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CHAPTER 1

Perspective

Advances in integrated circuit technology have had a revolutionary impact on computer
system design. A chip today integrates far grealer sophistication and computing power than
ever before. Fabrication processes have progressed rapidly so that c¢hips with once million com-
ponents are a reality, and cnthusiasts predict chips with upto one hundred million commponents
within a decade. Tndeed, it is exnected that if ion heam etehing teehnimiea hacame viahle
for “printing” chips direetly, then minimum feature sizes would drop by a factor of ten, thus

allowing a hundred-fold increase in the number of components on a chip.

More signilicantly, the new technology encourages custom design of special purpose in-
tegrated systems for solving very large scale sophisticated problems. No longer is it necessary
to use a single conventional architecture for solving diverse problems. Instead, the computa-
tional structure of a problem may be mapped direelly into hardware. This has shifted the
cmphasis from scarching for algorithms, necessarily convoluted Lo suit a given architecture, to

efficient hardware design suited to individual problems.

While this emphasis on greater design flexibility has opened up new directions in comput-
ing, a number of diflicult problems must be addressed before the emerging technologies can be
effectively exploited. Probably the most significant development in casing the awesome task
of designing and Implementing large systems has been the standardization of design rules and
the widespread use of standard building blocks. The design methodology expounded by Mead
and Conway [65], and the development of building blocks such as gate-arrays, PLA’s, and
ROM’s has helped shift the m-nphnsis in circuit design from the exclusive domain of clectronies

to a higher, more functional level, where aspects of circuit layout may be treated in purely
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geomelrical terms.

This thesis examines various aspects of the circuit layout problem. We address questions
such as: why is circuit layout difficult, what properties of a circuit critically determine the
quality of its layout, and what kinds of hecuristics can help solve layout problems efficiently?
These questions are motivated by the need for gencral techniques for laying out very large
circuits. Such basic issues must be addressed before building any automatic or computer-aided
design and layout system.

Although the circuit layout problem is not new, progress has been painfully slow. The
proliferation of diverse technologies and concerns has only exacerbated the layout problem.
On the one hand we desire to minimize layoul area, signal dclays, and power dissipation, while
on the other hand we need to increase reliability by increased redundancy. In addition we
require that custom circuits be assembled using standard configurable or restructurable chips
as building blocks. It is not at all clear whether these different requirements are compatible or
necessarily contradictory.

Part I prescnts a general theory for VLSI graph layout. Nol only does the theory identify
structural propertics of circuils that critically determine the quality of layouts, but also provides
techniques for solving various layout problems. Perhaps the most significant result that emerges
is a general framework for solving diverse problems in a simple ana uniform manner. In
particular, the unified framework provides a layout technique which is suitable for custom
layout, and at the same time is cfficient with regard to arca, delay, and fault-tolerance. Part I
consists of Chapters 2 through 5.

Part I examines the channel routing problem. Algorithms for channel routing form the
basis of many existing automatic layout systems. Although this problem has reccived wide
attention over the last decade and a number of heuristic algorithms have been proposed, none
of these is guaranteed to always determine cflicient routings. Approaching this problem from
a theoretical viewpoint, we characterize completely the properties that make channel routing
difficull. Morcover, we provide a novel, lincar-time algorithin that is always guaranteed to find

ncar-optimal solutions. Chapters 6 and 7 constitute Part 11 of this thesis.
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Although the two parts of the thesis investigate different problems, they share a common
underlying philosophy. We begin with a theoretical characterization of the propertics that make
the problems difficult. In the next step, algorithmic techniques are developed for exploiting
these propertics to solve the problems. Although the results in their present form are primarily
theoretical in nature, the techniques provide new insights and approaches for VLSI layout. Tt
is likely that some of the tcchniques can be adapted for use in practice.

The remainder of this chapter discusses the lwo parts of the thesis in more detail, and

concludes with an outline of the thesis.

1.1. The Complexity of VLSI Graph Layout

In recent years a number of interconnection networks have been proposed for solving diverse
problems. For example, one- and two-dimensional arrays of processors are naturally suited to
veetor and matrix computations [50]. Binary trees arc particularly attractive because of their
logarithmic depth and have been proposed for a variety of applications including raster graphics
[27], databases [75], and direct exccution of applicative programming languages [54]. The
mesh of trees [19, 44, 57] combines arrays and trees in an clegant manner. By virtue of their
sophisticated structure, networks such as the shuille-exchange network (73], cube-connected
cycles network [63], and fast-fourier transform network [76], in which recursive algorithms
are programmed conveniently in a natural manner, are computationally morc versatile and
powerful than the simpler array structures.

Can we cxploil the power of sophisticated networks in VLSI? This question becomes
increasingly important as problem sizes, and the number of processors increase. It might
be relatively simple to fit a thousand processor array on one chip, but can we fit a thousand
processor shullle-exchange network on one chip? Morcover, even if the shuffle-exchange network
fits, will its performance, delermined by the clockperiod or longest delay, be comparable to the
array? To answer such questions, and to compare the relative merits of dilferent networks, it
is necessary to develop a general theory lor VLSI graph layout.

Rescarch in layout theory was initiated by Thompson [79, 80] who proposed a formal model
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for VI.SI graph layout and investigated area-time tradeolfs for computling certain functions.
Using information-transfer arguments, he obtained strong lower bounds on the layout areas of
graphs such as the shuflle-exchange and cube-conneeted eycles graphs. Subsequently, Leiserson
[49, 50] and Valiant [83], focussing on the problem of minimizing layout area, independently
devcloped a divide-and-conquer layout strategy for general classes of graphs. Using elegant
combinatorial arguments, Leighton [10, 41] showed that the bounds of Leiserson and Valiant
were the best possible in that each class contained graphs lor which the bounds were, upto
constant factors, optimal. For some graphs however, the bounds were very weak.

Layout arca is not the only considecration in choosing one layout over a multitude of
possible layouts. In practice, we desire to fabricate small, inexpensive, and easily testable chips
which compute quickly and relzably. A large number of important engincering issues need to
be considered in fulfilling these (possibly conflicting) requirements.

Propagation delays across long wires eritically affect the performance of a cireuit layout. In
pipelined or systolic systems, long delays deterinine the clockperiod and overall performance of
the system. Since propagation delay can be reduced by decreasing wire length, it is important to
make Lhe longest wire in the layout as short as possible. Another way to reduce the propagation
delay across a long wire is by increasing the size of the trancistor that drives the wire; by
carefully adjusting transistor sizes to match wire lengths, the clockperiod can be dramatically
reduced. Since wire delays determine the efliciency of a chip, it is imperative that techniques
to minimize delay be developed within a general theory for VLSI layout.

Fault tolerance is another important design consideration. Fabrication processes are prone
to errors so that every wafer invariably contains a small number of defects. Iven if a waler
contains a number of defective processors, it may still be possible Lo use the wafer by configuring
wires around the defective processors. 'l"h'ls may, for exammple, be perlormed by laser restruc-
turing techniques [64]. This ability to wire together processors sclectively has considerable
impact on sytem design. For example, how should a thousand processor wafer be designed so
that a two-dimensional array can be realized using all the good processors, no mabter how the
defective processors are distributed?

Another major concern is the problem of assembling large systems. Researchers have
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proposed networks with as many as one million processing elements [54]. Such systems are
clearly too large to fit on a single chip. Whenever any system is larger than a single chip,
it is necessary to partition the system among several chips which can be assembled at the
printed circuit (or chip carrier) level. What is the most effective way to partition a large
system among several chips? This question is pressing because although fabrication technology
has been advancing at a rapid pace, the technology for packaging chips has been crawling in
comparison: current projections indicate as many as one hundred million components per chip

but not more than two hundred off-chip pin connections,

The economics of fabrication technology dictates that it is expensive to make one chip,
but cheap to make many copies. For this reason, manufacturers of custom chips have been
encouraged to make configurable designs such as gate-arrays, ROM’s, and PLA’s. The entire
chip is manufactured, except for one mask. Given a desired configuration of the chip, a
final layer of metallization connects up the circuitry in that way. Most of the design and
fabrication costs are thus factored over several chips. Similarly, restructuring techniques allow
a chip to be modified after fabrication. For example, “diode-busting” is used to configure
PROM’s (programmable read only memory) after fabrication. More recent and exciting is the
prospect of “laser welding” by which connections between wires can be either made or broken
after fabrication by high-intensity laser beams. Such techniques further encourage configurable
design of VLSI chips. Thus, we are led to consider how to design efficient layouts which may

be configured to realize, for example, arbitrary binary trees or arbitrary rectangular arrays.

Motivated by the engineering issues outlined above, Part I develops a general framework for
VLSI graph layout. Within this framework all the diverse concerns mentioned above are dealt
with in an efficient and uniform manner. The framework is based on a divide-and-conquer
strategy for graph layout which differs significantly from the divide-and-conquer strategy of
Leiserson [49, 50] and Valiant [83]. The improved strategy is based on the notion of graph
bifurcators introduced by Leighton [42], and provides universally close bounds on important
cost functions such as layout area and propagation delay. The results of Part I are based on
the papers of Bhatt and Leiserson (8, 9], and Leighton [42]. In addition, the results of Chapters

4 and 5 appear in [7].
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1.2. The Complexity of Channel Routing

Although the graph layout problems considered in Part I provide new insights and paradigms
for VLSI layout, they are nonetheless abstractions of layout problems encountered in practice.

Part 1l Tocuses on a specific problem confronting current automatic layout systems,

Chaunnel rouling plays a central role in automated layout systems. Most layout systems
proceed by first placing modules on a chip, and then wiring together terminals on different
modules that should be clectrically connected. To solve the latter wiring problem, the chip
is heuristically partitioned into a sct of rectangular channels, and cach channel is assigned a
sct of wires which are Lo pass through it. This cffectively reduces a diflicult “global” wiring

problem to a sct of disjoint (and presumably easier), “local” channel routing subproblems.

An instance of the channel routing problem is speeified by a set of terminals located at
hiaed positivus on iwo norizontal tracks. macn set of terminals with the same iabel constitutes
a net which must be electrically connected by wires running in horizontal tracks and vertical
columns. Figure 1.1 shows a channel with six nets. Horizontal and vertical wire segments are
placed on two different layers of interconnect. The objective is 1o wire up all nets in a way
that minimizes the channel width, which is the number of horizontal tracks used for wiring.

For cxample, Ifigure 1.2 shows a minimum width wiring of the channel in Figure 1.1.

The channel routing problem has been intensively studied for over a decade, and many
heuristic algorithms have been proposed for solving the problem (1, 2, 11, 12, 18, 20, 21, 34, 35,
36, 38, 51, 60, 62, 67, 68, 81, 84]. Recently, Szymanski [77] showed that the general problem is
NP-complete, and with Yannakakis [78] showed that the problem is NP-complete even when
every wire connects exactly two terminals. This might explain why the fast heuristic algorithms
developed thus far cither produce arbitrzllrily bad solutions in many eascs and/or completely

fail on other instances.

Part IT of the thesis presents a linear-time algorithin which always produces a near-optimal
solution. This algorithm is based on the key notion of channel flux which is introduced in

Chapter 7. The algorithm originally appears in a paper by Baker, Bhatt, and Leighton [3].
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Figure 1.2: A minimum width routing.

1.3. Overview

The next four chapters are devoted to VLSI graph layout, and form Part I of the thesis.
Chapter 2 outlines Thompson’s model for VLSI layout, reviews previous research, and describes
important layout probl.ems in a formal setting. Chapter 3 focuses on layouts for the simplest
of networks: binary trees. In addition to presenting new layouts with improved bounds on edge
lengths, the complexity of producing optimal layouts is examined. The new layout strategy
motivates the paradigm for general graph layout presented in Chapter 4. Finally, Chapter
5 shows how the new layout paradigm can be used to efficiently solve the important layout
problems of Chapter 2.

Part II of the thesis consists of Chapters 6 and 7. Chapter 6 describes the channel routing
problem, its use in automatic layout systems, and briefly reviews previous research. Chapter 7
introduces the concept of channel flux and presents a lincar-time approximation algorithm for
Manhattan routing.

In conclusion, Chapter 8 summarizes the major results of both parts and outlines 2 number

of important, unresolved problems.



CHAPTER 2

Issues in VLS| Graph Layout

The first three scetions of this chapter introduce the layout model developed by Thompson
[79, 80] and brielly review previous research in VLSI graph layout. In particular, we discuss the
layout strategy of Leiscrson [49] and Valiant {83] and note that bounds on layout, area based on
scparator theorems can be very different from the actual minimum layout area. The remainder
ol this chapter is devoted to formalizing a number of layout, questions motivated by enpineering

considerations.

2.1. The Layout Model

In order to cast VLSI layout problems within a mathematical framework, Thompson (79,
80] developed a formal model for VLSI graph layout. The model is based on, and is consistent
with, the VLSI design rules established by Mead and Conway [565]. 1t is also similar to the
widely used Manhattan wiring model. In the Thomspon grid model, a layout for a graph is
charactlerized as an embedding within a two-dimensional grid. A two-dimensional grid is a
collection of horizountal and vertical tracks spaced apart at unit intervals. A layout for a graph
G is specified by an embedding which assigns nodes of GG to points in the grid where horizontal
and vertical tracks intersect, together with an (incidence-preserving) assignment of the edges
of (7 to paths in the grid. The paths of the layout are restricted Lo follow along grid tracks
and are not allowed to overlap for any distance (although a vertical path segment may cross
a horizontal path segment). In addition, the paths may not cross nodes to which they are not

adjacent. For obvious reasons, we restricl our attention to graphs in which no node has degree

13
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Figure 2.1: A layout for K.

greater than four. As an example, Figure 2.1 shows a layout for the complete graph on four
nodes.

Remark. The results of this thesis extend to variants and generalizations of the Thomspon
grid model. For example, graphs with bounded valence greater than four may be laid out by
mapping each node to a region of the grid, instead of a single grid point. The results are also
é.pplicable to networks with large processors. Techniques for dealing with large processors are

described more fully in Chapter 5.

2.2. Elementary Bounds on Layout Area

Although there are a variety of important engineering considerations in choosing one layout
for a graph over other possible layouts, the best understood, and perhaps the most desirable
cost measure to minimize is layout area. The area of a layout is most naturally defined as
the area of the “bounding-box” around the layout, and equals the product of the number of
vertical tracks and the number of horizontal tracks that contain a node or wire segment of the
graph. For example, the layout of Figure 2.1 has area 15. This is not the minimum possible;
there is another layout with area 9.

How much area does an N-node graph require? Clearly, the area cannot be less than
.the number N of nodes. On the other hand, by embedding nodes at equally spaced intervals
_ along a line, and using a distinct horizontal track for each edge (as shown in Figure 2.2), it is
clear that the area required for an N-node g.raph is no greater than O(N?). These bounds are
independent of the structure of the graph and hold for all N-node graphs. In general, however,

the minimum area needed to lay out a graph depends on the graph.
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A
O(N)
LWL W
- O(N) >
Figure 2.2: Every N -node graph can be laid out in O(N?)
area.

Thompson [79, 80] identified bisection width as an important property of graphs that affects
minimum layout area. The bisection width of an N-node graph is the minimum number of
edges which must be removed from the graph in order to disconnect it into two subgraphs
each of size at least [IV/2]. Thompson showed that, up to a constant factor, the layout area
can be no less than the square of the bisection width. Therefore, if the bisection width for
a graph is known, a lower bound on area can be easily computed. By showing that certain
computationally powerful graphs such as the shuffle-exchange graph have large bisection width,
Thompson showed that these graphs require large area. In fact, Thompson extended this
observation to obtain area-time tradeoffs for computing certain functions.

Leighton [40, 41] identified crossing number as another general property that affects layout.
area. The crossing number of a graph is defined as the minimum number of edge crossings in
any drawing of the graph in the plane. It is easy to see that the crossing number of a graph is a
lower bound on layout area. Using more sophisticated arguments for special graphs, Leighton
also directly obtained lower bounds on total wire length (the sum of the lengths of the wires
in a layout), which of course is a lower bound on layout area. These techniques are heavily

dependent on the recursive structure of the special graphs and are generalized in [7].

2.3. Layouts Based on Separator Theorems

Leiserson [49, 50] and Valiant [83] investigated general properties that provide effective
upper bounds on layout area. They independently developéd a divide-and-conquer strategy for

graph layout and showed, for example, that every N-node tree can be laid out in O(N) area
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and that every N-node planar graph can be laid out in O(ng2 N) arca. Their technique is

based on the notion of separator theorems for graphs.

Definition: A class of graphs which is closed under the subgraph relation is said to have

an f(z)-separator theorem if there exist constants a and b where 0 < a < 1/2and b >0

such that every N-node graph in the class can be partitioned (by the removal of at most

bf(N) edges of the graph) into disjoint subgraphs having o’ N and (1 — a')N nodes where

a<ad <1l-a.

Given a class of graphs for which a scparator theorem is known (e.g., trees have a 1-
separator theorem [52] and planar graphs have a \/z-separator theorem [53]), it is possible to
construct a layout for any N-node graph in the class by using a simple divide-and-conquer

approach. For example, Leiscrson [19, 50] proved the following upper bounds on layout area.

z%-separator theorem Layoutl Area
o < 1/2 O(N)
a=1/2 O(N Ig? N)
a > 1/2 O(N%=)

Remark. The layout procedure assumes that a complete recursive decomposition of the graph
is given. If a complete decomposition is not given, then there is no known polynomial time
algorithm which achieves the upper bounds on area. This severely limits the applicability of
separator-based layout strategics to classes of graphs (such as trees or planar graphs) for which

decompositions are casily computed.

llow good are the preceding area bounds? Thompson [79, 80] and Leighton [40, 41] showed
that none of the bounds can be improved. More preciscly, they showed thal within cach class
there is a graph for which the bound is optimal. But this does not mean that the bounds are
optimal for every graph within a class. In fact, while the bounds are exzistenticlly oplimal,
they arc not universally optimal. For example, an N-node square grid can be laid out in arca

lincar in N, but since the minimum scparator theorem for the class of square grids is Vx, the
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best bound obtainable by scparator-based layouts is ()(ng2 N), which is off by a factor of
O(lg2 N) from the optimal. Of course, since N-node graphs require area at least N, the bounds
for graphs with z%-scparator theorems, a < 1/2, are asymptotically universally optimal.

For graphs with larger separator theorems, the diserepancy between the minimum layout
arca and that given in the table can be much worse. Consider, for example, the N-node graph
Sx which consists of N/lg N disjoint lg N-node expander graphs. An m-node ezpander graph
has the property that every subset of & nodes is linked by ©(min(k, m — k)) edges to the m — k
nodes outside the subset.” The bisection width of such a graph is (2(m), and hence the minimum
separator theorem is ©(z). The existence of trivalent graphs that satisfy this defintion has been
known for a long time [28, 31]. In fact, almost all trivalent graphs satisly this definition. Since
each lg N-node expander graph can be trivially laid out in O(lg2 N) area, the layout area of
Sy is no greater than O(N lg N). However, Leighton [42] showed that the minimum separator
theorem for the class of graphs Sy exceeds Q(z/lg2 z), so that the arca bound from the table

above is O(N2/1g* N), which is much worse than the optimal bound of O(Nlg N).

Remark. Any class of graphs closed under the subgraph relation and containing Sy must
also contain expander graphs. Hence, the minimum scparator theorem (as defined carlier) for
the class is ©(z). Instead of deﬁni‘ng separator theorems for classes of graphs closed under the
subgraph relation, it is more convenicnt (and general) to define separators for individual graphs
in terms of the subgraphs produced by its recursive decomposition. Using the less restrictive
(but more uscful) definition, it is possible to show that Sy has an O(N/lg N)-separator. The
lg N-node expander graphs are split in the upper levels of the decomposition and never appear
intact as subgraphs in the lower levels of the decomposition. Leighton [42] proved that even
using the most liberal definition, the minimum separator for Sy is at least QN/ Ig® N). Any
bound on layout area for Sy based on the minimum scparator can therefore be no less than

Q(N?/1g* N).

"Thus, while the divide-and-conquer strategy based on separator theorems gives existentially

*The original definition of expander graphs is slightly different from that given here. We adopt this minor
variant because it allows nodes of degree no greater than three.
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optimal bounds, the bounds can be unacceptably poor in a universal sense. It was the discovery
of such large discrepancics that led to the search for an alternative framework for VLSI layout.
Within the new framework presented in Chapter 4 we shall sce how these large discrepancies

are overcoie,

2.4. Eight VLSI Graph Layout Problems

As mentioned earlier, there are many important considerations in choosing one layout over
a multitude of other possible layouts. The problems in this section are molivated by some
engincering concerns fundamental to circuit design and layout. Though not exhaustive, this
list covers most of the theoretical issues studied recently. Many of the problems are known
to be NP-Complete. The emphasis throughout this thesis is the development of a general
unifying framework for dealing with diverse issues in a uniform manner. Within the framework,
solutions to some problems are reasonably close to optimal. For other problems, good heuristics

are developed or suggested, and general bounds obtained.

Problem 1. Given a graph G, produce an area-effictent layout for G.

As mentioned before, minimizing area is a critical concern in VLSI circuit layout. In
addition to the work on arca-cflicient layouts described in the previous section, Dolev, Leighton,
and Trickey [22] have shown that determining the minimum layout arca of a forest of trees is

NP-Complete.

Problem 2. Given a graph G, produce an area-efficient layout for G with minimaz edge

length.

Besides area, speed is another eritical Factor in chip performance. Signals do not propagate
instantancously across wires, and the longer the wire, the longer the propagation delay. In
pipelined or systolic systems, the effeet of propagation delays is even more dramatic. The
maximum delay determines the clockperiod, and hence the throughput, of the system. To
maximize throughput we need to minimize the maximum delay. In short, we must produce

layouls so that the longest edge is as short as possible. The minimum, over all layouts, of the
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length of the longest edge is called the minimaz edge length.

Paterson, Ruzzo and Snyder [59] studied the problem of minimizing edge lengths for
complete binary trees. They showed that the minimax edge length of an N-node complete
binary tree is @(\/]_\7/ lg N). Adopting a different strategy based on scparator theorems, the
next chapter presents a general technique for bounding the maximum edge length of arbitrary
trees, while Chapters 4 and 5 extend the techniques to general graphs. The next chapler also

shows that minimizing the edge lengths of trees is NP-complete.

Problem 3. Given a graph, produce an area-efficient layout in which each wire has

bounded delay in the capacitive model.

Although it is certainly truec that propagalion delay across a wire depends on the length
of the wire, there has been little consensus on how fast propagation declay grows as a function
of wire leneth. Thompson [79, 80] assnmes propagation delay to be constant, independent of
wire length. This might scem unreasonable given the ultimate speed-of-light 1imitati§n which
indicates that the delay increases linearly with length. The speed-of-light limitation, however,
greatly exaggerates the importance of wire delay in determining the speed of circuits. Mead
and Conway [55] take into account some of the electrical characteristies of interconnections on
MOS integrated circuits, and emphasize the role of wire capacitance in determining propagation
delay. Recent analysis by Bilardi, Pracchi, and Preparata [10] strongly supports the belief that
capacitive effects play the predominant role in determining the speed of MOS circuits.

In a capacitive model, each wire is assumed to present a purcly capacitive load to the
transistor that drives a signal across the wire. This load is proportional to the length of the
wire plus the arca of the transistor that receives the signal. The delay is proportional to
this load divided by the area of the driving transistor. By increasing the size of the driving
transistor it is therefore possible to bound the propagation delay, independent of the length of
the wire. A second well-known technique for reducing delay across a long wire is to “ramp”
the wire with a geometrically increasing series of inverters [55]. The number of intermediate
drivers, and hence the delay, is logarithmic in the length of the wire, bul an attractive feature

is that this process can be carried out without the need to resize the original transistors in the
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circuit.

Of course, increasing the size of onc transistor or introducing new transistors might force
some wires to be stretehed to avoid the enlarged transistor arca. In other words, decreasing
the delay across onc wire might force an increase in delay over other wires. Leiserson [47] and
Mechlhorn [56] independently posed the question of whether or not the transistors in a layout
could be resized so that every wire in the layout has constant propagation delay. Ramachandran
[65] investigated the problem of introducing intermediate drivers along long wires to decrease
delays, but under the constraint that the topology of the layout remain unchanged. With the
restriction that wires can not be rerouted, she showed that logarithmic delay can be achieved,
but at the expense of squaring the layout arca in the worst case. We allow the layout topology

to be changed, and obtain significantly better results.
Problem 4. Given a graph G, produce a layout for G with few wire crossings.

An undesirabie feature of iayouts is the prescnce of a large number of wire crossings.
When two wires cross, they must be on different layers. For faster operation, and less power
dissipation, it is advanlageous to maximize the tolal amount of wiring on a layer of low
resistance, e.g. the metal layer, while minimizing the wiring on a layer of high resistance,
e.g. the polysilicon layer. The net wiring on one layer may be reduced by laying wires on that
layer only just before and after two wires cross. If the number of wire crossings is small, the
number of contact-cuts which conneet wire segments on different layers is small so that the area
of the layout is not blown up by the contact cuts which occupy large area. In addition, long
wires that are crossed by many other wires are susceplible to cross-talk when all the crossing
wires simultancously carry the same signal.

The crossing number of a graph is defined to be the minimum number of wire crossings in
any drawing of the graph on the plane. Leighton [40, 41] proved upper and lower bounds on
crossing numbers and then used the results to find bounds on layout arca. Garey and Johnson

[29] showed that determining the crossing number of bipartite graphs is NP-Complete.
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Problem 5. Given a graph, produce an area-efficient regular layout for the graph.

Some design methodologies, most notably gate-arrays, require that processors be located
at fixed positions on a chip. In gate-arrays the processors are placed in a grid pattern with
uniform spacing between processors adjacent along every row and column. Such layouts are
said to be regular. An important advantage of this design restriction is its flexibility: even if
the size of every processor is increased, the wiring between processors remains unaffected and
the tolal arca remains proportional to the sum of the wire arca (as computed with unit-size
processors) and the processor area. This is because only the /N rows and columns containing
the N unit-size processors need to be expanded to accomodate the non-unit-size processors. In
non-regular layouls, every row and column might have to be expanded since there might be a
node in every row and in every column. Increasing the lincar dimension of the processors by a
factor of s could result in an ©(s%) increase in layout area.

Previous divide-and-conquer lavout strategies do not nroduce regular Iayvouls. Hence, they
are not useful in laying out circuits with non-unit-size processors. A good strategy for producing

regular layouts would solve the nagging problem of how to cope with variable-size processors.

Problem 6. Design area-efficient chips that can be configured to realize a large number

of graphas.

Beeause it is expensive to make one chip but cheap to make many copies, manufacturers of
custom chips have been encouraged to make configurable designs such as gate-arrays, ROM’s
and PLA’s. In such designs, the entire chip is prefabricated except for one layer. The customer
then specifies a configuration for the chip, and the final layer of metalization connects up
the circuitry in that particular way. Hence, most of the design and fabrication costs can be
factored over many custom chips. Similarly, the fast emerging lascr-restructuring technology
[64] provides another cconomical way to customize chips after fabrication is complete. Laser
restructuring allows connections between wires to be made or broken after the chip has been
fabricated. In either case, it is desirable to design layouts that ean be configured from one of

a few basic patterns.
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Problem 7. On a wafer which has arbitrarily distributed defective cells, realize a given

graph on the good cells.

In any [abrication process, it is expeeted that some of the processing cells will be defective.
In a two-dimensional array of cells on a wafer in which defective cells are arbitrarily distributed,
it may still be possible to use the wafer by configuring wires around the defective cells. This
may, for example, be performed by laser restructuring techniques [64]. Given this ability to
isolate defective cells, it is important to consider how a graph may be realized on the remaining
good cells. This problem has received considerable attention recently [33, 45, 69]. The problem
is similar to the general graph layout problem in the Thompson model but with the important

restriction that nodes of the circuit can only be mapped to a restricted set of nodes in the grid.

Problem 8. Given a graph G, assemble G using the minimum number of copies of a

single chip having few external pin connections.

A number of very large networks have been proposed in recent years for impl-cment;ing
priority qucucs [48], for scarching [5], for dircel execulion of applicative programming languages
[54], and for recognizing regular expresions {26]. Some of these networks are too large to fit
on a single chip. Tor example, the trec-structured network of [54] is envisioned to contain
as many as one million processing clements. Clearly, such networks must be partitioned over
many interconnected chips, so that each chip realizes a small portion of the network.

The technology for packaging chips severely limits the number of external pin connections
on a chip. While chips with over a million components arc forseeable in the near future, no one
predicts a chip with over two hundred external pin connections. This poses a pressing problem
in asscmbling large networks of processors.

[iven if a nectwork could be partitioned so that each portion has only a few exlernal
connections, it would be cconomically infeasible to design cach chip individually. For instance,
it would be prohibitively expensive to design one thousand different chips, each containing a
thousand processing clements, to assemble a network of one million processors. For this reason,
it is necessary to assemble large systems using copics of a few configurable or restructurable

chips. The next chapter presents one solution to the problem of assembling large tree structures
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using copics of a single, arca-efficient, restructurable chip with few external pin connccetions.

Within the new framework, cfficient solutions are provided for each of these problems. In
fact, a single layout simultancously solves many of these problems ecfficiently. The framework
provides a two-step strategy for solving these problems. First, the graph to be laid out is
embedded within a very special network called the tree of meshes. Ior the tree of meshes it is
possible to solve all these problems cfficiently. In the second step, therefore, a good layout for

the tree of meshes also solves these problems for the embedded graph.



CHAPTER 3

ayouts for Trees

A binary tree may not be the best multiprocessor organizalion, but it has been proposed by
many rescarchers for a variely of reasons. For example, a complete binary tree can be the major
component of a priority queue resource [418] and of a smart-memory raster graphics system (27].
A complete binary tree can also serve as a hardware structure for searching [5], for databases
[75], or for direct exccution of applicative programming languages [54]. Browning [15] proposes

a complete binary tree for general-purpose mulliprocessing, and two systems based on her ideas

are being built at Caltech and Bell Laboratories.

Attention is also directed to binary trees which are not complete. Floyd and Ullman [15)
show that strings described by a regular expression can be recognized by processing clements
organized as the parse tree of the regular expression. Foster and Kung [25] have a similar
scheme based on the simple configurable layout developed by Leiserson [50]. There are other
proposals, for example [58, 74], of machinc organizations that, while not trees, are nevertheless
tree-like.

We shall not debate the merits of the various tree machines here, but shall confine oursclves
to understanding their physical organization. In this regard trees are parlicularly atiractive
because of their simple interconnection structure. Not only can trees be laid out cfficiently, but
good layouts for trees also suggest eflicient ways to lay out general graphs. Morcover, problems
that are intractable for trees are also intraclable in general. Thus, by investigating layouts for

trees we stand to learn more about general graph layout.

In the following scetion we examine two well-known layouts for complete binary trees and

present a better layout which minimizes (asymptotically) both area as well as maximum edge
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Figure 3.1: An O(nlgn) arca layout of a complete binary
lree.

length. These bounds are extended to arbitrarily structured trees in Section 3.2, and to planar
layouts for trees in Scction 3.3. Computing the minimum edge length exactly is shown to be
NP-complete in Section 3.4. Section 3.5 describes Leiserson’s [50] assembly of large complete
trees using multiple copies of a single chip with only four external pin connections. Section
3.6 introduces and examines the two-color bisection problem for arbitrary trees. Section 3.7
presents one way to assemble large arbitrarily structured trees using the minimum number of

copies of a single restructurable chip with few pins.

3.1. Layouts for Complete Binary Trees

In addition to their usefulness in speeding up computation time by allowing both paral-
lelism and pipelining, complete binary trees are attractive also because they can be laid out
efficiently. Figure 3.1 shows the naive layout of a complete binary tree. Since the height of an
N-leaf tree is g NV, and the N leaves are spread out over a line of length 2N, it follows that
the area of the layout is 2N 1lg N. Furthermore, the longest edges are at the top level and their
length is I N.

The familiar H-tree layout in Figure 3.2 was originally proposed by Mead and Rem [55].
In contrast to the naive layout which, in a sense is one-dimensional, this layout exploits both
dimensions symmetrically. If S(/NV) is the side of the layout, then we have that S(1) = 1 and

. more generally,

S(N) = 28(N/4) + 1,

which yields S(N) = 2v/N — 1. Conscquently, the area of the layout is no greater than 4N,

The longest edges are again at the top level, and their length is no more than }\/N
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Figure 3.2: The H-tree layout of a complete binary tree.

The H-tree layout asymptotically minimizes area but not maximum edge length. Paterson,
Ruzzo, and Snyder [59] demonstrated a lincar-area layout with maximum edge length
O(V'N/1g N). In any layout there are two nodes which are distance VN apart; moreover, these
two nodes are connected by a path containing no more than 21g N tree edges. It follows then
that at least one of these edges must have length at least /N /21g N. Thus, the layout of [59]
asymptotically minimizes area as well as maximum edge length. Unfortunately, however, the
layout technique of [59] does not extend to more general graphs. The remainder of this section
demonstrates another layout with asymptotically optimal area and maximum edge length. The
following section generalizes our technique to arbitrary trees and, the next chapter to general
graphs.

To illustrate our technique, consider the layout of Figure 3.3 in which the nodes at the
second and third levels of the tree have been brought closer to the root so that all edges within
the top four levels are ol equal length. This “averaging” of edge lengths reduces the maximum
edge length from %\/N to B V/N. Of course, the layout is stretched in the middle in order to
accomodate two edges instead of one. This increases the area of the layout, but only slightly,
from 4N to AN + 6V N.

This averaging operation can be carried out further down the tree so that many levels
arc brought closer towards the root. In order to space top levels of the tree closely together,

we embed these levels within an If-channc! structure shown in Figure 3.4. This structure is
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Figﬁre 3.4: The H-channel structure.

obtained by taking the H-tree layout of a complete binary tree and blowing up the layout in

both dimensions by a suitable factor. The details of the embedding are described next.

Theorem 3.1. An N -node complete binary tree can be embedded in linear area with mazimum

edge length O(V'N /g N).

Proof. To layout a complete binary tree with N leaves, start with the H-tree layout of
a complete binary tree with 1g2 N leaves which has area 41g° N and maximum edge length
31g N. Blow up this layout in cither dimension by a factor a\/IV/ lg N, where o is a constant

specified later. The arca of the layout becomes 4a?N and the longest channel has length

%a\/ﬁ.
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Next, lay the root at the centre of the H-channel structure and place the second level nodes
al distance ﬂ\/ﬁ/ lg N from the root on cither side. Once again, 8 is a constant specified later.
Place lower levels of the tree as shown in Tigure 3.4, with successive levels spaced equally apart.
At every corner of the I-channel structure, biseet the tree so that the subtrees embedded
within the two substructures arc of equal size. Finally, in the lowest level channels lay out the
remaining subtrees in the H-tree manner.

We must ensure that every channel is wide enough to accomodate all the nodes in any
level embedded within it, and also that the II-tree layouts in the final step fit within the lowest
level channels. To satisfy these conditions, let us first calculate the total number of tree levels
embedded in all but the lowest level channels. The total length of all channels encountered
from the centre of the layout to the end of a terminal channcl does not exceed the quantity
2av/N. Since the distance between successive tree levels is ﬂ\/ﬁ/ lg N, the number of tree
levels embedded is bounded by (2a/8)1g N. The total number of tree nodes within any one
of these levels is therefore no greater than N22/8. If 2a/8 < 1/2 then the number of nodes
in any level is asymptotically less than the width of a channel which equals ﬁ\/_ﬁ/ lg N. The
first condition is therefore satisfied by having o < 3/4.

To ensure that the H-tree layouts at the final step fit within the final channel, it suffices
to check that the dimensions of the layout are smaller than the dimensions of the channel.
The size of a subtree embedded within a final-level channel cannot be more than N/ g N
because the tree is split into hall at cach corner. The side of the Il-tree layout is no greater
than 2\/7\7/1{; N. By choosing a > 2, the side of the channel is guaranteed to be larger than
a side of the H-tree layout. Therefore, by choosing @ > 2 and 8 > 4«, we see that the layout

can be completed. Finally, the area is lincar in N and the maximum edge length is bounded

by O(VN/lg N). |

3.2. Layouts for Arbitrary Binary Trees

One property of complete binary trees crucial to the layout of Theorem 3.1 is that a

complete binary tree can be bisceted into two equal size subtrees simply by removing the root.
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At every corner in the I-channel structure, a forest of complete trees is bisected into two equal
halves, each “growing” in opposite directions. This controls the size of every subgraph at the
final level so that a standard layout fits within a final-level channel.

Arbitrarily structurced binary trees arc only slightly harder to biscet. Any N-node binary
tree can be separated into two components, each with no more than [%NJ + 1 nodes, by
removing a single edge [52]. (The worst-case occurs for the four-node tree in which one node is
adjacent to three others.) Either of the two comnponents might be a forest, but the same result
applics to forests, so that the binary tree can be split recursively. By recursively splitting the
larger component, a tree can be bisected by cutting at most O(lg N) cdges, or by removing
the nodes incident to these edges. The O(lg N) bound follows because the subgraphs decrease
geometrically in size with each cut.

The property that all trees have small bisections was used by Leiserson (19, 50] and Valiant
[83] to show that all trees have lincar-area layouts. We strengthen this result to show that the
maximum edge length of any N-node tree is bounded by O(\/N/ lg N). The details of the

layout are described in the following Theorem.

Theorem 3.3. Every N-node tree can be embedded in linear area with mazimum edge

length O(v/N/1g N).

Proof. As before, begin with the Il-tree layout of a complete binary tree with 1g? N leaves,
and blow up the layout in cither dimension by a lactor av/N/lg N, where a is a constant
specified later. The area of the layout becomes 4a* N and the longest channel has length
LaV/N.

Find a set of O(lg N) nodes which bisect the tree and locate them at the center of the
layout. Place nodes of the tree in breadth-first levels starting with the biseetor set as the roots
of the search, so that consecutive levels are distance BV N /lg N apart (8 is a constant speciﬁed
later). At every corner of the Il-channel structure, biscel the remaining forest of subtrees so
that the subforests embedded within the two substructures arc of cqual size. Add the new
bisector set to the set of nodes from the previous breadth-first level, as shown in Figure 3.5.

In the new channel, start with the updated sct as the root of a breadth-first scarch and repeat
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J

Figure 3.5: Inserting new bisector scls at cvery corner.

the procedure used before. Finally, in the lowest level chanunels lay out the remaining subtrees
using the standard divide-and-conquer layout of Leiserson [49, 50} or Valiant [83].

As before, we need to ensure that every channel is wide enough to accomodate all the nodes
embedded within any level, and also that the layouts in the final step fit within the lowest level
channels.

Let us first calculate a crude upper bound on the total number of nodes embedded in any
one breadth-first level. This quantity is certainly less than the total number of nodes embedded
in all but the final-level channels. To bound the latter quantity, suppose that nodes in each
bisector set within the H-channel structure are pulled in to the center of the layout, and the
remaining nodes placed in breadth-first levels until the final-level channels. Bringing all the
bisector sets towards the center can only increase the number of nodes in all but the final-level
channels. Since an N-node tree has a bisector of size O(lg V), the total number of nodes within

the union of all bisector sets is bounded by:

2lglg N N
o) 2ig — | = O(Ig® N).
(Z gT) (1g° N)

1=0
The total length of all channels encountered from the centre of the layout to the end
of a final-level channel does not cxceed 2av/N. Since the distance between successive tree
levels is ﬂ\/lv/ Ig N, the number of tree levels embedded within the H-channel is bounded by
(2a/8)1g N. Starting with O(lg® N) nodes as the roots of a breadth-first scarch, the number
of nodes cncountered in (2a/#) 1 N levels cannot exceed O(N2%/8ig® N). Since cvery node

embedded within the H-channel must be in one such breadth-first level, the previous quantity
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also bounds the total number of nodes within the H-channel structure. By choosing 2a/8 <
1/2, or a < /4, we sec that the width of a channel asymptotically exceeds the number of
nodes in any level within the channel. Thercfore, the first condition is satisfied by having
a < p/4.

To ensure that the layouts at the final step fit within a final-level channel, it suffices to
check that the dimensions of a layout generated by the Leiserson—Valiant strategy are smaller
than the dimensions of the channel. Their layout of an z-node tree is linear in z, i.c., bounded
by ~z, for all z and somec constant 4. In the layout described above, the size of a forest
embedded within a final-level channel cannot be more than N/ 1g? N because the tree is split
into half at cach corner. The side of a layout at the final level is no greater than VyN/lIgN.
By choosing @ > /4, the side of the channel is guaranteed to be larger than a side of the H-tree
layout. Therefore, by choosing a > (/7 and 8 > 4a, we sce that the layout can be completed.
Finally, the area is linear in N and the maximum edge length is bounded by 0(\/1V/ lgN). 1

3.3. Planar Layouts for Trees

It is sometimes nceessary to produce layouts in which distinct cdges do not cross one
another. Planar layouts have the advantage that only one layer of interconnect is required; by
using a low-resistance metal layer, the resulling circuit is not only faster, but also dissipates less
power. Many current automatic layout systems reserve a single layer of interconnect for special
purposes such as, for example, power and ground conncctions. In such cases, it is necessary to
find good planar layouts. Needless to say, the underlying connection scheme must be planar.

Planar layouts may require much more arca than non-planar layouts. In particular, Valiant
[83] demonstrated an N-node planar graph for which every planar layout occupics at least
()(N?) area and has edges of length (). On the other hand, Leiserson [49, 50] and Valiant
[83] showed that every N-node planar graph can be laid out in O(N Ig? N) area with cdges of
length ()(\ﬂVlg N) in Thompson’s layout model, which allows distinet wires to cross.

Valiant [83] further showed that every trec has a lincar-area planar layout. In other words,

the planarity restriction does not affect, the asymptlotlic area requirements of trees. But what
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about edge length? Intuitively, the length of a wire can be reduced by taking a shorl-cut across
another wire, instead of going around it. So, an important question is whether the planarity
requirement aflects the maximum edge length for trees.

Although the layout of Section 3.2 has lincar area, and asymptotically optimal edge length
in the worst-case, it is not guaranteed to be planar. Ilowever, Ruzzo and Snyder [70] showed
that this layout could be transformed into a planar layout withoul increasing cdge length
asymptotically. The details of their transformation are fairly complicated; in the following

Theorem, we present a simpler transformation.

Theorem 3.4. Every N-node tree has a linear-arca planar layout with mazimum edge

length O(VN /g N).

Proof. The layout procecds cxactly as in the proof of Theorem 3.3, with particular
attention paid tn the way a higector sot is rhacen and to the ordering of nodes within the set.
In particular, if a forest of = nodes has to be separated from an N-node tree, ¢ < | V/2],
then it suflices to remove at most [lgz] nodes. The key fact is that these nodes can be chosen
from a single path in the tree. This path induces a natural linear ordering on the set of nodes
removed.

To sce this, consider a binary tree rooted at a node of degree cither one or two. It is always
possible to choose such a root, and if the remainder of the tree is drawn in levels then every
internal node has at most two sons. Label each node in the trec by the size of the subtree
rooted at that node and below it. DPick any node whose label is no less than z, and both of
whose sons have labels less than . Mark this node. If its label cquals « then we have found a
node whose removal separates a subtree of the required size. Otherwise, one of its sons must
have a label y > [z/2], while the other son has label no less than z —y — 1. Recursively
mark nodes in the subtree rooted at the second son so that the removal of the marked nodes
separates a forest of size z—y — 1. It is casily scen that the marked nodes lic along a path of the
original tree. Morcover, the removal of all marked nodes separates a component of size exactly
z. Finally, sinee the first node separates a component of size at least [z/2] + 1, it follows that

no more than [lgz] nodes are marked. Figure 3.6 illustrates this procedure.
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Figure 3.7: The removed nodes are placed in the order
of occurrence along the path.

Given a tree, use the above procedure to find a set of nodes which bisect the tree, and lie
along a path. Place these nodes at the center of the layout in the same order in which they are
cncountered along the common path. Next, find all nodes adjacent to the bisector set and place
them on either side as before. Ilowever, Lhe ordering of nodes in these breadth-first levels is
chosen as follows: for cach pair of nodes u, v that are placed next to each other in the bisector
set, if the path connecting them is u, ¢y, ¢, ..., tx, v, then place nodes £; and £ next to each
each other in the second level, as shown in ['igure 3.7. The orderings of nodes on either side of
the center again satisfy the condition that nodes connected by a path in the forest embedded
on that side appear in the order in which they are encountered along the common path.

By placing nodes in every level in the same order in which they lie along a common path
within the forest still to be embedded, it is casy to guarantee that the layout is planar inside
the channel (sce IYigure 3.7). All that remains is to guarantee that the layout can be made
planar at every corner when new biscetlor sets are added to a level.

When the end of a channel is reached, the situation is as shown in Figure 3.8, Nodces
U, Ug, ..., Uy arc those in the last level of the channel. The subgraph which remains to be

cmbedded is a forest of subtrees. The n nodes can be grouped according to which subtree they
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Figure 3.9: Nodes in the final level may be connected to
their subirees without crossovers.

belong to, nodes in the same subtree being adjacent within the ordering. To bisect this forest,
it suflices to split only one of these subtrees: order the subtrees top-down and pick the lowest
one so that the subforest above it contains at most one-hall of all nodes in the forest. Split
the subtree this node belongs to into two components as required so that the original forest is
bisceted. By laying out the next breadth-first level and the new biscctor nodes as in Figure
3.8, we sce that in each of Lhe two lower-level channels the nodes within the same subtree are
ordered in the order in which they are encountered along a common path,

Repeating this process further down the H-channel structure, we sce that the layout is free
of wire crossings. To complete the layoul, within the final-level channels we use Valiant's [83]
linear-area planar layouls for cach remaining subtree. Edges from these subtrees to nodes in
the last breadlh-first level of the penultimale channel can be inserled without crossovers as

shown in Figure 3.9. This completes the planar layout. -]
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3.4. The Complexity of Minimizing Edge Lengths

Thus far we have only showed that every tree can be laid out with maximum edge length
bounded by ()(\/N/ lg N). While this bound is asymptotically optimal for some trees such as
the complete binary tree, it is way off for others. For example, a two-ended string with every
node connected only to its immediate neighbors can be trivially laid out with every edge of
length one, independent of the number of nodes.

This motivates the problem: it Given a tree, produce a layout with minimnax edge length. In
this section we show that determining the minimax edge length is computationally intractable.
The results are quite discouraging — even the problem of deciding if a given tree can be laid

out with all edges of unit length is NP-complete.

Theorem 3.5. Given a tree 1, deciding whether or not T has a layout with unit length

edges i3 NP-compleie.

Proof. Obscrve that the problem is clearly in NP; it is casy to guess a layout and verify
that no edge has length greater than one. It remains to show that the problem is NP-hard.

The known NP-complete problem used in the reduction is the NOT-ALL-INQUAL 3CNFSAT
problem [29, 72] stated below.

NOT-ALL-EQUAL 3CNFSAT: Given a boolean formula ¢ in 3CNF (conjunctive
normal form with three literals per clause), does there exist a truth assignment which satisfies
¢ such that each clausc contains at least one lalse literal?

Given a formula ¢ in 3CNF, we construct a graph G with the property that G can be
laid out with all edges of unit lenglh #ff ¢ is an instance of NOT-ALL-EQUAL 3CNISAT,
i.c., ¢ can be satisfied with at lecast one .false literal per clause. The graph & is constructed
from clementary components termed “lines” (Figure 3.10). The crucial property of a line is
its rigidity, meaning that in any layout with unit-length edges, nodes uy, ..., #, must be lined
up cither horizontally or vertically. Figure 3.10 shows how to connect two lines so that the
resulting graph can be laid out in only two ways (ignoring rotations).

Let 2q,...,z, be the variables, and Cy,...,C,, be Lhe clauses of ¢. The basic “skeleton”
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of G is shown in Figure 3.11. For each 7, 1 < j < m, the distances (number of intermediate
nodes) a; — Cj;, a; — C, are all equal. The line u;—v; corresponds to variable z,, and the two
ways of embedding it with respect to the A-B axis correspond to assigning z; true or false.

Thus far, there are 2™ possible ways of laying out G with unit length edges, each correspond-
ing to a truth assignment to the variables of ¢. Next, we encode within G the “structure” of
¢ as described below.

Let clause C; be denoted I;, V Ij, V. If I is positive (z,) add a “striker” at node C; ;.
Otherwise, if {;, is negative (Z;) add a striker at node C} .- Finally, for every k 5 ji, 52, J3,
add strikers both at C; x and at C;'k. For example, if C; = z; VT,V z3, the strikers are added
as shown in Figure 3.12,

Think of a node without a striker as a “hole”. The rows C, and C; together share three

holes, and 2n — 3 strikers. Because of the boundary constraints at the sides, no more than

n — 1 of these strikers may lic on any side of the A — I axis. In other words, for cach clause
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there must be at least one hole on either side of the axis in a unit-length layout. For each
clause, a hole “above” the axis implies a truth assignment which makes the clause true, while
a hole “below” the axis implies at least one false literal within the clause. Therefore, there
is a unit-length layout if and only if the formula is satisfiable with at least one false literal
per clause. In short, G has a unit-length layout iff ¢ is an instance of NOT-ALL-EQUAL
3CNFSAT. Since the reduction is easily carried out in polynomial time, the theorem follows.
|

In the above reduction, many nodes had degree four. We may strengthen the result to
binary trees with maximum degree 3. ‘A rigid line may be implemented by stringing together
binary trees as shown in Figure 3.13. It is not hard to show that the structure is rigid; the key
property is that the complete binary tree on 31 nodes has a unique (upto rotations) unit-length

layout. This yields the lollowing result.
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Corollary 3.6. Given a binary tree, deciding whether or not it has a layout with unit-

length edges 1s NP-complete.

3.5. Assembling Complete Trees

Whenever any system is larger than a single chip, it is nccessary to partition it among
separate chips which can be assembled at the printed circuit (or chip earrier) level. What is
the most cffective way to partition a large binary tree among several chips?

This question is pressing because although integrated circuit technology has been advancing
at a rapid pace, the technology for packaging chips has been crawling in comparison. Packaging
technology severely restricts the number of external connections to an integrated circuit. While
the number of components per chip is expected to reach one hundred million, no one forsces
chips with more than two or three external pin connections.

This section presents Leiserson’s scheme [50] for assembling complete binary trees using one
kind of chip with only four external pin connections. This chip has been used in tree-machine
projects at Caltech and Bell Laboratories [16]. We review this scheme here for its simplicity
and because the general scheme developed in Section 3.7 is based on similar ideas.

Figure 3.14 shows how arbitrarily large complete binary trees can be built out of a single
chip that has only four off-chip connections. Each chip contains one internal node of the tree,
and the remainder of the chip is packed as full as possible with an H-tree layout. The internal
node requires three off-chip connections (denoted I, R, and L in the figurc) for its lather, tight
son, and left son. The H-tree requires only one off-chip conncetion {denoted T) to its father.

To interconnect two chips, the unconnected internal node of one of the two chips is selected
as the father of the two H-trees. In IMigure 3.14 the internal node on the left has been chosen for
this purpose. The R pin on this chip is connected to its own T pin, and the L pin is connected
to the T pin on the other chip. Considered as a unit, the combined two chips now have the
same struclure as a single chip —- three connections to an internal node and one to the root
of a complete binary tree. The pair of chips can be similarly combined with another pair to

produce a quadruple of chips, which can in turn be combined, and so forth. Figure 3.15 shows
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Figure 3.14:Two chips

Figure 3.15:4 large complete binary tree assembled using
many copies of the same chip.

a large complete binary tree which has been wired up in this recursive fashion.

Unlike the assembly for complete trees, configurable or restructurable designs are required
for assembling arbitrary binary trees. The reason is simple: a single fixed chip with N processors
can realize only one.N-node binary tree. In order to realize every N-node binary tree, either a
new mask must be designed for each tree, or else connections on the chip must be restructured
(for example, by laser) after fabrication. Given the ability to restructure wires on a chip, we
ask: Is there an area-efficient restructurable chip with N .processors and m pins fm << N)

which can be used lo assemble every binary tree, independent of its size?
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This question is aflirmatively answered in Section 3.7. The solution depends heavily on
the results of the next section which considers the problem of partitioning a binary tree into
subforests of size N so that every subforest has at moxt Oflg N') edges connected 1o nodes in
other subforests. The solution to this problem leads directly to the restructurable chip design

of Secetion 3.7.

3.6. Collinear Layouts and Two-color Bisectors

This section introduces the notion of two-color bisectors for trees. Two-color bisectors
are a natural extension of graph bisectors, and will be critically used in partitioning graphs
for layout. In this section we show how to use two-color bisectors to partition an arbitrary
tree into subforests of size N so that every subforest has at most O(lg N) edges connected to
nodes in other subforests. Bounds on the size of two-color bisectors are obtained from collinear

layouts developed by Bentley and Leiserson [50].

Definition. Suppose that an N-node graph G has b black nodes and w white nodes. A two-
color bisector for G 1s a set of edges whose removal bisects G into two subgraphs each of size

at least [N /2], and such that each contains at least |b/2] black and |w /2] white nodes.

Theorem 3.7. Every N-node forest of binary trees has a two-color bisector of size no greater

than 21g N.

Proof. Following Bentley and Leiserson [50], construct a collinear layout for the forest
as follows. By removing one edge, separate the forest into two subforests so that neither
contains no more than |$N |~ 1 nodes [52]. If either component contains more than [N /2]
nodes, separate it into two smaller components using the one-separator theorem again. Next,
recursively construct collinear layouts for each subforest, and place these layouts side-by-side

along the baseline. Finally, as shown in Figure 3.16, connect the two (or three) subforests by
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Figure 3.16: The recursive construction of a collinear layout.

routing the separator edges on distinct vertical tracks and along a common horizontal track.
(For two components this is trivial since only cdge is routed; for three components, place the
subforest connected to both other subforests in the middle as shown.) For each node there are
three vertical tracks to accomodate edges incident to that node.

The height of the layout is determined by a simple recurrence relation. Let h(N) be the

height of the layout, so that A(1) = 0, and in general,
R(N) < h([N/2])+1.

A straightforward calculation yiclds A(N) < lg N.

Thus far we have ignored the coloring on the nodes. Suppose there are b black nodes and
N — b white nodes. Consider a “window” which overlaps [ N/2] consccutive nodes, and place
it over the leftmost [V /2] nodes. If more than |b/2] black nodes fall within the window, slide
the window one position to the right. Obsecrve that by sliding the window on position, the
number of black nodes within the window changes by al most one. Furthermore, by sliding
the window all the way to the right, less than [b/2] black nodes would fall within the window.
Conscquently, there must be an intermediate placement of the window (see Figure 3.17) in
which exactly |5/2] black nodes and exactly [(N — b)/2] white nodes are contained within the
window. (Such a placement can be obtained in linear time.) .

Draw vertical lines through the endpoints of the window in the position obtained above.
The edges of the forest intersecting these lines form a two-color bisector of the forest. The size
of this two-color biscctor is no more than twice the height of the layout; in other words, the

size of the two-color biscctor is no more than 21g N. |
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For our purpose the following variant ol two-color bisectors is appropriate. Suppose each
node of an N-node forest is assigned a weight from a bounded set {1,2,...,k} of weights. We
wish to bisect the forest into two equal-size subforests whose total weights differ by at most k.
How many edges need be cut? Adapting the argument for two-color bisectors to this variant
in a straightforward manner show$ again that 21g N cuts suffice.

Having obtained bounds on the size of two-color bisectors for forests, we wish to use them
for partitioning an arbitrary binary tree into subforests of size at most /N so that every subforest
has O(lg N} edges connected to nodes in other subforests. This result is established in the

following Theorem.

Theorem 3.8. Every N-node binary tree can be partitioned into [N /M subforests, each of
size at most M, such that no subforest has more than 4lgM -+ 8 edges connected to nodes

in other subforests.

Proof. First bisect the tree into two subforests, each of size at least [ N/2], by cutting
no more than lg /N edges. Split each subforest recursively as follows: For each node in a
recursively split component of size m assign a weight equal to the number of edges incident
to that node and which were cut at a previous level. Since the degree of a node is at most
three, the weight assigned to a node is at most 2. From the argument following Theorem 3.7,
there is a weighted biscctor of size no greater than 2lgm for the component. This weighted
bisector divides the number of external connections almost equally (the difference is at most

two) between the subcomponents of sizes [m/2] and [m/2]. As scen in Figure 3.18, the number
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of external connections into either of the new subcomponents is no more than the size of the
weighted bisector plus one-half the number of external connections into the component just
split (plus two). This recursive decomposition terminates when each component has size at
most M. Letting £(m) be the number of external connections into any component of size m,
we have £(N) =0, and
E(m) < L&(2m) + 21g(2m) + 2.

A little calculation shows that £(m) < 4lgm + 8. This means that every subforest of size
m in the recursive decomposition has at most 4Ilgm -+ 8 external edges to other subforests.

Substituting M for m, the result follows. 1

3.7. Assembling Arbitrary Trees

The recursive decomposition of Theorem 3.8 leads directly to the design of an efficient
restructurable chip which can assemble all trees. Observe that the layouts developed in earlier
sections cannot be used for configurable or restructurable design because the locations at which
nodes are embedded are determined by the structure of the tree and are not the same for all
trees. The only way to have nodes at fixed locations, independent of the tree structure, is by
predetermining the tracks along which edges are routed.

We can predetermine the tracks along which edges are routed by using restructurable
permuters. A permuter P, has k terminals on cach side of a rectangle and can realize any
one-to-one connection between the terminals. The switch shown in Figure 3.19 implements a

permuter. It has dimensions 2k X k, with the terminals along the longer sides.
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Figure 3.20:A restructurable chip which can assemble ar-
bitrarily large binary trees.

The construction of the restructurable chip is recursive and follows the recursive decom-
position of Theorem 3.8. We shall use R,, to denote a level of the recursive layout with m
nodes, and let Ras denote the restructurable chip of M nodes itself. Figure 3.20 shows how
the chip Ry is constructed from four copies of Ras;4, four copies of P41 M, and two copies of

Piig M 44 Letting S(M) be the length of the side of the layout, we have S(1) = 1 and,

S(M) < 25(M/4) + Oig M),

which yields S{M) = O(V M), so that the area is linear in M. The number of pins on Ry is

41g M + 8. We now show that cvery large tree can be assembled using Fas.
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Theorem 3.9. Suppose each restructurable chip contains M nodes. Then any N-node

binary lree can be assembled using [N /M) chips, the minimum possible.

Proof. Iollowing Theorem 3.8, decompose the tree into [N/ M| components, cach of size
at most. M and having no more than 41g M + 8 external edges to other components. Bach of
the [N /M7 cormponents can be realized on a single chip Rps. To see this, use Theorem 3.8 to
recursively decompose cach component into single nodes. In this decomposition each subforest
of size m has at most 4lgm + 8 external edges. This dccomposition may now be mapped
dircctly onto the chip, using the permuters to route edges between different subcomponents.
Since the number of external edges at any level is no greater than the size of the permuters at
that level, the permuters can realize the desired routing. Nodes of the tree are embedded at
fixed positions in the lowest level permuters ;. Finally, cach chip has enough pin connections
so that the assembly can be completed off-chip by connecting the chips together as required

by the original decomnoesition. (Permuters are net needed off chip beeause wires can be routed

direetly.)

The constant factors on area can be improved if onc uses the smaller restructurable
permuter P with dimensions (k+ O(vk)) X (k+ O(Vk)) that follows from the channel routing
algorithm of Part 1T of this thesis. Whereas the simpler permuter from Figure 3.19 requires
only two welds to make a connection, the dense layout might requirc as many as k welds for
each conncction. Although the total number of welds required by cither scheme is O(M), the
number per wire is O(lg M) il the simpler switch is used and O(lg2 M) il the channel-routing
permuter is used.

In related ‘work, Roscenberg [69] has also considered permuters to obtain a degree of

configurability in layouts.



CHAPTER 4

The General Framework

This chapter presents a new framework for general graph layout. Like previous approaches
to graph layout, the new framework is based on the divide-and-conquer paradigm. Instead of
using a separator theorem to recursively partition a graph, the new framework uses graph
bifurcators. The notion of a graph bifurcator was introduced by Leighton [12] to overcome the
deficiency of separator theorems. Althoueh the differences hetween hifurcators and separator
theorems will be elaborated in this chapter, there arc two primary advantages of bif'urc;itors over
scparalor theorems. First, unlike scparator theorems, bifurcators may be efficiently computed
using either a good graph partitioning heuristic, or from a layout with small area. Second,
bifurcators can be used, as in the next chapter, to produce layouts that.are eflicient in a variety

of respects, not layout area alone.

The techniques for general graph layout closely parallel those in Chapter 3 for elficient
tree layout. Section 4.1 examines multi-colored bisectors for two-ended strings and forests of
complete binary trees, and gencralizes the results of Section 3.6 to more than two colors.
Section 4.2 introduces decomposition trees and bifurcators as genceralizations of separator
theorcms. Seetion 4.3 considers the problem of balancing decomposition trees, just as Section
3.6 considered the problem of decomposing a tree while balancing the number of external edges
among split components. Section 4.4 introduces the tree of meshes which is a generalization
of the restructurable chip of Scetion 3.7, and investigates techniques for embedding gencral
graphs within the tree of meshes, given a balanced decomposition tree for the graph. Section

4.5 concludes by developing good layouts lor the tree of meshes.
Taken together, an embedding of a graph within the tree of meshes, and a good layout for

16
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the tree of meshes induce a good layout for the embedded graph. The strategy for laying out a
general graph, given a decomposilion tree is: balance the decomposition tree, embed the graph

I

within the tree of meshes, and lay out the Lree of meshes. In Chapter 5 we will sce how this

strategy can be used to efficiently solve all the layout problems described in Chapter 2.

4.1. Combinatorial Lemmas

This section contains three combinatorial lemmas which provide the foundation for the

framework presented in the next section.

Lemma 4.1. Consider any two-ended string of n colored pearls of k different colors, and
let n; be the number of pearls which are color ¢ for 1 < 1 < k. For any integer v > 2,
the pearls can be partitioned into two sets by cutting the string in no more than 9r% places
such that the total number of pearls in each set is |n/2| or [n/2], the number of pearls of
color 1 in each set i3 [n1/2] or [ny/2], and such that the number of pearls of color ¢ > 1

i each set lies between [(% — %)nl] and [(% + 51;)7»,]

Proof. Let ¢ be a number between 1 and & and let T(z) denote the number of cuts necessary
to divide the sct of all pearls into two sets that satisfy the constraints of the theorem for colors
1,2,...,1. Other than requiring that the total number of pearls be split in half by the cuts, we
have made no constraints on the distribution of pearls with colors greater than <. We wish to
find a good bound on T(7) in the worst case, i.c., over all choices of n, k > ¢, and all possible

colorings. In what follows, we will show that 7'(1) = 2 and that
T(6) < rT(i — 1) + 4r +7

for i > 1. As a conscquence, we can solve the recurrence to conclude that 7'(¢) < 9r* — 15 for
r > 2. Thus for ¢ = k, at most 97% culs arc required, as claimed.
FFor ¢ == 1, the argument used in Theorem 3.7 shows that two cuts suflice. Consider a

“window” of size |n/2] positioned at the lefl end of the string. Without loss ol generality,
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assume that the window covers less than [n/2] of the pearls colored 1. Move the window to
the right, one pearl at a time until the window covers [n1/2] pearls of color 1. Since the right
half of the string conlains more than one-half of all pearls of color 1, there must, by continuity,
exist a placefnent when the window covers exactly one-half of all pearls of color 1. By cutting
the string at the endpoints of the window, the portion of the string under the window will
contain half of the total number of pearls and hall of the pearls colored 1. Hence T(1) = 2, as
claimed.

For a given 1 > 1, break the string into 7 segments Sy, 1 < 7 < 7, (making » — 1 cuts) so
that each scgment contains at least [n;/r] pearls of color ¢. Next split cach S; into two subsets
Sjo and S;y (making a total of rT'(¢ — 1) cuts) so that each split satisfies the theorem locally
for colors 1, 2,...,7 — 1.

Without loss of generality, assume that Sjp contains no fewer pearls of color 7 than ;4.
At this stage, we divide the set C of all pearls into two subscts € and €9 as lollows. Initially.
let C; = U Sj0. If Cy contains more than [(% + 2—17-)7%] pearls of color 7, remove Sy from Cy
and add Sy;. Repeat this procedure, successively switching Sog with Sg1, S3p with Say, and so
on until the first time € has at most [(% + f;)n,] pearls of color 7. Such a stage must occur
since the number of pearls of color 17 in €y will eventually fall below [n;/2] if C; and Cy are
completely interchanged. The number of pearls of color 7 in C; after the final switch cannot

be less than [( — i-)n;] — 2 since every S; contains no more than [n;/7] pearls of color 1. If

the number of pearls of color 7 in Cy is [(L — ?17)171] —~tLor [(1 - & )n;] -2, then move cither

one or two pearls of color 7 from Cy to Cq, making no more than four cuts.

We also have to ensure that the total set of pearls and the pearls of the first ¢ —1 colors are
divided as required. The pearls with colors between 2 and 7 — 1 are divided correetly because
they were divided correctly at the recursive step. The counts of pearls of color 1in €y and Cy
may differ in size by r, however. To balance the number of pearls with color 1 in cach set, we
need only remove up to [7/2] pearls colored 1 from the excess set (making at most r cuts) and
put them in the deficient set. To balance the difference in the overall sizes of the sets (which
now might be as large as 2r 4 1), we need only extract up to r + 2 pearls from the larger set

(making no more than 27 + 4 cuts) and pul them in the smaller set. Of course, these pearls
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must be chosen carcfully so that each set retain~” e ' «guired minimum number of pearls of
cach color. Since pearls are extracted only from the larger sct, il is clear that this requirement
may be easily satisflied.

The total number of cuts made by the procedure is 77T(z — 1) + 47 + 7, as claimed. ]

Using an clegant topological argument, Goldberg and West [32] recently proved that k cuts
suffice to divide the pearls of each color exactly in half. This dramatically reduces the number
of cuts, and makes our analysis significantly less cumbersome. All of our layout results may,
however, be proved with the weaker Lemma 4.1. Both results are implementable in polynomial

time when the number of colors is fixed, as is the case throughout this thesis.

Lemma 4.2. Consider any two-ended string of n pearls, n; of which are colored i, 1 <
1 < k. By cutting the string in k places it i3 possible to divide the pearls into two sets so
that each set has a total of [n/2| or [n/2] pearls, and |n;/2] or [n;/2] pearls of color 1
foralli, 1 <1 < k.

In the following, we recast Lemma 4.2 in terms of complete binary trees, which will be
particularly useful since the recursive decomposition of a graph may be viewed as a tree. The
height of a tree is the length of the longest path from the root to a leaf, while the height of a
forest is the maximum height of a tree in the forest. Finally, the level of a node in the forest
is defined to be the height of the forest minus the length of the longest path from the node to

a leaf. (Note that the top level is level zero.)

Lemma 4.3. Consider a forest of complete binary trees whose n leaves are colored
arbitrarily with k colors. Let n; be the number of leaves colored © for 1 < 1 < k. By
removing no more than k nodes (as well as all incident edges) from each internal level of
the forest, it is possible to produce a new forest of complete binary trees, some subset of
which contains |n/2] or [n/2] leaves, and |n,/2| or [n;/2] nodes of color i for each 1,
1<1<L k.
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Figure 4.1: An illustration of the procedure in Lemma ..

Proof. Draw the trees in the canonical manner and place them side-by-side, in any order,
so that the leaves of all trees are placed along a line. By applying Lemma 4.2 to the induced
left-to-right ordering on the leaves of the forest, it is possible to break the ordering in no more
than k places such that the union of the leaves contained in every other segment contains the
desired total number of leaves and the desired number of leaves of each color.

For each break, remove the nodes (and incident edges) which are simultaneously ancestors
of the leaf immediately to the left of the break and the leal immediately to the right of the
break. It is easily seen that at most one node is removed from each internal level of the forest
for each break. Therefore, no more than k total nodes are removed from each internal level.
In addition, the removal of the common ancestors of the leaves neighboring a break divides
the associated tree into two or more complete binary trees, at least one on each side of the

break. Thus the removal of all such nodes produces a forest of complete binary trees, subsets

of which correspond precisely to the sets of leaves between pairs of adjacent break points. Thus

the union of the subsets of trees corresponding to every other segment of leaves contains the

desired number of leaves of each color. Figure 4.1 illustrates this procedure. 1



DECOMPOSITION TREES AND BIFURCATORS 51

—
ANE AN

GOIO '=". Gon s
Fa I
él-!
empty graph or
isclated node '
Gl—IO [ GI-II
‘R

Figure 4.2: An (Fy, Fy,...,F,)-decomposition tree

4.2. Decomposition Trees and Bifurcators

The recursive decomposition of a graph into smaller and smaller subgraphs may be viewed
as a decomposition tree. In particular, we say that a graph G has an (Fy, /Y, .. ., F,)-decomgosition
tree if G can be decomposed into two subgraphs Gg and G, by removing no more than Fy edges
from G, and, in turn, both Gg and G, can be decomposed into smaller subgraphs by removing
no more than F edges from each, and so on until each subgraph is cither empty or an isolated
node. Figure 4.2 illustrates this recursive decomposition.

As one might expect, the decomposition of a graph by separator theorems may be viewed
as a decomposition tree. It follows by definition that if a class of graphs has an f(z)-separator
theorem, then there are constants o and § such that each graph in the class has a decomposition
tree of the form (8f(N), Bf(aN),Bf(a®N),...,8f(1)). The converse is not necessarily true.
Subgraphs generated at each step of a decomposition by a separator theorem are constrained
to be proportional in size, whereas decomposition trees need not satisfy this constraint. Of
course, if the decomposition tree has preciscly Ig N levels, then subgraphs at each level must
be equal in size.

We shall be particularly interested in a special class of decomposition trees, namely bifur-

cators, that is distinct from the class of separators.

Definition. An N-node graph has an a-bifurcator of size F (more simply, an (F,a)-
bifurcator) if it has un (F,F/a,F/a?,.. ., 1)-decomposition tree.
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Of particular interest is the class of /2-bifurcators. By the definition, we know that an
N-node graph has a v/2-bifurcator of size I' if and only if it has an (F,FF//2,F/2,...,1)-
decomposition tree. The depth of this tree is no greater than 21g F'. In order to completely
decompose an N-node graph into individual nodes, the height of any decomposition tree cannot
be less than the Ig N. Thus, F must always be at least v/N. On the other hand, F is always

less than 2V since every N-node graph with maximum node degree four has at most 2V edges.

If a class of graphs has an z*-separator theorem, where @ < 1/2, and the corresponding
decomposition is balanced in that every graph is always decomposed into equal-size subgraphs,
then it is straightforward to show that every N-node graph in the class has a /2-bifurcator of
size O(\/N) Similarly, if a class of graphs has a balanced separator theorem of size z with
a > 1/2, then every N-node graph in the class has a v/2-bifurcator of size O(N®).

The converse is not true even if we consider only bifurcators whose corresponding decom-
position trocs are balanced 50 thav every graplh is decuiniposed into eyual-siae subgraphs. tor
example, the N-node graph Sy defined in Section 2.3 has a balanced v/2-bifurcator of size
O(v/Ng N) but the smallest separator for this class of graphs is Q(z/1g® ).

When translated into bounds on layout arca, this seemingly minor difference between
bifurcators and separators is greatly magnified. Graphs with small layout area always have
small ﬁ—bz'furcators, but do not always have small separators. This is formalized in the
following lemma. Later on we will prove the converse: graphs with small v/2-bifurcators always

have small layout area.

Lemma 4.4. If ¢ graph G can be laid out in area A, then G has a (V'A,+/2)-bifurcator.

Proof. Consider a vertical cut, of length v/A through the center of the layoutl. Next, cut
cach of the sublayouts horizontally through the center. Continuing this sequence of alternating
vertical and horizontal cuts, it is casy to see that at the 7th step no more than \/:1-/2“/2J edges

arc cut from ecach subgraph. This sequence of cuts yields a (\/A, v2)-bifurcator for G. ]
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4.2.1. Special Cases

Many graphs have decomposition trees in which the number of culs decreases very slowly
as we go lower down the tree. In such cases the number of cuts at higher levels of the tree may
be very small. On the other hand, in decomposition trees corresponding to bifurcators, the
number of cuts permitted deercases smoothly as we go down the tree. It is conceivable then,
that the bifurcator permits far more cuts at higher levels than are nccessary. Ior example,
N-node binary trees have decomposition trecs of height O(lg N) in which no more than 1 cut
is required at every level. Since the minimum bifurcator is at least V/N, the decomposition
tree corresponding to the bifurcator allows far more cuts at the top levels than needed.

Similarly, some graphs have decomposition trees in which many cuts are required at the
top levels, but this number decreases very quickly as we go down the decomposition tree. In
such cases, the minimum bifurcator is large so that decomposition trees corresponding to the
hifiireator do not underectimate the number of cuts required at the tep level. However, they
do greatly overestimate the number of cuts at lower levels.

1t is useful to scparate such extreme cases from a general discussion. Of course, general
upper bounds are valid for graphs with extreme decompositions, but they may overestimate
the true bound. A particularly important reason for separating thesc classes is that many
computationally useful graphs such as binary trecs fall into the first category while cube-
connected-cycles and multidimensional meshes fall into the second category.

An N-node graph is defined to have a type A v/2-bifurcator if it has an (O(V'N),v2)-
bifurcator such that no more than O((IN/2%)*) cuts, o < 1/2, are required for cach partition
at the 7th level of the associated decomposition tree. Observe that at the higher levels of the
tree, 1 < < lg NV, the number of cuts is far less than the O(\/N/.‘Zi/z) culs allowed by the usual
bifurcator.

Similarly, an N-node graph is defined to have a type I3 v/2-bifurcator il it has an (O(N=), \/5)-
bifurcator, & > 1/2, such that only O((IN/2')) edges arc cut in any partition at the ith level.
Obscrve that for the lower levels of the tree, ¢ > > 1, this quantity is far smaller than the
O(N=/2/%) cuts allowed by the usual bifurcator.

I'or simplicity, we will prove results only for general v/2-bifurcators in this thesis. However,
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whenever there is a significant difference, results for the special cases are stated separately. The
proofs for these special cases are easily worked out, and closely follow the proofs for the gencral

cases.

4.3. Balanced Decomposition Trees

Of particular interest to the layout results reported in this thesis are decomposition trees
where at cach step of the decomposition, the two subgraphs are nearly equal in size. This section
considers such balanced decompositions and gives an cffective procedure for transforming an
arbitrary decomposilion tree into one that is balanced.

Formally, a decomposition tree for a graph G is balanced if each subgraph G, in the tree
is the father of two subgraphs G0 and G 1 such that the number of nodes in the subgraphs
differ by at most 1. In addition, we say that a decomposition tree is fully balanced if it is
baianced, and if for every subgrapn (,, in the tree, the set of edges conneeting G — Gy, to Gy
is divided into two subsets of nearly cqual size by the partition of Gy, into G and Gy (Here
we allow the number of edge connections in the two subgraphs to differ by a small constant,
say 5. For the purposes of simplicity, however, we shall often ignore such small differences and
assume that the nodes and connections are split evenly between the two subgraphs.)

Somewhat surprisingly, any decomposition tree may be transformed into a fully balanced
one al little or no cost. 'We prove this in the following theorem which generalizes earlier results

in [9, 40, 41, 42].

Theorem 4.5. Let G be any N-node graph with an (Fy, Fy,..., F,)-decomposition tree
T. Then G has a fully balanced (I'y, Iy, ..., I'|, )-decomposition tree, such that for 0 <
1 < g N,

I =6 zr:F,

3=t

Proof. lLct ' be a forest of complete binary trees consisting initially of the decomposition

tree T. Color the leaves of T' with two colors according to whether or not the subgraph of G
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associated with the leal is empty. Apply Lemma 4.3 (k = 2) to I', removing the indicated nodes
and edges of 7. Each node of T corresponds naturally to a set of edges of &, namely the edges
whose removal splits the associated subgraph in two. Removing a node of 1" corresponds to
removing this cutset of edges from ;. Since no more than 2 nodes are removed from each level
of I', the number of edges removed from G in applying Lemma 4.3 does not exceed 2 Z;o F,
which is Jess than /7.

Further note that G is divided into two disjoint subgraphs of nearly-cqual-size by the
removal of these edges. Each subgraph, in turn, corresponds in a natural way to a subforest

of complete binary trees in I'. Consider one such subgraph Gy and color the leaves of the

associated forest of complete binary trees I'y using six colors as follows:

If the leaf corresponds to an empty subgraph, color the leal with color 1. Otherwise, if the
single node corresponding to the leaf is incident to exactly 7 edges of G removed earlier,

0 < 7 < 4, then color the leal with color 5 + 2.

By applying Lemma 4.3 (k = 6) to I'y, it is clear that Gy can be decomposed into two
disjoint subgraphs Gy and Go; of nearly-equal-size such that the number of edges from G— Gy
to Gyo is nearly-equal to the number of edges from G — Gy to Gpy. Since at most 6 nodes were
removed from each level of I'y and since I'g does not contain the root of T, we can conclude
that no more than 8. _, F, = F' edges were removed from Gy.

By applying the above argument recursively, the desired fully-balanced decomposition tree
is obtained. With each application of Lemma 4.3, the total number of leaves in each forest
is cut in half at each step so that the biggest tree in any forest corresponding to a subgraph

decreases in height by at least one. Also, lg N 4 1 levels suffice since the size of each subgraph

is also halved at each step. |

‘Theorem 4.6. Every graph with a V2-bifurcator of size F has a fully balanced \/2-bifurcator
of size 6(2 + V2)F.

Proof. Immediate from Theorem 4.5, since 3 -, 272 < 240/, |
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Figure 4.3: The 4 X 4 tree of meshes Ty.

Remark. The procedure described in Theorems 4.5 and 4.6 can be implemented in polynomial

time.

4.4. Embeddings in the Tree of Meshes

Leighton [40, 41] introduced the tree of meshes as an example of a planar graph that cannot
be laid out in linear area. He also showed that every N-node planar graph can be embedded in
an O(N Ig N)-node tree of meshes. In this section, we define the tree of meshes and describe a
general strategy for embedding a graph in the tree of meshes.

The tree of meshes is formed by replacing each node of a complete binary tree with a mesh
and each edge by several edges which connect meshes at consecutive levels. More precisely, the
root of the complete binary tree is replaced by an n X n mesh (it is assumed that n is a power
of 2), the nodes at the second level are replaced by n X n/2 meshes, those at the third level
by n/2 X n/2 meshes, and so on until the leaves of the tree are replaced by 1 X 1 meshes. As
shown in Figure 4.3, each edge of the tree is replaced with edges connecting nodes on one side
of the higher-level mesh to the top row of the mesh at the lower level. The resulting graph is
called the n X n tree of meshes T,. It is not difficult to sce that T}, has N = 2n2lgn + n?
.nodcs. '

In many cascs, we use only the top levels of the tree of meshes. The subgraph consisting

of levels 0, 1,...,p (p < 2Ig N) of T}, is called a truncated tree of meshes Th,p-
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Theorem 4.7. There is a constant ¢ such that every N-node graph G with an (F,/2)-
bifurcator can be embedded in T,p 4, n. Moreover, the embedding 13 regular in the sense
that '/ N nodes of G are embedded in a regular fushion each of the N%/['? bottom-level

meshes of Typ o1 .
o

Proof. We first use Theorem 4.6 Lo construct a fully-balanced v/2-bifurcator of size 6(2 +
V2)F for G. We then use the internal meshes of Tep 214 & to route the edges that were removed
in the upper 2lg ’1,! levels of the fully balanced decomposition tree for G. The subgraphs in
the (21g ¥ )th level of the decomposition tree (each of which has [I'2/N | or [FF?/N] nodes) are
then embedded in the meshes on the bottom level of the truncated tree of meshes.

The internal meshes are used as restructurable permuters. As we saw in Scction 3.7,
terminals on opposite sides of a mesh can be conneceted in any order through the mesh. In
general, if the number of wires routed through a mesh does not exceed any side-length of
the mesh, n ronting mayv alwaye be found, Similarly, a graph with M nedeos can always be
embedded in a AM X 4M mesh with nodes placed in a regular fashion.

Consider only the top 2lg % + 1 levels of a fully balanced decomposition tree for G. Each
of the subgraphs at level 21g & of the decomposition tree has N(1/2)2% % = F'2/N nodes.
(For simplicily we shall assume that "2/ N is an integer.) Furthermore, if #; is the maximum
number of edges between G — G; and Gy, where G5 is a subgraph in the decomposition tree at
level 7, then it is easy to see thal Fy = 0 and by Theorem 4.8, that

1
Ei < B +6(2 + V2) ——
2 9(i~1)/2

for1 <1< 2lg %’— Solving the above recurrence, we obtain:

Al

i < 624 v3) - > (V22

9(i~1)/2 530

and thus

r_
9li-1)/2’

I < 6(2 + V2)?
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We now embed G in TCF’NK% . First, embed coa's of the (21g %)-lcvel subgraphs of the
decomposilion tree in the bottom level meshes. This can be done if the side of each mesh at

level 21g & exceeds 4F%/N. This is true provided
21g & 9
cF[V2 > 4F%/N.

For ¢ > 4, this incquality is easily salisfied.
Next embed the additional edges through the upper-level meshes in the natural way. No
more than 2/, edges pass through any 7th level mesh. Thus the routing can be performed

if the smaller side of the dith level meshes exceeds 25, 1. In other words, we must have:
cF[218 > 12(2 + V2)2 8 )22,
A simple calculation shows that the inequality is satisfied for sufliciently large e. ]

Remark. Throughout the thesis, we express bounds using the term lg . Tor ail-practical
purposes, £ is much smaller than N and this term is greater than one. Should the value of
I be larger, however, we shall still define Ig 11\’— to be at least one. Similar interpretations are
assumed for lglg % and for lglglg ¥— The conventions avoid the annoying (and trivial) cases

when F' is very large without complicating the analysis further.

In the preceding embedding, all the nodes of G were mapped to meshes at the bottom level
of the truncated tree of meshes. Thus, edges between nodes in different meshes might have to
be routed through as many as 41g l;’ meshes. Such long edges are undesirable for a variety of
reasons. It is natural to ask whether an embedding can be found in which cach edge can be

routed through fewer intermediate meshes. This is answered in the following theorem.
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Theorem 4.8. There exist constants ¢ and k such that every N-node graph (¢ with an

(I, \/2)-bifurcator can be embedded in Terig and such that no edge s routed through

more than k intermediate meshes.

Proof. We adopt a slight variant of the strategy used in the previous theorems. The
balancing and embedding are done simultancously and in the same manner as before, except
at levels 0, k, 2k, 3k,... (where k is a constant specified later). At thesc levels, we embed the
nodes that are incident to edges previously cut, and we cut the previously uncut edges incident
to these nodes. Of course, this could triple the number of cut edges every k levels but if & is
sufficiently large, this happens infrequently and is not harmful. At all other levels the procedure
is the same as before, using 6 colors and Lemma 3 to partition the decomposition tree. The
process lerminates alter 21g —1{\1 levels.

As before, the cmbedding is 5ccomplishcd by using meshes as switching boxes for routing

edges We mnst ensura that the number of edges reuted through any mesh docs not exeecd th

side lengths of the mesh. The calculation is the same as before except that the number of cut
cdges is tripled at every kth level. Thus the recurrence for I, is

F
9li—1)/2

—

B < Z(3YF)E_y +6(2 + V2)

[

Here, we have (without loss of generality) increased number of cut edges by a factor of 3 initially
and by a factor of 31/% at cach level instead of increasing the number of cuts by a factor of 3

al every kth level. Solving the recurrence, we find

_ 'a é ¢
iy < 18(2 + V2)——— ~‘{~3‘/’° .
oi-0/2 S5 2

For & > 4, the sum converges to a constant. The remaining analysis is the same as in the

previous theorems except that the constants are larger. |

Remark. 1t is worthwhile Lo point out here that Theorems 7 and 8 could also have been
proved using Lemma 4.1 instead of Lemma 4.2. The nodes of G would still be balanced in

the decomposilion tree but the cut edges could only be split 1/3 - 2/3 al each decomposition.
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=1

Figure 4.4: The H-layout of the tree of meshes

While this increases the value of the sum, it still converges to a constant. (This is because, for
sufficiently large k, 3#31/" < 1;) Hence, k£ and ¢ would be larger but the statements of the

theorems remain the same.

4.5. Layouts for the Tree of Meshes

Thus far we have considered only the problem of embedding graphs in the tree of meshes.
How do we lay out the tree of meshes efficiently? Clearly, any layout for the tree of meshes
also gives a layout for every graph that can be embedded within the tree of meshes. In this
section we develop two different layouts for the tree of meshes.

The first layout is a straightforward modiﬁéation of the “H-tree” layout for complete binary
trees [55]. The modified layout is obtained by expanding each node of the complete binary tree
into a mesh of the appropriate size. Figure 4.4 shows this layout. It is easy to see that if S(F)
denotes the side of the layout for Tk, then S(1) = 1, and

S(F) < 28(F/2) + O(F),

which gives S(F') = O(FIgF). This means that the area of the layout for T is bounded by
O(F?1g® F). As shown in [40, 41], this bound is optimal.
For truncated trees of meshes, such as considered in Th‘eorems 4.7 and 4.8, a similar result

holds.
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Theorem 4.9. The truncated tree of meshes T 5, N has a layout of area O(F* Ig? ).

Proof. The obvious restriction of the H-layout to the top levels suffices. ]

Although the mesh edges in the layout shown in Figure 4.4 have length 1, the edges between
meshes can be quite long (nearly half the side of the layout). By pulling in meshes closer towards
the top level, we can reduce the length of the longest edge considerably. This technique was
introduced in Chapter 3 to produce minimax edge length layouts for trees, and generalizes to
graphs with known bifurcators. This layout will later be used to find layouts with short edges

for graphs embedded within the truncated tree of meshes.

Theorem 4.10. The truncated tree of meshes Tp o), x can be laid out in area O(F? Ig? &)

so that mesh edges have length 1 and edges between meshes have length at most O(F g & /1glg &).

Proof. Consider the H-tree layout of a complete binary tree of height 21glglg %, and
having (lglg &¥)? leaves. Expand each linear dimension by a factor 4 = O(Flg & /lglg &), so
that each edge of the H-tree layout becomes a channel of width 3 and each node becomes a
B X B square. The resulting area is {flglg ¥ )? = O(F* 1g? &)

Since the channels are much wider than the side of any mesh, we can stack many meshes
within one channel. In particular, as seen in Figure 4.5, we embed the top level mesh at the
center of the layout with the second-level meshes on either side. In the first stage of the layout,
the meshes in the top levels are placed together in a breadth-first manner. Meshes at successive
levels are equally spaced at distance ©(F 1g % /lglg &) apart.

We need to ensure that every channel is wide enough to accomodate the meshes stacked
within it. To this end, let us suppose that all meshes embedded in the first stage are stacked
together in the same channel. Of course, this is a gross overestimate, but suffices for our
argument. Since the path from the root to a leaf in the original (Iglg %’——)2-leaf H-layout has
length O(lglg &), a total of clglg & levels of Tr1gy are embedded in the first stage. The
value of the constant ¢ depends on the values of the other constants in the ©-terms and can
be made as small as necessary.

The total number of meshes embedded in the first stage is no more than 21+¢l&18 ¥. Each
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Figure 4.5: An improved layout for the tree of meshes.

mesh has side length no greater than F, so to stack all these meshes within one channel of side

F2l+clg]g%— < O(Flg 1}7¥),
- \lglg ¥

which is easily satisfied when ¢ < 1/2. Hence every channel has sufficient width to stack all

B, it suffices to have:

the ith level meshes across the channel for any ¢ < clglg &.

In the second stage, we embed the remaining meshes in the 8 X f squares. A total of

(1g $)¢/(1g1g #)? copies of an O(Ig &) level 0 g)clz i %’f)r,z truncated tree of meshes must
be embedded in each of the (Iglg &)? B X J regions to accomplish this. Using the layout

described in Theorem 4.9 for each copy, the total area required in each region is

(g ) F2  (NY\_ [Pl ¥
e((lglg F)? (g §)e e (F)) B e(ﬂglg %’r)"’)'

This is precisely the amount of area available in each § X f region. Hence the embedding is

possible.

It remains to verify that the edges between meshes have length O(Flg 4 /lglg &). This
15 easily done since meshes in adjacent levels were spaced distance O(F' g & /1glg %) apart in
‘the first stage, and since meshes in adjacent levels were located in the same § X 8 region in

the second stage. 1



CHAPTER 5

Solving the Layout Problems

Using the framework described in the previous section, we are now ready to present general
solutions to the eight problems posed in Chapter 2. The layout framework of Chapter 4 applies
direclly to most of these problems, supporting our belief that the divide-and-conquer strategy
based on bifurcators is an efficient paradigm for VLSI graph layout. Tn particular, the tree of
meshes emerges as an extremely versatile network for graph layout. While specific instances
of some problems might be better solved using different techniques, the framework provides
a novel and uniform approach for VLSI layout which effectively addresses various unrelated
issues. The solutions presented in this scction are evaluated by comparing them with known

lower bounds.

Problem 1. Given a graph G, produce an area-efficient layout for G.

By Theorem 4.7, every N-node graph with an (£, \/§)~bifurcator can be embedded in the
truncated tree of meshes Tp(p 51, N Next, by Theorem 4.9, the truncated tree of meshes can
be laid outl in O(F Ig® %) arca. Thercfore, every N-node graph with an (F,v/2)-bifurcator
can be laid out in O(F?1g* &) arca.

As a conscquence of Lemma 4.4, every N-uode graph whose smallest V2-bifurcator is F,
must occupy at least £ arca. For otherwise the graph would have a +/2-bifurcator strictly
smaller than F'. Thercfore, for every graph the upper bound is al most a factor of ()(Ig2 1})
worse than optimal, i.e., the arca bound is universally close to optimal.

"~ The bounds are also ezistentially optimal. Leighton [7, 42] has shown the existence of

N-node graphs with minimum +/2-bifurcator I’ which require area al least Q(N1g2 %’») In

63
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other words, no strategy based on bifurcators alone can asymptotically improve upon the

divide-and-conquer framework.

Special Cases. Graphs with (F,+/2)-bifurcators with cither of the special forms described
in Scction 4.2.1 have O(F2?)-area layouts. Thus, for example, N-node trees have O(N)-area

layouts.

Problem 2. Given a graph G, produce an area-efficient layout for G with minimaz edge

length.

From Theorem 4.8 we know that every N-node graph with an (/, v/2)-bifurcator can be
emabedded in the truncated tree of meshes To(py 214 & 50 that no edge passes through more than
a constant number of intermediate meshes. Furthermore, the layout for the truncated tree of
meshes given in Theorem 4.10 guarantces that every edge between meshes has length bounded
by OF 1 -1;{/ fole 2"), and that every edge within o mesh has length one. Combining Uhcse two
theorems, we sce that every N-node graph with an (F,v/2)-bifurcator has an O(I"™ lg® ¥)-area
layout with maximum edge length bounded by O(F lg &/ 1glg x).

This bound, too, is existentially optimal [7]. In other words, there exist N-node graphs
with minimum v/2-bifurcator F whose minimax edge length is Q(F g &/ Iglg 2).

Unfortunately, the bounds are not universally close to optimal. The only general lower
bound on minimax edge length for N-node graphs whose minimum V2-bilurcator is F, is
Q(F2/N). This general lower bound is also existentially optimal.

The problem of minimizing maximum edge length appears to quite difficult. Although the
preceding bounds are disappointingly weak, they are the best known. Recall that in Chapter

3 we showed that even determining if a trec can be laid out with minimax edge length one, is

NP-complete.

Special Cases. The minimax cdge length bounds for graphs with special (F,\/‘Z_)-bil'urcators

arc O(v/N/lg N) for type A v/2-bifurcators and O(F) for type B V/2-bifurcators.
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Problem 3. Given a graph, produce an area-efficient layout in which each wire has

bounded delay in the capacitive model.

First we formalize some details of the model. As usual, a graph describes a connection of
processors, with an cdge corresponding to a bidirectional link belween two processors. Each
node is a processing clement, which contains one driver and one receiver for cach incident edge.
Every transistor in a processing clement has the same size. Thus, in our layouts, a node may
be represented by a long and skinny box of constant thickness, with length equal to the area
of an interunal transistor. Since each node has bounded degree, a box will be just big enough
to contain all the transistors in the corresponding processor. Note that different nodes in the
layout will have different lengths, but the same thickness. We assume that the grid spacing is
adjusted so that nodes and edges have unit thickness and may be laid along grid lines. Although
wires arc allowed to cross, we will not allow nodes to cross; this corresponds to transistors not
overlapping. Similarly, wires and nodes way ivb cross. The propagation delay uver a wire of
length ! driven by a transistor of arca D with capacitive load A is proportional to (I + A)/D.
The capacitive load presented to a transistor equals the sum of incident wire lengths and areas

of adjacent transistors.

Theorem 5.1. Every N-node graph G with an (F,+/2)-bifurcator has a bounded-delay
layout of area O(F2 1g* ).

Proof. Asin Theorcm 4.8, einbed G in a tree of meshes so that adjacent nodes are mapped
to meshes no more than a constant number of levels apart. Since the dimensions of meshes at
successive levels, as well as the lenglhs of edges connecling adjacent meshes in the layout of
Theorem 4.9, decrease at the same geometrie rate, we know that the length of an edge of ¢ is
proportional to the side lengths of the meshes that contain the corresponding nodes. Assign to
each node an arca that is proportional to the side lengths of the mesh in which it is embedded.
Thus, the eapacitive load on any node, which equals the sum of the arcas of all the incident
edges and adjacent nodes, is proportional to the area of the node. In other words, every wire

in the layout has bounded delay.
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Figure 5.1: Laying out ezpanded nodes in a mesh.

We need to ensure that each enlarged node can be accomodated in its assigned mesh
without blowing up the area of the layout by more than a constant factor. This can be done
by increasing the dimensions of each mesh by a constant factor, and laying out the nodes and
incident edges as shown in Figure 5.1. Notice that the nodes do not overlap other nodes or
wires. The area of each node remains proportional to the side lengths of the mesh containing

it, and thus the delay across every wire is bounded. ]

Special Cases. Similarly, graphs with special (F,v/2)-bifurcators have O(F*?)-area bounded-
delay layouts. Thus, for example, every N-node tree has an O(NN)-area bounded-delay layout.

Theorem 5.1 implies that the area bounds for bounded-delay layouts are no worse than
the best known general area bounds for Problem 1. However, it is not known whether or not
there exists a graph for which any bounded-delay layout requires asymptotically greater area
than the minimum area layout. In the following corollary, we show that any increase in area

need not be large.

Corollary 5.2. Any layout of area A for an N -node graph can be transformed into a bounded-
delay layout of area O(Alg? %)

Proof. By Lemma 4.4, an arca A layout yields a (V/4, \/ﬁ)—bifurcator which can be quickly
found. Next, by Theorem 5.1, a bounded-delay layout of area O(Alg2 {,Z) can be easily

constructed. Observe that this transformation is efTective. |
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Problem 4. Given a graph G, produce a layout for G with few wire crossings.

The layouts for the truncated tree of meshes in Theorems 4.9 and 4.10 do not have any edge
crossings. Since every N-node graph G with an (I, v/2)-bifurcator can be embedded within the
truncated tree of meshes Tz 214 &, this means thal the number of crossings in the layout for
(¢ cannot excced the number of nodes in To(py 214 - In other words, the number of crossings
in the layout for G is bounded by O(F? g &)

Once again, this bound teco is existentially optimal {7]. Moreover, il the minimum V2
bifurcator F of an N-nodc graph is asymnplotically greater than v/N, the number of crossings

in the layout for G is no more than a factor O(lg %) times optimal.

Special Cases. Graphs with special (F,v/2)-bifurcators can be laid out with O(I'?) crossings.

Problem 5. Given a graph, produce an area-effictent regular layout for the graph.

In Theorem 4.7, we showed how to embed any N-node graph G with an (F, ﬂ)-bif'urcator
in Tep gy & for some constant ¢. Moreover, the nodes of G were divided evenly among the
N?/F? bottom-level meshes of Tep21gy and in each bottom-level mesh, the nodes of G were
embedded in a regular fashion. Thus to produce an O(F? Ig® HN)-area layout for G that is
regular, we need only produce a layout for Teg o N for which the nodes at the (21g }M)th level

are located in a regular fashion. In fact, we can do much better, as we show in the following

theorem.

Theorem 5.3. The truncated tree of meshes To(p) g1 1 can be laid out in O(F? 1g® &)

area so that, for every level ¢, all nodes within ith level meshes are placed in a regular

fashion.

Proof. The first step is to construct a ©(lg £F)-layer three-dimensional layout [16] of the
truncated tree of meshes. Fold the conncctions between the root of the tree of meshes and
cach of its two sons so that the sons fil naturally on a sccond layer over the root mesh. Fold
the connections to each of the meshes at the next lower level so they fit, on the third layer,

dircetly over the meshes on the second layer, and so forth. This generates a lg %-layer three-
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dimensional layout, with each layer occupying lincar area. By projecting the three-dimensional
layout onto the plane in the manner of Thompson [80, pp. 36-38], the result follows. (The

same layout can be constructed by interleaving the meshes at cach level.) |

Special Cases. The O(F*?)-arca layouls for graphs with special V2-bifurcators are also regular.

Problem 6. Design area-efficient chips that can be configured to realize a large number

of graphs.

In Theorem 4.7 we showed that every N-node graph with an (F, \/§)~bifurcator can be
embedded in a truncated tree of meshes such thatl the nodes of the graph are embedded in a
regular fashion in the bottom-level meshes of T\ p o), N In fact, the nodes can be mapped to
fixed positions within the meshes. Therefore, if we lay out the truncated tree of meshes on a
chip with processors at these fixed positions, we have a configurable chip for all graphs with
the corrcsponding bifurcator. This yiclds the foltowing result. Obseive bhat the arca bounds

for configurable layouts are the same as for unrestricted layouts.

Theorem 5.4. Every N-node graph with an (I',/2)-bifurcator has a configurable layout
21,2
of area O(F?1g* &).

Proof. Simply make the connections in the meshes after the rest of the chip has been

fabricated. Recall that we used the meshes as crossbar switches in Theorem 4.7. a

Spectal Cases. Similarly, graphs with special bifurcators have O(F?)-area configurable layouts.

The O(N)-area restructurable tree layout of Chapter 3 is such an example.

Problem 7. On a wafer which has arbitrariy distributed defective cells, realize a given

graph on the good cells.

Theorem 4.7showed how to embed any N-node graph G with an (F, \/§)~l)iﬁlrc:1t0r in the
truncated tree of meshes To gy 414 N The cmbedding had the property that nodes of the graph
could be mapped to fixed positions within the meshes at the boltom level. Accordingly, we

fixed processors at, each of these positions.
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Faulty processors on a wafer therefore correspond to faulty processors in the truncated tree
of meshes, the correspondence being induced via the layout for the tree of meshes. It is clearly
no longer possible to realize ¢ in the faulty tree of meshes. However, it is possible to realize a
simaller graph with a similar structure using only the functioning processors.

More formally, consider a class of graphs for which any N-node graph in the class has a
v/ 2-bifurcator of size O(f(N)) where the function f is such that f(zr)/\/z is nondecreasing for
increasing z. For example, f(z) = /z for the class of square meshes (as well as for the class of

trees or the class of planar graphs). In what follows, we will show how to embed any M-node

graph from the class in any 7 sy 014 s that has M functioning processors where N > M
and c is a sufficiently large constant.

In particular, we will show how to embed Ty(rp 214 A in the faulty tree of meshes. By
applying Thecrem 4.7 to the smaller tree of meshes embedded within the faulty one, this will
prove our claim. Thus the layout strategy developed in Chapter 4 is impervious to the existence
of faulty processors. This result substantially generalizes and simplifies a similar result proved

by Leighton and Leiserson for embedding meshes around faults in [45].

Theorem 5.5. Given the preceding constraints on N, M, ¢ and f, a completely functioning

truncated tree of meshes Ty(ps) 515 with M processors can be embedded in any partially

M
e
functioning truncated tree of meshes ch(!\’),2lgﬂ’}'—ﬂ with N processors (M of which are
functioning) so that the processors of the former are mapped onto the functioning processors

of the latter.

Proof. Label the functioning processors in each tree of meshes from 1 to M by counting
from left to right across the bottom level of each graph. (Recall that the processors are

evenly distributed on the bottom level.) Map the kth processor of Typs 9152 onto the

TUMY
kth functioning processor of ch(N)’ZIS»%. Route the edges of the former graph through the

meshes of the latter in the usual way, at the same time embedding meshes of the former in
blocks within the meshes of the latter.

It remains to show that the capacity of each mesh in T sy 21 s is sufficient for the
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embedding. Consider a mesh X on the 1th level of Teriny a1y . This mesh has side lengths

'
cf(N)/2% and at most N/2° funclioning processors bclov;(it? in the bottom level of the
graph. The only meshes and edges of Ty(ppy 01 s that are embedded in X are those that
correspond to roots of the forest of complete binary trees formed by removing the corresponding
interval of (at most N/Qi) processors in 7'f(M),21g - These roots are identified by splitting

Triny,2g - (as in Lemma 4.3) at the two endpoints of the interval. There are al most two
roots at each level in the resulting forest and the sum of their side lengths (a geometrically
decreasing sum) is proportional to f(M)/27/% where 7 is such that M /27 < N /2. (Remember
that there are at most N /2% processors in the leaves of the forest so that the height of the
largest complete binary tree in the forest is § where M /27 < N /2%) Thus the sum of the side
lengths of the meshes embedded in X is O('-fz—(_%l %—) which, for sufficiently large ¢, is less
than ¢f(N)/2*/2 (this is the side length of X), since N > M and f(z)/y/Z is a nondecreasing

function. Hence X is large cnough and the embedding is possible. |

Special Cases. A similar argument works for graphs with special bifurcators.

Problem 8. Given a graph G, assemble G using the minimum number of copies of a

single chip having few ezternal pin connections.

Suppose that we wish to assernble N-node graphs with (I, ﬂ)-bil‘urcators but that each
chip contains only m nodes, where m» < N. Consider a chip consisting of a truncated tree
of meshes T, smr Vo, With the m processors divided cqually among the bottom-level

0(7ﬁ—),0(1x "7“)
meshes, and external pin connections to the top of the top level mesh. Two copies of this chip
may be wired together to form a truncated tree of meshes with 2m processors. .Thus, graphs

with iwice as many processors can be assembled with two chips than can be assembled on a

single chip. More generally, we have the following result.
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Theorem 5.6. There 1s a universal restructurable chip with m processors and O(%}%ﬁ)

external pins, occupying area ()(FET""lg2 ﬁﬁ), such that every N-node graph with an

(I, ﬁ)—bifurcator can be assembled using multiple copies of the universal chip. Furthermore,

the number of chips used in the assembly is the minimum possible.

Proof. Consider the top Ilg N — lgm levels of a fully balanced decomposition tree of
G. Bach of the subgraphs at level Ig N — lgm has N/2'8N—18™ — 4 nodes, and has a V2-
bifurcator of size ()([\/%E) By Theorem 4.7, cach of these subgraphs can be realized with a

single universal chip consisting of a truncated tree of meshes T e v, Whose area is
O(¥),0(1g ¥5)

bounded by O(-E;V’—”— 1g? —~”}’%-A—’), and which has ()(‘\/—;f_v_—}i) external pin connections. To complete

the assembly, the chips are wired up by making connections between pins on different chips as

given by the decomposition tree. |
A notoworthy consequence of bhils rosult is that when I — O{V V), the resliucvurable chitp

has O(y/m) pins, which is independent of the size of the network to be assembled. This is the
best possible. To realize networks with larger bifurcators, the parameters of the restructurable

chip depend on the size of the network assembled.

Special Cases. Tor graphs with special bifurcators, the same is true except that only O(F?)
area is used on each chip. For type A v/2-bifurcators, the number of pins needed is much lower.
For example, N-node trees require only O(lgm) pins per chip (Theorem 3.9). As is the case for
all planar graphs, the number of pins does not depend on the number of nodes. This is because

N-node planar graphs have v/2-bifurcalors of size O(vV'N).)



CHAPTER 6

The Channel Routing Problem

While the layout problems considered in Part T provide new insights and paradigms for
VLSI graph layout, they are nevertheless abstractions of problems encountered by current
automatic layout systems. In this second part (Chapters 6 and 7) we shall study the widely en-
countered channel routing problem which forms the basis of a popular paradigm for automatic
lavout.

The typical routing problem is characterized by a set of rectangular modules with terminals
at fixed positions along module boundaries. Labels on the terminals specify the required
connections — all terminals with the same label must be clectrically connected. The problem is
to wire together all terminals that have the same label.

Most layout systems proeceed in two phases: placement.and routing. In the placement phase
the modules are located at fixed positions, and the required connections are later made in the
routing phasc by running wires around and in between the modules. Of course, the two phases
go hand-in-hand; a placement for which a complete routing is impossible is of little use. The
intractability of obtaining optimal solulions in either phase demands that efficient heuristics
be developed for practical use.

Introduced by Hashimoto and Stevens in 1971 [34], channel routing has become a very
popular and successful heuristic for rouling integrated circuits. As illustrated in Figure 6.1,
after the modules have been placed, the chip is heuristically partitioned into a sel of rectangular
channels, and each channel is assigned a sct of wires which are to pass through it. This
effectively reduces a difficult “global” wiring problem to a set of disjoint (and presumably

casier), “local” channel routing subproblems.

72
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Figure 6.1: Reducing the global wiring problem into a set
of channel routing subproblems.

The performance of the overall strategy is largely determined by the algorithm used to solve
the individual channel routing subproblems. For this reason, the channel routing problem has
been intensively studied for over a decade, and many heuristic algorithms have been proposed
for solving the problem [1, 2, 11, 12, 18, 20, 21, 34, 35, 36, 38, 51, 60, 62, 67, 68, 81, 84].
Although many of these heuristics have proved reasonably successful in practice, there are
instances {albeit theoretical) when the heuristics either produce arbitrarily bad solutions or
fail to produce any solution. " Chapter 7 presents a fast approximation algorithm which is
guaranteed to produce a solution close to optimal. The remainder of this chapter, however,
poses the problem in a formal {framework and briefly reviews some of the previous work on

channel routing.

6.1. Manhattan Routing Within Channels

The channel routing problem may be described as follows. A channel consists of a two-layer
rectangular grid of columns and tracks (rows). Terminals are located on the top and bottom
tracks at grid points. The number of tracks between the top and bottom tracks is the width of
the channel. Each set of terminals to be electrically connected constitutes a net, and distinct
nets are disjoint. A net with r terminals is called an r—point net. The width may be varied
by moving the tracks vertically; however, the tracks are not allowed to slide horizontally. In

other words, the columns are fixed. We also assume that there are no trivial nets (two-point
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Figure 6.2: Manhattan routing within a channel. Vertical
cuts measure channel density.

nets with both terminals in the same column).

The objective of the channel routing problem is to wire together all terminals in each net
in 2 way which minimizes channel width. Wires may be routed on either layer, along any
track between the top and bottom tracks, and along any column. There is no restriction on
the number of columns at cither end. Electrically disjoint wires may cross at grid points on
different layers, but may not overlap for any distance even on different layers. A wire may
change layers at a grid point, in which case no other electrically disjoint wire may pass through
that grid point on either layer.

In the Manhattan wiring model, these constraints are satisfied by restricting all horizontal
wire segments to lie on one layer, and all vertical segments to lie on the other layer. For a wire
to turn a corner it has to change layers, which requires a contact cut. Clearly, distinct wires
cannot share a corner since that would violate the constraint that only one wire may change
layers at any point. For obvious reasons, Manhattan routing is also referred to as layer per
direction or reserved layer routing. Figure 6.2 illustrates an example of Manhattan routing in

a channel.

Remark. The channel routing problem described above is a simpler version of switchboz routing
in which terminals are located on all sides of a rectangular channel. In many instances, such
as when two large modules are placed next to each other, terminals lie only along two opposite
sides of a channcl. For this reason, and because switchbox routing problem is much more

difficult, engineers have focussed attention primarily on the simpler channel routing problem.
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6.2. Bounds on Channel Width

Consider a vertical cut which slices the channel in two (see Figure 6.2). Every nct which
has a terminal on both sides of the cut is said to be split by the cut. Since at least one wire
must cross the vertical cut for each split net, it follows that at every point the channel must
be at least as wide as the number of nets split by a vertical cut through that point. In short,
channel width can be no less than channel density, which is defined as the maximum number
of nets split by a vertical cut. For example, the channel of Figure 6.2 has density three.

Can every channel with density d be routed in O(d) tracks? In practice, most channels can
be routed in d plus two or three tracks. In general however, this is far from the truth. Brown
and Rivest [14] gave examples of two-point net channels, with n terminals, whosc density is
one, but for which channel width can be no less than v/2n. Since we shall employ an identical

argument, later, their result is rederived below.

Theovem 6.1 (Brown-Rivest). Consider the two-point, n-net (shift-one) channel in
which terminal i is localed in column 1 on the top track, and in column i+ 1 on the bottom

track. Any Munhattan routing for this channel must have width at least /2n — 1.

Proof. Suppose that a routing of width w is given. Since the top and bottom terminals
of any net lie in different columns, each wire in the routing must use a horizontal track to
change columns al least once. Now, if a wire changes from column ¢ to column j along track y
(1 <y < m) then cither the vertical segment (5,3~ 1) —(4,y) or the segment (5,y) — (4, y + 1)
can not have a wire laid on il. Otherwise, as scen in Figure 6.3, two dilferent nets will overlap
at point (J,y).

In other words, whenever a wire changes columns within the channel, it must change to a
blank column, onc which has no wire in one incident vertical segment. A wire may also change
columns by exiting across a side of the channcl along a horizontal track.

How many wires can change columns along the first horizontal track? Since all grid points
on the top track arc occupied, a wirc ean change columns only by exiting the channel. But,

since segment overlaps are prohibited, al most two wires can change columns in this way.
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Figure 6.3: A wire can only turn into a blank spot.

Observe that whenever a wire exits the channel, one blank segment is created along a column.

The number of wires that can change columns on any horizontal track is bounded by
the number of blank vertical segments incident to that track, plus two (for wires that exit the
channel). If 2 wires change columns on the first horizontal track, this creates two empty vertical
segments incident to the second track, so that 4 wires can change columns on the second track,
and so on. In general, it is easy to see that the number of wires that can change columns on
track y is at most 2y when y < |w/2] and at most 2{(w 4 1 — y) otherwise.

S'umming over all horizontal tracks, the total number of wires that can change columns is

consequently no greater than

Yoo o+ Y 2Aw—y+1),

0<y<|w/2) |w/2]4+1

which is always less than 4(w + 1)2. Finally, since every wire connecting a net has to change

columns, we have

$(w+1)2 > n,

or, w 2> v2n — 1, thus proving the result. ]

An obvious question that arises is: Can every channel be quickly routed in minimum width?
Unfortunately, the general problem is NP-c.omplete [77], and remains NP-complete even for
two-point nets [77, 78] This might help explain why none of the current heuristics is even

guaranteed to find solutions that are close to optimal.
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Figure 6.4: In the knock-knee wiring model, two wires may
share a corner as long as they remain on different
layers.

6.3. Bounds for Other Wiring Models

While Manhattan wiring rules ease the task of mask fabrication, less restrictive wiring
models are also occasionally used. For example, some manufacturers may permit wires to
change direction within a layer, or may allow non-rectilinear wiring. Similarly, other manufac-
turers may provide more than two layers of interconnect. It is important to consider how
variationsin the wiring rules affect the routability of channels.

In the knock-knee wiring model, wires are allowed to change direction within a layer, and
wires on different layers may share a grid point as long as neither one changes layers at that
point. The routing illustrated in Figure 6.4 is permissible in the knock-knee model, but not
in the Manhattan model. Channel density of course remains a lower bound on channel width.
Rivest, Baratz, and Miller [67] investigated the channel routing problem under the knock-knee
wiring model. They showed that every two-point net channel with density d can be routed in
width 2d — 1, independent of the number of nets. In view of Theorem 6.1, this implies that
the knock-knee wiring model is more powerful than the Manhattan wiring model. Leighton
[43] gave a construction for channels with density d which cannot be routed in less than 2d — 1
tracks, so that the Rivest, Baratz, and Miller algorithm is optimal in the worst case. For
multi-point net channels, their algorithm guarantees a routing of width at most 4d — 1.

Preparata and Lipski [62] consider the channel routing problem under the knock-knee
model, but with three layers of interconnect instead of only two. With this extra layer, they
guarantee that every two-point net channel with density d can be optimally routed using exactly

d tracks. Moreover, this routing can be accomplished quickly. For multi-point net channels,
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their algorithm guarantees a routing of width no greater than 2d.

The problem of “river routing,” which is single-layer channel routing, has also received
considerable attention [21, 23, 51, 81]. Under the single-layer restriction, there exist fast
algorithms for channel rouling. In particular, Leiserson and Pinter [51] also examine the
problem of placing movable modules along the top and bottom tracks so as to minimize the
horizontal “spread” and width of a channel. Pinter [61] also studies the problem of river routing
within polygonal regions with terminals along the perimeter of the polygon. Finally, LaPaugh
[39] studics the problem of wiring terminals placed along the perimeter of a rectangular module

where the wires are on two layers, but are restricted to lic outside the module.



CHAPTER 7

An Approximation Algorithm for Manhattan Routing

Brown and Rivest’s lower bound for the one-shift example indicates that channcl density is
not the only fundamental limitation on channel width. Motivated by their argument, Section
7.1 introduces the concept of channel fluz, which provides another fundamental limitation
on channel width. Unlike density, flux is a local phenomenon and captures the amount of
“congestion” within a channel.

Flux and density together completely characterize the difliculty of Manhattan routing.
Section 7.2 presents a linear-time algorithm which routes every two-point net channel in width
proportional to its flux and density. This sctiles a conjecture of Brown and Rivest that their
lower bounds are tight to within a constant factor. Morcover, in practice, flux is extremely
small so that the algorithm for two-point nets uses no more than a constant number of tracks
more than density. Scction 7.3 analyzes the running time of the algorithin, while Section 7.4

extends the algorithm to multi-point net channels.

7.1. Channel Flux

While channel density provides a fundamental limitation on channel width, it fails to
capture the local congestion inside a channcl. For example, while the one-shift channel has
low density, the channel width must nevertheless be large to overcome congestion within the
channel. This congestion arises from the fact that cvery column in the top track contains a
terminal whose mate lies in a different column along the bottom track. Since wires in adjacent

columns may not both “turn right” along a common track without colliding, many horizontal
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Figure 7.1: The modified one-shift channel can be routed
m width two.

tracks are needed to complete the wiring.

In striking contrast, consider modifying the one-shift channel by making every alternate
column blank. While this channel is globally similar to the one-shift, it can be routed using
only two horizontal tracks as shown in Figure 7.1. This channel is not locally congested because
the empty columns enable many wires to simultaneously turn along the same horizontal track.

We now introduce the concept of channel flux to measure congestion. Although there are
a variety of ways to measure congestion, we choose here a simple definition which permits a
clean analysis. In Seétion 7.4 we vary the definition slightly to obtain better bounds.

Suppose that instead of making vertical cuts in the channel, we instead make a horizontal
cut which isolates a set of contiguous columns from one track. Observe that we can vary the
size of a cut (measured by the number of columns within the cut) as well as its position. As
before, we say that a net is split by a horizontal cut if it contains terminals both within the
cut and outside. For any given position of a cut we can measure the number of distinct nets
split by the cut.

Intuition suggests that the greater the number of distinct nets split by a cut, the greater
the congestion is within the cut. Moreover, the larger the size of a congested cut, the larger
the channel width, because if the region of local congestion is very large, then so is the overall
global congestion of the channel. This intuition is formalized below. As mentioned earlier, we

restrict attention only to channels which do not contain any trivial nets.

Definition. The fluz of a channel is the largest integer f for which there exists a horizontal

cut of size 2f? which splits at least 2 — f nontrivial nets.
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For example, the one-shift channel has flux (2(y/n) because a horizontal cut of size n which
isolates the top track splits n nets. Similarly, the modified one-shift of Figure 7.1 has flux one.
For the flux to equal two there must be a cut of size 8 which splits at least 6 nets, but since
every alternate column in either track is blank no such cut exists.

Using Brown and Rivest’s argument for the one-shift channel, we next show that flux is

indeed a lower bound on channel width.

Theorem 7.1. Every channel with density d and fluz [ requires channel width at least

maz(d, f).

Proof. Find a horizontal cut of the channel which spans 2f2 columns and splits at least
2f% — f nontrivial nets. For each nontrivial net split by the cut, choose any two terminals
from different columns that lie on opposite sides of the cut.

Consider the channel formed by the set of chosen terminals, i.e., assume that all columns
which do not contain a chosen terminal are blank. This new channel consists of at least 22— f
nontrivial two-point nets. Moreover, at most f of the 2f2 columns spanned by the original cut
may be empty. By the same argument used to prove Theorem 6.1, no more than f 4 2 of the
nontrivial nets can be routed into the correct column on the first track: f into empty columns
and one out each side of the cut. After the first track, there are at most f -+ 2 empty columns,
the extra two having possibly been created by wires exiting across the side of the cut in the
first track. Thus, at most f -+ 4 nontrivial nets can be routed into the correct column on the
second track. In general, at most f -+ 27 nontrivial nets can be routed into the correct column
on the ith track.

Let w be the minimum width for which a wiring exists. By the preceding argument, the
total numbt‘ar of nets that can change columns anywhere in the channel is no greater than
Y ([ +21) = wf+ w(w -+ 1). But since at least 2f? — f nontrivial nets must eventually
be routed, it follows that wf - w(w 4 1) > 272 — f, or w > f. Thus the original problem
requires a channel of width at least f. Finally, since the density d also is a lower bound on

channel width, the Theorem follows. 1
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Flux is negligibly small in practice, and for all purposes never exceeds three or four. One
explanation for this is that terminals are movable; it is good enginecring practice to leave
enough cmpty space so that if the channel is congested, then the terminals can be moved
slightly to allow a belter wiring. Morcover, many columns contain less than two terminals,
and a large fraction of nets contain terminals that are close together on the same side of the
channel. These are precisely the conditions that make flux small. Finally, unlike density, flux
is a local phenomenon and is less likely to grow with the size of a channel or the total number
of nets. As an example, Deutsch’s “difficult problem” [20] has 72 nets, 174 columns and density

19, but the flux is just 3.

7.2. An Approximation Algorithm for Top-to-bottom Nets

In this section we present a linear-time approximation algorithm for routing channels with
two-point nets. It is assumed that each net is nontrivial and has exactly two terminals, one each
on the top and bottom tracks. The next section extends this algorithm to general multi-point
net, channels,

The input to the algorithm may be presented in one of two ways. It might consist of a list
of columns, each entry describing the terminals in the top and bottom tracks in that column
(possibly none). A more compact representation is a list of nets, cach net itsell being a list
deseribing the positions of terminals in that net. The algorithin outputs a detailed wiring of
the channel. The length of the output is proportional to the total wire area used to route the
channel.

The running time of the algorithm will be measured as a [unction of the shortest possible
output. This is more reasonable than measuring time as a function of the length of the input
because the length of the output is always at least as large as the length of the input. In fact,
the output is generally much longer than the leagth of the input.

With this convention for measuring the running time, it is straightforward to see that cither
input representation deseribed above may be converted to the other in lincar time. Morcover,

if the total number of columns in the channel is ¢, and if the channel has flux f and density d,
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Figure 7.2: The regions routed in each phase.

the minimum area required to route the channel is at least Q(c(d + f)). The running time of
our algorithm is bounded above by O(c(d + f)), so that it is a linear-time algorithm.

The algorithm proceeds in four phases. Figure 7.2 sketches the regions routed within the
different phases. The first two phases distribute empty columns uniformly across the channel,
thereby dividing the channel into blocks each containing a small number of empty columns.
This creates a new channel routing problem with possibly higher density, but with reduced
flux. The third phase, the heart of the algorithm, routes the correct number of wires between
blocks, without worrying about which columns within a block these wires lie in. Finally, the
fourth phase routes the wires within each block into the correct column. The empty columﬁs
within each block allow a block to be wired independently of other blocks, so that every block

is wired simultaneously on the same horizontal tracks.

The Top-to-bottom Channel Routing Algorithm

Phase 1: Partition the channel into groups.

Find the least integer k such that the channel can be partitioned into groups of k2
consecutive columns, cach group containing at least 3k empty grid points in both the top
and bottom tracks. (An empty grid point is one at which no terminal is placed.) This
can be accomplished by trying successive values for k (starting with 1,2,3,...) until the

constraint is satisfied.
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The definition of flux guarar.n,ees that k does not exceed 6(f 4 1). For, suppose that
k = 6(f 4+ 1) does not satisfy the constraint. Then some group of 36(f + 1)? columns
contains less than 18(f -+ 1) empty grid points on one track. If we partition this group
into 18 blocks, each of size 2(f 4-1)?, then one of themn must have less than (f + 1) empty

grid points on one track. But this means that the flux is at least f + 1—a contradiction.

Phase 2: Dustribute empty points uniformly.

Divide each group of k2 columns into k blocks of k columns each. Route wires from the
first 3 points (if non-empty) on the top track of each block into columns that are empty
on the top track. Since each group has at least 3k empty points on the top track, this
routing can be easily accomplished using no more than 3k horizontal tracks. Repeat the
same for the bottom track, so that the original channel is reduced to one which can be
partitioned into blocks of size k such that the leftmost 3 columns of each block are empty.
The significance of having 3 empty points in each block will be made clear in the detailed
interblock routing of Phase 3. Observe that although the density of the resulting channel
may be greater than the density d of the original channel, it can be no greater than d -+ 6k.

Phase 3: Route wires between blocks.

This phase routes the correct number of wires between different blocks: if £ nets have one
terminal in the top track of block A and the second terminal in the bottom track of block
B, then route z wires from the top track of block A to the bottom track of block B. It is
not necessary that the wires be routed into the correct columns, but only that the correct
number are routed between blocks. This phase is relatively complicated and forms the core
of the overall strategy. At most d -+ 3k horizontal tracks are used. Details are descibed

later in this section.

Phase 4: Route wires within each block:

At the end of Phase 3, all that remains is the problem of routing within each block. Each
block has at most k nets and at least three empty columns. The location of each net is

determined in Phases 2 and 3. Each net may be routed entirely within its block using,
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for example, the algorithm of Kawamoto and Kajitani [36], which uses no more than
3k horizontal tracks. Morcover, every block can be simultancously routed on the same

horizontal tracks, so thal this phase uses at most —jlc tracks.

Specifically, the ncts are routed one per track: the order of routing is determined by
constraints caused by a top lerminal for one net lying above a bottom terminal of another
net. When a eycle of constraints occurs, one net of the involved cycle is temporarily routed
into an empty column to climinate one constraint, and routed to its other terminal after
the other nets in the cyele have been routed. Two tracks are used to route the last net in

cach such cycle of constraints. R

Next, we present the detailed routing of Phase 3. ach net is first classified into one of
three categories. If both terminals of a net lie in the same block then the net is said to be a
vertical net. Otherwise, if the terminals are in different hlocks and if the top terminal is to the
left of the bottom terminal, then the net is called a falling net. Finally, if the terminals are in
different blocks and if the top terminal is to the right of the bottom terminal, then the net is
called a rising net.

The interblock routing procedure performs a left to right scan acress the channel, routing
cach block completely before procceding to the next block. Between any two consccutive blocks,
the rising nets run along the upper horizontal tracks, the falling nets run along the lower tracks,
and every empty horizontal track lies between the tracks containing the rising and falling nets.

In some cases a wire must be routed through previously routed blocks on the left before
it can proceed to the right. This requires that space be maintained for wires to backtrack
(pun intended) when necessary. By keeping the empty tracks between the rising and falling
nets within each block, we can coalesce .the empty tracks in consccutive blocks to form the
pyramid shown in Figure 7.3. Pyramids are crucial to backtracking; as an example, Figure 7.3
illustrates how a “blocked” wire can backtrack through the pyramid on its way right. After a
wire backtracks through the pyramid, the pyramid is updated as shown.

The following outline describes the interblock routing procedure in detail. Fach of the

steps is illustrated in IMigure 7.4. IMigure 7.4a shows the initial situation just before a new
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block is entered. The arrows on the tracks indicate whether the net is a rising/falling net that

terminates within the block, or whether the net terminates in a different block on the right.

The empty tracks are contained within the pyramid shown. In the case when the block to be

routed is the leftmost block, the pyramid contains all horizontal tracks and extends to the left

of the channel.

The Interblock Routing Procedure

Step 1: Ending nets.

Nets with one terminal in a block on the left and the other in the current block are called

ending nets. By moving the lowest ending rising net upward and the highest ending falling

net downward wherever possible, the ending nets can be routed in a staircase pattern as

shown in Figure 7.4b.

Step 2: Continuing nets.

Nets with one terminal in a block on the left and the other terminal in a block to the right

of the current block are called continuing nets. Route the rising (falling) continuing nets
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through the block by shifting them up to higher (lower) tracks in a staircase pattern that

fits the staircasc pattern of the ending nets.

As shown in IMigure 7.4¢, the staircase patiern of the continuing nets blocks one grid point
in the top track as well as in the bottom track (unless the block has no ending nets). In
other words, no net can begin at the grid points shown. However, remember that Phase
2 provides al least 3 empty grid points on cither track in cach block. Since we are [free
to place these empty grid points in any position, we still have at least two emptly points

remaining on cither track.

Step 3: Balancing.

Suppose the number of ending rising nets is greater than the number of ending falling
nets. Balance the difference by routing some starting rising nets (Lhose which originate in
the block) as shown in Figure 7.4d. In casc there are more ending falling nets than ending

rising nets, {ollow a symmetrically opposite procedure.

TIn order to ensure that every empty column remains between the rising and falling nets it
may be necessary to force onc more empty grid point on the botlom track. Similarly, one
grid point in the top track is forced to be empty because it is blocked by the rightmost
starting rising net. At the end of this step, observe that the pyramid may be updated as

shown in Figure 7.4e.

Step 4: Starting nets.

Suppose again that the number of ending rising nets is greater than the number of ending
falling nets. After balancing the columns in Step 3, route all the starting falling nets as
shown in Figure 7.4f. Obscrve that one more grid point on the boltom track is blocked,

and therefore must be empty. Follow a symmetric procedure in the opposite case.

Step 5: Remaining nets.

At this stage cither starting rising nets or starting falling nets remain to be wired. Suppose

that some starting rising nets rerain. Route these nets as shown in Figure 7.4g, making



RUNNING TIMIZ ANALYSIS 89

use of the pyramid to backtrack whenever nccessary. In case the number of remaining
starling nets equals the number of starting falling nets routed in Step 4, then route the

last starting rising net using the empty column from Step 3.

Step 6: Vertical nets.

Route the vertical nets in the natural way as shown in Figure 7.4h. Note that no extra

empty points are required. R

Figurce 7.4h shows the complete routing for the block, as well as the updated pyramid
structure. Observe that the initial conditions are satisfied for routing the next block on the
right. Furthermore, note that no more than 3 points on any track are required to be empty, so
that Phase 2 of the main algorithm distributes sufliciently many empty grid points throughout
the channel.

Since every ending net is routed betore every starting net, the total number of horizontal
tracks used is no greater than d + 6k, the density of the resulting channel at the end of Phase
2. Consequently, the number of horizontal tracks used by the main algorithm is at most

d+ 15k = d + O(f).

7.3. Running Time Analysis

To analyze the running time of the algorithm we shall calculate the running time of each
phase separately. Suppose that a channel has ¢ columus, density d, and flux f. Then, as shown
earlier, Q(c¢(d + f)) is a lower bound on the minimum arca needed to wire the channel. As
shown below, this is also an upper bound on the running time of the algorithm.

The first phase computes the smallest integer & for which the channel can be divided into
groups of k% coiumns each such that every group has at lcast 3k empty grid points in both
the top and bottom tracks. The value of % is computed by successively trying every integer
(starting with 1,2,...) until the condition is satisfied. For any possible value 7, the size of each
group is 72 and there are ¢/t2 groups in all. The required condition can casily be checked for

each group in time O(2?) so that the total time is O(c). The total time for Phase 1 is therefore
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no more than O(ck). But, since k& < 6(f + 1), this is no ereater than O(cf).

In the sccond phase, empty columns are evenly distributed among the different blocks
within each group. Fach wire runs along one horizontal track so that the time is no more than
the total length of wire laid out. Since no more than 3k tracks are used, the total wire length
does not exceed O(ck) = O(cf).

Phase 3 is slightly more complicated to analyze. As long as wires do not change direction,
the time to lay them out is never more than the length of wire laid. However, whenever a
wire must turn a corner or backtrack, the time requirements can potentially increase. A priori,
it scems that maintaining the pyramid structure is time consuming; furthermore, the time to
update the pyramid each time can be significantly large.

Fortunately, however, the pyramid is only an aid in understanding why the algorithm works
correelly; there is no need to explicitly maintain the pyramid at all. Any time a wire must
backtrack, all we really have to do is to simultancously backtrack along the uppermost and
lowermost empty tracks until a column, which is empty between the two tracks, is encountered.
In fact, following this procedure gives the same routing as with the pyramid. It is relatively
straightforward to argue that, wilth the modified strategy, the total time spent in Phase 3 is
no more than O(c(d + k) = O(c(d + f)).

Finally, Phasc 4 requires no more than O(cf) time. Each channel routing subproblem of
size k can be routed in time O(k) using O(k) tracks. The total time over all subproblems is
therefore O(ck) = O(cf).

Summing up, we conclude that the running time of the algorithm is dominated by Phase

3, and does not exceed O(¢(d + [)), which is linear in the area of the minimum area routing.

7.4. The Channel Routing Algorithm

The algorithm of Scetion 7.3 routed two-point nets which had one terminal in the top
track and the other in the bottom track. This scelion extends the algorithm to multi-point
nets. As before, the algorithm is divided into four phases. Once again, we assume that the

channel has no trivial two-point nets, and has densily d and flux f.
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The General Channel Routing Algorithm

Phase 1: Partition the channel into groups.

Find the least integer & for which the channel can be partitioned into groups of k?
consecutive columns, such that a horizontal cut of size k% which isolates cither the top or
bottom track of any group splits at most k% — 3k nets. T'he value of & may be found by

trying successive values (starting with 1,2,...) until the required condition is satisfied.

As before, it may be verified that the value of £ is bounded by O(f), where f is the flux

of the channel.

Phase 2: Distribute empty points uniformly.

For cach track within a group count the number p of empty points. If p > 3k, then
distribute the empty points as before. If p < 3k then there are at least 3k — p duplicate
terminals within the group and on the same track. Choose any 3k —p duplicated terminals
and connect these lo other terminals from the same net using one horizontal track for each

such net.

Next, pick one representative terminal for each duplicated net connected above. The
duplicate terminals, being already connected, may be ignored so that each group now has
at least 3k empty points on cither track. Distribute these empty points uniformly as before
so that each block of size k has at least 3 empty points. Observe that the total number of

horizontal tracks used is O(k) = O(f).

Phase 3: Route wires between blocks.

Although the basic strategy is the same as before, the major dilference is that a net
may have representative terminals in many different blocks. (Within a block choose any
one representatlive terrinal, il it exisls, on each track.) The modificd interblock routing

procedure is described later in this scction, and uses no more than 2d + O(f) tracks.
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Phase 4: Route wires within each block.

This phase remains essentially unchanged. The only difference is that within cach block
the representative terminal of any net should be connected to all its duplicates. Although
the choice of representatives determines the number of horizontal tracks used, this never

exceeds O(f). K

Next, we present the detailed interblock routing of Phase 3. Each net is first classified into
one of four categorics. A net whose leflmost terminal on the top track lies in the same block as
its leftmost terminal on the bottom track is called a vertical net. I the leftmost top terminal
(i.e., on the top track) of a net falls in a block to the left of the block containing the leftmost
bottom terminal (i.e., on the bottom track) of the net then the net is said to be a falling net.
Conversely, if the block containing the leftmost top terminal of a net is to the right of the
block containing the leftmost hottom terminal of the net then the net ic callod a rising nef,
Finally, if all terminals of a net lie on the same track (either top or bottom) then the net is
called a same-side net.

In addition, each net is divided into a rising portion and a falling portion. The rising
portion of a net links the block containing the leftmost terminal to the blocks containing
terminals in the top track of the channel. The falling portion of a net links the block containing
the leftmost terminal to the blocks containing terminals in the bottom track of the channel.
The interblock routing procedure connects the top terminals with the bottom terminals using
a single connection cmerging from the block containing the leftmost terminal. Iigure 7.5
illustrates the rising and falling portions of a net and where the connection is made. Observe
thal not every net is required to have both a rising as well as a falling portion.

As before, the procedure cnsures that between consecutive blocks tracks containing rising
portions of ncts are above cvery cmpty track and that cvery emply track is above the tracks
containing falling portions of nets. This allows us to once again maintain a pyramid structure
for backtracking.

The routing procceds blotk-by-block from left to right in the middle 2d + O(f) tracks of

the channel. Each block is routed in scven steps described below. The steps are numbered to
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coincide with the algorithm of Section 7.3. Figure 7.6 shows a complete routing of a block.

The Interblock Routing Procedure

Step 1: Ending nets.

Route the ending nets (those which do not have a terminal to the right of the current
block) in staircase patterns at the left end of the block.
Step 2: Continuing nets.

Route the continuing nets (those with a terminal in a block to the right of the current
block) in staircase patterns nestled against those generated in Step 1. If a continuing net
also has a representative terminal in the current block, then place the terminal to the right

of the staircase and make a connection as shown in Figure 7.6.

Step 2.5: Starting same-side nets.

Route every same-side net whose leftmost terminal lies in the current block in a staircase
fashion, bringing wires from the bottom (top) track to the lowest (highest) available empty

track.

Step 8: Balancing.

If more columns have been used at the top of the channel than at the bottom, make up
the difference by routing the rising portions of some starting rising nets. If the opposite

case holds, follow the symmetric procedure.
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Step 4: Starting nets.

Route the falling portions of starling fa]]ing nets (or the rising portions of starting rising

|
|
|

nets depending on which was in excess in Step 3).
Step 5: Remaining nets,

Route the remaining rising portions of starting rising nets (or the falling portions of remain-
ing starting falling nets), using the pyramid for backtracking if nccessary. Furthermore,
route the falling portions of starting rising nets and the rising portions of starling falling

nets in the straightforward way using empty tracks.
Step 6: Vertical nels.

Route the vertical nets in empty columns as before. #
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Since the rising and falling portions of each net are effectively separated, the interblock
routing procedure requires no more than 2d + O(f) horizontal tracks. As before, it can be
argued that the overall algorithm runs in linear time, and routes a channel of density d and

flux f in width 2d + O(f). To summarize, we have shown the following.

Theorem 7.2. Every multi-point net channel with density d and fluz f can be routed in width

no greater than 2d + O(f) in linear time.

Furthermore, if every net is a same-side net or only has a rising portion or a falling portion
(but not both) then the number of tracks used is d + O(f). In particular, for two-point net

channels we have the following result.

Theorem 7.3. Every two-point net channel with density d and fluz f can be routed in width

d + O(f) in linear time.



CHAPTER 8

Conclusions, Extensions and Open Problems

This thesis was motivated by the need for a clearer understanding of various issues in
circuit layout. The techniques developed provide new insights and approaches for VLSI layout.
Although the results in their present form are theoretical in nature, it is likely that some of

the techniques can be adapted for use in practice.

The two parts of the thesis share a common underlying methodology. First, the critical
properties that determine the quality of a layout are identified. In the next step, these properties
are effectively exploited to obtain good layouts. Thus, for example, the minimum bifurcator
of a graph gives a lower bound on layout area, and good layouts can be found quickly if a
decomposition is available. Similarly, flux and density give lower bounds on channel width;

they also provide the basis for a fast, provably good channel routing algorithm.

The strategy for VLSI graph layout in Part I provides a simple and uniform technique for
solving a variety of layout problems efficiently. The unified framework is suitable for custom
layout, and at the same time is efficient with regard to area, delay, and fault-tolerance. The
tree of meshes, in particular, emerges as a surprisingly versatile and powerful network for
circuit layout. A priori, there is no reason to believe that such diverse concerns can be handled

simultaneously in a compatible manner, let alone within a common framework.

Approaching the channel routing problem from a theoretical viewpoint, Part II charac-
terizes the properties that make Manhattan routing diificult. These properties then form the
basis of a new, lincar-time approximation algorithm that is guaranteed to always find a near-
optimal routing. In contrast, although the problem had been studied intensively for over a

decade from an engincering viewpoint, all previous heuristics could be made to perform ar-

96
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bitrarily poorly on certain inputs.
These results notwithstanding, a number of problems are left unresolved in this thesis.
The following sections mention some of the more important open problems, and also sketch

extensions to the results reported. More details on specific problems may be found in [7].

8.1. Problems in Graph Layout

The divide-and-conquer strategy based on graph bifurcators has also been successfully ap-
plied by Leighton and Rosenberg [46] to the study of three-dimensional VL.SI circuit layout.
In addition, the techniques and results are also applicable to graph and data-structure embed-

dings, and also provide bounds on one- and two- dimensional bandwidth minimization.

Question 1. How much area is required to lay out an N-node planar graph? The best
universal upper bound is O(N Ig? N) [49, 83] while the best existential lower bound (for
the tree of meshes) is Q(N lg N) [40, 41].

Question 2. Is there a polynomial time algorithm for laying out trees with edges not much
longer than the minimax edge length? The best tree layout algorithm (Chapter 3) produces
layouts with edges of length ©(v/N/lg N). Although this is optimal for some trees, it is

way off for others.

Question 3. Is there a better way to realize a network in an environment that contains
defective processors? The results of Chapter 5 guarantee that any graph can be realized
using the good processors provided the “channels” have width Q(-%Ig &) in a regular
layout. Although this bound is optimal for some networks [7], it is not known to be

optimal for simpler networks such as two-dimensional arrays.

Question 4. Is there a provably good heuristic for graph bisection? Any such heuristic
could be used to find efficient decomposition trees and bifurcators, which, in turn, could
be used to produce good layouts (7, 42]. There are many heuristics which do very well in
practice [13, 17, 24, 37, 66, 71]. Analyzing these or developing new heuristics along similar

lines is likely to have an impact on VLSI layout.
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Question 5. Can the framework be extended to deal with processors of variable size and
shape? While it is relatively easy to deal with equal-size processors, any progress toward

the general problem would be very interesting.

8.2. Problems in Channel Routing

While the algorithms of Chapter 7 are fast and are guaranteed to produce near-optimal
routings, the analysis of the constant factors leaves much room for improvement. In particular,
the actual number of tracks used by the algorithm may be much less than the upper bounds
indicate.

For example, if the empty grid points are already uniformly distributed to begin with,
then Phase 2 needs to perform only a minor redistribution of empty points. Consequently, the
upper bound of 6k < 36(f 4+ 1) tracks to redistribute empty points, is a gross overestimate. On
the other hand, if the empty points are not uniformly distributed, but are bunched together in
groups, then the actual lower bound is underestimated by flux. To see this, observe that along
a horizontal track at most two wires can turn into a blank column inside a bunch of empty
columns. However, the lower bound argument for flux does not take the density/frequency of
blank points into consideration. Since flux underestimates the true bound in this case, once
again, we see that the performance of the algorithm is much better in relation to the actual
value than what the bounds indicate.

In addition, it is possible to obtain tighter bounds more directly, by redefining the notion of
flux. Rather than making horizontal cuts in the channel, it is better to employ the argument to
“windows,” i.e., groups of contiguous columns. This is the idea adopted by Brown and Rivest
in their lower bound arguments. The advantage of this lower bound strategy is that if many
wires are forced to change columns within the window, then the lower bound is very high. On
the other hand, if many wires exit across the sides of the window, then the width must again
be large since at most two wires can exit the window along a horizontal track. Is it possible
to redefine the notion of flux to capture some of these bounds? What is the best definition for

flux? Finally, do multi-point nets really require 2d + O(f) tracks, or will d + O(f) suffice?
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At a mofe general level, it would be interesting to investigate the applicability of flux to
other wfring problems, such as, for example, the msm problem. In conclusion, we mention
that Baker, Bhatt, and Leighton [3] extend the results of the Wﬁttm wiring model to the
case where contact cuts are larger than wires. In this m it tmtm that flux is never more
than'a const.ant so that dcanty is the lole limiting factor. on chaund mdth
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