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ABSTRACT

Distributed computing systems are being built and used more and more frequently. This
distributed computing revolution makes the reliability of distributed systems an important
concern. lt is fairly well-understood how to connect hardware so that most components can
continue to work when others are broken, and thus increase the reliability of a system as a
whole. This report addresses the issue of providing software for reliable distributed
systems. In particular, we examine how to program a system so that the software continues
to work in the face of a variety of failures of parts of the system.

The design presented uses the concept of transactions: collections of primitive actions
that are indivisible. The indivisibility of transactions insures that consistent results are
obtained even when requests are processed concurrently or failures occur during a request.
Our design permits transactions to be nested. Nested transactions provide nested universes
of synchronization and recovery from failures. The advantages of nested transactions over
single-level transactions are that they provide concurrency control within transactions by
serializing subtransactions appropriately, and that they permit parts of a transaction to fail
without necessarily aborting the entire transaction.

The method for implementing nested transactions described in this report is novel in
that it uses locking for concurrency control. We present the necessary algorithms for
locking, recovery, distributed commitment, and distributed deadlock detection for a nested
transaction system. While the design has not been implemented, it has been simulated. The
algorithms are described in a formal notation in an appendix, as well as narratively in the
body of the report.
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1. Introduction.

It seems that every day there are more news reports and product announcements for
personal computers, home computers, and computer communications equipment.
Indications are that distributed computing will become more and more common, perhaps
with the end result that almost everyone will have a computer that is connected in one way
or another with many other computers. Just as most people have a telephone and depend
on it, the same may happen with computers. Undoubtedly such universal use of computers
and rapid exchange of information will have a dramatic impact: social, economic, and
political. Distributed computing will then be a fact of life and important to everyone.

This report is concerned not with the effects of the distributed computing revolution, but
with a crucial technical problem: how to build a reliable distributed computing system.
When one assembles a large number of devices (such as computers) into a system, one gets
both higher and lower reliability simultaneously: lower reliability in the sense that it is more
likely that at least one component fails at any given time; higher reliability in the sense that it
is more likely that at least one component is working at any given time. The point is that for
a large system to operate effectively, it is important that most components continue to work
even while others are broken. That is, the system must not count on having all its
components working at once. It is generally understood how to build the hardware
components so that hardware failures are mostly independent.

Because hardware and its failure properties are already fairly well understood, we will
not examine hardware issues very deeply. Rather, we will be concerned mainly with the
software aspects of achieving reliable operation of a system of computers that communicate
via a network. The goal of our research was to design a system for reliable distributed
computing. In particular, the system should survive processor failures (crashes) and
communications problems (e.g., lost, duplicated, and delayed messages). While the reader
must be the final judge, we believe that we have met our goal. Further, our design is novel in
that it supports nested transactions in a new way. What nested transactions are, and the
ways in which our approach is new we explain below. While our design not been

implemented, it has been simulated (see Appendix | for details).



1.1 The Approach..

The approach we have taken to the problem of writing software for an unreliable system
is based on the idea of transactions. The word transaction has been used in many different
ways in different contexts. The meaning we intend for transaction is atomic action: an
atomic action is some computation that changes or reads the state of one or more data
objects and appears to take place indivisibly. That is, an atomic action always performs as if
it is run in isolation and to completion.

A major problem solved by using transactions is preserving the integrity of data stored
within a computer system. Of course the software technique of transactions must be
complemented by sufficient hardware redundancy - otherwise hardware failures might
destroy all copies of irhportant data. The two main ways in which transactions help preserve
data integrity are failure atomicity and synchronization. Synchronization is represented by
the fact that two different transactions al_ways appeat to have happened sequentially.
Sequentiality is important when the 4transactions access or modify some of the same data
objects. In short, synchronization insures that inconsistencies do not arise because of
concurrent access to data. '

Failure atomicity is the property that a transaction either happens in entirety or not at all,
even if there are partial system failures while processing the transaction. A common
example demonstrating the importance of faiture atomicity is electronic funds transfer. A
transfer involves two operations: decrementing one account and incrementing another. If
just one of the two operations is performed, somebody has lost money (either a customer or
the bank). However, money is correctly conserved if both operations happen, or neither.
Atomic actions possess failure atomicity by definition. '

Clearly it would be nice if atomic actions were directly available (built-in to the
hardware). Unfortunately, very few hardware operations are atomic. It takes some clever
design to build a system supporting atomic actions that can affect arbitrary subsets of the
data stored in the system. Several such designs suitable for distributed systems have been
implemented and many other approaches have been suggested. Our design builds on this

earlier work.




The main result of this report is a novel implementation of nested transactions. Nested
transactions are an extension of the more traditional notion of transactions. The difference
between transactions and nested transactions is that nested transactions have more internal
structure. A transaction is just a group of primitive actions (e.g., reads and writes of simple
data objects) that are performed as a unit. Nested transactions have a hierarchical grouping
structure: each nested transaction consists of zero or more primitive actions and possibly
some nested transactions (Called subtransactions of the containing nested transaction).

Nested transactions have at least two advantages over simple (single-level)
transactions. First, subtransactions of a nested transaction fail independently of each other
and independently of the containing transaction. This allows possibilities such as
attempting a piece of a computation at one computer and redoing only that piece if the
computer fails. In the single-level transaction system, if any piece fails, the whole
transaction fails. The second advantage of nested transactions is that they provide
appropriate synchronization between concurrently running parts of the same nested
transaction. This implies that more work can be processed concurrently with confidence
that inconsistencies will not arise through improper concurrent access to data. Because
nested transactions provide correct synchronization within .a transaction, it is easy to
compose a number of previously existing transactions into a new transaction without danger
of inconsistency arising from concurrent access to the same data object by two or more of

the composed transactions.
1.2 Points of Novelty.

Our nested transaction system uses locking for synchronization, and is (to our
knowledge) the first design to do so. Reed [Reed78] presented the first comprehensive
design of a nested transaction system, but his design uses timestamps for synchronization.
Our system and his deal with deadlock in different ways, too. The idea of nested
transactions seems to have originated with Davies [Davies73] some time ago, but we know
of no designs other than Reed’s and ours that implement nested transactions.

The novel material of this report is presented in three pieces. The first part develops the

locking algorithm for nested transactions and also an algorithm for restoring data when a



transaction fails and has to be undone. The second part is concerned with the algorithm for
managing nested transactions in a distributed system. The third part deals with the issue of
progress in the system, and presents a new deadlock detection algorithm. In sum, the new
work presented in this report culminates in four algorithms that handle nested transactions:

e Alocking algorithm.

e An object state restoration algorithm.

e Adistributed tkansaction management algorithm.

e Adistributed deadlock detection algorithm.
1.3 Overview of Related Work.

As with any piece of research, our work has built on the work of many others. We make
a number of specific citations throughout the report, devote Chapter 7 entirely to discussion
of related work. Here is a short summary of some of the more closely related research. Our
locking method is an extension of the well-known two-phase locking protocol [EGLT76]
used in many systems (e.g., [Gray78, IMS78, LeLann81]). Our object state restoration
(transaction undo) algorithm is also based on methods used in many systems (e.g., [Gray78,
IMS78, SMB79, Paxton79, LeLann81]). The distributed transaction management algorithm
is original, except in its incorporation of a two-phase commit protocol [Gray78, Gray80a,
Paxton79, IMS78, Reed78, LeLann81, Lindsay79, HS80]. The distributed deadlock detection
algorithm is an extension of work reported in [Goldman77] and [Obermarck80]. Some of the
methods of presentation that we have used derive from other specific works. In particular,
the system model and failure model of Chapter 2 was inspired by [LS], and the discussion of

transaction semantics in Chapter 3 is based on [EGLT76] and [Gray78].
1.4 Plan of the Report.

Here is a brief review of the organization of this report. Chapter 2 presents a model for
distributed systems, including their failure properties; it is the only chapter containing
significant discussion of hardware. Chapter 3 discusses the idea of transactions in some

detail, including some simple algorithms for locking, state restoration, and two-phase
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commit. The main purpose of Chapters 2 and 3 are to set the stage for the technical
exposition of Chapters 4, 5, and 6.

Chapter 4 introduces the idea of nested transactions and explores it in some detail.
Chapter 4 is somewhat parallel to Chapter 3 in that it extends the locking and state
restoration algorithms of Chapter 3 to nested transactions. Chapter 5 continues the
implementation of nested transactions by showing how to run nested transactions in a
distributed system, including the handling of failures. Chapter 6 builds on the techniques of
Chapter 5, by showing how to detect deadlocks ambng nested transactions in a distributed
system, and how to make a reasonably strong guarantee that any well-formed transaction
request will be completed eventually.

Chapter 7 attempts to put our work in context through a discussion of related work.
Chapter 8 presents a summary with some conclusions, and offers many suggestions for
further research. Appendix | describes the results of simulating the system. Appendix |l
provides a summary of the algorithms of Chapters 4, 5, and 6, in a formal notation similar to

a programming language.
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2. Modelling the Underlying System,

This chapter presents the foundation upon which a reliable distributed transaction
system is built in later chapters. We will explain what we mean by a distributed system and
go into some detail about our assumptions concerning processors, memories, and
communication, including their failure properties. We will describe a model that
encompasses the class of systems of interest and will give some justifications for the model.
We will not be interested in formal properties of the model: the model's main purpose is to
make our assumptions as clear as possible. Much of this chapter was inspired by Lampson
and Sturgis [LS].

2.1 Modelling Failure.

When setting out to model failure, the first obstacle encountered is that there is no limit
to severity of failure in reality. For example, while it might be very unlikely, it is possible that
all components in the system might fail at once and break the system beyond repair. Any
system cannot survive all possible failures - it will tolerate only certain sets of failures. Our
approach is to be make it plain which failures will be tolerated and which will not.
Additionally, it is our goal that the intolerable failures can be made as rare as necessary,
thus permitting an arbitrarily high (though not perfect) level of reliability to be achieved.

We divide the possible behaviors of a real system or component into two classes:
acceptable and unacceptable. We assume that the unacceptable behaviors do not occur.
The assumption that unacceptable behavior never happens is the basic assumption of the
model of failure. As just explained, we are careful to insure that the unacceptable behaviors
of the system can be made arbitrarily unlikely. Unacceptable behavior is intolerable, and
system behavior is not constrained should an unacceptable situation arise. Acceptable
behavior comes in two varieties: good (normal) behavior, and bad (undesirable, failing) but
tolerable behavior. For short we call the three possible kinds of behavior good, tolerable,
and intolerable.

Here is an example of these different kinds of behavior. Consider a memory with extra

error detecting and correcting bits. Good behavior of the memory itself is to return the data
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previously stored. Tolerable behavior of a memory read is to return bad data such that the
error correcting bits are sufficient to correct the error. Note that tolerable behavior at one
level turns into good behavior at a higher level. In fact, behavior is tolerable only if it is
turned into good behavior at a higher level. Intolerable behavior of a memory read is to
return bad data such that the error correcting bits are either insufficient to correct the error,
or the error is incorrectly "corrected”, or there does not appear to be an error. Again, these
behaviors are intolerable on.ly because the system in which the memory is embedded cannot
handle them. For example, some of the behaviors just classed as intolerable would be
tolerable in a system employing duplicate or triplicate memory subsystems. Good behavior

should be the most likely; intolerable behavior had better be the least likely.
2.2 Overview of the Model.

Qur model of a distributed system is a number of nodes (abstract computers) that
communicate oniy by sending messages over an (abstract) communications network, as
shown in the diagram below. Each node consists of a processor and some memory;
input/output is not modelled in detail. Nodes may go down (crash) and up (recover), and
new nodes may be added to the network over time. No specific provisions are made for
removing nodes from the network. However, removal is often equivalent to crashing, from
the viewpoint of nodes still in the network. It is assumed that every pair of nodes can
communicate in both directions, though perhaps not directly. We will describe nodes and

their behavior, and then go on to the properties we assume about communication.

Distributed System Model

Node Node e o o o o Node Node

Communications Network
(no specific topology implied)
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2.3 Nodes.

A node consists of a processor and some memory. An unusual feature of the node
model is that there are two kinds of memory, called permanent and volatile (see the diagram
below). It is assumed that the contents of volatile memory are lost in a crash and that the
contents of permanent memory survives crashes. We will discuss the failure properties of
nodes, go into some detail concerming permanent memory, and then consider the processor

and volatile memory.

A
Permanent Memory Model of a Node
o s Processor o ammmns o Volatile Memory

——— Communications Network

'

2.3.1 Node Failure.

The discussion of nodes is concerned mainly with failure properties. We model any
processor or volatile memory failure as a node failure. A node failure is equivalent to
stopping the processor, resetting the processor and volatile memory to a standard state, and
starting the processor some time later. When a node fails, it is said to have crashed, and
when it restarts, it is said to have recovered. Permanent memory never fails, and its state is
not affected by crashes.

In sum, good behavior of a node is normal execution of steps by the processor and
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normal updating and retention of data by the memories. It is tolerable for a node to crash:
the processor stops for some period of time, the volatile memory state is lost, and the
permanent memory state is preserved. Any other behavior (e.g., a crashed processor
writing into permanent memory or a crashed processor sending messages) is intolerable.
Note that we do not permit nodes to stay down or be disconnected from the network forever.
The algorithms of later chapters will not deal with permanent node failures.

Note that the term volaﬁle indicates vulnerability to crashes, and does not mean that the
contents of volatile memory does or does not survive loss of electrical power. Similarly
permanent indicates the ability to survive node failures. However, as we will explain a little
later, volatile memory will typically correspond (more or less) to the main memory of the
system and permanent memory to the (usually somewhat separate) mass storage. The
distinction between volatile and permanent memory may or may not be obvious to the
programmer. However, the algorithms of later chapters require the ability of the transaction
system to control when permanent memory is updated.

Programming errors are not addressed by the model. While some bugs may be
detected in the normal course of affairs, it is assumed that the system is programmed
correctly and is presented only with well-formed tasks to éxecute. THus we relegate
undetected programmer and operator errors to the intolerable category. We stress that the
sort of reliability we strive for is correct execution of programs; insuring the correctness of

the programs is beyond the scope of this work.
2.3.2 About Permanent Memory.

In our model the state of the system must be encoded in permanent memory, because
permanent memory is the only part of the system state that survives node failures and thus
permits the system to make progress. Because permanent memiory is so important, we will
examine its properties and some aspects of its implementation in more detail. Note that
permanent storage has strict reliability constraints: its only tolerable behavior is to store and
return information correctly, as commanded by the processor.

The crucial property of permanent memory is its reliability. There are two ways in which

that reliability is achieved. First there is the inherent reliability (or lack of it) of the devices
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used to construct permanent memory. Second there is the way in which permanent memory
is accessed. This latter property is a bit subtle and deserves further explanation. Permanent
memory is updated carefully because of its importance. Furthermore, permanent memory is
more likely to be implemented using mass storage (the large, slow, cheap end of the memory
hierarchy), so it will be accessed as infrequently as possible. (Hence, in later chapters we
will operate on the assumption that access to permanent memory is expensive.) Note that
the infrequency of acéess to permanent memory actually enhances its reliability: it is less
likely that a processor that has gone berserk will damage the contents of permanent
memory. Nevertheless, though permanent memory would tend to correspond to mass
memory and volatile memory to the main store, permanent and volatile reflect how the
memory is used rather than its technology and speed of access. In particular, the parts of
secondary memory that are used as a paging store or for scratch files will usually be volatile.

The stability (survival of failures) of permanent memory is necessary but not sufficient.
We must also be able to update permanent memory atomically. For example, it is possible to
perform reliable updates by writing new information in currently unused blocks, and once
everything has been successfully written, change one block (or word, or even bit) to indicate
that the update is complete. However the last update must be atomic - it must appear to
happen completely or not at all, even if there is a failure while the update is occurring.
Lampson and Sturgis [LS] have described a method for implementing atomic stable storage
using magnetic disks. The key idea is to use two disk blocks to represent each block of data
that must be updated atomically, and to update one and then the other. A number of
systems use a less symmetric (though probably faster) technique: record the update on one
or more magnetic tape logs hefore updating disk. See [Gray78] for further discussion of
such methods. »

Once we have the ability to update one block atomically, we can update atomically as
many blocks as we want by clever organization of the data. For example, suppose all the
interesting data in permanent memory is organized into a tree structure with a known
distinguished block being the root of the tree. We can update as much data as we like
atomically by writing updated data into free blocks, and inserting the new structure in the

tree by atomically over-writing the special root block as the last step. Other techniques for _
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large atomic updates have been devised; the point is that such updates are sometimes
necessary and that they are possible.

While particular devices such as disks and tapes have been mentioned, permanent
memory might be built with just about any memory devices. The key properties of
permanent memory are stability (survival of failures) and atomic update. All schemes we
have encountered include redundancy, because single failures are too common, and also
because multiple physical .updates are needed to achieve atomicity. All schemes also
require special action after crashes, to flush parfial updates, etc. In general, periodic
scanning or copying of the data is necessary to avoid loss because of media degradation
over time (such as demagnetization, chemical decomposition, etc.), though the use of media
with higher reliability or more redundancy may obviate this requirement. Lastly, by
increasing the number of copies of data that are stored, a good permanent memory design

can achieve arbitrarily high reliability.
2.3.3 Processors.

The exact class of machines we would like to model is difficult to characterize, because
we do not wish to rule out different arrangements with equivalent computing power.
Therefore, we will not describe what a processor is, but what it can do. The essential
property of a processor is that it can change the state of the volatile and permanent
memories, and it can send and receive information on the communications network. We
make no assumptions concerning the degree of concurrent activity in a processor.
However, if there is concurrency, we must be able to build mutual exclusion locks or a
similar synchronization primitive, to meet the synchronization requirements of later
chapters.

Also, there must be a single value that bounds the rate at which any processor can
change the state of its memories, or send or receive messages. This is an intuitively

reasonable restriction that avoids obscure situations such as one processor performing an
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unbounded number of steps between two steps of another continuously running® processor.
We will not be more explicit about what a "step" is, because an explanation is not necessary
and might reduce the generality of the model.

An abstract node conforming to our model could be implemented with a single real
processor or several real processors, or one real processor could implement several
abstract nodes (via multiprogramming or even multiprocessing). It is even conceivable that
an abstract node could "move" from one real processor to another, or that a diffuse
collection of processors could cooperatively implement one or more nodes.

Permanent memory is the foundation of the system, and is the only part that we assume
to be perfect. In contrast processors and volatile memory need not be anywhere near
perfect. It is sufficient that there be no undetected errors in their actions. This is because a
detected but uncorrectable error can simply be treated as a crash. It is crucial that a
processor error not propagate to permanent memory or to other nodes via message
passing. This last requirement is probably the weakest point of the failure model of the
system, because typical processors are not reliable enough (most have no internal checking
at all, except perhaps parity bits on microcode memory). However, though processors are
often the weakest link, this need not be the case: it is possible to build processors that
satisfy our assumptions, though more is involved than adding error correcting bits to
memories. Further, one could just use the classical method: two or three processors
performing the same computation with their results cross-checked continuously. We
maintain that it is possible to reduce the probability of intolerable behavior in processors and

volatile memories to arbitrarily low values.

1. Crashes can be indefinitely long. Hence an unbounded number of steps could be performed by one
processor while another processor is crashed.
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2.3.4 Discussion.

We have chosen a model co_nsisting of extremely reliable permanent memory and
unreliable processors and volatile memory. Why is this model appropriate? First, for
purposes of argument it is convenient to have a reliable component (permanent memory in
this case); otherwise it is hard to say anything interesting about the behavior of the system.
A second reason that our node model is appropriate is that it is realistic - many current
hardware configurations correspond to our idea of a node. Lastly, our model is appropriate
because it is simple and very general. It should continue to apply for a long time, so our
work will not soon be outdated by changes in hardware technology.

However, there are two objections to the model we would like to answer. First, why is
there the dichotomy of permanent and volatile memory? One answer is that the dichotomy
corresponds to the way systems are built. A better answer is that perfect and imperfect
memories are the only kinds one can have, and that the perfect/imperfect distinction is the
only useful distinction that can be made by software. Further, volatile and permanent
memory form the simplest model that admits failure in a describable and realistic fashion.

The second objection is that every node must possess permanent memory. Aétually, it
is not necessary that each node have its own permanent memory. Some system functions
might not require permanent storage and could be performed by processors without
permanent memory. Also, it is reasonable for a processor lacking permanent memory to use
the permanent memory of another processor by communicating with that processor through

the network.
2.4 Modelling Communication.

The unit of communication in our model is the message. A message conveys a bit sfring
from one node to another; we place no particular bound on the size of messages. A
message is sent by one node to another specific node; we assume that any node can
transmit a message to any other node. It may be possible to broadcast a message to a
number of other nodes, but we view this as just an optimization of sending separate

messages. The places where message broadcasting can be used to advantage in later
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algorithms will be obvious, so we will not discuss broadcast further. It is the job of the
sender to insure that the message is meaningful to the recipient. Before discussing
communications failure modes, we will first argue for the appropriateness of our model.

One objection that could be raised against our model is the bias toward messages
(packet switching) instead of communications circuits or streams of bits (circuit switching).
The answer is that both models of communication are equally powerful, that packet
switching is sufficient,'and that packet switching is more natural for the algorithms we will
present in later chapters. Another objection is that‘we assume all nodes can communicate
with all others. Actually, all we require is that any pair of nodes wishing to interact be able to
send messages to each other (in both directions). However, it is not assumed that every
node can communicate directly with every other node; message forwarding is permissible,
and possibly necessary or desirable in many systems, for a variety of reasons. A final
objection is that we permit messages of arbitrary length. To this objection we say that it is all
right for the underlying system to split a message up into smaller pieces for transmission,
and to reassemble the message before presenting it to the recipient. Further, it is difficult to
bound the size of some of the messages sent in the protocols developed later. If necessary,
explicit packetization could be added; we omitted packetization to make the algorithms

simpler.
2.4.1 Modelling Communications Failures.

Here is a list of the bad things we permit to happen to a message:

e It may be lost entirely.

e It may be garbled, or only parts of it arrive.

e It may arrive out of order with respect to other messages from the same sender to
the same recipient.

e It may be duplicated, and arrive more than once.

o It may be arbitrarily delayed.

It is intolerable for a message to be transformed from one good message into another good



message. A good message is one with a good checksum.! Thus it is very unlikely for a good
message to be turned into another good one, though it is possible for it to happen. But by
using more and more checksum bits, the probability of the intolerable transformation can be
made arbitrarily small. The destination address should be part of the checksummed data, so
that delivery to the correct recipient can be guaranteed. Messages with bad checksums are
simply discarded, so bad messages are eliminated from the model. We also assume that the
communications network does not spontaneously generate (good) messages.

In sum, when a message message is sent, zero, one, or more copies of it will arrive at
the destination, after arbitrary delays. However, no copies arrive elsewhere, and if a copy
arrives, it arrives intact. Even finite recipient buffer space can be modelled: if a message
arrives for which there is no room, it (or some other message in a queue) can be discarded.
This solution can turn a good message into a lost message, but both are acceptable
behaviors. We do assume that if a message is sent repeatedly, at least one good copy will
eventually make it to the recipient. This assumption implies that the network never goes
down forever. It also requires that the sender not send messages too large for the recipient
ever to accept. However, some convention is required for any communication to take place.
If necessary, the sender and recipient can use a protocol for allocation of buffer space.

Some people might object to the simplicity of the protocol: that we permit duplicates,
out-of-order messages, etc., and that we include no automatic acknowledgments or flow
control mechanisms. There are several defenses of this position. First, if we need protocols
that make stronger guarantees, we will have to build them explicitly, which gives our work
more credibility. Second, we will not need stronger properties very much in later chapters.
But the best argument is that much of the same mechanism must necessarily be constructed
in the high level protocols. This has been called the end-to-end argument [SRC81].

A typical example is elimination of duplicates. The system could automatically insure
removal of duplicates, at some cost. However, higher-level protocols might very well initiate

the same request more than once in response to a time-out. In terms of the semantics of the

1. if "goodness" of messages can be insured using some method other than checksums, then that would be all
right.
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application, the new messages are duplicates, because the desired actions should be
performed only once. However, the messages may be distinct in terms of what the
communications subsystem sees, so automatic duplicate removal will not eliminate the need
for duplicate removal at the application level. Similar arguments apply to acknowledgments.
The fact that messages may arrive out of order may not necessarily be defended by the
end-to-end argument, but it turns out that it can be expensive to preserve message order,

and we will not generally need it.
2.5 The System as a Whole.

While we have not done so, the system model we have presented could be formalized
without much effort. However, the model would be incomplete if it did not insure that only
causal (i.e., realizable) systems were modelled. To insure causality, we need to represent
time and ordering relationships correctly. It is easy to define a reasonable notion of time at
each local processor: time advances as the processor executes instructions. The correct
notion of time for a distributed system is complicated by relativistic effects. It is convenient
to introduce the notion of an omniscient observer. Each such observer perceives all events
of the system, though different observers may see the same events happen in different
orders. We can characterize the behavior of the system by describing the constraints that
apply to all observers. The constraints are simple:

e The order of all events occurring at a single node will be perceived in the same
order everywhere, though events occurring at different nodes may be seen to occur
in different orders.

e The sending of a particular message will always be perceived as occurring before it
is received. Further, all observers will agree on the number of copies of the
message delivered. | '

The above constraints are necessary, for otherwise the system might be non-causal or
otherwise inconsistent with physical law. More constraints would apply to any given system
or configuration, such as minimum communication delays based on the travel time of light
between nodes. However, the above constraints seem to be sufficient for arguing the partial

correctness of distributed programs that do not refer to real time, because all necessary
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causal relations are stated.
2.6 Summary.

Our model of a distributed system is a collection of nodes, where each node consists of
a processor with volatile and permanent memory. It is permissible for one node’s permanent
memory to be implemented elsewhere and used via message passing. One could also use
nodes lacking permanent memory for computation only. Processor crashes merely wipe out
the volatile memory, leaving the permanent memory intact. A node may not crash forever.
New nodes may enter the system. There is no a priori bound on the number of nodes in the
system.

Messages are the means of communication. A message is sent from a node to a
particular recipient node, and may arrive zero, one, or more times, with arbitrary delay. Its
order of receipt with respect to other messages is unspecified, and the different copies may
mix in arbitrarily. However, messages arrive intact if at all, and are never delivered to the
wrong recipient.

Perhaps most important is the general approach to dealing with failures in an organized
fashion. We split device behaviors into three categories: good behavior, faulty but tolerable
behavior, and intolerable (unhandled) failure. Further, we seek a design in which the
probability of intolerable behavior can be made arbitrarily small. This permits one to build a
system that is as reliable as desired, from a hardware standpoint, if one is willing to dedicate

the necessary resources. We do not tackle the thorny problem of software errors.



3. Transactions.

The goal of our work is to design a system for reliably manipulating stored data in
distributed systems. The previous chapter defined "distributed system". Now we will
discuss what we mean by "reliably manipulating stored data". This chapter does not
introduce novel material - it continues to build the conceptual foundation necessary for

understanding the following three chapters.
3.1 Fundamental Concepts.

We will now describe the basic ideas that give rise to the use of transactions as

concepts and tools.
3.1.1 Consistency.

If the data stored in the system has any a priori constraints, we wish to guarantee that
they will never be violated (assuming all the programs to be correct, of course). A typical
example of such a constraint is that the sum of the balances of all the accounts in a
bookkeeping system must be zero. This kind of static, a priori constraint can be expressed
as an invariant: a predicate on system states that must always be true. If a system state
satisfies the invariant, the state is said to be consistent. If the system state always appears
to be consistent, the system is said io be internally consistent.

While internal consistency is certainly desirabie, it is not sufficient: not only should the
system state be consistent, but the state should be a proper result of the history of external
stimuli that have been presented to the system. For example, if the system is requested to
perform some action and responds that the action has been done, then the system state
should reflect the results of that action. That is, the system must be (internally) consistent
and must also be consistent with external perceptions of its behavior. This latter property is
called external consistency. External consistency is important because agents outside the
system may act based upon system output; though the system may be able to undo internal

actions, in general the effects of output cannot be undone. We will discuss this point more
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later. This discussion of consistency is based mainly on the following works: [EGLT78,
Gray75, Gray78].

Because external consistency is not as familiar a concept as internal consistency, let us
discuss it in more detail. Suppose that a user is interacting with the system via a terminal. A
possible external consistency requirement is that once the system has typed done on the
terminal in response to a request, then that request has actually been performed, in its
entirety, and its effects are guaranteed not to disappear from the system (though of course
later requests may modify data just written, etc.). We desire that the just stated external
consistency property hold.!

More subtle external consistency properties involve the relative ordering of events in the
system with respect to their output at the terminal. To simplify system design we might not
require that actions be performed exactly in the order requested or in the order of the done
messages printed on the terfninal. This is especially true if many requests may be in
progress at once. Further, if the requests perform their processing in different places, then
it can be hard to tell which request was processed first, because the done messages may
have taken varying times in transmission through the communications network. We require
that if a new request is entered after the done message of a previous request has been
printed, then the effects of the first request definitely precede the effects of the new request.
Stronger ordering requirements, including relations between the output produced on
different terminals, might be hard to achieve, and we do not require them. See [Lamport78]
for further discussion of this issue.

In addition to being internally and externally consistent, the system should be
congruent. That is, while failures may prevent the system from fulfilling some requests, or
might even force the system to undo previously completed work, the system should attempt
to act as closely as possible to what is requested of it. For example, the system should avoid
spontaneous state transitions, even if it maintains external consistency by telling us what it

does. Unlike consistency, which must be maintained for system correctness, congruity is a

1. But see the later discussion of input/output.




performance requirement and is difficult to formalize. Congruity might not be necessary for
every application, but we will assume that the system is never to undo spontaneously (even
in response to failure) anything it previously c!aimed was done. We also assume that the
system initiates no spontaneous updates.

In sum, internal consistency is the requirement that the system state always (appear to)
satisfy its invariant predicate. External consistency is the requirement that the system state
correspond to extemél perceptions of it. Congruity is the further requirement that the
system state refiect as closely as possible the correct response to external stimuli.

3.1.2 Actions.

Actions are the units of work performed by the system. Each action takes some input,
possibly modifies the system state, and produces some output. In general, an action may be
made up of other actions. An action and its sub-actions are related in a hierarchical fashion.
As actions are broken down into smaller and smaller pieces, the eventual result is primitive
actions. We will say more about primitive actions later. The primitive actions that make up a
given action might not have to be executed sequentially - actions may exhibit internal
concurrency. In this chapter we are concerned with actions consisting only of primitive
actions. Hierarchical (nested) actions will be discussed in the next chapter.

A defining property of actions is that they preserve (internal and external) consistency.
That is, each action, if executed in isolation and to completion, will leave ‘the system in a
consistent state if the system was in a consistent state to begin with. From now on it is
assumed that the system is requested to perform only actions. That is, every request put to
the system is assumed to preserve consistency (if executed in isolation and to completion).

It is not required that the system state be consistent in the middle of executing an
action. 1t is often convenient, even essential, to violate consistency temporarily and restore
it later. Note also that not every group of primitive actions will move the system from one
consistent state to another. Actions are exactly those groups of primitive actions that do
preserve consistency. Thus the notion of action arises naturafly from the desire to maintain

consistency of the system state.




3.1.3 Serializability.

Suppose the system is presented with a number of action requests. How might these
requests be fulfilled without violating internal or external consistency? One simple method is
to execute the requests one at a time. Such serial processing will preserve consistency in
the absence of failures, because each action leaves a consistent state for the next action to
act upon. Of course the initial state must also be consistent. A particular order of execution
of the actions is called a serial schedule.

It is easy to see that serial schedules are correct (preserve consistency), but they can
also lead to poor performance by not taking advantage of possible concurrency. On the
other hand, arbitrary concurrency in the execution of actions can destroy consistency. Here
is a simple example. Suppose two actions are to be performed; each of these actions
increments a particular system variable. Further suppose that incrementing is performed by
reading the current value of the variable, adding one to the value read, and storing the result
back into the variable. If the two actions perform their reads before either action does the
write back, then the effect will be as if the variable were incremented only once instead of
twice. Moral: concurrency must be handled carefully.

To permit maximum concurrency while preserving consistency, we require that the
system’s execution of a group of actions be equivalent to some serial schedule of those
actions. A schedule (i.e., a history of execution) is said to be serializable if it is equivalent to
a serial schedule. The equivalence relation for schedules will be discussed below.
Assuming the equivalence relation is correct (consistency preserving), serializability is
sufficient for guaranteeing consistency in the face of concurrency. Note, though, that
failures can still interfere with correct operation of the system. We will discuss failure in

detail later in this chapter; for now it is assumed that failures do not occur.




3.2 Objects and Locking.

Two general methods have been used to achieve serializability: locking and timestamps.
Our design will use locking.! In either method the system state is sub-divided into some
number of non-overlapping objects. The locking method associates a lock with each
object.2 For an action to manipulate an object, the action must hold the object's lock. Only
one action at a time may hold a given lock.3 A further rule is that an action may not acquire
(or re-acquire) any locks after it has released a lock. This is called the two-phase locking
protocol (not to be confused with the two-phase commit protocol to be introduced later). In
the first phase an action only acquires (does not release) locks, and in the second phase the
action only releases (does not acquire) locks. Two-phase locking works because it insures
that the order in which any two actions access the same object is the same as the order in
which those actions access any other object. The underlying assumption is that if two
schedules result in the same order of access at each object then the schedules are
equivalent. Given the just stated equivalence relation on schedules, it is possible to prove
that if the two-phase locking protocol is used then any actual schedule is equi\)alent to at
least one serial schedule (see [EGLT76] for a proof). That is, two-phase locking insures

serializability.
3.2.1 Read/Write Locking.

The kind of locks suggested above work fine. However, because reading is typically
more common than writing, concurrency can be improved by distinguishing read and write
access to objects and refining the locking scheme in the following way. A lock may be held
for reading or for wﬁting - these two cases are called read mode and write mode (hence the
scheme is called read/write locking). If an action holds a write mode lock for an object, that

action is permitted to read the object as well as to write it. At most one action at a time may

1. The motivation for using locking instead of timestamps was a desire to offer a contrast and alternative to
Reed's timestamp based scheme [Reed78].

2. See [Gray78, Gray75] for a method that associates locks also with hierarchically organized groups of objects.
3. For now we are describing mutual exclusion locks. Read/write locking will be introduced a litlle later.




hold a lock in write mode; any number of actions may hold a lock in read mode concurrently.
However, if an action holds a lock in write mode, then no other action may hold the lock in

either mode. Here are the rules in detail:
Read/Write Locking Rules

e An action may acquire alock in read mode if no other action holds the lock in write
mode. If the action currently holds the lock in read or write mode, then the request
has no effect: the action continues to hold the lock in the previous mode.

e An action may acquire a lock in write mode if no other action holds the lock in any
mode. If the action currently holds the lock in read mode, it now holds it in write
mode. If the action currently holds the lock in write mode, then it continues to hold
the lock in write mode.

e An action must hold a lock in either read or write mode before reading the
corresponding object.

e An action must hold a lock in write mode before writing or modifying the
corresponding object.

e An action may not acquire (or re-acquire) any lock in any mode if it has released
any locks.

e An action may release alock it holds at any time.

The last rule will be modified later in this chapter. In [EGLT76] it is proved that two-phase
locking guarantees serializability for read/write locks.! The proof is only slightly more
subtle than with mutual exclusion locks. The key point is that the order of reads with respect
to other reads is irrelevant: it is only the order of reads with respect to writes that matters.
Locking provides serialization on an object-by-object basis. This improves concurrency
because most actions read or modify only small portions of the whole system state - that is, a

typical action locks only a small fraction of the objects, and actions that lock other objects

1. Actually, the previous citation of [EGLT786] was based on the fact that exclusion locking is just a special case
of read/write locking (only write mode locks are requested).




(or some of the same objects in non-conflicting modes) can proceed concurrently with no
serialization. Just as consistency is part of the motivation for actions, concurrency is part of
the motivation for splitting the system state into objects.

There is a natural trade-off between locking overhead (if there are many objects) and
reduced concurrency (if there are few objects). The chosen granularity of objects controls
this trade-off. In practice it has been found useful to vary the granularity of locks
dynamically [Gray75] tb get the effect of varying object granularity. Variable granularity is
omitted from our design to maintain simplicity of locking and to avoid introducing the
requisite embellishments to object structure. There is further discussion of variable
granularity in Chapter 8.

The locking scheme we have suggested can result in deadlocks. Deadlock is discussed

in detail in Chapter 6.
3.2.2 Choice of Primitive Actions.

We claimed that the refinement from exclusion locking to read/write locking improves
concurrency. Indeed, it is generally the case that refinements to locking schemes based on
improved semantic knowledge will enhance concurrency. Unfortunately, it is hard (if not
impossible) for the system to acquire the necessary semantic knowledge automatically. For
example, suppose a user implements a form of directories. Many, perhaps most, operations
on a directory do not interfere with one another because they deal with separate entries in
the directory. It seems unreasonable for the system to derive that fact from examination of
the source code for directory management. We have taken a compromise position: all
operations on objects are to be expressed (at the lowest level) in terms of reads and writes.
Hence, the primitive actions of the system are reads and writes of individual objects. The
system can certainly be built to "understand” the semantics of such a simple set of
operations. Chapter 8 discusses some possible extensions.

The main objection to basing all locking on reads and writes is that in some cases
further semantic knowledge would permit higher concurrency safely. A typical example is
that of directories, mentioned above. Our answer to the objection is that some kind of

loophole can be provided for suitably privileged or adventurous programmers to code




important special cases that are not handled well by the automatic system we have
suggested. We will not discuss the form such loopholes might take.
A second objection to our suggested locking scheme is that atomic actions are not
always necessary. For example, when a user lists a directory, it might be all right to list files
| in the process of being created or destroyed. However, the user must understand that while
the listing is informative, it is not entirely reliable because it may not represent a consistent
view of the directory. Theré is no way the system can automatically detect cases where
serializability is unnecessary, because the need for serialization is based upon the use of the
output of an action. In the previous example, a user may be fully aware of the possible
imprecision of a directory listing, but a program that is supposed to process all files in a
directory probably requires a consistent view of the directory. We have chosen to insure
safety of the system, though an implementation might provide loopholes for lower degrees of
consistency. ltis interesting to note, however, that although several degrees of consistency
were proposed for System R [Gray75] and actually implemented, the conclusions of the
designers was that only the highest degree (what we have called serializability) should be
offered [Gray80b].

3.3 Tolerating Failures.

The preceding discussions have been conducted under the unreasonable assumption
that failures do not occur. We now explain how actions behave if failures occur, and how to
implement that behavior. Note that if consistency were the only concern, whenever a failure
occurred we could set the system state to some simple (but internally consistent) value, and
report that this has been done (to maintain external consistency). Congruity requirements
capture our desire that failures should not erase effects that have been guaranteed to be
permanent. So although the hard part of handling failure is insuring consistency, it is hard

only because we simultaneously require congruity.
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3.3.1 Failure Atomicity.

As we noted at the beginning of this chapter, if an action is interrupted in the middle,
then there is no guarantee that the system state will be consistent. So, actions should be
run to completion. However, instead of guaranteeing that actions are completed, we will
insure a weaker but still sufficient property: that actions are performed entirely or not at all.
This all-or-nothing property is called failure atomicity. A transaction is an action that
exhibits failure atomicity (and abides by the locking protocols of the previous section). If a
transaction is performed successfully, it is said to have committed; if a transaction is started
but fails, then it is said to have aborted.

Why allow transactions to be aborted? There are two answers. First, a partially
executed transaction that cannot continue because resources it requires are not available
can indefinitely delay other transactions desiring resources held by the waiting transaction.
Sometimes it is better to abort the waiting transaction so that the resources it holds can be
freed and other transactions may proceed. In fact, should a deadlock ariée among some
transactions (each transaction is waiting for a resource held by the next), it is essential to
abort at least one of the transactions engaged in the deadlock.

The second answer is that while an individual transaction may fail, a request that some
action be performed can be implemented by repeatedly starting transactions to fulfill the
request until one such transaction commits. Note the distinction between a transaction
request, which is what is presented to the system by external agents, and a transaction,
which is an instance of execution of a transaction request. Of course not every request can
be fulfilled - a request might be meaningless or malformed in some way such that it can
never be processed. Automatic resubmission of the request should be prevented in such
cases.

~ Hence, it can be useful to distinguish between errors, which indicate transaction failure
that will happen every time the transaction request is attempted, and failures, which are
related only to accidents encountered by the particular attempt to fulfill the request. Typical
examples of failures are node crashes and deadlocks. An example of an error is an

unexpected (unhandled) overflow exception in the transaction code. Though we will
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sometimes distinguish failures from errors, we generally lump them together and use the
term failure in a more generic sense. Automatic request retry is not included in our design -
it is mostly irrelevant to our development (but see the discussion in the latter part of Chapter

6). A system implementor might add automatic retry where desired.
3.3.2 Object State Restoration.

Of the various failures to be tolerated (communications failures and node crashes),
node crashes are the hardest to handle. When a node crashes, the volatile state disappears,
which includes all intermediate state of transactions in progress at that node, i.e., everything
not recorded in permanent storage.

Volatile memory is manipulated directly by transactions,’ but permanent memory is
not.2 Hence, permanent memory must be updated periodically to reflect changes made to
objects. Each object is represented by a combination of volatile and permanent storage.
However, the permanent storage by itself must represent a consistent state of the objects
stored at one node. So updates of permanent storage must be done carefully to insure that
consistency is maintained. We will propose an automatic system for updating permanent
memory. An advantage of the automatic system is that it insures updates are done in a
correct fashion.

The real state of an object is whatever is recorded in permanent memory. Transactioné
manipulate a volatile memory copy, which is backed up to permanent storage at the
appropriate time. It may be possible to omit volatile memory copies of objects that are not
currently being used by any transaction. In that sense volatile memory forms a cache for
permanent memory. It is possible and reasonable that the representations of objects on
permanent and volatile storage are different; we trust that the transaction system will hide

such differences from programs, which see 'only the volatile memory format. Anyway, we

1. Recall that volalile memory may include paging store and scratch files on secondary storage.

2. It might be possible to use some or all of permanent memory directly, but we do not assume so. Further,
whether or not it is possible to use permanent memory directly, it is not a good idea to do so, because permanent
memory must be updated carefully.



will not be particularly concerned with the details of object formats - we require that certain
functionality be provided, but the techniques used to provide it do not matter.

The crucial piece of mechanism required is a way of restoring each (write) locked object
to its previous state when (if) the transaction that locked the object aborts. There are two
general methods for state restoration. The first one (which we call the state method)
maintains two object states: the current state and the one in effect when the object was
locked. This method is simple to implement - one just samples and saves the state of an
object at the time it is first locked for writing by the transaction. The saved information is
sufficient for restoring the object’s state should the transaction abort.

In the other method one keeps the object's current state and a list of operations that
must be performed to restore the object to its former state. We call this the operations
method, since it records changes in terms of operations rather than states. The list of
operations that will restore the object's state is called the undo log. Once a transaction
commits or aborts, the undo logs for objects it locked may be discarded (after performing
undo in the case of abort). See [Gray78, Gray79, Verhofstad78] for more detailed discussion
of recovery techniques.

One might think that logs or sampled states are not really necessary, because the
permanent memory copy of an object can be used to restore the object’s state in case of
transaction abort. However, restoring from the permanent copy is not sufficient to handle
the extension of the transaction scheme of this chapter to the more sophisticated nested
transaction scheme of the next chapter.

Should we use the state method, or the operations method? We choose the state
method, because it is easily made automatic. The operations method is harder to automate
because (in the géneral case, which is what we are discussing) it requires an undo
procedure to be supplied for each update operation. Also (in the general case) these
procedures must be provided by the programmer and cannot be constructed automaticaily.
Not only do undo procedures present an increased programming burden, they can be subtle
and will probably have more than their fair share of programming errors. The choice of state
restoration techniques is also discussed in Chapter 8.

Note that there is not a fundamental difference between the state and operations




methods: the state method is just a special case of the more general operations method (its
operation is "restore this saved state"). At first it might appear that the operations method is
inherently incremental (because it appends undo records to the log as the object is operated
upon), and that state method is not (because the object state is sampled before the object is
actually manipulated). However, the state method could be made incremental by recording
each change to each memory cell performed by a transaction. This idea might not be so
far-fetched given some hardware support; see [LGH80], for example.

Here is the state restoration method we suggest, in more detail. Each object is
represented with a copy in volatile memory and one in permanent memory. When an object
is locked for writing, its (volatile) state is sampled and saved so that it can be restored if
necessary. The state sample may be kept in volatile memory; it need not be permanent
because we have not yet touched the permanent copy of the object. Now we may
manipulate the (volatile copy of the) object at will. Should it be necessary to abort the
transaction that locked the object, we simply restore the former state of the volatile copy,
and release the lock. We can discard the restoration information as soon as the object state
has been restored. In the case of a crash, we restore the volatile version of the object from
the permanent version; the effect is entirely equivalent to a traﬁsaction abort. Committing a
transaction requires that we update the permanent memory copy of each object modified by
the transaction. The individual writes to permanent memory must be performed atomically;
as discussed in the previous chapter (however, see also the upcoming discussion of
distributed commitment).

Since a transaction may abort at any time prior to commitment, we must hold
transaction locks until the outcome of the transaction is certain. Otherwise we might reveal
uncommitted updates. Also, we might not be able to re-obtain the locks necessary for
undoing changes, or worse, the objects might have been updated again, etc. Therefore, we
must follow not only the two-phase locking protocol, but also the additional rule that locks

cannot be released until the transaction is committed or aborted.

Q\.




State Restoration Method
(and modified locking rules)

e When a transaction first acquires a write lock for a given object, the state of the
object is examined and sufficient information saved to restore that state later.

e When a transaction aborts, restore the saved states of all objects for which the
transaction holds write locks, and then release all locks.

¢ When a transaction commits, update (in one atomic step) the permanent memory
versions of all objects for which the transaction holds write locks, and then release
all locks.

e A transaction may not release any locks except as specified in the preceding two

rules.
The details of the commitment procedure are given below.
3.3.3 Reliable Distributed Commitrment.

To abort or commit a transaction correctly, we must make sure that either all its updates
are written to permanent memory or none of them, even when the updates may have been
performed at a number of different nodes. There is a well-known! technique for achieving
this end, called the two-phase commit protocol. We will first describe a simple version of
this algorithm, and then briefly mention some fancier versions that have better properties.
Keep in mind that the protocol is specifically designed to work even if crashes occur at any
point in its execution. It is also designed to handle any of the communications failures
admitted in the previous chapter.

At this point we note that each object resides entirely at a single node. Hence
communications failures do not affect the locking and state restoration rules because those
rules do not involve communication. Some people might object that we do not support

distributed or replicated objects. However, it is simpler to provide such objects by building

1. See [Gray78], for example.
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another layer on top of the transaction system. Chapters 7 and 8 also discuss replication.
Suppose that we have somehow decided that a given transaction should be committed
(or aborted). The process of actually committing or aborting the transaction will be called
transaction resolution. The nodes that have done work on behalf of the transaction that we
wish to resolve are called the participants. Some node in the system (often, but not
necessarily, one of the participants) is chosen to play a special role, the coordinator. The
coordinator is the moving force, with the participants responding passively. Assuming we

desire to commit the transaction, the coordinator performs the following algorithm:

1. Send the message prepare (t) to each participant.! The coordinator is now said to
be preparing the transaction.

2. Await responses from the participants. If any participant responds abort (t), then
the transaction must be aborted (go to step 5). If all participants respond
prepared (t) then the transaction may be committed (go to step 3). If some
participants do not respond within a chosen timeout period, one can either abort
the transaction (go to step 5), or retransmit prepare messages to the participants
that have not yet responded and continue to await their responses. Eventually one
will proceed to either step 3 or step 5.

3. Record in permanent memory a list of the participants along with a notation that
transaction t is now completing. Send the message complete () to each
participant.?

4. Await responses from each participant. They must respond completed. If there are
some participants that have not responded after a timeout period, retransmit the
complete message to those participants. Once all participants have responded,
erase the list of participants and associated information from permanent memory.
Done.

1. The coordinator is considered to be distinct from the participant at the same node (if any). If there is a local
participant, its message may be delivered in a different way and with higher probability of success, but that is
irrelevant to the correctness of this algorithm.

2. It is more traditional to use the term commit where we have used complete. However, complete is more
consistent with the terminology to be used in Chapter 5. Also, it is not unreasonable to say that the transaction
has commilted once it turns control over to the coordinator, for it is then committed to accepting whatever
outcome the coordinator achieves for it. '
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5. Send the message abort (t) to each participant. Done.

if there is a crash, then the coordinator may perform some actions on recovery. In
particular, if there is a record of a completing transaction, then the coordinator uses the
saved list of participants to resume thevabave algorithm at step 3. If there is no such record,
then the transaction is either aborted, or has already completed.

The two phases of the algorithm should now be apparent: in the first phase (called the
prepare phase) the coordinator attempts to get every participant prepared. In the second
phase (the complete phase) the coordinator completes the transaction at all participants.

The participants act as follows:

o If a prepare (t) message is received, and t is unknown at the participant (it never ran
there, was locally aborted, or was wiped out by a crash), then respond abort (t).
Otherwise, locally prepare the transaction as follows. Write the identity and new
state of any objects write locked by the transaction to permanent memory.
However, the old state of the objects is not overwritten - the point is to have both the
old and new state recorded in permanent memory, so that the transaction can be
locally committed (by installing the new states) or aborted (by forgetting the new
states) on demand, regardless of crashes. This write to permanent memory must
be performed as a single atomic update (see the previous chapter for discussion of
what that means). When a transaction is prepared, its read locks may be freed
immediately, but write locks must be held until the transaction is resolved. Once the
transaction is locally prepared, send the message prepared (t) to the coordinator.

o |f an abort (t) message is received, then locally abort t: if t is prepared, erase from
permanent memory the potential new states of objects modified by it (use a single
atomic write), and then perform the usual volatile state restoration and untocking
associated with transaction abort.

o [t acomplete (t) message is received, then t must have been locally prepared; andis
either slill prepared, or already compieted. H it is prepared, install the tentative new
states of objects modified by the transaction, in both permanent and volatile




memory, discarding the old states of those objects. Naturally, the permanent
memory update should be done as a single atomic write. Finish committing the
transaction by releasing all its locks. If t is no longer locally prepared, then it has
already been completed, and no special action is required. In either case (t is
locally prepared or not), respond completed (t) when done.

e If atransaction has been prepared for a long time and nothing has been heard from
the coordinator, then ask the coordinator the state of the transaction. The
coordinator responds prepare (t) if the coordinator is still preparing, complete (t) if
it is completing. If the coordinator is not running or there is no record of the

transaction, then the node where the coordinator ran will respond abort (t).

If there is a crash at a participant, nothing special happens. If a transaction was prepared, it
is still prepared, because the permanent memory contains the necessary information. (On
recovery the participant should check for prepared transactions and set up the volatile
memory data structures, such as Iocks, so that unresolved updates will not be visible to new
transactions.) If a transaction was not yet prepared, then the crash will wipe it out, and the
transaction will be aborted all other places later. If the transaction was already completed,
then the crash has no effect on it, since its updates have already been incorporated into the

permanent versions of objects.

Below are state diagrams for the coordinator and participants of a transaction:
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The states in the dashed enclosures are ones in which there is no record of the transaction
at the node in question. In addition to the states discussed in the two-phase commit
protocol, we show the earlier states of a transaction, from its creation. The starred state
transition marks the "point of no return” - once that transition is taken the transaction is
guaranteed to be completed. This will be argued below.

Let us now explore how and why two-phase commit works. First, we claim that if any
participant completes the transaction, then all participants will complete it eventually.
Reasoning backwards, if a participant completes, it can only be because it received a
complete message from the coordinator. However, a participant will not receive a complete
message unless the coordinator is completin‘g. the transaction. For the coordinator to be
completing the transaction, all participants must have prepared the transaction. If a
participant has prepared a transaction, then crashes will not affect that participant’s data
concerning the transaction. That is, once a transaction is prepared at a node, later it can be
completed or aborted at will, and failures have no effect. Thus far we reason that if any
participant completes a transaction, then all participants must have prepared the
transaction. Note that it is important that participants respond prepared only after they have
made the necessary writes to permanent memory. Also', it is important that the coordinator
not make its record that it is completing the transaction until after all the participants have
responded prepared.

The rest of the argument is this: once the coordinator starts completing, it is insured
that every participant completes (responds completed) before the coordinator’s data

concerning the transaction is erased. So long as that data remains, crashes of the
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coordinator do not interfere with completion, because the coordinator starts completing
again as soon as it recovers from a crash. The careful use of permanent storage helps give
the algorithm immunity to crashes, and the retransmission of complete messages (in_
combination with querying of the coordinator by anxious participants) overcomes
communications failures. |

We have argued that if any participant completes, then all will complete eventually.
Hence it is not possible for‘ a transaction to complete at some participants and not others.
So failure atomicity is guaranteed globally as well as locally. It should be easy to see that if
the transaction aborts anywhere, it will eventually abort everywhere. This is true because
the participants will query the coordinator, which will respond abort.

The last step in arguing correctness of two-phase commit is the claim that the algorithm
eventually decides whether to commit or abort. Even without a timeout in step 2 of the
coordinator algorithm, all participants will eventually respond, and the coordinator will
decide whether to complete or abort.

There are two underlying assumptions here: that no nodes crash forever, and that
eventually any given pair of nodes can communicate. The latter assumption is fairly
reasonable; if necessary, certain messages could be spooled through third parties (see
[HS80] for example). However, it is not quite so reasonable to assume that nodes may not
fail permanently. We will return to this point in a moment.

There are some other facts to note about the algorithm. First, though it may seem
slightly strange for a participant to respond completed when it receives a complete message
for an unknown transaction, it is indeed correct. The situation arises when the first
completed message is lost, or the coordinator crashes while completing. In any case, the
participant must previously have prepared (or else it would not be asked to complete), so if
there is no record, the transaction must already have completed.

Another point is that no special action (e.g., updating permanent memory) is required if
the coordinator decides (or is forced) to abort. This is because a prepared participant will
correctly assume that the transaction is aborted if the coordinator has forgotten about the
transaction. Note that a prepared participant must wait for the coordinator to respond,

however. If the coordinator is not responding (possibly because of a crash) it is possible
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that it has started completing, in which case the participant must complete; but it is also
possible that the coordinator was aborting and the abort did not come through. A definite
response is necessary to resolve the ambiguity.

The particular version of two-phase commit presented above is one of the simpler ones,
but not necessarily one of the best. For one thing its efficiency is biased slightly towards the
abort case rather than the complete case. Suitable reworking could make it so that the
coordinator need only' record. the participants and persistently retransmit messages when
the transaction is to be aborted. In fact, a number of adjustments are possible, under
different aSsumptions; see [GrayB80a] for example.

The main drawback of our simple two-phase commit protocol is that it is vulnerable to
failure, in two senses:

e Permanent failure of the coordinator during the complete phase may cause some
participants’ never to resolve the transaction. The bad effect of this is that any
objects updated by the transaction at those participants will remain locked forever.
Even if the coordinator failure is not permanent, but just for a long time, this
behavior can be intolerable in some applications.

e Permanent failure of a participant causes the coordiﬁator to run forever. This is
probably acceptable, provided some manual method is provided for getting rid of
such coordinators once system administrators verify that the node in question will
never again be available.

In [Reed78], Reed presents an algorithm that essentially replicates the coordinator and uses
voting to decide whether to complete or abort. The key point is that completion does not
require a unanimous vote, so we can avoid problems arising from any number of nodes
being down by providing enough "copies” of the coordinator. Unfortunately, this commit
algorithm is still vulnerable to failure of a single node at certain times. For example, suppose
that the voting method used is three votes out of five decide the question {of whether to
complete or abort). If two votes have been cast for completion and two for abortion, then
the fifth “"copy” is necessary to decide the question. If the fifth node fails at this time, the
transaction will be unresolved until that node comes back up. While Reed’'s scheme

narrows the window of failure considerably, it does not close it.
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Recently Lampson has presented [Lampson80] a considerably more complicated and
expensive algorithm which he claims does not have this problem. That is, Lampson’s
algorithm supposedly permits a transaction to be resolved E no more than some fixed
number (a minority of the voters) of the "copies" of the coordinator are down. LelLann
[LeLann81] presents a less elegant but more practical algorithm that permits transactions to
be resolved if the coordinator fails; it requires that all participants be up. That is, LeLann’s
algorithm survives one node failure without hanging up, but not two failures. |

We believe that it would not be hard to substitute a different, possibly more robust,
version of two-phase commit into our algorithms. Hence, we will use the simple version
presented in this chapter to avoid needless complexity later.

Hammer and Shipman present a somewhat different approach to reliability of distributed

processing in [HS80]. We will have more to say about it in Chapter 7.
3.4 Some Implementation Issues.

Up to this point we have not described in detail what objects and transactions look like
or how they are manipulated. That was intentional: we do not wish to bias our work towards
one particular implementation of objects. Also, it was important to introduce the necessary
locking and state restoration concepts before discussing the issues further. However, at
this point it seems useful to present one concrete alternative, though we do not intend to
rule out other methods.

The simple object scheme we suggest is the following. At all times the state of an object
is a string of bits, though the size of that string might vary and has no particular bound.
Objects are identified by object id’s; the same object id can be used to find an object’s
volatile and permanent states. This implies that there is some method for translating object
id's to both volatile memory addresses and permanent memory addresses. It also implies
that object id’s are unique, at least within a node. We will ignore issues in the translation of
object id’s to physical addresses, in the allocation of memory for object states, and in the
construction of new object id’s. Those issues present interesting and challenging problems,
but are mostly orthogonal to this work. ’

Transactions are represented by transaction id's. For simplicity we assume that



transaction id’s are unique (system wide), and never re-used (at least we will not investigate
methods for reusing them safely).

The interesting operations of the scheme are ones to create, commit, and abort
transactions (based on transaction id’s), and to read and write' the contents of objects as
part of a given transaction. 'For safety and convenience, the locking, state restoration, and
distributed commit functionality is built into the system, so the programmer need not foliow
special rules. Howevet", if consistency is to be maintained, it is important that programs not
communicate values read under a transaction until (and unless) that transaction has
completed. A more complete design might provide means to insure that information flow
that endangers consistency does not take place.

Here is a description of a possible set of operations. We stress that we are just trying to
provide a simple example of how things might be done, and are not trying to design an

actual implementation. Atid is a transaction id, and an oid is an object id.
create_transaction () returns (tid)
Returns a new (previously unused) transaction id.
commit_transaction (t: tid) signals (impossible)

Attempts to commit ¢, This is impossible if t is foreign, aborted, or no longer
known.

abort_transaction (t: tid) signals (impossible)
Attempts to abort t.
create_object (t: tid) returns (oid) signals (impossible)

Creates a new object and returns.its id. The initial state of the object is the empty
bit string. As with all manipulations of objects, creation is performed with respect
to a given transaction (t in this case). The object is not definitely created until the
transaction completes. If the transaction aborts, then it is as if the object never
existed (except perhaps that the id might not be reused). Creating an object
implies possession of a write lock on it. Implementation of object creation and
deletion is discussed in Chapter 4.

delete_object (o: oid, t: tid) signals (impossible, nonexistent)




Deletes the indicated object. Deletion is not permanent until and unless t
completes. A write lock is acquired on the object. The exception nonexistent is
signalled upon any attempt to manipulate a deleted object.

read_object (o: oid, t: tid) returns (bits) signals (impossible, nonexistent)

Returns the current state of the object identified by 0. A read lock is acquired on
the object.

write_object (0: oid, b: bits, t: tid) signals (impossible, nonexistent)

Analogous to read_object, except that it sets the state of the object and acquires
a write lock instead of a read lock

update_object (0: oid, t: tid) signals (impossible, nonexistent)

Acquires a write lock on the object without actually writing it. This is useful if a
number of reads may be performed before writing, but it is desired to insure that
writing will be possible later.

In all cases where locks must be acquired, operations either acquire the lock and
succeed, or wait for the lock. That is, if a lock cannot be acquired, we assume that the
requesting transaction is eventually aborted - the object operations do not signal an
exception when a lock cannot be obtained.

The scheme just presented is simple partly because bit strings are very simple. If one
desired to provide objects with more structure, then some subtle problems might arise. For
example, if objects may have pointers inside them, it must be the case that pointers inside
different objects never refer to the same storage - if they did, then the states of the objects
would not be disjoint and the locking rules would not then insure consistent results. On the
other hand, it is certainly permissible to store object id’s in objects. Although object id’s are
pointers in a logical sense, access to the data referred to by them is controlled by the
operations on objects, which perform the necessary locking.

We have been suggesting a class of implementations in which access to objects is
mediated automatically, and it is therefore insured that the correct locking and state
restoration actions are performed, in a correct way. One could certainly provide locks

explicitly, along with a package of routines for doing locking and state restoration, where the



routines are invoked by user code explicitly, rather than implicitly and automatically. Such
schemes might be easier to retrofit to existing system and programming languages precisely
because they are not integrated into the fundamental semantics and interface presented to
the user. However, schemes requiring explicit user intervention are more tedious to use and
less safe.

A last point: although it would be useful to have a more explicit model of the
organization of usér cdde and communication, we have chosen not to devise such a model.
The main reason is that there is no general agreement on appropriate models for distributed
computing, and we did not wish to bias our presentation towards any particular view. A
second reason is that while a model of user computation might be convenient in discussing
our system, it turns out not to be necessary. Hence, we present a somewhat "raw"
interface, and it would be desirable to build a coherent user system on top of it. There is

further discussion of this point in Chapter 8.
3.5 Recovery at the System Interface.

Just as updates to objects cannot be irrevocably performed until a transaction
completes, neither can output be released. This congruity requirement, that output be
produced if and only if the producing transaction completes, cannot always be met. The
problem is that in general we cannot tell whether we have performed the output if a crash or
similar failure occurs at a bad time. Within the system this is not a problem, because
memory writes are idempotent: updating two or more times is equivalent to updating once.
Unfortunately, many output operations are not idempotent. A typical example is printing
checks. If we print a check twice, then unless some external agent detects and suppresses
the duplicate, we may very well end up paying the item twice, even though our records will
indicate we paid it only once. Similarly, we wish to avoid printing the checks until the
transaction completes, for otherwise we might pay an item and have no record.

There are two ways to deal with such problems. In cases where doing the output twice
is not overly harmful, we can simply redo it. A typical example of such a case is a normal line
printer listing; the only bad effect of producing a listing two or more times is wasted paper.

Printing checks falls into the cther category: if we err, we should err on the side of omitting




some checks. Further, we should alert the operators that a crash happened at a delicate
time, and the output should be examined so that the system can be issued further
instructions to compensate for the failure. Compensation is distinguished from recovery in
that recovery (e.g., state restoration) is handled entirely within the system and happens
automatically, whereas compensation requires external interaction. Typically, though not
always, the system consists of automatic machines, and compensation comes from human
operators. If we extend the’boundaries of the system, compensation can become recovery.
However, unless the system includes the entire universe (unreasonable), then we will always
reach a point where compensation will be required after completion. And not everything
can be compensated (before you detonate a bomb, you had better be sure you want it to
explode!) These comments are included to point out that even if we have a perfect recovery

system, there remain some fundamentally insoluble problems.1
3.6 Summary.

In this chapter we have introduced the principles of consistency and congruity. We
have suggested transactions and objects as abstractions to be supported by the system, and
argued that serializability and failure atomicity are sufficient to obtain consistency and
cengruity in the face of the types of system failures admitted. We have proposed two-phase
locking as a technique for achieving serializability, and we have described a state
restoration method that can be used to provide failure atomicity, if used in conjunction with
the two-phase commit protocol for distributed transactions.

We have imposed considerably more structure on the system through the introduction
of transactions and objects. We gave a very simple example of a set of operations for
manipulating transactions and objects. Operations for communication (e.g., message
passing) were not discussed, because we are not dealing with that aspect of the system in
detail. Presumably tid’s may be sent from node to node so that a transaction may have work

done on its behalf in different places.

1. The earliest statement of these ideas in similar form seems to be [Davies73].
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This chapter has dealt with ‘the concepts and general algorithms of traditional
transaction processing. The next three chapters extend these concepts from the current
single-level transactions to nested transactions. Chapter 4 describes the concept and
semantics of nested transactions and extends some of the algorithms. Chapter 5 presents
the extensions necessary because of the distributed nature of the system. Chapter 6

considers deadlock and the issue of progress in the system.




4. Subtransactions.

In the previous chapter the notion of transactions was presented, along with the general
techniques that will be used to achieve consistency and congruity in our design. In this
chapter, we extend the transaction idea by introducing nested transactions (also referred to
as subtransactions). Our goal is to present the new locking and state restoration algorithms
for nested transactions. However, first we must explain what nested transactions are. An
actual design of a transaction manager, which incorporates the nested transaction

distributed commit protocol, is presented in the next chapter.
4,1 What are Subtransactions?

Transactions are very useful and help solve many problems in both centralized and
distributed computing. However, there are several problems remaining that are partially
solved by adding subtransactions. The first problem has to do with modularity: difficulties
arise when composing two or more previously written transaction routines into a single new
transaction routine. (We use the term transaction routine to indicate the code executed
when a transaction is run.) Suppose we write transaction routines in the following general

way:

a_trans = proc (t: tid)
... actions with respecttot...
end a_trans

When we wish to execute the transaction, we write a simple program:

t: tid : = create_transaction ();
a_trans (t);
commit (t);
If there were two existing transaction routines, a_trans and b_trans, that we wished to

compose, we might do it this way:



t: tid : = create_transaction ();
a_trans (t);
b_trans (t);

-commit (t);

Hence it is not particularly difficult to compose transaction routines in the purely mechanical
sense of gluing them together into a single transaction. However, if we can specify that
a_trans and b_trans be executed concurrently instead of serially, then serious problems
result. Specifically, if the two transaction routines manipulate some of the same objects, we
can get unexpected, non-serializable behavior, just as if we ran two transactions without
appropriate locking. That is, even if each of a_trans and b_trans always produces consistent
results when run alone, there is no guarantee that their concurrent composition will insure
consistency.

To allow easy composition of transaction routines, we should run the composition as a
transaction in its own right, but also provide concurrency control within the transaction. The
natural method is to consider the whole transaction as a microcosm and synchronize its |
components (called its subtransactions) with respect to each other in the way whole
transactions are synchronized. This resulls in two levels of transactions: top-leve/
transactions, the kind of transactions discussed in the - previous chapter; and
subtransactions, the separate pieces composed to make new composite top-level
transactions. Once we admit two levels, it is natural to generalize to a hierarchy, so that we
may compose transaction routines that are themselves compositions. The result is a
structure with nested worlds of synchronization.

In addition to solving problems of concurrent access within transactions, nested
transactions can provide an added measure of robustness. For example, suppose we wish
to perform a distributed transaction, consisting of several subtransactions each doing
something at a different node. As we increase the number of nodes, or the duration of the
transaction, the probability of failure increases, such that in the limit the top-level




transaction’s probability of success goes to zero.! However, if we treat subtransactions as
full-fledged transactions within the microcosm of their containing transaction, then failure of
one of the subtransactions need not affect the outcome of any others. Of course, if the
application requires that all nodes perform the requested action, then a failed
subtransaction must be retried until it succeeds. The point is that only the failed
subtransactions need be redone. Thus each subtransaction (at any nesting level) acts like a
firewall, preventing outside‘influences from affecting the internals. Also, each transaction
partly shields the outside world from failures inside the transaction. If the independent
failure property of subtransactions is coupled with appropriately timed writes to permanent
storage (so the effects of a completed subtransaction are not lost in a later crash), then we
might be able to raise the limiting probability of success from zero to one. This aspect of
subtransactions will be discussed in more detail later.

When a subtransaction completes successfully, it will be said to have committed, even
though it is not a top-level transaction. Of course, such commitment is relative: any updates
become permanent only if all the subtransactions containing the committed subtransaction
also commit, and the enclosing top-level transaction completes. Thus, top-level
transactions are special: they are the only irrevocable transactions. Similarly, we will also
speak of an unsuccessful subtransaction as having aborted, though, és we pointed out
above, this does not imply that any of the containing (sub)transactions must abort. Aborting
is always irrevocable in the sense that an aborted transaction’s work must be undone. The
details of the relationship of committing and aborting of subtransactions to committing and
aborting of their containing transactions, including the manipulation of locks and state

restoration information, form the bulk of this chapter.

1. This does not mean that the transaction cannot succeed; just that it is infinitely more likely to fail than
succeed.
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4.2 Some Terminology.

Before proceeding to the details of synchronization and recovery of nested
transactions, it is useful to introduce some terminology. First, we will use the term
transaction to include both top-level transactions and nested transactions

(subtransactions). Now we define some more terms using the diagram below:

A Transaction Nesting Diagram
xf )
y ( A
D
§ )
Y y

The diagram illustrates three transactions, x, y, and z. The contours' indicate that x has
greater scope than y, that is, thaty is a' subtransaction of x. Likewise z is a subtransaction of
y- The contours emphasize the idea that each transaction is a miniature universe of
synchronization and recovery. Contours will never intersect, because a subtransaction’s
world and lifetime are always strictly bounded by those of its containing transaction (if any).
We will often find it convenient to describe transaction relationships using trees instead of

nested contours.? Here is the tree corresponding to the preceding diagram:

1. Our figures were inspired by Davies’ [Davies73] diagrams and his term spheres of control.
2. The two forms of description are equivalent because each encodes hierarchical relationships, which are the
relationships of interest here.
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if we had two top-level transactions, x and x’, each with a subtransaction, the situation could

be drawn this way:

If x had two subtransactions either of these diagrams would describe the situation:

Tree Diagram Nesting Diagram

/N OO

N _

Note that the lifetimes of y and y’ might overlap or they might not - the diagrams do not say.
Fortunately it almost never makes a difference because the locking rules we present later
will prevent any ill effects from concurrent execution.

Bécause transaction relationships follow trees, we will often use tree terminology, or
terms for familial relationships, to express transaction relations. Thus, transactions having
no subtransactions may be called /eaf transactions. Transactions having subtransactions

may be called parents, and their subtransactions are their children. Similarly, we will speak



of ancestors and descendants. It will be convenient to say that a transaction is an ancestor
and descendant of itself (i.e., the ancestor and descendant relations are reflexive). We will
use the terms superior (inferior) for the non-reflexive version of ancestor (descendant).
Because the distinction between ancestor and superior is often important, we have been

careful always to use the terms in the technical sense just described.
4.3 Synchronizing Nested Transactions.

Let us first consider exclusion locking for nested transactions, and make the extension
to read/write locking later. This will simplify the initial presentation.

In the simplest case, where nested transactions arise only by composition of previously
written one-level transaction routines, all manipulation of objects is performed by the leaf
transactions. Parent transactions perform only coordination and supervisory functions and
could be said (metaphorically) to live vicariously through their children. What is the correct
locking scheme in this simple case? '

For synchronization of leaf transactions with each other, the traditional and obvious
rules suffice: if a lock is granted, then the locking transaction has exclusive access to the
locked object until the transaction commits or aborts, and no other transaction can lock the
object for that period of time. However, we need additional mechanism and rules to handle
some cases. Here is a little example. Suppose we have some transactions related as in this

nesting diagram:

~
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Further suppose that y and z are processed serially and both lock the same object. (There is
no conflict because the transactions’ lifetimes do not overlap.)
A first observation is that when y commits, the lock cannot be entirely released. The

reason is that x can still abort, undoing y’s changes. So, to insure serializability, we must




make sure that transactions "outside" of x (i.e., not within x's microcosmic universe) cannot
see the changes until x commits. The solution is to "move" the lock from y to x when y
commits, thus showing that nothing outside of x can lock the object. At this point there is a
complication in that we would like to permit z to acquire the lock, but we said that x inherited
the lock from y. The problem is Only conceptual, and there are several ways out of it. We
choose the following way because it is makes our later extensions easier.

Instead of speaking of locks as just being held or not held, we will distinguish two ways
of possessing a lock, called holding the lock, and retaining it. If a lock is held, then the
holding transaction has exclusive access to the object. Clearly there can be at most one
holder of a lock at a time. When a transaction commits, its parent will retain all locks held or
retained by the committing child. When a lock moves from a committed child to the parent,
we say the parent has inherited the lock. A retained lock is a place holder, indicating that
transactions outside the retainer's universe cannot acquire the lock, but inferior
transactions (ones inside the retainer’s universe) can. Figure 1 shows the sequence of
situations as y, then z, and lastly x run and commit.

There is a detail yet to be settled: we have said what to do if an inferior commits, but
what if it aborts? We could either just release its locks, or we could have its parent retain
them. Why would we ever want the parent to retain a lock, since the transaction aborted,
and therefore could not have had any effect on permanent storage? The difficulty is that the
aborted transaction may have communicated information outside (e.g., to its parent). This
problem was present in the single level transaction system of the previous chapter. There
we explained how we must assume that transactions do not irrevocably communicate
information outside of themselves unless and until they commit, for otherwise external
consistency is endé\ngered.1 The reason the situation is worse now is that if an inferior

aborts because of an error?, it is reasonable to provide at least some information to the

1. We also explained how we could not assume that communication to the outside world was always perfect, but
that is not the point here.

2. Recall that an error is a situation that a transaction routine is not prepared to handle. Errors are distinguished
from failures, which are accidents (such as crashes and deadlocks) that might not reoccur if the transaction is
run again.



Figure 1. Example of Lock Inheritance.
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parent about why the child could not proceed. If we provide more than minimal information
(e.g., if we permit the user's code to return an error message of some kind), then
consistency might possibly be violated, provided the parent acts on the information
improperly. A reasonable approach is to retain locks if a child is in error, but to release locks
otherwise. In either case, any ‘updates the child made to objects should be undone.
However, since our design will omit special handling of transaction errors (as opposed to
failures), locks will be discarded upon transaction abort.

It is useful to release locks in the failure case. If deadlocks are resolved by aborting
transactions, then less work will have to be redone after a deadlock is broken. The reason is
that if locks of aborted transactions are inherited, then we must always abort entire top-level
transactions to break deadlocks, but if the locks are simply discarded we can be less
heavy-handed in aborting transactions to extricate ourselves from deadlocks. Deadlock is
discussed in more detail in Chapter 6. ‘ |

Here are the locking rules for our simple case. The rules are more general than

necessary for this case, so that they will be more easily extended later.
Initial Locking Rules

e A transaction may hold a lock if no other transaction holds the lock, and all
retainers of the lock are superiors of the requester.

e When a transaction commits, its parent (if any) retains all locks the inferior held or
retained.

e When a transaction aborts, all locks it holds or retains are discarded (released). If
any superiors of the aborted transaction were retaining the lock they continue to do

SO0.

The above rules assume that a transaction does not commit until all its inferiors have
terminated (so that it inherits any necessary locks, and passes them on to its parent). Note,
though, that the semantics of nested transactions specify that the lifetime of a child is always
contained in its parent’s lifetime. Hence the required commit order is insured. We will see in

the next chapter that it requires some effort to commit transactions in the correct order, but
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it is necessary if we are to support nested transaction semantics properly.

A possible objection to the simple model presented above is that prohibiting parent
transactions from directly accessing objects is unnecessarily restrictive, unnatural, or
inefficient (assuming that creating and manipulating inferior transactions has significant
cost). It is easy to relax the restriction and permit parents to actually hold locks instead of
just retain them. However, a question arises that must be answered.

What should happén if a transaction and one of its inferiors request concurrent access
to the same obiect? I the inferior locked the object first, the superior could just wait for the
inferior to complete and free up the object, or possibly abort the inferior if the supa'ior'
becomes impatient. However, if the superior locked the object first, the inferior cannot
possibly be granted the lock, since the lock will be held until the end of the superior
transaction. So, the inferior might as well be aborted right away. The situation just
described is actually a deadlock between the superior and inferior transactions. The
algorithms of Chapter 6 will deal with such situations.

There are aliernatives to the above approach to the probiem of concurrent access by
superiors and inferiors. For example, it would be reasonable to say that any concurrent
access by a superior and an inferior is incorrect, and rule it out. One could also just assume
that the programmer is doing the right thing and permit the concurrent access, though this
approach seems dangerous. We will stick with the approach first stated because it is
conservative encugh to be safe, and liberal enough to provide a potentially useful feature.
However, our design could readily accommodate different decisions about cqncurrent
access by superiors and inferiors. In sum, we permit a transaction and its inferiors to
attempt concurrent access to the same objects, but rule out actual concurrency. Any
deadlocks that arise are resolved as discussed in Chapter 6.

if, for some reason, the system is restricted such that parents and children never run
concurrently, then the distinction between holding and retaining a lock can be dropped,
provided that a parent never counts on the state of an object not changing during periods in
which the parent is stopped and its inferiors may be running. However, we will not assume
that such a restriction and assumption are made, and will continue to distinguish the two

ways of possessing a lock.
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Now we extend synchronization to provide read and write mode locking. This is most

easily explained by just stating the
Final Locking Rules

e A transaction may hold a lock in write mode if no other transaction holds the lock
(in any mode) and all retainers of the lock are superiors of the requesting
transaction. _

e A'transaction may hold a lock in read mode if no other transaction holds the fock in
write mode, and all retainers of write locks are superiors of the requesting
transaction.

e When a transaction aborts, all its locks (held and retained, of all modes) are simply
discarded. If any of its superiors hold or retain the same lock, they continue to do
s0, in the same mode as before the abort.

e When a transaction commits, all its locks (held and retained, of all modes), are
inherited by its parent (if any). This means the parent retains each of the locks (in

the same mode as the child held or retained them).

In the last rule we must perform a "union” (least upper bound) of some lock modes. The
basic modes are none (the lock is not possessed at all), read, and write. These modes are
ordered:

none { read { write

Using that ordering, it is easy to describe how a parent’s retained mode is set when a child

commits:

parent’s new retained mode =
max (parent’s old retained mode,
child’s retained mode,
child’'s held mode)

A transaction’s held and retained modes are independent, and each separately obeys

the rule that the mode never decreases. Thus, whenever a transaction requests and is




granted a lock, it holds the lock in'the maximum of the requested mode and the mode in

which it previously heid the lock:
new held mode = max (requested mode, old held mode)

For simplicity, most of the examples presented showed sequential subtransactions.
However, the locking rules work for concurrent subtransactions - in fact, concurrency is one
of the reasons for locking in the first place. While we will not present a proof of the locking
rules, here is a sketch of a correctness argument. First, holding a write lock prevents any
other transaction from accessing the locked object, and holding a read lock prevents the
object from being written. Next, inheritance of write locks when a transaction commits has
two effects: it permits transactions within the parent's microcosm (i.e., inferiors of the
parent) to see any changes, and to make further updates; and it prevents transactions
outside the microcosm from either reading or writing the object. Inheritan¢e of read locks
when a transaction commits prevents updates by transactions outside the parent's
microcosm. This insures that the parent’s world is presented with a consistent snapshot of
the objects it manipulates.

As in the previous chapter, we leave unspecified what happens in case a requested lock

cannot be granted, deferring discussion of deadlock issues to Chapter 6.
4.4 State Restoration.

As was the case with locking, we need to extend our previous ideas about object state
restoration when we proceed from single-level transactions to the nested transaction
scheme. Before we had an "old" state and a "new" or "current” state of each object locked
fc‘)r writing. A simple example will illustrate that two object states are no longer always

sufficient. Consider this transaction nesting diagram:
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Suppose that y, z, and z' all modify the same object, that y and z have committed, and we are
now at the end of z'. If 2, y' and x commit, then we should install the current state of the
object. If z' aborts, then we need to restore the state of the object as it was before z’ but
after y and z. If y’ aborts, then we need to restore the state pertaining after y and before z or
z’. Lastly, if x aborts, then we need to restore the state pertaining before x.

Instead of having just an "old" and "new" state, it is easy to see that we need to
represent the current state, and for each unfinished transaction that modified the object
(directly, or indirectly through descendants), the state that should be restored if that
transaction aborts. In the above example, we need the current state, the state to restore if z'
aborts, the one to restore if y* aborts, and lastly the one to restore if x aborts.

We can use our former methods for sampling the state of the object. However, there
was an optimization we mentioned in the prévious chapter that cannot be used here except
in one special case. Before, we could omit actually sampling the state of the object because
the copy in permanent memory was sufficient; that is, we could use the permanent memory
copy to restore an object’s state in case of an abort. In the above example, that trick can still
be used in case transaction x aborts, but it does not apply to y* or z’. For simplicity of

description, we will omit this optimization, though it might be used in an actual system.
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4.4.1 State Restoration Algorithm.

Let us defer for a moment considerations of whether the various states of an object
reside in permanent or volatile storage, and concentrate on the state restoration algorithm in
general. First, we find it easiest to think of the object itself as always possessing the current
state, with the information for restoring its state to previous values being separate and
possibly of a different format. Doing state restoration in this way makes the mechanism
more transparent to the user, because the user will see only the current version of the object
at any timex and does not have to be aware of or manage multiple versions of objects.

Restoration involves using previously saved restoration information to modify the
current state so that it becomes the desired previous state. It turns out that we need
restoration information for a given object for each transaction that holds or retains a write
lock on the object, for these are the only transactions which need to undo any modifications
to the object. Further, the restoration information associated with a given object and
transaction should be sufficient to restore the object to the state it had just prior to the first
time the transaction locked the object for writing. These requirements form the basis of the
following state restoration algorithm.

With each holder or retainer of a write lock on an object we connect some state
restoration information for that object, called an associated state (for the given object and

transaction). Associated states are created and manipulated as follows:

e When a transaction starts to hold a write lock on an object, the object is examined
and restoration information sufficient to restore its current state is created and
becomes the associated state for that object and transaction. This is done only if
there is not already an associated state for the same object and transaction. (An
associated state might already exist if the transaction had previously locked the
object for writing, or if one of the transaction’s children (directly or indirectly)
modified the object and committed; see the other rules.) |
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e When a transaction aborts, each of its associated states is used to restore the
objects directly or indirectly modified by the transaction. Those associated states
can then be discarded.

e When a transaction commits, each of its associated states is offered to the
committing transaction’s parent. The parent accepts each state (making it the
parent's own associated state for the same object) if and only if the parent does not
already have an asé.ociated state for the same object. Thus, if the parent does not
have an associated state for one of the objects, then the associated state will not be
lost, and the object will be correctly restored in case of later abort. However if the
parent already has an associated state for the object, then the one the parent has

should take precedence, because the parent’s is earlier than the child’s.

Perhaps it would be helpful to go through the various steps for the transactions previously
ilustrated (x, y, ¥, z, and z'). Figure 2 presents a series of snapshots showing the creation
and inheritance of associated states. We represent an associated state for a given object
and transaction by writing the the object name and the associated state value in a box
attached to the transaction’s contour in the diagram.

It should be noted that this state restoration algorithm assumes that each of a
transaction’s inferiors is finished (committed or aborted) before the transaction itself may
commit or abort. Otherwise, the associated states are not inherited and discarded properly.
As mentioned before, the proper termination order must (and will) be guaranteed.

As in the case of the locking rules, we do not present a proof that the state restoration
rules are correct. However, the basic argument is that the associated state for a given
object and transaction is always the state to which the object should be' restored if the
transaction aborts. The associated state is the correct state because it is the first sample
taken ‘by the transaction or any of its inferiors. In that sense the associated state is the state
that held at the beginning of the transaction. Thus the state restoration algorithm will
restore all objects modified by an aborting transaction to the state they had when first
accessed by or within the transaction. Hence, other transactions can perceive no effects of

the aborting transaction, except perhaps delays resuiting from lock waits.



Figure 2. State Restoration Example.
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4.4.2 Creating and Deleting Objects.

Object creation and deletion are fairly simple, and though they require special
treatment, that treatment is straightforward. Here are the details. Suppose that we have
operations called hard_create and hard_delete that "really" create and delete objects. Then
the creation primitive should hard_create the requested object, and set the associated state
to a special value, new-object. The creating transaction holds a write lock on the new
object, because creation is essentially a writing operation. Should the transaction abort, we
will start restoring objects according to the associated states of the transaction. At that time
we will see the special new-object marker for this object and perform a hard_delete, thus
restoring the object to its former state, namely, non-existence.

Deletion is somewhat different. When we ask to delete an object, the object is marked
to-be-deleted, and a write lock is set. The commit protocol will do a hard_delete of such
objects if and when the transaction truly commits. The use of permanent and volatile

storage in creating and deleting objeCts will be described below.
4.4.3 Using Permanent Storage.

The simple approach we take to the use of permanent storage’ for objects is similar to
the approach of the previous chapter. We keep the current object state, and all of the
associated states, in volatile memory. Permanent memory contains the old state, that is, the
state just after the last successful top-level transaction that modified the object. During
two-phase commit (to be described in the next chapter), both the old and current state exist
on permanent storage, and later, after completion, the old state is discarded and replaced
by the new one. Note that when it comes time to complete a top-level transaction, there is
only one associated state for each modified object, and it corresponds to the old state on
permanent memory. Hence that associated state could perhaps be discarded, though it
might be useful for restoring the volatile version of the object should the transaction end up
aborting.

If an object is created by a transaction, the object has no old state, but the associated

state for that object would be the special new-object marker. The commit algorithms treat



that case specially, in order to guarantee that if the transaction aborts then the object will
not exist, and if the transaction completes then the object will exist. This special treatment
might involve updating some special tables (directories of objects, or whatever). Deletion is
handled similarly by the commit algorithm: the object will still exist if the transaction aborts,
and is made non-existent if the trahsaction completes.

A property of our scheme for use of permanent memory is that if a crash occurs before
the top-level transaction is pfepared, then we have no choice but to revert to the old state on
permanent storage. This requires that we abort all transactions holding associated states
for the object, and hence all inferiors of such transactions. However, if we wrote more
information to permanent storage earlier (i.e., before starting to commit and complete the
top-level transaction), then we might be able to avoid aborting so many transactions
because of crash'es. Using the example of the previous section, if when y committed we
saved the current state of the object in permanent rhemory, being careful not to disturb the
old copy there, then we have enough information to recover from a crash more Qkacefully,
and continue from the point just after y committed.

We call such writing of information to permanent memory at subtransaction commit time
early writing. Early writing is a very restricted kind of checkpointing: checkpointing is the
saving of intermediate state to permanent memory for the purpose of surviving crashes.
That is, a checkpoint is a consistent snapshot of the state of a transaction, including its
privatée and temporary data as well as the states of the objects the transaction has locked.
The ideais that if a failure occurs we fetch the latest snapshot and continue processing from
that point, instead of running the transaction from the beginning.

It is conceivable that early writing could simplify the two-phase commit protocol of the
next chapter, or réduce its delay. However, if more than one inferior of a top-level
transaction updates the same object, then early writing will result in more updates of
permanént memory than writing only at prepare time. So it is not clear whether early writing
offers an advantage in this regard.

If all we had to worry about was the states of objects, then early writing, and possibly
even checkpointing, could be designed without too much difficulty. However, in the general

case we must be able to save all of x’s intermediate data, including its control point, local




.67 -

variables, etc., to be able to continue properly. Checkpointing is further complicated by the
fact that the snapshots .taken on different nodes must be consistent with each other:
together they must represent a consistent intermediate state of the transaction being
checkpointed. The feasibility of checkpointing depends strongly on the details of
transaction execution - details that are beyond the scope of this work. Therefore, we will not
discuss checkpointing further here, though some comments are offered in Chapter 8.

Might we be able to implement early writing alone instead of general checkpointing?
Would early writing be useful by itself? To see the answer to the second question, consider
two transactions x and y where x is the parent of y. Suppose that we perform an early write
of y’s results when y commits. If x and y are running on separate nodes, and y’s node
crashes, then the early writing has helped, because we can restore the state of y, and x’s
state is still unaffected because it is on a different node. If, on the other hand, x and y run on
the same node, then early writing of y does not help because a crash will abort x, forcing y to
be undone as well. In this case we need to be able to checkpoint x (to save its intermediate
state) as well as do an early write of y’s resuits.

Even though early writing can help reduce the susceptibility of transactions to failures, it
is not really enough: in the example just given, x must still always be aborted if it is not
checkpointed and its node crashes. It is hard to say whether the improvements in reliability
and delay afforded by early writing is marginal or actually very useful, and how much more
useful checkpointing would be in comparison. However, since checkpointing is required to
really solve the reliability problem, we will not discuss early writing further. A secondary
reason for this decision is that omitting early writing will simplify the presentation and
arguments of later chapters. [f early writing is deemed desirable, it should not be overly |
difficult to extend the material presented later, though it would introduce additional
complexity. So, we will stick with the simplest method of using permanent memory even
though it may not be adequate for transactions that run a long time or access a large
number of nodes, that is to say, transacﬁbns with higher than usual exposure to failure.




4.5 New Operations.

In the previous chapter we sketched a possible set of operations on objects and
transactions. For the extension to nested transactions we would add some new operations

to those already presented:
create_subtransaction (t: tid) returns (tid) signals {too_late)

Creates a new child of t. The exception too_/ate is signalled if t is no longer
running.

get_parent (t: tid) returns (tid) signals (top_level)

Returns the id of the parent of t if and only if t is not top-level, and signals
top_level if t is top-level.

is_committed (t: tid) returns (bool) signals (forgotten)
is_aborted (t: tid) returns (bool) signals (forgotten)

These tell whether the indicated transaction has committed (aborted). In some
cases memory of the transaction may no longer exist (e.g., after completion or
abortion of a top-level transaction); then forgotten is signalled. However, a
parent should always be able to inquire about a child.
Of course, the semantics of most of the other operations should be changed in the
obvious way: the new locking and state restoration rules are followed, commit and abort of

subtransactions works as described in this chapter, and so on.
4.6 A Possible Data Structure.

For concreteness we now outline a data structure that could be used for maintaining the
Iocking and state restoration information within a node. We will describe the volatile
memory data structures; the organization of permanent memory tables would be somewhat
different, but conceptually not as complicated because only top-level transaction
information is ever written to permanent memory.

First, to save memory space in the running system, we represent only those locks that
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are actually in use. When an object is locked, we construct a lock record and insert it into
two tables. These tables are the lock table and the transaction table. The lock table maps
object id’s to lock records, and the transaction table maps transaction id’s to transaction
records, which include a chained list of lock records. The tables would most likely be
implemented as hash tables.

Each lock record indicates the mode (read or write) and type (held or retained) of lock it
represents, and identifies the object locked (by giving the object id) and the transaction
possessing the lock. There should be a field for an associated state (probably a pointer to
some data whose format we will not discuss), and a slot for the chain linking together all
objects locked by the same transaction. The lock records could be doubly-linked for easy
deletion from the chain, or might be singly linked, which saves spaée, but requires searching
the chain on deletion. It should be fairly obvious how the locking and associated state
algorithms would manipulate the data structure we have described.

Here are diagrams showing the most relevant fields of lock and transaction records:

Lock Record Format

Held vs. Retained Flag

Mode (Read vs. Write)

~— # object being locked
. —» transaction record of poss&ésbr of iock
® - associated state information (only if write mode)

g - next lock record for same transaction
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Transaction Record Format
Transaction id
(2 v — first lock record for this transaction
° - —» information about children
. .

Naturally many other arrangements might be quite reasonable; we are merely being

illustrative.
4.7 Summary.

We will present the nested transaction distributed commit protocol in the next cha.pter;
we call it the transaction management protocol. Now we will summarize the advantages of
nested transactions over single-level systems.

At the beginning of this chapter we mentioned three problems that nested transactions
help solve, namely: composing arbitrary transaction routines into larger transaction
routines; safely permitting concurrency within transactions; and more graceful response to
failureé. Subtransactions help with each of these problems as follows:

e Subtransactions permit simple and safe composition of transaction routines that

may execute concurrently. So subtransactions enhance modularity.

e Subtransactions are explicitly designed to solve the problems that arise when
concurrency is allowed within transactions. The locking and state restoration rules
insure this. For a program with concurrency to work correctly, each concurrent
thread of computation should be performed with respect to a distinct
subtransaction. This simple rule goes a long way towards insuring correctness of
concurrent programs in the nested transaction system. The transaction manager

presented in the next chapter will assume that this rule is followed. If the rules are
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broken, consistency might be violated.

Subtransactions can help protect parts of a transaction from failure in other parts,
because the success or failure of each subtransaction is independent of the
success of its siblings. Depending on the application's consistency constraints, a
parent might retry é failed child, or try to accomplish the same end in another way
(e.g., find another copy of some replicated data), or ignore the failure. The failure
containment broperty of subtransactions suggests that most, perhaps all, remote
actions should be performed as subtransactions. We will say more about this use
of subtransactions in the next chapter.

Checkpointing may be required for best immunity to .failure, but checkpointing
schemes are beyond the scope of this work. However, many applications might not
encounter much difficulty with occasional failures; for example, on some systems
almost all transactions are quite short (a few seconds to minutes), and unless some
system components are unusually unreliable, performance may be quite
satisfactory without a checkpointing feature. Also, it might be easier to improve the
reliability of the system by spending more money on hardware (better devices or
more redundancy) than it would be to enhance thé software. For example, a
special highly reliable node could be used for running long transactions (this might
require early writing elsewhere).
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5. A Transaction Manager Design.

In this chapter we will present the transaction management algorithm for our nested
transaction system. The goal is to arrive at an overall organization and detailed protocol
that insures that each node commits and aborts exactly the correct transactions. Not quite
all of the protocol is presented here: we defer discussion of the means for resolving lock
conflicts and potential deadlocks to the next chapter. For now we assume that conflicts and

deadlocks do not occur.
5.1 Transaction Management Organization.

Our model of transaction management is that each node runs a transaction manager,
and all the transaction managers follow the same algorithm. The transaction managers
(TM’s for short) can be thought of as separate, concurrently running processes, though they
need not be implemented that way. The design is distributed, asynchronous, and
symmetric. The transaction manager of a node handles transaction-related processing
requests, or is at least informed of the relevant details, such as when transactions are
created, when they are to be committed or aborted, and so on. To guarantee global
consistency, the transaction managers communicate privately among themselves according
to the protocols we will develop in this chapter. User communication is entirely independent
and uncontrolled. The incorporation of user communication into our transaction
management protocols is left as an open problem. Figure 3 presents a diagram of the
conceptual relationship between user and transaction manager code in two nodes.

In the previous chapter it was seen that each concurrent thread of computation should
be done with respeét to a different subtransaction, or else the locking and state restoration
algorithms might not work. Actually, it is only concurrency within a single node that can
interfere with those algorithms. This is because each object exists entirely at one node;
hence concurrent activity under the same transaction id at different nodes will not disturb

object states. Since object states determine consistency, if object states are handled
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Figure 3. Transaction Manager Relationships.
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correctly locally, then local consistency is achieved.! So the designs of the previous
chapter do not force us to run each transaction at a single node. However, we find it simpler
not to distribute individual transactions. Instead of distributing a transaction over several
nodes when a distributed computation is requested, each node’s part of the computation is
performed as a separate subtransaction. Thus each transaction (and subtransaction) Is
local, and remote actions are always done under subtransactions. Although a transaction
may directly manipulate objects only at its home node, it can deal with objects at foreign
nodes by creating subtransactions to do the work on its behalf.

1. This is not to say that global consistency is insured - a large part of the transaction manager algorithms are
devoted 10 turning local consistency into global consistency.
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The advantage in not distributing individual transactions is that the bookkeeping for
each transaction is localized to the node on which it is run (called the transaction’s home).
This localization makes transaction management simpler because the status of a transactioﬁ
is readily determined at the transaction’s home without need for communication with or
consensus among other nodes. As would be expected, communication among transaction
managers is still sometimes necessary. For example, a transaction’s inferiors or parent may
not reside at the transaction;s home, so communication may be required for the transaction
managers to coordinate.

We will assume that the home of each transaction is determined when the transaction is
created; that is, a transaction’s home is part of its identity, and is available to anyone
knowing the transaction’s tid. Being able to derive a transaction’s home from its tid is
convenient for the transaction managers, and is the simplest way of determining
transactions’ homes. When we speak of the TM of some transaction, we mean the
transaction manager of the transaction’s home node.

We will now attempt to provide some background and intuition before proceeding with
the development of the transaction management algorithm. Although a transaction actually
runs only at one node, it exists at other nodes in a limited sense. For example, suppose we
have a transaction x at one node with a child y at another node. If y commits, then its locks
and associated states are inherited by x according to the rules presented in the previous
chapter. Because those locks and associated states are useful only at y’s home (they relate
only to objects there), it is reasonable to keep the records at y’s home. Thus a transaction
may have locks and associated states at many nodes although it runs and directly
manipulates objects only at its home. We will say a transaction has visited a given node if
the node is the home of the transaction or one of the transaction’s inferiors. The nodes
visited by a transaction are those that may have lock and state restoration information
related to that transaction.

For the locking and state restoration aigorithms of the previous chapter to work
properly, all of a transaction’s inferiors must be resolved (committed or aborted) before the
transaction itself may be resolved. We will say that a transaction is locally resolved at a

given node if the necessary commit/abort actions (whichever is appropriate) for that
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transaction have been performed at that node. Note that the locking and state restoration
algorithms require only that a transaction’s inferiors be locally resolved before the
transaction may be locally resolved. That is, a transaction’s inferiors need not be resolved
everywhere for the transaction to commit or abort here. The algorithm we will present takes
advantage of the fact stated in the previous sentence. For consistency’s sake, we must still
make sure that a given transaction either commits everywhere or aborts everywhere,
eventually. '

A slightly more subtle point is that if one of a transaction’s ancestors aborts, it does not
matter whether the transaction aborts or commits: even if the transaction commits, its
effects will be undone by the abortion of its ancestor. Carrying the point a little further, if
one of a transaction’s ancestors aborts, then the transaction need not be committed
everywhere or aborted everywhere. The reason is that the effects of the transaction will be
undone in any case, as just argued. On the other hand, if all of a transaction’s ancestors do
commit, then the transaction must be resolved the same way everywhere, or else
consistency might be violated.

To make resolution easier, we require that all of a transaction’s children be resolved
before the transaction can attempt to commit. A transaction may abort at any time - it need
not wait for its children to be resolved first. Sometimes it might be desirable for a
transaction to commit even if the outcome of a child is still in doubt. If that child is at a
crashed node, we must wait for the node to come back up.! Waiting just to make sure a
child aborted seems objectionable; we can avoid it through the following trick. Suppose that
whenever we wish to run a child at a different'node, we instead run a local child that runs the
desired remote action as its child. That is, the remote action is our grandchild. The local
child can be rigged to abort itself when desired. Since it is aborting, it need not wait for its
foreign child; and since the local child resolves (by aborting), we do not have to wait. The

extra level of subtransactions provides extra control.

1. If we can be sure that the node is crashed, it is safe to assume the child is aborted and proceed. However, if
we cannot distinguish a crashed node from one that is stow to respond ar one that cannot communicate with us
just now because of a communications faifure, we must wait for a response from the node. We do not assume
that crashed nodes can be detected.
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It is nice that we do not require transactions to resolve their children before aborting.
Not only does it permit us to use the trick presented in the previous paragfaph, but it also
permits crashes to be modelled as spontaneous aborts of transactions - both crashes and
aborts can happen at any time, and have similar results (undoing modifications to objects
and releasing locks). The similarity of crashes and aborts will be exploited in the transaction
management algorithm.

Because a transaction cannot commit until its children are resolved, the transaction’s
TM (its home node’s transaction manager) must know the identity of each child of the
transaction. To satisfy this requirement, if a transaction desires to run a subtransaction at a
different node, it will create the subtransaction before sending its request to the foreign
node. Suppose that local transaction x, running on node 1, desires to run a subtransaction
on node 2. To do so, x gets node 1's transaction ménager to create a subtransaction id
suitable for use at node 2. Then x includes this id in its request directed at node 2. If x really
wanted to run an initially unknown number of subtransactions at node 2, all resulting from
the one request, those subtransaction could be children of the single subtransaction that
was created in advance. Hence, the scheme does not appear to be overly inflexible. It may
seem strange for node 1 to create transactions whose home is node 2 (without even telling
node 2!), but the method does guarantee that all of a transaction’s children are known to the
transaction’s TM, which was the goal.

In sum, we introduce an operation that creates a transaction id at one node for a
transaction whose home is another node. However, this operation is used only when the
created subtransaction’s parent is located at the creating node. We assume that any
transaction id created locally for work at a foreign node is actually used. If the id is not used,
then our algorithm will believe that the transaction effectively aborted, because it is as if the
id were lost. Even if the creating transaction manager tells the foreign transaction manager
about the id, we still have no way to know whether the user’s request was processed or not,
because we have no control or knowledge of user-level communication. Hence we will not
bother to tell the foreign transaction manager about the created subtransaction. Because
an unused id looks like an aborted transaction, if it is possible that a transaction id might be

created but not needed at the foreign site, the foreign site should at least commit the
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transaction (which is trivial for a transactlion that does nothing).
A possible format for (sub)transaction id’s supporting these manipulations is illustrated
below.

Subtransaction id N

Locally Unique id | Creating Node | Home Node

\—— Giobatlly Unique id ——/

A full (sub)transaction id consists of a sequence of subtransaction id’s concatenated
together. The first subtransaction id would be the one for the top-level transaction, a
subtransaction id for one of its children would be next, and so on down the transaction tree
to the subtransaction being identified. Thus a transaction id identifies all the ancestors of its
transaction by explicitly enumerating them along the path from the root to the transaction.
Hence transaction id’s are variable in length. If this is inconvenient for some purposes,
transaction id's can be entered in a table and local indexes into that table can be used within
a node. Full id’s will be used when communicating transaction id’s to other nodes. We
expect that transaction nesting will not be very deep (becausé it is analogous to nesting of
procedure calls, which is not usually very deep), but it is unreasonable to place small
bounds on nesting depth.

Consider again the (top-level) transaction x on node 1 that creates an id for y to be run

on node 2. The transaction id's for x and y would look like this:

X xxxxx | creator =1  home = 1

y: | xxxxx | creator =1 | home = 1] yyyyy | creator =1 | home = 2

xxxxx and yyyyy are numbers unique on node 1
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5.2 Normal Case Protocol.

We will describe the transaction management protocol in four stages. This section
considers a protocol that works provided there are no failures, no lock conflicts or
deadlocks, and no transaction aborts. The following three sections relax these restrictions
one at a time: the second scheme handies communications failures, the third additionally
handles transaction aborts, and the fourth scheme improves on the third scheme by
handling node crashes. Consideration of lock conflicts and deadlock is postponed until the
next chapter.

Each of the four algorithms works under the assumptions of its corresponding section.
That is, we are not starting with a simple "buggy" scheme and fixing bugs. Further, the
addition of new problems or failure modes in later sections does not make the earlier
élgorithms wrong - the earlier algorithms were not intended to handle the later problems.
We believe that presenting the protocol in steps helps to highlight the underlying algorithm
and to explain what each part of it is doing (i.e., what problem(s) each part solves).

A transaction’s TM is the only transaction manager that can move the transaction
ihrough its state transitions towards commitment or abortion. Other TM’s that need to know
the transaction’s state will be informed of state changes via inter-TM messages. Although a
transaction’s TM is the only manager that can change that transaction’s state, state changes
may sometimes be forced - it is occasionally required that a transaction be aborted (e.g., to
break a deadlock), and crashes, which effectively abort transactions, can occur. However,
this does not concern us just yet, because we are assuming for the moment that no
transactions abort and that there are no node failures.

Below is a diagram of the possible states of a transaction and the state transitions. We

will embellish it with more states later.
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Transaction State Diagram

aborted

The top row of states in the diagram illustrates the history of a successful transaction. The
transaction is initially in the running state, which indicates that it exists but is not ready to
commit. When the transaction has performed all work it desires to do, it will enter the
finished state, by telling its TM that it is done. When it is determined that a committing
transaction’s children have terminated acceptably’ , the TM moves the transaction from
finished to committed. Thus a transaction is explicitly created, and enters the running state
as soon as some operation is performed with respect to its tid2. When the transaction has
performed all work it desires to perform itself, it so informs its TM, and thus enters the
linished state. Later, when all the transaction’s children have .committed, or immediately if
they are already committed, the transaction enters the committed state.3

When a transaction commits?, a number of TM's may have to be told. In particular the
transaction’s parent’s TM must be informed. But we must also inform all TM’s of inferiors of
the committed transaction. This is so that the locks and associated state information at
those nodes may be updated. The updating is organized as follows. When a new

transaction is encountered at a node, the TM insures that there are entries for all ancestors

1. That is, all children that the parent requires to commit must have committed. The rest of the children may be
either committed or aborted, but may not still be running.

2. In general a transaction need not be known to the transaction manager as soon as its id is created, even if the
id is created locally.

3. Under the present assumptions, a two-phase commit protocol is not necessary, because there are no crashes
or other failures. Naturally, two-phase commit will be introduced later. At that time we will see that a commiited
transaction’s effects are nat permanent: the transaction must be prepared and then completed for its updates to
become permanent. :

4. Recall that we are not yet admitting transaction aborts, so we do not need to discuss the abort case.
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of the new transaction; this may entail creating a number of néw entries. These entries are
used for local bookkeeping: to keep track of locks, associated states, etc. As previously
mentioned, when a transaction commits, the TM’s of all the transaction’s inferiors are told of
the commitment. This permits them to adjust lock and state restoration information. As
soon as a transaction has committed and the necessary adjustments to other tables have
been performed, the transaction’s entry in the TM’s data base may be discarded. Any
information that is still pertihent has been moved to the committing transaction’s parent’'s
entry. When a top-level transaction commits, permanent memory updates are performed, at
all sites visited by the transaction. After a top-level transaction is committed, all information
concerning it and its inferiors may be discarded.!

This first algorithm requires keeping track of the set of nodes visited by each
transaction. This is most easily done by associating that set directly with the transaction in
the TM’s data base. When the transaction commits, the list is used to determine which TM’s
to tell about the commitment. The list is also sent to the parent’s TM, which adds the set of
nodes to the parent’s set. Hence by the time the parent is ready to commit (when all of its
children are resolved), the parent’s TM has a complete and correct list of the nodes visited
by all the parent’s inferiors. The parent's TM should also include all nodes where the
parent’s children ran (these might not be included in the children’s lists).

Here is an example to illustrate the first protocol design. Suppose that each of the
transactions in Figure 4 is on a different node; we use their transaction id’s to name their
TM’s. The figure presents both a global state, which is fictitious since it is not necessarily
perceived by any node, and the view seen by y2’s TM, just to illustrate what such a view is
like. The view at each TM varies because it sees only its local transactions, their children,
and their ancestors.'

This initial algorithm is not at all robust, and is presented only to show the overall
organization and intent of the final protocol. The rest of the mechanisms we introduce are

proposed to deal with failures of various kinds. However, the basic approach of passing

1. Actually, it is not until the transaction is completed that the information may be discarded; see the later
discussion of two-phase commit,
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Figure 4. Example of Commitment.

Global State Visited node sets

Snapshot 1: All transactions started, none committed.

x:{}

x .
yt:{}, y2:(}
z11:{}, z12:{}
/ \ 221:{}, z22:(}
z11 z12 z21 222

Snapshot 2: z11 and 221 committed, y1 and y2 informed.
x:{}

x .
yt:{z11}, y2: {221}
/ \ z12:{}, z22:{ }
yi y2\

212 222

Snapshot 3: z12 and 222 commiitted, y1 and y2 informed.
X x:{}

yi:{z11,z12}
\ y2: {z21,222}
y1 y2

Snapshot 4: y1 committed, x informed.

X ' x:{yl,211,z12}
y2: { 221,222}

y2

Snapshot 5: y2 committed, x informed.

X x:{yl,z11,212,y2,221,222 }

View aty2

z21

\




information up the transaction tree on commitment and broadcasting’ to all nodes touched
by inferiors will be retained throughout. Broadcasting to all visited nodes is a kind of
optimization: the simplest, most "natural” algorithms would pass information up and down
the transaction tree. But broadcasting can be much faster and use many fewer messages,

which is why we use it from the staft.
5.3 Handling Communications Failures.

This section presents the second transaction management protocol. This protocol will
handle communicafions failures, but not node crashes or deadlocks, and it does not permit
transaction abort. We provide support only for failures associated with transaction manager
messages, because we are not specifying user-level communication in detail.

The methods used for dealing with communications failures are simple. Of the possiblé
problems (lost, delayed, and duplicated messages), lost messages are the hardest to handle.
Our solution is: if a TM does not hear about a transaction of interest (which transactions are
"interesting” and when will be explained later) within some period of time, it queries the
transaction’s TM. Such queries should be repeated until a response is elicited, or is no
longer required. With the present set of failure possibilities, only two kinds of querying are
needed.

The first kind of querying is called parent querying. Suppose a transaction x has
children at other nodes. If x is in the finished state, then x’s TM should query the TM’s of
unresolved foreign children. Querying should also be performed if the transaction explicitly
inquires about the state of foreign children or waits for them to be resolved. Parent querying
is necessary for two reasons. One is that the message requesting the child to be run at the
foreign node may have been lost - hence, no commit notice would be forthcoming. The
other reason is that the child may have run and a notice that it has committed may have

been sent, but the notice may have been lost. Parent querying helps detect these situations.

1. As mentioned in Chapter 2, we use broadcasting to mean the sending of an identical message to a number of
different recipients. Our type of broadcast could be implemented using a broadcast medium, if one is available,
but separate point-to-point messages would also suffice.




We will explore some details in a moment after discussing the other form of querying.

Parent querying solves the problem of lost commit notices directed from children to
parents, but what about lost commit notices from a transaction to its visited nodes? The
solution is to have the visited nodes query the transaction's TM. We call this form of
querying participant querying, because the visited nodes have participated in the
transaction. (Later it will be seen that the visited nodes are the participants of the two-phase
commit protocol, whi'ch also justifies the chosen terminology.) Whenever there are
resources held by a foreign transaction (because a local inferior of the transaction
committed), and it is important that those resources be freed (e.g., because another
transaction is in a lock wait for some of the objects held by the foreign transaction), then
participant querying should be done. As with parént queries, participant queries should be
repeated periodically until a response is returned or the query is no longer necessary. This
retransmission of queries solves the problem of lost-queries and responses.

We now have the following kinds of transaction manager messages:

e commit notices

e parent queries

e participant queries

e responses to queries
Responses will indicate the status of the queried transaction, namely running, finished, or
unknown (meaning the queried node has no record of the queried transaction). Note that
once a transaction has committed, it is then unknown. This leads to a problem. Suppose a
child is queried by its parent and the response is unknown. What is the state of the child?
We cannot tell whether the child has committed or not, because unknown is replied in the
case where the child has not yet started and aiso in the case where the child has run and
committed. It is easy to remedy this problem: the identities of local committed transactions
should be remembered by each TM. With this change, a parent query of a committed child
results in the response commiited, because the foreign node remembers the committed
child. It would be unfortunate if the foreign node had to remember committed transactions
forever,; in this case the identity of a committed transaction need be remembered only until

its parent commits, for once the parent commits, no more parent querying of the child will be



done.
Duplicate and delayed parent queries and responses to parent queries now pose no

problem, because the states of a child form a total order:
unknown < running < finished < committed

Consider all the responses to parent queries of a given transaction. Let s be the response
that is maximal in the sense of the above ordering. Then we can conclude that the state of
the child at its home is > s. The total ordering of child transaction states allows us to detect
the out of order messages that matter in much the same way that sequence numbering
would.

Participant queries are less tricky, because we know for sure that the queried
transaction must have been running at some time (otherwise it could not have created
subtransactions, etc.). Hence a response of unknown to a participant query unambiguously
implies that the queried transaction has committed. The previously used principle of totally
ordered transaction states permits us to handle responses to participant queries that arrive

out of order. However, the state ordering for participant queries is:
running < finished < unknown ( = committed)

Since query and response messages could be delayed arbitrarily, it is possible that a
response would come in even after the queried transaction has been resolved at the
querying node. Such responses can just be ignored. The most subtle case involving
delayed messages is when a parent query arrives at the child node after the parent has
committed. The response would be unknown, even if the queried child committed.
However, this incorrect response will be ignored because the querier is the parent, and the
parent has already committed. (It is crucial that the parent commits first at its home and only
then at the others node it visited.)

In sum, communications failures are handled by introducing querying. Querying
overcomes the problems introduced by lost commit notices and subtransaction requests.

Queries are retransmitted so that it does not matter if they are lost. We found that certain




information must be remembered to permit unambiguous answers to parent queries.
Namely, the identity of a local committed transaction must be remembered until its parent
(locally) commits. We exploited the total ordering of transaction states to solve problems of
duplicate and delayed messages and messages arriving out-of-order; it was not necessary

to introduce any other form of message sequence numbering.
5.4 Handling Aborts.

The third scheme handles transaction abort as well as communications failures. It will
"be useful to discuss the semantics of abort in more detail. In particular, in which cases
should a parent be aborted because one or more of its children aborted? As argued in the
previous chapter, we should permit the user transaction to decide which children are
essential and which are not. However, to help protect against oversights in programming,
we suggest that the TM abort the parent unless explicitly told to ignore the abort of a child.
This feature requires that there be some way for a transaction to tell the TM "it is all right
that my child x aborted”. When the TM is so instructed, it will set a flag associated with its

entry for that child. We can represent the situation by adding a new, somewhat fake state to

the transaction state diagram. The new state is called revoked:

The revoked state is fake because it never really exists at the revoked transaction’s TM, but
only at its parent’s. The parent can cause the transaction to be revoked only if it knows the
transaction has already been aborted. We emphasize that from the standpoint of the
revoked transaction there is no distinction between aborted and revoked. We will say that a

transaction is resolved if its state is committed, aborted, or revoked. The commit rule is: a



transaction cannot commit unless its children are all resolved and none of their states is
aborted. That is, each child must be either committed or revoked. The concept of revoking
is not essential, but seems like a good idea in our relatively unstructured system.

When a transaction aborts, all of its inferiors should also be aborted. However, because
we do not require an aborting transaction to wait for its children, the inferiors might still be
running. Transactions that should be aborted but happen still to be running are called
orphans (because their parehts are "dead" and they are "alive").

There are several adjustments we make to the algorithm so that aborts are handied
correctly. First, when a transaction aborts, it is a good idea to inform all its inferiors’ TM's of
the abort. These abort notices will help free resources at those nodes promptly.1 But just
sending abort notices is not enough, becauée the notices might be lost. Rather, we would
like both parent and participant queries to be able to tell if a transaction aborted. For
queries to work, we need to be able to tell unequivocally whether a transaction has
committed or aborted, so long as any activities started by that transaction might exist (for
participant queries) or until the transaction’s parent is resolved (for parent queries). We will
return to this point in a moment.

Here is an example that illustrates a second problem. Suppose that a transaction x had
two children y and z, and that y committed and z aborted, and then x committed. Further
suppose that some node missed the notices that y committed and that z aborted, but now
hears that x has committed. This node must query about y and z to resolve them before
committing x. However, we suggest a simpler method: each transaction collects the
identities of its successful (committed) inferiors. When a transaction commits, its set of
successful inferiors are sent out with its commit notices, so that its parent can add them in
with its own succeésful inferiors, and also so that each node visited by the committing
transaction can immediately resolve any inferiors of the committing transaction that may be
in doubt there. So that responses to queries can return the same information, a TM should

remember the committed inferiors of each local committed transaction.

1. This assumes that we have some way of aborting running transactions. Some techniques for aborting
running transactions are mentioned in Chapter 8.
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The admission of transaction abort requires some adjustments to querying. First, note
that the possibility of aborts destroys the total ordering of child transaction states that was
used in the previous algorithm. This is because a transaction can be running, say, and then
it can abort, which would result in responses of unknown. The solution to this difficulty is to
have two different sorts of parent queries: one is used before the parent knows whether or
not the child has started processing, and the other is used if the parent knows the child has
definitely started. Furt'her, the responses to parent queries are flagged as to which kind of
parent query prompted them. Let us call the first kind of query a query-new (because we are
querying a new child, not yet known to be established), and the other kind a query-old. The
matching responses are response-new and response-old. We now derive the following new

ordering:

unknown <running < finished < committed

new
also:

finished <unknown ;4
By unknown; we mean a response-i of unknown, where i is either new or old. The new
revoked state does not enter into this ordering because it pertains only to the state of the
child at its parent’s node, not at the child’s own home.

We could have solved our problem by remembering the identity of local aborted
transactions, the way we remember local committed transactions. The reason we did not
use that technique is to keep the effects of aborts similar to those of crashes - in a crash the
identities of the effectively aborted transactions would be forgotten at the crashed node.

The result of the above refinement to parent querying is that we will never think a child
aborted when it did not, and we will never think a child committed when it did not. When we
admit crashes in thé next algorithm, it will be possible for a child to run and either abort or
commit, and then for its node to crash, and the overail appearance to the parent could be as
if the transaction never even started. However, because the crash wiped everything out, it is
as if the transaction never ran, so the distinction does not really matter. Perhaps this gives
more insight into what parent querying achieves.

We have removed the potential ambiguity of unknown responses to parent queries, but

what about participant queries? In the previous scheme (the second algorithm) a response



of unknown to a participant query always meant the transaction had committed. Now it
could mean the transaction aborted. The solution is to remember more information. In
particular, each TM will remember (the identities of) all local committed transactions. This
permits the TM to look up a queried transaction and reply committed instead of unknown if
the transaction indeed committed‘.

At this point we have an algorithm that works, but it requires potentially large amounts
of information to be remembered. While it appears necessary that the information be kept
for a while, perhaps we can find a way for TM’s to get rid of it eventually. First, if a TM
receives an abort notice for some transaction, it can forget that transaction and all the
transaction’s committed inferiors, because they aborted. A TM will eventually discover all
relevant aborted transactions through querying, and those transactions and their inferiors
will be forgotten. However, if a top-level transaction commits, it and its committed inferiors
will still be remembered.

Suppose we require some extra steps to be performed when a top-level transaction
commits, with the intention of permitting the transaction and its commiited inferiors to be
forgotten. A first step would be for the TM of the top-level transaction (hereafter called the
top TM) to retransmit commit notices until it receives acknowledgments from all nodes that
ran committed inferiors of the transaction. This would guarantee that all relevant nodes
knew the transaction committed.

Perhaps the identities of the inferiors could be forgotten when the commit notice
arrived? Unfortunately, no. Suppose that the top TM is in the process of sending the commit
notices, that x is a successful inferior of the transaction 'being committed, and x's node has
received the commit notice from the top TM, acknowledged it, and forgotten all inferiors of
the committed transaction (including x, of course). If a participant query about x now arrives
at x’s node, then the response would be unknown. Inconsistency would result if this
response gets to the querying node before the commit notice that has been sent by the top
TM. (The querying node (call it q) initiated the query because x held resources at q. Hence
x had committed inferiors at g, and since x is a successful inferior of the top-level
transaction, these committed inferiors are suecessful inferiors of the top-level transaction,

too. Therefore g will indeed get a commit notice from the top TM.)




A top-level transaction commit scheme that does permit committed transactions to be
forgotten is the following: once the top TM has received acknowiedgments from all
participants as in the scheme just suggested, it sends a second round of messages letting
each participant node know that it can now forget the transaction and its committed
inferiors. To insure that all possible forgetting is done, the top TM should keep sending the
forget messages to each participant until an acknowledgment (call it a forgottén message) is
received. Then the tbp TM can also forget the transaction. The reason two rounds of
messages works is that the first round removes the need for querying and resolves the
top-level transaction and its inferiors everywhere (except for orphans, which will be
discussed in a moment). Once the transaction is committed everywhere it need be, we can
safely forget it. The similarity between the two rounds of message passing in the top-level
transaction commit protocol and in the two-phase commit protocol is not coincidental, as we
will see in the next section.

Orphans do not undermine the scheme just presented. This is because one or more of
their ancestors aborted. Hence even if an orphan’s TM queries and gets an incorrect
response of unknown, it does not matter, because the orphan should abort anyway.
(Actually, incorrect responses will never arise, but that is harder to argue.) 4

Our third scheme, just presented, handles transaction aborts and communications
failures. The kinds of messages used are commit notices, abort notices, new and old
queries, new and old responses, acknowledgments of top-level transaction commit (call
these committed messages), forget messages, and forgotten messages. TM's must
remember local committed transactions and their committed inferiors. The lists of
committed inferiors are included in commit notices, for parents to acquire the information,
and for participanté to resolve any inferiors that are stil in doubt. Transactions may be
forgotten if they are known to have aborted, or after a forget message for their top-level
ancestor has been received. The home of a committed top-level transaction cannot forget
the transaction until the transaction is known to be forgotten at all other participant nodes.

Near the beginning of this section we presented a state diagram for transactions.
Actually, that diagram applies only to non-top-level transactions; here is a diagram for

top-level transactions:




We have added two states, notifying and forgetting, for the top-level transaction commit
protocol. The revoked state is omitted because it does not make sense for top-level

transactions: they have no parent to revoke them.
5.5 Handling Crashes.

We now present the fourth and final transaction management protocol. It will handle
node crashes as well as communications failures and transaction aborts. Crashes introduce
only one new situation: a previously committed transaction may be effectively aborted by a
crash. This could happen to top-level transactions or to subtransactions. Further, crashes
effectively abort running transactions, too. The main adjustment we make to the algorithm is
to add two-phase commit semantics to the top-level transaction commit procedure scheme.
Since thé prepare phase of two-phase commit requires acknowledgments from the
participants, it entirely absorbs the notification phase of the third algorithm. Similarly, the
complete phase of the two-phase commit protocol absorbs the forgetting phase of that
algorithm.

Two important things happen in the prepare phase: each pa'rticipant checks that
crashes have not destroyed transactions thought to have committed; and (if everything is ali
right) information is written to permanent storage so that later crashes do not affect the
participant’s ability to commit. Exactly what checks are performed by a participant when it is
asked' to prepare? As in the third scheme, the participant must resolve any currently
unresolved inferiors of the transaction, using the information sent along with the prepare
message. That information is a list of all the committed inferiors of the top-level transaction
being prepared. Transactions that are on the list and unresolved at the participant should

be committed; all other inferiors that are unresolved at the participant should be aborted.
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Once unresolved inferiors have been resolved, we can check to see if the top-level
transaction may be completed. Of all the transactions on the list of committed inferiors,
consider the ones whose home is the participant; call those transactions the needed
transactions. The needed transactions are the ones that must have survived crashes for the
top-level transaction to be able to complete. Consider the participant’s list of committed
inferiors of the top-level transaction. Of those transactions, only the ones whose home is
the participant matter;' call these transactions the surviving transactions. At this point, it
should be clear that every surviving transaction is needed (any unneeded inferiors have
been aborted in the process of resolving the inferiors). However, there may be needed
transactions that have not survived. in that case a crash must have occurred that caused
those transactions to be aborted (in effect), and the top-level transaction cannot be
completed. In sum, the transaction may be completed if every needed transaction is a
surviving transaction; otherwise the transaction must be aborted.

Actual preparing (writing information to permanent storage) is done as in Chapter 3,
and the two-phase commit protocol works in the same way. There are a few minor
differences:

e Since prepare messages must include the list of committed inferiors of the
transaction being prepared, the coordinator needs to be given that list. This
involves no effort if the coordinator is implemented by the top-level transaction’s
™.

e When a participant receives a complete message in the second phase, not only
should it perform the nécessary permanent memory updates, but it can also delete
all information relating to the completed transaction. That is, completion includes
the forgetting function of the third algorithm.

With the introduction of two-phase commit, the state diagram of a top-level transaction

needs o be amended, as shown below:
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Top-Level Transaction State Diagram

.I finished II commatted ’

Note that a transaction’s effect are not permanent until the transaction is completed; that is

consistent with the terminology of Chapter 3. Being in the committed state only indicates
that the transaction believes it was successful - the two-phase commit protocol must be run
to insure success (or detect failure).

Crashes do not affect orphan resolution, though they may cause orphans to be created.
The only difference is that before we admitted crashes it was possible for us to keep track of
all nodes ever involved in a transaction, which would then allow us to go and find all
arphans. However, we did not take advantage of that fact, and used a technique (participant
querying) that works in the presence of crashes. (That was partly why we chose that
technique.)

At this point we have algorithms that guarantee that the correct transactions are
eventually committed or aborted everywhere consistently, except for the problems posed by

deadlock, which are covered in the next chapter.
5.6 Correctness of the Algorithm.

We now offer an informal correctness ar‘gumenf for the transaction management
algorithm just presented. The goal is to establish that if a top-level transaction completes, it
and its successful inferiors are committed and completed everywhere eventually; and that
unsuccessful (aborted) transactions are aborted everywhere eventually. Further, when a
top-level transaction completes, the "right" inferiors are committed and all others are
aborted.

For the moment, ignore crashes that abort transactions after they have committed.



Because of the way the identities of successful inferiors are passed from children to parents
(i.e., up the transaction tree), an inductive argument would establish that when a transaction
enters the committed state, it has a correct list of its committed inferiors. This general fact
applies to top-level transactions, so when a tob-level transaction starts the two-phase
commit protocol, its list of ‘committed inferiors is correct. If we consider the effects of
possible crashes, then the top-level transaction’s list of committed inferiors is an upper
bound on the surviving' committed inferiors.

Given the correctness of the top-level transaction’s list of committed inferiors, it is easy
to see that the two-phase commit protocol checks for surviving inferiors correctly, and
makes sure that each inferior is either aborted at each of the nodes contacted or committed
at each. Hence, a top-level transaction and its inferiors will be aborted or committed
correctly at the nodes involved in the two-phase commit protocol.

All nodes where a top-level transaction had successful inferiors will be contacted in the
two-phase commit protocol, and the transaction and its inferiors will be resolved correctly as
just argued. However, there may be nodes that ran unsuccessful inferiors and which are not
included in the two-phase commit. Those node’s TM's will eventually discover that the
unsuccessful inferiors in question really were unsuccessful, through participant querying.

One part of the argument we have omitted is that each transaction eventually decides to

commit or abort. We discuss the issue of transaction termination in the next chapter.
5.7 Summary.

We first explained that the system operates by having a transaction manager running at
each node, with the transaction managers communicating privately among themselves to
insure correct resolution of transactions at all nodes. Further, each transaction has a home
node, and only the home node’s TM can change the transaction’s state. A transaction's
parent’s and descendants’ TM’s will be informed of state changes, but can query the home
TM. It is assumed that a transaction’s home node can be easily derived from its transaction
id. We also explained that a transaction cannot commit until its children have been
resolved, but a transaction can abort at any time.

The transaction management algorithm was presented in several stages. First we



considered a system-in which there are no failures of any kind and no transactions abort or
deadlock. That very simple system served to illustrate the overall organization of transaction
management, in which information flows from the children’s to the parent's TM as the
children commit. Then when the parent commits, its TM broadcasts information to all its
inferiors’ TM’s.

Next we showed how to handle communications failures: duplicate, lost, and out-of-
order messages. The problems that arose were solved by introducing querying (one TM
asking another about the current state of a transaction of interest) and by remembering
more information for a period of time (specifically: the identities of local committed children
of a transaction, until the transaction itself commits). It was found that the total ordering of
transaction states permitted querying to be performed correctly without the addition of
message sequence numbering. The same techniques were expanded in later stages of the
presentation.

The third scheme permitted transaction aborts in addition to communications failure,
but still excluded crashes and deadlocks. Along with aborts came orphans: still running
transactions that should be aborted because one of their ancestors aborted. It was seen
that the participant querying of the previous scheme is sufficient for finding orphans. We did
need to keep around more information about transactions: the identities of all the committed
inferiors of a transaction. Further, we needed to add a kind of "watered down" two-phase
commit so that information about a transaction could be forgotten once the transaction was
done.

In the final scheme we permitted crashes. Deadlocks are not handled by this last
scheme; deadlock handling is described in the next chapter. The only new feature required
to handle crashes was changing the weak form of two-phase commit into a true two-phase
commit algorithm. This involves having participants check in the prepare phase that they
can still commit (i.e., that none of the supposedly committed inferiors of the transaction
being prepared has been wiped out by crashes), and writing information to permanent
memory (as was described in Chapter 3).

In addition to more detailed arguments presented with each scheme, we offered a

simple, informal, global correctness argument for the whole scheme at the end.



Here is a summary of the kinds of messages sent between transaction managers in the

final scheme:

Commit notice: This indicates that some transaction has committed. [t is sent by
the transaction’s TM to the parent's TM and also to TM's of éll nodes visited by the
transaction and its ihferiors. The purpose of a commit notice is to bring all TM’s up
to date concerning the committed transaction. In addition to the identity of the
committed trahsaction, a commit notice contains a list of all the transaction’s
committed inferiors, to permit resolution of inferiors at TM’s that somehow failed to
receive the commit or abort notices for those inferiors.

Abort notice: This indicates that some transaction has aborted. Like commit
notices, abort notices are sent by a transaction’s TM to its parent’s TM and those of
all visited nodes. No list of committed inferiors is necessary - when a transaction
aborts, all its inferiors necessarily abort.

Prepare, Prepared, Complete, Completed messages: These message types are
used in the two-phase commit protocol. Prepare messages carry the same
information as commit notices and perform part of the same functions. Complete
messages need only identify the transaction being completed. If the transaction is
aborted in the prepare phase (e.g., because one of the participants cannot
prepare), then the usual abort notices are sent to the participants.

Queries, Responses: Queries are sent from parent TM's to child TM’s and from
participants to transaction home TM's, to request the latest information concerning
the state of a transaction that is in doubt. Parents query children continually to
verify that the children actually started running and also to notice if the child’s node
crashes of the child aborts. Parent queries enable us to recover from lost
subtransaction requests and lost commit and abort notices, as well as crashes.
There are two kinds of parent queries, query-old and query-new, which are
explained in Section 5.4. Participant queries enable participants to recover from
lost abort and commit notices, and also permit them to discover that they are
orphans, if that is the case. Responses indicate a queried transaction’s state, or

unknown if there is no record of the transaction at the queried node. In addition, a



response of committed will provide the list of committed inferiors of the transaction.

The novelty of our work is that we have shown exactly what information to keep and
pass around so that nested transactions can be correctly committed and aborted at each
site. It turns out that the list of committed inferiors of a transaction is a sufficient piece of
information. While querying involves some subtle points, it is basically a straightforward
method for overcoming lost messages. Other techniques might be used to get around
communications failures, but querying is simple, and inexpensive if failures are relatively
rare. '

We have been- careful to insure that transaction manager information need not be
stored in permanent memory, except for a small amount during the two-phase commit
protocol. User transactions do not use permanent memory until two-phase commit either.
As pointed out in Chapter 4, a checkpointing mechanism might be desirable, to reduce the
vuinerability of transactions to crashes.

We were also careful to make sure that no information need be remembered forever,
and we avoided algorithms that are correct only on a statistical basis (e.g., forgetting
information after some "suitably long" time has passed). If one makes other decisions on
some of these points, one might indeed arrive at a different transaction management
algorithm. However, the algorithm we have presented seems to be correct, not only by
argument, but also because it has been simulated (see Appendix I).

The next chapter presents the extensions to this chapter’s final algorithm to handle
deadlock. A summary of the algorithm in formal notation, including the deadlock handling

aspects, is presented in Appendix II.
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6. Guaranteeing Progress.

In this chapter we will show how to make a guarantee that not only does the system as a
whole make progress, but also that each transaction request makes progress in the system.1
It is not possible to make an absolute guarantee, for reasons described below. Naturally, we
can make no guarantees at all about improperly programmed transactions.

There are two parts to our guarantee:

e The system will not deadlock.

o The system will not forever abort a transaction request that is properly formed (has
no errors in it). That is, if a well-formed request is retried each time it fails, it will be
completed eventually.

The second guarantee is the one that cannot be absolutely insured. There are two reasons
the second guarantee cannot be met:

e Failures may cause the request to be aborted each time it is attempted.

e The request may be non-terminating.

Note that non-termination may not necessarily be the result of programming errors leading
to infinite loops. For example, suppose a particular transaction is to process all files in a
given directory. Other transactions might continually create new files so that there is always
a queue of work for the transaction in question. The never ending queue is a kind of
"livelock" possible in our design.2

The main contribution of this chapter is the distributed deadlock detection algorithm for
nested transactions. In the next section we first provide some background on deadlock in
general, and then present our algorithm in the following steps. First, a naive (but incorrect)

algorithm is discussed, to give intuition as to the approach taken. Then we offer an

1. Recall that a transaction is an instance of execution of a transaction request. Transaction requests are what
are submitted to the system for processing.

2. One might think that since a distributed system such as ours is probably asynchronous, the arbiter problem
might arise. It has been argued on theoretical grounds and shown by experiment [CW75] that arbiters (binary
decision modules) for asynchronous systems cannot be guaranteed to make decisions in bounded time.
However, we do not require that progress be made in bounded time, only that it be made eventually. So the
arbiter problem is not relevant to our guarantees.



algorithm that works in the absence of failures. After arguing the algorithm’s correctness,
we point out how to make it robust. Lastly some performance improvements are made to the
algorithm. After the deadlock detection algorithm has been presented, we discuss a simple
technique for avoiding cyclic restart, starvation, etc. In short, we make about as strong a

guarantee as possible that each transaction request will be executed eventually.
6.1 Deadlock.

There are essentially three ways of handling deadlock in a system:

e Prevention: guaranteeing that deadlocks can never arise in the first place.

e Avoidance: detecting potential deadlocks in advance and taking action (aborting
some transaction(s)) to insure that a deadlock will not actually occur.

e Detection: permitting deadlocks to form, and then finding and breaking them after

they have occurred.
6.1.1 Deadlock Prevention.

Deadlock prevention is accomplished by accurately predicting (or bounding) the set of
resources a request needs in orde} to succeed. A request is not started unless all resources
it might use are available and guaranteed not to be needed by any requests that have
already been started. That is, all resources a transaction needs are reserved in advance.

Not only does deadlock prevention tend to reduce concurrency, possibly by
unreasonable amounts, but we must also take into account the cost of analyzing the
incoming transactions. Deadlock prevention seems to be impractical except for systems
with a fairly rigid, pre-defined structure. A particular advantage of deadloék prevention is
that it does not require that any work be undone because of deadlocks, and is the only
feasible method in systems with no provision for state restoration. However, the ability to
undo Work is generally necessary in systems that tolerate failures, so this advantage is not
relevant to our design. On the other hand, SDD-1 demonstrates that prevention is not out of
the question for many common database applications [BSRG77, BRGP78). See [CD73] for

further discussion of deadlock prevention, including a number of references to other



papers.

6.1.2 Deadlock Avoidance.

in avoidance schemes, instead of trying to predict what resources a transaction might
require, we simply let the transaction proceed, and take action only when it requests a
resource that is not free. The action taken varies with the scheme. It is typical for the
requester of the resource to wait for a while, in hope that the resource will be freed.
However, if there is a deadlock, then the resource will not become free. Therefore, after the
optional wait period expires, either the holder or the requester of the resource will be
aborted, on the (overly conservative) assumption that a deadlock has arisen. The simplest
schemes simply abort the requester and retry it latér. More sophisticated algorithms assign
priorities to transactions and abort the lower priority transaction.

Two refined avoidance algorithms that use priorities are the Wound-Wait and Wait-Die
algorithms [RSL78]. In Wound-Wait nothing is done unless a transaction starts to wait for a
resource held by a transaction of lower priority. If such a wait occurs, the réquester wounds
the holder, causing the holder to abort and free the resource for the higher priority
requester. In Wait-Die no action is taken unless a transaction starts to wait for a resource
held by a transaction of higher priority, in which case the requester aborts itself (dies). In
each of Wound-Wait and Wait-Die the first word indicates the action taken by the requester if
its priority is higher than that of the holder, and the second word indicates its action if its
priority is lower than the holder’s.

Avoidance has the advantages that it is much more flexible than prevention and that it is
simple. Avoidance algorithms may abort transactions unnecessarily, though. Say we are
using the Wound-Wait algorithm. Then it is entirely possible for a high priority transaction to
start to wait for a resource held by a low priority transaction that will eventually finish and get
out of the way. But the algorithm will go ahead and abort the low priority transaction
anyway.

Deadlock avoidance is more popular than deadlock prevention in data base systems,
because it is more applicable than prevention in many cases and also because data base

systems tend to incorporate a notion of transaction abort anyway.
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6.1.3 Deadlock Detection.

Deadlock detection systems allow transactions to conflict (attempt to acquire the same
resources) and wait freely. Rather than trying to steer away from deadlocks, detection
methods permit deadlocks to occur and try to find and resolve them after the fact. All
deadlock detection methods attempt to find cycles of transactions, each waiting for a
resource held by the next. In essence deadlock detection consists only of finding cycles in a
directed graph. However, in distributed éystems the problem is complicated by the fact that
no single node knows all the edges of the graph. It is necessary to communicate some
information between the nodes in order to guarantee that all cycles will be found.

The simplest algorithms use centralized detection: all the graph information is passed to
some distinguished node, which performs all the graph analysis and sends results back.
More sophisticated arrangements use several levels of hierarchy, giving rise to what could
be local, then regional, and lastly global deadlock detection. Each level in the hierarchy will
find cycles involving larger sets of nodes.

Another class of detection algorithms passes information according to the structure of
the graph rather than according to pre-defined responsibilities. The first class is called
hierarchical detection, with centralized detection as a special case. The second class of
algorithms are called edge-chasing algorithms, because they follow the edges of the graph.

The advantage of detection is that it is less likely to abort transactions needlessly.
However, some detection algorithms will find deadlock cycles that no longer exist (these are
called phantom deadlocks), because of the varying communication delays. Hierarchical
algorithms are more subject to this problem than edge-chasing ones. The main
disadvantage of detection algorithms is their additional cost and complexity. Detection
should abort significantly fewer transactions than avoidance, but the cost of detection must
be compared with the cost of the transactions that avoidance would abort and redo. It is
also bossible that deadlock detecfion results in lower throughput because transactions
holding many resources can queue up for a commonly used resource. This would cause
other transactions to back up waiting for the held resources, and so on, clogging the

system. It would be interesting if the performance of detection and avoidance were
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compared in arunning system.
6.2 Our Deadlock Detection Algorithm.

We have chosen to present a novel deadlock detection algorithm as the deadlock
handling part of our transaction system. The algorithm finds all deadlock cycles, and it does
not report many phantom deadlocks (see the later discussion of this subject). One of the
previously mentioned deadlock avoidance schemes could have been used to complete our
system design, but the detection algorithm is more interesting. Some implementations might
be able to get by with deadiock prevention methods, but our design does not require that
transactions be that predictable.

As previously mentioned, deadlock detection algorithms work by constructing and
analyzing the waits-for graph. A waits-for graph is a directed, bipartite graph in which the
nodes represent transactions and resources, and the edges indicate resources held by a
transaction, or transactions waiting for a resource. There is a deadlock if and only if there is
a cycle in the waits-for graph. Here is an example graph of the minimal deadlock situation:

two transactions and two resources:
waits- ior/’ \""‘“’V

In general, a transaction could be waiting for a complex condition to become true, instead of
jﬁst for a particular resource to be free. An example of this is a transaction waiting for any
one member of a pool of equivalent resources to become available (e.g., a tape drive or
communications channel). However, we are dealing with a simpler case, because our

resources aie the objects of the system, and the only condition a transaction can await is for
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one particular object to be lockable in a given mode. We will not consider extensions to
more complex transaction wait conditions, though such extensions might not be too
difficult. Because a transaction can await only a single lock at a time in our system, we will

omit the resources from the waits-for graphs, and represent only the transactions.
6.2.1 Overview of Detection Algorithm.

Our algorithm is of the edge-chasing variety. In fact, it never builds very much of the
waits-for graph, but only traces individual paths through it. If any path closes on itself, then
adeadlock has been found.

There are three steps in the deadlock detection algorithm. The first step is called
initiation. Detection is initiated only when a transaction starts to wait for a lock held by
another transaction in a conflicting mode, and not always even then (exact conditions will be
described later). In the second step, called detection (or edge-chasing), edges of the
waits-for graph are traced, both locally through each node and also between nodes. The
transaction managers do this using their kndwledge of transaction states, and also by
acquiring information about locks held and awaited by transactions. The final step is
deadlock resolution, and is performed when a deadlock is actually found. In resolution, we
pick some transaction in the cycle found, and cause it to be aborted, so that the deadlock is

broken.
6.2.2 The Naive Algorithm.

Here are the details of a naive version of the detection algorithm. There are certain
ways in which this version does not work, and it is also not at all robust. However we offer
this explanation to convey the main concepts. We will point out the difficulties and
necessary refinements later.

Initiation occurs whenever a transaction starts to wait for lock. The desired object and
the transaction have the same home (because transactions can request locks only on their
home node), so the transaction’s TM can readily obtain information about both the

transaction and the requested lock. The TM is informed whenever a local transaction starts
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to wait for a lock, by suitable calls in the lock management code. The TM then ﬁndé which
transactions hold (or retain) the same lock in modes conflicting with the mode of the waiting
requester. That is, the TM makes a list of all the transactions that stand in the way of the
waiter. These transactions are exactly the ones for which there is a waits-for graph edge
from the waiting transaction. Since we wish to trace out paths in the waits-for graph, the last
step of initiation is the sending of detect messages to the TM’'s of the transactions
conflicting with the waiter. The contents of detect messages will be described in a moment.
Initiation is simply the process of responding to the lock wait by building the list of
conflicting transactions and sending detect messages to their TM's.

Note that initiation may not happen all at once. For example, a transaction may be
waiting to acquire a lock in write mode, with new transactions acquiring the lock in read
mode. In this case, as each new reader acquires the lock, a detect message should be sent,
because the reader stands in the way of the waiting writer.

Detection consists of the processing and forwarding of detect messages by the
transaction managers. The basic idea is that when a TM receives a detect message
indicating that some transaction is waiting for (a resource held by) one of the TM’s local
transactions, the TM checks to see if the local transaction is also waiting. If so, then the TM
sends a message to the TM of each transaction conflicting with the local transaction. Each
such detect message represents a graph path one edge fonger than the one for the
incoming defect message. Thus, paths through the waits-for graph are built an edge at é
time.

The detect messages contain the identities of the transactions on the path being traced,
in order. So the first detect message, sent as part of initiation, will have a list of just two
transactions in it: the waiting transaction and the particular conflicting transaction whose
TM receives the detect message. Note that separate deteét messages are started along
each path: a detect message indicates a single non-branching path through the waits-for
graph.

When a TM receives a detect message and finds that its local transaction (the one at the
end of the list in the detect message) is waiting for any other transactions, the TM should

check and see if any of those transactions is on the list in the detect message. If so, then a
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cycle has been discovered and resolution should be applied.
Here is an example of detection in action. Suppose that top-level transactions x, y, and
z are in deadlock, and the last to start waiting is x. The sequence of detection events after x

starts to wait is illustrated in this diagram:

Transaction Relationships Detect Measages Sent (in order)
Node A: x A —» B:[xy]
Node B: y B — C:[x,v,12]
Node C: z C: deadlock detected

x requests lock L1; L1 heid by y
Yy weits for L2; L2heidbyz
Z waits for L3, L3 heid by x

The above situation could have come about if y had a previous (now committed)
subtransaction at A, z had one at B, and x had one at C. There are many other ways we

could arrive at this deadlock.

6.2.3 The Correct Algorithm.

For this algorithm we assume that there are no failures in the system; a later
improvement will make the algorithm robust. Now, in what way is the naive algorithm
incorrect? The main flaw is that it does not take nested transaction relationships into
account correctly. This happens in two ways. Firsi, suppose a transaction x is waiting for a
lock held by transaction y. The naive algorithm fails because x cannot necessarily obtain
the lock when y commits. This is because the locking rules imply that (in general) x will not
be able to proceed until some ancestor of y commits. The exact ancestor is the oldest
ancestor of y that is not also an ancestor of x. We will call this oldest ancestor the awaited
transaption, whereas y is the holding transaction.! The other way in which transaction
relationships are not taken into account is that when a transaction starts to wait for a lock,

all its ancestors are also waiting for the lock in the sense that they cannot commit until the

1. For ease of discussion, we will call y the holder even if it is actually only retaining the lock in question.
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lock is granted (unless some transaction is aborted, but we cannot count on that).
It would not be unusual for both effects to be present at once:

Transaction Structure 'Wait Relationships

zawaits lock L1  bholds lock L1

X p
cawaitslockl2 zholdsiock L2
d awaits lock L3 g holds lock L3
y a - q r
' Summary of Waits
—» b
4 b c

c —»» 2z
d d —» q

Becauseﬁof the locking rules, z cannot acquire lock L1 until both b and a have committed. In
this case b is the holder and a is the awaited transaction. The most subtle case arises with c:
it is waiting for lock L2, which is held by z. So c is waiting for z which is waiting faor b, butz is
really awaiting a, which is an ancestor of ¢. The result is that there is a deadlock between z
and a without a holding or waiting for any locks itself. Another situation concerns a: it is
waiting for a lock held by q and is thus awaiting p. But none of p, g, and r are waiting for
locks, so there is no deadlock.

Based on the above insights concerning the influence of nesting on deadlocks, we

propose the following correct algorithm for handling deadlocks:

Initiate detection whenever a transaction starts to wait for a lock; send detect messages
to the awaited transactions. For example, in the naive algorithm z’s TM would have sent a
detect to b’s. Now z's TM will send the detect message to a’s. However the contents of the
detect message is the same ([<z, b>} in this case}. When a transaction acquires a lock in
read made, it may be necessary to initiate (i.e., if there are any transactions waiting to
acquire the same lock in write mode).

When a defect message is received for a transaction T (e.g., a in the above example),
the TM will check and see if T is awaiting a lock. If so, then T and the holder of the lock (call
it T') should be added to the list of transactions in the detect message, and a new detect
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message containing the longer list should be sent to the TM of the awaited transaction (the
appropriate ancestor of T’).1 The contents of detect messages now consist of a sequence of
pairs where the first member of the pair is waiting for a lock held by the second member.
Also the awaited transaction is the oldest ancestor of the second member of the pair that is
not an ancestor of the first member of the pair. There is a deadlock if any transactions
awaited by T are ancestors of any of the waiters (first members of pairs) listed in the detect
message. |

In addition to sending a new detect message to the TM of each awaited transaction, the
original detect message is forwarded to the TM for each child of T so that we can see if any
inferiors of T are awaiting locks. In the example we have been using, a would forward the
detect message it receives from z to each of b, ¢, and d. The message is irrelevant to b,
which is not awaiting anything. However, ¢ is awaiting a lock, and will find that the lock is
held by z and thus discover a deadlock. Finally d will receive a detect message containing

[<z, b>] and will send a detect message containing [<z, b>, <d, g>] to p.

Resolution consists of choosing and aborting some transaction in the deadlock cycle.

We defer further discussion of resolution until we present the final algorithm.

We claim that the algorithm just presented finds any deadlock that occurs in the system,
provided there are no failures (i.e., no crashes or lost messages). To see this, think of a
deadlock cycle. Consider the transaction that enters the cycle last and closes the loop,
forming the deadlock; call this transaction x. When x starts to wait, its TM sends a detect
message to the TM of each transaction that must complete for x to be able to proceed. The
recipients pass detect messages "down the tree"”, and if any waiting transactions are found,
deadlock detection paths are extended by sending more detect messages. In short, each

transaction for which x is directly or indirectly waiting will receive a detect message. Since

1. Here is how we know where the awaited transaction's TM is. The awaited transaction is an ancestor of T'.

We have the tid for T’ in hand, which, as explained in the previous chapter, includes the tid for each ancestor of
T'. From the tid of any transaction (the awaited transaction in particular) we can derive its home node. That is
where we send the detect message.
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there is a deadlock, x is indirectly waiting for itself, so a detect message will come back
around the cycle and the deadlock will be found. Hence, if there is a deadlock it will be
found.

If we assume that waiting transactions are never aborted (even because of deadlock),
then it can be shown that the algorithm never claims there is a deadlock cycle when one
does not in fact exist. The reason is that for a message to appear to go around a cycle, each
transaction must-be waiﬁng for the next. Since we just assumed that waiting transactions do
not abort for any reason, if 8 message appears to have gone around a cycle, the cycle must
still exist. In this sense no phantom deadiocks are detected by the algorithm. We will
discuss phantom deadlocks in more detail later.

The algorithm is clearly sensitive to lost messages - deadlocks will not be detected
unless the necessary detect messages get through at each step around the cycle. A simple
way of overcoming lost messages is for each initiator to retransmit its detect message
periodically, until the waiting transaction is no longer waiting (aborted, or acquired the
desired lock). The repeated receipt of this detect message by the awaited transaction’s TM
induces periodic retransmission there, and so on down the path. We suggest that this form
of retransmission be used, without any acknowledgments flowing in the other directioh,
because it is a simple and relatively cheap way of overcoming communications failure.! 1t
also solves some potential problems with improvements we are about to suggest, as we will
explain later.

Node failures do not interfere with deadlock detection (except by causing detection of
phantom deadlocks), because the only side-effect of a node failure is to cause transactions
to be aborted. Such aborts can only break deadlocks, not make them. We have argued that
the algorithm presehted will in fact find all deadlocks in the system. Further, deadlocks will
be found with reasonable dispatch, even in the face of communications and other failures.

However the algorithm is more expensive than necessary. In the next section we investigate

1. We say "relatively cheap" because every alternative we designed involved the use of permanent storage,
which is probably more expensive than periodic retransmission, especially in environments where message
transport is reasonably reliable.
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some techniques for reducing the cost of deadlock detection.
6.2.4 Refinements to the Detection Algorithm.

There are two ways in which the basic algorithm can end up costing more than
necessary. First, each member of a deadlock cycle initiates detection. For a cycle of length
n, we may end up sending O(n2) messages before the deadlock is found and resolved.’
Similar arguments apply to paths through-the waits-for graph that do not close into cycles.
Another problem is that if a deadlock is discovered at different places along its cycle, then
more than one transaction might be aborted to break the cycle. Assuming that our goal is to
minimize the number of transactions aborted because of deadlock, it would be better to
insure that a particular member of a cycle will always be chosen.?

Both problems (that every member of a cycle initiates deadlock detection, and that more
than one transaction might be aborted when a cycle is detected) can be alleviated by
suitable use of transaction priorities. Assume that every transaction is assigned a priority,
fixed for the transaction’s lifetime. For current purposes, the only property required of
priorities is that given any set of transactions (and their priorities) we can derive a total
ordering of the transactions according to priority, and any transaction manager that
computes such an ordering will arrive at the same answer. This implies that the priority of
each transaction is distinct. The next section will show that using timestamps as priorities is
a good idea. |

Now, let us see how priorities help reduce the cost of detection. First, if a deadlock
cycle is found, the lowest priority transaction in the cycle will be aborted to break the
deadlock. Actually it is not the awaited transaction that is aborted. Rather, we find the
oldest descendant of the awaited transaction that holds or retains the lock in a mode

conflicting with the waiter, and abort that transaction. Thus, the aborted transaction is a

1. The messages from n initiators will be forwarded through O(n) nodes (at least).

2. If there are multiple, interlocking deadlock cycles, then (any version of) our algorithm may abort more
transactions than absolutely necessary. But such cases are probably rare, and do not invalidate the guarantee of
progress explained in the latter part of this chapter.
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descendant of the awaited transaction and an ancestor of the original holder. Recalling our
earlier example, if a had lower priority than z then we would abort b, the holder of the lock
for which z is waiting, or we would abort a, if b has already committed. Aborting the (holding
descendant of the) lowest priority transaction entirely solves the problem of different
resolutions to the same deadlock.

A second refinement is to initiate deadlock detection only when a higher priority
transaction starts to wéit for a lower priority one. On the average this technique would cut
the number of initiations in half. However, there.are subtleties involved in making this

improvement. Consider this diagram:

A\ :/’\,. /\

/N, /N, /N

xy xu ys y Z’ z

x" waits for x y" waits fory z" waits for z

Because the priorities of subtransactions might be somewhat independent of the priorities of
their ancestors, we should not compare the priorities of the actual waiter and holder of a
lock. Examining the diagram, what really matters is the relative priorities of x, y, and z, since
the cycle is really through them, and only intermediately through their inferiors. For
example, we would like to initiate the x” to y’ edge if priority (x) > priority (y), the y”’ to 2’ edge
if priority (y) > priority (z), and thé Zz” to x’ edge if priority (z) > priority (x).

However, when presented with a single edge of the waits-for graph, as we are when a
transaction is just starting to wait for a lock and we wish to decide whether or not to initiate
deadlock detection, we cannot know which ancestors of the waiter and holder to compare
for a drop in priority. For example, suppose that x”’ just started waiting for y’; how do we
know that x is the ancestor of x”' that is involved in the cycle? The answer is that we cannot
know which ancestor is in a cycle, if any, and must choose conservatively. (Note that if a

cycle is found we do know the appropriate ancestors and have no trouble deciding which
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transaction is the lowest priority and will be the victim for deadlock resolution.)

We now impose a requirement on transaction priorities: the priority of any transaction
must be less than the priority of each of its ancestors. This is intuitively reasonable because
an ancestor probably represents more work, is older, etc.

Given that a transaction’s priority is always greater than its inferiors’ priorities, we see
that it works to compare the priority of the top-level ancestor of the waiter with the priority of
the holder when deciding whether or not to initiate detection. This is because the top-level
ancestor's priority is the highest possible of any ancestors of the waiter and is thus
conservative since we are looking for a drop in priority. However this comparison is slightly
over-conservative. We can improve upon it by comparing with the awaited transaction’s
priority instead of the holder’s priority, since it is the awaited transaction that will be on the
deadlock cycle. In the example above, we would compare against the priority of y instead of
the priority of y'.

Another adjustment is applicable when the waiting and awaited transactions are
inferiors of the same top-level transaction. Instead of using the top-level ancestor of the
waiter in the comparison we should use the oldest ancestor of the waiter that is not also an
ancestor of the awaited transaction. The general rule is: if x is the waiter and y is the holder,
we compare the priority of the oldest ancestor of x that is not an ancestor of y against the
priority of the oldest ancestor of y that is not an ancestor of x. Here is an example to
illustrate the rule:

X Yy’ s waiting for L
/ \ z hoidsl | .
y = oldest ancestor of y’' not superior toz
y z

Z = oldest ancestor of ' not superiorto y'

/ \ initiate if priority (y) > priority (z)

The comparison we propose works because if there is a cycle involving y’ and z' then z is a

member of the cycle, and y is either a member or an ancestor of a member. Suppose that
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there is indeed a deadlock, and let y” be the descendant of y that is on the cycle. Then if
there is drop in priority from y” to z (that is, priority (y’’) > priority (z)) then y to z also exhibits
a drop, because priority (y) > priority (y").1 The other crucial fact is that every cycle exhibits
a drop in priority somewhere. This is seen by realizing that the priorities of the members of
the cycle can be totally ordered, so there is a minimal member. The edge to the minimal
member from its predecessor necessarily has a drop in priority. Therefore, if there is a
cycle, detection will be initiated by at least one edge of the cycle. Thus the refined algorithm
will work. _

What is the performance improvement? It is easy to see that initiation will occur at about
halif the members of a cycle (or even of non-cycles), so we have reduced the work performed
to about half of the original algorithm. Another technique that will further reduce the
number of detect messages sent is to ignore certain detect messages. Of all the possible
paths around a cycle, each beginning at a different edge, we need only one to detect a
deadlock. Suppose that we agree to use only the path starting just before the transaction of
lowest priority in the cycle. That is, the edge where the awaited transaction has the lowest
priority of all the awaited transactions in the cycle. This edge will always be initiated, as
argued above. Further, it is the only particular place in a general cycle that is guaranteed to
initiate; hence it is a natural choice.

The suggestion is that if in tracing a path we come to a transaction with a priority lower
than the awaited transaction at the start of the path, then we can stop tracing the path. it ié
safe to do this because the edge last encountered must also be a drop and will also initiate.
If there is a cycle, the detect messages will come up around "behind us”. The point is that if
we discover that we initiated at a non-minimal point in the cycle then we stop tracing the
path in question, and let the path starting at the minimal point do the job. Here is an

iltustration of this second refinement to our deadlock detection algorithm:

1. i y and y” are different, priority (y) > priority (y'); but if y and y" are the same then of course
priority (v} = priority (y").
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Hiot ioriti

VAN

Lower priorities

Initiation points are: a, ¢, e, f
Preferred initiation point is:
(because g is minimal)

Of the four initiation points, the preferred one is at f, and all the other paths will be given up
as they reach f. _

It is possible for more than one path to detect the same deadlock, if all but one of the
paths start outside the cycle and enter the cycle at the minimal point. Note that any resulting
multiple detections of the same deadlock are harmless: they do .not break the algorithm, they
only cost more.

The technique just presented cuts down by an average factor of as much as one half the
number of messages sent once detection is initiated, because all paths starting on the cycle
(except one) will be given up, and the abandoned ones are stopped after going an average
of halfway around the cycle. So the techniques put together reduce the number of
messages by a factor of two to four, on the average, for large cycles.1

The second refinement (discarding certain detect messages) may not be very important
in practice. For example, an unpublished study of deadlocks in System R [Gray80b] seems
to indicate that virtually every deadlock cycle is of length two: they found no deadlocks of

length three or more in their study. If that holds up for applications running in our system,

1. This reduction by a factor of four comes from a very simple analysis. We conjecture that the techniques
improve average behavior from 0(112) to O(n), but have not yet discovered a proof.
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then there will be only one initiation point for each cycle, and the minimum number of detect
messages will be sent even without our last performance improvement. Note though that
the first improvement (initiating only where there is a drop in priority on a path) still cuts the
number of messages in half, and seems to be worthwhile. We cannot give any explicit count
of the number of messages involved because it varies with the relative depth of nesting of
transactions in the transaction hierarchy. However, if a deadlock is directly between two
top-level transactions, it will be discovered and resolved at the cost of sending one message
(assuming of course that the message is not lost).

An interesting fact is that the refinements to the original algorithm do not necessarily
work if retransmission of detect messages is not performed. To see this, consider the
previous diagram again. Suppose that f starts to wait for g before the cycie has entirely
formed. Then the minimal initiation will not find a cycle, quite correctly, because the cycle
does not yet exist. When the cycle is closed, it will not be detected because all other
initiations will stop traversing the cycle when f is reached. However, retransmission solves
this potential problem: eventually the f to g initiation will be retried after the cycle is formed,
and will thus detect the cyc'e correctly. So retransmission solves at least two problems at
once. Because retransmission is so simple, we advocate usiﬁg it to solve these problems
instead of trying to find separate solutions.! Naturally we suggest that the retransmission
interval be adjusted to make the correct trade-off between cost of retransmission and delay
in finding deadlocks.

Our algorithm does not find many so;called "phantom" deadlock cycles. The reason is
that each detect message that extends the path is sent only because a transaction is actually
waiting. Of course, if a waiting transaction aborts for some other reason (typically a crash),
then we may find a phantom cycle. Also, if there are interlocking deadlock cycles, or a new
cycle forms with some members that were involved in a previous cycle, needless aborting
ensue. All these cases seem rare enough not to worry about. Because of the delays

inherent in distributed systems, and because we admit failures, our algorithm probably

1. The solutions that occurred to us all involved acknowledgments and permanent storage updates, and so are
probably more expensive anyway.
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comes about as close as possible to eliminating the detection of phantom deadlocks.

Comparing our detection algorithm with deadlock avoidance algorithms, we find that
avoidance algorithms would generally abort a transaction at the points where we initiate
detection. Actual performance comparisons would have to weigh lost work (transactions
unnecessarily aborted by avoidance schemes) against the detect messages and slightly
higher complexity of detection. There may also be more subtle effects, such as the
previously described backing up of transactions waiting for commonly used resources. We
are not prepared to compare avoidance and detection in more detail.

As a side point, we note that the detection algorithm can help make the normal
transaction management algorithm work a little better. For example, detection might find
that an awaited transaction had in fact been aborted or committed, but some nodes had not
yet discovered that fact. Thus an incoming detect message might trigger a transaction

manager to retransmit commit or abort notices.
6.2.5 Summary of Deadlock Handling.

Instead of deadlock prevention or avoidance, we have presented a novel deadlock
detection algorithm. This algorithm works by following edges of the transaction/resource
waits-for graph in real time, trying to find cycles. Transactions are assumed to have
permanently assigned priorities, and several techniques were suggested for using these
priorities to improve performance of the deadlock detection algorithm:

e Start tracing graph edges only when a higher priority transaction waits for a lower

priority one. .

o Stop tracing a given path if a transaction of priority lower than the one triggéring

tracing of the path is encountered.

e When a cycle is found, abort (the appropriate descendant of) the lowest priority

member of the cycle to break the deadlock.
Initial detect messages are retransmitted, to avoid the possibility of cycles’ being
overiooked, and to make the algorithm robust in the face of failures.

We did not say much about deadlock resolution, except to describe which transaction

should be aborted to break a deadlock. Since the transaction to be aborted may still be
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running, aborting it presents problems similar to those posed by orphans in the previous
chapter; see Chapter 8 for discussion of methods for aborting running transactions.
Obermarck [Obermarck80] designed an algorithm based on many of the same ideas.
However, our algorithm was arrived at independently; it works for our nested transaction
system while Obermarck’s algorithm deals with only single level transaction systems; and we
offer a novel performance enhancement (stopping propagation of detect messages at low
points in the cycle), in éddition to the one proposed by Lindsay and included in Obermarck’s
paper. Another difference is that our algorithm works in an entirely asynchronous fashion,
whereas Obermarck’s proceeds in more or less synchronized stages. The differences
between the algorithms seem minor, yet they might influence the likelihood of finding

phantom deadlock cycles. The matter requires further investigation.
6.3 Eventual Execution.

In this section we will explain how to insure that each transaction request will eventually
succeed, provided that it is well-formed (will not encounter run-time errors, is not
mis-programmed, etc.), and that it is not always aborted by node or communications
failures. The technique is based upon the transaction priority concept introduced in the
previous seclion. Here is our idea in its simplest form.

Suppose that we assign transaction priorities based on when transactions are created,
so that older transactions have higher priority. This is logical because older transactions
have been running longer and are probably more expensive to abort (in the sense of lost
work). Hence, older transactions should have higher priority to reduce the chance of
aborting them because of deadlocks. Further suppose that it is actually transaction
requests' that are assigned priorities, and that each attempted execution of a request is
performed with the same priority (though under different transaction id’s). Similarly, retries

of failed subtransactions should be performed with the same priority as the failed

1. Recall that a transaction is an instance of execution of a transaction request: users submit transaction
requests, and an automatic retry feature (if there is one) might attempt the request several times, each attempt
being a separate transaction.
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subtransaction.

Given all the transactions in the system, some one of them will have the highest priority,
and thus will never be aborted because of deadlock. Because all deadlocks are eventually
resolved (using the algorithms of the previous section), the highest priority transaction is
guaranteed to progress and cdmmit, unless failures cause it to be aborted, or it is
malformed. Even if it is aborted, when it is retried, it will still be the highest priority
transaction, and no other trénsaction can stand in its way. Thus, unless failures abort every
attempt to execute the request, the request will eventually succeed. Then the second
highest priority transaction will have the highest priority, and no one will be able to stand in
its way, etc. This is the sense in which we can guarantee progress of each transaction in the
system. '

Here are some points crucial to the success of this idea. First, we must make sure that
only a fixed number of active requests (either now or in the future) can have priority higher
than any given request. If higher priority requests could keep cdming along, then a request
could be starved. This is why we suggest assigning priorities based on time. For our
purposes, clocks at different nodes need not be absolutely synchronized; approximate
synchronization will do (see [Lamport78] for a specific algorithm for approximate clock

'synchronization). Second, when a request is retried, it must be retried with its original
priority: lower priorities could lead to its starvation, and higher priorities could permit it to
starve other requests. It should be noted that a request’s effective priority increases with
time, since requests with higher priorities leave the system.

It is not necessary that priorities be assigned absolutely with respect to time. An initial
increment can be added to a transaction request’s nominal priprity when the request is
submitted, so as to give it a higher or lower priority. However,'. such increments must be
bounded, or the system could be continually flooded with high priority transactions that
would. starve normal priority transactions, even ones that had been in the system for very
long times. Further, we must be careful to insure that such priority adjustments never make
the priority of a transaction as big as that of its parent. To guarantee that priorities are
unique, one can simply use the tid’s (which are guaranteed to be unique) to break ties. It is

all right to use the tid of the first attempt of a request as the request’s priority. That method
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is simple, cheap, and sure.

The use of global priorities enables our system to solve problems often left unsolved in
previous systems. In particular, many systems admit cyclic restart, a phenomenon in which
a set of transactions perpetually abort each other (usually because of deadlocks). Our
system avoids cyclic restart by aborting only one member of a deadlock cycle, the lowest
priority transaction. Even if a system solves cyclic restart, and thus guarantees that the
system as a whole makes progress (except if failures are too frequent), it might still permit
individual transactions to be starved forever. Most systems solve this problem in a statistical
sense: it is very unlikely that any given transaction would be starved forever. While
statistical solutions may be practical, we have more confidence in a system such as ours,
which cannot exhibit the bad behavior in the first place.

Note, though, that our guarantee of progress is based on the assumption that every
transaction will terminate. As discussed at the beginning of this chapter, assuming
termination implies assuming that transactions cannot interact in such a way that a
transaction’s "queue of work" never empties. It is also assumed that transactions do not

exhibit the usual kind of infinite loop.
6.4 Summary.

In this chapter we have shown how to guarantee progress of each transaction request
in the system, unless failures occur too frequently or unluckily. To achieve this end, we
introduced a novel deadlock detection scheme. The use of transaction priorities in the
deadlock detection algorithm, and a global strategy for priority assignments complete the
scheme. We believe the result is a simple and elegant system, with few layers and ad hoc
mechanisms. Further, our relatively simple techniques have enabled us to make stronger
guarantees than many previous designs.

This chapter completes the presentation of our system design. The next chapter
compares our ideas with some specific previous work. We offer some thoughts on
extensions and improvements to our work in Chapter 8. Appendix | contains a discussion of
a simulator we wrote to check out the system design, and Appendix Il presents the entire

transaction management algorithm, including deadlock detection, in a formal notation.
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7. Related Work.

In previous chapters we have sometimes mentioned other specific works in restricted
contexts. Now we present a broader recapitulation of work related to ours, in an effort to
relate our design with other recent research concerning reliable distributed computing.

Not much work has been done concerning nested transactions, and the novelty of our
design lies in that area. We will consider related nested transaction work, including Reed’s
design [Reed78], at the end of this chapter and will cover other topics first. These other
topics split into two general categories: concurrency and reliability, though there are several
important papers that deal with both aspects at once. We will first discuss general
approaches to concurrency control and reliability, and then compare our design with a
number of other specific schemes.

It should be kept in mind that (excepting Reed’s scheme) all of the other designs we will
discuss are single-level systems. Further, few of the schemes have been implemented, and
there are virtually no performance results. Hence, we cannot make comparisons - we can
only describe the features provided by different designs and the mechanisms used.

In addition to supporting nested transactions, our design also differs from most other
work in terms of its context. We were not attempting to design a distributed file system or a
distributed data base system in particular. Rather we were aiming for a general purpose
system, not directed towards any specific application (within the constraints of the model of
distributed systems presented in Chapter 2). Hence we attempted to avoid restrictions. For
example, we did not assume predictability of transaction requests, a major difference

between our scheme and SDD-1 (to be discussed later).
7.1 Concurrency.

There is an extensive literature of concurrency problems and solutions. This literature,
excepting purely theoretical works, is of two basic types: operating system problems and
database problems. One difference between them is that operating system work has dealt
mostly with centralized systems under the assumption (usually implicit) that back-out

(preemption; undo; transaction abort) is not available. Another difference is the granularity
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of concurrency: operating systems usually deal with resources used for a relatively long time
(such as tape drives), or with moderately large objects (such as files and directories). In
databases concurrency control may be at the level of individual records or tuples. Further,
consideration of distributed concurrency problems seems to have occurred more in the

database area, though there is increasing interest in distributed operating system problems.
7.1.1 General Approach.

As mentioned in Chapter 3, the two main approaches to concurrency control have been
locking and timestamps. Our scheme is the first to use locking to support nested
transactions; Reed’s [Reed78] was the first to use timestamps to support nested
transactions. Timestamp synchronization requires operations to (appear to) be performéd
in timestamp order; its correctness is easy to grasp. Locking insures serializability
somewhat indirectly, through the two-phase locking rule. Each scheme has drawbacks and
advantages relative to the other. Locking requires that there be an instant in time at which a
transaction holds all the locks it ever needs. In contrast, timestamp synchronization does
not require that all of a transacti_on’s resources be held at once. These facts suggest that in
some circumstances timestamp synchronization might provide more concurrency.
However, consider also the following contrast. Locking permits transactions to serialize
only as necessary and "find" a place relative to other transactions dynamically. Timestamp
synchronization determines the relative order of transactions in advance. It would appear
that timestamp schemes require additional waiting (to know that no more transactions with
timestamps in a certain range will arrive at a given node) or will abort more transactions (a
transaction with an early timestamp may not be runnable at a given node because a
transaction with a later timestamp has already committed). Bernstein, Shipman, and Wong
[BSW79] have examined different methods of insuring serializability. Their formal analysis
indicates that timestamping may provide more concurrency than two-phase locking.
However, their paper investigates concurrency without examining other effects such as
waiting, deadiock, and the number of transactions aborted.

Two of the principal architects of the SDD-1 system (which uses timestamps) have

written a report [BG80] evaluating a number of concurrency control mechanisms within a
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particular model. They arrived at the conclusion that no single scheme of the large number
that they examined was best for all situations. They were able to identify a small number of
schemes as definitely better than the rest, and called these dominant methods. Some of the
dominant methods used two-phase locking. However, different choices for various system
parameters could make each of the dominant methods better than the others under some
circumstances. We conclude that our choice of two-phase locking is neither universally
good nor universally bad. One interesting thing about the report is that the authors suggest
some novel combinations of timestamp and lock methods. A difference between their model
and ours is that they were considering replication of objects at different nodes.

In addition to the distinction between locking and timestamps, concurrency control may
be distributed or centralized. Garcia-Molina [Garcia-Molina79] has investigated the
theoretical performance of both centralized and distributed locking in some detail. He
indicates that the simplicity of centralized locking and the lower total number of messages
required (compared with distributed schemes) make centralized locking attractive.
Centralized locking may also help avoid deadlocks and prevent bottlenecks at locks
because it has more information at hand to make better decisions than are possible with a
distributed algorithm. Two drawbacks of centralized locking are that the central lock
manager represents a potential system bottleneck and that it is "weak link" in terms of
failures. For the latter reason it is important that another node can take over the lock
management function if thé current lock manager fails. Garcia-Molina presents an algorithm
for a new node to pick up where a (supposedly) crashed lock manager left off. We feel his

algorithm and correctness arguments are more complex than ours.
7.1.2 Replication.

Our scheme does not deal with multiple copies of objects (replicated objects). We
suggest that replication be built on top of a transaction system, as Gifford [Gifford79] has
done. Building replication this way seems to lead to a simpler system structure. A number
of schemes have included replication in the base level design, e.g., Distributed INGRES
[Stonebraker79], SDD-1 [BSRG77], and Sirius-Delta [LeLann81}. It is argued that while

building replication in at the lowest level does complicate the system design, the resulting



-121 -

system may exhibit performance advantages over the two-level design. This argument has
not yet been conclusively verified or refuted. .

In addition to differences in the level at which replication is introduced, the schemes
mentioned above present a variety of concurrency control mechanisms for accessing the
various copies. SDD-1 uses timestamps, as does a scheme suggested by Thomas
[Thomas79]. Thomas uses majority consensus voting by the copies of the objects. SDD-1
adopted some of Thomas' ideas, but uses a unique and complicated concurrency control
scheme involving pre-analysis of transectfon classes and four different protocols for
different cases. Gifford uses locking instead of timestamps, but does use majority
consensus similar to Thomas’ scheme. However, Gifford generalized Thomas’ "one site,
one vote” rule to weighted voting. ,

Garcia-Molina’s report [Garcia-Molina79] presents a number of different methods for
processing updates to a replicated distributed data base. He concludes that centralized
locking may promise better performance than a distributed voting algorithm such as
Thomas® or Gifford’s, at least in a number of interesting cases. On the other hand, it cannot
yet be said that one method or the other has a strong advantags.

7.1.3 Deadlock.

Deadlock has been studied extensively and many schemes have been designed for
preventing, avoiding, and detecting deadlocks, for both centralized and distributed systems.
We mentioned several related papers in Chapter 6: Obermarck’s scheme [Obermarck80] is
fairly close to ours, and Menasce and Muntz’s paper [MM79] is also related. Goldman’s
thesis [Goldman77] seems to be the most similar, though. Both Goldman and Obermarck
present convincing schemes, complete with proofs. Menasce and Muntz’s scheme does not
work, as was pointed out by Gligor and Shattuck [GS80]. Though the details of our basic
scheme are slightly different from Goidman’s and Obermarck’s, the main novelty of our
algbrithm for distributed deadlock detection lies in the extension to nested transactions,
which involves some significant subtleties as was pointed out in Chapter 6. For further
information on deadlock, Isloor and Marsland’s article [IM80] may be useful; it is a good

introduction to the topic and includes a convenient annotated bibliography.
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It should be noted that we are not dealing with the most general cases of resource
allocation and deadlock handling: not only do we restrict transactions to await only one
resource at a time, we deal with only one kind of resource (read/write locks). Generalization
may not be overly difficult, but our approach may become less attractive in some respects.
In particular, most generalizations seem to introduce more aborting of transactions not
actually involved in a deadlock. Gligor and Shattuck [GS80] discuss this issue. We will

discuss generalization moré in Chapter 8.
7.1.4 Granularity.

The work done at IBM [Gray79] is representative of centralized system solutions to
concurrency control; more recently they have been extending that research to distributed
systems [Lindsay79]. The Xerox work [LS, IMS78, Paxton79, SMB79] shows a slightly
different approach in that it has been oriented towards distributed file systems, while the IBM
research has concentrated on databases. Although many of the same problems arise and
the conceptual approaches to them can be similar, the specific solutions to the problems
tend to be different in the two domains. This derives mainly from the fact that file systems
are simpler than databases in both structure and consistency constraints. Also, file system
locking is generally based on physical memory structure (i.e., one locks files or pages)
rather than logical pieces (records, indexes), which is more typical of databases. The
difference in granularity of locking between databases and file systems is not intrinsic, and
is perhaps not important. For example, file systems can certainly be built with finer grained
locking (e.g., ranges of bytes in a file). However, Gray [Gray75] believes that variable
granularity of locking is important in database applications. System R is the only system we
know of that provides variable granularity. Gray [Gray80b] says that variable granularity of
locks was quite effective in System R.

There might be substantial technical problems in achieving high pérformance with fine
granularity using the methods we have suggested in earlier chapters, because of the per-
object overhead. Still, the difficulty of the problems depends on the level of performance
required, and a straightforward implementation might suffice in many cases. We will say a

little more about implementation in the next chapter.
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7.2 Reliability.

While many operating systems have included some means for backing up files to avoid
catastrophe, these systems have generally not provided consistency sufficient for database
systems. Hence the more relevant reliability work has been done mainly in the area of
databases [Verhofstad78], though the two fields seem to be merging as in concurrency.

Our solutions to reliability problems are not original. Building permanent storage using
logs is well known, and is deséribed nicely in [Gray78]. Lampson and Sturgis [LS] have
described a method for constructing a reliable disk storage system using current technology
magnetic disks. Checksumming and retransmission of messages are certainly not new
techniques. The two-phase commit protocol has also been around for a while, and has been
incorporated in many designs.

Almost all distributed schemes have used two-phase commit to achieve consistency
across multiple nodes. The reliability mechanism proposed by Hammer and Shipman
[HS80] for SDD-1! takes a somewhat different apprbach: it provides the illusion of global
time and guarantees delivery of certain kinds of messages. Their design is called the RelNet
(for reliable network). The RelNet is built in a number of layers and uses logical and real
time in innovative ways. The algorithms are complex, and the correctness arguments are
quite subtle and involved. The RelNet approach was taken in order to avoid the failure
window of the two-phase commit protocol. By failure window we mean a period of time_
during which the failure of one component can indefinitely hold up later processing. It is
true that the simpler two-phase commit schemes (including the one we use) have a failure
window.2 The RelNet does not exactly meet its goal of eliminating the failure window.
Similar to Distributed INGRES (see below), certain parts of the algorithm employ backup
nodes. If any of the primary or backup nodes for a given transaction fail, they may not be
used again. If a sequence of single failures occurs over time, then we may be left with only

one backup. If the last backup fails, the scheme breaks down. See [HS80] for the details.

1. 8DD-1, as originally formulated, had no reliability mechanism.
2. Most schemes (again including ours) will not survive permanent failure of a node, either.
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Reed [Reed78] showed how to shrink the failure window considerably by replicating
some of the commit information, and Lampson [Lampson80] recently suggested an
algorithm that claims not to possess a failure window at all. Lampson’s algorithm has the
disadvantage that many more messages and message delays are required to commit a
transaction than in a simple two-phase commit such as ours. His algorithm is also not
guaranteed to terminate, though the probability of prompt termination is sufficiently good
that this theoretical defect abpears to have no practical impact. Anyway, it may be possible

to eliminate the failure window by using a more SOph'isticated two-phase commit protocol.
7.3 Both Concurrency and Reliability.

Many people have recognized that concurrency control and recovery aspects of a
system must be coordinated to preserve consistency in the face of failures, and a number of
schemes have been devised that address both concurrency and reliability problems in
single-level transaction systems. In this section we examine a number of such schemes and
compare them one on one with our proposed design. Reed’s system, discussed later, also

incorporates an integral solution to problems of concurrency and reliability.
7.3.1 Distributed INGRES.

It is hard to compare our scheme with Stonebraker's Distributed INGRES
[Stonebraker79] because he implements several mechanisms all at once: concurrency
control, recovery, and replication. His scheme involves (reliably) keeping track of which
nodes are up and down, and assumes that messages arrive in the order sent. His design has
difficulty handling communications failures that partition the network, i.e., divide the network
into two or more disjoint sets of nodes that can communicate to other nodes in their subset,
but not with nodes in other subsets. Our scheme handles network partitions. The design of
Distributed INGRES is based on assumptions as to what operations are most common,; i.e.,
its performance is optimized for a particular class of behaviors. Our design is not based on
as many assumptions of that kind.

Stonebraker also suggests a way to trade reliability off against performance: one varies




-125 -

the number of backups for the coordinator of a transaction. The overhead of transaction
processing in Distributed INGRES is partly proportional to the number of backups.
However, reliability is enhanced with more backups, because the system continues to work
correctly unless the coordinator and all backups fail. Qur design has chosen a particular
level of reliability and is not adjustable the way Stonebraker’s design is. However, because
of the difference in methods by which reliability is achieved in the two schemes, it is possible

that his design is more costly for the same degree of reliability.
7.3.2 SDD-1.

The RelNet (discussed above) proposed by Hammer and Shipman [HS80] for use with
SDD-1, provides more functionality than our design: guaranteed message delivery,
messages delivered in order, etc. These properties seem necessary to support SDD-1. In
contrast, our design has built somewhat ad hoc mechanisms in the few places where
features of this kind are needed. The performance characteristics of the RelNet algorithms
could significantly decrease the performance of SDD-1.

Besides the reliability aspects of SDD-1, the concurrency aspects are also complicated
and subtle. The actual synchronization algorithms (called P1, P2, P3, and P4) are
straightforward. The difficult part is classifying transactions and building the tables that say
which algorithm to apply in which cases. The point of the analysis and multiple
synchronization algorithms is to achieve higher performance in certain cases assumed to be
most common. In this sense SDD-1 depends on predictability of transactions. Knowledge of
the data read and written by different (classes of) transactions is required in order to build
the tables that permit the more efficient protocols P1, P2, and P3 to be used. P4 is an
expensive protocol, but it must be used for any transaction not fitting into the predefined
classes. If transactions are sufficiently predictable, SDD-1 may outperform our design. On
the oth‘er hand, because of the expense of P4 synchronization, SDD-1 may not be attractive

when transactions are not so predictable.
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7.3.3 SystemR.

The System R database system project at IBM, San Jose, has produced a number of
papers that we have already cited (e.g., [Gray78, Gray75, Gray79, Gray80a, Lindsay79)),
both in this chapter and in earlier ones. System R uses locking similar to ours (but not for
nested transactions). However, the System R locking scheme additionally incorporates
variable granularity of locks. It would be easy to extend our scheme with additional lock
modes similar to those used in System R. What is more problematic is that the variable
granularity scheme depends on a fixed organization of data objects into a hierarchy.1 The
problem is how to fit arbitrary user data types into the hierarchy, and how to insure that the
hierarchical locking rules are enforced.

System R uses a log method for object state restoration. Gray describes the logging
and recovery techniques in a fair amount of detail in [Gray78, Gray79].

A distributed version of System R is under development [Lindsay79].
7.3.4 DFS and the Paxton/WFS System.

Two distributed file systems that have been developed at the Xerox Palo Alto Research
Center (PARC) are DFS [IMS78] (also known as Juniper), and a system by Paxton
[Paxton79] built on top of WFS [SMB79]. The two systems provide very much the same
capabilities: creation, reading, writing, updating, and deletion of files. Files are maintained
only on file servers, which are dedicated to providing the file system function. Both systems
preserve consistency by performing actions (mainly reads and writes of blocks of data within
files) as part of (single-level) transactions that are committed (or aborted) atomically
everywhere, and théy achieve reliability through careful updating of disk storage and a
two-phase commit protocol.

The main difference between the two schemes is that DFS file servers provide a higher

level interface. DFS is implemented almost entirely in the servers, whereas the Paxton/WFS

1. Gray [Gray78] describes how the design readily extends to arbitrary directed acyclic graphs.
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design slices the system at a different point, providing lower level functionality in the servers
(WFS file system) and placing more of the functionality in the users of the system (the part
developed by Paxton). Paxton discusses the advantages and disadvantages of this choice
in where to place the functionality of the system. For our purposes, the two systems are
quite comparable because they provide about the same features and level of reliability.
Some assumptions have been made concerning communication (e.g., messages are
delivered in order); these assumptions are justified because of properties of the hardware
network used by the system (the Xerox Ethernet). ‘

The papers are interesting because they provide substantial detail about actual
implementations of reliable distributed subsystems, in contrast to our paper design and
simulation. Gifford [Gifford79] has built a system providing replicated files on top of DFS; we

say more about his work in Chapter 8.
7.3.5 Sirius-Delta.

A recent paper by LeLann [LelL.ann81] describes the Sirius-Delta distributed real-time
transaction processing system, a part of Project Sirius at INRIA. Sirius-Delta provides
single-level transactions using read/write locking for concurrency control. Timestamps are
used to break ties and choose deadlock victims. Deadlock avoidance is used rather than
deadlock detection; hence undo because of transaction conflicts could be frequent.
However, it is assumed that the amount of work to be redone is small because transactions
are assumed to be short.

The system incorporates a novel technique for generating timestamps: a token is
passed among the nodes. The token (an integer) is passed in a circle, called the virtual ring.
When a node has the token, it may allocate some timestamps starting with the current value
of the token. The token is incremented beyond the highest timestamp allocated before
being sent to the next node in the virtual nng This method insure fair allocation of
timestamps to all nodes, provided the token circulates rapidly enough, etc.

The system also uses the virtual ring as part of its reliability mechanism - the set of
nodes currently in the ring are the "up" nodes, and protocols are provided for eliminating

failed nodes from the ring and for permitting recovered nodes to join the ring. Network
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partition is possible, but the data are replicated, and may be operated upon only if a majority
of copies of each required datum is available, so partition does not break the system.

A novel version of two-phase commit is used to overcome single failures of nodes,
including coordinator failure at any point in the protocol. A complex scheme of distributed
logs completes the set of reliability mecha}nisms. Sirius-Delta is reasonably simple,

particularly considering its functionality, and is a working system.
7.4 Nested Transactions.

The earliest paper describing the concept underlying what we call nested transactions
seems to be [Davies73] (his term is spheres of control). Davies has written several papers
describing his ideas, including a comprehensive one fairly recently [Davies78]. However, he
seems to be more concerned with overall semantics than with implementation techniques,
and considers even more generality than we have. For example, we assumed that results
are never released before transaction commit, and Davies explores the semantics of early
release. (Montgomery [Montgomery78] and Takagi [Takagi79] have designed systems
including early release.)

Lomet [Lomet77] examines some aspects of incorporating recovery and
synchronization ideas into programming languages. It appears that he might even have
intended to handle nested atomic actions. However his scheme is for a centralized system
and does not address the issues involved in distribution or processor crashes.

Reed’s thesis [Reed78] is the only scheme we have seen that goes into detail about
implementing nested transactions in a distributed system. It is the combination of his
arrangement of pseudo-times and dependent commit records that implements nested
transactions. He also introduces the notion of multiple versions of objects. Assuming that
only one version of each object is kept, then it is not too hard to compare our scheme with
his. Reed’s pseudo-times are essentially timestamps. These timestamps readily resolve
(avoid) deadlocks. However our scheme will result in fewer needless transaction aborts,
because we use deadlock detection instead of deadlock avoidance (see the discussion in
Chapter 6).

Reed's basic scheme permits transaction starvation: a transaction request that performs
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updates can be aborted every time it is run. If a transaction reads any objects written later
by another transaction with an earlier pseudo-time (i.e., the read and write are attempted in
an order opposite to that of the pseudo-times for the transactions), the transaction with the
earlier pseudo-time will abort because it cannot acquire needed objects at its particular
pseudo-time. To help solve this problem Reed introduces token reservations, which amount
to pre-allocation of resources, a deadlock prevention technique. But token reservations
require a certain amdunt of predictability, and can reduce concurrency. The reliability
mechanisms of our scheme and his are comparable.

When more than one object version is kept, Reed’s design can achieve better
performance in an environment where there are many read-only requests and relatively few
updates, but updates may affect many objects. The difference is that the read-only requests
would be held up in our scheme because of the locks held by the long running update
transactions, whereas those read-only transactions would just use slightly older (but
consistent) data in Reed's system.

We have not been able to devise any simple scheme for multiple object versions using
locking, and it is clear that the natural ordering provided by pseudo-times makes multiple
versions much more comprehensible and easy to implement. On the other hand,
timestamps seem to have an inherent disadvantage when used for concurrency control.
The reason is that requiring actions to behave as if executed in timestamp order can reduce
performance by causing additional aborts. We use timestamps only to choose victims when
breaking deadlocks and to improve the performance of the deadlock detection algorithm.
We do not require that the effects of transactions occur in timestamp order.

In sum, Reed has solved much the same problem as we have, and each of the two
schemes has advéntages that may make it more attractive in certain application
environments. It would be interesting to implement both schemes and compare their

efficiency.




7.5 Summary.

Because few distributed transaction systems have been implemented and there is no
performance data, no cogent comparisons of distributed transaction schemes can be made.
Further, there is not even agreement on the criteria on which to base such comparisons.
Therefore, we have simply enumerated the differences in features supported by a number of

other schemes. Reed’s is the only system besides ours that provides nested transactions.
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8. Conclusions and Suggestions for Further Work.

Now we summarize the accomplishments of our work and sketch ways in which it might

be extended with further research.
8.1 Summary of Accomplishments.

We have presented a high-level design of a nested transaction system for a distributed
computing environment that can achieve high reliability. The presentation proceeded in a
number of stages. ‘

In Chapter 2 we made explicit the underlying assumptions concerning hardware and its
failure properties. We defined what we mean by a distributed system: a group of nodes
communicating by sending messages. A node consists of three components: a processor,
some volatile memory, the contents of which are lost in crashes, and some permanent
memory, ~whose contents survive crashes. We described a model of failure in which
behaviors are of three kinds: good (normal), tolerable (recoverable failures), and intolerable
(non-recoverable failures). We assume that intolerabie be_ha\)iors never occur. That
assumption is reasonable because we carefully insure that the probability of intolerable
behavior can be made arbitrarily small by increasing the redundancy of the system.!

Having explored the physical foundations, in Chapter 3 we turned to the semantics of
transaction processing. We introduced the concepts internal consistency, external
consistency, and congruity. We suggested serializability as a (partial) means for achieving
consistency in the face of concurrent processing, and described the usual two-phase
locking method for insuring serializability. Having dealt with concurrency, we then turned
our attention to handling failures. To do 80, we introduced the idea of transaction abort, and
object state restoration as a means for achieving it. Locking and state restoration were

sufficient for local consistency, but a distributed commit protocol, such as the well known

1. The one place where we fail to meet this requirement, neglecting issues of software reliability, is the lack of a
checkpointing mechanism. For discussion of this issue, see Chapler 4 and the suggestion for further work later
in this chapter.
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two-phase commit protocol, was required for global consistency. We discussed briefly the
congruity problems inherent in physical input/output.

Having described a single-level distributed transaction system, we proceeded to extend
that scheme to nested transactions in Chapters 4, 5, and 6. Chapter 4 discussed the
concepts and motivation for nested transactions, and the extended locking and state
restoration algorithms. In Chapter 5 we presented the transaction management algorithm.
The purpose of that algorith‘m is to insure that every transaction is eventually committed or
aborted as it should be. However, the version of the algorithm given in Chapter 5 did not
handle deadlock situations: these were the topic of Chapter 6. There we not only presented
a novel distributed deadlock detection algorithm, but we also showed how simple but careful
use of the idea of transaction priorities can insure eventual success of each transaction
request (provided failures are not too frequent, of course).

The final algorithm, summarized in Appendix Il, maintains consistency in the face of
crashes and virtually all kinds of communications failures, including network partition. We
assumed that by careful design of the permanent memory subsystem, almost any kind of
memory device or media failure can be handled; in Chapter 2 we cited some papers relevant
to this issue. We simulated the design, as described in Appendix |. One typical simulation
result is that a system of thirty nodes, initially in a deadlock situation, was able to break the
deadlock and all nodes’ transactions eventually succeeded. The remarkable part is that this
was accomplished with each node down ten percent of the time, each iransaction involving
three nodes, and ninety percent of the messages lost. A pseudo-random number generatof
was used to choose the crash times and the messages to be discarded (that is, we did not
choose "convenient" crash times or messages to be lost).

In Chapter 7 wé mentioned a number of related works. Though many of our algorithms
derive from these works, the extensions to nested transactions are new. The only other
work to deal with nested transactions in as much detail is Reed’s thesis [Reed78]. Our
design is superior if his system is restricted to retaining only one version of each object. If
multiple versions are kept, then Reed's design can be superior in some situations, and the
desirability of our scheme over his would be based in part upon the likelihood of those

situations. We believe that our approach (locking and state restoration) is more easily
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generalized than the timestamp approach followed by Reed and others. We say more about
possible generalizations in the second half of this chapter.

In sum, the main contributions of our work are the locking, state restoration, transaction
management, and deadlock detection algorithms for distributed nested transactions. With a
few caveats, we have presented a design for a system providing reliable processing of
nested transactions in a distributed environment. We have dealt effectively with the
problems of concurren‘cy and reliability, culminating with a guarantee of progress within the
system that is about as strong as possible. Our design is a bit unusual in that it is not
specifically oriented towards providing a distributed data base or file system. Instead the

design was directed towards general purpose programming.
8.2 Suggestions for Further Work.

There are many interesting areas for further investigation. Below we discuss a number

of such topics in turn.
8.2.1 Language Design.

We have generally ignored the question of integrating the semantics and mechanism of
any system supporting transactions into a programming language. The recovery block
approach [RLT78, Lomet77] gives a start. Liskov etal., [Liskov79, Liskov80] are
investigating this area. The problem is challenging because not only must the concurrency
and recovery aspects be incorporated into the language design, but one must also devise an
acceptable model of distributed computing that can be expressed nicely in a programming
language. There has yet to be a complete model of reliable distributed computation,
including the details of processing that we omitted (such as user-level communications, and
process structure). Should such a semantic model be formulated, the task of designing a
language around it will still be very difficult. We are not yet to the stage where individual
language feature proposals can be evaluated, not the least because definitive criteria on
which to base such judgments are lacking.

Here are some of the issues that must be resolved. What are objects? Do they have
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multiple versions? Is state restoration automatic? If not, how is it expressed by the user?
What level of concurrency is permitted or achieved? How is potential concurrency
expressed? For example, is concurrency implicit or do programmers wtite a number of
sequential processes that execute in parallel? How is inter-node communication presented
to the programmer? Do synchronization and state restoration apply to all objects? If not,
how are non-atomically accessed objects handled? These questions are just samples of the

guestions that need to be answered.
8.2.2 Implementation.

Going beyond the semantic and language design issues, there are a number of
interesting questions of implementation. A particularly interesting subject is the
organization of objects in volatile and permanent memory and their movement between the
two. The main challenge seems to be to achieve high performance with an automatic
system. See [Svobodova80] and [Arens81] for recent work on this problem. It is natural to
implement Reed’s multiple object versions with a log; he has discussed how to do that in
[Reed78].

In addition to the organization and updating of memory, there are a number of questions
concerning communication. For example, it must be decided how o packetize message;s
and re-assemble them should the need arise. How should receiver buffering and flow
control be performed, if at all? Is any low level sequence numbering, acknowledgment, or
retransmission scheme required to achieve the basic level of reliability sufficient for our
protocols? That is, we have not assumed the highest reliability, but we have assumed
failures to be relatively rare; some systems may find it desirable to use low level reliability
protocols to reduce the amount of work redone as a result of higher level transaction aborts.

We did not supply the details of organization and format of the various tables that
transaction management requires. We also did not describe exactly how to abort running
transactions - an operation that depends on the model of computation used. But in addition
to the question of techniques, there are subtie questions of tuning performance. For
example, there are several places where our algorithms retransmit various messages. How

can one intelligently choose the interval between transmissions?



.135 -

8.2.3 Checkpointing.

As we explained in Chapter 4, our scheme has one vulnerability to failure that we did not
fix. If a top-level transaction runs for a long time, it becomes increasingly likely that its node
will crash, aborting the entire transaction. We pointed out that a checkpointing mechanism
is required if transactions may run long enough for node crashes to reduce reliability below
the desiréd level. We also mentioned that designing a checkpointing mechanism requires
elaborating a model of transaction execution in considerable detail.

One approach that does not depend on the semantics of transaction execution very
much is to save the entire state of a node periodically. This could be done by just stopping
normal processing for a moment and writing copies of all modified pages to permanent
memory. Unfortunately, local checkpoints are not sufficient because of communication
between nodes. If checkpoints of different nodes are not properly coordinated, a
domino-effect can result, making the checkpoints worthless. Russell has examined this
particular problem in some detail {Russell80). By keeping track of the flow of messages in
the system, it might be possible to coordinate checkpoints and arrive at a workabie scheme.
In addition to taking the checkpoints in the first place, there is also the problem of unwinding
them all correctly in case of failure.

A different approach is to checkpoint individual transactions. One advantage of this
approach is that the completion of a transaction at the end of two-phase commit is also a
checkpoint for that transaction, beyond which the transaction will never back up. A further
ad\}antage is that the amount of checkpointing work might be much less than checkpointing
nodes, because one would checkpoint only those transactions that have been running for a
relatively long time.  But as pointed out before, this approach requires a much more detailed

and constrained model of transaction execution.
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8.2.4 Aborting Running Transactions.

Because our algorithms do not require a transaction to wait for its children to finish
before aborting, we introduced the possibility of orphans. Even if we made transactions wait
to abort, crashes could still generate orphans.. The transaction management algorithm
allows us to find orphans and decide that they should be aborted. However, we did not
explain exactly how to abort an orphan. The details of aborting a running transaction are
very implementation dependent, but here are some techniques that might be useful.

First, we can try waiting for the orphan to get to the finished state and abort it then.
Presumably aborting then presents no problems (we have assumed so all along); it should
be simple since activity pertaining to the transaction has supposedly stopped. If we get tired
of waiting, it always works to simulate a crash of the node on which the orphan is running.
Naturally that technique should be used as a last resort, since it will tend to interfere with
other activities, e.g., it may also create more orphans (at other nodes).

Waiting and simulating crashes are techniques that can always be applied, but waiting
does not always work, and crashing is a bit heavy-handed and may generate more orphans.
Here are two additional techniques that might work, depending on the details of the
implementation. One possible approach is to undo everything associated with the
transaction, release all the locks, and give failure returns to any further attempts to use the
transaction id. That method works only if the user programs have absolutely no way of
continuing to access objects they previously locked. The second technique is this: if use of
a transaction id is restricted to a single process, then it may work to kill off that process. All
user programs must then be designed to tolerate arbitrary disappearance of processes; we
are not sure how easy or difficult that would be.

In sum, getting rid of orphans once they are found is a challenging problem. Entirely
satisfactory solutions are implementation dependent and might not be possible. Further

investigation of the problem is in order.
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8.2.5 Higher Concurrency.

Our initial model of locking (in Chapter 4) permitted only exclusive access to objects.
We extended that to include read-mode (shared) access almost immediately. Read/write
locking is a compromise: it permits sufficient concurrency for many applications, and has
relatively simple semantics. However, the semantics of read/write locking do not
necessarily mesh well with the operations on objects. The generalization that seems to be
desired is synchronization appropriate to each data type.

Directories provide a fairly typical exampie of a data type for which read/write locking is
not always appropriate. For example, suppose one transaction is creating a new file in a
particular directory. That operation clearly modifies the directory, and under our read/write
locking scheme the transaction would have to wait for exclusive access to the directory
object, and once it acquired the object, it would lock out all other transactions until it
committed. However, it is sufficient to lock out just the transactions whose outcome will be
different depending on whether the ti'ansaction succeeds or fails. Reed [Reed78] discusses
ways to exploit particular kinds of object semantics to increase concurrency within his
system design.

Montgomery’s polyvalues [Montgomery78] provide a new approach to increasing
concurrency: one calculates all the possible answers. In the case of the example given
above, his scheme would perform two computations: one to calculate the result if the new
file is created and the other to calculate the result if the file is not created. If there are n
transactions updating the object, then we have the potential for up to 27 polyvalues for any
transaction using the object. The hope is that whether the individual file exists or not will not
make any difference to most transactions, so though several values are calculated, the
results are the same, and the transaction can commit regardiess.

~ This is somewhat different from Takagi's scheme [Takagi79}, where one basically
assumes that all transactions will commit (without modifying the object any more). If the
assumption later proves to be wrong, the tentative transactions are undone and
recomputed. Both Montgomery and Takagi are applying corrective action after the fact,

though in somewhat different ways. They also depend on the system to act in certain ways
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with high probability, or else they will perform worse than our scheme rather than better.
The reason is that we merely reduce concurrency, whereas they actually perform multiple
computations in some cases.

A middle ground would be to permit concurrent updates to the same object provided we
could guarantee that they do not interfere with each other. While System R [Gray78] does
not do this, it achieves a similar effect through variable granularity of locking: individual
records of the database can be locked, even though they are embedded in larger data
structures such as relations and files, which can themselves be locked. This requires care
when records or tuples are to be created or deleted from a file or relation - we must make
sure that no transaction has explicitly or implicitly depended upon the existence or
non-existence of a given record.

The directory example provides an illustration of the kind of problem involved. Suppose
that while our transaction that is creating a file is still running, another transaction attempts
to list the directory. If it includes the new file, it will be wrong if the file creating transaction
aborts or deletes the file. Similarly, if the listing transaction does not include the new file, it
will be wrong if the file creating transaction commits. However, there is nothing at all wrong
about letting two transactions writing files with different names to proceed concurrently.
The point is that we must know how much and which part of the state of the directory is
depended upon by each transaction. One of the subtleties is that some transactions
implicitly depend on what is not part of the directory, too. For example, a directory listing
not only asserts what files are part of a given directory, but also implicitly states what files
are not in the directory (by not listing them). This latter property is what gives rise to so
called phantom records in databases [EGLT76].

Something akih to the predicate locks of [EGLT76] can be used to decide when
transactions must be blocked. It has been pointed out that computing general predicates is
a hard problem. However, many collections of objects (stacks, queues, directories) require
only simple predicates for their operations. Even general sets and relations can be handled
by designing a suitable simplified class of predicates that are easy to check and calculate
though perhaps not exact.

Instead of deriving predicates based on object states, one might achieve a more natural
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characterization by investigating the commutativity of different operations on objects of a
given type. This is based on the fact that if two operations commute, and they are performed
by different transactions, then there is no conflict between the transactions. Commutativity
of read operations and non-commutativity of writes with either reads or other writes is the
basis of read/write locking. |

Korth has developed some theory related to generalized locking modes [Korth81].
However, he has considered the compatibility matrix, which defines which lock modes may
be concurrently held by different transactions on the same object, to be given. Automatic or
simplified derivation or specification of compatibility matrices for arbitrary data types would
be an interesting extension of his work. _

In addition to the control of concurrency among transactions for consistency reasons,
we must be careful to insure exclusive access for the delicate parts of updates to many
common data structures. That is, even though the elements of a set (say) are logically
distinct, so that transaction-level concurrency control does not require synchronization,
process-level synchronization may stif be required when manipulating the physical data
structure used to represent the set. However, the periods of time during which exclusive
access of this kind is required are almost always brief, and the situation is comparatively well
understood because of past experience with updating data structures in operating systems.
A subtle point is that mutual exclusion may be required for undoing the work of aborted
transactions. Also, if a process is killed off (because it is running on behalf of an orphan
transaction, say) while it possesses a mutual exclusion lock, the integrity of the data
structure can be destroyed.

If concurrent updates are allowed, the object state restoration techniques we employed
in our design no longer work. It seems that the simple state-based approach must be
replabed by a log-based method. One could use an undo log, as in [Gray78]. However,
David Reed pointed out to us that it might be easier and safer! to use a redo log. A redo log

would work as follows. Periodically we would save the state of the object; for purposés of

1. Redo is safer than undo because undo requires separate code that is complex and may be executed only
rarely. It should be possible to use the normal "forward" executing code to perform redo.
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argument, assume that the saved state is between updates. Then as updates are performed,
we would record the operations executed so that we could re-execute them if desired. If
one transaction aborted, we would fetch the saved state, and redo the operations of all other
transactions (in order).

It is possible to take a new snapshot of the object even if there are updates for not yet
committed transactions. However, doing so involves "imagining"” (i.e., computing) what the
object state would be if all the current pending updates aborted. Perhaps it would be easiest
to keep two objects states: one is the current state and is what transactions actually
manipulate; the second reflects only the committed updates. Doing things this way involves
computing updates twice. However, if there are no pending updates, then the two object
states will be the same and we can get away with performing the update only once. Thus,
we expend more effort on high traffic items that tend to have pending updates, but get the
original efficiency with low traffic items.

There is a trade-off between concurrency (delay) and processor time consumed. There
is also the question of simplicity: the redo scheme is considered preferable because it is
much easier to conceive of and implement general redo schemes than undo schemes,
because for redo the user need not write extra code, whereas for undo the user must
provide undo operations.

It is interesting to note that Montgomery's and Takagi’s schemes also work
automatically without extra user code. In some situations Montgomery’s polyvalues might
be the best approach, because results are held up only when they are actually different
depending on whether or not some other transaction commits. Similarly, Takagi’s scheme
could be advantageous if aborts are relatively rare, as is usually the case. The schemes we
have suggested ho>ld a transaction up whenever its results might be different rather than
when they are actually different.

Schemes that permit concurrent updates to the same object may have more trouble with

checkpointing, because of the necessity for checkpointing to sample intermediate states.
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8.2.6 Communication.

The main shortcoming of our current design with respect to communication is that there
is no integration of user communication primitives into the rest of the system. The reason it
would be desirable to have such integration is that sending messages  can permit
information to flow outside of a transaction. If we stick to strict serializability semantics,
recipients should not be able to actually receive and act on messages until the sending
transaction has committed. It might appear that ii is difficult to get a foreign node to do
something, since the requesting transaction must commit before the foreign node can read
the message, but then it is too late for the foreign node to perform acts with respect to the
transaction. It seems that there must be some magic at the foreign node to cause a new
process to be created as part of the transaction, or an old process to join the transaction, or
something else of a similar nature. However, information is still restricted to flow only within
a transaction until the transaction commits. Suitable semantics have yet to be worked out,
much less implementation techniques to support them.

Reed [Reed78] has suggested permitting messages to flow and be received, but
perhaps aborting dependent transactions that received results from aborted transactions.
This is not unlike Takagi’s scheme, in which one allows results to be read before they are
committed, and then aborts the readers if the results are not actually committed. Such
information-flow-based models bear some relationship to checkpointing as well, as we
pointed out above. -

8.2.7 Replication.

Several schemés attempt to provide muitiple copy databases while simultaneously
addressing concurrency and reliability problems. it is our feeling, sgconded by Gifford
[Gifford79], that it is easier, simpler, and more appropriate to implement replication on top of
a system such as ours, so as to separate the issues of replication from the other problems. It
may be true that better performance can be achieved by solving all problems
simultaneously, but the result is considerably more complex. Also, an integrated solution

will tend to be somewhat rigid in its approach to replication. That is, it would not be possible
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to implement a different replication algorithm without rearranging everything, whereas in the
layered implementation we suggest, different replication algorithms could co-exist with no
problem.

A number of algorithms have been proposed for performing replicated updates. Some
have been based on timestamps (e.g., SDD-1 [BSRG77] and Distributed INGRES
[Stonebraker79]) while others have been based on centralized locking (e.g.,
[Garcia-Molina79]). A wholé variety of algorithms are examined, cataloged, and compared
in general terms in a report by Bernstein and Goodman [BG80]. Some of the schemes
involve voting: in trying to acquire a replicated resource, one asks each copy if it is willing to
go along with the request. If the transaction receives a quorum of agreeing votes, then it
has the resource. The first voting algorithm was publiéhed by Thomas [Thomas79]. Gifford
[Gifford79] presents an interesting generalization of voting: weighted votes.

We will not suggest what kind of replication scheme to use on top of our system.
However, most replication schemes will permit work to proceed even when a few copies are
unavailable. Such situations could be represented in our system as foliows. Assuming a
program has first gone through whatever protocol is required to insure exclusive access,
one attempts to update all known (or available) copies, using a separate subtransaction for
each update request. If enough of the subtransactions commit, then the overall update
transaction can correctly commit; otherwise it must abort. The convenience is that the
aborting happens automatically. One very simple approach is to start subtransactions doing
the updates and commit the enclosing transaction if and only if at least a quorum of copies
was updated. We believe the simplicity is a strong argument for this general method of

implementing replication.
8.2.8 Multiple Versions.

We mentioned in the previous chapter that Reed’s design [Reed78] incorporates the
rather radical idea of keeping multiple versions of each object. These versions encode the
entire history of an object's states, with global timestamps used to address the different
versions. One need not keep all versions indefinitely - old versions can be discarded at will -

only the latest version must be kept. If multiple version are deemed useful, it would be
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interesting to have a scheme that uses locking instead of (or more likely in combination with)
timestamps to achieve a synthesis of Reed’s design and ours. Such a combination seems
strange now, but Bernstein and Goodman have suggested a number of schemes that mix
locking and timestamping [BG80]. Perhaps it would be possible to special case read-only

transactions to achieve a simpler solution to the problem.
8.2.9 Evaluation.

As noted in Chapter 7, there is no hard data available for comparing distributed
transaction schemes, or even specific techniques. Some speculative works have been
published (e.g., [BG80, BSW79]), and a variety of claims have been made concerning
different schemes. It would be very useful if experiments were performed comparing
designs similar enough to each other to allow strong conclusions to be drawn. To make
such comparisons well would require building two systems that are the same in all respects
other than the mechanism or algorithm of interest. Hence, such cogent comparisons may
never be possible.

An area in which experiments might be feasible is the handling of deadlock, because it
is almost orthogonal to other system components in mény designs (such as ours). It would
be interesting to see comparisons of avoidance and detection within the same system under
conditions of actual use. Another area in which experiments could probably be performed
without too much effort is different schemes for object replication, if replication is buiit on
top of an already existing transaction system.

8.3 Conclusions.

Transactions have been shown to be a useful tool for thinking about and constructing
reliable distributed systems, because they provide a solid semantic foundation that has a
simple interface. Once transaction processing has been provided, it is much easier to build
the application system on top because the reliability and concurrency problems are already
solved and may be mostly ignored. Nested transactions provide a potentiatly useful

extension beyond single-level transaction semantics. We expect that transactions, and
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possibly nested transactions, will become the method of choice for building a wide variety of
computing systems, especially distributed systems, because they make it easier to build

such systems and to believe in them.
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Appendix | - The Simulator.

We performed a computer simulation of the system design, mainly to gain confidence in
the correctness of the algorithms. The simulation was helpful in that it required careful
thought, which enabled us to find a number of errors in the details of the algorithms. Once
the algorithms were written and seemed to work, we tried to construct counter-examples
and also informal proofs of correctness. We now have considerable (though not absolute)
confidence in the algorithms, and believe any errors must reside in the details and not in the
overall approach.

The simulator modelled a number of nodes, their local computation, and the passing of
messages between the nodes. A global schedule of activities was kept, including the next
step in processes at nodes, delivery of messages, node crashes, and node recoveries. The
basic algorithm was "extract the next event and perform it", until no interesting events
remained to be simulated. Most events would schedule other events at later times as part of
their effects. The structure described was convenient because it allowed us to make any
manipulations we liked atomic (both with respect to other processes and to failures). This
permitted us to ignore details such as locking of the transaction manager’s databases, buf
we were careful to insure that user level operations were no more atomic than assumed in
this report.

The program was written in CLU and run on a DECSYSTEM-20 (TOPS-20). It consisted
of a number of data types (27) and separate procedures (110). It ran sufficiently fast that
interactive processing was acceptable - thé longest runs took no more than a CPU minute.
There were no problems with memory size, etc. Except for one or two obscure things we
needed to do, CLU was found to be well suited to the task.

In order to perform the simulation, it was necessary to use some model of computation.
The model we chose was one in which a process could execute on behalf of at most one
transaction at a time, and a transaction could be executed only by a single process. Each
process was provided with a private volatile memory, and each node had a global volatile

memory and a global permanent memory. The global memories were divided into two
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portions, user and system, to avoid any naming conflicts. Each of the memories was simply
a mapping from strings to arbitrary CLU objects. Hash tables were used extensively, and
appeared to be quite effective.

For realism, it was guaranteed that the permanent and volatile copies of objects, both
user objects and system tables, were stored in disjoint memory. Further, when an object
was sent in a message to another node, it was also guaranteed to occupy disjoint memory
locations. The purpdse was to make sure that updates were not propagated merely by
sharing pointers to a common data structure. In haking the copies, it was necessary to
preserve the sharing structure within an object, because a user or system object could
consist of an arbitrary directed graph of primitive CLU objects, and the sharing and structure
could be significant. A straightforward breadth first search worked well. It was also
necessary to devise means for sampling and correctly restoring objects states; those
techniques were similar. A very small part of the functionality was supplied by assembly
code because CLU did not have the necessary (obscure) feature; only 65 lines of assembiy
code were required to provide this function.

The most dramatic result of the simulator was the successful execution of 30 simple
transaction requests under severe failure conditions. To wit, each transaction request
updated two objects, one on each of two nodes. Further, the requests were submitted so as
to induce a deadlock cycle of length 30. Sites were crashed frequently (up for on the order
of minutes only) and were down ten percent of the time. Finally, the communications
network lost ninety percent of the messages submitted to it. Message delays were chosen
from a rather broad distribution, so it was not unusual for messages to pass each other in
the network. Although some of the transaction requests had to be submitted many times,
both because of deadlock and because of crashes, the system eventually converged to the
correct state.

The deadlock detection algorithm was also tested under lower failure rates so that we
could believe that the detection algorithm was working, and it was not failures that were
aborting transaction to break deadlocks.

We found that it was profitable to hold outgoing messages for a little while in an attempt

to batch them together with other messages for the same node. The exact method was to
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wait until the first message queued for a particular destination had been in the queue a
certain amount of time, and then to batch all messages queued for that destination at that
time. One reason it was good to do this is that the commit and abort protocols of our
algorithms can queue a number of messages in a short span of time, but it complicates the
code to try to group together all message for the séme node. It was easier to let a lower level
mechanism do the grouping. A further advantage of the chosen batching method was that it
could also exploit situations we had not found, or that are awkward to deal with in the main
code.

In sum, the simulator was moderately realistic (for a centralized simulation of a
distributed system), acceptably efficient, and helpful in the design of the system. There are
cases where our presentation suggests techniques somewhat different from those used in
the simulator. This happened because we thought of better ways to do some things while
writing this report, and also because the simulator had to work within the confines of a
particular system and language. The differences between the simulator and the described
design do not affect our judgment that the algorithms we have presented are essentially

correct.
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Appendix Il - The Transaction Manager Algorithm.

This appendix provides a detailed description of the algorithm run by the transaction
managers in our system design. We will present the algorithm by describing the data
structures maintained by a manager (in a fairly abstract way), and then presenting the
algorithm fragments it applies when messages of particular kinds are received, or various
other things happen. Note that all transaction managers run the same algorithm. Hence, we
will describe the actions of just one transaction manager on its local data. Further, we will
assume that only one transaction manager routine is active at once. That is, we omit
consideration of locking the transaction manager’s internal databases by assuming that
there are no concurrent accesses to them. Furthef, we assume that any permanent storage
updates performed by a single algorithm fragment are done together as a single atomic

write.
Il.1 Data Structures.

Trénsaction id’s will generally be indicated by a "t" suitably decorated with primes,

subscripts, etc. Here are the primitives for dealing with tid’s and their interesting properties:

home (t) = the home node of transaction t
local (t} = home (1) = this node

foriegn (t) = -local (t)

top-level () = tis atop-level transaction

parent (t) = the parent of transaction t, provided - top-level (t)

priority (t) < priority (') v priority (t) > priority (t')
v (priority () = priority () A t = 1)

The last statement says that transaction priorities are totally ordered and that different
transactions have different priorities. It is implicitly assumed that tid’s are unique because

we use them to identify transactions.
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- top-level (t) = priority (parent (t)) > priority (t)
We also use the predicates ancestor and inferior, in the senses previously defined:

inferior (t, t') = (' = parent (t) v inferior (parent (t), t’))

ancestor (t,t') = (t = t' v inferior (t', t))

Hence, ancestor(t, t') can be read "t is an ancestor of t'", and inferior(t, t') as "t is an inferior
of " '

Objects and nodes are identified by unique identifiers, too. The various spaces of these
identifiers may overlap, because we will always know what kind of thing a unique id
identifies. It is not necessary to know the entire set of nodes or transactions - we need only
know those encountered by the given node. However, we do assume that a node "knows”
all the objects existing there. ,

The data structures maintained by a node will be described by relations here. A relation
is a finite set of tuples. A tuple is very similar to the mathematical concept of ordered lists.
However, we find it helpful to give names to the fields of the tuples for each relation. For
example, there are two relations indicating the current state of all object.s existing at the
node: one relation for the volatile memory versions and one for the permanent memory

versions. We describe the domains as follows:

OBJECT-MAP = obj: OBJECT-ID x state: OBJECT-STATE
Objects c OBJECT-MAP
Permanent-Objects ¢ OBJECT-MAP

The "name:" part gives names to the fields. Items all in upper case, such as OBJECT-ID,
indicate domains. Capitalized items, such as "Objects" name specific relation variables
being maintained by the node as part of its data structures.

We will use "o" for object id’s, and o for object states. Both of those domains are
uninterpreted. The normal processing at the node modifies the Objects and
Permanent-Objects relations. The transaction manager never deals with those entire

relations at once (except when recovering from a crash), but only with small pieces (related
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to individual objects). We assume that no other activity is modifying those parts while the
transaction manager is dealing with them.
In addition to the current object states, we keep track of the locks and associated states

as well:

LOCKS = trans: TRANS-ID x obj: OBJECT-ID x mode: LOCK-MODE
LOCK-MODE = {"R", "W"}

Held-locks c LOCKS
Retained-Locks ¢ LOCKS
Awaited-Locks ¢ LOCKS

SAVED-STATES = trans: TRANS-ID x obj: OBJECT-ID x state: OBJECT-STATE

Assoc-States ¢ SAVED-STATES
Permanent-Assoc-States ¢ SAVED-STATES

Permanent-Assoc-States is used to remember the associated states for prepared but not yet
completed transactions.
In addition to the objects, locks, and associated states, we need to keep track of various

things concerning transactions:

TRANSACTION-STATES = trans: TRANS-ID x state: TRANS-STATE
TRANS-STATE = {"created", "running", "finished", "prepared",

"aborted", "committed", "revoked"}

Transaction-States ¢ TRANSACTION-STATES

Only local transactions and their ancestors are recorded in Transaction-States. For
non-top-level transactions, the only states that occur are "running” and "finished". The
"aborted", "committed", and "revoked" states are also used for children of local
transactions (see Child-States, below). Top-level transactions will use the "prepared” state

in addition to the others, because they go through the two-phase commit protocol.
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In addition to a transaction’s state, we need to know the identity of children of local
transactions, of committed inferiors of transactions, and of nodes known to be visited by a

transaction and its inferiors:
Child-States ¢ TRANSACTION-STATES
TRANS-NODES = trans: TRANS-ID x node: NODE-ID

Committed-Inferiors ¢ TRANS-ID
Visited-Nodes ¢ TRANS-NODES

For each child of a local transaction there is one pair in the Child-States relation.

Permanent-Transaction-States ¢ TRANSACTION-STATES
Permanent-Committed-Inferiors ¢ TRANS-ID
Permanent-Visited-Nodes ¢ TRANS-NODES

These permanent memory records are used by the coordinator of the two-phase commit

protocol.

Outstanding-Nodes ¢ TRANS-NODES
Preparing-Transactions ¢ TRANS-ID
Completing-Transactions ¢ TRANS-ID

Permanent-Completing-Transactions ¢ TRANS-ID

These volatile memory data structures (and one permanent memory data structure) are used

to keep track of nodes and transaction states in the two-phase commit protocol.
I.2 Message Types.

It is assumed that messages are marked with the sender so that we can refer to it. When
we speak of sending a message to a node, we mean that node’s transaction manager. We

will now list the various messages that transaction managers may send and receive. The
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messages are categorized by type. We will not explicitly show the branching based on type
of received messages, but rather will show separate handlers for each kind of message.
Below we state the message types by treating them as reiational domains. However, we
assume that two message types are distinguishable even if their data come from the same
underlying domain.

query-old € TRANS-ID

query-new € TRANS-ID

response-old € TRANSACTION-INFO
response-new € TRANSACTION-INFO
committed € TRANSACTION-INFO
aborted ¢ TRANSACTION-INFO

prepare € TRANSACTION-INFO
prepared € TRANS-ID
unprepared € TRANS-ID
complete ¢ TRANS-ID
completed € TRANS-ID

detect € WAIT-PAIR* x TRANS-ID

 TRANSACTION-INFO = trans: TRANS-ID x state: TRANS-STATE
x infs: POWERSET(TRANS-D)
x wnodes: POWERSET(NODE-ID)
WAIT-PAIR = waiter: TRANS-ID x holder: TRANS-ID

Many of these messages convey only a transaction id (i.e., prepared <t> indicates that
transaction t is now prepared at the sender’s node). Some, however, send more information
in the form of an element of the domain TRANSACTION-INFO. Such an item consists of a
transaction id, thé state of the transaction, the committed inferiors of the transaction, and
the nodes visited by the transaction.

The first group of messages has to do with the normal flow of information and querying.
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The second group is for the two-phase commit protocol, and the last one is for deadlock
detection and resolution. The superscript + on WAIT-PAIR means an ordered list of one or
more WAIT-PAIR’s. We will use a length operator on such lists, as well as a concatenation

operator (written as |}).
II.3 Internal Entry Points.

In addition to responding to messages from outside, the transaction manager must

coordinate with local activity. The following operations model these interactions:

register (t) - Registers a transaction with the transaction manager; this operation is
guaranteed to be invoked before any'other operation involving the same transaction. Its
purpose is to permit appropriate entries to be created in the database. It is invoked only

local transactions and their ancestors.

register-foreign-child (t) - Registers t, which is a child of a local transaction.

However home (t) is not this node, but some other node, hence parent querying is implied.

lock (o, t, m) - Lock object "o" for transaction "t" in mode "m". The transaction
manager will explicitly grant the lock request, if possible; otherwise the transaction will be
aborted because of deadlock. Meanwhile, the transaction must wait. For simplicity we have

omitted object creation and deletion.
done (t) - Says that transaction t is finished.
abort (t) - Asks that a transaction be aborted.

revoke (t) - Asks that a transaction be revoked.
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I.4 Transaction Manager Scanning.

-

There will be several cases where the transaction manager will desire to perform
background actions periodically, such as retransmitting prepare messages or queries.
These background activities could be scheduled and performed in many ways; we will
represent them by putting things of special interest into separate data structures that are to
be scanned regularly to have background actions performed. That is, we concentrate on
what must be done and how, but gloss over when and how often. Here are the various kinds

of scans:

parent-query-scan: Scan the known transactions and send parent queries to

children as appropriate.
participant-query-scan: Similar to parent-query-scan.
prepare-scan: Scan to send or retransmit prepare messages.

complete-scan: Scan to send or retransmit complete messages.

I.5 Summary of Database Domains and Data Structures.
Here are the various domains used:
OBJECT-ID, TRANS-ID, and NODE-ID are primitive domains.

OBJECT-MAP = obj: OBJECT-ID x state: OBJECT-STATE

LOCKS = trans: TRANS-ID x obj: OBJECT-ID x mode: LOCK-MODE
LOCK-MODE = {"R", "W"} |

SAVED-STATES = trans: TRANS-ID x obj: OBJECT-ID x state: OBJECT-STATE
TRANSACTION-STATES = trans: TRANS-ID x state: TRANS-STATE
TRANS-STATE = {"created", "running", "finished", "prepared",

"aborted”, "committed”, "revoked"}
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TRANS-NODES = trans: TRANS-ID x node: NODE-ID
TRANSACTION-INFO = trans: TRANS-ID x state: TRANS-STATE
x infs: POWERSET(TRANS-ID)
. x vnodes: POWERSET(NODE-ID)
WAIT-PAIR = waiter: TRANS-ID x holder: TRANS-ID

These are the specific data structures maintained by the transaction management

algorithm:

Objects ¢ OBJECT-MAP

Permanent-Objects ¢ OBJECT-MAP
Held-locks ¢ LOCKS

Retained-Locks ¢ LOCKS

Awaited-Locks ¢ LOCKS

Assoc-States ¢ SAVED-STATES
Permanent-Assoc-States ¢ SAVED-STATES
Transaction-States ¢ TRANSACTION-STATES
Child-States ¢ TRANSACTION-STATES
Committed-Inferiors ¢ TRANS-ID
Visited-Nodes c TRANS-NODES
Permanent-Transaction-States ¢ TRANSACTION-STATES
Permanent-Committed-Inferiors ¢ TRANS-ID
Permanent-Visited-Nodes ¢ TRANS-NODES
Outstanding-Nodes ¢ TRANS-NODES
Preparing-Transactions ¢ TRANS-ID
Completing-Transactions ¢ TRANS-ID

Permanent-Completing-Transactions ¢ TRANS-ID
These are the message types and corresponding data:

query-old € TRANS-ID
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query-new € TRANS-ID

response-old € TRANSACTION-INFO
response-new € TRANSACTION-INFO
committed ¢ TRANSACTION-INFO
aborted ¢ TRANSACTION-INFO
prepare € TRANSACTION-INFO
prepared € TRANS-ID

unprepared € TRANS-ID

complete € TRANS-ID

completed € TRANS-ID

detect ¢ WAIT-PAIR* x TRANS-ID

1.6 Special Notations.

We have invented a few special notations to make the explanations more compact.

First, we use a shorthand for selecting members of a relation satisfying a given predicate:

{relation | predicate (comp1, comp2, ..., compN)}

is a shorthand for this:

{x € relation | predicate (x.comp1, x.comp2, ..., x.compN)}

The compi are the names of the components of the relation; they will always be underscored
so they will stand out. The dot notation indicates selection of the named field from an

element of the relation. We extend the dot notation to relations as well:

relation.comp

is short for

{x.comp | x € relation}
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Beyond these special notations we do not use anything that will not be obvious in intent.
1.7 Algorithm Fragments.

We will now present the various routines performed when interesting things happen.

We use an abstract notation similar to a programming language.

// Recall that register is invoked exactly once for each local transaction before
// any manipulation is performed using it. -

register (t: TRANS-ID)

// Enter t in the database with initial state "running”. Also enter any superiors that
// are not yet entered.

new « {t’ | ancestor (t', t)} - Transaction-States.trans
Transaction-States — Transaction-States u {<t', "running"> | t' € new}
Child-States — Child-States u {<t’, "running"> |t' ¢ new A - top-level (t')}

// This is called at the time a tid for a foreign child is created. We assume its parent is
// already registered. .

register-foreign-child (t: TRANS-ID)

Child-States — Child-States u {<t, "created">}
Visited-Nodes + Visited-Nodes u {<t, home (t)>}

// This is the routine called to request a lock.
lock (o: OBJECT-ID, t: TRANS-ID, m: LOCK-MODE)
held «— {Held-Locks | gbj = 0 A trans # t}

retained « {Retained-Locks | gbi = 0 A - ancestor (trans, t)}
current — {Held-Locks | obj = 0 A trans = t}
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ifm = "R" then
// remove non-conflicting entries
held — {held | mode = "W"}
retained + {retained | mode = "W"}
end

conflicts — held.trans U retained.trans
if conflicts = @& then
// ok to grant lock
if current.mode c {"R"} then
Held-Locks « (Held-locks — current) u {<t, o, m>}
ifm = "W" then
cur-state « {Objects | gbi = 0}.state
Assoc-States — Assoc-States u {<t, 0, o> | ¢ € cur-state}
end
end
// Note: a transaction can await at most one lock
Awaited-Locks — {Awaited-Locks [trang #t}
grant the lock and retum
end

// There is a conflict - add transaction to waiting set and possibly initiate deadlock
// detection. Note: old and old® are unique.

Awaited-Locks — Awaited-Locks u {<t, 0, m>}
foreach t’ € conflicts do
anc + {t" |ancestor (t”,t) A - ancestor (t", t')}
anc’ — {t” | ancestor (", t') A -~ ancestor (", 1)}
choose old € anc suchthat (V t” ¢ anc: ancestor (oid, t"))
choose old’ € anc’ suchthat (V t” € anc’: ancestor (old’, 1))
if priority (oid) > priority (ok?’) then
send detect <<, 122, old'> to home (old’)
end
end




-164 -

// This is invoked when a local transaction is finished and desires to start commitment.
// We assume that it is not invoked if the transaction is not currently running, etc.

// For simplicity the other actions are performed by a background scanning operation,
// since that could be required anyway. One could trigger a scan immediately so that
// the transaction need not wait a long time unless necessary.

done (t: TRANS-ID)

Transaction-States +— {Transactions-States |1Lan§ = t)u {<t, "fmnshed")}
states — {Child-States | parent (trans) = t}.state
if "aborted"” ¢ states then abort (t)

elseif states c {"committed"”, "revoked"} then commit (t)

// otherwise, do nothing (until inferiors finish)

end

// This is to be invoked either by the user, when the transaction is still running, or by the
// transaction manager in certain other cases.

abort (t: TRANS-ID)

// first, abort any existing children
aborts — {Transaction-States | parent (trans) = t}.trans
foreach t’ ¢ aborts do abort (') end

// if tis local, then send messages out
if local (t) then
visited + {Visited-Nodes | trans = t}.node
targets « visited
it ~ top-level (t) then targets — targets u {home (parent (t))} end

msg + aborted <t, "aborted"”, @, visited>
foreach n ¢ targets do send msg to n end

end

// undo the transaction’s effects
old-states — {Assoc-States | trans = t}
foreach <t’, 0, o> € old-states do
Objects « {Objects | obj # o}
if o # "non-existent” then
Obijects — Objects u {£o, o>}
end
end
Assoc-States — Assoc-States - old-states
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curstate — {Transaction-State | trans = t}.state
if curstate = {"prepared"} then
old-states — {Permanent-Assoc-States | irans = t}
foreach <t', o, o> € old-states do
Permanent-Objects — {Permanent-Objects | gbj # o}
Permanent-Objects « Permanent-Objects u {£o, o>}
end
Permanent-Assoc-States — Permanent-Assoc-States - old-states
end

// remove the transaction from all databases
Transaction-States — {Transaction-States | trans # t}
Preparing-Transactions — {t’ ¢ Preparing-Transactions | t' # t}
Held-Locks — {Held-Locks | trans # t}
Retained-Locks « {Retained-Locks | trans # t}
Awaited-Locks — {Awaited-Locks | trans # t}
Child-States « {Child-States | -~ ancestor (t, trans)}
if (— top-level {t)) A local (parent (t)) then

Child-States « Child-States u {<t, "aborted">}

end
Committed-Inferiors — {t' € Committed-Inferiors | — ancestor (t, t')}
Visited-Nodes « {Visited-Nodes | trans # t}
Outstanding-Nodes «~ {Outstanding-nodes | trang # t}

// abort the parent if it can no longer revoke aborted children
p — parent (t)
if local (p) then _

pstate — {Transaction-States | trans = p}.state

if pstate = {"finished"} then abort (p) end

end

// We assume this routine is called only to revoke already aborted children of still-running
// local transactions, and maybe commit the parent transaction.

revoke (t: TRANS-ID)

Child-States +~ {Child-States | frans # t} u {<t, "revoked™>}
p + parent (1)

pstate «— {Transaction-States | irans = p}.state

if pstate # {"finished"} then return end

cstates « {Child-States | parent (irans) = p}.state

if cstates ¢ {"committed”, "revoked™} then commit {p) end
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// This routine is called from several places inside the transaction manager, to perform the
// actions necessary when a finished transaction can be committed.

commit (t: TRANS-ID)

Committed-Inferiors «+— Committed-Inferiors u {t}
com-infs « {t' € Committed-Inferiors | inferior (t’, t)}
visited — {Visited-Nodes | trans = t}.node
mylocks «~ {Held-Locks | trans = t} u {Retained-Locks | rans = t}
if top-level (t) then
// start the prepare (finished as a backgroung activity)
rlocks «— {mylocks | mode = "R"}
Held-Locks + Held-Locks - rlocks
Retained-Locks ~ Retained-Locks - rlocks
Transaction-States — {Transaction-States | trans # t} u {t, "committed">}
Child-States « {Child-States | - inferior (trans, t)}
if foreign (t) then return end
Outstanding-Nodes «— Qutstanding-Nodes u {<t, n> | n € visited}
Preparing-Transactions « Preparing-Transactions u {t}
return
end

// send "committed" messages if local (t)
if local (t) then
p « parent (t)
targets « visited U {home (p)}
msg + committed <t, "committed", com-infs, visited>
foreach n ¢ targets do send msg to n end
end
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// promote locks and associated states
foreach o € mylocks.obj do :
modes — {mylocks | gbj = 0}.mode
if "W" € modes then mymode — "W" else mymode — "R" end
oldmodes + {Retained-Locks | trans = parent (t) A gbj = o}.mode
newmode «— mymode
if "W" € oldmodes then newmode « "W" end
if mymode = "W" A "W" ¢ oldmodes then
// promote associated state
mystate — {Assoc-States |gbi = 0 A trans = t}.state
Assoc-States «— Assoc-States U {{p, 0, mystate>}
end
// promote lock
Retained-Locks «— Retained-Locks U {<p, 0, newmode>}
end -

// remove transaction from data structures

Held-Locks — {Held-Locks | trans # t}

Retained-Locks — {Retained-Locks | trans # t}

Assoc-States « {Assoc-States | trans # t}

Transaction-States — {Transaction-States | trans = t}

Child-States + {Child-States | - inferior (trans, t)} u {<t, "committed">}
Visited-Nodes + {Visited-Nodes | frang # t} u {<p, n> |n = home (t) v n € visited}

// maybe commit parent
p — parent (t)
if local (p) then
pstate — {Transaction-States | {rans = p}.state
if pstate # {"finished”} then return end
cstates — {Child-States | parent (irans) = p}.state
if cstates ¢ {"committed", "revoked"} then commit (p) end
end
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// This scanning routine checks up on foreign children of local transactions.

parent-query-scan ()

todo — {Child-States | foreign (trang)}.trans
foreach t € todo do _
state — {Child-States | trans = t}.state
if state = "created” then send guery-new <t> to home (t)
elseif state = "running" then send guery-old <> to home (t)
end
end

// This routine is called to query home nodes of foreign transactions that have run inferiors
// here. We query only the most deeply nested such transactions.

participant-query-scan ()

todo ~ {Transaction-States | foreign (trans)}.trans

all — Transaction-States.trans

todo — {t|tetodo A — (3t ¢ all: inferior (t', t))}
foreach t € todo do send guery-old <t> to home (t) end

// This routine scans transactions to be prepared and sends out prepare messages to the
// participants. Thus it is part of the first phase of the coordinator in the two-phase
// commit protocol.

prepare-scan ()

foreach t € Preparing-Transactions do
infs — {t' € Committed-Inferiors | ancestor (t, t')}
visited «+ {Visited-Nodes | trans = t}.node
msg « prepare <t, "committed", infs, visited>
targets — {Outstanding-Nodes | trans = t}.node
foreach n ¢ targets do send msg to n end
end
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// This routine is analogous to prepare-scan.
complete-scan ()

foreach t ¢ Completing-Transactions do
targets — {Outstanding-Nodes | trans = t}.node
foreach n ¢ targets do send complete <t> ton end
end

Now we present the handlers for the various kinds of messages. We use the keyword
sender to mean the node that sent the message currently being handled. In a few places
we desire to treat one kind of message as if it were a different kind. For example, a response
of "committed” to a query is sometimes equivalent to a committed message. We will say
handle as ... when this is to happen. The sender is still the original sender. The handle as

construct is an unconditional jump, i.e., control does not return to the following statement.

// The two kinds of query messages are handled almost the same, so we just call acommon
// routine with an argument indicating the type of query actually being done.
query-old <t '

msg + handle-query (i, response-oid)
send msg to sender

query-new <

msg « handle-query (t, response-new)
send msg to sender

handle-query (t: TRANS-ID, mtype ¢ {response-new, response-old}) returns (MESSAGE)

infs — {t' ¢ Committed-Inferiors | ancestor {t, t')}
visited « {Visited-Nodes | trans = t}.node

if t € Preparing-Transactions then
return (mtype <t, "prepared”, infs, visited>)
end

if t ¢ Completing-Transactions then
return (mtype <t, "completed", infs, visited>)
end .
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curstate — {Transaction-States | trans = t}.state
if curstate = @ then }
// if t is unknown here, say o
sups — {Transaction-States | ancestor (trans, t)}.trans
if sups = @ then return (mtype <t, "unknown", &, 2>) end

/7 find youngest still running ancestor
choose youngest € sups suchthat v ' € sups: ancestor (', youngest)

// find its child that is an ancestor of t
ancs + {t' | ancestor (t', t) A inferior (', youngest)}
choose anc € ancs suchthat v t' € ancs: ancestor (anc, t)
mstate « "aborted"
if <anc, "committed"> € Child-States then mstate = "committed” end
infs — {t' € Committed-Inferiors | inferior (t', anc)}
visited — {Visited-Nodes | trans = youngest}.node
return (mtype <anc, mstate, infs, visited>)
end
return (mtype <t, "running”, infs, visited>)

// This routine handles response-new messages, which arrive only as the result of
// queries by local parents concerning foreign children. The only possible values for
// t-state are "running”, "aborted", "committed”, and "unknown".

response-new <t, t-state, t-infs, t-visited>:

// return immediately if the message is irrelevant

p — parent (t)

pstate «— {Transaction-States | trans = p}.state

if pstate ¢ {"running”, "finished"} then return end

ostate — {Child-States | trans = t}.state

if ostate = @ v t-state = "unknown" then return end

if t-state = "running" then
Child-States « {Child-States | trans # t} u {<t, "running">}
return
end

if t-state = "aborted”
then handle as aborted <t, t-state, t-infs, t-visited>
else handle as committed <t, t-state, t-infs, t-visited>
end
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// This is similar to response-new, but can pertain to just about any non-local transaction.
// The possible values for t-state are "aborted”, "committed”, "running”, "prepared”,
// "completed”, and "unknown".

response-old <, t-state, t-infs, t-visited>:

ostate — {Transacti'on-States |irans = t}.state
if ostate = @& then return end

if t-state = "unknown" then handle as aborted <t, t-state, t-infs, t-visited> end

if t-state = "aborted" then handle as aborted <t, t-state, t-infs, t-visited> end

if t-state = "committed” then handle as committed <t, t-state, t-infs, t-visited> end
if t-state = "prepared" then handle as prepare <t, t-state, t-infs, t-visited> end

if t-state = "completed” then handle as complete <t, t-state, t-infs, t-visited> end

// "running” requires no action

// This routine handles incoming committed messages. Note that commitment of local
// transactions sends these, too.

committed <t, t-state, t-infs, t-visited>

'// if no record, check Child-States
ostate « {Transaction-State | {rans = t}.state
if ostate = & then
p « parent (1)
if foreign (t) A local (p) then -
ostate — {Transaction-State | {rans = p}.state
if ostate = @ v ostate ¢ {"running", "finished"} then return end
Child-States — {Child-States | trans # t} u {<t, "committed">}
states + {Child-States | irans = p}.state
if ostate = {"finished"} A state c {"committed”, "revoked"}
then commit {p)
end
end
return
end
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infs + {Transaction-State |'inferior (trans, t)}.trans
cinfs — infs u {t' € Committed-Inferiors | ancestor (t, t')}
linfs «— {t' € t-infs | local (t')}
if linfs ¢ cinfs then
// some supposedly committed things are not, so abort the parent
visited « t-visited u {Visited-Nodes | trang = t}
send aborted <parent (t), home (parent (1)), @, 2>
return
end

// abort the uncommitted inferiors

aborts + infs - t-infs

aborts — {t' € aborts | - (3 t” € aborts: inferior (t', t"')}
foreach t’' € aborts do abort (t') end

// commit the rest, and the transaction in question
commits + t-infs n infs
while commits # @ do
todo « {t' e commits | - (3t € commits: inferior (t", t')}
foreach t' ¢ todo do commit (') end
commits +— commits ~ todo
end
commit (t)

// This routine handles aborted messages. Unlike committed messages, which can refer
// only to transactions with parents, aborted messages can refer to top-level

// transactions, even prepared ones (e.g., if the two-phase commit finds the transaction
// cannot be completed).

aborted <t, t-state, t-infs, t-visited):

ostate — {Transaction-States | trans = t} u {Child-States |trans = t}
if ostate = & then return end

// abort the transaction locally
abort (t)




-173 -

// The routine handles prepare messages, i.€., the participant part of the first phase of
// two-phase commit.

prepare <t, t-state, t-infs, t-visited>:

// handle some trivial cases
ostate — {Transaction-State | trans = t}.state
linfs — {t' € t-infs | local (t')}
if ostate = {"prepared”} A - local (t) then

send prepared <t> to sender

return

end
if ostate = & then

- send aborted <t, "aborted”, @, &> to sender
return
end

infs — {Transaction-State | inferior (frans, t)}.trans
cinfs « infs U {t' ¢ Committed-Inferiors | inferior (¥’, t)}
if linfs ¢ cinfs then

// cannot prepare

send aborted <t, "aborted”, @, 2> to sender

abort (t)

return

end

// abort the inferiors that should be aborted -

aborts « infs ~ t-infs

aborts « {t’ € aborts | — (3 t" ¢ aborts: inferior (', t*')}
foreach t' € aborts do abort (') end '

// commit the inferiors that should be committed, and commit t
commits — infs n t-infs
while commits # @& do :
todo + {t' € commits | = (3 t”” € commiits: inferior (t*, t')}
foreach t’ € todo do commit (t') end
commits — commits —- todo
end
if ostate = {"finished"} then commit (t} end
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// now really prepare t ,
Permanent-Assoc-States — Permanent-Assoc-States u {Assoc-States | trans = t}
objs — {Assoc-States | trans = t}.obj
Permanent-Objects + {Permanent-Objects | obj ¢ objs} u {Objects | obj € objs}
Transaction-States « {Transaction-States | trans # t} u {<t, "prepared">}
Permanent-Transaction-States — Permanent-Transaction-States u

{<t, "prepared">}
send prepared <t> to home (t)

// This is the handler for complete messages. Note that we respond "completed” if the
// transaction is unknown.

complete <O:

if <t, "prepared"> ¢ Transaction-States then
send completed <t> to home (t)
return
end
mylocks « {Held-Locks | trans = t} u {Retained-Locks | trans = t}
objs — {mylocks | mode = "W"}.obj
Permanent-Objects « {Permanent-Obijects | obj ¢ objs} u {Obijects | obj € 0}
Permanent-Transaction-States — {Permanent-Transaction-States | trans # t}

// remove t from all databases
Held-Locks « {Held-Locks | trang # t}
Retained-Locks — {Retained-Locks | trang # t}
Assoc-States « {Assoc-States | trans # t}
Permanent-Assoc-States — {Permanent-Assoc-States | trans # t}
Transaction-States — {Transaction-States | trans # t}
Child-States — {Child-States | - ancestor (t, trans)}
if foreign (t) then
Committed-Inferiors — {t' € Committed-Inferiors | - ancestor (t, t')}
Visited-Nodes + {Visited-Nodes | trang # t}
end

// notify the coordinator
send completed <t> to home (t)
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. // The handling of the prepared and completed messages is done as part of the
// coordinator and is fairly simple:

prepared <O

if t ¢ Preparing-Transactions then return end
Outstanding-Nodes « Outstanding-Nodes - {<t, sender>}
left — {Outstanding-Nodes | trans = t}

if left # @ then return end

// We can completel ,
Preparing-Transactions — Preparing-Transactions - {t}
Completing- Transactions — Completing-Transactions u {t}
Permanent-Completing-Transactions «— Permanent-Completing-Transactions u {t}
Permanent-Visited-Nodes — Permanent-Visited-Nodes u

{Visited-Nodes | trans = t}
Outstanding-Nodes + Outstanding-Nodes u {Permanent-Visited-Nodes | trans = t}
Permanent-Committed-Inferiors +— Permanent-Committed-Inferiors u
{t' ¢ Committed-Inferiors | ancestor (t, t')}

completed <b:

if t ¢ Completing-Transactions then return end
Outstanding-Nodes ~ Outstanding-Nodes - {<t, sender>}
left — {Outstanding-Nodes | {rans = t}

if left # @ then return end

// We can forget the transaction.
Completing-Transactions — Completing-Transactions - {t}
Permanent-Completing-Transactions «— Permanent-Completing-Transactions - {t}
Visited-Nodes ~ {Visited-Nodes | trans # t}
Permanent-Visited-Nodes «— {Permanent-Visited-Nodes | trans # t}
Committed-Inferiors — {t' € Committed-Inferiors | - ancestor (t, t')}
Permanent-Committed-Inferiors +

{Permanent-Committed-Inferiors | - ancestor (t, t')}
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// Here is the detect message handler.
// The wi are the waiters and the hi are the holders of awaited resources (locks).

detect list: <Kw1, h1>,<w2, h2), ..., trans: ¥

ostate — {Transaction-States | trans = t}
if ostate = @ v ostate ¢ {"running", "finished"} then return end
locks — {Awaited-Locks | trans = t}
foreach o ¢ locks.obj do
m — {locks | obj = o}.mode
held — {Held-Locks | gbj = 0 A trans # t}
retained — {Retained-Locks | obi = 0 A - ancestor (trans, t)}
itm = {"R"} then

// remove non-conflicting entries
held — {held | mode = "W"}
retained ~ {retained | mode = "W"}
end

conflicts — held.trans u retained.trans
foreach t’ € conflicts do

end

anc « {t” | ancestor (t”, h1) A — ancestor (t”’, wi)}

choose old € anc suchthat (V t" € anc: ancestor (old, t”))
anc’ « {t” | ancestor (t”,t') A - ancestor (t”, t)}

choose old’ € anc’ suchthat (V t" € anc’: ancestor (old’, t"’))

// detect loops, and resolve if exactly a circle

if (3i: 1 <i < length (list) A ancestor (old’, wi)) then
// this resolution is simplified ...
msg « aborted <h1, "aborted”, &, 2>
ifi = 1then send msg to home (h1) end

// maybe grow the chain by one

elseif priority (old) < priority {(old’) then
newlist « list || <<t, t>>
send detect <newlist, old"> to home (old’)
end

end

// forward to children
children « {Child-States |t = parent (trans) A

state € {"created"”, "running"}}.trans

foreach t’ € children do
send detect <KKw1, h1), ..., <wN, hN>>, t'> to home (t')

end
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// Last we have the actions performed upon recovery. We also show a
// routine called crash, which shows what the effect of a crash is.

// Naturally we do not expect it to be called; it is here for

// completeness of formal modelling. '

recover ()

Objects — Permanent-Objects -

Assoc-States — Permanent-Assoc-States

Held-Locks « {<t, 0, "W™> | &, 0, o> € Assoc-States}
Committed-Inferiors — Permanent-Committed-Inferiors
Visited-Nodes ~ Permanent-Visited-Nodes

Outstanding-Nodes « Visited-Nodes

Completing-Transactions — Permanent-Completing-Transactions
Transaction-States — Permanent-Transaction-States

crash ()

Objects — @

Held-Locks + &
Retained-Locks — @
Awaited-Locks — @
Assoc-States +— 2
Transaction-States — @
Child-States — @
Committed-inferiors — @
Visited-Nodes — &
Outstanding-Nodes + &
Preparing-Transactions + @
Completing-Transactions — @
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transactions are that they provide concurrency control within transactions by
serializing subtransactions appropriately, and that they permit parts of a
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novel in that it uses locking for concurrency, control. MWe present the necessary
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deadlock detection for a nested transaction system. While the design has not
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