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ABSTRACT

The thesis is divided into two parts. In the first part, we describe and analyze
several new VLSI layouts for the shuffle-exchange graph. These include
1) an asymptotically optimal, ©(N*/log? N)-area layout for the N-node shuffle-
exchange graph, and _
2) several practical layouts for small shuffle-exchange graphs.

The new layouts require substantially less area than previously known layouts
and can serve as the basis for designing large scale shuffle-exchange chips.

In the second part of the thesis, we develop general methods for proving lower
bounds on the layout area, crossing number, bisection width and maximum edge
length of VLSI networks. Among other things, we use these methods to find

1) an ‘N-node planar /graph which has layout area O(NlogN) and maximum -
edge length O(N/%/logl/?N),

2) an N-node graph with an O(N!/?)-separator which has layout area
O(Nlog?N) and maximum edge length O(N!2logN/loglogN), and

3) an N-node graph with an O(N®)-separator (for a>//2) which has maximum
edge length O(N®).

The area results indicate that some graphs with O(N?/2)-separators (and, in
particular, some planar graphs) do not have linear-area layouts, thus disproving a
popular conjecture. The edge length bounds indicate that the layouts of some
networks must have very long wires (possibly as long as the width of the layout).
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INTRODUCTION

. The recent engineering advances in Very Large Scale Integrated (VLSI) circuitry
have made it possible to wire tens of thousands of transistors onto a single chip. In
the near future, it is expected that fabrication of chips containing millions of
transistors will be commonplace [MC80]. In order that this massive computational -
resource be efficiently utilized, theoretical researchers have been actively trying to
answer such questions such as:

1) "What is a good model for VLSI chip design and computation?,”

2) "What communications networks can best perform important operations
such as sorting, matrix multiplication and discrete Fourier transform?" and

3) "What is the best method of laying out a network on a chip?.”

Several models have been proposed for VLSI computation [T80,1.S81,CM81].
‘The most widely accepted is due to Thompson and is known as the Thompson
model [T79,T80]. Thompson’s model of a VLSI chip is quite simple. The chip is
presumed to consist of a grid of vertical and horizontal tracks which are spaced
apart by unit intervals. Processors are viewed as points and are located only at the
intersection of grid tracks. Wires are routed through the tracks in order to connect
pairs of processors. Although a wire in a horizontal track is allowed to cross a wire
in a vertical track, pairs of wires are not allowed to overlap for any distance (i.e., in
they cannot overlap in the same track). Further, wires are not allowed to overlap
processors to which they are not linked. As an example, we have drawn a
Thompson model layout of a 4-processor network in Figure 1.

| j !
! -

Figure 1: A Thompson model layout of a 4-processor network in
which each processor is linked 1o every other processor.




Much has also been accomplished in the way of finding good communications
networks for VLSI. For example, the complete binary tree [MC80], the 2-
dimensional mesh [TK77,KL78,MC80], the cube-connected-cycles graph [PV79]
and the shuffle-exchange graph [S71,L75,L.76,NS79,P80,5S80,SR80a,T79,T80] are all
known to be capable of performing a wide range of bperations. The shuffle-
exchange graph, in particular, is an incredibly powerful and efficient
communications network. Among other things, it can be used to compute discrete
Fourier transforms, multiply matrices, sort lists and evaluate polynomials. Except
for sorting (which requires O(log?N) time), these operations require no more than
logarithmic time and constant space per processor. This is exponentially faster than
the running times of the corresponding sequential algorithms and the
corresponding parallel algorithms on networks such as the 2-dimensional mesh.
As, in addition, the processors required for these operations are quite simple, the
shuffle-exchange network is very well suited for VLSI implementation on a chip.

The shuffle-exchange graph comes in various sizes. In particular, there is an
'N-node shuffle-exchange graph for every N which is a power of two. Each node of
the (N=2%)-node shuffle-exchange graph is associated with a unique k-bit binary
string :ay._;- - -ay. Two nodes w and w' are linked via a shuffle edge if w' is a left
or right cyclic shift of w (ie, if w = a;;--.a; and w'= a;_,---apa; or
w'= a,...ay,a; , rtespectively). Two nodes w and w' are linked via an
exchange edge if wand w' differ only in the last bit (i.e., if w = a;.;---a,0 and
w'= ap;-+-a;] or vice-versa). As an example, we have drawn the 8-node
shuffle-exchange graph in Figure 2. Note that the shuffle edges are drawn with
solid lines while the exchange edges are drawn with dashed lines. We shall follow
this convention throughout the thesis.

000 001 _ 110 111

010 011

Figure 2: The 8-node shuffle-exchange graph.
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The third question of interest to VLSI researchers ("What is the best method of
laying out a network on a chip?”) has proved to be, by far, the most difficult. It is
also the subject of this thesis. In order to answer the question for a particular
network, we must do the following three things:

1) decide what it means for a layout to be "good,”
2) find a "good" layout for the network, and
3) prove that the layout is as "good" as possible.

Most people agree that a "good" layout is one which does not require much
area. This is quite reasonable since small layouts are easier to wire on a chip, cost
less and have far higher yields than layouts with larger amounts of area. Recently,
there has also been interest in designing layouts with short wires. Although wire
length considerations are not as important as area considerations, it is possible that
layouts with long wires may be less efficient and run slower (due to longer
transmission times) than layouts with shorter wires. Both quantities are easily
expressed in terms of the Thompson model, which is nice from a mathematical
point of view. For example, the layout area of a network is the minimum amount
of area required to lay out the network in the Thoinpson model. (The area of a
layout in the Thompson model is defined to be the product of the number of
vertical tracks and the number of horizontal tracks which contain a processor or
wire segment of the layout.) Similarly, the maximum edge length of a network is
the minimum amount of wire which is needed to embed the longest edge in any
Thompson model layout of the network.

Good layouts are known for several communications networks; including the
complete binary tree [MR79,PRS81,BL81], the 2-dimensional mesh and the cube-
connected-cycles graph [PV79]. The known layouts for the shuffle-exchange graph,
however, are not very good. Thompson [T80] was the first to find a nontrivial
layout for the shuffle-exchange graph. In particular, he found an O(N%/log!/?N)-
area layout of the N-node shuffle-exchange graph. He also showed that any layout
for the N-node shuffle-exchange graph must have at least Q(N?/log?N) area. Hoey
and Leiserson [HL80] improved the upper bound by finding an O(N?/logN)-area
layout for the N-node shuffle-exchange graph. Neither Thompson's nor Hoey and
Leiserson’s layouts are practical, however, and neither meets Thompson’s
asymptotic lower bound.




In Part I of the thesis, we find good layouts for the shuffle-exchange graph. In
particular, we describe an asymptotically optimal O(N2/log?N)-area layout for the
N-node shuffle-exchange graph. Although the layout is not optimal for small
values of N, we show how it can be modified in order to produce good layouts for
small shuffle-exchange graphs. As these layouts are practical, it should now be
possible to build a shuffle-exchange chip. |

Finally, we are left with the task of proving that a layout which appears to be
good is, in fact, optimal. Although Thompson [T79,T80], Vuillemin [V80] and
Lipton and Sedgewick [L:S81] have all shown how to prove area lower bounds for
certain computationally useful networks (such as the shuffle-exchange graph), it is
not known how to prove such lower bounds in general. For example, no nontrivial
lower bounds have been found for the class of graphs which have O(N//?)-
separators. (This class_includés the very important class of planar graphs.) Nor
have any methods been discovered. for proving nontrivial lower bounds on the
maximum edge length of a network.

In Part I of the thesis, we describe several techniques for proving good layout
area and maximum edge length lower bounds. In particular, we concentrate on
finding good lower bounds for the crossing number, wire area and maximum edge
crossing of a network. The crossing number of a graph is the minimum number of
pairs of edges which must cross in any drawing of the graph in the plane. The
maximum edge crossing of a graph is the largest number of edges which must be
crossed by some edge in any drawing of the graph. The wire area of a network is
simply the minimum amount of wire which must be used to embed the network in
the Thompson model. It is clear that for any network,

crossing number < wirearea < layout area
and also that
maximum edge crossing < maximum edge length .

In addition, the crossing number, wire area and maximum edge crossing are
worth minimizing independent of layout area and maximum edge length
considerations. This is due to the fact that

1) chips with a large number of wire crossings (and, in particular, those with
wires which cross many other wires) have substantially niore problems with




capacitive coupling (i.e., interference between overlapping wires) than do
chips with fewer crossings, and

2) chips with high wire area cost more and experience lower yields than do
chips with lesser wire area.

Unfortunately, the results of Part II indicate that the crossing number and wire
area are usually as large (up to a constant factor) as the layout area. In addition,
the maximum edge crossing is often nearly as large as the side length of the chip.
More importantly, however, crossing number and wire area arguments can be used
to prove better lower bounds on the layout area and maximum edge length than
were possible with existing techniques. In particular, we will use such arguments
to find '

1) an N-node planar graph which has layout area ©(NlogN) and maximum
edge length O(NV/log!/?N), » '

2) an N-node graph with an O(N?/?)-separator which has layout area
O(Nlog?N) and maximum edge length O(N2logN/loglogN), and

3) an N-node graph with an O(N®)-separator (for a>1/2) which has maximum
edge ‘length O(N?).

The area results indicate that not all graphs with O(N?/?)-separators (and, in
particular, not all planar graphs) can be laid out in linear area, thus disproving a
popular conjecture. The edge length bounds indicate that layouts of certain
networks must have some very long wires (possibly even as long as the side length
of the layout). Taken together, these results answer all of the previously open
questions concerning layout area and maximum edge length of VLSI networks
with known separators.
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PART 1

LAYOUTS FOR THE SHUFFLE - EXCHANGE GRAPH



CHAPTER 1
REVIEW OF KNOWN LAYOUTS

In this chapter, we review the known layouts of the shuffle-exchange graph. In
section 1.1, we describe Thompson’s [T80] straightforward O(N%/log!/2N)-area
layout. This is followed in section 1.2 by a detailed description of Hoey and
Leiserson’s complex plane diagram. The complex plane diagram is very helpful in
finding good layouts for the shuffle-exchange graph. For example, Hoey and
Leiserson [HL80] have used the diagram to find an O(N%/logN)-area layout for the
N-node shuffle-exchange graph. In Chapter 2, we will use the diagram to find a
variety of layouts for the N-node shuffle-exchange graph including one which
requires only O(N%/log¥2N) area. (Such a layout has also recently been found
independently by Steinberg and Rodeh [SR80b].) The complex plane diagram will
also be used in Chapter 4 as an aide in the construction of good practical layouts
for small shuffle-exchange graphs.

1.1 Thompson’s Lay:out .

Thompson was the first to investigate VLSI layouts for the shuffle-exchange
graph. In his thesis [T80], he showed that any layout for the N-node shuffle-
exchange graph requires at least Q(N2/log?N) area. (We reprove this fact using
crossing number arguments in Part II of the thesis.) In addition, he described a
layout requiring only O(N2/log!”?N) area. In what follows, we present
Thompson’s layout and give a simple proof that it does, in fact, require just
O(N%/log'/’N) area.

Given any k-bit string w, define the size of w to be the number of /-bits it
contains. For example, the size of /0710 is 3. Thompson’s idea was to lay out the
N=2k nodes of the shuffle-exchange graph on a straight line in order of
nondecreasing size. It is easily seen that shuffle edges link nodes which have the
same size and that exchange edges link nodes which have sizes differing by one.
Thus the edges of such a layout are relatively short. In particular, the number of
horizontal tracks nceded to embed all of the edges is at most O(ngfk B) where




B is the number of nodes of size 5. This is due to 'the fact that at most
O(B,.;+ B;+ B, ;) edges can cross any vertical cut of the layout which is}located
between a pair of nodes of size s.

It is easy to show that B = C(ks) for each s where

C(ks) = k!/[sg(k-s)!]

is the well-known function for binomial coefficients. It is also well-known that
C(k,s) achieves its maximum value at s=k/2 for any k. Using standard asymptotic
analysis, it is easily shown that C(k,k/2) ~ ©(2%k!7?) for large k. (For a good
review of such techniques, see Bender and Orszag’s book [BO78].) Thus
Thompéon's layout requires only O(N//og!/?N) horizontal tracks. Since at most 3
vertical tracks are needed to embed the vertical portions of the edges incident to
any given node, we can conclude that Thompson's layout has area O(N%/log!/?N).

1.2 Hoey and Leiserson’s Complex Plane Diagram

. In [HL80], Hoey and Leiserson observed that there is a very natural embedding
of the shuffle-exchange graph in the complex plane. In what follows, we describe
this embedding (henceforth referred to as the complex. plane diagram) and point
out some of its more important properties. In addition, we give a brief description
of the method used by Hoey and Leiserson to transform the diagram into an
O(N%/logN)-area layout for the N-node shuffle-exchange graph.

1.2.1 Definition

Let 6, = e?77k denote the kth primitive root of unity. Given any k-bit binary
string w = a;.; ---ap, let p(w) be the map which sends w to the point

I(W) = 'ak_18kk'1 i o alb'k + ap

in the complex’ plane. As each node of the (N= 2%)-node shuffle-exchange graph
corresponds to a k-bit binary string, it is possible to use the map to embed the
~ shuffle-exchange graph in the complex plane. For example, we have done this for
the 32-node shuffle-exchange graph (whence k=J) in Figure 1-1. As is usual, we
have drawn the shuffle edges with solid lines and the exchange edges with dashed
lines. For simplicity, each node is labeled with its value instead of its 5-bit binary
string. (By the value of a node, we mean the numerical value of the associated
k-bit binary string.)




+21

+17

07

-1

-217

-2 E ~1 0 +1 42

Figure 1-1: The complex plane diagram for the 32-node
shuffle-exchange graph. (Taken from [HL80].)

1.2.2 Propérties

Examination of Figure 1-1 indicates that the complex plane diagram has some
very interesting properties. First, it is apparent that the shuffle edges occur in
cycles (which we call necklaces) which are symmetrically placed about the origin.
This phenomenon is easily explained by the following identity:

8kp(ak_1 ses ao) = ak_lakk + ak_zﬁkk" Feee 4+ a18k2 + 008’(
= ak.28kk'1 + o +a08k+ak,,
= M.z 0P -

Thus traversal of a shuffle edge corresponds to a 2#/k rotation in the complex
plane,

Except for degenerate cases, the preceding identity also indicates that each
necklace is composed of k nodes, each a cyclic shift of the other. Such necklaces
are called fill necklaces. Degenerate necklaces contain fewer than k nodes and,
because they must have some symmetry, arc mapped entirely to the origin of the
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complex plane diagram. For example, {00000} and {0101, 1010} are degenerate
necklaces while both {101, 011, 110} and {11100, 11001, 10011, 00111, 01110} are
full.

It will often be convenient to.refer to a necklace by one of its nodes. In
particular, we will use the notation <w> to indicate the necklace generated by w.
This is simply the collection of cyclic shifts if w. For example, the necklace
generated by 101 is <I10I> = {101, 011, 110} .

Exchange edges are also embedded in a very regular fashion by the complex
plane diagram. In fact, each exchange edge is embedded as a horizontal line
segment of unit length. This phenomenon is explained by the identity

p((lk_l...CIIO) +1 = ak_IBkk'l + ...t 018k + 1

. = p(ak_l...all).

In some cases, several exchange edges are contained in the same horizontal line
of the diagram. Such lines are called /evels. For example, there are 9 levels in the
diagram of the 32-node shuffle-exchange graph shown in Figure 1-1. We will use
the properties of levels in Chapter 2 to find an O(N2//og3?N)-area layout for the
N-node shuffle-exchange graph. They will also be used in Chapter 4 to find good
practical . layouts for small shuffle-exchange graphs.

123 An O(N?/logN)-Area Layout

In [HL80], Hoey and Leiserson showed how to use the complex plane diagram
to construct an O(N%/logN)-area layout for the N-node shuffle-exchange graph.
Their method was very involved, however, and we have chosen not to include it
here. The basic idea is to use the structural properties of the complex plane
diagram to find an O(N/log!/?N)-separator for the N-node shuffle-exchange graph
whenever N is of the form 22" for some r>0. The separator can then used to
construct an O(N%/logN)-area layout by using Leiserson’s general layout technique
for graphs with known separators [L.80a].

Shortly after writing [HL80], Hoey and Leiserson found a far simpler
O(NZ/logN)-area layout for the N-node shuffle exchange graph which was, in
addition, valid for all N. By the that time, however, we (as well as several others)
had also observed that the complex plane diagram could be used to find a simple
layout for the shuffle-exchange graph. This layout is described in Chapter 2.

11




CHAPTER 2

LAYOUTS BASED ON THE COMPLEX PLANE DIAGRAM

In this chapter, we present several layouts of the shuffle-exchange graph which
are based on Hoey and Leiserson’s complex plane diagram. We commence in
section 2.1 with a straightforward O(N?/logN)-area layout of the N-node shuffle-
exchange graph. 'As we mentioned in Chapter 1, this ’layout has also been
discovered by many others (including Hoey and Leiserson). In section 2.2, we
show how the layout can be modified so as to require only O(N2/log%?N) area.
The latter layout was also discovered independently by Steinberg and Rodeh
[SR80b]. We conclude the chapter by mentioning an additional O(N%/log*?N)-
area layout as well as a layout which might require even less area.

2.1 A Straightforward O(N2/logN)-Area Layout

In this section, we describe a straightforward layout of the shuffle-exchange
graph which 'requires only O(N%/logN) area. The layout is formed from a grid of
levels and necklaces which we refer to as the level-necklace grid. Each row of the
grid corresponds to a level of the complex plane diagram. The columns are
divided into consecutive column pairs, each pair corresponding to a necklace. In
particular, the leftmost column of each column pair corresponds to that part of the
necklace which is contained in the left half of the complex plane. Similarly, the
rightmost column corresponds to the part of the necklace contained in the right
half of the complex plane. We assume that the rows are ordered from top to
bottom so as to be consistent with the natural ordering of the levels in the complex
plane but (for the time being) place no restrictions on the left-to-right order of the
necklaces. '

Each node of the shuffle-exchange graph is placed at the intersection of the row
and column of the grid which correspond to the level and part of the necklace (left
half or right half) to which it belongs in the complex plane diagram. For example,
we have done this for a random ordering of the necklaces of the 32-node shuffle-
exchange graph in Figure 2-1.




necklaces

<3> <7><31><11> <1> <5><0> <15>
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~ Figure 2-1: A level-necklace grid for the 32-node shuffle-exchange graph.

Notice that we used just one vertical track to embed the necklaces <0> and <3I>
in the grid. As each necklace contains just one node, it is clear that this is
sufficient. In general, necklaces which are mapped to the origin by the complex
plane diagram are a nuisance since they become lumped together in a single point
of the level-necklace grid. Fortunately, there are relatively few such nodes. In
particular, Hoey and Leiserson showed the following.

Lemma 2-1 (Hoey and Leiserson [HL80]): At most O(N/logN) nodes o}'the N-
~ node shuffle-exchange graph are mapped to the origin of the complex plane diagram.

Proof: Every node which is mapped to the origin of the complex plane diagram
is adjacent (via an exchange edge) to a node at position (Z,0) or (-1,0). Any node
which is not mapped to the on’gin is contained in some full necklace, at most two
nodes of which are contained in positions (/,0) or (-1,0). Thus for every pair of
nodes which are mapped to the origin, there are at least k = JogN nodes which
are not mapped to the origin. Thus at most O(N/k) = O(N/IlogN) nodes can be
mapped to the origin O ‘

Since at most O(N//ogN) nodes are mapped to the origin, we can (for the time
being) ignore them. They can always be inserted later at a cost of. at most
O(N/lIogN) additional vertical and horizontal tracks. Since any layout of the
shuffle-exchange graph which we will consider will have at least Q(N//ogN) vertical
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and horizontal tracks, the added tracks can increase the area of the final layout by
at most a constant factor. We will also use this strategy in Chapter 3 when we
ignore several O(N/logN)-sized sets of nodes.

Since each full necklace contains at most k = logN nodes, it is easy to see that
the N-node shuffle-exchange graph has at most O(N/logN) full necklaces. Thus at
most O(N/logN) vertical tracks are needed to embed all of the shuffle edges in the
level-necklace grid. It is also easy to show that at most N horizontal tracks are
needed to embed all of the exchange edges (one track is used for each exchange
edge). Thus the total area of the layout for the N-node shuffle-exchange graph is
O(Nz/logN). As an example, we have added the edges of the 32-node shuffle-
exchange graph to the level-necklace grid in Figure 2-1 to produce the layout
shown in Figure 2-2. Note that we have omitted <0> and <3/> in this layout since
they are mapped to the origin of the complex plane diagram.
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<3> <7> <11> <1> <5> <15>
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Figure 2-2: Layout produced from the level-necklace grid shown in Figure 2-1.
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2.2 An Improved O(N?/log32N)-Area Layout

It is possible to improve the layout described in section 2.1 by reducing the
number of horizontal tracks needed to embed the exchange edges. This can be
done in two ways. First, exchange edges which are in the same level of the
complex plane diagram but which do not overlap in the level-necklace grid can be
inserted on the same horizontal track. As more exchange edges are inserted on the
same track, fewer total tracks will be needed to embed all of the exchange edges.
Secondly, the necklaces can be re-ordered so as to increase the average number of
exchange exchange edges which can be inserted on each horizontal track.

Although we do not know how to best order the necklaces in general, we have
found several orderings which yield O(N?/log3/?N)-area layouts for the N-node
shuffle-exchange graph. For instance, we will show in what follows that such a
layout can be constructed by arranging the necklaces from left to right in order of
nondecreasing size. (The size of a necklace is simply defined to be the size of any
of its nodes.) This observation has also been made by Steinberg and Rodeh in
[SR80b]. '

In order to bound the number of horizontal tracks needed to insert the exchange
edges, we will show that the maximum overlap of exchange edges on each level
occurs in between necklaces of size k/2. Since the maximum overlap of exchange
edges on each level is an upper bound on the number of horizontal tracks needed
to insert the exchange edges on that level, we can thus conclude that the total
number of horizontal tracks needed to insert all of the exchange edges is at most

O(B k/2) ~ O(N/ IOg_]/zN) .
Thus the resulting layout will have area at most O(N2/log"?N).

It is not immediately clear why the maximum overlap on each level occurs
between nodes of size k72, however. In what follows, we break up each level into
sublevels (for which the analysis is easier) and show that the maximum overlap on
each sublevel occurs between necklaces of size k72, Before doing this, however, we
must introduce some further notation.

Consider a node of the form a,._;...a,0 for which either a; ;=0 or a;=0 or
both for each i<k. We will refer to such a node as basis node. A node
by.;+--by is said to be gencrated by the basis node aj.;---a, if
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2) b;.;=b; whenever a;_;=a;=0 for I1<i <k.
For example, 70000 generates 10001, 11100 and 11101 but not 11111.

It is not difficult to show that if u generates v, then both v and v are on the same
level of the complex plane diagram. For example, let u = a;.;-.-a, and
v = by,---by and observe that

KV) - Mu) = (bk_l'ak_l) 8kk-1 + I o (bl’al) 8k + (bo'ao)
‘ = ck_ISkk'I O o C18k + Cp

where ¢, ;=c; foreach i 7 <i< k. Since 6 k"'i is the complex conjugate of
) ki for 1 < i< k, we can conclude that p(v) - p(u) is a real number and thus
that ¥ and v are in the same level of the complex plane diagram.

It is also easy to show that each node of the shuffle-exchange graph is generated
by a unique basis node. In particular, the node which generates b, ;---b, can
be found by '

1) setting b,=0 and (if k is even) setting by,,=0, and
'2) setting b;=by.;=0 for each i such that (originally) b;=b;.,=1.

Since exchange edges ‘vlink' nodes which are in the same sublevel, we can
conclude from the preceding arguments that it is possible to partition each level of
the complex plane diagram into sublevels so that the nodes in each sublevel are
precisely the nodes generated by some basis node. We will now show that the
maximum overlap at each sublevel occurs between necklaces of size /2.

Since the necklaces have been arranged from left to right in order of
nbndecreasing size, we can use arguments similar to those of section 1.1 to
conclude that the overlap of exchange edges between two nodes of size s in any
sublevel is at most O(Igg_‘)'ck B.') where B;' is the number of nodes in that
sublevel with size s. A straightforward counting argument shows that each basis
node of size r generates

1) Ck2 -1 ) nodes of size s=r+2 for any i < k2 -r, and
2) C(k/2 - r, ) nodes of size s=r+2i+1 forany i < k2 -r
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when k is odd, and

DCKk2-r-1,0)+Ck2-r-1,i-1) = Ck’2-r 1) nodes of size
s=r+2i forany i< k/2-r, and

2) 2C(k/2 - r- 1, i) nodes of size s=r+2i+1 for any i< k2-r- 1

when k is even. We can therefore conclude that in all cases, the maximum value
of B;' occurs when i = (k - 2r)/% and thus when s=k/2. This concludes the
proof. .

As an example, we have drawn such a layout for the 32-node shuffle-exchange
graph in Figure 2-3. Note that far fewer horizontal tracks are needed for this
layout than are used for the layout in Figure 2-2. For completeness, we have
included the necklaces <0> and <3/> even though they are degenerate.

necklaces

<0> <]1> <3> <5> <7> <11> <15>x<31i>
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Figure 2-3: An improved layout for the 32-node shuffle-exchange graph.
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2.3 Other Layouts

It is not difficult to find other orderings of the necklaces which produce
O(N/log’2N)-area layouts for the N-node shuffle-exchange graph. For example,
Lepley [LLM81] used standard statistical methods to show that the arrangement of
necklaces from left to right in order of nondecreasing radius produces such a
layout. (By the radius of a necklace, we mean the radius of the circle in the
complex plane which contains the necklace.) The proof is similar to the one in
section 2.2. In particular, it is shown that the maximum overlap in most levels
occurs in the same place and that the total overlap of all of the levels at that point
is O(N/log!/?N). |

Although we consider it likely that better orderings of the necklaces exist, we do
not know of any ordering which (provably) results in a layout with less than
o(N2/log®?N) area. There is another ordering of interest, however. That is the
ordering of the necklaces according to the minimal number represented by each
necklace. (The minimum number represented by a necklace is simply the smallest
value of any node in the necklace.) Coincidentally, the layout displayed in Figure
2-3 has such an ordering. Using techniques which are developed in Chapter 3, it is
possible to show that the combined maximum overlap of exchange edges in all
levels is at most O(NloglogN/logN) for this ordering. This is substantially better
than the O(N/log!/2N) overlap found in previous orderings and also very close to
the lower bound of Q(N/logN). Unfortunately, we do not know how to show that
the maximum overlap at each level occurs in the same place. In fact, it appears
that this may not be the case. (We are deeply indebted to Kleitman for pointing
out the possibility of such an improvement. Although we were not able use his
idea in the context of complex plane diagram layouts, it was crucial to the
development of the asymptotically optimal layout described in Chapter 3.)

For orderings which have a small combined maximal overlap but for which the
maximal overlap at each level is difficult to compute (such as the ordering by
minimal value represented), it may be possible to improve the situation by altering
the level structure. As Miller pointed out to us, there are many possible levelings
of the exchange edges. (By a leveling, we mean any arrangement of the exchange
edges in levels which is consistent with the necklace structure of the complex plane
diagram.) Although we have investigated several levelings, we have not found any
(provably) better layouts for the shuffle-exchange graph by this method.
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CHAPTER 3

MORE SOPHISTICATED LAYOUTS

In section 3.3 of this chapter, we describe an asymptotically optimal
O(N%/log?N)-area layout for the N-node shuffle-exchange graph. Unlike the
previously described layouts, the optimal layout is fairly sophisticated and requires
a substantial amount of preliminary machinery. Most of the necessary definitions
and lemmas are included in section 3.1. In section 3.2, we describe and analyze a
near-optimal preliminary version of the optimal layout. The optimal layout is then
described in section 3.3. In section 3.4, we extend the methods developed in earlier
sections in order to show that certain useful supergraphs of the N-node shuffle-
exchange graph can also be laid out in O(N2/log?N) area. We have also included
an appendix to the chapter in which we prove Lemmas 3-1 through 3-4.

3.1 Preliminaries

The layoufs described in this chapter are based on some important combinatorial
properties of strings which contain long blocks of consecutive zeros. Before
describing the layouts, however, it is useful to review some of these properties. In
this section, we mention several combinatorial lemmas and definitions which will
be heavily used in the analysis which follows later. As the proofs of the lemmas
are somewhat complicated, they have been included in the appendix.

In what follows, we will be particularly interested in the size and location of the
longest block of consecutive (-bits in the k-bit binary string associated with each
node. In order that the size of this block be the same for all nodes within a
necklace, we allow blocks to begin at the end and end at the beginning of a string.
For example, the longest block of zeros in the string 01010 starts at the fifth bit and
has length two.

Let ¥ (/) denote the number of k-bit strings for which the longest block of
consecutive zeros has length 1. For example, ¥ 2)=3. The following combina-
torial lemma provides a good asymptotic bound on the growth of ¥ ,(i).
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Lemma 3-1: For (logk)/2+logink < t < k and k—oo,
(142 -
(t+2) ) e_k2(1+1)).

In order to illustrate the important features of the function in Lemma 31, we
have sketched a graph of 2 k‘I'k('t) versus 7 in Figure 3-1. The maximum of
Zky () occurs at ¢ = -Jogk-1 whence

k() = (e?2-1ye

V() ~ 2k(ek

~ .23865.

For 1> logk - 1, k¥ () decreases exponentially as t increases. For ¢ < logk - 1,
2K (1) decreases doubly exponentially as t decreases. :

!
!
.23 4
. A exponential
2—kW(t) |  dropoff
double | ! //
. R |
exponential
. dropoff S~ !
_ I i
- ] }
0 logk-1 k

t

Figure 3-1: Density of k-bit binary strings for which the
longest block of consecutive zeros has length t.

Roughly speaking, Lemma 3-1 states that the longest block of consecutive zeros
in nearly 174 of all k-bit strings has length precisely Jogk - 1. Further, there are
not many strings of length k with substantially more than logk consecutive zeros
and even fewer strings for which the longest block of consecutive zeros has length
substantially less than logk. This information is further quantified in the following
lemma. -

Lemma 3-2:  The number of k-bit strings for which the longest block of
consecutive zeros has length less than logk - logink - I or length greater than 2logk




is at most OQ%k) = O(N/logN) .

As we mentioned in Chapter 2, we may ignore O(N/logN)-sized sets of nodes
which have undesirable properties. As such nodes can be inserted with the
addition of at most O(N/logN) vertical and horizontal tracks, we can always add
them later without increasing the total area by more than a constant factor. By
Lemma 3-2, we can thus henceforth consider only those nodes for which the -
longest ‘block of zeros has length between logk - logink - I and 2logk.

We will also be interested in the size of the second longest block of consecutive
zeros in each string. Usually, the size of the second longest block of zeros will be
very close to the size of the.longest block of zeros. We state this observation more
precisely in the following lemma.

Lemma 3-3: The sum over all necklaces of the difference in length between the
longest and second longest blocks of consecutive zeros is al most O(N/logN).

Using information about the size and location of blocks of zeros within the
necklace, it is possible to distinguish one particular node in the necklace. More
precisely, we define the distinguished node of a necklace to be the node containing
the longest leading bleck of zeros. For example, 00101 is the distinguished node of
<01010>. Should two or more-nodes of a necklace begin with equal and maximal
length blocks of zeros, then each node of the necklace contains at least two blocks
of zeros of maximal length. In such cases, we distinguish that node for which the
leading block of zeros is maximal and for which the second occurence of a
maximal length block of zeros is as near as possible to the beginning of the string.
For example, 01011 (not 0/101) is the distinguished node of the necklace <1070>.
For some necklaces, such as </1I> and <I010101>, there is no uniquely
distinguished node. As we show in the following lemma, such necklaces -are
sufficiently rare that we need not consider them further. - '

Lemma 3-4: At most O(N/logN) nodes are contained in necklaces which fail to
have a uniquely distinguished node.

We refer to the leading block of zeros of a distinguished node as the primary
block of zeros. If a distinguished node has two or more maximal length blocks of
zeros, then the maximal length block following the primary block is referrred to as
the secondary block of zeros. These definitions can be easily extended to any node
contained in a necklace which has a uniquely distinguished node.  For example,
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the primary block of zeros of 0/010 starts in the fifth bit and has length two. Note
that this string does not have a secondary block of zeros. As another example, we '
note that the secondary block of zeros in the string 77010 consists solely of the fifth
bit. Note that the secondary block of zeros (if it exists) always has the same length
as the primary block of zeros.

If the last bit of a node occurs in the primary block of zeros, we call that node a
primary node. Similarly, if the last bit of a node occurs in the secondary block of
zeros, we call the node a secondary node. For example, 10110 is a primary node,
11010 is a secondary node and 100/0 is neither primary nor secondary.

Note that all primary and secondary nodes are necessarily even. (We say that a
node is even if its last bit is 0 and odd if its last bit is /.) Note also that, by Lemma
3-2, we need only consider necklaces which contain between logk - logink - 1 and
2logk primary nodes. Such necklaces will also have at most 2logk secondary
nodes.

In what follows, we will represent nodes in terms of their corresponding
distinguished nodes. More precisely, we use the notation ay.;- - -a;, ;a8;.;+ + +ap
to denote the node a;;.--ayy. ;- - -a;. For example, 00101 denotes the node
10010. Using this notation, a primary node has the form 0...0...0w while a

secondary node has the form 0...0w'0...0...0w" where 0...0w and
0-.-0w'0...0w" are assumed to be distinguished nodes.

3.2 A Near-Optimal Layout

We are now prepared to describe a near-optimal preliminary version of the
optimal layout. In section 3.3, we will show how to modify this layout in order to
construct an optimal O(N2/log?N)-area layout for the N-node shuffle-exchange

graph.
3.2.1 Location of the No;les

The near-optimal layout is constructed from a logN x O(N/logN) grid of
nodes. Each column of the grid corresponds to a necklace of the shuffle-exchange
graph. The nodes of each necklace are ordered from top to bottom so that the ith
node is a left cyclic shift of the (i-7)st node for each i/ and so that the distinguished
node is placed in the bottom row. The nccklaces are crdered from left to right so
that the values of the distinguished nodes form an increasing sequence. For
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example, we have constructed such a grid for the 32-node shuffle-exchange graph
in Figure 3-2. In the figure, we have represented each node in terms of the
associated distinguished node. This representation readily illustrates the fact that
the last bit of any node in the ith row corresponds to the ith bit of the associated
distinguished node. Note that the necklaces <00000> and <I/111> have not been
included since they are degenerate. |
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~ Figure 3-2: The grid of nodes for the 32-node shuffle-exchange graph.

3.2.2 Insertion of the Edges

It is easily observed that the shuffle edges can be inserted in the grid with the
addition of O(NV/logN) vertical and 2 horizontal tracks. In the following, we will
show that the exchange “edges can 'be inserted with the addition of
O(NloglogN/logN) vertical and horizontal tracks.  Thus the total area of the layout
is O(N(loglogN)/log?N). ‘This is only a factor of O((loglogN)?) off from the
lower bound of O(N%/log?N).

The analysis is divided into two parts. In part (a), we show that only
O(N[oglogN/logN) exchange edges link nodes which are in different rows of the
grid. Thus such edges can be inserted with the addition of at most
O(NloglogN/logN) vertical and horizontal tracks. In part (b), we conclude the
analysis by showing that at most O(N/logN) horizontal tracks are needed to insert
the exchange edges which link two nodes in the same row.
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(a) Exchange Edges Which Link Nodes in Different Rows

Consider an exchange edge which links two nodes that are in different rows of
the grid. In particular, assume that the edge is incident to an even node in the ith
row for some i By definition, the even node can be represented as wOw' where
[M=i-1 and wOw' is the distinguished node of <wOw'>. The exchange edge is
also incident to the odd node wiw'. By assumption, wiw" is not located in the ith -
row and thus wiw' is not a distinguished node. Since wow' is a disting'uished
node, we know that the irh bit of wOw' (the bit that was changed in order to
produce wTw') must be in the primary or secondary block of zeros of wow'.
Otherwise, the primary and (if it exists) secondary blocks of zeros of wiw' would
be identical in location and size to the primary and secondary blocks of wow'.
This would imply that wiw' is also distinguished, a contradiction. Thus wow'
must be a primary or secondary node. As was previously mentioned, we can
assume that each necklace has at most 2logk = 2loglogN primary and 2loglogN
secondary nodes. Thus at most 4/oglogN nodes in each necklace are both even and
incident to an exchange edge which links nodes in different rows. Since every
exchange edge is incident to an even node and since there are O(N//ogN)
nccklaces, we can conclude that there are at most O(NloglogN/logN) exchange
edges which link nodes in dlfferent TOWS. '

(b) Exchange Edges Which Link Nodes in the Same Row

We next show that those exchange edges which link two nodes that are in the
same row can be inserted with the addition of at most O(N/logN) horizontal tracks.
Once again, the analysis is divided into two parts. In the first part, we show that at
most O(N/logN) exchange edges are contained in the first Jogk rows. Such edges
can be trivially inserted with the addition of O(N/logN) horizontal tracks. In the
second part. we show that only 2%1 horizontal tracks are needed to insert the

exchange edges in the ith row for any i > logk. Since N 2"' < Xk =
N/logN , this will be sufficient to show that at most O(N/logN) additional
horizontal tracks are 'necessary to inscrt the remaining exchange edges.

Consider a necklace which has ¢ primary nodes for some t</logk. By definition,
the nodes in the first 7 rows of such a necklace are all even. Thus, such a necklace
can have at most r = Jogk - t odd nodes in the first logk rows. By Lemma 3-1,
we know that there are
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such necklaces for (logk)/2+ logink < t<< k. By Lemma 3-2, we can assume that
t > logk - logink - 1 and thus the total number of odd nodes occurring in the first
logk rows is at most
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Since every exchange edge is incident to an odd node, the above bound implies
that at most O(N/logN) exchange edges are contained in the first /ogk rows.

We next consider the number of horizontal tracks necessary to insert the
exhange edges contained in the: ith row for Dlogk. This number is identical to the
maximum number of exchange edges that can overlap each-other at a single point
of the ith row. In Figure 3-3, we illustrate the necessary conditions for two
exchange edges to overlap in the ith row. All representations are in terms of
distinguished nodes. '

. . °
wow" wiw"
level < o e
wiw' Cwlw!
o L 2
wowﬂl wlw”l
lw| = i-1 w" <! < "

Figure 3-3: Neccessary conditions for exchange cdges to overlap in the ith row.
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Note that the even end of an exchange edge is always to the left of the odd end.
Also note that any node which occurs between wOw' and wlw' must be
represented as wOw" where w">w' or as wlw™ where w"<w'. In either case, the
exchange edge incident to the overlapped node extends beyond the exchange edge
linking wOw' to wiw'. Since there are at most 2% - ] nodes between wOw' and
wiw', these facts imply that at most 2k-i exchange edges can overlap at any point
of the ith row. This observation completes the argument that the near optimal |
layout requires only O(N?(loglogN)%/log’N) area.

3.3 An Optimal O(/N?/log?N)-Area Layout

In this section, we will modify the layout described in section 3.2 in order to
produce an optimal O(N2/log’N)-area layout for the N-node shuffle-exchange
graph. In particular, we will relocate the primary and secondary nodes of each
necklace so that they are closer to and in the same row as the nodes to which they
are linked via an exchange edge. Before going into the details of this relocation,
‘however, it is necessary to introduce some additional terminology.

3..3.1" More Definitions

‘In order to construct an optimal layout for the shuffle-exchange graph, we have
found it necessary to break up each necklace into two or, possibly, three pieces.
The basic piece of each necklace consists of all those nodes which are neither
primary nor secondary. The primary piece of each necklace consists of the primary
nodes while the secondary piece consists of the secondary nodes (if there are any).
For example, the basic piece of <01011> is {01011, 01011, 01011}, the primary
piece is {01011}, and the secondary piece is {01011}

It is also necessary to extend the notion of a distinguished node to include pieces
of necklaces. The distinguished node of a basic piece is the same as the
distinguished node of the associated necklace. The distinguished node of a primary
piece of a necklace is that node. of the necklace which becomes distinguished when
we ignore the primary block of zeros (i.e., when we temporarily replace the
primary block of zeros in each node of the necklace with an equal-length block of
ones). Similarly, the distinguished node of a secondary piece of a necklace is that
node which becomes distinguished when we ignore the secondary block of zeros.
For example, 070110111 is the distinguished node of the basic piece of |
<010110111>, 011011101 is the distinguished node of the primary picce, and
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011101011 is the distinguished node of the secondary piece. Note that the
distinguished nodes of the primary and secondary pieces of any necklaces are
necessarily odd nodes and thus are contained in the basic piece of the necklace.

It is important to note that some necklaces (such as <0//1I>) have a
distinguished node but do not have a distinguished node for the primary or
secondary piece of the necklace. Fortunately, arguments such as those used to
prove Lemmas 3-3 and 3-4 can be used to show that at most O(N//ogN) nodes are
contained in such necklaces. Thus, we can assume henceforth that every piece of
every necklace has an associated distinguished node.

3.3.2 Location of the Nodes

As in section 3.2, the layout is constructed from a logN x O(N/logN) grid of
nodes. Each column of the grid corresponds to a piece of a necklace. The nodes
of each piece are arranged within a column so that a node of the form |
gy« @y - -ay (where a; ;- - -a, is assumed to be the distinguished node of
the associated piece) is placed in the ith row of the grid. Note that nodes in the
basic piece of any necklace (these include all odd nodes) are in the same row as
they were in the near-optimal layout described in section 3.2. The columns are
ordered from left to right so that the values of the distinguished nodes of the
associated pieces form a nondecreasing sequence. For example, we have
constructed such a grid for k=5 in Figure 3-4.

01011
*-— —— ——
00101 01001 01011
> +— — =
00101 01001 01011 . 01101
00101 01011

basic. primary basic secondary primary
<00101> <00101> <01011> <01011> <010l11>

Ficure 3-4: Relocated nodes for the 32-node shuffle-exchange graph.
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Note that the necklaces <00001>, <00011>, <00111>, and <01111> have not beén _
included in Figure 3-4 since their associated primary pieces do not have
distinguished nodes.

3.3.3 Insertion of the E(iges

As each necklace is broken up into at most four contiguous pieces in the
‘modified grid (the basic piece may have been broken up into two contiguous
pieces), the shuffle edges can be inserted with the addition of at most O(N//ogN)
vertical and horizontal tracks. In what follows, we will show that at most
O(N/logN) vertical and horizontal tracks are needed to insert all of the exchange
edges as well. Thus the area of the layout will be O(N%/log?N), which is optimal.

As before, we divide the analysis of the exchange edges into two parts. We first
'show that at most O(N//ogN) exchange edges link nodes which are in different
-rows_of the grid. Such edges can thus be trivially inserted with the addition of at
most O(N/logN) vertical and horizontal tracks. We then show that those exchange
‘edges which link two nodes in the same row can be inserted with the addition of
only O(N/logN) horizontal tracks. The arguments will be very similar to.those in
section 3.2.2.

(a) Excharige Edges Which Link Nodes in Different Rows

_ Consider an exchange edge which links two nodes which are in different rows of
-the grid.- Since only primary and secondary nodes have been relocated, we can
conclude from the arguments of section 3.2.2a that the even node which is incident
‘to the edge is either a primary or secondary node. In what follows, we will show
that the even node is, in fact, a primary node.

Assume for the purposes of contradiction that the even node is a secondary
“node. Then this node can be represented as wOw' where wOw' is the distinguished
node of the secondary piece of <wOw'> and |wj=i1 for some L By definition,
wOw' is located in the ith row of the grid and is linked to wiw' via the exchange
‘edge. Since wiw' is odd, it is contained in the basic piece of <wiw'>, By
assumption, wiw' is not also in the ith row and thus w/w' cannot be the
distinguished node of <w/w'>. Since the lengths of the two blocks of zeros in

~ wlw' created by switching the itk bit from 0 to / are less than the length of the
primary biock of zeros (in fact, the sum of their lengths is precisely one less than
the length of the primary block), wiw' will be the distinguished node cf <wiw'>
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precisely when wOw'is the node distinguished in <wOw'> by ignoring the
secondary block of zeros. By definition, this is the case precisely when wOw' is the
distinguished node of the secondary piece of <wOw'>. By assumption, wOw' is the
distinguished node of the secondary piece of <wOw'> and thus we can conclude
that wiw' is the distinguished node of <wlw'>, a contradiction.

Next consider a primary node which is incident to an exchange edge linking two -
nodes in different rows of the grld By the preceding arguments, this node must be

of the form wl0 - 000‘_,\71 w' where wil0...0Iw' is the distinguished
node of the primary piece of <wl0 ... 0Iw'> and either ¢; or ¢, is larger than or
equal to the length of the longest block of zeros in wilw'. Otherwise,

01(7 - 0Iw' would (by deﬁnition) be the distinguished node of
1l X
wld. .- 010 OIw '> and thus wid- OIMIW would be on the same
’1 2

A = A

rowas wi0-. .000.- .0Iw' , acontradiction. Each necklace contains at most

2r such primary nodes where r is the difference between the lengths of the longest

and second longest block of zeros in any string of the necklace. By Lemma 2-3, we

can conclude that there are at most O(N//ogN) such primary nodes in the ‘entire °
shuffle-exchange graph’. Thus, at most O(N//ogN) exchange edges link nodes

which are in different rows. '

(b) Exchange Edges-Which Link Nodes in the Same Row

Using the analysis developed in section 3.2.2b, it is not difficult to show that at
most O(N/logN) horizontal tracks are needed to insert the exchange edges which
link two nodes that are in the same row. In particular, there are still only
O(N/logN) odd nodes in the top logk rows of the grid and thus at most O(N//ogN)
exchange edges are contained in the top logk rows. These can be trivially inserted
with the addition of just O(N/7ogN) horizontal tracks.

Again following the methods of section 3.2.2b, it is not difficult to show that two
exchange edges overlap on the ith row only if the first / bits of the associated nodes
are identical. Thus at most 2K tracks are needed to insert all of the exchange
edges in the jth row for all Dlogk. Summing, we can again conclude that at most
O(N/IlogN) additional horizontal tracks are needed to insert the remaining
exchange edges.
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3.3.4 Comments | -

The methods developed in this chapter can be used to find several other optimal
layouts for the shuffle-exchange graph. The key variant is the method by which a
node is distinguished. In particular, this method must be impervious to small
alterations in the necklace. (This is so that most exchange edges will link nodes
which are in the same row of the grid.) Only by changing the value of a bit in a-
small segment of the necklace (such’as in the primary or secondary block of zeros)
should we be able to globally change the distinguished node.

Another method of distinguishing a node is to select that nede in the necklace -
which has the minimal value. Although the proof is very difficult, it can be shown
that the layout for the N-node shuffle-exchange graph constructed in this manner
has at most O(N%/log?N) area. In the following section we will desribe additional
methods of distinguishing nodes. '

At this point, we should also note that the layout just described is not known to
‘have optimal maximum edge length. In Part II of the thesis, we show that every
layout of the N-node shuffle-exchange graph must have some edge of length at
least Q(N/log?N). All the layouts we have considered thus far contain wires of
length ©(N/logN). '

3.4 Layouts With Additional Edges g

For some applications (such as the calculation of the discrete Fourier transform),
it is useful to consider networks which have more than just shuffle and exchange
edges. In particular, we will be interested in layouts for the shuffle-exchange graph
which also include shift, reverse and transpose edges. In what follows, we will
show how to modify the optimal layout for the shuffle-exchange graph so that
these additional edges can be inserted without increasing the total area by more
than a constant factor.

34.1 Shift Edges

Shift edges link the ith node to the (i+ I)st node for all odd i. When combined
with the ecxchange edges, the resulting network will have links between the ith and
the (i+ st nodes for all i. The inclusion of such edges facilitates the computation
of discrete Fourier transforms at sequential intervals of a continuous signal. 1In
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such applications, the input data contained in the ith processor is shifted to the
(i+ I)st processor for each / after each computation of a discrete Fourier transform.
The graph consisting of shuffle, exchange and shift edges is known as the shuffle-
shift graph.

Using the methods developed in section 3.3, it is not difficult to show that the
N-node shuffle-exchange graph can be laid out using only O(N2/lcg?N) area. As
before, the necklaces are broken into two or three pieces and placed in a grid
according to the value of the associated distinguished node. Thus the shuffle edges
can be inserted as before using only O(N/logN) vertical and horizontal tracks.

For most odd nodes, adding a 1 to the value of the node changes only a
relatively small number of bits at the end of the string. Thus it can be shown that
at most O(N/logN) shift edges link nodes which are in different rows. These can
be easily inserted using only O(N/logN) vertical and horizontal tracks. Of those
edges which link nodes in the same row, at most O(N/logN) are contained in the
first logk rows. For Dlogk, at most 21 shift edges overlap at any point of the ith
row. By introducing an extra vertical track for each necklace piece, it is possible to
separate the layout of the shift edges on each level from that of the exchange
edges. Thus both can be inserted simultancously in the ith row using only 02k)
total horizontal tracks. By the arguments of section 3.3, this means that at most
O(N/logN) additional horizontal tracks are needed to embed all of the remammg
shift and exchange edges, thus completing the argument.

3.4.2 Reverse Edges

Reverse edges link pairs of nodes that are associated with binary strings which
are reverses of each other. For example, ay.;- - -a, is linked to ay- - -a;.; viaa
reverse edge. Since the algorithm which computes discrete Fourier transforms on
the shuffle-exchange network leaves the output for node a4 ;---a, in node
ag- - -a;.; , reverse edges provide a fast and convenient Way of straightening out
the solution. The graph consisting of shuffle, exchange, shift and reverse edges will
be referrred to as the shuffle-shifi-reverse graph.

~ Using the techniques develdpcd in section 3.3, it is also possible to show that the
N-node shuffle-shift-reverse graph can be laid out in O(N°/log?N) area. The basic
idea is to modify the layout described in section 3.4.1 so that
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1) pieces of necklaces which are reverses of each other are paired together 1n
the left-to-right ordering, and

2) pieces of necklaces are folded in half,

The first constraint insures that the maximal overlaps of the reverse edges in
each row will be small while the second constraint insures that most reverse edges
link nodes which are in the same row. Although it is not immediately obvious, it
can be checked that these modifications do not substantially change the procedure
for inserting the shuffle, shift and exchange edges which was described in section
3.4.1. Thus all of the edges can be inserted using at most O(N//ogN) vertical and
horizontal tracks.

3.4.3 Transpose Edges

Transpose edges link the ith node to the (NV-I-i)th node for each i. Viewed in
terms of binary strings, transpose edges link each node to its complement.
.Although we do not know of any specific applications of transpose edges, they
would be useful for problems that require frequent transposition of the data.

By further modifying the optimal layout for the shuffle-shift-reverse graph, it is
possible to add transpose edges without increasing the total area by more than a
constant -factor. In particular, the layout should be modified so that

1) pic;ces’ of necklaces which are complements of each other are paired together
in the left-to-right ordering, and

2) the distinguished node is selected on the basis of the location of the longest
block of consecutive ‘identical. -bits (be they zeros or ones).

The first constraint insures that the maximal overlaps of the transpose edges in
each row are small while the second constraint insures that most transpose edges
link nodes which are on the same row. Although we do not present the details
here, it is possible to show that such a layout can be constructed using only
O(N%/log?N) area, the least possible.

32




"~ Appendix: Proofs of Lemmas 3-1 Through 3-4

We now present the proofs of Lemmas 3-1 through 3-4. Such results can also be
found in the recent work of Guibas and Odlyzko [GO81a,GO81b]. We are deeply
indebted to Kleitman for suggesting the proof of Theorem 3-1.

In what follows, we will write 71'-,((1) to denote the number of &-bit strings -
which do not contain +/ consecutive zeros. Except for the string of all zeros
(which we ignore), these are precisely the strings which do not contain the

l . :

LA, .
substring v, = 10...0. The proofs of Lemmas 3-1 through 3-4 depend heavily
on the following combinatorial resuit. :

Theorem 3-1:  For large t and k,
T() = ket QU2

Proof: We first count the number 717,('(1) of k-bit strings which do not contain
an occurrence of v, between the beginning and end of the string (i.e., for the time
being we ignore the occurrences of v, which begin at the end and end at the
beginning of a string).

Fix ¢ and let J; denote the number of i-bit strings ending with v b but which do
not contain any other occurrences of v, in the string. Set Fx) = fo' Note

that ¥ k' (D) is the (k+ 1)th coefficient of A(x). Let f(’) denote the number of i-bit
strings ending in v, which contain precisely j occurrences of v, and set

P = T2

Since occurrences of v, cannot overlap, it is not difficult to show that F(' (x) is
identical to F(x) J forall j>I.

Let g; be the number of /bit strings which end in v, (regardless of the number of

other occurrences of v, which appear in the string) and set G(x) = Lie g,-x" . Since
. : [Y>]
g=2""! forall 7> ¢ itis easily seen that G(x) = x!/AI-2x) . Also note that

W = A%

3=

33




= :éf(x)j
= [17(-Rx)] - 1
and thus that
Rx) = G(x)/7(Gx) + 1)
= X/(- 2x+ ).

Thus :I"k'(t) is simply the kth coefficient of 1/ (1 - 2x+ x) . For example,
“174'(2)=5 which is the coefficient of x¥ in the expansion of I/ (I - 2x+ x?) .

Let p(x) = I-2x+x!. Itis easily observed that ged(p(x), dp(x)/dx) = 1 and
thus that p(x) does not have any multiple roots for ¢> 2. Thus we can expand

t
px)! = '2' A;/ (x-r)
~ where {r;11 < i< 1} istheset of distinct (and possibly complex) roots of p(x) and
4 = 1Grypdl,
= I/[dp(x)/dxlri

for 1 < i< t. Once the roots of p(x) are known, we can calculqte gk'(t) from
the formula ' -

T
T () = -3 ArkrD
=)

Although we do not know how to find the roots of p(x) explicitly for large ¢, we
can describe them asymptotically. First observe that as ¢—oo, the absolute value
of every root must approach either 172 or 1. Otherwise the absolute value of one
term of p(x) will dominate the sum of the absolute values of the other two terms.
For example, if |4 < ¢<1/2 as t—»oo for some root r and constant ¢, then
1> 124+ for large ¢ '

If there are to be any roots r such that |4—1/2, it is essential that r—1/2,
Otherwise, the real part of p(r) cannot vanish for large ¢ - By substituting
(172)e)  for r where s(1)=0 as t—o0, we find that
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1-e0 42t = ¢
and thus that
1-(+ s(t) +0()D)) + 2P +0(us()))) = 0

Thus (1) = 2'+¢(1) where |g(f)] << 2! as r—oco. Another iteration of this
process reveals that g(1)=0(:2?") and thus that

- -2
ro= (172 e O a5 1o

In fact, there is precisely one root, say r, , which approaches 1/2 as (—co.
The absolute values of the remaining roots approach /. In particular, the absolute
values of these roots must be greater than or equal to / for large ¢ Otherwise there
would be a root r and a function &()»07 such that |4=17/-e(f) . But then

121 = 2 - 2e(9)
> 1+ |1 - e
= 1+
for D2 land' it would be impossible for p(r) to vanish for large ¢, a contradiction.

It remains to compute the 4;. Since dp(x)dx = txt! - 2, we find that
Ay = (I72)+0(2") and that . 4; = O(l/1) for 2<i<t. Thus

T () = O() - [-1/2+ O] 2k+1 g+ DI' O™y
Replacing 1+0(2") with €0W2) and simplifying, we conclude that
F,'() = 2kek w2 ke2
for large ¢ and k.

The only strings which are included in the count of .‘f'-k'(t) but not in that of
i - ’ :
¥ (¢) are those of the form 0...0wl0.. .0 where 1 < i< ] and wis a string

which is included in the count of ¥, '({) . Thus

T = 0 - -D¥'0)
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= okekZ O k2% (4. 1) okt D7 O k2%
gk gk 2 ka2
for large ¢ and k.~ This completes the proof of the theorem O
We can now prove Lemmas‘3-1 and 3-2.

Proof of Lemma 3-1: From the definition, we know that

V) = Y (t+2) - Y, (+1)

(142 ot a2 -(t+1, -ty a2
= 2k k2P 00 k2 o gk k2D (2, k2™

for large tand k. For t > (logk)/2+loglogk, both 12! and kt22! vanish as
k—oo, In what follows, we will show that if ¢ << k, then

(142 1
e 20? L o™V s ozt iz 2

and thus that

' -(1+2) (1+1)
v, (D ~ 2k (g'k2 - ek
Assume for the purposes of contradiction that

-(1+2) -(1+1)
ek? - ek? ow2!, kiz 2y .

(1+2) . -+l (1+2) | 5 (t+])
Then, X2 ~ k2 which means that %2~ +k2 ~ 1 and
thus that k2U*2 o ¢, Thus we can use a Taylor series expansion of the

exponentials to find that
P A R A Y P A R Y 2258

kz'(l +2)

»  O(X!, kix?
provided that ¢ < k, a contradiction 0O

Proof of Lemma 3-2: The number of k-bit strings which do not contain a block
of logk - logink - 1 consecutive zeros is
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- -logk + logink
¥ (logk - loglnk) ~ 2k k2T
= 2k/k
= O(N/IogN) .

The number of k-bit strings which contain a block of 2/logk + I consecutive zeros -

2k - T logk+2) ~ 2% - 2k kI OogkVE)
= 2k - 2K[I - 1A4k) + O((logky'k?)
~ 2k/4k
= O(N/logN)O

- The proofs of Lemmas 3-3 and 3-4 depend on the following corollary to
Theorem 3-1. '

Corollary 3-1: For boundéd m and p and large k and 1,
: 4

2T = OQkAM .
Proof: g We first observe that for ¢ < 2logk/3 ,

Vomir D S ¥ (2loghs3)
+p
2 k & k 2—(21ng)/3

/3

and thusvthat
b i 1
t}: Yiemie () < (2/3) logh 2k ek
=

K 2ksgm
for any finite m and p as k—o0 .

For larger values of ¢,
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v ~ ok-mi+p k2"
‘Pk-mt+p(t) 2kmiTPe

and thus :
524 KE2
SV, () ~ 3 opkmirpghd!
. H ~ ek,
¢+ dleak k-mt+p " 1‘!%5

3
By making the change of variables r = - logk, we can see that the preceding
sum is at most ‘

puad -r
( 2k+p /k™) 2 rmr g2

r:.-ab .

and thus at most OQk%k™) = O(N/logN) O

Proof of Lemma 3-3: A string whose longest block of zeros has lengthl t and
: t

whose second longest block of zeros has length s<t is of the form wi0. . -0w',
where the longest block of zeros in ww' has length s By definition, there are at
‘most k¥, ,_,(s) such strings. Thus the sum over all necklaces of the difference
between the sizes of the longest block and second longest block of zeros is at most

x t ‘
< (k) 22 (t=9) k ¥y, [(9)

20 S30

T=0 S=p

= i EK:';IH(S)

S =¢

K ¢t - —
= 2 2 (-5) [‘I’k_’_I(S"/'Z) - ‘?k-[-](s'f'l)]

: A
= 3 (2kek2® OGs2°, ks2%) i ")
t=5

851

< ﬁ" ( ok k2° 02 k2P s eo(sz"))
L 1] .

K
= 3 pks gk’ OGs27, ks2®)
823

< 2F0

= O(N/logN)

by Corollary 3-1 O
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Proof of Lemma 3-4: Consider a necklace which fails to have a uniquély‘
distinguished node. Each node in such a necklace must have one of the following
three forms:

2) w,0- QW2UW3Q O,w4 or

g v
3) wig- fngq -t-Ow . -t-Ow,Q- -« Ows

¥
where ¢ is the length of the longest block of zeros in any of the strings. It is easily

seen that there are at most

Kz __ :
D k 2 ¥, ,(1+2) nodes of the first type,

Kis

2) k? 2 ¥, ;{t+2) nodesof the second type and

x/y

3) k3t2 ¥,.,(t+2) nodes of the third type.

By Corollary 3-1, we can thus conclude that there are at most O(N/logN) such
nodes altogether O
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CHAPTER 4

PRACTICAL LAYOUTS

Although the O(N%/log?N)-area layout for the shuffle-exchange graph described
in Chapter 3 is (up to a constant) asymptotically optimal, it is not optimal for small
values of N (e.g., N=128). In fact, none of the general layout procedures thus far
discussed provide good layouts for small shuffle-exchange graphs. For practical
applications, however, these are precisely the shuffle-exchange graphs for which we
need good layouts. |

In this chapter, we descibe techniques for finding good layouts for small shuffle-
exchange graphs. Although the techniques (which are described in section 4.2) do
not yet constitute a general procedure for finding truly optimal layouts for all
shuffle-exchange graphs, they can be used to find "very nice" layouts for “small”
shuffle-exchange graphs. As examples, we have included layouts for the 8-node,
16-node, 32-node, 64-node and 728-node shuffle-exchange graphs in section 4.3.
The layouts ‘are "very nice” in the sense that:

1) they ‘requi',re much less area than previously discovered layouts,

2) they have a certain natural structure which facilitates efficient layout
description, chip manufacture and 170 management, and

3) they require the minimal amount of area for layouts with such structure.

4.1 Preliminaries

We have chosen to use the Thompson grid model [T80] to illustrate our
techniques because of its widespread acceptance and its simplicity. For practical
layouts, however, the assumption that processors can be represented by points is
clearly false. Nontheless, we show in section 4.1.1 that good Thompson model
layouts can still be used to find good practical layouts. Thus we will be able to rest
assured that the Thompson model is, in fact, an acceptable means for describing
practical layouts of the shuffle-exchange graph.




We must also be sure that the layours we design can be effectively used in
practice. For example, it is important that the layouts have a suitable input/output
structure so that data can be put on and taken off the chip efficiently. In section
4.1.2, we describe a general class of layouts for the shuffle-exchange graph which
appear to satisfy such constraints. The remainder of the chapter will then be
devoted to finding optimal layouts within this class.

411 A Closer Look at the Thompson Model

The manner in which the Thompson model is useful for describing practical
layouts varies with the size of the processors involved. For example, if one desires
to use the shuffle-exchange graph as a permuter, then each processor need only
contain k storage registers and some 1/0 hardware. Such a processor can be easily
hardwired in a kxk square. In order to achieve maximum parallelism, each wire of
the Thompson model layout is reproduced & times so that an entire k-bit word can
be transmitted in one time step. For example, the optimal 2x6 Thompson model
layout for the 8-node shuffle-exchange graph (which is shown in Figure 4-3 in
section 4.3) can be transformed into the more realistic 6x/8 layout shown in Figure
4-1 by tripling the grid lines and replacing the point processors by 3x3 boxes (into
which the guts of each processor can later be wiréd).

// 7 "“*//, 7 "““‘/'// 7 r- /'/ ’ /'_'// //""‘// Vs

1A 21281
[T IT]
V4 ,// //

//(7,4 //5/

Figure 4-1: A transformed Thompson model layout
Jor the 8-node shuffle-exchange graph.

For some applications, the processors themselves require an entire chip. For
example, every processor of a shuffle-exchange graph used to compute discrete
Fourier transforms must be equipped with a floating point multiplier. Using the
best technology currently available, only a few floating point multipliers can be
wired onto a single chip. In this case, a Thompson model layout can be used to
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design an efficient /ayout of chips where each chip contains a single processor.
(Such a device is currently under development at IBM.) The wires, as before, are
replicated to achieve maximum parallelism but now serve as links between chips. .
Since the wires must be much wider in such a device, the side length of a processor
(the chip) is about the same as the combined width of all the wires (pins) attached
to it. By following an expansion procedure similar to the one described in the
previous example, a good Thompson model layout can thus be used to design a
good practical layout. '

412 A Class of Practical Layouts

In this chapter, we will consider layouts for the shuffle-exchange graph for
which: ‘

1) each necklace appears as a rectangle consisiting of arbitrarily long segments
of two vertical tracks and unit length segments of two horizontal tracks,

2) the horizontal tracks are divided into pairs, each pair containing at most one
full necklace and any number of degenerate necklaces, and

3). each exchange edge appears as a horizontal line segment.
For 'examplé, the lay.outs described in Chapter 2 have this form.

Such layouts are particularly well suited for practical implementation since their
structure facilitates efficient description, chip manufacture and data management.
For example, by attaching a pin to each of the ©(N//ogN) necklaces (this is
feasible for small N), it is possible to load N input values into an N-processor
shuffle-exchange chip in just O(logN) steps.

Even more importantly, we will show in the following section how to find
layouts with the above form which require very small amounts of area. Thus very
little is lost by restricting our attention to such layouts.

4.2 Optimization Techniques

In this section, we explain how to find layouts for small shuffle-exchange graphs
which are optimal up to the constraints described in section 4.1.2. For the most
part, our methods are comprised of common sense, heuristics and exhaustive
scarches.
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4.2.1 Ordering the Necklaces

The first step in finding optimal layouts of the form described in section 4.1.2 is
to order the necklaces from left to right so that the number of exchange edges
which overlap at each point of the ordering is kept small. More precisely, we wish
to find an ordering of the necklaces for which the maximum number of exchange
edges overlapping at any point is minimized. For example, no more than 6
exchange edges overlap at any point of the ordering used to produce the layout for
the 32-node shuffle-exchange graph shown in Figure 4-2. If we switched the
necklace <5> with <II>, however, 9 exchange edges would overlap in the gap
between <7> and <5>. Since the maximum overlap is a lower bound on the
number of horizontal tracks necessary to insert the exchange edges, we can easily
see that the latter ordering is inferior since any layout it produces must have at
least 9 horizontal tracks. Note that the layout in Figure 4-2 has just 6 horizontal
tracks. '

<0> <1> <3> <5> <7> <11> <15><31>

3 13| T35 % :
_ft? o "
O I aie e 3N T3 T

fGTl?jiE Tzs]ze’“ ~%g

Figure 4-2: A good ordering of the necklaces
Jor the 32-node shuffle-exchange graph.

!
b
=g

oy

As we mentioned in Chapter 3, it is not known how best to order the necklaces
in general. For small shuffle-exchange graphs, however, there are several simple
heuristics which produce optimal orderings. For example, arrangements of the
necklaces from left to right in order of nondecreasing size or, alternatively, in order
of increasing minimal number represented are usually quite close to optimal for
small shuffle-exchange graphs. In fact, such orderings are within a necklace swap
of optimal for N<256 (k<8). Note the the ordering displayed in Figure 4-2 could
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have been produced by either of these methods.

Probably the most difficult task is proving that a good ordering is, in fact,
optimal. The techniques we have used to prove optimality depend heavily on
exhaustive searches. For k<8, the techniques have suceeded in proving the
optimality of good orderings. For 9<k<13, we have found good orderings but
have been unable to prove that they are optimal. We have summarized the results -
in Table 4-1. Note that for each k, the maximum overlap of the best known
ordering serves only as a lower bound for the number of horizontal tracks that will
be required for any layout with that ordering. In some cases, additional horizontal
tracks may be required.

Table 4-1

Maximum Overlap of Best Known Orden'ngs

maximum overlap of

k N best known ordering optimal?
3 8 2 yes
4 - 16 3 yes
5 32 6 yes
6 64 10 yes
7 128 . 18 yes
8 256 33 yes
9 512 62 ?
10 1024 115 ?
11 2048 214 ?
12 4096 388 ?
13 8192 . 754 ?

4.2.2 Inserting the Exchange Edges

The second step in constructing optimal layouts for small shuffle-exchange
graphs is to insert the exchange edges using as few horizontal tracks as possible.




Recall that in Chapter 2, we showed how to use the complex plane diagram as one
method of inserting the exchange edges. Although this method is theoretically
nice, it is not very practical since it uses an excessive number of horizontal tracks to
insert the exchange edges. For example, /0 horizontal tracks were used to insert
the exchange edges in the layout shown in Figure 2-3 whereas only 6 tracks were
required in the layout shown in Figure 4-2 (even though the same necklace
orderings were used for both layouts).

The complex plane diagram can still be of use when inserting exchange edges,
however. For example, notice that the top-to-bottom orderings of the exchange
edges across most of the vertical cuts which are located between necklaces in the
layout in Figure 4-2 are the same as the orderings for the corresponding cuts in
Figure 2-3. In general, knowledge of the level structure of the complex plane
diagram is very helpful in optimizing the insertion of the exchange edges. In fact, .
we relied heavily on such knowledge when constructing the optima]"kiyouts
displayed in section 4.3. |

For very small shuffle-exchange graphs (e.g., for k<5), it is possible to find
optimal embeddings of the exchange edges by trying all reasonable possibilities.
For somewhat larger shuffle-exchange graphs (e.g., k=6,7), however, the task is
substantially more difficult. In order to find the optimal layouts shown in section
43, we '

1) first located the center of the region of maximum overlap and (using the
complex plane diagram as a guide) inserted the exchange edges which
crossed the region (one edge on each horizontal track),

2) next inserted the exchange edges located in neighboring regions without (if
possible) introducing any additional tracks, and

3) lastly inserted the remaining exchange edges (again without adding any new
horizontal tracks).

Steps 1 and 3 are easy but step 2 can be difficult. In some cases it is necessary to
interchange the left and right parts of some necklaces or to slide a node around
from one part of a necklace to the other. For k = 6 and 7, it is also necessary to
introduce an extra horizontal track at step 2. For larger shuffle-exchange graphs, it
would probably be necessary to introduce even larger numbers of horizontal tracks.
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4.2.3 Additional Savings

All of the practical layouts we have considered thus far have two horizontal
tracks which are used solely for the purpose of connecting the left part of each
necklace to the right part. It is not difficult to show that these tracks can be
eliminated without affecting the rest of the layout. As an example of how this can
be accomplished, we suggest that the reader compare the layout of the 32-node -
shuffle-exchange graph shown in Figure 4-2 with that in Figure 4-5.

Even larger savings can be had for some shuffle-exchange graphs by doubling'
up the degenerate necklaces with full necklaces in the same pair of vertical tracks,
thus reducing the number of vertical tracks used. Of course, it is necessary to
rearrange the exchange edges somewhat but, as degenerate necklaces have very few
nodes in small shuffle-exchange graphs, this can usually be done without
introducing any additional horizontal tracks. For example, substantial savings can
be achieved in this manner for the /6-node and 64-node shuffle-exchange graphs.

4.3 Optimal Layouts

In the following figures, we exhibit layouts for the 8-node, /6-node, 32-node, 64-
node and 728-node shuffle-exchange graphs which are optimal up to the
constraints described in section 4.1.2. The layouts were found via the techniques
described in section 4.2.

- - -
SE
4 5

Figure 4-3: A 2x6 layout for the 8-node shuffle-exchange graph.

* 2" 7 1:%s
" 79 12| 13
oo

5 10 11

Figure 4-4: A 3x8 layout for the 16-node shujffle-exchange graph.
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Figure 4-6: An 11x18 layout for the 64-node shuffle-exchange graph.
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4.4 Other Layouts

To this point, we have considered only a specific class of layouts for the shuffle-
exchange graph. As these layouts are quite good, it is not clear that we need to
consider others. Nevertheless, it is worth pointing out that slightly better layouts
do exist for some shuffle-exchange graphs. For example, by considering layouts in
which the exchange edges are allowed to bend and in which two or more full
necklaces can occupy the same pair of vertical tracks, it is possible to construct the
layout for the 32-node shuffle-exchange graph shown in Figure 4-8.

. Figure 4-8: An improved 7x9 layout for the 32-node shuffle-exchange graph.

It is likely that slight improvements can also be made for larger shuffle-exchange
graphs. At this point, however, we feel that research efforts should be directed
more towards implementation of the good layouts already discovered. Once this is
done, it will be much clearer whether or not the effort necessary to further reduce
the layout area is justified.
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PART 1I

LOWER BOUND TECHNIQUES FOR VLSI



CHAPTER 5

REVIEW OF KNOWN TECHNIQUES

In this chapter, we review the known techniques for determining the layout area
and maximum edge length of an arbitrary VLSI network. We also preview the
results we will prove in Chapters 6 through 8 of the thesis. A comparison of our
lower bounds with the previously known upper and lower bounds can be found in
Tables 5-2 and 5-4. '

5.1 Area Bounds

One of the most important problems in the theory of VLSI is the determination
‘of the minimum amount of area required to lay out a network on a chip. Given an
arbitrary graph, this problem has two parts; namely,

1) finding a good layout for the graph, and
2) showing that the layout is optimal.

There are a variety of techniques known for finding good layouts for specific
graphs [MR79, PV79, S79, HL80, MC80, PV80, SR80b, T80, BL31, KLLM821,
LLMS81, LM81, PRS81, T81], but the only known general technique is due to
Leiserson [L80a,L80b]. In particular, he showed how to construct a good layout for
any graph for which a good separator is known. (An N-node graph is said to have
an f{N)-separator if it can be partitioned into two equal-sized subgraphs G, and G,
such that at most {N) edges link G, to G, and both G; and G, have AN/2)
separators.) We have summarized Leiserson’s results in Table 5-1.

There are two difficulties with Leiserson’s method. First, it is not always
possible to find a good separator for a graph. For instance, a minimal O(N//ogN)-
separator was not found for the shuffle-exchange graph until after an optimal
O(N%/log?N)-area layout was discovered. Secondly, the layouts produced by
Leiserson’s technique are not always optimal — even if a minimal separator is
known. For example, Leiserson’s technique requires ©(Nlog?N) area to lay out the
N-node mesh, substantially more than is rcally needed. For the most part
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Table 5-1

Upper Bounds on the Layout Area of
N-Node Graphs With Specified Separators

upper bound
separator on layout area
N, al 172 N
Ne, a=1/2 o Niog’N
N, o> 172 N2a

however, Leiserson’s method is a good one and certainly the most general
technique currently available.

Once a good layout for a network has been found, it remains to show that the
layout is optimal. This is accomplished by proving a good lower bound on the
layout area of the network. The only known methods for proving such lower
bounds are due to Thompson [T79,T80], Vuillemin [V80] and Lipton and
Sedgewick [LS81]. They have concentrated on the related problem of proving
lower bounds for the bisection width of a graph. (The bisection width of a graph is
the minimum number of edges which must be removed in order to separate the
graph into two disjoint and equal-sized subgraphs.)

Thompson was the first to notice the relationship between bisection width and
layout area. In particular, he showed that the wire area of a graph with bisection
width b is at least Q(4?). In what follows, we. prove the slightly weaker (and
simpler) result for layout area. '

Theorem 5-1 (i‘hompson [T79)): The layout area of a graph with bisection width .
b is at least Q).

Proof: Consider an optimal layout of a graph G with bisection width b. Cut the
layout horizontally so that precisely 1/2 of the nodes of G are above the cut. (For
an example, see the diagram in Figure 5-1). Since at least b edges must cross the
cut, the layout must contain at least b-1 vertical tracks. A similar argument
reveals that the layout must also have at least b~/ horizontal tracks. Thus the area
of the layout is at least (-1)? = Qb)) DO

52




—————
GO O—p—a
———i——

Figure 5-1: 4 horizontal bisection of a layout.

Although the task of finding a good lower bound on the bisection width of a
graph is difficult in general, Thompson [T79] was succesful in finding good
bisection width lower bounds for a variety of computationally useful networks.
‘For example, he used information transfer arguments to show that any network
which is capable of computing the discrete Fourier transform on N elements in T
steps must have bisection width at least Q(N/7). Among other things, he was thus
able to conclude that at least Q(N%/log?N) area is required to lay out the N-node
shuffle-exchange graph.

Thompson’s work has recently been extended; first by Vuillemin [V80] and then
by Lipton and Sedgewick [LS81]. Vuillemin characterized a broad class of graphs -
for which Thompson’s lower bound arguments can be applied while Lipton and
Sedgewick showed how to use c}ossing sequence arguments to prove lower bounds
for an even larger class of graphs.

Although the methods of Thompson, Vuillemin, Lipton and Sedgewick are quite
elegant and useful in establishing good bisection width lower bounds for certain
graphs, their applicability is inherently limited to graphs for which the layout area
is no more than a constant times as large as the square of the bisection width.
Thus they have not been of use in resolving two of the key open questions in VLSI
theory; namely,

1) "How much area is needed to lay out a planar graph?" and

2) "How much area is needed to lay out a graph which has an O(N!/?)-
separator?,"
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The planar graph question is particularly important since, as we will show in
Chapter 7, the layout problem of an arbitrary graph can be reduced to that for a
planar graph. No nontrivial lower bounds have been found for either problem,
however. As we mentioned previously, the best procedure known requires
O(Nlog?N) area to lay out an arbitrary N-node graph with an O(N!/?)-separator.

As Lipton and Tarjan [L'T77] have shown that every N-node planar graph has an

O(N!/?y-separator, the O(Nlog?N)-area layout procedure also works for planar
graphs. Although it is suspected that better layout procedures exist for planar
graphs, none have yet been found. '

In the thesis, we pursue an entirely different strategy in developing new lower
bound techniques for VLSI. Whereas previous researchers have been concerned
primarily with the bisection width of a network, we shall be concerned with its
crossing number and wire area. Both are lower bounds on the layout area of any
graph. In fact, we will show in Chapter -7 that .

Qb)) < c+N<w< A

for any N-node graph with bisection width b, crossmg number ¢, wire area w and
layout area A.

The preceding inequality implies that every lower bound technique for the
bisection width of a graph is also a lower bound technique for its crossing number
and wire area. Thus nothing is lost by forgetting about bisection width and
concentrating ones efforts on finding good lower bounds for the crossing number
and wire area of a graph. In fact, much can be gained. For example, we will use
such techniques to find '

1) an N-node planar graph which has layout area ©(NlogN), and

2) an N-node (nonplanar) graph with an O(N/?)-separator which has layout
area G(NlogzN),

The first result demonstrates that not all planar graphs can be laid out in linear
area, thus disproving a conjecture thought by many to be true. The second result
indicates that Leiserson’s O(Nlog?N)-area layout technique for graphs with
O(N!/?)-separators is optimal at least some of the time and thus cannot, in general,
be improved.

For easy reference, we have summarized our results.along with the previously
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known upper and lower bounds in the following table. The upper bounds are due
to Leiserson [L80a] and represent the maximal amount of area needed to lay out
any graph with the designated property. The lower bounds, on the other hand,
represent the minimal amount of area required to lay out a specific class of graphs
with the designated property. The previously known lower bounds are, for the
most part, trivial. The only exception is the N?¢ bound which, as a corollary of
Theorem 5-1, is due to Thompson [T79].

Table 5-2
Area Bounds
previous our upper
separator lower bound lower bound bound
N, a<1/2 | N | N
N, a=1/2 N Nlog’N Nlog’N
N2, o> 12 N2 N2a

~ (planar) N NiogN Niog’N

5.2 Edge Length Bounds

There has been a great deal of interest lately in the problem of minimizing the
length of the longest wire in VLSI layouts [BL81,CM81,PRS81]. It is not difficult
to show that the length of the longest wire in any reasonable, area-optimal VLSI
layout is at most a constant times the square root of the layout area. (Otherwise,
some wire would be longer than the perimeter of the layout, which is
unreasonable.) Bhatt and Leiserson [BL81] recently found better layouts for graphs
with small separators. We have summarized their results in Table 5-3. (For
completeness, we have also included the trivial bound for graphs with large
separators.)

It is worth noting that the layouts which achieve the bounds in Table 5-3
simultaneously achieve the best known bounds for layout area. Thus no layout
area/maximum edge length tradeoffs are apparent.
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Table 5-3

Upper Bounds on the Maximum Edge Length of
N-Node Graphs With Specified Separators

upper bound on

separator maximum edge length
N, a< 172 : N72/jogN
Ne, a=1/2 - N21ogN/loglogN
Ne a>1/2 . Ne

Very little has been accomplished in the way of lower bounds, however, since
bisection * width arguments do not seem to be applicable to edge length
considerations. In fact, the only known lower bound for maximum edge length is
-the trivial lower bound derived from the diameter of a graph. (The diameter of a
~ graph is the greatest distance between any pair of nodes in the graph where
. distance is defined to be the length of the shortest path linking the pair of nodes.)
The precise lower bound is stated in the following theorem.

ATheore_m 5-2: Any layout of a graph G with diameter d and layout area A has
some edge of length at least A'?/3d. ~

Proofi Let T be any layout of G and g be the length of the longest wire in I'.
We will use T to construct another layout I'' of G which has at most 942¢? area.
Since any layout for G has at least 4 area, this will be sufficient to show that
g > AY2/3d ' '

Since every pair of nodes in G is linked by a path of length d or less, we can
conclude that every pair of nodes are within distance dg of each other in T.
(Otherwise, some-edge would have length greater than g in T, a contradiction.)
Thus, all of the nodes are contained in some dg x dg square in I'. Since every
wire which leaves the square must re-enter at some other point, we can conclude
that at most 2dg wires can cross the boundary of the square at any point. By
rewiring the portion of I' which is outside the square, it is possible to produce a
second layout I'* for G which has at most 2dq additional horizontal tracks and 2dg
additional vertical tracks. (One additional horizontal track and one additional
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vertical track are needed to replace each wire.) Thus the total area of I'* is at most

9d?¢’. (As an example of how the rewiring should be done, we have included
Figure 5-2) D '

r ——"—F"—f “T7°7F|TT 1 boundary

Figure 5-2: Rewiring the outer portion of a layout.

It is not difficult to construct N-node graphs with f{N)-separators which have
logN diameter for any AN). By Theorem 5-2, any layout of such a graph must
have a wire of length Q(AN)logN). Using crossing number and wire area
arguments, however, we will find examples of graphs which must contain even
longer wires. In particular, we will describe —

1) an N-node planar graph for which any la&out must have a wire of length
o( Ni72 /logl/z N),

2) an N-node graph with an O(N?/?)-separator for which any layout must have
a wire of length ©(N!"2logN/loglogN), and '

3) an N-node graph with an O(N!"//")-separator for which any layout must
have a wire of length O(N!"//") for any r>3.

The latter two results achieve the known upper bounds for maximum wire
length. They also indicate that some wires in some layouts must be very long
(possibly as long as the length of the entire layout). '

For convenience, we have summarized our edge length results along with the
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previously known upper and lower bounds in Table 5-4. The upper bounds are
due to Bhatt and Leiserson [BL81] while the lower bounds are all easy corollaries
of Theorem 5-2.

Table 5-4

Maximum Edge Length Bounds

previous our , upper
separator lower bound lower bound bound
N, @< 1/2 N7%/logN N'/%/logN
N a=1/2 N2/logN N!"210gN/loglogN N21ogN/loglogN
N > 12 Ne/logN Ne " Ne
@1anar) N7%/logN N2/1ogl 2N N1/21ogN/loglagN
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CHAPTER 6

NETWORK CONSTRUCTIONS

In this chapter, we will describe the networks for which we will later establish
layout area and maximum edge length lower bounds. As the networks are new
and interesting in their own right, we will discuss each at some length.

6.1 The 2-Dimensional Mesh of Trees

The N-node 2-dimensional mesh of trees will be the first example of a graph
with an O(N?/2)-separator known to have layout area G(NlogzN) and maximum
edge length O(N'2logN/loglogN). -

6.1.1. Definition

" The 2-dimensional nxn mesh of trees M, , (where n is assumed to be a power of
2) is defined as follows. Starting with an nxn matrix of nodes and adding nodes
wherever necessary, construct a complete binary tree in each row and column of
the matrix. The trees should be constructed so that

1) the leaves in each tree are precisely the nodes in the corresponding row or
column of the original matrix, and

2) the subgraph induced on the nodes in each quadrant is M;,, .

For example, we have drawn M, , in Figure 6-1. The nodes in the original 4x4
matrix are represented by dots. The nodes which were added in order to form row
trees are drawn as small triangles while those added to form column trees are
shown as small squares. The row tree edges are drawn with solid lines while
dashed lines represent edges of column trees. Notice that if we were to remove the
roots of the row and column trees of M, , and the edges incident to them, we
would be left with 4 copies of M,,, one in each quadrant. In general, if we
remove the nodes and edges in the top k levels of the binary trees in M, ,* we
will be left with 22X copies of M, ,»k . This important property of meshes of trees
is used extensively throughout Chapters 7 and 8.
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Figure 6-1: The 4x4 mesh of trees M, 4

6.1;2. Properties

It is not vdifﬁcult to show that the nxn mesh of trees M, , has

) N = 3n2-2n = 6(nd) ﬁodes,

2) bisection width n = OWN?) ,

3) diameter 4logn = O(logN) , and

4) an O(N'/?)-separator. o

By applying the methods discussed in Chapter 5, we can thus conclude that the
N-node 2-dimensional mesh of trees has

1) crossing number at most O(Nlog?N),

2) layout area between Q(N) and O(Nlog?N), and

3) maximum edge length between QUN!"2/logN) and O(N'/?logN/loglogN).
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In fact, we will show in Chapters 7 and 8 that the N-node 2-dimensional mesh of
trees has

1) crossing number O(NlogN),
2) layout area ©(Nlog’N), and
3) maximum edge length O(N!2logN/loglogN).

Thus the 2-dimensional mesh of trees is the first graph with an O(N/?)-
separator known to acheive the upper bound for layout area discovered by
Leiserson {L80a] and the upper bound for maximum edge length discovered by
Bhatt and Leiserson [BL81]. '

6.1.3 Applications

Computationally, the nxn mesh of trees is a very powerful network. Among
other things, it can be used to

1) multiply a fixed nxn matrix by m different n-vectors in m+ 2logn (word)
steps, '

2) sort a list of n m-bit words in 2m+5logn (bit) steps, and
'3) link n input terminals to n output terminals in any order in /ogn (bit) steps.

The algorithms and processors needed for these operations are quite simple. For
example, the processors needed for sorting and switching need only contain a few
and and or gates while those for matrix-vector multiplication need only contain a
word multiplier or adder. We describe the algorithms needed for these operations
in the following three subsections.

(a) Matrix-Vector Multiﬁlication

Given any fixed nxn matrix S =(s,-j) , we will show how to program M ant0
compute the product of S and any m input n-vectors in m+ 2logn (word) steps.
As S is fixed, it is not considered to be part of the on-line input. Rather, it is
considered to be part of the program (in the form of off-line input) and thus we
assume that the value of Sij is initially stored in the (i) leaf of M, for each i and
J. The algorithm proceeds as follows.

Given any input vector v=( vj) ., input the jth entry v into the root of the jith
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column tree for each j, I<j<n. Pass the entries of v down the column trees so that
after logn steps, each leaf in the jth column tree has received the value of v -
Computation of the n? products {s,-jv- | 1 <i,j< n} can now take place simul-
taneously. Afterwards, we can find the entries of the product vector Sv by
summing the values of the leaves in each row tree. This operation takes an

additional Jogn steps.

The total running time of the algorithm just described is /+2logn . By
pipelining the input vectors through the column trees and the output sums through
the row trees, it is not difficult to see that m such products can be calculated in
m+2logn  steps.

(b) Sorting

The algorithm for sorting proceeds as follows. Starting at the roots, input (bit by
bit) the ith word to be sorted into the ith row and column trees for each i, I1<i<n.
Pass the bits down each tree so that after Jogn steps the leading bit of the ith word
has reached each leaf of the ith row and column trees. Comparison of the ith and
jth words for all i and j can now proceed simultaneously. After at most m
additional steps, the (i) leaf has decided whether the ith word is smaller-or larger
than the jth word. Ties are broken arbitrarily (e.g., depending on the values of i
and j). Once this is done, each leaf transmits a 0 or a 1 to its column tree father
depending on whether its column tree word was smaller or larger than its row tree
word. Each column tree then sums these values in order to determine the position
of its word in the final ordering. (If the sum is carried out bit by bit starting with
the least significant bit, this process takes 2/ogn steps.) This information is then
used to mark a path in each column tree from the root to that leaf which is also in
the appropriate row tree (again taking 2logn steps). It is now a simple matter to
transmit the bits of the ith word along the unique path from the ith column tree
root to the appropriate row root for each i As the paths are all pairwise disjoint,
this process takes only m-+ 2logn steps.

The algorithm just described sorts a list of # m-bit numbers in 2m+ 7logn steps.
It is a simple exercise to speed up the alogorithm to obtain the 2m+5logn step
bound. We should also point out that this algorithm is similar to the one described
by Muller and Preparata in [MP75]. The VLSI implementation of the algorithm is
new, however, and far superior to many of the VLSI sorting algorithms discussed
by Thompson in his recent survey paper [T81].
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(¢) Switching

Given the algorithm just described for sorting, it is clear how to program M, , to
serve as a switching network for n input and output lines. For example, assume
that the ith input line is to be connected to the jth output line for some /and j. In
order to do this, we first hook up the ith input line to the ith column root. We
next establish a path from the root of the ith cloumn tree to that leaf in the tree
which is also in the jth row tree. This. can be done by inspection of the binary
representation b; - - - by, of the number .. More precisely, at the kth level of the
binary tree, we branch left or right depending on whether b, is 0 or I
(respectively). Lastly, we link the appropriate leaf of the jth row tree to the root of
the jth row tree and then to the jrh. output line (again taking logn steps).

The algorithm just described takes 2/ogn steps to link n input lines to n output
lines in any order. It is not difficult to show that if the row tree connections are
hardwired in advance (i.e., by linking the root of each row tree to all of its leaves),
then the input-output connections can be properly made in just Jogn steps.

6.2 The rDimensional Mesh of Trees

The N-node r~dimensional mesh of trees (for 7>2) will be the first example of a
graph with an O(N®)-separator (for a>1/2) known to have maximum edge length
O(N9). : - :

6.2.1 Definition

The 2-dimensional mesh of trees can be easily generalized to higher dimensions.
For example, the 3-dimensional nxnxn mesh of trees M3, can be constructed as
follows. Starting with an nxnxn cube of nodes and adding nodes wherever
necessary, conmstruct a set of n’ complete binary trees in each of the three
dimensions of the cube. As before, the trees should be constructed so that the
leaves are precisely the nodes of the original cube and so that the subgraph
induced on each octant of nodes is M3, . The general rdimensional mesh of

r

trees M, is formed from an nxnx. .. xn hypercube in a similar manner. In
general, removal of the roots and edges which are in the top level of the binary

trees will leave 2" copies of M, , .
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6.2.2 Properties

It is easily observed that the'~dimensional m mesh of trees M, , has
(for bounded r)

) N = (r+Dn" - m™ = O(n") nodes,
2) bisection width a™! = OW! i/ ,

3) diameterr 2rlogn = G(IogI;/) , and
4) an Q(N"” n-separator.

Thus we can easily infer that the N-node ~dimensional mesh of trees has (for
bounded r)

1) crossing number at most ON*1),

2) layout area O(N?27), and

3) maximum edge length between Q(N!-/7/logN) and O(N!-1/7),
In fact, we will show in Chapter 7 that the graph has

1). crossing number G(Nz'y n, and

2) maximum. edge length’ O(NI-I/N),

Thus the rdunensmnal mesh of trees is the first graph with an O(N%)- separator
(for a>1/2) known to achieve the trivial upper bound on maximum edge length.

6.2.3 Application to Matrix Multiplication

Computationally, the rdimensional mesh of trees is a véry powerful network.
For example, M, can be used to multiply m pairs of nxn matrices in m-2logn
(word) steps. The algorithm is very similar to the one used by M, to compute
matrix-vector products. It procceds as follows.

At each time step, a pair of matrices is entered into the network via the roots of
the trees in two of the dimensions (one dimension for each matrix). The entries
are passed down through the trees so that after /ogn steps, the leaf in the (5,57)
position of the cube contains the (r,s) entry of the first matrix and the (s,7) entry of
the second matrix for each r,s and 1. All n3 multiplications can then be performed
simultancously. The entries of the product matrix are then calculated by summing
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the values of the leaves of each tree in the third (préviously unused) dimension.
This process takes an additional Jogn steps. As the network is easily pipelined, it is
clear that the total computation time is just m+2logn (word) steps.

6.24 A Further Generalization

The ~dimensional mesh of trees was defined as a natural generalization of the
computationally powerful 2-dimensional mesh of trees. M, , can also be viewed as
a generalization of the r~cube, also a very powerful communications network. For
example, M, , is an r-cube with every edge replaced by a path of length 2. Viewed
in this light, the ~dimensional mesh of trees motivates the definition of a shuffle-
tree graph in the same way that the rcube motivates the definition of the shuffle-
exchange graph. Although we have yet to investigate this graph in detail, it is quite
possible that it has important applications.

(As an aside, we should caution the reader that the asymptotic estimates given in
section 6.2.2 do not necessarily apply to M, , since r was assumed to be bounded.
The correct estimates are not difficult to work out, however.)

6.3 The Tree of Meshes

The N-‘noclle'tree of meshes will be the first example of a planar graph known to
have O(NlogN) layout area.

6.3.1 Definition

The tree of meshes is similar to the 2-dimensional mesh of trees in that it
combines the structure of a mesh with that of a complete binary tree in a natural
way. Unlike the 2-dimensional mesh of trees, however, the tree of meshes is a
planar graph. It is formed by replacing each node of a complete binary tree with a
mesh and each edge by several edges which link the meshes together. More
precisely, the root of the binary tree is replaced by an nxn mesh (where n is
assumed to be a power of 2), its sons are replaced by n/2 x n meshes, their sons are
replaced by n/2 x n/2 meshes, and so on until the leaves are replaced by Ixl
meshes. In the place of each right edge of the binary tree (i.e., one which links a
node to its right son), we link the rightmost column of nodes in the mesh
corresponding to the father to the topmost row of nodes in the mesh corresponding
to the right son. Similar replacements are made for leff edges of the binary tree. In
both cases, the connections are made so as to preserve the column and row order
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of the nodes and to insure that the resulting graph will be planar. The resulting
graph is refered to as the nxn tree of meshes and will be denoted by T, . For

example, we have drawn T, in Figure 6-2.

.I.1. - : ll

Figure 6-2: The 4x4 tree of meshes T 4.

6.3.2 Propérties
It is easily seen that the nxn- tree of meshes 7, has
1) N = 2n%logn+n? = ©(n’logn) nodes,
2) bisection width n = G(N’/z/log’/zN)-,
3) diameter 8n = O(N"%/log!’?N) , and
4) an O(N"%log!/?N)-separator.
Thus we can easily infer that the N-node tree of meshes has
1) layout area between Q(N) and O(NlogN), and
2) maximum edge length between Q(log’/?N) and O(N'?log!/?N).

In fact, we will show that the graph has
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1) layout area ©(NlogN) and
2) maximum edge length O(logN).

The maximum edge length bound is fairly straightforward. We will show in
Chapter 8 that the wire area of the N-node tree of meshes is O(N/ogN). As the
graph has G(N) wires, we can conclude that some of them must have length at least
Q(logN). The lower bound can, in fact, be achieved by a straightforward
modification of the H-tree layout for binary trees [MR79].

In section 6.4, we will show how to augment the N-node tree of meshes so that
any layout will have to contain a wire of length at least .Q(N"2/log!/?N).

6.3.3 Applications

The tree of meshes is a particularly interesting planar graph since it can embed
arbitrary planar graphs much more efficiently than can the ordinary mesh. For
example, it is not known how to embed an arbitrary planar graph in less than an
‘O(Nlog’N)-node mesh. As we show in part (a) of this section, however, any N-
node planar graph can be embedded in an O(NlogN)-node tree of meshes.

The tree Qf meshes can also be used to embed many nonplanar graphs which
have O(N!/?)-separators. For example, we will show in part (b) of this section how
to embed M, , in T,, for any n. This result will later allow us to give a simple
proof that the N-node tree of meshes has wire area at least Q(NlogN).

(a) Embeddings of Planar Graphs

In [LT77), Lipton and Tarjan prove an O(N!/?)-separator theorem for the class
of planar graphs. Recently, Bhatt and Leiserson [BL81] generalized this result by
showing that the class of planar graphs has an O(N// 2)-simultaneous separator.
(An N-node graph G is said to have an fN)-simultaneous separator if for any 2-
coloring (say, black and white) of the nodes of G, there are disjoint subgraphs G,
and G, of G such that G; and G, each contain 1/2 of the black nodes and 1/2 of
the white nodes of G, at most {N) edges link G, to G,, and both G, and G, have
AIN/2)simultaneous separators.) In the following theorem, we show that any N-
node graph with an O(N!/?)-simultaneous separator can be embedded in an
O(NiogN)-node tree of meshes. As a corollary, we will thus be able to conclude
that any N-node planar graph can be embedded in an O(NlogN)-node tree of
meshes.
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Theorem 6-1: Every N-node graph with an O(N'/2)-simultaneous separator can
be embedded in an O(NlogN)-node tree of meshes.

Proof+ Let G be an N-node graph with an fN)-simultaneous separator ({N)
will later be chosen to be O(N//2)). Partition G into two subgraphs G, and G, in
accordance with the usual separator theorem. Color the nodes of G; (G,) white or
black according to whether or not they are linked to a node in G, (G;). (To be
precise, we should also weight each node according to the number of nodes in the
other subgraph to which it is adjacent.) Now use the simultaneous separator to
partition G, and G,. Proceed in this manner until only isolated nodes remain. At
each step, color the nodes in the subgraph white if they are adjacent to some node
outside of the subgraph and black if they are adjacent only to nodes within the
subgraph.

After the first step, at most AN) edges will link each (N/2)-node subgraph to the
other. After the second step, at most fAN)2+AN/2) edges will link each (N/4)- |
node subgraph to any other. Using induction, it is not difficult to show that after & |
steps, at most

ANY2KT 4 AN/D/2K2 + ANAY2%3 + oo + AN/202/2 + AN/2KT)

edges will link each (N/2%-node subgraph to any other. In particular, for AN) =
O(N!?) , we can conclude that at most O(m’/?) edges will link any m-node
subgraph produced by this process to any other subgraph.

Each subgraph produced by the above procedure corresponds in a natural way
to a mesh of the tree of meshes. For example, G corresponds to the root mesh, G;
and G, correspond to the second level meshes, and so on. In general, each m-node
subgraph corresponds to an ©(/m)-node mesh. Thus each mesh can be used as a
switching network to embed the O(m!7?) edges which link the corresponding
subgraph to other subgraphs. As an example of how this is done, we have
included Figure 6-3. In each switching network, the edges entering from the top
are linked to the edges entering from the sides. The nodes of G are embedded in
the bottom levels of the tree of meshes O

Corollary 6-1: Every N-node planar graph can be embedded in an O(NlogN)-node
tree of meshes.

Proof: Obvious O
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(b) Embedding of M,, in T,

Although we have not worked out the details, it appears likely that any N-node
" graph with an O(N?/?)-separator can be embedded in an O(NlogN)-node tree of
meshes. In section 7.4.3, we prove a slightly weaker result; namely that every N-
node graph with an O(N?/?)-separator can be embedded in some O(NlogN)-node
planar graph.

Of particular importance, however, is the fact that M, , can be embedded in T,
for any n. For example, consider the embedding of M, 4 in T displayed in Figure
6-4. The embedding has been drawn as though it were construted as part of a
larger embedding (say of M;g) in order to illustrate the recursive nature of the
general embedding procedure. In addition, the nodes and edges of M, , have been
drawn as they appear in Figure 6-1. For clarity, we have represented the nodes of
Ty as pinpoints and omitted its edges altogether. Also notice that we have not
included the bottom two levels of T since they are not needed for the embedding.

The embedding of M,, in T,, for arbitrary n>4 proceeds as follows.

step I: Remove the roots of the row and column trees of M 2 and all the edges
incident to them. |

‘step 2:. Embed the four copies of M 2.ns2 Obtained from step 1 in four separate
copies of T, by_éalling this procedure recursively.

step 3: Embed the 2n roots of the row and column trees in the 2n x 2n mesh
so that

1) the column roots are located at positions (i) for I < i < n/2 and
3w2 < i< 2n, and '

2) the row roots are located at positions (2i-1,2i-1) and (2i-1,2/)) for
w4 < i< 3wg.

step 4: Draw left and right‘horizontal edges from each column root to the left
and right outer columns of the 2n x 2n mesh and then to the appropriate node in
the top row of the corresponding n x 2n mesh. Similarly draw two left edges
from each row root with position (2i-1,2i-1) for some i and two right edges from
each row root with position (2i-1,2i) for some i

step 5: The n x 2n meshes are used as switching networks. In particular, we
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‘igure 6-4: The embedding of M ,in Tg.
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use them to make the following connections:
1) (1, to (i1) for 1 < i< n/4 (column tree connection)
2) (1,)) to (i+n/2, 1) for n/4< i< n/2 (column tree connection)
3) (1, 2i- 1) to (i]) for n/4< i< 3n/4 (row tree connection)
4) (1, 21 to (i, 2n) for n/4< i< 3n/4 (row tree connection)
5) (1,i) to (5n/2-i+1, 2n) for 3n/-2< i < 7n/4 (column tree connection)
6) (1)) to (2n-i+1, 2n) for 7n/4< i< 2n (column tree connection)

step 6: Each n x 2n mesh can be easily linked to two copies of T,,, each of
which contains an embedding of M 2.n/2 Produced by this procedure. In particular,
‘attach the wire leaving via the ith row of the n x 2n mesh to the node in the ith
column of the appropriate nxn mesh of T, for each n. (Note that the nodes in the
nxn meshes are roots of M,, , and will become second level nodes of M )

6.4 The Augmented Tree of Meshes

~ As we mentioned in section 6.3.2, the N-node tree of meshes can be laid out so
that every wire has length at most O(logN). ﬁy slightly modifying the graph,
" however, it is possible to increase the maximum edge length dramatically. The
basic idea is to add a complete binary tree with n? leaves to the nxn tree of meshes
so that the leaves of one are linked in a one-to-one fashion with the leaves of the
other. It is important that the attachments between the two graphs be made so that
the resulting graph (which we call the nxn augmented tree of meshes T, ') is planar.
For example, we have drawn the 4x4 augmented tree of meshes in Figure 6-5.

It is easily seen that the augmented tree of meshes has, up to a constant, the
same bisection width, diameter, separator, layout area and number of nodes as does
the original tree of meshes. By adding the binary tree, we have simply decreased
the distance between any two leaves of the tree of meshes. In Chapter 8, we will
show that any layout of the N-node tree of meshes has two leaves which are spaced
at least Q(N*"2log!/2N) apart. We will thus be able to conclude that the maximum
edge length of 7" is at least Q(nlogn) = QN'/%/log!/?N) . Using the techniques
developed by Bhatt and Leiserson in [BL81], it is not difficult to show that the
lower bound is attainable.
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CHAPTER 7

CROSSING NUMBER ARGUMENTS

In this chapter, we demonstrate the power of the crossing number a;s/ a lower
bound technique for VLSI. We commence by showing that the crossing number is
at least as large (up to a constant) as the square of the bisection width{ In section
7.2, we describe a powerful method for finding crossing number lower bounds.
This method is then used in section 7.3 to find tight lower bounds on the crossing
numbers of a variety of networks. We conclude in section 7.4 with a collection of
miscellaneous results. Included are additional upper and lower bounds for the
crossing number of a network as well as a procedure for embedding an arbitrary
N-node graph with an O(N//?)-separator in an O(NlogN)-node planar graph.

7.1 The Relationship Between Crossing Number and Layout Area

We first show that crossing number arguments are at least as powerful as
bisection width arguments in establishing lower bounds for layout area.

Theorem 7-1: If G is an N-node graph with crossing number ¢ and bisection
width b, then c+N > Qb). )

Proofr Let D be a drawing of G in the plane with ¢ crossings. Replace each
crossing of D with an artificial node. Call the resulting graph G' and note that it
has precisely ¢+ N nodes. Using the weighted version of the Lipton-Tarjan planar
separator theorem [LT77], it is possible to bisect the real nodes of G' (by assigning
weight / to the real nodes and weight 0 to the artificial nodes) without cutting
more than O((c+N)/?) edges. After replacing the artificial nodes with their
original edge crossings, it becomes apparent that we have, in fact, constructed an
O((c+N)"?) bisection for G. Squaring, we find that c+N > Q) O

Using a similar proof technique, we can show that the crossing number is also
close to an upper bound for the layout area of a graph. In fact, should a really
good layout algorithm for planar graphs be found, then the following result could
become useful in laying out arbitrary graphs.
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Theorem 7-2: Given an optimal drawing D for an N-node graph G with crossing-
number ¢, it is possible to construct a layout for G with area at most
O((c+ N)log’(c+N)). Should a procedure be found which lays out an arbitrary N-
node planar graph in A(N) area, then we could construct a layout for G with area at
most O(A(c+ N)).

Proof> As in the proof of Theorem 7-1, we replace each edge crossing of D with
an artificial node. The resulting graph G' has ¢+ N nodes and is planar, Using’
the methods developed by Lipton and Tarjan [LT77] and Leiserson [L80a], G' can
be laid out in O((c+N)logX(c+ N)) area. It is then a simple matter to replace the
artificial nodes with their original edge crossings to obtain the desired layout for G.
Alternatively, should an A(N)-area planar graph layout procedure be discovered,
we could construct an O(A(c+ N))-area layout for ‘G O

As we have just seen, the idea of replacing edge crossings with artificial nodes is -
simple but powerful. Jai-Wei and Rosenberg have also employed this strategy in
‘their work with embeddings of graphs in binary trees [JR81].

7.2 A General Mcthod for Proving Lower Bounds

»In this section, we will describe a general method for proving crossing number
lower bounds. A variant of this method will later be used to prove lower bounds
for bisection width and wire area. The basic idea is as follows. '

Given a drawing D for an N-node graph G, we will construct a drawing D' for
the complete graph on N nodes Ky by tracing over the edges of D. For example,.
we have done this for the 4-node graph shown in Figure 7-1. The edges of the
original graph are drawn with dashed lines while.solid lines indicate edges of K .

If we are careful not to trace over each edge of D too many times during the.
construction of D', it may be possible to infer somcthing about the number of
crossings in D by counting the number of crossings in D *. This is due to the fact
that the number of crossings in D is closely related to the number of crossings in-
D' . For example, if ¢; and ¢, are edges of G which cross in D and e, is traced
over s, times while ¢, is traced over s, times, then the crossing of e; with e, will
appear s;s, times in D'. Such a crossing of D' is called a crossing of the first kind.
For example, there are four crossings of the first kind in the drawing of K in
Figure 7-1.
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Figure 7-1: Construction of K, from the drawing of a 4-node graph.

Sometimes, it is necessary for two edges of D' to cross while traversing the same
‘edge of D. Such a crossing is called a crossing of the second kind. Note that there
is only one crossing of the second kind in the drawing of K, in Figure 7-1. Since
D' can easily be drawn so that no pair of edges cross each other more than once,
there are usually not very many crossings of the second kind. More precisely, if G
has edges ¢, ..., ¢ and if edge e is traced over s; times for each / during the

construction of D', then D' can have at most (g_', 272 crossings of the second
kind. For most applications of the method, this number is substantially smaller
than the number of crossings of the first kind in D' and thus we usually do not
have to worry about crossings of the second kind.

By showing that the number of crossings in D' is large, we can conclude that
there must be a large number of crossings in D. For example, if each edge of D is
traced over at most s times during the construction of D' and D' is found to have
y crossings, then we can conclude that D has at least y/s? crossings. This follows
from the fact that each crossing of D is replicated at most s? times in D'. (Note
that we have neglected crossings of the second kind in this argument.)

Fortunately, it is easy to find a good lower bound on the number of crossings in
any drawing of Ky . We state the result formally in the following lemma. The
proof can also be found in Kleitman's work [K70] but is generally rcgarded as
folklore.
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Lemma 7-1 (Kleitman [K70]): The crossing number of Ky, the complete graph
on N nodes, is at least N(N-I)(N-2)(N-3y120 for N>5.

Proof: Let D be a drawing of K in the plane with the smallest possible number
of crossings o(N). We may assume that no pair of edges which cross in D are
incident to a common node. Otherwise, it would be possible to produce a drawing
D' for Ky with ¢(N)-I crossings by exchanging the parts of the crossing edges
which lie between the common node and the point of crossing. This would
contradict the minimality of c(N).

Consider the N subdrawings of D obtained by deleting one of the nodes and all
of the edges incident to it. Note that each crossing of D appears in precisely N-4
of the subdrawings. (A crossing does not appear in any of the 4 subdrawings
which correspond to the deletion of a node incident to an edge of the crossing.)
Since each of the subdrawings is a drawing of Kj_;, each must have at least o(N-1)
crossings. Thus (N-9)c(N) > No(N-I) . Applying the inequality recursively and
noting that «(5)=1, we can conclude that

oN) > [NAN-D][(N-DAN-5)]--- [672]
= N(N-IYN-2(N-3y120 for N5 O

13 Applications

Using the technique described in the previous section, it is possible to prove
crossing number lower bounds for a variety of networks. In particular, we will
prove lower bounds for the shuffle-exchange graph, the 2-dimensional mesh of
trees and the rdimensional mesh of trees. We commence with the shuffle-
exchange graph.

7.3.1 Lower Bounds for the Shuffle-Exchange Graph
Our main result in this section is the following.

Theorem 7-3: The crossing number of the N-node shuffle-exchange graph is
O(N%/logN). '

Proof: As we showed in Part I of the thesis, the N-node shuffle-exhange graph
has layout area O(N/log?N). Thus O(N%/log?N) is an upper bound for the
crossing number. In what follows, we will use the method of scction 7.2 in order to
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show that the crossing number -of the N-node shuffle-exchange graph is at least

Q(N%/log?N).

Let D be any drawing of the N-node shuffle-exchange graph G where N= 2k,
We first show how to construct a drawing D' of Ky on the nodes of G without
tracing over any edge of D more than NlogN times.

Given any pair of nodes a; - --a; and by ... b, draw the edge from
a---a to bg-..b along the path

ay--- azaa; —> ay---azazhy —> byay---as, —> bjay---a3by —
bzblak°--a3 _ s —_ bk_l--bzblbk —_ bkbk_]--'bzbl.

(In order that every edge of K not be drawn twice, we should assume that the
value of aj, - - - a; is less than that of by - - - b; but this has no bearing on the
argument.)

Wherever a;= b; for some i, the preceding path will have a loop. When actually
" drawing the edges of D ', we ignore such loops. For example, the edge from 01100
to 11101 is drawn along the path

01100 -—-> 01101 > 10110 ——> 01011 <=> 10101 == 11010 >
‘ 11011 == 11101 .

For convenience, we have lab_éled the shuffle edges with an =5 and the
exchange edges with an £ . Note also that we have omitted loops at 10110,
01011 and 10101 .

It is not difficult to show that every edge of D is traced over at most NlogN
times during the construction of D'. For example, consider the shuffle edge
linking ay -- - a,a; t0 aay - -+ ay. Itistraced over during the construction of

edges of D' which link a node of the form
ki

P T Y
ak_i+l.--az*. . og
to a node of the form
i

/‘4—-—\
*e - xQyQp- -0y iy

for any i, 1<i<k (where #* indicates either a 0-bit or a I-bit). It is casily seen that
there arc at most k2% such edges in D 'and thus cach shuffle edge is traced over at
most NlogN times. A similar argument shows that each exchange cdge is also -
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traced over at most NlogN times.
Since each edge is traced over at most NlogN times, there can be at most
(3N/2) [(NlogN)2/2) = 3N3/(4log?N)

crossings of the second kind in D'. This is substantially less than total number
Q(N?) of crossings in D'. Thus D' must have Q(N?) crossings of the first kind.
As each edge of D is traced over at most NlogN times, this means that D has at
least QUNY/(NiogN)?) = QN%/log’N) crossings O

As the N-node shuffle-exchange graph has ©(N) edges, we can conclude from
Theorem 7-1 that some edge of any layout for the graph must cross at least
Q(N/log?N) other edges. We do not know whether or not this bound can be
achieved, however. The only known layouts for the N-node shuffle-exchange
graph have edges which cross at least Q(N/logN) other edges.

It is also worth pointing out that the preceding argument can be used to prove
‘that the N-node shuffle-exchange graph has bisection width at least (N/IogN).
The result follows from the observation that K has bisection width O(N?) and the
fact that every edge of D was traced over at most NlogN times during the
construction -of D'. This means that the bisection width. of the N-node shuffle-
exchange graph is at least Q(N2/(NlogN)) = Q(N/logN), as claimed.

In fact, a similar modification of the method described in section 7.2 can be used
to find tight bisection width lower bounds for a/l of the networks we have
investigated. For most of these networks, however, it is much more useful to study
the corresponding crossing number and wire area bounds.

7.3.2 Lower Bounds for the 2-Dimensional Mesh of Trees

In this section, we use a more sophisticated version of the method of section 7.2
to prove a nontrivial lower bound on the crossing number of the 2-dimensional
mesh of trees.

Theorem 7-4: The crossing number of the N-node 2-dimensional mesh of trees is
at least Q(NlogN).

Proof: As before, let M, denote the 2-dimensional mesh of trees (where 7 is a
power of 2). We will show that the crossing number of M,, is at least
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(n%logn - 121n?+121n)/40 forall n>1.
Since M, , has N= O(n?) nodes, this will be sufficient to prove the desired result.

The proof consists of two steps. In the first, we show how to construct a drawing
of K, from any drawing of M 2 DY tracing over the edges of My, . We then
apply Lemma 7-1 to conclude that there are a large number of crossings among the
edges in the top levels of the binary trees of M,, . In the second step, we
complete the proof by inductively applying the result of the first step.

step 1: Let D be any drawing of M, , in the plane. From this drawing, we can
construct a drawing D' of K2 in the following way. First locate the n? leaves of
the binary trees of D. They will serve as the nodes for X, . Given any pair (i)
and (k,/) of these nodes, draw an edge from (i) to (k) along the unique path
from (ij) to (i) in the ith row tree of D and then from (3/) to (k) in the Ith
column tree of D. (In order that each edge not be drawn twice, we shall assume
that i<k and, when i=k, that j</) As usual, we assume that the edges of D' are
‘drawn so that no pair cross each other more than once.

We next count the number of crossings of the second kind in D'. In order to
do this, we need to count the number of times each edge of D is traced over during
the construction of D'. It is not difficult to show that each edge in the ith level of
a binary tree of M, , (henceforth, referred to as a type i edge) is traced over at most

n2i(n?-n?xy < nri

times for any i</ogn during the construction of D'. Thus at most n622F crosses
of the second kind can occur at any type i edge of D. Since there are 2/ +In type
edges in M, , , we can conclude that the total number of crosses of the second kind
in D' is at most

logn Jogn
Li(2i+ln)(n6z-2i-l) — n7}1‘2-i < n’.
(V) L=

We next count the number of crossings of the first kind (i.e, those
corresponding to crosses in D). We say that a crossing of D is type i-j if it is the
crossing of a type i edge a'nd“ a type j edge. Let lj denote the number of type i-j

crossings in D and set ;= lj - Since each type i edge is traced over at most n3xi
times, each type i-j crossing of D produces at most (32 )(n327) = nf2™J crosses
of the first kind in D'. Thus the total number of crossings of the first kind in D'
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IS at most
/9%n Jogn i
ﬁgnézwz < néiﬂxi.
YRR Ay

Summing, we find that the total number of crossings of either kind in D'is at

most.  n’ +n6§2 2. . By Lemma 7-1, this number must be at least
n(n-1)(n?- 2)(n2 3)/120 for n2>5. Simplifying, we can conclude that

Jogn

22%; > (n>-12Iny120  for n26.

( ’

L3
Let 5= Et be the number of crossings involving at least one edge from the

top k levels otl some binary tree of M,, . In what follows, we will use the
preceding inequality to show that s, > (n?-121n)k/40 for at least some value of
k>1. Assume otherwise and observe that
' lo9a

i 2—2iti — é 2-21( S7S;. 1)

A Y]
‘where s, is defined to be 0. The coefficient of each s; (i=0) in this sum is 2° 2L y2r
2 which is positive so for each i/ we may substitute (n?-121n)i/40 as an upper
bound for s; in order to see that

I%Z'Z‘t < [(n?-121n)/40] i",ﬂf[z—(z—l)]
= [(n*121n)/40] %w

iy}

ryn -
Since 247 < 173 for all n, we can conclude that

)
Fay

loga
izﬁz,. < (n%-121ny120 forall n>121,

'Y
a contradiction. Thus for all n>121, there is a k>1 such that s, > (n?-121n)k/40.

step 2: Let c(n) denote the crossing number of M, . Using the result of step 1,
we will now show by induction on n that o(n) > (n%logn - 121n?+ 121n)/40 for all
n>1.

As (n’logn - 121n?+121ny/40 is nonpositive for small n, the lower bound
trivially holds for all n<128. Assume that the lower bound holds for all m<n where
n>128 and let D be any drawing for A, , . By counting the crossings of D in two
groups according to whether or not at least one edge of the crossing is contained in
the top k levels of the binary trees of M 2p > We can observe that
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dn) > 2%ke(nZ¥) + 5.

(Recall the definition of s; and the structure of M, , .) By choosing k as in step 1
so that s, > (n?-12In)k/40 and applying the inductive hypothesis for o(nZ k), we
obtain

on) > 22Kn222k(logn-k)/40 - 121n222%/40+ 121n2%/40) + n?k/40 - 121nk/40

> nllogn/40 - 12In%/40 + 12In/40 + 12In(2%-k-1)/40
> (nllogn - 12In? + 12In)/40 .

Thus the inductive hypothesis is established and we can conclude that the
crossing number of M, , is at least Q(nlogn) = Q(NlogN) O

In section 7.4.3, we will show that the crossing number of any N-node graph
with an O(N*/?)-separator is at most O(NlogN). Thus, we will be able to conclude
that the crossing number of the N-node 2-dimensional mesh of trees is precisely

O(NlogN).
7.3.3 Lower Bounds for the rDimensional Mesh of Trees

By modifying the proof of Theorem 7-4, it can be shown that any layout of the
r-dimensional mesh of trees must have very long wires. In particular, they must be
as long as the width of any optimal layout for the graph. We state this result more
precisely in the following theorem. -

Theorem 7-5: Any drawing of the N-node r-dimensional mesh of trees contains
an edge which crosses at least QUN!"1/T) other edges.

\ d
Proof: The rdimensional hxnx---xdi mesh of trees M,, has

N = (r+Dn" - m™! = ©(n") nodes for bounded r. We will show that any layout
D of M,,, contains an edge which crosses at least .Q(n"!) = Q(N/"1/7) other edges,
thus proving the theorem. The method used is very similar to that of Theorem 7-4.

As we did for the case of r=_2 in Theorem 7-4, we first construct a drawing D' of
the complete graph on the n” leaves of M, , . Each type i edge of D is traced over
at most #”* /2 times by this procedure. Thus the total number of crossings in D'

is at most
logn

3r+1 2r+2 2i
(rm’™ 12 + nT rh;

1Y)
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2l ij and j is the num{ber of type i-j crossings in D.
” »
Applying Lemma 7-1, we can conclude that %I 2’1,- > Qnr 3,

cel

ey
where, as before, t,-=_$t
=)

Let 5= _ﬁti be the total number of crossings of D involving an edge from the
top k levels of the binary trees in M,, . Using arguments similar to those used to
prove Theorem 7-4, it is not difficult to show that for large n, there exists a k such
that s, > Q(n?~22%) . As there are only ra”™/(2k*1-2) edges in the top k levels of

M, , for any k, we can conclude that at least one of them crosses at least Q(n™!)

other edges O

It is worth pointing out that the preceding arguments can also be used to show
that the crossing number of the N-node r-dimensional mesh of trees is O(NZ¥1)
for bounded »2.

7.4 Further Methods

In this section, we describe some additional methods for proving crossing
number bounds. We first generalize Lemma 7-1 to prove a combinatorial lower
bound on the crossing number of any N-node graph with at least 4N edges. This
result is then used in section 7.4. 2 to prove crossing number lower bounds for a
class of graphs which are similar to the 2-dimensional mesh of trees. We conclude
by proving a nontrivial upper bound on the crossing number of graphs which have
O(N!/?)-separators. As a corollary, we wiil show that any N-node graph with an
O(N!/?)-separator can be embedded in some O(N/ogN)-node planar graph, thus
generalizing Theorem 6-1.

74.1 A Combinatorial Lower Bound for Crossing Numbers

In this section, we substantially generalize the result of Lemma 7-1.
Throughout, we assume that G is a simple graph (i.e., that it has no loops or
multiple edges).

Theorem 7-6: If G is a graph with E edges and N nodes where E>4N, then the
crossing number of G is at least E3/375N?.

Proof: The proof is by induction on N. For N=1, the result is vacuously true.
Assume that the result is true for all N'<N where N>I and let G be a graph with
N nodes and E edges where E>4N. We will show that the crossing number ¢ of
G is at least F£3/375N°, thus proving the theorem.. There are two cases to
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consider.
case 1: 4N < E < 5N .

We first use Euler's formula [BLW76] in order to show that the genus of G is
large. Euler’s formula states that

E+2=N+f+2g

where f is the number of faces of any proper embedding of G on a surface of
genus g Since G has no loops or multiple edges, every face contains at least 3
edges and thus 3/<2E. Substituting, we find that

.2g = E+2-N-f
> E+2-N-(2E73)
= E3+2-N

and thus that g > (E-3NV6 . For 4N < E< 5N, it is not difficult to show that
(E-3N)/6 >E3/375N? and thus that g > E3/375N2

Given any graph with crossing number ¢, it is possible to find a proper
embedding of the graph on a surface with genus ¢. We can do this by drawing the
graph on a sphere so that only ¢ pairs of edges cross and then putting a "handle”
in the region immediately surrounding each crossing. The edges of the crossing
can then be redrawn through the handle so that they no longer cross. As the
resulting surface has genus ¢, we can conclude that g<c for any graph with genus g
and crossing number ¢. In particular, we can conclude that ¢ > E3/375N? for G.

case 2: E > 5N .

Let d;,...,dy be the degrees of the N nodes of G and let D be an optimal
drawing of G. As usual, we can assume that no pair of edges which cross in D are
incident to the same node of G. Consider the subdrawing D, of D obtained by
deleting the ith node of G and all the edges incident to it. This subdrawing is also
a drawing of a graph with N-/ nodes and E-d; edges. Since E>5N and d,<N-1, we
can conclude that

E-d; > 4N+1 > 4(N-I).

Thus we can apply the inductive hypothesis to D; in order to conclude that it has at
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least (E-di)3/[375(N-1)2] crbssings.‘_

Each crossing of D will appear in precisely N-4 of the N subdrawings of D
produced by the above procedure. Applying the technique used to prove Lemma
7-1, we can thus conclude that

¢ > [IAN-9)] ‘__ﬁ'(E-di)3/[375(N-1)2]
= [1/375(N-9\(N-1)?] ':2(E3 - 3E2, + 3Ed? - dP)
= [1/375(N-0YN-1)2] [E3N - 3E%2E) + §(3Edi2 -dp)] .
Since 2E = f_l,:d , it is not difficult to show that g(.?Ediz-df) attains its
minimal value when d; = 2E/N for I<i<N . At this point,

$(3Ed,.2-d,.3) z 12E%/N - 8E%/N?
and thus - 7
¢ > (E3N-6E3+12E3/N - 8E3/N?) /[375(N? - 6N? +9N - 4)] .
For N>2, this expression can easily be reduced to show that ¢ > E3/375N? O

Tt is in.teresting to note that the lower bound proved in Theorem 7-6 is (up to a
constant) tight. For example, the N-node graph consisting of N2/E disjoint copies
of Kg,y has O(E) edges and crossing number at most O(£%/N?) for any E>4N.

7.4.2 Applications

When defining the 2-dimensional mesh of trees, we required that the binary
trees be interconnected so that M, , contain 2% disjoint copies of M, s« as
subgraphs for any k. Not only is this definition the most natural, but it also allows
us to use induction in the lower bound proofs for the network. Surprisingly,
however, the constraint is not necessary in order to show that M,, can perform
matrix-vector multiplication, sorting or switching in O(logn) time. In fact, any
network consisting of n row trees and n column trees which share the same set of
leaves can do these operations quickly. Thus it is conceivable that some other
arrangement of the tree interconnections might lead to a network with a smaller
crossing number. In what follows, we use Theorem 7-6 to show that this is not the
case.
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Theorem 7-7: If G is an N-node graph formed in the same way as the nxn mesh
of trees except that arbitrary interconnections are allowed between the leaves of the
binary trees, then G must have crossing number at least QNlogN).

Proof: Let G, denote the subgraph of G obtained by deleting the nodes and
edges in the top k levels of the binary trees of G for 0<k<logn. For example, if
G=M,,, then G, consists of 2%k disjointcopies of M, ,rk . Otherwise, Gy is a.
graph for which each node of the original nxn matrix of nodes is a leaf of a
horizontal complete binary tree of depth logn - k and a leaf of a vertical complete
binary tree of depth logn - k . For each k, let H; denote the graph whose nodes
are the n? leaves of G, and whose edges are the paths in G of the form

leaf - path in horizontal binary tree — leaf — path in vertical binary tree — leaf.

Note that if G=M,,,, then H consists of 2X disjoint copies of K,z2y2 . In any
case, H, is a regular graph for which each node has degree n?22k-1 .

Given any drawing D of G, , it is easy to construct a drawing D' for H by
tracing over the edges of G in the natural way. It is not difficult to see that each
type i edge of G is traced over at most (2/°gnky3x(iky = 322k times by this
procedure for Dk. Thus each type i-j crossing is reproduced at most n824 <
nb24%2i times for j > i> k.

Given any drawing D of G, éonstruct 26k separate drawings D ¢ of H for each
k>0. Each type i-j crossing of D will appear a total of
=) =1
2(,16 2—4k—21)(26k) = b 2—21‘2 22k
Kzp

L 414

< 0O(nd)

times in these drawings. In what follows, we will show that there are at least
Q(n8logn) total crossings of the first kind in these drawings. We will thus be able
to conclude that the crossing number of G is at least Q(n?logn).

As Hyhas E, = O(n'27?%) edgesand Nj, = n? nodes, we can apply Theorem
7-6 to conclude that D' has at least Q(E5/N,?) = Q(n26%) crossings. Thus
there are at least (%) crossings among the 26k drawings D, ' . Summing over k
for 0<k<logn, we find that there are at least Q(n%logn) total crossings among all of
the drawings {D;'| 0<k<logn }. Itis not difficult to check that there are at most
O(n’2°5%) crossings of the second kind in each drawing of /1, . As there are 26k
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such drawings for each k&, we can conclude that there are at most

Sz < o)

total crossings of the second kind in all the drawings {D,'| 0<k<logn }. Thus
there are at least Q(n®logn) total crossings of the first kind and the crossing number
of G is at least Q((n8lognyn®) = SUn’logn) = Q(NlogN) O

As a corollary, we can see once again that the crossing number of M, is at least

Q(Nlog?N).
7.4.3 An Upper Bound for Crossing Numbers

Since any N-node graph with an O(N?%)-separator for some a>l/2 has an
O(N?®)-area layout, we can easily see that it also has crossing number at most
O(N?2)., By Theorem 7-1, we can conclude that this bound is tight since many
such graphs also have bisection width at least Q(N®).

The situation is not as clear for graphs with O(N!/?)-separators, however. For
example, the best known upper bound on the layout area of an N-node graph with
an O(N'/?)-separator is O(N/og?N) yet no such graph is known to have a crossing
number greater than Q(NlogN). In what follows, we prove a tight upper bound on
the crbss_ing number of any such graph.

Theorem - 7-8: The crossing number of any N-node graph with an O(N72)-
separator is at most O(NlogN).

Proof> Given such a graph G, we will construct a drawing for G with at most
O(NlogN) crossings. In order to construct the drawing, we will

1) decompose G into subgraphs according to the separator theorem,
2) draw the subgraphs by recursively calling the procedure, and

3) draw the edges which link the subgraphs together without introducing too
many crossings and so that every node remains "close” to the exterior of the
drawing.

In order to illustrate the procedure, we will describe in detail how drawings D,
and D, of two m-node subgraphs are used to construct a drawing D of the
combined 2m-node subgraph. Let o(m) denote number of crossings in D, or D, ,
whichever is larger. Further let &(m) denote the maximum number of edges which -
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must be crossed in order to draw an edge from any node in D; or D, to the
exterior of D; and D, . Construct D from the drawings of D; and D, by drawing
in the O(m!/?) edges which link them together in the best way possible. Now let
c(2m) and d(2m) be the obvious values for the constructed drawing D. It is not
difficult to show that )

d2m) < 2c(m) + O(m) + O(m!”2d(m))
and that
d2m) < dm) + O(m7?).

Solving the recurrences in general, we find that d(m) < O(m!/?) and thus that
«(m) < O(mlogm) . Thus the above procedure can be used to find a drawing for G
with at most O(NlogN) crossings O

Using the f)rece,ding result, we can substantially generalize Theorem 6-1.

Theorem 7-9:  Any N-node graph with an O(N'/2)-separator can be embedded in
an O(NlogN)-node planar graph.

 Proof: Construct a drawing of the graph with O(NlogN) crossings according to
the method described in the proof of Theorem 7-8. Replace each edge crossing in
the drawing with an artificial node. The resulting graph has O(NlogN) nodes, is
planar and_egnbeds the original graph O
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CHAPTER 8

WIRE AREA ARGUMENTS

In this chapter, we extend the method of section 7.2 to prove lower bounds on
the wire area of a variety of networks. In each proof, we will use a layout of a
network to produce a layout for the complete graph. By showing that the nodes of
the layout are widely spread out, we will be able to conclude that the wire area of
the layout for the complete graph is very large. Provided that the edges of the
original network were not traced. over too many times, we can then reason that the
wire area of the original network is also large.

8.1 Lower Bounds for the 2-Dimensional Mesh of _Trees

In this section, we find tight lower bounds for the layout area and maximum
edge length of the 2-dimensional mesh of trees..

Theorem 8-1: The wire area of the N-node 2-dimensional mesh of trees is at least

Q(Nlog?N).

Proof:  As usual, we denote the nxn mesh of trees by M,; . In addition, let
w(n) denote the wire area of M,, and let a be a positive constant such that

(+) a < nA4log?n) for all n>2, and
() a < 2224B28) for all i>1

o

where = 2, j -2 also a constant. Clearly such a constant exists (a= 2% should
suffice) and c':learly w(n) > an?log’n for n=1 and 2. Consider a value of n>4
which is a power of 2 and assume that for all values of m<n which are powers 2
that w(m) > am’log?m . We will use induction to show that  w(n) > an’log’n .
Since M,, has N=0O(n?) nodes, this will be sufficient to prove the theorem.

Consider any layout for M, which uses w(n) wire. Partition the layout into
three vertical strips ¥, V; and V, so that the center strip contains 3n’/4 leaves
and each outer strip contains n2/8 leaves. Similarly partition the layout into three
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horizontal strips H,, H; and H, so that the middle strip contains 3n%/4 leaves
and each outer strip contains n2/8 leaves. For example, see Figure 8-1.

t
'

] . [ t
]

i t

Figure 8-1: Partitioning of the layout for M, ,,.

Let p denote the length of the longest side of the center block formed by the
intersection of ¥; and H,;. Without loss of generality, we assume that the longest
side is horizontal. In what follows, we will show that p > (a??nlognys .

Since each of the regions V,NH,; and V,NH, can contain at most n/8
leaves, it is clear that ¥,NH, contains at least n2/2 leaves. Consider the n%?
subgraphs of M,, produced by eliminating the top (3logny/4 levels of the row
and column binary trees of M,, . Each of these subgraphs is isomorphic.to
M, 4. By the pigeonhole principle, at least 1/2 of these subgraphs have at least
one leafin V,NH,;. If p<(a'nlogny/8 (otherwise we are done), then at most
4p < (a!”’nlogn)/2 edges can cross the boundary of V;nNH; . Thus at most
(a!?nlogn)/2 of the subproblems which have at least one leaf in V;NH; can
have some node or part of an edge outside V,NH, . This means that at least
(n32 - a'/?nlogny’2 copies of M4 are wholly contained in V;nH, .
Applying the inductive hypothesis, we conclude that F/,NH, contains at least

(372 - a'2nlogn) w((n'?y /2 > (an’log’n - a32n’ 2log’n) / 32

> (an’log’ny64  wire.
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(The last inequality follows trivially from (*).) Thus V,NH; has at least
(anlog’n)/64 area and p > (al’?nlogn)/8, as claimed.

We next use the layout for M, to construct a drawing for the complete graph
on n? nodes (namely, the n? leaves of M 2n ). No matter how the edges of the
complete graph are drawn in the plane (e.g., they may cross or overlap), it is clear
~from Figure 8-1 that the sum of the lengths of all the edges (as measured in
Euclidean space) is at least n?p/64 > (a!/’n3logn)/2° . This is due to the fact
that n?/64 edges pass from region ¥, to region ¥, and that these regions are
separated by a distance p. '

Let L; denote the sum of the lengths of the edges in the ith levels of the binary
trees of M, , . Since every level i edge is traced over at most n32i times in the
drawing of the complete graph, we can conclude that

fogn
L2 > (a'?nlogny?

(AN

and thus that
togn .
| t%LiZ” > (a'n?logny? .
In particular, this means that
L; > (al”2n2logn2)(2°Bi2)
! o0
for some i< logn. (Recall that B = 2 j 2.) Otherwise,
. “
L; < (a'?n%logn2)(2°Bi%)

for. 1 < i < logn and't'hus

logn loan
;LIQ"' < g(a”znzlogn)/(?ﬁiz)
< (a!”?n?logn)’?, a contradiction,
Using the straightfoﬁard relation
wn) > 2%iynZ) +L,-
where / has been chosen so that

L, > (a’/znzlognZi)/(29BiZ),

we can conclude that
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wn) > 2Za(nz)(logn - )? + (a’?n’logn2)(2°B )
> anlog’n - 2ain’logn + (a'n2logn2)V(2°B)
> an2logn .
(The last inequality ;‘ollows trivially from (s+).) Thus w(n) > Q(n%logn) forall n O

Theorem 8-2: Any Iayou‘t of the N-node 2-dimensional mesh of trees contains a
wire of length at least Q(N'?logN/loglogN).

Proof: It is sufficient to show that any layout for M, , contains a wire of length
at least Q(nlogn/loglogn). Assume for the purposes of contradiction that this is not
the case and consider a layout of M, , for which the longest wire has length
q < O(nlogn/loglogn) .  Using arguments similar to those used to prove
Theorem 5-2, we first show that (without loss of generality) the area of such a
layout is at most - O(q?logn) << O(nlogn) . )

Since every pair of nodes of M 2n is linked by a path of length at most 4l/ogn, all
of the nodes in the layout are contained in a 4qlogn x 4qlogn square. At most
16glogn wires may leave and re-enter the square at various points along its
boundary. Without increasing the lengths of any of these wires, it is possible to
rewire the seginents outside the square using at most O(g?log?n) additional area.
Thus, the resulting layout for M 2n will have maximum edge length g and area at
most O(g?log?n).

The proof is completed by observing that any layout of M, , with area less than
O(n?log?n) must have a wire of length at least Q(nlogn/loglogn). From the proof
”n

of Theorem 8-1, we know that iL,-Z‘ i > (a!”?n?logny?? . Thus either
£33
1) thereisan i< 4loglogn such that L. > (a’/2nlogn2)/(2!%loglogn) , or
2) there is an i > 4loglogn such that L, > (a!"’n’logn2)/(21981%)

o0
where, as before, the constant B=2, j . Otherwise,

I3
toam Yglogn loyn .
S R B
oy Iy v Yleglogn +1 togn
< (a'?n2logny/210 + [(a!/?nlogn)/2108] il‘z
c'r'llo,lo’n”

< (a’?n’logny’? ,  a contradiction.
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The second condition cannot possibly be true, however. If it were, the area of
the layout would be at least

L. > Qnllogn/id)

I

v

> Q(nlog’n/(loglogn)?)

A%

Q(n?logfn) , a contradiction.

Thus the first condition must be true and there is an / such that L; >
Q(n’logn2/loglogn) . Since there are n2i* ! type i edges in M, ,, we can conclude
that at least one of them has length at least Q(nlogn/loglogn) O

8.2 Lower Bounds for the Tree of Meshes

Using the results of the previous section, it is easy to demonstrate the existence
of planar graphs which cannor be laid out in linear area and which must have long
wires. In particular, we can conclude the following.

Theorem 8-3: The wire area of the N-node tree of meshes is at least Q(NlogN).

Proof: As we showed in section 6.3.3b, the N-node 2-dimensional mesh of trees
can be embedded in an O(NlogN)-node tree of meshes. By Theorem 8-1, we can
thus conclude that the wire area of the NlogN-node tree of meshes is at least
Q(Nlog?N). . Equivalently, the wire area of the N-node tree of meshes is at least
Q(NlogN). O '

Theorem 8-4: Any layout of the N-node augmented tree of meshes has a wire of
length at least Q(N'/2/log!/?N).

Proof: In the proof of Theorem 8-1, we showed that any layout of M, , has two
leaves which are spaced at least Q(nlogn) distance apart. Since (as we showed in
section 6.3.3b) M,, can be embedded in T,, so that the leaves of M,, are
embedded in the leaves of T,, , we can observe that any layout of T, also has
two leaves which are spaced at least Q(nlogn) distance apart. Since every pair of
leaves in T,, are linked by a path of length at most O(logn) in T,,', we can
conclude that some edge of T,,' has length at least Q(n) = QN"%/log!’?N) O

Had we so desired, we could have proved both results directly, using arguments
identical to the ones used to prove Theorem 8-1.
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8.3 Lower Bounds for a Restricted Class df Binary Tree Layouts

In [BK80], Brent and Kung considered layouts of N-node complete binary trees
for which every leaf is located on the boundary of some convex region. In
particular, they showed that the wire area of any such layout is at least Q(NlogN).
Recently, Patterson, Ruzzo and Snyder [PRS81] extended this result by showing
that any such layout with area 4 must have some edge of length Q(N/log(A/N)) .
In particular, this means that if 4 = O(NlogN), then there must be some edge of
length Q(N/loglogN) but that if 4 = O(N!*¢) for some €>0, then there must
only be an edge of length Q(N//ogN). In what follows, we show how to use the

techniques developed in this chapter to give short proofs of these facts.

Theorem 8-5 (Brent and Kung [BK80]): Any layout of the N-node complete
binary tree in which every leaf is on the boundary of some convex regzon requires
Q(NlogN) area.

Prooﬁ Given any such layout, we first use the methods of section 8.1 to
~ construct a layout of the complete graph on the n=O(N) leaves of the tree. Since
the leaves are on the boundary of some convex regnon it is easily shown that the
layout of K, uses at least Q(n) wire.

Let L, ‘denote the sum of the lengths of the edges in the ith level of the tree. As
each ith level edge is traced over at most n?2 times, we know that

logywnr
ﬁn32"L,- < Qnd)

AL

iogn

and thus that s:L,Z' > §)(n) . Using arguments similar to those in the proof of
Theorem 8-1, we can conclude that L; > Q(n2i//) for at least one value of i
Letting w(n) denote the wire area of the binary tree layout, we can see that

wn) > 2iwn2d + Qn2/2).
Solving the recurrence, we find that w(n) > Q(nlogn) = SQ(NlogN) O

Theorem 8-6 (Patterson, Ruzzo and Snyder [PRS81]): Any A-area layout of the
N-node complete binary tree in which every leaf is on the boundary of a convex
~ region has some edge of length QN/log(A/N)).

“”Proof: The proof follows that of the preceding theorem until it is concluded that

_ZLI-Z" > Q(n) . Using methods similar to those used to prove Theorem 8-2, we
= .
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can then obscrve that one of the following conditions must be satisfied:

1) there is an i < 2log(A/n) such that L; > Q(n2/log(A/n)) , or

1

2) there is an i > 2log(A/n) such that L; > Qn2/i) .

et i =

The second condition cannot possibly hcld since, if it did, the layout area would
be at least L; > Qn2/F) which, for i > 2log(A/n) , means that

A > SQUAYnlogX(A/n))
> Q(4) , a contradiction.

Thus the first condition holds and we can conclude that there is an i such that
L:> Q(tzzi/log(A/n)) . As there are only 27+ 7 edges in the ith level, at least one of
them must have length at least Q(n/log(A/n)) = QUN/log(A/N)) O
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CONCLUSION

In Part I of the thesis, we described several new layouts for the shuffle-exchange
graph. In particular, we found

1) an asymptotically optimal O(N%/log?N)-area layout of the N-node shuffle-
exchange graph, and

2) practical layouts for small shuffle-exchange graphs.

As a result, it should now be possible to construct large scale shuffle-exchange
chips. The only remaining question is whether or not there is a layout of the N-
node shuffle-exchange graph for which every wire has length at most O(N/IogzN)
All known layouts have wires of length at least Q(N/logN).

In Part II of the thesis, we descibed techniques for finding good lower bounds
on the crossing number, wire area, maximum edge crossing and maximum edge
length of a variety of VLSI networks. In particular, we applied these techniques to
ﬁnd

1) an N-node planar graph which has layout area ©(NlogN) and maximum
edge length OWN2/log!/2N),

2) an N-node graph with an O(N!/2)-separator which has_layout area
O(Nlog?N) and maximum edge length ©O(N/2JogN/loglogN), and

3) an N-node graph with an O(N®)-separator (for a>1/2) which has maximum
edge length O(N9).

Thus we have answered all the open questions concerning bounds for layout
area and maximum edge length of networks with known separators. We have only
partially answered the corresponding questions for planar graphs, however. In
particular, it would be of great interest to know whether or not every N-node
planar graph can be laid out in O(N/ogN) area.

97




INDEX

area of a layout 4
artificial node 74
augmented tree of meshes 72

basic piece of a necklace 26
basisnode 15
bisection width 52

complex plane diagram 9
crossing of the firstkind 75
crossing of the second kind 76
crossing number J5

degenerate necklace 10

diameter 56

distance ina graph 56

distinguished node of a basic piece 26
distinguished node of a necklace 2/
distinguished node of a primary piece 26
distinguished node of a secondary piece 26

even node 22
exchangeedge 3

full necklace - 710

layout area 4
leftedge 65

level 11

leveling 18
level-necklace grid 12

maximum edge crossing 5
maximum edge length 4

mesh of trees 59, 63

minimum number represented 78

necklace 10
oddnode 22

primary block of zeros 2/
primary node 22
~ primary piece of a necklace 26

98




radius of a necklace 18
reverse edge 3/
right edge 65

secondary block of zeros 21
secondary node 22
secondary piece of a necklace 26
separator 5/

shift edge 30

shuffleedge 3
shuftle-exchange graph 3
shuffle-shift graph 3/
shuffle-shift-reverse graph 3!
shuffle-tree graph 65

simple graph &3
simultaneous separator 67
size of a necklace 15
sizeofanode &

Thompson model 2
track 2

transpose edge 32
trec of meshes 65
type iedge 80
type i-jcrossing 80

value of a hode 9

wire area S5

99




[BK80]

[BLS]]

[BLW76]

[BO78]
[CM31].
[GO814]
[Goglb]
[HL80]
[IR81]

[K70]

[KL78]

REFERENCES

R. P. Brent and H. T. Kung, "On the area of binary tree layouts,”
Information Processing Letters, No. 11, 1980, pp. 44-46.

S. N. Bhatt and C. E. Leiserson, “"Minimizing the longest edge in a
VLSI layout,” Laboratory for Computer Science, Massachusetts
Institute of Technology, preprint, 1981.

N. L. Biggs, E. K. Lloyd and R. 1. Wilson, Graph Theory 1736-1936,
Clarendon Press, Oxford, 1976.

C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for
Scientists and Engineers, McGraw-Hill Book Company, New York,
1978.

B. Chazelle and L. Monier, "A model of computation for VLSI with
related complexity results," Proceedings of the 13th Annual ACM
Symposium on Theory of Computation, May 1981, pp. 318-325.

L. J. Guibas and A. M. Odlyzko, "Periods in strings,” Journal of
Combinatorial Theory (Series A), Vol. 30, No. 1, January 1981,
pp. 19-42.

L. J. Guibas and A. M. Odlyzko, "String overlaps, pattern matching
and nontransitive games,” Journal of Combinatorial Theory (Section
A), Vol. 30, 1981, pp. 183-208. ‘

D. Hoey and C. E. Leiserson, A layout for the shuffle-exchange ‘

network,” Proceedings of the 1980 IEEE International Conference on
Parallel Processing, August 1980.

H. Jai-Wei and A. L. Rosenberg, “Graphs that are similar to binary
trees," Proccedings of the 13th Annual ACM Sympos:um on Theory of
Computation, May 1981, pp. 334-341.

D. J. Kleitman, "The crossing number of KS.n J' Journal of
Combinatorial Theory, Vol. 9, No. 4, December 1970, pp. 315-323.

H. T. Kung and C. E. Leiserson, "Algorithms for VLSI processor
arrays,” Symposium on Sparse Matrix Computations, Knoxville,
Tennessee, November 1978.

[KLLM81] D. Kleitman, F. T. Leighton, M. Lepley and G. L. Miller, "New

layouts for the shuffle-exchange graph,” Proceedings of the 13th
Annual ACM Symposium on Theory of Computing, May 1981,
pp. 278-292.

100




[L75]
[L76]
[L80a]
[L80b]
L8]]

[LLMS]]

[LM81]
[LS81]
[LT77]

[MC80]

[MP75]

[MR79]

D. Lawrie, "Access and alignment of data in an array processor,”
IEEE Transactions on Computers, Vol. C-24, December 1975,
pp. 1145-1155. '

T. Lang, "Interconnection between processing and memory modules
using the shuffle-exchange network,” [IEEE Transactions on
Computers, Vol. C-25, January 1976, pp. 55-66.

C. E. Leiserson, “Area-efficient graph layouts (for VLSI),"
Proceedings of the 21st Annual IEEE Symposium on Foundations of
Computer Science, October 1980, pp. 270-281.

C. E. Leiserson, Area Efficient VLST Computation, Ph.D. dissertation,
Department of Computer Science, Carnegie-Mellon University,

‘November 1980.

F. T. Leighton, "New lower bound techniques for VLSL,"” Proceedings
of the 22nd Annual IEEE Symposium on Foundations of Camputer
Science, October 1981, pp. 1-12.

F. T. Leighton, M. Lepley and G. L. Miller, "Layouts for the shufﬂe-
exchange graph based on the complex plane diagram,” unpublished
notes, Applied Mathematics Department, Massachusectts Institute of
Technology, Cambridge Massachusetts, August 1981.

F. T. Leighton and G. L. Miller, "Optimal layouts for éma]l shuffle-
exchange graphs,” VLSI 81 - Very Large Scale Integration, edited by
John P. Gray, Academic Press, London, August 1981, pp. 289-299.

R. J. Lipton and R. Sedgewick, "Lower bounds for VLSIL"
Proceedings of the 13th Annual ACM Symposium on Theory -of

- Computing, May 1981, pp. 300-307.

R. J. Lipton and R. E. Tarjan, "A separator theorem for planar
graphs,” A Conference on Theoretical Computer Science, University of
Waterloo, August 1977. .

C. Mead and L.AConway, Introduction to VLSI Systems, Addison-
Wesley Publishing Company, Reading, Massachusetts, October 1980.

D. E. Muller and F. P. Preparata, "Bounds to complexities of
networks for sorting and for switching,” Journal of the ACM, Vol. 22,
No. 2, April 1975, pp. 195-201. '

C. Mead and M. Rem, "Cost performance of VLSI computing
structures,” IEEE Journal of Solid State Circuits, Vol. SC-14, No 2,
April 1979, pp. 455-462.

101




[NS79]
[P80]

[PRS81]

[PV79]

[PV80]
[S71]
[s79]
[S80]

~ [SR80a]
[SR80b]
[T79]

[T80]

D. Nassimi and S. Sahni, "A self-routing Benes network and parallel
permutation alogorithms," Technical report 79-13, University of
Minnesota, May 1979.

D. S. Parker, "Notes on shuffle/exchange-type switching networks,"
I[EEE Transactions on Computers, Vol. C-29, No. 3, March 1980, pp.
213-222.

M. S. Patterson, W. L. Ruzzo and L. Snyder, "Bounds on minimax
edge length for complete binary trees,” Proceedings of the 13th
Annual ACM Symposium on Theory of Computing, May 1981, pp.
293-299.

F. P. Preparata and J. E. Vuillemin, "The cube-connected-cycles: a
versatile network for parallel computation,” Proceedings of the 20th
Annual IEEE Symposium on Foundations of Computer Science,
October 1979, pp. 140-147.

F. P. Preparata and J. E. Vuillemin, "Area-time optimal VLSI
networks for matrix multiplication,” Proceedings of the 14th Princeton
Conference on Information Science and -Systems, 1980.

H. S. Stone, "Parallel processing with the perfect shuffle,” IEEE
Transactions on Computers, Vol. C-20, No. 2, February 1971, pp. 153-
161.

J. E. Savage, "Area-time tradeoffs for matrix multiplication and
related problems in VLSI models," Proceedings of the 17th Annual
Allerton Conference on Communications, Control and Computing,
October 1979, pp. 670-676.

J. T. Schwartz, "Ultracomputers,” ACM Transactions on Programming
Languages and Systems, Vol. 2, No. 4, October 1980, pp. 484-521.

D. Steinberg and M. Rodeh, "Notes on the shuffle-exchange
network,” Technical report 083, IBM Israel Scientific Center, July
1980.

D. Steinberg and M. Rodeh, "A layout for the shuffle-exchange
network with ©(N2/log>N). area,” Technical report 088, IBM Israel
Scientific Center, September 1980.

C. D. Thompson, "Area-time complexity for VLSL," Proceedings of
the 11th Annual ACM Symposium on Theory of Computing, May
1979, pp. 81-88. :

C. D. Thompson, A Complexity Theory for VLSI, Ph.D. dissertation,
Department of Computer Science, Carnegie-Mellon University, 1930.

102




[T381]

[TK77]

[V80]

C. D. Thompson, "The VLSI complexity of sorting,” preprint,

Computer Science Department, University of California at Berkely,
1981.

C. D. Thompson and H. T. Kung, "Sorting on a mesh-con.nected

parallel computer,” Communications of the ACM, Vol. 20, 1977, pp.
263-271.

J. E. Vuillemin, "A combinatorial limit to the computing power of
VLSI circuits,” Proceedings of the 2Ist Annual Symposium on

Foundations of Computer Science, IEEE Computer Society, November
1980, pp. 294-300.

103




ADDENDUM

Much has been accomplished during the period of time between the submission
of this thesis to the MIT math department in August of 1981 and the publication of
the thesis as a tcchnical report in June of 1982. In fact, so much has been
discovered in the interim that it would be possible to write several additional thesis
on the subject. As an aide to those who wish to know more about the new
material, we have included below a brief bibliography of some of the recent work
on layout strategies for VLSI. -

Of particular importance is the work contained in [V81], [CS81], [NMP81] and
[L82]. In [V81]. Valiant independently proves many of the separator-bascd results
which are attributed to Leiserson in the thesis. The mesh of trees described in
Chapter 6 of the thesis is independently discovered in {CS81] and [NMP81] where
it is used to support a wide variety of fast parallel algorithms. Finally, the work
- reported in [L82] significantly extends the separator-based work of Lelserson and
Valiant as well as the material in this thesis.

[BL82] - S. N. Bhatt and C. E. Leiserson, "How to assemble tree machines,"
 Proceedings of the 14th Annual ACM Symposium on the Theory of
Computing, May 1982, pp. 77-84.

[BPP81] = G. Bilardi, M. Pracchi and F. P. Preparata, "A critique and appraisal
of VLSI models of computation,” Proceedings of the CMU Conference
on VLSI Systems and Computations, edited by H. T. Kung, B. Sprouli
and G. Steele, Computer Sc1ence Press, Rockville, Maryland, May
1981, pp. 81-88.

[CS81] P. R. Cappello and K. Steiglitz, "Area-efficient VLSI structures for
multiplying at clock rate,” Technical Report # 289, Department of
EECS, Princeton University, September 1981.

[GI81] M. Garey and D. Johnson, "Crossing number is NP-complete,”
unpublished manuscript, December 1981.

[L82] F. T. Leighton, "A layout strategy for VLSI which is provably good,"
Proceedings of the 14th Annual ACM Symposium on the Theory of
Computing, May 1982, pp. 85-98.

[LL82] F. T. Leighton and C. E. Leiserson, "Probabilistic algorithms for
constructing networks with short wires,” unpublished manuscript,
April 1982,

[LR82] ° F. T. Leighton and A. L. Rosenberg, "Three-dimensional circuit
layouts,” unpublished manuscript, April 1982.

104




[NMPS1]

[P31]

[R81]
[S81]

[V81]

D. Nath, S. N. Maheshwari and P. C. P. Bhatt, "Efficient VLSI
nctworks for parallel processing based on orthogonal trees,”
unpublishcd manuscript, 1981.

F. Preparata, "Optimal three-dimensional VLSI layouts,” unpublished
manuscript, 1981.

A. L. Rosenberg, "Routing with permuters: toward reconfigurable
and fault-tolerant networks,” Technical Report CS-1981-13, Duke
University, 1981.

L. Snyder, "Overview of the CHiP computer,” VLSI 81 - Very Large

Scale Integration, cdited by J. Gray, Academic Press, London, August
1981, pp. 237-246.

L. G. Valiant, "Universality considerations in VLSI circuits,” IEEE
Transactions on Computers, Vol. V-30, No. 2, February 1981, pp. 135-
140. :

105




