MIT/LCS/TR-325

USING UNTYPED LAMBDA CALCULUS

TO COMPUTE WITH ATOMS

Paul C. Weiss

Tius blank page was inserted to preserve pagination.

Using Untyped Lambda Calculus
vTo Compute With Atoms

Paul G. Weiss
~ B.S., Massachusetts Institute of Technology
: (1981) ‘ _
SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS OF THE
DEGREE OF

MASTER OF SCIENCE
IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 1984 '

© Massachusetts Institute of Technology 1984

- R

Signature of Author

Department of Electrical Eilgineering and Computer Science

/ , 1/77?”, February 28, 1984

Certified by -
Albert R. Meyer
“Thesis Supervisor

Accepted by

Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

Keywords: Lambda calculus, typeless, untyped, atoms, completeness

Abstract: Axioms and verification rules are given for typeless i-calculus
with a conditional test for equality between atoms. A semantic
completeness theorem is proved and a deterministic evaluator is
proposed.

1. Introduction

The M-calculus of Church (treated throughly in [BARRO0]) is a system for denoting
functions. For example, the identity function is represented in this system as Ar.z,
and the function which adds 1 to its argument is represented as Az.z + 1. A more
complicated example is the “double application” functional, whose arguments are
themselves functions, and which acts by composing a function with i.Lsclf. This 1is

represented in the A-calculus as A f.\z.f(fz).

For many years a model for the A-calculus could not be found, due to set theoretical
difficulties. Finally, Scott was able to construct a structure which was generally agreed
to be a model, using complete lattices [SCOTT76]. Many attempts were then made to
give a clean characterization of what a model of the A-calculus was, these are detailed

in [BARS80O] and in [MEYERS2).

These systems all have the property that any term can be interpreted as a function.
This is necessary, since a model of the untyped \-calculus must make sense out of the
application of any term to any other term. In fact any term can also be interpreted
as a functional, that is, a function which maps functions to functions, and so on up
through the type hicrarchy. But this is not the behavior we want when we are using

A-calculus to compute with integers.

The problem is that there is nothing to distinguish the integers from the other
terms. Suppose we use a A-calculus with constants for the integers and successor,
suitably axiomatized. Then in any model, while it is true that the values of integers
will behave correctly with respect to the value of successor, it is also true that the value
of 3 applied to the value of 4 will be some value, and there is nothing in the language
or the model that tells us that this is any different than successor applied to 3. This is
not what we want. We want constants such as 3 t.o‘ denote atomic values in all models.
These are values that cannot be applied to anything without yielding an error. The

constants that are used to denote atomic values will be called numerals.

One method for computing with atomic values in the \-calculus is to add type
information to the terms, to tell what kind of datum each subterm represents. This
is approach taken in the typed A-calculus. In order for one term to be applied to a

second, the type of the first term must be functional, with the argument type matching
the type of the second term. Terms representing atomic values do not have functional
type, and therefore cannot be applied to anyvthing. Typed A-calculus is dealt with

thoroughly in an appendix to [BARS0].

In’ this treatment, we use a diflcrent approach to type errors. We will allow
arbitrary applications in the language, however, certain terms will lead to run-time type
errors when-evaluated. Our A-calculus will be untyped, and we will pr—ovide semantics
so that the terms which lead to run-time type errors are precisely those terms which
semantically denote an error value. We are motivated throughout by the language
LISP, which has a A-calculus like syntax, but expresses computation on objects which
do not necessarily denote functions (atoms and lists). See [WAND84] for a discussion

of LISP.

Since we are using untyped \-calculus, we will be able to draw on the results of
[MEYERS2], to provide a model. A system with error values for run-time type errors

was also considered in [MILNERT78], with a complete partial order semantics.

In order to do useful computation with numerals, we will find that a condi-
tional statement is .needed. This will take the form: “if <terml>=<term2> then
<term3> else <term4>.” Without this construct, the expressive power is greatly
reduced. However, there are many choices to be made in the behavior of this construct.
Do we evaluate <terml> and <term2> sequentially,.or in parallel? What happens
if the evaluation of <terml> or <term2> leads to a run-time type error? Also,
what notion of equality between terms do we use? The most strict notion is identity.
Another notion is provable equality (under soniei suitable axioms and proof rules). We
will try to make choices that will result in a recursive evaluator and simple axioms for

the proof system, while still giving us enough expressive power for programming.

The language considered is an untyped \-calculus, with a conditional statement
and error terms. The proof system is that of the classical A-calculus enriched with

axioms to handle these new constructs, and to handle the properties of numerals.

The class of models for this language is a special case of combinatory models

[MEYERS82]. A completeness theorem for the language is derived from the completeness

theorem for the classical -calculus[MEYERS2].

2. Syntax

We will define an untyped A-calculus for computing with atoms. Our language
will be an extension of the classical A-calculus of Church. Since we have occasion to

refer to the classical \-calculus, we define it here.

Definition: Let Var be an infinite set of variables. Let C be a set of constants. We
define the set of terms A(C) by the following grainma.r, where t denotes an element of

A(C), z denotes an element of Var, and ¢ denotes an element of C:
tu=uz|c|titz | z.t.

We omit parentheses in the usual fashion. In particular, uvw abbreviates (uv)w, and

Azy.u abbreviates Az \y.u.

We now extend the language to express computations with atoms. An atom is a
semantic object, which cannot be applied to anything else without yielding an error.
An example of an atom might be the number 3 or 17, if we are f.alking about integers,
or perhaps the list nil if we are talking about lists. In order to represent atoms in our
‘language we introduce atomic constants. These are a special type of constant whose

meaning can only be an atom.

These are the base syntactic sets:
Let Var be a set of variables. Typical elements are z,y, 2.
Let Con be a set of constants. Typical elements are c3,¢2,...

Let ACon be another set of constants (the atomic constants). Typical elements

are a;,a,....
. The three sets Var, Con, and ACon, must be pairwise disjoint.

Out of these basic sets we build the “\-terms with atoms,” called AT (for Atomic

Terms).

Definition: Let cond and * be new symbols. Then given ACon and Con we define the
set AT(ACon, Con) as as A(Con U ACon U{cond, }). When there is no confusion,
we will write simply AT.

We define an equational caleulus over AT by specilying axioms and rules of proof.

Definition: (Substitution) Free and bound variables are defined inductively, in the

usual way. The expression [v/z]u, where u,v € AT, = € Var denotes the result of

substituting v for all free occurrences of z in u, with the usual proviso about renaming

bound variables to avoid capture, i.c. before we substitute v for z in u, we change all

the bound variables in u to be diflerent from the frec variables in v and then we replace

every free occurrence of z with v.

Definition: Two terms u and v are a-equivalent, if v results from u by renaming

the bound variables in some subterm of u (avoiding capture). Following Barendregt

[BARSO], we consider two terms that are a-equivalent equal on a syntactic level, that

is, terms are considered modulo a-equivalence. For example, Az.yz and \z.yz are the

same term.

Here are the axiom schemes:

(8)
(E)
(C1)
(C2)
(C3)
(C4)

(Az.u)v = [v/z]u
uv == %,

cond cavw = v,
condajarvw = w,
cond ujusvw = %,

cond ujuvw = %,

And here are the rules:

(trans & sym)

(cong)

(€)

for u € ACon U{#}.

for a € ACon.

if a1, a2 € ACon, a; and ay different.
if either uj or ug is ».

if either u; or ug is of the form A\z.v'.

v
!

v
u=u
— o

]uv; = (u'V)

LuU=v

AT.u = Az.v

This proof systems requires a bit of discussion. The rules are just the usual rules

taken from the classical \-calculus. Since we are committing to axiom scheme (8), it

follows that the language has a call-by-name parameter passing mechanism (as does

classical M-calculus). This is to be contrasted with the usual LlSl” evaluator, which
evaluates the arguments to a lunction first (call-by-value). The two strategies differ on
a term such as (Ary.x)uv, where v is a term whose evaluation doesn’t terminate. In the
call-by-value evaluator, the evaluation of the whole term doesn’t terminate, since the
evaluator never gets done cvaluating the arguments. But in a call-by-name evaluator,
the term v is never evaluated, and the result of evaluating the term will be the result.

of evaluating u. -

This leaves axiom schemes (E) and (C1) through (C4), which are connected with
the behavior of type errors, and of cond. So what behavior do we want? This
depends on our intended use of the language AT. In this treatment, we view AT as a
programming language for writing programs “about” atoms. That is, when a program
is given to the evaluator, there are three interesting things that might hapben:

(i) The evaluation of the program might terminate, resulting in a numeral.

(ii) The evaluation of the program might lead to a run-time type error.

(iii) The evaluation of the program might not terminate.

This is not to say that a term such as Azy.z is not interesting, rather, that its
utility lies in its ability to be included in progfams that will produce numerals. If
we take this view, then the job of the evaluator is: “given a term, if it is equal to
a numeral, find that numeral.” In particular, if a term is not equal to a numeral,
we don’t care what the evaluator does, however, it woild be nice if the evaluator
terminates on as many terms as possible. More on this, when we discuss (C4) below.
In the rest of this section, we will have need to discuss the properties of the intended
evaluator. Later we will formally define an evaluator with these properties. (We are
faced here with an expositional difficulty. I am reminded of a remark I heard at a
philosophy seminar about Kant'’s Critiqué of Pure Reason [KANT29], namely, that he
had many interesting things to say, and he said them all first. We might have defined
the evaluator before the proof system, and equality in terms of the evaluator, and then
defined a proof system which captures it. In fact, neither idea, that of the proof system
nor the evaluator is really prior to the other. We want the axiom schemes to allow for
a reasonable evaluator, i.e. one that is effective, and on the other hand, we want axiom

schemes that make it relatively easy to reason about equality.)

Now to the rest of the axioms.

The purpose of having # in the language, is so we can have a notation for run-time
type errors. Our hope is to define an cvaluator and a notion of run-time type error,
so that a term not containing * will be provably equal to * if and only il it causes
a run-type type crror when evaluated. There are two kinds of type errors that can
occur, and they correspond to those axioms schemes, that viewed as reductions have
the effect of producing an *. These are (E), (C3), and (C4). (We could have introduced
two symbols # and *s in order to distinguish between them, at the cost of complicating

the axioms a little bit).

First let us see what (E) says. Actually, it is two axioms schemes combined. The
first says that av = #* if a is a numeral. This is one way a type error is created.
It corresponds to an attempt by the evaluator to apply a numeral to a term. The
second part, i.e. *u = * for any term u, corresponds to “leftmost” evaluation, and is
needed to insure that type-errors propagate correctly. This is best illustrated by the

two following examples.

Consider the term auv, where a is a numeral. Recall that this is an abbreviation
for (au)v. This is the sort of term that will cause a run-type type error, since the first
operation of the evaluator will be to try to apply a to u. Therefore our proof system
should prove this term equal to #. By the first part of rule (E), we know that it is equal
to *v. We need the second part to show that it is equal to ».

Now consider the term (Azy.z)a(bu), where a and b are atoms. This illustrates that
a term might not cause a run-time type error even though it has a subterm which is
equal to *. The reason is that our evaluator will use (8) to turn this into (Ay.a)(bu), and
then use (B) again to turn it into e, which is the value of the term. The evaluator never
“gees” that we are applying a numeral to a term, so there is no run-time type error.
Note that in a call-by-value evaluator, since the arguments would have been evaluated
first, the evaluator would indeed Have encountered the type error. This illustrates our
choice of the term “run-time type error” since this term would have a static type error

in a language such as typed \-calculus.

Now for the axioms about cond. The first two, (C1) and (C2), are relatively

uncontroversial. They correspond to our intuition that cond ujuaryva is a notation for

“if u; = uy then vy else va.”

Axiom scheme (C4) deals with the second kind of type error in the language. The
first type error can be thought of as “trying to use an atom, where a function was
expected.” The type error corresponding to (C4) is, in a sense the opposite. Actually,
our intuition in the preceding paragraph is a bit wrong. The problem is that it is not
clear that our proof system can tell for su}e when two arbitrary terms are not equal.
Indeed, this relation for the classical \-calculus is I19-complete. So the intuition for
cond expressed above is a bit ambitious. Here is a second try: cond ujuviv; means “if
u; and u.» are equal to the same numeral then v, if -they are equal to different numerals

then vy.”

But what about when one or both of them are not equal to numerals? The behavior
we intend is that if the evaluator can determine that this situation exists, then a type
error occurs. This brings up the question of when the evaluator can be sure that a
term is not equal to a numeral. The answer we propose is when it is a A-abstraction,
i.e. of the form Az.u. The purpose of (C4) is to produce such type errors. Why
can’t \-abstractions be equal to numerals? It is not due to semantic problems that we
disallow it. Instead we disallow it for two reasons: first, it is not clear that we could get
a well behaved reduction system (one with the Church-Rosser property, as defined in
chapter 4), if we did allow it; second, it would go againét our intuition of what is meant
by a numeral. That is, 2 numeral is something that should not be applied to a term,
while \-abstractions can be applied to terms by means of (8). Once we have made this
decision, we can structure our evaluator, so that if it tries to evaluate a \-abstraction
at top level, it stops, since it knows that the térm cannot be equal to a numeral. This

allows evaluation to terminate on more terms than otherwise.

Finally, the purpose of (C3) is to make sure that if the evaluator encounters a
type error while evaluating one of the two terms to be compared, then the result of

the whole thing is a type error. It is analogous to the #u = * part of (E) above.

Note that these axioms require parallel evaluation of the terms to be compared in
a cond. That is, if we have cond ujusv;v9, and the evaluation of u; does nét terminate,

if the evaluation of us leads to a type error, then we want the wholc term to be *. The

same is true if we reverse the roles of 1y and ua. Thus, we cannot evaluate cither vy or
uy before the other. If we simplify our evaluator to do sequential evaluation of u; and
ua, then the axioms might be slightly modified: we must essentially provide an axiom
for each possible outcome of the result of evaluating u;. For a sequential evaluator,

(C3) and (C4) would be replaced by the following:

(C3) cond *»uvw ==
(C4) cond(Az.u)u v vg = *
(C3") conda*uv== if @ is a numeral

(C4") conda(hz.u)vyvg == if a is a numeral

So let us summarize what cond ujusv;ve means: “Evaluate u; and u. in parallel. If
they evaluate to equal numerals, then‘ v If f.hey evaluate to unequal numerals then vo. ;
If either one of them evaluates to a A-abstractions, then this is a run-time type error. If
the evaluation of either one of them causes a run-time type error then we preserve that
run-time type error.” Notice that we leave unspecified what happens if the evaluation
of both u; and ujs result in terms that are neither numerals nor A-abstractions, and do

not cause type errors. Different models will do different things in this case.

Definition: Let T4x be all instances of all the above axiom schemes except (8). Let
T be a set of equations between terms, and let u and v be terms. Let T = u = v be
the proof relation in classical A-calculus, i.e. ¥ = v follows from T using just (3) and
the rules. Then we say T provesu = v if TUTyx b= u = v. A set of equations T,
between terms of AT is a theory if the set TJT 4y is a classical \-theory (i.e. contains
all instances of () and is closed under application of the rules). A set of equations T
between terms of AT is tnconsisient if for every equation u = v, TUTyy Fu=v
(which is to say that T'UTx is inconsistent in classical \-calculus). Otherwise, T is

consistent.

Note that a necessary condition for T to be consistent, is that for all a;,a2 €
ACon, when a; and a, are different symbols, we do not have that T proves a; = as.
For if so, then if u = v is an arbitrary equation, we can show that T proves u = v.
First, by (C2) we have T proves cond a;asuv = v. Next by repeated applications of

(cong) we can show that

ryy
I’ proves cond ayaauv = condaja uv.

But by (C1) we have T proves condaja,uv = u, hence by rcpcatod applications of

(trans & sym) the result follows.

3. Semantics

We now define what a model for this language is, along with a denotational
semantics [STOY77]. The model is a combinatory model as in [MEYERS82], with
extra structure added to take care of the behavior of atoms. Combinatory models are
models of classical A\-calculus. Our semantics is also taken from the usual semantics
of A-calculus. This approach is somewhat similar to defining a group as a first order
structure satisfying some nonlogical axioms. Completeness of these axioms with respect
-to groups then follows from completeness of first order logic. In our case, the classical
A-calculus and combinatory models are in the same relation to each other as logic
would be to a first-order definable structure. The axiom schemes (E), (C1), (C2), (C3),

and (C4) correspond to the group axioms.

First we recall the definition of combinatory model from [MEYER82]. These serve

as models for the classical V)‘-calculus.

Definition: A combinatory model D is a tuple (D, -, €) where - is a binary operation on
D, and there exists K,S € D such that

(CM.1) For all dy,d; € D, (K - d,)-dy = d;.

(CM.2) For all dy,d2,d3 € D, ((S - di) - d2) - d3 = (d; - d3) - (d2 - d3)

(CM.3) For all dy,d; € D, (¢ - d;) - dg = dy - dy.

(CM4)If foralld€ D, dy-d =dy-d then e-dy = ¢ - ds.

In what follows, we write dydy for d; - dp and dydp---dy for (- (d; - dp)- - - - dy).
Given a combinatory model D = (D, -,€), let « be an interpretation of constants,
i.e. a map from C to D. Let Env = Var — D. For p € Env, z € Var, and d € D let
p{d/z} € Env be that function such that
p{d/z}(z) = d, and
p{d/z}(y) = ply), for y 5 z.

10

The function &2, : A(C) — Env — D is the semantic function for X-terms in a
combinatory model from [MEYERS82]. As a notational convenicnce we write En . fu]p

as simply [Ju]p, when ne confusion results.

Definition: The denotational semantics for A-terms.
(DS.1) [e]p = ¢(e), for c € C.
(DS.2) [z)p = p(z), for = € Var.
(0S.3) [uv]p = ([ulo)[v]r)- _
(DS.4) [Mz.u]p = <6, where 6 € D is such that for all d € D, éd = [u]p{d/z}. (By
definition of € in a combinatory model, €6 is independent of the choice of such
a 6. Furthermore, it shown in [MEYERS82| that such a § must exist if D is a

combinatory model.)

To serve as models for AT we allow only certain types of combinatory models and

certain types of constant mappings, ¢:

Definition: An atomic combinatory model (acm) £ is a tuple: (D, -, ¢, D4, 7, 7), where
*°, 4 € D and:

(ACM.1) (D, -, €) is a combinatory model.

(ACM.2) DA C D is a set whose elements are called atoms.

(ACM.3) For all d € D, all a € DAU{+"}, a -d = +°.

(ACM.4) For all a € D4, all dy,d; € D, yaad,dy = d;.

(ACM.5) For all a;,a3 € D4, a; 5 a, all dj,d; € D, yaja3d;dy = ds.

(ACM.6) For all d|,ds,d3 € D, v *° dydad3 = ~yd; »° dyd = #°.

(ACM.7) For all dy,ds,d3,ds € D, 7(edy)dadzdy = ~d;(edp)dzdq = »°.

The subset D2 of D will serve as values for the atomic constants, that is, they are the
atoms of D. An acm is simply a combinatory model that satisfies the axiom schemes
(E) and (C1) through (C4), if *” = [*]p and v = [cond]p, for all p. That this happens
is guaranteed by our choice of constant mapping functions &:

Definition: Let 4 = (D, -,¢, DA, +”,4) be an acm. A function

¢: Con|JACon | J{cond,*} —» D -

11

is called an nterpretation if
(L1) i{cond) = 1.
(12) o) = &
(1.3) ¢(a) € I)" for every a € ACon.

(1.4) «(a;) # «a2) if @y and a3 are different.

Definition: Let D be a combinatory model and ¢ : C — D, a constant mapping. Let
u,v € A(C). Recall that F=p, u = v if for all p € Env, [ulp = [v]p. T is a
set of equations between terms of A(C), we write FFp, T if FFp, tforallt € T. If
T is a set of equations between terms of A(C), write T F= u = v if for all D and .,
whenever F=p, T then FFp, u = v. If T is a set of equations between terms of AT,
and u,v € AT then we say T semantically impliesu = v if TUTax Fu=wv.

Definition: Let D be a combinatory model, and ¢ : C — D a constant mapping. Then

define

Th(D,t) = {u = v : u,v € A(C), [up = [v]p, for all p}.
The two theorems below are from Meyer [MEYERS2].

Theorem: (Soundness Theorem for A(C)) If T = u = v then T = u = v. (From
which it follows that for any combinatory model 0 and any constant mapping

function ¢, Th(D,:) is a A-theory.)

Theorem: (Completeness Theorem for A(C)) For any A-thcory T, there is a com-
binatory model D and a constant mapping function ¢, such that T = Th(D,:).
(From which it follows that for any set of equations T, if T F= u = v then T I

u=uv)

That our proof system is complete now follows directly from Meyer’s results, just
as in group theory we know that the axioms for groups are complete for the class
of group by virtue of the fact that first order logic is complete. The axioms Tsx

correspond to the axioms for groups.

12

Theorem 3.1: (Soundness Theorem for AT) I 7" proves u = v then T semantically
implies u = v. (From which it follows that for any acm £ and any interpretation

t, Th(A4,1) is a theory.)

Theorem 3.2: (Completeness Theorem for AT) For any consistent theory T, there
is an acm A and an interpretation ¢, such that T = Th(4,:). (From which it
follows that for any set of equations T, if T semantically implics u = v then T

proves u = v.)

4. Reduction

In the two preceding sections, we have presented a proof system and a notion of
model, and shown that the proof system is complete for that notion of model. We now

turn to reduction, which comes closer to the computational aspect of terms.

What are the terms to be used for? We want to use the terms to write programs.
In this section, we explore an interpreter for those programs. All that the interpreter
cares about a term, is whether it is provably equal to a numeral. If 80, its job is to find

that numeral.

With this is mind we introduce a notion of reduction. First, we define the notion

of a contezt.

Definition: A coniezt is a term of AT with a “hole” in its parse tree. Formally, let ©

be a new symbol. Then, a context, C[] is a term of
A(ACon | Con | J{cond, »,8}).

If uis a term of AT, and C[] a context, then C[u] denotes the result of replacing
without renaming bound variables, every occurrence of the symbol © in C[] with u.
For example, if C[] = \z.6, then C[z] = Mz.z. This is in contrast to substitution:

[z/6]Az2.0 = \z'.z, where ' is a fresh variable different from z.

Definition: A notion of reduction R is a binary relation between terms of AT. Given

R, define the relation —p as

13

{(Clu],C[r]) : C[] is a context and (u,v) € R} .

The relation is written in infix notation. If ¥ —; v we say u reduces in one siep to v.
The relation —7, is the reflexive, transitive closure of — 5. If u —, v then we say that

u reduces lo v, or v is a reduclion of u.

Lemma 4.1: Let C[] be a context. If u —; v then Clu] -y Clv]. Also if u =}, v
then C[u] =} C|v].

Proof: If u —; v then there exists (v/,v') € R and a context C'[], such that u = C'[v/]
and v = C'[¢v/]. But then Cfu] = C[C'[v']] and C|v] = C[C'[']]. But then as C[C'[]]
is also a context and by definition of —;, we have C[u] —p C[v]. The other statement

follows by induction on the number of steps it takes to reach v from u. 3

"~ When u is reduced to v we can think' of this as a computation step. If the notion
of reduction is.reasonable, then we are never lead down any “blind alleys,” that is, if a
term is reduced in two different ways to yield two different terms, then it is possible to
reduce each of these terms to the same term. This is the definition of the Church-Rosser
property, as defined in Barendregt [BARSO].

Definition: A notion of reduction R is Church-Rosser if whenever a term u reduces

to both vy and vs, then there exists a term u’ that is a reduction of both v; and vs.

We will choose our notion of reduction so that it captures the proof system
presented above (in a way that will be made precise) for a given set of equations T,
and is Church Rosser. A set of equations T is 'called simple if they are of the form:

(i) ;2 = ¢3, where ¢; € ACon |) Con and ¢; @ ACon, or

(ii) ¢y» = *, where ¢; € Con.

We also require that for every equation ¢jca = c¢3 in T, the equation ¢;* = # is also
in T. If ¢;eg = ¢3 € T, we say that ¢, is an active constant, since then the reduction
system has rules for applying it to arguments. A set of equations of this form, can be
thought of as specifying the behavior of builtin functions on the numerals-and on each

other. Requirement (ii) says that builtin funétions cannot ignore type errors, i.e. if we

14

get a type error while evaluating the argument to a builtin function, then the whole

term is equal to *.

Delinition: Qur notion of reduction R is

rRyUre YR UReaUResU Rea U Br

where

Rs = {(u,v) : u = v is an instance of axiom scheme S},
similarly for all the other axiom schemes and
Ry = {{u,v):u=v€T}.

We will abbreviate —, as —4 and similarly for the other notions of reduction.
We are working toward the following result:

Theorem 4.2: (Church-Rosser Theorem for R) The notion of reduction R defined

above is Church-Rosser.
The following definition and two results are taken from Barendregt [BARSO].

Theorem 4.3: The notion of reduction Rg is Church-Rosser.

Definition: Let R; and R2 be two notions of reduction. We say R; commutes with Ro
if whenever there exist terms u, v;, and v such that u =5 v1 and u —p, vy, then

there is a term v’ such that vy =}, ' and vy —h, -

Lemma 4.4: (Lemma of Hindley-Rosen): If R; and R; are two Church-Rosser notions
of reduction, and R, commutes with R, then the notion of reduction R, UR: is

Church-Rosser.

The Lemma of Hindley-Rosen can be generalized to work for any number of notions

of reduction:
Lemma 4.5: If R commutes with R; for 1 < 1 < n, then R commutes with U]_; R;.

15

Proofl: We abbreviate U* | I; by UR;. We must show that if v R-reduces to v,
(R | Y 1

and u (U R;)-reduces to v, then there exists u' which is an R-reduction of »; and a

(U R;)-reduction of vy;. The proof is by induction on the number of steps it takes to

reduce u to vy.

The basc casc is when it takes O steps, i.e. va == u. Then the desired v is just v;:
by assumption it is an R-reduction of vz, and since it is equal to v it is certainly a

(U R;)-reduction of v;. -

Suppose now that the lemma is true when u reduces to v2 in k steps, we prove it
for k + 1. Then we must have a term v} that is a (U R;)-reduction of u in k steps,
and without loss of generality we can assume that v} Rj-reduces in one step to va
(otherwise interchange the names of the R;). Then by induction there is a term u”
that is an R-reduction of v} and is a (U R;)-reduction of v;. But then as R commutes
with R;, there is a term u' which is an R-reduction of v and an Rj-reduction of u”.
But since u" is a (U R;)-reduction of v; and v’ is an R)-reduction of u”, we have that

v' is a (U R;)-reduction of v}, 80 it is the desired v'. g

Lemma 4.6: Let R;,...,R, be a sequence of Church-Rosser notions of reduction,
where R; commutes with R; for 1 < ¢ < j < n. Then the notion of reduction
RiU---UR, is Church-Rosser.

Proof: Ind.uction on n. For n = 2 this is the Lemma of Hindley-Rosen. Suppose the
lemma is true for- n < k. Consider now n = k. Then by the induction hypothesis,
RiU---URi—; is Church-Rosser. However by the previous lemma R; commutes with
R U---URi_;. Hence by Hindley-Rosen, (RjU---U Ri-1)UR; is Church-Rosser,

which completes the proof of the lemma. §

Definition: A reduction relation has the diamond property, if whenever u reduces in
one step to both v; and vy, there is a term u' which is reducible in at most one step

from both v; and vs.
The next Lemma is from Barendregt [BARSO]. ;

Lemma 4.7: If R has the diamond property then R is Church-Rosser.

18

Definition: Let R be a notion of reduction. If (u.v) € I then the term u is called a
reder and the term v is called its reducl. When we refer to a redex r of a term u, we

are referring to a particular occurrence of a redex r as a subterm of u.

Let us consider now

R R URe2UResURealJ Re

This notion of reduction has the following reduction properties:
1. A reduct is either a constant, or a subterm of the redex.
2. If u is a redex of C[u], with reduct v, and C[u] is a redex with reduct w, then:
2.1. If w does not contain u, then C[v] is also redex whose reduct is w.
2.2. If w does contain u, i.e. w = C'[u], then C|v] is a redex whose reduct is

C'[v).

This is enough to show that the above notion of reduction has the diamond

property, i.e.:

Lemma 4.8: Rg URc1 URc2 U Rz U Roy U Rt is Church-Rosser.

Proof: We show that it has the diamond property. Suppose a term u has two redexes,
r1 and r9. Then there are two cases to consider:
1. The redexes r; and ry are disjoint. In this case the redexes can be reduced in
either order, yielding the same term.
2. One redex occurs inside another. Without loss of generality, assume that ro
occurs inside r;. Then there are two subqa.ses:
2.1. The reduct of r; does not contain r;. Then by the above reduction
properties, if we first reduce ro and then reduce the resulting term, we
get the same term as if we simply reduced r;.
2.2. The reduct of r; contains r3. Then r; is C|ry], and the reduct of r; is
C'[r2]. Suppose the reduct of r is r. Then if we first reduce r; we get
C'[ra]. If we first reduce r; we get C[r]. But we can reduce C'[r;] to get
C'[r] and by the above reduction propeties, we can reduce C|r] to C'[r].

Since this notion of reduction has the diamornid property it is Church-Rosser. 3

17

At this point we know that K is Church-Rosser, and the rest of the notions of
reduction, taken together, are Church-Rosser. We will show that all the notions of
reduction, taken together, are Church-Rosser, using the lemma of Hindly-Rosen. So
we must establish that B; commutes with the rest of the reduction notions. By Lemma

4.5, it suflices to show that Ry commutes with all the other notions of reduction.

Just as we used the diamond property to show that a notion- of reduction is
Church-Rosser, we define a property of two notions of reduction that will insure that
they commute. The definition and the following lemma are taken from Barendregt

[BARSO].

Definition: Two notions of reduction, R; and R, have the cross diamond property, if
whenever there are terms u, vy, and vg, such that u Rj-reduces in one step to v; and
Ry-reduces in one step to vz, then there is a term u' that is Rj-reducible from v2 in at

most one step, and is Ry-reducible from v; (in any number of steps).

Lemma 4.9: If two notions of reduction have the cross diamond property then they

commute.

Now we can show that Rg commutes with all the other notions of reduction by
showing that Rg and each of the other notions enjoy the cross diamond property.
Unfortunately, to show this is rather tedious, it being a case by case analysis of how

redexes can overlap. Therefore, we will show one case, the rest are similar.

Lemma 4.10: Rg and R commute.

Proof: We show that they have the cross diamond property. There are two cases.

1. A B-redex occurs inside an E-redex. Then the E-redex is of the form uC[(Az.v)w],
where u € ACon U{#}. If we do the E-reduction first we get . If we do the
B-reduction first, we get uC|[([v/z]u)], which is an E-redex with reduct *.

2. An E-redex occurs inside a S-redex. Then there are two subcases:

2.1. The B-redex is of the form (Az.w)C|uv], where u € AConU{*}. Then
if we first do the E-reduction we get (Az.w)C[#], and we can then do
a f-reduction to get [C[#]/z]w. On the other hand if we first do the -

18

reduction, we get [Cluv]/z]w, and we can then do a series of Is-reductions,
one for every free 7 in w, to ultimately yicld [C[s]/z]w.

2.2. The B-redex is of the form (Az.Clur])w, where u € AConU{*}. Then
if we E-reduce first we get (\z.C[+])w, and we can then B-reduce to
get [w/z](C[«]), which is C'[#], where C'[] is the result of renaming the
bound variables in C[] and substituting w for free occurrences of z. On
the other hand if we 3-reduce first we get [w/z](C|uv]). Now this is equal

* to C'[uv'], where v is the result of substituting w for all occurrence of z
in v that are free in C[uv]. But as uv’ is an E-redex, we may reduce it

to get C'[#], as before.

This shows that R;; and Ry have the cross diamond property, and therefore commute.

Theorem 4.2 now follows from Lemma 4.3, Lemma 4.8, Lemma 4.4, and Lemma

4.10 (and the other omitted cases).

Theorem 4.11: If T is a simple set of equations, then T I~ u = v if and only if there

is a term w that is reducible from both u ’and v.

Proof: Suppose w is reducible from both u and v. Since all the notions of reductions
are instance of axiom schemes or equations in T, by rules (cong) and (£), if u reduces
to u' in one step then T = u = «/, hence by rule (trans & sym) if u reduces to w
then T = u = w. Then if w is reducible from both u and v then T = u = w and
T = v = w and then by rule (trans & sym), T b= u = v.

Conversely, suppose T = u = v. We use induction on the length of proof. If the
length is 0, then u = v is either an instance of an axiom scheme, or an equation in T'.
In either case u reduces to v in one step, so t.hé desired term w is just v. Otherwise,

= v follows via a rule, from equations that have shorter proofs. We consider one

rule at a time.

(trans & sym) Then T = r = u and T I~ r = v for some term r. By induction,
then, there are terms w; reducible from r and u and wy reducible from r-and v. But

since w; and wo are both reducible from r, by the Church-Rosser property there is a

19

term w reducible from both w; and ws. But this term is then reducible from both u

and v.

(€) Then u is of the form hz.u' and v is of the form A\z.v', where T = o' = ¢'. By
induction, then, there is a term w', which is reducible from both ' and v'. But then
the term w = \z.w' is reducible from both u and v, by Lemma 4.1, using context

Az.©.

(c(*)'ng) Then u is of the form u;u» and v is of the form vyvs, where T = u; = v, and
T b= uy = va. Then there exists terms w, and wy such that w; is reducible from both
u; and v;. Then from Lemma 4.1, using context u;©, we get that ujws is reducible
from u,u2. Again using Lemma 4.1, with context Qw2, we get that wyw. is reducible
from u,wy. Hence wjw; is reducible from u;us. Similarly, we can show that wyw; is

reducible from vjvg, 80 w = wwy is the desired term. §°

5. Evaluation

If, as remarked above, we view reduction of a term as a computational step, the
results of the preceding chapter tell us how to build a naive evaluator for our language.
Namely, start with a term and try all possible reduction sequences. If we arrive at a
term that can no longer be reduced, then stop. The Church-Rosser theorem guarantees

that this term will be unique.

However, this evaluator is a bit unsatisfying. First of all, since we must remember
the state of several reduction sequences at once, its demands on memory are great.
Secondly, it will be slow, since it is doing breadth-first search of a tree, without using
any heuristics to narrow down to the goal. And lastly, it gives us no insight into what
a run-time type error is, since it might do several E-reductions, and ultimately arrive

at a term which is not =.

All that we require of an evaluator is that if a term is provably equal to a numeral
from T (by Church-Rosser theorem, it must therefore reduce to that numeral) then
the evaluator will find that numeral. We don’t care what the evaluator does with a
term that is not equal to a numeral, just so long as it doesn’t return a numheral. That

is all that we require. However, there are cértain things that we desire. One is that

20

the evaluator terminate on as many terms as possible. Second is a notion of type error
that coincides with the use of * in the axioms (of course, this is the chicken and egg

phenomenon).

As was remarked in Chapter 2, the parallel nature of cond will complicate things,
since the evaluator cannot simply evaluate one arm of the cond before the other. In
fact, if we were using the sequential axioms, (C3'), (C4'), (C3"), and (C4"), then the
evaluator which always reduces the leftmost redex would be normalizing, i.e. if a term
u was equal to a term v which had no redexes, then this evaluator would reduce u to

v.

Unfortunately, life is not so simple, and we cannot get away with such a simple
evaluator. Due to the parallel nature of cond, we are forced to consider a parallel
evaluator, that is, an evaluator which at every step reduces a set of disjoint ;edexes
(since the redexes are disjoint, the order in which they are reduced does not matter,
indeed, they may reduced at the same time, which is why the evaluator is called

parallel). Parallel evaluators were considered by [LEVY80].

Definition: A term of the form cond ujusuguy is called a cond-expression.

We now describe the evaluator EVAL : AT — AT. If u is a term of AT, EVAL(u)
is a term which is reducible from u. If EVAL(u) = u then the evaluator is said to halt
on u. The evaluator is repeatedly applied until a term is reached where it halts. This

process is called EVAL-uation.

Definition: The evaluator EVAL:
1. If u is a redex, then EVAL(u) is its reduct.

2. If u is a cond-expression cond ujusv1v2 then
EVAL(u) = cond EVAL(u;)EVAL(u2)vive .

3. If u is Az.v then EVAL(u) = Az.EVAL(v).

4. If u is ujuy, where u; € Var U Con then EVAL(u) = u;EVAL(uy).
5. If u = (ujug)us then EVAL(u) = EVAL{uju2)u;. -
6. Otherwise EVAL(u) = u.

21

~In English, KVAL works as follows: it looks for the leftmost redex or cond-
expression; il it is a redex, it reduces it, if it is a cond-expression, it calls itself recursively

on the two “arms” of the cond-cxpression.

Normalization Claim: EVAL is a normalizing evaluator. That is, if u = v is
provable from T and v has no redexes (is in normal form), then the EVAL-uation of

u yields v, and if EVAL(u) = u then u is in normal form.

It is hoped that this can be shown using some notion of standard reduction, in the same
way that the Standardization Theorem is proved for classical A-calculus [BARS0]. At

present, there was not time to prove this claim.

Even though EVAL is normalizing, it is still not the evaluator we want for AT.
Recall that all we required of an evaluator is that if a term was equal to a numeral, it
found that numeral. Since numerals are normal forms, and EVAL is normalizing, it
accomplishes that goal. But it will not terminate on lots of term which we can be sure

are not numerals, for example

u = Az.(Ay.yy)(Ay.yy)

has no normal form, so the EVAL-uation of u will never stop, yet since u is a -
abstraction, it can never be a numeral. To fix this problem, we modify EVAL so that

it never looks inside a A-abstraction. |

Definition: In a \-abstraction Az.u the term u is said to be the scope of the .

Definition: The evaluator EVAL' is defined as follows:
1. If u is a redex, then EVAL'(u) is its reduct.

2. If u is a cond-expression cond ujusvjvs then
EVAL'(z) = cond EVAL'(u;)EVAL'(uy)v;v; .

3. If u is uju2, where u; is an active constant then EVAL'(u) = u; EVAL'(u2).
4. If u = (ujuz)up then EVAL'(u) = EVAL'(ujuz)us. ”
5. Otherwise EVAL'(u) = u.

The difference between EVAL and EVAL' is that EVAL' does not reduce inside
X-abstractions and it only cvaluates arguments of live constants, since otherwise it
knows that it has no rules for reducing the application. Although EVAL' is now no
longer normalizing (since it halts on)\z;()‘y.y)z) it still has all that we required of an

evaluator:

Theorem 5.1: If u = v is provable from T and v is a numeral, then the EVAL'-uation

of u yields v.

Proof: We know by the Normalization Claim that the EVAL-uation of u yields v.
Now if clause 3. is used in the EVAL-uation, then on the next pass it must be used
again, since no new redexes or cond-cxpressions will be created outside the . So a
numeral cannot result. Similarly, clause 4. will never be u.sed when u; is not a live
constant, since that would result in clause 4. being used again on the next pass, as
nothing new will be created to trigger clauses 1., 2., or 3. Hence the EVAL-uation of
u is also an EVAL'-uation and hence the EVAL’-uation u yields v. 1§

We now can explain what a run-time type error is, in terms of the evaluator EVAL'.
We say that EVAL' encounters a run-time type error on term u, if in the EVAL'-uation
of u, rule 1. is applied to an (E)-redex or to a (C4)-redex.

Theorem 5.2: Let u be a term which does not contain *. Then EVAL' encounters a

run-time type error on term u, if and only if u = * is provable from T.

Proof: Certainly if u = * then by Church-Rosser it is possible to reduce u to ».
However, since (E) and (C4) are the only reduction rules which create an *, one of
these must be used. Also, by the same reasoning as Theorem 5.1, the evaluation of u

will result in *. Hence, one of the above redexes must be contracted.

For the converse, it suffices to show that if EVAL'(u) results in a type error then u = ».
We argue by cases, on what clause is used to handle EVAL'(u).
1. If a type-error results then the redex is either an (E)-redex or a (C4) redex. Then
the reduct is * so u == *.
2. Then u = cond u uyv vy and either EVAL'(u;) or EVAL'(u2) results in a type

error. By induction, then either u; or u is equal to *. Hence u = », by (C3).

23

3. Then v = ujus and EVAL/(u2) results in a type error. Then by induction
uy = *. So by the restrictionson T, uy*» = * €T, so u = .

4. Then u = (ujus)uy and EVAL'(ujus) results in a type error. By induction,
then, u us» = * so by axiom scheme (E), u = ».

5. This cannot cause a type error.

6. Expressive Power

In this chapter, we study the expressive power of a particular language of the type
we have been discussing. In particular, we fix the constants and the set of equations
T, and ask what functions we can represent. Let the language LAM be the language
defined in chapter 2, with the following choice of constants: ’

ACon={n:n=0,1,2...}.
Con = {Succ}.

Let the language LAMj be the language LAM, without cond.
For both LAM and LAMj, the set of equations T will be

{Succn=n+1:n=0,1,2,...}.

Definition: Let f be an n-ary partial function over the natural numbers. We say that

[is numeral represented by a term u, if
" whenever f(i1,...,%2p) =7 then T b= uzj--4p =7,

and

whenever f(7),...,1,) is undefined then T b~ ui;. - 4, = j, for any j.

Definition: The Church numeral n is defined as follows:
0=\ z.z
n=)\f)\z.f(")z, forn > 0.

We also define what it means for a term to Church-represent a partial function: simply

replace ¢ By 1 in the above definition.

Theorem 6.1: The Church-representable partial functions are exactly the partial

recursive functions.

24

Proof: Sce Barendregt [BARSO).
We show that we can translate between n and n using termns, and therefore:

Theorem 6.2: The numeral represcntable partial functions are exactly the partial

recursive functions.

This follows after a few lemmas.

Lemma 6.3: ((BAR80]) There is a term Succ such that for all n, Succn =n +1.
Proof: An immediate corollary of Theorem 6.1. In fact the term
Ay Mz f(yfz),
will serve as Succ as is easily shown by induction. g
Lemma 6.4: ([BAR80]) There is a term Y (Curry’s Paradoxical Combinator) such that
for all u, Yu = u(Yu).
Proof: Y = M f(\z.f(zz))(\z.f(zz)), since

Yu = (\z.u(zz))(Az.u(zz)) = u((Dz.u(zz))(Mz.u(22))) = u(Yu). 8

Lemma 6.5: There is a term Pred such that for allm > n >0,
ThHPredmrn=m-—1.
Proof: We can write a recursive definition for Pred as follows:
Pred zy = cond z(Succ y)y(Pred z(Succ y)) -

In “programming” terms, we check if z is the successor of y, if it is we return y, if not
we increment y and try again. The program must halt if z > y. Writing the above

equation another way, we get

Pred = (\f Az \y.cond z(Succ y)y(fz(Succ y)))Pred .

Then by the previous lemma, the term

Pred = Y(A\f Az \y.cond z(Succ y)y(fz(Succ y)))

25

will behave as desired, as can be checked by induction. 3

Lemma 6.6: There are LAM terms u and v such that for all n

THun=nand Tl vn=n.
Proof: The term v is simply Az.z8Succ0, since then

vn = nSucc 0 = Succ™0 = n.

I3

The term u is more complicated. Again, we write a recursive deﬁni;ion:
uz = cond z0(0)(Succ(u(Predz))),
or equivalently,
u = (\f Az.cond z0(0)(Suce(u(Predz))))u
so again we see that
u = Y (\f Az.cond z0(0)(Succ(u(Predz))))

will work, as can be verified by induction. §

Proof of Theorem 6.2: Let f be an m-ary partial recursive function. Then by

Theorem 6.1 there is a term h which Church-represents f. Let u and v be as in the

preceding lemma. The the following term will represent f:

Az1- - Zo.v(h{uzy) - (uzy)) .

By switching the roles of u and v we can show that every representable function is

Church-representable. g

So using LAM, we can represent all the numeric functions that we can hope the

represent. We explore now, what the situation is if cond is not allowed, that is, what

functions are representable by terms of LAMg.

Definition: Let 7" be the function of n arguments whose value is the ith argument,

i.e.

(T,) = T4

26

For all natural numbers =, let a,, be the function of one argument that adds n to its

argument, and let &, be the function of one argument who value in n, i.c.

an(z) =2z +n

kuz)=n.

Let w be the unary function that is undefined everywhere.

Lemma 6.7: The functions wo #?, k,, o 7}, and a,, o 7} are represe—ntablc by LAMy

terms, for all natural numbers m, n, and 7 with 1 < ¢ < n.

Proof: First note that if an n-ary function f is represented by a term F, and a unary
function g is represented by a term G, then the n-ary function g o f is represented
by Az.G(Fz). Hence it suflices to show that the functions n?, w, kn, and a, are all
representable. But # is represented by \z;:--zg.z;, ky i8 represented by A\z.n, a, is

represented by Az.Succ™z, and w is represented by ((Az.zz)(\z.zz)).

We will show that these simple functions are all the functions that can be rep-
resented by terms of LAMy. To do this we must analyze the nature of reductions.

Let R’ be the notion of reduction R above, restricted to terms of LAMy, i.e., R =
RsUREURr.

Lemma 6.8: Let R, ; = RgU Ry;. If there are term u and v of LAM, such that
u —p v, then there exists a term w, such that u =%, w and w —7 v, in other

words, we may postpose T-reduction to the very last.

Proof: We will show that T-reduction can be “moved past” the other two types of

reduction, i.e., if

W) —T W2 —g W3
then there is a term w4 such that

w) —g W4 —T W3,

and similarly for Ry;. In other words if a T-reduction occurs before cither a f-reduction
(or an E-reduction), then we can replace those two reductions by a S-reduction (E-
reduction respectively) followed by a T-reduction. To see this, note that a T-reduct

is a single constant, therefore cannot contain a S-redex or an E-redex. Therefore any

27

B-redexes or F-redexes in the reduced term must be disjoint with the original T-redex,

so the reductions could have been carried out in reverse order. 1§

Definition: Let ¢;,¢s,... be new constants of ACon. A term which includes these
constants is said to be a generalized term. If u is a generalized term and f is any total
unary function on the natural numbers then we write f(u) to mean the term of LAM,
which results from u by replacing each constant ¢; by f(z). If f(u') = u for some f

then we say that u’ generalizes u.

Lemma 6.9: Let f be a total unary function on natural numbers.
(i) If (u,v) € R_r then (f(u), f(v)) € R-7.
(ii) If u —_7 v then f(u) =7 f(v).
(iii) If u =% v then f(u) =2y f(v).
Proof: It suffices to show (i). For then, if u —_7 v then there is a context C[] such
that u = C[ug], v = C|[vp), and (ug,vo) € R-r. But then by (i), (f(o), f(vo)) € R-r
and since f(u) = f(C)[f(uo)] and f(v) = f(C)[f(vo)] we have that f(u) —-r f(v),

showing (ii). To show (iii), we procced by induction using (ii).

To show (i), we proceed by cases. If (u,v) € Rg, then u is of the form cug where
¢ € ACon U{#*}, and v = *. Then f(u) is of the form ¢'f(ug), where ¢’ is either c or a
new constant ¢;, and f(v) = ». But as ¢; € ACon, we again have (f(u), f(v)) € Rg.

If (u,v) € Ry, then u = (Az.ug)vg, v = [vo/zjug. But then f(u) = (Az.f(uo))f(vo) and
f(v) = [f(v0)/2]f(uo). Hence, (f(u), f(v)) € Rg. ¥ |

Lemma 6.10: Suppose u and v are LAMj terms, f is a total unary function on
natural numbers and f(u') = u. Then:
(i) If (4, v) € R~ then there exists a term v' such that f(v') = u and (¥/,¢') € R-r.
(ii) If u —_7 v then there exists a term v’ such that f(v') =u and v’ =1 v

(iii) If u —* 1 v then there exists a term v’ such that f(v') = u and u' =27 v".
Proof: Again, by a similar argument it suffices to prove (i). We show (i) by cases.

If (u,v) € Ry then v = * and u is of the form cuq, where ¢ € ACon U{+}. Then u
must be of the form ¢'uf), where f(up) = ug and ¢’ is either c or some new ctonstant c;.

Let v = *. Since ¢; € ACon, in either case we have (v/,v') € R, and f(v') = v.

28

If (u,v) € Ry, then u = (Az.ug)vy, and v = [vo/2)ug. Then u' must be of the form
(\z.u{)vg, where f(uy) = uy and F(vh) = vg. Let o' = [v}y/z]ufy. Then (v/,v') € Ry

and f(v')=v. 1

Theorem 6.11: The functions won?, k,, 07", and a,, o=, for all natural numbers m,

n, and ¢ with 1 < 7 < n, are the only functions representable by LAMy terms.
Proof: Suppose an n-ary function g is represented by a LAMg term G.

Case 1: ¢(0,...,0) is undefined. Then GO-- -0 does not reduce to a numeral. Suppose
g(i1,.--,%n) = m for some (i1,...,%n). Then Gi}-- iy reduces to m. Then by Lemma
6.8 there is a term w such that
Gij- -1y =27 w and
worm.

But since the only T-reduction is of the form Succn = n +1, the term w must be
of the form Succ?)i for some natural numbers p and z", such that p + 7 = m. Define
functions f; and f2 on natural numbers by fi(z) = z, fa(z) = 0. Consider now the
term G' = Gc;,---¢;,. Then fi(G') = Gij--ip. By Lemma 6.10 there is a term w'
such that G' —* ' and fi(u') = Succ®;. Then w' is either Succ®)s or Succ®e;. By
Lemma 6.9, fo(G') —-1 fo(w'). But f2(G') = GO---0, and fa(w') is either SuccPs or
S_gs;_c(”)Q, contradicting the fact that GQ---0 does not reduce to a numeral. Hence g is

undefined at all argument, so is equal to w o 7} for any 1.

Case 2: ¢(0,...,0) = m. Then GQ-- -0 reduces to m. As before, this means that there

is a term w such that

GQ-- 0 =27 w and
w—rTm,

which means that w is Succ®i. Let G' = Gep---¢,. Then fp(G') = GO---0. By
Lemma 6.10, there is a term w' such that fa(w') = w and Ge;---¢p =57 w'. But w'is

then either Succ®; or if ¢ = 0, w' can be Sgg_c(”)cj, for some j, where 1 < 7 < n.

Now consider g(i1,...,%n). Let f3 be defined by fi(z) = 2, for z = 1,...,n,
otherwise anything at all. Then f3(G') = Gi;---ty. Then be Lemma 6.9, we must

have G1- - iq =21 f3(w').

If w' = Succi, then fy(w') = Suce™y, so g(z),...,3,) = 1. Hence we have shown
q)

that g is the function k; o 77 for any j.

Otherwise v’ = S_ch_c(")cj. But then f3(vw') = Sucg(")ii- Hence g(z1,...,%:) = ¢; + p,

so g is the function g, 0 7r_?,-’.]

7. Conclusion

The result of all of the above is that we have achieved a harmonious match
between a proof system for equality, a denotational semantics and an evaluator. The
completeness theorem tells us that a match exists between syntax and semantics: our
proof system proves exactly those equations which are valid in all models. Also, the
axioms match the evaluator: the proof system proves equations u = v, where v is a
numeral iff the evaluator can drive u to v, also, a *-free term u is provably equal to
*, iff the evaluator encounters a run-time time error during the evaluation of u. Thus,

the intuituion of * as a notation for run-time type errors is justified.

One would like, at this point, to begin to make extensions to the language, while
trying to keep this match intact. There are several ways to extend. Of course, the
Normalization Claim needs to be proved, and beyond thaf., there is the question of how
to lift the restrictions on T (i.e. the simpleness restrictions) in such a way that leads
to a Church-Rosser reduction system, and an evaluator which behaves properly with
respect to ». For instance we might want to allow equations of the form cje3...¢q4 = ¢

into T, to better model functions that take more than one argument.

Another extension is to examine systems where the atomic elements have some
structure. For example, in LISP, lists of atoms, such as (3 4 5) are terms which should
behave like numerals with respect to application. Another structure construct that
would be useful is Cartesian product. However, it is a result of Klop [BARS80] that the

usual axioms for surjective pairing:

left pairzy =z
right pairzy =1y
pair (left z)(right z) =z

30

are not Church-Rosser, when combined with (3). It is not completely clear however,
whether or not it is possible to devise a Church-Rosser reduction system whose theory

of equality is the same as that of () plus the surjective pairing axioms.

Another direction is to look at systems that have some machinery to tell atoms
from non-atoms. The cond construct almost does the trick, but not quite. Let u =
Az.cond zzyy; if we apply u to a numecral we will get back y, while if we apply u to
a A-abstraction we will get *. If we apply it something that is neither a numeral nor
a \-abstraction, the result will depend on how strong the T-axioms are, i.e. how few
applications are normal forms. Still, if we apply it to something whose evaluation

doesn’t terminate then we get no information.

Another construct that we might consider is

case uvjvy .

This construct comes up when we are considering models that are disjoint sums, i.e. if
we are given a domain A of atoms, we seek a domain D such that D = A+ (D — D).
The intended meaning of case uvjvs is

vi(a), if u = inl(a), for some a € A,

va(f), if u = inr(f), for some f € (D — D),

where inl and inr are the injections into D from A and (D — D), respectively.
However, we may also run into Church-Rosser difficulties here, since the desired axioms
for case:
case(inl z) fg = fz

case(inr z) fg = gz

casez(hoinl)(hoinr) = hz

are very similar to those for surjective pairing, if fact, they are the category theoretic

dual.

If in fact the surjective pairing axioms, and the case axioms cannot be captured
by a Church-Rosser reduction system in the untyped A-calculus, work needs to be done
on how these axioms can be weakened to yield Church-Rosser systems that still capture

the “intuition” of pairing and case.

31

References

[BARSO] Barendregt, H. P.
“The Lambda Calculus — Its Syntax and Semantics”
Studies in Logic 103, North-Holland, 1981

[BCD] Barendregt, H. P., Coppo, M., and Dezani-Ciancaglini, M.
A filter lambda model and the completeness of type assignment
Journal of Symbolic Logic, to appear

[KANT29] Kant, L
“Critique of Pure Reason”
MacMillan & Co., 1929

[LEVYS80] Lévy, J. J.
Optimal Reductions in the Lambda-Calculus
To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus

and Formalism
J.P. Seldin, J.R. Hindley, ed., 159-191, Academic Press, 1980

[MEYERS82] Meyer, A. R.
What is a model of the lambda calculus?
Information and Control, 52, 87-122,1982

[MILNER77] Milner, R.
Fully abstract models of typed \-calculi
Theoretical Computer Science, 4, 1-22, 1977

[MILNER78] Milner, R.
A theory of type polymorphism in programming
Journal of Computer and System Sciences, 17, 348-375, 1978

[PLOTKIN75] Plotkin, G. D.
Call-by-name, call-by-value, and the lambda calculus
Theoretical Computer Science, 1, 125-159, 1975

[PLOTKIN77] Plotkin, G. D.
LCF considered as a programming language
Theoretical Computer Science, 5, 223-255, 1977

[ScoTT76] Scott, D. S.
Data types as lattices
SIAM Journal on Computing, 5, 522-587, 1976

ScoTT81] Scott, D. S.

Lectures on a mathematical theory of computation
Oxford Univ. Computing Lab., Tech. Mono. PRG-19, 1981

32

[STOYTT] Stoy, J. E.

“Denotational Semantics: The Scott-Strachey Approach to Programming
LLanguage Theory”

MIT Press, Cambridge MA, 1977

[(WANDS41] Wand. M.

What is LISP?
American Mathematical Monthly, 91, 9, 1984

33

