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Abstract

In present day circuit design, many independent simulation tools are available for analyzing cir-
cuits al various levels of detail. This thesis presents a framework to tie these tools into the
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provides the ability for mixed-mode simulation. The Simulation Environment is composed of
common data representations, a Ganeric Simulater, and a single user interface. A common
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the user and to all CAD tools. The Generic Stnulator coordinates the flow of data objects be-
tween each simulator and the user or analysis tool.
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Chapter One

introduction

Circuit design requires the assistance of a comprehensive range of computer aided design
(CAD) tools, many of which either currently exist or are under development. Individually, each
tool addresses a specific task in the design process. As an integrated collection, however, the
tools share data and !asks across all stages of the design process. Unfcrtunately, no one system

has effectively integrated the collection into a single design environment.

Research on such an environment is presently underway at M.L.T. with the development of
Schema [Zippel 85]. Schema research focuses on providing a software environment for easily
integrating alt CAD tools necessary for design and allowing the effortless building of new tools
into the existing system. One area of major interest in Schema and of circuit design in general is
simulation. Fatal design errors are detected and circuit performance is measured by simulating
the operation of electronic designs. In this way, simulation invaiuably contributes to the success

of high-performance circuit designs and is a vital component of any CAD system.

This thesis presents a Simuiation Environment ior Schema foliowing in the footsteps of

the integrated software design envircnment established in Schema.

1.1 Motivation

Many simulators have been developed o satisfy different design needs using a single
modeling level of circuit abstracticn. Often the designer is overwhzlmed by the need to learn the
operation of and to manually recode circuit descriptions for each individual simulator. In addition,
cutput waveforms associated with one particular circuit module’s simulation must be interpreted
and manually translated for use as innut to some other interconnected module’s simulation.

Because of the massive time investment required, this process is typically omitted altogether,

The recent trend has boen towards mixed-mode simulfaticn whereby different levels of

simulation are consolidaied into one softwure package. At the high end, the Sable [Hill 79, Hill 80]



Chapter 1 Introduction

system combines behavioral, register transfer, and gate level descriptions. Similarly,
Themis [Doshi 84] addresses simulation at the behavioral, register transfer, logic, and switch
levels. Both simulators deal exclusively in the digital domain, however; neither includes circuit,
timing, or linear level models, which are critical to the design of high-performance circuits. On
the low end, concurrent circuit, timing, and logic analyses are illustrated in both the Diana [Arnout
78, Antognetti 84] and Splice [Newton 78, Newton 79} systems. In addition, the second genera-
tion Motis [Chawla 75, Fan 77, Chen 84, Antognetti 84] program combines timing, switch, and
logic level simuiators into one software package, running on a single mainframe; accuracy is
reduced by omitting the detaiied transistor models available in a circuit level simulator such as

Spice2 [Nagel 75, Cohen 76].

These and others [Nestor 82, Thomas 83, Borrione 83, Lanthrop 8&] are attempts to com-
bine simulators using a range of modeling levels into a single software pragram. One disadvan-
tage of this single system approach is a loss in computational efficiency. With increasing in-
tegrated circuit complexity, the computational power required for simuiating very large circuits
becomes a major boitleneck 1o the design effort. Even the use of the most advanced hardware
and software technology inevitably results in extensive execution times for a single system.
Expensive design cifort is halted while waiting upon simulanon results. Another cost is incurred
from discarding old, vet still usable simulators to invest in software recading for a mixed-mode
system. For example, in an 2ffort to provide an integrated computer aided design system for
Sandia, a substantial amount of manpower was invested in understanding, recoding, and debug-

ging undocumented industry and university software programs [Daniel 82].

With the accelerated advancement of today's technology, new simulators are continually
being developed using state-of-the-art hardwars technology, and more efficient, optimized, and
sophisticated algorithms. Dramatic speed improvemenis are achievable with special-purpose
hardware, such as the Yorktown Engine [Pfister €2] and the Logic Simulation
Machine [Abramovici 83], and highly parallel algorithms, such as Prsim [Arnold 85} and

Msolice [Deutsch 84} designed specifically for muiti-processor systems.

Simulation alone cannot guarantee the success of today's high performance circuits. In
conjunction with simulation, analysis tools are an essential ingredient of the design process.
Analysis iools operate on simulation data  This data may pertain to one simulation, multiple

simuiations, or ultimately different simulation icvels.  Performance evaluation, verification of
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simulation results against specifications, and circuit partitioning for different levels of simulation
are just a sampling of invaluable analysis tools. Analysis tools also instigate simulations. An
analysis tool may schedule a series of simulations to compare the performance of different

designs or the behavior cf a single dasign in different operating regimes.

Each analysis tool is simple to build, yet creating a simulator and user interface for each is a
major undertaking. In effect, the existence of the analysis tool alone is not justified. For example,
mathematical operations on waveforms are useful for analyzing circuit simulation results. For
instance, power consumption over time amounts to a simple multiplication of waveforms, yet
without a graphical user interface and a simulator interface, the tool is unusable. The designer
would be fcrced to manually enter the simulation data points - a tedious, error-prone, and time-

consuming task - as well as interpret the numerical ouiput data.

1.2 Design Goals

A framework is essential to tie simulation tools into a common environment. This thesis
presents such a framework: A Simulation Environment for Schema. The framework is

designed te easily infegrate simulation tools, to serve as a foundation for building new analysis

nols, and to provide mixed-mode capability. The following sections detail each of these design

goals.

1.2.1 Integrating Simulation Tools

The Simulation Environment is designed with the ability to readily integrate new as well as
currently existing simulation tools. Simulation of all modeling levels may be easily incorporated,
this includes tools expioiting each of the various fransistor modeling levels and the simulators that
address the more abstract circuit representations. Without slowing down the user’s design effort,
simulation can be distributed to another local process or remote engine that can efficienily run
the simulaticn. Distributing the effart among whatever engines are currenily available, and poten-
tially least loaded, enhances the overall computaticnal power of the designer’s environment.
Furthermora, because a large amount of time, money, and effort went into developing and main-
laining the existing simulation tools, they could remain constantly in use - greatly enhancing
computationud power. Adding new simulators aliows the environment to keep pace with the rapid

development of new hardware and software siniulation engines.
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1.2.2 Building Analysis Tools

The Simulation Environment could serve as a foundation for building an unlimited number
of powerful analysis tools. Automatic partitioning algorithms can be developed for partitioning
large-scale circuits into a coliection of blocks to be individually simulated at different modeling
levels. Another tool could schedule a series of simulations for each biock to verify that it meets
specifications. Additionally, small analysis tools could be designed to compare the results of
different siinulations or to perform operations on simulation output. Coinparison and evaluation

of the performance of new simulators could even be executed by an analysis tool.

1.2.3 Mixed-mode Capability

Mixed-mode refers to transforming the output data from one mmoduie’s simulation for use as
input to an interconnected module’s simujation, where each module may be modeled at different
levels of detail. For example, certain portions of a design may require the accuracy of a circuit
simulation, while for other less critical portions, a less exact switch or logic level simulation is
most appropriate. Both require simulation, yet using different simulators. With the mixed-mode
capability, the Simulation Environment transforms the output analog waveforms from the circuit

simulation into logic waveforms for use in the switch or logic leve! simutation, and vice versa.

1.3 Overview of Thesis

Chapter 2 opens with a brief overview of the types of simulators available. This naturally
leads into a discussion of the goals of the Simulation Environment and the approach taken to
achieve them. Next each component of the Simulation Environment is briefly described: the
uniform data representations, a Generic Simulator, and a common user interface. The chapter
closes with a discussion of the techniques available in Schema that are useful to the Simulation

Environment.

The circuit topology, models, end waveforms are the data required for simulation. Their
uniform representations and user interface are discussed in Chapters 3, 4, and 5, respectively.
V/hen integrating additional simulators or building new analysis tools, only new data types and

local operaiions need to be defined as described in the latter sections of each chapter.

Chapter 6 describes the role of the Generic Simulator in the Simuiation Environment. The

10



Chapter 1 . Introduction

Generic Simulator contains the simulation tocis of the environment and genaerically interfaces
them to the objects in the environment, to the user, and to the analysis tools. This chapter
presents each step of the Generic Simulation Process.

Chapter 7 concludes with a summary of the Simulation Environment for Schema recounting
the properties achieved. Suggestions for possible future analysis tools are cited. These toois
could be easily built on top of the Simulation Environment in m

1A




Chapter Two

Design Methodology

The currently available simulators are raviewed with respect to irput and output data re-
quired for each. Next, a design strategy is developed to tie these simulators into a single
Simulation Environment. Each component of the Simulation Environment is defined along with its
corresponding roie in the simulation process. And finally, the implementation of the Simulation

Environment within Schema is presernited.

2.1 Simulation Domain

Many simulators have been developed to satisfy different design needs throughout the
various stages of the design process. This section briefly describes the different kinds of
simulators in use today. Notably, each simulator utilizes different algorithms, accepts input such
as a circuit description, excitation signals and perhaps some maodeling parameters, and ultimately

produces output data.

Circuit simulators provide the most detailed level of simulation; node voltages and branch
current waveforms are calcuiated and plotted. General-purpose circait simulators, such as
Spice2 [Nagel 75, Cohen 75] and Astap [Weeks 73], apply general algorithms for non-linear static,
linear ac, and non-linear transient analyses. Circuiis may contain capacitors, resistors, inductors,
mutual inductors, voltage and current sources, and a wide rarnge of nonlinear active devices
including diodes, bipolar junction transistors (BJTs), junction field-effect transistors (JFETs), and
metal-oxide-semiconductor (MCS) field-effect transistors (FETs). Each semiconductor device is
modeled with a set of process parameters. Spice2, for example, has three buiit-in types of MOS
device models: Shichman and Hodges, analytical, and semi-empirical models. At this level of
detail, circuit simulators are generally cost effective for circuits with a few hundred devices or
less. Execution time can be increased by replacing analytic device models with simplified table
look-up models relating device current to terminal voltages. These general-purpose circuit

simulators are largely indecpendent of technology. If simulation algorithms are tailored to specific

i2



Chapter 2 Approach

technologies or applications, substantial speed improvements can be achieved. To take advan-
tage of the unilateral nature of MOS devices, refaxation-based circuit simulalion [Dumiugol
83, Newton 84] algorithms preovide up to a twofold increase in simulation speed over general-

purpose circuit simulators.

The linear-model simulator Rsim [Terman 83] represents MOS transistors as resistors in
series with a voltage-controlled switch. This model provides logical and approximate timing
information. Logic behavior is determined by a fast event-driven algorithm; transition times
depend upon on effective transistor resistance, and interccnnect and gate capacitance. Using
this simplified linear model, networks containing up to 50,000 transisiors may be simulated.

Instead of node voltages and branch currents, discrete logic states at network nodes are used.

Switch-level simulators such as Mossim [Bryant 81] and Esim [Terman 83] model MOS tran-
sistors as a network of on/off switches. This model captures the logical properties of a circuit
while ignoring many of the detaiied electrical issues. A switching network is most appropriate for
simulating the bidirectional nature of MOS transistors. Furthermore, since so littte modeling
information is retained for each transistor, this type of simulator is abl2 to handle larger scale
designs. Signals are typically represented in terms discrete logic states in unit-delay time se-

quence.

A simplification of the switch-level simulator is the unidlirectional gate-level logic simulator,
which uses NOT, AND, OR, NAND, and other combinational logic gates, and state-preserving com-
ponents such as flip-flops and counters. This simulator solves simple bociean equations to obtain
the output state of the logic components. Time may be in unit delay intervals or variable delay,
which more closely models continuous time. Unfortunately, not all MOS gate-level elements,
specifically pass transistors, are unidirectional in nature, and thus are not suitable for gate-level

simulation.

Register-transfer level simulators [Hafer 83, Lewke 83] deal with the overall structure and
architecture of a design. Modules, such as tull adders and systolic arrays, are specified by
procedural descriptions. Because they simulate more abstract modules and their representation
of signals is somiewhat courser than in the logical case, register-transfer level simulators are

usually over an order of magnitude faster than gate-level simulators for the same circuit.

At the highest level of abstraction, behavioral or functicnal simulators are used at the initial

13
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design phase to verify the algorithms of the abstract system to be implemented. In contrast to the
register-transfer level simulator, the actual structure of the circuit is not necessary for this type of

simulation.

2.2 Design Strategy

The ftirst question to answer whien developing a new system is "What are the design goals
of our system?”. The Simulation Environment ties together the simulators needed by all phases of
the circuit design process. More specifically, the Simulation Environment in Schema provides (1)
simple extensibility for incorporating additional simulators, {2) a foundation for building and in-
tegrating new analysis iools, and (3) the capability to perform mixed-mode simulation. These are

the major design goals of the Simulation Environment.

A uniform interface is a natural consequence of the aforementiocned design goals. This
can be viewed from two perspectives. For the designer of CAD software, a uniform CAD interface
facilitates additional simulation tools as well as providing the groundwaork upon which to build
new analysis tools. For the user of CAD software, a common interface eliminates the unnecessary

task of learning the operation of each individual tool.

The question remaining is "What approach or design strategy leads to these desired
properties?”. Commeon data representations make it possible to create a uniform interface to
the user, the simulators, and the analysis tools. The foliowing sections describe the Simulation

Environment in Schema, and how this approach achieves the design goals.
pp

2.3 What is a Simulation Environment?

The major components of the Simulation Environment are: a Generic Simulator, common
data representations, a single user interface. Figure 2-1 depicis the interactions of each com-
ponent within Schema. The Generic Simulator coerdinates the flow of information between the
cimulation initiator and the individual simulators. The medium for information flow is a common
data representation, and finally the user interface provides a slick graphical interaction with the

underlying data structures.

The Generic Simulator acts as an interactive guide in the Generic Simulation Process:

14



Chapter 2 Approach
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Figure 2-1: Simulation Environment in Schema.

1. The user interacts with the Simulation Environment by way of the user interface.
Analysis tools interact directly with the Simulation Environment. Once the ap-
propriate input data has becn entered, simuiation is initiated by the user or by an
analysis tool. At this time the initiator chooses a specific simulator from among a rich
variety of available simulators and selects a specific region of a circuit for simulation.

2. The Generic Simulator initializes innut data for simulation. This iay require a trans-
lation of the input data to the form required by the selected simulator. Prior to execu-
tion the Generic Simulater interaclively notities the initiator in the svent of any am-
biguities, inconsistencies, or undefined quantities.

3. The simulation is performed.
4. The Generic Simulator interprats the output data and transforms it into a common

representation. The results are then presented to the usar, again via the user inter-
face, or are made directly available to the analysis tocls.
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The following sections take a closer look at each component and its role in the develop-
ment stages of the Simulation Environment. The final section discusses the contribution of each

piece toward the design goals.

2.3.1 Common Representation

2.3.1.1 Objects

For electronic simulators, typical input data comprise circuit topology, modeling
parameters, and excitation signals; typical output data are the resulling waveforms. Thus, the
basic entities or objects the Simulation Environment must supply to the Generic Simulator are
circuit topologies, models, and waveforms. Determining what objects exist is the first task in

designing the Simulation Environment.

For each cbject to be accepted by a simulator, a corresponding object in the Simulation
Environment is defined. Within Schema, a circuit design is made up of components called
modules. Modules and their interconnections are supplied by the circuit topology. Each module
may contain some local model information. For example, transistor modules may have threshold
voltages or logic gates may have propagation delays as part of their model. And finally, signals
are the waveforms associated with the input to and the cutput from simulaters. In general, these
objects reprosent the data essential for simulation, and thus essential to the Simulation

Environment.

2.3.1.2 Object Types

The next task is to further subdivide the types of topology, model, and waveform objects
required in the Simulation Environment. This subdivision is dictated by the types of objects
each simulation tool simulates. A transistor, for example, has a non-lingar, linear, and switch
model; thus, these model types should be made available in the Simulation Environment. Similarly
a circuit-level simulator accepts topological modules including resistors, capacitors, transistors,
and waveforms such as exponential or piece-wise linear voltages and currents. The subdivision
of topological, model, and waveform types is explored further in Chanter 3, Chapter 4, and

Chapter 5, respactively.

There is an overlap in the types of topological, model, and waveform objects accepted by

16
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each simulator. An example of a topological module is the transistor. Although circuit, linear, and
switch level simulators all simulate the transistor, it is not necessary to define a different transistor
object in the Simulation Environment for each individual simulator that simulates it. The objects
defined in the Simulation Environment are the union of the object types that could possibly be
simulated by any of the simulation toois. This is the key idea behind a common representation for
data objects in the Simulation Environment. The user interface, the Generic Simulator, and the
analysis tools built into or integrated on top of the Simulation Environment all interact with these

uniform data objects.

2.3.1.3 Appropriate Types

Of course, not all objects defined in the Simulation Environment will be accepted by each
simulator. A logic level simulator for instance does not simulate capacitor modules, and exponen-
tial voltage waveforms. Thus, associated with each simulator is a specific set of appropriate
module, model, and waveform types. These represent the tynes of objects each simulator ac-
cepts. Incorporating a new simulator requires the speciiicatinn of a set of appropriate module,

model, and waveform types.

While some simulators handle different types of modules, other simulators share some of
the same types of medules. Circuit, linear, and switch-level simulators all have the MOS transistor
as an appropriate module type. But each of these simulators uses a diffsrant model for the MOS
transistor module type. A major feature distinguishing one kind of simulator over another is the
madels it associates with its modules. For any given apprcpriate module lype, there may be one
or more appropriate model types. For the circuit simulator Spice2, no model is expected for

modules of type resistor, yet for the MOS transistor, three modei types are possible.

Simuiator selection also restricts the appropriate waveform types: different signals are re-
quired for different simulators. Voltage and current waveforms are expected for a circuit-level
analysis, and binary waveforms are required for switch or logic level analysis. To support the
mixed-mode capability of the Simuliation Environment, if signals of one type can be transformed
into another type acceptable to a specific simulator, these types are also part of the simulator’s
set of appropriate waveform types. If a transformation operation on a binary signal can produce a
voltage signal for a circuit simulation, then binary as well as the voltage signals are appropriate

signal types {or a circuit simulation.

17
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In summary, the object types in the Simulation Environment are the union of the types of
objects handled by the different simulators. As every simulator does not accept all types of
objects defined in the Simulation Environment, a set of appropriate types are associated with

each simulator.”

2.3.2 The Generic Siimulator

The Generic Simulator is made up of many simulators, and treats each component
simulator as a black box. It is only responsible for supplying input to and obtaining output frcom
the black box. Thus the Generic Simulator need never know about the internal workings of each
component simulator. From outside the Generic Simulator, the user and the analysis tools per-
ceive the Generic Simulator as a black box. Furthermore they never nced to interact with the

simulators within the Generic Simulator.

The Generic Simulator interactively coordinates the flow of topology, moedel, and waveform
objects between the simulation initiator and each individual simulator. This entails obtaining the
input data from the user or analysis tool, supplying the data in the representation required for the
simulator, invoking simulation execution, interpreting the resulting outpui data, and placing the

output data into the Simulation Environment for future analysis.

The Generic Simulator interacts with two kinds of simulators: internal and external. An
Internal Simulator directly manipulates the data objects present within the Simulation
Environmenit, in much the same way an analysis too! built on top of the Simulation Environment
would. In this case, the simulation initiator has the opportunity to interactively controi simulation
execution; output signals can be monitored in real time. On the other hand, an external simulator
creates its own data structures. External simulaiors typically exist on a remote processor(s) using
a separate address space. Computationally intensive simulations are sent off to special-purpose
hardware or multiprocessor systems without inhibiting the speed of the Sirwulation Environment’s
current precess. The combination of internal and external simulation oftars the advantages of

both strategies and permits a large degree of flexibility in simulation.

The Generic Simulator expecls the objects in the Simulation Environment to perform cer-

The sets of agpropriate types are not necessarily stalic. A3 low-level simulation results are surnmarized into models of
more abstract modules for use in higher-level simulations, the modules and their corresponding modeis may be apperded
to the set of appropriate types.

18
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tain tasks, or operations. The operation actually invoked depends on the type of object being
asked to perform the operation, yet the object type is irrelevant to the Generic Simulator. The
same operation can mean different things depending on the type of the object. This technique is
known as data-directed programming [Abelson 85]. The foilowing two sections present a more
detailed look at both internal and external simulators and what operations are required for each

kind of simulation tool.

2.3.2.1 Internal Simulation

Internal simulators have direct access to the objects in the Simulation Environment. Each
object involved in the simulation is delegated responsibility for delivering some local information
about itself or performing some computation using this information. To do this, specific simula-
tion operations are defined for each appropriate object type handled by the selected simulation
routine. For example, the NAND and NOR model types each have their own boolean operation for a

logic level simulation.

Internal simulation becomes a layer of these simulation routines where each general algo-
rithm stands alone as an independent, modular unit. Common algorithms could then be shared
over different simulators. For example, relaxation-based simulators and asynchronous logic
simulators both exploit the inactivity of the circuit by using selective-trace and event-driven al-
gorithms. One routing could serve both simulators. Other genearic algorithms are useful for other
parts of Schema. The matrix manipulation routines used for the general-purpose circuit simulator

may also be useful in handling graphics.

A generic layer of operations on objects would ideally complement this layer of simulation
routings. Thase operations are similarly shared over different simulation algorithms as well as
other components of Schema. For instance, most types of waveforms have a generic internal-
value operation which calculates and returns a value given a specific point in time. This is a very
common operation used not cnly by circuit level simulators, but also by display routines and
analysis too!s. One generic operation is defined for each waveform type to satisfy the needs of all

potential callers.
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2.3.2.2 External Simulation

Prior to an External Simulation, each object in the Simulation Envircnment requiring simula-
tion must be transformed into the appropriate external representation, usually a texiual descrip-
tion language understandable by the simulator. The description is then sent to a separate ad-
dress space where the simulator builds its own internal data structures for the simulation. If the
simulator exists on a remote processor(s), the description is sent via the local network or file
system. After simulation execution, the output data must be interpreted and transformed into data

objects in the Simulation Environment.

Input transformations are instigated by the Generic Simulator, yet are actually performed by
the object itself. As in the Internal Simulation case, the particular operator invoked will depend
upon the type of object being transformed. A transistor object requires = very different transfor-
mation operator than that of an exponential waveform. Furthermore, because there is exactly one
representation for the transistor object in the Simulation Environment and possibly many
simulators that use this type of object, there may be many transformaticn operators defined for it
-- potentially one for each external tool that simulates the transistor. A switch-level simulator for
example, requires a different transistor representation than a circuit-level simulator and thus a
different transformation operator. In the case of output data, the Generic Simulator must however
supply a parser to extract the output information and to create the data objects within the
Simulation Environment. Transformation responsibility in this case lies with the Generic

Simulator.

For both types of simulators, each object has a certain set of operations that it must per-
form. The Generic Simulator need never know the implementation details of these operations,
and each chject need not know about the interna! workings of the Generic Simulator. The
individual simulators, the Generic Simulator, and each object in the Simulation Environment are
all perceived as black boxes. Their internal structure and operations are essentially hidden and
isolated from each other. The Generic Simulator can be designed indcpendent of the type of
objects it is simulating. tis generic in the true senise of the ward. Thus, for the Generic Simulator
to perform its task, coordinating the flow of objects wilhin the Simulation Environment, it must

simply know what operation to perform and on which object to perform it.
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2.3.3 Uniform Interface

The user and the analysis tools interact only with the data objects and the Generic
Simulator. Because of the black-box quality of the Generic Simulator, the user and the analysis

tools do not interact with the individual simulators.

The analysis tocls built on top of the Simulation Environment have direct access to the
uniform data structures in the Simulation Environment, and thus can interact with the objects in
much the same way as an internal simulator. Thus the interface to the topology, model, and
waveform objects, as well as the Generic Simulator is simple; the analysis tools need only know
the operations defined for each. By just knowing the operations for accessing output waveform
objects and the opearations for telling the Generic Simulator to halt the simulation process, an
analysis tocl can interaclively monitor the execution of an internal simulation the moment erratic

waveform behavior develops.

The user indirectly interacts with both the data representatiocns and the Generic Simulator
through a graphical interface. The Generic Simulator interface amounts to a well-defined series
of textual, or menu-driven commands. The designer is thus spared the burden of learning the
operation of each individual simulator; instead, a working knowledge of the Generic Simulator is
sufficient. Schernatics, layouts, and icons serve as a graphical presentations of the topology.
The correspondence between the graphical presentations and the topology is dealt with further in
Chapter 3. Modals have a simple menu-driven interface. Waveforms have display objects which

have the ability to represent themselves graphically to the user; these are discussed in Chapter 5.

2.3.4 Accomplishing the Design Goals

A common representation for data is equivalent to defining a set of cbject types and a set of
operations that can he performed on those types. These iypes provide the uniform interface
which enables us to achieve our design goals. Interfacing new CAD tials requires only local
additions to the environment. Integrating an additional simulator may require new object types
and a set of operations for each type of object tha simulator handles. A new object type is defined
for the Simulation Envircnment only it the simulztor actually simulates an object not yet defined in
the environment. Adding an internal simulator may also necessitate the modular addition of
general simulation algorithms along with some chject operations. For an external simulator, a set

of transformation operators and an outpul parser are necessary. Building new analysis tools
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requires only a working knowledge of the objects in the environment, the operations that can be
performed on them, and the operations that are available for the Generic Simulator. Because
waveform objects are represented uniformly in the Simulation Environment, output signals from
one simulation can be usad as input to another simulation; the mixed-mode property is a direct
result of the uniform data structures. With the different levels of simulation, a type transformation
operation may be necessary. This is explored further in Chapter 5. In suramary, all design goals

can be accomplished through tie local addition of new objects and operations on those objects.

2.4 Implementation in Schema

The Simulation Environment is implemented in Schema. In this section, a brief overview of
Schema’s hierarchical organization, constraint network, and creation on demand techniques are
all described. In subsequent chapters, we shail see how these strategies tie directly into the

Simulation Environment,

2.4.1 Hierarchical Organization

Schema is organized hierarchically as shown in Figure 2-2 where each part in the hierarchy
may contain subparls. The root of the hierarchy is the Portiolio which has subparts called
Projects, and Environment folders. Projects serve as an organizaticnal mechanism for grouping
together other Projects and Module folders. Environment folders supply the designer with stan-
dard libraries. A Module folder” contains the electronic circuit desiges, it has icon, layout,
schematic, topologyv, and waveform folder parts. The user’s giaphical interface to the topology is
mainly through the schematic, layout, and icon presentations. And finally, waveform folders hold
collections of waveform specifications, simulation stimuli, and simulation results. This partition-
ing allows the user to concentrate on one given hierarchical level of design at any particular time.
Hierarchical nrganization is an essential strategy in controlling the complexity of large scale

designs.

Each object in the Simulation Environment naturally fits into the hicrarchical organization of

Schema. The circuit topclogy and simulation waveforms are parts of Module folders. Because a

Module folders and modules are dilferent entitics; for historical reasons, they were incorrectly named. Modules are
components of the iopology; the topology is a component of the module folder.
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model may be shared over many modules, models are collected into folders located directly in the
user’s environment. In later chapters, we shall see how each of the objects also naturally con-

forms to this hierarchical represeniation.

Portfolio
[————————> Project(s)

[——————————> Project(s)
————-————>> Module Folder(s)

Tcan(s)
layout(s)

Schematic(s)

Topology

VN V\Lv

Waveform Folder(s)

—————————2>> Waveform Folder(s)

=2 Environment Folder(s)

———> Favironment Folder(s)

————————-3> Model Folder(s)

> Model(s)

F———————————> Mcdule Folder(s)
2> Waveform Folder(s)
‘e other library facilities

Figure 2-2: Hierarchical organization of Schema.

2.4.2 Constraint Network

Objects may contain parameters. Relationships called constraints are held between these
parameters. A transistor has loca! width, length, and shape-factor parameters where the width is
constrained to be the length multiplied by the shape factor. All constraint relationships are
specified in a global constraint network. This permits constraints between the parameters of
different objects. Complex timing relationships between the parameters of many different

waveforms can be captured in the constraint network.
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This technique is primarily useful for the automatic propagation of constraints through local
computation. Modifying one waveform’s parameter automatically propagates to those waveforms
constrained to it. In the event of far-reaching effects, constraint propagation saves the designer
from the tedious and time-consuming process of manual updates. Analysis, synthesis, and
reasoning tools can also make use of the constraint network in transistor sizing or circuit verifica-

tion, for example.

2.4.3 Creation on Demand

Crealion on demand is the technique of creating an objact’s internal structure only when it
is needed. In the meantime, the external environment only knows the object exists; typically this
is done by knowing the name of the object. Creation on demand applies equally ovar all objects in
the hierarchy. Once the internal data structure has been creaied, its inteinal parts likewise need
not be created until required. For example, if the designer is interested in only in one specific
module folder in a large hierarchy of projects and module folders, then it is only necessary to
create the parents of the desired module, beginning with the designer’s Portfolio. This technique
has the advantage of saving valuable memory space and subsequent garbage collection time - a

substantial savings when dealing with large-scale designs.

2.5 Summary

The Simulaticn Environment provides a uniform CAD interface, a consistent user interface,
and mixed-mode capabilily by using a common representation for simulation data objects: circuit
topologies, models, and waveforms. The Generic Simulator coordinates the flow of these objects
between each simulator and the simulation initiator. The data objects, the Generic Simulator, and

the user interface together make up the Simulation Envirenment as implemented in Schema.
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Topology

The topology contains the interconnecticn information of a circuit design. The structure of
a topology deviates from the general hierarchical organization of Schema in that it does not
contain subparts. Instead, the topology has a module definition and a module type. The module
definition is usea for the simulation of the current topology. The first half of the chapter con-
centrates on the module definition: its uniform representation, submedule interconnection, and
user interface. The module definition defines a new module type. The basic module types as well
as techniques for creating new module types and operations are examined in the remaining half

of the chapter.

3.1 Miodule Definiticn

3.1.1 Uniform Representation

The medule definition contains submodules, pins, nodes, parameters, and models. The
submedules may also have submodules. In this way, modules {it naturaily into the hierarchical
organization of Schema, as shown in Figure 3-1. Together, the submodules, pins, and nodes
specify the electrical connectivity information. Parameters name quantities which are tied to
Schema’s constraint network. Models are discussed in detail in Chapter 4. The topology, as all

objects in the Simulation Environment, has a uniform representation.

32.1.2 Module Interconnection

Modul: interconnection, an essential piece of electrical information, is accomplished with
pins, nodes, and global pins. A pin is a module's interface to the outside world. Transistor
mecdules for example contain four pins: gate, source, drain, and body. Modules are intercon-
nected by attaching theiir pins to nodes. And finally, a global pin is a special pin seen by all
modules spanning the hierarchy. It may connect through a common node to any module pin.
CGlobal pins are used mainly for supply voltoges such as Vdd and Vss.
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Module Folder(s)

pe————>>  Tcon(s)
=l ayout({s)
- Schematic(s)
bomm———=>>  Topology

> Module Definition

Lo > Module(s)
l——————> Pin(s)
f————> Node(s)
|—e——-> Parameter(s)
—————> HModel(s)

L—————> Module Type

L-—————>  Waveform rolder(s)

Figure 3-1: The topology and its placement in the hierarchical organization of Schema.

Each module pin knows (1) the nodes connected to internal modules, inodes, (2) the nodes
to which external modules connect, enodes, (3) its direction, and (4) its parent module. In Figure
3.2, the inverter mocule has four pins associated with it: A, A-bar, Vdd, and Vss - of which the
latter two are global pins. They all have nodes that connect to the pins of internal modules. Pin A
has an internal node n3, no nodes connected exlernally, the direction input, and a parent, the
inverter module. The gate pin of the enhancerment mode eM0S module has no nodes internally
connected, but does have an external node n3, the direction, inpuf, and the eM0OS module as a

parent.

Each node knows all the pins attached to it and the internal pins for which it is the internai
node. Node n? is attached to pin A-bar of the inverter module, the gata and drain pins of the
depletion mode dMOS module, and the drain pin of the eM0S module. Pin A-bar is the internal pin

for which n2 is the internal node.
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vdd
| Inverter | Inverter
| Module Ou | Schematic
| Definition | -
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Figure 3-2: Inverter module definition and corresponding schematic presentation.
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3.1.3 Module Definition Creation

Prior to initiating a simulation, a module definition must be available. If the definition does
not exist, it is initially created from the most recent graphical schematic or layout presentation. A
module definition may however already exist from some other simuiation. In this case, if it is not
up to date with the latest version of the presentation, it is updated. This section describes the

process of creating or updating a module definition from the presentation.

The presentation is given responsibility for creating or updating the module definition. If the
definition is nonexistent, a dummy module object is created for the definition; it initially has no
submodules, pins, or nodes. Then for each part in the presentation, a topological correspondent
is created in the module definition, if none exists. Topological correspondents are submodules,

pins, or nodes in the module definition; the module definition is updated accordingly.

A schematic presentation for example, is composed of icons and wires that contain place-
ment and display information. Pinicons, module icons, and wirgs in the schematic have topalogi-
cal correspondents of pins, modules, and nodes respectively, in the module definition. A
schematic for the inverter is shown in Figure 3-2. Wire-2,Wire-3, Wire-5, Wire-6, Wire-7,
and Wire-8 of the inverler schematic all have node n2 of the inverter definition as their topologi-
cal correspondent. The Tnput Pin Icon and eMOS Tcon have topolcgical correspondents of
Pin A, and the eM0OS madule, respectively. Associated with each icon is a set of display pins used
to connect wires. These display pins are not shown graphically, yet they do have topological
correspondents in the medule definition. The eM0S-Tcoun has three display pins, each of which

has atopolcgicatl correspondent - the gate, source, and drain pins.

The madule deliniticn is created at the top level; the submodules and their interconnections
are created. The internal structure of each submodule is only created on demand. Once this
top-level module definition has been generated, it may be saved in a topoiogy save file for future
use. When the file is read in during a new Schema session, the module dafinition is not created,
hut rather a new module type is defined. In this case, it is not necessary to create the definition

frem the preseniation; the definition can be simply created from the module type.
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3.1.4 Uniform User Interface

The module definition is visually transparent to the user. The user indirectly communicates
with the objects in the topology's module definition via the graphical schematic or layout presen-
tation. During the simulation process, the presentation is used as a read-only medium for extract-
ing or modifying electrical informaticn in the module definition. Because each display object has
a topological correspondent in the module definition, the user can easily access electrical infor-
mation. Sitilarly, each part in the module definition has a presentation correspondent. In this

way, the parts of the module definition may report back to the user.

The presentation is a flat structure, whereas the topology is hierarchical. The correspon-
dence between the module definition and the presentation is only for the top-level modules in the
hierarchical definition. This presents two problems when the user tries to examine the electrical
information in the lower levei modules. First of all, the only topological components accessible to
the user are those having a correspondent in the presentation. Any parts of submodules in the
module definition do not have presentations associated with them. Secondly, these parts may not
even exist. When the module definition is first created, only the top level objects and their

interconnections may exist.

These problems are solved with the zoom-in facility. Suppose an inverter icon is a part of
the user’s current presentaticn, and the user wishes 1o set the length and width parameters of the
transistors inside the inverter module. Further suppose the inverter module is not fully created,
i.e., the transistors do not yet exist. The zoom-in facility finds the layout or schematic presen-
tation from the module folder of the inverter icon, and imakes it visible to the user as a read-only
reference for examining the submodules of the inverter medule. In order to examine the tran-
sistor submaodules of the inverter, the inverter must first create its submocules. During the crea-
tion process, a correspondence is set up between the inverter's presentation and the module
instance in the same manner as before. The advantage to this strategy is a single schematic or

layout presentation is useful for all modules of the same type - not just the inodule definition.
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3.2 Defining New Module Types

A new module type is defined from the modute definition, or from a textual description
stored in the topology’s save file. The type is used to create a separate copy of the module
definition for use as a part in some other module. When the type is created, operations are
automatically defined to enable an object of the new module type to create its own parameters,
constraints, submodules, pins, and internal inlerconnections. Three basic module types are avail-

able: simple, compound, and abstract.

3.2.1 Simple Modules

Simple Module Types do not contain submodules. They may, however, have pins,
parameters. and constraint relationships, which are generated as soon as an object of this type is
created. Examples of simple modules include the resistor, capacitor, dMOS and eMOS tran-
sistors, and inverter, NAND, NOR, XOR, OR, and AND logic gates. These types are mainly defined in
the designer’s environment. Another distinguishing feature of simple modules is they typically
have no schematic, only an icon. The following examples depict simple module type definition for
the resistor and eM0S transistor.

(defmodule resistor simple
(resistance) ;parameter definition
(pins p+ p-j) ;pin definitions

(defmodule eMOS simple

{width Tength shape ;parameter definitions

source-area source-perimeter

drain-area drain-perimeter)

(pins gate tit t2 body)

(c* (>> width) ;constraint hetween parameters
(>> shape)
(»>> Tength)))

3.2.2 Compound Modules

Compourid Module Types have submodules; and thus, can be hierarchically structured. As
with simple modules, pins, parameters, and constraints are all generated when an object of this
type is first created. Pin creation is particularly important at this point; external modules can then
connect to this module without kirowing the internal structure of the module. The submodules

and their internad interconnections are created only upon demand. The iype associated with each
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user-defined topology is usually a compound module type. An example of an inverter module
type follows:

{definodule inverter general
()
(global-pins Vdd Vss)
(pin a input)
{(pin a-har output)
(module pulldown eMOS) ;submodule definitions
(module pullup dMOS)
(connect (>> t2 pullup) ;internal connections
>> Vdd))
>> t1 pulldown)
>> Vss))
(connect {>> gate pulldown)
(>> a-bary))
(connect (>> t1 pullup)
(>> gate pullup)
{(>> t2 pulldown)
(>> a-bar)j

(connect

e

3.2.3 Abstract Modules

Abstract Module Types are generalizations of a class of module types with similar charac-
teristics. For example, there are many module types that have two pins, such as the resistor,

capacitor, and inverter. The abstract module type, Two-Pin-Dev ice, captures this notion.
(defmodule two-pin-device abstract
() ;NO parameters
(pins p+ p-)) ;pin definition

The resistor can now inherit this abstract type, and thus implicitly includes two pins.

This is known as type inheritance. The previously-defined siinple moduie type, resistor, is

redefined as follows.
(defmodule resistor simple

(resistance)
(includes two-pin-device)) ;inherits two pins
Another abstract module, MOS, captures the general characteristics of MOS transistors
including width, length, and shape parameters. Additionally, a constraint is placed between these

parameters.
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(defmodule MOS abstract

(width Tength shape
source-area source-perimeter
drain-area drain-perimeter)
(pins gate t1 t2 body)
(c* (>> width)

(>> shape)

{>> length)})

This abstract module is then used to define specific types of transistors, such as eM0OS and
dMOS, with these implicit parameters and constraints. Type inheritance greatly simplifies the type
definiticn.

(defmodule eMOS simple
()

(includes MOS)) ;inherits MOS characteristics

3.3 Defining New Mcdule Operations

A layer of general, all-purpose accessors and operations is currently defined for topolcgical
objects. This layer is independent of any particular simulator and thus is useful not only to the
Generic Simulator, but to any tool requiring access to topological information. One very basic
operation gives moduies the ability to create their owrt submodules if *hey have not yet been
created. Another gperatinon permits a module definition to dump its data structure in such a way
that a module type is defined when the dump forms are evaluated. Other localized operations

may be easily incorporated.

Because a general layer of operations on topological objects currently exists, integrating
additicnal internal simulators does not require the additicn of a new operators. For an external
simulator, however, a transformarion operation must be defined to translate the data objects in
the environment into a textual description for the simulator. For each mcdule type the simulator
accepts, a new transformation operation is defined. Simple transformaticn operations for creat-

ing a Spice? input deck are shown below.
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(defmethod (resistor :spice-deck) (stream)
(format stream "R~D ~D ~D ~F~%"
(simulation-resistor-number self)
(simulation-node-number (>> p+))
(simulation-node-number (>> p-))
(>> resistance)))

(defmethod (MOS :spice-deck) (stream)

(format stream "M~D -D ~D ~D ~D ~A W=~D L=~D~%"
(simulation-MOS-number self)
(simulation-ncde-number (>> t2))
(simulation-node-number (>> gate))
(simutation-nocde-number (>> t1))

(simulation-node-number (>> body))
(send (send self :get-model) :name)
(>> width)

(>> Tength))

Notice a single cperation is defined for a whole class of MOS devices. In other words, this
operation is performed on all modules that have the abstract MOS type; this includes eM0S module
type redefined above. Thus, not only is the type inherited, but the operations defined on the type

are also inherited.

3.4 Summary

A topology contains a module definition and a type. The module definition is the topologi-
cal object used in simulation. It is uniformly represented within the hiersrchical organization of
Schema. It is initiaily created from a presentation and serves to define the module type. In this
way, new types and their operators can be easiiy integrated into tise Simulation Environment. The
simple addition of new types and their operators facilitates extensibility to both Internal and

external simrulators.
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Models

Because simulators mode/ the behavior of real devices, models play a vital role in the
simulation of circuit designs. In the Simulation Environment, a model may be associated with
each module being simulated. Models contain many of the electrical quantities required in
simulation. The unifcrm representation, the user interface, and the basic types of models are all

discussed in this chapter.

4.1 Uniform Representation

Maodels are not hierarchical; they do not contain other models. Instead, models have
parameters such as threshold voltages and oxide thicknesses for circuit level transistor models,
and setup times. propagation delays and hold times for logic-level models. These parameters are
not the associated with the constraint network. In the hierarchical organization of Schema,
models applicable to a particular type of module are collected into a mode! folder. Similarly,
model folders for different modules are grouped into environment folders as shown in Figure 4-1.
At any one level in the environment folder hierarchy, there is at most one model folder for each

module type.

It is inferesting tc note that model folders and their respective models are kept separate
from the module folder for which apply. Rather models and model folders are classified by
environment, and the information contained in the module foider is sharad over all the environ-
ments.  In this way, environments can be configured by a particular fabrication process, for
exampie. By simply switching environments, a new set of models corresponding to a different
fabrication process can be used. The major advantage to this approach is that circuits can be

designed independent of the fabrication process, or indeed, any other technological division.
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Environment Folder(s)

f~-—~————>> Fnvironment Folder(s)
———> Model Folder(s)

I—————> Model(s)

L. otherlibrary facilities

Figure 4-1: Models and their placement in the hierarchical organization of Schema.

4.2 Uniform User Interface

The user interface to creating new model folders and models is simply menu-driven and
self-explanatory. If the model folder for the module to be modeled does not exist, a new module
folder is first created. A new model is generated by selecting any one of the currently defined
model types for the chosen module type. Furthermore, the user is free to modify any of the

parameters of the newiy-created model.

4.3 Defining New Model Types

In the Simulation Environment, each newly-defined mode! type must specify both a module
type for which it is applicable and a list of parameters. A defauit value, a short documentation

string, and a dimension accompany each parameter definition.

While a model type corresponds to exactly one module type, each module type may cor-
respond to several different models. The MOS transistor is a prime example of a module having
many model types: switch, linear, shichman and hodges, analytical, and semi-empirical models.
Fach model type may produce several individual model objects. There may, for example, be

special models for worst-case speed, worst-case power, and worst-case noise margin.

Two basic types of models exist: models without state and models with state. Models
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without state may be shared by modules of a common type, but models with state may not be
shared. Modules may require the use of both kinds of models; some parameters may be shared
over many devices of the same type, whereas other parameters refer to the local state of the
device3. The following two sections describe each model type and explain how to define new

model types.

4.3.1 Models Without State

Modules of the same type share a common medel without state. The obvious advantage to
this approach is a savings in memory space because only one copy of the model is generated.
This does not imply that all devices of a common type must share the same model. This
mechanism just facilitates a sharing of a common model. Some modules of a common type may
require one shared model without state, while others of the same type may require a different

model without state.

Models withoui state are useful to both externai simulators and iinternal simulators. In a
logic level simulation, all NAND gates in the circuit may share common values for transition times
along with a common boolean operation. In this case, a single shared model without state is
useful to all modules of type NAND, regardless of whether the logic level simulator is an external or

internal simulator.

For the abstract module type MOS defined in Chapter 3, a abstract Spice2 model is defined

as follows:
(define-model MOS spice-MOS ()
(vt 0.0 "Zero hias threshold voltage” :voitage)
(kp 2.0e-5 "Transconductance" :current-per-voltage-squared)
(gamma 0.0 "Bulk threshold parameter" :sqrt-voltage)
{(phi 0.6 "Surface potential” :voltage)
)

The new modei type is called spice-M0OS and its parameters are those that are used over
all three MOS device models defined in Spice2. A spice-M0S-analytical model type can now
be defined with the additional parameters required for simulating an analytical model. Since this

new mode! includes the spice-M0S model, all of its parameters will also be included.

3. : . . .
This case has not yet been dealt with explicitly. Either the two separate models could both be cached in the module,
or another ype could be defined having local state along with a pointer to the sharad model.

)
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(define-model MOS spice-MOS-analytical (spice-MOS)
(1ambda 0.0 "Channel length modulation” sinverse-voltage)
(ucrit 1.0e4 "Crit field mobility degrad” :voltage-per-length)
-)

And finally, this abstract model is used to define a general model for the eMOS module. The
model restricts the channel type to n-channel, while also including all the abstract charac-
teristics of the spice-M0S-analytical and spice-MOS model types.

(define-model eMOS spice-eMOS-analytical (spice-MOS-analytical)
(channel-type "Channel-type" :value nMOS))

4.3.2 Mode'!s With State

As the name implies, a model with state stores information relating to the current state of
the module, such as charge, binary state, and local variable bindings. Internal simulators use
models with state o temporarily store simulation data. The Q parameter of the
logic-D-f1ip-flop model and the state parameter of the Rsim-MOS model are recalculated
for each event or cloch cycle of the simulator.

(define-model-with-state D-flip-flep logic-D-flip-flop

(Q "Current. state" :values "(L H X)})
(defing-model-with-state MOS Rsim-MOS ()
(state "Current state" :values ’{on off unknown weak))
(rstatic-min "Minimum static resistance" :resistance)
(rdynlow "Dynamic low resistance" :resistance)
)

* 7

An implerentation of Rsim also requires an initial determiniation of the effective static and
dynamic resistances ‘of each MOS device. These parameters are calculated one time only from
the local parameters of each module and are reused aver many simulations. To sum up, the
parameters of a model with state may depend on the model's local state and the medule’s local

properties.

4.4 Dafining New Mcdel Operations

Defining operations for models is a very powerful tool for protnoting modularity in internal
simulation design as well as in integrating additional external simulators. For internal analysis

tools, models perforim certain operations such a drain current calculations, boolean functions,
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and behavioral-level procedures. For external simulators, transformation operations can be
defined similar to those defined on modules.

4.5 Summary

Models have parameters which hold the electrical information required during simulation.
Models are located in the designer's environment and are cached in the module prior to simula-
tion. The cached model is then available for future simulations. Two basic types of modeis exist
in the Simulation Environment: modeis with and without state. New models and operations can be
built out of these basic types.




Chapter Five

Waveforms

Waveforms embody any type of excitation or response signal used in the simulation and
analysis of alectronic circuits. In the Simulation Environment, the uniform waveform represen-
tations are patterned after the input and output signals of simulators. This chapter briefly ex-
amines these uniform representations and how they fit into the overall hierarchical framework of
Schema. Then an introduction to the uniform user interface leads naturally into a discussion of
the display types, their associated waveform types and operations, and the usefulness of the
constraint mechanism. And finally, type conversions are discussed with respect to the mixed-

mode property of the Sirnulation Environment.

Portfolio
F——> Project(s)

t————> Prcject(s)
> Module Folder(s)

l—————> Wavatorm Folder(s)

b———> Waveform Folder(s)
> Waveform Display(s)

l———> Waveform(s)
l—-—> Waveform(s)

L_————> Waveform Folder(s)

‘——> fnvironment Folder(s)

|————> Waveform Foldsr(s)
‘——> other library tacilities

Figure 5-1: Waveforms in the hierarchical organization of Schema.
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5.1 Uniform Representation

Waveforms are the uniform mechanism for communication among modules in the
Simulation Environment. The means of organizing and grouping waveforms, waveform folders,
the means of displaying waveforms, waveform displays, and the actual waveforms objects them-
selves, provide the mechanisin for fitting waveforms into the hierarchical organization of Schema
as shown in Figure 5-1. This section gives a brief overview of each, along with its dedicated
purpose in the Simulation Environment. This background, in combination with a discussion on
the applicability of the constraint network in the waveform domain, lays the foundation for the

implementation details presented in the remaining sections.

In the hierarchy of Schema, waveform foiders are parts of projects, module folders, and
environment folders. As a project pait, a waveform folder serves as a medium for capturing many
of the simulation stimuli, e.g., clocks, control signals, and waveform specifications that are shared
between the simulations of different modules. As a moduie-folder part, a waveform folder con-
tains waveform information pertaining just to the module. Waveform folders that are project and
module parts are generic and thus may be shared by many different environments. And finally, as
an environment folder part, a waveform folder holds simulation results. In the same way that
models are associated with a particular environment, so are the waveforms resulting from simula-
tions that use those models. Allowing waveform folders at many levels in the hierarchy permits a

large degre= of modularity in organizing the waveforms of very large circuit designs.

Waveform folders contain other waveform folders as well as waveform displays as parts. As
the name implies, a waveiorm dispiay object holds the information required for a visual display to
the user. A display object, for example, could contain information regarding maximum and min-
irnum axis ainplitudes, horizontal and vertical scaling, and dimensional units. This information is

conveniently useful to dispiay routines defined for the objects.

One level deeper in the hicrarchy, waveform displays hold a ordered! set of waveform parts.
These parts represent the actuai signal values. in keeping with the hierarchical structure of parts,
waveforms may also have wavetorm parts. Waveforims are crdered in increasing value along the

x-axis to guarantee fast searching through parts.

Constraints imay be placed among parameters internal to a waveform, between the

waveform parts of a common display object, or across waveform parts of different display objects.
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A ramp has parameters of initial-x, final-x,and deTta-x. In this case, delta-x is numeri-
cally constrained to be equal to the difference belween the final-x and the initial-x

parameters. This is an example cf a constraint placed on parameters internal to a wavelorm.

Another constraint may be tied between parameters of waveform parts in a common display
object. In a sequence of ramps, the initial-x parameter of each ramp part of a dispiay object
is constrained to be equai to the final-x of waveform part preceding it. This constraint, in
conjunction with the aforementioned internal constraint imposed upon each individual ramp,
makes it possible to achieve simple shifting operations along the x-axis. Changing one parameter
locally propagates the constraints to shift all waveform parts of the display object to the right or

left along the x-axis.

Finally, constraints may be placed across waveforms parameters in different display ob-
jects. This is especially valuable when specifying complicated timing relationships between input
signals. Consider a typical dynamic random-access memory chip where read, early-write, wriie,
read-write/read-modify-write, page-mode read, page mode write, and Ras-bar-only refresh cycle
timing relationships each occupy a full page in the standard MOS mermory data book. Local
constraint propagation to achieve global consistency over the numoercus compiicated timing
relationships associated witii very large performance circuits is a very valuable asset to the circuit

designer of taday.

5.2 Uniform User Interface

waveform displays provide a powerful user interface io all waveform cbjects of the
Simuiation Environment. They contain the ecssential data and cperaticns for graphical entry and
screen dispiay. The types of display objects defined in the Simulation Environment are geared
toward the visual representation universally sketched by today's circuit designers and typically
observed on standard test equipment such as the oscilloscope or logic analyzer. Rather than
inexact sketching with paper and pencil, complex adjustments of knobs and buttons, and reams
of computer simulation printouts, a simple uniform menu-driven, bucky-key interface to each
display type is furnished. The user may then graphically enter input waveforms, and view simula-

tion results via a common waveform display interface.
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5.3 Display Types and Waveform Types

Dispiay types are selected on the basis of input and output waveform needs for the different
simulators. The foliowing sections present a few of the possible types of waveform displays. For
each display type, a set of basic waveform types is also defined. Waveform objects are created
from these basic types and subsequently become parts of the display objects. Other waveforms
can be added to this basic set as iong as they supply the necessary graphical entry and screen
display routines. Alternatively, additional compound waveform types can be generated from this
basic set. This generation of new waveform types is perfornied in muci the same way as the

topology’s iype is automatically generated from the medule definition as described in Chapter 3.

5.3.1 Analog Waveforms

Graphically, analog display objects are two-dimensional. Horizontal and vertical axes con-
stitute any continuous dimensions, such as voltage, current, time, frequency, power, and

capacitance. Maximum and minimum axis amplitudes are also display attributes.

All waveform parts of analog display objects are implicitly given paramelers of initial-x,
final-x and delta-x, where delta-x is numerically constrained to be equal to the difference
between the Tinal-x and the initial-x paraincters. The user has explicit control over setting

and constraining these values.

Two basic types of waveforms are parts sf anaing display objects: functions and analog
arrays of (x,y) pairs. Functional types are convenient in three importani ways: first as input to
circuit level simulators, secondly as a simple graphical entry icrm for the user, and finally as a
compact description of the waveform. Levels, ramps, sinusoids, and exponentials represent the
common set of functional types currently available in the Simulation Environment. In general any
function, y = f(x), can be included. Al functional constants, such the frequency and amplitude of
a sinusoid or the time constant of an exponential, are parameters and thus may be censtrained. A
level wavetorm type is defined as foilows:

(defwaveform level simple

(¥))

In addition to the implicit parameters and constraint, an explicit parameter, y, has also been
defined. In the following type definition, the ramp imposes an explicit constraint between the y

parameters; this is similar to the implicit constraint imposed in the x-direction.
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(defwaveform ramp simple
(initial-y final-y delta-y)
{(c+ (>> final-y)

(>> initial-y)
(>> deita-y)))

Because simulation output of circuit level simulators is typically long listings of (time, value)
pairs, an array waveform type is the most efficient data structure for memory storage. A sum-
marized graphical-formis created to allow for fast visual display.

(defwaveform analog-array simple
(pts graphical-form accuracy))

Frequently the output points resulting from a detailed simulaticn run are extraneous.
Furthermore, the designer is otten only interested in a transition time or time constant of some
selected portion of the waveform. At the expense of some accuracy, many of the points are
discarded and replaced with a surmarized version. In essence, this summarization process can
be viewed as a conversion between the waveform array type and the functional waveform type. At
first, the array waveform could be naively viewed as a series of ramps. At this point, the major
difference between the two types is the inherent constraint mechanism associated with the ramps
parameters. One-to-one mapping for the conversion of the detailed array to the ramp type would
be absurd. A more realistic approach applies a combination of heuristic techniques, rigorous
curve-fitting algorithms, and desired accuracy level to produce a summarized series of piecewise-
linear segments, or a combination of piecewise linear and exponential segments, as is more
typical of waveforms resulting from a digital circuit. Detailed simulation results are then discarded
for the more stimmarized version. The currently defined conversion opeations are presented in

[Solden 861.

In addition to conversion ard summarization operations on functional and array waveform
types, many mathematical operations are defined [Solden 86). Standard unary operations useful
in analysis are interpolation, differentiation, and integration. Others standard operations involving
more than one waveform operand include addition, subtraction, multiplication, and division.
Operations stich as these are exiremely powerful for calculating power lossage, effective resis-
tance and capacitance. Moreover, defining additional waveform operations is simple. It requires
only a locai understanding of the waveform dala structures described above, in addition to

knowledge of the basic operations already defined.
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5.3.2 Binary Waveforms

A binary display type is built on top of the analog display type with a restriction placed on
the maximum (7) and minimum (0) amplitude of the y-axis. The x-dimension is either continuous

(variable-delay) or discrete (unit-delay) time.

Three basic types of waveforms can be parts of binary display objects: steady-state,
transition, and binary array. These types were selected on the basis of their usefulness as input

and output to linear model, switch, and logic level simulators.

Steady-state and transition waveforms implicitly inherit the same parameters and constraint
in the x-direction described for the analog case. In addition, steady-statc waveforms have a state
parameter, and transitions have initial-state and final-state parameters. States may
have values of logic zero (0), lngic one (1), a high-impedance (Z), and an ::nknown (X).

(defwaveform steady-state simple

(state))

(defwaveform transition simple
(initial-state finai-state))

Steady-state and transition waveforms are similar to the level and ramp defined for analog
displays, yet with the restriction on values of state. in the case of the transition however, a
constraint was not placed between the initial-state and final-state as was done be-
tween the start-y, end-y, and delta-y for the ramp because delta-y would always be either

Tor-1.

As in the analog case, binary arrays are a condensed form of output storage. Points are
restricted to be (x,state) pairs.

(defwaveform binary-array simpte
{pts))

Conversion between steady-state / transition waveforms and binary array waveforms is a
straightforward mapping. Boolean operations, bit-pattern searching, and other virtual logic-

znalyzer operations can be easily incorporated.
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5.3.3 Defining New Displays and New Waveform Types

Analog and binary display types are designed to cover most all the cases for the lower level
simulators. This listing is by no means exhaustive. For this reason, adding new waveform types
for these display types is a simple procedure. Infinite as well as periodic waveform definitions
could also be added. From the basic set of simple waveform types defined above, a library of
compound, hierarchical waveform types can be defined. New waveform displays may also be
created. A qualitative [Williams 84] display for example could be built on top of the analog display
type, incorporating the display procedures currently available in the Simulation Environment.

Non-linear and multi-dimensional display axes and graphics routines could be integrated.

At higher levels of signal abstraction, waveform axes ar2 no longer of any use. Waveform
displays amount to program descriptions, flow graphs, state diagrams, and the like. Instead of
viewing individual binary signals for example, a collection of signals numerically represented in
base 8 or 16 would provide the greatest amount of flexibility. Octal and hexadecimal waveform
types would most likely exist where collections of up to 8 and 16 binary display objects, respec-

tively, could be directly mapped.

5.4 Mixed-Mode Capability

In orcer to perform mixad-mode simulation, where the ouiput results of one simulation are
used as the input in some other simulation, a waveform conversion may be necessary. Simple
handlers transform waveforms from one type to another on demand. Conversion techniques
among waveforms nccupying analog display objects and binary display ot:jects have been briefly
discussed. Conversion between analog and binary waveforms is of greater interest for the provid-
ing the mixed-mode capability of the Simulation Environment. In general, conversions from the
more accurate waveforms to a higher level of abstraction is straightforward. Mapping a voltage
waveform onto a binary waveform requires an understanding of the threshold voltages and cur-
rents for the different logic states in the chosen technology . In the opposite direction, techniques
are available and are documented in the literature [Arnout 78, Antognetti 84]. All coercions could
be easily imbplemented and integrated with littie knowledge of the internal workings of the sur-

rounding Simulation Environment.
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5.5 Summary

The uniform representations of waveforms, waveform displays, and waveform folders
naturally conform to the hierarchy of Schema. Waveform displays provide a uniform interface to
the user. Display types and their associated waveform types are designed to satisfy the input and
output requirements of simulators. Parameters associated with input waveform tie directly into
the constraint network of Schema; output waveform types coilserve on memory storage space.
New waveform types and operations as well as display types can be easily integrated. Local
coercion routines can be defined to simply transform one type of wavefcim to another; this gives

the Simulation Environment the capability to perform mixed-mode simulation.
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Generic Simulator

This chapter explores the Generic Simuiation Process: a series of steps leading to a single
simulation with the Generic Simulator. As the process unfolds, the discussion centers on how the
Generic Simulator coordinates the flow of data objects between the simulation initiator, the user

or analysis tool, and the selected simulator.

6.1 Uniform User Interface

During the Presentation Editing Mode, the user graphically draws a schematic or layout of a
circuit design.  Then the user enters Simulation Mode. The display is reconfigured to provide
both a waveform editor and a read-only presentation viewer. The Generic Simulator requests the
presentation to create or update the module definition. During this time, a correspondence is set
up between the presentaticn and the module definition. The read-orly nresentation viewer can
then serve as the user’s interface to the electrical information in the module definition. At this
point, only the top-level submodules of the module definition and their interconnections cor-
respond to the flat presentation. The user may at any time access the internal parts of a sub-
module via the zoom-in feature described in Chapter 3. Using the wavet::rm editor, the user may
graphically enter new waveform displays as well as view the waveform displays of any currently
existing waveform folders. For example, the user may wish to use a waveform folder containing
input test vactors and output specification waveforms for an add or memory-write operation. The
combination of both the presentaticn viewer and waveform editor enables the user to assign
waveforms o the inpul nodes and pins of the module definition. After input waveform assign-

ments, the user may begin the Generic Simulation Process.
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6.2 Initiation Phase

To begin a Generic Simulation Process, the initiator first selects a region or all of a module
definition upon which to perform the simulation. Next a specific simulator is chosen from the
available simulators within the Geneiic Simulator. Simulator selection specifies the set of ap-

propriate module, model, and wavefcrm types handled by the simulator.

Because some simulators perform more than one type of analysis, an analysis context must
also be specified by the initiator. Traditional circuit simulators for example perform dc, ac small-
signal, and transient analyses. If more than one analysis type exists for any chosen simulation,
analysis context selection may further restrict the appropriate module, model, and waveform
types. For example, a dc analysis context greatly simplifies a capacitor or inductor mocdiel. Under
different anzalysis contexts, a different kind of signal may be necessary; a d¢ analysis produces

voltage and current values, whereas a transient analysis generates a history of (time, value) pairs.

The Generic Simulator may reqguest additional information from the initiator. In the case of
a transient analysis for example, initial time, time step size, final time, and number of simulation
steps are required information. For an internal simulation, the initiator has the opportunity to
control simuiation execution, e.g., to halt when certain waveforms fail to nieet cutput specifica-

tions, or to supervise some combination of output waveforms such as effective capacitance.

6.3 Initialization Phase

Once a simu'ation has been initiated, the Generic Simulator initializes as much information
for the simuiation as possible. This includes locating the appropriate modules, waveforms,
models, and the relationship between them. The Generic Simulator passes type-dependent tasks
onto each object. All initialization is completely transparent to the initiator. The following sec-
tions describe the Generic Simuiator's role in the preparation ihe uniform data objects in the
Simulation Environment for simulation execution. This constitutes the Initisiization Phase of the

Generic Simulation Process.
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6.3.1 Locating Appropriate Modules

The Generic Simulator locates the appropriate modules for the selected simulator by re-
questing this information from the module definition. The module definition asks all of its sub-
modules in the selected region to return the modules to be simulated. If a submodule is an
appropriate module type, it just returns itself to the Generic Simulator. 1f the submodule is not
appropriate and is a compound medule type, it creates its submodules and their interconnections
- if not already created from some other simulation - and forwards the request onto its sub-
modules. f a simple module type is encountered which is not appropriste, an error is signaled;
the initiator is then notified that the selected simulator is unable to simuiate this particular module
type. The recursive prccess continues until ail appropriate modules in the selected region are
located. in this way, the responsibility for finding the appropriate modules is passed from the

Generic Simulator, to the module definition, and onto each subimodule.

As an aside, notice that the entire submodule hierarchy need not be fully generated.
Submodule creation is required only down to the appropriste modules in the selected region.
This results in considerable time and memory savings - especially when simulating very large
circuits at higher levels of abstraction. Even though the circuit may be hierarchically defined
down to the detailed transistor levei, the existence of the lower level objects is unnecessary for
the simulation at hand. For example, consider performing a register transfer level simulation of a
microprocessor chip. whbere a programmable logic array rLA is one major component. The
module definition of the PLA may have been separately defined and tested at the detailed tran-
sistor level, where simulation results were sumimarized into a imore abstract logic level model. For
a logic level simulation ot the microprocessor chip, valuable memory space is conserved by not
creating the internal transistor structure of the PLA submoriule. Creation on demand inhibits

submodule generation unless absclutely necessary.

6.2.2 Interconnection of Appropriate Modules

Once the appropriate modules have been located, the Generic Simulator determines the
interconnections for the selected simulator. Because modules in the Simulation Environment are
hierarchical, the pins of appronriate modules are indirectly connected to other appropriate
modules via the ncdes and pins along the hierarchy. Unfortunately most simulators do not handle
hierarchically interconnected modules. To solve this problem, the pins of appropriate modules

are directly interconnected through a common simulatior node. Conversely, each pin of an
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appropriate module connects to a simulation node. In this way, the Generic Simulator, and thus

the selected simulator, may view the circuit as a flat structure of interconnected modules.

6.3.3 Locating Appropriate Waveforms

Input waveforms assigned by the initiator must be of the appropriate signal type for the
simulator, and if not, must be transformed into the correct signal type. The Generic Simulator
asks each top-level input node or pin of the hierarchical modules in the selected region to return a
waveform of the appropriate type for the simulator. Each node or pin forwards the operation onto
the attached waveform. If the waveform is not of the correct type, the waveform calls a transfor-
mation operation on itself, which returns an appropriate waveform to the Generic Simulator. If the
waveform undergoes a type conversion, the transformed waveform is cached cn the node or pin
from whence in came; now both the original waveform and iis transformed counterpart are avail-
able on the hierarchical module definition. This avoids unnecessarily repeating the transfor-

mation procedure in future simulations.

6.3.4 Attaching Appropriate Waveforms

6.3.4.1 Input Waveforms

The initiator attaches input waveforms to nodes and pins of the hierarchical medule defini-
tion. Yet the Generic Simulator associates appropriate waveforms with the flat structure of inter-
connected moduies. When an appropriate waveform is returned from a hierarchical node of the
module definition the Generic Simulator attaches it to a corresponding simulation node. Voltage,
binary, symbolic and other abstract waveforms are associated with simulation nodes. Some
simulators however alsc associate waveforms with pins. Circuit level simulators for example
commonly employ current waveforms. In this case the Generic Simulator creales a new set of
simulation pins corresponding to the pins in the selected region of the module definition that were
assigned input waveforms. These new simulation pins are different from the pins in the hierar-
chical module definition because they are directly connected to the flat simulation nodes. The

Generic Simulator then attaches appropriate waveforms to these simulation pins.
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6.3.4.2 Output Waveforms

Output waveforms are placed on the simulation nodes. If output waveforms are also as-
sociated with pins, a set of cutput simulation pins are created for each module to be simulated.
As with input pins, output pins are connected directed to the flat simulation nodes. If an internal
simulator has been invoked, the output waveform displays are generated and attached to their
respective nodes and pins during the initialization phase for pending availability to other Generic
Simulation Processes. They act as virtual waveforms and can be assigned as input in other
internal simulations, i.e., for concurrent mixed-mode simulation. For external simulators, it is not
necessary to create the waveforms until simulation execution is complete. In the event of exten-
sive or lengthy external simulation, creating the waveform displays ahead of time only adds long-

term objects to local memory, and ncedlessly increases memecry paging.

The flat structure now contains the modules, their interconr.ections, and the input
waveforms required for the simulator. The appropriate modules and the input waveforms are the
exact same cbjects contained in the hierarchical module definition, yet the simulation nodes,
simulation pins and the output waveforms are newly created for each simulation performed.
Furthermore, simulation nodes and pins and their associated waveform data are stored
independently from the hierarchical module definition; no explicit pointers exist from the module
definition to the objects in the flat structure. In this way, each simulation run is kept separate and
distinguishable from other simulations, and thus can be quickly and easily discarded, saved for
later use, or compared against the results of other simulations. Because waveform output often
contains many data points, it is important to summarize the essential waveform data and to

discard or garbage collect the rest.

6.3.4.3 Mapping Waveforms onto Nodes

A manpiing table is creatad relating the fiat simulation nodes and the electrically equivalent
nodes in the hierarchical circuit module. Interconnected nodes along the hierarchy correspond
to one simulation node, and one simulation node maps onto one or mere electrically equivalent
nodes of the hierarchical module definition, as shown in Figure 6-1. This mapping allows the user
and the analysis tools access to the waveform data from the hierarchical module definition, and
vice versa. The user, for example, may probe a wire of the graphical presentatinn for a wavetorm.
The wire forwards the message onto its topological correspondent, a node in the module defini-
tion. The mapping table is consuited for the equivalent simulation node. Once found, the simula-

tion node then returns the waveform. In the reverse direction, waveforms can now find wires of
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the presentation for which they are associated. Suppose the user is viewing a waveform and
wishes to know ihe wires in the presentation for which a particular waveform applies. The
waveform forwards the operaticn onto its simulation node. Next the mapping table is consulted
for the set of electrically equivalent nodes in the hierarchical module definition. With the
knowledge of the user's current prescntation, a single node is selected. And finally this node
requests each of its presentation corraspondents, graphical wires, to display themselves to the

user.
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Figire 6-1: Mapping of a single simulation node cnto electically
equivalent nodes of a hierarchical module definition.

6.3.4.4 Mapping Waveforms onln ¥ins

If waveforms are associated with pins, a mapping table for pins is also useful, in this case, a
one-to-one mapping. An input pin of the hierarchical module definition maps directly onto one
simulation pin.  Cutput waveforms attached to simulation pins can map onto the pins of the
appropriate modules. In contrast to nodes, pins along the hierarchy and their associated currents
are not electricaily equivalent; pins of hierarchical modules will not have a waveform initially - nor

an entry in the mapping table - unless the pin is queried for one.
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Suppose the initiator probes for an output current waveform of a module’s pin. The pin
then consults the mapping table for its corresponding simulation pin containing the waveform. If
the module is an appropriate medule, an output current waveform is returned. If not, a current
waveform must be created for the pin, as shown in Figure 6-2, where a simple application of
Kirchoff's current law produces the desired waveform. The current waveform of the hierarchical
module’s pin is actually the sum of the currents attached to the pins of the interconnected ap-
propriate modules inside (or outside). The procedure is performed as follows. First the hierar-
chical pin finds all the waveforms internal to its parent module by requesting a current waveform
from all internal pins connected to its internal node. If these pins cannot locate a waveform in the
mapping table, the request is again forwarded. This recursive process coiitinues until ail internal
currents have been found. The hierarchical pin then performs a generic add operation on the
waveforms returned. This newly generated waveform is then assigned a simulation node and
cached in the mapping table for future reference. Generating waveforms only upon inquiry is

again part of Schema's creation on demand technique.

6.3.5 Locating Appropriate Models

The Generic Simulator locates an appropriate model, if any, for each appropriate module
taking part in the simulation. The mcdel may be found in one of two places. [t may alreacly exist
within the module itself, cached from a previous simulation, or it may be found in the designer’s
environment folder. In the latter case, if the appropriate modecl is of type, model without state, the
model itself is cached. If the appropriate model is of type, model with state, a copy of the model is

created and cached in the module.

The location procedure occurs as follows. The Generic Simulator simply asks each ap-
propriate module to find a model for the simulator selected under the current analysis context.
The module then iooks to see if any of its cached models are appropriate. if not, the designer’s
environment folder is passed the responsibility. Next the environment folder searches through its
subparts for a mcdel folder with the correct module type. If not found, each subenvironment is
searched, and so on in a breadth first manner®. Once found, the model folder is asked to locate
an appropriate model. It then searches its models whiie asking each if it is appropriate. In effect,

the responsibility for finding an appropriate model is passed naturally from the Generic Simulator,

[ S . . o
This is not currently the case, only one level of the environment folder hierarciy is searched.
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Figure 6-2: Summing current waveforms, current-1 and current-2,
to produce current-sum for pin of a hiecrarchical module.

to the moduls, to the environment folder, to the model folder, and finally onto the model. If the
appropriate model is found, eithcr the model or a copy of the model s returned back to the
module, and cached for use in future simulations. The Generic Simu'ater need never know

anything about the models.

During the course of simulation initialization, the Generic Simulater notifies the initiator of
any inconsistancies, undefined quantities, or ambiguities in the information gathered by the
Generic Simuiator thus far. Simulation execution cannot proceed until all required information is

supplied. The simulation initiator may need to subsequently add or modify waveforms, models, or
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parameter values. At the close of the Initialization Phase, data associated with the simulation is
locked from modification; all objects however are read-accessible to other processes, including

other Generic Simulation Processes.

6.4 Exccution Phase

The Generic Simulator handles two basic types of simulators, internal and external. An
Internal Simulator directly manipulates the data objects present within thie address space of the
Simulation Environment. Simulation execution may be interactively controlled. An external
simulator generates its own internal data structures in a separate address space. The following
sections briefly describe each simulation process and the role of the Generic Simulator in the

execution phase.

6.4.1 Internal Simulation

Because an internal simulator accesses the data obiects directly. the Generic Simulator
need only call the simulation routine and pass it the flat module structure to be simulated. The
simulator then forwards many of the type-dependent tasks onto the data objects. In a Spice-like
circuit-level simulator, each module and input waveform calculates its fill-in values for the sparse
modified-nodal-analysis matrix. Each module’s model is responsible for perforiming calculations
based on its mode!, parameters, and some local state. Input waveforms compute a voltage or
current vaiue for a given timepoint. At higher levels of simulation, the simulator dynamically
schedules the sequence of operations, or events, as signal values propagate through the circuit.
This time the model compuies an output waveform value, given some input waveform values. The
simulator propagates the calculated output to the input of interconnected modules by way of the

flat simulation nodes.

At each time step of execution, input waveforms are sampled, output values are nroduced
and sent directly to the output waveform display objects.  Simulation execution can be inter-
actively controlled by the simulation initiator. The user for example can visually observe the
cutput waveforms as the simulation proceeds, and may halt execution in the event of erratic
circuit behavior. An analysis too! could dynamically discontinue execution at the moment the
resulting waveforms fail to meet design specifications. Not only may the output waveforms them-

selves be observed, but any combination of operations on these waveforms may also be ob-
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served, e.g., power consumption. Furthermore, with the waveform transformation capability of
the Simulation Environment, concurrent mixed-mode simulation is also possible. As output
waveforms of one region’s simulation becomes available, they could be automatically used as

input to some other region’s simulation.

6.4.2 External Simulation

An external simulation is performed in a separate address space. In the event the simulator
exists on a remote processor(s), the Generic Simulator first establishes a connection to the
simulation server, typically via a local network. Because more than one remote processor may
run the selected simulator, the Generic Simulator polls each of the existing processors to deter-
mine the best available resource. Spice2, for examsle, is highly portable and thus runs on many
different servers. Yet at any point in time, some servers may be fully-loaded with performing
simulations or some other computationally intensive task. The least-loaded, most efficient

machine should be prompted to service the simulation request.

Next the Generic Simulator requests a textual description from all data objects to be simu-
lated). Each appropriate moduie, waveform, model and parameter object then returns a textual
description to be forwarded by the Generic Simulator to the selected simulator. Simulation may
then proceed in a background process. During the course of execution, other activities or
processes occurring within the Simulation Environment may continue uninterrupted.  Upon
completion, some textual output is returned. Generic simulator sends the data to an output
parsing routine which interprets the output results and creates the uniform waveform data objects
in the Simulation Environment. And finally, the simulation initiator is notified of execution comple-

tion.

6.5 Compietion Phase

During the Completion Phase, output waveforms are available for inspection, analysis, and
as input to other Generic Simulation Processes. The waveforms are accessible to the initiator via
the module definition. In the case of the user, the interface to waveforms attached to the module
definition is by way of the presentation viewer in combination with the waveform editor.
Convenient analysis tools summarize waveform data for example, not only for graphical display
and reduced storage, but also into a new mode! for use in a higher level simulations as described

in Chapter 7.
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Chapter 6 Generic Simulator

A Generic Simulation Process may be extended, in which case the same flat structure is
reused. The same waveform objects are just appended with additional output points. Output
waveforms are collected together into an output waveform folder. Because simulation results are
dependent on the models used in the simulation, they are stored with the models in the user’s

environment folder.

6.6 Summary

The Generic Simulation Process is a series of steps leading to a single simulation on the
Generic Simulator. The process occurs as follows. First of all, waveforms are assigned to the
input terminals of a circuit module. The simulation initiator, either the user or analysis tool,
selects a specific simulator from among a rich variety. The Generic Simulator then prepares the
chosen region, the assigned waveforms, the appropriate models, and the module parameters for
the selected simuiator. Next simulation is performed either directly on the data objects within the
Simulation Environment, or externally in a separate address space. Output waveforms are

created and made available for inspection, analysis, or as input te future simulations.



Chapter Seven

Discussion

7.1 Summary

The Simulation Environment provides a uniform CAD interface, a single user interface, and
mixed-mode capability by using a common representation for simulation data objects: topologies,
models, and waveforms. The data objects, a Generic Simulator, and the user interface together

make up the Simulaticn Envircnment as implemented in Schema.

The object types and corresponding operations defined in the Simulation Environment are
patterned after the requirements of the simulators that use them. The addition of new types of
objects and their operators facilitates casy extensibility to additional simulators. The object types
and the layer cf operations defined in the Simulation Environment serve as the foundation upon
which to build new analysis tools. Local coercion routines can be defined to simply transform one
type of waveform to another; this gives the Simulation Environment the capability to perform

mixed-mode simulation.

The Generic Simulator coordinates the flow of objects between each simulator and the
simulation: initiator, the user or analysis tool, during the Generic Sinwlation Process. Waveforms
are assigned to the input terminals oi a circuit module. The simulation initiator selects a specific
simulator from among a variety of simulators. The Generic Simulator then prepares the circuit
module, the assigned waveforms, the appropriate models, and the mcdule parameters for the
selected simulator. Next simulation is performad and finally output waveforms are created and

made available for inspection, analysis, or as input to future simutations.

7.2 Implementation: The Simulation Environment Layer

The Simulation Environment is implemented in Schema using Symbolics 3600-family lisp
machines. All types are built on top of the Flavor System [Reference 85] provided by the Zetalisp
language. The object-oriented programming strategy established by the flavor system provides

the base layer upon which Schema is established.
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Chapter 7 Discussion

Many of the basic topology, meodel, and waveform data types and operations have already
been defined for the Simulation Environment in Schema. New types and operations are con-
tinually being added and refined to conform to the needs of additional tools built into the system.
It is hoped that this define-and-refine process will at some point converge to an optimum general
representation for data cbjects, where these representations form a solid layer upon which to

build other CAD tools for all areas of circuit design.

Currently two simulators have been implemented in the Simulation Environment; an internal
transient simulator and the external circuit-level simulator Spice2. The internal simulator employs
the forward-euler method of integrating current into each capacitive node of a circuit. This
simulator does not have the accuracy of the detailed circuit analysis simuiator, but does have the
advantage of being much faster and highly interactive. Thus the designer is able to make initial
verification and performance estimates using the interactive internal cimulator and save the

detailed analysis for the remote simulation engine. Both make use analog waveforms.

The next step is the addition of the linear, switch, and logic-level simulators that use the
binary waveforms already defined in the Simulation Environment. For mixed-mode operation,
coercion routines between analog and binary waveforms must also be detined. These simulators,
together with the currently embedded transient simulators, constitute an essential layer of tools

upon which to integrate higher-level simulators.

7.3 Future Work: The Concurrent Mixed-Mode 5imulation
Layer

Because errors may be introduced into simulation results by an unfortunate choice of
simulator at a critical point in the circuit, expert or automatic partitioning routines could be in-
dependently deveioped and placed on top of the Simulation Environment. The routines would-
essentially divide large scale circuit modules into collections of submodules to be simulated at
different levels of abstraction. Critical paths and tightly-coupled subcircuits are grouped and

simulated at a detailed level, while less critical circuits are simulated more abstractly.

Concurrent mixed-mode internal simulation is now possible. The Simulation Environment
provides the foundation layer of simulators, a Generic Simulator, and uniform representations.

On top of this are three essentially independent layers. One provides the signal transformation



procedures for mixed-mode operation, another contains the different internal simulators and
general simulation algorithms, and finally the third embodies the expert partitioner. These provide
the base upon which to build a concurrent mixed-mode simulator.  As waveform values of one
subcircuit's simulation become availzble, they could be used immediately as input to an intercon-

nected module’s simulation.

As cited in Chapter 1, the main bottleneck with such a single-system approach is the limited
computational power. In Schema, the data objects exist in a cornmon address space with the
potential for muitiple processes. Circuit partitioning convenientiy lends itself to parallel process-
ing and cou'd thus spawn off new processes when necessary. Unfortunately however only one
processor ie currently available. In the future, these processes may be mapped onto more power-
ful paraliel, multi-processor systerns. In the meantime, the Simulation Environment provides the

foundation upon which to develop these more sophisticated software layers.

7.4 Conciusion

This thesis has two main conclusions. First, designing the layer of general representations
is the most difficult task in developing the Simulation Environment. Second, once the general
representaticns have been designed for a specific simulation level, it is easy to integrate ad-
ditional simulators at that same level. In general, as each new simulation levei is incorporated into
the environmant, the representations undergo a continual define-and-refine process. As a con-
sequence, the representations eventually evolve into the most general form satisfying the needs

of a comprehensive range of simulators and the needs of the user.

60



References

[Abelson 85] Abelson, H. and Sussman, G. J., Structure and Interpretation of Computer
Programs, The MIT Press, 1985.

[Abramovici 83] Abramovici, M., Levendel, Y. H. and Menon, P. R., "A Logic Simulation
Machine," IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems CAD-2(2):82-94, April 1983.

[Antognetti 84] Antognetti, P., Pederson, D. O. and de Man, H. (Eds.), Computer Design Aids for
VL S/, Martinus Nijhotf, 1984.

[Arnold 85] Arnold, J. M., "Parallel Simulation of Digital LS} Circuits,” Technical Report 333,
Massachusetts institute of Technology, February 1985.

[Arnout 78] Arnout, G. and de Man, H., "The Use of Threshold Functicns and Boolean-
Controlled Network Elements for Macromodelling of LSI Circuits,” IEEE Journal of Solid-
State Circuits SC-13(6):326-332, June 1978.

|Borricne 83] Borrione, D., Humbert M., Le Faou, C., “"Hierarchical Mixed-Mode Simulation
Mechanisms in the CASCADE Project,” Anceau, F. and Aas E. J. (Ed.), VLSI 83, Elsevier
Science Publishers B. V., August 16-19 1983, pp. 119-129.

[Bryant81] Bryant, R. E., "A Switch-level Simulation Model for Integrated Logic Circuits,” Ph.D.
Thesis, Massachusetts Institute of Technology, March 1881.

[Chawla 75] Chawla, B. R., Gummel, H. K. and Kozak. P, "MOTIS -- An MOS Timing Simulator,”
|EEE Transactions on Circuits and Systems CAS-22(12):901-909, December 1975.

[Chen 84] Chen, C. F,, Lo, C., Nham, 4. M. and Subramaniam, p., "The Second Genaration
MOTIS Mixed-Mode Simulator," Proceedings of the 21st Design Automation Conference,
ACM IEEE, June 25-27 1984, pp. 10-17.

[Cchen 76] Cchen, E., "Program Reference for SPICE2,” ERL Memo ERL-M592, Universily of
California, Berkeley, June 1976.

Daniel 82] Daniel, M. E. and Gwyn, C. W., "CAD Systems for IC Dasign,” IEEE Transaciions on
Computer-Aided Design of Integrated Circuits and Systems CAD-1(1):2-12, January 1982.

{Ceutsch 34] Deutsch, J. T. and Newton, A. R., "A Multinrocessor Impleimentation of Relaxation
Based Flectrical Circuit Simulation,” Proceedings of the 21st Design Automation
Confarence, ACM IEEE, June 25-27 1984, pp. 350-357.

[Doshi 84] Doshi, M. H., Sullivan, R. B. and Schuler, D. M., "THEMIS togic Simulator - A Mix
Mode, Multi-Level, Hierarchical, Interactive Digital Gircuit Simulator,” Proceedings of the
21st Design Automation Conference, ACM IEEE, June 25-27 1984, pp. 24-31,

G1



References

[Dumlugol 83] Domlugol, D., de Man, H. J., Stevens, P. and Schrooten, G. G., "Local Relaxation
Algorithms for Event-Driven Simulation of MOS Networks Including Assignable Delay
Modeling," IEEF Transactions on Computer-Aided Design of Integrated Circuits and
Systems CAD-2(3):193-202, July 1883.

[Fan 77] Fan, S. P, Hsueh, M. Y., Newton, A. R. and Pederson, D. 0., "MOTIS-C: A New Circuit
Simulator for MOS LS! Circuits,” Proceedings of the IEEE International Symposium on
Circuits and Systems, \EEE, April 1977, pp. 700-703.

[Hafer 83] Hafer, L. J. and Parker, A. C., "A Formal Method for the Specification, Analysis, and
Design of Register-Transfer Level Digital Logic," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems CAD-2(1):4-18, January 1983.

[Hill 79] Hill, D. D. and vanCleemput, W. M., "SABLE: A Tool for Generating Structured, Multi-
Leve! Simulations," Proceedings of the 16th Design Automation Conference, ACM IEEE,
June 25-27 1979, pp. 272-279.

[Hill 80] Hi!l, D. D. and vanCleemput, W. M., "SABLE: Muiti-Level Simulation for Hierarchical
Design," Proceedings of the IEEE International Symposium on Circuits and Systems,
IEEE, April 1980, pp. 431-434.

[Lanthrop 85] Lanthrop, R. H. and Kirk, R. S., "An Extensible Ohject-Oriented Mixed-Mode
Functional Simuiation System," Proceedings of the 22nd Design Automation Conference,
ACM IEEE, June 1985, pp. 630-636.

[Lewke 83] Lewke, K. and Rammig, F. J., "Description and Simulation of MOS Devices in
Register Transfer Languages,” Anceau, F. and Aas E. J. (Ed.), VL S/ 83, Elsevier Science
Publishers B. V., August 15-19 1983, pp. 73-83.

[Nagel 75] Nagel, L. W., "SPICE2: A Computer Program to Simulate Semiconductor Circuits,”
ERL Memo ERL-M520, University of California, Berkeley, May 1975,

[Nestor 82] Nestor, J. A. and Thomas, D. E., "Defining and Implemeniing a Multilevel Design
Representation with Simulation Applications,” Proceedings of the 19th Design Automation
Conference, ACM IEEE, June 14-16 1982, pp. 740-746.

[Newton 781 Newton, A. R, "The Simulation of Large-Scale Integrated Circuits,” ERL Memo
ERI_.-M78/52, University of California, Berkeley, July 1978.

[Newton 7¢] Mewton, A. R., "Techniques for the Simulation of Large-Scale Integrated Circuits,”
IEEE Transactions on Circuits and Systems CAS-26(9):741-749, September 1979.

[Newton 84] Newton, A. R. and Sangiovanni-Vincentelli, A. L., "Relaxation-Based Electrical
Simulation," IEEE Transactions on Computer-Aided Design of integrated Circuits and
Systems CAD-3(4):308-331, October 1934,

[Pfister 82] Pfister, G. F.. "The Yorktown Simulation Engine," Proceedings of the 19th Design
Automation Confercnce, ACMIEEE, Jurie 14-16 1982, pp. 55-59.

[Reference 85] Reference Guide to Symbolics-Lisp, 1985.

[Solden 868] Solden, S., "Waveforms as First-Class Objects in Schema," May 1986. Bachelor of
Science Thesis.

62



References

[Terman 83] Terman, C. J., "Simulation Tools for Digital LSI Design," Ph.D. Thesis,
Massachusetts Institute of Technology, September 1983.

[Thomas 83] Thomas, D. E. and Nestor, J. A., "Defining and Implementing a Multilevel Design
Representation with Simulation Applications," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems CAD-2(3):135-145, July 1983.

[Weeks 73] Weeks, W., et al, "Algorithms for ASTAP -- A Network Analysis Program," IEEE
Transactions on Circuit Theory CT-20(6):628-634, November 1973.

[Williams 84] Williams, B. C., "Qualitative Analysis of MOS Circuits," Technical Report 767,
Massachusetts Institute of Technology, July 1984,

[Zippel 85] Zippel, R. E. and Clark, G. C., "Schema - An Architecture for Knowledge Based
CADR," International Confersnce on Computer-Aided Design, |EEE, November 1985, pp.
50-52.

63



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for Public Release;distribution
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE . .
is unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
MIT/LCS/TR-386 DARPA/DOD N0O0014-80-C-0622
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)
MIT Lab for Computer Science Office of Naval Research/Dept. of Navy
6¢c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
545 Technology Square Information Systems Program
Cambridge, MA 02139 Arlington, VA 22217
8a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
DARPA/DOD
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22217 ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (include Security Classification)

A Simulation Environment for Schema

12. PERSONAL AUTHOR(S)
St. Pierre, Margaret Ann

13a. 'i'YPE OF REPORT 13b. TIME COVERED 14. DATE .OF REPORT (Year, Month, Day) I'5. PAGE COUNT
Technical FROM_________T1O0_ 1986 December 63

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP CAD, VLSI, simulation

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

In present day circuit design, many independent simulation tools are available for analyzing
circuits at various levels of detail. This thesis presents a framework to tie these tools
into the Simulation Environment in Schema, an integrated CAD system. The framework easily
incorporates additional simulators, serves as a foundation upon which to build new analysis
tools, and provides the ability for mixed-mode simulation, The Simulation Environment is
composed of common data representations, a Generic Simulator, and a single user interface.

A common representation for topological, model, and waveform data objects facilitates a
uniform interface to the user and to all CAD tools. The Generic Simulator coordinates the
flow of data objects between each simulator and the user or analysis tool.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
K] UNCLASSIFIED/UNLIMITED ] SAME AS RPT. {1 oTic USERS
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL
Judy Little (617)523-5894
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete
#U.S. Government Printing Office: 1985-507-047

Unclassified



