MIT/LCS/TR-360 \blacksquare INTELLIGENT PHYSIOLOGIC MODELING Robert Kunstaetter, M.D. April 1986 ## AN APPLICATION OF THE PROPERTY April 1516 The entire handy provide MLT and the State of o This manual property of the second se This empty page was substituted for a blank page in the original document. # ANAPPLEA SERVICE SERVI #### ABSTRACT Thesis Supprvisors: Principles Dr. G. Charles Keywoods: Additional Control of the This empty page was substituted for a blank page in the original document. ## Acknowledegements #### I would like to thank: - My wife Daisy, for everything. - My supervisors, Peter Szolovits and Octo Barnett, for their guidance, encouragement, and patience. - Ethan Foster, Judy Piggins, and Julie Kozaczka of the New Pathway instructional technology and programming staff, for their assistance in distributing KBPMS. - Dr. Martin Kushmerick, director of the "Matter and Energy" segment of the New Pathway Curriculum, for his help with the evaluation experiment. - The New Pathway students who participated in the evaluation experiment and provided their comments concerning KBPMS. - The various funding agencies who have supported this project and, in particular, the Medical Research Council of Canada (and the Canadian Taxpayers!) without whom this phase of my education would not have been possible. - All of my colleagues at the Massachusetts General Hospital Laboratory of Computer Science and the Massachusetts Institute of Technology Clinical Decision Making Group, and especially Mike Wellman for sharing his office and his friendship. This empty page was substituted for a blank page in the original document. | 3.1. Design 3.2. Implementation 3.3. Evaluation 4. Methods 4.1. Definitions 4.2. Knowledge Representation 4.3. Qualitative Values and Operators 4.4. Algorithms 4.5. Evaluation Techniques 5. Results 5.1. The Prototype Implementation 5.2. The Final Implementation 5.3. Evaluation Results 6. Discussion 6.1. The Strangiles of KRPMS 6.2. The Westerness of KRPMS 6.3. The Evaluation Results 6.4. Directions for Patrick 6.5. Non-Technique Residence 6.6. Non-Technique Residence 6.7. Summary and Constitutions 6.8. References Appendix E. The Respiratory Model Appendix E. Intersections for ERPMS | 81 | | Table o | C | | V. Evaluation | | |--|--------|--|---|----------|---------------|--
--| | 1.1. Medical Education: Past and Present 1.2. The Harvard New Publicany 1.3. The Role of Influenciation Scalescing 1.4. Intelligent Published Work 2. Rectgrained and Edited Work 2.1. Computer Applications to Education 2.2. Computer Stand Physiologic Modelin 3. Project Greater 3.1. Durin 3.2. Implementation 3.3. Evaluation 4. Methods 4.1. Definitions 4.2. Knowledge Representation 4.3. Qualitative Values and Operators 4.4. Algorithms 4.5. Evaluation Techniques 5. Results 5.1. The Prototype Implementation 5.2. The Final Implementation 5.3. Evaluation Results 6. Discussion 6.1. The Strengths of KDPA65 6.2. The Westmanns of KDPA65 6.3. The Evaluation Equipment 6.4. Discussion 6.5. Non-Technical Implement 6.5. Non-Technical Implement 6.5. Non-Technical Implement 6.7. Summany and Constitutes 6.8. Appendix I. The Respictations of this Project 7. Summany and Constitutes 6.9. Appendix I. The Respictations of EDPA65 | įţ | | | | 8830 0 | VI. Student Co | Аррениях | | 1.2. The Place of Information Technology 1.3. The Robe of Information Technology 1.4. Intelligent Physiologic Modeling 2. Recognised and Reliant State 2.1. Computer Applications to Education 2.2. Computer Resid Physiologic Modeling 3. Project Greenless 3.1. Design 3.2. Implementation 3.3. Evaluation 4. Methods 4.1. Definitions 4.2. Knowledge Representation 4.3. Qualitative Values and Operators 4.4. Algorithms 4.5. Evaluation Techniques 5. Results 5.1. The Prototype Implementation 5.2. The Final Implementation 5.3. Evaluation Results 6. Discussion 6.1. The Strongths of KEPMS 6.2. The Westmann of KEPMS 6.3. The Evaluation Equitions 6.4. Directions for Parison Work 6.5. Non-Technical Implementation 5.7. Summary and Coordinates References Appendix E. The Respiratory Medal | | 1. Introduction | | | | | | | 1.2. The Place of Information Technology 1.3. The Robe of Information Technology 1.4. Intelligent Physiologic Modeling 2. Recognised and Reliant State 2.1. Computer Applications to Education 2.2. Computer Resid Physiologic Modeling 3. Project Greenless 3.1. Design 3.2. Implementation 3.3. Evaluation 4. Methods 4.1. Definitions 4.2. Knowledge Representation 4.3. Qualitative Values and Operators 4.4. Algorithms 4.5. Evaluation Techniques 5. Results 5.1. The Prototype Implementation 5.2. The Final Implementation 5.3. Evaluation Results 6. Discussion 6.1. The Strongths of KEPMS 6.2. The Westmann of KEPMS 6.3. The Evaluation Equitions 6.4. Directions for Parison Work 6.5. Non-Technical Implementation 5.7. Summary and Coordinates References Appendix E. The Respiratory Medal | | 1.1. Medical Education: Pag | t and Press | A | | | | | 1.4. Intelligent Physicians to Education 2. Recognized and Related Stack 2.1. Computer Reset Physiologic Modeling 3. Project Greatlew 3.1. Design 3.2. Implementation 3.3. Evaluation 4. Methods 4.1. Definitions 4.2. Knowledge Representation 4.3. Qualitative Volume and Operators 4.4. Algorithms 4.5. Evaluation Techniques 5. Results 5.1. The Prototype Implementation 5.2. The Final Implementation 5.3. Evaluation Resets 6. Discussion 6.1. The Strengths of KNPAS 6.2. The Westmann of RDPAS 6.3. The Evaluation Explanation 6.4. Directions for Explanation 6.5. Non-Technical Explanation of this Project 7. Summany and Constitution References Appendix E. Englanders Stocks | | 1.2. The Harvard New Pusts | | | | | | | 2. Recording and Religion State 2.1. Computer Applications to Education 2.2. Computer States Physiologic Modeling 3. Project Giverstor 3.1. Design 3.2. Implementation 3.3. Evaluation 4. Methods 4.1. Definitions 4.2. Knowledge Representation 4.3. Qualitative Volume and Operators 4.4. Algorithms 4.5. Evaluation Techniques 5. Results 5.1. The Prototype Implementation 5.2. The Final Implementation 5.3. Evaluation Results 6.1. The Strengths of KNPAS 6.2. The Westmann of Religion 6.4. Discussion 6.5. Non-Technical Engineerment 6.5. Non-Technical Engineerment 6.7. Summany and Coordination 7. Summany and Coordination 8. References Appendix I. The Respiratory States II. Resp | | | | | | | | | 2.1. Computer Applications to Etherstee 2.2. Computer Stand Psychologic Methods 3. Project Greener 3.1. Design 3.2. Implementation 3.3. Evaluation 4. Methods 4.1. Definitions 4.2. Knowledge Representation 4.3. Qualitative Values and Operators 4.4. Aspections 4.5. Evaluation Techniques 5. Results 5.1. The Prototype Implementation 5.2. The Final Implementation 5.2. The Final Implementation 6.1. The Strangths of KEPMS 6.2. The Westmanns of Etherstee 6.3. The Evaluation Results 6.4. Directions for Palmes Work 6.5. Non-Technical Implementation 7. Summary and Constitution References Appendix Ethersteelism for EEPMS | | 1.4. Intelligent Physicingle I | | | | | | | 2.2. Company Remis Physiologic Modeling 3. Project Georges 3.1. Design 3.2. Implementation 3.3. Resistation 4. Methods 4.1. Definitions 4.2. Knowledge Representation 4.3. Qualitative Values and Operators 4.4. Algorithms 4.5. Evaluation Techniques 5. Results 5.1. The Prototype Implementation 5.2. The Final Implementation 5.3. Evaluation Results 6. Discussion 6.1. The Strengths of KRPMS 6.2. The Westmann of KRPMS 6.3. The Evaluation Results 6.3. The Evaluation Results 6.4. Directions for Public Work 6.5. Non-Technical Implications of this Project 7. Summary and Conclusions References Appendix E. The Respiratory Model Appendix E. The Respiratory Model Appendix E. Interpolation for ERPHOS | | 2. Rectyrent and Refer No. | | | | | | | 2.2. Company Remis Physiologic Modeling 3. Project Georges 3.1. Design 3.2. Implementation 3.3. Resistation 4. Methods 4.1. Definitions 4.2. Knowledge Representation 4.3. Qualitative Values and Operators 4.4. Algorithms 4.5. Evaluation Techniques 5. Results 5.1. The Prototype Implementation 5.2. The Final Implementation 5.3. Evaluation Results 6. Discussion 6.1. The Strengths of KRPMS 6.2. The Westmann of KRPMS 6.3. The Evaluation Results 6.3. The Evaluation Results 6.4. Directions for Public Work 6.5. Non-Technical Implications of this Project 7. Summary and Conclusions References Appendix E. The Respiratory Model Appendix E. The Respiratory Model Appendix E. Interpolation for ERPHOS | | 2.1. Computer Amiliantese | to Edwards | | | | | | 3.1. Design 3.1. Design 3.2. Implementation 3.3. Evaluation 4. Methods 4.1. Definitions 4.2. Knowledge Representation 4.3. Qualitative Values and Operators 4.4. Algorithms 4.5. Evaluation Techniques 5. Results 5.1. The Prototype implementation 5.2. The Final implementation 5.3. Evaluation Results 6. Discussion 6.1. The Strengths of KRPMS 6.2. The Westerstein Experiment 6.3. The Evaluation Results 6.4. Directions for Final Work 6.5. Non-Technical Implement 6.5. Non-Technical Implement 6.6. Strengths of KRPMS 6.7. Summery and Constitutions 6.8. Results 6.9. Re | | | | | | | 1 | | 3.1. Datign 3.2. Implementation 3.3. Evaluation 4. Methods 4.1. Definitions 4.2. Knowledge Representation 4.3. Qualitative Values and Operators 4.4. Algorithms 4.5. Evaluation Techniques 5. Results 5.1. The Prototype Implementation 5.2. The Final Implementation 5.3. Evaluation Results 6. Discussion 6.1. The Strangths of KNPAS 6.2. The Westmann of KNPAS 6.3. The Evaluation Systematic 6.4. Directions for Flature Work 6.5. Non-Technical Implementation 7. Summary and Conclusion References Appendix I. The Respiratory Model Appendix II. Interpolation for ERPMS | | | | | | | | | 3.2. Implementation 3.3. Evaluation 4. Methods 4.1. Definitions 4.2. Knowledge Representation 4.3. Qualitative Volume and Operators 4.4. Algorithms 4.5. Evaluation Techniques 5. Results 5.1. The Prototype Implementation 5.2. The Final Implementation 5.3. Evaluation Results 6. Discussion 6.1. The Strengths of KNPAS 6.2. The Westassum of KNPAS 6.3. The Evaluation Equations 6.4. Directions for Pattern Work 6.5. Non-Technique Equations of this Project 7. Summary and Constitutions References Appendix E. The Respiratory Model Appendix E. The Respiratory Model Appendix E. Interpolation
for ERPAS | | 31 P. 20 A. | | | | | | | 3.3. Evaluation 4. Methods 4.1. Definitions 4.2. Knowledge Representation 4.3. Qualitative Values and Operators 4.4. Algorithms 4.5. Evaluation Techniques 5. Results 5.1. The Prototype implementation 5.2. The Final implementation 5.3. Evaluation Results 6. Discussion 6.1. The Strangths of KRPAS 6.2. The Weeknessen of KRPAS 6.3. The Evaluation Equipment 6.4. Directions for Expense Work 6.5. Non-Technical implications of this Project 7. Summary and Constitution References Appendix E. The Respiratory Model Appendix E. The Respiratory Model Appendix E. Intersections for EXPASS | | | | | | and the state of t | | | 4.1. Definitions 4.2. Knowledge Regressentation 4.3. Qualitative Values and Operators 4.4. Algorithms 4.5. Evaluation Techniques 5. Results 5.1. The Prototype Implementation 5.2. The Final Implementation 5.3. Evaluation Results 6. Discussion 6.1. The Strangths of KDPMS 6.2. The Westerman of KBPMS 6.3. The Evaluation Especiations 6.4. Directions for Plating Work 6.5. Non-Technical Implications of this Project 7. Summary and Constitution References Appendix I. The Respiratory Model | | · · · · · · · · · · · · · · · · · · · | | | | | | | 4.1. Definitions 4.2. Knowledge Representation 4.3. Qualitative Values and Operators 4.4. Algorithms 4.5. Evaluation Techniques 5. Results 5.1. The Prototype Implementation 5.2. The Final Implementation 5.3. Evaluation Results 6. Discussion 6.1. The Strengths of KNPMS 6.2. The Westmann of KNPMS 6.3. The Evaluation Results 6.4. Directions for Factor Work 6.5. Non-Technical Implementation 7. Summore and Constitutions References Appendix E. The Resultatory Model Appendix E. Internations for ENPAS 88 | | | | | | | | | 4.2. Knowledge Representation 4.3. Qualitative Values and Operators 4.4. Algorithms 4.5. Evaluation Techniques 5. Results 5.1. The Prototype implementation 5.2. The Final Implementation 5.3. Evaluation Results 6. Discussion 6.1. The Strengths of KNPMS 6.2. The Westments of KNPMS 6.3. The Evaluation Reputs 6.4. Directions for Prototy 6.5. Non-Technical Implementation 7. Summary and Constitutions of this Project 7. Summary and Constitution 8. References Appendix E. The Respiratory Model Appendix E. Intersections for ENPMS | | 4.1. Definitions | | | | | | | 4.3. Qualitative Values and Operators 4.4. Algorithms 4.5. Evaluation Techniques 5. Results 5.1. The Prototype implementation 5.2. The Final implementation 5.3. Evaluation Results 6. Discussion 6.1. The Strangths of KRPMS 6.2. The Westmann of KRPMS 6.3. The Evaluation Espiratures 6.4. Directions for Plating Work 6.5. Non-Technical Implications of this Project 7. Summary and Constitution References Appendix I. The Respiratory Nacks 6.5. Appendix II. III. N | | the second control of | lana . | | | | | | 4.4. Algorithms 4.5. Evaluation Techniques 5. Results 5.1. The Prototype Implementation 5.2. The Final Implementation 5.3. Evaluation Results 6. Discussion 6.1. The Strengths of KDPMS 6.2. The Westments of KDPMS 6.3. The Evaluation Results 6.4. Directions for Fusion Work 6.5. Non-Technical Implement of this Project 7. Summary and Constitutions References Appendix 1. The Respiratory Model Appendix 1. The Respiratory Model Appendix 1. The Respiratory Model | | | | | | | | | 4.5. Evaluation Techniques 5. Results 5.1. The Prototype implementation 5.2. The Final Implementation 5.3. Evaluation Results 6. Discussion 6.1. The Strangths of KBPMS 6.2. The Westmann of KBPMS 6.3. The Evaluation Equiphent 6.4. Directions for Results 6.5. Non-Technical Implementations of this Project 7. Summary and Constitutions References Appendix I. The Respiratory Model Appendix II. The Respiratory Model 6.5. Appendix II. The Respiratory Model | | | | | | | | | 5.1. The Prototype Implementation 5.2. The Final Implementation 5.3. Evaluation Results 6. Discussion 6.1. The Strangths of KDPMS 6.2. The Westmann of KDPMS 6.3. The Evaluation Equipment 6.4. Directions the Parame Work 6.5. Non-Technical Implications of this Project 7. Summary and Constants References Appendix 1. The Respiratory Model 6.4. Appendix 1. The Respiratory Model 6.5. Appendix 1. The Respiratory Model 6.6. Appendix 1. The Respiratory Model | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | ut un e | | | 5.1. The Prototype Implementation 5.2. The Final Implementation 5.3. Evaluation Results 6. Discussion 6.1. The Strengths of KRPMS 6.2. The Weaksesses of KRPMS 6.3. The Evaluation Especiations 6.4. Directions for Factor Work 6.5. Non-Technical Implications of this Project 7. Summary and Constitution References Appendix I. The Respiratory Model Appendix II. The Respiratory Model | | 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 | | | | | | | 5.2. The Final Implimentation 5.3. Evaluation Reads 6. Discussion 6.1. The Strangelis of KRPMS 6.2. The Westerman of KRPMS 6.3. The Evaluation Residence 6.4. Directions for Flaton West 6.5. Non-Technical Implications of this Project 7. Summary and C. References Appendix L. The Residentary Madel Appendix L. The Residentary Madel | | 5.1. The Protestyne Implemen | station | | | | | | 5.3. Evaluation Results 6. Discussion 6.1. The Strangths of KDPMS 6.2. The Weststein of KDPMS 6.3. The Evaluation Experies 6.4. Directions for Plates Work 6.5. Non-Technical Institutions of this Project 7. Summary and Constants References Appendix I. The Respiratory Model Appendix II. The Respiratory Model Appendix II. The Respiratory Model | 545.77 | | | | | | | | 6.1. The Strengtiss of KRPMS 6.2. The Weststream of KRPMS 6.3. The Evaluation Superiment 6.4. Directions for Patron Work 6.5. Non-Technical Insultantons of his Project 7. Summore and Countries References Appendix I. The Respiratory Model Appendix II. The Respiratory Model Appendix II. Instructions for KRPMS | 22 | | | | | | | | 6.1. The Strangths of KDPMS 6.2. The Westingson of KDPMS 6.3. The Evaluation Enjoyment 6.4. Directions for Planta Work 6.5. Non-Technical Implications of this Project 7. Summary and Countries References References Appendix I. The Respicatory Model Appendix II. She Respicatory Model | | A SAN | | | | | | | 6.2. The Westmeson of EDMAS 6.3. The Evaluation Superferent 6.4. Directions for Funce Work 6.5. New Technical Insultantons of this Project 7. Summore and Constants References Appendix I. The Respiratory Model Appendix II. Instruction for EDMAS | | 6.1. The Strengths of KRPM | | | | | | | 6.3. The Evaluation Region and 6.4. Directions for Places Week 6.5. Non-Technical Implications of this Project 7. Summary and Constant References References Appendix I. The Respiratory Model Appendix II. Instructions for EUCAS | | | | | | | | | 6.4. Directions for Plante Work 6.5. New Technical hapilications of this Project 7. Summon and Constitution References Appendix L. The Respiratory Model Appendix M. Instructions for REPOSES | | | | | | | | | 6.5. Non-Technical Implications of this Project 7. Summore and Constants References References Appendix I. The Respiratory Model Appendix II. Instrumetion for EUCHES | | | | | | | | | 7. Summorfund Conditions References Appendix I. The Respiratory Model Appendix II. Instructions for EUCAS | | 6.5. Nea-Technical builties | ons of this P | | | | And the second s | | References Approach: I. The Recolostory Model Approach: II. Its Recolostory Model Approach: II. Its Recolostory In Chicago | | 7. Summer and Summer | | | | | | | Appendix I. The Respiratory Model Appendix II. She Respiratory Model 81 | 4.7 f | the state of s | | | | | | | Appendix II. Instruction in Relates | | Appendix I. The Residentees Man | | | | | | | | | 그 그는 그림 그림 그림 그림 그를 하는 것을 하는 것이 얼마를 하는 것이 되었다. 그 살통으로 나를 다고 있다. | 57 P. C. L. | | | | The second second second | | Appendix III. Sample Manager 1 | | | | | | | | | Appendix IV, Builtantiny butteterments | | | | | | | | | Appendix V. Evaluation Raw Data | 119 | |---------------------------------|-----| | Appendix VI. Student Comments | 121 | ## **List of Figures** | HUMAN: A Numerical Model of Physiology | 11 | |---|---| | An Abstract View of CO. Elimination | 20 | | A More Detailed View of CO. Elimination | 21 | | The Mechanisms of CO. Elimination | 22 | | A Unified Representation of CO. Flimination | 23 | | A Parameter Frame | 26 | | | 28 | | | 29 | | | 31 | | The Respiratory Model Showing Influence Links | 32 | | The Respiratory Model Showing Taxonomic Links | 33 | | Semantics of the Qualitative Operators M+ and M- | 35 | | A Question Being Answered at Several Different Levels of Detail | 46 | | A Simulation Showing Mixed Numeric and Qualitative Canabilities | 47 | | An Incorrect Simulation | 51 | | | HUMAN: A Numerical Model of Physiology An Abstract View of CO ₂ Elimination A More Detailed View of CO ₂ Elimination The Mechanisms of CO ₂ Elimination A Unified Representation of CO ₂ Elimination A Parameter Frame A Process Frame Two State Frames A Model of CO ₂ Homeostasis by the Respiratory System The Respiratory Model Showing Influence Links The Respiratory Model Showing Taxonomic Links Semantics of the Qualitative Operators M+ and M- A Question Being Answered at Several Different Levels of Detail A Simulation Showing Mixed Numeric and Qualitative Capabilities An Incorrect Simulation | . ## **List of Tables** | Table 1-1: | The New Pathway: Foundations of Lifelong Professional Competence | 4 |
-------------------|--|----| | Table 1-2: | Proposed Software Modules for the New Pathway | f | | Table 5-1: | Summary of Quiz Scores | 43 | This empty page was substituted for a blank page in the original document. #### 1. Introduction This thesis describes a research project which applies knowledge based modeling techniques from artificial intelligence technology to certain aspects of medical education. In order to set the stage for details of the project, this chapter relates the recent history of medical education and the nature of some problems found by this field. It introduces the Harvard New Pathway, the larger educational experiment of which this project is a part. It explains the role played by information technology in general and by knowledge based physiologic modeling, in particular, in the New Pathway and how they support its overall goals. #### 1.1. Medical Education: Past and Present in water to the be The system of undergraduate² education currently in use at most North American medical schools is the product of an ongoing evolutionary process dating back to the Middle Ages [1]. This evolution has often been discrete, rather than continuous, and the present character of medical education has remained virtually unchanged since the beginning of this century. In contrast to this stasis of medical pedagogic technique, the character of medical practice and the scope of medical knowledge have changed drastically over the same period of time. The resulting asynchrony has been the source of important problems. Eighty years ago, the goal of medical education was to prepare the majority of students for solo general practice [2]. It could, and did, reasonably accomplish this goal by imparting to medical students a circumscribed body of knowledge (the Basic Science curriculum) and by engaging them in the intensive apprenticaship experience of clinical clerkships and internship. The graduates of such an education were well prepared for competent practice throughout their professional lifetimes, as the knowledge which they had learned remained largely valid for that period. ² Premedical education refers to studies leading to a baccalaureate level degree before entering medical school. Undergraduate medical advention is the three or folio years of smaller under just the betaking in M.D. The internship, residency, and followship training which follows is smaller and published midded expection. The principles of structure and function of the human body in health and thicket, as conveyed by the sciences of Anatomy, Histology, Biochemistry, Physiology, Pathology, Pharmacology, etc. The systematic introduction of the Basic Sciences into blooth Acadital medical administration and free equintum change in this field. It was inspired by the now famous filex nor Replace 13, pathology of the converge to this field. The volume of medical knowledge is now a thousand times as large as it was in 1900 and, like other scientific knowledge, it continues to grow at an exponential rate [4]. Yet traditional undergradurate medical education remains committed to imparting the mass of basic and clinical sciences to its students, greatly exceeding their capacity to incorporate this knowledge in a very limited time span (usually the first two years of medical school). Even if medical students were to somehow absorb all this material, it would not serve them well, as large areas are certain to obsolesce rapidly. Thus a system of undergraduate education designed to impart professional knowledge of all medical science, which will last a lifetime, is no longer feasible. Today, most physicians pursue specialty and subspecialty training after receiving their M.D. degrees⁴ [2]. An alternative view of medical training, which is consonant with this present day reality, regards the undergraduate years as a period of general professional education, the initiation to a lifelong process of learning and development which is a prerequisite for competent clinical practice. This view has long been advocated by members of the education community [5, 6], but has not had a significant impact on medical school curricula. More recently, the Association of American Medical Colleges has called for a major reform of undergraduate medical education along precisely these lines in the GPEP Report⁵ [7]. If traditional medical education has become ineffectual by virtue of its emphasis on rapidly imparting a huge body of knowledge, what does the approach of general professional education offer as an alternative? Simply stated, the alternatives to direct knowledge acquisition are attitudes and skills which will encourage and equip physicians to maintain a lifelong learning process, in order to cope with the explosive growth of medical knowledge. A fundamental requirement of such lifelong self-education is an active role on the part of the learner. This too is in contrast to standard medical pedagogic practice, whereby students are the object of countless hours of lectures, demonstrations, and audio- Note that this too is (at least in part) a consequence of the volume burden and rapid growth rate of medical science, as physicians strive to attain comprehensive knowledge of at least use until domain. This trend toward increasingly narrow specialization has already caused severe fragmentation of the process of medical care and, if unchecked, is likely to further accelerate this phenomenon is the future. Published 74 years after the Flexaer Report, the GPEP Report is expected to be a harbinger of equally great change. However it is much 190 soon to assess whether such change has indeed began to occur: visual or computer based tutorials which they are expected to incorporate, integrate, and regurgitate in rapid succession. #### 1.2. The Harvard New Pathway Motivated by the issues discussed above, Harvard Medical School has initiated an experimental undergraduate medical education program, the New Pathway [8]. The developers of the New Pathway have proposed a specific set of attitudes, skills, and knowledge which would prepare students for lifelong professional learning. The principal categories of these are shown in Table 1-1. The goal of the New Pathway curriculum is to provide an environment where the student can acquire these attitudes, skills, and knowledge. The detailed structure of the New Pathway curriculum and the criteria by which it will be evaluated are beyond the scope of this thesis. However, it is pertinent to note that the New Pathway is a major undertaking, drawing resources from diverse sectors of the Harvard educational community. The curriculum has been under divelopment since July 1982 by a faculty of approximately 30 persons, with extensive input from medical students. In September 1985, the first New Pathway group, consisting of 24 of Harvard's 165 member first year medical class, was selected⁶. This group, known as the Oliver Wendell Holmes Society, has its own fectures, tutorials, and laboratory exercises and the coarse material is studied by system rather than discipline⁷. Clinical exposure begins in this first year, and cases are the motivation for and focus of Basic Science learning. The 24 students are divided into four tutorial groups and there is a strong emphasis on teamwork and cooperative learning within these. To date, the New Pathway students, faculty, and staff have been enthusiastic about their experimental program and appear to have developed a very good rapport with each other. ⁶Each newly accepted medical student was given the opportunity to volunteer for the New Pathway. There were 70 volunteers from among the 165 students, and of these, 24 were selected by the New Pathway faculty. ⁷For example, the anatomy, histology, biochemistry, and physiology of the cardiovascular system are studied as a single block rather than being divided among sections of four different courses. #### 1. Attitudes: - a. Attitudes toward patients and colleagues. - b. Attitudes toward society at large. - c. Attitudes toward learning. And the towards and the term - d. Attitudes toward one's self. #### 2. Skills: - a. Acquiring information from and about patients. - b. Obtaining, retrieving and storing information. - c. Working effectively with one's peers and the Realth care team. - d. Communicating effectively with patients, families, and colleagues. y a region with the wint o 1 15 13 474 Oct The state of the second of TR Add (1986年1917年 1986年) 编辑的文字编译的 (1987年 1987年) THE STATE OF THE PROPERTY OF THE STATE TH - e: Performing basic diagnostic and therapeutic procedures. - f. Problem solving. #### 3. Knowledge: - a. An understanding of the patient as a living being. - b. An understanding of the patient as an individual and social being. - c. An understanding of the principles of prevention and of therapeutic strategies. - d. An understanding of the statistical and probabilistic aspects of human biology and chalcal medicine. - e. An understanding of the complex texture of knowledge and the importance of detail. Table 1-1: The New Pathway: Foundations of Lifelong Professional Competence One aspect of the New Pathway's approach to and all discussion is a functionant commitment to exploit influencebre reduced a control faculty stephen for a part of the function of the control faculty stephen for a part of the faculty stephen for a part of the function of programs which has a functional program and reaction and the functional programs which has a functional program and reaction and the functional programs which has a functional program and the functional programs which has a functional program of the functional programs which has a functional program of the functional programs which has a functional program of the functional program of the function of the functional programs which has a functional program of the function t 6. Clinical Problem Solving Applications attempolate of star
American Applications of the Country Total The development is to interest to the state of the state of the path way graphs, and the state of o - 1. Vocabulary Building - 2. Computer-Stored Course Notes - 3. Bibliographic Reference Files - 4. Access to Data Bases - 5. Simulation of Biological Phenomena - 6. Clinical Problem Solving Applications - 7. Computer-Based Medical Records - 8. Computer-Based Test Bank Questions - 9. Personal Reference Files. Table 1-2: Proposed Software Modules for the New Pathway Georgia e disabble The development is being carried out by teams composed of members of the New Pathway faculty, members of the instructional technology and programming staff, post-doctoral fellows, and medical students taking elective rotations in educational technology. It is envisioned that the programs will be developed evaluated, and modified over several years of student use. ## 1.4. Intelligent Physiologic Modeling The hypothesis which motivated this project is that certain elements of artificial intelligence and knowledge based systems technology might be fruitfully applied in the construction of Module 5, Simulation of Biological Phenomena, with additional relevance to several other categories listed in Table 1-2. Specifically, my goal was to build an intelligent physiologic modeling system for use in this module. This system was to be intelligent by virtue of domain specific knowledge which was encoded into models of different aspects of human physiology. Its value as a pedagogic tool was to be a consequence of its ability to describe the nature of physiologic entities, to explain the relationships between them, and to ascribe causality to their interactions, in addition to numerical and qualitative simulation of their dynamic behavior. The system was intended to provide support for several distinct physiologic models which would necessarily overlap in content. This approach corresponds to clinical physiologic reasoning and to the way in which physiology is currently taught to medical students. It does not represent a unified description of all bodily functions. This project has consisted of the design, implementation, and preliminary evaluation of a Knowledge Based Physiologic Modeling System (KBPMS) arising out of the above desiderata. The project has had a truly symbiotic relationship with the New Pathway of which it represents but a very small part. KBPMS provided the New Pathway with an interesting pedagogic tool, based on developments in artificial intelligence research. The New Pathway, in turn, provided an opportunity for evaluation and refinement of KBPMS and the computational techniques upon which it is based. ## 2. Background and Related Work becomes The development of KBPMS has been based on previous work in two major fields of endeavor: computer applications to education and computer based physiologic modeling. This chapter reviews some of the work in these fields and describes their relationship to this project. ### 2.1. Computer Applications to Education Computer assisted instruction (CAI) has been available as an educational tool for over 25 years. Traditional CAI is an adaptation of the programmed learning approach whereby a flowchart guides the student through progressively more difficult subject matter. Multiple choice questions are used to assess the students' progress, and in response to his answers, material may be reviewed, or the pace of the presentation slowed down or accelerated. The student's responses are also available for evaluation purposes. A number of variations on the basic theme of CAI have taken place in several settings. The PLATO system [11] was the first to incorporate graphics capabilities by using a plasma display and microfiche projector. More recently, slide tape, videotape, and videodisk interfaces have been developed for the same purpose. The increasing availability of home computers has greatly facilitated the dissemination of CAI material directed toward a wide range of age and interest groups. Much effort has been invested in applying CAI techniques to medical education [12], but the resulting programs have not been widely integrated as routine parts of medical curricula. Some medical educators feel that this lack of success has been due to centralization of such systems around large mainframe computers, and to inadequate user interfaces [13]. They suggest that the advent of high quality audiovisual interfaces and low cost microcomputer based systems will revitalize medical CAI. Yet traditional CAI systems, in medicine as well as other areas, are limited in a more fundamental way. Their flowchart foundations render them inflexible, unable to adequately adapt to the needs of individual students. Viewed from the perspective of the New Pathway program, they do not encourage a sufficiently active role for the student in the learning process. In response to the deficiencies of traditional CAL several investigators have attempted to apply artificial intelligence technology to the task of producing intelligent tutoring systems [14]. Such systems, termed intelligent CAL (ICAI), attempt to be intelligent in two different ways. First, they incorporate comprehensive knowledge of the domain they are intended to teach, and second, they contain a model of student behavior and modify their tutelage in response to what the student seems to understand or misunderstand. To date, most ICAI cystems have been applied in highly structured domains such as game playing [15] and troubleshooting electronic circuits [16], where they have met with preliminary success. STATE OF A STATE OF THE PROPERTY OF THE PROPERTY OF A STATE OF THE PROPERTY o Magas ai bessore, coed a d'Ireile de d'I GUIDON [17, 18] is an ICAI program designed to teach the knowledge encoded in rule based "expert" systems. An initial version uses the MYCIN infactious disease knowledge base [19] and thus represents the first application of ICAI to medical education. One of the important lessons learned during the development of GUIDON was that a set of rules which provides good consultation performance may none the less be autiward for use by such a pedagogic program. Thus the developers of GUIDON bave undertaken the task of restructuring the MYCIN knowledge base to make it suitable for teaching purposes. This is the NEOMYCIN project [20]. KBPMS occupies a middle ground between traditional CAI and the more advanced ICAI systems. It has deep knowledge of its domain, but does not attempt to model the student's behavior or level of comprehension. It is intended to provide a flexible educational tool based on well established pedagogic and computational principles, but does not address entirely new research issues in either field. ## 2.2. Computer Based Physiologic Madeling The earliest computer models of physiologic function were numerical implementations of mathematical relationships which had been empirically determined to exist among physiologic variables. Some of these numeric models have become quite elaborate, describing large areas of human physiology and pathophysiology. Guyton has developed such a model of the entire cardiovascular system [21] and Dickinson has built the equivalent for respiratory physiology [22]. Figure 2-1 is a schematic representation of HUMAN [23], a very large numerical model which is used as a medical teaching aid. Numeric physiologic models are analogous to the spreadsheet programs which have become popular in the business community. They allow the user to observe the response to Figure 2-1: HUMAN: A Numerical Model of Physiology a given set of perturbations and are amenable to graphic presentation of results. However, like spreadsheet programs, they are limited by their depth of knowledge in the domain which they are modeling. Specifically, they have no knowledge of the nature of the entities whose behavior they describe, or of the causal relationships between them. Thus they are unable to answer such pedagogically crucial questions as what something is, or why something happens. Another class of computer based physiologic models has been developed by researchers in medical artificial intelligence (MAI) in an attempt to improve the performance of their consultation programs. The first generation of MAI systems was limited by its reliance on phenomenological associations between discrete disease manifestations and disease entities for reasoning about diagnosis and therapy. These systems had no underlying knowledge of body structure or function in health and illness and were unable to cope with multiple interacting disease processes, with situations involving conflicting items of phenomenologic knowledge, and with the need for physiologically based explanations of their conclusions. The encoding of physiologic knowledge in computational structures is seen as a potential means of overcoming these deficiencies by permitting MAI programs to "reason at the physiologic level". In 1976, Smith [27] proposed the first attempt to encode anatomic and physiologic knowledge to support automated reasoning in this domain. His system was to rely on a frame based representation strategy [28], but was never implemented because he felt that existing representational techniques were inadequate for this purpose. His subsequent research efforts were directed at advancing the foundations of knowledge representation and have not returned to the area of physiology. ABEL [29], a diagnostic reasoning system which operates in the domain of acid-base and electrolyte disorders, encodes knowledge of physiologic causality in semantic network structures. The knowledge is represented at three levels of detail (termed clinical, intermediate, and pathophysiologic) but reasoning is always carried out at the most detailed level. ABEL can explain its reasoning in physiologic terms and has potential as a teaching tool, though it has not been tested in this environment. ⁹The ubiquitous "big four": MYCIN [19], INTERNIST-1
[24], CASNET [25], and PIP [26]. Several investigators are currently exploring the encoding of knowledge of various medical domains in different types of causal activates. Walks and Shordiffe [30] have combined causal and rule based representations in a prototype medical explanation production system. Long [31] has developed a causal physiologic model of cardiovascular disease for use in diagnostic and therapeutic reasoning about angina and heart failure. Blum [32] has devised a system for representation of empirically derived causal relationships as a means of extraction of knowledge from a large clinical database. Kunz [33] has studied the analysis of physiologic models for encoding in knowledge based systems. Widman [34] has developed a representation method for dynamic causal knowledge in the domain of cardiovascular physiology. All these efforts have, in turn, relied on more foundational work on the representation and simulation of causality in physical mechanisms, such as that carried out by Rieger and Grinberg [35], deKleer [36, 37], and others. A similar, yet distinct, approach to physiologic modeling has developed as a consequence of recent advances in qualitative process theory [38]. Qualitative simulation [39] models a physiologic system by propagating constraints imposed by the mathematical relationships among physiologic variables. The numeric values of these variables need not be explicitly known, but may be characterized in terms of their direction and rate of change, as well as their magnitude relative to pertinent landmarks (eg. above or below normal). Given an initial state and perturbations, qualitative simulation can determine all mathematically possible successor states, though some of these may not reflect physically possible behaviors of the system being modeled. NEPHROS [40] combines the ideas of causal physiologic representation and qualitative physiologic simulation. It is a modeling system based on the propagation of constraints through a series of gray boxes representing functional units of the human body. The gray boxes may be either discrete entities or further decomposable into structures made up of other gray boxes, thus implementing a hierarchic representation based on level of descriptive detail. NEPHROS has a simple model of renal function and is capable of reasoning about the pathophysiologic entities of congestive heart failure, the syndrome of inappropriate antidiuretic hormone secretion, and the nephrotic syndrome. KBPMS occupies an intermediate position in this spectrum of modeling methodologies, analogous to its stance relative to other computer based education aids. It incorporates the principles of numeric and qualitative simulation as well as the 14 representation of causal relationships at varying levels of detail. It is capable of reasoning about *what* something is and *why* something happens. It emphasizes the application of these features as educational tools, over their further theoretical enhancement. merelegical also it is ## 3. Project Overview This chapter briefly summarizes the design, implementation, and evaluation phases of the KBPMS project. A more detailed description of each is then presented in Chapters 4 and 5. #### 3.1. Design The design phase of this project consisted of the development of an intelligent physiologic modeling system (KBPMS) with the following capabilities: - 1. Compilation. KBPMS is able to compile 10 models encoding different areas of physiologic knowledge into internal computational structures for use in carrying out its functions. The models are written in a uniform frame based language [28], independent of the computational structures onto which they are mapped, and independent of the procedural mechanisms by which simulation and explanation are carried out. - 2. Simulation. KBPMS accepts perturbations to a model in any of the following forms: numerical values of parameters, qualitative characterizations of parameters, or impairment of processes. It shows the resulting numerical and qualitative perturbations as they propagate through the model. Following a simulation run, KBPMS can explain why a particular event occurred. steel are cress powers soft to more time the e | 5. 1 | Explanation, KBP | MS is able | to answer | the follow | ing questions | where th | |------|---------------------|--------------|--------------|-------------|-----------------------|----------| | | clanks may be fille | d by any ent | ity which is | described i | n a model | 211 v 3 | | | What is | ? | Marian | o so twelve | . สันเซลา องไป คะกา | | | | What directly | | | | | | | | - | | | 1 1 | o kong ik | | | | Does | influenc | 8 | 7 | ♥≸ series of the rest | - May - | | | What are the | mechanisms | s of | _? | | 1000 | 4. Verification. When compiling a model, KBPMS performs limited checking to ensure internal consistency. The definition of this consistency is given in terms of details of model structure in Section 4.2 (page 20). ¹⁰ Though not necessarily combine. #### 3.2. Implementation The implementation phase of this project was twofold. Initially, a prototype was constructed in LISP[41] for a mainframe system at the MIT Laboratory for Computer Science. The prototype implemented most features of the design described above, and was fully debugged and operational using a simple model of respiratory physiology. It had a sufficiently powerful user interface to permit extensive testing, but lacked any graphics or advanced user support capabilities. A subsequent implementation was constructed in MUMPS [10] using an HP-150 microcomputer provided by the Harvard New Pathway. This final implementation possesses all the specified design capabilities in addition to an advanced, friendly, user interface. This interface features extensive use of interactive graphics and is fully compatible with other elements of the New Pathway educational software. The final version uses the same respiratory model as the prototype. #### 3.3. Evaluation Ideally, the evaluation objective of this project would have been to fully assess the long term effectiveness of KBPMS as an educational resource within the context of the New Pathway. However, such conclusive and rigorous evaluation was unrealistically ambitious for the limited time span of the project (approximately one year), Therefore an attempt was made at some form of limited but potentially reproducible outcome measurement, with the prior realization that the results could be considered "soft". The evaluation phase consisted of a homework exercise in respiratory physiology which was given to all New Pathway students using standard educational resources (class notes, textbooks, laboratory materials, etc.). In addition, a randomly selected half of the students also had access to KBPMS while performing this homework. A brief evaluation quiz was subsequently given to all the students. The remainder of the students were then given access to KBPMS. All students and faculty were encouraged to report their opinions of KBPMS, its major strengths and weaknesses. All participation in this evaluation experiment was solicited on an entirely voluntary basis and one third of the 24 students complied. Analysis of the quiz scores of the two groups indicated that those students who had access to KBPMS scored approximately the same as those who had not. The mean scores were 78% and 76% respectively with a standard deviation of 27%. Due to this very small difference and the small sample size (n=8), these results are not statistically significant. Student and faculty evaluation of KBPMS spanned a broad spectrum of opinions. These ranged from those who thought the program and respiratory model were exceedingly simplistic to those who felt they were far too complex, with a variety of comments inbetween and no general consensus. 18 CHAPTER 4 ## 4. Methods This chapter describes the methods used in carrying out the KBPMS project. It presents definitions of the relevant physiologic concepts, the knowledge representation scheme which was employed, the algorithms for carrying out the modeling system's functions, and details of the evaluation strategy. These are illustrated with examples drawn from respiratory physiology. #### 4.1. Definitions The methods described below presuppose a highly simplified view of human physiology, one which may be fully described in terms of parameters, processes, states and steps. For this purpose the following definitions apply: - A parameter is any potentially measurable physiologic entity. It may have any simple or combined units and thus may be an amount, concentration, rate, etc. (eg. tidal volume, respiratory rate). - A process is a description of the way in which parameters interact. For example, the process of bulk gas flow describes the interaction of the parameters: respiratory rate, tidal volume, dead space, and alveolar ventilation. Increased respiratory rate increases alveolar ventilation, increased dead space decreases alveolar ventilation, and so forth. - A state is a characterization of the qualitative value of a parameter (increased, decreased, or normal) or the status (active or impaired) of a process. For example, hyperventilation is a state characterized by decreased arterial pCO₂ (a parameter), and adult respiratory distress syndrome is a state associated with impaired alveolocapillary diffusion (a process). - A step of a physiologic simulation is the set of changes of values of parameters indicated by the relationships described by a single process. Thus the following would each describe single steps: "Alveolar ventilation (a parameter) is increased by increased respiratory rate (a parameter) through bulk gas flow (a process)."; "CO₂ excretion rate (a parameter) is decreased and arterial pCO₂ (a parameter) is increased by increased alveolar pCO₂ (a parameter) through alveolocapillary diffusion (a process)." 2300 ## 4.2. Knowledge Representation Figure 4-1 describes the relationship between two
parameters: metabolic CO_2 production rate (CO_2) production rate (CO_2) and CO_2 excretion rate (CO_2) . In this figure, and all KBPMS diagrams, parameters are represented by squares and processes are represented by triangles. The influence of one parameter on another is shown using solid lines with arrowheads indicating the direction of the influence being mediated. Thus CO_2 production influences CO_2 through CO_2 elimination CO_2 elimination CO_2 elimination. Figure 4-1: An Abstract View of CO₂ Elimination Figure 4-2 shows the same relationship at a greater level of detail. CO₂ production influences arterial pCO₂ (paCO₂)¹¹ through circulatory CO₂ transport (CO₂ trans) and paCO₂ influences VCO₂ through respiratory regulation of paCO₂ (pCO₂ regl), in series. The overall influence of CO₂ production on VCO₂ must, of course, be consistent at all levels of detail, but Figure 4-2 encodes more fine grained knowledge than Figure 4-1. Figure 42: A More Detailed View of CO₂ Elimination ¹¹pCO₂ is the partial pressure of carbon dioxide gas. Unless otherwise specified, it refers to the partial pressure of CO₂ dissolved in arterial blood, also designated as arterial pCO₂ and paCO₂. Alveolar pCO₂ (pACO₂) is the partial pressure of CO₂ in alveolar gas. Unfortunately, this widely accepted usage of abbreviations can be somewhat confusing. Circulatory CO₂ transport and respiratory regulation of paCO₂ are the *mechanisms* of CO₂ elimination as shown in Figure 4-3. These processes may, in turn, have mechanisms which we wish to similarly describe, suggesting a strict taxonomy such as shown in Figure 4-10 (page 33). Here, as in all other KBPMS diagrams, the taxonomic links are indicated by dashed lines. Figure 4-3: The Mechanisms of CO₂ Elimination Figure 4-4 is a unified representation of the preceding three figures and shows influence as well as taxonomic links. Note that paCO₂ has no meaning in terms of the process of CO₂ elimination, and is only meaningful at the second taxonomic level. ্রান্তর বিশ্বস্থার প্রায়োগর হারের **এ** হলার বিশ্ব পর বিশ্বস্থা বিশ্বস্থান বিশ্বস্থান বিশ্বস্থান করিছে করকে বুলি গালাকার Same of the contract of the same sa Figure 4-4: A Unified Representation of CO₂ Elimination The following are some properties of the representation strategy illustrated above. The examples are taken from Figures 4-8, 4-9, and 4-10 (pages 31 to 33). - Parameters can be very different things. They are united only by the property that they all have a potentially measurable value. For example, respiratory rate is routinely measurable and clinically important while alveolocapillary diffusion rate is somewhat esoteric and quite difficult to measure, yet both are parameters. - Processes can be very different things. They are united only by the property that they describe the interaction of parameters. CO₂ elimination is a very abstract concept while bulk gas flow is a very specific physical phenomenon, yet both are processes. - Processes at the same taxonomic level need not have the same descriptive level of abstraction. In Figure 4-10 pulmonary gas transport, which is a physiologic process, is at the same taxonomic level as alveolocapillary diffusion, a physical process. The only constraint imposed by the taxonomy is that a process' children be at a lower or equal descriptive level of abstraction than the parent. The pertinent descriptive levels are: pathophysiologic, physiologic, biochemical, chemical, and physical. The summum genus process is homeostasis. - The representation structure is a directed graph in which cycles are permitted. This type of structure might permit great descriptive power, though it may also incur substantial computational cost. At the very least, ware must be taken to avoid endless cycling while traversing such a graph which describes one or more feedback loops. The algorithm which carries out simulation and circumvents this pitfall is described in Section 4.4. - Information at different levels of abstraction must be consistent. A necessary, though not sufficient, condition for consistency is that at any given level of abstraction (defined by the taxonomic, rather than the descriptive, level of abstraction of the processes involved) there must exist a path between every two parameters which are connected by a path at higher levels of abstraction. Intuitively, a more detailed description must explain at least as much as a more abstract one. Parameters, processes, and states are not discrete entities, rather they all have an internal structure which may be described using frames. A parameter frame describing pCO₂ is shown in Figure 4-5¹². The type, names, descriptions, references, units, clinical-measurability, normal-range, and physiologic-range slots contain the indicated static information. The associated-states, influencing processes, and processes-influenced¹³ slots are filled from information in the state frames and process frames at the time that a model is compiled. In the the latter two slots, the lists of processes are sorted by their taxonomic level. The default-qualitative-value and default-numeric value slots are used to initialize parameter values, which are then dynamically altered during simulation. The following qualitative values are permitted: normal, increased, decreased, further increased, further decreased, increased toward normal, and unknown. These are discussed in Section 4.3 along with the qualitative operators used to manipulate them. ¹² Figures 4-5, 4-6, and 4-7 show both the LISP and MUMPS versions of the corresponding frames. In MUMPS, strings are used as indexes to globals (multidimensional arrays) and therefore "tglobal(model, frame, slot, index) = value" represents the corresponding LISP frame construct. The Figures show a formatted version of the MUMPS frames which include two abots not found in their LISP counterparts. These are icon and glab which are used for the graphics component of the MUMPS version of KBPMS. ¹³Unfortunately, *influence* is not a very good choice of words here. Parameters really only influence other parameters through processes. The names of these slots seem to imply that parameters also influence processes per se and vice-versa. Strictly speaking, this is not the case. Figure 4-5: A Parameter Frame ``` (PCO2 (type: (PARAMETER)) (names: ("arterial pCO2" "pCO2" "paCO2")) (description: ("partial pressure of carbon dioxide in arterial blood")) (references : "West; p. 1"). Such to the result of (units: ("mm Hg")) (clinical measurability: (ROUTINE)) (normal-range: (38.0 42.0)) (physiologic-range: (16.0 100.6)) (associated-states: (HYPERCAPHEA NIL HYPOCAPHEA)) (influencing processes: ((2 (CIRCULATORY-CO2-TRANSPORT RESPIRATORY-CONTRO L-QE-PCO2)) (3 (CIRCULATORY-FLOW PULMONARY-GAS-EXCHANGE)) (4 (ALVEOLOGAPILLARY DEFFUSION)))) (processes-influenced: ((2 (RESPIRATORY-CONTROL-OF-PCO2)) (3 (CHENOREFLEXESY))) (default-qualitative-value: (NORMAL)) (default-numeric-value: (40.0))) PC₀2 ASSOCIATED-STATES: HYPERCAPNEA NIL HYPOCAPNEA CLINICAL-MEASURABILITY: routine DEFAULT-NUMERIC-VALUE: 40 DEFAULT-QUALITATIVE-VALUE: normal DESCRIPTION: partial pressure of carbon dioxide in arterial blood GLAB: ICON: . 476 .66666666667 1 45 INFLUENCING-PROCESSES: CIRCULATORY-CO2-TRANSPORT, RESPIRATORY-CONTROL-OF -PCO2 CIRCULATORY-FLOW, PULMONARY-GAS-EXCHANGE ALVEOLOCAPILLARY-DIFFUSION NAMES: arterial pCO2 DC02 paCO2 NORMAL-RANGE: 38 42 PHYSIOLOGIC-RANGE: 15 100 PROCESSES-INFLUENCED: RESPIRATORY-CONTROL-OF-PCO2 CHEMOREFLEXES: West p. 1 REFERENCES: TYPE: parameter UNITS: mm Hg ``` Figure 4-6 shows a process frame describing bulk gas flow. The type, names, description, references, teleology, and descriptive-level-of-abstraction slots contain the corresponding items of static information. The influencing-parameters and parameters-influenced slots to contain incoming and outgoing influence links respectively. The is-a-mechanism-of and mechanisms slots contain upward and downward taxonomic links respectively. (The mechanisms slot of the bulk gas flow frame contains NIL because the mechanisms of bulk gas flow are not described in this model.) The quantitative-rules slot, contains an arithmetic expression composed of influencing-parameters, constants, and a parameter from the parameters-influenced list. The qualitative-rules slot contains an influencing-parameter, qualitative algebraic operators, and influenced-parameters, respectively. The operators may be one of the following: monotonically increasing (M+) or monotonically decreasing (M-). The semantics of these operators is discussed in the next section. The default-status slot indicates whether this process is normally active or impaired. ¹⁴Also misnomers in the same sense as previously indicated. ### Figure 4-6: A Process Frame ``` (BULK-GAS-FLOW (type: (PROCESS)) (names: ("bulk gas flow")) (description: ("flow of gas volumes through the tracheobrockial tree")) (references: "Guyten pp. 464-486" "West pp. 15-19") (teleology: NIL) (descriptive-level-of-abstraction: (PHYSICAL)) (associated-states: (COPD)) (influencing-parameters: (RESPIRATORY-RATE TIDAL-VOLUME DEAD-SPACE)) (parameters influenced: (ALYEDEAR-VENTILATION)) (is-a-mechanism-of: (PULMONARY-GAS-TRANSPORT)) (mechanisma: MIL) (taxonomic-level: (5)) (quantititive-rules: (({TIMES RESPIRATORY-RATE (DIFFERENCE TIDAL-VOLUME D EAD-SPACE)) ALVEOLAR-NEWT LLATTOW) 12 100 1 (qualitative-rules: ((RESPINATORY-RATE (N+ ALVEOLAR-VENTILATION)) (TIDAL-YOLUNE (MY ALYSOLAR IVERTICATEMIN) (DEAD-SPACE (M- ALVEOLAR-VENTILATION)))) (default-status: (ACTIVE))): BULK-GAS-FLOW ASSOCIATED-STATES: COPD DEFAULT-STATUS: active DESCRIPTION: flow of gas volumes through the tracheobrochial tree DESCRIPTIVE-LEVEL-OF-ABSTRACTION: physical GLAB: gas flow ICON: . 63125 . 166666666667 90 INFLUENCING-PARAMETERS: RESPIRATORY-RATE TIDAL-VOLUME DEAD-SPACE IS-A-MECHANISM-OF: PULMONARY-GAS-TRANSPORT MECHANISMS: NIL NAMES: bulk gas flow gas flow PARAMETERS-INFLUENCED: ALVEOLAR-VENTILATION
QUALITATIVE-RULES: RESPIRATORY-RATE->M+: ALVEOLAR-VENTILATION TIDAL-VOLUME->M+: ALVEOLAR-VENTILATION DEAD-SPACE->M-: ALVEOLAR-VENTILATION QUANTITATIVE-RULES: 'ALVEOLAR-VENTILATION' = 'RESPIRATORY-RATE'*('TIDAL-V OLUME'-'DEAD-SPACE') REFERENCES: Guyton pp. 484-486 West pp. 15-19 TAXONOMIC-LEVEL: TELEOLOGY: WIL TYPE: process ``` Figure 4-7 shows two state frames describing hypercapnea and adult respiratory distress syndrome, respectively. They are smaller than parameter or process frames and their structure is self-explanatory. Note that state frames also contain a descriptive level of abstraction, and that they may only represent the perturbation of a single parameter or the impairment of a single process. All three types of frames permit multiple synonyms in the names slot and any of their slots may be filled with NIL when the relevant information is inappropriate or unavailable. ``` Figure 4-7: Two State Frames statement of viole (HYPERCAPNEA (type: (STATE)) S. Onland Fra (names: ("hypercapnea" "hypercarbia" "hypoventilation")) (descriptive-level-of-abstraction: (PHYSIOLOGIC)) (perturbation: (INCREASED PCO2))) HYPERCAPNEA DESCRIPTIVE-LEVEL-OF-ABSTRACTION: physiologic NAMES: hypercapnea hypercarbia hypovestilation PERTURBATION: increased PCO₂ TYPE: state (ARDS (type: (STATE)) (names: ("ARDS" "adult respiratory distress syndrome" "shock lung")) (descriptive-level-of-abstraction: (PATHOPHYSIOLOGIC)) (perturbation: (IMPAIRED ALVEOLOCAPILLARY-DIFFUSION))) ARDS DESCRIPTIVE-LEVEL-OF-ABSTRACTION: pathophysiologic NAMES: adult respiratory distress syndrome shock lung PERTURBATION: impaired ALVEOLOCAPILLARY-DIFFUSION TYPE: state ``` The examples used above are taken from a model of carbon dioxide homeostasis by the respiratory system. This model was prepared using Guyton's [42] and West's [43] textbooks of physiology. Figure 4-8 illustrates the parameters and processes in this model. The influence links and taxonomic links are shown in Figures 4-9 and 4-10 respectively. Appendix I lists the complete frame based representation of this model. The carbon dioxide homeostasis model is quite small (11 parameters, 11 processes, and 10 states) and encompasses a correspondingly limited subset of medically relevant respiratory physiology. None-the-less, it seems reasonable to assume that a physiologic model encoding the sort of knowledge that we wish to teach medical students about a particular aspect of human physiology (respiratory, cardiovascular, electrolytes, acid-base, neuro, etc.) might be described by models of this order of magnitude (ie. less than 100 parameters and processes). Figure 4-8: A Model of CO₂ Homeostanis by the Respiratory System Figure 4-9: The Respiratory Model Showing Influence Links Figure 4-10: The Respiratory Model Showing Taxonomic Links ## 4.3. Qualitative Values and Operators The semantics of the qualitative operators M + and M- are based on the Incremental Qualitative Algebra of deKleer [37] but several modifications have been introduced to deal with the additional qualitative values which are not present in deKleer's original four valued logic. The new values are: further increased, further decreased, increased toward normal, and decreased toward normal; and these supplement: normal, increased, decreased, and unknown. The new qualitative values are somewhat imprecise concepts which encode a combination of a parameter's magnitude, direction and rate of change, as well as its past history. A parameter which is normal and encounters an increasing influence becomes increased. If it then encounters another increasing influence it becomes further increased. Subsequent increasing influences will not change the value of the further increased parameter. If an increased or further increased parameter encounters a decreasing influence it becomes decreased toward normal. The notion of homeostatic forces returning a physiologic system to equilibrium is implicit in this last transition. Figure 4-11 illustrates the complete semantics of M + and M. For example, consider the process frame describing bulk gas flow shown in Figure 4-6 (page 28). It contains the following entry in its qualitative-rules slot: RESPIRATORY RATE -> M+: ALVEOLAR - VENTILATION The semantics table for M+ in Figure 4-11 gives the resulting value for alveolar ventilation given its initial value (the parameter influenced) and given the value of respiratory rate (the influencing parameter). Figure 4-11: Semantics of the Qualitative Operators M+ and M- | | . 1 44 | 1 th a | Inf | Juens | ing F | aran | eter | , i , i i i i i i i i i i i i i i i i i | dr t | |----------|--------|-------------------|--------|----------|-------|---------|------|---|------| | | M+ | 7 | 1 | + | * | * | | " N" | | | Ced | N | N | 1 | + | 1 | + | ? | ? | ? | | uenc | 1 | f | s | N. | * | N | 7. | , N | ? | | E. | 1 | + | N | * | N T | * | N | ? | ? | | <u> </u> | * | * | * | , N | * | , N | ? | Į
N | 7 | | ter | * | * | N
T | * | N. | * | N | 7 | . ? | | ame - | N | ? | ? | ? | ? | ? | ? | ? | ? | | 면
고 |) N | ? | ? | ? | è | ? | ? | è | ? | | | 7 | 7 | | Feg. 193 | ? | i izari | | 7 | 7 | | | | | Inf: | luenc | ing F | aram | eter | | | |---|--------|----|--------|-------------|--------------|----------------|----------------|--------------|---| | | M- | N: | 1 | + | * | . | N
To | ↓
2. N as | ? | | שטע
פטע | N | N | . ↓ | 1 | | : : 1 1 | n 3 -mi | ? | ? | | ֓֞֞֜֞֜֝֞֜֜֝֓֓֓֓֓֓֓֓֓֓֓֓֜֜֟֜֓֓֓֓֡֓֜֝֟֜֓֓֓֓֡֓֡֓֡֓֡֓֡֓֡֡֓֡֓֡ | 1 | 1 | N
N | * | ,
N | * | N N | ? | 7 | | 1 | Ţ | + | * | N | : 🗱 😘 | N
T | 7. 3 | N | 3 | | - 2. | * | * | N |) a 🖈 - 144 | + N | * 15. | J. J. | 7 | ? | | | * | * | ¥ | N
† | ¥ . , | N
T | ? | N | 5 | | | N
↑ | ? | ? | ? | , | ? | ? | ? | • | | | ↓
N | ? | 3 | 7 | ş | ş | ? | ? | ? | | | ? | ? | ? | 7 | ? | ? | 7 | ? | ? | * - further increased - increased - funther decreased decreased - increased toward normal ? - unknown + - decreased toward normal rigiga o Trom National Parada (Alberta) #### 4.4. Algorithms The algorithms required to perform the four tasks listed under Section 3.1 are straightforward variations of well known graph traversal techniques. They seem quite modest in computational cost, considering the relatively unconstrained nature of the data structure described above. Compilation can be performed by instantiating frames for each of the entities described by a model. The precise way in which this is done varies depending on the implementation. However, as noted in the previous section, the use of globals indexed by strings in MUMPS provides descriptive power equivalent to structures and property lists in LISP. In either implementation it would appear that the cost is linear in both space and time¹⁵. Simulation can be performed by breadth-first propagation of perturbations among parameters as follows: - 1. Initialize: Set all parameter values to normal and the status of all processes to active. - 2. Obtain, from the user, the perturbations to parameters and impairments of processes. Mark these accordingly and enter the perturbed parameters into a FIFO parameter queue. - 3. Propagate: If there are no parameters in the parameter-queue then stop the simulation. Else, for each parameter in the parameter-queue add all active processes-influenced, at the lowest taxonomic level, to a FIFO process-queue. If an impaired process is encountered then inform the user and stop the simulation. - 4. Flush the parameter-queue. - 5. For each processes in the processes queue, if the processes has non-null quantitative-rules and its influencing-parameters all have non-null numeric values, then proceed numerically. Else proceed qualitatively. - 6. Flush the process-queue. Go to propagate. ¹⁵In the following discussion all estimates of computational cost are with respect to the number of entities described by a model, hence the number of nodes in the graph representing it. - 7. To proceed numerically: Evaluate each quantitative rule and assign the resulting value to the parameter-influenced. If the value is outside the physiologic range then inform the user and stop the simulation. Else add the parameter-influenced to the parameter-queue. Return. - 8. To proceed qualitatively: Evaluate each qualitative rule (by applying the semantics of the specified qualitative operator) and assign the resulting value to the parameter influenced. If this value is not (unknown) then add the parameter-influenced to the parameter-queue. Return. This breadth-first propagation of perturbations might be exponential in the worst case, but, at any given taxonomic level, there seems to be a very limited branching factor (often 1), and hence only a handful of paths to be followed. Perturbations are propagated as numeric values so long as they, and quantitative-rules to relate then, are available. When these are not available, propagation is continued on a qualitative basis. A trace is kept of the simulation, and questions of why something happened are answered by indicating the influencing-process, and its influencing-parameters, which caused a parameter to change value, along with the corresponding quantitative rule where appropriate. For example: "In step n, alveolar pCO₂ (the parameter-influenced) was increased by increased FICO₂ (the influencing-parameter) through lower airways gas mixing (the influencing-process)." Regarding explanation, the description of parameters, processes, and states is computationally straightforward and can be accomplished by filling the following sorts of templates: # 1. What is \parameter>? ### 2. What is \process\? mechanisms of (process) are (mechanisms). For more information see (references). #### 3. What is <state>? Explanation of static relationships 16 requires an algorithm to find a path formed by influence links between two nodes in the directed graph representing a model.
This requires $O(n^2)$ time using the following marking algorithm: - 1. Initialize: Mark the two nodes between which a path is to be sought, each with its own name. Push these two nodes onto stack A. Create an empty stack, B. - 2. Iterate: If stack A is empty then stop, there is no path between the two nodes. - 3. For each node in stack A (influencing node), examine each node to which it has an incoming or outgoing influence link (influenced node). 4. - a. If the influenced node is not marked then mark it with a list of names created by concatenating its name to the mark of the influencing node. Push the influenced node onto stack B. - b. If the influenced node is marked and if the first name in the mark lists of the influenced and influencing nodes are not equal, then a path has been found. The path is described by the concatenation of the mark list of the influenced node. - 5. Interchange stacks A and B. Flush stack B. Go to Herate. This procedure may be carried out one taxonomic level at a time in order to provide increasingly detailed or increasingly abstract explanations. The limited integrity checking referred to in Section 3.1 also requires verification that a path exists, at a given taxonomic level, between two nodes. It too can be performed using this same marking algorithm. ¹⁶Answering the questions listed in Section 3.1 (What is directly influenced by, etc.). ### 4.5. Evaluation Techniques The preliminary evaluation of KBPMS was carried out by the author in collaboration with the director of the "Matter and Energy" segment of the New Pathway curriculum. The performance of the final version of KBPMS and the contents of the respiratory model described in Section 4.2 were submitted for review, and subsequently approved by him. The author prepared a syllabus of educational objectives, a homework exercise, and an evaluation quiz in respiratory physiology which were also reviewed and modified by the curriculum director. These are shown in Appendix IV. The quiz contained 8 questions which were equally divided into two different types. Type I questions (1, 3, 5, and 7) were worded so as to be very similar to the questions which might be asked of the KBPMS program. Type II questions (2, 4, 6, and 8) were worded to avoid any such similarity. In January 1986, during the regularly scheduled pulmonary physiology segment of the New Pathway curriculum, the students were given the homework assignment. A randomly selected half of the group was also given a diskette containing the KBPMS program and the respiratory model along with instructions on how to install and use these on their HP-150 microcomputers. These students were asked to use KBPMS as an educational resource, along with their textbooks, class notes, and laboratory material, in completing the homework assignment. The students were not requested to hand in the homework and it was never reviewed or graded. All the students were fully aware of the experiment in progress and their co-operation was solicited on an entirely voluntary basis. They were carefully informed that the results of the experiment would in no way influence their own evaluation in the physiology course. Ten days after distributing the homework assignments to all students, and the diskettes to half of them, everyone was given the evaluation quiz and asked to do it at home without referring to any educational resources (closed-book, closed-computer). Their collaboration was, once again, to be wholly voluntary. Following the quiz, the remaining half of the class was given KBPMS diskettes. On several different occasions, all the students were encouraged to submit their evaluation of the program's pedagogic value. One month after the quizzes were handed out to the 24 students, 8 of them had been completed and returned. Of these, 5 came from the experimental group (those students with access to KBPMS while doing the homework) and 3 came from the control group (those students who were given KBPMS only after the homework and quiz). In the same one month period, 9 students submitted their evaluations of KBPMS. # 5. Results This chapter presents the results of the KBPMS project. It describes the prototype and final implementations of the intelligent physiologic modeling system as well as the outcome of the evaluation experiment. # 5.1. The Prototype Implementation The prototype of the intelligent physiologic modeling system was constructed in MACLISP [44] and runs on a DEC-1080 mainframe in the MIT Laboratory for Computer Science. The prototype implements all of the specified design features except for impaired physiologic processes. It has been fully debugged and tested using the model of respiratory physiology discussed in Section 4.2. When running that model the prototype provides under two second turnaround time for both simulation and explanation. Timing studies indicate that the majority of computational overhead is incurred by string manipulation and output formatting, rather than by the reasoning components of the program¹⁷. Approximately one month of full time programming effort was required to construct and debug the prototype. ### 5.2. The Final Implementation The final version of KBPMS was constructed in DataTree PC/MUMPS/2.1 (DT-MUMPS)[45] and runs on the New Pathway's HP-150 microcomputers. It implements all of the specified design features (including limpaired processes), has been fully debugged, tested, and was used by the New Pathway students with the respiratory model shown in Appendix I. When running that model, KBPMS provides 15 to 30 second turnaround time for simulation and 3 to 5 second turnaround for explanation. Timing studies indicate that much of this overhead is attributable to graphics-related computation and, like the prototype, reasoning components of the program incur relatively modest computational cost 18. Approximately three months of full time programming effort were required to complete the final version. Appendix II lists the instructions for using the final version of KBPMS and Appendix III shows an interactive session which illustrates both its reasoning ¹⁷ It should be noted that MACLISP has extremely primitive string manipulation capabilities. ¹⁸DT-MUMPS running on the HP-150 has very slow muthernatical and trigonometric functions. These are principally responsible for the long graphics computation through the annual principally responsible for the long graphics computation through the annual principal principally responsible for the long graphics computation through the principal pr and graphics capabilities 19. #### 5.3. Evaluation Results As mentioned previously, all 24 New Pathway students were asked to do the evaluation quiz on a voluntary basis and 8 of them returned the completed quiz to their instructor. Of the 8 quizzes, 5 came from the experimental group (KBPMS access) and 3 came from the control group (no program access). Table 5-1 summarizes the quiz scores for the two groups. The raw data is presented in Appendix V. Type I questions are those which were worded to resemble KBPMS, Type II questions are those which were worded to be dissimilar to it. The results shown in Table 5-1 indicate that the experimental group scored very slightly higher than the control group overall. This relationship holds for Type II questions considered alone, but is reversed for Type I questions considered alone. These results are not statistically significant because of the very small differences and sample size. Clearly, no inferences as to the pedagogic value of KBPMS may be drawn from this data. As indicated previously, there was a wide variety of reactions to KBPMS among the 9 students who submitted their evaluations of it. Some felt that it was an unnecessarily elaborate way to teach very simple concepts. Others stated that the material covered was far too advanced, or might be suitable only as a final review aid rather than a primary learning resource. There were several comments that occupied an intermediate position in this spectrum of opinions. Appendix VI shows some of the student comments which were representative of each extreme as well as the middle ground. There was no uniform consensus among the students' opinions. The same of the engine and the same of and the post of the control of the state of the control con A CALLERY OF A CALL OF THE PARTY PART ¹⁹Unfortunately, several important features such as the use of the touch sensitive screen for interactive graphics are not amenable to presentation in this printed medium. (all scores are %) | | | Type | Experi | mental | Cont | rol | Both | | |--------------------------|----------|-----------|--------|--------|-------|------|-------|------| | • | | | (n=5) | | (n=3) | | (n=8) | | | Que | stion | | mean | s.d. | mean | s.d. | mean` | s.d. | | | 1 | I | 76 | 24 | 93 | 12 | 83 | 21 | | | 2 | II | 66 | 42 | 43 | 40 | 58 | 40 | | | 3 | I | 75 | 18 | 67 | 29 | 72 | 21 | | | 4 | 11 | 90 | 10 | 97 | 6 | 93 | 9 | | | 5 | ľ | 80 | 27 | 77 | 25 | 79 | 25 | | | 6 | II | 74 | 37 | 100 | 0 | 84 | 31 | | | 7 | I | 90 | 7 | 93 | 6 | 91 | 6 | | | 8 | II | 72 | 23 | 40 | 35 | 60 | 30 | | A11 | Type I | Questions | 80 | 20 | 83 | 21 | 81 | 20 | | A11 | Type II | Questions | 76 | 30 | 70 | 37 | 73 | 32 | | A 11 _. | Question | ns | 78 | 25 | 76 | 30 | 77 | 27 | Table 5-1: Summary of Quiz Scores ## 6. Discussion This chapter begins by describing some of the strengths and weaknesses of the methods used in constructing KBPMS and their effects on the program. This is followed by a discussion of the outcome of the evaluation experiment and a consideration of possible directions for future work suggested by this project. The chapter concludes by discussing some of the non-technical implications of this work. # 6.1. The Strengths of KBPMS The principal advantage of the representational system employed by KBPMS is that the taxonomy based on processes' levels of abstraction allows for explicit control of the depth at which
reasoning for simulation and explanation takes place. This potential has been fruitfully exploited in the explanation section of KBPMS. This is illustrated by Figure 6-1 which shows a question being answered at several different levels of detail²⁰. However, the potential power of the knowledge representation has not been fully exploited in this regard by the simulation section. KBPMS, like some of its predecessors (eg. NEPHROS [40]), performs simulation by the propagation of perturbations at only the most detailed taxonomic level. The major advantage of the simulation algorithm used in KBPMS is its ability to combine numeric and qualitative values. As shown by the simulation in Figure 6-2, numeric values are used whenever they are available and appropriate, with qualitative values being used otherwise. This approach is consonant with both clinical and teaching practice when only incomplete numeric data is available as in most real-world situations. Another strength of KBPMS is its representation of physiologic entities as having meaningful internal structure. The examination of this internal structure is the basis of the program's explanation capabilities. The need for sound explanations based on physiologic principles has been one of the driving forces in recent MAI research, as discussed in Section 2.2. Certainly the importance of explanations cannot be overlooked in a teaching setting. The simulation and explanation algorithms described in Section 4.4 have been quite ²⁰An interesting related point is whether the strategy of generating such explanations in a top-down manner (most abstract explanation first), as done by KBPMS, is indeed pedagogically preferable to the inverse strategy. Figure 6-1: A Question Being Answered at Several Different Levels of Detail #### Q: What directly influences CO2 excretion rate (VCO2) ? A: This question may be answered at four different levels of detail. At the most abstract level, CO2 excretion rate the directly influenced by metabolic CO2 production rate through CO2 elimination. At a more detailed level, CO2 excretion rate is directly influenced by arterial pcO2 through respiratory control of pcO2. At an even more detailed level, CO2 excretion rate is directly influenced by respiratory rate and tidal volume through pulmonary gas exchange. At an even more detailed level, CO2 excretion rate is directly influenced by alveolar pcO2 and alveolocapillary CO2 diffusion rate through alveolocapillary diffusion. are of inapropagation 1、14、11、19的10 家家的"自身数据数据数据数据"的10分别 Figure 6-2: A Simulation Showing Mixed Numeric and Qualitative Capabilities In step 1, dead space=250 ml (increased), respiratory rate=20 breaths per min (increased) [ie. hyperpnea] and tidal volume 350 ml (decreased) as specified by the user. In step 2, bulk gas ffew medfates the following influence: VA=RR*(VT-VD). Since respiratory rate=20 breaths per min (increased), tidal volume=350 ml (decreased) and dead space=250 ml (increased), therefore alveolar ventilation=2000 ml per min (decreased) [ie. alveolar hypoventilation]. In step 3, alveolar pCO2 is increased by decreased alveolar wentilation (2000 ml per min) through lower airway gas mixing. In step 4. CO2 excresses session decreased and arterial pcoz is increased [ie. hypercapnea] by increased alveolar pCO2 through alveologapillary diffusion. In step 5, respiratory rate is further increased [ie. augmented hyperpnea] and tidal volume is increased toward normal by increased ertarial pc02 through the medullary chemoreflex. In step 6, alveolar ventilation is increased toward normal [ie. diminished alveolar hypoventilation] by increased respiratory rate and increased tidal In step 7, alveolar pCO2 is decreased toward normal by increased alveolar ventilation through lower airway gas mixing. In step 8, CO2 excretion rate is increased toward normal and arterial pCO2 is decreased toward normal [ie. diminished bypercapase] by decreased alveelar pCO2 through alveelocapillary diffusion. 1111 efficient in practice. The reasoning features of both the preliminary and final versions of KBPMS have incurred only minor computational oasts relative to far more mundane features of the programs, such as string manipulation and graphics respectively. This would tend to confirm the intuition that KBPMS is suitable for modeling several overlapping aspects of human physiology, each of which might be on the same order of magnitude as the present respiratory model. An advantage which is closely related to efficiency is the simple overall structure of the modeling system. This has permitted its implementation using standard programming technology (ie. an imperative, procedural, programming language, without specific list processing capabilities) following its initial development and refinement in a LISP environment. This is an important consideration in view of the resource and compatibility constraints imposed by the microcomputer setting in which the program was to be ultimately used. Other advantages of the intelligent modeling system include its ability to accommodate synonyms and its friendly user interface which incorporates interactive graphics. Together, these features greatly enhance the flexibility which seems particularly suited to a learning environment. The synonyms are also appropriate to the task of vocabulary building which was proposed as one of the software modules for the New Pathway (Table 1-2, page 6). # 6.2. The Weaknesses of KBPMS The most fundamental limitation of KBPMS is its gross simplification of real physiology. This simplification is manifest in several different ways. Most important is that the conceptual framework of parameters, processes, states, and steps is substantially insufficient to capture the full richness of this domain. Thus KBPMS has no explicit description of rate limited processes, quantity thresholds, parallel mechanisms, interaction of primary and secondary influences, and many other important physiologic concepts. The program also lacks a coherent notion of such processes as diffusion, bulk flow, and electromotive ion transport, which are a more fundamental aspect of physiology than the body-system-specific models which it manipulates. Processes are unrealistically restricted to the binary status of active or impaired, and cannot represent the typically partial or altered functionality associated with most pathological conditions. Simplification is also a liability in both the quantitative and qualitative simulation methods employed by KBPMS. Numerical operations are permitted on only the static values of parameters, and the program therefore tacks the full descriptive power of a differential equation model. Qualitative reasoning is restricted to the application of two operators relating eight possible values. Furthermore, the definitions of these values blur the distinctions between the magnitude, direction of change, rate of change, and the past history of a parameter. Temporal relationships beyond simple ordering are entirely ignored. States are also greatly simplified and allow for the description of only a single perturbed parameter or a single impaired process. In reality, a pathological state such as adult respiratory distress syndrome is associated with a large number of such perturbations and impairments. The limitation of carrying out simulation at only the most detailed taxonomic level was referred to in the previous section. A consequence of this is the program's inappropriate response to the impairment of processes which are at a more abstract level. For example, if the process of CO₂ elimination shown in Figure 4-4 (page 23) was impaired but the other processes shown in the Figure were active, simulation would proceed unaffected by the impairment. A possible remedy would be to propagate all impairments through to the leaves of their taxonomic trees. However, in this example, as in most situations, this would merely cause simulation to stop altogether as all pertinent processes would be impaired. Another weakness of the process taxonomy is that it is not really strict. A low level process such as diffusion is a common mechanism of several more abstract ones. The desire to maintain a strict taxonomy necessitates the somewhat contrived definition of tissue capillary CO₂ diffusion, alveolocapillary diffusion, and lower airways gas mixing as distinct entities (processes). Clearly, each of these is fundamentally the same physical phenomenon, but that knowledge is not encoded in either KBPMS or the respiratory model. A specific weakness of the present respiratory model, which is not an inherent limitation of KBPMS, is the lack of separate descriptions of the arterial, capillary, and venous portions of the systemic and pulmonary hematogenous circulations. The current respiratory model implicitly assumes that CO₂ is exchanged between the alveoli and the systemic arteries. This simplifying assumption leads to specific inaccuracies in simulation. For example, if one starts a simulation by increasing metabolic CO_2 production rate, as in Figure 6-3, then the program shows that alveolar pCO_2 (pACO₂) is decreased in step 6. Each inference made from step 1 to step 6 is correct but the result is not. The model is incomplete and neglects to consider the increased pCO_2 in systemic velos, hence in pulmonary arteries and capillaries, which would diffuse into the alveolt and increase $pACO_2$. ang kang paggan ang kalang ang manilikak ang manag kalang mengalang ang manilikan ang manilikan ang manag man Tanggan manilikan mangkan mangkan manilikan ang kanag manilikan manilikan manilikan manilikan manilikan mangka The control of co and the state of t The state of s and the second of o and the control of th e en la grande de la compansión de la grande La grande de > nga nga paga p<mark>inga newa</mark> pan**a** panahang gerap. Tanga panahang panahang panahang panahan panahan panahan panahan panahan panahan panahan panahan panahan panah The second
of th graph and the state of the second control state s ng ngangan kanalagan sa atau na atau katawakan kanakan da wakan da waten ka Figure 6-3: An Incorrect Simulation In step 1, metabolic CO2 production rate is increased as specified by the user. In step 2, capillary pCO2 is increased by increased metabolic CO2 production rate through tissue-capillary CO2 diffusion, In step 3, arterial pCO2 is increased [ie. hypercaphea] by increased capillary pCO2 through circulatory flow. In step 4, respiratory rate is increased [ie. hyperpnea] and tidal volume is increased by increased arterial pCG2 through the medulidry chemoreflex. In step 5, alveolar ventilation is increased [ie. alveolar hyperventilation] by increased respiratory rate and increased tidal volume through bulk gas In step 6, alveotar pCO2 is decreased by increased alveotar ventilation through lower airway gas mixing. In step 7, CO2 excretion rate is increased and arterial pCO2 is decreased toward normal [ie. diminished hypercaphea] by decreased alveolar pCO2 through alveolocapillary diffusion. In step 8, respiratory rate is decreased toward normal [ie. diminished hyperpnea] and tidal volume is decreased toward normal by decreased arterial pCO2 through the medullary chemoreflex. In step 9, alveolar ventilation is decreased toward normal [ie. diminished alveolar hyperventilation] by decreased respiratory bate and decreased tidal volume through bulk gas flow. In step 10, alvertar pCO2 is increased toward normal by decreased alveolar ventilation through lower airway gas mixing. # 6.3. The Evaluation Experiment Many of the above strengths and weaknesses of KBPMS were suspected at the start of this project. Less well understood, and therefore of greater interest, were their potential ramifications for the program's utility as a learning resource. Unfortunately, even relative to the modest objectives outlined in Section 3.3, the evaluation experiment must be considered unsuccessful. The meager data which were collected cannot support any substantive conclusions regarding the program's pedagogic value. The most obvious reason for this lack of success was the small number of New Pathway students who complied with the request for voluntary participation in the homework exercise and quiz. This somewhat uncharacteristic lack of enthusiasm was, in turn, the consequence of several distinct causes. One cause was a severe crowding of the students' schedules just when this experiment was underway. Even given that medical students are chronically overburdened, they were much busier than usual at this time. A second reason for the students' unenthusiastic response was the lack of advance notice given to all concerned regarding KBPMS and the evaluation experiment. The program and evaluation instruments were first submitted to the curriculum director six weeks before the start of the respiratory physiology course. In retrospect, a lead-time in excess of six months would have been far more appropriate. This would have allowed KBPMS and the evaluation experiment to be percolate through and be modified by various curriculum and departmental committees, thus becoming a fully integrated part of the New Pathway. Instead, both KBPMS and the evaluation experiment were regarded by the faculty as last minute²¹, ad hoc, add-ons. They were presented to the students as such, and in view of the students' already hectic schedule, their ultimate response seems altogether appropriate. Another disincentive to widespread use of KBPMS by the New Pathway students was an operating system bug which initially prevented some of them from loading the program onto their microcomputers. However, the most important reasons for the poor student response were likely related to the previously indicated weaknesses of KBPMS itself, to its slow response times on the HP-150, and to the overly simplistic nature of the respiratory model. Because of these and because KBPMS had not been fully integrated into their ²¹In fact, the program was distributed to the students just as they completed their study of pulmonary physiology and moved on to the renal segment of the course. curriculum, many students did not regard it as sufficiently relevant to their immediate learning needs to merit even the modest investment of time and effort (perhaps half an hour) required to become well acquainted with its use. Furthermore, a detailed laboratory-type exercise which might have "led the students through" the program's capabilities was not provided. Overall, insufficient attention was paid to the pedagogic and student interface issues relating to KBPMS. The failure of this evaluation experiment reinforces the importance of these issues and suggests that they merit increased consideration in future work of this type. In addition to the small student response, there were a number of serious limitations in the design of the evaluation experiment which might also have diminished the validity of its results. Even if all 24 students had returned the quiz, this would still have been a small sample size, and an unrealistically large difference in scores would have been required for statistical significance²³. In addition, with such small numbers, the random division of students might not have resulted in an equitable distribution of talent among the two groups. Since both the homework and quiz were contact out under uncontrolled conditions, it is difficult to know how many students really had access to the program, how many students really completed the quiz closed-book, and so forth. Yet another limitation of this beleaguered evaluation attenue lay in the nature of the outcome being measured. The gotile of the New Pathway stress the acquisition of attitudes, skills, and knowledge which might equip physicians for a lifelong learning process. The role of information technology in the New Pathway is to provide resources to facilitate such lifelong learning and to initiate and encourage students in lifely use. Attentiting to evaluate such an effort by measuring the students knowledge of respiratory physiology ten days after using a simulation program seems irrelevant or even contradictory to the spirit of the entire enterprise. An alternative outlook on evaluation might have been be to consider the modeling system as a small part of a large educational experiment whose global results will not be known for many years or even decades. If the New Pathway eventually succeeds, and if student and faculty response to intelligent physiologic modeling encourage its ongoing no thirty acou shaping ²²The homework assignment shown in Appendix IV was much too general for this purpose. ²³Assuming standard deviations of 20%, a difference of 11% in mean scores would have been required for p<0.1, and a difference of 20% would have been required for p<0.01, using a one tailed t-test. use and development, then such modeling will have been demonstrated to be a useful educational aid, and vice-versa. However, this latter outlook does not suggest an effective means of assessing preliminary progress toward the ultimate education goal. Evidently, the meaningful evaluation of this type of project remains a very substantial challenge. #### 6.4. Directions for Future Work Viewed from a somewhat more optimistic perspective, the outcome of the evaluation experiment supports the assertion that KBPMS is at least potentially exploitable as a learning resource and, along with the preceding discussion of the program's strengths and weaknesses, suggests the following directions for future work: - Enhancement of the respiratory model to include separate descriptions of the arterial, venous, and capillary parts of the systemic and pulmonery circulations. It also seems worthwhile to add a description of pO₂ regulation and some pertinent aspects of acid-base metabolism. - Repetition of a modified evaluation experiment with a longer time span, better student interface materials, and closer collaboration with multiple members of the New Pathway faculty. Evaluation of KBPMS in a different educational setting would also be of interest. - Development of an authoring module to facilitate the construction of models of other aspects of physiology and the construction of several such models. Cardiovascular, renal, and endocrine physiology all seem well suited for this purpose. - Enhancement of KBPMS to incorporate more powerful representation and reasoning capabilities. The use of a differential equation model for numerical simulation and a QSIM-like [39] algorithm for qualitative simulation might be good first steps in this direction. - There is, of course, a potentially enormous amount of work which might be done to advance the frontiers of our ability to understand, describe, model, and simulate physical events in accordance with the causality which we traditionally ascribe to them. Ultimately, this might lead to the development of more powerful techniques upon which one might build a more intelligent physiologic modeling system. # 6.5. Non-Technical Implications of this Project This project has attempted to apply computational techniques and resources to the goal of advancing medical education within the framework of the Harvard New Pathway. Although this work has been both preliminary and limited in scope, it seems worthwhile to consider some potential implications of the course which we have begun to chart. The philosophy and objectives of the New Pathway were described in Chapter 1. Might KBPMS (or its successors) impinge on this philosophy or these objectives beyond the immediate technical domain of the work itself? It would appear that intelligent physiologic modeling has several such broader implications and that at least the following two are directly pertinent to this thesis. One non-technical implication of this project relates to the New Pathway's objective of teaching fundamental attitudes, skills, and knowledge. By advocating KBPMS as a medical education resource we are
attempting to impact not only knowledge of physiologic mechanisms, but also the attitude that these mechanisms are a fundamentally important aspect of medicine. This attitude is certainly concordant with the reductionist traditions of modern biomedical science 24 but, as recognized by the developers of the New Pathway [8] and by the authors of the GPEP Report [7], learning such mechanisms is but one aspect of general medical education. For example, effective prevention, intervention, and rehabilitation for respiratory disease depends not only on the sort of mechanistic understanding of pulmonary physiology which the present KBPMS model might foster, but also on insight into the epidemiologic, sociologic, and behavioural aspects of such things as cigarette smoking, occupational exposure to particulate toxins, and airborne environmental pollutants. Of course the teaching of respiratory physiology, with or without the aid of KBPMS, in no way precludes consideration of epidemiologic, sociologic, or behavioural aspects of medicine; and these subjects have each been given a place in the New Pathway as well as in many traditional medical curricula. None-the-less, it seems prudent to recognize that this project has emphasized and reinforced but a single narrow aspect of medical education and has entirely ignored many other, equally important, aspects of this diverse process. ²⁴In fact, the current primacy of the mechanistic, reductionist, and rationalist viewpoint in medicine has been challenged from several different quarters [46, 47, 48, 49, 50, 51, 52], but a detailed consideration of this debate is beyond the scope of the present discussion. Another non-technical implication of this work concerns the appropriateness of computational metaphors for physiologic (living) entities. The parameters, processes, states, and steps described in Section 4.1 are a simple example of such a metaphor, and one whose limitations are readily apparent. The schematic of HUMAN [23] shown in Figure 2-1 (page 11) represents a more elaborate example of such a metaphor. How much further might metaphors of this sort be extended? Guyton's Textbook of Medical Physiology [42], one of the references upon which the respiratory model used in this project was based, suggests that computational metaphors of human life are applicable without limit. In this current international standard medical text, Guyton introduces his readers to their topic as follows: "Human Physiology. In human physiology we attempt to explain the chemical reactions that occur in the cells, the transmission of nerve impulses from one part of the body to another, contraction of the muscles, reproduction, and even the minute details of transformation of light energy into chemical energy to excite the eyes, thus allowing us to see the world. The very fact that we are alive is almost beyond our control, for hunget makes us seek food and fear makes us seek refuge. Sensations of cold make us provide warmth, and other forces cause us to seek fellowship and reproduces. Thus the human being is actually an automation, and the fact that we are sensing, feeling, and knowledgeable beings is part of this automatic sequence of sides." (p. 2) Thus the human being is actually an automaton?! Not only is this statement preposterous, but the very need to refute it supports Weizenbaura's concept of the prevalent "madness of our times." [53] (p.227) Because of its application of artificial intelligence techniques to human physiologic simulation, the work of this project might be construed to somehow support such absurd notions. It is therefore important to both recognize and clearly state that it does not. The above are significant implications which extend well beyond the technical aspects of this project and it would be reckless to lose sight of these broader issues as we become engrossed with the details of our task. As responsible professionals, it behooves us to consider not only how, but also why and at what cost we might proceed with our work. # 7. Summary and Conclusions The project described in this thesis has consisted of the design, implementation, and preliminary evaluation of an intelligent physiologic modeling system for use as a medical education resource. This knowledge based physiologic modeling system (KBPMS) has been developed within the context of the New Pathway, an experimental curriculum at Harvard Medical School. The central goal of the New Pathway is to equip future physicians with a set of attitudes, skills, and knowledge which will psepare them for lifelong professional learning as a prerequisite to competent practice. The role of information technology in the New Pathway is to provide resources to facilitate such lifelong learning and to initiate and encourage students in their use. The development of KBPMS is based on antecedent work in application of computers to education and in computer based physiologic modeling. In the former area it is most closely related to intelligent computer assisted instruction, tutoring, and coaching systems. In the latter field it draws on aspects of numerical modeling, causal reasoning, and qualitative simulation. KBPMS is designed to carry out compilation, simulation, explanation, and verification of models describing various aspects of physiology. These models describe physiologic entities and events in a simplistic conceptual context made up of parameters, processes, states, and steps. The entities making up a model are taxonomically structured by their level of descriptive detail. The models are represented in a uniform frame based language and variations of simple graph traversal algorithms are used to carry out the functions of KBPMS. KBPMS was originally implemented as a prototype in LISP on a large mainframe and subsequently in MUMPS on the New Pathway's HP-150 microcomputers. The final version augments the prototype's capabilities with a friendly user interface incorporating interactive graphics. Both versions have a small model of carbon dioxide homeostasis by the respiratory system. An evaluation experiment was undertaken to assess the pedagogic utility of KBPMS. A quiz in respiratory physiology was given to all New Pathway students after a randomly selected half of them had completed a homework exercise using the program, while the other half of the group used standard educational sesources. Poor student compliance with this voluntary experiment and numerous methodologic difficulties preclude substantive conclusions based on the data collected. Though anecdotal evidence, along with student and faculty comments, suggest that KBPMS might have potential as a learning resource, that potential remains unevaluated. The major strengths of KBPMS include the explicit representation of processes' levels of descriptive detail; combined numeric and qualitative simulation capabilities, explanatory powers, and a simple overall structure. The principal weakness of KBPMS is gross and occasionally misleading simplification of real physiology. This project suggests that ample work remains to be done in enhancing both KBPMS and the respiratory model, in constructing models of other areas of physiology, in pursuing a more sophisticated evaluation effort, and in developing new techniques upon which future systems of this type might be built. This work also has significant non-technical implications relating to the nature and purpose of medical education as well as to the appropriateness of computational metaphors applied to living entities. In conclusion, the results of this project indicate that an intelligent physiologic modeling system can be constructed using the limited resources of a microcomputer. This system may be of potential pedagogic value in a medical education setting, but it needs to be evaluated in both a careful and patient manner. Much work remains to be done in enhancing many aspects of the system and in integrating it into the evolving context of difelong professional tearning. Call to be given be necessarily and the second of the second was the and the second of o THE BOTH THE CONTRACTORS OF THE ST # References - [1] Temkin O. Medical Education in the Middle Ages. Journal of Medical Education 31;383-392, 1956. - [2] Stevens R. American Medicine and the Public Interest. Yale University Press, New Hayen, 1971. - [3] Flexner A. Medical Education in the United States and Canada. Updyke, Boston, 1910. - [4] Price DJ. Science Since Babylon. Yale University Press, New Haven, 1961. - [5] Houle CO. Continued professional education. In FW Jessup (editor), Lifetong Learning: A Symposium in Continuing Education. Pergamon Press, Oxford, 1969. - [6] Dave RH. Foundations of lifelong education: Some methodological aspects. In RH Dave (editor), Foundations of Lifelong Education, chapter I, pages 15-55. Pergamon Press, Oxford: 1976. - Panel on the General Professional Education of the Physician and College Preparation for Medicine. Physicians for the Twenty-First Century. The GPEP Report. Association of American Medical Colleges. Washington, 1994. - [8] New Pathway Planning Group. A New Pathway to General Medical Education of Harvard Medical School. Unpublished Communication: May, 1983. (210) 155 - [9] Barnett, GO. The Application of Information Technology in Medical Education in The New Rathway of Harvard Medical School. Unpublished Communication: November, 1984. - [10] Walters RF, Bowie J, Wilcox JC. MUMPS Primer MUMPS Users' Group, Bedford, MA, 1979. - [11] Bitzer, DL. The PLATO System and science education. Technical Report CERL X-17, Illinois University Computer Based Education Research Center, 1980. - [12] Hoffer EP, Barnett GO, Farquhar BB, Prather PA. Computer-aided instruction in medicine. Annual Review of Biophysics and Bioengineering 4:103-118, 1975. - [13] Abdulla MA, Watkins LO, Henke JS, Frank MJ. Usefulness of computer-assisted instruction for medical education. American Journal of Cardiology 54:905-907, 1984. - [14] Sleeman D,
Brown JS. Introduction: Intelligent tutoring systems. In Sleeman D, Brown JS (editors), Intelligent Tutoring Systems, pages 1-11. Academic Press, London, 1982. - [15] Goldstein, IP. The genetic graph: a representation for the evaluation of procedural knowledge. In Sleeman D, Brown JS (editors), Intelligent Tutoring Systems, chapter 3, pages 51-78. Academic Press, London, 1982. - [16] Brown JS, Burton RR, deKleer J. Pedagogical, natural language and knowledge engineering techniques in Sophie I, II, and III. In Sleeman D, Brown JS (editors), Intelligent Tutoring Systems, chapter 11, pages 227-282. Academic Press, London, 1982. - [17] Clancey WJ, Shortliffe EH, Buchanan BG. Intelligent computer-aided instruction for medical diagnosis. In Proceedings of the Third Annual Symposium on Computer Applications in Medical Care. Institute of Electrical and Electronic Engineers, New York, 1979. - [18] Clancey WJ. Tutoring rules for guiding a case method dialogue. In Sleeman D, Brown JS (editors), Intelligent Tutoring Systems, chapter 10, pages 201-226. Academic Press, London, 1982. - [19] Davis R, Buchanan BC, Shortliffe EH, Production rules as a representation for a knowledge based consultation program. Artificial Intelligence 8:15-45, 1977. noneth make the energy the - [20] Clancey WJ, Letsinger R. NEOMYCING Reconfiguring a rule-based expert system for application to teaching. In Proceedings of the Seventh International Sour Conference on Artificial Intelligence. 1981. - [21] Guyton A, Jones C, Coleman, T. Circulatory Physiology: Cardiac Output and its Regulation. W.B. Saunders Company, Philadelphia, 1973. - [22] Dickinson CJ. A Computer Model of Human Respiration. University Park Press, Baltimore 1977 - [23] Coleman TG. A mathematical model of the human body in health, disease, and during treatment. Instrument Society of America Transactions 18:65-73, 1979. - [24] Miller RA, Pople HE, Myers JD. INTERNIST-1 An experimental computer-based diagnostic consultant for general internal medicine. New England Journal of Medicine 307:468-476, 1982. - [25] Weiss SM, Kulikowski CA, Amarel S, Safir A. A model-based method for computer-aided medical decision making. Artificial Intelligence 12:145-172, 1978. - [26] Pauker SG, Gorry A, Kassirer IP, Schwartz. Towards the simulation of clinical cognition: Taking a present illness by computer. American Journal of Medicine 60:981-996, 1976. - [27] Smith BC. A proposal for a computational model of anatomical and physiological reasoning. Al Memo 493, Massachusetts Institute of Technology, 1978. - [28] Minsky M. A Framework for Representing Knowledge. In Winston, PH (editor), The Psychology of Computer Vision, chapter 6, pages 211-277. McGraw Hill, 1975. - [29] Patil RS. Cauasal representation of patient illness for electrolyte and poid-base diagnosis. Technical Report LCS/TR/267, Massachusetts Institute of Technology, 1981. - [30] Wallis JW, Shortliffe EH. Explanatory Power for Medical Expert Systems: studies in the representation of causal relationships for clinical consultations. Methods of Information in Medicine 21:127-136, 1982. - [31] Long WJ, Naimi S, Criscitiello MG, Pauker SG, Suction P. An aid to physiological responing in the management of cardiovascular disease. In Computers in Cardiology. 1984. sangiological responses to the management of cardiovascular disease. - [32] Blum RL. Discovery, confirmation, and incorporation of causal relationships from a large timeoriented clinical data base: The RX Project and 2221 and 2221 and Computers and Biomedical Research 15:164-187, 1982. - [33] Kunz JC. Use of artificial intelligence and simple mathematics to untilyze a physiological model. PhD thesis, Stanford University, 1984. - [34] Widman LE. Representation Method for Dynamic Causal Knowlege Using Semi-Quantitative Simulation. Submitted for Presentation at MEDINFO-86. - [35] Rieger C, Grinberg M. The declarative representation and procedural simulation of causality in physical mechanisms. In Proceedings of the Fifth International Joint Conference on Artificial Intelligence. - [36] deKleer J. Causal and Teleological Recognition in Circuit Recognition. Technical Report ALTR/529, Massachusetts Institute of Technology, 1979. - [37] deKleer J. The Origin and Resolution of Ambiguities in Causal Arguments. In Proceedings of the Sixth Intermitted all Joint Conference in Artificial Intelligence, pages 197-203. 1979. - [38] Forbus KD. Qualitative Process Theory. Technical Report AI/TR/789, Massachusetts Institute of Technology, 1984. - [39] Kuipers B. The limits of qualitative simulation. In Proceedings of the Ninth International Joint Conference on Artificial Intelligence, pages 128-136. 1985. | [40] | Asbell U. A constraint representation, pulses Technical Report LESCRE/SIG. | Hiad HH.
Prot | | |------|--|---|------| | [41] | Winston PH, Horn BKP. LISP (Second Edition) | Weizenbaum J. Computer Power and Human Reason. Wil Freeman & Co., San Prancisco, M. | [53] | | [42] | Guyton AC. Textbook of Medical Physiology (S. W.B. Saunders Company, Philippe | | | | [43] | West JB.
Respiratory Physiology (Third Edit
William & William, Bultimorn, 19 | | | | [44] | Piemen KM. The Revised Macing Manual. Technical Report ICS/TR/295, M | | | | [45] | DT-MUMPS Programmer's Refere
DataStree Inc., Welthorn, MA, 1986 | | | | [46] | Dubes R. Minage of Health. George Allen & Unwin, London, M. | | | | [47] | McKnown T.
The Bole of Madistra: drawn mine
Nathald Provinced Hampines Tree | | | | [48] | Burnet M.
Gener, Dreams, and Realities.
Medical and Technical Publishing (| | | | [49] | Illich L
Medical Namesia
Calder and Boynes Ltd., London, 19 | | | | [50] | Mitford N. The Sun King. Harper & Row, New York, 1966. | | | | [51] | Roiser SI. | | | Medicine and the reign of technology. Cambridge University Press, Cambri - [52] Hiatt HH. Protecting the Medical Commons: Who is Responsible? New England Journal of Medicine 293:235-241, 1975. - [53] Weizenbaum J.Computer Power and Human Reason.WH Freeman & Co., San Francisco, 1976. # Appendix I The Respiratory Model THE COUNTY OF SHEET PROPERTY OF THE SECOND S The following is the frame based representation of a model of carbon dioxide homeostasis by the respiratory system. This model was prepared using the textbooks of Guyton [42] and West [43]. A formatted copy of the final MUMPS version is shown. #### ALVEOLAR-HYPERVENTILATION DESCRIPTIVE-LEVEL-OF-ABSTRACTION: physicalogic NAMES: alveolar hyperventilation PERTURBATION: increased ALVEOLAR-VENTILATION TYPE: state #### ALVEOLAR-HYPOVENTILATION ------ DESCRIPTIVE-LEVEL-OF-ABSTRACTION: physiologic NAMES: alveolar hypoventilation PERTURBATION: decreased ALVEOLAR-VENTELATION TYPE: state #### ALVEOLAR-PCO2 ASSOCIATED-STATES: NIL NIL CLINICAL-MEASURABILITY: possible but unusual DEFAULT-NUMERIC-VALUE: 40 DEFAULT-QUALITATIVE-VALUE: normal DESCRIPTION: partial pressure of cabon dioxide in alveolar gas pAC02 GLAB: ICON: .96875 .333233333333 45 INFLUENCING-PROCESSES: PULMONARY-GAS-TRANSPORT LOWER-AIRWAY-GAS-MIXING NAMES: alveolar pCO2 pAC02 NORMAL-RANGE: 38 42 PHYSIOLOGIC-RANGE: 100 PROCESSES-INFLUENCED: ALVEOLOCAPILLARY-DIFFUSION Guyton pp. 495-496 West pp. 15-17 parameter UNITS: mm Hg #### ALVEOLAR-VENTILATION ASSOCIATED-STATES: ALVEOLAR-HYPERVENTILATION NIL ALVEOLAR-HYPOVENTILATION CLINICAL-MEASURABILITY: possible but unusual DEFAULT-NUMERIC-VALUE: 4200 DEFAULT-QUALITATIVE-VALUE: normal DESCRIPTION: rate at which new air enters the alveolit GLAB: VA ICON: .7 0 1 45 INFLUENCING-PROCESSES: BULK-GAS-FLOW NAMES: alveolar ventilation VA NORMAL-RANGE: 3000 7000 PHYSIOLOGIC-RANGE: 1000 10000 PROCESSES-INFLUENCED: LOWER-AIRWAY-GAS-MIXING REFERENCES: Guyton pp. 484-486 West pp. 15-17 TYPE: parameter UNITS: ml per min #### ALVEOLOCAPILLARY-CO2-DIFFUSION-RATE ASSOCIATED-STATES: NIL NIL NIL CLINICAL-MEASURABILITY: possible but unusual DEFAULT-QUALITATIVE-VALUE: normal DESCRIPTION: rate at which carbon dioxide difuses accross the alveoloca 3673 N. C. H. pillary basement membrane GLAB: DC02 ICON: 1 . 5 1 45 INFLUENCING-PROCESSES: NIL alveolocapillary CO2 diffusion rate DCO2 NORMAL-RANGE: NIL PHYSIOLOGIC-RANGE: NIL ASSOCIATED-STATES: ``` PROCESSES-INFLHENCED: DEFAULT-STATUS: ACCING MOREOVERO-YMALATMADOJODAJA DESCRIPTION: flow of gas volumes through and DESCRIPTIVE-LEVEL-OF-ABSTRACTION: stysteat TYPE: permeter wolf asp GLAB: UNITS: al per ate estes. TCOM: 16666666666 Ì ٤ 00 ALVEOLOCAPELLARY-DEFFUSEON TIAH-YROTARI923# THE LUI WO I NG -PARAMETERS: THOM: - VOLUME DEAD-SPACE ASSOCIATED-STATES: PLUMONARY-GAS-TRANSPORT IS-A-MECHANISH-A-21: DEFAULT-STATES: eart fre 114 HI CHANTSHS: possive diffusion of six between the nduline pelanti - moit sag DESCRIPTIVE -LEWIS -OF -A PARAMETERS-INFLUENCED: ALVEN APPE GLAS: A-C 4179 RESPIRATORY - NATE - NH - A (VEGE AN - VEHT LATTORY AND A SAME QUALITATIVE-RULES: ICON: TIDAL-VOLUME-NA+: ALVEOLAR-VENTILATION DEAD-SPACE- 3M+; ALVEDLAN-VENTILATION QUANTITATIVE - PULES: ALVEOLAR-VEST ILATION' = 'RESPIRATORY-RATE' = (' BOAL-V OLUME . . DEAD-SPACE) REFERENCES; Guyton pp. 484-488 INFLUENCING-PARAMETERS: ALVER AND AND A 16+11 TAXONOMIC-LEVELEN 15-A-HELENSTEN-OF: TELECLOGY: MIL TYPE: process MMCS: elvestocaptTigcy diffyeten arc diff PARAMETERS-INFLUENCES: COL-CLOSET HOW MADE CAPILLARY-PCOL BOAL-W. THE PRESENCE AND AND ADDRESS OF THE PARKS QUALITATIVE-MALES: A VERY SELECT LESS-EXCRETTO P-RAFE, S- S-FEM QUANTITATIVE-MA.ES: REFERENCES: Buylor ASSOCIATED-STATES: 22 nytan pp. 167-480 JIH in pr. 31-30 JIN TAXOUGHEC-LEWEL! CLINICAL-MEASURABILITY: sessible but unusual TELEGLOST: . HIL OFF AULT-MUNERIC-VALUE: 村構 TYPE: process OFFAULT-OUALITATIVE-VALUE: normal. DESCRIPTION: pertial pressure of corbon dioxide in the systemic capilla ty blood 1034 --- SLAB: : MGOT .2125 ARDS ö. DESCRIPTIVE-LEVEL-OF-ABSTRACTION: 31 MANES: THE LUE BETWE-PROCESSES
NAMES: Capillary pcom systemic capillary poot PERTU cap pcog ENTILLARY-OT PRINTE HORMAL-RANGE: MIL TYPE: state PHYSIOLOGIC-RANGE: PROCESSES-INFLUENCED; CERCULATORY-FLOW REFERENCES: Cuyton pp. 546-547 Vest op. 72-74 - 34YT parameter BULK-GAS-FLOW pit mm UNITS: ``` DEFAULT-STATUS: active BOLDEN HE ALLEGE HER BERTHAM TOTAL HER BETHER B ``` DESCRIPTIVE-LEVEL-OF-ABSTRACTION: physical GLAB: gas flow ICON: .63126 . 166666666667 an 「金付き」と、★ Deligation is INFLUENCING-PARAMETERS: RESPIRATORY-RATE and the second second TIDAL-VOLUME DEAD-SPACE IS-A-MECHANISM-OF: PULMONARY-GAS-TRANSPORT MECHANISMS: NIL MAMERO HABITAR CONTRACTOR CONTRAC may be good stade grown gas flow PARAMETERS-INFLUENCED: ALVEOLAR-VENTILATION QUALITATIVE-RULES: RESPIRATORY-RATE->N+: ALVEOLAR-VENTILATION TIDAL-VOLUME->M+: ALVEOLAR-VENTILATION DEAD-SPACE->M-: ALVEOLAR-VENTILATION QUANTITATIVE-RULES: 'ALVEGLAR-VENTILATION' = 'RESPIRATORY-RATE' * ('TIDAL-V OLUME'-'DEAD-SPACE') REFERENCES: TAXONOMIC-LEVEL: TAX 8 THE RESERVE OF T ng the beat house in the way ball to be TELEOLOGY: NIL TYPE: process Service of the Bright Control of the State of .57 10 July 1988 一度机工工程的2004年,在1100年,1200年,1200年2月1日。 CONTRACTOR DIRECTOR *** ASSOCIATED-STATES: NIL (1.3.463) 1. 1.4.264 1. (3.3.465) ME-8 1. 3. 1. 3. MIL MIL CLINICAL-MEASURABILITY: possible but unusual 114 C (15 C) (144) DEFAULT-NUMERIC-VALUE: MIL DEFAULT-QUALITATIVE-VALUE: normal DESCRIPTION: partial pressure of carbon dioxide in the systemic capilla ry blood GLAB: CAD DCO2 ICON: .2125 . 5 1 4 on the same was the same of th 45 INFLUENCING-PROCESSES: TISSUE-CAPILLARY-CO2-DIFFUSION NAMES: capillary pCO2 systemic capillary pCO2 There's regard to the Paris of the Control C cap pCO2 (1947) 11 영어 - 21 기반한 60 출위는 (44 기기회 - 1955) 전 NORMAL-RANGE: NIL PHYSIOLOGIC-RANGE: NIL PROCESSES-INFLUENCED: CIRCULATORY-FLOW REFERENCES: Guyton pp. 506-507 West pp. 72-74 TYPE: parame: UNITS: mm Hg parameter ``` DESCRIPTION: flow of gas volumes through the tracheobrochial tree TELEGLOGY: BEL TYPE: process #### CHEMOREFLEXES ``` ASSOCIATED-STATES: 11# ASSOCIATED-STATES: DECAULT-STATUS: active DEFMILT-STATUS: DESCRIPTION: le sult tine of DESCRIPTIONS PART well anto DESCRIPTIVE -LEVEL - 3876 :#031 GLAS: champref 8 ICOR: .8376 Ī . 6 ε 0ê INFERCING-PARAMETERS: CAPILLARY-PCOS MECHANISMS: NIL IS-A-MECHARISM-OF: RESP THATONY-CONTROL-OF-POLE WAMES: circulatory flow MECHANISMS: well sats MALES: the main lary champraffice PARAMETERS - IMPLUEMENTERS PCGE QUALITATIVE-RULES: CAPILLARY-PCO2-384: PCO2 OUANTITATIVE-RULES: III PARAMETERS-INFLUENCES: MENINATION-BUT REFERENCES: Guytam pp. $04-$16 QUALITATIVE - MILES: I- XII- HURTIN TAXONOMIC-LEVE GREAT LEAD IN FRANCE Telecological transport antiches of the telecological transport Pody pat gg. 103-926 TYPE: process TAXONOMIC-LEVEL: TELEOLOGY: detact and madiste a respiratory rangement to changing levels of arterial scal TYPE: Process CO2-ELIMINATION ``` ASSOCIATED-STATES: CIRCULATORY-CO2-TRANSPORT DETAILT-STATUS: MCLIMA DESCRIPTION: removal of the carbon dioxide, a universal metabolic bypre duct, from the body ASSOCIATED-STATES: MIL DESCRIPTIVE-LEVEL-OF-ABSTRACTION: physiclogic DEFMILT-STATUS: act tre GLAB: CO2. elta ICO**seltal uppla Brazagas** DESCRIPTION: transport of carbon discise by the b ARRESTATE CE . DESCRIPTIVE -LEVEL-OF-AGGTRACTION: GLAS: COS trans .2126 ICON: IN LUENCING -PARAMETERS: METAROLIC-CO2-PHOOLET TON-RATE IS-A-MECHANISM-OF: HOMEOSTAKIS MECHANISMS: CIRCULATORY-CO2-FRANSPORY THE STREET AND INVITED A INFLUENCING -PARAMETERS: CO2 of iminath C02 elim PARAMILIERS-INFLUENCED COL-MANTEN OUAL LIATIVE-BULES: METABOL IC-COE-PRODUCTION AND THE STANDARD MALES CHANTETATIVE-RILES: 118 CO2 1----REFERENCES: MIL PARAMETERS-INFLAMENCES: PCAR TAXONOMIC-LEVEL: QUALITATIVE -MELES: NA. PT - COLT PRODUCT I HOUSE HERE TELEGLOGY: MIL QUARTER THE 4 TYPE: process REFERENCES: **M. 18. 612-614** West # . 72-74 TAXONONIC-LEVEL: 131 - 32 321 N 34 #### CIRCULATORY-FLOW ASSOCIATED-STATES: NIL DEFAULT-STATUS: active DESCRIPTION: bulk flow of blood through the circulatory system DESCRIPTIVE-LEVEL-OF-ABSTRACTION: physical GLAB: circ flow ICON: .3875 . 5 1 3 90 INFLUENCING-PARAMETERS: CAPILLARY-PCO2 IS-A-MECHANISM-OF: CIRCULATORY-CO2-TRANSPORT MECHANISMS: NIL MECHANISMS: NIL NAMES: Circulatory flow PARAMETERS-INFLUENCED: PCO2 QUALITATIVE-RULES: CAPILLARY-PC02->N+:PC02 QUANTITATIVE-RULES: NIL REFERENCES: Guyton pp. 604-616 transport metabolic substrates and byproducts throughout the TELEOLOGY: body ·大家公司主义 (1915年) 医麻痹 TYPE: process the field of the Control # CO2-ELIMINATION ASSOCIATED-STATES: NIL 1980 A SHI KAR 1 1980 1 1980 1 DEFAULT-STATUS: active DESCRIPTION: removal of the carbon dioxide, a universal metabolic bypro duct, from the body DESCRIPTIVE-LEVEL-OF-ABSTRACTION: physiologic GLAB: CO2 elim ICON: 275 476 1 Bassasper and 125 1 Color of the Translation .833333333333 90 INFLUENCING-PARAMETERS: METABOLIC-CO2-PRODUCTION-RATE IS-A-MECHANISM-OF: HOMEOSTASIS MECHANISMS: CIRCULATORY-CO2-TRANSPORT RESPIRATORY-CONTROL-OF-PCO2 NAMES: CO2 elimination CO2 elim PARAMETERS-INFLUENCED: CO2-EXCRETION-RATE QUALITATIVE-RULES: NETABOLIC-CO2-PRODUCTION-RATE->M+ACO2-EXCRETION-RATE QUANTITATIVE-RULES: NIL REFERENCES: NIL TAXONOMIC-LEVEL: 1 TYPE: process grant for the sector with the control of contro 3.5 Little Stranger .4331 Jule: julai. Production #### CO2-EXCRETION-RATE ----- ASSOCIATED-STATES: NIL NIL NIL CLINICAL-MEASURABILITY: possible but unusual DEFAULT-NUMERIC-VALUE: NIL DEFAULT-QUALITATIVE-VALUE: normal APPLANTANT DESCRIPTION: volume of CO2 exhaled per unit time GLA8: VCO2 ICON: 1 .66666666667 INFLUENCING-PROCESSES: CO2-ELIMINATION RESPIRATORY-CONTROL-OF-PCO2 PULMONARY-GAS-EXCHANGE ALVEOLOCAPILLARY-DIFFUSION CO2 excretion rate NAMES: VCO2 NORMAL-RANGE: NIL PHYSIOLOGIC-RANGE: NIL PROCESSES-INFLUENCED: NIL REFERENCES: West p. 16 #### COPD DESCRIPTIVE-LEVEL-OF-ABSTRACTION: pathophysiologic NAMES: COPD chronic obstructive pulmonary disease PERTURBATION: impaired BULK-GAS-FLOW TYPE: state #### DEAD-SPACE ------ ASSOCIATED-STATES: NIL NIL NIL CLINICAL-MEASURABILITY: possible but unusual DEFAULT-NUMERIC-VALUE: 150 DEFAULT-QUALITATIVE-VALUE: 160 DEFAULT-QUALITATIVE-VALUE: normal DESCRIPTION: volume of tidal gas which does not reach gas-exchanging ar . H. eas of the lung GLAB: VD .3875 ICON: 0 1 4 45 NAMES: INFLUENCING-PROCESSES: NIL dead space IS-A-MECHANISM-OF: survival physiologic dead space VD NORMAL-RANGE: 100 200 PHYSIOLOGIC-RANGE: 50 1000 PROCESSES-INFLUENCED: BULK-GAS-FLOW grant and the state of REFERENCES: Guyton pp. 484-486 West pp. 15-19 TYPE: parameter UNITS: ml FICO2 ASSOCIATED-STATES: NIL NIL NIL CLINICAL-MEASURABILITY: possible but unusual DEFAULT-NUMERIC-VALUE: .04 DEFAULT-QUALITATIVE-VALUE: normal DESCRIPTION: fraction of inspired gas volume which is CO2 GLAB: FICO2 ICON: .96875 ٥ 1 INFLUENCING-PROCESSES: NAMES: FICO2 fractionional inspired CO2 NORMAL-RANGE: .04 .04 PHYSIOLOGIC-RANGE: NIL PROCESSES-INFLUENCED: LOWER-AIRWAY-GAS-MIXING REFERENCES: Guyton 493-494 TYPE: parameter UNITS: % HOMEOSTASIS DEFAULT-STATUS: active DESCRIPTION: regulation of the internal environment by a living organis DESCRIPTIVE-LEVEL-OF-ABSTRACTION: physiologic GLAB: A homeostasia way or both translating ICON: .475 1 1 3 90 INFLUENCING-PARAMETERS: MIL MECHANISMS: CO2-ELIMINATION NAMES: homeostasis PARAMETERS-INFLUENCED: NIL QUALITATIVE-RULES: NIL QUANTITATIVE-RULES: NIL REFERENCES: NIL TAXONOMIC-LEVEL: 0 TELEOLOGY: maintain those conditions which are compatible with life 14 6 on the Year 108 11 E/1 That was the same Para Antonia San TYPE: sumumgenus #### **HYPERCAPNEA** ----- DESCRIPTIVE-LEVEL-OF-ABSTRACTION: physiologic hypercapmea hypercarbia hypoventilation PERTURBATION: increased PCO2 TYPE: state #### **HYPERMETABOLISM** DESCRIPTIVE-LEVEL-OF-ABSTRACTION: pathophysiologic NAMES: hypermetabolism PERTURBATION: increased METABOLIC-CO2-PRODUCTION-RATE 1.1.3 D1 N N N ₹553 N 1.7. TYPE: state #### HYPERPNEA ------ DESCRIPTIVE-LEVEL-OF-ABSTRACTION: physiologics was any second NAMES: hyperpnea PERTURBATION: increased RESPLEATORY-RATE TYPE: state #### HYPOCAPNEA DESCRIPTIVE-LEVEL-OF-ABSTRACTION: physiologic hypocapnea hypocarbia hyperventilation PERTURBATION: decreased PCO2 TYPE: state THE PARTY OF THE STATE OF THE STATE OF THE SERVER SERVERS OF THE S We carried to the PER CART OF 1888 - 1875 M. 1877 - 1875 - 1875 CONGRES DE ... ఉందిన ద్వకార ఎట్ Light to yourse mar Sadi Ber Sira សម្រេចប្រជាជា (ប ស្ថិត ខេត្ត ស្ថិត) នៅ និង Specifical strategies and strateg A STATE OF S - 1975年 - 1975年 - 1985年 - 1975年 - 1975年 - 1976年 - 1975年 - 1976年 - 1973年 - 1975年 18 J. W twaserpas self-balan S. 3 M J 10 187 · 集月更大概 (1995) - (1994) - (1994) - (1994) - (1994) #### HYPOMETABOLISM DESCRIPTIVE-LEVEL-OF-ABSTRACTION: pathophysiologic NAMES: hypometabolism PERTURBATION: decreased OLIC-CO2-PRODUCTION-RATE METABOLIC-CO2-PRODUCTION-RATE TYPE: state #### HYPOPNEA DESCRIPTIVE-LEVEL-OF-ABSTRACTION: NAMES: hypopnea PERTURBATION: decreased RESPIRATORY-RATE TYPE: state #### LOWER-AIRWAY-GAS-MIXING ------ ASSOCIATED-STATES: NIL DEFAULT-STATUS: active DESCRIPTION: mixing of intrapulmonary gas in the lower tracheobronchial early the governors with the great Lag. tree To significant case DESCRIPTIVE-LEVEL-OF-ABSTRACTION: physical GLAB: gas mixing ICON: . 8625 . 166666666667 1 3 90 INFLUENCING-PARAMETERS: ALVEOLAR-VENTILATION FICO2 IS-A-MECHANISH-OF: PULMONARY-GAS-TRANSPORT MECHANISMS: NIL NAMES: Tower airway gas mixing set may be a set to light the side gas mixing PARAMETERS-INFLUENCED: ALVEOLAR-PCO2 QUALITATIVE-RULES: ALVEOLAR-VENTILATION->N-: ALVEOLAR-PC02 FICO2->M+: ALVEOLAR-PCO2 QUANTITATIVE-RULES: NIL REFERENCES: Guyton pp. 495-496 TAXONOMIC-LEVEL: 5 TELEOLOGY: NIL TYPE: process #### METABOLIC-CO2-PRODUCTION-RATE ----- ASSOCIATED-STATES: NIL NIL NIL PC02 ``` CLINICAL-MEASURABILITY: possible but unusual DEFAULT-NUMERIC-VALUE: NIL DEFAULT-QUALITATIVE-VALUE: normal DESCRIPTION: rate at which carbon dioxide is produced by tissue metabol i sm CO2 prod ICOM: 0 .66666666667
INFLUENCING-PROCESSES: NIL NAMES: metabolic CO2 production rate CO2 prod CO2 prod NORMAL-RANGE: NIL PHYSIOLOGIC-RANGE: NIL PROCESSES-INFLUENCED: CO2-ELIMENATION - A RESERVE SERVER CIRCULATORY-CO2+THANSPORT TISSUE-CAPILLARY-CO2-OFFFUSION REFERENCES: Guyton pp. 510-511 September State of the Resp. Clark Company o UNITS: mg per hr per sq cm body surface free Solver of the state stat ASSOCIATED-STATES: HYPERCAPHEA NIL HYPOCAPNEA CLINICAL-MEASURABILITY: routine DEFAULT-NUMERIC-VALUE: 40 DEFAULT-QUALITATIVE-VALUE: normal DESCRIPTION: partial pressure of carbon dioxide in arterial blood GLAB: paCO2 ICOM: .475 .666666666667 4 45 The state of s INFLUENCING-PROCESSES: CIRCULATORY-CO2-TRANSPORT, RESPIRATORY-CONTROL-OF CIRCULATORY-FLOW, PULNOMARY-GAS-EXCHANGE -PCO2 ALVEOLOCAPILLARY-DIFFUSION NAMES: arterial pCO2 pCO2 paCO2 NORMAL-RANGE: 38 42 PHYSIOLOGIC-RANGE: 15 ing the state of t 100 PROCESSES-INFLUENCED: RESPIRATORY-CONTROL-OF-PCO2 CHEMOREFLEXES REFERENCES: West p. 1 ্য ক্রিক্টার বিষয়ে । তার জন্ম ক্রিক্টার কর্মার বিষয়ে কর্মার বিশ্ববহার কর্মার ক্রিক্টার কর্মার TYPE: parameter UNITS: mm Hg Contract Contract Sec ``` #### PULMONARY-GAS-EXCHANGE ------ ASSOCIATED-STATES: NIL DEFAULT-STATUS: active egenden som stårt til byenden in DESCRIPTION: exchange of gasses between the body and its environment by the lungs DESCRIPTIVE-LEVEL-OF-ABSTRACTION: physiologic GLAB: gas exch ICON: .71875 . 5 1 3 90 INFLUENCING-PARAMETERS: RESPIRATORY-RATE TIDAL-VOLUME IS-A-MECHANISM-OF: RESPIRATORY-CONTROL-OF-PCO2 MECHANISMS: PULMONARY-GAS-TRANSPORT ALVEOLOCAPILLARY-DIFFUSION pulmonary gas exchange gas exch PARAMETERS-INFLUENCED: CO2-EXCRETION-RATE PC02 QUALITATIVE-RULES: RESPIRATORY-RATE->M-: PCO2.M+: CO2-EXCRETION-RATE TIDAL-VOLUME->M-: PCO2, M+: CO2-EXCRETION-RATE QUANTITATIVE-RULES: NIL REFERENCES: NIL TAXONOMIC-LEVEL: 3 TELEOLOGY: NIL TYPE: process ## PULMONARY-GAS-TRANSPORT ASSOCIATED-STATES: NIL DEFAULT-STATUS: active DESCRIPTION: transport of tidal gas between the external environment an d the alveolii DESCRIPTIVE-LEVEL-OF-ABSTRACTION: physiologic GLAB: gas trans ICON: .71875 . 3333333333333 1 3 90 INFLUENCING-PARAMETERS: RESPIRATORY-RATE TIDAL-VOLUME IS-A-MECHANISM-OF: PULMONARY-GAS-EXCHANGE MECHANISMS: BULK-GAS-FLOW LOWER-AIRWAY-GAS-MIXING pulmonary gas transport pulmonary ventilation gas trans PARAMETERS-INFLUENCED: ALVEOLAR-PCO2 QUALITATIVE-RULES: RESPIRATORY-RATE->M-: ALVEOLAR-PCO2 TIDAL-VOLUME->M-: ALVEOLAR-PCO2 QUANTITATIVE-RULES: NIL REFERENCES: Guyton pp. 476-490 West pp. 11-20 ្រុកមានប្រុ 54.5 **%**\$1. gas registar Jellin Little ga - Polaato, on book soo · 大概 (文) (文) (文) (特) (广) (方) 4 (A) 1110 \$3 TAXONOMIC-LEVEL: TELEOLOGY: NIL TYPE: process #### RESPIRATORY-CONTROL-OF-PCO2 ------ ASSOCIATED-STATES: NIL DEFAULT-STATUS: active DESCRIPTION: regulation of arterial pCO2 by the respiratory system DESCRIPTIVE-LEVEL-OF-ABSTRACTION: physiologic Southern I . In the same has a few or and the same and the same in the same of The property of the second ICON: .71875 . 66666666667 INFLUENCING-PARAMETERS: # PCQ2 | 1 B D TAGE | 2 PC | 1 IS-A-MECHANISM-OF: CO2-ELIMINATION MECHANISMS: CHEMOREFLEXES PULMONARY-GAS-EXCHANGE respiratory control of pCO2 respiratory pCO2 regulation pCO2 reg1 PARAMETERS-INFLUENCED: CO2-EXCRETION-WATE COSTS PC02 QUALITATIVE-RULES: PCO2->M+:CO2-EXCRETION-RATE,M-:PCO2 QUANTITATIVE-RULES: NIL REFERENCES: Guyton pp. 516-527 West pp. 113-127 TAXONOMIC-LEVEL: 2 TELEOLOGY: maintain paCO2 at a constant level TYPE: process #### RESPIRATORY-RATE ----- ASSOCIATED-STATES: HYPERPNEA NIL HYPOPNEA CLINICAL-MEASURABILITY: routing DEFAULT-NUMERIC-VALUE: 12 DEFAULT-QUALITATIVE-VALUE: normal DESCRIPTION: rate of breathing GLAB: Representative value of the service t INFLUENCING-PROCESSES: CHEMOREFLEXES NAMES: respiratory rate RR NORMAL-RANGE: 10 15 PHYSIOLOGIC-RAMGE: 4 1800 Burn 18 50 ing the state of PROCESSES-INFLUENCED: PULMONARY-GAS-EXCHANGE PULMONARY-GAS-TRANSPORT BULK-GAS-FLOW REFERENCES: NIL TYPE: parameter UNITS: breaths per min 3000 おり翻動していがつ TIDAL-VOLUME . 1 ASSOCIATED-STATES: MIL 81,11 NIL MIL CLINICAL-MEASURABILITY: possible but unusual DEFAULT-NUMERIC-VALUE: 500 DEFAULT-QUALITATIVE-VALUE: normal DESCRIPTION: volume of gas expired in a single breath the description in the same of s | Profita in Mark Title (1987) | Profit Mark Odes Ma GLAB: VT .3875 ICOM: 57800 18) 48 C - 128 C . 16666666667 TROP TO THE PROPERTY OF A STATE O 1 4 45 INFLUENCING-PROCESSES: CHEMOREFLEXES: 1 - PARTY OF THE MEDITION OF THE PROCESSES T NAMES: tidal volume 雑 金田寮 地流 に 2013年 草木 アルビ NORMAL-RANGE: 400 A STATE OF STATE OF STATE OF STATE 600 PHYSIOLOGIC-RANGE: 50 3500 134677 PULMONARY-GAS-EXCHANGE: PULMONARY-GAS-TRANSPORT PROCESSES-INFLUENCED: BULK-GAS-FLOW REFERENCES: Guyton pp. 480-482 West pp. 12-14 TYPE: parameter UNITS: m1 TISSUE-CAPILLARY-CO2-DIFFUSION Agent Agents The Control of Co าอสระ ผู้สะสำรักษ์ สุดเพาะสา โดยสำนักให้เกิด ASSOCIATED-STATES: NIL DEFAULT-STATUS: active DESCRIPTION: passive diffusion of carbon dioxide from metabolizing tiss ues to capillary blood \$100. 9135 V DESCRIPTIVE-LEVEL-OF-ABSTRACTION: chemical GLAB: t-c CO2 diff Para Market To the Common of t * ** ang stangang labah salah salah sa .06875 INFLUENCING-PARAMETERS: METABOLIC-CO2-PRODUCTION-RATE IS-A-MECHANISM-OF: CIRCULATORY-CO2-TRANSPORT . 5 1 MECHANISMS: NIL ICON: · 中国安徽 (1775年) 中心,为1926年数数数数字经数数字经验中的。 NAMES: tissue-capillary CO2 diffusion t-c CO2 diff PARAMETERS-INFLUENCED: CAPILLARY-PC02 QUALITATIVE-RULES: METABOLIC-CO2-PRODUCTION-RATE->M+:CAPILLARY-PCO2 QUANTITATIVE-RULES: NIL REFERENCES: Guyton pp. 497-500 West pp. 21-30 TAXONOMIC-LEVEL: 3 TELEOLOGY: NIL TYPE: process directing the close # The following are the instruction (the party of the party of 1974). #### Help: KEPMS is designed to run in several different hardware environments and some of the following information may vary depending on the full time implementation. However, most of the general principles should apply been implementation. However, most of the general principles should apply been the time. next step in a single two property of the state st Ty converse on the following the second seco and the state of t exact numeric value is not known (eg. body/temperature is increased). Similarly, KBPMS will display numeric values whenever possible, and qualitative values osherwise. A pull year of the second ### II. General Program Features KBPMS is designed to run in several different hardware environments and some of the following information may vary depending on the particular implementation. However, most of the general principles should apply. ว**เ**ห็นเพิ่มสมบูน The video display is divided into four regions in Kapas. These are: a title line, a framed graphics window, and unframed text window, and a command line (softkeys on the HP-150). The user and the program interact by manipulating the contents of the display windows using the alphanumeric keyboard, the function keys, and pointing methantsms (a mouse, a touch-sensitive display, the alphanumeric cursor, or some combination of these). The graphics window may be manipulated by the commands in the Graphics Options menu. The text window may be manipulated (scrofled) by the commands displayed along with the text. For conventence, the four directional arrows (up. down, left, cight) and the (Next); (Prev); and (Top) (10 o'clock arrow) keys may also be used to augment the function keys and pointing mechanisms. Thus they may be of assistance in scrolling the text window, moving a hotspot, ing to the ball will be directing the alphanumeric cursor to point to a symbol, or to request the next step in a simulation. However, they are not required for KBPMS to operate properly and may not be present in some implementations. When prompted to select a physiologic entity, the user may type its name or a common abbreviation, request a list to choose from (by pressing the space bar), or point to a symbol displayed in the graphics window. The <f8> function key may be used to exit from most segments of the program at any time, whether or note the command 41Me 48 currently displayed. ភពន ១ម៉ូស៊ី² ១១១៦ ។ និង KBPMS can be quite slow in performing some of its functions. Please be patient and wait for a response rather than concluding that the program has hung and re-booting your computer. # III. Specific Program Segments and Commands | > | Ma | 1 N | Me | NU | ु<- | | |---|----|-----|----|----|-----|--| | | | | | | | | - Simulation: Allows the user to carry out an "experiment" by specifying a set of perturbations and observing the physiologic response to them. - Explanation: Allows the user to ask any of the following questions, where the blanks may be filled by any entity described by the current model: each and seed to the de-. What ds: _____? The english decreases the . What directly influences 223 27 30 . What is directly influenced by ? . Does _____? . What are the mechanisms of - Show Entities: Lists all the entities which are described by the current model and their common abbrewiations. The accompanying diagram illustrates the parameters and processes. Note that this command can be santicularly slow. - Logging Off: The series of the training with Terminates logging. Logging On: Initiates logging of all textual program output to a file. printer, or other device. - Graphics Options: Allows the user to magnify, shrink, scroll, and print the gurrently displayed diagram. This is particularly useful for complex diagrams which may be difficult to read in the ordinary graphics window. > ्राचन प्रश्ने कुन्निक **अंद्रिक स**्थित है। it grass sam aborth The end of the a little of - Help: នៃព្រះស្រែក ស្រាស់ **នេសាក**ែក ខេត្ត Displays this information. - Exit: the provide and a line was specified Leaves KBRNS. #### ---> Simulation <--- KBPMS first resets all physiologic parameters to their normal values and all physiologic processes to active atatuss it them prompts the user to specify an entity to parturb, The estitus pays an aniacted se described above (11. Seneral
Program Features). If the sedected entity is a process. then the user is asked to choose one of two possible stateses: active or impaired. If the selected entity is a parameter them the user is asked to choose a qualitative value (normal, increased, or decreased) or a numerical value for the parameter. The user may continue entering additional perturbations, or altering prayiously estared ones; until heroresher decides to start the simulation. 20 3.25 Lababeta terraments លោក ១០ ខែមានការ ប្រាក់ មិនប្រជាពល There is a substantial delay while the program prepares the simulation. Afterwards, the user may review the simulation results with the following commands: - Next Step: Displays the next step of the simulation. - Prev Step: Displays the previous step of the simulation. - Why?: Explains why the current simulation step took place. - Close-up Off: - Close-up On: ा के प्रकेश संस्कृत प्रार्थिक कराई भना और विकेशक कराई है। ए अपने अपने स् Initiates close-up mode, is which only those entitles directly involved in the current simulation step are displayed in the graphics window. - Graphics Options: Same as in main menusees to gray at the state of a second and growing service before the later - Summary: Displays a graphical and text summary of the entire simulation run and then neturas to the main menu. - Main Menu: Returns to the main monu. #### ---> Explanation <--- KBPMS asks the user to select one of the available questions and entities to fill in the blank(s) in the selected question. The selection of questions and entities is performed as described above (FT. General Program Features). The answer to the question may consist of text and/or diagrams which are displayed after a short delay. #### IV. How to get started The definitions listed above (I. Introduction) are very important. Please review them before yet start using KBPMS. A good way to acquaint yourself with both the modeling system and a particular model is to look at the entities described by the model (<logging On>, log to printer, Show Entities>; then be prepared to wait, this function is very slow). The summary diagram will seem hopelessly complex and illegible at first. Print a copy (<Graphics Options>, <Print Figure) and set it aside for future reference. It will help things fall into place as you explore different parts of the model. Go back to the main menu and turn logging off for now. You can turn it back on at any time if you decide that you want to keep a record of your session.</p> Examine the list of entities. Request explanations of one parameter, one process, and one state that you are already familiar with. Try each of the possible questions to see what sort of awares RBPRS can provide. Now take a look at some entities which are new to you. Dop't rely exclusively on the enewere provided by the program. Neve the suggested references on hand and use them! Now try the simulation feature. Specify a single perturbation, eq. an increase in one parameter. Examine each step of the simulation and ask "Why?" for each step. Try close-up mode. Carefully examine the summary using the Graphics Options. If the simulation refers to any entities with which you are unfamiliar, go back to explanation made and inquire about them. #### V. Exhortations Remember that KBPMS is intended as a means of exploration and experimentation. Please try to use it beyond the strict confines of your assignment. If you are unsure of how semething works, or whether it works properly, play with it -- see what happens. Whatever "happens" it is hoped that you wild learn something about both the program and the particular area of physiology you are studying. Students, faculty, and staff -- be sure to report your evaluation of KBPMS!!! This feedback is very important from EVERYONE who has occasion to use the program and will be the basis for future modifications. Please report both positive and negative aspects. Now forg you used the program, and what specific changes you would like to see. Please send these comments to Robert Kunstaetter via electronic mail using HP-DeskManager. I can also be reached over ARPANET (RKU@MIT-MC) or at the following postal address: Robert Kunstaetter Massachusetts Institute of Technology Laboratory for Computer Science 545 Technology Square, Rm. 373 Cambridge, MA 02139 Have fun! ----- 86 APPENDIX III # Appendix III A Sample Interaction The following is a sample interaction with ICBPMS using the respiratory model shown in Appendix I. All text and diagrams shown were generated by the program. ``` The following entities are known to this model: Parameters: alveolar pCO2 --> (a.k.a.: pACO2) alveolar ventilation alveolocapillary CO2 diffusion rate --> (a.k.a.: DCO2) capillary pCO2 --> (a.k.a.: systemic capillary pCO2) --> (a.k.a.: cap pCO2) CO2 excretion rate --> (a.k.a.: VCO2) dead space --> (a.k.a.: physiologic dead space) --> (a.k.a.: VD) FICO2 --> (a.k.a.: fractionional inspired CO2) metabolic CO2 production rate --> (a.k.a.: CO2 prod) arterial pCO2 --> (a.k.a.: pCO2) --> (a.k.a.: paCO2) nag kalenda ingga kastot nela sebuah respiratory rate --> (a.k.a.: RR) (a) The result of the second secon tidal volume --> (a.k.á.; VT) The control of the particular transfer of the control of the con- Processes: alveolocapillary diffusion --> (a.k.a.: a-c diff) bulk gas flow --> (a.k.a.: gas flow) the medullary chemoreflex --> (a.k.a.: chemoreflex) --> (a.k.a.: chemoref) ``` --> (a.k.a.: a-c diff) bulk gas flow --> (a.k.a.: gas flow) the medullary chemoreflex --> (a.k.a.: chemoreflex --> (a.k.a.: chemoref) circulatory CO2 transport --> (a.k.a.: CO2 trans) circulatory flow --> (a.k.a.: circ flow) CO2 elimination --> (a.k.a.: CO2 elim) lower airway gas mixing --> (a.k.a.: gas mixing) pulmonary gas exchange THE STREET 43,20g ... A CONTRACTOR OF STATE OF STATE OF 171 ``` --> (a.k.a.: gas exch) pulmonary gas transport --> (a.k.a.: pulmenacy yentilation) --> (a.k.a.: gas trans) respiratory control of pCO2 772 (a.k.a.: respiratory pCO2 regulation) is the man a second of --> (a.k.a.: pCOZ reg1) --> (a.k.a.: t-c CO2 diff) States: alveolar hyperventilation alveolar hypoventilation --> (a.k.a.: adult respiratory distress syndrome) --> (a.k.a.: shock lung) COPD --> (a.k.a.: chronic obstructive pulmonary disease) hypercapnea · 工资产品(A.) (海豚) 原基性系统 () (A.) (A.) (A.) (A.) (A.) --> (a.k.a.; hypercarbia) 13699-q. 1 🔏 🗷 🔻 --> (a.k.a.: hypoventilation) hypermetabolism hyperpnea hypocapnea e galante e kilik langa sahiri kecalah 18 --> (a.k.a.: hypocarbia) --> (a.k.a.: hyperventilation) hypometabolism hypopnea pak <mark>ama y</mark>amba (a la) Maka ya 1919 ``` #### Ø: What is arterial pCO2? Arterial pCO2 (pCO2, paCO2) is a physiologic parameter, the partial pressure of carbon dioxide in arterial blood measured in mm Hg ... Its normal range is 38 to 42. Its physiologic range is 15 to 100. It is routine to measure in most clinical settings. Increased arterial pCD2 is called hypercapnea. Decreased arterial pCO2 is called hypocapnea. For more information see West p. 1. Q: What directly influences arterial pCO2 (pCO2, paCO2) ? A: This question may be answered at three different Tevals of detail. At the most abstract level, arterial pCO2 is directly influenced by metabolic CO2 production rate through circulatory CO2 transport and arterial pCO2 through respiratory control of pCO2. At a more detailed level, arterial pCO2 is directly influenced by capillary pCO2 through circulatory flow and respiratory rate and tidal volume through pulmonary gas exchange. At an even more detailed level, arterial pCO2 is directly influenced by alveolar pCO2 and alveolocapillary CO2 diffusion rate through alveolocapillary diffusion. Q: What is directly influenced by arterial pCO2 (pCO2, paCO2) ? A: This question may be answared at two different levels of detail. At the most abstract level, arterial pCO2 directly influences CO2 excretion rate and arterial pCO2 through respiratory control of pCO2. At a more detailed level, arterial pCO2 directly influences respiratory rate and tidal values through the medullary chemoreflex. Q: What are the mechanisms of arterial pCO2? A: Although this may be a reasonable question in a more general setting, it does not really make sense in the limited context of this model. Arterial pCO2 (pCO2, paCO2) is a physiologic parameter (an entity with a potentially masurable value) and does not have any mechanisms as such. In this modeling system only processes (defined as descriptions of the interaction between parameters) are said to have mechanisms. For example, one might ask about the mechanisms of tissue-capillary CO2 diffusion, which is a process. However, asking about the mechanisms of something like tidal volume (another parameter) or hyperpnea (a state) would not be meaningful. Q: What are the mechanisms of pulmonary gas exchange? A: The mechanisms of pulmonary gas exchange (gas exch) are pulmonary gas transport and alveolocapillary diffusion. Q: Does arterial pCO2 influence respiratory rate? A: Yes, arterial pCO2 influences respiratory rate through the medullary chemoreflex. Q: Does arterial pCO2 influence metabolic CO2 production rate? A: No. arterial pC02 does not influence metabolic C02 production rate. Q: Does arterial pCO2 influence alveolar ventilation? A: Not directly, however arterial pCO2 influences respiratory rate through the medullary chemoreflex and respiratory rate influences alveolar ventilation through bulk gas flow. - Q: Does tidal volume influence respiratory rate? A: Not directly, however tidal volume influences arterial pCQ2 through pulmonary gas exchange and arterial pCQ2 influences respiratory rate through the medullary chemoreflex. #### Q: Does dead space influence respiratory rate? A: Not directly, however dead space influences alveolar ventilation through bulk gas flow, alveolar ventilation influences alveolar pCO2 through lower airway gas mixing, alveolar pCO2 influences arterial pCO2 through alveolocapillary diffusion and arterial pCO2 influences
respiratory rate through the medullary chemoreflex. #### Q: What is bulk gas flow? A: Bulk gas flow (gas flow) is a physical process, the flow of gas volumes through the tracheobrochial tree. It is a mechanism of pulmonary gas transport. It mediates the influence of respiratory rate, tital volume and dead space on alveolar ventilation. Increasing respiratory rate increases alveolar ventilation. Increasing tidal volume increases blooder ventilation. Increasing dead space decreases alveolar ventilation. The following mathematical relationships apply: VA=RR*(VT-VD). Impaired bulk gas flow may be found in association with COPD. For more information see Guyton pp. 484-486 and West pp. 15-19. - Q: What is ARDS? - A: ARDS (adult respiratory distress syndrome, shock lung) is a pathophysiologic state characterized by impaired alveolocapillary diffusion. - Q: What is hypocapnea? - A: Hypocapnea (hypocarbia, hyperventilation) is a physiologic state characterized by decreased arterial pCO2. --- Start of Simulation --In step 1, dead space is increased as specified by the user. and the state of t Control of the first term of the second t The first in the second test of the way In step 2, alveolar ventilation is decreased [in alveolar hypowentilation] by increased dead space through bulk gas flow. In step 3, alveolar pCO2 is increased by decreased alveolar ventilation through lower airway gas mixing. In step 4. CO2 excretion rate is decreased and arterial pCO2 is increased [ie. hypercapnea] by increased alveolar pCO2 through alveolocapillary diffusion. In step 5, respiratory rate is increased [ie. hyperprea] and tidal volume is increased by increased arterial pCO2 through the meduliary chemoralies. In step 6, alveolar ventilation is increased toward normal [ie. diminished alveolar hypoventilation] by increased respiratory rate and increased tidal volume through bulk gas flow. In step 7, alveolar pCO2 is decreased toward normal by increased alveolar ventilation through lower airway gas mixing. In step 8, CO2 excretion rate is increased toward normal and arterial pCO2 is decreased toward normal [ie. diminished hypercapnea] by decreased alveolar pCO2 through alveolocapillary diffusion. In step 9, respiratory rate is decreased toward normal [ie. diminished hyperpnea] and tidal volume is decreased toward normal by decreased arterial pCO2 through the medullary chemoreflex. --- End of Simulation --- --- Start of Simulation ---In step 1, FROM to temperated and the model to the temperature of Step 2: Alveolar ventitetion to decreased [te. elveolar hypeventilation]. Alveoler pCOZ is incressed. Step 3: Step 4: CO2 excretion rate is decreased and arterial pCO2 is increased (ie. hypercapneel. Step 6: Respiratory rate is increased [is. hyperpres] and tidal volume is tacrossed. Step 6: Alveolar wentilation is increased toward normal (ie. diminished alveolar hypeventilacter]. Alvaolar pCOI is decreased toward normal. CO2 exeretion rate is increased toward normal and enterial pCO2 is decreased toward aermal [te. diminished hypercapnea]. Stop 8: Respiratory rate to decreased toward normal [ie. diminished In step 2, alveolar pCO2 is increased by increased FICO2 through lower airway gas mixing. In step 3, CO2 excretion rate is decreased and arterial pCO2 is increased [ie. hypercapnea] by increased alveolar pCO2 through alveolocapillary diffusion. Ordinarily, respiratory rate would be increased [ie. hyperphea] and tidal volume would be increased by increased arterial pco2 through the medullary chemoreflex. But in step 4, the medullary chemoreflex is impaired and cannot mediate the influence of increased arterial pco2. Therefore respiratory rate is unknown and tidal volume is unknown. --- End of Simulation **- --- Summary: Start of Simulation Step 1: FICO2 is increased and the medullary chemoreflex is impaired. Step 2: Alveolar pC02 is increased. Step 3: C02 excretion rate is decreased and arterial pC02 is increased [ie. hypercapnea]. Step 4: Respiratory rate is unknown and tidal volume is unknown. --- End of Simulation --- # Appendix IV Evaluation Intstruments The following are the educational objectives, homework assignment, and quiz which were distributed to the New Pathway students, faculty, and staff as part of the preliminary evaluation of KBPMS. #### **Educational Objectives** The goal of the Respiratory Physiology V1.1 model is to provide a medium for exploration of selected aspects of carbon dioxide homeostasis by the respiratory system. After using this model to carry out an appropriate homework assignant, within the framework of a comprehensive human physiology course, students should be able to: 1) Understand, define, and appropriately use the following terms: alveolar pCO, (pACO,) alveolar ventilation (VA) alveolocapillary CO_2 diffusion rate (DCO_2) capillary pCO2 CO, excretion rate (VCO,) dead space (VD) fractional inspired CO, (FICO,) metabolic CO, production rate arterial pCO, (paCO,) respiratory rate (RR) tidal volume (VT) alveolocapillary diffusion bulk gas flow circulatory CO, transport circulatory flow the medullary chemoreflex lower airway gas mixing pulmonary gas exchange pulmonary gas transport pulmonary ventilation respiratory control of pCO. tissue-capillary CO, diffusion alveolar hyperventilation alveolar hypoventilation hypercapnea hypercarbia hyperventilation hyperpnea hypocapnea hypocarbia hypoventilation hypopnea 2) Understand the input/output relationship of metabolic ${\rm CO_2}$ production and respiratory ${\rm CO_2}$ excretion. - 3) Understand the feedback loop which governs respiratory control of CO_2 , the role of the variaous physiologic parameters and processes which comprise this loop, and the central importance of paCO_2 and medullary chemoreflexes. - 4) Understand some potential sources of dysfunction in respiratory ${\rm CO}_2$ homeostasis and the clinical situations with which they may be associated. THE WAR STATE OF THE T #### The Homework Assignment From: Dr. Martin Kushmerick To: New Pathway Students Date: January 10: 1986 Robert Kunstaetter, M.D., working with Octo Barnett and the Lab of Computer Science at M.I.T. has prepared a fearning module about carbon dioxide homeostasis for the HP4150? My belief is that this is a very good example of the use of a computer as a learning tool. I ask you therefore to participate enthusiastically in the following plan. Although we are quite convinced that the program is useful, we want to confirm this intuition, and find aut whether in fact this program is useful to you. First you will work on a homework exercise, described uslow. Later (on Tuesday or Wednesday, Jaw. 14 er 15) there will be a take-home "quiz". In order to find out to what extent the computer program is convenient and useful, and to what extent it actually aids learning, I want you all to perform a special study assignment to explore certain aspects of carbon dioxide homeostasis. The problems to work on are obviously a subset of the work you are doing in respect to the case of Mr. Allen, and closely relate to the respiratory laboratory. Thus consider each of the following questions. Realizing the pressure of work, I am not asking you to write up anything for this assignment, but please give it careful consideration none-the-less. In addition, please keep a record of the amount of time you devoted to various resources (textbooks, lab material, computer program, journals, etc.) in doing this exercise and hand this in to me. ## Please consider the following six questions: - 1) How does the respiratory system respond to changing amounts of carbon dioxide in the body? - 2) What physiologic pathways mediate this response? - 3) If CO₂ homeostasis is viewed as a feedback loop, what are the sensors, effectors, mediators, and setpoints of this feedback system? - 4) How might the pathways of CO₂ homeostasis be disrupted so as to impair this physiologic response? - 5) What will happen to respiration if you rebreathe from closed bag? Consider a bag that initially contains 10 L of room air. Consider the changes in its volume and the partial pressures of CO, and O2. - 6) Why does ventilation increase during exercise, and what effect will this have on alveolar gas tensions? Now, regarding the evaluation of the computer program as a learning tool. Only half of you (Groups A & B) will be given the computer program at this time. I ask this group to use it extensively as an important learning resource along with your and laboratory materials. I ask both groups to thoughtfully go through the above homework exercise. Tuesday or Wednesday everyone will be given a take-home "quite" which is intended to evaluate the your overall understanding of CO, homeosatsis. This "quiz" should be done closed-book and should take no more than 1.5 hours of your time. ... It will in hos way influence your overall evaluation in this courses a Fellowing the "quiz", the other half of the class will have access to the computer program. If you have any questions concerning the use of the computer program, please contact Robert Kunstaatter via MA-Desk or call him at home. A Your evaluation of the program is cruefal to our continuing effect to provide learning resources of this type. Everyone should submit an assessment of the program's strengthe. weaknesses, and suggestions for specific changes to Dr. Kunstaetter via HP-Desk. The state of s ត្រូវប្រជាពលរបស់ ប្រជាពលរបស់ ស្ត្រីក្នុងប្រជាពលរបស់ ប្រជាពលរបស់ ប្រជាពេក ប្រជាពលរបស់ ប្រ e of the content of septiments are Control of the first transfer of the control Despuis group and the control of របស់ នេះ ប្រជាពលរដ្ឋ នេះ ប្រជាពលរដ្ឋ នេះ នេះ ប្រជាពលរដ្ឋ នេះ ប្រជាពលរដ្ឋ នេះ ប្រជាពលរដ្ឋ នេះ ប្រជាពលរដ្ឋ នេះ ប and a real work of the first of the state and the second of o TO AN OUT OF AND THE DESCRIPTION OF BRIDERS AND A SECOND The control of co in the second of th #### The Ouiz Please work alone and without notes, books or use of the computer. Complete your work within 1 and a
half hours, i.e. about 10 minutes per question. Please answer each of the following questions in one or two paragraphs: - 1) What is dead space? - 2) How do tidal volume, respiratory rate, dead space, and alveolar ventilation interact? - What directly influences alveolar pCO,? - 4) Arterial pCO_2 plays a central role in carbon dioxide homeostasis by the respiratory system. Explain. - 5) Does dead space influence respiratory rate? Explain. - 6) What would be the consequence of impaired medullary chemoreflexes in an otherwise healthy individual? - 7) Describe the physiologic events which would take place if a healthy person was to breathe air which had a higher than normal concentration of ${\rm CO}_2$. - 8) A patient in the Intensive Care Unit is intubated, paralysed, and being artificially ventilated with 30% O2 at a rate of 18 breaths/minute, with a tidal volume of 750 mls and a dead space of 200 mls. His last arterial blood gas showed: pO2=70, pC0₂=30, pH=7.51, [HCO3]=23. You are concerned about his respiratory alkalosis and borderline oxygenation. You can control the patient's tidal volume and respiratory rate by adjusting the settings on his ventilator and you can control his dead space by adjusting the length of tubing connecting him to the ventiltor. You consider increasing his tidal volume to one liter but the respiratory therapist on duty reminds you that the patient has severe emphysema and that the increased pressure might rupture a bleb in his lung and cause a pneumothorax. What else might you do to decrease the alkalosis and increase oxygenation? # Appendix V Evaluation Raw Data The following are the scores of the two groups of New Pathways students on the evaluation quiz: (all scores are %) | | | | Experimental | | | | | | Control | | |-------------|--------|------|--------------|-----|-----|-----|-----|-----|---------|-----| | Student> | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | Que | estion | Туре | | • | | | | | | | | | 1 | I | 50 | 90 | 90 | 100 | 50 | 100 | 100 | 80 | | | . 2 | II | 20 | 100 | 20 | 90 | 100 | 20 | 20 | 90 | | | 3 | I | 75 | 50 | 75 | 100 | 75 | 100 | 50 | 50 | | | 4, | 11 | 100 | 90 | 80 | 100 | 80 | 90 | 100 | 100 | | | 5 | I | 100 | 100 | 50 | 100 | 50 | 100 | 80 | 50 | | | 6 | II | 20 | 100 | 100 | 50 | 100 | 100 | 100 | 100 | | | 7 | I | 90 | 90 | 80 | 100 | 90 | 90 | 90 | 100 | | | 8 | II | 100 | 40 | 60 | 80 | 80 | 20 | 80 | 20 | | A11 | Туре | I | 79 | 83 | 74 | 100 | 66 | 98 | 80 | 70 | | A11 | Туре | II | 60 | 83 | 65 | 80 | 90 | 58 | 75 | 78 | | A 11 | Quest | ions | 69 | 83 | 69 | 90 | 78 | 78 | 78 | 74 | 120 APPENDIX VI ### Appendix VI **Student Comments** The following are some of the New Pathway students' comments regarding KBPMS. They are unedited except that the students' names have been omitted KUNSTAETTER, ROBERT / MP/1 - HPDESK Print. Message. Dated: 01/16/86 at 1719. which test sant to this - カナ マジナス 森 二 藤原(3000) と、カルードス ign kend greens in 1225 € Subject: Computer teaching The CO2 program toaded without a hitch. Now about the program itself. I spent about two hours running the program, and I wasn't really satisfied with the amount I learned. The graphics were great, the explanations were amount in the simulations really left me cold. I first spent time in the explanations section, getting oriented to the terms, and relations on the big diagram. Seeing the heinerchy the terms, and relations on the big diagram. Seeing the personnel of processes was interesting. I usually love to see a complex hody of interrelationships mapped out like this, but CQ2 homeostasis just isn't complicated enough for this to be worth it. I think I already understood a majority of the relationships. (Now if you worked some other stuff into this model, like O2, pH, water and electrolyte homeostasis. THEN we'd be talking a useful model.) The simulations were frustrating. First, you can't simulate pathology because impairing a process interrupts the simulation if it's in the path of changes, and if the process isn't in the path of changes, impairing it does nothing. Second, the thing isn't quantative. Irt This proved to be especially disappointing after entering specific altered values. When I tried altering CO2 production values, it was happy to call both .0000001 and 100000 normal. In the final analysis, the program was really beautiful, but I think I someone could have explained everything ittaught me in about ten minutes. KUNSTAETTER, ROBERT / NP/1 - HPDESK print. Message. Subject: resp prog Dated: 01/23/86 at 1004. . Bi Besa Magawala ang ang italah in the state of the second section of the second section is the second section of the second section in the second section is section in the second section in the second section is section in the second section in the second section is section in the section in the section in the section is section in the section in the section in the section is section in the section in the section in the section is section in the section in the section in the section is section in the section in the section in the section is section in the orespectation is appearable to the experience of the state of Yea, though I hang my head in shame, still will I testify to the strengths and weaknesses of the program. I finally got a chance to really work through it late last night. If pressed, I will do the exercise, but in the meantime I'd like to tell tou what I thought about USING it. First, I didn't find it what you might call 'user friendly'. I mean, what is a parameter anyway? It took me three shots at the program to understand how to get around inside of it well enough to really exploit it. Second, I don't think it is a useful tool for learning, which isn't to say that it won't be great for review. I preferred the format of the acid/base programming this regard. I guess I feel more comfortable when led through an exercise on material which is not very clear to me. Once I finally figured out how to use the program, I restized that there really is a lot of light inside of it. Again, Nowever, I don't think that I could really have used all of that info if I was just beginning to study neapiration. Also, the termoses of the language in the explanations makes this a really heavy exercise, demanding a lot of energy just in figuring out how things are said. Again, I contrast this with the ecid/base program which, though itself limited presents a generally more accessible exercise. Finally, I would recommend (if it is possible) that a way be found to make changes in a simulation while it is being studied. I found myself wishing that I could see the normal relationship between things in front of me before I started perturbing the works. I also wished I could blay some compensation cames while inside a simulation. I realize that some of my problems might have something to do with my not feeling comfortable with or understanding how to move around inside of the program, but that may be a design problem to consider as well. Anyway. I hope these musicase of some value to you. I applogize for not being the most accompasing in helping out with the testing of the program; I hope that my comments here accomplish something along the lines of what you sceningerested in hearing about? ** *** The large less 200 partners losers. The Asia Constitution of KUNSTAETTER, ROBERT / NP/1 - HPDESK print. Message. Subject: Respiratory Dated: 01/23/86 at 2356. I finally get to you on the Respiratory program. My initial impression was that it wasn't particularly valuable. I felt that the model was not teaching me anything that I didn't already know and that the format was somewhat forced. Then I finally found the time to take the exam, and here are my new thoughts. First of all, I was irritated about having to spend the time on the exam, but it turned out to be a wonderfully integrating experience for me. It forced me to organize what I had learned and identified what I had not. Interestingly, as I thought about answering the questions, the simulation diagram k popping in my head and it helped me to very clearly plan the flow of my ideas. I now realize that the repetition was more valuable than I had suspected! I was unclear about the role of peripheral chemoreceptors, however, and am not sure that they were included in the pregram. Learning by computer certainly is fun and a pleasant break from the more passive reading. Good luck in future development. It is unlikely, however, that any given program will be equally helpful to all. This empty page was substituted for a blank page in the original document.