWRITE. That is, the file is opened for output only. The
file object is set to point to just before the position of the first record.

CREAD: Takes a file object as its only argument and produces an updated file
object as well as an arbitrary number of data values taken from the
record in the file that is specified by the file object. The record that the
data values are taken from depends upon several factors. If the file
specifications given in the original COBOL program specify sequential
access for the file, then each CREAD will access the record that is
currently pointed to by the file object and then update the file object to
point to the next contiguous record. Since the COPEN causes the file

Plan Primitives -112 - Gregory G. Faust

object to point just before the first record in the file, the first CREAD
will cause the first record in the file to be accessed. If the file
specifications given in the original COBOL program specify random
access for the file, then each CREAD will attempt to access the record
in the file that corresponds to a pamcular set of values of the key
fields. ‘' The set of values of the key fields that will be used to specify
the record to.be.accessed. is contained within the file object. - If the
particular, key set specified does not correspond to any record that
actually exists within the file, then INVALID-KEYP will produce TRUE,

and the CREAD will not take place {assuming the original COBOL text
represents a valid COBOL program). If a random access CREAD is
successfully completed, then the file object produced will point to the .
record in the file that was just accessed. This ensures that a
subsequent CREWRITE will access the correct record.

CREWRITE: Takes a file object and an arbitrary number of data values as
arguments and produces an.updated file object. In addition, the file is
side effected by overlaying the record in the file specified by the file
object with the argument data values. This is used with mdexed files
opened via COPENIO only. .

CWRITE: Takes a file abject and an arbitrary number of data values as arguments
and ‘produces an updated file objsct. In addition, the file is side
effected by placing a record in the file at the place‘pointed to by the
file object. The record is composed from the argument data values.
This is used with files opened via COPENO only. ~ '

NTERPRI: Takes a file object and an integer as arguments-and produces an
updated file object. in addition, the file is side effetted by placing the
integer number of end-of-record marks in the file at the place pointed
to by the file ‘object. For normal dati:flles the second argament is
always 1 -and NTERPRI is invoked-once before each invocation of
CWRITE. The ise of CREWRITE dows not require theuse-of NTERPRI -
‘because the end-of-record marks:should siréady appear i the file.

Greoory G. Faust | -113 - Running SATCH
Appendix Il - How to Run SATCH

This appendix contains the instructions for running the SATCH system Included are the file
names and locations of all pertinent programs, ‘the naming conventions of the data files used, and a
very brief description of some of the more important top-Tevel program functions. All programs are
now.on ML. Although all the programs are currently avarlable and (hopetully) runnmg, there is no
guarantee that things will remain in therr current state

To run the COBOL parser, type ":satch;cobpar<{cr>". The only pertinent top-level function is
RUN. It takes 4 single argument which is the name of the fife which contains the COBOL program to
parse. It produces two outpit files. The first of these; given a setond fife name of PROG, contains
the lisp-like representation of the PROCEDURE DIVISION. The second file, 'dlyen a second‘fil’e name
of DATA, contains the DATA DIVISION information. - For example, theé command "(RUN *((DSK
DIREC) EXAMPL COBOL))" will parse'the COBOL program in "dskdlrec‘exampl cobo!" and produce
the output files "dsk:direc; ;exampl prog " and "dsk drrec.exampl data" For further documentation for
the COBOL parser and/or the answer to any questions about the COBOL parser, contact Glenn
Burke (GSB@ML).

To produce an analyzed plan for an output fite of the COBOL parser type ":lisp forpas;<cr".
The pertinent top-level function is PROCESS. It takes a'single argument which is the name of the file”
which contains the PROCEDURE DIVISION output of the COBOL parser to bé analyzed. It produces a
single output file, given a second lrte name of PLAN, whrch contams the analyzed plan. For example
the command “(PROCESS ((DSK DlFlEC) EXAMPL PROG)) wrll analyzed the program and produce _
the analyzed plan m "dsk; drrec,exampl plan”. " For further documentatlon lor the analyzer and/or the
answer to any questions about the analyzer contact chk Waters (DICK@AI))

To produce HIBOL for an analyzed plan and the DATA DIVISION information, start up a lisp
using the initialization file on the FAUST directory. This is done by typing *fisp faustfaust lisp”.
Then, one of the following two top- level functions must be run to load the rest of the desired
environment: SET-UP-FOR-SATCH-l or SET UP-FOR- SATCH c whrch load ‘the needed LISP source
files or LISP FASL ﬁles, respecttvely (SET- up FOR SATCH C is strongly recommended) .

Once the environment is loaded, the most important top-level function is LOAD-TRANSLATE.
it takes a smgle argument whrch is the first fi le name of the program to be translated An attempt will
then be made to load the necessary frles from the SATCH drrectory For example the command_
"(LOAD-TRANSLATE ’'EXAMPL)" wili attempt to load “dsk:satch;examp! plan" and'
"dsk:satch;exampl data”. It is possible to load the files from another device and/or directory by first
setting the global variables GLOBAL-DEVICE and/or GLOBAL-DIRECTORY to appropriate values.

Running SATCH -114 - Gregory G. Faust

LOAD-TRANSLATE will produce two output files, given second file names of FAST and HIBOL, which
contain the information passed from the symbolic evaluation phase to the HIBOL production phase,
and the completed HIBOL program, respectively. The same functionality can be gained by calling
LOAD-DB and TRANSLATE in succession. LOAD-DB takes the same argument as
LOAD-TRANSLATE. TRANSLATE takes no argument.

Once LOAD-TRANSLATE has been run on a particular example program, ﬁ:rther testing of
new versions of the DATA DIVISION Query and/or the HIBOL Production phase(s) can be
accomplished by using the top-level function FAST-LOAD-TRANSLATE. This function takes the
same argument as LOAD-TRANSLATE. Its operation only differs in that instead of loading in the
analyzed plan and performing the symbolic evaluation it loads the information needed by the DATA
DIVISION Query and HIBOL Production phases directly from the files. with the second file names
DATA and FAST respectively. The two functions FAST-LOAD-DB and FAST-TRANSLATE have the
same relation to LOAD-DB and TRANSLATE as FAST-LOAD-TRANSLATE has to LOAD- TRANSLATE.

The entire translation process runs in three dlfferent modes whlch differ only in the amount
of mformatlon that is written to the terminal. The three modes are controlled by running three
top-level functions called VERBOSE-MODE, NORMAL-MODE, and QUIET-MODE. These functions
take no arguments. The default is NORMAL-MODE. QUIET-MODE should only be used for batch
jobs. VERBOSE-MODE will print out all sorts of intermadiate.values for variables, and is only useful
for trying to debug very severe problems.

Regardliess of which mode the program is running/ in, the terminal will be used to gather
information from the user. In all cases where user mput is requlred the user will be shown a list of
data field names and asked to input a hst of the desnred fields. The user should input the Inst using the
numbers that correspond to the data ﬁelds, and not the names themseWes If it is deslrable to select
none of the fields, NIL is entered. In all cases, the user is given the opportunity to verify the input
before the program finally accepts it.

The only remaining top-level function of possiblé'pertinenCe is DB-WALK. This function is an
mteractlve command interpreter that affords a way to wander around and print out pomons of the
analyzed plan.in a reasonably simple fashion. The set of commands is too Iarge to be dlscussed here.
the definition of the function can be found in "ml:satch;sutil >".

All the source files for the COBOL parser and the traﬁslation process are in the archive file
"ml:faust;arQ satch". |

Gregory G. Faust -116- References

2. MetaCOBOL User Guide, Manual No. SM2G-00-10, Applied Data ‘Résearch (1979).

3. Baron, R. V., Structural Analysis in a Very High Lével Language, S.M. Thesis, Laboratory for
Computer Science, Massachusetts Institute of Technology (1977).

4. Barstow, D.. A Knowledge-based Syétem for Automaltic Program Construction, Proceedings of
the Fitth-international Joint Congference on Adrtificial Intelligenca, Vol. 1 pp. 382-388, M.L.T.,
Cambridge, Ma., August 1977.

5. Canning, R. G. (ed), Progress Toward Easier Programmmg EDP ANALYZER -9:1 (September,
1975)

6. Green, C., A Summary of the PSI Program Synthesis System, Proceedings of the Fifth
International Joint Congference on Artificial Intelligence, Vol. 1 pp. 382-388, M.LT.,
Cambridge, Ma., August 1977. -

7. Hammer, M. M., Howe, W. G., and Wiadawsky |., An Overview of & Business Definition System,
IBM Thomas J. Watson Research Center Research Report (August, 1973).

8. Hammer, M., and Ruth, G. R., Automating the SoftWare Developmeni Process, in P. Wegner,
ed., Research Directions in Software Fechnology, MIT Press (1979)..

9. Hartman, J., Restructuring COBOL Programs into Abstract bata Type Modules, University of
Texas at Austin Departmient of Computer Sciences, Software and Data Base Engineering
Group, Memo SDBEG-21, (August 1980). :

10. Hewitt, C., How to Use What You Know' Proc’eed'lhgs of the Fourth International Joint
Conglerence on Artiicial Intelligence, Val. 1.pp. 18&.198, Thilisi, GBOIQIa, USSR, September
1975.

11.1BM OS Full American National Standard COBQL, Manual No. GC28-6396-5, IBM (1973).

12. Kapur, Deepak, Some Results far Predicate Simplification, MIT, Laboratovy for Computer
Science, Automatic Programming Group Internal Memo, (September, 1976). -

13. Kay, A., and Goldberg, A., Personal Dynamic Media, Computer IEEE v.10 3:31-41 (1977).

14. Kornfeld, W. A., Ruth, G. R., and Baron, R. V., Proposal for HIBOL Syntax, MIT Laboratory for

~Computer Science, Automatic Programming Group internal Memg, (October, 1976).
Liskov, B., Atkinson, R., Bloom, T., Moss, E., Schaffert, C., Scheifler, R., and Snyder, A., CLU

18.

References

. Ackerman, W. B., and Dennis, J. B., VAL - A Value-Oriented Algorithmic Languagé: Preliminary

Reference Manual, MIT Laboratory for Computer Science TR-218 {June, 1979).

Reference Manual, MIT Laboratory for Computer Science TR-225 (October, 1979).

References -116 - , Gregory G. Faust

16. Long, W. J., A Program Writer, MIT Laboratory for Computer Science, Technical Report
TR-187 (1977)

17. Martin, W. A., A Data Set Language and Hts Translation into IBM 370 PL/I, MIT Laboratory for
Computer Science, Automatic Programming Group lnternal Memo, (March, 1972).

18. Martin, W. A_, Ruth, G. R., Alter, S, A Very High Level Language for Business Data Processing,
Personal Communication- (1979)

19. McCracken, D. D., A Guide to FORTRAN Programming, John Wiley and Sons (1961).

20. Mills, H. D., Software Development, /EEE Transactions on Software Engineering SE 2:265-273
(19786).

21. Morgenstern, M. L., Automated Design and Optimization of Management Information Systom
Software, PhD Thesis, Laboratory for Computer Sclence, Massachusetts Institute of
Technology (1 976)

22. Murach, M., Standard COBOL (2e}, Science Research Associates (1975).

23. Pitman, K. M., A FORTRAN to LISP Translator, Proceedings of the 1979 MACSYMA Users
Conference pp. 200-214, Washington, DC., June 1979

24. Polivka, R. P., and Pakin, S., APL; The Language and its Usage, Prenttce-HatI (1975).

25. Rich, C., and Shrobe, H. E., initial Report on a LISP ‘Programmer’'s Apprentice, Artificial
intelligence Laboratory, Massachusetts Institute of Technology, Techmcal Report Al-TR-354
(1976)

26.Rich, C., Inspection Methods in Programming, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Techmcal Report Al TR 604 (1981).

27.Ruth G. R., Protosystem I: An Automatic Programmtng' System Prototype, MIT Laboratory for
Computer Science TM-72 (July, 1976).

28. Ruth G. R., Data Driven Loops, MIT Laboratory for Computer Science TR-244 (1980).

29, Sussman, G. J., and McDermott, D. V., From PLANNER toCONNNER A Genetic Approach
Proc. FJCC 41:1171 (1972). '

30. Thomas, G., The Design and implementation of a-Document Facility for Protosystem 1, 8.B.
Thesis, Laboratory for Computer Sctence. Massachusetts Institute of Technology (1976).

31. Waters, R. C., Automatic Analysts of the Logical Stitjctureof Programs, Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Technical Report Al-TR-492 (1978).

Gregory G. Faust -117 - References

32. Waters, R. C., A Method for Analyzing Loop Programs, /[EEE Transactions on Software
Engineering SE-5:237-247 (1979).

33. Weinberg, G. M., PL/1 Programming Primer, McGraw-Hill (1966).

34. Weinberg, G. M., Wright, S. E., Kauffman, R., and Goetz, M. A, High Level COBOL
Programming, Winthrop Publishers (1977).

35. Wulf, W. A.. London, R. L., and Shaw, M., An Introduction to the Construction and Verification
of Alphard Programs, IEEE Transactions on Software Engineering SE-2:253-264 (1976).

