MIT/LCS/TR-353

DATA BACKUP AND RECOVERY
IN A

COMPUTER ARCHITECTURE FOR FUNCTIONAL PROGRAMMING

Suresh Jagannathan

October 1985

Tius blank page was inserted to preserve pagination.

Data Backup and Recovery
ina
Computer Architecture for Functional Programming
by
Suresh Jagannathan

October, 1985

© Suresh Jagannathan 1985
The author hereby grants to M.LT. permission to reproduce and distribute copies of this
thesis document in whole or in part. -

Funding for this work was provided in part by the National Stience Foundation #NSF
DCR-7915255 and the Department of Energy, # DOE DE-AC02-79ER 10473.

This empty page was substituted for a
blank page in the original document.

DATA BACKUP AND RECOVERY
INA
COMPUTER ARCHITECTURE FOR FUNCTIONAL PROGRAMMING
by
Suresh Jagannathan

Submitted to the Department of Electrical Engineering and Computer Science
on October 28, 1985 in partial fulfillment of the requirements
for the Degree of Master of Science

Abstract

The VIM computer system, an experimental project under development in the Computation
Structures Group at MIT, is intended to examine the efficient implementation of functional
languages using the principles of data flow computation. In this thesis, we examine how to
incorporate backup and recovery mechanisms into this system to guarantee that no online
information is lost because of hardware malfunction. Qur solution, which takes advantage of VIM’s
powerful applicative base language and its uniform treatment of data and files, integrates the
operation of the backup and recovery system within the interpreter itself, resulting in a system that
can ensure a high degree of data security without excessive performance degradation. Unlike
schemes found in other systems to guarantee data security, operation of the backup facility requires

no user intervention.

To present our algorithms rigorously, we first develop a formal operational model of system
behaviour. This set-theoretic model views VIM as a state transition system with the interpreter
serving as a state transition function. The specification language is a superset of the applicative
language, VIMVAL. We enhance this model to include a concept of system failure and augment to
the basic components in the system a backup state with the base language instructions now
operating on both the VIM as well as the backup state. A formal proof demonstrating the
correctness of our algorithms is also given. Issues concerning the implementation of -these
algorithms are also addressed in the thesis.

Thesis Supervisor : Jack B. Dennis
Title: Professor of Electrical Engineering and Computer Science

Keywords: - Dataflow, Dynamic Dataflow Architecture, Functional Languages, Fault
Tolerance, Data Backup and Recovery, Reliability, Formal Qperational Models, Dataflow Graphs,
Resitiency, Language Based Architecture.

This empty page was substituted for a
blank page in the original document.

Aéknowledgments

The result of knowledge should be the turning away from unreal things, while attachment to these s the result
of ignorance. This is observed in the case of one who knows a mirage and things of that sort, and one who does
not. Otherwise, what other tangible result do the knowers of Brahman obtain?
— Vivekachudamani of Sri Sankaracharya

I am grateful to my thesis advisor, Prof. Jack Dennis, for the many invaluable suggestions and
insights he has provided during the development of this thesis. His continued interest in this work
has been instrumental in the formulation of many of the ideas presented here.

I also thank Bhaskar Guharoy for the many enlightening conversations we have had together
and for his help especially in the early stages of this work. It is a pleasure to acknowledge his
assistance in the development of the formal model presented in Chapter Two.

The friendly and intellectually stimulating atmosphere of the Computation Structures Group
provided an ideal environment in which to undertake this research. I thank the other members of
the VIM group: Earl Waldin, Bradley Kuszmaul and Prof. Nikhil for many interesting discussions.
Tom Wanuga, Kevin Theobald, Willie Lim and Tam-Anh Chu were responsible for many an
enjoyable lunch. |

Above all, I am indebted to my parents and brother, Aravind, without whose constant support
and encouragement this document could never have been written.

This empty page was substituted for a
blank page in the original document.

To my parents

This empty page was substituted for a
blank page in the original document.

Table of Contents. S

Chapter 1.

1.1 Goals of the Thesis

1.2 Motivation

1.3 Background

1.4 Previous Works
1.4.1 Data Security in Centralized Systems .
1.4.2 Distributed Systems
1.4.3 Fault Tolerant Systems

1.5 Thesis Outline

Chapter 2.

2.1 The Applicative Language, VIMVAL
2.2 The VIM Interpreter
2.3 The ViM Shelt R
2.4 A Formal Operational Model - M1 e e
2.4.1 The Base Language Instructions - = -~ =~ = =+ ¢
2.4.2 Early Completion Structures
2.4.3 Delayed Evaluation Using Streams
2.5 Semantic Functions for M1
2.5.1 Auxiliary Functions
2.5.2 A Formal Model of the Shell
2.5.3 A Formal Model of the Interpreter
2.5.4 Formal Definition of Base Language Instoyctj
2.5.4.1 The TERMINATE Instruction
2.5.4.2 Structure Operations
2.5.4.3 The Set Operation
2.5.4.4 The Suspension Operator
2.5.4.5 Function Application and Return
2.6 Summary

Chapter 3.

3.1 Failure Model

3.2 Fundamental Issues '
3.3 A High Level Overview of the Backup and Recovery Faclliﬁu
3.4 Architectural Enhancements

3.5 Summary

Chapter 4.

4.1 The Computation Record

4.2 The Activation Descriptor Entry
4.3 Early Completion Structures
4.4 Further Enhancements

O 00O WL h W N

[

11
15
17
21
24
28
32

32
kY.

135

41

4

49

52

55
59
62
63

w A T T S e LR e S D RN 1 e e

4.4.1 Tail Recursion -
4.4.2 Stream Structures
4.4.2.1 Rationale
4.4.2.2 Implementation
4.5 A Formal Model of Backup and Recovery
4.5.1 The Backup State
4.5.2 Early Completion
4.5.3 Auxiliary Functions
4.5.3.1 The Copy Operation
4.5.4 The Shell
4.5.4.1 Removing Log Entries
4.5.5 The Interpreter
4.5.6 Function Application
4.5.6.1 The Apply Instruction
4.5.6.2 The TailApply Instruction
4.5.7 The Return Operator
4.5.8 Stream Operations
4.5.8.1 The Suspension Operator
4.5.8.2 The StreamTail Operator
4.5.9 The Set Opcrator
4.6 Summary

Chapter 5.

5.1 The Copy Operation
3.2 Storage Organization in VIM

5.3 Performing the Copy Opération
5.3.1 Early Completion

5.4 Storage Management

- Chapter 6.

6.1 Contributions of the Thesis
6.2 Future Research

Appendix A.

A.1 Definitions and Terminology
‘ A.2 Proof of Conectngn
" References

65
67
69
71
1
74
74
75
71

81
81
82
85
87
87

95

101
103
105

107
108

111

112
116
121

R

Figure I:
Figure 2:;
Figure 3:
Figure 4;
Figure 5:
Figure 6:
Figure 7;
Figure 8:
Figure 9:
Figure 10:
Figure 11;
Figure 12;
Figure 13:
Figure 14;
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19;
Figure 20:
Figure 21:

List of Figures

A simple VIMVAL program

A VIM data flow graph :
Function application in VIM

The translation of the BIND command
The Abstract VIM System

The Use of Early Completion Structures

Demand driven evaluation of a stream using suspensions
Tail application in ViM
Skeleton of a Stream Producer
System Operation
High Level Organization of the Backup Store
Abstract Architecture of the VIM System with Backup Store
Representation of a Computation Record
Dynamics of a Computation Tree
Structure of an Activation Descriptor Entry
The Effect of the SET Operator on Bukup Store
Handling Tail Recursion
Reconstruction of a Stream Structure
Recording Tail Recursive Functions
The Effect of the SETSUSP Instruction on the Backup Heap
The Representation of a VIM structure

13
14
15
16
19
23
24
38

49
51
52
57
58
61
63

70

100

This empty page was substituted for a
blank page in the original document.

mma mb i bﬂu&

o 918 Inseng ow esisility (19voom bmqs i AP0 msenco om wi olilnlU
o sds Isbom sw,;iaéi SEE ﬁnm_ﬁ,i" |] N e & hfmmmmubns a_&qmiz“' , :;

2 . GOALS OF THE THESIS §1.1

found in our system provides a framework on which a highly secure system can be designed.
Unlike its more conventional counterparts, the backup and recovery utilities we present are
simple and efficient and do not require any yser guidance to perform their task. We model the
presence of failures and the actions undertaken by the backup and recovery mecha.msms by
defining a formal operational semantics of system behaviour This formal model is used to glve a
precise description of the béhaviour of the backup and recovery system We demonstrate using
this formal model, that the backup algorithms developed properly records the relevant pomons
of the system state and that the recovery system does correctly restore t.he proper system state as
well,

1.2 Motivation

The problem of guaranteeing data security is certainly not a new one. Virtually every
major computer system developed includes some type of prosection mechanism o safeguard the
.information entrusted to it.- It is, therefore, natural for the reader to.question why the study of
- data security for the VIM system is & problem worthy of -investigation. There are two main
reasons why we have not chesen to simply use backup:and recovefy algorithms developed for
other systems for VIM. First, and foremost, backup.:and récovery systems in conventional
systems. are not able to provide full: data security: witkout besoming ‘sxcessively complex: and
inefficient. In general, the implementations of theso utilities are:not able to:provide: full data
security without incurring significant recuction in system:petformance. : In-addition to this major
drawback, these schemes are based on a computational model which is much different from that
found in VIM. The implementation strategy that we present in this thesis ‘gitararitecs foll data
security and exploits the novel features of VIM in doing sa.. If issignificantly. different from other
data security schemes proposed for both sequential and- pataliel. systems: ::Some of the more
interesting aspects of VIM pertinent to the issue of data security are cited below: :

.oVIM is»bwdonadynamic data flow architecture. - '

In a data ﬂow computer system alt mstructlons m the program are vrewed as potenually
'exccutable with the only consmum bcmg Lhat thcy must have rccewed all necessary operands
"and comrol srgnals. This execuuon model allows for a great deal of concurrcncy to be rcal;zed
EThus our data security mechamsm must be desngned to be used m A hrghly concurrent

en viron mcnt

- §1.2 - .MOTIVATION 3

oVIM interprets an applicative base language, namely, the language of :dynamic data
flow graphs.

A dynamic data flow graph is a directed acyclic graph where nodes represent instructions and arcs
define data dependencies between these instructions. A-graph i dynamic if the execution of a
function activation is explicitly initiated by some apply operator. 'In our system, each Runction
activation has its own graph.created by the apply instruction. ‘The base:language instruction set is
very powerful, containing instructions for function application and retéirm; structure creation and
manipulation as well as mstructnons to handle storage manag:mens. We can take advantage of
this feature i in the d&sxgn of our data secunty mechamsm by enhancmg the semantm of these

”””””

instructions to support the backup and recovery pmcedum.
eThere is no distinction betweenfles and data i m VIM,

-Unlike conventional systems, the units of storage allocaffon In VIM are the information units on

which the primitive operations of ViM operate Le. ‘ifstrictions, sufdr valuES. arrays, and records.
““This feature wilt aliow us to design backup' algoritiims’ rhat i‘)e Thlly oOgnizant of how
information is being created mdmampuiated in the”sysmm. C

oThe unit of transfer between dnsk and main memory IS a small ﬁxed-stze umt of A
information calted:a chunk. ‘

The small unit of information ‘trajmsfer v)i!l allow 'extensivé concurrency of dperat.ion to be
- achieved by exploiting the data driven’ execution model't6 support ‘a-high level'of fiformation
traffic between disk and enin memory. ‘The' use“of cunk¥ & the unit of transfer poses
- interesting problems for the backup system' when informatioir tieéds 1t be eopied ﬁ'om memmy
to a more stable sxomge mediom, We discuss this issae-lite'i hethesis.

1.3 Background
While hardware is generally reliabie for the most part. catastrophes do indeed occur and it
is necessary that the computer sxstem dcsigner be scnsitive 1) mis,rgalily ldcally we would like
" to provide a guarantee to the uscrs of our system that all aceessible data !M" survive the effects of
any hardware malfuncuon The approach that is adoptcd hqwevgn. w:u naturally be stroagly
influenced by eﬁ‘ Clcncy constraints. In ‘most convcntlonal oompute; systemis that do not provide
extra hardware support to achicve this alm the cost of realumg full data sccunty usually involves
too much overhead and reduced pcrform.mu to be a realistic goal. In these systems. users are

4 " BACKGROUND §1.3

forewarned that some of the information they have entrusted to the system may not survive a
hardware failure. Consequently, these users must take explicit action to preéerVe aata they deem
. important by periodically-"backing up” their information oo a mote reliable storage medium.
Information which is rot transferred onte backup store is-lost-after a crast It is usually not
possible in most systems to recover this lost dela by reexecuting thie-computations which initially
produced it since there is Ao mechanism:- to monitor the creation and:modification of information
occurring in the system. :

We shall say that the mformat.mn held by a computer system 1s ﬁdly secure from loes or
corruption if the system contams mechamsms whlch ensure the gresex:_yatlon of all data despne
the presence of unreliable underlymg hardware componen&ﬁ These mechamsms may be
incorporated as backup and recovery software utilities or tnay také the form of replicated storage
elements or may be. implemented. as some combination of both. The degroe of data security
provided by a computer system is one measure, of its reliability. . If a system is reliable, users of
the system can confidently store, Aand aceess data whenever. desived. Note that data security. does
‘not necessanly imply reliability since a secure: oo I System need 1 not.mask Rilures tothe
extemal world. A system whnch does provxde full dptg secumy,, hawever, guarantees i its users
that no fallure in the system will cause any mess:ble mfomm m‘heioat gven: though users

may be prevented from aocessmg 1t for atime lf a fmlure tekee plaee.

K.AH '

The extentm wl'udl AISETS Can access. dm WMM mm of the. avadabzlity of
the system. . In, applications such, #. recket. guidanced).for cmample. it is-ctucial that no.single
. hardware failure makes, the systsm uaavailable. for, even: 2. shom period of time. - The -basic
approach to masking failuzes of hardwase from: the exiareal symemr-is best: done at the hardware
level itself, by incorporating sufficient redundancy into the system [26]). In this thesis, we shall
not be concerned with availability. Rather, we shall be focusing our attention on:the: problemy of
. enhancing VlMWO!iﬂﬁ%Wﬂewmfmumm :

For systems which néed not miask fd'lures. the standard approach used to guarantee data
“security has Been to provide backup and recovery softl e’

utilitics. ?or thc system The backup
utitity serves to safegudrd fnférmation’ on' some storage Re*v:ce &at is unmune to the cffccts of
‘hardware failure. The recovery utitity is invoked when a haraware faﬁure occurs and uses the
informiation preserved’ by the backup f: mmy o rcswre thc systcm lo a smtc whu.h cxlslcd bcfore
the failure. The dcgrec of dai-\ securily prm ided by the sys&cm ls dm ved b) the mst of lhe

§13 - BACKGROUND 5

backup and recovery process. Most current systems ‘have had to sacrifice the goal of providing
- full data security because of the high overhead that would be involved in supporting the backup
- and recovery system. In these systems, the state restored by the-recovery. utility may not be the

. one which existed: immediately prior to-the failure. ‘Moreover, it is usiatly the case that thete is

no means of recovering this desired state: from the one produced by the rwovery‘pr'ooedure.
Thus, information loss is a: possibility which users of the system mustmpt. ﬂ ’

1.4 Previous Works

In this section, we: briefly describe some previous: efforts in the’ design of hightly ‘secure
systems undertaken for both centrahzed and dlstnbuted] systems as weu as solunor;s proposed for
: vprovrdmg fault-tolerance for a class of data ﬂow archxtecnrrgs. We Jpoint out some. major
deﬁc:encnes and assumpt:ons made in these pmposals that. make them not suitable for
o 1mp1ementatton in our system.

© 14, l Data Secnrtty in Centralhed Systems

;;;;;

"‘reoordmg state mformatton for recovery purposes is to estabhsh a check,pomt descrlblng all
. aspects of the system state The checkpornt state is oonstrgcted by reoordmg the state of the
system at some pomt onto a rehable storage medlum sueh a5 tape. The most ObVlOpS drawback
‘of thrs scheme is the potentlally large amount of data whtch must be e;tammed - an oftenumes
B unneceesary and expenswe strategy smoe most of the o!yects m the system would probably not
have been modrﬁed between suoceasnve checkpomts To amehorate thls Jproblem somewhat,

many nmeshanng systems perform an actmty referred to as incremental dumping o keep the
backup system abreast of any modifications to the file hierarchy between successive checkpomts.
In the event of a major mishap that necessitates the reconstruction f : ;he filg hierarchy,. the
system can be reloaded from the last checkpomt and appropnately ‘modified by using the current
" mcremental dumps to restore the system to a more recent state. All mcrem,ental dumps are
copled onto magnetlc tape In order that the recovery phase of state restoratlon may proceed
faster lncrcmental dumps are penodlcally consohdated to remoye outdated copics of fi les. Thls

: consohdatlon process is known as secondary dumprng

Using incrementat and secondary dumps to record: information tibout the system state is
the hasic approach used by the Multics operating system [27) 1o provide secure service 'to its

6 PREVIOUS WORKS §14

users. A modification to the backup and recovery. pratocol employed by Multics was suggested
by Benjamin [6] for the Data Network Computer. -Instead of using magnetic tape as the medium
_ tostore backup copies, it was adyocated that the computer system be integrated within a network
of autonomous systems with each system being allowed access to the storage devices of the other
processing elements. The backup facility maintains a consistent image of the file storage at a
remote site within the network. The motivation for-having such a backup system is the greater
ease in managing the backup system that results when we do not have to deal with sequential
access tape storage. The problem in using such a system, however, comeés from ‘the decréase in
availability that may occur due to-the extra dependency on communication lines etc.

Perhaps the most serious objectron to the solution adopted by Multrcs 1s the oost involved
in periodically scanning the file hierarchy to find those ﬁles which have been created or updated
since the last incremental dump The cost of performmg a checkpomt tn Multres mcmses
linearly as the size of the system increases. To achieve the same degree of data wcunty ina
heavily used system where files are constantly created, destroyed, and updqted. as in .a lightly
used one, it is necessary that the bacltup system be invoked more frequently Thts, in turn,
implies degraded service to the user eommumty ‘The bwc h wh,y Mulncs (and other
| conventional centrahzed systems) are not able to provrde full data secunty efﬁc:ently appears to
be the lnabihty on the part of the bmkup system to tmmedtately dtseem when data has been
* created or altered and to reﬂect this fact onto the backup 1mage of the system state Because the
 mechanism by which data is created and updated is far removed from the ﬁle system wrth whrch
“the backup system interacts, the mcrémental dumptng procem ls costly and rnefﬁcrent. The end
‘Tesultis a eomputer system whlch cannot guarantee l‘ull data secunty wrthout mcumng excessrve

overhead.

-'£.4.2 Distributed Systems

| Unlike srnglepmcessor machines or multr prdeessor machmes under eentrahzed eontrol it
‘is difficult to perform global chcckpomts in multr processor systems under dlstnbuted control
~ because of the lack of any system wide synchromzauon cap\abrl:ty Hence although drstnbuted
" systemis may have the potentlal of provrdmg a more secure computmg envrronment as a result of
the redundancy present in their architecture [29] explortmg such redundancy to achleve thrs end
becomes much more difficult. A typical model chareterizing a distributod system would be one

where both the data as well as the code of a process is spread over several physicat nodes in-the
D

§1.4 PREVIOUS WORKS C

system. Communication between processes in such a model is usually' throigh some form of
- remote procedure call [25] or message passing mechanisn¥ [20, 18, 31].’ Failure in these systems

- can cause processes to deadfock {2} after the recovery’ phase ‘completes. To avoid deadiock
problems arising. from ‘the ‘sreor recovery ‘of a process ‘that is a member of a collection of
- communicating processes, local: distributed systems o network computers usually have' the

.ability to set localized checkpoints: for each process. Such cheekpoints are tefesred to as recovery
. poiats. If a failure of a process.is detected, it is necessary - sot énly roll-Back the failéd process
.10 its most recent recovery point,ibut to aiso: reset all: other processes ‘that had' exchanged
.- information with the failes process.since the time'of the 1dst fecovery point in order to avoid
- deadlocks from oocurriig when operation is-continued; If theserecovéry points are not set
. :properly, it is quite likely o have a domino effect[3):whereby- all’ processes fnitiate fecovery
actions that lead thear to thein earliest recovery polat: "Detsininiy when'to set recovery points
- and finding a consistent set of such points is: &MWMBHMOM mbm&ally

reduces the overall concurrency: of the systemn, . o s : .

; Borg etal{7} and Barigazzi{5} present schemes for ensuring: the :security of data in a
.. distributed message-based-system. ‘The basic-idea in: beth preposdly- thvolves maintaining an
. inactive backup process on:a different processor Rt each ‘86t Brovess in the system . IF a
-~ failure of a primary process oocurs, the backup process takes over exectition. In Borg's scheme,
. messages exchanged between two processes are also' sutowvitically recorded on beekup processes
- as well. In addition, both the backup and recovery procsssey'ard periodieally’ synchivonized.
- When a failure occurs on a primary process, its backup beging execution in the stare that the
- failed primary had at the:last:synchirosaiation point. THE backep can catch up 1o the state’the
 primary had just before the fa&mwmmmm énmm wmch-mmmn

Bangazz: uses a sxmllar approach in hls system However, mstead of havmg messages sgnt
from the primary to the backup process. an exphcu rgcovery pomt is genodlcaliy atabhshed for
every primary. Setting a recovery point for a proces also requim establtshing recovery pomts
for all processes that communicated with this process since the Jost. Jecovery. point. was: set.
Rccovery in this scheme involves rcsettmg all processes to thcnr last Tecovery pomL Wmle both
these schemcs provsde full dala sccumy they do so at thc oost of htgh ovcrhead in mdmuumng

‘up to date multlple copn&s of the pnmdry process on dns;omt processor& ln addmon, both
| proposals assume thc tmnsnmslon of messagcs to bc a rclauvely mcxpensm. operation. an

assum punn w hl(his ccmmly arg uable.

8 _ PREVIOUS WORKS §14

In addition to general distributed systems; there has been much interest of late in
distributed transaction systems for which a high. degree of data security is essential A
sophisticated approach to handling data security for. transaction based applications can be found
in the Argus system. The Argus integrated programuming language and distributed system being
developed at MIT [23} is a comprehensive attempt to provide linguistic support for ensuring data
security and consistency within a distributed computing envirorrment. The language provides
constructs to encapsulate vital data objects which are then guaranteed to survive crashes of the
host processor with high probability. In addition, a mchamsm is provided: to express atomicity
of process activity, When a hardware failure occurs, each-outstanding atomic action is forced to
abort. A two phase commit protocol is used to emsure. that all transactions preserve the
consistency of the active data. To guarantee data security, objects are distinguished as being
either stable or volatile. All stable objects are written cato stable storage: devices whenever a
. transaction completes. The. integrity of stable objects is, therefore, preserved.even though
crashes of the host node may take place. Volatile data is presumed 1o be fost upon failure.

Perhaps the greatest point of contrast between: the- Argus implementation of data security
and that which we want o, provide in our system is: the requirement in Argus that the user
prespecify those objects which are to survive crashes, Qur goal is to ensure that measures taken
to provide data security are transparent to the. user; .no linguistic primitives are provided to
specify the objects he wishes to survive failure and no explicit-constructs are provided to control
backup operations. While the gap between the programminig:odel and the backup facility is
-Rnot 80 severe in Argus as in Multics, the fact that dmundeﬂmsyswm is based on an updatable
memory execution model makes the task of ensuring & comsistént state a complicated one
involving expensive protacols such as two-phase .commit. and -sophisticated algorithms to
maintain a correct and up-to-date backup image. Moreover t.he apphcauon domam for which
Argus is best suited is a relauvely restrictive one and the oomplexuy of the system 1s probably not
warranted for most non- transactnon based oompntattons. ‘

1.4.3 Fault Tolerant Systems

" There have becn several proposals put forth for the design of hult-toler'mt data flow
'computers which attempt to achieve data security (as well as avalldbllny) by mcorpomtmg low
level fault masking capability into the system. We outlme several of these proposals here to
present an alternative approach to solving the problem of prowdmg data sccurity for a computcr

system,

e M R e P e S R

‘§1.4 PREVIOUS WORKS 9

An error recovery system in the context of a fault-tolerant data flow machine based on the
Dennis-Misunas architecture {9)«was :described by ‘Misunas: in §24] Fhe model advocated was
‘based on providing triple modular: redundancy (TMR) for: emiory-and the ‘functionat units.
- Each instruction cell acts as a voter and receives thtes results for'each ‘operand generating error
packets if discrepancies are found. ‘In addition, precessor: failiirés ‘afe hdhdled by altowing the
- network.to be reconfigared. The scheme: involves etensive:ioverhelid in tépms of ‘increased

- packet traffic and extra hardware and. is dependent: on the ol of aéknowledgrhent signals to
allow reconfiguration to take place. A fault-tolerant design for a tatie-data flow-architecture was
also proposed by Leung [22]. -In-his proposal, a dynasiic rodwn@indy techrique was empioyed
‘whereby redundant units- are used % detect and m faults, ‘widh afRlicted eomputaﬁons
reexecuted when necessary. o A Ce st SRR

Hughes [19] suggests that: a checkpointing - strategy suitably modified: for data flow
computation may. be an approprigte mc&mism«fothwm érror-recovery In a data flow
machine. Basically, each ceik ¢or instructipn) which:is:chetkpdietid 45 marked. Whenever'the
backup system initiates a chreckpoint, alti active ceflsnot previouslyeheckpointed ire saved. On
recovery, all active cells that were checkpomted are restored. Whrle simple to rmplement,
recovery m thrs scheme requrres the remrtlahzatron of the enttre state, whtch lS an oﬁen
unnecessary step In addmon the memory of the system mustbe exammed at each checkppmt
o determme whlch rtems have not yet been oopred thts is also éunte wasteful in most mstat}oes.

Fmally, this proposal assumes that all mformatron is resrdent in memory whenever the
. checkpoint process is invoked; by contrast, inthe systen-whiéhi We-envisage. data wilt be spread
across the memory hierarclyy betwesn disk and mmdummﬂmm

All three of the proposals c1ted ‘there are_ based on an archrtectural model much drfferent
f from the dynamrc data flow model desugneel for VlM Moreover they requrre specral
" architectural e enchancements to mask hardware faults VIM is not mtended for appllcatrons
which have high availability requirements and, thus, there is no need for fault—maskmg strategies
to be incorporated into-the system. - Consequentty; e approdches 1o achieving data security
taken by these schemes will not be directly awnmble in saustyhgthe requrrements we have set

forth for our system.

L ERARREE L e A e

10 PREVIOUS WORKS §1.5

1.5 Thesis Outline

_ In the next chapter, we present a detailed model. of the VIM Computer System. We
describe in detail the applicative base language being used and the dynamic data flow execution
model employed. In addition, a formal semantics of system behaviour is also developed to
rigorously define its operation. The manner in: which users communicate with. the system and
the means by which long-lived objects are defined are .also presented. To simplify . the
presentation, we assume a system supporting only a single user.’ Because of the applicative
programming .model used in VIM; this simplification does.nat invalidate: its applicability to a
multi-user system. We do not consider non-determinate comiputation in our model. This
restriction also simplifies the algorithms. - The complications involved . in moorporaﬁng non-
determinacy into the model is a topic which we discuss in Chapter Six.

The third chapter in the thesis presents the general strategy for the backup and recovery
system. We define the criteria which. the backup : system 'will use:in determining what
information should be recorded on the backup storage medium: We also present the
architectural enhancements necessary 1o support the: backup ant recovery.utifities.

In the fourth chapter we grve a more detarled deecription of the backup and recovery
algorithms, The alterations necessary to the mterpreter are drseused. We also fonnahze the role
~ of the backup and recovery system in the context of the abstraet model gtven in Chapter Two
and present the changes neceesary to the base language mstmcuons to support our algonthms.

The fifth chapter deecnbes low level details in the transfer of information.between the
backup storage medium and the VIM system. We. discuss-how-to: guardntee the. atomicity of
information transfer so that a consistent 1mage of the system state ts mamtamed on the backup

"storage medium. We also menuon how storage management is handled on the backup store as
“well as descnbmg how to minimize the oopymg of mformatton from system memory onto

‘backup memory

The final chapter presents a summary of the thesis and discusses some topics for further
research. We pay particular attention 1o the changes which may need to be made to the backup
and recovery algorithms if our modcl of system behaviour is augmented to allow non-

determinate computation.

- §20 : . S p 11
Cha;pter Tm
The VIM— Systm

"The ViM Computer System is an expenmental project m the Computatnon Structures
* Group intended for the i mvesngatmn of a novel data ﬂow archltecture _for the efﬁclent support of
functional languages. In tlus chapter we dlscuss the desxgn of the ’system and present an
operatlonal sémantics lbr its apphcanve base language The mam programmmg language
" ‘supported by VIM is VIMVAL, a major extenslon of the appheauye languase VAL [1] VIMVAL
programs are translated into the base 1anguage data ﬂow graphirepmentanon whlch is then
-executed by the VIM Jnigepreter, Users communicate with ViM: through-a: Shell program, The
- Shell provides a powerful intarface to the system that sbioss-users to build and manipulate VIM
.- environments - the main facility for constructing long-lived stouctures. - We discuss each: of these
. componenis, VIMVAL, the Interpreter, and msu&mmsm ‘

: 2.1 The Applncatnve Language, VlMVAL ,

In this section, we present an informal overview: of the: VIM high-level applications
-language, VIMVAL. VIMVAL differs from VAL, its: predecessor; in: that functions are: treated as
- first-class objects, free use-of recursion and mutuak recursion is aliowed, and polymorphism is
- supported through a Milner-styls type infierence mechanism. Users<an program in‘s strutured
and hierarchical manner through mezme\of-aémmw&lom -

In addition to various scalar types such s integers, reals, characters and hoaleaps, VIMVAL
also contains Structure types such as arrays and necords Users can express hlstory sensmve
‘ computatmn through the use of streams [30] A stream ls a poeentxally mﬁmte sequenoe of
. homogeneous values whlch may be of any type (mcludmg stream) that allows users to wnte
" history sensitive codé (such as the modelmg ol‘ a oonvenhonal memory cell) wnthm a funcnonal
" framework. Thére are three operatlons on streams ﬂrst Whlch returns ihe ﬁrst clement of a
""stream rest which given a stream returns the stream wuhout ns ﬁrst clement, and afﬂx whtch
 affixes an element to the head of a slream We shall dlscuss the lmplementauon of stneams in
greater detail in the next sccuon '

Becnuse [unctions are treated as first-cluss objects. they-may be: passed as arguments to
other functions. rcturned as the result of a function activation: and may be built into ‘data

12 THE APPLICATIVE LANGUAGE, VIMVAL §2.1

structures e.g., array[Function]. The body of a function is an expression whose type is the result
type of the function. The form of an expression may contain conditional expressions, function
invocations, tagcase expressions which alow one of a series of expressions to be chosen based on
the value of a tag, and let expressions which are viewed as suganng for lambda abstractions.
Conventional iteration in VlMVAL is expressed usrng tarl recursron Variables in VIMVAL are
considered as only 1dentrfiers fora value Once an rdennﬁer is deﬁned it cannot be changed —
VIMVAL is a smgle-assngnment language The treatment of vanables as ldenuﬁers for values as
opposed to placeholders for memory cells whrch may be arbltrauly mutated as found in more
conventional constructwe languages isa drstmgurshmg charactenstlc of VIMVAL

A module in VIMVAL is a function which may be invoked from other modules or by a user
command to the system. A module -provides a ‘mechanism ‘for-grouping refated functions
together. These functions may be invoked from within the module or, if they are passed as a
result of the moduie; by functions externat to the module, The body-of a module may use niames
that are not bound by definitions in the module. These free names must be bound before the
module can be run. Modules may be separately compiled with type consistency of identifiers
- used across modules being checked by a linker. - Type specifications are eptional in VIMVAL.
Omitting type: definitions allows free names in modules to be bound in possibly several contexts,
each binding causing a different resolution of the types of the free variables. Users can, thus,
express useful polymorphic functions using the type inference meéchanism. For a more detailed
exposition on the VIMVAL language, the reader should see [13]and (28).

2 2 The Vim Interpreter

The base language for the VIM system is the language of dynamrc data flow graphs.
Programs written in VIMVAL are translated into their data ﬂow graph representation. Base
language programs are evaluated by the ViM mterpreter A dynamlc data flow graph is a
» directed acyclic graph in which nodes represem base language mstructtons and-arcs are used to

~indicate ddta dependencies among instructions. There are two types of arcs in the graph: value
arcs and signal arcs. An arc (s, 1) is a value arc if it carnes Lhe value pmduced by the exccution of
node sto node . A szgnal arc is used for performing a controf funcnon such as selecting which
arm of a conditional expression is to be evaluated. A node is sard to be enabled if and only if it
has reccived all necessary values and signals. Enabled instructions cin be executed in any order
and the interpreter is free to choose the execution of any cnabted instruction from any currcnt

function activation.

S IR A 4 R Sy .

§2.2 - THE VIM INTERPRETER © 13

To illustrate the structure of a Vim data flow graph, we show in Fig. 2 the base language
representation of the VIMVAL function shown in Fig. 1. Instructions are drawn as boxes, with
the opcode of the instruction labeled ipside the box. Value arcs are drawn from the bottom of
the instruction which produces éle value to the appropriate operand slot in the target instruction,
Thus, operand number one for an instruction \yill be sent along the leftmost value arc entering
that instruction. Signal arcs are drawn entering 'i’ﬁtﬂ the side of instructions. Each mstructlon has
an index in the activation used for addressing purposes. The behaviour of the base language
instructions are described in greater detail later in this chapter.

Function JS(x :boolean; A, g: Function returns int)
if x = true
then /(1) % hreturns an integer
else g(2) % gretusns an integer.
- endif .
endfun

Figure 1: A simple VimVaL program

Any non-scalar value pmduced during the eva&:auan ofan activation is placed on the VIM
heap. The objects which may be found on the hap mciudé function templates and data
structures such as arrays and records. Associated wzﬂx every object is a unique 1denufer uid,
which distinguishes this object from every other objecf on'me heap. Thus unlike sxmp]e scalar
values, data structures and finction" templates are - ﬁét tréiismlttcd along value arcs in an
activation. Rather, the result of producing a complex stmcmcg,gﬁ,toplapg ;h;s;;strgm on the
~ heap and to send its uid to all target destinations. instead. --ViM-employs a-reference-eount
mechanism to manage the heap, . When therg exists no. refereng %40, structure on:the heap fpom
wnhm any current acuvanon thag; structure <an be remoxed mme heap and its space reused.
- The ViM heap may be consnden:ed to be a multi- -rooted, dirgeted-acyclic, graph where an arc (s, 0),
, connectmg nodes s and , mq;qtgs that ¢ is a compp; _ rghof,s. JHements on lhe heap may be
'safely shared among objects. This feature is a n:suk of .the. applicative- nalpre of the base
language. An object on the heap consists of a unique identifier and a structure value.

A distinctive feature of VIM base language programs is that no.arc in the graph is ever
reused. This is a consequence of the graph being acyclic with tail recursion uscd to model

iteration. This modcl of data Now graphs requires that cvery new function application create a

u THE ViM INTERPRETER - 8§22

False

,‘-—__ -
< p—

MAKEREC

P RELEASE

Ll

SET

Hgm? Avmmiowm
e s i SCRTIEE TR ST A Gl s i
new‘cobyfbf“ﬂ’\e fumction tehplaté and i this sefise Tbybe tholight’ oFasa Stmphﬁcanon of the
'iagged tokert d'ynamic m ﬂow ﬁﬂ&l nﬁed“fn W’Tﬁff%ﬁféf M ’When a ﬁmcnon is
plicatio when the acuvauon
4 with WWMM senit to all neassary target

Gt i\'z;’? AN H "Ni TR

 retums sr&ﬂt.‘the ctiva
“instructions.’ We:ﬁﬁstrawﬂhs iﬁ*ﬁg. 3

N

- §23 THE VIM INTERPRETER 15

2 AN APPE Piddownes

SRR FECAIRSE LS

- 1. -Bafore APPLY ts executed

3 Aﬁeraclmuoncompletes wllllmummulu e
Figure 3 Function application in Viu

2.3 The Vim Shell

Users communicate with the VIM system thrq;gh a syste@ Shell. The VIM shell is
responsible for accepting user commands, and“i translatm; them mto the appropriate base
language representation and then invoking the mterpmar«rfxmwﬂm base language program
whenever necessary. A user session typically consists of the Pser communicating with the Shell
in an interactive mode, inputing Shell commands whose n@m are subsequently output to the
user. Every user executes m \al‘quue enwmnmenr "AViMe envnronmeit relates symbolic names

A EET

to values and acts as.-a. mposnory for all Iong-hved objects: =9bpetsnferenced in an envtronment

DhRuns e 2 MR B

must be explncnly d«.letcd by the user. The VlM qnv1mnment plays the role of a dlrectory
structure in conventional syslems Uscrs specnfy that a particular <name, mlue) pau' is to be

placcd in h:s emfironmcm rhrough the BIND cmnman‘ii ”The ﬁ‘ééi- éommand

BIND name : = <expresswn>

6 - THE VIM SHELL 1§23

binds the value of the expression to the name specified: -This binding is thenplaced in the user’s
environment. In addition to the BIND command, there is a DELETE command which, when given
a name, removes the <name, Value> binding from the user’s environment. The command:

DELETE N

removes the bindiag, <N, Value) from the current envirofiment, UsSers must execute a DELETE
command to have an entry in their VIM environment removed. ’

- The VIM shell translates a BIND oommand into its base language representation which can
then be executed by the VIM Interpreter. The translation for the command BIND x := f(2) is
shown in Fig. 4. The APPLY instruction creates an activation of the function fwith argument z.
The result of this activation is sent to a special instruction, TERMINATE, which informs the shell
that the value which is to be bound to the namag: is avprlabl& The storage occupied by this top
level activation can then be reclaimed by the systegr m the RELEASE instruction. Thus, once
the value which is to be bound to t.he symbohcaame is kno\m. the activation created by the shell
can be removed from the system. ‘

APPLY

 TERMINATE ___4 RELEASE |

Figure 4: The translation of the BIND command

There is no translation into a base lungquc program necessary | for the DELETE command. This
command is processed by the shell enurely — NO assistance is rcqmred from the Interpreter to

execute it.

§2.3 " " THE VIM SHELL 17

The TERMINATE instruction - described above is used to synchionize the operation of the
interpreter program: with the shell: * If this syrichroﬂiiaiﬁdh’ﬁe@ﬁéﬁisr’h“&efe femoved and BIND
commands were allowed to arbitraily overfap with one another s posmble for moorrect
environments to be constructed. To see why, consider two BlND commands input in succession:
BIND(x, F) and BIND(x, G). It is clear that if the commangs..are. processed .correctly, x should
‘7 finally get bound to the result of evaluaung G. To ensure. thaubls semhzatm takes place,
however, requires that the second BIND command does a0t gecyr. until the fisst one completes.
As we shall see later, it 1s possible to still exploit a great amount .of concursency by allowing the
computation of Ftp be snll pl’oceedmg even if BIND (x,) exeeutes. This feature, knawn as early

completion, is described in section 2,4.2. A

In the next section, we will present a formal operational ‘mddeé! for the VIM interpreter,
base language and shell. This model, called M1, will he negess azily very-abstract. We will not be
considering, for example, internal representation of data stru%t:n:gs in _memory, pagmg of
structures to and from memory or scheduling algonthms. ‘We make two sxmphﬁcanons of the
actual system in our model. First, we assume that all cbffiputatiod in the system is Heterminate.
A computation is determinate if its output is totally specified by the: value of its inputs; it’s
output does not depend on such factors as the relative arrival time of its_input& Secogdly, we
assume that only a single environment exists in the system and, thus,'t'!\iere is nd néed for
providing an explicit environment name to those instructions which manipulate environments. |
In the following chapters, we shall reﬁne thxs model o dscnbe the backup and recovery
algorithms.

2.4 A Formal Operational Model - M1

The VIM system contains three major components: an lnterpreter a system State and a

Shell. The State embodies all current information in ‘the system ie. heap activations, enabled

instructions and envircaments. The. interpreter executes a ibase-language representation of a

Shell command and rewurns the value of that.command, - The: value sewrned by the interpreter is

- bound to a symbolic namein the user environmeat. The name being bound.is determined by

~the current BIND command being processed. ‘A shell command is translated into its base

language represcntation and is then executed by the interpreser. This:teanslation is performed by
the Shell. The shell as described above is a function mapping from a State und a session to a new

State. A scssion denotes the history of Shcll commands input l;) the system. The shell translates |

18 A FORMAL OPERATIONAL MODEL - M1 §2.4

shell commands, invokes the interpreter to execute. these. commands in the current state, and
binds the result of these commands to names in the user environment. It returns the state which
is produced after evaluating all shell commands in the session. The abstract architectuse of the
VIM system is shown in Fig. 5.

In the following discussion, sets are denoted by bold font, elements of sets are denoted by
italicized letters and names are indicated by a script strings of lettefs. ‘Thus, Set is a set, Elf € Set
and tag is a tag. We present our semantic definitions using VIMVAL-fike syntax augmented with

operations for performing set abstraction, set membershiip,etc. ‘on the domains defined below.
Function ‘domains are specified using arrow (=) notation. ~Thus, the domain equation,
A = B — C defines A to be the set of all functions with dotfiain B'and range C. Tuples are
enclosed using angle brackets.

- Formally, we define the VIM System to be a thfee-tup_le: |
VIM = <Shell, Interp, State> where |

State = <Act X H X EIS X Eav)>
Act = U, — Activity
 H=Uy -ST
U, = the set of unique identifiers used for activations.
Uy, = the set of unique identifiers used for structures.
EIS = the set of‘enabled instructions, described later,
Env = Name — (U U Scalar)
Activity = N — Instruction, N'being the set of natural numbérs. “

An element Act in the domain. of VIM activations, Act; is a mapping from unique identifiers to
activities. An activity is a function mapping from natural numbers t instructions and represents
the code of an activation. An activity can be thought of an' array of instructions. the /* element
in the array specifying the # instruction. ‘The ViM-hieap, H, is modeled as a function from
unique identificrs to structure types, ST defined below. The structure of the heap is determined
from the mapping dcfined by the heap function. Scalar values are not represcrited on the heap.

T R R Rt RO e

§2.4 , AFORMAL OPERATIONAL MODEL - M1 M
Activation
value,
" Activats | . i
Instructions
Eis - Interpreter — , SN Shell .

New State

Figure 5: The Abstract Vix System

‘‘‘‘‘

Environment oomponent m the State ts also a fum:tion mapp,mg from a name whlch is gny
sequenoe of characters, to enther a umque 1denuﬁer nfem\cmg, a structure on the heap or a
scalar value,

The data types supported by the system are given below:

Scalars =]mmu Reais L) Booleans L Character W-Null: - .
Name = Chamcter “the set of ali character sequences
Intc;,crs the set of all mtcgers] {undej}

‘Reals = the set of all reals U {undef}
‘Booleans = {rrue; fulse, -undef}:

Character = the sct of characters in the machine U {undef}

Null = {nil. undef}

20 A FORMAL OPERATIONAL MODEL - M1 §2.4

ST = {ArrayU{undef}} U {RecordU{undef}} U {OneofU{undef}} U {Function}
U {ECQ} U {Clsr} U {Dests}

Array = Z — (Uy U Scalars), Z being the set of integers.
Record = N — (U, U Scalars U SUSP U Dest), N being the set of natural numbers.
Oneof = N — (U U Scalars U SUSP), N being the set.of natural numbers.

Function = N — Instruction, N being the set of natural numbers,

The set of structure types includes arrays, records, and oneofs. . Arrays are modeled as functions
from integers to either unique identifiers representing structures on the heap or scalar values.
Recards are modeled as functions from natural numbers to etther unique identifers representing
some structure on the heap, scalar values, suspensions, whlch we describe later, or destination
lists. As we explain below, the return address of an activation is packaged into a record and
transmitted to that activation when it is instantiated by the APPLY instruction. The destination
list represents the list of return addresses which are to mive the result of the activation, While
components of record structures are addressed by theu' fieid-name in VIMVAL, the compller
translates these names to the offset of the addressed component in the record. '

Note also that the set of functions is also included among the elements of the structure
types in the system. ThlS is consonant with our treatment of func’uons as ﬁrst class citizens. An
element of type Function is a mappxng fmm natural numbers to tnstructtons Just as elements of
the set of activations are. As we shall see below the only dtfference between a function

' definition and its corresponding activation is that the latter is sensitive to the effect of i mstrucnon
execution since operands and signals are received by the instructions within an actwatton
whereas a function is a pristine object like any other ViM structure,

A function closure is a special record of twe compenents:: the first component is the uid of
the function template of the closure and the Vseeond‘ component is the list of free variable
dcfinitions found in the function. The closure of a ftmctidttoomplctely defines the bindings of
the free variables in the function and, thus, must be’ dcﬁncd before the funcuon um be apphcd
Free variables are accessed by its index in the free variable hst. ’ﬂie doﬁnmon of a ck)sure is

given formally as:

Clsr = <Uj; X (N — (U}; U Scalan)>

- §24 - A FORMAL OPERATIONAL MODEL - M1 21

2.4.1 The Base Language Instructions

A base language instruction is.an seven-tuple consisting of'an ‘opeade, three operand fields
. (not all need be used), an operand count used-io: indicate Kow-many-operands must arrive, a
. signal count used to indicate how many signals: myust:be: received; and the destination tecord
containing the list of destinations for this instruction. Fhe set-of opeodes we will be considering
in our operational model .will include . record- stractire . operations, function application
instructions, and operations oa earty completion clemsents; - These clasises of instructions will be
the ones of greatest interest when.we present our ‘backup &ndmomy algonthm

Instruction = OPS X (U, UScalars)3x Nx Nx Dests

A desunatlon has a type which is enher ummwnﬂtfﬂwmultafmelmcnon is to be
sent automatically to the destination, true or false used:by:a SWITCH:instruction to: coatrol
conditional evaluanon If the type of the deslmatxon is true, then the result is a sxgnal which is
" sent to the déstination mstructton if and only if the swrrcn pperator evaluated to true A similar
~ description’ appliés fora false type destmanon AII désﬂnéﬁbns of an mstructxon must be wnthm
g the same activation, The second oomponent of a dwtinauon 1s the mstructlon number to whlch
" the signal or result value should be sent. If the d&tmanon 1s to recelve a sugnal then thxs must
be specified. Otherwise, the operand field to which the result is to be sent must be provnded.
For convenience we shall refer to the elements of an instruction using dot, "™ notation. For
example, the opcode of instruction / shall be denoted as Lopcode etc. '

Dests = #(D)
D= {uncond, ‘true, fatsc}XNX{OP' op2, °P3- 5‘9““‘}

An enabled instruction is a two-tuple (u, /) representing.an munetbn in-some activation which
has received all necessary operands and signals. Any enabled instruction can be executed by the
interpreter. The applicative nature of the system guardneets thatithé behaviout of the program
will be determinate regardiess of the order in which enabled' insructions #n:the program are
exccuted, : VT o S

El = <U, X N>,

EIS = <(El) is the sct of enabled instructions.

2 A FORMAL OPERATIONAL MODEL - M1 §2.4

2.4.2 Early Completion Structures

According to the model of operation presented above, an-instruction is allowed to execute
only when it receives all necessary operands and signals. In the case when an instruction is to
operate on a data structure such as an array or record, this means that the entire structure must
. be fully constructed before this instruction can execute: :If the iastruction only needs to examine
a certain portion of the structure, then the execution model unnecessarily constrains parallelism
in the program. To alleviate this problem, there is a facility in VIM: known 28 early completion.
Early completion structures allow greater concurrency of operauoa by:allowing a data structure
to be constructed and used before all of its componems are avaxlable. The comprler designer.can
use this facility, for example, to generate code which wrll cnuse the results of an activation to be
- an early completion structure to allow the calling ‘activation 'to use- some of the results of the
callee before all of them are known. ' ;

An element of the set ECQ is an early comp[enon elemen{ 111] An early completion
~ element is a two tuple, (u, D, where u€ U and i € N. The early completmn strycture is
essennally a queue oontammg target addresses of those mstrﬁcuons ‘which require the value of
this element in the structure. When Lhe value is ﬁnally prod\md lt w1u replace the €c-structure
and will be sent to all targets Thls prooess is lllustmed in Fig. 6.

ECE = <U, X N>,
ECQ = #(ECE)

An element, (4,) € ECE denotes an mstrucuon whrch has requested the value Wthh is. to
replace this early compleuon structure. The uid u dcnotes a ﬁmcuon activation, and i is the
index in.this activation of the target instruction. o '

2.4.3 Delayed Evaluation Usilg Streams
The astute reader would have noticed that the stream type presented in an earlier section is
not defined in our formal model. We represent streams using the record and oneof types:

Stream[T] = oneof
[empty : null
non-empty : record
Ufirst: T
rest : Stream[IT]]

§24 A FORMAL OPERATIONAE MODEL - M1 23

12 ik A: SELECT

— =
‘-——_.
g <

vl v2 A vk

R.k is an early completion structure whose value is SET by instruction B.

Heap Activation

vk After B executes, value of R.k is seat 10 all targets.
vl v2 v ‘

Figure 6: The Use of Early Completion Structures

We have prevnously menuaned that streams are mtenqally mﬁmte structures. Ina purely
data driven execution model, the productmn of a stream may far outstnp its consumption. To
avoid wasteful computation, streams are produced in a demgad-drtven fashion [16}: In demand
driven evaluation, an element of a Stream is produced only when nts consumer requires it To
| lmplcment thls feature, a specnal record element called ayw,spenﬂp';, is mtroduced A suspension

contains the address of' the mstruct:on in the stream pnocluccr responsnble for mstantmtmg
f productxon of the next stream element When a consumer agcepses a suspcnsnon. the suspensmn
becomes replaccd by an early complctton queue. and a signal is_sent o the address which the
suspcnsuon holds A new record is creato.d l‘or the next elcmt.nt mld the carly mmpleuon qucue

will get erl.lCLd with the md of tlm record. ‘The head, of lhts new record will contain the new

24 A FORMAL OPERATIONAL MODEL - M1 §2.4

stream element and the tail of this record will again hold a suspension. We illustrate this process

graphically in Fig. 7.

1. Stream S with firs{S) = v. : 2. After suspension accessed, it becomes an ECQ.
S S

v [s] | . ECQ | @b

Producer - (u,i) is the consumer instruction

vl

3. Producer yields next element which is transmitted to waiting consumers.

Figure 7: Demand driven evaluation of a stream using suspensions
SUSP =<UX N>

The suspenston structure is a pair <u, » which represents the address in the stream
producer that is to be signilled when the suspension is accewed

2.5 Semantic Functions for M1

In this section, we present an operational model for the ViM Shell. Interpreter and base
language instructions which extends the operational model defined in the previous section, The
instructions which we examine here are choseh because of ‘L‘heir rele;/ance to the backup and
recovery algorithms developed in the following ch'lpters ‘We partition our prescntauon mto

“four categories: formal description of the Shell and Interpreler instructions which oper'tte on
structure types. instructions which are used for mampulalmg early completion structures and

stream clements. and instructions which are concerned with function application and return.

§2.5 SEMANTIC FUNCTIONS FOR M1 2

“In the next section,” we define’ sorie duixilidry furictions that will be useful for our
presentation. These funttions are used in the deﬂninons of" ﬂie a’bcwe mermoned base language
instructions, SR R

'25.1 Auxiliary Functions :

There are several primitive auxiliary functions which' weneed to define before presenting
our operational model. ‘Phese- functions operate o ‘the héap, -activitibn ‘and envirofiment
components of the VIM state. The functions NewHenp, ReribveHedp 'adds and remove an
element to and from the heap respecnvely The NewHeap funcuon tages m three anxuments a
current heap H, a uid u, and a structure, v. It retums anew heap H ndentml to H except that
this new heap is defined for u such that: H'() = ». ‘This deffriition 'of Néwﬁeap allows us to
rebind existing uid's to different values, a feature which. will bewﬁ;«g@l when implementing early
completion structures and suspensions as we shall see later. The RemoveHeap funcnon takes as
arguments a heap H and uid u, and returns a new heap H xdenu&f* w{l except that H'(u) is
undefined,

NewHeap: H X Uy XST—H

Function NewHeap (H, u, v)
Vu €Uy let H(u) = H(u)ﬂu wy
1 | vi 1 1’
in o
H
endlet
endfun

RemoveHeap: H X Uy—H
Function RemoveHeap (H, u) D

Vi €U letH(ul) = H(u)lfu *y
= undeﬁned otllerwise
in
H
endict
endfun

There are similar functions, AddAct und’ RunoveAct dcﬁned for thc activation componcnt

of the state and AddEny and Removel:nv defined for the cnwronmcm u)mpomn(as well,

T 5, et R LA L st AR R e B S e AR e

26 ~ SEMANTIC FUNCTIONS FOR M1 §2.5

Since the transmission of results and signals is. an activity.common to every instruction, we
‘define an auxiliary function, SendToDest which is responsible,for sending a value or a signal as
the case may be to the specified target instruction and constructing a new activation function and
new set of enabled instructions to reflect the effect of this transmission. SendToDest constructs a
new activation component in which the target instruction found in the:destination arganient has
been updated to reflect the transmission of the value.or signal. If; s a:result of this transmission,
the target instruction becomes enabled.ie, bave its opens and sigent fields become zero, that
instruction is appended to the enabled instruction. set.

ResultType = (U U Scahr) u siqml

SendTaDest; ActhISx U&x DXRMT”G—»MX ElS

Function SendToDesK Act, E1S, uF © el opm mult)
let FA = Act (up, A) |

I = FAQ)
resultval = if result = signal
then undef
else result
endif

newopnuml = if opnum # op\ then Jgp}. qlgmlml .

newopnum2 = if opnum * op2 then 1.0p2 elsé.pesukival
newopnum3 = if opnum # op3 then /.0p3 else resultval

newopent = if result = signal
' then Zopcnt
else /opent-1
endif
newsigent= if result = signal
then /sigcnt-1
else /sigent
endif

I=lopcode X newopl X newop2 X newop3 X neivopcnt”x newsigent X ldests

ViENFA() = FAY, j#i
= j=1i

NewAct Add 4AcA Act ., FA ') % new sct of activations

" then E£8 U {<u 1‘>}

§25 ‘SEMANTIC FUNCTIONS FOR M1 -z

else EIS
endif
in
NewAct, NewEis
endfun.

Two functions which call SendToDest are SendValue and SendSignal. The function
SendValue calls SendToDest for every target in the destination list of an instruction. whose opnum
is not signal. That is, all target instructions that-are o' feceivé’ the mxﬂt of the instruction are
sent the result value by SendValue. This operation is accomphshed through the use of
SendToDest. SendSignal ‘opcrates in a similar fashion ‘v SendMalue except that it calls
SendToDest for all targets in the destination list of an instruction whose.opnum is signal.

SendValue: Act X EIS X U A X Dests X ResultTm-&AftXEIS
Function SendValue (Act, EIS, u Fa dests, V) '

let ValDest = {<de, i, opnum> € dests | opnim €. {upt,opz. m}}
<dc i oplmmlk .
opnun12> <dc i oprffmt)iz—
n components of ValDest
in . v
SendToDesK
SendToDesK..
Send]‘oDesl(Act EIS Up <ch, ‘1' OM) v)
Up g Sy fr OPRUMY, V)..) .
endlet
endfun

SendSignal: Act X EIS X U, X Dests X — Act X EIS
Function SendSignal (Act, EIS, uy. ,, dests)

let SigDest = {<dc. i, opnum> € dests | apnum = signal}
<de,y. iy opnump Ldcy; by OpRumy., ... <d‘w » opnum, > =
m components of SlgDeSl
in
SendToDesK
SendToDesK...
SendToDesi Act. EIS. up <dc i opnum > siqml.)
Up 4 <dey. i 5 opnum2> Stgnal)) '

28 SEMANTIC FUNCTIONS FOR M1 §2.5

endlet
endfun

2.5.2 A Formal Model of the Shell

As we described above, the VIM shell serves as the interface between the interpreter and
the VIM user. The formal definition of the shell is given below:

Command = C X Name X (Exp U undef)
C = {BIND, DELETE}

Session: StreamjCommand]

Shell: Sesston X State — State

Function Shell (Session, State)

let <Act, H, EIS, Env> = State
NewState =
if ChooseToE xecute (State, Session)
then ShelKSession, Execute (State. Choa.vq"EIS)))
elseif empty(Session)
then State ’
else letc} = first(Session)
ini - .C = DELETE
then <Act, H, EIS, DelEnv(Env, Name))
elseif cl C= BiND o
then let % cofitmand is BIND

FA = Translate(c)
FA = new uldfrom UA
Act’ = AdlAcz(Act Urp FA)
NewEIS = EISUALu® , b | FAG).opent =
A FAG) sigons = 6}

State’, v = Imerp(State, Chatcc(NewEIS))

{Act', H', E1S". Env> = 'State"

Env' = AddtoEnv(Eny. <. .name, v)

in - ‘

{Act', H', EIS’, Env>

endlet
endif
endict
cndif

L T A PN 1 S R S R S, A B SRR e o e

- §25 . SEMANTIC FUNCTIONS.FOR M1 9

in -
if empty (Session)
then if E75°2 {} ‘ ‘
then-Shell (Session; Execute{ Newstate, Chawﬂs » -
else Newstate
endif
else Shell (rest(Session), Newstate)
endif

endiet
endfun : : By

The shell takes in - input a stream of shell‘coimands. It calls the function
ChooseToExecute which-examines the -cutvent stateand seablon and: detérfines if the shell
should process the next shell command or whether it should call the Exécute fiinction usiig the
current enabled instruction™ set. This fiinction “allows the system to continue to process
instructions even if the remainder of the sesgion.has po%ggt;bm;'gpuqhymg mr,erAw possible
implementation of this function would be a routme wh;s:h} exagungs :he current mput buffer —
if the buffer is empty and there are mstructxons stdl to be executed, it retums true. If, on the
other hand, there are shell commands available to be pmwssed 1t returns falsa In the case when
there are both commands and enabled instructions aviﬂi‘ﬁle. it can i ‘"’1 St
or false. If the function retarns false and the firg command jm dbe:comman stréam is DELETE,
then the shell removes the Cname, value> bindifg Tréiii the clffrent environment and processes
the rest of the command stream. If it is a BIND commgn. weewer, it.cslisan puxiﬁary function,
Translate with this command stream element. Tmmh -activity, Fﬁ ’whxch embodies
this command. For example, if the commarid{ ;n;n o f'run:latef\‘was BlND»é.x f(2), the
activity returned would be of the form shown in Fig. 4. The result of evaluatingms activity
represents the value of the command A new activation is constructed from this actnvnty and this
activation augments the current activation state. The enabled instruction component is also
appropriately augmented 1o inchude alt-instructions'in tis wew activiition thit have their operand
and signal count already.zero. Fhe sholh eally ie %&m&&r%‘ﬁkn&w state and some
enabled instruction” from ‘the set -of ' onabled: ingtttiéns, - Phé- choice: of which -eriabled
instruction 10.cxccute is madcs by ‘tve Cholee funttioh.- Plie-iew $até Rittned by the interprefer
is used by. the shell.in-processing the-next shell- commvaind i tiereafe any more to be processed.
The value, v. reumed by the interpreter is'bound il dic wser ehvisahiment o' the symbolic name

30 SEMANTIC FUNCTIONS FOR M1 §25

which is an argument to the BIND command. If there are no more stream commands to be
processed, the shell calls the Execute function described be‘lp\y',to e;gééute the remaining
instructions found in enabled instruction set. If there are: no more enabled instructions, the

function returns with the final state.

2.5.3 A Formal Model of the Interpreter
The interpreter is a state transition function from states and enabled instructions to a state

and either a unique id or a scalar value;

Interp (K Act, H, EIS, Env), Choice(EIS)) (Act'; H',EIS", Env> X (U qY Scalar)

The Choice function, as wé explained above, is used to. determine which enabled instruction
should be chosen for execution from the enabled instrwction set. ~ The. definition of the
Interpreter is given below: '

Interp: State X EI — State X (UH U Scalar) -
Function Ihterp (State, <u, D) %(u,‘ i is an enabled mstructlon ‘

let '
{Act, H, EIS, Env> = State
FA = Acku)
Newstate = Execute(State, <u,)
{Act’, H', EIS’, Env> = Newstate
in
if FA(/).opcode = TERMINATE
then Newstate, FA().opnumi
else Interp(Newstate, Choice(EIS 7))
. endif
endlet
endfun

The instruction which is chosen for execution must be part of some activation defined in
the set of current activations, Act. - The interpreter calls on an- auxiliary function, Execute,
defined below which contains the definitions of all the base language primitives. Note that the
interpreter only returns its result when the TERMINATE instruction: has.executed. This restriction
guarantees that environments will be-updated correctly according to the order in-which BIND
comminds were input, When the interpreter returns. a prew comimand can. be processed by the

§2.5 SEMANTIC FUNCTIONS FOR Ml 3l

shell. Note that because of the presencé of early commpletion structures, there may still be many
- activities in progress at the time the TERMINATE instruction ‘executes and ‘the ‘next shell
command is processed. Thus, our mode! attows instructions found if attivities created from the
evaluation of different bind commands to execute in paritiel. We do not come into problems in
. earlier, bindings -are always

augmenting environments though, because, as we discussed
constructed in the proper serial order.

, The Execute function examines the instruction being precessed and performs the necessary
function. The result of this fanction will be a new: ViM ‘state. 'The structure of this funiction can
be given as follows: ‘

Execute: State X EI — State
Function Execute (State, <u ra Kp o)

let <Act, H, EIS, Env> = State
FA = Acl(uF A)
I = FA(k)
destmanons = J.Dest,

NewElIS = EIS - {<uy, kg >}
in
if Jopcode = SET then ...
elseif .opcode = APPLY then ...

'endlf
endlet
endfun

The desunatxon list speclﬁes Lhose mstmctnons m the current actwat;on o whlch the result
of executmg this pamcular mstruct:on should be sem. Recall that in addmon to transmmmg
results we may also need to send sngnals to destmauons.)

R SEMANTIC FUNCTIONS FOR Ml §2.5

2.5.4 Formal Definition of Base Language Instructions

In this section, we present a formal definition of those base language. instructions that will
be useful to us in describing the backup and recovery algorithms: later in the thesis. Keep in
mind that these definitions are actually found within the Execute function given above.

2.5.4.1 The TERMINATE Instruction

The TERMINATE instruction is used to receive the result of evaluating a base language
program. This result.value is then bound by the shell in the user environment. The: instruction
takes in one argument, which is either a scalar value or a-uid.. } sends no.results but will send a
signal to a RELEASE instruction which is used to remove the activity from the set of current
activities, We describe the operation of the RELEASE instruction 1ater in the chapter The
interpreter picks up the result from the first operand slot i in the mstructxon when it returns back
to the shell. '

if Lopcode = TERMINATE then
let
= H(lopt)

Act’, NewEis’ = SendSignaK Act, EIS, u 4 destinations)

in
{Act’, H, NewEis, Env>

endlet
endif

2.5.4.2 Structure Operations

The base language contains powerful instructions for the creation and manipulation of
structure types. There are three structure operamns of pamcular mterest CREATE, REPLACE
and SELECT. The CREATE operator is used to create a stmczure of a pamcular d:mensnon. Ina
“functional Ianguage a structure, once defi ned, mnnot be subsequently altered Replacement of
an element a in a structure with an element ﬂ is done by creatmg a new version of the structure
with B replacing a in the new version. The SELECT operation returns the value of a specified

field in a structure.

The operations we describe below are for the record structure type but are very easily

converted for the array or oncof type.

§25 SEMANTIC FUNCTIONS FOR M1 33

To create a record structure, we have a MAKEREC instruction. -1t takes in one argument, the
size of the record structure to be created and constructs a recordof' such a dimehsion, setting all
the fields in the record to be undef. In addition to the MAKEREC iastruction, there is also a
MAKERECEC instruction which construets a record, all of whose elements are early completion
structures.

if L.opcode = MAKEREC then
let (
m = [op! % m is a natural number

, = anew uidin U,

Act’, NewEis" = SendVaIue(Act EIS destinaliam:w
Act”, NewEis” = SendSignaK Act’, Newéﬁ Mmtions)
H = NewHeap(H, u, MakeRecam(l m. Y
in

{Act”, H', NewEls Env>

endlet
endif

The REPLACE instruction on records takes in t.hree argumanﬁ; -the uid of a record R, the
field in the record which i is to be replmd,f‘ and the val"ue pf nmnew element, x, which may be a
scalar or a md It creates a new copy of the record, R with field fin this copy having value x.
We mention the REPLACE instruction here mostly for oomp ,m as it will not be involved in
the design of the backup and recovery algorithms we develop latenm»ihe thesis. For a detailed
semantic description of this operation, the reader should see [17]. - o

The SELECT ifistruction is given a record structure and the offset in the record of the field
to be selected. If the item to be selected xsanwdy.compleuon.stmcw:e -then the instruction
queues itself onto the ec-queue. When the value of this field is finally lfnown the select
instruction will be placed again on the enabled instruction queue so m;f :ﬁ v:;lay“e‘iecute It is also
- possible that the item being selectéd may bea’ suspeﬁsiﬁk‘lf theé redord: is bart of a strean. Recall
- that the rest opctation on'strearms'is translated ‘into a séfect’ dﬁehﬁoh on the second component
- of the head of the current stream. ‘Becausé streams aré produced in a demand driven manner,

this field may be a suspension in which cse the SELECT iristructioh' will neéd to sed 4'signal to
the instruction referenced’ by the suspension. The field oceupicd By ihe suspension will thén get
“changed to an eurly completion queuc which will get SET it the ‘activation ‘responsible for

producing the next stream clement.

34 SEMANTIC FUNCTIONS FOR M1 §2.5

if Lopcode = SELECT then

let
R = H(lopt)
S= lop2 % fmust be a natural number
t = R())
Newstate = if t € U, A H(f) € ECQ
then <Act,
NewHeap(H, ¢, H(t)U{(u Ko D
NewEls, FA* "FA
Env> .
elseif 1 € Uy A H(7) € SUSP
then let
<’ k> = H()
Act’, NewEis"= : B
SendToDest(Act, NewEis, u’, <uncond ksignal.) slqnal.))
in
(Act
NewHeap(H, t, MakeECQ (<u k)
NewEIS, F47F4
Envw
endlet
else Jet
Act’, NewEis" = SendValue(Act, NewEts. U o, destinations, {)
Act”, NewEis™ = S’endegnaI(Act NewE:s Up e destinations)
in .
{Act”, H, NewEis", Env>
endlet
endif
in
Newstate
endlet
endif
2.5.4.3 The Set Operation

The main operétibn on early completion elements is the SET instruction, The instruction
takes in three arguments. a record R, an offset in the record which-gepresents the field which is.to
be set, and a value, x. When the set instruction executes, it replaces. the early completion
structure found at the specificd component with x. . Moreover, all the. clements in the
ec-structure are appended onto the enabled instruction queue since. the value of the field which
thcsc mstruulons mmally requested is now available. | The SET instruction, unlike the REPLACE

- 8§25 - SEMANTIC FUNCTIONS FOR M1 - 35

- operation mentioned above, does-not cause a new version-of the structure to be created. Instead,

~ the early completion structure is replaced with the value més‘m:;f This does not violate -any
principle of referential transparency because no instruction is aflowed:to read a field which is an
ec-structure. Since the SELECT instruction on structures prevents any of its targets from reading -
the value of the field until it is properly set, the appticative pfOperty of the base language is not
compromised. Because all instructions which require the value of thxs ﬁeld are-on the early
completion queue, SET does not send any results to any of its destinations, eniy srgmls.

if Zopcode = SET then

let

u = Lopt

R = H(u)

S= lop2

x = lop3

u'= H(R(f))
VvEN

R =R(»ifvaf

= x otherwise

Act’, NewEis" = SendSignal Act, NewEis, U, destinations)
H = NewHeap(H b R')

in
{Act’,
H’, I
NewEis" U H(u") ')
Env>

endlet

endif

2.544TbeSusoemionOpentot , T TS
Thﬂsmm?omwmbhfwmammamedm It takes
in three arguments, a,ecord struchure Fepresentiog the:vad of the current stream,; an offset fnto
-this structure where the suspensian is to be placed. and aninstruction address. & representing the
instruction which is 10 be signaligd when the suspension is acoeised, The.offset must be an early
completion element presumably construcied by 8. MAKERECEC iastruction; SETSUSP sets én-this
record the value., <u. . 2.y, being the-uid.of the activation i which the SETSUSP opcrator is
exceuting. If the ec-structure is not empty, then SETSUSP sigaals the activation us well since such

36 ' SEMANTIC FUNCTIONS FOR M1 §2.5

a situation implies that some select operation has alread:y«aaempted to read the next stream
element. Like the SET instruction, SETSUSP does not send any. results. The instruction is only
used in the translation of the VIM VAL operator, affix, which is responsible for the construction of
streams. '

if .0opcode = SETSUSP then
let ’

Act’, NewEis" = SendSignaK Act, NewEis, u ¢ destinations)

VVvEN,
R(v) = R(Wifv=f
= MakeSusp(<up ., D) otherwise
in
fRNHEECQAIR(N =0
then <Act’,
NewHeap (H, u, R),
NewEis’
Env> ,
else let Act”, NewEis'= A
SendToDesf Act’, NewEis', u ,, <uncond, i, signal, signal)

in
{Act, H, NewEis", Env>
endlet
endif
endlet
endif

2.5.4.5 Function Application and Return

The instructions which will be of greatest interest to us in the coming chapters will be those
concerned with the manipulation of functions. There are four instructions in ViM which deal
with this: APPLY, TAILAPPLY, STREAMTALL, and REFURN, The APPLY instruction is the standard
function . application instruction, taking a function closure' ‘aftd:'an’ argument record and
constructing a new activation for this function. By: convention, tie first operand of the first
instruction in the activation reccives the closure of the function, thus alfowing the activation to
access the free variables of the function, the first operand of the second instruction reccives the
-argument record. and the first operand of the third instruction in the activation receives the

§2.5 SEMANTIC FUNCTIONS FOR M1 Ky}

. destination list of the APPLY operator.. APPLY uses an auxiliary function, MakeDest which

- Packages the destination entries found in the destination-list of the instruction into a record and
- places this record on the heap. ‘MakeDest takes in three arguments, the current heap, the uid of
- the current aetivation and the destination component of the instruction. Tt returns a record, a, of
- -two elements, t.l\ie first element contains the uid argument, and the second contains the tiid of the
record containing the elements found. in the destimation list. The uid of a is passed as an
argument to the called activation. Placing the destination componeats into arecord allows them
to be accessed by the RETURN instruction in the called activation.

if Jopcode = APPLY then
Iet
= Lop1
arg Top2

<uf. free> = H(C)

¥’ = anew uid from U,,

u"-= anew uld from U:,

Act’ = AddAcAct, u’, Hu,)) z

H' = AddHeap(H, u”, MakeDes«H, u g 1.destlist))

Act”, NewEis" =
SendToDest.
(SendToDest
(SendToDest
(Acl NewEis, u’, <uncond, 1, opl) 0,
u', <uncond. 2, op1>, arp).
u’, <uncond, 3, op1>, u")

in
{Act”, H', NewEis; Eny)>.
endlet
endif

There is no explicit iteration construct in either VIMVAL or the: base language. Instead,
iteration is modeled using tail-recursive functions wheréin the resait of the iteration is obtained
in the final recursive call. Otherwise. while the recursive call is being ‘proeessed, the calling
activation would exist merely to route the result back to the caller. To avmd having the calling
activation persist until the call is complete. there is a special basg. l:m;,mgc instruction for

38 SEMANTIC FUNCTIONS FOR M1 §2.5

handling tail-recursion, TAILAPPLY. The TAILAPPLY operator differs from the APPLY instruction
in that it requires a third operand, which is the return address to which the result should be sent.
By providing its own retumn link to the callee, the caller need not wait for the recursion to
complete. We illustrate this process in Fig. 8. The tailapply instruction sends only signals to its
targets. Typically, the target of TAILAPPLY will be a RELEASE instruction, described below,
which reclaims the space used by this activation.

| |
cloa:ureI closurel closure'
T e e T
| f I f ¢ o » | f
T >
Arg Recorill Arg. R'eeomz N Ar;.%aeordr
‘ ________
Link L

First k-1 activations can be reclaimed without hqmngjbr subsequeni calls to complete.
Figure 8: Tail application in Vi '

if Jopcode = TAILAPPLY then
let
C = lopt,
arg = 1.op2
dest = [.op3

<uf Jfree> = H(C)

u’ = anew uid from UA.
Act'= AddActfAct, u’ H(u,))

Act”, NewLis' =
SendToDest
(SendToDest
(SendToDest

§2.5 SEMANTIC FUNCTIONS FOR M1 39

(Act’, NewEis, u’,<uncond, 1,0p1>,C)
u’, <uncond, 2, op1>, arg)
u’, <uncond, 3, op1>, dest)

Act™, NewEis” = SendSignaK Act”, NewElis', up ,, destinations)

in

{Act™”, H, NewEis”, Env»
endlet
endif

The STREAMTAIL instruction is similar to t.ke TAILAPPLY operator in that both are used for
1mp!ementmg tail recursion. The SW | instruction, hoyever,, is m in the
unplementauon of a STREAM producer Unlike | tie TMY operator, the return link
argument to STRE#MTAIL isa reedrd field in- ﬂxew strdam*elemt efeﬁted ‘When the next
activation of the producer is instantiated, this return lu* wnll gg SET to the uld of the new stream
element. Thus, while the destination of the TAILAPPLY lqsgum is always an instruction, the
return link of the STREAMTAIL operator must be Hoeard-ﬁdéehhe last stream element created.
The basrc structure of a stream producer using the AMTALL Thstructs

ctlon IS shown m Fig 9.

gt s, e

The RETURN instruction takes as input two argamm&s.,{g\,hs}gcf fetumn addresses and a
value. It sends to each of these retwm: acidresses. thie specified value afid them sends signals to
target instructions within rts own activation, Unlxk XL%Q?N lgpguage mstructron the

Lar fien AR ¥

execution of the RETURN. mmtor M@Wmﬂm@m its.own. Thus,
having the RETURN operator execute may lead to instructions in other actrvauons becoming

enabled. The value argument to the return instruction reprogents-the. yalue.of the. actrvauon no
other effects of the activation will be visible outside of the-value sent by the retm bperator to
the recelvmg mstmctlons in the _calling activation. This property is a eonsequence of the
applicative property of the base language. The RETURN msuucuon uses an auxiliary function,
© GetDest, which: is the complement of the MakeBeir FaiCbN aGEreY edifier. - GetDest when
giVen umaeapmdmmomemm ‘teturns 8 set Mepretenfing thié destination list packaged

|ropcodc = RETURNthen
et
DL = H(lopt) % the list of retarn addresses -
u = DL (1) % uid of the calling activation

40 SEMANTIC FUNCTIONS FOR M1 §2.5

MKREC-EC

closure Arg. rec.

S T |

SET | A| STREAMTAL
e

 Figure 9: Skeleton of a Stream Producer |

targets = GetDes(H, DL(?))
val = [op2, % the value to be retumed

Act’, NewEis" = SendValue(Act NewEis, u targets. val)
“Act”, NewEis”, = SendSignaKAct’, NewEﬁ“ uF z demnatians)

in
{Act”, H, NewEis’ Env>
endlet
endif

, The last instruction we shall.present is the' RELEASE instruction. Unlike any of the other
instructions presented thus far, RELEASE is not used in-the implementation of any VIMVAL
construct. Instead, it is used for mcniory management purposes in the machine. When all
instructions within an activation have completed. the siorage oceupied by the activation may be
rcclaimed by the system. The RELEASE instruction pcrform:é‘thli; function. In a"language
without early complction structures, this operation. would usually be a.part of the RETURN

REOTEE R R imel e e Podiem D DL TIARG L R »§“@W~M¥(Vﬂm L E e e ey T e e T

§2.5 SEMANTIC FUNCTIONS FOR M1 -4

instruction, but because there may still be computations still in progress within the activation at
the time the RETURN executes, it is necessary for a separate instruction to handle storage

reclamation.

ifopcode = RELEASE then
{RemoveAcK Act, up A)
H,
NewEis,
Enw>

endif

2.6 Summary

In this chapter, we have presented a formal operational model for the VIM computer
system. We introduced the application language, VIMVAL, and described the role of the Shell in
the system. A rigorous definition describing the behaviour of some of the more interesting base
language instructions was also presented. There are two key points raised in this chapter that
should be noted. First, for the most part, an object created by an instruction is immutable. For
those cases where it is not, as in early completion structures, the access and updating of these
objects is carefully regulated to prevent incorrect information from being read. This feature of
the system has major ramifications for the design of a backup system because it means that
objects copied onto a backup storage device will, by and large, never need to be updated. The
second characteristic of the system is the power of the individual base language instructions.
Because of the expressive‘power of the base language, it should be possible to integrate the
design of the backup and recovery system within the base language itself. The means by which
this can be done is addressed in the following chapters.

We are now ready to develop. the backup and recovery algorithms for the system. In the
next chapter, we give a general overview of the approach we take in designing these procedures
and the enhancements which need to be made to the system in order to support them. In
subsequent chapters, we shall use the formal model given here to precisely describe the
algonthms as well as to show their oorrecmess. We will formalize our notion of "correctness”

later in the thesis.

42

§3.0

§3.0 . : 'S

Chapter Tiwee
The Geaeral Sﬁategy

The goal of this thesxs is to deslgn efflcrent algonthms whnch guarantee eomplete secunty
of all mformatron in the VlM system agamst loss or oorrupnon because of hardware malfuncnon
procedures. In the next secuon we present a fanlure model of system operanon Thns model
- .. defines the appropriats.context in whick: to:reasofl abowt: the. desigh of-the backup and recovery
.. algorithms. - In section 3.2, we: raise Some. fundansentil Séuws that Must-be ‘addressed by the
- backup and recovery system. These issites.are concernod witl witein: backup s petformed; how

backup procedures are invoked and how: the: traisfer of information from.the main’ memoty to

. the-backup. store is handied by the. backup system.: ‘Wershall bevansidesing the problem oft data
security jn. the context of a single neer systen in/ ‘whick wonidutorminats computation i not
allowed. Section 3.3 gives a high levet desigm of dineubetihgs and:recovery algotithms. - We
N classify the mformatron found in the ViM state mto two“ﬁdfﬁ‘erent ‘ee;e‘gones and dtscuas how the
" information in each of these eategones IS vtewed by the backup rocedures. We also de:
| the basic operatlon of the reeovery algonthm in thrs aecuon Sectron 3 4 dlscusses the
archltectural enhanoements that need to be made t? ‘t‘he bas}chIy archltecture to efﬁcxently

support the 1mplementat|on of these proceduree. These enhaneemems are pnmanly concerned
with the physical organization of the backup store. The last section is a summary. of the chapter.

3.1 Faflure Model '

Many of the declsxons that are made m the dwgn of the backup and recovery system
" follow from' the faﬂure model than xs assumed. A fanlure model ﬁa specrﬁcauon of hardware
" behaviour charactenzmg the type of faults expected and tzbf, tgleractxon between failed and non-
failed components in the machine, Some of the factors which will mﬂgence the desngn of the
backup and recovery algorithms that are descnbed by t.he farlure model mclude the frequency of

failures in the system and the level ofhardware error:detegtion capabilty maeispmvrded

VIM is not a fault~tolcr1nt systcm and (hereforc there wrll be faulls Lhat are not masked

~there will be no fault covcmgc in lhc syslem at all hke nmny convemlonal syslems VIM is

“4 FAILURE MODEL §3.1

expected to provide enough fault coverage to carrect many common errors arising from minor
transient faults. Correction of single bit errors in memory, for example, is a feature which is
found in many commercially avaitable memory. units and, thus, the services of the recovery
utility should not be required when such an error is detected. In this thesis, we shall assume that
the recovery utrhty is: invoked only when errors cause mformatron found on main memory or
' secondary store to be lost or corrupted. Power outage, short crrcurts. a malfuncttonmg disk head
etc. are some examples of the type of faults Whlch lead to such en'ors.

We do not expect that such faults will oceur frequently; hardware is assumed to be reliable
most of the time. We do make the assumption; however, -that invalid information created
because of an error is detected when it is accessed. - For example; if a faulty disk head causes data
to be written incorrectly onto disk, then when the data is.read at:some future time, the error will
be detected. This assumption is important becayse itimeans that any information which the
backup system observes and- copies will either be correct or detected as being erroneous —
.. invalid.data is never maintained by the backup utility.

If the recovery uttltty is invoked, it will néed to reconstruct the system state based on the
information preserved by the backup facrllty Dunng thrs penod another fatlure may occur; the
recovery facility must be robust enough to correctly restore the system state even following such
crrcumstances We dlSCUSS how this may be achreved later in the thests.

3.2 Fundamental Issues

The backup system will need to interface with the interpreter and shell to monitor the
progress of computatrons in the system. We need to decrde, however when it should actually get
invoked and by whom Seoondly. once it is mvoked what mformauon should it actually copy to
the backup store? Thtrdly, how should this copy operauon be perfonned ie could normal
system operation be mterrmxed with the executron of the backup pmoedures or must normal
processing cease whlle the transfer of data is takmg plaoe" |

The first question was already partially answered in the previous chapter where it was
mentioned that the semantics of the base Ianguage instructions could be suitably altered to
~ support the backup procedures Unhke most conventronal systems the backup utrhty is not
exphcrtly invoked by any process or user: it is |mphcrtly activated whcncvcr the appropriate base

language instruction is fired. In a sensc. the "loglt of the bttckup alg,onthms is distributed

......

§3.2 . FUNDAMENTAL ISSUES 45

among the various base language instructions; described. earljer. The question of which process
~ activates the backup facility is not germane under this design.. No one process is responsible for

invoking the entire utility; different portions. of Ahe backup prosedures are activated as
instructions in an activation are enabled. In s sense, the backup facility. is more an extension
of the interpreter and shell, rather than as a separate program: which is-periodically inwoked
according to some predegesmined policy. ViM offers e opposmnity to make the backup facility
 more efficient because it is embedded within, the. interpreter and shell. This organization: wil
. allow us to design a backup.facilty that can observe, she. progress of computation to a greater

degree than would otherwise be possible. : :

The ariswer to the secohd question involves detérmiinitig iow much information 'shdu1d be
preserved and how the remaifider of the systen Staté 435 Be defived from this data Whnle all
data generated by the system could conceivably be copied onto the backup storage medxum it
. would notbea very practical solution hwause of the overbead ipcusred.. Begause all instructions
- in the base languagc generate data and update the. SKStem state, implementation of this steategy
would involve modifying every base language insteucti 010 spod the result of their execution to
backup store. This would clearly result in severe performance degradation. The backup
algorithms will, therefore, need to maintain informatiofi abioit the: isystem state 'in :a condensed
form which the [Tecovery system can subsequently use. to TECQVET, Shat part of the system state not

| exphcxtly preserved. As we shall see, mgst of thr. design effogt. for, the backup. and recoxery
Atain and interpret these records.

\ :We dxs_c_uss thxs nssu,e in great,er detall,m,th.e ,next,sestm!. it

Because Vim is an appHcative system no ‘data found on the heap, once created can be
‘subsequently altered by either the backup system of thé mmmmer “Thus, having the backup
procedures operate concurreritly with orma system Operation ‘cAnnot causé dny invariants over
the data to be violated, ' Moréover. the data copied by dhe baekﬁp §ystem will'fiever be in an
inconsistent state when the-cdopy ‘operation is petformied Bechise hby upditing of information
takes place. Our backup procedures can. therefore; Be' altowed 1o ‘exccuté cOncurrenﬂy mth
“normal system Oper'rﬁon without the need for zmy cxpﬁcit mﬁsistericy chécks. ‘

Dunng the rccovery process, no shell oommands are mcppted by thc; system. If shell

1"lhcrc is a caveat to this claim which will be explained in the next chupter

%6 FUNDAMENTAL ISSUES §3.2

" commands could be processed concurrently with the recovery process, it may be possible to have
computations reference data which has still not been restored by the:recovery procedures. .In
addition, this restriction also simplifies the interface between the recovery procedures and the
shell by avoiding the need for any synchronization protocols ‘between the two processes in
updating (or deleting) environment entries. When the recovery procedures are mvoked they
“make no assumption about the integrity of the data which may stilt be accessible. Thus the only
- information used in the reconstruction of the state is that found on the backup store. Of oourse.
it is inefficient to restore the entire state of the system if only a fmctlon of i it ‘were affected by ¢ an
error. Slgmﬁcant complexlty is added to the backup anﬂ recovery procedures, however if we
requtre ‘the system to suppon pamal recovery. Ttis not clw whether she beneﬁts denved from
implementing partial recovery outwexghs thxs mcreased complexlty We shall address t.hls toplc
' again later in the thesis.

-

PR e v e

In the next section, we present the high level design of the backup and recovery
algorithms." The rationale for our design decisions have been mamly based on the effectiveness
of these algorithms in addressing the questions raised'in this section. - St e L

-33A High Level Overview of the Backup«and 'Recowry Faeﬂ_lt_les: T
The design of the backup and recovery facilities are based on one important observation:
every computation in the system is associated with the evaIuatIon of some shell command input la
“the system. Thus, one immediate solution which presents 1tselt‘ is 0 s:mply record all shell
commands on the backup state. This is obwously a correct solution since the behav:our of the
system is presumed to be determinate. Reexecuting, in.the proper serial order, the shell
commands that were input to the system before the failure oocuned is, therefore, guaranteed to
yield a correct state. This state will be identical to the. state immediately prior to the faiture
except for the uid's associated with structures and activations. ‘The uid’s chosen during the
‘recovery process may not be the same as chosen originally? but because these uid's are not visible
_to the programmer, no difference in the two states will be externally discernable. Obviously,
such a scheme would inflict little degradation to system performance since only the text of the
shell command necd be maintained. On the other hand. recovery would be intolerably slow

because every shell command is reexecuted from scratch with no information about the results of

2Rccull from Chapter two that no restrictions are made on how uid's may be sclected

-§33 A HIGH LEVEL OVERVIEW OF THE BACKUPAND RECOVERY FACILITIES 47

- these commands being. kept. on backup stere. . The recovery system, starting from some initial
_ Tecovery siate, would neexd 10 veexecute every shell: pammand input 10-the system from the start

of system operation because no information-ahout ‘the result: of any of these commands are
recorded. Such a major drawback makes this strategy unam'acﬁ!e for Aall practxml purposes.

To see what optimizations can be made to. alleviate-thisprotilem, et us examine how shell
commands are used to alter-the system.state. The: shellicommand. of interest.to.us-here is the
'BIND command. The'BIND command binds a name1:the resujtafaome computation and places
this binding in the user’s saviconsment, . The: value;bound. 20. the name: represeats a long-lived
. value — it survives the computation in which it was crested. <The data seen by:the user of the
~ system are precisely the values bound in his environment. ; Since these values have lifstimes
. -obviate the need for.tha recovery systesm: 1o mexscute: those sonumends: whose evaluation
- produced these valyes. The backup: facility must nowy in addition 1 mairitaining a. log ‘of the
. _environments. ‘These bindings cagnot: be. arbirtarily chengad bessuse VM s applicative;. thus,
once a binding is recorded.on, backup store, the MMWW recxamine that
entry in the user environment to check if it has been altered. L

-~ . Thedata found in ViM may be classified into two-calagories; . guiesaent, which corresponds
. .,to the result values of compusations assaciated. with BN commandsdhet Rave-hecn bound to a
name in a user enviroamea, ad /mpaitional, which eacrepanda 50.thoss; kalues that ane either
- part of some active computation.oF rsult. values of. compuation et bavenot yet been bound
to a name in some environment. A computation consists of the collection of activations.and data
created during the evaluauon of a shell command. lnstmwons in these acuvanons produce
** transitional data sinoe ‘this data’ wﬂl survive for onfy so hng asliﬁe éorﬁpiut;nc;nln whnch 1t was
~crédted exists. The value ﬂhaﬂy produwa bya mputauon wﬂ t i')ound in an envnronment
* and, as'4'result, ‘Wil becomie qmescem. fhe %xfup faéﬁny aceo}di?:gto the sci;eme pmemed
“above; would only be awaré of qme.scent data Transitmal mf‘omanoﬂ correspondmg to data
“produced during a computat:on ‘would' ot be undér the scrutmy of' the backup prooedures.
“When 4 failure takes pTace and the system state need‘s to be ﬁ?ép’ériy restored, the recovery

facility ﬁrSt restores all qmesccnt d.na praerved by the backup fﬁcnhty onto the new recovexy

REN s iy ‘wy;rs::ﬂtﬁ@%ﬁirs}
8 A HIGH LEVEL OVERVIEW OF THE BACKUF AND RECOVERY FACILITIES " §33

state. It must then reexecute those shell commands found on the command log which had either
not yet compieted .or whose result binding coufd not be recorded by the' baekup faci‘lity before
the failure. These shell.commands will be referréd:to a8 %bﬁl reoniinands. ‘

Havmg the backup facxhty record only qu:ewent data is an optlmlzatlon that reduces
‘overall recovery time. It ‘does 50 without: excessivé Perforvnance ‘dégradataion because the
- backup facility is only invoked:when an ADDTOENY: instructiolt ‘exécutes to- actually place the

binding in.the environment: and; moreover, can pérfonit Hie Sopy of the data in parallef with
‘normal systems operation. 1t would be an even greatsicopiinftiition if the backup system'could
- help reduce. reexecution time of:thiose volatile stiéll convmends fountd: on ‘the fog by recording
- information about those computations whicly were: active at théthric'of fatiiite, If there are many
-resource iritensive, time-consuming activations i & eoipataBion dvér Tiaving the backup facility
ignore the presence of the:transitional dwta produoed :ifi: thisosmButition tedns that the time to
‘mvermsmmunmwwwwmmittakestoreexecuteﬂns
_ entire computation. ' This:is not very desirable sitice: the-¢ontputati ewtdhtvearremdybeen
~-executing for-a very long period when ﬂwmww Hﬂ&iﬂh&mm‘&w the
" computation on:the backup 'store -would -sliow the feovery: ‘Pacility ' to -avoid needlessly
 reexecuting mmsubpnmoftwmpumn mmmfmmesmmm
failure. o

, It is reasonable to expect that there will be many eoniputations i progress at the time of
- failure. To'record the progress of these-compuitationsthé M Systeli muintains information
-~ - about these computations on & compusion’ mmmm*%ﬂ&mme structtire of a
 computation mmmmw e upde & B *"""facimym the next
/ We can now pment our mtended model of sys%m fpr VlM As compu(,anons
_. oomplete musmg values to be bound wnthm somg enyironmen ,;q ;{{p?c’;up facility preserves -
'these bmdmgs on t.he chkup mc%mm ln qgg%w, h }ﬁ I,l also be_many active
_oomputauons in progress. (,The hackup fac:hty mqtnuimg m fosmation ¢ qut; these computations
as well. Thns lnformatlon embodlcd a5 2 oon;\puta;!p\'um ory ‘Lu can be usod by the recavery
procedures to avond needless recxecuuon of computations which, h,ad gl[eadx praduced, their
result bcfore thc faxlure When the rccover_y sysu.m 1s qukgd. it first restorc;a 9I| qumcea; data

R Tk
found on thc backup store. It then uscs lhc computauon records (o restore the remaining part of

£ R SRR S T e

§3.3 A HIGH LEVEL OVERVIEWOF THE BACKUP AND RECOVERY FACILITIES 49

the state. The state after recovery is complete will be equivalent to the staté which existed prior
to the failure insofar as the structure and informatiof content of both states will be the same,
The states need not be identical, however, bécaise the uid's 4ssbciated with activations and
structures may be different. The reason why the statés woald fiot be identical is because the
‘order in which enabled instructions are chosery ‘for execution fnay be different during the
recovery process than before the failure. This doés not coripromise the correctness of the
recovered state’ because of the applicative nature of ViM — no $tdé-éffects occur and, thus, no
explicit ordering on instructiofi execution needs 1 be adhéred th. ' We illustrate the system
‘operation in Fig. 10. ‘ C S

" ‘Failure Detected
State e | Swmes __|sutea
Quiescient Data ActiveCompimtion | IRecovery Procedure>
(Computation Records) SEEE
‘ \ >
s is equivalent to sl . L Time

Figure 10: System Opemtion

3.4 Architectural Enhancéments

Up to this pomt, we have only mentioned that the backup slore on which backup data is
kept has the pmperty that mformatxon entrusted to it will sunnve fallures of the machme wrth
very high probability. The most common type of backup store used is magneuc tape “The
“sequential access nature of tape drives, however makes lt mconvnenent 0 update the
information found on the tape. Smce lhe backup ﬁ\clhty wnll be frequently updanng
'computauon records associated with active computauons to reﬂect lhe proz,res of the
'computauon using tape as the only backup storage dewce would be |mpr1ct|cal Our desngn
~ dictates the need for a fail-safc stomge dewcc from Wthh mfommuon may be enslly dCCCSSCd

0 ARCHITECTURAL ENHANCEMENTS - §34

updated, and deleted. We call a device which has these properties a stable storage device. It is
not difficult to implement such a .device on top of non-stable storage devices. Lampson

[21] gives one implementation of a stable storage device in which disk storage is converted in to
stable storage by maintaining multiple copies of the data on different disks and ensuring that all
writes to disk are atomic Le, the write either takes place.on both disks.or on none. Because both
disks are guaranteed to have consistent infoemation,. data dost because-of failure of any one disk
can be recovered from the other. Advances in VLSI te haok ‘have also-made it conceivable to
consider a hardware implementation of siable siorage using; fof xample, CMOS static RAMS
and a backup battery supply. Because of the IO\y power consumption of CMQOS. chips,
information on RAM could be retained, despite power failure, using the backup battery supply.
In this thesis, we shall not be considering implementations of stable storage but will assume that
such a device is available fotvuse by the backup and recovery utilities. Because of its relatively
high cost, we shall also assume that stable storage is njot very large (certainly much smaller than
the size of the backup state) and, therefore, in order te guarantee that backup information is not
, suscepuble to loss, it will be necessary to have anothez backup storage device capabte of holding
that part of the backup state which cannot be héld in: stable storage. We.assume magnetic tape
storage is used for this purpose.

Quiescent data is never updated by the backup procedures and, therefore, can be kept on
tape. Of course, if the binding is subsequently deleted, the data will have to be removed from
the backup state as well. A delete récord mdleatmg thata value has been removed from the user

environment can be written onto tape in such situations. 'Ihe eomputanon lecords associated
with active computations do need to be accessed and constructed relatively frequently. These
records will, therefore, need to be held on stable storage.. [n adgdition, the command log. which
| contains all shell commands mput to the system whose mults hgve elther not yet been produced
or have not yet been recorded onto backup stone, wnll a§o need 0 be held on stable storage. As

- we shall see, most computatson reeords wﬂl be relanvely short hypd and, Ihus, wdl not occupy
‘ stable storage for any sngmﬁcant amoum of ume fl]m f nal value of a computation record is
| qulescem and can be mlgrated onto tape allowmg the space useq by t.he oomputauon record to
be reclalmed lt is expected that slable storage wnll glways be able to support all oomputzmon
4‘ records in the system because of thelr short hfeume When Lhe recovery system is invoked after
a failure is delectcd it wnll f' tst rcad from lhe tape all the quncsccm. data and will restore as much
of the cnvironment mmgc as p()S!slble from ths dnLn Vol.xule shell commands arc then executed

§3.4 ARCHITECTURAL ENHANCEMENTS)|

Bound Objects
— copied °) . . ’
, ‘ ‘ / Backup Environment
X 7 " St .
nl [n2 N N nk
L)
Quiescient Data
.
°
°
X Exp.
)
.
Command Log SR Transitional Data

Figure 11: High Level Organization of the Backup Store

from the command log in the order in which they were originally input. The computation
records found on stable store are used to reduce the 6verall reexecution time during this phase.
When this phase is complete, the system can proceed with normal operation. The high level
organization of the backup store is depicted in Fig. 11.

We illustrate the organization of the ViM system with the backup heap-and environment in

Fig. 12. The backup heap is used to hold all transitional data whereas quiescent data is held on

the backup environment. The backup heap and environment constitute the VINé backup store.

~The Interpreter constructs computation records:on the. backyp, heap. during, normal, processing
- and interprets them during recovery. In addition, the intermediaig results of a computation are
also stored on the backup heap by the interpreter; <Na~gc.l€alm>bmdmgsam placed on. the
backup environment by the Shell which also buildsthe command:log. found.on the backup heap.

§3.5

52 ARCHITECTURAL ENHANCEMENTS
T T Jflowof information during recovery
Jlow of information during normal processing Activation
value, session
signal
Activation
. value
Instruction hwm map . Shell]
trr \l/
? f Computation Records
value New Sm
BEny |
Instruction
Figure 12: Abstract Architecture of the Viv System with Backup Store
3.5 Summary

In this chapter. we have presented a high levet strutegy for the backup and recovery
algorithms for the VIM system. Our main observation about system behaviour was that all active
computation in the system is associated with the evatuation of'some shell command. The first
solution proposed involved simply storing the log of all'shelt commands, reexccuting them from

the beginning if a failure occurcd. While correct. because VIM is a determin

ate system, this

§35 SUMMARY 53

solution has the drawback of a very slow recovery time. A major optimization to this solution is
to record all quiescent data ie. data bound in some user environment. A further optimization,
intended to reduce the overall recovery time in reexecuting volatile shell commands is to have
the backup facility maintain some measure of information about all active computations. The
recovery facility uses this information to avoid needless recomputation. Once this reexecution
phase is complete, the state of the system is properly restored. During this reexecution phase,
the order in which instructions are executed may be different from the original execution
sequence. This may lead to different uid's being assigned to different structures but the overall
structure of the heap and activations component remain identical. The reason why the order of
instruction execution is nbt important during the recovery process is because VIM is an
applicative system.

We also introduced the notion of stable storage in this chapter. Information about active
computations will need to be frequently recorded by the backup system. A backup storage
device on which data can be easily accessed and added is required to support these computation
records. While quiescent data can be copied onto tape stdrage, computation records need to be
maintained on stable store, |

In the next chapter, we present the detailed organization of a computation record and
discuss how the backup system monitors the progress of computation. As we noted earlier in this
chapter, the logic of the backup procedures is actually distributed among certain base language
instructions. We present a formal model of the VIM system supporting the backup and recovery
procedures and argue that the information embodied in the coiriputation records is consistent
with the actual system state being represented. | -

34

§4.0

§4.0 ;55
Chapter Four

Constructing Camputation Records

A major aspect of the backup and. recovery- algorithms for "VimM concerns the construction

~ of computation records.. Recalt from the last chapter that a bemputation record is used to record

~ information about currently. executing computations. . In- this «chapter, we shall be primarily

. interested in how compugation regords may be constiucted andemaintained. In Section 4.1, we

- present the abstract representation of computation: recoeds. ‘The amin component in the: record

is known as an activation descripior entry which embaodies: state: infommation about an individual

- activation. In order to comstruct a computation record, changes o the ‘operational behaviour of

_.the base language instruetions givea in Chapter Two will be necdssary. Section 4.2 discusses

. these changes as well as changes:necessary to the shell and interpreter. - In section 4.5, we present

. the altered operation.of the hase language insteuctions iretevms of an abstract operational model,

MR, which is an extension. of model Mi presented in; Chapter:twa: There: are several major

optimizations which can be made in maneging campuﬁum ‘reoords.” These opmnizadom are
- also formalized in this seetion. S : : :

4.1 The Computation Record

In Chapter three, we argued that the backup system should record the prom of actlve
* computation in the system to help reduce recovery ume. A computamu reoord ls an
" information structure constructed by the' backup systemz fcr &us purpose Our focus in thls
 section will be on determmmg how much mfonnamn shculd be kept on the oomputauon ,record
to allow the recovery procedum o restore the system ro 1ts :state pnorﬁtro the fallure One s:mple
,scheme would be to penodmlly checkpomr all acuvanons created by a computanon To
checkpomt an acnvauon me'ms recordmg the state of all mstructrons whlch havc not yet
executed in that activation at the time of the checkpomt. ’The state of an mstrucuon consnsts of
"t opcode, destmauon hst. operand and srgnal count. as \vell as -the value of its operands This
‘approach would be’ very sumlar to lhat taken in muny ot.hcr parailel computer sys&ems where a

‘ 'recove'y poml rcpresenung the state of one of possnbly many concumntly cxecuung proccsscs is

3 I an operand is a complex structuse. this means recording 1M substructures referenced from the top-level structure
as well.

* that each funcuon (nn be treatcd as a conxtant agplicaiive

!
e MR e et PSR P R S s

6 THE COMPUTATION RECORD - §4.1

periodically taken by the systems’. backap facility. ;lFour system, the recovery procedures would
only need to find all enabled instructions in the computauon records to begin the reexecution
phase. : P S At PRI TR ER SR 0 S St L

Periodically recording the-state of all activations crested by a compatation is simple idea
but has two major drawbacks which does not makie:it a:feasible sélution for obr putposes. First,

. checkpointing all activations in a computation: wilh probubly be i coily task because thie'size of

activations can be very- big. Secondly, in ordes: %0 gusrantee ‘that; & conisisterit ‘inage of the
computation is maintained on the backup utility, we woild have:to-disallow ary- enabled
instruction within:any activation in that computasion from-executing while the ¢heckpoinit of that
activation is being: performed. . To see why thisiis the caise, vodgider two activations, a-and 8 in
the same computation whese ahas called 3; 1€ 8is allowetizo enéigute while a checkpoint of a is

~ being made, then B may retuny its result:to: & and:then-exsoiite: & RELEASE operation "I the

image of & on .backup state does not reflect: the setun “value’ sent by a, ‘and”8 wis’ not

checkpointed before the RELEASE operation executed, the computation record would represent
~ an incorrect state: ‘Upan Tecovery, there:would ibe:1e way 20-78bover the: retarn-result valug of 8

without reexecuting a. This is precisely a manifestation of the:pisblems enéountered 'ifi other
concurrent systems that use recovery points to guarantee data secmity

A more clever approach o recordmg state mfonna;ion about acuvanons takcs advantage of
the appllcatwe programmmg model VIM usee. A distinctive 't"ean:re of an apphcanve language is
roaj; . A eaf cons:sts of constants
oombmed by funcuon composmon and apphcanon In mn;rennonal pmg;ammmg languages
such as Pascal or Fortran a funcuon eannot be treated as a constant because its evaluauon ‘may

© {d NIRRT :ﬂ;
cause side-effects to oecur in the program In VlM havmg au functtons be samply constants

means that the behavxour of the ﬁmcnon can be detcmnneo»i;; ;ust knowmg its mputs. In the
base language. an acuvatlon lS the apphcauon of a funcuon to some mput. Because funcnons are
caf's, we can embody an aenvat:on on the bwkup state by reeording the function closure, its
inputs and return Imk Under thns schcme the recovery system would nced to only APPLY the

closure to the argument list to construct the corrcspmding acnv.mon bemg represented An

1mportant advantage of lhIS proposal over the checkpomtmg one ns that no executing code is
maintained on backup store. Because all data is immutable, the transfer operation of the data
from main memory to backup store can procced in paratiel with the cxecution of any activations

§4.1 THE COMPUTATION RECORD 87

- which operate on this data. Moreover, the amount of information which needs to:be copied is
- also greatly reduced since no data created by instructions within these instructions are preserved.
- Such data would be recovered when the activation is reexecuted.

A natural representation for a computation record m thns scheme isasa dlrected tree in
which nodes represent activations and edges mdmte caller/mllee relauonshnps between palrs of

activations. This tree is known as the compulauon tree for the computatxon We 1llustrate this
representation in Fig. 13.

Name exp

b
Figure 13: Representation of a Computation Record

"The root of a computation record represents the initial activation constructed by the Translate
function of the shell. Every node :_in the computation tree is labeled with the uid of its
correspondin_g activation. If (s/) is a member of E.. the set of edgés in a computation tree c, then
activation ¢ is instantiated from activatidn s. Each computation has a unique computation tree.

A node in a computation tree is called an. actisation ;dé.vscrip:ar entry. An activation
descriptor contains the necessary information about an activation needed to restore the state of
the activation. The representation of a computation record given above is simple but certainly
does not help much to alleviate recovery time for transitional data, This is because computation

58 4 THE COMPUTATION RECORD §4.1

trees may become very large for long running computations. Reducing the size of the
computation tree would speed up the recovery process. The information in an activation
descriptor entry in this scheme contains the closure and argument list of that activation. During
recovery, however, every activation represented by an actrvatron descnptor entry in the backup
state would be reexecuted. The ume to reexecute all these acuvatmns would result in an
unacceptably high recovery time, Clearly, what 1s needed ts a mechamsm to record results of
‘activations as well as their instantiations. Thus, when a result o£ an actwatron is known, it
replaces that activation in the computation tree. When this value is encountered by the recovery
procedures, it is sent dlrectly to the destination addresses, elrmmatmg the need to reexecute any
activation in the subtree rooted at the node containing the result. In this way, we can imagine
the computation tree growing and shrinking in response to the instantiation and completion of
function activations. This process is shown in Fig. 14,

.

I resultofa is a

7/
/
/

\
S
\

{

|

|

I

|
v
Subtrees rooted ar a2, a3, and aé

Figure 14: Dynamics of a Computation Tree

§4.1 " THE COMPUTATION RECORD 59

When an activation is instantiated, a new descriptor efitfy is placed in the tomputation tree
and an edge is added from the caller to this new. cr;L;y Whep the l;qsplx ofan activation becomes
, entnes are then removed There are :wo features pf gu;schegg, Lhat dgsungutsh it from typlcal
data backup stratcgles found in ~conventional systerns, . Th;: first is that the; updating :of state
mformatxon in our scheme is (dependent totally,on RFOgRAM, bglugxqur A8 we had mqngpaed in
the last chapter typlcal backup strategics use a predefermined,
checkpomtmg s to be done, The second, and more impor “t,mffgrqnce is. ﬂm tgwaus& the
construction of the computanon tree takes advantage of the applicative programmmg model, the
- computation-tree canbe *pruned™ whenéver 4 fesuf’of anbctivation ‘becomes khown. In a
" language which permits'side-¢ffects-and $hariig of Hol4ocht’ m{ﬁﬁi& we’ Wbmd hot be abte to

manage the mmmwmmmmmﬁfmﬁ mhnner e

It now remams to show exacr.ly how the ;ugrgm sgg;l @nd basp lansuz;aa semantics
~ need to be modxﬁed to support the constryction of these compuation records. . We examine the
| structure of an acuvanoq descriptor entry in greater. de}t,a;l pmhc pext section.;

sd a5

4 2 The Actlvatlon Descnptor Entry

_ We had mennoned in the last section ihat an acuya&m,dﬁg‘im §hould cantain m&h
‘mformatxon so.that the_recovery pmcedurm could Jestore the, state of the activation, . \We

: ‘observed that 1f the function closure and 2 ist.0 4
recovery prooedur@ need only apply_ the closur; to the almfm% Pﬁkﬁe‘m‘& the retura link, to

. restore the activation stape

o 0

The recovery process in this proposal is straightforward, Aﬂ ﬁ’cﬁvadbn d&scnptor entries
-~ containing - the function clostre, argument’ reoord‘ abid “rétim” ok ‘can’ Mave the functlon
" application take place in parallel; Whenever’ an apply operation K to be ekecuted” dunng the
recovery phase, a check is made to see if the furiction Bé aifeddy’ beer iHstantiated: That is. all
APPLY instructions during the recovery phase.check,to.sge.if p activation descriptor already
exists fgf the activation they a‘rgloi}initjg;c. If one exists. we can effectively, ignore the instruction
$incc the result of the application, is alrcady known. If no such-descriptor. exists. we perform the
application. Result values found on an activation descriptor entry are used to prevent initiation
of'an‘uclivu;iun_.‘ When a valuc is found in an ADE, it can be s¢nt dircctly to the destination

60 THE ACTIVATION DESCRIPTOR ENTRY §4.2

address specified in its return link?,

In a system in which errors requiring intervention of recovery procedures are assumed to
be relatively infrequent, wé may find the cost of even maintammg function closures and
argument records too expensive. As we explain below, the mam reason for needmg the closure
of the activation on the backup store is if we wish't5 have all’ acuvaﬁon deScnptor entnes
evaluated in paraltel. If we are willing to toferate longer reoovery Ume we can sngnﬁcantly
reduce the amount of information which needs'to " be held on thé activation entnes by
eliminating the need to hold even the fdnction ctosure or argument record on backup store

Instead of havmg a.ll activations mmated ;n paranel. We can. t;ave the computatron
reexecuted from the initial activation descriptor in the. compusation. tree, Whenever. a new
acﬁvaﬁon is about to be initiated, the recovery, proceduse. first cxamines, the corresponding
activation descriptor entry for that activation (remember that there isa umque computatxon tree
for every computation). ‘If that entry cofitains’a result‘, {Hen' that Valie'i 1s ‘used dnrectly and the
new activation is not inittated. If, on the other hand, a6 result va!ue is ?ound in the dmcnptor a
new activation is constricted and’ :h‘ooessing proceeds & normal "No function closure or
argument record needs to be maintained in this scheme beeause the oomputauon 1s reevaluated
from its initial activation — no parallel invocation of aetwatxons wnthm the oomputatlon takes
- place. While the time to-restore a corfiputation s’ greater than if fiinction closures were
maintained in the backup state, it s bounded by the tifne the systent wolild have taken to have
 processed this computation utider normat circumstarices. “If fanction"dlosures and argument list
of activations were maintained, theén the recovery system ‘could ‘éxploit more paralielism than

what was available during the original evaluation of the computation precisely because all
~ activation descriptor eatires in the computation record coyld. be gvalyated concurrently. It is
) importzint to keep in mind, however, d{iz_ueyen if thxsewamfom;mns not kept on the

activation descriptors, the reexecution of the computation, would still exhibit as much
; : concurreney as it would have under normal conditions.

The information held by an activation dcscr’iptor\entry' musi 'aﬂow the recovery procedures

v e i

descriptor. The first form is for those activations whose results were rec0rded by the backup

: 4Wc are assuming that uid’s of activations are preserved in the backup state and are used during the recovery phise

AR S

§42 '+ THE ACTIVATION DESCRIPTOR ENTRY | |

~ facility. If an ADE for an activation o contains a valiré, thén this'valire represents thie result of a.

The secord form of anADE is used when-the restilt-tF & actiVation Has not yet beén recorded
. by the backup facility. * By tis case; the' ADE ‘cOntiirls ‘e €d@es (b’ all-activations that ‘were
-+ initiated from- abeford the Fallifé octured “DRITiHg TEUOVEH b dﬁlbe}remtea f’iiééaif"mat
edges in mcmmﬁoﬂ tre¢ mmtwmmmﬁmwﬁaw&n acﬁv .

AR enoieTe

» A e

uiql
" of
1o b ooactivaden | o ooun m ndcm :

'_4 "T yingin

i 15 swcwmo{m Ac“ n 5 g* ~ﬁ’ SORIIRSASN 1D Ggiobermimbn v

3 AL FENES ifi‘\“’:f} Fhie

i lgtasy Bas foe w

fwe rpreent an efge o ”““"”“ "“"Pm' %“%Y ’?mﬁ‘?ﬁ&“b’é%‘%@'f% #'4%« Wh%.f%t, set
, Tpreens he”offie in he seation 728,18 S Rplmon i, rhih

f,lv-i'mstannats the new actxvatxm azx)d wher J)“ d rep {I’ﬁg 08 H%yagqg: lesgriptor
“associated with the called actlvguon 'p\e gp: bm% wg} identifies, the activation

being initiated. When an apphcamn instruction is encountered during recovery, the activation

- desqriptos corresponding 0T ECEVELIOH o Vo isdintheetl Wttamired If'4 viltre i¥ pPresentin
. this' ADIE, itcané sent directs 1o Ueb dtstination Srdeaonibfihéperator. The GHtt e is
+ -used to-locate the ADEDLS the astivation muw T eSS Wity wé néed! the-off set
. field atalt is-because the-orderia: which instuot SuebliicRatiring reéovery may fiot bethe
. same 88 the- order: in whiclt: thiy- siere drigihally:sieddWil B’ sblieHial langudies. eVery
.*fussction application is ordered: with respectito every oM Rppilaatibi’ © REsteciition oF x given
i activatiomwill not-change thisdrdering. > Ih'a odrcu Fee satiin Rttt 451 Viv tfte does tiot eist
c..any'a prioN Mﬂ miem“?mﬁ e THYELEIRIA - nimBer: oﬁ'set‘“bfﬂ\e
+ function application operator Le;, APHLY mmummm nmsé‘bé“kéﬁt r‘ﬁu backup

hwpmprepeﬂyﬁeﬂﬁfy:&dudnsthe%pﬁé&” oK R tEa
" The schome we have gwen above requ:res I;ttle mtcrven %on b; th§ backup f'lcnh,ty

"Funcuon apphcauon IS noted by addmg a new acg gpogv “dﬁcnpto; 1o the apprapriate
comput'mon tree When the result of an acuvauon 1§ knovyn it replaccs the dmcnplpr entry. for
that aclw.nuun on Lhc b.mkup sule We do not m;xmmn algqmcnn rc;;ords and closurcs of

62 THE ACTIVATION DESCRIPTQR ENTRY - §42

activations, choosing instead to reexecute the computation-from the beginning, only avoiding

~ reexecution of activations whose results are already known. While recvery time in this proposal
is greater than the one in which closures and argument reqords are mmintained, there is a
substantial reduction in the computational resources, requised by the beckup facility. As we have

mentioned previously, efficient implemention of this strategy. will require alteration of some of

the base lang__uage instructions. A formal definition of these operators is given in Section 4.5.

4.3 Early Completion Structures

The preceeding sections have presented the general framework and ratlona,le upon which
computatron records can be orgamzed »Wlule sufﬁcrent for most eases. there are certain
program structures for which our dwgn is still- madeqm ‘Fheﬁm type of program structure
not properly addressed in our presentatron is tﬁe early compleuon structure By rtself ‘an early
compleuon structure does not add useful mformatron to the backup state since It only mdreatee
" that'an activation has been initiated to produce the deured value. Copymg an early completxon

‘structure orito the backup store would not alfow the recovery system to restore the proper ‘state
" unless the ‘activation responsible for pmd’ucmg the value whicﬁ ls to replace that structure is also
‘copied. Thisis obviously rtot a desrrabie srmaﬁm to have to aeal wrth o

For our purposes, a. srmpler (and Jnore . cfﬁdmm A8 to avoid: copying early
. completion elements uniil all the early, completion: fialds in the-gtmcture become set. “When a
. structure which contains early complation. fields is 40 heisopied ontacbackep store, theseer-ficlds
. -are.labeled with a special flag indicating that the comaining structire s to:be-eventually copied.
- When a SET instruction- eacounters. such 3. field, it checks: o sae: whethier :any; other: early
k»; compietion elements exist in the.steucture; if 50,:n0-00py operatina:is performed; otherwise, the
structure is copied onto, the backup. store, ‘The ADE whish: is:t: refesence. shis structure will
initially have its value ficld reference a structure with-a special value, netsapied. When all fields
. in the structure are known, this reference gets neplaced:with-thecsefergace io. the-fully. defined
structure. If the recovery routines encounter a struciure-with: a value Botcopied, it is treated: as
not-being defined and is ignored dunng the reexecution proccss Thc structure contmmng the
carly completion clement bemg set may be a oomponcnt of a larger structure whrch also needs to
be copied onito the backup store. If this structure becomes f‘ully deﬁned as a result of executmg
‘this instruction. then it too will’ get coplcd onto the backup store We lllustratc the cﬂ‘u.t of the

SET operator on the backup store in Fig. 16.

§4.4 ‘ EARLY.COMPLETIQN STRUGTURES 6

S is fully defined by SET operations and.is fransferred to backup store.

Figure 16: The Effect of the ser Operator on Backup Store o

‘4.4 Further Enhancements

‘There are two other program structures whose behavxpur cannot be efﬁcxently wptu;ed by
the backup facility by Just modlfymg the semantks of the APPLY and RETURN operators. The
first is the tail recursive program-expressed using the TAILAPPLY ‘opérator. The second class of
‘programs not handied by our system are those involving the produiction of:streams implemented
using the SETSUSP and STREAMTAIL instructions. ‘Both ‘Useve; dlasses of programs-use special
function.application and sigmalling operations which requine ore sophisticated algorithms thin
those presented above.".In the naxt two.subsections we discuss how:the: “Bekup: sysiem should be
augmented to- handle tail recursive activations mmm ewaluunoncfstremn
structures, o SNt : ‘

T BN RRAT A B TR s T e T T

o SRR T

“ " FURTHER ENHANCEMENTS §4.4

- 4.4.1 Tail Recursion

Recall that tail recursion is used to implement iteration in the base language. The key
feature of tail recursive activations is that they need not persist until the recursive call completes
because the return link is provided as the third operand to the TAILAPPLY instruction. In our
current design of the backup system, if the TAILAPPLY operatbr was treated as being identical to
the APPLY instruction, then every tail-recursive activation. would cause a new activation
descriptor entry to be constructed. The structure of the aslocuted computation tree would
contain a long chain of ADE”s w1th only the last ADE in th& cham havmg the relevant resuit
value. The backup system can optimize the constructloﬁ of ADE‘s when tml recursion is
involved by reusing the same ADE for tail recursive calls instead of bulldmg new ones for each
new tail recursive application. An important observation qoncctnmg tail recursion is that tail
recursive activations differ from each other only in theif arguinent records. All activations
initiated from a tail recursive call use the same function closure and return link. Each activation
serves only to construct a new argument record for the succeeding one to use. In fact, because
activations in which the TAILAPPLY operator executes-do’ not return a result value, there is no
RETURN instruction which is executed. It should be clear that thls behavxour 1s not well
‘supported by our backup algonthms which very much depend on results of activations being
recorded on backup store in order to help reduce recovery ume of, volatile. commapnds. The
reason for this moompatablhty is the fact that no tail- recurswe acuvanon except the last returns a
result, making any mtermedlate tail recursive acuvauon dacnptor entnes wsentmlly uscless.

We introduce a new type of activation dmmor ﬁm tail recursive activations which
includes the argument record of the activation. - Whes: a function is instantiated by an APPLY
instruction, an activation descriptor is constructed for:it with-type-appty. If this function was tail
recursive, then during the evaluation of this function -a TAILAPPLY finstruction ‘may execute.
Execution of this instruction, while causing a new activation to.be-added to the set of activations
in the system, does Rot necessitate a mew activation descriptor to-be coastructed as well. Instead,
we change the activation descriptor of the current activation to type tailapply. The argument
record passed as the second operand to the TAILAPPLY instruction is recorded in this activation
descriptor. In addition, all edges emanating from this ADE are removed. The old state of the
activation descriptor is thus replaced to reflect the new activation. Other function applications
that take place in the activation are recorded in the tailapply ADE as was done in the apply

ADE. Subscquent tail recursive calls in this activation will cause the same effect as took place

8§44 FURTHER ENHANCEMENTS - 65

initially: the old argument record is replaced with the argument record of the new activation, and
the edges emanating from the ADE are removed.

The inclusion of the argumem record in the d&scnptor allows the recovery system to avoid
reexecution of all the tail recursive calls leading up to me one represented on backup store.
Since the closure and Teturn link are the same, keeping t.he argummmrd in the ADE makes it
unnecessary to reexecute any of the prior tail recursive actxvanons originally executed from the
initial APPLY. The représentation of tail recursive acnvauons we have chosen ‘has two beneficial
aspects. Fll'St, the depth of the computation tree is nowncrgased fot every taxl Tecursive call since
‘the néw ADE can replace me ADE of the calling: acuvguoj;. Thxs is bccause tail recursive
activations send their result directly to the address specified m thelr thlrd operand the calling
backup store, reexecutxon'daﬁ‘ ‘begm by applymg the function to this argument record and the
return lmk prov1ded by the APPLY instruction which initially instantiated this function.

In Fig. 17 we show some steps in the transformation of a computation tree which
embodies the evaluation of the following function to illustrate the process described above:

Function Example (f: Function, n : Integer returas Integer)

Function Tadexample(m,n Integer, f:Function retlmls Integer)
ftm>n
.. thea m

else Tadexﬁmpl@(f(m). n)
endfun

Tadexample(l n,j)
endfun

4.4.2 Stream Structures

Our ‘basic approach to recording the progress of computatiens s-iso not well suited for
expressing the behaviour of computations in*volving" the production of stream structures. Recall
from Chapter Two that streams are produced by tail recursive functions in a demand driven
fashion. The unique instruction in a stream pfoducer wh_;nctlrlalloyvs J.helazyevaluauon of a
stream is the suspension operator. The backup and recovery algorithms as currently defined are
not capable of modeling the kind of program behaviour exhibited by stream producers for

reasons discussed below.

Figure 17: Handling Tail Recursion

66 FURTHER ENHANCEMENTS §4.4
Steps in the computation of TailExample, with initial arguments:m = ln= landf(x) =x + L
Step 1 | Step2
undef undef
apﬂg, ’ w) :“m "
4 \ 4
ul empty apply ul apply had
after Tallexample inssantiated,
after f insiantiased
Computation tree rooted at f's ADE,
Step 3 - Step 4
undef] : , undef
‘ apply vl] |apply ,
\ .
value} 2
ul| empty |tailapply a| OmPHY
Ta:‘lRecursivecalImasmADE. Finel value of Fanctioneall is 2. -

Y e, A e f&-.zf-'ma,wn.a_ AT e e

§44 FURTHER ENHANCEMENTS e

4.4.2.1 Rationale , ,

To see why our current method is insufficient, consider the structure of the computation
tre¢ produced by the backup algorithm (as currently defined) for s stream producing function.
Since such a function is tail recursive, its associated activation would ‘be represented by a
tailapply ADE. The.return link in a stream producer is used to ‘conmect together successive
- elements in a stream. When a new ‘activation of a stream’ producer is initiated, the return link
- which is passed to this new activationis the uid of the last stream element. Thus, when the new
‘stream element is produced, the field previously containinig the suspensior in the last stream

element would now reference this new eloment. The new elsment, i 'turn; would either be a
record whose second field is a suspension to the STREAMTAIL- instruction in the current
activation or the value null denoting the empty stream.

Now, consider the behaviour of the computation tree if the STREAMTAIL instruction were
1o be treated as being identical to the TAILAPPLY operatar.: Under this assumption, our backup
algorithm would preserve the argument record for each aetivatior of the stream producer
function initiated, in accordance with the description of tail recursion given above, Notiee that
because a stream activation only executes a RETURN. wheén no- mote tail recursive calls are
necessary, the only resuit value that would: be: presewedoﬁthe backup-store would be the last
stream element produced. Intermedlate elements whlch are constructed usmg the SET and
SETSUSP operators would not be mamtamed on backup store Moreover reeordmg only the
‘argument reoord of the taxl recursive actxvauon for a stream producer would not be sufﬁcrent to
restore the rest of the stream because the retum lmk for eech actwauon 1s dlfferent. Recall from
Chapter two that the return link passed t0 an actrvatron of a sgream producer is actually the
second ﬁeld of the record nepmeutmg the last stream element created by thrs producer Thus,
the return link of each call to the stream producer would be drﬂ'erent.

This analysns indicates that the current dcs:gn of the backup and recovery algonthms suffer
" from two drawbacks with’ respect to the handhng of streams. Flrst, because tzul recursive
activations assocrated wrth a stream producer dlffer from cach other in more than just thenr
argument records. we need to mamtam more mfonnutxon about the acuvatlon on backup store.
The extra mfonnatron wthh needs to be rccorded must obvrousl,y melude the new stream

68 FURTHER ENHANCEMENTS §4.4

it does not define the entire stream but represents only one element in the stream. Because
streams are created in a demand driven manner, whenever a new stream element is created, there
is also an activation associated with it whose state is relevant to the backup system. The
suspension signals an instruction in this activation to initiate production of the next stream
element. Of most importance to the backup system is the argument record held by the
STREAMTAIL instruction which instantiates the next stream activation. The backup system must
record this information if it is to properly restore the state of the system. If the argument record
- is not copied, then there would be no way for the recovery systein to generate any further stream
clements beyond that which has been copied -onto the backup store. We discuss the
ramifications of this requirement below.

The instruction responsible for setting the suspension in the stream is the SETSUSP
instruction. The argument to SETSUSP is the record. representing the new stream element. We
 see that one means of noting the production of new siream elements, therefore, is to alter the
behaviour of the SETSUSP instruction. The SETSUSP instruction, in addition to setting a
suspension in the new stream element, also initiates the transfer of this stream element onto the
backup store. Of course, the value of the stream may be an early completion structure in which
case it will be the responsibility of the SET instruction-to perform the actual transfer.

The instruction responsible for initiating a new acttvatnon of the stream producer i 1s the
STREAMTAIL instruction. The main operand to thxs mstrucnon of mterest to us is the argument
record that is used to initiate the new acttvatnon Reeordmg the argument record serves a
different purpose from its use in normal tail recursive actxvauons. For streams, reoordmg the

'argument record of the STREAMTAIL operator is essentxal to restonng the state of the stream
* producer activation to allow further generatmn of stream elements after the the recovery
procedures comptete

The advantage in altering the behaviour of the SETSUSP instruction to initiate the copying
of the stream element instead of the STREAMTAIL mstructton is that the transfer of the stream
element can take place before a demand is made for the next element lf we choose to record the

“creation of stream elements by making the STREAMTAIL mstructlon copy its return hnk structure,
* we would need to wait for the next demand to be made (smce that it is when the STREAMTAIL
instruction fires) before the copy operation of the current stream elemcnt can be started

£ e S R o0 TR RN RN e i

§4.4 " FURTHER ENHANCEMENTS 69

Because stream elements are produced in"a démarnd driven fashion, if the evaluation of a
bind expression yields a stream, the value field in ¢hame, valued pair bound in the backup
environment will contain a single element mmally, namely the first element in the stream. As
more elements of the stream are produced, they are aqldéd omo t.he baclcup image and are
consndered as part of the stream‘image in the badﬁup envmanmeac

44.2.2 lmplementution

To monitor a stream producer, we introduce a new type of activation descriptor called a
stream ADE. A stream ADE is similir to a) descriptor in that both maintain
information about a function activation other thang | its return value. The stream ADE,
however, in addition to containing the argument "‘@fd for the next stream activation to be
initiated, also contains the stream element result of its associated stream producer activation.
These stream elements are linked together on the backup hup*ﬂming the regovery process, the
backup streem image is fisst restored. The remvel'y sysgem then eonstructs a skeleton of the
activation of the stream producer. This skefeton'is used to m:z‘]‘ﬁ‘oducuon of the next stream
element when the next demand is made. The only instruction that can be enabled in this
-~ activation is the STREAMTAIL operator whose argument record is taken from the backup store
and whose return link is the dddress of the last stream element. The suspension field in this
element is set to the address of the STREAMTAIL mstruct:on The reason for storing the
argument mmrd is. 10 set-up, the skeleton activation to suppon the' demand driven execution
mechanism-for streams. When the recovery procedure eompletes, a subset of the stream image
recorded on backup store will be restored. Let <:t1 xz,. X5 BE the stre’eﬁ‘: ekments reeBrded on
backup store. Then the recovery system restores the first j elemenm, j 5 n, where xj is the
" greatest element for whicl the argumeént record Ww CHBAE e ikt strearm élément has

“been preserved. A skéleton -activation i consthuéted 3% *ﬁ‘evf#?‘" element wheh the
“-demand for it is made. Durffigtbedmsm'uctloﬁ of‘tﬁé' M'ﬁﬂ Whﬁ §t’ore argument records

LEIERY-E-) o x SRLN

*~during the recovery pmeess.

When the suspens;on ﬂeld in me ,last clemeng Qn,xhe baqkup‘ imags . is apcesqed durms
rccovery the STREAMTAIL instruction in the skeleton activasion, would fire, {nitiating the.next
activation of the pmducer to produce the j+ l"' elemem. We |llustrate thns prooess in Flg 18.

l: ﬁ"x’:’ T

To summarize, unllke all thc mher strudurcs we havc examined, Lhcrc are /wo operators

0 FURTHER ENHANCEMENTS - §44

Stream image on the backup heap.

— = | valn
arg 1 __r* 2 o & @ .-
s undef

< Skeleton Activity

F'is the closure of the stream producer function. -

Figure 18: Rcconstruction of a Stream Structure

| which are responsxble for mam&ammz a oonstsmn; mpm Qﬁa strm The s;:rsusr operator is
responsnble for mmatmg the msfe; of the new. stream element gnto the backup store.. The link
field of the stream elemems in.the backup imagg; gumed,hym&'{REAMTML operator when
it executes. The smr:wummsxmmon is also. respogsible for qepying the atgument record to
' the backup store. The backup system should treat the argument. -record passed to .the
STREAMTAIL instruction in an activation and the stream element created wnthm that actnvanon
“‘collectively to ensurc thdt a correct stream’ mmge is ’p*reservbd “l‘he 1mplementauon of ths
(value argumenv record is discussed in the nexi secuon o ‘ -

RS

In thc ncxt section, we fommhze the backup algomhms outlined informally above. Our

Tk B s> SRk A S it

- §44 . FURTHER ENHANCEMENTS n

formal model is an extension of the one given in Chapter two-and mainly involves altering the
definitions of those base language mstructtons responsxble for the creauon and updating of
ADE's on the backup store

4.5 A Formal Model of Backup and Recovery

Beyond the need for modxﬁymg the behavnour of some of the base languag,e instructions, a
formal model of VIM augmented with the backup and recovery algomhms must also have some
concept of failure. A failure should be that special state whxch eauses the system to mvoke the
recovery procedures. The modified operation of the base lepguageinsractions differ'from their
Qckup stateaswellasma

counterparts in Chapter two in that their execution resu}ts ing
new VIM state being constructed. -

R TR

In the following presentation, we shall be using the same nofation as in Chapter two,

. »
ey, s i k
A S ST

4.5.1 The Backup State
Formally, the VIM system is now treated as a four-tuple:

VIM = (Shell Interp,BackupShte VimState) where -
VimState = <Act X H xEls X Env> U, {fam

Bacmstm- =; dog x-BHe‘ip’ X mm

N) ¥ , are identi Hgg,thgxdeﬁmupns mmodel
,Ml NotIce Lhat the Vim.SZtate in addmon 10 mvm;(u;e same components.as. in ML, also
contains the spec:al value, faﬂcd A fanlure in the system is modeled by having the VimSsate
take on the value failed. All information found in ;he currem 7[’jm.‘ilate is "lost? if the Vim,S‘tate
has the failed value. The domain BackupState is deﬁned as a three-tuple where the first
component in the tuple, Log represents the command Leg of #iE¥6latité Shell comrtisrids®, the
second component, BHeap. denotes the set of structur valpg gogled;bxme bockup progedures,
“and the third component, BEav contains all (namc.value) bmdmgs prescrved by the backup
utility. These values constitute the quiescent data in the systcm The domam equalfon for BEnv
is the same as that for the environment component in the ViM state, namely, .

SRL‘L all that vokarile commands are those commands whose results ha ave enher not been pruduwd or h'we nol been
copicd onto the hackup store.

72 . A FORMAL MODEL OF BACKUP AND RECOVERY ' §4.5

BEnv = Name —(Uy U Scalar)

The command log, as was described in Chapter three, is used to hold the record of all currently
volatile Shell commands input to the system. By safely recordmg these oommands we are
guaranteed of being able to restore the correct system state. .The Log is a two-tuple, consisting of
a function mapping from natural numbers to log enmes and a sue oomponem 1ndmtmg the size
of the log New log entries are appended to the end of the los. -

Log = <N — LogEntry) XN
LogEntry = <Command XUy
Up = the set of uid's used for oomoutation records. i

As new Shell oommands are input to the system the text of the command is copned by the
backup procedures onto the log. Thrs text oorresponds to the Command oomponent of the
Logentry. The second component in a log entry is a reference to the cornpmamn iree-assosiated
with this computation. This oomputauon tree wxll resxde on the backup heap

Every element on the backup heap, BHeap. has 5.4n achxgt,ed "?,d' There are three types of
elements on the heap: structures which are normal ViM structures dtscussed previously,
activation descriptor entries, and stream’ coordiffior fecords ‘that‘are used to package
information about a stream activation. We discuss.the.role.ofithe stream coordinator.record in
greater detail when presenting the operation of the suspension operator later in thls chapter
Every ADE ori the backup heap will either be referéhcee L ‘Wi 'biher ADE in the computation
tree or wnll be referenced from a commartd Iog entry ’if it'is thé mmal ZDE in the computatton
~ BHeap = (UH U UB) (ST v Ade U StreamRec)

~ StreamRec = <Val. xAxngiuD
‘Ade = <U, X AdcEntry X AdeType X Resultd -
Val, Arg (UMY Scalaru undef .
Link = Ug U undef -

AdeEntry = (N — U, U empty

S g Dl DT A

LT TR T B e RO e N e e L e e Tee s fn

§4.5 A FORMAL MODEL OF BACKUP-AND RECOVERY 3

AdeType = {apply,tailapply, stream, value}
Result = (Uy U Scalar U undef))

An activation descriptor entry is a structure of four components. The first component is
the uid of the activation being represented. As we show below, this field is used to identify the
activation descriptor so that the result of the activation can be properly forwarded to the ADE
when it becomes known. The second component; the AdeEnily, is #furiction mapping from
natural numbers to backup uids. . If there are 1o entries in' tiie' AdeEntry, this component has
value empty. The domain of the AdeEntry function is #he set'of all ‘ifstruction humbers in the
corresponding activation which are either APPLY, TAILAPMLY, or STREAMTAIL operations. ‘The
range denotes the uid’s of the ADE’s in the BHeap corresponding to'these activations. Thus, if j
was the instruction number in some activation a corresponding to’an APPLY: instruction; then
AdeEntry(j) would be the uid of the ADE associated with the activation created by this APPLY
instruction. Because the computation tree is pruned whenever a fesiilt of an activation is
recorded, activation descriptor entries will Nave their ideEniry ‘fleld set to' the value empty
 indicating that there are no- subordinate ADE's of ‘this sctiviMon and that the result of this
 activation has already been recorded. The third compoentin’the ADE contains the type of the
descriptor. There are at least two types of ADE'S: ‘apphy 4DES tepresériting activations for
which a result is not yet known; and value ADE's which contain, the result of the activation. In
addition to these two types of dmcnptors, there are. also spe;:nal g;scnptots for tail recutswe
acnvatxons and stream pmducers whxch we de;cnbed m Q\e Rrevigus secuons. The. £ourt.’n field
represents the result of the activation. It can either be a mar or a UId whlch mferenc&s the
structure on the backup heap. All structures are associated with only one uid. Thus, the uid's
used to reference structures on the backup heap are.the sawé.ss: thase- used 1o reference
structures on the VIM heap. We shall use dot notation‘_tghmfgt; to campenents of an activation
descriptor. . g A1

When an ADE is initially constructed. there will: be"no value to placc:in its result field.
Thus, this component is initially set to undef When a result value i is subsequently produced it

will replace the undcfined element.

74 A FORMAL MODEL OF BACKUP AND RECOVERY §4.5

4.5.2 Early Completion

Early completion structures are represented in MR as follows:
ECQ = 9(ECE)
ECE = <Uy X N> U {back}

back is a special flag which indicates that this early completion structure is part of a structure
which needs to be placed on the backup heap. This flag is.placed in the queue by the Copy
function. We present the definition of this function below. When the SET operator replaces an
early completion structure: containing this flag with a value, it will check if the structure
containing this field can be copied by determining if there are any more early completion
elements in the structure,

4.5.3 Auxiliary Functions

- As was the case with the heap in M1, we have two auxilisry functions defined on the
backup heap, AddBHeap and RmonBHaap. which add and remove an element from the

BHeap for Hin the deﬁmtmgma for Addl{eag mdﬂmxﬂgpm Chw two,

There are also two functionis defined on the oommand log, AddLag and RemoveLog
AddLog adds a new log entry to the end of the log and’ RemoveLog entry removes a deﬁned entry
on the log. In addition, we also define two ﬁmcnons over AdeEnmes o replace and remove
elements from a given AdeEnt:y

AddLog: Leg X Legkatry —» Log
Function AddLog(Log,Logentry)

let <LogVal, size> = Log
LogVal(m) = Legvakm)if m = size+1.
= Logentryif m = size + 1,

size+1 ‘ ' '

in
<{LogVal’, size+ 1>

endlet

endfun

- 8§45

- A FORMAL MODEL OF BACKUP:AND/RECOVERY

RemovelLog: Log X N — Log
Function RemoveLog (Log, n)

let LogWal, size = Log
LogValim)y= lnynl(m)fifmﬁn
= undefifm=n |
in , itraild

- LogVal’, stze>
endlet
endfun

C1s

NewAdeEntry: AdeEntry X U A X N — AdeEntry
Function NewAdeEntrnf AdeEntry,u, n)

let AdeEntry{m) = AdeEntry(m) ﬂ' m# ' n
=y Iﬁn L ’
in
AdeEntry’
endlet
endfun

v e

RAdeEntry: AdeEntry X N — AdeEntry

Function RAdeEntr)(AdeEntry,n) R
let AdeEntry (m) = AdeVa&m) if m # n-
=t 'm"L- e
in
AdeEntry’
endlet . :

453.1 The Copy Operation -
Before describing the chiopemibn fet-as: MW !loxabsttact representauon of a
fodéled e diredted qugg jn which every node is
labeled with a unique identifier. Nodes on the heap correspond to structurcs m our s)slem This
representation allows for structures to be components of other structures, g.g .an ARRAY of

structure on the VIM heap “Phe ‘héip is 1

TR

RECORDS. In our discussion. whenever we refer to a ViM structure, we also mclmﬂxls to mean

all of the componcnt structures which this structure references unless we exﬁﬁcftfy state

76

otherwise. Thus, when a VIM structure is to be copied to the backup heap, it is also necessary

A G R R R R e B e ¥ e B L T LY

A FORMAL MODEL OF BACKUP AND RECOVERY

that all component structures be transferred as well.

In order to preserve information found on the VIM state, it.is necessary to have a function
which can transfer data from the heap and environment components of the VimStare to their

respective counterparts in the BackupState. This Copy function is given below:

Copy : (UH U Scalar) X H X BHeap — H X BHeap

Function Copy (Val,H,BHeap)

let NewH, NewBH =
if Val € Scalars
then H,BHeap

else let

NewH.
NewBH
endict
endfun

RefStruct = {u]| I m€ N, R € Record st
H(Val) € Rec A H(Val)(m) = u}
Uyuy....,u, = elements of RefStruct
ECStruct = {u € Uy,| H(u) € ECQ A Step(Val) = u}

NewH’, NewBH’ =
if ECStruct = {} ,
then if RefStruct = {}
then Cap)(ul,
(Copy (u,,... :
(Copy (uy), H,BHeap)...)
else H,BHeap
endif

else AddBack(H, ECStruct), BHeap
endif .

NewH',
if ECStruct = {}
them AddBHeap{ NewBH ', ¥al, H(Val))
else AddBBHeap(BHeap.val, ({notcopied}))
endlet el b i 1

8§45 A FORMAL MODEL OF BACKUP-AND RECOVERY m

The Copy function takes as input the uid of the structure:to be capied and first determines
if there are any early completion elements i in the structure. lf t.here are the structure is not
copied; instead, those fields which are early oompienqn queues areaugmented with the special
flag back. The function, AddBack, takes as argumeﬁts the eufrent heap and the set of uid’s
which reference early completion elements in the stmcture. It retums a new heap in which the
flag, back, has been added to each of these eaﬂy comp)etion structures. Determining if there are
any early eompletron elements in the structure requues that all component structures be
examined to see if they reference any. suchelemm . The function Step takes as input the uid of
the top level structure and returns ‘the set of all uid’s referenced from any substructure
referenced from it that is associated wnth an early completwn structure on the heap.

If there are no early comp,letion, elemems-m ithe structure, then it is transferred to the
backup heap. Since a structure may reference many substructures, the Copy function copies all
substructures referenced from the structure by -recursively calling itself. A structure if fully
copied only when it and. all wbstmctmes it refemms have been placed on the backup heap.
While the Copy function is easily exptesed in our abstract model it is significantly more
complex in the actual implementation. We addreﬂ the implementation problems in the next
chapter.

45.4 The Shell

The command log contains the text. of the shell comand input and the name to which the
result of evaluatmg this command: should-be: bouﬁd. Thls information is used by the recovery
system which reinterprets the command text. The oon;pmanon reeord associated with the log
entry is used to avoid unneccesarily reexecuting operations whose results have already been
recorded. Maintaining this information requires modifying the operati‘gon of the shell. The shell
must now, in addition to the stream of shell commands and current KimSrate;also take as input
the current BackupState. It returns a new VzmState resulnng from tﬁe evaluation of these
commands and a new BackupState which contzuns a new log emsy IQ-; every command input.

Shell: Session X VimState X BackhpStete — VimState x BackupState
Function Shell (Session. VimSuate. BackupState)

let <Act. H. EIS. Envd> = VimState

78) A FORMAL MODEL OF BACKUP AND RECOVERY §4.5

<Log, BHeap, BEnv> = BackupState
NewState =)
if ChooseToExecute (VimState, Session)
then ShelSession, Execute (VimState, Chaase(ElS)) BackupState)
elseif empty(Session) - L
then VzmState. BackupState
else let ¢, = first(Session)
in i} ¢ .C = DELETE - '
then {Act, H, EIS, DeIEn(Eny. Name)) BackupSlate
elseif ¢ ¢.C= ‘BIND
then let % conimandis BIND

FA = Tmnslate(cl)
. = new-uid flom U,
A’c:t = AddAct(Act “F » FA)
NewEIS = Eﬁ&u{ﬁﬂp P DI} FAQ) opcnt 0
AFA@DSigEnL =0}

u) = anewuidinﬂ

NewAde = <y, {nm} Andef
BHeap" = A H, _BHe@,ul.NmAdc)

Logentry.:= €&y
NewLog = A&Z‘oxmmmm

State’, v = Interp(State, Choice(NewEIS))
{Act’, H', EIS’, Env> = VimState’
Env’ = AddtoEnv(Env, c,.name, v)
in
<Act, i, EIS'; Env>,
{NewLog,; BHeap' . BEnv?>
endlet
endif
. endlet
endif
in
if empty (Session)
 then if £1S7# {} ,
‘then Shell (Session, Execute(Newstate Chaice(ElS‘)))
else Newstate, ﬁewBatkupStale A
endif
else Shell (rest(Sess:on) Newstate NewBackupState)
endif

endlet
endfun

845 " A FORMAL MODEL OF BACKUP'AND RECOVERY ‘ o

The new log entry constructed by the shell contains the text of the command mput and a
reference to the root of thie computation tree to bé asstciated-with this cOmputauon The uid
field in the rodt activation descriptor entry contains the uid of the activation bemg instantiated.
Its AdeEntry is undefiried since no functions have bién applied from this activtation yet. The log
can be thought 6f as an array of log entries. The hefl' dpdates

e rog by adding the new log
entry to some currently undefmed lndex, . Note J.ga; %;a&gm&@onb,mmked qfter the log
entry has been recorded. 'Ihe shell acknowledges a shell mput by demandmg the next command
in the input stréar onfy when the’ current shell éommﬁﬁd has been noted on the backup store.
This guarantees that no processing will be done on a computation which cannot-be recovered
from failure since the text of the command is used'by the weévei-y b}oeedureg to reexecute the
command. The two functions which are responsible fgp Mtgg ymnonment, DelEny and
AddEnymust siso be modified. The-DelEnv is responskite® i-ﬁmévhg an environment entry
from the current envrionment. Since erlv;rotimiemi vgg abg,pm of the backup state,
" DelEnv must remove the entry from the BEn.f: as Qell. -

4.5.4.1 Removing Log Entries . 4, o \
The AddEnv function is respopsible | fw addmuewmv#ug) #ix;ding to the current
environment. The: backup systeny aidintains infoamation i e fovin of-4 computation record
about the computation that produced this value. This computation record neeg;bp kept on the
backup store only so long as the binding was not placed in the image of the envirossesit kept on
the backup state. Once the binding is placed in the backup state environment and the result
. value is fully defined. the. computation free associaked Jwith: the. avalvation: of shis contmand can
-~ be removed from the backup. hm It may be the case, howayes;:that the esult value contains
garly completion structures, prexenting it from being.cogied ankadhe-heckup heap. . The.value
. component in the binding in this Gase is NOtCapigd,, In0ch Etanges. it is the responsibility. of
_ the SET operator to remove. the compwiation. racord. when; the yalue:boearaes fully: defined. If
there are. no early completion. aruaum in.the. result; yalue, te Addbay function places the
7 bmdm&,on the backup environment and.removes the log (. o, this computation as well, -

SR S T

80 A FORMAL MODEL OF BACKUP AND RECOVERY - 8§45

4.5.5 The Interpreter v

Because base language instructions will be now be aperating.on the backup state as well as
the VIM state, it is necessary to alter the behaviour of the interpreter. The interpreter is now a
state tranSitionfunc»tioh froh a VimSiate, a BackupStase, and an enabled instruction to a new
VimState a new BackupState and a result value. Its definition is given below: .

Interp: VimState X Baciupsute X El — Vm!lsute X BaclmpState x (U) Scalar)
Function Interp (V:mState, BackupState, <u D) %(u,:) isan, enablcd instruction

let
{Act,H,EIS.Env> = VimState
FA = AcKu)
{Log,BHeap;BEnv> = BackupState
NewVimstate, NewBackupState = Exmldybnsmﬂackwwm(u.i))
NewVimstate = Failure (NewVimstate)
{Act’.H'.EIS", Env®> = NewVimstate’
in
if failed NewVimstate’)
then Recovery(BackupS'tate)
elseif F4(/).opcode = TERMINATE
 then NewVimstate’ NewBackupStare, FAC).oprumi
else Interp(NewV imState.NewBackupSéate.Choice EIS?))
endif
endlet

The Failure finction models the introduction of a fa#ted state in the system. It returns
either the state failed or the state'passed to it'as input. The function fatled returns true if the
new state is a failed state and false otherwise, Whet faffed returns true, the interpreter invokes
the recovery procedures 1o restore the systern to a corfect State,” The model of failure given here
~ is, of course, simplistic insofar as it assumes ﬂiatfa?faifuré‘dba not occur-during the middle of
“instruction- exécution. In ‘the actual implementation of the system. care must be taken to

guarantee that copy opcrations on the backup store are performed ‘atomically. The model given
here, however, is convenient for expressing the salient aspeéts of the backup algorithms,
abstracting low level details such as preserving atomicity of copy operations. These issues are

addressed in the next chapter.

e A N

§45 - AFORMAL MODEL QF BACKLJR AND RECOVERY 81

4.5.6 Function Application

In this section, we present the modified operatmnﬁl sermmtics of two of the base language
instructions responsnble for function apphcanon in our system. the APPLY and the TAILAPPLY

instructions,

4.5.6.1 The Apply Instruction

The effect of executing the APPLY operator is to augment the: ;iumber of activations in the
VimState. The addition of a new activation is reflected on the backup heapby adding a new
activation descriptor entry for this new activation and creating a new Adeﬁm"ﬁmction in the
ADE of the currently executing activation. This new function maps fmm oﬂ}el to uid where
offset is the instruction number of the APPLY operator and uid s is the umque mtxﬁer of the
ADE representing the new activation on the backup heap. The new ADE will contaiy in its uid
fietd, the uid of the new activation; its AdeEntry Tield is sét to empty, and its type field is
initialized to a,pplg indicating. that. this. Qctivation was instantiafed by an APPLY imstruction.
Smce the result of this activation is.not yst known, its w;msetp undefined, .

e ST

if Fopcode = APPLYM

ltt SR '

C -Iopl

arg = Lop2,

<u, free> = H(C),

u" = anew uid from U N
u *anewuﬁfrdm!f -

et = AaAexmu,Q@ - I

Act”, NewEls' =
SendTaDcsI
(SendToDest
 (SendToDest ~ 3 o
(Act Newkis, u’, cuncond, lopﬁ. Q..o
u’, <uncond, 2, opl) arg)
u’, <uncond., 3, opnf u,

Uy, = a newu:d choscn from U
néwade = <u".empty. {app(yf undej)
Bpr] AddBH e BHeap. "bl} .hewade),”

82 A FORMAL MODEL OF BACKUP AND RECOVERY - §45

BHeap2 =if3 Uy SL Bheap (u = ug ,, AdeEntry, Type ResuIt)
then let. AdeEmry New a10)% B H eapty b)uAdeEntly. 0,
UpdateAde = <uF 4 AdeEntry Type Result)

m - A
AddBHeap(BHeap,, u,, UpdateAde)
endlet
else BHeap
endif
in
<{Aet”,
H',
NewEis’,
Enw,
(Log,BHeap,BEnv)
endlet
endif

It is possible that there is no computation ‘record on the'backup hieap that contains the
activation descriptor for the activation in which the APPLY instfuction is found.” This may
happen if the result of the computation has already been bggndmmebackup enyironment
before the APPLY executes. In this case, there is no change to the backup state. Ifithere is an
activation descriptor corresponding to the current activation, its AdeEntry 1supdated to reference
this new ADE. R

4.5.6.2 The TailApply Instruction

The TAILAPPLY operator is also modified to monilor the progress of tail recursive
functions. If a TAILAPPLY operation executes as part of a;ml «ecursive activation; we copy the
argument record passed as the second inptt to the ifiStruétion to the backup heap, replacing the
old argument record found in the activation descriptor entry. As we mentioned earlier, doing
this substantially .reduces the time needed to reexecute a tail recumve ﬂmcﬁbn Copying the
argument record becomes a non-trivial issue, however, becau;e of tbe pmenoe of early
completion structures. If the argument record to be cep!ed eonlams early completion elements,
the copy operation can only take place after all such elemgnts fu;ye bef;n set. The old argument
record on backup hcap and the AdeEntry component cannot be replaccd until the new record is
fully copicd. To ensurc that this restriction is obsm'ved it is necesary 0 create a new ADE
corresponding to this new activation. We now nccd w link- the old ADE and the new ADE
togcther. Since the idea of noting the argument record on the backup heap is to avoid

§4.5 A FORMAL MODEL OF BACKUP AND-RECOVERY v 83

reexecution of prior tail recursive calls, we interpose the new ADE between the activation
descriptor corresponding to the current activation and its parent ADE. The parent ADE
represents the activation in which the initial call to the tail recursive funcnon was made. In this
sense, the computation tree built from tail recursive activations aseenstrucsed "bot{om~up with
old tail recursive ADE’s being pushed down the tree and new ADE‘sb@&:g fitted in between its-
caller and the original caller of the functxon We illustrate thls prowcs in an 19 When an
argument record is copied, we set the AdeEntry ﬁeld in the dmcnptor to cmptg, effectively
discarding prior ADEs associated with this function. Thus, once an. argument record is fully
copied, all previous ADEs of this tail recursive function are-removed from the backup state since
the link connecting these activation descriptors with the rest of the computation tree is severed.
The formal definition of the modified TAILAPPLY instruction is given below:

if Lopcode = TAILAPPLY then
let
C = Lopt,
arg = Lop2
dest = l.op3

<uf Jree> = H(C)

u’ = anew uid from U
Act’ = AddAct(Acl,u #I(u)
Act”, NewEis’ =
Semﬂ'oDest
(SendToDest
(SendToDest
(Act’, NewEis, u’ <uncond,l.op1), C)

u'<uncond.2,opt>, arg)
u’<uncond.3,0p1>, dest)

Act”™, NewEis” = Sendgi'gnal(AttTlNewEis".a;-Wslin&ions)
Uy, = New uid from Up

& &t BHeap(u)~ <u me Type Result>
apd(ntgr(k) = um%\ﬁ MNp(n =¥‘FA
then Md&fimp(ﬂﬂmﬂ.u Lu P
' NewAdeEnto(AdeEntryu k)ﬁT ype.Rewlt))
else BHeap
endif

BHeapl = thu

84 A FORMAL MODEL OF BACKUP AND RECOVERY §4.5

L 2
After first tail recursive call Second recursive call.

v

tatiapply || tasappty.

Computation Tree C /

vl

Compumton TreeC

3
After argument record of second call copted

tailapply

UIJ empty

Figure 19: Recording Tail Recursive Functions

H',BHeap, = if BHeap, = BHeap
then H, BHeap

else Cop)(arg,H.BHeap,)
endif “A

BHeap, = if BHeap,(arg) * notcopied
- then AddBHeap(BHeapz,u u.empty,;aﬂapﬁy arg) -

elseif 3 Uyt SE BIfeap(u M My
then let AdcEntry*= A@Emv{{ }'““ad #)
B
AddBHeap(BHeap2 new (u MaEm:y tallapply arg)
endlcet

clse BHeap2

- §45 A FORMAL MODEL OF BACKUP AND RECOVERY Togs

' endif

in

{Act™,

H’,

NewEis™

Envw,

<Log,BHeap3,BEnv>
endlet

endif

. R SPI

The backup heap is modified in three steps by the TAILAPPLY operator In the first step,
the ADE of the activation which initially mg{annaud {@l mcurswg ﬁmqucm is modified to
have its AdeEntry field neference: the:activation: MMW for this new application.
This new descriptor has its AdeEntry field initialized to reféfénce the, ADE of its caller. If no
such ADE exists, then no change is made. In the next step, the argument record is placed on the
backup heap. If the copy operation was successful, tben! in mé ﬂh{d step, the AdeEntry field of
the newly created descriptor is set to cmpty since thq,mefy pmoedure can use the argument
record directly during the restoration of the system state. If the stééiéture was not copied, then a
reference in the AdeEntry component of She new qet{ygﬁqa is set to s caller Ade. This allows us
to still reference previous activations of the tml menm fum ‘until the argument record is
finally copied. o

45.7 The Return Operator

One of the important featuresof our Wﬂgdrithm is that results of activations are
recorded on the computation tree. This. s the pﬁmafy mmns of reducing reexecution time of
volatile shell commands. The RETURN, operatar. mlmmts the result of an activation to the
backup heap. The retum value Jif it is a VIM sribeture will, in most cases, contain early

completion elements. The SET operator is responsible, in thesa §§ﬁ; 1stances, for ensuring that

ke

the structure does finally get copied. If the return value i is copaed thesk all ADE’s referenced
from this descriptor are removed from the backup state. This has the effect of ptuning the
computation trce. Because ADE's can be removed in this manner, it may be the case that when
the RETURN instruction executes, there maybe no ADE associated with its activation since a
return instruction in a parent activation may have placed its result onihe bachlip‘ﬁeap In this
case, no action on the backup state is required by the instruction. The modlf' od dcﬁmmn of the

instruction is given below:

R R TRy SR R W S R R i e PR T T

A FORMAL MODEL OF BACKUP AND RECOVERY

- §45

ifopcode = RETURN then
let
DL = H(lopt) % the list of return addresses
u, = DL(I) % uid of the calling activation

targets = GetDes{ H,DL(2))
Val = lop2, % the value to be returned

Act', NewEis" = SendValue(Act,NewEis,u , targets, val)
Act”, NewEis”, = Sendchnal(Act NewEts uF A,destinatlons)

Ade = <u AdeEnvy,Type,Result)

BHeap, = if 3u, st. BHeap(u;) = Ade R
MMH«K I{eap,ubﬂur lAdeEzmy.mlua VaI))
else BHeap ‘ ;

endif

H',BHeap, = if Val €Uy
then Copy(Val H’ BHeap')
else H,Bikapl o
endif

H",BHeap, —if3u st BHeap -—Ade
themf BH mpg Va[) =
then H' Heapz
else let
Ref {nl AdeEntrXn)is deﬁned}
., = kelements of Ref -
i'Tmry RAdeEntr)(

(RAMmmd?Emﬁh"),.‘ ",
NewAde = dumMEw m;yao x
in
HZAddBHéﬁp(BHehp;,uMmAde)
endif
else H,BHeap
endif
in
{Act”,
H',
Newlis”
Enw,
<Log.BHeap,, BEnvy>
endlet:

endif

§4.5 A FORMAL MODEL OF BACKUP AND RECOVERY 87

The backup heap is updated in three steps by the RETURN instruction. The first step
determines if an activation descriptor for the cutrent activation exists e if this activation has an
ADE which is part of some computation tree.. - If s0; the type of this activation-descriptor is
changed to alue indicating that a result has been created dnd-the retistn value is writtet ifto the
- result field of that ADE. If the return value.is-a'structire; ther we Initibte a Copy operation to
place this structure on the backup heap. - If the stractiire # Fodlj ‘copled because it contins no
early completion elements or if the result was a scalar value,:then dll-4DE's referenced from this
descriptor are removed from the backup. heap, -effectively -pruning. the computation tree as
discussed earlier. If, on the other hand, the result was a structure containé ezirly completion
structures, it is the responsibility of the SET mstrucuon to perform the pruning of the
computation tree. ‘

4.5.8 Stream Operations

There are two operations which manipulate stream actnvanon dwcnptors on backup heap:
the SETSUSP instruction and the STREAMTAIL mstructton. Thﬁe operators are responsible for
recording the creation of new stream e ts and " arg\ment records of activations to
allow the recovery procedures to reconstruct the stream image amdl to permit demand driven
evaluation of those elements not recorded. s

4.5.8.1 The Suspension Operator

As we had d&scnbed carlier, the SEI‘SUSP operator needs to be altered to record the
production of streany elemems on mc bukup heap. Cm'll o vour utgenthm is the use of a
stream coordinator record which contains the element produced by a stream producer activation
and the argument record to the STREAMTAIL instruction used 1o initi e.the-nextactivation-of the
producer. When a new stream activation is instantioted, a-new-4DE-s erested for it - Untike the
case with the APPLY operator, however, ADEs created. by the STREAMTALL instruetion, are
accessed through the stream coordinator record. The link field-in-the-coordinator-record-is used
to link together all stream activation descriptors in a chain mirrting ’d\conIStrucﬁon of the
stream on the VimState. The SETSUSP instruction is responsible for indtdajly. creatmg the
coordinator record and for linking the clements in the backup stream“nﬂage thn the
STREAMTAIL instruction exccutcs, it initiatcs the copy operation for the argumcm rccord of the

88 A FORMAL MODEL OF BACKUP:AND RECOVERY §4.5

new activation being instantiated. In addition, it sets the link field in the coordinator record of
its corresponding ADE to that of the new stream producer activation.

The SETSUSP operator takes as input the record nepresenting the new stream element. It
updates the ADE associated with. this activation to type stream and constructs a new stream
. coordinator which is referenced from the Result of this. desotiptor. It then initiates the: copy
operation for this stream element. Each new invocation: of tlie stream: producer causes a new
ADE o be constructed, with the link field in the coordinator of the:previous activation set to this
new ADE. In Fig, 20, we illustrate the effect of the SETSLISP instruction-on the backup heap.

Computation tree
rooted at this activation

Afiera SETSUSP operator in activation with uid u executes.
and stream element recorded, ' o

u stream

undef

Figure 20: The Effect of the setsuse Instruction on the Backup Heap

The formal definition of the SETSUSP operator is given below:

if /opcode = SETSUSP then

let
u = lopt
R = H(u)
S= lop2

i= lop3

8§45

- H; BHM FER(d)€

foap, %MB#Q@I SRR

' H'BHeap, = 3 u, st. BHeapy(u i

endlet
endif

A FORMAL MOREL OF BACKUR ANDAEEOVERY

Act’, NewEis' = SendSigna Act, Nm@%mmm

YVEN '
R(V) Rﬂv)ifvﬂf e AnT TR UV

= Machusp((u ,) oth
strecord = <RC1Y, umidkd m‘i&ﬁ ryuient Fecbbd anid ik noiknown yet.

PRTILE SR R E T A PO R T IER) B

th?!}c ; -H;‘Bﬂm) GNP
clse . eap |

= anewuidfrom

bl me 11 GRAZ o

thell B AifB)
else H,BHeap
endif

in
iereECQMR(})f o)
C then €dolf; R MR SO
ngﬂ‘.‘&m, ,

bt <Xcl“,NéWEls““ Senmné*m i‘.N"’“‘é‘ir ?&mml t.ﬁignabsagmt)

G8TE a2l of basesn ol

BTl RN S TR TS
Sdt,
R
NewBlyw,
RV
<Log, BHaapg. BEnv)
et -

.....

. - B R PRANE : '.k<,,,’vi4u' k1
w conc e, Bel oo D 50 €
i e n NN S S T T K E A W FORES I A SO T3S & i

B 153 bok o tes P g igmeetie oo

B R VP,

89

B 3535 FrATE S AFF S - SRS iE

There are three major tasks that the SETSUSP operator is responslbI? fm; in u&e update of

the backup heap. The first is the construction of the strcam coordmanpreeargs It crcates a
record. whose first component is the Vigu#: OFWMWW Wkt ERbfirient, 4nd the second
and third components arc given valuc, undef. This sccond mmgw to hold mp,value of the
argument rccord but may only be defined when thc STREAMTAIL instruction in this activation

%9 A FORMAL MODEL OF BACKUP AND RECOVERY §4.5

executes. The third component holds the link to the ADE of the next activation of the stream
producer and can also only be set when the STREAMTAIL operator executes. The second task is
the copying of the value component of the_stream record. Recall that our definition of a non-
empty stream element is a record of two f' elds, the first bemg the element itself and the second
holding the suspension to the rest of the stream. The backup faelhty aeed only copy the first
element of the record since the link field to the next su;mm element can be set by the recovery
procedure when the stream is reconstructed. The thlrd major t& that the operator performs is
the updating of the activation descriptor entry associated with the stream producer. It changes
the type field of the ADE to stream. and. updates the W'm refefence the new stream
coordinator record. We next examine how the STREAMTALL instruction needs to be modified to
maintain a consxstent and up-to- date 1mage of: stream pmducﬁon. | ‘

4.5.8.2 The StreamTail Operator

The STREAMTAIL instruction operates in eonjuncuon thh the SETSUSP operator in
maintaining the stream coordinator records and activation dwcnptom. ‘When this instruction
executes, it initiates the transfer of the argument record passed as: ifs second argument onto the
backup heap. The stream coordinator corresponding to this acuvatlon is. updated to reference
this argument record. If both the value field and the argument-récerd are fully copied, then all
subordinate ADE’s can be removed from the backup heap. In this sense, the stream value and
argument record passed to the STREAMTAIL instruction constitute the result value of this
activation and just as the computation tree is pruned by the RETURN instruction when the return
value is placed on the backup heap, we perform the same action hu'ewhen both the stream value
and argument record are safely recorded. Like the TAILAPPLY mstrucnon STREAMTAIL is also
responsible for creating a new activation descriptor. The type of this ApE is set to stream and
the link field in the current stream activation record is set to the uid of this descriptor. We give
the formal definition of the STREAMTAIL instruction below:

if Jopcode = STREAMTAIL then

let
C =lopt, .
arg = 1.0p2 ' ' .

dest = 1.0p3 % dest is a field in a stream record

<uffree> = H(C)

- AFORMAL MODEL OF BACKUFANDRECOVERY

- u’-= anew uid from U-: S
Act’ = AddAcy(Actu’ ’f(u)
Act”, NewKis" = .. - :
SendToDest
- ‘(SéndTbD'm
- {SendToDest:
(Act, NewEmu,(“ﬂmM}J,opI) C’)
w Runcond,2 0p1>, arg)

u <Wbﬂ"m
A NewEis = SendSlgnaKAct NewEIs. W{jons)

o -—mwwdmu,
nm = <u ,cmpty,strmm,undej)
BHeap, = AddBHmp(BHeap,uMumde)

- H BHe@z oparg. H.BHeqy l

el HBHexp

E

H’ BHeap4—if3u s.t. w&&ﬁ)p‘6<) o
W&’ ¢ ‘ I ,

iy mamguw IR ¢

A3 y:) ,
M & Uy 5t BHeakug s

}.a% tﬁg *?M dameninof Aef:
niry =
i Mﬁy W

ﬂ*mmmg Mmr‘y’tstmm a)

bt pouln b 'ﬁ i AT R

| enm
°‘“” B"”"A”z S irer S g e AR e v st
éﬁeﬁﬁﬂﬁup (TR LTETELE SN I S VL :
ws e SRS SV IO S B et

in

K Aet™, ' : '
H™, T T N € T L BRCH I O T
Newlis S o . Sl et Gty o I
Em,’)’ o T TR SRS SR SRR TS BINTS T LI

(MWWSJBE#»

écndlf

S TR R N BB

¢={n€lmwmsmy Beite oot o

91

92 A FORMAL MODEL OF BACKUP AND RECOYERY - §45

There are four steps that the STREAMTAIL instruction follows in updatmg the backup heap.
The first step is the construction of the activation descriptor for the g)ew strqam activation to be
instantiated. In the next step, the instruction mlls the Copy fumn to-transfer the argument
record to the backup heap. In the third: étep’ tﬁe"i’grggm rghnator associated with this
activation is updated to have its argument record ufmcqﬂmmm Finally, the instruction
checks to see if both the stream element and the arggl;n]ent record have been copied, and if so,

removes the subordinate ADE’s frém the backup heap. We i have avmded dmcnbmg the removal
of argument records of old stream coordmauor records ﬁnﬂﬁﬁﬁ"ﬂ!é pmamion

4.5.9 The Set Operator

The operation of the SET mstrucuon is alsa r mtbmlauon on the backup
heap. A structure contammg an early omp ” m@ﬁmm argument record to
a TAILAPPLY instruction or maybe pert: ofd M&eegdofﬁf activation. In section 4.3, we
argued that such a structure should augment the p %only when it and all of its
substructures are fully defined ie. when thcy contain no early comp}edon structures. If the early
completion queue in the ee-strwctire being set corita ‘ e : %ﬁ&m it means that this
field is part of some structure WMM muwm the backup heap. In fact, because
elements on the heap can' be shared, the Structife ¢ /
many structures, some o(whom. peed. 40, be: sopied -to. ,hpckup heap. The SET instruction
examines each of these structtirés: w see if lﬁere are q‘} hrly completion structures in them

£ xt

which still need to get set. Those stmcmm‘ b 'J hare,fully deﬁned are copned

_ The SET. msuuctmalm examines: thoss activation ﬂescnpmrs or stream coordinators that

have a reference to any of those structures that become ?{?ﬁ‘g@y because of its execution, If,
for example, there is a value or tailapply Ade whose resulfinld references a structure that
becomes fully defined because of the SET instruction, then, as was'Hifife by the RETURN and
TAILAPPLY instructions, all references to activation descriptors from the AdeEntry. oqmponent of
the associated ADE can be removed. Similarly, if the reference to a fully deTm:d structure
emanates from a stream coordinator, then the SET operator must check to see ir Lhe AdeEntry list
of the associated stream activation descriptor can be reset usmgdham;u,guussed above.

The instruction is also responsible for removing a log entry if the element being seﬁs part of a

A I SN o o7 1 5 B SR R T R e OO L

< S R RN Y) T A YRR A X e ST

§4.5 A FORMAL MODEL OF BACKUP AND'RECOVERY 93

structure to-be-bound in an environment. - We give the formal definition of the instruction - - -
below: o

if Zopcode = SET then
let
u = lLopt
R = H(w)
S= lop2
x = l.op3
u'= H(R())

VvEN

R()=RWify=f
= x otherwise

Act’, NewEis" = SendSignaK Act,NewEis,up, A.destlna?loi!i}
H’ = NewHeap(H, u, R")

"Parent = { upl u” € Step(w)}
“1"‘2""’“1; = kcqmpogentg pf lfqrgn; .

tben Copy(ul. it ar }
Copu,..., = L
oty ﬂsm i
elseH BHegp ; O P,
entlif ‘\)
BHeap = i£3u ,s.t.Blieqpl =< ﬁTm
. then et ke - {; | ﬁ)det:m%)sdqﬁm} '>

W&ﬂMWdMEﬂ&n}mn‘»}
in if Type = value V Type = M
. then m::#;;p(u) * W
t

o

o Dk HE TR

Mgﬂmm!slf’-‘(ﬂpﬂmﬂy T_}”Jl))
else BHeapl
endifl :
elscil Type = streams:: = - il
then let <valarg. Imk) BHeap(u) :
i Gif val. 2 «-\(mel) ”MM
A BHeaﬂ(a;x)* tcopied

R SR P

94 AFORMAL MODEL OF BACKUPAND RECOVERY - §4.5

Addﬂwﬂapl;ub,(zu g AdeEntry’ Type U))

else H”,
BHea
et
~ else H,BHeap
endif
endlet
else BHeap
endif
NewLog = CheckLog(Log, Parent)
in
{Act’,
H,
NewEis" U H(u)
Env),
{NewLog, BHeap.,, BEnv>
endlet e%
endif

Because objects on the heap can be shared the reoord whose ﬁeld is being set may be a
substructure of several objects. The set Parent denotes tﬂl ﬁgmﬁxese!t ctores. Recall that
the auxiliary function Step when given the uid of a& (\ ’pﬁ%ém structure returns the set of
all uids associated with structures which-have ipgm w&! heap to this ec-structure. If the flag,
back, is found in the early completion queue, the m&'ﬁaﬁh ca‘&% ;he Copy function to attempt
to copy all those structures whose utd s are in Pareru Thls funcnon will only copy those
structures which do not eonm any ’ “’*Y m| . A it :@ : }'ﬂtﬁackup pr returned

from the calls to Copy will canh:gajl;hmgnmms mferqugd from Parent which were able to
be copied. becauumeymmmutmdmy

T

If the activation descnptor feferencing a. cbpied striimte was of type value or tailapply,
then the subtree rooted at the ADE is removed. lf on the other hand, this structure was
referenced from "a stream coordinator: Techid, the: ifistruction removes the subtree of the
corresponding stream activation descriptor i’ bolk Lﬁe value and argument field in the
coordinator have been oompletdy defined: L

We also introduce one: otﬁer auxmary ﬁmcnon CﬁeckLog Some of the structures in the
Parent set maybe values which are to be bound in the uscr cnvironment. Among these

T e E N N T o N s R St Gk e e T

§4.5 A FORMAL MODEL OF BACKUP AND RECOVERY 95

structures, there maybe some which ‘are sow' fully. dofined a8 a-result of executing the SET
operation and are placed on the the environment jmage on the-backup :state.. These structures
.~ are the result values of active:computations. Thess compirations are ropricsented-on the-backup
“heap as computation records which are: referenced :froms the wnteies'in the command log. The
function CheckLog removes these log entries and returns the new log. =

4.6 Summary

In this chapter we presented the backup and reeovery algonthms for the VIM sy§tem. Our
attention focused on the npresentauon and mampula}ig% %L ggm?putanon reoords wh;gn contain
information about the progress of volatile commands in the system. A computation record is
represented as a directed tree where nodes in the tree denote activations and edges signify
caller/callee relationships. To update a computation record requires altering the semantics of
the APPLY and RETURN instructions. The APPLY operator adds a new node to the tree and the

RETURN operator replaces a node with the result value of its corresponding activation, |

A node in the computation tree is referred to as an activation descriptor entry and embodies
information about an activation in some active computation. There are two basic types of
ADE’s: apply and value, the former used to denote an activation whose result value is not yet
known and the latter designating an activation whose value has been recorded on the backup
heap.

The main disadvantage with this simple scheme is that it is not sufficiently expressive to
handle early completion or stream structures and is inefficient when tail recursive functions are
involved. Early completion is handled by requiring that all ec-elements in a structure be SET
before the structure is copied. Ensuring that such a structure eventually does get copied
necessitated the modification of the SET instruction to update the backup heap when the
structure becomes fully defined. Tail recursive functions are represented on the backup heap
using a special taﬁappty ADE which holds the argument record of the tail recursive activation.
We based the design of the tailapply ADE on the observation that the recovery procedures
could avoid executing intermediate activations of a tail recursive function if the argument
records to the activations of the functions were recorded. During recovery. the function could be
instantiated directly with the argument recorded found on the backup hecap. Finally, we
- introduced a special descriptor to handle stream structures. A stream ADE contains a reference

9% SUMMARY - . ' - §4.6

t0 a stream coordinator record which embodies -inférmation: about ‘& stream activation. In
addition to storing the stream element: produced in: that agtivation; we:also keep the argument

‘record needed (o praduce the next stream element. - The gonstruction: and maintenance of stream

ooordinator records - required modifying. the: operation 'of :the. SETSUSP ‘and STREAMTAIL
instructions.

The algorithms presented in this chapter were developed for a very al;st(act machine in
which such issues as structure orgamzatlon guaranteemg atom:clty of mformanon transfer from

ﬁf;

memory to backup heap, and 1 memory management ofg the b@up h&p wgre not addmsed. In

‘ thehextchapter wedlscussﬂlmm o

¥ 13
@
LR EVH
. ot
Y
L
Tiviyg
R IO
e
i <1
H st
Satargt o
IRk o8
£ sif it
. £5 =
P A e
s!;E ¥ £
{ A
]

LS SG4TSR o e e S TR T e

§50 97
Chapter Five

~Implementatio‘m Issues

In this chapter, we are concemed w1th concrete problems that anse when we attempt to
implement the backup algorithms presented in Chapter Four for the VIM system. These
algorithms were described in the context of an abstract model MR whtch was used as a vehxcle to
rigorously describe their behaviour. Issues whxch were oonvemently hldden in our model will
now have to be more thoroughly addressed. In partieudar, we will focus out attention on how the
Copy function may be implemented. The complexity of the operation arises because of the
representation of structures in cur system. Guaranteeing that the dopy operation will always be
atomic is a non-trivial task given the storage representutionfof. data: structures that VIV uses.
Section 5.3 concentrates on this issue. Section 54 maw Stemge management policy
for stable storage. .

5.1 The Copy Operation)
The copy. operation, as described in Chapter Four, is respoasible for copying a VIM
- structure object 1o the backup heap. An.efficient implementation of this operation is'necessary
. for any practical realization of our backup algorithms. noar abstract mriodel; the copy operation
- was treated as a function which transmitted the success of the dopy back to its catler. The calters
of this function were base language instructions that required resuit values or argument records
to be placed on the backup heap. There isno-concurrency-béeween: the execution of the éatler
- Le. instructions and the Copy function in this model. An instraetion-thit calls the Copy function
. Mmust wait for the copy to be complete before it can’continue exééution, In an actual
implementation, having the interpreter wait for the trasfer of ‘data from memory to stable
storage before beginning execution of the next instruction would' lead to ‘intolerably slow
‘performance. Examination of the formal description of these instructions, however, reveals no
rcason why the transfer of data to stable storage cannot proceed in paralfel with the'execution of
other. instructions. Our approach to implcmenting the backup algorithims is to' consolidate the
“logic” for modifying the backup state into a backup.systém kemel that is responsible for
updating the computation records on backup store and initiating the copy operation to perform
- data transfer to stable storage. Base language instructions invoke: the kernel. passing - as
urgumchts. the type of operation to be performed ie: set. result, tailapply etc. and the necessary

98 THE COPY OPERATION §5.1

operands ie. data structure to be copied. The instructions can then proceed with normaj -

execution without having to wait for any results from the kernel. The responsibility of updating-- - -

the backup state would then be primarily in the :putview of the backup system kernel.
Overlapping execution of base language instructions with transfer of data to and from backup
store makes the backup algorithms presented a much 'movrvle‘ };ﬁ;ﬁtttgractivc solution. If sufficient
concurrency can be exploited in the base language programs, then we conjecture that updating
stable storage should not cause major degradation in syétgm performance

An important requirement of the Copy function is that it be atomic. In database literature,
atomicity is a property of a transaction whose overatl effect is all-or-nothing: either all the
changes made to the data by the transaction happen; or none of the changes happen. Thus, all
transactions appear externally as indivisible operations, - This requirement is essential to support
recoverability of data after hardware failures occur. Atomicity in' VIM is a property of an
activation that refers to the point at which the effects of the activation are perceived: by other
executing activities in the system. It is necessary that the Copy function be atomic because the
effect of its execution ie. the augmenting of backup state information; should bé made vislﬁie to
the recovery procedures only after the entire structure hes been completely copied to backup
store. If a failure were to take place during the middie.of a copy operation, and the function was
. not atomic, the recovery system would see-data in the backup:state:that does riot correspond with
. any data that was present in the Vim state at the time the failure tookplace. ‘Guaranteeing

atomicity is a non-trivial issue for two reasons. First, data structures.in ViM may be arbitrarily

complex; if the structure to be copied represented a node q on the VIM heap, then the entire
- graph rooted at a must also be copied onto the backup heap. ‘The other complexity involved
- with the copy operation is due to-the way data structuros are represented-in VIM. We discuss the
~ Storage organization of the VIM heap in the next section .and thes present our solution to
- guaranteeing atomicity for this aperation,

- 5.2 Storage Organization in Vim

VIM structures have been thus far treated as momolithic entities that are created and
manipulated as a single unit. This represcntation was useful in the presentation of our-backup
and recovery algorithms: but is far removed from the actual representation of structures in our
system. The representation chosen for structures.in ViM is influenced by the organization of
physical memory and the dcsire to have only information needed by the computation be resident

RLPRTA IR e L R D S W A s e b e g ey e

§5.2 STORAGE ORGANIZATION IN VIM 99

in main memory. VIM is based on a hierachically arganized physical memory consisting of main
memory and disk in which information is brought,igte maia.memory only upon demand. To
facilitate the transfer of information between memory and disk, the virtual address space is
partitioned into a number of fixed size pages. The organization of the address space in VIM
differs from oonvemhnal.demangi paged systems, however, in the page size chosen. To avoid
the overhead of unnecessarily paging in unwantéd information, the unit of storage allocation in
VIM is a small page of 24-32 words, known as a chunk. Having a sméll page size is the primary
means of exploiting parallelism in base language programs, In our data flow execution model,
there is no dependency between any two enabled mstructmsaad thus [70 service required by
one instruction does not prohibit the-execution of the other in the intefim period. By having a
high level of concurrency of data transfer between the dlsk and main memory, the processing
unit is seldom expected to be idle waiting for a ‘pending 170 request to be serviced during
program execution. It is expected that, in generai,’ there will be enough enabled instructions
during program execution to make disk access comp.letely‘v transparent.

Because of the small page size used, each chunk helds at most a single object. Complex
structures such as arrays and records are held in a number of chunks. The representation chosen
- for these structures should be sensitive to the applicaﬁve nature of the programming model by

allowing information to be shared between structures whenever possible. One implementation
well suited to our goal of efficient shanng is to represent. VLM strucmres as k-ary trees of chunks
with the leaves of the tree contammg the elements of the stmcm:e and the internal nodes of the
tree containing pointers to other ohunks[l’l} Bweusestmetmesm be complex, leaf chunks
may hold uid’s to other structures in addition to containing scalar values. The choice of a tree
-organization to represent chunks-allows a high degree of sharing-to be-achieved:- For example, to
construct a new version of a structure differing fnom 1ts predecessor in a smgle element, the
system need only construct a new path from the rool of the new structure o the Ieaf chunk whrch
is to hold the new element; all other elements which are stiff cbmmon“to both structures are still
shared between them by having both structures use the same paths to the'commeon Jeaf chunks.
The REPLACE instruction briefly described in Chapter Two, for example Wthh Fetumns a new
version of a record differing from the old version in a single elcment operate&m thls manuer

The address of an element in a structure is specified by a two-tuple <md accesspath) uid
denotes the uid of the structure in the system. The access path is'thé base & réprescntation of the

100 STORAGE ORGANlZAﬁDN"IN VIM

offset of the desired element in the structure, The length of the access path for a given structure

is the height of its VIM tree representation.

Internal chunk cl me height low high . fuf. counts
. . . . ‘
Internal chunk c2 |82 height-1 low’ high' 1
L J e .‘,
.
.
°
k 0 Jow" 1 high" 1
leqf chunk ! - ' - R ; ey
eqf. dl a2 . o . I
T kelements inthis chunk

Figure 21: The Representation ofa Viu stHicture

' Abstractly, we v1ew a chunk asa three tuple:

Chunk Cid X Header x Data
" Header = N~ N

Data = Intcrnal U Leaf
Interngdl = Cid™

Leaf = (U U Scalar)™

Cld the domam of chunk identifiers

§5.2 . STORAGE ORGANIZAHTIONIN VIM 101

The Cid of a chunk is the chunk’s unique identifier and maybe thought of as the virtual address
of the chunk in-the system. It should be noted that the dematn-of ciunk id’s is not related to the
- domain of structure uid's which are used to uniquély identify objects on the ViM heap. ‘The

.. ileader field-in a chunk contains administrative inforination abowut the chunk. In particulat; the

number of references-10.this chunk in thre systerry theheightéf this'unk it the Vim trée, and
- the high and low indicies of the clements. of tire subtioerostotd at:this chunk ure all information
- kept in the header field. if a-chunk has no cutstandirg referomces to it, it 1s placed on a freelist

. and its space may be reused when needed: The tadt companent is the diita bortion of the chtink.
For an internal chunk, this consists. of the €if's-of MM&M i thetree. For a
' or scalar valuc& The size of rhe data pornon 1s some ﬁxed m. The srze of the chunk xs m plusthe
size of the header pomon ‘

Fet a oomplere description of the: WM»@!NMMM& the reader should
see [17]. In the next section,. we.examing the problem of making the-copy: operation atomic.
Structures which are to-be copied from the ViM-dveap oty thé backup heap must be copled
atomically ie, a structure eonsisting: of many: clianks shoull ‘e deemed es being copied only
when all of the chunks which comprise it have ‘beest: transferred onto backiip store- and 'not
- before. In our discussion; we shall refer to a.chunk foundiin main ose as a VM churik and a
 chunk found on backup siore asia backup chuak Weslalt uso e word sructure o refet 0 any

;Vmstrucmmgg. areay.or recond. . R T R R : :

53 Performmg the Copy Operatlou

. When a bese langunge: instruction whiehnee&ww&ie ‘backup-state executes, it
.invokes the backup:system kemel which: maintaing s fofbrinsdion dbbtit' the ' current Status' of
-structures whichare in the process of seing:cbpied; 'Fhe:bemel ks réaponsible for updating the
.computation tree and commantt dog: on:backup-store bbed on Wié tigdviians givert in Chapter
. Four. -When a structure is 40'be-copicd; the kermel colls the Copy fuliction. - This funetion takes
as input the uid of the structurc to be copied and produces as its output an acknoWléﬂgcﬁwht,

copied if the structure was fully ooplcd onto backup store or

. 1 0 s N EIEAL TSR
latter acknowledgcment occurs when a structure (or Any C of rrs substr
complction clemcms Thc b.rckup systcm kcmcl uscs ths acknou; gcsmcm ro dcl.er{nme when
¢ M IS & i] un i

activation dCbCI'lplOI'S should be chn a new lypc and when command lug cntrics can be

k_:pwd lf it could not be. The

removed.

e R O

102 PERFORMING THE COPY OPERATION §5.3

A major complexity in implementing the copy function for the VIM system is due to the
representation of VIM structuses as trees of chunks. For the sake of uniformity and simplicity,
‘structures found on the backup heap will also have the same representation as their counterparts
on the VIM heap ie. trees of chunks. At the start of system operation, all chunks ofi the backup
store will be on a freelist. Whenever a VIM chunk needs to be copied onto: backup store, a
backup. chunk is removed:from the backup freelist and the contents of the ViM chunk are copied
onto it. This approach will remove the need for sophisticated interpretation of the data found on
the backup store by the recovery system. Activation <descriptot entries comiprising acomputauon
record are treated as records which occupy a single chunk, -

To see how the Copy function can be lmplemented let us ﬁrst consnder a s1mple scenario,
Suppose that the function is to transfer a structure whose leaves contam n scalar values onto the
backup heap, where n> m. This structure will be represented on the heap as a tree of chunks.
Let the leaf chunks of the structure be labeled. i/, /2.5 Chearly, these leaf chunks can be
copied onto the backup heap without any preprocessing by:the-copy routine since the leaves
- contain only data. Let b/,b2....j be chuaks-on the fresiist on:the backup store. Then, the-data
found on /7 can be copied onto 4l, that of I2 can be copied:-tod2etc. . After the leaf chunks have
been thus copied, the mutine proceeds with copying the internad chunks as well. Copying an
. internal chunk is a little more complex because. these chunks contain. references to other VIM
chunk id's. The copy routine translates these: refierences to: their appropriate backup - store
equivalents. Since the copy operation is being performed in.a bononwpfaslmn ‘though, all
chunks referenced by an internal chunk would already have been given chunk id’s on the backup
store. If an internal chunk C has references to chunks: ¢/,¢2’.; ,om, then the cdiresponding
- backup chunk has references to b7,2.....bm where bi is the backup:chunk.id corresponding to /i,
- The copy routine updates. the activation descriptor. to-reference this structure only when all
- chunks have been written to backup store. If a failure takes place before the ADE can be
updated, it will appear to the recovery sysiem that ne information about this activation was
recorded by the backup system. Note that all chunks at a given height in the tree can be copied
in parallel.

The copy routine performs a bottom-up breadlh first traversal of the structure. When a
chunk is copied onto backup store. its backup chunk id is rccorded in the header pomon of the

chunk. If the copy routine is |mokcd fater on. to copy a chunk whlch has already bccn copu.d

L T e e e e St S s Y B T T A

§5.3 ‘PERFORMING THE COPY OPERATION 103

on the -backup store, it-can-avoid recopying the chunk by first ‘checking o see if that chunk
- already has a backup chunk id. By sitply recoeding these id's, the same level of sharmg found
on the VIM heap is aehmvedmlhebmhnpheqpas well: ‘ :

In this simple scenario, guaranteemg atomlcny is a falrly easy task because the structure is
not recorded as being copied until the copy funtion transfers all Vlm chunks to the backup hwp
. The situation becomses slightly more. dompiex: when: we:zonsider:the actions which:need to be

. undertaken for copying more complicated:structurey. {ncparticular; the solution: givér above is
~ not sagisfactory for handling sructupes. whase slementsiare thenmseives strictiires .4 :an ARRAY
- of RECORDS. Let us. first.consider the:situation-without:early psmpletion. Suppose that a leaf
- chunk, /i, which is to.be copied contains: references to:other struttures on the heap. It is
. necessary that each of these subordinate structures:must:shemselves be fully copied beforé this
- leaf chunk. is allowed: 10’ be written onto.backug store. Quindetssription.of the copy routine in
. Chapter Four had nmmxﬁﬂwmmmm “When ' all strtettires
- mfereaced from this ehunk have heen copied; then Mhtiwhulem #self be transferred-onto

‘backup store. Because.the routine only: returns 40: its caller wiger sl substructures hive Been

- copied, the copy action is atomic sinee the backmp state willBe! opdated to: scknowledge the

. existence of thig structure.oaly when the top-ievel;copy Toutine completes and returns i result to

_the. kemeh Because- we: are not cansidering .early: compiletion-slemems, the Copy-fiinction' is

- guaranteed o retumn an acknowlsiigment; copied.: No partislly cogled structure can’ ever:be
- referenced by any activation descriptor sinct such: referenoces awmtymby the m&aﬁer the
copy operation is.complete. .

5.3 1 Early Completion o

The presence of early compleuon elements in the leaf chunks of ' structures further
complicates the copy pmcedure In Chapter Four we noted that lt 1s neo&ary for the _backup
“system to be ablé'to detérminé when there 3 are no ﬁxrther early compleuon elements st:ll to be
SET before the backup’ state can 'be updatcd ln our 1mplementauon we can dctermme th:s
mformatmn Lhrough the use of referencc coun(s Every chunk has two refcrence counts
' and the Setcnt is the number of SET mstructnons Stlﬂ pcndmg whlch are to set carly compleuon
elements found in this chunk. The meaning of the refent is the same for an_internal chunk as. it
is for a lcaf chunk. The setent ficld in the header of - m;s.m‘g,l;qmnk is the number of early

B T i R T S Y R SRS R S | B AN e e AT e,

104 PERFORMING THE COPY OPERATION §5.3

. completion elements which need to be set in the tree rooted at this chunk: Thus, the refont field
in the root chunk of a structure holds the total number of references to this' structure and the
setcnt field indicates the total number of early completion elemeérits found ‘within the stractureS.
When an early complenon structure gets SET, the sctcnt ﬁeld in the headers of all chunks on the
path to this element get decremented.

Let us first consider a simipie structure i e one'which does not reference any other structure
on the heap. “.T,o implement the. copy operation:in the presence: of ecarly completion strictures,
~we do the following. When-a: kafachunklwim:wfw;wm ‘z6r0 is encountered by the
.copy procedure; we do not.copy it onto the backupstors.. Instestt; we alloeate a backup churnk id
for this chunk .and-continue examining the other chunks ¥y this tructiure. To inform the SET
operator which will eventuaily ceplace the early.completion eleient found in this chunk that it
- should copy the: chunk oto backup store, the.copy routine stso Ribsels the chunk with the tag
back. At the time the early completion element becomes:defined,: Uve SET opérator will ribte the
fact that this chunk belongs to a structure that is %o be copied to bickup store; It the setent of
- this leaf chunk is zero, the.operator invokes the: backup: systews ketiiel 1o copy this chunk onto
the backup chunk allocated forit. In addition, if there are no outstanding: SET instructions that
are to be executed for this structure, determined by examining the'sstont of the root chunk for
this structure, the kemel -also updates. the: activation desctiptor: o reference this structure
 according to the algorithms given in the last chapter. - Notict thal Sompultation records are only
updated when all elements in a structure are fully: defined and copied onto'the backup heap.
Thus, it will never be the case that activation descriptors are aware of @ieucture: for which not-all
elements are known. Atomicity is still guaranteed even with early oompleuon structures because
a structure becomes a part of a computation record only when no ‘f'urthér ‘ec-cletments “are
referenced from it. ' : T D o

‘We next examine how the backup system should handle early completion structum
belongmg to structum that are components ofa larger structure whlgh is to be copled ‘Whena

: leaf chunk Wthh contains UId s to other structures. :s encoumeréa“by the _copy funcuon. the
setcnt of the root chunk of this subordmate structure must be egu;mmed If it is greater than

zcro, it means lhere are early compleuon e!cmems Wthh sull need 0 be set.in this Structure. As

S 1mis does not include the refcnt or SEICNL of its substructures.

i B T Y 6 A L R e R R, T T e R T

§5.3 PERFORMING THE COPY OPERATION ‘ 108

before, the copy routine is recursively invoked o copy. the chunks found in mié substraeture. It
is necessary that the backup state does not get updated with. the: pasent structure unless all
- subordinate structures of this parent become fully defined. :Our implementation follows closely
with the algorithms given in the last chapter. Every rootchunk of a structure contains a field in
its header, Parent, containing: the uid.of all structures which refereace this structure thatiare to
be copied. ‘This field is-mangaged by the-copy function as it-traverses the heap, Associated with
each uid in the list, we also store the chunk id of thedeaf shuak in'the parent structure from
which the reference emanates. When all early cosapletion-elements are set in a structure that is
to be copied onto backup store, all structures referonced in-its. Parent list are- examined: The
backup state is updated with those structures referenced i :this list which: Hiave become fully
copied. Determining whether a structure has been fully copied mvolves keepmg track of the
nurber of chunks that still need to be r.ransferred and the statusx of its substructures Counters
are used to record this information. Every mot chunk mladdmon to the Parent hst, also
" contains a ToBcCopizd counter mdmtmg the number of dmnks stm to be copied omo backup
" store. When this value becomes zero, the backup state m be updated Every leaf chunk also
contains a counter mdicating the number of substructures whrch nave not yet been fully copred
When this counter reaches zero, the leaf chunk can becopied:onto. backup store and the
ToBeCopied counter can- be decremented. Murh.of the; detaill involved-in implementing the
incrementing and decrementing. of these .counters: is. not: very interesting and is omitted here.
~ The important point to note with: respect (0 eatly completien-is that the backup system kernel is
. Fesponsible, not only far updating the -backup state: with the structure containing: the sarly
completion element being set, but also; for. updmns, the, backup: seate with all. of its ‘parent
structures that need to be copied as well, SIS ER It PR : -

5.4 Storage Management \ 4
... One other implementation detail that deserves .brief. mention.is the manner in which
_ Storage management is handied en stable stare. The organization’ we have chiosen fof stable store
lends itself to a very simple and efficient storage management:stradegy. Recall that stablé storage
is used to hold. transitional dnta represented in the: form: ‘of ‘computation’ records; * Each
computation record embodics the progress of some agtive computation: in e system. When the
result of a computation is recorded on stable store: the associated: computation recorded can be
deleted. Deleted computation records are added onto a freelist of backup chunks. We expect

106 STORAGE MANAGEMENT : §5.4

that the set of quiescient data found on stable store will be periodically written onto tape. After
the transfer, the space occupied by these data items on stable stove cdn be feclaimed. 1t is not
necessary, however, to wait for the transfer of information to tape: beforé: space can be reused on
stable store.. Once the result of a:computation is bowsnd is-an-enviromient, the storage occupied
by the activation descriptor entries of the corresporiding compintation’ record’carr be réused. We
use a variant of a mark and-sweep garbage collection polity w reckdini stnictures referenced from

- activation descriptor entries in'a compuitation: record-that cin Be reclitimed. Ofice the result of a

_computation is known andis copied omto the backup ‘store,-all-ehunks in that structure are
‘marked. - We can then:reclaim.all chunks belongmg to' stiuctares referenced fromr ADE’s in that
‘computation that are not marked.,

The storage management pohcy is very s:mple for our syst,em because we can determme
preclsely when data is no longer aoc&es:ble by observmg the djnatnlq of the command log ~—
removal of an item in the log unphes that the assocxateq com,gutwop l:eqordcqn be reclaimed.
Waiting for a computauon to complete before reclalmmg t.he Storage yxt occupics on stable storage
obv1ates the need for mtroducmg a oompllcated sarbm colhcﬁon ﬂpohcy on stable store. .

It may be the case that the value of a computation is redordéd on the backup environment
even before all the: values of the ADE’s in the $ubtroes of e computation are. Since e result
-of the computation has been recorded in the environment the associated computation record can
- be placed on the backup store freekist. - Removing thé eomputition ‘récord, however, necessitates
 taking some. action 1o inform the activations wihbse resiflts wowld-normlly bé tecorded in these
‘ADE's that the computation record: is a0 longer part of thé-backup Neap. To do this, we
maintain a uid entry table which contains referencing-infdemition: for ‘all activations-in the
system. Entries in this table include the uid of the activation, the address of the actnvat:on in
memory and the address of its ADE on backup store and a refer®iéé to a Booledn flag which
indicates whether the compatation record. has.been reclaimed:or ot ' When' the computation
-record. is removed from the backup state, its ‘associated:flag is set'to-tiue and the result value is
.ot copied. . Only the root activation of a.computation dan change this flag. Clearly, this
 operation is outside of the purely functional programming parmdigm thus far used: such resource
managers are. (o be written uging the guardian oommcr{l@ which allows this sort of non-
applicative behaviour to expressed in an applicative seting. ‘

- §60 ' 1
Chapter Six

Conclusron

This thesis has. proposed 3 design for the VM cotnputer system’ which guarantees the
.. security of all online information against loss or cormption as & result of hardware failure. We
- developed - backup procedures -that . are .intended 10, execuste. convurrentdly with : normal

. computation. These procedures record the progress of alk comptitation in a-compact form on a

‘backup: storage medium.. When a compusation completes, -its:resylt is. bound to:some name in
the VIM users’ environment structuse. Once this binding is: added to the backup enviromment
image, the computation record associated with; this computation is_removed from the ‘backup
state. We make no assumption as to the integrity of any:data which survives a failure except: for
data found on the backup medium. The backup medlum cons:sts of two mam devnces tape
* storage used to hold all data bound to 1denuﬂers xn the user envxronment, and stable storage
which contains mformatxon m ‘the form of computauon records about all act:ve computauons in
 the system. When the recovery proeedure 1s mvoked aﬁer a failure 1t ﬁrst restoree the VIM
environment structure using the backup envnronment lmage lt then begms reexecut10n of those
' commands s which were execunng at the time the faxlure occured The txme to reexecute these
commands is greatly reduced because of the mforrnatron kept on the correspondmg computauon
" ~records. Once all commands have been reexecuted, the recovery proeess 1s eomplete and the
(system can accept further oommands from its users. :

6.1 Contributions of the Thesis

The contributions of this thesrs have been two-fold Fnrst, we developed backup and_
recovery algonthms for the ViM system These alsonthms are very dlﬁ'erent from those found i in
more convéfitional systems. The umque features of VIM that requxred a novel approach to
"provnd’mg data security lie in its apphcauve programmmg model and m the use of a umfonn
representation for both data and programs “This homogenclty ellmmaued Lhe need to mamtam
distinction between files and data, thus allowing the backup system to be more closely mtcgra(cd
with the ViM mtcrpreler than would orherwnse be possnble The use of‘ an appllcauve base
language made it possuble to have a snmple orgamzauon of backup store because data in such a
model never changes its value, We cxploned the exprcsswc power of thc base I.mgunge

instructions by distributing the logic of our ulgonthms among the satient base language

o s e AR R e Bt e

108 CONTRIBUTIONS OF THE THESIS §6.1

instructions. The APPLY operator, responsnble fo; creating a new function activation, was
augmented to append to the appropriate computanon record a new activation descriptor
corresponding to the activation to be instantiated,, Similar enhancements were made to the
RETURN operator and various structure o'peratorzs‘ as well. By embedding these algorithms within
the interpreter itself, it was possible to achieve a measure of dsta security far greater than what is
possible in conventional systems. In addition, such-a design makes the operation of the backup
-~ facility completely transparent to users of the system. Similarly, once the recovery procedures
restore the system state after a failure, subsequent computations will not be able to determine
that a failure occurred by examining the restored state. The: fact that the base language is
applicative also freed us from having to introduce comiplicated backup storage policies. Data
. once written onto to backup store is never updated; ‘it is sither ga!bafgeeolleeted or bound toa
symbolic name in the backup environment.

In order to ngorously specnfy these algonthms, we developed a fonnal operatmnal model
of system behaviour for VIM. ThlS model views VIM as.a state transmon system w:th t.he M
interpreter being a state transmon funcnon We prcsented the deﬁmtlons of some of the more
mterestmg base language mstructnons in this model usmg a vanant of the funcnonal language
VIMVAL. This basic model was later enhanced to mcorporate the backup system as well. The
backup state was treated as a separate component of VIM The mterpreter was now treated as a
| state transition system on a two-tuple consisting of a VlM state and a backup state. Beyond bemg
an important tool for expressing our algonthms, thls model also allowed us to give a formal
proof of correctness of our algorithms (presented in the Appendlx)

6.2 Future Research

One important area of investigation that was not addressed in thxs thesns is the issue of
correctly preserving the state of non-determinate computatxons. A non- detenmnate oomputanon
is one which may exhibit different beha\nours for the same mputs. Thxs type of computation
contrasts with determinate comput.mons for which repeawblc behavnour is guaranteed A major
assumption made in this thesis was that all computzmon was detcrmmate This allowed us to
design a recovery system which can reexccute oomputauons whose results are not recorded on
the backup store by prescrving the arguments to the computaﬂon Such a design is possible
because any computation in this model is guamnlecd to produce the same rcsult when presented

with the same inputs. The basic non- determinate operator in lhc ViM basc language is the

§6.2 FUTURE RESEARCH 109

MERGE instruction. The merge operator is enabled whenever an input arrives on either of its two
input arcs. Thus, the behaviour of this operator is characterized by the arrival order of its inputs.
Such behaviour is inherently non-determinate.

An important area of future research is augmenting the design proposed in this thesis to
handle non-determinate computation. The changes made must take into consideration the fact
that non-determinate computations cannot simply be reexecuted by the recovery system since
there is a multiplicity of output behaviours possible. Reexecuting such a computation with the
same inputs is, therefore, not guaranteed to produce the identical outputs.

Most transaction systems such as airline reservations, banking, etc. are based on non-
determinate computation. Such systems also typically have very high data security requirements.
Enhancing the VIM backup and recovery system to support non-determinate computation would
be an important step in understanding how highly secure transaction systems can be written in
an applicative computer system, Issues of atomicity and indivisibility of transactions could then
be addressed in this context.

It would also be a challenging task to map the abstract specification of the algorithms given
in Chapter 4 into an efficient implementation on the VM system. , Realization of these
algorithms will require optimizations not addressed in the thesis. Such optimizations include
minimizing the amount of copying done to stable storage and efficiently reclaiming storage on
the backup medium. These problems which were hidden in our abstract model were briefly
addressed in Chapter 5. A truly viable implementauon will need to confront these issues in
much greater detail.

110 §A.0

. §A.0 | 11
Appendix A

Proof of Correctness |

In the previous chapters, we have developed a formzil model of the VIM system to descnbe
our backup and recovery algorithms. Beyond being a convenfent véNitte in' Which to precisely
state our algorithms, the formal model.can alse be-used Y provitig dié-correctness of dur design.
- Intuitively, demonstrating the correctniess of thé backupy aitd“réovery procedures involves
showing that the recovery procedures do not restre-in ineotraft stite Baséd o' the information
kept on backup store by the: backup procedurés.- | The compiitations which execute dfter the
- Tecovery: procedures complete should not: be able to-divcerti the fadt-tat'a faflure hiad eccurred

~ before. Thus, the state ofthe systém observed by dny-comjsiititién’ instantiated ‘after recovery
from failure must be equivalent to the observable state which #kisted prior to'the faitare. In
VM, computations observe the effects of other computations through the- YiM environment
structure. It s, therefare, necssary that the enmmmmwd by the secovery system
be equivalent to the envﬁ'onment whxch eﬂs&d before ﬂ!ﬁ fmﬁil’? we Present a formal
definition of environment eqmvalence later in thts appendxx To establlsh that environment
equivalence is preserved, we examine the state transitiops,praduced, by -the system when
interpreting the command log:daring recovery and odinpatre it w&hthe aate transmons that
result when interpreting the same log when no backup state mfonnauon is used " To show that
environment equivalence is preserved across the two 0 transition sequences, we use the fact that no
instruction is executed dunng the veoovery process that-would nat alsQ have been executed by
the VIM mterpreter evaluatmg the same command when.no. m@mamn on the backup state is
utilized. Our proof is as follows We first examine dweu(e ereafed. by executing a particular
instruction in the transition sequence of the recovery process. We then demonstrate that this
-~ environment is equivalent to the enviroriment component of the e credted by executing the
“equivalent instruction under horimal interpretation. Using a ﬁfﬂp&imfucﬂbhafgumem. we then
- show that the environment component’ of the firial’ recovery state is eqmvalem 10 ‘the
environment component that would have resulted iF no Eitlire had mﬁeh ptace

In the following secuon& we fonnal,ly :de,ﬁ‘ne,gur qo;upqs; 9£ tmnsnm sequence and
equivalence. We then prove our main thcorem: The system state after the recovery process
completes is equivalent to the statc that would have ‘resuited H'Iadflio‘fu“ul‘é‘ taken place. This

12 " §A0

implies that it is not possible for any tomputation to observe the effects of a failure once the

recovery procedures complete.

A.1 Definitions and Terminology

State Transntlon Sequences o

Because we are considering VIM to be adetermim systens, we.can model the execution of
~ .. aprogram as a sequences of states. The Execute function which when given a current state and
. enabled instruction returms the state created; by executing e instruetion. The operation of some
of the base language instructions are different depending upon: whether the system is executing
using the normal or recoyery interpreter, In our proof, we:shall: be concerned with examining
state transition sequences constructed by the respective interppeters on the command stream

. preserved on the backup log,

Definition 1: The System State is a two-tuple, < V:mState, BackupState) where
VimSsate and - BackupSeate were defined: in: Chapter-Four The recovery command
stream for a system stale S is a sequence of commands; <c,.f:,. ws€)? Where-
BaclcupState = <Log,BHeap,BEnv) and Log(l) cormmmd

‘ Definition 2: A state transition: refation, 1-,' is a relation on states. Let S =
<Act,H EIS,Emv> and T = <Act',H ,EIS.Env’>. Then, § b= Tif3 (i) € EIS st
Execu(e(S,(u,I)) =T

‘Definition 3; A state transition sequence, <S S_, ,Sk> is a sequence of states
such that S, =5, for LS Fg k1.~

" For notational convemence we shall somenmee denote a state transmon
.sequence<S S s,ms,*-s T ,

: The recovery process is dmded into two phases, . In the ﬁm ;phase, the contents of the
backup environment are restored onto the ViM, eavironment. structure. Once this is done, the
command log is reexecuted: during this reexecution phase, backup. information is used to avoid
unnecessary recomputation. The state of the system after the first ph,;se completes is called the
initial recovery state. The heap in the initial recovery state contams all structures referenced from

- environment entrics in the backup cnvnronmem image.

Definition 4: Lt S bc a VIM state such thai Fallure (S) = true, Lgt B the
backup state corrc.spundlm, o §,. be <Log, Blieap.BEny>.

- §A1 DEFINITIONS AND TERMINOLOGY B TE

Then, the initial recovery state forS is the state: <{} H, {} Env,)where

H(u) = if 3 name s.1. BEnv(name) = uand BHeap (u) = then V.
: 1f3Ru,ms.t(H ‘u)*‘R)A

(R(m)«x WAL Hazp(u)) then:w
= undef otherwise,

Envy = BEny - R

Unlike instructions exequied during Rormak gperation, instmuctions executed during the
recovery process use information found inthe mm Fhe M'PLY M&uénon for example,
‘ avoids instantiation of riew ‘activations i thq V£ue *‘or }m t ’Mw \gtm:h pxeylously executed
has been recorded on backup store. The oommanlﬁogxfénnd &mlk‘bﬁkup State is a sequence
of commands whose final results have not yet beéﬁ“ﬁbt,rgcorded ’in fhe bgckup environment
structure When a faxlure occum, the recovery system reexecum the oommands found on the
log, using backup state iﬂformanon it has accumulawd abouf fﬂe cgmpmnom To.demonstrate
that the recovery pm mterprets thns mformanon correct‘l); ixe %xgmngg how the VIM
Interpreter would ‘execute these same comman,ds lf m baclzyps%eaéfommmn isused. The
transition sequences produced by the respective mterprete;s ls known a8, a transition sequence
pair. If the recovery system interprets the mfomnﬁonM@ onwﬁc hﬁnnpstate correctly, it
follows that the final stnm in ﬂie th tnnsnﬁonﬁﬁ f“‘ i must haw.‘ emQValent environment

components. 4 o . f’ 5

Deﬁmtion 5: Let R be the reoovery command stream fot stateS and let STS =

.S be the state transition sequence #mdavad duriog the-evaluation of the

ol i R. S, <{}.{}.BEnv). Then, S, is the initial recovery state and S,is the

ideal recovery st for-R. - EVS i p, m#mw VP tyilled the slondand
transition:sequense for systewstale §. - ,

Let R be the recovery command stream for system state S and let RTS =
<R|.R,....R > be the state transition scquence produceiﬁ%&hng the'evaluation of the
call: Recovert(<Log,BHeap, BEnv). Then,: Ri4"@W°ihitdl Tebovery staté and R . is

- the final recovery state-for R.. ElS}. is ¢, m«mw k'rs ﬁ»caued fhe“' recovery
transition sequence for system state g

Definition 6: A sequence pair for a sysiem state. S.’is’a two-tuple: <RTS.STS
‘where RTS = <R_.R,..... -RBp and STS = <$3.5)emuSy2: 4% & where R, aadiSk are the
final recovery statc and idcal recovery state or thc gommand strcam resp = Sl,
the initial recovery stite for system stiite S, :

114 DEFINITIONS AND TERMINQLOGY -§A1

State Equivalence ' o

In the following definition, we shall use the symbol, =, to denote the equivalence relation
between corresponding state components in. dxfferent‘,saates Thus, if Env and Envj are two
environments in states S and S’, then Emr, = Em if-these Menwmnments are equivalent.

Definition 7: Instruction Equivalence: Let FA and FA be two activities. 'Ihen
FA(m) = FA(n) for mn € N if*

eFA(m).opcode = FA'(n). opcodz
oV opnum € (opnumi opﬁumz,dpmmaj FA(m) opnum FA‘(n) opnum if
FA(m).opnum ang-F A(n).opnum € Scalar. -

oV opnum € {opnumi ,opnumz.opnumS) FA(m) agnum = FA (n) opnum if
- FA(m).opnum aid FA'(n).opnum € U.”

oFA(m)opent = FA{n)opons.

o FA(m). smnt = FA(n). stg;;m:

oV (dc,k opnum) € FA(:) dzst 3 (dc I opnum) in FA‘(]) dest s.l. FA(k) = FA (I)

Activity Equivalence Two ACthltles FA and FA ‘are eqmvalent 1f for every meg.
N, FA(m) = FA(m).

Object Equivalence Let H and H be}two heaps deﬁned such that H[u) =y
and Hfu) = vfor 4#€ U. Then, varf :

oV = undef, v'= undef.

ev € Scalar, then v'€ Scalavand v = v', ‘

ov € Record, then v’€ Record and i) = v{i), for every i € N.

ov € ECQ, then v'€ ECQ and v (u DEY 3 (uj,m) Evst(u.)= (ufm)

oy € SUSP, v'€ SUSP st if v = (u_,m) and v' = (u), Act(um)(m)
Act(u,Xn) OR H{() € Record and v'e sUsp and 3 tate S where 5,5, and
H (v} = H(».

ov€ U thenveUand H(V) = va’).

Environment Equivalence: Let Env and Envj be two environments in states Sl
and S, Then, Env, and Env are equnvalent if for every n; st Enxfn) = v3n,st
Env(nz)- v'where if

ov-—undefv—undef

oy € Scalar, then v'€ Scalarand v = v’,

ov € U, then v€ Uand H(v) = H(v') H, zde aretheheapmponentsm
states S andS resp.

Containment and Completencss
In order to show that environment equtvalence is pr&erved bctween states in the recovery
transition sequence and the standard transition sequence, we. wall feed to examine the effect of

B e T e S LI U D (L e AR

§A.l DEFINITIONS AND TERMINOLOGY 115

executing equivaledt instructions in the two states. Thus, it is necessary that for every enabled
instruction in the recovery state, there be an equwalent mstrucuon in the corresponding VIM
- state. This property is called comammcnt ' : o
Definition 8 Let <RTS, STS> be a sequence pmr fbr a system state, S, where R

is an element of RTS and Sj is an element of STS AR fspmqiaad in§, if V(um) €
EIS I(u'\n) € EIS st FA(m) = Fl (n) whe;e 4ct[u) A an.d Act,(u = FA’,

Definition 9: H(RTSSkaawqumpdrmfs&mmm S, andR isan
element of RTS and §,is an element of STS, then-R; & Wewns if Env, = Env
andR 1soontamedm.’§' o T ,

Computation Sets : S
In Chapter 4, we introtuced the computation t.reé as an abstr j’,"on to d&scnbe the

instantiation of function acuvauons ina mputanon m ﬁeﬂwm m dcﬁmmns formalize
this idea. AR SR

.Definition 18: Let an activation a he mmnuad an state S ’men, the
computation setCofalsdeﬁnedasfoﬂews. SRR ;
ea€C.)

eAny activation instantiated from an acnvanon in the computauon set C is also
in C .

‘That is, the eomputauon set ofan activation: (memme tmnsiuve closure over all
acnvations in the computation tree motedat(a,n) Y

Definition 11: A computation sequence CS for an actwauon instantiated in state

- S, with computation: set C.is a state transition: soquence; XS5 oS> Where k is
the smallest integer such that none of 518, , ¥ ,MEIS*“ wansmctms from

activities found in C.

- Definition 12: A value, v € Scalar U ST, sacomlbbm astate (ActH EIS.Env>

if either: ‘ oo

eThere is some activity A4 s.t. A(n) I and ,l.ppp;um = v for opnum €
{op1.op2.0p3}. and Acxu) = s

oThere is some activity 4 st A(x). = l and I .oprum ="u for opnum €
{op1.0p2 0p3}. Acku) = Aand H(w) = v. s '

eThere is some v'€ Record s.t. v'(m) =Vvor v (in) = u whcrc"H‘(u) = yand v’is
accessible.

116 DEFINITIONS AND TERMINOLOGY §A.1

A.2 Proof of Correctness

Lemma 1: Let R, = <Act H,EIS, »Env> be an element of RTS and S, =
<Act H EIS,Env> be an element of STS. Suppose& 4= R, ,ion an enabled instruction, (u,),
where Act(u{ A and FA(i).opcode # APPLY. Then if R 1s oomplete wrt SJ, 3 a state S st

Sjl—S and R, woomplexewnst

Proof: To prove the lemma we need tQ show that env;ronmem equivalence and
containment holds between R, , and sorne state ‘Sk for any instruction whose opcode is not
APPLY. We prove the lemma éy examining the different classes of instructions defined in our
model and show that the lemma. holds aver each of these classes. If-R is:complete wrt Sf then,
by the property of containment, there exists anfmmmn, {u ‘NE EIS = ().

1. Scalar Operations The effect of executing a scalar operauon does not alter the
environment and so, both environments in R, ,and Sj remain equlvalent. By
definition of instruction equivalence, we know that every desunauon de.1,0phumy in
FA(i)dest = some destination, (ch.opnmn) in.Fd m Sipce. the. same scalar
values are sent to equivalent instructions, these destinations remain equivalent.
Thus, equivalent instruetions become:endbled mr%,‘;,m%sﬂ, Hence, R, , is
contained in S e 1 and, so, the lemma holds for scalar

2. Structure Operations: A structure operation performed i in state R, might cause the
new state R, ;:to haveadifferent heap. Noto-that the: ftnent cofitponent does
not change when any structure operation-exécutes. “To se€'that’the Jefma still holds
for these types of instructions, we examine the various structure operations in our
system.

a. CREATE: A create instruction executed in R wnll produce a new structure on
the heap in R, , with uid u, and size n, wnth all elements of the structure
having value undl ef, where n |S the operand to the instruction. The equivalent
instruction in: ££8;: ug}Memmnﬂjwmmhmmm on
theheapin §, , with uid u, and size n.. By piir definiti ﬂ_}qf heap equivalence,

H, , and I-l" . are still equivalent. ' Showing that R 411 is still contained in

S, s 1 follows the same argument as glven abqve.

b, SELECT: Amwmmmwmmaammtmm

either a scalar or. structute value, ant early mpumﬁmmx‘or ‘2 wspension
We examine each of these in turn;

i. value: There are two cases to be considered if the item selected from H,is
a scalar or & structure.- #n the first ise. the et sefected from H. would
also be a scalar or structure value. By the property of oomamméﬁt, the
operands to the SELECT instruction must be equivalent. Since the heaps
and environmerit componcents do not cfmg ¢'in | mns.,cglse. li
R, , is still contained in S because all desiinations of the §£LE
R, are equivalent to-destinations in. S) and; followiag the argument gwen
in (1). these instructions woeld: remain ‘equivalént. “Thus, 'R, i+] 18
complete wrt S, in this case. .

§A.2

- twostream$ i M, and ‘M, ‘WOt Be

. iil. suspensian: If the item selectgd from ;{ﬁwﬂw
- ZE 39@3 L, W Qf,,7

PROOF OF CORRECTNESS

In the second case, the item selected in H, isa“record represeming a
stream, but the corresponding itern in ?if/ is a«mensioﬂ This case arises
when the APPLY operator is (0 instaitinte a-funetion fepresénted by a
stream Ade. The stream image 'On:'Rable store” i restored by the
recovery procedure. in state S, the sispension triggers the mstantiation
of a new acivaion, 4, 16 produderthe néw stiéami’ element ' Let
‘,.Sj 7S, be a state wansilion ‘sequerice Where 1S contains all
enaﬁ nmum:n£1 mptmwlongmgw;(&rmof,{s
descendents) in the compuéﬂmm&?ﬁ 'Then: Hn‘w‘m contain
the new stream elemem and, by the property of objcct gqp:vglenc;, the
Valent. K Ry 1 i obviously sill

contained in S, . ﬂus,R,HnssnllmplmmS

ii. early completion: If the item selected from H is an early completion

structure, then the select instruction, (wl)is added onto the queue, Since
operam} vafues' are eqtﬁvalént (bedy

from H, The SELECT m i b‘g&b
erque\i/e Sitice no néw mstmdﬁﬁs
inS :

sren, ;he mstmcmn
"refereniced 'In” the suspension is

containment, the item selected in Sj must also be a suspension and the
. instryction - seferenced. in- this suspeieinn. wouid aiw: be signailed. - The
equmlen,& Instructic

e TR lngtsustiq ,qqmvalmnswl
aiid, his. w"s{m‘mmﬁmé?r/u R

3. T enmute Opentiu Execution of the TERMINATE mstructlon muws Uomrol to

return to-the shell. with- the Crame; varfue>- binding atded 1 e user énvironment.
‘Since R s conminet OS, ithe 'opering B! thEOEMINaIE mmam s be
equlv.nlent in both R,and .S’ Eny

the same argument gwcn m (1) ané we sec that:ﬁ it 8 is s{ug cqstagnghg .§', 1

4, Rotm Qnemion. ’ﬂ:e &E!‘URN mswmﬂu {#o. mmﬂ\& merewm value
and the target list. By the property of containment the return value and target list in -
the cquivalent instructions in R, 0 and S, must be eq,un.ulcnl lb contained in

-S‘Hmiheuri.emddrewoﬂhc Tt
valucs are equivalent in the two states.

' @r%ﬁiﬁmm) the stuacr

IGeLior mmm&m@mwmm; ‘
: ' umm:«wmhmmvfﬂsr
memmxmmm complesion queue in: -

; ~ —Mwm mmwm SELECT -

jrqusgbe equmlﬂm to
er-queve set with the
value in Hlts equivalent to an eiemg:nt in the ec-queue set with the valuein H,
"Thus. a&qr these instructions

ithd etim’mm aﬁ(f ihe rcSult‘

117

[

;1. thercfore, equitiSI46/EAY) *; Pd!lo(vihg

118 PROQF OF CORRECTNESS §A.2

5. Tailapply Operation: The TAILAPPLY instruction. takes in three arguments, the
function closure, argument list and return link. By the property of containment, all
three operands must be equivalent in the executing instructions in corresponding
states. The result of executing the instruction is to-add anewactivation and to signal
instructions in its, own activation, Because the:.closures and argument lists are
equivalent, the instructions enabled in the new activation must also:be equivalent in
R,,,and Sj - - Following the argument given-in<(1), it is easily seen that R, ,is
contained in Sj 4+ A similar grgument can. be applied. in the analysis of the
streamtail operator and is omitted here. ~ . - '

Since we have shown that the lemma holds 'fbr all instgug;ipn classes (excluding APPLY),

the lemma is proved. O

The effect of executing a function is visible only in-the result value retuned by that
function. Thus, given a computation sequence for softe: activation, the values that are still
accessible after all activations in m‘e' comput'atidn/ sequence. hi;y,c completed are precisely those

returned by that activation to its caller. »

Lemma 2: Let <S.S w3y be a computation sequence for an. agtiva;ion A. Then, the
values accessible in S, _ ., but not in S dre those values accessible.from the instructions found in
the destination list of the activatio, A. T

Proof: (by contradiction). Suppase there is sotie vatue, v, that is accessible in S 14 but not
in S and is also not accessible from the retum fink to the activation. This'value must have been
created by some instruction that'is an- element of seme activifion irl-the computation set of A,
Let this activation be a. In order for this structuse th be-sccessibie dfter the termination of this
activation, it must be returned ‘as a result of that activation since any references to it from
instructions within.ar are lost onee the RELEASE instruction éxecutés: 'Lt its ¢aller be B. Inorder
for the value to be accessible in S , it must by the sirne redsinnitigas dbove, be returned as a
result of this activation as well, Eommumgthxs argument, we see that the value can only be
accessible in S, _ , if it is returned as the result of 4. But this contragicts oyr original hypothesis
and so the femma is proved, 01 D

Theorem 1: Let <RTS.STS> be a sequence pair for a system,sate § and let R, € RTS and
5 € STS. Then, if R, b= R, and Ryis complete wr S, then 3 a state S, s.. S, -5, and R,

, Pron: Qur proof'is by inducﬁon. The mducuansasp Silows that ﬂiéf~:iheor¢m hdlds over all
instruction classes for our system. , o N R ST
Basis: Lot RTS = <R.R> and STS = <S,.Sp. Since R, = . and by definition of the
initial recovery state, EIS) =@, R; = R/»and,S:, o Sf ﬁThésw‘R‘f #“-iS'*f»"md;“m’é»theorem is
satisficd, : SR P R R o ’
llypotlicsis:'Supmsc that thc' thcorem halds for all SCqUHce. p:a,irs‘{R/]IS'.STS) where RTS
isof upto length £ i> 2, ; .

§A.2 PROOF OF CORRECTNESS 119

Step: We show that the theorem holds for a sequence pair <RTS,STS> where RTS is of
length i+1, - . o 3 RS :

Non-Apply Instruction: Refer to Lemmal.

Apply lustruction: There are ‘four types of activation descriptors that are found on a
computation. record: These descriptors can either:be.of type: apply, value, tailapply or
streamiadl. When an APPLY instruction executes in R . it examines the:activation descriptor for
the activation to be initiated. P ' » '

1. apply or nonexistent Ade: If no Ade exists, then state. R, , is complete wrt state
- S}, since the APPLY instruction executing in state R, uses 00, backup information,
Since R, s coraplete wrt S, and equivalent instructions execute. in thess two siates,
then by analysis similar to the one given for the TAILAPPLY, operator in Lemma 1,
R, and S, , remain equivalent. . This same analysis_holds when the APPLY
operator is 0 instantiate an activation which. has.an activation descriptor entry of
type apply. Since no result is found in the Ade, 3 new activation. is created by the

APPLY, .
2. value: If a value Ade exists for this activation, then R, , differs from R, in that the

value v is accessible from an activity in R, , but is not accessible from this same
activity in R, The equivalent instructia exbgcuﬁngm_‘s}would _cause the
instantiation of an activation, (u;,4), because no backup information is used. By
Lemma 2, there is a state transition Seﬂuenae(sriﬂlmsﬂg such:that the values
accessible in S, , but not accessible in %mm values. accessible from

instructions found in the destination list passed to the activity, 4. These values
represent the result of the activation and thus must be equivatent 5 the values found
in the Ade of the activation used in R, (s‘im':g‘, we have no pon-deterministic

computation). Since the APPLY instruction eXecuting'in 'R, sérids the value of the
d\«é‘pfropeh rty of containment,

activation found on the' Ade to all’ destinations; aif by the’property of containment,
the two APPLY insiructions cxsciting i R, a0°S have Eqitviléh desination
instructions, state R, ', miist be contained' i’ stite .‘f*k Sifice“the ‘environment
image -does: not ‘change” in ‘cither ‘State; R, ﬁmﬁmwﬁsﬂk and, so, the

theoretn holds for thisicase, R A |

3. tailapply: If the Ade for an activation has type TAHLARPLY, then R;, , differs. from -

R, in that R, ; will contain a new activity. 4. whose argument record is fetrieved-
from the activation descriptor. When the corresponding APPLY instruction executes
in §, it will cause a new activity, 4°, to be created whose argument record is not
necéssarily the same as in 4. Consider the state transition sequence,
<SI.S ” !,.....Sj +m> Where Sé emi Sj +m ©ON @ TAILAPPLY inst.n.xction which creates a
new activity, B, such that B = 4. There must be such a transition sequence since all
computation in the system is detcrminate. B is a descendent in the computation tree
rooted at 4. Fix the transition scquence from S, to Sj +m 30 that EIS. contains no
instruction from any activation on the path from 49 8 (or descendénts of any such
activations) in the computation tree rooted at 4°, This is clearly possible because of
the non-determinicy of the Choice function. The only new vilues accessible in S, om
not accessible in Sjarc those referenced from B, Since B = A. R i+ 18 still contained

TP "'-1'3‘?.”?’“i’t&f‘»'»?’ﬁ'«#ﬁﬁwﬁ‘?“‘?@‘;7*""5':"f“f“'r'i .;ézi;fwﬁ?mmwﬂw}w.:m T e s S g e S T T e gl

120 PROOF OF CORRECTNESS §A.2

in SJ- Ly Since the environment image is'not updated in.either transition sequence,
environment equivalence is still preserved. Thus, R i+ remains complete wrt Sj o

4. Streamtail: The case when the Ade is of type STREAMTAJL-is very similar to the
TAILAPPLY Ade given above. In this instance, R i1 dnffers from R . in two ways.
First, the stream image on stable store is:restored onto # "Secondly, a skefeton
actwanon is created to instantiate production of the: mﬁ&mfthemm In state

the apply opertor will cause & new activation, A, to' bexamdmpmduee the first -

e{;ment of the stream. To satxsfy the property of contdifimeént, we ‘consider the
transition sequence, (S S. > where EIS contains no instruction from
any from A (or any of mﬁ%cendent’fﬁ in the cof ut%&n h‘ee moted at A. At this
point, the first stream element is completely defitied and ‘there is a suspension in A
which is not yet enabled to protiuce the ﬂext’“érénfrent "By our deﬂnmen of object
equivalence, the corrcsponding streams i in S m and’ I{, *f a’re)muwhlent. ‘Thus, all
destination instructions of the APPLY in Driesporiding states which - become
enabled also remain equivafent. Hence mﬁt&mﬁ%n‘f&ﬁrhbt&s between S

R, , Since the environment iimdge does not change,’ ﬂm témmains compﬁte wrt

S/ om

Since we have shown the theorem for. each of the clm&s of Ades whzch ‘may be found on a
computatxon record t.hc theorem is prow:d. a

Coreihry If <RTS.STS is a sequence pair, ﬂm‘l k is cothpletc wrt Sf where R fand Sf
are the ﬁnalstataforR?’SanﬂSTSmpectfvely - ,

Prool: (by contradiction)

Suppose that R .was net complem wrtto Sf Since. EIS = «p, wgknow that R ,is contained
in S, It must, there ore, be the case; that environman m*ml&awm ‘between the
two states,. By Theorem. 1, we know;that & - must:he, complele; Wik some: siate S, where S, I—Sf
As a consequence of the hypodlms. ttiene mugt@e m envirgnment g{mmg instruction
executed in the transition seqagtiee, <S5, . .S tBatignot sxcaied in, RTS on vise versa. This
is a contradiction since by det‘ nition 5 famé command stegam.is:used in produciag both the
ideal recovery state and final recovery state. Thus, our hypothws that R{xs not oomplete wrt Sf
mustbcfalumdmemnary*kpmvod. U SRR R B

RGN TN T g LR L7 et i PR e e e zggmw 1\(- e SR Wm*# iR

References C121

References

1. Ackerman W. B.and Denms J.B. VAL -e- A Value 0n&m¢A1ngxmw Language
Preliminary Reference Manual 218 Laboratory for Computer Smence MIT Cambrldge, Mass.,
mer m EETRA T ,-;_;‘.; §,£§>,,> ‘

2. Anderson, T., Lee, P. A., and Shnvastava,‘S d"stem Fault Tolerance In Computlng

- Systems Relaldity; Anderson, T. and kaﬁéeﬁbn 759979;
‘54 i i
3. Arvind and Gostelow, K. P "The U-mterpreter" COMPUTER 15 2 (Feburary 1982)

42449. -

4. Avizienis, et. al. " The STAR (Self-Testing And Repairing) computcr An mv&sugauon of

the theory andpmenoe ef faummmmrmv rsmsnc wo Il (Nomnlier
197l); 1312‘1321. . S BRI EES S Y

s. Bangazzt G., and Stnglm L Apphcanon Transparent Settmg of Reoovery Pomts. 13th
- Annual Symposium oiy Pt Tolerat Te ﬁ"mmfmw s,

I{ <§

6. Benajamin, Arthur Improvmg Infoxmauon S e Reliabhlity Usmg a Data Network.
TM-78, Laboratoty for Conipeter Stence; MIT, . MRS,

mpmi b el ¢ e
7 Borg, A., and Baumbach, J., and Glazer, S. A Message System Supportma Fa,ult Tole;ange
6% Arman S mposun a0 Crtvaing puins, AL SAGOPE SRyl 9059,

BI00 oLl - :
8. Dennis, J. B. Flrst Versaon of a Data Flow Procedure Language ln Progmmmlng
Symposiam: Proceedings, &mm@ PNW R
Springer:¥erlag, 1974, pp: 962-376: - et

9. Dennis, J. B. and Misunas, D. P. A Prehmmary Archtwcture ForaBasw!})gta—
. Proegssor. Mpmmwswm, efem
December, 1975, pp. 126-132. 'l f.’.:}ﬁ'zi.‘(_’g’{s‘%fi,}. sthigie™ ne

10. - Dennis, 3.8 Data Shoul Nt Ohange: A Modetfor 4€

Computanon Structurgs Group, Dbomwx for C«
July, 198%; = b T St

I1. Dennis,], B. An Operational Semanttg:s for q‘lan’%uu
Structures. - Pmmeduﬂiﬂhté;h q Ui
Concepts, Peniscola, Spain, April'19:95 1961, 1981~

12 Dennis, 1. B.. and Gao, G. R., and T64d, K, W, A ;‘”?gt%gg mputer. 213,
Computation Structures Group Laﬁomtory f'or Cbm’iimir Camf:ndge Mass
March, 1982. ‘ -

13. Dennis. J. B, and Stoy J.E. and Guharoy B. VIM An l-fxpenmental Multi- -User System
Supporting Functional Proarammmg r1984 Ganfemm Hm mc&mﬂmeaun, 1984.

e RS S R B oY et T =

References 122

14. 1981 Conference on Functional Programming and Computer Architecture, 1981,

15. 1. Darlington et al.. Functional Programming and llS Appltcatzons An Advanced Course.
Cambridge University Press, 1982,

16. Friedman, D. P., and D. S. Wise. CONS Should Not Evaluate its Arguments. In Automata,
Languages, and Pragrammmg, unknown, 1976, pp. 257 284

17. Guharoy, Bhaskar. Data Stmcwre Managemem in a Data Fhw Computer System. Master
Th., Massachusetts Insutute Technology 1985

18. Hoare, C A.R. "Commumcatmg Sequenual Procwses" Communctauons of the ACM
(August 1978), 666-677.

19. Hughes, J. A. Error Detection and Correction Teelmquesfar DataFlow Systems. 13
Annual Symposium on Fault Tolerant Techniques, IEEE, 1983, pp. 318-321. Also Center For
Reliable Computing Memo 83-1, Computmg Systems I.aboratory, Stanford Umvemty

20. Kahn, G and D. MaCQueen. Cmmmw mdNﬁwﬁaefmﬁaﬂel Pmmcs. Information
Processing 77: Proceedmgs of IFIP Congress 77 August, 1977 pp 993-998

21. Lampson B w. and Sturg:s. I-L E. Crash Rmovery ha Dmbut;dData Snomge Sysmm.
Xerox PARC 1979. Internal draft.

22 Leung, C.KC Fauk Tolerance in Packet Communm&ea Arehmatum. TR-250,
Laboratory for Computer Science, MIT Cambndge Mass September. 1980

23. Liskov, B., and Scheifler, R. Guardxansand Actnons. Lmsm&ic Supp@rt for Robust.
Distributed Programs. 210-1, Computation Structures Group; Labomtory for Computer
Science, MlT Cambridge, Mass., Novemeber 1981

24, Mnsunas, D. P Error Dctecnm and ;Reeavesy ma Data*“Ftov Computer Proceedmgs of the
1976 Conference on Parallel Computing, 1976, pp. 117-122. LR

25. Nelson, B. J.. Remote Procedure Call. Ph.D. Th.,Camegie-Mellon University, May 1981..
26. Siewiorek and Swarz. The Theory arid Practice of Reliable S‘y;ste}h’Dé;ig*n Digftal Press,
1982.

27. Stemn, J. A. Backup and Recovery of Online lnformat:omn a Computer Utility. TR- 116
Laboratory for Computer Sciencé, MIT, Cambndac.Mas. 1974 ‘

28. Stoy. J. E. "VIM: A Dynamic Dataflow Implementation of VAL". TOPLAS (). To appear
in ACM Transactions On Progr'tmmmg Languaggs And Systcms .

29. Svobodova. L., and Liskov, B.. and Clark, D. Distributed Computer Systems; Structure and
Semantics. TR-215, Laborz;tory for Computer Sciengg. M]T Cambndge. Mass., 1979.

30. Weng. K.-S. An Abstract Implemcntation for a Generalized Ddta Flow Language. TR-228,
Laboratory for Computer Scicnce. MIT, Cambridge, Mass., 1979, ‘

