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The cver-increasing complexity of VLSI chips threatens to choke out all available computer
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given.

Thesis Supervisor: Christopher J. Terman

Assistant Professor of Computer Science and Engineering

Keywords: multiprocessing, circuit extraction, VLSI CAD



S. M. Levitin MACE: A Multiprocessing Approach to Circuit Extraction

Acknowledgments

The author wishes to thank Ken Slater, for guidance and support over the last 3
years; Chris Terman, for assistance in defining the ideas and serving as a rational sounding
board when all sanity scemed gone; the members of the 1V support team, especially Alice
DiPace and Pani, who helped explain 1V's curious behavior and inner mechanisms; Randy
Parker, for providing light reliel and prodUclion support; and Josh Marantz, a developer of
EPIC proportions, without whom and without which the MACE concept would be merely

picin the sky.

The following are trademarks of Digital Equipment Corporation:

DEC VAX VAXcluster
VMS DECnet MicroVAX






S. M. Levitin MACE: A Multiprocessing Approach to Circuit Extraction

Table of Contents

Chapter One: Introduction 10
1.1 An overview : 10

1.2 IV: the starting point 11
1.2.1 1V overview 11

1.2.2 The scanline algorithm 12

1.2.3 Current and active swaths 12

1.2.4 1V bookkceping 12

1.3 MACE: the prototype 13

1.4 An overview of multiprocessing 14
Chapter Two: LV and extant multiprocessing methods 15
2.1 Layout verification tasks 15
2.1.1 Circuit extraction 16

2.1.2 Design rulc checking ' 16

2.1.3 Comparison of the two tasks 17

2.2 DRC parallclization methods 17
2.2.1 The x-y method 17

2.2.2 The z-method 18

2.2.3 A novel approach 18

2.3 EPIC 19
Chapter Three: MACE: A new weapon 20
3.1 1V: the starting point 20
3.2 MACE: the philosophy 23
3.3 The MACE verb set 24
3.3.1 The SPLIT verb 26

3.3.1.1 Fixed splitting 26

3.3.1.2 Variable splitting ‘ 27

3.3.2 The EXTRACT verb 27

3.3.3 How to paste two slices together: the MERGE verb 28

3.3.4 The aborted OUTPUT verb 30
Chapter Four: The merging process and the MERGE verb 33
4.1 The MERGE algorithm 33
4.2 Connectivity 34
4.3 Renaming 34



S. M. Levitin MACE: A Muluprocessing Approach to Circuit Extraction

4.3.1 Motivation
4.3.2 Mcechanics
4.4 Mcrging the structures
4.5 Split devices

Chapter IFive: Testing: Strategy, Cases, Results

5.1 Algorithm analysis
5.2 Testing strategy
5.3 Performance
5.4 Results
5.5 Explanation
3.5.1 Serial IV vs. sequential MACE
5.5.2 Where MACE spends time
5.5.3 MACE + EPIC: any advantage?
5.6 An unanswered question about efficicncy

C‘Imptcr Six: Future Research Opportunities

0.1 Missing fcatures
6.2 Extensions to MACE
6.2.1 Alternate splitting modes
6.2.2 Automatic Testing Tools
6.2.3 Glamorous yet functional user interface
0.2.4 Automatic ECF gencration
0.2.5 Capacitance calculation
6.3 Design dcecisions better redone
6.3.1 Static computability of merge might not be best
6.3.2 Unified output format
6.4 Modifications in the MACE and EPIC interaction
6.4.1 Cut cleverly; Merge simply
6.4.2 Alternate merge formats
6.4.3 Messages for naming
6.5 Recommendations for implementation
0.5.1 Software development suggestions
6.5.2 Suggestions for multiprocessing extractors
6.6 Conclusions

References

Appendix I: Glossary of Terms
Appendix II: Test Results
Appendix III: Test Cases

34
35
37
40

43

43
44
44
45
46
46
46
47
47

49

49
49
49
50
52
53
53
53
53
54
55
56
56
57
57
58
58
60

62
65
67
69



S. M. Levitin

1H.1 Edges

1H1.1.1 Side edges
i ucmm
1.2 Nodes :
ms.:

228

n

- N

n




S. M. Levitin MACE: A Multiprocessing Approach to Circuit Extraction

Table of I'igures

Figure 3-1: Hicrarchy in a composite cell

Figure 3-2: MACE data flow

Figure 3-3: The merge ordering is made before the run,

Figure 3-4: The dcecision to merge is madce during the run.

Figure 3-5: How the merge phase works with an odd number of slices.

Figure 3-6: MACE data flow, in exact detail, for layout split into 4 pieces

Figure 4-1: Mecrge possibilities: types (a)-(c) were handled; types (d) and (c)
were not.

Figure 4-2: Split device types

Figure 6-1: Two representations for a shape with a hole

Figure III-1: Many to onc edge/node match

Ifigure 1H-2: The appearing hole channel

22

25
29
30
31
32
39

41
51
70
72



8. M. Levitin MACE: A

Table of Tables

88 mmuch toCircﬁit Extraction

Table 3-1: Some crror messages 1V reports

Table 4-1: Rulestbrmaefmdemmﬂm
Table 4-2: B:fﬁmatme -

Table 5-1:  Brief perform :

A2BRY




S. M. Levitin MACE: A Multiprocessing Approach to Circuit Extraction
Chapter One

Introduction

1.1 An overview

As VLSI chips become more complex, the CAD tools cssential to their design
become more crucial. As chips cross the threshold of T million devices, however, the strain
of the best tools on the fastest system computing on the densest chip is too great:  some
advantage must be gained to combat the exponential increase in the complexity involved in
larger device counts. Onc of the many ways to achieve a speedup is to modily an existing
algorithm to use a multiprocessing environment.  This document describes MACE, a
modification to IV (Interconnect Verifier), an cxisting circuit extractor used by Digital

Equipment Corporation.

A circuit extractor is onc tool that performs layout verification; it reconciles one
representation of the VLSI chip, the layout, with another, the schematic representation.
IV's purpose 1s to analyze the layout in a VLSI chip to see how closcly it matches the
schematic representation. IV translates the layout from a layout language into the
equivalent wirelist. Although circuit extraction is not a gecometrically local task, that is the
approximation made in this research. The methods of sctting up the supposedly separate
tasks and the mcthods of merging together the separate results into a coherent unit that

correctly represents the whole chip forms the crux of the explanation,

The organization of this document is as follows: Chapter 1 serves as an overview, to
explain the imminent computation bottleneck in the VLSE CAD realm, to analyze 1V, and
to preview the approach taken in this research. Chapter 2 details the design rule checking
problem (DRC) and the circuit extraction problem (CE), how DRC has been parallelized,

and why CE is fundamentally different and more complex. It also gives a brief overview of
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EPIC, the task scheduler/controlier for the current rescarch. Chapter 3 explains 1V, the
circuit extractor currently used by Digital Equipment Corporation, along with its input and
output formats. 1t also traces the design decisions made in the current work., Chapter 4
discusses the merging process in {ull detail.  Chapter 5 gives algorithm analysis, testing
strategies, testing results, performance mceasurements, and  predictions.  Chapter 6
cnumerates the features and facilitics that were omitted from the current system, and
contains suggestions for further rescarch. A portion is devoted to design considerations for
building a circuit extractor that is amenable to rapid prototyping, especially in computing
cnvironments ranging from medium to coarse-grained parallelism.  Appendix | is the
glossary of technical terms. Appendix 11 reports the test results in a more verbose fashion
than Chapter 5. Appendix 11 contains the cases that are not handled, along with a sct of
features that should be handled by a tool similar 1o MACE. In order to maximize
universality of this document while not boring or insulting the more sophisticated reader,

technical terms will appear in italics, and are explained in the footnotes.

1.2 1V: the starting point

L.2.1 1V overview

[V works on hicrarchically organized layout. A root cell, usually corresponding to the
entire chip, contains instances of other smaller cells, loose layout, or some mixture of the
two. Those cells, in turn, may call other cells or contain layout. At the bottom level of the
hicrarchy are leaf cells, containing only layout. 1V typically extracts the connectivity of the
layout, identifies the devices, and records their sizes. It can also calculate parasitic
capacitance. Its input is a layout file in a language like CIF [9]. Its output includes a
wirclist for a circuit simulator, such as SPICE, or for a wirelist comparator, such as WLC

[7, 10].

11
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1.2.2 The scanline algorithm

[V uses a scanline algorithm to establish connectivity [2, 15]. TV scans in units called
swaths, starting at the top of the chip and working down. Within a swath, it scans from left
to right. The swaths share horizontal edges. A swath is defined by the highest feature
remaining, where a fcature 1s defined as the upper edge of a new polygon, the lower edge

of a polygon alrcady under analysis, or the bottom of the chip.

1.2.3 Current and active swaths

For a given swath, [V uses the swath previously extracted, which lics above the
current one, as a source of state information. The state information includes which
clectrical nodes and devices are active in the previous swath and touch the current swath's
upper border and which edges of polygons touch the bordei. The term active refers to
structures within the previous swath; the term current vefers to structures within the swath
under analysis. Structures are active because they can still have an cffect on structures
under scrutiny. Current polygons are reconciled with the active ones. When a connection
1s made from a current structure to an active structure, the (wo structures are merged into
the same structure. When a structure is encountered that docs not connect with anything in
the active swath, a new record is allocated for that structure, and a new name is assigned to
it. A device is defined by a description of the technology used to fabricate the chip and by
the various layers present in an area. For example, in an NMOS process, a device is
defined by the presence of overlapping polysilicon and diffusion and the absence of the
buried contact layer. The set of layers present is compared to the layers needed to establish

a device. A device is recognized if the two sets agree exactly.

1.2.4 IV bookkeeping

[V measures the devices and stores the geometry of their channels.! At the end of

1/\ channel is the overlap arca of polysilicon and diffusion for an NMOS device.

12



S. M. Levitin MACE: A Multiprocessing Approach to Circuit Extraction

the extraction of cach swath, IV calculates the size and arca of the devices within the swath.
After all swaths have been extracted, the structures are checked for consistency.  For
example, a device record contains pointers to the nodes that form the gate and
source/drains of the device. These nodes may be renamed when they merge with other
nodes in a lower swath. In the output phase, the comprehensive, coherent results are

output into the wirelist format, and the errors in the layout are announced to the user.,

1.3 MACE: the prototype

MACE, a Multiprocessing Approach to Circuit Extraction, is the system built out of
[V with modifications to support multiprocessing. It runs under the control of the EPIC
system [8]. MACE cssentially imposes the notion of a task upon the serial, interlocking
nature of the swath extraction ol V. Because it decomposes layout where layout is not
amenable to decomposition, MACE must take steps at some point to compensate for the

division.

MACE divides the layout into horizontal scctions called sfices, comprising many
swaths, and pretends that the layout in cach slice can be extracted indcpcndently.2 This
preparatory step is handled by the SPLIT verb in MACE. The extraction in MACE is a bit
of bookkccping surrounding a normal 1V extraction, and is handled by the EXTRACT
verb. The compensation phase takes all the individual extraction results and attempts to
convert them into a circuit equivalent to what normal 1V would have derived. This occurs
by several stages of merging two adjacent slices together, using the MERGE verb. As the
slices combine to make larger and larger slices, the results become more and more final,
until there is only one slice the size of the whole chip, whose merged output resembles that

produced by normal [V,

In IV, the previous swath scrves as the context for the extraction of the current swath,

2/\ slice is a rectangular portion of a chip. Also called strip.
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with the exception ol the topmost swath in the chip, which has no predecessor. In MACE,
there is no previous swath for the first swath in cach slice of layout. (Typically there are
many swaths within a slice.) Because MACE doces not have this context from which to start
the extraction process, it must perform further analysis of the temporary results produced
by the EXTRACT verb. Later chapters will reveal in greater detail the nature of the
problems cncountered with this approach, the mcthods to solving them, and the

performance and applicability of those solutions.

1.4 An overview of multiprocessing

To make the mouvation for a project such as MACE more concrete, consider that in
the Tast 10 years, chip complexity has increased 5000-fold, while computer speed has
increased only 100-fold [17]. The problem of speedup has received some attention before,
but there s no universal solution to all CAD problems [1]. Hardware multiprocessors or
problem-specific hardware engines are onc method that promises large speedup at the
expense of the high cost and the time required to integrate such an engine into the CAD
environment [14, 18], Converting existing hardware systems to serve as a multiprocessing
environment depends on the support of the operating system and hardware for the
necessary operations [6, 12, 19]. It is this latter approach that was taken in the current

research and in the related EPIC project [8].
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Chapter Two

LV and extant multiprocessing methods

Before jumping into the details of 1V and MACE, some analysis of the layout
verification problems will put the current work into perspective. This chapter examines the
problem of layout verification in greater detail. 1t explains and contrasts the two problems
of circuit extraction and of design rule checking, It reviews the relevant work done on
developing multiprocessing systems for DRC. It contains some insight as to why the circuit
extraction problem is significantly harder than the design rule checking problem o modify
into a multiprocessing environment. It concludes with a brief look at the system for
controlling the parallel exccution of a sct of interrelated tasks on a multiprocessor, used by

the current system.

2.1 Layout verification tasks

In the layout verification phase of VLSI design, the layout undergocs several tests to
ensure that it fulfills the specifications for the chip. Additionally, it may be passed under
the scrutiny of a set of check tools, which ensure that the layout is consistent with the other
forms of representation. One asscrtion vital to cstablish in the verification process is that
the layout actually embodics the functionality specified by the schematic description of the
chip. Another is that the shapes of the physical metal layers are such that they are
consistent with the size, shape, and separation that can be reliably produced by the
fabrication process. The former task is the domain of a circuit extractor; the latter, of a

design rule checker.
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2.1.1 Circuit extraction

The circuit extractor is a translator of layout into circuit. It uses a description of the
fabrication process to define which layers interact with others by merely crossing, and
which require contacts to be clectrically connected. The description also defines which
layers constitute different types of devices.  Scveral descriptions of circuit extraction and

various implementations have appeared [5, 13, 15].

The most common approach to extracting connectivity is the bitmap approach {2].
The term bitmap is somewhat misleading because individual bits are not used to store
usclul data. Rather, the layout is broken into small tiles, cach of which is likened to a bit.
As the scanline passes from top to bottom and from left to right, the connectivity of a given
bit is a function of its left and top neighbors, it they exist. If either neighboring tile is of the
same material as the tile currently under analysis, they are the same clectrical node;
otherwise, the tile is a distinct clectrical node.  For a given tile, the various layers are
handled by examining the ncighbors. The layers can also connect within a tile, if two layers
present connect without a contact. Recognition of devices comprises detecting the presence

of the required layers and the absence of the forbidden layers within a tile.

2.1.2 Design rle checking

Design rule checking examines the chip layout with respect to a set of design rules.
Typical design rules relate separation between physical shapes required to ensure that the
shapes function as distinct clectrical nodes on the fabricated chip. Design rule checking in
general includes some electrical rules in addition to the geometric ones in the rule set, but
DEC concentrates on the gecometric checks. Other rules specify the minimum size that is
able to be reliably drawn. In the VLSI chips of 1986, a minimum dimension of 1 micron is

typical.
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2.1.3 Comparison of the iwo tasks

Design rule checking is entirely a local operation because all the data necessary to
generate a design rule error, or conversely, (o prove that a given arca is error-free, are in the
arca plus its immediate border.  Ousterhout and Taylor call this border the halo [‘16].
Geometry in one corner of a large chip cannot cause design rule errors in another corner,
Circuit extraction, on the other hand, depends on the gencration and maintenance of a
context essential for the correct extraction of a given arca. Without this context, results are
only partially valid. Judgments of clectrical characteristics are impossible to make given a
limited area, because two nodes that look distinet within the arca could join outside the

area.

Because of its locality, the task of DRC can be scgmented with much less care than
can the task of circuit extraction. As the subscquent sections show, DRC can be
segmented, and in some cases, with no conversion of temporary results necessary. Circuit
extraction, hecause of its nonlocal nature, has not lent itself to arbitrary scgmentation.'

Scveral methods for breaking down the DRC of a large chip have been developed.

2.2 DRC parallelization methods

Consider the chip as a three dimensional centity. The x and y dimensions arc the ones
apparent when looking at the plot of the chip from above. The z dimension is the view
from a side of the chip, in which one can see the various layers, one on top of the other.
‘The approaches that are discussed in turn are the x-y method, the z-method, and the rule-

method.

2.2.1 The x-y method

In this method of layout segmentation, the cuts are in the x-y plane. The majority of
the work is done by performing DRC on the individual scgments. After each sector of the

chip is checked, all that remains to guarantee equivalence to a conventional whole-chip
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DBRC is 1o perform a check on the haloes of cach sector, | call this final operation sewing,
since it is similar to sewing together patches to make a quilt. Such an approach to parallel

design rule checking was recently made [3].

2.2.2 The z-method

This method considers the interaction between the various sets of layers. One rule
might refer to the minimum size of a contact, while another might relate the minimum size
of one layer overlapping another to form a transistor. Performing several checks with
partial rule sets, which collectively encompass the entire rule set, is equivalent to checking
the whole chip over the entire rule set. ‘There is no sewing step needed. This approach has
also recently been reported by Niclson [11]. The rule set is separated in this fashion into
separate jobs that can be scheduled independently. To gain a speedup, this approach uses
the generic queue facility available in the VAX/VMS environment of a VAXcluster [19].
The queue server holds jobs in a generic queue, which feeds into several queues on the

processors that compose the cluster.

2.2.3 A novel approach

A shightly different tack was take by Marantz [8]. This approach goes deeper into the
heart of the DRC problem. The process of checking a single rule is not an atomic action;
there are smaller sub-parts, which generate intermediate results. Marantz notices that these
intermediate results are the same for the computation of several rule checks. This méans
that in the separate task for separate rule approach, as above, some computation is
duplicated by two different processors. The potential exists that even the same processor
would recompute intermediate results in two different rule checks. The approach taken is
to divide the 40 or so rules into 120 steps. As many as 14 distinct rules depend directly on a
given intermediate result,  If communications costs, measured in time and disk space
nceded to store the intermediate results, are small compared to the computation costs, there

will be a speedup of the aggregate computation.
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2.3 EPIC {

To facilitate this method of problem partitioning, Marantz designed and built the
-

EPIC system [8]. EPIC serves a variety of functions involved in multiprocessing. Initially,
it scrves as the task scheduler.  During the computation it serves as a computation
controller, providing a front end, the monitor, with which the user can view the
computation. It also handles the communication of status messages and the file transfer.
Input to EPIC describes what tasks there are to be performed. EPIC reads an execution
control file (ECF), which contains the tasks descriptions. A task description consists of the
task namec, its inputs, its outputs, and the single statement that is given to the computer to
perform the task.  All the file transfer is hidden from the user.  In some preliminary
mceasurements of EPIC on tasks with low communications overhead, he has measured

speedup of 3.2 on 4 processors compared to sequential processing of DRC.
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Chapter Three

MACK: A new weapon

MACE, a Multiprocessing Approach to Circuit Extraction, is the body of work that
attempts to solve the question of how circuit extraction with overlapping layout can be
performed using the coarse-grain parallelism provided by the EPIC system. MACE is a set
ol modifications and enhancements o 1V (Interconneet Verifier), the circuit extractor
currently used by Digital Equipment Corporation. ‘The version of 1V used in this research
contains over 16,000 lines of source code, and includes some object modules. The MACE
system contains all of [V's code, all 1V object modules, and other code specific to MACE's
functions. This additional code consists of 6400 lines of PL/I code, half of which are
MACE’s private copics of IV routines. MACE exccutable images are fully 50% larger than
[V images. '

This chapter is organized as follows: Section 3.1 gives an overview of V. Section 3.2
gives the MACE mindset and shows how it motivated design decisions. The explanation of

the verbs in MACE starts in section 3.3.

3.1 1V: the starting point

To get a better understanding of the question it is necessary to elaborate on [V [15].
The input is in a variant of CIF [9]. There are statements that represent geometric shapes,
such as boxes, wires and polygons, and there arc other statements such as lubels, comments,

and calls to other blocks of layout.3 The output is a wirclist for a simulator like SPICE

3 Labels are descriptive text associated with a node in a layout file that helps to identify for the designers’
usc the function of the node. Sample labels might be PHI, WRITE-ENABLE, DATAC3), to indicate a clock
signal, a control signal. or a slice of data, respectively.
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containing the devices and their sizoe, eiiee” 0 aedes, and so on [10]. 1V always extracts
the devices and names of the struciures.  Additonally, iff the user wishes, 1V calculates

parasitic capacitance, the stray capacitance found between a node and ground.

The forms of IV output are:

cap file a capacitance list. Capacitance is of two types: parasitic capacitance,
between a node and ground, and coupling capacitance, between two
nodes.

edge file a list of polygon edges that touch the MBB of the chip.

XND file eXtended Network Description file, which contains information about

the chip; all the node names and their locations; all the device names,
their sizes, locations, and type; and capacitance information if it is
calculated.

device gecometry file
contains the individual coordinates of the points that define the devices’
channcls. Also called DGR file, from Device Geometry Record.

wirelist the input for the circuit simulator, which contains the device names,
sizes, and its terminal names. The wirclist also contains the capacitance
data if they are calculated.

log file the record of the IV run, which contains information about cells
encountered, CPU time taken in the various phascs, crrors in the layout,
and status messages.

One initial task was to find appropriate points in the layout-to-circuit pipceline to
break the pipe, in order to define a task in the sense of EPIC's tasks. The phases in an IV
extraction, without capacitance, are the following:

o read the layout file into working memory

o flatten the layout, which may be at various levels in a hicrarchy, especially for
large chips, into a consistent, globatly-defined grid.

o start the scan-line algorithm, as detailed in [2].

21
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witput forinats from the internal

data structures that remain when scanning is finished.

Flattening the layout, and why it’s dene

Large chips, which might have a multilevel org

anization such as the one in figure 3-1,

may include stances of smaller cells, as from a library of standard cclls, or not so small

cells that correspond to the logical blocks of the chip

SO on.

such as datapath, mux, input pad, and

Chip (the root of the tree)

(many levels of hicrarchy in between)

Parent (contains cells and layout)

I.cafl

{contain layout only)

[.caf2

Figure 3-1: Hicrarchy in a composite cell

They may in addition contain loose layout. In the flattening stage, all the individual

elements of all the cells at the various levels of the chip hicrarchy are brought into a
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common representation,

From the viewpoint of the scanline algorithm, it is more efficient if all the layout
within a given arca can be identified directly, without making reference to the whole
hierarchy. In order to cnable convenient layout retrieval during the scanline algorithm, the

layout is flattened.

3.2 MACK: the philosophy

MACE revolves around a very simple philosophy: pretend that extracting a segment
1s a local operation, and then make up (or what was missed by this oversimplification later.
It attempts to treat as many of 1V's functions as possible as black boxes. MACE attempts in
several places to create a state of the machine that is cquivalent to an IV state, then to
cxecute the same procedure that 1V does, in the belief that this is one way to achieve

cquivalent results.

Error propagation was one such issue, in which MACE utfcmpts Lo recreate the state
of the machine. [V reports errors in the layout to the user in the log file. Some of the
vérious error types arc shown in table 3-1 . IV gencrates crrors as a side effect of
scrutinizing a data structure; MACE does likewise. The messages report structures 1V
believes to be of questonable validity. For example, an MOS capacitor is a valid clectronic
structure that could be introduced under some circumstances, However, more often than
an intentionally introduced structure of this kind is the occurrence of a device whose two
source-drains are shorted together, making a two-terminal device. This device functions as
a parallel plate capacitor, and is flagged by 1V as a questionablce structure the user should
scrutinize. More frequent than this are errors that result when unusual electrical properties

are deduced, such as two nodes with different names that are shorted together.

Fortunately for MACE, [V generates the errors when it creates the wirelist. The

process of writing out a wirelist involves examining each device, each node, and all the
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Table 3-i: Some error messeges TV renoris

MOS capacitor detected
As this is an unusual structure, iv
notifies the user that it encountered one.

dangling node a label unattached to any node
a shorted node two nodes with unequal labels

well node not connected to VDD
for CMOS process

surface plug node connected to VSS
: also for CMOS

no source-drains
a device without any source-drain nodes

extra source-drain
a device with too many source-drain nodes

structures derived from the extraction. [If MACE were able to create an identical

environment at this point, the errors would follow directly. This was the approach taken.

3.3 The MACE verb set

MACE was built as a scparate stuibsystem under the IV system. 1V commands did not
apply in the MACE subsystem, and MACE commands were irrelevant in the [V system.
The basic flow of data is illustrated in figure 3-2. The involved flowchart is illustrated in
figure 3-6 on page 32. The following sections describe the MACE verbs in the order they

were built. The order is also their order in the flow of a MACE invocation.
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L ayout file

SPLIT | Split layout into many picces
. L 1
' : - EXTRACT Extract each picce of layout '
= MERGE Merge cach pair of picces

Figure 3-2: MACE data flow



S. M. Levitin MACE: A Muliiprocessing Approach to Circuit Extraction

3.3.1 The SPLIT verb

I chose to place the first break in the pipe at the point when the layout had been
flattened and was all available for comparison on a single grid. This is accomplished with
the MACE verb SPLIT. SPLIT was the first MACE verb implemented, and was
accomplished by reordering existing 1V code. SPLIT reads in the layout file and filters it
into bins corresponding to different regions of the chip.  Each bin is given a number or
index, which is used by the other verbs to identify the data belonging to the segment. In
general, if the chip name is CHIP and the 1V file type is .TYP, files will be called
CHIP-SEGLTYP, CHIP—-SEG2.TYP, and so on.

3.3.1.1 Fixed splitting

Splitting can be done in two ways: fixed or variable. In fixed splitting, the user enters
the number of slices into which he wishes the layout partitioned. Fixed splitting into two
slices is equivalent to halving the chip; with four slices it is equivalent to quartering it and,
so on. However, becausc all cutlines are drawn horizontally, quartering the chip creates
four thin slices, not almost-square sections like a window pzme.4 While the facility existed
to fiter layout into arbitrary shapes whose borders are horizontal and vertical line
segments, it seemed difficult in the early stages of MACE development to merge two
staircase shaped regions. 1t also seemed unnecessarily complicated. In the absence of a

clear benefit to handling arbitrarily cut slices, | opted for simply shaped ones.

Since all the cutlines are horizontal, the slices are regularly shaped, and the cutting
process is well-defined for numbers that are not integral powers of 2. Merging must only
be done on the tops and bottoms of the slices, and not on the Ieft or right sides, since the
left and right sides of the slices directly correspond to the left and right borders of the chip.
Typically the number of slices is low, and corresponds to the number of processors one has

available to run MACE.

4/\ cutline is an imaginary linc imposed on a layout by which SPLITTING occurs.
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3.3.1.2 Variable splitting

In variable splitting, the user enters a sequence of y values at which he wishes to split
the layout. Currently, MACE prompts the user for a descending scquence of values,
discarding valucs that arc out of order. Also, the value 0 is used as a token 1o specify the
last value. However, not all chips have their MBB's low y value cqual to 0. For reasons of
symmetry, often the point (0,0) falls somewhere inside the chip. 1V places no constraint on
placement, so MACE should not have done so cither. A version of MACE for production
use would have embodied a cleancr uscr interface that would have solved this problem.

See section 6.1 for the features that did not make it into the MACE described here.

Rather than try to convert the internal memory to readable information, 1 decided
merely to dump Vs geometric data unceremoniously to a disk file. [ called the atomic unit
of data transfer an iotrap, for Input/Output TRAP¢zoid, based on name of the 1V data
structure.  1V's working memory contains trapezoids rather than rectangles because [V
allows non-Manhattan gcomctry.5 The iotraps were written out with the SPLIT verb and

rcad by the EXTRACT verb.

3.3.2 The EXTRACT verb

EXTRACT was the sccond MACE verb implemented. 1t consists of a memory
reconstruction phase, the extraction phase, and the output phase. [t was the goal of the
EXTRACT implementation that, except for a few status flags, that the state of the machine
after the memory reconstruction phase be identical to the normal IV run after layout is
flattecned. The memory reconstruction phase locates and reads into memory the file full of
jotraps. The extraction processes normally, as if the internal data structures had been
derived from flattening the circuit and not from reading in the iotraps. In order not to
corrupt the working of [V, MACE uses a copy of the IV code, except with different

procedurc names. The only other modifications that were necessary were the sctting of a

5Manhamm layout contains only horizontal and vertical lincs.
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few status flags in order to force the gencration of some data formats that are optional in a
normal IV run.  The EXTRACT verb produces the files CHIP-SEGLEDG,
CHIP—=SEGL.XND, and CHIP -SEG1.DEV as output of extracting slice 1.

| chose to use existing IV data formats rather than to creatc my own for several
reasons. I judged that using the existing routines to read and write formats would be better
than to have to design a [ile format to contain all the various data types. This approach
kept the code size down, and also used the existing [V support tcam’s expertise on the code
that was assumed o function correctly from the start. Consult section 6.3.2 for an analysis
of this decision. It should be noted that the implementation of these two verbs was
completed within the first month of coding: making th¢ MERGE verb successively more

functional took all the remaining time, roughly 4 months of work.

3.3.3 How to paste two slices together: the MERGE verb

Given several processors working individually at extracting slices of a layout, there
must be a way to get their combined output to look cohesive. That is, we must transform
the output so that it is functionally indistinguishable from what normal 1V would have
made. This duty was relegated to the MERGE verb. The MERGE verb requests the
numbers of two adjacent slices, and complains if the numbers are not consecutive. [t is not
possible or meaningful to attempt to merge slices 1 and 4 of a chip that was quartered by
the SPLIT command. The MERGE facility reads in the output files from the two
extractions and constructs output files that represent what would have been derived from

the extraction of the combined slice.

I call the MERGE facility a binary merge because the slices are pieced together like a
binary tree. Originally | wanted to make the merging process computable at run time, after
the extraction has taken place. It seemed intuitively better to perform a merge on any two
adjacent segments than to specify the order of the merge operations. Each segment must

be merged with both of its neighbors eventually, so why not let it be merged with which
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cver neighbor is ready 1o be merged first?

Limitations in EPIC, which preclude runtime decisions of precedence, cocrced me
into opting for a binary merge. Additionally, 1 found a sct of tasks and ¢xccutions times
that make a dynamic decision process worse than a rigid, binary merge. The comparison of

a dynamic decision process o a static decision process is shown in figures 3-3 and 3-4.

M12

M34

MI-8

M56

M3-8

M78

| l
| | >
0 5 10 15 17 Time (units) -

Figure 3-3: The merge ordering is made before the run,

In a chip split into a power of 2 slices, the merge functions exactly like a single-

elimination tournament. In a chip split into some other number of segments, the odd

segments are merged together where possible, and are unprocessed until needed (figure
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Figure 3-4: The decision to merge is made during the run.

3-5). This is similar to the wild-card playoff in the National Football League. The order or
rules used to arrange the merges would only have mattered in the case that | had written a
routine to generate the ECF from the MACE command line. Since the command line
interface was not written, the ECF generator was not written cither. The test cases | ran

under EPIC used hand-written ECFs. Consult section 6.2.3 for the details.

3.3.4 The aborted OUTPUT verb
Originally | had the EXTRACT verb output a wirelist, but | later decided to avoid

the creation of the wirelist file when MACE was extracting a slice. The reason the wirelist
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final merge result

O
RN

inttial merge results
8 9

Figure 3-5: How the merge phase works with an odd number of slices.

is unneeded is that all the information contained in the wirelist is in the XND file. In fact,
both the wirelist and XND file are generated from the same data structure. At first | had a
secparate MACE verb OUTPUT, which reads in the XND file corresponding to the whole
chip and creates the wirclist. Later [ realized that this verb was unnecessary. At some point
I realized that the MBB information must be propagated throughout the process, and in
any case would ccrtainly be available at merge time. If the window information about the
size of the slice is available also, the MERGE facility can decide when a wirelist is called
for. The window data for a slice is the MBB of the slice. The window data for a slice
merged from two adjacent smaller slices is the MBB of the combined slice.  When the
window data of the slice being merged is equal to the MBB of the whole chip, the MERGE

facility knows it is performing the final merge.

The design decisions made during implementation of the MERGE verb are

sufficiently complex that to explain them fully requires an entire chapter.
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Figure 3-6: MACE data flow, in exact detail, for layout split into 4 pieces
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Chapter Four

The merging process and the MERGE verb

The merging process was not well understood at the beginning.  Its charter was ill-
defined, roughly "do whatever is nccessary to transform two slices’ output into one
meaningful whole." The concept of "whatever is necessary™ changed as my understanding
of [V's output formats grew. At first | believed only the edge and XND files necessary.
Howcever, at some point | realized that the DGR file was also nceeded because device
geometry -was required to compute device size properly. Device size is an important datum
Lo process correctly because '

o the simulator that reads 1V's output uses device size o compute rise and fall

times of the devices, and

e the wirelist compare facility reports device size mismatch crrors when the
device size in the schematic wirelist does not agree with the device size that [V
renders,

The rest of the chapter is organized as follows. A high level description of the
MERGE algorithm comprises section 4.1, The major features from the algorithm are
discussed in the subsequent sections. The different ways a device can be victimized by a

cutline are illustrated in section 4.5.

4.1 The MERGE algorithm
The purpose of the merge phase is to paste two slices together. At a very high level,
the steps involved are to:

1. compute the connectivity between the two slices,

2. rename the layout structures to approximate [V's output, and
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3. merge those structures judged to be sphit by the cutline,
Connectivity is discussed in section 4.2, renaming in section 4.3, and structure merging in
section 4.4. The parts of scction 4.4 deal with the individual types of data that must be

merged.

4.2 Connectivity

Connectivity was computed by analyzing the edge files. The polygons abutting the
cutline have edges written to the edge file.  Although the slices have four sides cach,
corresponding to top, bottom, left, and right, only the bottom edge of the top and the top
edge of the bottom are involved in the sewing process. For cach edge record of the bottom
border of the top slice, the list of edge records of the top border of the bottom slice is
scanned. A match is made if there are two edges made on the same layer that have a
nonzero overlap, signifying that the two edges belong to the same clectrical node. The
match records are used to rename and to merge the set of nodes and devices in the two

slices, as detailed in following two scctions.

4.3 Renaming

4.3.1 Motivation

Before explaining how the various structures in the slices are renamed, it is best to
explain why structures are renamed. Nodes can be named by the user with labels in the
layout. If a node is not labeled by the user, it is given an internal identifier for 1V's use.
The user cannot label devices, so cach device is given an internal identifier. The labels are
assigned during the extract phase. Thus, in a normal 1V run, the unnamed nodes are
numbered consecutively starting at 1; in MACE, the unnamed nodes are numbered starting
from 1 at each cutline. The node names are very probably overlapping, since there are

many cutlines.
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IT during an extraction 1V discovers two unnamed nodes that connect, for example,
nodes 7 and 9, node 9 would become node 7, and the number 9 would not be reused. It
was an early goal of the project o preserve the general node naming order, including these
"holes”. 1 was initially unclear of the importance of the holes and attempted to emulate as
closcly as possible the 1V node naming scheme.  An alternative would have been to
construct a node name by having a slice-dependent prefix plus the internal node number.
This would make all node names unique, with the loss of only a small portion of
information. Any tool that dcals with node names symbolically, such as WLC, would not
be affected by this naming scheme, as long as the node names did not contain illegal
characters [7]. However, 1 judged these names to be unpleasant to see in an output file, and
did not opt for this route. Another possible alternative would have been to assign these
slicC-uniquc names, but at the end to renumber the unnamed nodes consecutively from 1
for all nodes in the chip. This renumbering operation could be done very conveniently at
the end of the merging, when the wirelist and final output files are being created.

However, this approach was rejected because it destroyed the information about the holes.

4.3.2 Mechanics

With the set of matches derived from the previous stage, the collection of nodes from
both slices can be named appropriately. The precedence by which 1V joins together two
nodes that are clectrically the same is illustrated in table 4-1. MACE follows the same rules
for conflict resolution in node names. Thus, not only must node numbers propagate from

top to bottom, but labels must cross the cutline in both dircctions.

In order to approximate 1V's node naming strategy, the node names of the unnamed
(local) nodes from the bottom slice are adjusted. The unique naming routine finds the
highest internal node identificr, and uses it to change the bottom slice’s local node names.
[f the highest numbered node from the top is 44, local nodes in the bottom numbered 3, 25,
and 29 become 47, 69, and 73 respectively. Since IV always assigns positive integers to

nodes, the nodes named by MACE will be in an order similar to what IV would compute.
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Table 4-1: Rulces for resolution of node name conflicts

Unlabeled node on top + unlabeled node on bottom:
bottom node takes top node's label

Unlabeled node on top + labeled node on bottom:
top node takes bottom node’'s label

Labeled node on top + unlabeled node on bottom:
bottom node takes top node’'s Tlabel

Labeled nodes on top and on bottom:
If the labels are the same, ok
Else it is a short.

‘The result of renaming s that the nodes from the two slices, considered as one group, are
correctly named in the context of the merged slice.  The holes are preserved with this

approach.

Device naming is handled similarly, but more simply. When two device records are
judged to be different perspectives of the same device, the device names are resolved.
Since the user cannot assign a name to a device, all names are given by 1V. The resolution
strategy is one rule: the device on the bottom assumes the name of the device on the top.
Compared to determining when a node crosses a cutline, determining when a device that
touches the cutline is the same as one touching the cutline from the other side is a bit
trickier. A node is single polygon; a device is a set of overlapping polygons. A node only
has one name and onc layer; a device has several nodes and several layers. To rename a
device, onc must check the constituent nodes with the set of node names in the merged
slice. This set of node names is possibly different than the names of the device's nodes.
Then, the devices themselves can be renamed with increasing indices to reflect the larger

context of the merged slice.
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4.4 Merging the structures

The structures that are 1o be merged consist of edges, nodes, devices, and, although |

did not know it at the beginning of the MERGE implementation, the DGR records.

Fdges

Fdge merging is a problem of symbol manipulation. Edges from the two interior
borders vanish when the two slices become one. Edges on the left and right borders of the
slices must be checked 1o see if they connect to edges on the same layer on the other side of
the cutline.  After the edges are merged, the names of the nodes to which they are
conncected are checked to make sure they are consistent with the node names determined
previously.  All edges that appear in the merged edge file need the name of the associated

node checked with the node names of the merged slice.

Nodes
Nodes can have status flags associated with them. These must be propagated into the
node records for the merged slice.  This minor adjustment, along with the connectivity

computation and the renaming, above, suffices for merging nodes.

Devices

Some of the attributes of a device are casy lo compute: names, types, and terminals
are some of these. There is, however, one minor difficulty. Devices have a flag called
"touches-boundary” (TB), which IV scts when it notices that the channel touches the
boundary of the chip (or slice in MACE). If no device has the TB flag set, the whole DGR
phasc is avoided, since all devices are local to their respective slice.  Thus, correct

processing of the TB flag is essential.

However, each slice has four edges in the current MACE. For the device whose
channel lies in the corner of the slice, touching two edges, the TB flag is set as if it only
touches one edge. The TB flag alone cannot reliably encode the channel’s position relative

to the boundary. The problem | identificd was that a device that is large in the y-
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dimension could run from top to bottom of the slice, yet when it is merged on one side, the
TB flag s cleared. The fact that it still touches a boundary is lost. 1 did not correct this
~ deficiency, because it resulted from V's inability to encode the information. With suitably

thick slices this problem could be avoided.

There are other attributes that make merging complex. The merged device's area,
length, and width, for instance, arc not immediately evident from the two component
device records. In order to examine the device merging more fully, we must first examine

the different scenarios of device splitting.

Device geometry

Device geometry merging was extremely complex, and was not solved in the gencral
case. Over 800 lines of source code were devoted to merging device geometry alone. DGR
data are stored in non-ASCII format. The DGR files contain records for each device.
Within the record there may be one or more polygon sections. A polygon section contains
a number that indicates how many points follow, and then that many points, stored in

ordered pairs.

I first attended to channels that

« had only one polygon in the top DGR and only one in the bottom DGR;
e had arbitrary numbers of points in the polygon;
e had no cmbeddcd holes in the channel;

o had the polygon touch the cutline in exactly two points.

Some varicties of split channels are shown in figure 4-1. Note that not all shapes are
meaningful in the physical realm. From a physical standpoint there are problems if the
different picces of the channel are not all the same length. My solutions were strictly
geometric. Devices with holes in them are used to gencrate a high Width to Length ratio

within a small area.
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Figure 4-1: Merge possibilities: types (a)-(c) were handled; types (d) and
(e) were not.

Toward the end, I put more complex device geometries lower on the priority list than
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other tasks, and oniy devie. o of s o had dhers geometry correctly processed. The most
important issuc toward the cind was how i handle a class of split devices, as detailed in the

next section.

4.5 Split devices

When a cutline is arbitrarily imposed on layout, the structures split into pieces can get
arbitrarily complex. Specifically, when a device is split, it can be split in scveral ways. |
used the terminology in table 4-2 to describe devices in a layout across which cutlines had
been imposed. Figure 4-2 shows what some of these cases look like.

‘Table 4-2: Different split device types

e unsplit devices: also called local devices.
These devices have the channel not touching the
cutline.

e cleanly split devices: also called a 3-3 split,
because there are 3 terminals on both sides of
the cutline. On both sides of the cutline, there
is a recognized device.

e uncleanly split devices; and

e touching MOS capacitors.

For unsplit devices, only a single processor running extract recognizes the device.
MERGE merely propagates the information, which is correct except for the global naming.
For a cleanly split device, both processors running extract recognize that a device exists.
Merging the device is possible because the list of nodes that cross the cutline includes the
gate and both source-drain nodes in the two devices. Another form of this device is the 2-2
split. In this form, each processor sees an MOS capacitor, that is, a device with a gate and
one source-drain. Fortunately for MACE, the extract code writes out a device record for

this type of device. In a 2-2 split, only the gate node crosses the cutline; one source-drain is
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Figure 4-2: Split device types

above the cutline, the other source-drain is below. In this case, both device records are
deleted and a new record created, with the proper names of the three nodes included. An
uncleanly split device is a true bete noire. From one side, the device looks like an MOS
capacitor. From the other side, there is no gate node to comprise a device. This happens
when the cutline coincides with a horizontal edge of the gate node. Thus, when the

previously restored structures are consulted, there is no matching device on the other side.
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Recognition of this deviee is g wivalent 1o differenticiing between the following two cases.
e There Is material on the other side that normal 1V would have considered the
sccond source-drain. 'Thi: device is a normal, thrée terminal transistor.
o ‘There 1s no material on the other side of the cutline. 1V would have reported
the device as an MOS capacitor. The device is a two-terminal capacitor.
To recognize an uncleanly split device would require making access to the data structure
that represents the definition of the process technology, deciding which layer or layers
would complete a device, and then scarching the opposite edge list for such a layer.
Although 1t may be difficult to believe, all the work in MACE was strictly geometric
symbol mantpulation, except for this recognition phase. Cleanly split devices, local devices,
and MOS capacitors were handled properly in MACE, with device sizes not accurately

calculated for split devices. Uncleanly split devices were not handled.
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Testing: Strafegy, Cases, Results

This chapter analyzes the algorithm in MACE, especially parts of the MERGE
algorithm. [t also discusses the testing strategy of MACE, along with bricf test results. An

explanation of the performance is given.

5.1 Algorithin analysis

Ifthere are N devices in the chip, then it is expected that there are at most O(V'N )
devices in any horizontal line. Similarly, if there are k cutlines drawn, there will be
O(k-v'N ) items that abut the cutlines. Also, k cutlines imply running MERGE k-1 times,
which will require, if there arc sufficient processers, [log, (k)] stages of the processors
running MERGE. Thus, we can complcte the merge phase in polynomial space in log

time.

In cases where there were O(v'N ) structurces along the two sides of the cutline,
searches for matches, as in the edge scwing phase, can be done naively in O(~) time, and
could be done cleverly in O(VN -IOgZ(N)) time by sorting them before scarching., As a
worst case, we would expect O(vN ) devices to cross a given cutline, but with a bit of
adjustment, cspecially in a regular layout, as might be found in u gatc array chip, we might

expect to do quite a bit better, avoiding split devices entirely.

The edge merging is proportional to the size of the side edges, or O(VN +k). Ifthe
merge algorithm does not have to rename the items inside the slice, then its phases are

proportional either to the length of the cutline or to the height of the slice.
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5.2 Testing strategy

During the development of MACE, | took the approach of testing and building
feature by feature. Since VLS chips often have complex geometry, it is difficult to say
when all cases for testing a certain feature have been exhausted. 1t is also difficult, in the
abscnce of a mass of statistical data, to judge which geometrical cases arec more frequent
than others. I often encountered the situation at which a certain MACE feature worked
over a sct of layout configurations, but there were identifiable configurations not in the set.
I often did not know whether it was important to be able to deal correctly with these

configurations.

Once qualification for IV to work properly is that the layout be free of design rule
errors. I there are design rule crrors, 1V's behavior is unpredictable. It might function
correctly, and it might not. Since there are a few unusual cases that [V does not handle
correctly, 1 decided not to expect MACE to behave better than V. MACE's goal was

emulation of 1V, whether the behavior was correct or not.

5.3 Performance

I generated both two-way comparisons and three-way comparisons.  Two-way
comparisons involved serial running of 1V, the existing tool, and scquential running of
MACE. Inaserial IV run, a command file calls on IV to extract the circuit and produce the
edge lile. The other output forms of the extraction are produced by default. The execution
takes place on a single processor. In the sequential MACE condition, command file calls
on MACE a number of times to perform the individual tasks: splitting, extracting, and
merging. The exccution takes place on a single processor. ‘The three-way comparisons
include these two conditions and the combination of MACE and EPIC as the third
condition. A command file creates the EPIC master and starts the computation. Exccution
takes place across a group of processors all of which have the same hardware and memory

size.
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5.4 Results
In order to classify the test as a success or failure, the wirelists were checked against
cach other using WLC. The results in condensed form are shown in table 5-1. For the

unexpurgated results, consult Appendix 1.

Table 5-1:  Bricf performance results

Hardware characteristics:
Nodel: VAX-11/780
Node2: VAX-11/780
Node3: VAX-11/780
Noded: VAX-11/785
Node5: VAX 8600

Test 1: Comparison of scrial 1V with sequential MACE on NodeS, block 1.

1V: CPU time: 01:03(min:scc) clapsed time: 01:16
MACE: CPU time: 01:32 elapscd time: 02:38
Test 2: Comparison of serial 1V with sequential MACE on NodeS, block 2.
[V: CPU time: 17:54 elapsed time: 18:23
MACE: CPU time: 24:20 elapsed time: 32:25
Test 3: Three-way comparison on Nodel, Node2, and Node3, block 1.

Iv: CPU time: 4:04 elapsed time: 04:30
MACE: CPU time: 05:39 clapsed time: 07:24
MACE+EPIC:  CPU time: 05:36 elapsed time: 05:15
Test 4: Three-way comparison on Nodel, Node2, and Node3, block 2.

IV: CPU time:; 1:05:41 elapsed time: 1:09:31
MACE: CPU time: 1:27:31 elapsed time: 1:52:08
MACE+EPIC:  CPU time: 1:25:32 clapsed time: 1:17:00

Note: CPU time in the MACE+ EPIC condition is that consumed by all
processors.

I compared CPU and clapsed time for the three conditions on test cases that were
large enough to make the fixed costs insignificant. Sequential MACE required more CPU

and elapsed time than serial [V. MACE with EPIC required roughly the same aggregate
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CPU time as Scequential MACE.  The elapsed time on the MACE with EPIC runs was

larger than for serial 1V,

5.5 Fxplanation

It has been shown that 1V is a memory limited CAD tool. It builds such complex
data structures, tending to fill all available memory, that performance analysis shows

memory to be the bottleneck [4].

5.5.1 Serial IV vs. sequential MACE

The serial 1V case required only one image activation; sequential MACE and MACE
with EPIC require scparate image activations.  Although the test cases were large, the
MACE runs required several more image activations that the 1V run.  Also, serial IV keeps
all its data in main memory, while MACE has the additional overhcad of having to write its
data out to enable communication. Another weakness in MACE is that MACE contains an
abundance of consistency checks. At various phases, MACE traces its linklists to ensure
that connectivity is preserved. During the development phase this was crucial, because
frequent cxamination tended to limit the number of routines that were suspected of
corrupting the data structures. Infrequent checks would have resulted in a more difficult
debugging task. The removal of these checks would speed up execution somewhat, but not
significantly. Were MACE to be used for production, as a released tool to the VLSI

designers, it would most likely have these checks removed.

5.5.2 Where MACE spends time

Without performing detailed analysis on exactly where MACE spends time, exact
figures are unknown. However, some estimates can be given. Of the function performed
by the split verb, some is mirrored by 1V, the rest is pure overhead. The portion that 1V

performs is the reading of the layout file and flattening of the data. The overhead is the
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writing out of the iotraps. In the extract phase, there is some overhead involved in reading
in the totraps and writing out intermediate extraction files, but for the most part, the CPU
times are very close to those of IV. The merge phase is entirely overhead, with the

exception of the extremely small portion in which the wirelist and error list are generated.

5.5.3 MACE + EPIC: any advantage?

The running of MACE with EPIC has not yet revealed an advantage over serial IV.
Often the elapsed (rurnaround) time was only slightly more than serial V. However, it is
clear from the data that working within EPIC tends to reduce the damage done by MACE's
extra phases. Ina condition of uniformly dense layout, and a cleanly functioning MERGE,
it might be possible to bring the turnaround time below that of serial 1V, Although the
evidence seems to suggest that linear speedup is a goal far afield, it is rcasonable to expect
that with more processors devoted 1o the extraction and with a streamlined MERGE verb,
the turnaround time could be brought much lower than that required with 1V, From
extrapolating from one of the test cases, | estimate that in a large chip extracted by 8
processors, the SPLIT time should be about 10% of the IV turnaround time, the
EXTRACT time should be about 15%, and the time to perform a 3-stage binary merge

should be about 40%, for an overall turnaround time of 65% that of 1V,

5.6 An unanswered question about efficiency

For the sake of easc in reporting results, the runs performed with EPIC used the same
type of processor, with the same amount of memory. Even though EPIC does not require
slaves to be on the same VAXcluster, | only used processors on one VAXcluster due to
availability. Were the goal to minimize turnaround time, one would not care which
hardware was used. One would prefer using the fastest processor possible to perform as
much as possible. But how does one measure speedup in the heterogencous environment?
Performance analysis is a tricky enough field without compounding the issues by

introducing different processor types, memory sizes, and loading factors into the melee.
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Different CPU types are VAX-11/780, VAX-11/785. VAX 85600, and MicroVax 11, for
example. Given this situation, the term wilization bm%ﬁned for an EPIC run
with one slave'a VAX 8800, another stuve a VAX 8500, another slave a MicroVax 11, and
still another a VAX-11/780. : -
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Chapter Six

Future Research Opportunities

6.1 Missing features

MACE did not achicve proficiency at handling all the desired layout features
correctly. The uncleanly split device was not handled, although the hooks were put in to
facilitate its inscrtion.  Device size calculation for merged devices were consistently
different from IV's figures. Digital Equipment Corporation uses a more complex model
for device sizes than merely average length times average width. Because of this formula,
these data were difficult to reproduce.  Instead of making the area the product of length
and width, arca is computed by adding up the arcas of the trapezoids in the channel. One
of the two factors is maintained, and the other is derived when the device is complete.
Without introducing dubious correction factors into the code, the size errors could not be
climinated for severed devices.  Also, MACE's input mcthod did not allow specified

negative coordinate values.

6.2 Extensions to MACE

6.2.1 Alternate splitting modes

For testing, the variable SPLIT mode was essential to enable dropping a cutline on
top of a feature in question. If one wanted to minimize the variance in the extraction times,
onc might like to have a mcthod of splitting the layout that would evenly divide the
number of polygons in each slice. Such a scheme would produce slices with variable
heights. If extraction time is related to the number of polygons, this might be a good first
step to achieving uniformity of the size of the extraction task. Note from one of the test

cases that the times to perform the extraction were widely varying.
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6.2.2 Automatic Testiny i'vols

One area that could have benefitted from some work is that of automatic testing
tools. Few things are more frustrating than to generate some test results and not to know if
they are cquivalent to the expected results. Wirelist Compare is an excellent tool to
cstablish equivalence of two wirclists [7). However, there are other output formats of 1V
that do not have such a sophisticated checker. The edge file format and XND file format in
particular are two for which equivalence could have been established by an easily built
postprocessor. A single tool to compare cquivalence of edge and XND files would work as
follows:

1. Read in the two edge files.

2. Sort edges into two data structures, one for the 1 V-gencerated structure, one for
the MACE generated structure

3. Further divide the edges into left, right, top, and bottom edges.

4. Considering cach area (left, right, top, or bottom) alone, attempt to build a
mapping function, T (iv-node-name) = mace-node-name.  Constructing the
function and its inverse edge by edge would be straightforward.

5. Report any edges that were did not exactly match edges in the other structure.

6. Read in the XND files into two new structures.

~lJ

. Using the same mapping function and its inverse derived above, attempt to
reconcile the nodes listed in the XND file, reporting errors as above.

8. Build a device-name mapping. (perhaps this can be done by a postprocessor to
WLC)

9. Reconcile the device data with respect to gate name, source/drain names,
location, device type, and device size.

Device geometry, because of its inscrutable format, is difficult to check. Especially
with more complex channel shapes, equivalence is not the same as coordinate-for-
coordinate equality. The lack of a canonical representation for channel shapes and of

50



S. M. Levitin MACE: A Multiprocessing Approach to Circuit Extraction

&<
N
P
\
(S
”
el
(a) Donut case. Center is empty (b) Representation 1: two concentric squarcs
< .
\
I
N
LT A
”~

(c) Representation 2: limiting case of a 'C”

Figure 6-1: Two representations for a shape with a hole

procedures to eliminate interior lines makes the cstablishment of such equivalence an
involved task. In figure 6-1, the actual layout is in part (a). One way to rcpresent this is
with two polygons, as in part (b). Another way to represent this is with one polygon whose
edges meet, as can be extrapolated from the closing arms of the C in part (c). When [V
encounters a device such as this, it writes the DGR in form (b). When thinking about
merging portions of channels, | realized that my algorithm would represent it in form (c),

and that deriving form (b) would be extremely difficult.
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6.2.3 Glamorous yet [unciional user interface

MACE performs input by prompting the uscr for a chip name, a verb, qualifiers, and
so on, one to a line. This mcthod was the simplest, but investing the time o develop a
command reader with the CDU (Command Definition Utility) would be a functional
improvement as well [20]. The CDU provides for the description of the verbs available
within a subsystem such as MACE. It is casy to specify that a verb such as SPLIT has two
possible qualifiers, /FIXED and /VARIABLE, that the two qualificrs arc mutually
exclusive, and so on. In particular, it is possible to specify that /FIXED takes one
argument, the number of slices to divide the layout into, and that /VARTABLE takes a list
of y coordinates. These arguments can be passed as formal parameters to user-specified
routines. CDU puts glamor on the front end, where it belongs, but it also provides a good
way of command processing. What is apparent to the uscer would be a difference between

these two dialoguecs:
$mace := $mace$dir:mace
$mace
MACE> split
Block to split: blockl
Fixed or variable: v
Enter coordinate, or 0 when finished: 7600
Enter coordinate, or 0 when finished: 4850
Enter coordinate, or 0 when finished: 1040
Enter coordinate, or 0 when finished: 0

as opposed to
$mace := $mace$dir:mace
$mace split /fixed=4 blockl

$mace split /var=(7600, 4850, 1040, 0, -2500) v2yscan

In the first, the task takes scveral lines to specify; in the second, any MACE task can be
specified with one line. [t should be noted that this approach would solve one liability with
the approach implemented in MACE. MACE’s SPLIT verb docs not permit a named y
coordinate to be less than 0. It also rejects out of order values. With the CDU interface, all

values are available to the routine named in the command description, and could be sorted
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there. Further, negative values, which have meaining in some chips, arce acceptable with

this method.

6.2.4 Automatic FCF generation

With the benefit of the CDU, MACE tasks become single command lines, instead of
requiring a wholc command lile. Of course, a command file may still be needed if there
arc sctup steps needed, or if there are steps to be taken after the task. The CDU mentioned
above would enable the user o interact with MACE more efficiently. A new teol could be
built as a new front end, that would prompt for some extraction parameters, and build the
ECF and command files needed to run MACE under EPIC. This new ool would be

similar to the module Marantz built to parse the rules_file to generate the ECF [8].

6.2.5 Capacitance calculation

[t was not a goal of this research to calculate capacitance with 1V's accuracy. Indeed,
given the problems representing complex shapes, this would have been very difficult.
However, in another environment, the multiprocessing extractor nced not be excluded
from calculating capacitance. If the tool can correctly determine the shapes of the nodes,

then such calculations should be straightforward.

0.3 Design decisions better redone

6.3.1 Static computability of merge might not be best

Recall section 3.3.3, in which dynamic computability of merging was judged not to be
an advantage. The argument about static or dynamic computing of which slices to merge
holds for a homogeneous computing environment. It is a different question entirely for the
heterogeneous cnvironment.  Assume the slices are of roughly the same complexity, as

measured subjectively by number of nodes, devices, polygons, and so on. Then, the
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variance of execution times will be greater for a varying set of processor ypes than it will
be for all identical processors. [ the processors assigned cach to extract one slice have
power that ranges over two orders ol magnitude, then the execution times are expected to
range over two orders of magnitude also. Obscrve from Appendix 1 that in larger chips,
the time required to merge two slices becomes small relative to the time required to extract
a single slice. Given two slices, which ordinarily would not be merged in the first merge
stage, that have passed the extraction phase, it might therefore be possible to complete the
merge operation before either of the merges called for in the static strategy would be
possible. Having layout of nonuniform complexity only blurs the issuc more. Every factor
that tends to increasc the variance of the extraction times, such as processor memory,
processor speed, and variable segment height, speaks for the accommodation of dynamic

computing of the merge pattern.

6.3.2 Unified output format

[ believe that using the existing IV formats was the correet decision. However, there
could be onc slight modification that would streamline the process. Rather than using the
various IV output formats in many scparate disk files, an alternative is to use a unified file
format, that would store several files’ data. The unified output format would be an output
of the extract verb and an input of the merge verb. The merge verb would then merely
have to read one file per input, and create one output file as its result. As before, the final
merge opceration could know to create from the single output file the additional reports,
such as errors, capacitance charts, and wirelists. The advantages to be had by using this
format include the following:

1. There is less overhead on file transfer between very looscly coupled processors.
2. Confusion from issues of file protection and file naming are minimized.

3. Dircctories of files involved in a merge operation are smaller, more
comprehensible.

4. The ECF for a MACE circuit extraction run will be smaller, because there will
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be fewer inputs and outputs of the various merge stages, thus is quicker to write
and read for the EPIC modules that use ECF,

5. Validation of the unificd format can still be donce by separate tools in parallel if
cach validation tool opens the unified output file for READ access (with no
intent to modify).

The identifiable disadvantages include:

1. Some information might be lost due to only one file organization. When
different data types use different file organizations, for example, to facilitate
rcading by computer or by human, these decisions would have to be made in
the context of a predetermined unified format.

2. Muintainers would not have the freedom to choose any file format when adding
a new data type.

3. With scparate files, it is immediately obvious from looking at the directory if
the merged edge file was produced. With a unified output format, it is not
obvious from looking at the dircectory listing if cach format was dumped into
the single file. '

On the one hand, simplicity seems to be in favor of a single file for single data type,
as in traditional IV. On a more global perspective, however, when there are many different
formats for different data types, and the conflusion multiplies for cach different file type,

creating a polyglot format might be attractive.

6.4 Modifications in the MACE and I'PIC interaction

EPIC was built with the intention of scheduling independent tasks.  The task
processors should have no idea that there is even another processor in the universe. In this
setup, slave processors cannot cooperate. An alternate paradigm is that of coworkers and
bosses. The coworkers communicate as the task requires, and the boss channels the
communication and controls the execution. Such a setup would require some minor

rebuilding of the application to take advantage of the possibility to communicate.
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However, the availability of such communication would greatly facilitate some goals,

primary among which is smart cutline imposition.

6.4.1 Cut cleverly; Merge simply

Structure avoidance by arbitrarily placed horizontal cutlines is not dependable. It s
an event with a certain probability of success. The imposition of many horizontal cutlines
will sooner or later sever a device, and if there is no code to handle the severed device,
there will be a mess. The suggestion is that by appropriate communication, cutlines could
start horizontal, with the possibility of being nudged by a processor to avoid certain
structures. A processor that recognizes a device touching the top boundary of its slice may
decide to pull the cutline down below the device, in ¢ffect relegating the device to the duty
of the processor of the adjacent slice. 'The device's data could be formed into a message,
and sent, with the boss’s aid, to the coworker in charge. The coworkers would not know
who was assigned to what task, but the boss would. With a bit of work, so as to avoid the
excision by both processors of two halves of a cleanly split device, MACE could be built to

avoid device splitting entircly.

6.4.2 Alternate merge formats

MACE uses a binary merge format, in which two slices arec merged in one task into a
larger slice. Each strip has exactly two neighbors.  An alternate merge method that still
uses the strip decomposition method would be a bucket brigade algorithm. This algorithm
would not be possible without the support for interprocess communication, but could

concetvably function within the boss-coworker configuration.

Consider n processors working on n separate strips, and assume we have a reliable
way to pass messages from slave to slave. On an even phase, processor 0 (P0) working on
strip 0 (S0) talks to processor 1 (P1) working on strip 1 (S1). Similarly, even processors talk
to their higher neighbors. The high processor, if even, remains idle. On an odd phase, PO

remains idle, and all odd numbered processors talk to their higher ncighbors. Even and
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odd phases alternate until message traffic stops. When message traffic stops, the memory
of cach processor is combined in any order to represent the circuit equivalence of the chip.
The master can judge when message traffic stops by a function of the slaves’ state. If a
slave is computing, there might be more message traffic.  [f all slaves have finished
computing on their own data and they have processed all of their incoming messages, then

there are no more messages (o be sent.

6.4.3 Messages for naming

The preceding explanation gives the genceral configuration of the processors. It could
be used o perform any of the central MERGE functions.  Messages could be used to
emulate 1V's naming scheme, if this is the desired method. [n one phase, all labels could
start flowing back and forth, until all named nodes were agreed upon by all the processors.
In a sccond phase, the numbers for the unnamed nodes would spread out. In a third phase,
the processor of the top slice would retrieve its highest node number and pass it to the
neighbor. Each processor of an internal slice would read the number and adjust the nodes
that are local and unnamed by this offset, then sending the new highest node number to its
neighbor. To establish consistent naming among n processors would require O(log, (M)

time.

6.5 Recommendations for implementation

From the experience and difficulties encountered in the development of MACE, |
have glecaned some impressions and thoughts on how to build a multi-processing circuit
extractor. The observations are made both in reference to the software Cngineering aspects

of the project and to the multiprocessing aspects of the project.
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6.5.1 Soltware development suggestions

To ensure case of building prototypes rapidly, consideration should be given to
modular design of the components. The modules that perform input or output of a certain
data type should completely insulate the realization of the format from the rest of the
system. This feature, not a recent development of software engineering, is absent in the 1V
system, It is difficult to derive the syntax for an XND file from the code. It is even more
difficult to be sure that changes to the format, which were necessary in the project, were

adequately achicved without adverse side effects by the changes made to the code.

Each module should be built with its own dcbugging routines, for record analysis.
The records IV manipulates tend to be quite large, with analysis of sclected components
difficult. By providing routines within cach module that inspect data, scrutiny of the

relevant parts is casicr. This approach was taken in the modules of MACE,

Consistent module and variable naming, a unified approach to error handling, and
unified approach to procedures’ return values all will help the members of the
development team ensure consistency of the code. Rather than have several modules in
cach member’s style, establishing and enforcing conventions will provide greater ease to the

group at the expense of ruffling cach member’s feathers only slightly.

6.5.2 Suggestions for multiprocessing extractors

[ believe that a circuit extractor can be built that not only embodies thesc principles
of high quality code, but also enables the system to work in a single processor or a
multiprocessor environment. The computing environment assumed here is a moderately
coupled multiprocessor. Several autonomous processors share memory and have a means
of sending messages to each other. The notion of a task is central to the design of the
system. There are several methods of breaking the task of circuit extraction of the entire

chip into several smaller tasks.
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Use hicrarchy

Onc might wish the tool to take advantage of the hicrarchy of the chip. In its present
form, IV docs not take advantage of the hierarchy; it flattens the layout information before
~ processing it. We might wish to have the tool work at the grain of the feaf cells of the chip
assembly, constructing descriptions for the cells. Then it would instantiate the descriptions,
modifying them with any loose layout in the calling cell. A natural ordering of the tasks
comes from the hicrarchy. Possibly great savings could come from not having to perform
the extraction for the same leaf cell many times. The added complication is the need to
accommodate the loose layout that can overlay an instance of a cell.
Use pipelines

Just as a compiler has several phascs of operation, cach with a well-defined phase that
transforms intermediate results, concciving circuit extraction as a scquence of refinements
on data might help. The various phases might be

o rcading the layout

« flattcning the layout

¢ connectivity calculations (contact recognition)

o device recognition (depends on the process)

e device attribute calculation (area, perimeter, length, width...)
o [capacitance/resistance calculation]

e global naming of items (such as edges, dcvices, nodes)

e output the data and

e output the errors in the layout.

Each task filters the data from the previous step or steps to accomplish its own task.

The tasks are designed to be atomic. | don’t know if this atomicity is possible, but this

59



5. M. f.evitin MACE: A Multiprocessing Approach to Circuit Extraction

might work. I the processes are not atomic, but if message passing is possible in the
architecture, the tasks can be pipelined.  The flattening can start before the reading is

finished, but cannot complete until the reading is complete.

Use wisdom

Another approach is to make the merging as simple as possible. The simplest it could
be is if appending individual results makes final results. By putting the name construction
phase at the end, as has been suggested is preferable to the naming scheme within MACE,
no time is spent computing and recomputing node names. In the current MACE, a local
node in the bottom slice could be renamed once for cach MERGE opcration it is in. Also,
if the cutlines are positioned cleverly, to avoid structure merging, temporary results are
much closer to final results than they are in current MACE. By appropriate usc of
knowledge and communication, as described previously, the binary merging can be made

essentially a local operation; no structure merging need occur.

6.6 Conclusions

Considering the complexity of the task, I am pleased with the results. Within the
context of a large body of software, I was able to modify it to support a different mode of
behavior. | was able to bring in the necessary data for the reconciliation phase. There are
some drawbacks in MACE’s performance: some data are not correctly calculated, such as
device sizes; device geometry is not handled in some of the more complex device shapes;
and not all split devices are handled. However, there is rcason (o believe that these features
could be implemented. The project shows that there may be hope for a multiprocessing
circuit extractor, and it is suggested that finer granularity would go a long way toward this

goal.

The task of circuit extraction, on the surface a difficult one to mold for
multiprocessing, does not present clear contraindications of this possibility. [ have shown

that, in spite of the nonlocal nature of the task of circuit extraction, temporary results made
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ot the basiz of nu context can be converted into results that are cquivalent to what is
normally obtained from cxtracting the whole chip. It is suggested that there are some
reasons to rethink the process of circuit extraction to cnable a cleaner decomposition of
tasks and to provide for scveral multiprocessing prototypes. Tighter coupling of processors
‘would aid in certain computation scenarios. It is further postulated that an approach

similar to the one taken can bring up to a 50% speedup over the existing method.
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Glessary of Ferms

the overlap arca of polysilicon and diffusion for an NMOS device.

an imaginary line imposed on a layout by which SPLITTING occurs. In
MACE, all cutlines arc horizontal,

usually, a transistor. [t usually has three terminals: a gate node and two
source/drains. In the context of IV, an MOS capacitor is called a device
with only two terminals, and can be gencrated by a three-terminal
device whose two source/drains are the same ¢lectrical node.

exccution control file. This file instructs EPIC which tasks are part of the
computation,

describes a computing environment in which all the processors are
substantially the same.

describes a computing environment in which all the processors are not
substantially the same.

descriptive text associated with a node in a layout file that helps to
identify for the designers™ usc the function of the node. Sample labels
might be PHI, WRITE-ENABLE, DATA<3>, to indicate a clock signal,
a control signal, or a slice of data, respectively.

Manhatian geomeltry

MBB

layout that contains only horizontal and vertical lines. Modcled after the
streets of Manhattan, which are largely box-like. - Non-Manhattan
geometry contains lines that are not horizontal or vertical, although in
most cases this means oriented at some factor of 45 degrees.

minimum bounding box, represents the smallest rectangle inside which

all layout fits. It can be thought of as horizontal and vertical shrink
wrap.
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slice

window

h to Circuit Extraction

MACE: A Multiprocessing Ao

T a rectangudar portion of a chip. The width m’é the slice is the width of the

MBB of the chip. The heig!ﬁoftheﬂm:scontnﬂkd by the user.
Synonyms: strip, mmh ' _

similar to the MBB, except it may be of ouyapartof the chip. MACE
uses only rectanguiar wméowswbwm &ﬂacxdxmensaon is equal to
that of the chip.
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Hardware characteristics:
Nodel: VAX-11/780
Node2: VAX-11/780
Node3: VAX-11/780
Nodcd: VAX-11/785
Node5: VAX 8600
Node6: MicroVAX [

Test sizc (approximate)

MACE: A Multiprocessing Approach to Circuit Extraction
Appendix II

Test Results

24 Mb physical memory
24 Mb physical memory
24 Mb physical memory
32 Mb physical memory
32 Mb physical memory
5 Mb physical memory

Block1: 1600 nodes, 600 devices
Block2: 23000 nodes, 6000 devices

Test 1: Comparison of scrial IV and scquential MACE on NodcS, block]1.

IV:

MACE:
split
extract 1
extract 2
merge 1,2

Total

CPU ume: 01:03  clapsed time: 01:16

CPU time: 00:21 elapsed time: 00:30
CPU time: 00:27  clapsed time: 00:37
CPU time: 00:25  clapsed time: 00:34
CPU time: 00:19  clapsed time: 00:58
CPU timie: 01:32  elapsed time: 02:38

Test 2: Comparison of serial IV with sequential MACE on Nodc3, block 2.

1V:

MACE:
split
extract 1
extract 2
merge 1,2

Total

CPU time: 17:54  c¢lapsed time: 18:23

CPU time: 01:05 clapsed time: 01:51
CPU time: 15:10  clapsed time: 17:58
CPU time: 06:40  clapsed time: 07:30
CPU time: 02:23 elapsed time: 05:06
CPU time: 24:20  clapsed time: 32:25

Test 3: Three-way comparison.
Notes: 1V ran on Node3; MACE ran on Nodel;: MACE+ EPIC ran on Nodel, Node2,
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and Node3, with Node4 as master. Test casc: Block1.

[V: CPU time: 04:04  clapsed time: 04:30
MACE:
split CPU time: 01:22  clapsed time: 01:34
extract 1 CPU time: 01:35 clapsed time: 01:46
extract 2 CPU time: 01:33  clapsed time: 01:47
merge 1,2 CPU time: 01:09  clapsed time: 02:16
Total CPU time: 05:39  clapsed time: 07:24
MACE+ EPIC: CPU time: 05:36  elapsed time: 05:15

Test 4: Three-way comparison.
Notes: 1V ran on Node3; MACE ran on Nodel; MACE + EPIC ran on Nodel, Node2,
and Node3 with Node4 as master. Test case: Block?2.

[V: CPU timc: 1:05:41 clapsed time: 1:09:31
MACE: )
split CPU time: 03:52  clapsed time: 04:52
extract 1 ' CPU time: 50:47  clapsed time: 1:07:53
extract 2 CPU time: 24:01 clapsed time: 27:31
merge 1,2 CPU time: 08:52  clapsed time: 12:43
Total CPU time: 1:27:31 elapsed time: 1:52:08
MACE+ EPIC: CPU time: 1:25:32  elapsed time: 1:17:00
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Appendix HI

Test Cases

1.1 Edges

I1L.1.1 Side edges

Correct edge handling requires correctly identifying the coordinates and the name of
the node to which the edge belongs. This latter issue is applicable to any edge that is in an
output file. Particular cases include

o cdge local to slice

e cdge with one point on cutline, other inside

e cdge with one point on cutline, other on extreme edge

e two edges with the same coordinates but on different (distinct) layers
e cdge touching cutline with no match on other side

e cdge touching cutline with match on other side

e edge running the whole length of the side of the chip

I11.1.2 Cutline edges

Edges on the cutline are essential to establish connectivity. In MACE, an overlap of
any non-zero length was sufficient to establish connectivity. A good cutline sewing

algorithm should handle these cases:

o two edges, different layers, same coordinates
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$24 Top slice

Bottom slice

$i $2 $3

Figure 1II-1: Many to one edge/node match
 two edges, same layer, small negative overlap (no connection)
o two edges, same layer, zero overlap
e two edgcs, same layer, non-zero overlap

e two edges, one edge overhangs the other (begins before and ends after the
other)

e two edges, the one that starts to the left ends to the left

e One edge on top that matches two or more seemingly distinct edges on the same
layer below. See figure [11-1

e checkerboard edges from top and bottom, all having zero overlap
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1.2 Nodes
After the sewing ug of the cutline edges, the connectivity of the nodes should be able
to be deduced. Some pitfalls in node handling:
e Labels from top overrule numbers from bottom
e Labcels from bottom overrule numbers from top
o Nunibers from both sides are consistently handled
o Conflicting labels get reported

e Nodc flags of the resultant node are the inclusive or of node flags of the two
constituents

e Conflicting flags (if any) are reported as errors

111.3 Devices

e Device flags of the resultant node are the inclusive or of the device flags of the
two constituents

o Conflicting flags (if any) are reported as crrors
e Devices touching the boundary of the whole chip are reported
e Unsplit devices are cither handled or avoided and rchandled

o Splits (2-2 and 3-3) are handled

[11.4 Device Geometry

Device geometry is exactly or equivalently constructed, for a testing tool to judge
after the extraction. One cspecially tricky case appears in figure I11-2. From the
perspective of the top slice only, the channel has no hole. From the perspective of the

bottom slice only, the channel has no hole. Both seem solid. However, when they are
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Figure I11-2: The appcearing hole channel
positioned adjacent, and the teeth come together, an arbitrary number of spaces are
formed. By suitable positioning of the teeth (in a checkerboard pattern, for instance), even
the number of holes, though constant, is a matter of semantics. [f a hole connects
diagonally to another hole, is that two holes or one? Recall figure 6-1 on page S1. There
was ambiguity of how to represent a hole. If the teeth mesh exactly and leave some holes in
the middle, is the polygon represented as one slab with some holes in the middle, or one

slab with one complex hole in the middle?
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There are other more mundane cases. Jusix anedacham can wind from top to-v
botiom to top again, and all nodes must be remgam.mm&devus channel wind over
the cutline, Cases (d) and (e). of figure 4-1 on page 39 shouid be handled correctly, in

“addition to the snmplc fonr—pomt channel mem ; that MACEWM correctly.
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