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Abstract
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1. INTRODUCTION

We introduce three new tools for the study of term rewriting systems.
Derived pairs of & rewrite rule gemeralize the well-known idea of "critical
pairs” introduced by Knuth and Bendix (1970) in their development of a method of
proving the confluence property. The overlap glosure of a set of rules is a set
of rules that corresponds to a subset of the transitive closure of the rewriting
relation. Its comstruction is based on the use of derived pairs obtained from
superpositions of the right hand side of one rule with the left hand side of
another. This process is closely related to the Knuth-Bendix process, which uses
critical pairs for gemerating new rules in an attempt to achieve confiuence. We
use the overlap closure in proving — or disproving — that a rewriting relation
is uniformly ter-inating.l It thus provides an interesting dual method to the
Knuth-Bendix process, in which the validity of the critical pair test for con-
fluence depends upon uniform termination. The combination of uniform termina-—
tion and confluence provides a decision procedure for the theory of the equa—
tions corresponding to the original rules,.

In the study of derived pairs and overlap closures we found it useful to
devise a new way of representing rewrite rules and sequences of rewrites using
what we call rewrijte oes and "rewrite domino layouts”. We will introduce
this representation and nse it in presemting the proofs of our main results
about the overlap closure. We believe that this representation also will be
useful in the study of other areas of rewrite rule theory. ‘

Like the Knuth—Bendix process, the overlap closure process may fail to ter-—
minate (that is, it may continue to gemerate new rules indefinitely). In fact,
when the original rules are uniformly terminating, it will usually happen that
overlap closure generation is nonterminating. In this case, the overlap closure
process does not by itself yield a proof of uniform termination, but it may be
useful as an aid in applying other known methods of proving uniform termination
[see Huet and Oppen, 1980]. It can also be used in proving what we call "res—
tricted termination,” i.e., termination for all terms up to s given size. Some
applications of restricted termination are discussed in [Guttag, Kapur and
Nusser, 19811.

Perhaps more important is the case where the original rules are not uni-
formly terminating. Ome would often like to be able to detect this situationm
quickly, e.g., in order to avoid wasting time attempting to conmstruct a proof of
uniform termination. We show that under some reasonable restrictions oan the
form of rewrite rules, the overlap closure construction provides such a test.

1. more commonly called fipitely terminating or noetherian.




I.e., we show that if the rules are globally finite (that is to say, the number

of different terms to which any term can be rewritten is finite) and every rule

is right-linear or every rule is left-linear, the overlap closure comstruction

can be used to effectively search for cycles in the rewriting relation. (That
it does so "quickly"” enough to be useful is a claim for which we have limited
empirical evidence, as discussed in the Conclusion section).



2. D TION

For the most part we use standard definitions and terminology for term
rewriting systems from Huet (1980) and Huet and Oppen (1980). There are a fow
exceptions, such as "uniform termination” for "finite termination,” and "termi-
nal form” for "normal form.” In [Guttag, Kapur, and Musser, 1981], the reader
will find a thorough discussion of this background material. Here we confine
ourselves mainly to the definitions of "derived pairs,” a gemeralization of the
Enuth and Bendix's notion of ”"oritical pairs,” and of "overlap closure.”

Two terms are said to over]lap if ome is unifiable with a nonvariable sub-
term of the other. If s and t overlap, we define their guperposjition: either

a) s unifies with a momvariable subterm t’ of t, by the most general unif-
ier (m.g.u.) O, in which case 6(t) is called a superposition of s and t; or

b) 2 nonvariable subterm s’ of s unifies with t, by m.g.u. ©, in which case
6(s) is called a superposition of s and t.

Now consider ordered pairs of terms (r,s) and (t,u) such that s and t over—

lap, as above. (If the variables of t must be renamed, the same¢ renaming must
be applied to u.) Then along with the superposition 6(t) or ©(s) we obtain the

derived pair of terms, <{p,q>, where
a) if s unifies with a nomvariable subterm t/i by m.g.u. O,
p=[6(t) with 0(r) at i]l
q=0(u):
b) if a nonvariable subterm s3/i unifies with t by m.g.u. O,
p=0(r)

q=[0(s) with 6(u) at il.

In the case of a rewriting system R = {(1i - ri)], the derived pairs obtained
from the pairs (ri'li) and (lj.rj)) are called crjtical paixs.

1. The notation [t with u at i] stands for the term obtained

from t by replacing the subterm at positiom i by u. A "sub-
term position” and "corresponding subterm” within a term is a
finite sequence of nonnegative integers separated by ".” and
a related term determined as follows: to the aull seguence
(denoted ¢>) correspoads the emtire tesm. If f£(t_,...,t ) is
the subterm at position i then the subterm at pos}tion i:j is
tj. We write t/i for the subterm at position i within term
t
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Consider, for example, obtaining a critical pair from the rewrite rules:

x 1 ® x—e
(x' oy') oz'=x" @ (y' ® z')

We begin by constructing the ordered pairs (e, x-lox) and

((x* #y’') oz', x' » (y’" # 2')). Now x—1 ® x can be unified with x’ ® y’ using
the substitution 6 = [x-llx’, x/y']l. This leads to the derived pair

<e ® z',x—1 o (x ® z')> which is a critical pair of the rules.

Using derived pairs, the overlap closure of R, written OC(R), is defined
inductively as follows:

a. Every rule r — s in R is also in OC(R).

b. VWhenever r — s and t — u are in OC(R), every derived pair <p,q> of (r,s)
and (t,u) is in OC(R) (as p — q).

¢. No other rules are in OC(R).

"Examples of overlap closures:”

i. Let R = {f(x) — g(x)}, then OC(R) = R.

ii. Let R = {f(x) — g(k(x)), h(x) = k(x)}, then OC(R) = R
U {f{x) > g(k(x))}.

iii. Let R = {x o (y ®# z) = (x o y) o z}, then from the superposition
(x ® (x' ®y')) o 2z’ we obtain the rule

x0 ((x"oy')oz') = ((xex')oy') o2’

and from the superposition (x e ((x' @ y') ®» z’) we obtain

xo0 (x o (y' #2')) D (x0 (x' 0y')) o 2z'.

These rules then lead to further rules, and OC(R) is infinite.
iv. Let R = {f(x) = g(x), g(h(x)) = f(h(x))}. Thea OC(R) consists of R and
the reflexive rules f(h(x)) — f(h(x)) and g(h(x)) = g(h(x)).

The overlap closure OC(R) has a rich structure simce the overlap closure
construction preserves some properties of a rewriting system R. The following
theorem shows that every derived pair of two rewrite rules is also a rewrite
rule, implying that the overlap closure OC(R) is a rewriting system.




2.1. Theorem. If r,s,t,u are terms such that (r,s) and (t,u) are rewrite
rules, then every derived pair <p,q> of (r,s) and (t,u) is also & rewrite rule.

Proof. One just has to verify that for each case in the defimition of derived
pair that every variable that occurs in q occurs also inm p. (8]

Let us consider some other properties, based on the properties of its
rules, of &8 rewriting system R

A term is said to be linear if no variable occurs in it more than once. A
rewrite rule is left-lipear if its left term is linear, gright-linear if its
right term is linear, and linear if its left and right terms are linear,

A rewriting system is called left—linear, right—linear, or linear, based on
whether each of its rules is left-linear, right—linear, or linear, respectively.
The following theorem implies that the overlap closure OC(R) of a right—linear
(left-linear, linear) R is also right—linear (left—linear, linear).

2.2. Theorem. If r—s and t—u are two right linear rules with disjoint vari-
able sets, then each of their derived pairs, <p, q> is also right linear.

Proof. There are three cases:
(i) s unifies with the subterm t/i of t by their m.g.u. 0.

The corresponding derived pair <p, q> has

p = [6(t) with 6(r) at i]

g = 6(u)

Since s is linear, by Lemma 1 in the Appendix, substitutions for any two dis-
tinct variables in t/i in @ do not have a common variable, The variables in t
other than the omes in t/i do mot play any role. 8o 6(u) is linear.

(ii) the subterm s/i of s unifies with t by their m.g.u. 6,

The corresponding derived pair <p, q> has

p = 6(r)
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q = [0(s) with O(u) at il

Since s/i is linear, by Lemma 1 in the Appendix, substitutions for any two dis-
tinct variables in t in O do not have a common variable. So, 6(s) and 6(u) are
linear, and q is thus linear.

(iii) if subterms of s do not unify with t, or s does not unify with subterms of
t, then there are no derived pairs of r—s and t—u. 0O

By & similar argument, it can also be proved that overy derived pair of two left
linear rules is left linear.

The name "overlap closure” comes from the fact that the rules of OC(R) are
a subset of the transitive closure of the rewriting relation of R:

2.3. Lemma. If p = q is in OC(R) then p — + q (using R).

Proof. By induction on the construction of p — q in OC(R). The basis of the
induction is the case that p — q is included in OC(R) by virtue of being a rule
of R. Then obviously p —> q holds. If (p — q) is imcluded in OC(R) by being
a derived pair of (r,s) and (t,u) then by the induction hypothesis for the two
rules (r,s) and (t,u), we have r — * sand t o u., By the definition of
derived pair and the transitivity of —9+. we then have p —) M . 0O

2.4, Corollary. If OC(R) contains a reflexive rule, t — t, then the rewriting
relation of R has a cycle.

Proof. Immediate from the above lemma. [J

Ve would like to have the converse of this corollary, that if the rewriting
relation of R has 2 cycle, them OC(R) contains a reflexive rule. This would
permit searching for cycles by incrementally computing OC(R), looking for a re-
flexive rule. While we have not been able to prove this in full generality, we
will present in the next section a restricted version and its proof. The proof
is not easy, because the overlap closure of R is in general much smaller than
the full transitive closure of R. It is this small size, relative to the tran—
sitive closure, however, that makes it feasible to use the overlap closure as
the basis of an approach to proving uniform terminatiom or, at least, a useful
notion of "restricted termination,” discussed in [Guttag, Kapur, and Musser,
1981].




In order to be able to prove the major result about the overlap closure, we
need to be able to deal precisely with the various cases of overlap between suc-—
cessive applications of rewrite rules in a rewrite sequence, We have found it
useful to introduce a new representation of rewriting that helps to meke such
cases clear.

The domino representation (or rewrite domino) of a rewrite rule is a rec—
tangle divided into left and right halves in which are inscribed tree represen—

tations of the left and right terms of the rule. Function symbols in the terms
are represented by labelled circles in the trees. Variable symbols are
represented by labeled rectangles, called "variable boxes.” For examples of some
rules and their correspoanding rewrite dominoes, see Figure 1.

For each kind of domino (that is, each domino corresponding to a2 specific
rule), we assume there is an infinite stock of dominoes of that kind with their
variable rectangles filled in with all possible terms. For each such domino, we
also assume an infinite number of copies are available in the stock.

A sequence of rewrites can be represented by a domino layout, which is a
two—dimensional arrangement of dominoes that obeys the rules of matching
corresponding to those of term rewriting (Section 2). Before giving the formal
definition of a layout, we refer the reader to an example of a rewrite sequence
using the rules given in Figure 1 and its corresponding domino layout as shown
in Figure 2. Another example is in Figure 3, and the two layouts in Figures 2
and 3 could be concatenated to give a single longer layout.

We draw trees oriented sideways with the root at the left, and we will use
nested triangles to represent trees schematically. We define a unit layout from
t to w to be a horizontal arrangement of a tree t, a domino with trees u and v,
and another tree w,

< [ I <

in which
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Figure 1. A set of rewrite rules and their corresponding rewrite dominoes.
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1. at some position, i, in t there is a subtree t’' that is identical to u, ig-
noring the variable boxes that appear in u;

2. the roots of t’ and u are horizontally aligned;

3. w is the tree [t with v at i] and the roots of t and w are horizontally
aligned.

A layout from t t

—

Y is defined as

1. a unit layout from t to v; or

2. the concatenation of a layout from t to u with a layout from u to v, with
both copies of u dropped from the arrangemeat; or

3. any arrangement obtained from a layout by translating horizontally any dom-
ino, as long as no other domino or end tree is overlaid or crossed (this
allows compaction of a layout by placing one domino above another when they
match disjoint subterms).

The examples in Figures 2 and 3 illustrate a number of observations we can
make about this representation of rewriting:

1. In a domino layout there is no distinction between different orders of
rewriting when the rules are being applied to disjoint subterms: e.g., the
layout in Figure 3 would not be different if rule 5 had been applied before
rule 4 or before rule 3. One can think of these rules being applied in
parallel, since the order of application is always immaterial in this case.
The layout representation just makes this property especially evident.

2. To the property that "the rightmost term of & rewrite sequence is terminal”
corresponds the property that "there is no way to play a domino on the lay-
out” (formally, there is no way to concatenate a unit layout onto the lay-
out). The layout is said to be blocked. (The layout in Figure 3 is
blocked.)

3. Thus the rules have the uniform termination property if and only if every
possible layout eventually is blocked. Equivalently, there are no infinite
layouts.

Our purpose with this representation of rewriting is to provide a conceptu-
al tool for finding and presenting proofs of new results about term rewriting
systems. The first result we will prove with the aid of rewrite dominoes is one
that will allow us to speed up the search for cycles by considering only those
sequences of rewrites in which a "major rewrite” occurs.

A rewrite to - t1 is called a major rewrite if it is by application of a
rule, t — u, to the entire term t,; i.e., for some substitution O, o(t) = to

and 6 (u) = t,. Vhen only a proper subterm of t, is matched, t, — t, is called

a minor rewrite.




In a layout, a domino is called a major domino (of the layout) if it
represents a major rewrite, and a minor domino otherwise. Pictorially, major
dominoes are those that span the width of the layout.

A major oycle is a oycle in which at least one of the rewrites is major.

3.1. Theorem. If & rewriting relation has a cycle, it has a major cycle,

Proof. Let us define the corridor of a domino in a layout to be the horizontal
strip across the layout determined by the position and width of the domino:

Any two corridors in a layout are either disjoint or ome is contained in
the other. Therefore, we can find a corridor that is spanned by = domino and
which contains a layout as follows: start with any leftmost domino and follow
its corridor to the right; whenever a domino is encountered that doesn’'t lie in
the corridor, adopt its corridor. When we reach the right end, we have a corri-
dor containing a layout including a domino that is major with respect to it. If
the whole layout is qyclic, the ideatified layoumt will be also, and will
represent a major cycle, [

We now want to define some terminology and some manipulations of layouts that
will be useful in proving theorems about the overlap closure of a set of rules.
Consider an adjacent pair of dominoes in a layout. Let t and u be the trees on
the adjacent halves, where a subtree t’ of t is identical to u (possibly
t' = t):

< | o~ 9

If either of t' or u is contained entirely within a variable box, i.e., the
matoh is not between two nonvariable subterms, we say that the pair of dominoes
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is weakly matched, and otherwise that it is strongly matched.

Examples. In Figure 3, the domino pair

that appears in the concatemation of the layouts of Figures 2 and 3 is weakly
matched, while all the other adjacent pairs are strongly matched.

Now suppose we have two weakly matched dominoes, as in Figure 4a, where t’
is contained in the x variable box. If the (s,t) domino is right—linear (i.e.,
t is linear), then the pair of dominoes can be tranmsposed as follows: remove the
(u,v) domino from the layout and move the (s,t) domino to the right, so that
copies of the (u,v) domino can be inserted to the left of the (s,t) domino, ome
adjacent to each x box in s (see Figure 4b). Then the resulting copfiguration
is still a lsvout, (the dominoes all match, using the same set of rules) with
the same ond trees. This is the case also when a symmetric kind of transposi- -
tion is performed on the layout in Figure 5a, producing the layout in Figure 50,
where we assume that the (u,v) domino is left-limear.

Such transpositions cannot necessarily be performed on strongly matched
dominoes, but we will define s different kind of manipulation for this case.
Strong matching corresponds to the concept of overlapping in the defimition of
derived pairs: if (r,s) and (t,u) are rules that have a derived pair {p,q>,
then the dominoes corresponding to (r,s) and (t,u) can be placed in a layout so
that they are strongly matched. The layout configuration shows just where the
strong match ocours and identifies a potential derived pair.
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Suppose now that instead of our stock of dominoes corresponding to a given
rule set R, we have a stock corresponding to OC(R), the overlap closure of R.
Then for any strongly matched pair of dominoes in a layout there is a domino in
our stock which corresponds to a derived pair generated by the matching pair.
By Lemma 3 proved in the Appendix, we can replace the stromgly matched pair in
the layout by the "derived pair domino” thus identified, and the result will
still be a layout with the same end trees.

VWe are now in a position to prove:

3.2. Theorem. Suppose the rewriting relation of R is globally finite and every
rule in R is right-linear. If the rewriting relation of R has a cycle, OC(R)
contains a reflexive rule.

Proof. (By construction.) Let

(*) t, =t —-)----)tn—) to

0 1

be a given cycle. Corresponding to (*) is a oyclic domino layout

I .
L ] -
= ]

()

where the dominoes correspond to rules of R, In fact since each of these rules
is also in OC(R), we may take this layout as a layout of dominoes corresponding
to rules of OC(R). We will show how to mamipulate this layout to a form that
shows there is a reflexive rule t — t in OC(R).

We describe the manipulations as an algorithm operating onm the cyclic lay-

out (**),

Step 1. [Extract major cycle.] As in the proof of Theorem 5.1, extract from
(*¢) a sublayout representing a major cycle, making it the layout subject to the
following steps. Also replace to with its subterm matched by the layout.

Step 2. [Push major dominos to right end.] Manipulate the layout to a form in
which all of the major dominoes are together at the right end, by means of tran—
spositions or replacements by derived pair dominoes: whemever D is a major domi-
no and E is a minor domino adjaceant to D on the right
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either D and E are weakly matched, in which case they can be transposed, or they
are strongly matched, in which case they can be replaced by the derived pair
domino they define — which is a major domino. This derived pair domimo is also
righp linear, as Lemma 1 in the Appendix shows.

Step 3. [Look for cycle among major dominoes.] There is now a nonempty sequence
of major dominoes D1 seens D- at the right end of the layout:

58 D,|«e-|D,

These dominoes can only be strongly matched - except for the case where the
right-hand side of Di is just a variable, but shortly we will show that such a
possibility can be ruled out. If there is some contiguous subsequence
Di sene Dj that forms a cyclic layout

4E - Bl

then, since there can only be strong matches, these dominoes can be combined by
j — 1+ 1 replacements into a single domino D that forms a cyclic layout:

Ylo]<g

Let D represent (p,q). Then there is a substitution O such that u, = O0(p) and
0(q) = LY i.e., © unifies p and q. Furthermore, a derived pair of (p,q) and
(p,q) is the reflexive rule (0(p), O6(q)). Since this is in OC(R), we terminate
the algorithm.

Step 4. [Duplicate.] If no such subsequenco exists, comstruct a copy of the
layout adjacent to it and return to Step 2 with the resulting layout:

1‘!’ Ezj Eg D,|eee ;%' E!_' Eg D/l eee |D, 1‘!!

That concludes the statement of the algorithm. Before considering the question
of termination of the algorithm, we dispense with the detail mentioned in
Step 3: the case of adjacent major dominoes D and E where the right term u of D
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is just a variable. We can assume the left term t of D is not just a variable
(if it were then it would have to be the same variable as u and we would already
have a reflexive rule). Since the layout is cyclic. if we drop D from the lay—
out, we obtain a layout that has as its ri.ht ond term s proper. subterm ideanti-
cal to the 1eft ond term. FKrom this we concluda that. the tezm. gewriting zela-
tion is not globally finito. contra:y to astllption.A;1his,contradictien rules
out the case nndor disoussion,

It is obvious that each step of this algorithm is effective and terminat—
ing. Overall termination is guaranteed by the following facts:

a. At the k th execution of Step 2, the number of major dominoes, m, at the
right end is at least 2k.

b. Let t;[k] denote the term to tho left of D1 in the layout at the k th exe-
cution of Step 3. Since each ty [k] is derived from t’,and the rewriting
relation is globally finite, there are only finitely many distinct possi-
bilities for t [k]l]. By a), then, there is one swoh term for which arbi~
trarily long Iuyouts of nujor do-inoos oxiat.V Again by global finiteness,
these layouts csnnot all oontiano without producing s term, u Uys that is a
duplicate of some torm previously obtained in the layout.

Since the algorithm always terminates, and does so with a reflexive rule in
OC(R), this proves the theorem. [}

The corroapondin; theorem obtainod by replacing "right—-linear” by "left-
linear” can also be proved in a similar manner., Combining these theorems with
Corollary 4.3, we have:

3.3. Theorem. Suppose the rewriting relation of R is globally finite and every
rule in R is right-lisesr or every rule in R is 1éft-1imear. Then the rewriting
relation of R is uniformly terminating if and omly if OC(R) contains no reflex-
ive rule.

Some applications of this theorem are explored in [Guttag, Kapur, and Musser,
1981]

Recently, Dershowitz (1981) has propossed a "forward chain” constructiom for
rewriting systems and proved that a right-linear rewriting system is uniformly
terminating if and omly if it has no infinite forward chains. However, for
left-linear Systems the analogous result requires that the left-hand sides of
the rules be nonoverlapping, a problem that we had independently emcountered
whon considering the forward chain comstruction and a similar backward chain
construction. We were thus led to invent the overlap closure comstruction. The
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following example from Dershowitz (1981) illustrates the advantage of the over—
lap closure construction over forward chains. Using the forward chain construc-
tion, it is not possible to determine the nonterminstion of this left—linear
rewrite system, as pointed out by Dershowitz. The rewriting system is

f(.()n b()p x) - f(x: X, b())
() = a().

These rules have only two forward chains, both finite:

f(‘()p b()px) > f(x: X, b)) # f(x) X, .())a and b( ) :> ‘():

but we cannot conclude anything about the termimation of the rules because they
are not right-linear and, although they are left—linear, the left—hand sides axe
overlapping. But in the overlap closure constructioa, the rules have & derived
pair rule

Lo

£, b(), x) = £(x, x, (),

which, when overlapped with itself, gives the reflexive rule

£(b(), (), b)) = £(b(), (), b )),

as a derived pair, proving that the rules are nonterminating.
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4. CONCLUSION

We have discussed two ways to make use of finite subsets of the overlap
closure: proving restricted termimation and disproving uniform termination. Ve
have explored, without much success, using such finite subsets as parts of
proofs of uniform termination. We conjecture that for certain classes of term
rewriting systems it should be possible to compute 2 bound, n, such that if a
cycle exists, there exists a cycle in which every term is of size n or less.

For such classes, the overlap closure would provide a decision procedure for un-
iform termination.

Another open question about the gemerality of the overlap closure construc-—
tion is whether the assumption of left—linearity or right—linearity is neces—
sary. Although we have not been able to find proofs of our results without this
assumption, we have also been unable to comstruct a counterexample. In any
case, as discussed above, the overlap closure construction is more general than
either forward or backward chaim constructionms.

For the class of term rewriting systems to which it may be applied, con—
structing the overlap closure is as useful as constructing the complete transi-
tive closure. Furthermore, using the overlap closure to show restricted termi-
nation or the absence of uniform terminatiom will slways involve computing fewer
terms than would using the tramsitive closure. We do mot yet have much empiri-
cal or analytical evidemce as to the absolute efficiency of using the overlap
closure for these purposes. The key question is hov many terms must be examined
in order to demonstrate that mo cycle is possible for texms of up to size n.

The fow examples we have tried, using a preliminary implementation, we have
found encouraging.
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APPENDIX

1. Lemma. Let t and u be unifiable terms with disjoint variable sets, and O be

their most goneral unifier. Let 0% be the restriction of 6 to the variables of
u, say 0* = [ellvl.....on/vn]. If t is linear, then all variables in e reense

are distinct.

Proof. For every variable x having k (>1) ocourrences in u, replace different

occurrences of x by distinct variables x that do not appear imn t and u,

1,...,xk
Let u’ be the resulting term, which is linear.

By Lemma 2, in the m.g.u. 6' of t and u’, substitutions for distinct variables
in t and u’ do not have a common variable. Let o be the m.g.u. for the set of
terms 0'(xi), 1<i<k, the substitutions for the variables used to replace multi-
ple occurrences of x in u. If these s for every variable x having multiple oc-

currences in u are composed with 6', we get a unifier of t and u.

In this unifier, substitutions for variables in u do not have a common variable.
From this, it is evident that the m.g.u. © of t and u cannot have substitutioas

for variables in u that share common variables. [

2, Lemma. For two unifiable terms t and u, if t and u are linear, then the sub-
stitutions in their m.g.u. © for any two distinct variables of t or u do not

have common variables,
Proof. By induction on the structure in term t.

Basis: t is a variable.

Then 6(t) = u and the statement trivially holds.

Inductive step: t == f(tl.....tn)

e e o T P e ey sy o e, e = —_— e T —————————— t ="



._18_

For t and u to be unifiable, either u is a variable or u == f(nl,....un). The

case of u being a variable is handled as in the basis step.

For the case u == f(ul,....nn). for each i, 1(i¢n, ti must uvnify with u, by
their m.g.u. 91, say. By the inductive hypothesis, the statement holds for each
of Oi. Since t and uw are linear, the disjoint union of Oi, 1{i<n, is the m.g.u.

O of t and u. It follows that the statement of the lemma holds for © also. [

3. Lemma. Suppose to - t1 using r — s applied at position i, t1 - t2 using
t = u applied at i.j, and s/j and t overlap determining the derived pair

<p,q> = <O6(r),[6(s) with 6(u)at j1>. Then to 4 t, using p — q applied at i,

A similar result holds for the case in which s unifies with a subterm of t.

Proof. Rename the variables of t and u, if necessary, so that s and t have no
variable in common. There is some subterm to/i and a substitution 91 such that

Ol(r) = to/i and t, = [to with 91(3) at i].

1

Again, there is some subterm tll(i.j) and a substitution 82 such that

Oz(t) = tll(i.j) and t, = [t1 with 6, (u) at i.jl.

2
Since the variables of s and t are disjoint, we have (01 U 02)(s/j) = 01(8/j) =

Oz(t) = (91 U 02)(t). That is, 01 U O, is a unifier of s/j and t and therefore

2

has O as a factor:

91 U 02 = 93 e 0, for some substitution 63.

Thus toli = Gl(r) = (91 U 92)(r) = (03 e 68) (r) = 03(9(2)) = OS(P)' That is, to
is matched by p at i. Now consider 63(q); it is

o

3 ([6(s) with 6(u) at jl)

= [93(0(3)) with es(e(u)) at jl
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= [6,(s) with 92(u) at jl.

Thus t, = [t1 with 92(u) at i.jl
= [[t0 with Gl(s) at i] with 92(u) at i.jl
= [t0 with [61(5) with 92(u) at j] at il
= [t0 with 93(q) at i], showing that
to--—>t2 using p—>q applied at i. We omit the proof of the case in which s uni-

fies with a subterm of t. [J]
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