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Chapter 1

Introduction

1.1 Problem Statement

The power of present day computer systems is approaching the limits attainable
by conventional computer organizations. One solution to this problem lies with
architectures for parallel processing, notably multiprocessor systems. However in
order to exploit the power of these new organizations, users must have access to
languages and programming models that allow algorithms to be executed in parallel.
Multilisp [31] is one such programming model. It is a language designed for symbolic
computation on a parallel computer system.

Multilisp is based upon a dialect of the language Lisp [41,19] with additional
constructs for parallelism. A version of Multilisp has been written that runs both on
conventional computers [8,6] and on an experimental multiprocessor system [9,33].
The present implementations of Multilisp are efficient enough to run programs of
moderate size. However, the real potential of Multilisp is in running on a machine
specially designed for the language.

A Multilisp machine would be a large scale, shared memory, MIMD! multi-

!Multiple instruction, multiple data machine. All of the processors in this machine can operate

independently, running different instructions on different data.
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10 CHAPTER 1. INTRODUCTION

processor. The preliminary design of such a machine is a topic of research in the
Parallel Processing Group at M.I.T. This machine could contain an estimated 500
to 1000 processors that would be connected together through a fast communications

network.

There are a number of different design decisions in the organization of such
a Multilisp machine. One of the most important ones is to decide what type of
communication network to use to connect the processors. Another is to set the
size, speed, and the amount of local storage associated with each processor. These
two decisions involve an economic and engineering tradeoff. A designer could invest
effort in optimizing the communications network, or could increase the speed of the

individual processors at the expense of the network.

The tradeoff between communications network and individual processing node
depends on where the system bottlenecks will be. Different programming languages
or different application programs might impose a much different load on the system.
Some models of computation achieve parallelism by partitioning the program data
among the individual processors. For certain classes of applications, this allows each
processor in the system to work on a similar sub-task, with little communication
between the processors. Another model of computation might have each processor
perform a different logical function, and use message passing to communicate the
results of one function to another. These two models impose different requirements

on the speed of the communications network versus that of the individual processors.

In order to evaluate different design decisions about the organization of a Multi-
lisp multiprocessor, we need to know the communication requirements of Multilisp
programs. This includes determining the types of data that Multilisp programs
access, and how that data might be distributed across a real multiprocessor.
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1.1.1 Goals

The primary goal of this thesis is to determine the type of accesses made by Multilisp
programs, and the spatial distribution of those accesses in a proposed machine
organization. This goal has two parts: one is to determine the real communication
requirements of Multilisp programs, and the second is to see how much the cost of
that communication can be reduced by appropriate scheduling decisions.

Multilisp programs touch many different types of data. Some of this data is
shared between parallel tasks running on different processors, some could potentially
be accessed by several processors, and some is completely private to a processor.
In some Multilisp machine organizations, private data could be kept in the local
storage of a processor. Accesses to data that is shared between different processors is
the ‘real’ communication needed by an application program. Each of these accesses
requires a transaction across the communications network. A goal of this thesis
is to determine this maximum real communication cost for a variety of Multilisp
programs. This will form a basis for decisions about system organization.

A Multilisp implementation has some flexibility in how to dynamically schedule
tasks and allocate data in a multiprocessor system. While the same program will
always touch the same data objects, it may be possible to reduce the distance of
those accesses. An allocation strategy could cluster data objects near the processors
that refer to them most often. Task scheduling algorithms could reduce the distance
that tasks move across the system. A second goal of this thesis is to see how
these different scheduling decisions affect the cost of communication for Multilisp
programs.

There are several ways of quantifying the cost of communication on a Multilisp
machine. One is the number of data accesses that a program makes. The second is
the locality of those accesses. The locality of data references indicates how closely
data is clustered to the processor that accessed it. This thesis tries to quantify
this locality of reference as a way of measuring the effect of scheduling decisions on
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communication cost.

1.1.2 Justification

Future multiprocessors will attempt to harness the power of hundreds to thousands
of individual processors. As machines get bigger, communication costs increase. To
some degree, it is possible to increase the speed of communication networks by using
more complex connection strategies. The speed of the network is fundamentally
limited by the speed of light. However, most practical networks are limited first by
€Conomics.

In a large network, distant accesses may take a long time. Accesses may contend
for communication paths, and ‘hot spots’ could develop in the network. These points
of contention are unpredictable, and can slow down the network considerably. On
the other hand, communication between a processor and its local memory is much
more predictable. Computer architects have much more experience in building fast
processor — memory pairs than in designing large networks. If the processors in a
multiprocessor system all run at full speed, it likely that communication networks
will become a bottleneck.

There have been a number of different approaches to avoiding this bottleneck.
The literature contains many discussions of network topologies intended to be fast,
non-blocking and cheap to build at the same time [24,49,5]. Other networks reduce
contention for resources by combining accesses to the same data object [26,47,14].
Some memory systems are able to perform complex operations, to synchronize ac-
cesses to shared data, or to enforce mutual exclusion [25,10]. Many systems shuffle
memory addresses in an effort to distribute data as evenly as possible through the
system [15,14]. This is a case where designers work very hard to avoid data local-
ity, by forcing a random distribution of data throughout the system. Finally, some
systems treat the communications network as the single most important shared re-

source, and reduce the speed of all other system components to match the network
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[25].

All of these ideas are ways of coping with a high rate of global accesses across
a network. However, if global communication is expensive, it makes sense to try to
reduce the load on the network as much as possible. If a multiprocessor has local
memory associated with a processor as well as global shared memory, there is a
benefit to allocating data in local memory. Not only can that memory run faster
than distant accesses, but using local memory will reduce the contention for global
resources.

In some kinds of networks, the time necessary for a particular access is propor-
tional to the distance that that reference must travel. In this case, the commu-
nication load can be reduced even further by increasing the locality of reference
to data objects. Though using more sophisticated data allocation and scheduling
algorithms may take more time than simple random scheduling, it may be worth
the complexity to reduce the total communication requirements of a program.

In order to evaluate the effect of these scheduling strategies, we need to quan-
tify the real communication load of different benchmarks. Then the difference in
communication load due to sophisticated scheduling gives us a measure of the per-

formance gain.

1.2 Experimental Method

I started this thesis by proposing a model of a multiprocessor system. There are two
components to this model: the first is the language that will run on the machine,
and the second is the physical organization of the multiprocessor.

I decided to use Multilisp as the programming language, and to concentrate on
applications in symbolic computing. The implementation of Multilisp that I used
is not much different from existing versions of the language.

I described a possible organization for a multiprocessor in enough detail to pre-




14 - CHAPTER 1. INTRODUCTION

dict how its memory system would respond to different types of accesses. Using
this model as a base, I built Nusim, an architectural simulator for this machine.

The Nusim simulator directly executes Multilisp prom. It simulates one
processor of a multiprocessor at the level of functional blocks. By running one copy
of the simulator on each processor of an existing multiprocessor system, I simulated
the proposed multiprocessor organization.

Nusim allows a user to vary a number of parameters in the implementation of
Multilisp. It can use several different strategies for scheduling tasks. Nusim can
also simulate different topologies of processing nodes. Finally, a user can vary some
of the internal characteristics of a Multilisp processor in Nusim.

I used Nusim to simulate several different processor interconnection topologies. I
ran a set of Multilisp application programs on these simulated topologies. I counted
the types of data references that the programs made, the locality of that data, the
amount of parallelism and the task handling behavior of the programs. I then varied
a number of machine parameters within Nusim and saw what effect these variables
had on the locality of reference of the benchmarks. These experiments were used
to predict the influence of these parameters on a future Multilisp machine.

1.3 Chapter Outline

Chapter 2 discusses some of the problems involved in building a parallel Lisp ma-
chine. It then presents a brief description of the programming model used for this
thesis, namely Multilisp.

Chapter 3 discusses some of different design decisions in the organization of a
symbolic multiprocessor. It then presents the model of a multiprocessor that was
used in this thesis. It concludes by justifying that this style of multiprocessor can
be built using conventional technology.

Chapter 4 describes the Nusim simulator and some of the details of its operation.
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It discusses different parameters that affect the operation of Nusim.

Chapter 5 describes the test programs that were run under Nusim. It describes
the variables to Nusim that were modified in different runs of the test programs.
It discusses what kinds of data were collected from these different runs, and how
that data was presented. Chapter 5 then presents the results of the experiments
with Nusim. For all the data presented, I have tried to point out any trends, and
to discuss the reasons for that behavior. Chapter 5 concludes with a summary of
what we have learned about Multilisp programs and Multilisp machines from these
experiments.

Chapter 6 concludes, discussing the relevance of this data. It also discusses what
questions remain unanswered, and what experiments would be useful to build upon
these studies.

Appendices follow, giving details of the implementation of Nusim, how the data
presented in Chapter § was collected, and full descriptions of the benchmark pro-
grams.
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Chapter 2

Multilisp Architecture

2.1 Discussion of Scope

In order to simulate the operation of a Multilisp multiprocessor, we must first
start with an idea of how that machine might be built. The design of a machine
architecture for Multilisp is tailored both to the requirements of the language and
to the inefficiencies in a large multiprocessor. We begin by presenting the Multilisp
language and the special features it requires. Chapter 3 discusses the organization

of a Multilisp machine in more detail.

We justify a design by simulating its performance in running its intended work-
load. Engineers often have a good understanding of the code that runs on conven-
tional computers. Many machines are designed to be compatible with an existing
body of code [8]. In such cases, an architect can study an existing design, find the
bottlenecks, and propose incremental changes to speed up the system.

However, in the case of Multilisp, there is no existing processor design to use as a,
standard. There are a small number of applications written in Multilisp, but no one
has studied the code to find the most common functions that need to be speeded up.

The lack of performance measurements is particularly bothersome since Multilisp is

17




18 CHAPTER 2. MULTILISP ARCHITECTURE

unlike conventional numeric programming languages,! and is not intended to run on
conventional architectures. Multilisp also has features that distinguish it from other
dialects of Lisp. It is unclear how many of the lessons of conventional computer
architecture apply to Multilisp.

A processor could be designed at several levels, from a general description of
its organization to the level of circuit diagrams. I have specified the processor
itself only in enough detail to model its behavior in running Multilisp programs.
I have outlined the structure of the processor, and the functional units of which
it is built. I have simulated the processor as a black box that executes assembly
language programs. By making assumptions about how the processor handles each
such instruction, it is possible to predict the performance of the system in running

large applications.

2.2 Building a Parallel Lisp Machine

There are two classes of problems in building a parallel Lisp machine. The first
deals simply with the problem of executing Lisp efficiently. Traditionally, Lisp has
been a difficult language to implement on standard computer architectures. [48]
The second is one common to many multiprocessor organizations: how to manage

parallel tasks and communicate with other processors.

2.2.1 Running Lisp Efficiently

Most dialects of Lisp assume the existence of run-time type checking and garbage
collected heap memory. On machines without special purpose hardware, these
tasks require a large amount of processing time. Computers specifically designed to
execute Lisp often use a typed data architecture, in which each word of memory is

tagged with the type of data that it contains [43]. While the processor is operating

1See [32] for an explanation of what distinguishes symbolic computing from numeric processing.
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on the data part of words, it can simultaneously check the tags to ensure that the
objects are of the correct types. This added complexity in the processor hardware
thus removes most of the overhead of run-time type checking.

Symbolic computing emphasizes sorting and selecting of data objects, rather
than numeric functions of that data. Therefore, operations such as pointer following,
procedure calls, and creation of lists are much more common in Lisp-like languages
than the tight loops and arithmetic functions of other languages. Furthermore,
the flexibility of Lisp, its emphasis on late-binding of procedures, and its use of
untyped, generic operators reduces many of the optimizations possible at compile
time in typical programming languages. Most data operations in a Lisp program
must be able to deal with exceptional conditions and multiple data types.

There are three ways that Lisp implementations handle this need for flexibility
at run time and frequent use of complex operations. Some implementations of Lisp
are interpreted, rather than compiled, hiding the complexity of the basic operations
within the interpreter itself [38,52]. Others compile down to relatively complex as-
sembly language instructions [40,43,22]. though there has been at least one attempt
to compile Lisp to run on a very simple Load/Store architecture [54].

2.2.2 Parallelism Issues

A processor for a parallel machine must be able to deal with a number of problems
created by the organization of the system. The model of computer that we have
been using in our research is that of a homogeneous, shared memory multiprocessor.
The goal is a system containing several hundred processors. In a large system of
this type, it is not feasible to have all processors fully connected by high-bandwidth
paths. Thus, the average interprocessor latency must increase with the number of
processors in the system. One would hope that there will be enough locality in data
references that the communications network will not be swamped with traffic. But

even so, an individual processor must be able to operate efficiently even if there is
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a high latency in accessing some areas of memory.

Finally, any programming model for a inultiprocessor system must support mul-
tiple, concurrent tasks. In Multilisp, tasks are created and destroyed at run-time.
They are also dynamically moved from one processor to another during the course of
computation. Typically, each processor in the system may have access to a pool of
tasks that it can run. Thus, a processor must be able to manipulate tasks efficiently,
to select one from amongst a set of tasks, and to transfer tasks to other processors.
This may require hardware support for manipulating a processor’s tasks. It also
requires scheduling mechanisms for distributing tasks around the system. In this
thesis, I investigated a number different approaches to scheduling tasks.

2.3 Design Components

There are two components to the design of any computer architecture: the hardware
itself, and the programming model that it is intended to support. Neither can
be proposed independently of the other, since there must be a continual tradeoff
between complexity in hardware and software.

In a computer system that must support many diverse programming languages,
it is difficult for any one application to determine the hardware design. Features
that might speed execution of one programming model might impede another. This
is also a common argument for complex instruction set architectures.? However, in
computers that are only intended to run one application language, the hardware
should be tailored as much as possible to the specifics of the language. This is ex-
pressed most forcefully in such innovative architectures as the Connection Machine,
where constructs and operators in the *Lisp language are closely coupled to the
internal structure of the machine [36].

While most Lisp machines use this software-specific approach to hardware design

%See [18] for a statement of this argument.
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[43,40], a number of Lisp implementations have recently been developed that run on
more conventional architectures [22,16]. These designs invest much more effort in
software technology, such as optimizing compilers and explicit type declarations for
data objects. The benefit is that they can run on a much simpler, and presumably
faster, basic processor.

The limit of this hardware-driven approach is probably best personified by RISC
processors [54]. These designs expect that type mismatches and error conditions
will be relatively rare. This architecture promotes a style in which the user declares
the type of most Lisp objects in the program. By assuming that the type of these
objects will not vary, the compiler can generate code without many expensive run-
time type checks. Here ils an example of where the programming model that will

run on a computer is constrained by the limits of the underlying hardware.

2.4 Programming Model

2.4.1 Priorities

The overriding goal of research in the Parallel Processing Group at M.LT. is effi-
cient general purpose multiprocessors. The group is pursuing research towards this
goal in three areas: languages, architectures, and applications. It is not enough to
build a fast computer architecture if it is difficult to program the machine to use
that power. We must have languages to exploit parallelism, and enough experience
with application programs to be able to find the parallelism in a particular algo-
rithm. Most of the group’s effort is now concentrated in symbolic processing, and
specifically the Multilisp language.

Multilisp is based on the Lisp dialect Scheme [19]. It shares with the latter an
exclusive reliance on lexical scoping, rather than the dynamic scoping of most older
Lisp dialects [41]. It also allows procedures to be passed freely as arguments or
results of procedure calls, treating them as it would any other value.
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Multilisp most unique feature is the manner in which it allows a user to explicitly
indicate areas of potential parallelism in a particular algorithm [31]. This is in
keeping with the philosophy that the programmer is still the best judge of where it
is possible to exploit concurrency. One of the topics of research in the group is the
possibility of building intelligent compilers that can make reasonable decisions about
where to insert parallelism constructs. One such system has been built that was
successful with functional Lisp code [27], but is not yet able to deal with arbitrary
prograins.

Many other concurrent Lisp languages are exclusively functional, that is, they do
not allow side-effects. Multilisp takes the view that there are many applications that
are easier to write and more efficient with side-effects. A programmer is encouraged
to write mostly functional programs, with short sections that contain side-effects
well insulated from the rest of the code. However, we are unwilling to restrict the
user’s ability by outlawing those mechanisms.

The final fundamental principle of Multilisp is that the language should shield
the user from details of the underlying hardware. Multilisp is intended to be
portable to a number of different architectures, both sequential and parallel. Any
language that requires a user to explicitly partition code or data structures across
the available processors will not be portable as the number of those processors
changes. Since Multilisp presently runs on a number of different types of machines

[8,9,6,43] initial indications are that that it has been successful in this goal.

2.4.2 Brief Description of Multilisp?

The most unique feature of Multilisp is the future construct. The form (future
<expr>) immediately returns a future object, a distinguished token for the value
of <expr>. It also spawns a process to compute that value. The future object is a

promise that the result of <expr> will be available at some later time. A procedure

3For a more complete description of Multilisp, see [31] or [34].
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can ‘touch’ a future object by attempting to read its value. This occurs when we
operate on the future with an instruction that is strict in its arguments. At that
point, if the value of the expression <expr> is still not determined, the task that
touched it will be suspended until the future is resolved.

Variants of the future construct are the only way of expressing parallelism in
Multilisp. At some point in the execution of a Multilisp program, there may be
many concurrent tasks in existence. Each task was produced to calculate the value
of a future’s expression. We say that the goal of the task is to determine the value
of a future. Once it has computed that value, the task re-starts all tasks that were
suspended on that future, and ceases to exist. From that point on, the determined
future is equivalent to any other Lisp object.

Many different implementation strategies are possible for futures, depending on
how we wish to schedule the underlying tasks. Seeing the effects of those different
scheduling strategies is one of the goals of this thesis. Section 4.1.5 contains a more

detailed description of the Nusim implementation of futures.







Chapter 3

Machine Organization

This chapter presents a set of assumptions about the structure of a Multilisp ma-
chine that I used in simulating its behavior. In a multiprocessor such as this one,
we must make a basic set of decisions about the global organization of the system,

as well as of processing nodes within that organization.

3.1 Hardware Hierarchy

Figure 3.1 shows the hierarchy of subsystems in the multiprocessor that we are
proposing. The highest level is the hardware organization of the system. In our
case, this is a network of identical processing nodes connected together by a com-
munications network. These processing nodes are composed of three components:
the processor itself, some local memory associated with that processor, and a com-

munications port to connect to the other nodes in the system.

25
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3.1.1 System Organization
Issues

The system organization level determines what parallelism will be available in the
system. The most fundamental decisions about how to design a multiprocessor are

made here. Among them are:
¢ The number of processors in the system.

o The granularity of the processing nodes.

These first two points are usually related, since we want to build a machine
of a certain size. One approximation to the size of the machine is the area of
silicon used to build it. This is the product of the size of a processing node
(the granularity) and the number of nodes in the system.

The size and granularity can range from two conventional mainframes on a

common bus [2] to a million one-bit wide processors [36].

e The arrangement of memory and processing,.

We might choose to segregate processors and memories in a ‘dance-hall’ model,
and connect them through a cross-bar switch [55], or to spread processing and
memory evenly throughout the the system [36]. Most large systems associate
some local memory with each processor, to try to reduce the amount of com-

munication in the system.

e The degree of connectivity of the nodes.

This determines the diameter of the network, that is how many hops are
required to communicate from any one processor to any other point in the
system. There is a tradeoff between the connectivity of the system and the
cost and complexity of building the network. In some systems, each processor

is directly connected to every other, either through a dedicated link [49], or
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through a shared broadcast bus [42]. Other structures only allow a node to

communicate with its nearest neighbors [28,29].

Shared memory versus message passing.

Some programming models assume that all processors can read all memory
in the system [31]. Others explicitly assume that processors communicate
through message passing [37]. Some multiprocessing organizations are de-
signed specifically to speed the form of communication used by a particular
programming model [56,7,49]. In a multiprocessor designed specifically to
support message passing, without any areas of shared memory, it is costly to
emulate a shared memory mode of operation. In a practical machine, we would
want dedicated hardware to handle requests for data, and avoid burdening a

distant processor for each memory fetch.

Similarly, inter-processor communication can be expensive in a shared mem-
ory machine. Here, processors synchronize by way of locks and semaphores
in main memory. But a processor can waste many cycles ‘spinning’ on a
particular lock, waiting for it to clear. If the lock is in distant memory, this
puts a substantial load on the communications network. Again, hardware can

alleviate some of the cost of this form of communication.

In conventional computers, a processor ‘owns’ the connecting bus for the du-
ration of a transaction to memory. However, in a multiprocessor, where many
processors share the same communications path, it is too expensive to deny
everyone access to the network for the duration of an access. This is especially
true in a large system, where there is a long latency to distant memory. This
is the reason for split-transaction buses, where a request for data is not im-
mediately followed by the answer from memory. This type of read and write

request can be considered a special case of message passing.

e Connections to I/O devices.




3.1. HARDWARE HIERARCHY 29

The problem of supporting a high input/output bandwidth is particularly
important for machines that are intended to support users in a stand-alone
manner. When the computer will be used in an interactive fashion, users are
not willing to spend a long time loading a sizable amount of code and data

onto the multiprocessor in order for it to run some complex program.

Discussion

Many of the assumptions that I have made in these topics are motivated by Prof. Hal-
stead’s proposal of a Myriaprocessor [28,29]. This is a view that large scale multi-
processors should be easily expandable and reconfigurable. He envisions a network
of tens of thousands of identical processing nodes, all connected to their nearest
neighbors. It should be easy to vary the number of processors in the system trans-
parently to the user and the application program. In effect, we should be able to
buy “Computing by the Yard” ! to suit a particular application.

The processor that I propose here might not be suitable for such a myriapro-
cessor, but for a machine that we could build as the next step in that direction. I
assume that this intermediate machine will have a modest number of processors —
on the order of 500 nodes. The size of the system, and the need for it to contain a
variable number of processors, constrains the network used to interconnect them.

With such a large system, it would be impractical to separate processors and
memory by some large cross-bar switch [55]. The size and complexity of the switch
would be too great. Every non-local access by a process would be forced to pay the
maximum cost, by being routed through one common device. Such a design has
just replaced the “Von Neumann Bottleneck” by one just as severe. Likewise, it
would be impractical to build a fully-connected network of processing nodes. The
cost and complexity of the wiring would dominate the design.

Instead, I propose a network of processing nodes, where the processor, memory

1This analogy is attributed to Steve Ward.
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and switching mechanism are distributed in space. All nodes connect to nearest
neighbors— the number of neighbors to be determined by the topology. A mesh
in two dimensions would have each node connect to four other nodes, a three di-
mensional network connects six nearest neighbors. There is a tradeoff between the

complexity of the network and the average latency as we move to higher dimensions.

This thesis is not concerned with the details of the communications system
linking the processing nodes. It assume that any processor may read the memory
of another node. What is important is how long that access takes. It is too early
yet to be concerned with issues of loading of communications links or hot spots in

the network.

This thesis assumes that the latency to distant parts of the system is relatively
high. The speed of propagation of messages is fundamentally limited by the speed
of light in such a large system. However, the system could have high throughput
if it allows many requests to run through the network simultaneously. For these
reasons, requests for data and the corresponding replies should take the form of short
messages. The messages would traverse the network one hop at a time, moving from
node to node.

A processor design may have to deal with the problem of processors sitting
idle while waiting for replies to data requests. This could potentially waste a large
percentage of the power of the system. It would be useful if processors could perform
other useful work while waiting for a reply to some request. We will return to this

point in Section 3.1.4.

With this design, we are attempting to exploit locality of reference in data re-
quests, assuming that a computation running on a processor is likely to need data
clustered close to that processor, rather than in distant memory. That way, the rel-
atively low bandwidth connections between nodes will not saturate with messages.
This is a risky matter in Lisp programs, which usually exhibit less locality than con-
ventional languages. [43,48]. In this thesis, I tried to quantify the degree of locality
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available in our test programs, to see whether our assumptions are worthwhile.

In this model of the communication network, I have deliberately ignored the
mechanisms by which messages are propagated through the system, the physical
connections and the routing strategy. I also have not looked at the effect that
contention for paths might have on bandwidth. I have ignored the effects of errors,
lost packets, and fault tolerance in the nodes and communication channels. These

topics each merit a discussion which is outside of the bounds of this thesis.

In this thesis, we do not consider the effects of memory management or vir-
tual memory. While we do not presume any memory management facility in the
processing nodes, there is no reason to assume that the address space of any pro-
cessor need be the same as the system as a whole. It would be relatively easy to
have the communications port in each processing node translate data references to
system-wide addresses. Similarly, we will avoid the complexity of virtual memory
by assuming that all data and code needed by an application is kept in real memory.
Given the potential size of this multiprocessor, and the amount of memory that it

can contain, this is not an unreasonable assumption.

Finally, any large machine will probably need to communicate with input /output
devices. For the purposes of this thesis, ] assume that we can use a front-end
processor to load code and data into the system, and to support software debugging.
The host might connect to all the processing nodes through some common broadcast
net. That communication path would not be used during normal processing on the

computer.

Other I/O devices can be associated with particular processing nodes, in effect,
allowing memory mapped I/0O. One processing node can control access to each I/O
device, mediating requests from the rest of the system. We do not expect to use
high bandwidth devices that might be a load on the system. Access to disk drives
or secondary storage is only critical for paging purposes, which we do not expect to

see in normal operation.
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Figure 3.2: Structure of a processing node.

3.1.2 Processing Node

As mentioned in Section 3.1.1, the system proposed here is divided into identical
processing nodes. A possible structure for a node is shown in Figure 3.2. The three

components are the processor, local memory and a communications port.

Accesses to distant memory in a Multilisp machine may have considerable la-
tency. Storing data locally rather than in distant memory will prevent paying this
cost for some types of objects. The percentage of accesses that processors make to
local memory rather than distant depends on the locality of reference of Multilisp
programs. In this thesis, I have shown that there is considerable locality to be
exploited in a range of Multilisp applications.
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Communications Port

In such an MIMD machine, we expect that a processing node will run as an isolated
unit much of the time.. One role of the communications port in this machine is to
decouple the operation of the processing node from the rest of the system. The
port is the only link between processing nodes. A port in each node will connect
through the network to the ports of some number of other processing nodes.

The communication port must be able to route messages from the local processor
out to its destination. The port also translates incoming network messages into
accesses to node local memory. In this machine, all routing decisions must be made
within the communication ports. This decouples the design of the external network
from the internals of the processing node. The communication port must be a
fairly intelligent box in order to handle this functionality. Putting some intelligence
in the port relieves the node processor of the burden of handling communications
overhead.

Node Organization

The processing node is organized so that there are two paths to node memory.
This is to support accesses both from the local processor and from distant requests.
When there is a conflict for the memory, the local processor would have priority.
Since the latency for local accesses is expécted to be much less than that of distant

accesses, it is more important that local accesses are unhindered.

Figure 3.2 also shows a direct path from the node processor to the communi-
cation port. This would carry interprocessor messages with low latency. While
the Multilisp language does not explicitly use message-passing, there are some de-
tails of its implementation that would benefit from methods of synchronizing the

Pprocessors.
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3.1.3 Memory Hierarchy

The memory of a Multilisp machine would be divided into three classes. The highest
speed memory would be internal to a processor. This includes processor registers
and caches for code and data. This memory is typically quite small, since in any
technology it is difficult to build large very fast memories. Node local memory is
the next fastest, and should be large enough to contain all the code and data being
referenced by a processor over the lifetime of a computation. Finally, the node
memories of all other nodes in the system are accessible to the local processor as

global, distant memory.

Processor Internal Memory

An instruction cache or instruction buffer is a standard way of speeding up code
execution on a processor. Since code does not change in most high level languages,
instructions in a cache will remain consistent with the global memory. Even a simple
buffer can speed code fetches, by matching the speed of the processor to that of
the memory system. The benefit of an instruction cache depends on the size of
the cache, and on the types of instruction references that Multilisp programs make.
The cache hit ratio is greatest when instruction references have a high degree of
locality.

Another type of memory that is internal to a processor is a stack buffer. Current
implementations of Multilisp are designed to run on stack machines. For such an
implementation, a stack buffer would hold the top of the stack in high speed memory.
Since most instructions currentljr fetch their operands from the stack, some type of

buffer is necessary for acceptable performance.

Local and Distant Memory

Multilisp assumes that all processes in the system share a common address space.

Some portion of that space would be mapped to local node memory, while the rest
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would require distant memory accesses. A goal of this division of memory would
be to encourage programs to use local memory for as much data as possible. A
program should only have to access global memory for variables that it shares with
other processes, or for other necessary interprocessor communication.

In this thesis I have proposed a number of ways of encouraging this locality of
access. For instance, all code and constants in a Lisp program could be loaded into
the local memory of each processing node. Programs should default to allocating
space out of local memory, and any private or short-lived Lisp objects should be
stored locally as well.

Accesses to global memory are more difficult than fetches out of local memory,
because no simple bus links processors to distant nodes. We have assumed that
the communications network supports split transaction, packet or message based
communications protocols [21]. Experience with other large scale multiprocessors
suggests that accesses through the communications network might be an order of

magnitude slower than those to local memory [5,25,15).

3.1.4 Processor Model

In order to accurately predict the performance of a Multilisp machine, we must make
some assumptions about its processor architecture. Section 2.2 discussed some of the
difficulties in running Lisp on a multiprocessor, and suggested hardware solutions

to speed Lisp processing.

Tagged Architecture

One of the ways to speed execution of an untyped language like Multilisp is to run
on a tagged architecture. Every data word in the system is tagged with a label that
identifies the type of data in the word. Instructions must then check the tags of
their operands to ensure that the object types match the operation to be performed.

The processor must be able to trap to routines in microcode or assembly language
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to handle exceptional cases.

While this tag checking can be performed in software, it is much more efficient
to have processor hardware check data tags. Studies have shown that even a small
\ amount of processor support for tag checking can yield a significant improvement in
performance [54]. In this thesis, we will assume that processors check the types of
data objects in parallel with instruction execution. This means that in the normal
case, instructions are executed at full speed. However, when data types do not
match the operation to be performed, the processor aborts the instruction and

traps to an exception handler.

Support for Multiple Tasks

The significant feature of Multilisp as a programming language is that it allows
programmers to explicitly spawn parallel tasks. We will assume that processors
contain a number of features to speed task handling.

First, processors must devote some effort to finding and loading executable tasks.
This thesis discusses a number of algorithms that the processors may use to schedule
tasks. We will assume that some of these functions are built into the hardware or the
microcode of a processor. While tasks are loaded much less frequently in Multilisp
than the instruction execution rate, the extra overhead in trapping to assembly code
may be prohibitive. The most basic scheduling functions must exist at a low level
in the processor. Support for futures in the processor must include a combination
of data tag checking and task scheduling.

In our model of a communications network for a Multilisp machine, all accesses
to distant memory have a long latency. One way of dealing with this latency is
by keeping several processes loaded in a processor at any one time. So instead of
sitting idle during this access period, a processor could switch to running another
process. Some machines have tried to support multiple concurrent tasks, and to

allow very fast context switching between the tasks [50,46]. This can be an expensive
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proposition, since it often requires allocating a different set of processor registers
to each task. In this thesis, we have assumed that processors have this ability
to multitask at a low level. We investigated the effect of this multitasking on

parallelism and data accesses.

3.2 Justification

The preceding sections outlined some basic assumptions about the design of a Multi-
lisp machine used in this thesis. But while all these features may be desirable for a
Multilisp machine, if the resulting system is too large and complicated to be built,
we have not accomplished anything. In this section I will argue that it is possible
to build a machine with these characteristics using conventional technology.

There have been a few large scale multiprocessors built to date. The B.B.N. But-
terfly [5], is built using 256 conventional microprocessors, tied to memory through
a ‘butterfly’ switching network. All system memory is shared among all the proces-
sors. There are no fundamental engineering reasons why a 500 to 1000 processor
machine could not be built using the same structure.

The processor architecture that we have proposed is different from most com-
mercial microprocessors. It is similar to the processor of a CADR Lisp machine
[40]. But some single chip processors based on this same architecture have been
built. Texas Instruments has designed a Lisp machine on a chip that contains most
of the functionality of the processor proposed here [57].

In any machine design, a large part of the complexity of the machine is not
related to the number of chips that it contains, but instead the number of distinct
chip types, and the patterns in which they are connected. Some large machines have
been built using a few complex chips, connected in a regular structure [56,36]. The
Connection Machine is built using a thousand VLSI chips, each of which contains 16
simple processors. A few high-density memory chips provide all the local memory
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required by group of processors. By matching the processor to the structure of the
system, this design uses very few MSI support chips. It is reasonable to assume that
a thousand complex single chip processors, could be connected in a similar regular

structure.



Chapter 4

Simulation Method

4.1 The Nusim Simulator

4.1.1 Purpose

The core of this thesis is a study of the behavior of Multilisp programs, and of the
effect of different architectural features on Multilisp execution. In order to collect
this data, I wrote the Nusim simulator. Nusim was intended to be a flexible test
bed for studying the architecture of symbolic multiprocessors. Though I will spend
only one chapter describing this tool, realizing it occupied most of the time spent

on this thesis.

Nusim is derived from and structurally similar to XML, the Multilisp emulator
written by Robert Halstead and Juan Loaiza of the P.P.G. group at M.I.T. It was
extensively rewritten and restructured to take the present form of Nusim. In addi-
tion, I added customizable routines that allow Nusim to simulate the operation of a
processor, not just to emulate the Multilisp language. In fact, only a small amount
of this flexibility was used in order to collect the data summarized in Section 5.5.
However I hope that some of the additional features of Nusim will prove useful to

others in the group, and to my own research in the future.

39
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The sections that follow begin by defining a number of terms that will be used
in later discussions of the Multilisp language and of Nusim. They also discuss how

those components are handled in Nusim.

4.1.2 Concert

The Concert multiprocessor [9,33] was designed as a development system for parallel
processing. Figure 4.1 shows a block diagram of the machine. It is composed of up to
34 Motorola MC68000 processors [1], and approximately 25 megabytes of memory.
Concert is a tightly-coupled multiprocessor in which system global memory is shared

between all processors.

Concert is divided into eight slices, each of which is a separate Multibus back-
plane [39]. A slice can hold between four and six processors. Each processor is given
at least one 500K byte memory board as local memory. Local memory is visible to
all processors in the slice, but not to processors on other slices. The processors and
memory boards were a commercial design [3,4)].

The slices of Concert are linked together by the Ringbus, a segmented shared
bus. Several transactions can take place simultaneously on disjoint segments of the
Ringbus. A central Ringbus Arbiter controls access to the Ringbus by each of the
eight slices. It tries to provide fair access to the bus, and to support as many bus
transactions as possible at any time. The Arbiter is a custom design by members
of the P.P.G. group, as are the Ringbus Interface Boards that connect slices to the
Ringbus.

4.1.3 Running on Concert

XML and Nusim run both on uniprocessors [8,6] and on Concert. The program
itself only runs on a single processor. On Concert, one copy of the program runs

on each processor in the system. Each processor that runs Nusim simulates one
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Figure 4.1: The Concert multiprocessor.
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processing node of a hypothetical multiprocessor. While this limits the number of
processing nodes that we can simulate with Nusim, it is much simpler than allowing
each real processor to simulate several ‘virtual’ processors.

In Nusim processors communicate by side—eﬁ'ecting objects in shared global mem-
ory. For instance, there is a single global list of free memory blocks. A processor
that requires more memory will lock that list, pop a block from the top of the list,
and unlock it. This operation is duplicated for most resources in the system. Nusim
makes no attempt to coordinate the operation of processors at a lower level than

this.

4.1.4 MCODE

Both the XML implementation of Multilisp [30] and the Nusim simulator compile
Lisp source code down to an ‘assembly language’ known as MCODE. MCODE is a
machine language for a hypothetical stack machine. Most MCODE instructions are
zero-address, that is, they pop their operands off the stack, and push the result on
top of the stack. The stack is used for local data, arguments and the environment of
a procedure, and for the control state of procedure calls. MCODE contains the usual
mathematical operations, branching and calling instructions, instructions to access
data structures in memory, and instructions to spawn parallel tasks. Appendix A
describes MCODE instructions in more detail.

The Nusim program spends most of its time in a loop, reading MCODE instruc-
tions, and dispatching to the appropriate procedure to emulate each instruction.
There are approximately 120 MCODE instructions in the current implementation
of Nusim. MCODE instructions are currently encoded with one or two byte op-
code, optionally followed by some bytes of immediate arguments to the instruction.
(Appendix A describes these instructions, and how they are encoded).

Nusim allows a designer to easily add instructions, or to change the encoding of
this machine language. The simulator uses a single dispatch table to describe the
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encoding of each instruction and what arguments it requires. At present, Nusim can
run one of two different instruction formats. One is the format used by the XML
emulator, the second is a more compact format, more suited to implementation on
a real processor. In the interests of sharing the Multilisp compiler, assembler, and

other system code, all the test cases described here used the standard XML format.

4.1.5 Tasks and Processes

In Multilisp, programmers explicitly label expressions that should be executed in
parallel with the rest of the program by enclosing them in futures. Each concurrent
thread of execution in Multilisp is referred to as a task. A task that is loaded and
ready to run on a processor is referred to as a process. A typical task might be
the size of a Lisp procedure. Multilisp programs do not fork off parallel tasks to
execute single instructions, because the overhead involved in spawning each task
would be greater than the potential benefit in speed. Of course, in typical Multilisp
programs, very few of the expressions might be enclosed in futures, for the same
reason.

When a Multilisp processor spawns a task, it could choose to continue running
the parent task or devote computation to the child instead. The definition of the
Multilisp language allows a user to choose several different constructs to express
parallelism. These variants of the future instruction make different choices about
which sub-task to run, and how much effort to devote to it. See [34] for more
information. The test programs that we ran for this thesis only used the ‘basic’

future instruction. In Nusim, a form such as:
(funca (future (funcdb op2)) opl)

will spawn a task to calculate the value of (funcb op2), and begin running that
task right away. The subtask is given a higher priority than the original parent
task.
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4.1.6 Task and Process Queues

While a Multilisp processor is running a child process to calculate the value of a
future, it must save away the parent state. There are two places where the parent
task could be saved: a processor’s task queue or process queue.

The basic storage structure for tasks in Nusim is the task queue. Each processor
in the Concert system maintains such a queue. In the absence of any additional
mechanism, tasks that are spawned and not run are pushed onto the task queue of
the processor that generated them. These task queues are accessible to all other
processors in the system. Tasks move around the system when a processor steals a
task from a distant processing node. Nusim treats the task queue as a LIFO queue,
since processors always pop the most recent task off the top of the queue.

One of the design decisions that I wished to study with the Nusim simulator was
whether it is worthwhile to have several processes loaded on a physical processor,
each ready to run. That way, if one process stalls while waiting on a distant access,
we can immediately switch to running another process. To this end, each processor
in Nusim also maintains a process queue. A process on the queue is either running,
or waiting to be run by the processor. While a processor’s task queue i8 visible
to every other processor in the system, the process queue is kept in private, local
memory. The larger the size of the process queue, the easier it is for a processor
to context switch between a number of active processes. However, this restricts the
amount of parallelism in the system, since while one processor has many processes

in its local queue, other processors may starve for work.

4.1.7 Task Handling

In Multilisp, tasks are spawned dynamically by a running program. Nusim devotes
some effort to scheduling these tasks among the available processors. A common
problem with systems that allow tasks to be produced dynamically is that of too

much parallelism. Since each task requires memory, if we do not set a limit on the
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number of tasks produced, we would quickly run out of resources in the system.
Nusim uses an unfair scheduling policy to limit the number of parallel tasks that a
program will produce [30)].

The basic strategy for scheduling tasks is as follows: When a processor spawns
a task due to a future, the processor switches to running the new process. The
parent process will be left on the local process queue, ready to run. If the process
queue is full, we must spill some process out of this queue, turning it into a task
that is put on the local task queue. In this ﬁray, the process queue acts as a ‘cache’
of recent tasks.! In Nusim, process queues contain only the most recently executed
processes. Nusim swaps out the least recently run process from process queue to
task queue.

If a processor has no processes to run, it must search task queues in the system.
Since there is a task queue associated with each processing node in the system, we
could choose a number of different search strategies when checking those queues. A
typical strategy might be to check our own queue first. Then, if this queue is empty,
we might search the task queues of nodes that are successively farther away from
us. Once we find a task in one of the queues, we load it into our process queue, and

then start running the process.

4.1.8 Process and Exception Handling

During the execution of a process, there are a number of things that could happen
to disrupt the normal flow of execution. These exceptions include touching a future,
creating a future object, Lisp errors, and various low-level interpretation errors. In

Nusim, all of these errors are handled in the same manner.

10f course, we may choose to make the process queue be of length one. In this case, the process
that we are running will be the only one in the process queue. All other processes are off-loaded to
a task queue. Since tasks queues are visible to the whole system, no processors should starve for

lack of work.
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Nusim maintains a structure with each process that is in the process queue.
This micro-state structure contains the entire state of the process. If we get an
exceptional condition while running a particular process, we load information about
the error in the micro-state, and bubble back up to a single routine that handles
all errors. This method of encapsulating the state of each process makes it easier
to handle the error condition, and to restart the process afterwards. We expect
that in a real processor, the micro-state for each process would be a set of registers.

Switching processes is as simple as changing a single pointer to that register set.

4.1.9 Stacks and Environments

Chapter 3 described a possible memory hierarchy for a Multilisp machine. Since
MCODE is designed to run on a stack machine, one of the components of that hi-
erarchy is a stack buffer. This is intended to be a small high-speed memory local to
the processor, along with some index registers. The Multilisp stack contains proce-
dure call linkage information, stack framesv for each procedure, procedure arguments
and local variables. Since the stack buffer would likely be a small memory, it could
only hold the top-most stack frames in the current procedure invocation tree.

Since programs may call arbitrarily many procedures, periodically the stack
buffer will fill with stack frames. A Multilisp machine would need to flush old stack
frames out to main memory. Similarly, as procedures return, the stack buffer will
empty out, and stack frames must be paged back into the buffer.

Nusim simulates this stack buffer in software. On Concert, Nusim simulates a
stack buffer 50 words long. A stack buffer is part of the micro-state for each process
in the process queue. Since each process has its own stack buffer, it is not necessary
to flush out any buffers on context switches. However, as the stack buffer overflows,
Nusim saves older portions out to heap storage. There it maintains a linked list of
stack hunks. In the current implementation of Nusim, the hunks are 3/5 the size
of the buffer. Note that Nusim allocates space for stack hunks, as with any Lisp
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object, out of the local processing node’s memory. This should encourage some
locality of reference for the hunks.

Multilisp is a lexically scoped language. Every let statement or procedure dec-
laration builds a block in which a number of local variables are defined. Most
operations find their operands in those local variables to a procedure. Each of these
lexical blocks in Multilisp is known as an environment frame. The environment
frame contains all bindings for variables defined in this block. It also contains a
pointer to the lexically enclosing block’s environment frame. Every variable refer-
ence in Nusim refers to a slot in a particular lexical environment frame. Top level
variables, or globals, are kept in a global symbol table, accessible to all routines.

In Multilisp, procedure values are first-class objects. However, since Multilisp is
lexically scoped, an expression that builds a procedure object cannot simply return
a pointer to the procedure code. It must point to the bindings of free variables that
the procedure uses. This is known as a ‘closure’ in Multilisp.

Closures objects might be passed around a program as any other object would.
A closure can exist long after the procedure that created it has returned. In fact,
the entire call stack that existed at the time when the closure was created might
disappear, but the lexically bound variable references in the closure still must be
valid. So a closure must encapsulate both the code for a function and the lexical
environment that existed when the function was created. For this reason, environ-
ments are allocated in the heap, where they will remain long after the call stack
has been destroyed.

4.1.10 Memory Structure

Nusim attempts to simulate the ideas of shared global memory described in Chap-
ter 3. It divides all global memory in the Concert system into equal sized parcels.
In a real Multilisp machine, global memory would be divided among the processing
nodes in the system. Thus, while global memory would be accessible to all the
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processors in the system, it would be fastest to access from the local processor.

In our implementations of Multilisp, a processor will access data from all parts
of the system, but only allocate new data objects in its local memory. In simulating
a potential machine, we could have simply divided all global memory on Concert
among the available processors. This would represent the memory local to a pro-
cessing node. However, because Concert is a small machine, and all processors do
not use memory at the same rate, we would run out of local memory on a Concert
node long before a real machine would.

In order to deal with this difficulty, and to simulate a processing node with vari-
able amounts of memory, we do not statically allocate memory in Nusim. Instead,
each processor that needs a block of memory obtains it from a global memory pool.

We then consider that block of memory to be ‘owned’ by that processor.

4.1.11 Topology

As stated in Chapter 3, we have proposed a multiprocessor system for Multilisp
which is composed of identical processing nodes connected together through some
communications network. It is very expensive to build such a system using a single,
fully connected communications network. More likely, processing nodes in the sys-
tem will be organized into loose hierarchies, or directly connected to some subset
of the remaining processors. Figure 4.2 shows some examples of possible topologies

for a Multilisp computer system.

Due to the size of the system, it is likely that communication between nodes
widely separated in this network will take a long time. Rather than slowing all
accesses between nodes to take the same amount of time, we expect the latency
of communication between processing nodes to increase as we step to more distant
destinations. This is an important concept for a Multilisp computer, since it means
that we should encourage communication between nodes that are ‘close’ together,

and try to limit accesses to distant nodes. One of the main goals of this thesis was
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Figure 4.2: Some possible multiprocessor topologies.

49




50 CHAPTER 4. SIMULATION METHOD

to evaluate the effect of different topologies on the locality of reference of Multilisp
programs.

Nusim takes a somewhat simplistic view of the possible organizations of pro-
cessing nodes in a Multilisp machine. It does not care how individual nodes are
connected together. Instead, the only thing that matters is the relative ‘distance’
of nodes from each other. This distance might be the number of hops across a
communication network between two nodes. In some versions of a multiprocessor,
processors would only be connected to nearest neighbors in some two (or three)
dimensional grid. In another organization, processors would be clustered on local
buses, which are then tied together through a global bus.? Processing nodes on
the same local bus would be ‘closer’ than nodes on different buses. Finally, all the
nodes in the system might be tied together through a large switch. In this case, all
nodes would be equidistant.

In Nusim, each processor maintains a table of distances to all the other processors
in the system. It also maintains a total ordering of those processors. This is done
so that algorithms that search through the processing nodes for some resource can
efficiently step from node to node. I have written Multilisp utilities to translate
some different topologies to the form needed for Nusim.

4.1.12 Statistics Gathering

Nusim collects counts of most important events that occur in the system.® Each
processor collects its own statistics locally for efficiency. One MCODE instruction
turns statistics gathering on, another turns it off, and a third dumps the statistics
from each processor in the system out to a file.

Statistics are enabled or disabled vfor each task in the system individually. The

micro-state of each process contains a pointer to the area of memory where we collect

2This is the organization of the Concert system.

3As well as some unimportant ones!
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statistics for that process. Since we could have several banks of memory allocated
for statistics, we can change banks just by updating one pointer. This gives Nusim
the flexibility to collect statistics for different tasks, or for different phases of the
program, individually. See Appendix app:nusim-doc for a more detailed explanation

of Nusim’s statistics mechanism.

4.1.13 Implementation

Nusim is written in C. It consists of 12,000 lines of source code (400K bytes of
source). The executable program is 160K bytes long. It also uses a library of
Multilisp code to define the Multilisp compiler and run-time system. This library,
written by Juan Loaiza and Robert Halstead, is an additional 7000 lines of code.

4.2 Variables

As stated in Chapter 1, the main focus of this thesis has been to measure the
effect of different architectural variables on the locality of reference of different
Multilisp programs. This section describes those variables, and the effect that they

are expected to have on the behavior of applications.

4.2.1 Topology Variables

The most important variable affecting the locality of reference in Nusim is the
topology of the organization that we are simulating. We can define the diameter of
any topology as the maximum distance between any two nodes. Different topologies
will have different diameters.

We would expect that, all other things being equal, the locality of reference of
a Multilisp program will depend on the diameter of the underlying topology. This
is certainly the case if the processor is ignorant of that topology. However, some
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functions of the processor architecture could be made more efficient if they exploited
the organization of the external system.

One of the areas that shows the most promise of improvement is in obtaining
resources from the other nodes in the system. A processor may run out of memory
in the midst of creating a data object, in which case it might have to ‘borrow’ a
block of memory from another node in the system. Temporarily, it might use this
memory as if it were local. It would be better if the two nodes were close together

in the system topology, to minimize expensive accesses acroes the system.

Another resource that processors must obtain more frequently is an executable
task. Any time that a processor is idle, it searches task queues in the system for
a task that it can run. In the current implementations of Multilisp, a processor
will then load that task into its local process queue. However, tasks are spawned
on a particular processing node, and could retain references to objects that were
allocated in that node. In order to reduce the number of global accesses in the
system, we might again prefer to grab tasks from nodes in the system that are close

to our own.

Of course, the resource allocation functions of a Multilisp machine might use
knowledge about the system topology in other ways. One problem in many mul-
tiprocessors is how to balance work across the machine. While we can increase
the locality of accesses by encouraging work to stay local to an area, this may
also decrease the amount of parallelism available in the system. Another danger in
not distributing work across the system is that we may produce ‘hot spots’ in the
communications network. Certain pathways may swamp with accesses, while other
parts of the computer remain idle. So scheduling functions must strike a balance

between increasing the locality of programs and increasing their distribution.

For the purposes of this thesis, I have tried to measure the tradeoff between
locality and parallelism, by trying different task searching strategies and seeing

their effect on the execution of application programs. The task searching strategies
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that I used either ignore the underlying topology of the machine that Nusim was
simulating, or take advantage of that topology by searching local processing nodes
first. Section 5.2.2 explains the searching algorithms in more detail.

4.2.2 Task Scheduling

A second class of decisions that affects the locality of accesses in a Multilisp program
is how to distribute work between process queues and task queues. For example,
we could give each processor a very large process queue. Then every process that
was spawned by a future instruction would remain in that same process queue.
Eventually, all the parallel tasks in the system could sit in the process queue in a
single node. Since process queues are private to a processing node, this would not
lead to much parallelism in running a particular program. However, it might allow
us to have excellent locality of accesses!

Another example of task scheduling strategies is how many tasks we load from a
task queue at one time. A processor that has spawned many tasks might have several
of them in its task queue. If these tasks were created from the same instruction
stream, they will likely share references to some data objects. Another processor
that is idle and looking for tasks to run could grab several adjacent tasks from the
first node’s task queue. The number of tasks that it steals could affect the locality
of the program.

Finally, there are many other possible algorithms for grabbing tasks out of a
node’s task queue. Figure 4.3 shows the parallel paths of execution through a
typical program. A task which has been spawned off early in the running of a
program, such as branch B, will later produce many other parallel tasks. In contrast,
branch D, which is produced much later, will not spawn any new tasks. If another
processor were looking for tasks to rum, it could either choose an early task that
could potentially produce much parallelism, or later tasks, which are more likely to
produce results used by other running processes. In Nusim, we default to grabbing
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the most recently produced tasks.

Figure 4.3: Paths of execution in a program. Path B is spawned early, path D is a

‘leaf’ task.



Chapter 5

Experiments and Results

5.1 Experiments

While most of the effort in this thesis was spent building the Nusim simulator, my
primary research goal was to run the experiments described in this chapter. I ran
several test programs under Nusim, varying several parameters of the architecture
being simulated, as well as the external organization of the system. Under these dif-
ferent conditions, I tried to measure the locality of reference of Multilisp programs,
and the extent to which that locality can be improved. All the programs discussed
here were written or adapted by members of the Parallel Processing Group at M.I.T.

5.1.1 A Discussion of Benchmarking

When measuring characteristics of a language to be used in the architectural design
of a machine, the most important consideration is to choose a mix of test cases
that represents the applications that will be run in that language. This is especially
difficult if the language is as young as Multilisp, in which few large applications
have been written.

Of course, selecting a cross-section of programs does not mean that one should
place equal importance on each of these benchmarks when evaluating different ar-
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chitectures. The most popular set of Lisp benchmarks currently in use has been
run on a wide variety of Lisp languages, implementations, and machines [23]. The
Gabriel Benchmarks are a set of small programs, each targeted towards a differ-
ent aspect of a Lisp implementation. A benchmark that exercises function calling
exclusively, such as TAK [23] may be less representative of Lisp programs than a
function like Browse, which mimics some of the behavior of Al searching programs
[23).

Most benchmarks suffer from another problem: a function that will be repeat-
edly run with different parameters, possibly on different machines, should be small
and well understood. This is to shorten the running time of the program and to
make data collection easier. However, a property of most Lisp application programs
is their large program and data sizes. While small benchmarks may fit entirely
within the caches of a particular machine, real Lisp programs often overwhelm the

memory systerm.

For my test cases, I have tried to choose a selection of programs both from the
‘classic’ benchmarks as well as real applications that were written in Multilisp. The
speed of our implementation limited the size of the data sets used as inputs to the
test programs. However, some of the programs have a large code size. This should
lead to a realistic mix of instructions and access types.

These tests are not intended to compare the present implementation of Multi-
lisp against other Lisp implementations. Rather, they can be used to see the effect
of changing parameters of an architecture that runs Multilisp. An algorithm can
be coded many different ways, with widely different results. Even to compare two
different Lisp implementations by using the same source code for the benchmarks
is difficult, since each level of the hierarchy, from compiler down to machine ar-
chitecture, has its own effect on system performance. Even the source code of the
benchmarks might be different on different systems. Benchmarks that are coded in
Common Lisp usually have to be re-coded to run in Multilisp.
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The placement of futures in a Multilisp program has a great effect on the amount
of parallelism obtained in running the program. In spite of tools developed by
members of P.P.G. [27], deciding where to insert futures in code is still a time-
consuming and somewhat arbitrary process. The small benchmarks used by the
group have been carefully studied, to try to get the optimum parallelism out of
each function. Larger programs are necessarily less understood. In spite of the
difference in the ‘quality’ of the test cases used here, they should accurately reflect
the potential parallelism of real Multilisp applications.

5.1.2 The Test Cases

The data presented in this chapter is from five different test programs. Two are
small benchmarks from the popular literature, and the other three are applications
written in Multilisp that were developed at P.P.G. The complete source code for
each of the programs is given in Appendix C.

Quicksort

This is a version of Quicksort that was rewritten for Multilisp and made into a
parallel application by adding futures in a few crucial locations. This benchmark
is perhaps the best known and best understood program used by the P.P.G. group.
Because of the care that has been put into its implementation, Quicksort has more
parallelism than any non-trivial application.

In these benchmarks, Quicksort,is used as an extreme test case: It runs many
loops of a few short functions. Therefore the distribution of instructions for a run
of Quicksort is skewed towards the instructions that occur within those inner loops.
Also, because of the number of futures in the code, this application puts a greater
strain on the fork, join, and task handling aspects of a Multilisp implementation.

For this series of tests, Quicksort was used to sort a list of random numbers.
The only parameter to the program is the length of that initial list. Typical run
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times for a 700 element list, with Nusim running on 27 processors of Concert, range

from 120 to 310 seconds.

Fboyer

The Boyer benchmark that has been widely used to compare Lisp implementations
[23). It is a simple theorem proving program. The program has two main parts: a
rewriter and a tautology checker. The rewriter expands the original expression into
a series of IF clauses. The tautology checker steps through this expanded expression
to determine if the entire statement is true. It makes this analysis by maintaining
lists of true and false statements. The components of any IF statement are checked
against these two lists.

Fboyer is based on the original algorithm, but written in the Scheme language at
B.B.N. Inc.! The writers made it into a parallel application by adding futures to the
code. Members of the P.P.G. group improved on their implementation by slightly
changing the placement of futures, and by speeding up particular primitives.? It is
useful to note that these changes sped up the entire program by a factor of five.

This application is a more substantial one than Quicksort, and yet is smaller than
the average Lisp program. Since Fboyer looks up clauses in a database of axioms
that it has built up, most of the primitives in the program are list operations such
as car, cdr, and atom, as well as property list operations such as get.

While Fboyer has several small basic inner loops, both for the rewriter and the
tautology checker, it operates by recursively expanding an expression. This ex-
pression could be arbitrarily complex, consisting of levels of sub-expressions. This
means that Fboyer should have more interesting patterns of execution than Quick-
sort, whose input is always a simple list. In particular, the number and sizes of

1 Written by Seth Steinberg, 1986
2Gpecifically, assq and equal were re-coded for speed, and an assq was changed to get-prop. The

B.B.N. implementation spent most of its time in assq. The version that I used was somewhat more

realistic in its instruction mix. See Appendix C for details.
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parallel tasks that are spawned during the run of the program should depend on
the form of that input expression. In this way, the types of operations performed
and the patterns of parallel tasks produced by Fboyer should be closer to that of
real applications, even though it is a well understood benchmark.

The only parameter to the Fboyer benchmark is the input expression, which
can contain any combination of logical, numeric, list structure, and conditional

operators. For the purposes of my evaluation, I chose a simple test case:

’(implies (and (implies (f x) (g x)) (implies (g x) (h x)))
(implies (£ x) (h x)))

This expression returns true, of course. Usual runtime for Nusim on a 27 processor

Concert multiprocessor ranges from 85 to 135 seconds.

Consim

Consim is a logic simulator program written by Elizabeth Bradley [12]. It simulates
an arbitrary circuit as a finite state machine, that is, a block of combinational logic
fed back through a set of registers. (See Figure 5.1). The combinational logic is
expressed in terms of primitive boolean functions such as NAND, NOR, and NOT
gates. There can be no feedback paths within the combinational logic, the only
loop in the circuit being through a set of synchronous registers.

To simulate one cycle of the circuit, Consim initializes the inputs to the block
of combinational logic and allows those signals to propagate through the rest of
the gates. When all outputs have settled, the FSM registers are latched to start
the next cycle. Consim represents each primitive gate in the circuit by a Multilisp
function. More complex circuits are represented by the interconnection of several
primitive functions.

Consim introduces parallelism into its simulation in two ways. First, selected

logic gate primitives are enclosed in future instructions. This allows the simulator
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Figure 5.1: Finite State Machine Model

to mimic the operation of several gates at once. In this way, the parallelism of the
simulator is exactly like that of the circuit itself. Second, Consim can run several
cycles of the circuit concurrently. While it may seem that the data dependencies of
the circuit would not allow any parallelism using this approach, some computation
can usually proceed without all of the inputs to the circuit being valid.

This was the first ‘real’ application program that I tested. It is a moderately
large application: the run-time code for the simulator amounts to approximately
1000 lines of Lisp code. In addition a user must write a high-level language descrip-
tion of his circuit, which is compiled down to Multilisp code. This can add several
hundred lines of code to the simulation.

The simulator runs as a simple loop, calling different functional routines for the
components of the circuit being simulated. The circuit is not simply a data structure
that can be manipulated, but an interconnected group of Multilisp subroutines.
This means that the form of the circuit has a great effect on the runtime properties
of Consim. This was demonstrated in [13).

The test circuit that I used as an input to Consim was a four bit ALU, configured
to act as a counter. It exploited parallelism both by running circuit components
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in parallel and by allowing cycles of the entire circuit to run concurrently. Because
of this approach to parallelism and the hrge size of the circuit, it produced more
parallelism than any other Consim simulation.

A second parameter was how long to run the simulator. Within Nusim running
on a 27 processor Concert system, Consim typically took between 140 and 345

seconds to simulate the counter for 70 cycles.

Multilog

Multilog [51] is a simple query language interpreter, in the flavor of Prolog [20]. It
maintains a database of assertions, and allows the user to query the database. Just
as in Prolog, a user can ask the database whether a statement is true or false, or
may ask what statements in the database match a particular pattern.

The main operations that Multilog performs are pattern matching, unification,
and database manipulation. It also contains an evaluator and an interactive driver
loop. In this way it is representative of a large class of Lisp software. Since the
database storage and lookup manipulates streams [53] extensively, Multilog spends
most of its time building and disassembling lists.

Multilog’s author introduced parallelism into the program in two ways: one was
to explicitly write the evaluator and pattern matcher using futures to fork off parallel
searches. The other was to introduce futures into the streams used throughout the
program. Since Multilog uses streams in all queries to the database, as well as
inter-procedure communication within the program, this yields a large amount of
concurrency.

Multilog is a large program — the source itself is almost 1000 lines of Lisp
code, and the default database is another 250 lines. The dynamic operation of this
program is complex, reflecting the influence of many small routines. However, since
Multilog always runs the same operations of pattern matching and unification, the
gross operation of the program should be independent of what queries it is trying
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to prove.

In the tests presented here, I ran Multilog on a query that attempted to trace a
path through a graph. The graph consisted of eight nodes, connected together by
links. The test case merely asked whether two nodes in the graph were connected
by some set of links. Typical runtimes for this test case on a 27 processor Concert

system ranged from 400 to 700 seconds.

Compiler

The final test case that I ran for this research was the Multilisp compiler itself. This
is a large and complex piece of software, and is also the first large application that
was written in Multilisp.

The compiler is composed of several phases. The Reader reads an expression
from a file or from the user. A set of routines known as Compile-expr then compiles
this expression into a symbolic assembly language by recursively compiling each
sub-expression. Finally, the Assembler generates assembly binary MCODE from
the symbolic assembly code. The specific part of the compiler that I instrumented
was the central phase. This was partially because of the difficulties in instrumenting
1/0 accesses in Nusim, and also because Compile-expr seemed to be representative
of a larger class of programs than either the reader or the assembler.

Compile-expr obtains concurrency by spawning a new task to compile each sub-
expression. Thus the amount of parallelism that can be achieved depends on the
complexity of the input expression. Statements that are ‘wide’, that contain many
sub-expressions at the same level, produce many parallel tasks. However, these
tasks will be short-lived unless the sub-expressions are also deep, giving the compiler
something to work on.

Since the Multilisp compiler is a large piece of software, it has not been subject
to the same amount of scrutiny as some of the smaller benchmarks that were written

in the Parallel Processing Group. It is more difficult to find the optimum placement
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of futures in a large, heterogeneous program than in a smaller or more regular one.
For this reason, the Multilisp compiler could probably be optimized somewhat to
produce more parallelism, or to shorten its run time. However, in this respect, the
Multilisp compiler may also be characteristic c;f other application programs. One
hopes that the size of the program will compensate for the fact that futures may not
always be well placed, since there should still be enough parallel tasks to saturate
a target machine. The compiler took between 155 and 230 seconds to compile the

test expression in Nusim.

5.2 The Variables

This section describes the variables that were varied in running application pro-
grams under Nusim. Nusim allows a user to vary selected low-level variables at run
time. Using this facility, it was easy to write script programs to run through many
invocations of a function, each time varying one parameter. Appendix B lists the

architectural variables in Nusim, as well as how they can be modified.

5.2.1 Topology Types

For the tests described above, the most significant parameter of the Nusim emu-
lator was the external organization of processor nodes that were being simulated.
As described in Section 4.2.1, Nusim allows a user to connect nodes in arbitrary
patterns, and to see the effect of those topologies. What follows is a description of
the three basic topologies used in this thesis.

Line Topology

The simplest topology that I tested is known as the line topology. It simulates the
organization of a set of processing nodes, each of which can only communicate with

two adjacent nodes. The line is closed at either end to form a ring. See Figure 5.2.
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Node 5 Node 3
Node 4

Figure 5.2: An example of a line topology.

In a line topology consisting of n nodes, any node can communicate with any
other by stepping across at most [n/2] nodes. There is a cost associated with each
of the accesses that a processor can make. A processor’s local node memory is an
access of distance 1, the two nodes on either side of it are at distance 2, and so on
to the n/2 node. The ‘diameter’ of this topology, as defined in Section 4.2.1 is one

half of the number of processors in the system.3

Segment Topology

The segment topology assumes that all processors in the system are separated into
distinct groups. Figure 5.3 shows this distinction. The segments are tied together
by a single global bus, while the processors within a segment share a local bus. This
cuts down on the global bus traffic, and speeds up local bus accesses.

This organization is much like the one used by the Concert multiprocessor sys-
tem. However, note that while I was simulating a segmented topology on a ‘real’
segmented topology, the two were not necessarily related. For instance, for most of

the tests I ran, the Concert multiprocessor contained 27 processors, split among 7

3In other words, the diameter of the line topology is actually one half the circumference of the

ring!
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Figure 5.3: An example of a segmented topology.

slices. The system that I simulated, on the other hand, consisted of 27 processing
nodes, divided into 4 segments. The reason for this distinction was to encourage
sharing among processors in a segment. The simulated topology seemed to better
reflect potential computer systems than the organization of Concert.

In the model of the segmented topology, accesses by a processor to its node’s
local memory are at distance 1. Other nodes in the same segment as the originator
are at distance 2. Finally, accesses across the global bus to any of the processors
in other segments are at distance 3. I could have classified these global accesses by
the distance of the access. However, in the Concert system, there is no difference
between the length of time required for an access between two adjacent segments,
and the time between two widely separated segments. All accesses which require
some part of the Ringbus are equally expensive. It seemed sensible to mimic this
behavior of a real system when simulating such a topology.

Grid Topology

The grid topology has the greatest connectivity of the three topologies tested. It
represents a two dimensional grid, in which each processing node is connected to

four adjacent nodes. See Figure 5.4.

For the purposes of simulation, I tried to make the grid as square as possible.
For example, I could have easily divided the n processors into a 2 x y grid, but
this would increase the diameter of the system. See Figure 5.5. In the 2 X y case,
a node has two paths to its nearest neighbor in one direction, but another node

is [n/2] away. This topology looks too much like a line to be interesting. The
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Figure 5.4: An example of a grid topology.

Figure 5.5: A grid topology that is too narrow.

-
ce
]
fas
.
J

Figure 5.6: The grid topology used for this thesis.
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number of processors in the system might not factor evenly into n = z x y. The
missing locations on the grid are treated as simple ‘short circuits.” An access across
those holes in the grid just skips over the intervening distance. For example, the 27
processor Concert used for most of these experiments was divided into a 5 x 6 grid.

Finally, a simple rectangular grid is an open topology, since the side nodes are
only connected to three other nodes. For the grid topology used here, I connected
together nodes on opposite sides of the rectangle. This makes for a closed network,
and eliminates any strange edge effects. In fact, this topology represents what
would happen if someone wrapped a fishing net around a torus. Figure 5.6 shows

this arrangement.

5.2.2 Search Routines

Section 4.2.1 described some of the ways to exploit knowledge of the system topol-
ogy in a potential Multilisp machine. Nusim can use this knowledge to manage
resources. For instance, an idle processor must search for executable tasks among
the other nodes in the system. The simulator can use several different search rou-
tines for this function. Switching between search routines shows the effect of local
knowledge of the system topology.

I defined three basic search algorithms for the tests described here. Two of them
ignore the topology being simulated. Since th;ay do not encourage locality among
groups of nodes, they should determine the lower bounds of locality of Multilisp
applications. A third algorithm simply searches sequentially through the nodes in
the system, trying successively more distant nodes.

Random Search

There are two random search algorithms: Random and Close-Random. Random
mode will search each node in the system for a particular resource, but will check
them in random order. If the algorithm fails to find a resource on a node, it will




68 CHAPTER 5. EXPERIMENTS AND RESULTS

not check that node again. Close-Random mode is similar, but first checks the local
node for the resource, before trying all other nodes at random.

Incrementing Search

This is a more deterministic method of searching the system. A processor starts by
checking its local node. If the resource is not available locally, it will search ever
more distant nodes. The other nodes are sorted into groups based on their distance
from the local processor. If the processor cannot find the resource in one group, it
will try a group at the next further distanée. If a processor is trying to load several
tasks from the system, it will steal all tasks from a particular group before moving
to the next further group. Since the topology is always defined with respect to our
local node, each processor usually has a different perspective on the system. Every
node in the system is identified by a unique number. The search at a particular
distance always starts with the lowest numbered node in that distance group.

5.2.3 Task Scheduling

I ran experiments with two of the parameters discussed in Section 4.2.2. The first
is Runsched, a variable that sets the size of the processors’ process queue. It is the
maximum number of tasks that can be ‘cached’ locally within the processor, ready
to run. For the tests described here, Runsched ranged from 1 to 4 processes.

The second variable in these tests is known as Tasksched. Once a processor fin-
ishes running all the processes in its process queue, it becomes idle. The Tasksched
parameter sets the number of tasks that an idle processor tries to load into its pro-
cess queue before starting to run any of them. If there are not enough free tasks in
the system, the processor simply loads as many processes as it can into its queue.
Note that the value of Tasksched must be less than or equal to the current value of
Runsched.

I did not run test all combinations of Runsched and Tasksched. Preliminary
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experiments showed that Runsched has a much more significant effect on the locality
of accesses in Multilisp and on the amount of parallelism attained by the program.
The results of the experiments with Tasksched are not included in this chapter.
I hope to study the effect of Tasksched and other scheduling parameters in more
detail at a later date. '

5.3 Data Gathered

The primary goal of this thesis is to quantify the locality of accesses in Multilisp
programs. Thus all the statistics discussed here are intended either to quantify that
locality of reference or to explain it.

To determine why a test program has a certain locality of reference, it is useful to
see the distribution of accesses made by the program. Section 5.3.1 discusses how
to classify the types of accesses in Multilisp. Before discussing locality, we need
a way of quantifying the locality of different programs. Section 5.3.3 defines two
such metrics of locality. Finally, since different benchmarks do different amounts of
work, they must be normalized to some standard in order to compare their statistics.
Section 5.3.2 discusses how to compare data from different benchmarks.

5.3.1 Access Types
Discussion
Multilisp programs deal with many types of data objects. For the purposes of this
thesis, they are divided into several classes, depending on how the data will be
used. The important distinction is between data that could be cached locally to a
processor, and data that requires a global access.

Some data objects are truly global, that is, they are shared by several procedures

and by different concurrent processes. However, if the value of one of these global

objects is constant, it could be cached locally by a processor. For frequently used
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constants this greatly reduces the amount of global traffic. An example is Multilisp
code, which is stored as a sequence of MCODE opcodes. Although in Multilisp it
is easy to bind a variable name to a compiled object, programs do not rewrite the
instructions within a code object.

A Multilisp machine must use a different approach with global objects whose
value is updated during the run of the program. Since these mutable objects are
shared, a processor cannot cache them locally unless it uses some technique to main-
tain cache consistency [42,54]. Some algorithms have been proposed that guarantee
cache coherence at low cost, but they assume that all caches in the system are con-
nected to a single common bus [17]. Here, the cost of maintaining cache coherence
must be weighed against the benefit of speeding access to locally cached objects and
reducing global communication. All global symbols in Multilisp are considered to
be mutable objects. User data objects, such as lists and arrays, are also mutable.*

For this reason, one might wish to classify global mutable objects further by
how often they are updated and how often they are read. Some shared and mutable
objects in Multilisp programs are read much more often than they are written.
Determining how often this occurs would help determine the potential benefits of
local caching. The present version of Nusim cannot answer this type of question for
shared objects. Several members of P.P.G. have expressed an interest in pursuing
this work in the future.

Another way of classifying the data objects in Multilisp deals with how widely
distributed are the accesses to an object. Some data objects, while not local to a
particular procedure, may only be used by a few procedures or a few concurrent
processes. Such objects must be .a.ccessible to the rest of the system, but will often
only be touched by the processor that first allocated them.

For example, free variables in Multiliép programs are lexically bound. To find the

binding of a free variable, a procedure must step through the environment frames

4Although rplaca is considered poor programming style!
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of lexically enclosing procedures. A program may have spawned several concurrent
tasks that refer to this free variable. The tasks might get halted and re-started,
moved to a different processor, and still have to look up the variable binding in that
environment frame.

For this reason, all environments in Nusim are now allocated in the heap. Ob-
jects in the environment of a process are then accessible to the entire system. How-
ever, most environment accesses are made to the local environment. Therefore,
most accesses to an environment will be fast and local. An alternative might be to
allocate environments on the stack of a process instead of in the heap. Environ-
ments would only get moved into the heap to allow free variable references. This
would speed up most environment accesses at the cost of considerable complica-
tion at compile and at run time. Knowing how often a process refers to lexically
enclosing environments would help determine whether this was a good trade-off.

We would like to see how often global accesses refer to these different classes of
data in typical Multilisp programs. That should give some idea of the benefits of
different approaches to speeding accesses to particular data types. My experiments
have shown that the different classes of data objects respond differently to changing
task scheduling parameters.

Classes of Access in Nusim

Every data access in Nusim is classified either by the type of object that it touches
or by the reason for the access. These accesses are then divided into several broad
classes using the criteria discussed above.

The classes of access are as follows:

o Constant data.

This class includes accesses which load blocks of code onto each processor in
the system. It also includes accesses to closure objects that may have been
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unique manner in Multilisp programs. Futures are both the means to spawn
tasks (fork), and to synchronize concurrent tasks (join). They are shared
by different parallel tasks in the system. Since these tasks are likely to be
running simultaneously, they will likely also run on separate processors. This
means that futures may require more global communication per object than -
any other data type. Finally, the number of futures in the system gives an
approximation to the maximum amount of parallelism available in a particular
algorithm. This alone makes it an interesting data type to count separately.

5.3.2 Normalizing the Data

The types of accesses made by some algorithms depend on how long the program
runs. Running the same test program on a larger test case will touch more data
and usually generate more parallelism. Since each node in a multiprocessor has
a limited amount of memory, this data will be spread over a greater area of the
machine.

The problem of comparing different test programs is worse since each program
makes a different number of accesses among a different distribution of object types. I
use two methods to normalize the types of accesses made by different test programs.
The first is to divide the types of references by the total number of references. This
shows the percentage of accesses that fall into each of the different classes. The
second is to divide the references by the number of instructions executed by the
program. '

Instead of counting all the instructions in a benchmark, I use the number of
completed instructions run by a program as a baseline. Not all instructions in Nusim
run to completion. When Nusim fetches the operands to a MCODE instruction, it
will sometimes get an exceptional condition. For instance, Nusim will back out of
an instruction that touches an undetermined future. Completed instructions are all

the instructions executed by a process that do not get exceptions.
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5.3.3 Locality of Access

The statistics of locality reported here are all based on counts of heap accesses.
The accesses fetch Lisp objects, fetch links to those objects, or update the value of
the objects. Nusim counts the accesses to data objects in each type class. It also
tracks where those accesses occurred in the system topology. By the definitions of
" topology in Section 4.2.1, accesses to local memory are at distance 1, while nodes
elsewhere in the topology are at successively greater distances.

For all the processors in the system, one could count the accesses that each made
at different distances. One way of reporting the locality of accesses is simply by
showing the percentage of accesses that occurred at each distance. Unfortunately,
while this graphical method demonstrates the distribution of accesses for a particu-
lar test-case, it is not useful in comparing the results of several different test-cases.
I have instead proposed two different measurements of the locality of access for a

run of a particular program.

Local versus Distant

The first metric is simply the percentage of accesses made by all processors to local
memory. Note that as mentioned in Section 4.1.10, in Nusim a procedure always
creates objects in its own local memory. Thus a count of local accesses will indicate
how often a process refers to objects that it has allocated, as opposed to those
created by another task. A program that has ‘perfect’ locality of reference will
make all its accesses to local memory.® Most Multilisp programs cannot reach this
ideal, because when tasks are spawned in parallel, one task will often migrate to
another processor. Thereafter, any object that one task uses‘ to communicate with
another will require a distant access.®

S This assumes that constant references are counted as local accesses.
6The alternative of keeping spawned tasks on the processor where they were created will indeed

increase locality, but will not exploit the underlying multiprocessor organisation.
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The present implementation of Nusim does not try to cache the value of different
global variables. It also does not count how often objects are shared by different
tasks. The simple ratio of local accesses thus indicates the maximum amount of
global communication that Multilisp programs require. Future Multilisp processors
may require fewer global references if they cache the value of frequently used mutable

variables.

Finally, quantifying the number of local accesses made by different algorithms
will help determine the benefit of speeding references to local memory. If the major-
ity of Multilisp algorithms make fewer local accesses than distant, the effort might
be better spent speeding communication between processing nodes.

Mean Distance

The mean distance of accesses in Multilisp is the sum of the distances of each access
in the system, divided by the total number of accesses. If memory accesses were
randomly distributed throughout the system, the mean distance of access would
be proportional to the diameter of the topology. For a given topology, this metric
should also show the effect of task parameters that attempt to incre#se the locality

of references.

Instead of merely measuring how many times processes refer to their own data
objects, this metric shows the effect of clustering objects among a few nearby pro-
cessors. In the example of a task that moves to a new processor after creating
some objects, the distance of each access to those old objects is proportional to the

distance that the task has moved. The task scheduling algorithms discussed in this
thesis should discourage tasks from moving far from their node of origin.

If a program only referred to local data, it would show a mean distance of access
equal to 1. This is not likely to happen in Nusim, because most programs refer to
code chunks and global variables that are distributed around the system.
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5.4 Results

5.4.1 Types of Accesses

Figure 5.7 shows the classes of fetches that are made by different application
programs. Each column of the graph shows the accesses made by a different
benchmark.” The lower stipple pattern represents constant accesses, as defined
in Section 5.3.1. The second class represents global accesses to data that is shared
by all nodes in the system. The next two classes are fetches of environment objects
and stack hunks. We expect both of these classes of data to remain local to the
processing node that allocated them. Finally, the uppermost pattern is a count of
how often the program touches future objects.

This graph of fetches is normalized by the number of real instructions executed
by each benchmark. The vertical axis represents counts of accesses per 1000 instruc-
tions. Thus, the Compile benchmark makes 200 acceases to ‘constant’ data per 1000
instructions. A benchmark may make more than one heap access per instruction.
This is because some instructions, such as a subroutine call, require many heap
accesses to load code blocks, stack hunks, and procedure arguments. Figure 5.8 is
a similar graph of accesses, but represents data stores rather than fetches.

For both of these graphs, the benchmarks were run with a ‘Random Choice’ task
searching algorithm. The size of the Process Queue, as specified by Runsched, was
set to 1 process. Each benchmark was run on three differeat topologies. ‘Line[14]’ is
a line topology of 27 processors, with a diameter of 14. ‘Grid[5x6]’ is a rectangular
grid topology, which simulates an array of 30 processors, 5 high by 6 wide. Finally,
‘Segm[4x7)’ simulates a topology composed of 4 segments of 7 processors each.

"Note that ‘PQSORT’ is an abbreviation for the Quicksort benchmark.
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Figure 5.7: Basic data fetches. Graph shows data fetches per 1000 instructions for
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constants, global variables, environment fetch&s, stack hunks, and future touches.
Benchmarks were run with random task search algorithm and Runsched= 1, on
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Figure 5.8: Data stores per 1000 instructions for each benchmark. Accesses are
sub-divided by class of data. From bottom to top: global variables, environment
stores, and futures created. Benchmarks were run with random task search algo-
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Discussion of Access Types

The data objects that a benchmark touches are largely independent of the topology
upon which it runs. A deterministic program will always run the same set of
MCODE instructions and will have to access the same data objects. However, the
connectivity of a topology may affect the timing of different tasks in the program.
Searching for executable tasks takes time, and a benchmark running on a topology
with a large diameter may spend more time in this search operation. Slight changes
in the timing of tasks will affect whether one task finishes before another, so that
more tasks may wait on undetermined futures. As shown by the graphs, this effect
is a minor one for the benchmarks tested here.

The five benchmarks accessed the heap at far different rates. The Quicksort
benchmark was the most intensive, making 1.9 fetches per instruction. It exceeded
the other benchmarks in all classes of access except environment fetches. At the
other end of the spectrum, the Multilisp compiler made only 0.8 fetches per instruc-

tion.

This difference reflects the level of parallelism of the two benchmarks. PQSORT
consists of a few small routines that run for many iterations. Most of those routines
are spawned in parallel. The Compiler is a larger program that contains more
substantial subroutines.

All the benchmarks accessed environment objects at approximately the same
rate. Each of the programs made between 250 and 270 environment fetches per
1000 instructions. This constant rate of accesses reflects both the style in which our
benchmarks are written and the type of code produced by the Multilisp compiler.
All arguments and local variables of a routine are stored in the local environment.
The compiler does not eliminate common sub-expressions. Instead, every time
a procedure refers to one of its local variables, the compiler produces the same
sequence of MCODE instructions to fetch the value from the environment. In typical
Multilisp programs, the most frequent MCODE instruction fetches the value of an
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argument to a subroutine.®

Figure 5.9 compares the futures produced by each benchmark per 1000 instruc-
tions. The lower stipple pattern is the number of futures produced by the bench-
mark. Next is the number of times the future was touched after its value had already
been determined. The top pattern is the number of times that a process touched
an undetermined future and was forced to wait on it. The number of futures pro-
duced indicates the potential parallelism of the program, since each future causes
a process fork. Two processes synchronize or join every time a process touches a
future.

Quicksort generates more futures per instruction than any of the other bench-
marks. Consim is next, followed by Fboyer, Multilog, and the Multilisp Compiler.
Table 5.1 summarizes some of this data for each benchmark. Note that Multi-
log touches the futures that it has created much more frequently than any of the
other benchmarks — close to 17 touches per future created. However, while Consim
touches its futures much less, a higher proportion of those touches result in a pro-
cess waiting on the value of the future. Consim is the only benchmark that has an
average of more than one task waiting on the same future.

Note that Nusim does not indicate how those touches are divided among the
future objects. It is possible that many futures may only get touched once, while
one particular future might be touched many times. Additional instrumentation in
Nusim would be useful in showing the range in number of touches per future.

There is one final way of comparing access types. Instead of normalizing the
graphs of access types by the number of instructions executed by each program,
we can normalize by the total accesses made by the program. This shows, in
Figures 5.10 and 5.11, the percentage of accesses made by each benchmark in each

of the different categories.

This analysis shows a few interesting patterns. The benchmarks all make ap-

8See Appendix C for MCODE instruction frequency.
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top: global variables, environment stores, future stores. Benchmarks were run with

random task search algorithm and Runsched
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Benchmark | Futures per | Touches per | % Touches
1000 instrs Future Undetermined
Quicksort 82 3.54 4.0%
Consim 22 3.18 37%
Fboyer 9 5.23 1%
Multilog 6.4 16.9 4.2%
Compile 5.9 3.54 3.8%

Table 5.1: Futures statistics for different benchmarks.

proximately the same proportion of their fetches from constant data. While the
rate at which the programs fetched constants ranged between 200 and 600 words
per 1000 instructions, constant fetches count for between 28% and 38% of the total
fetches.

One other feature of the Compiler is apparent in Figure 5.8. While other bench-
marks store almost nothing into global variables, the Compiler updates the value
of global variables in 3% of its stores. The compiler also writes local environment
variables much more often than the other benchmarks — More than 85% of its data
writes are to local data.

5.4.2 Basic Locality of Reference

Two measures of the locality of accesses in a particular program are the mean
distance of access and the ratio of local to distant accesses. The least locality of
reference attainable by a program occurs when Nusim’s task searching algorithm
is purely random and ignorant of the underlying topology. Figures 5.12 and 5.13
show the locality of reference for the five benchmarks with a random task searching
algorithm and a processor queue of length 1. Each of the programs was run on
three different topologies.
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Basic Ratio of Local Accesses

Of the accesses made by a program, the percentage that touch data in local memory
indicates how many of the objects that the program accesses were created locally.
Figure 5.12 shows this ratio of local accesses to all accesses. It counts both data
fetches and stores to all classes of data objects. The graph shows the locality of all
three topologies simulated, though there is little variation in locality for a particular
benchmark across several different topologies.

By this measure, the Multilisp Compiler exhibits the greatest locality. Some
57% of accesses in the Compiler are to local memory. Fboyer and Multilog have
close to the same percentage of local accesses, at 39% and 38%. Consim makes
fewer local references at 33%, while Quicksort has the lowest percentage, with only

21% local accesses.

A reason for this variation in locality is shown in Figure 5.10. The Compiler
fetches close to 50% of its data from environment frames. This is a greater propor-
tion than for any of the other benchmarks. In contrast, Quicksort makes relatively
few environment accesses, instead touching a higher proportion of constants, fu-
tures and stack hunks. Consim fetches constant data 38% of the time. However, it
makes a higher proportion of environment accesses than Quicksort. Consequently,
it exhibits better locality.

Though environments are allocated in local memory, some environment fetches
made by a program might not be from local memory. When a processor grabs a
task from a distant node, the task’s environment frame stays on that distant node.
However, every time one procedure calls another in Multilisp, Nusim creates a new
environment frame. Any task that does a few function calls will allocate several
functions in local memory. References to variables in these environment frames will

be local. So local environment accesses will be common for most programs.
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Topology | Diameter | Fair access distance
Line[14] 14 7.74
Grid[5x6) 6 3.68
Segm[4x7] 3 2.1

Table 5.2: Fair access distance of three topologies.

Basic Mean Distance

The mean distance of access of the benchmarks tested varies both with the pro-
gram itself and with the topology that Nusim simulates. We will first consider the
variation due to the different programs. See Figure 5.13.

In agreement with their percentage of local accesses, the programs with the low-
est mean distance of access are (in order) the Compiler, Multilog, Fboyer, Consim,
and Quicksort. The only anomaly in this graph is that while Fboyer has a higher
percentage of local accesses than Multilog, it also has a slighly larger mean distance
of access. We will return to this contradiction shortly.

Topology and Random Search

As mentioned above, when Nusim uses a purely random task searching algorithm,
the topology simulated by Nusim has little effect on the percentage of local accesses
made by each benchmark. However, it does affect the mean distance of access for
each benchmark. Table 5.2 shows the expected mean distance of access for each of
the topologies, if accesses were randomly distributed throughout all memory. This
is known as the fair access distance for a particular topology.

The line topology has the poorest locality of the three tested here. None of
the benchmarks tested came close to this worst-case limit, even though Nusim was
using a random task scheduling algorithm. The mean distance of reference for most
of the benchmarks ranged from 60% to 90% of the fair access distance. Figure 5.12
showed that programs make a significant fraction of their accesses to local memory.
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Topology | Diameter | Non-local fair access distance
Line[14] 14 | 8.00
Grid[5x6] 6 3.78
Segm{4x7] 3 2.78

Table 5.3: Fair access distance for non-local memory.

Benchmark | Line[14] | Grid[5x6] Segm[4x7)
Compile 7.95 3.78 2.77
Consim 7.92 3.79 2.78
Fboyer 8.00 3.77 2.78
Multilog 7.24 3.65 2.67
Quicksort 8.01 3.79 2.77

Table 5.4: Mean distance of access for non-local accesses.

An interesting question is then whether the locality shown in the mean distance of
access for these benchmarks is simply due to the ratio of local to distant accesses.

Table 5.3 shows the fair access distance for the three topologies, ignoring local
memory. This would be the mean distance of access if processors accessed only
distant memory, and if the accesses were randomly distributed through this distant
memory. For comparison, Table 5.4 shows the mean distance of non-local accesses
made by the five benchmarks. These two tables show that non-local accesses made
by each of the benchmarks are randomly distributed through distant memory.

This data shows that there is considerable locality to be exploited in Multilisp
programs even when they do not take advantage of the underlying topology. How-
ever, all of this locality is due to processdrs accessing local memory proportionally

more often than distant memory.
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Explanation of Mean Distance

Figure 5.14 shows the mean distance of access of different types of data for each
of the benchmarks. Due to the way that Nusim collects locality information, the
breakdown of data types is not the same as division by class of data presented in
Section 5.3.1. From bottom to top, the locality data types used here are: code
fetches, structure stores, structure fetches, environment accesses, stack fetches, and
future touches. The major difference is that structure stores and fetches include
several types of data accesses. Most structure stores are simply updating the value
of determined futures. Only the Compiler updates a significant number of global
variables. Structure fetches include fetches of constants, mutable variables, and
several other classes. Note that though each different type of access has a different
mean distance of access, they may not all count equally in the mean distance of
access of the program as a whole. This graph does not show the relative number of

accesses in each category.

A few things are apparent from this graph. The data type with the poorest
locality of reference is the future object. For all the benchmarks, touching a future
object has approximately the same mean distance of access as the fair access distance
of the topology. This means that futures are distributed fairly randomly throughout
memory.

For most benchmarks, the locality of reference is poorest for futures, followed by
code, structure fetches, stack accesses, structure stores, and environment fetches.
Multilisp code should have a high mean distance of access, since all processors in the
system share the same code. Similarly, since environment objects are allocated in
local memory, most environment fetches should also be local. However, this depends
on the lifetime of a process, and how often tasks move to different processors.

The two programs with the poorest locality of reference are Quicksort and Con-
sim. Table 5.1 showed that these two benchmarks created more future objects than
any other program. They also have a higher rate of touching undetermined futures.
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As seen in Figure 5.14, these programs are also notable for the high mean distance
of structure stores. For both benchmarks, almost all of these stores write the value
of a determined future. It seems that for these two benchmarks, both touching and

writing the value of a future are distant accesses.

Quicksort is also unusual in that the locality of environment fetches is much
poorer than for any other benchmark. As mentioned above, this could occur if
many tasks moved around from processor to processor. An environment created
by a process on one processor would remain in that node’s local memory after the
process had moved to another processor. As shown Section 5.4.3, Quicksort fetches
more tasks from distant processors than any of the other benchmarks.

Finally, there is the discrepancy between the mean access distance of Multilog
and Fboyer. Fboyer has a larger mean distance of access, even though it fetches
a higher percentage of data from local memory. The most significant difference
between Multilog and Fboyer is that the former touches more futures, while the
latter accesses more global shared data. If touching a future were a more local
access than fetching global variables, this would explain the difference between
the two benchmarks. However, futures are more randomly distributed than global
variables. The actual reason for the poorer locality of Fboyer is that code accesses
for this program are less local than for Multilog. In fact, the mean distance of
code accesses for Fboyer is worse than for any of the other benchmarks. This
may somehow reflect either the size of the Fboyer code, or the pattern in which
procedures get called. It is probably not worth spending much time trying to
improve the locality of reference for code, since future Multilisp implementations
will probably cache code locally to a processor.
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5.4.3 Local Knowledge of Topology
Effect on Data Fetching

The types of data objects fetched by the benchmarks does not vary much with the
type of task searching algorithm used by Nusim. This is not surprising, since when
the same tasks are running in the system, they refer to the same types of data.
Where a particular task runs in the system does not seem to have much effect.
Quicksort made slightly fewer data fetches with an intelligent task searching
algorithm than with a random algorithm. It accessed the different classes of data
in the same proportions though. It is possible that this is only due to a difference
in the timing of tasks. As discussed in Section 5.4.1, changing the timing of task
searching may change the number of futures that were determined when touched.

Effect on Task Fetching

By using different task searching algorithms in Nusim, the processors can be more
knowledgeable about the external topology of the system. This can improve the
locality of reference of Multilisp programs. The immediate effect of using an ‘in-
crementing’ task search algorithm instead of a ‘random’ algorithm is to grab tasks
from nearby processing nodes.

Just as the mean distance of data access quantifies the locality of reference of
a program, the mean distance of tasks measures the average distance from which
processors fetch tasks. Figures 5.15 and 5.16 compare the mean distances at which
processors fetch tasks using ‘random’ and ‘incrementing’ task searching algorithms.
Note that the mean distance of access in the random case is almost exactly the fair
access distance of each topology calculated in Section 5.4.2. For the line topology, if

Nusim uses a random search algorithm, the mean distance of task fetching is 7.74.

Using an incrementing search algorithm can have a dramatic effect on the mean
distance of task fetching. Figure 5.16 shows that the new mean task distance for all
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Figﬁre 5.15: Mean distance from which tasks were grabbed. Benchmarks were run

with random task search algorithm and Runsched= 1, on three different topologies.
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Figure 5.16: Mean distance from which tasks were grabbed. (Top pattern in each
column shows variation in mean distance between runs of the benchmark). Bench-
marks were run with incrementing task search algorithm and Runsched= 1, on three

different topologies.
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topologies ranges between 1 and 1.5. If all tasks were fetched from processor’s local
task queues, the mean task distance would be 1. Whereas before only 5% of the
tasks that a processor fetched came from its local task queue, with the new search

algorithm the proportion ranges between 60% and 90%. See Figure 5.17.

Finally, note that in Figure 5.16, the mean distance from which a processor
obtains tasks is greatest for the grid topology. This is surprising — one might
expect that the mean task distance would still be proportional to the fair access
distance of the topology. However, there seems to be another factor affecting the
mean task distance which depends on the shape of the underlying topology.

It would be interesting to experiment with other topologies that all had the same
fair access distance, but had different degrees of connectivity. Every node in a line
topology has two nearest neighbors, while in a grid each node has four neighbors.
In the segmented topology each node is surrounded by a group of processors, all of
which are its ‘neighbors’. It is possible that the data in Figure 5.16 shows the effect
of processors competing for tasks. Additional experiments would show whether this
is related to the connectivity of the topology, or some other parameter.

Effect on Local Accesses

An incrementing task search algorithm greatly increases the likelihood that a pro-
cessor will find a task on its own task queue. Unfortunately, this increased locality
of tasks does not produce as significant an increase in data locality.

Figure 5.12 and 5.18 show the ratio of local data accesses to all accesses using the
random and incrementing task search algorithms. Most of the benchmarks made
10% more accesses to local memory using the incrementing algorithm, although
Quicksort improved by 22%, and the Compiler showed only a 5% improvement.
In random mode, the number of local accesses does not depend on the topology.
When the search algorithm exploits the topology of the system, the number of data

accesses to local memory varies with the connectivity of the system. Note that in
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most cases, a program will make the highest percentage of local accesses on the line
topology, and the least on the grid topology. This agrees with previous observations
of mean task distance. Further experiments with other topologies might show what

causes this trend.

Effect on Mean Distance of Access

The effect of task scheduling on the mean distance of tasks is more significant than
its effect on mean distance of data accesses. If tasks referred only to data stored in
their node of origin, the behavior of data fetches would mimic that of task object
fetches. In fact, there is not that much coupling between tasks and data accesses.

While the mean distance of data access decreases with a more intelligent task
search algorithm, the improvement is not spectacular. Figure 5.19 shows the mean
distance of references for different topologies using an incrementing search algo-
rithm. Figure 5.20 compares the mean distances of random search and incrementing
search. The latter ranges from 40% to 95% of the mean distance of the random
case.

Changing to an intelligent search algorithm has the most effect on the Quicksort
program. With the new algorithm, the Quicksort benchmark has the best overall
locality of reference, whereas before it had the worst! The mean distance of access is
a volatile measure of locality. The change in mean distance due to changing search
algorithms depends on the underlying topology, and varies for different runs of a
benchmark. Both Multilog and Consim also often improve with the intelligent task
search algorithm.

Figure 5.21 shows the improvement in mean distance for each different type
of access. Each stipple pattern shows the mean distance for incrementing search
divided by mean distance for random search. So a bar that is less than 1 high means
that the locality has improved for that access type. The access types are the same
as in Figure 5.14. Note that this graph compares two runs of each program, not the
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Figure 5.19: Mean distance of data access for each benchmark. Benchmarks were
run with incrementing task search algorithm and Runsched= 1, on three different
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average values of several runs. The locality can vary significantly from run to run.

For all benchmarks, the locality of stack accesses, future touches, and structure
stores improved with an intelligent task fetching algorithm. Structure fetches also
improved for most benchmarks.

However, for the Quicksort benchmark, all types of accesses had better locality
using an incrementing search algorithm. The locality of code fetches improved sig-
nificantly. For one run of Quicksort, environment fetches also improved. Since code,
environment, and future objects count for most of the accesses made by Quicksort,
the program had much better locality with intelligent task fetching. The reason that
Quicksort showed such a significant improvement may be due to the fact that the
program fetches more tasks out of task queues than any other. (See Section 5.4.4).
Several code, stack and environment fetches are required to load a task onto a pro-
cessor. If the accesses that load a task are more local when the task is more local,
the cost should be greater for a program that fetches many tasks.

We have seen that future accesses had the worst locality when Nusim used a
random task search algorithm. Code accesses, structure fetches and stack accesses
also had poor locality. We expect that new implementations of Multilisp will cache
code locally, and eliminate many global accesses. The results of Figure 5.21 have
shown that an intelligent task searching algorithm can do much to improve the
locality of reference of stack and future accesses. For programs like those studied
here, in which future fetches account for a significant fraction of the data accesses,
this improved locality can make a significant difference.

5.4.4 Task Scheduling Parameters

The most significant task scheduling parameter in Nusim is the size of a processor’s
Process Queue, as set by the variable Runsched. A larger process queue will allow
a processor to ‘cache’ more tasks locally ready to run. This might increase the
locality of reference for data objects that are shared by those processes, but at the
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Figure 5.21: Ratio of mean distance of data access with incrementing task search
versus random task search. Accesses are divided by data class. From bottom
to top, the patterns represent: code accesses, structure stores, structure fetches,
environment accesses, stack fetches, and future touches. Benchmarks were run with

Runsched= 1 on three different topologies.
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cost of decreased parallelism.
This section discusses the effect of Runsched on parallelism and its effect on

locality of reference.

Effect on Task Fetching

Figure 5.22 compares the number of tasks fetched from task queues during the exe-
cution of different benchmarks on the line topology. It is normalized to show counts
of tasks fetched per 1000 instructions executed by each benchmark. (For instance,
the Quicksort benchmark fetches approximately 100 tasks per 1000 instructions at
Runsched=1). The lower shading on each column counts the tasks fetched out of a
processor’s local task queue, while the upper pattern shows how many were fetched

out of distant queues.

Note that at greater values of Runsched, each benchmark fetches successively
fewer tasks out of task queues. This is expected, since the process queues will act as
LIFO queues for tasks spawned on each processor. In Nusim, a task that is forked by
a future will be put on the process queue whenever possiﬁle. Similarly, a processor
will first try to run processes out of its local process queue before searching any
task queues.

Increasing the value of Runsched has a similar effect on the number of tasks
fetched by each benchmark. At each successive value of Runsched, most benchmarks
fetch approximately half as many tasks as before, although the number of tasks
fetched by Quicksort does not vary much with Runsched after Runsched=2. At
high enough values of Runsched, some benchmarks fetch few tasks from the task
queues — they run almost entirely within the process queues.

Task Locality

The locality of tasks indicates how far processors reach to grab executable tasks
from task queues in the system. The measures used to quantify the locality of tasks
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Figure 5.22: Number of tasks fetched from task queues per 1000 instructions. Lower
trace is tasks fetched from the local task queue, upper trace is from distant task
queues. Benchmarks were run using incrementing task search, on line[14] topology,
with different values of Runsched. Each column is labelled with the name of the
benchmark and the value of Runsched.
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are the same as used for locality of data references: the percentage of references
that are local, and the mean distance of references.

Figure 5.23 shows the ratio of tasks fetched out of local task queues to all task
fetches. For most of the benchmarks tested, as Runsched increased, the processors
fetched a higher percentage of tasks out of distant task queues. The only exception
was Consim, which fetched no tasks at all at high values of Runsched. This indicates
that a process queue six entries long can contain all the parallel forking of the
Consim program.

We can speculate about why processors must grab tasks out of distant task
queues at larger values of Runsched. We have seen that the number of available tasks
decreases as Runsched increases. When there is little parallelism in a particular
program, many processors in the system will sit idle, looking for work. They may
have to search more distant task queues to find executable tasks. Meanwhile, if
there is a lack of executable tasks in the system, no task will stay in a task queue
very long. It will quickly be grabbed by neighboring processors. So once a processor
has finished running a process, and starts looking for new tasks to run, it will rarely
find any in its own task queue. While this is a simplified model of how the system
might behave when there is a shortage of executable tasks, it fits the behavior of
Nusim at high values of Runsched.

Figure 5.24 shows the mean distance from which processors fetched tasks on
the line topology. This mean task distance increases as Runsched increases.® This
increasing distance may simply be because of the decreasing ratio of local task

fetches.

Data Fetching

The data objects created by programs are independent of the value of Runsched.

However, the number of data fetches per instruction of the program varies with

9Note that Consim at Runsched= 6 is not fetching anything out of task queues.
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Figure 5.23: Ratio of tasks fetched out of local task queues to all task fetches.
Benchmarks were run using incrementing task search, on line[14] topology, with
different values of Runsched. Each column is labelled with the name of the bench-
mark and the value of Runsched. (Upper patterns in each column show variation

between runs of a benchmark).
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the size of a processor’s process queue. Figure 5.25 shows this relationship. At
successively higher values of Runsched, each of the benchmarks makes fewer data
fetches. The Consim benchmark makes 20% fewer data fetches at Runsched = 6
than at Runsched = 1.

The proportion of accesses in each of the different data classes is shown in
Figure 5.26. The programs make proportionally fewer stack and constant references
at higher values of Runsched. This is most evident for Consim and Quicksort, the
programs that showed the greatest decrease in number of data accesses. For these
two benchmarks, the proportion of global fetches actually increased with Runsched.
This indicates that programs are making fewer stack and constant accesses, but
fetching approximately the same number of global variables and structured objects.

Future Accesses

Figure 5.27 tracks the number of futures touched by the different benchmarks,
normalized per 1000 MCODE instructions. The lower stipple pattern is the number
of futures produced, the middle pattern shows how many times futures were touched
after they were determined, and the top pattern is how many times undetermined
futures were touched. The number of futures produced by each program and the
number of times those futures are touched does not vary much as Runsched changes.

What varies is the number of times that a process touches an undetermined future.

Table 5.5 shows the number of times that each benchmark touched undetermined
futures at different values of Runsched. These counts can vary significantly for
different runs of a program.!® The Compiler and Quicksort programs both touch the
most undetermined futures at Runsched= 2, while Fboyer waits on the most futures
at Runsched= 3. However, for most of the benchmarks, as Runsched increases, the

number of undetermined futures decreases. In an extreme case, such as Consim

10Because of the limited number of runs of these benchmarks, I was not able to determine the

standard deviations of these measurements.
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Figure 5.26: Proportion of fetches of different classes of data. From bottom to top:
constants, global variables, environment fetches, stack hunks, and future touches.
Benchmarks were run with incrementing task search algorithm on line[14] topology

for different values of Runsched.
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futures created, middle is touches of determined futures, top is touches of undeter-
mined futures. Benchmarks were run with incrementing task search algorithm on

line[14] topology for different values of Runsched.
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Benchmark Runsched

1 2 4 6
Compile 0.28 | 0.30 0.22 | 0.20
Consim 24.7 1242 | 852 | 0.0

Fboyer 0.18 | 0.15| 0.27 | 0.08
Multilog 0.76 | 0.54 | 0.22 | 0.09
Quicksort |20.5 |24.9 [21.4 |20.1

Table 5.5: Undetermined future touches per 1000 instructions at different values of
Runsched.

at Runsched= 6, futures are always determined before they are touched. We have
already seen that Consim runs completely on one processor if the process queue is

large enough.

Effect on Parallelism

Increasing the value of Runsched has several effects on the operation of the program.
Processors fetch fewer tasks from task queues around the system. Programs also
fetch less data with increésing Runsched. Finally, most programs touch fewer un-
determined futures at higher values of Runsched. These three observations indicate
the effect of Runsched on parallelism.

Programs make fewer data fetches when they fetch fewer tasks out of task queues.
Every time a processor pushes a process out of its process queue and saves it in
its task queue, it must allocate space for the task state in the heap. Later, the
processor that loads the task from the task queue to a process queue must make
a number of data fetches to read in the task’s state. While a processor is running
processes in its process queue, it does not have this additional data fetch overhead.

Programs also make more data fetches when they touch undetermined futures.

Every time a process touches an undetermined future, it must queue up and wait
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on that future. Later, when another process evaluates the future, the determining
process will restart all waiting tasks. Each task will eventually be loaded into
a process queue, which requires several stack and code fetches and an additional
environment fetch.!' This is the extra cost of undetermined futures.

While touching fewer undetermined futures at high values of Runsched may
decrease the number of fetches that a program makes, it is likely that fetching
fewer tasks has more of an effect. Note that Quicksort touches 5 fewer undetermined
futures per 1000 instructions at Runsched= 1 than at Runsched= 2. However, the
program makes 205 more data fetches per 1000 instructions at Runsched= 1 than
at Runsched= 2. Meanwhile Quicksort fetched 56 more tasks out of task queues at
Runsched=1 as it had at Runsched= 2. Given the number of data fetches required
to load a task, it is clear that task fetching is the dominant force here.

It is difficult to see what effect Runsched has on the parallelism of a program. A
task is forked for every future instruction executed. For deterministic programs, the
number of future instructions and the number of processes created is independent
of scheduling decisions. However, the number of tasks in existence at any one time
could depend on the scheduling strategy.

For instance, suppose a program forked off tasks in the manner shown by Fig-
ure 5.28. At each fork, Nusim spawns a task, and then runs branch ‘A’ of the fork.
The branch ‘B’ not chosen could potentially have spawned the same number of tasks
as ‘A’. If another processor was able to run task ‘B’, twice as many tasks could run
in the system simultaneously. In this example, a process queue 5 processes long
would be big enough to hold task ‘B’ as well as all the tasks spawned by branch
‘A’. None of those tasks will get put in a task queue, so they will not be available
to the other processors in the system. In effect, a large process queue can limit the
number of tasks produced per unit time by the program.

Nusim does not produce a parallelism profile that shows the tasks in existence

11GSee Appendix B for the implementation of these operations.
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Figure 5.28: Possible order of tasks forked by a program. Path A has been run,
path B has not.

at a particular time. Instead, there are only indirect ways of seeing the effect of
reduced parallelism in Nusim. The first is to look at the execution time of each
benchmark. If processors are idle for lack of available tasks, the run time of the
program should increase. Unfortunately, many other factors also affect the run
time of a program. It was not possible to extract useful information out of run-time

statistics.

A second measure of parallelism tests the imbalance of work among the proces-
sors in the system. Nusim collects data from each processor individually. If work is
evenly distributed among the processors, each runs approximately the same number
of MCODE instructions. If there is a large variance in the number of instructions
run by different processors, it could be because some processors are starving for
tasks to run. Figure 5.29 shows the deviation between processors as a percentage
of instructions executed by a program. Consim at Runsched= 6 has the most devi-
ation, since only one processor is executing all the code. Multilog and Fboyer also
show large deviations at high Runsched. By this measure, the amount of parallelism
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in Consim and in Fboyer decreases with increasing Runsched.?

Local Data

As Runsched increases, processes fetch tasks out of more distant task queues. How-
ever, data fetches show the opposite trend: programs fetch more data objects out of
local memory at high Runsched. Figure 5.30 shows the percentage of data accesses
that are local for the different benchmarks as a function of Runsched. In each case,
the trend is to make more local accesses at higher values of Runsched. The locality
increases by between 5% and 40% as Runsched varies between 1 and 6.1 For most

of the benchmarks, the proportion of local accesses increases by less than 10%.

Mean Distance of Data Access

We should expect that the mean distance of data access would agree with the results
for local percentage of accesses presented above. But while the general trends
in mean distance of access show that locality increases with increasing values of

Runsched, this measure of locality is more volatile.

Using an intelligent task search algorithm on the grid topology, Figure 5.31 shows
a trend to greater locality at higher values of Runsched. The locality increases by
approximately 10% for most of the benchmarks as Runsched increases from 1 to 6.
The exceptions are Consim and Fboyer. At high values of Runsched, both of these
programs show a tendency to run completely sequentially on a single processor. In
this limiting case, the mean distance of data access falls to 1, since all fetches will

be made to local memory.

12Note that since this measure does not directly measure the number of parallel tasks in existance
in the system at any time, it is only an approximate indication of parallelism.

13Though, as already noted, Consim at Runsched= 6 is a special case.
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Figure 5.29: Inter-processor variation in instructions executed per processor. The
deviation is shown as a percentage of total instructions. Benchmarks were run with
incrementing task search algorithm and different values of Runsched on line[14]
topology.
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Figure 5.30: Ratio of local memory accesses to all accesses. (Top pattern in each
column shows variation between runs of the benchmark). Benchmarks were run

with incrementing task search algorithm on line[14] topology for different values of

Runsched.
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Discussion of Locality Improvement

Increasing the size of process queues improves the locality of most types of data
accesses. Figure 5.32 shows the mean distance of access for the grid topology,
broken down by type of access. For most benchmarks, as the value of Runsched
increases, the locality of future fetches and future stores increases as well. For these .
benchmarks, the locality of future fetches was 10% to 45% better at Runsched= 6
than at Runsched= 1.

Other types of access may become more local at high values of Runsched, though
the effect varies from program to program. Structure fetches sometimes improved
as Runsched increased. Stack and environment fetches did not improve much for
most of the benchmarks tested. The locality of code fetches did not improve at
except for test cases where the benchmark ran almost entirely on one processor.
In the cases of Consim and Fboyer at Runsched= 6, the processors that run the
program seem to be very close to the code.

This data seems to show that certain scheduling decisions can improve the lo-
cality of accesses in Multilisp. In particular, future accesses show a great potential
for improvement. As discussed earlier, futures were randomly distributed in a sys-
tem that used a random task search algorithm. Changing to an intelligent task
search improved the locality of these accesses. Increasing the size of process queues
improved the locality even more.

The results are similar for the segmented topology. On the line topology, the
mean distance of data access is much more variable. Using a random task search al-
gorithm, mean distance decreases with increasing Runsched, as expected. However
using an incrementing search algorithm, for some benchmarks the mean distance
decreases with increasing Runsched, while for others the opposite is true. See Fig-
ure 5.33. This graph shows that the mean distance for code accesses is much more
variable with the line topology than with other topologies. In most cases, the lo-

cality of these code accesses seems to be perturbing the mean distance of access
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Figure 5.32: Mean distance of access for each benchmark, by type of access. From
bottom to top, the patterns represent: code accesses, structure stores, structure
fetches, environment accesses, stack fetches, and future touches. Benchmarks were

run on grid[5x6] topology using incrementing task search algorithm for different

values of Runsched.




122 CHAPTER 5. EXPERIMENTS AND RESULTS

under the line topology. It is not clear what is causing this wide variation in the
locality of code. We should run more experiments with different topologies to see
how much code locality varies with Runsched. However, it is also not clear how

significant this effect will be in a real machine.
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5.5 Summary

5.5.1 Basic Data and Locality

The results in this section were obtained using a random task search algorithm, and
with Runsched= 1. Programs should have the poorest locality of reference under

these conditions.

Data Accesses

o The types and proportions of data touched by a benchmark are largely inde-
pendant of topology.

e The number of accesses per instruction varies by more than a factor of two

for the different benchmarks.
Quicksort was the most intensive benchmark, with 1.9 fetches per instruction.
The Multilisp Compiler made the fewest fetches, with 0.8 per instruction.

e All of the benchmarks accessed environment objects at approximately the

same rate.

The programs fetched data from the environment at an average rate of once
every 4 instructions.

Hypothesis: This may be because of the characteristics of compiled code, and
the style in which the benchmarks were written.

e Constant fetches were the same proportion of accesses for all the benchmarks.

Futures

e The number of futures produced by the benchmarks varies by more than a
factor of 13.




5.5. SUMMARY 125

Quicksort creates the most futures, at a rate of 82 per 1000 instructions. The

Multilisp Compiler and Multilog produce only 6 futures per 1000 instructions.
¢ There were 4 times as many future touches as futures created in most of these
benchmarks.
The exception was Multilog, which touched futures 17 times for every future
created.
e For most benchmarks, less than 5% of future touches hit an undetermined
future.

The only exception is Consim, in which one third of future touches hit unde-

termined futures.

Task Locality

e All benchmarks fetch tasks at random.

The mean distance of task fetches is just the fair access distance. Processors

fetch only 5% of their tasks from local memory.

Data Locality

o Most benchmarks fetch 30% to 40% of data out of local memory.

The only exception is the Compiler, which makes 57% of its accesses to local

memory.

e The mean distance of data accesses for these benchmarks is 60% to 90% of

the fair access distance.
The Compiler has the lowest mean distance, followed by Multilog, Fboyer,
Consim, and Quicksort.

This low mean distance of data access is due to the percentage of local accesses
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made by the benchmarks. Non-local data accesses are randomly distributed
through distant memory.
e Futures are randomly distributed in memory.

Future touches have the poorest locality, followed by code accesses, structured

fetches, stack hunks, structured stores, and environment fetches.

5.5.2 Effect of Smart Task Search

For the results in this section, Nusim used an incrementing task search algorithm,

and Runsched= 1.

Data Accesses

e The task searching algorithm has little effect on the types of data fetched by
the algorithms. |

Task Locality

e Processors fetch 60% to 90% of tasks out of local task queues.
This compares to 5% of tasks fetched from local task queues using the random
task search algorithm.

e Mean distance of task access is 1.2 to 1.5.
The mean distance of task access was the fair access distance of a topology
using random task search.

e Mean distance of task access is no longer proportional to the diameter of the
underlying topology.

Mean task distance is greatest for the grid topology.
Hypothesis: The mean task distance may be related the connectivity of a
topology. More tests with different topologies might confirm this.
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Data Locality

¢ Most programs make 10% more accesses to local memory with a smart task
search algorithm than with random search.

e The mean distance of data access is 40% to 95% of the mean distance with a

random search algorithm.

o Stack accesses, future fetches and touches showed the greatest improvement

in locality.

5.5.3 Effect of Runsched

This section shows the effect of varying Runsched on program behavior. Data was
collected using an incrementing task search algorithm.

Data Accesses

¢ Programs made fewer data fetches at greater values of Runsched.

Most benchmarks made 20% fewer fetches at Runsched= 6 than at Run-
sched= 1.

o The benchmarks fetched fewer stack hunks and less constant data at high
values of Runsched.

There was little change in the number of global variables and structures
fetched.

Hypothesis: Most of this effect may be due to programs fetching fewer tasks
at high values of Runsched.

Futures

¢ Programs created the same number of futures but touched fewer undetermined

futures at large values of Runsched.
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Task Locality

o Programs fetch fewer tasks out of task queues at high values of Runsched.

Some programs fetch no tasks out of task queues when the process queues are
large enough. A process queue six entries long can hold all the parallel forking

of the Consim program.

¢ Programs fetch a lower percentage of tasks out of local task queues at large
Runsched.
e The mean distance of task fetching increases as runsched increases.

Hypothesis: Processors may be contending more for tasks when there is less
parallelism in the system. Running simulations on other sorts of simulators

may show the effect of contention for resources in different topologies.

Data Locality

o Benchmarks fetched a higher proportion of data from local memory at higher
values of Runsched.
The percentage of data fetched from local memory increased by 10% between
Runsched= 1 and Runsched= 6.

o The locality of data accesses improved as Runsched increased.

The mean distance of data access was 10% lower for Runsched= 6 than for

Runsched= 1.
e Future objects showed the greatest improvement in locality as Runsched in-
creased.

The mean distance of future accesses was 10% to 45% better for Runsched= 6
than Runsched= 1. The locality of structured data fetches also improved
somewhat as Runsched increased.




Chapter 6

Conclusion

6.1 Review of Goals

'The initial goals of this thesis, as stated in Section 1.1.1, were to quantify the
communication requirements of one model of symbolic computing.

The first objective was to find out what types of data are accessed by Multilisp
programs. Some classes of data objects can be cached locally to a processing node,
while other data must be accessible to all processors. The number of data accesses
in each of the different classes then helps quantify the communication load of a
Multilisp program.

A second objective of this thesis was to see how data is distributed in a mul-
tiprocessor system. This locality of reference indicates whether data is clustered
near processors that use the data. The greater the locality of reference in a system,
the lower the load on the global communications network will be. Determining the
locality of different types of data objects shows where the greatest potentials are
for reducing global communication.

The final goal of this research was to see how scheduling decisions can affect
the locality of reference. One objective was to determine whether the locality of

data access of a program can be improved by knowing the topology of the system.
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Another was to see what effect changing parameters of the processor architecture
would have on locality. This research could be used to predict the effect of differ-
ent architectural decisions on the global communication requirements of symbolic

programs.

6.2 Results

The detailed observations of running benchmark programs on Nusim were presented
in Section 5.4. Those results were also summarized at the end of Chapter 5. What
follows is a brief discussion of how those results relate to the original goals of the

thesis.

The programs studied in this research exhibited some locality of reference, even
when Nusim was ignorant of the underlying system topology. Processors accessed
local memory proportionally more often than distant memory. This is because
new data produced by programs is always allocated in local memory. That newly
allocated data is likely to be referred to again by the task that created it.

The locality of reference of Multilisp programs improves when task scheduling
algorithms exploit knowledge of the underlying topology. The task scheduling rou-
tines used in this study tried to increase the locality of task fetching by searching
nearby processing nodes for executable tasks. This was successful technique in that
it reduced the mean distance of task fetching in the system by 50% to 80%. This
intelligent task search algorithm did not have as great an effect on the locality of
data accesses. However, the locality of data references for the benchmarks tested
improved by 5% to 60%.

Finally, increasing the value of Runsched increases the locality of data fetches,
but decreases that of task fetches. The immediate effect of increasing Runsched is
to decrease the parallelism of Multilisp programs. Processors fetched fewer tasks,
and had worse locality of task fetching for increasing values of Runsched.
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However, the locality of most types of data objects increases as Runsched in-
creases. This improvement in locality is greatest for future objects. So it seems that
it is possible to increase the locality of data references while reducing the parallelism

available in a particular program.

6.3 Additional Questions

6.3.1 Contention for Tasks

The data presented in Section 5.4 showed some of the effects of parallelism on task
fetching for different topologies. But this data did not explain what mechanisms
caused this behavior. One specific question is what effect contention for tasks
has on the the mean distance of task grabbing for different topologies. There are
indications that the task fetching behavior when processors contend for tasks is
somehow related to the connectivity of the topology being simulated.

Nusim is not the ideal vehicle for studying these effects, since in running dif-
ferent types of benchmarks it only allows indirect control over the number of tasks
produced by a program. It also does not keep track of contention for tasks by pro-
cessors in the system. However, a new simulator being developed in the Parallel
Processing Group at M.I.T. may be able to show this behavior more clearly [35].
This event based simulator will allow users to simulate processors as task generators
and consumers, and to see how contention for tasks is related to the topology of the

system.

6.3.2 Implementation Issues |

Nusim is one possible implementation of a symbolic language on a multiprocessor.
In this thesis, I tried to investigate the part of the behavior of Multilisp programs
that is independent of the implementation of the language. I hope that the trends
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shown here for the effect of scheduling decisions on locality of reference are true for
-8 larger class of programs and implementations than five benchmarks running under
Nusim. However, some of the basic decisions that were made in the implementation

of Nusim may affect the data presented here.

Use of Local Memory

One important part of the implementation of Nusim is that it assumes that local
memory is faster to access than distant memory.! For this reason, Nusim always
allocates new data objects that were created by a processor out of the processor’s
local memory. This is a preliminary effort to improve the locality of reference of
Multilisp programs. Because new data is allocated out of local memory, programs
running under Nusim always show some locality of data accesses.

The decision to allocate new data out of local memory is a sensible one in a
system like the one proposed in Chapter 3, in which local memory is faster to
access than distant memory. It also has the effect of decreasing the load on the
global communication network. This is a desirable goal if the network is likely to
be a bottleneck in the system. However, it is possible to imagine multiprocessor

organizations in which this is not the case [25].

Process Scheduling

Another important feature in the implementation of Multilisp is its ‘unfair’ schedul-
ing strategy [30]. When a future forks a process, this algorithm always runs the child
process first, before returning to the parent. An alternative would be to continue
running the parent process, and allow the child to migrate to another processor.
This different sort of scheduling strategy might affect the parallelism available in
Multilisp programs. It could also affect the locality of task fetching by processors,

!Perhaps a more fundamental assumption is that the system has both local and distant memory,

and a single shared address space.
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and possibly the locality of data references as well. Nusim can use several different
scheduling strategies for future tasks. A topic for further experiments is how these
strategies for running parent and child tasks affect the results shown in this thesis.

Weights of Data Accesses

Appendix B details how Nusim was instrumented to track different types of data
accesses, and where this data was located. There is no need to describe that function
here, except to say that there are many ways that Nusim could have counted

different data accesses.

For instance, fetching the value of a mutable global variable is assumed to have
the same cost fetching a stack hunk. In fact, for a processor that uses a stack
buffer and must load and unload stack hunks from that buffer, this might not be
true. A processor might fetch each word in the stack hunk that is loaded into the
stack buffer. Or in a different implementation, a processor might be able to load
an entire stack hunk across the network in one access. These two approaches might
impose a greater load on the communications network than a simple variable fetch.
Rather than assign a different ‘weight’ to stack hunk fetches corresponding to the
expected implementation on a future machine, I simply counted the stack fetches.
It is then possible to scale these results to different implementations by multiplying
the number of stack loads by the expense of that stack access.

Another important point about the results of this thesis is that I have not
presented any information about the rate of data allocation by different Multilisp
programs. All data is allocated in a processor’s local memory, so it should not affect
the global communication cost for Multilisp programs. However, it does provide an
interesting data point in rating the relative importance of local memory versus
global communication. Presumably, since all allocation requires memory accesses,

programs that allocate a lot of data demand fast accesses to local memory.
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Instruction Set and Compiler

One of the observations in Section 5.4.1 was that all the programs tested accessed
environment objects at approximately the same rate. This may be a result of the
type of code produced by the Multilisp compiler. As mentioned earlier, if the
compiler did common sub-expression elimination, many of the instructions that
read values out of the local environment would be eliminated. This would certainly
affect the division of accesses among different data types. It might also affect the
measures of locality of reference seen in this thesis. It is unclear whether any of
the global data references counted by Nusim could be optimized out by a better
compiler.

A different compiler might be able to affect the execution of Multilisp code
in another way. It may be possible to do some analysis of program structure at
compile time. A compiler might then be able to offer hints about scheduling tasks
to the run-time system. For instance, a compiler could tell whether data allocated
by a process was shared with other processes. Data private to a process might be
allocated in a processor’s local memory, but then the one process that refers to it
should not be allowed to move to another processor. Similarly, the compiler could
indicate whether a child task shares much data with its parent. In such a case, it
may be better for locality of reference not to allow the child to migrate to another
processor.

A different set of questions concerns the efficiency of an implementation of Multi-
lisp. One hopes that the data collected for this thesis does not fundamentally de-
pend on the run time characteristics of programs. For instance, a more efficient
implementation of Multilisp might be able to run instructions at a higher rate. The
instructions would still refer to the same data objects, so processors would load the
communications network more heavily over the life of the program. However, in a
different implementation of Multilisp, the ratio of processor speed to global access

time might change. It may not be possible to speed up data fetches much. This
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difference in the relative rates of operations in Multilisp could change the run time
scheduling of tasks in the system. It remains to be seen whether this would have any
effect on the parallelism of programs, or on the locality of reference. Since Nusim
provides a fairly simple mechanism for changing the simulated speed of different
operations, I intend to check this conjecture at a later date.

Garbage Collection

One final important aspect of the Nusim implementation of Multilisp is its garbage
collector. In Nusim, the garbage collector operates concurrently with program
operation [30]. It has two interesting effects on the operation of Multilisp. The
first is that the garbage collector replaces determined futures by the value of the
future. That means that a future that is in existence for a long time is likely to
be turned into a simple Lisp data object. It is unclear how much this affects the
counts of future touches reported in Section 5.4.1.

The second property of garbage collector is that it moves data objects around
in the system. Since the garbage collection is distributed, a particular processor
might follow pointers from an object in its local memory to another data object in
old space.? The object being pointed to is then moved from old space to the new
space of the local processor. If the object was previously in old space in another
processing node, it will be moved across the system to a new node. A processor is
likely to move data objects that are referred to by the processes that it is running.
In general, this means that data will tend to be moved by the garbage collector to
be closer to tasks that use that data. This should improve the locality of reference
of those tasks.

It is not clear how these properties of the Nusim garbage collector affect the
data presented here for the locality of reference of Multilisp programs. Preliminary

experiments by other members of the Parallel Processing Group have not shown

2See [11] for a more detailed explanation of these terms.
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any direct evidence that the Nusim garbage collector improves locality of reference
[45]. I intend to do another set of experiments to quantify the effect of the garbage
collector. That would show whether new implementations of Multilisp, possibly
with different garbage collectors, should expect to have the same behavior as was

shown in this thesis.

6.4 Evaluation

One of the major motivations of this research was to help guide architectural de-
cisions in the design of future symbolic multiprocessors. To that end, this thesis
tried to answer some specific questions about data access and communication in
Multilisp programs.

Section 6.2 shows that in this respect, the thesis has accomplished its goals. I
have been able to quantify the communication requirements of a number of different
Multilisp programs. I have also been able to see how that communication load varied
with different scheduling decisions and processor designs.

This data was collected by building the Nusim simulator and running a number
of different Multilisp applications under it. This seems to have been a success-
ful technique for studying architectural issues. This research was possible in part
because Nusim was a tool specifically designed to measure this type of data.

Evaluation of Nusim

The Parallel Processing Group at M.I.T. has some tools for studying the behavior
of Multilisp programs. These tools were used primarily to show the parallelism
available in different algorithms. They were also the primary means of evaluating
the efficiency of Multilisp implementations. Programmers have used these tools
to tune particular algorithms to try to extract the maximum parallelism from a
program. Seeing the effect of future placement in programs has taught the members
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of the group much about the nature of parallelism in symbolic programs.

However, these tools were not used to help guide architectural decisions. They
all studied the behavior of Multilisp code at the language level, not the interaction
between the language, its implementation, and the underlying machine organization.

Nusim was a first attempt at looking at these issues.

There are three significant features of Nusim that made it easier to study the
architecture of Multilisp machines. The first was Nusim’s ability to run Multilisp
programs without modification. Second was the ability to modify parameters of
the architecture being simulated at run time. The third feature was that Nusim

actually simulates a multiprocessor by running on an existing multiprocessor.

In order to see the effect of architectural decisions in Multilisp machine, it is not
enough to model the behavior of Multilisp processors. This thesis has shown that
there is a wide variation in the behavior of different Multilisp programs. Rather
than hypothesizing how Multilisp processors might behave, a better approach is to
actually measure the characteristics of programs in operation. Since Nusim evolved
from an existing Multilisp emulator, it can run any Multilisp application. It imposes
a realistic communication load on the system because it must access the same data

that the program would.

Nusim differs most from previous implementations of Multilisp in that it sim-
ulates the architecture of a machine at some level. Being able to easily modify
the characteristics of that architecture was vital for my research. I could not have
have run as many types of experiments if each test required reloading some part of
the software. One approach to simulating different topologies might have been to
write a version of Nusim for each topology. A less time-consuming approach would
have been to configure the characteristics of the architecture when Nusim started
running. The final version of Nusim that I used allowed me to vary many different
parameters of the architecture during a run of the program. This made it easy to

set up automatic test runs.
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The final important feature of Nusim is that it ran on a real Multiprocessor
system. It is possible to simulate a multiprocessor by running on a uniprocessor.
Any processor can time-share between a number of tasks. However, it is difficult
to know how different processors will interact in a real system. Programming on a
uniprocessor may introduce some assumptions about those interactions. In a real
multiprocessor, accesses by different processors may collide in the network. Proces-
sors also collide when competing for resources. While running one multiprocessor
may not duplicate the type of interactions that could occur in another parallel ma-
chine, it is likely to be more realistic than running on a uniprocessor. The fact that
some of the interprocessor behavior seen in this thesis is still unexplained indicates

that this approach to simulation was successful.

6.4.1 Evaluation of Research

The data that was collected for this thesis will be useful for architectural discus-
sions in the Parallel Processing Group at M.I.T. We now have some data on the
communication load imposed by different Multilisp programs. We know the types
of data that these programs use, and how often the programs refer to that data.
We have additional information on the production of futures in parallel programs,
and on how those futures are touched. We have seen how many tasks are produced
by a parallel application, and how processors in a multiprocessor compete for those
tasks. Finally, we have seen how this behavior depends on different characteristics
of the underlying computer architecture.

Where possible, Nusim measures the aspects of Multilisp programs that are
independent of the Nusim implementation. The number of tasks produced by an
application, and the number of data objects touched, should be invariant. This data
should prove useful in evaluating other possible implementations of Multilisp.

A major topic of research at P.P.G. in the next few years will likely involve de-

signing a new type of symbolic multiprocessor. We will try to model and simulate




6.4. EVALUATION 139

different subsystems of that computer in order to evaluate different designs. Some
work in general purpose simulators has already begun [35]. The data on communi-
cation in Multilisp that was collected in this thesis should play an important role
in that design process. It sets a bound on the global communication needed by
Multilisp programs, and suggests some means of reducing that load.

If unexpected results are a measure of the worth of research, this thesis has
been worthwhile. In the field of computer architecture, I hope that this thesis has
provided some answers, but more importantly I hope that it has suggested some

interesting questions.
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Appendix A

The MCODE Machine Language

What follows is a brief listing of the MCODE instructions used by Nusim. These
operations are described in more detail in [34]. The purpose of this listing is just
to provide a flavor for the type of instructions available in this machine language.

MCODE instructions generally consume one or more values from the stack and
may produce one or more values that are pushed on the stack. Additionally, many
MCODE instructions take ‘in-line’ parameters, arguments which are encoded in the
instruction stream with the opcodes. These are commonly simple integers, such as
the number of items to pop off the stack. Instructions may also read ‘constant
values’, which are known at compile time. These are kept as a sequence of values
in the code object for a Multilisp function. Value arguments may be arbitrary Lisp

objects.

In the listing that follows, an instruction stream argument is represented by
[arg], while value stream arguments are represented by {val}. All other instructions
are assumed to pop arguments off the stack. Each opcode is labelled with its index.

The instruction indices are not necessarily contiguous.
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MCODE Instructions

Index Opcode

5 POP

6 GVAL

7 SGVAL

8 COPY

9 RTN

10 CONS

11 FEVAL

12 SEVAL

13 CALL

14 CALLRTN

16 PUSHENV

17  CLOSE

18 PUSHVAL

19 LABEL

20 PUSHNVAL
21 THROW

22 ENDFUTURE
23 ARRAYSET
25 GETSTRUCT
26 SETSTRUCT
27 TYPEEQ

28 EQSETSTRUCT

Args

{sym}
{sym}

[level offset]
[level,offset]
[nargs, flag]
[nargs, flag]
[#slots] {doc}

APPENDIX A. THE MCODE MACHINE LANGUAGE

Opcode Description

pop items off stack

push global value of symbol

set global value of symbol from pop()
push extra copy of top of stack
return from call, value is on stack
make conscell

get value from environment at
set pop() into environment slot
push some args and call closure
tail-recursive call

create new env frame, push onto frames

{doc,close,espec} make a closure from code, doc, and espec

{what}

{what}

[type,off]
[type,off]
[type]

[type,off]

push a value from code, onto stack
make label value

same as pushval but does not fetch value
push value, push label, ‘throw’ value

fill in value of future and restart tasks
set an element of an array

get val at offset in some struct

set val at offset in some struct

check type of object with type in ops

setstruct if eq, atomic operation




Index Opcode Args

29 OLDSETSTRUCT [type,off]
30 TYPECAST [typel,type2]
31 IGOTO [IPC,VPC]
32 ITGOTO [IPC,VPC]
33 IFGOTO [IPC,VPC]
34 IFORK [IPC,VPC]
35 PUSHNIL

36 PUSHNUM [num]

40 UNDETERMINEDP

41 GETFSTRUCT [type,off]
42  PRINT

43  PRINC

44 SYMVAL

51 SETSYMVAL

52 EXCEPTIO

53 EXC2LIST

55 NFUTURE [IPC,VPC]
56 NDFUTURE [IPC,VPC]
57 NDELAY [IPC,VPC]
61 QUIT

62 POPENYV

63  STAT

143

Opcode Description |

setstruct return old, atomic operation
change type to value in instructions
goto, instr, value pc are 2-byte items
in the instruction stream

IGOTO if pop() is nil

fork, new thread is IGOne TO

push nil on the stack

push a 1-byte signed number on the stack

check if future has value

getstruct without forcing futures
print a lisp object on a file

print without slashification

get the global value of a symbol

set value of symbol

return non-nil if passed an exception
typcast exception into a list

make a future, priority to future
make a future, priority to main thread
make a delay

terminate current process

pop one frame off the environment

return current statistics
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Index Opcode Args Opcode Description

64 MAKEMARKER return MARK

65 IFASTREAD do a FastRead() for setup

66  HIST return histogram of task stats
67 CURTASK get a picture of the current task
68 GTIME return the current elapsed time
69 THEENV return the current working environment
70 INFO return info stats

71  INFOON enable info stats

72 INFOOFF disable info stats

73 SHOWFREQ return inst use frequency

74 RESETTLINES reset time lines on all processors
81 TOUCH touch a future (a noop)

82 GETCH get char from file as fixnum

83 NULL null() predicate

84  SIGNAL signal an exception

8  MINUS reverse sign of a number

86 INTERN intern(string)

87 MAKESTRING make-string(n)

88 STRLEN string-length(string)

89 IOFLUSH flush characters from file

90 LABGO go to label value

91 CARCDR push car, then cdr of TOS




Index Opcode

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
122
123
124

ANYCHAR
CLEAROPTION
PLIST
LFCLOSE
BOUNDP
MARRAY
ARRAYLEN
FFLUSH
NSUSPEND
TYPE
SETOPT
SUSPEND
ACTIVATE
FIX

FLOAT
STRUCTNAME
STRUCTSIZE
DUMPTLINES
RECEVENT
PLUS

GT

EQ

Args

[posn]
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Opcode Description

ee if any input is ready

n option flag,return it’s old val

get the property list of symbol on stack
close a lisp file

return true if symbol is bound

make an array object of a certain size
return the length of an array

flush a file

suspend a task, calling a function with it
return the type of an object

initialize an optional argument

suspend a task, calling a function with it
activate a previously suspended task
truncate floating-pt to fixnum

convert fixnum to flonum

return the name of a structure

return the size of a structure

dump all time lines to a file

record event on current processor

add numbers

greater-than predicate

eq predicate
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Index Opcode

125

126.

127
128
129
130
131
132
133
134
135
136
137
138
139
161
162
163
164
169
170
171
172

DIFF
TIMES

QUOT

REM

NTHSTR
UNGETCH
EXER

PUTCH
NUMEQ
ARRAYREF
MAKESTRUCT
ADDRREF
NACTIVATE
FASTRSTRING
SETSPECIAL
SETNTHSTR
LFOPEN
STRUCTREF
ADDRSET
MAKEESPEC
SCANTOK
MAKECLOSURE
STRUCTSET

Args

APPENDIX A. THE MCODE MACHINE LANGUAGE

Opcode Description

subtract numbers

maultiply numbers

divide numbers

remainder of numbers
nth-string(string,n)

put a char (fixnum) back into file
exercise primitives for performance meas
output fixnum from stack to file
numerical equal test

get an element of an array

make a lisp structure

indexed reference based on C pointer
activate a previously suspended task
read a string from a file

set an inst as special for info collection
set-nth-string(string,n,value)

open a file in a particular mode
reference a slot of a structure

indexed set based on C pointer

return a new espec

scan a token from a file

return a new closure

set a slot in a structure




i kg e p e o

Appendix B

Statistics Collection in Nusim

B.1 Using Nusim

B.1.1 Lisp Functions

The following Lisp functions are unique to the Nusim implementation of Multilisp.
They are used to enable statistics processing, to dump out statistics to a file, and
to set the values of some Nusim scheduling variables.

Nusim collects information in a statistics structure. The statistics informa-
tion includes counts of different types of accesses and where they occured, types
of instructions executed, time spent in different phases of Nusim, and many other
variables. A complete description is in [44]. Nusim maintains an array of statistics
structures. Different phases of the program can dump statistics in a different struc-
ture of this array. For instance, Nusim can step to a new statistic structure after
every garbage collector flip. This is useful because the division of memory blocks

among processors changes after each flip.
(info file n)

Dumps statistics information from statistics structure n into the file. Array 0 is

where info stats go when info collection is turned off. The schedule variable
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globalinfo sets where info stats go when info is turned on. Allowable range
for n is 0 to *info-locations* (which is presently 10), or negative. A negative

index prints out ‘Garbage Collection’ and ‘Cost of Info Collection’ statistics.
(clearinfo n)
Clears the info structure n. Same rules as above.
(infoon)

Turns on info collection by using the value of variable globalinfo as an index to a
statistics structure. Hereafter, run-time statistics will use this new statistics

structure.
(infooff)

Turns off info collection by setting the current statistics structure back to struc-

ture 0.
(getsched string)
How to look at schedule variables that the system uses. Eg: (getsched "minsched")
(setsched string value)

Sets the value of a scheduling variable to be value.

B.1.2 Scheduling Variables

In Nusim, each processor alternates between running processes and loading tasks.
While running, a processor may switch between active processes in the process
queue. A processor runs a quanta of instructions as an uninterrupted unit. Each
process is allowed to run for at most runfor of these quanta. The processor does
some amount of garbage collection after each quanta. After the process has run

runfor quanta, the processor switches to another active process in the process queue.
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After at most totalrun quanta of running processes, the processor enters a phase of
loading tasks. A processor that has run all its processes and is otherwise idle also
enters the task loading phase.

Processors attempt to load processes so that the minimum number of processes
in the process queue is greater than or equal to minsched. Processors only load
tasks out of task queues during this phase. Programs spawn processes by executing
a future instruction. These newly spawned processes are stored in the process queue,
possibly bumping an older task out into a task queue. The parameter runsched sets
a limit on the size of the process queue due to process spawning, and tasksched sets

the size limit due to task grabbing.

parcelchoice

How to pick a node from which to grab a parcel of memory. Choices are:
*random-choice*  Choose a node at random.
*closrand-choice*  Try our node first, then choose randomly.
*increment-choice* Start at our node and move a further distance
away each time we fail to get the resource. Reads

a topological description that we have built up

for the system we want to model.

taskchoice

How to pick a node from which to grab an executable task. Choices are the same

as for parcelchoice.
minsched

A processor tries to maintain at least this many processes in its process queue at all
times. If number of processes in the process queue is less than this, excessive

searching for tasks may occur so it may be best to keep minsched= 1.
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tasksched

When a processor loads tasks into its process queue, it will try to grab enough
tasks to have tasksched processes in the process queue.

taskgrab

The maximum number of tasks that a processor will steal take from each task

queue at any one time.
iosched

One processor in the system is designated I/O processor. It loads I/O tasks from
a single system-wide I/O task queue. The iosched variable sets the maximum

number of tasks that the I/O processor will grab from the I/O task queue.
runsched

When a processor executes a future instruction, it forks a child task and pushes the
parent back into the process queue. This variable sets a limit on how many
processes may be in the process queue due to forks. If there are allready
runsched processes in the queue, the processor bumps the oldest process out

into its task queue.
runquanta

How many instructions to run at a time before checking the status of garbage

collection.
runfor

How many quanta a process runs before we let the next process in the process
queue run. Schedule them round-robin. If this is set very high, (the default),

then every process runs to completion.
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totalrun

Run processes for this many quanta before trying to load new tasks into the process

queue.
globalinfo

This is the index of the statistics structure that will be used if info collection is

turned on.
info-increment

If this flag is non-zero, then processors increment globalinfo after each garbage
collection flip.

stopncopy

Force garbage collection to behave as a stop and copy system rather than incre-

mental.
movespeed

The speed at which incremental garbage collection sweeps through memory be-

tween quanta of running instructions.

B.2 How Nusim Counts Accesses

Some Nusim counters

Every memory access is counted as a fetch or store of some type. Nusim tracks
different types of accesses by incrementing slots in a statistics structure. Rather
than reproduce the entire structure here, I will name and describe a few significant

slots.

code-fetch
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This slot counts code object fetches. In the Nusim implementation of Multilisp,
a code object contains the code for a Multilisp procedure. The code object
points to a block of MCODE instructions and to a set of constant values used

by the instructions.
instr-fetch

A block of instructions contains the actual MCODE byte-code for a procedure or
expression. Fetching a block of instructions is conceptually like loading those
instructions into a processor’s instruction buffer. Once the block has been
loaded, a processor can run all of the instructions in that procedure without

global accesses to fetch each instruction.
env-link-fetch

In Nusim, lexically scoped environments are stored as a series of environment
frames. Each frame contains a pointer to its lexical parent. In order to fetch
a value out of a lexically enclosing environment, a process must step through
these links to the appropriate environment frame, then fetch a value out of a
slot in that frame. Nusim counts the environment link accesses as env-link-
fetch. Fetches from the local environment do not require any link accesses.
Note that env-link-fetch counts environment link accesses necessary to store

into an environment slot, as well as to read a value out of a slot.
env-obj-fetch
This is a count of environment value fetches.
env-obj-store
This is the corresponding count for envifonment value stores.

hunk-fetch
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Stack hunks are chunks of the stack that have been pushed out of a processor’s |
stack buffer. When a process loads a new task, it must load a new stack into
its stack buffer. This is counted as hunk-fetch.

scache-save

This variable counts the number of stack hunks that are pushed out of the stack

buffer into memory.
scache-load
This is a count of stack hunk loads into the stack buffer.
scache-hdr-fetch

The head of each stack hunk contains two words of information. Nusim reads these
header words on each stack hunk load.

stack-deep-fetch

Nusim occasionally fetches a word out of the stack without loading in an entire

stack hunk. This ‘deep’ fetch fetches a value out of a hunk in the heap.
future-touch

This variable the number of times that futures are touched. Most instructions
implicitly touch their operands, to make sure that the operands are not fu-
tures. Any time that an instruction stumbles across a future, it is counted as

a future touch.
future-val-fetch

When an instruction touches a future in Nusim, it jumps to an exception handling
routine. If a future has been determined, the exception handler merely fetches
the value of the future, incrementing future-val-fetch. If the future is not
determined, the process that touched it must wait on the future.
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future-val-store

A function that determines the value of a future writes the value into a slot in the

future object. Future-val-store counts those stores.
symbol-val-fetch
This is a count of reads of global symbols.
static-valqe-fetch

In Multilisp, constant values used by the program are compiled in with the code.
These values could be any Lisp object. Typical constant values are numerical
constants and symbol names. These constants are kept in the code object
for a procedure. The variable symbol-value-fetch counts references to those

values.

cons-fetch

This variable counts fetches of the car or cdr of a cons-cell.
array-fetch

This variable counts array references.
struct-fetch

This variable counts references to user-defined structures.
string-fetch

This variable counts string references.
closure-fetch

This variable counts fetches of closures.
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B.2.1 Cost of some operations in Nusim

Most simple data fetches in Nusim increment one of the counting variables described
above. Some basic operations in Nusim fetch several different types of data. This
section describes those operations, and how they are counted using the variables

defined above. (The increment for a counter variable is 1 except where noted).

Operation Counter Increment
Save stack hunk scache-save 1
Load stack hunk + scache-load 1
scache-hdr-fetch 2
Call subroutine code-fetch 1
instr-fetch 1
env-link-fetch 1
Return from subroutine instr-fetch 1
Load process from task queue code-fetch 1
instr-fetch 1
env-link-fetch 1
hunk-fetch 1
scache-load 1
scache-hdr-fetch 2

Touching a determined future future-touch 1
future-val-fetch 1

Touching an undetermined future future-touch 1
scache-save 1

Determining a future’s value future-val-store 1

Reading out of the environment env-link-fetch [lexical level]
env-obj-fetch 1

Storing into the environment env-link-fetch  [lexical level]

env-obj-store 1
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Garbage Collection flip instr-fetch i [# processes in queue]

B.2.2 Nusim counters used for results

In Chapter 5, I presented several types of data graphs. Two graphs distinguished
different types of data accesses. Data fetches and stores were divided into classes
of objects. The mean distance of reference was divided into a different set of ac-
cess types. Chapter 5 also showed data on the locality of reference for all access
types. This section explains which Nusim variables contributed to each of these
data graphs.

Data Fetch Classes

Data Class Nusim Variables

Constant code-fetch
instr-fetch
closure-fetch

string-fetch
Global symbol-val-fetch
cons-fetch
array-fetch
struct-fetch
Environment env-link-fetch
env-obj-fetch
Stack scache-hdr-fetch
hunk-fetch
stack-deep-fetch

Future future-touch
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Data Store Classes

Data Class
Global

Environment

Future

Nusim Variables
symbol-val-store
cons-store
array-store
struct-store
closure-store
env-obj-store

future-val-store

Data Types for Locality

Data Class
Code

Structure Stores

Structure Fetches

Nusim Variables
code-fetch
instr-fetch
future-val-store
array-store
struct-store
future-val-fetch
symbol-val-fetch
env-link-fetch
hunk-fetch
cons-fetch
array-fetch
struct-fetch

string-fetch

157
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Environment env-obj-fetch
env-obj-store

Stack scache-load

Futures future-touch

Locality Measurements

The following Nusim data types are used to compute ‘the mean distance of access

and the percentage local access for all data accesses.

code-fetch
instr-fetch
future-val-store
array-store
struct-store
future-val-fetch
symbol-val-fetch
env-link-fetch
hunk-fetch
cons-fetch
array-fetch
struct-fetch
string-fetch
env-obj-fetch
env-obj-store
scache-load
future-touch
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Test Programs

C.1 Compile-Expr

C.1.1 Source Code

The Multilisp compiler is a large body of code. The function compile-expr calls
several other routines in order to compile an expression to symbolic assembly code.

A few of those functions are reproduced here.
; Copyright (c) 1984. Robert H. Halstead, Jr. and Juan R. Loaiza.

; Compile expr in the enviroment env and push it on the stack before
; the code in cont.
(defun compile-expr (expr cont env &aux op args prim-code)

(future

(cond ((or (numberp expr) (null expr) (stringp expr))

(cons-code ‘(pushval ,expr) cont))

((symbolp expr) (get-var-val expr cont env))

((atom (setq op (car expr)))

(setq args (cdr expr))

(cond ((setq prim-code (get op ’pril—térl))

159
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(lexpr-funcall prim-code cont env args))
((in-env op env) (compile-apply expr cont env))
((setq prim-code (get op ’primitive-code))

(or (= (car prim-code) (length args))

(exTor "; wrong # of arguments" expr))

(compile-arglist args

(append-code (cdr prim-code) cont)
env))
((setq prim-code (get op ’vx-multilisp-macro))

(compile-expr (apply prim-code args) cont env))
((setq prim-code (get op ’multilisp-macro))

(compile-expr (apply prim-code args) cont env))
((compile-apply expr cont env))))

((compile-apply expr cont emnv)))))

; Pushes in front of cont an expression that will reference var in env.
(defun get-var-val (var cont env &aux where)

(cond ((setq where (in-env var env))

(cons-code ‘(eval . ,where) cont))

((cons—code ‘(gval ,var) cont))))

; Pushes in front of cont an expression that will set var in env to
; vhatever is currently on the top of the stack.
H
(defun set-var-val (var cont env &aux whers)
(cond ((setq where (in-env var emv))
(cons-code ‘(seval . ,where) cont))

((cons~code ‘(sgval ,var) comt))))

; Push the function and its arguments onto the stack and do a call with
; the number of arguments that were supplied.

(defun compile-apply (expr cont env)
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(compile-arglist expr
(call-it (length (cdr expr)) cont)

env))

(defun compile-arglist (args cont env)
(future
(cond ((null args) cont)
((compile-expr (car args)
(compile-arglist (cdr args) cont env)
env)))))

C.1.2 Test Data

161

The test case for running compile-expr is one large function definition, one-big-

fn. It contains four macro definitions, and sixteen smaller function definitions.

Four more functions are defined within these second level routines. One-big-fn

contains approximately 8500 bytes of Multilisp source code. The compiled MCODE

representation for one-big-fn is 6400 bytes long.

C.1.3 Instruction Mix

The MCODE instructions executed by compile-expr while compiling this test case

were as follows:
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Instruction Count Instruction Count
EVAL 144803 ARRAYREF 1268
ITGOTO 55896 SETOPT 1226
GETSTRUCT 50324 ARRAYSET 952
POP 39981 NUMEQ 446
NULL 33629 TOUCH 317
SEVAL 29476 DIFF 271
RETURN 17620 FIX 240
CALL 17620 GT 153
TYPEEQ 17433 QUOT 147
GVAL 16411 REM 147
IGOTO 14843 MARRAY 120
PUSHNIL 13266 NTHSTR 73
PUSHNUM 11215 TYPECAST 62
COPY 10032 MAKESTRING 37
CALLRTN 9695 SETSTRUCT 34
CONS 8517 MAKEESPEC 31
PLUS 8059 TIMES 15
EQ 8053 PUSHENV 10
PUSHVAL 7407 POPENV 10
CLOSURE 3227 STRLEN 6
DETERMINE 3154 SGVAL 3
FUTURE 3154 INTERN 3
PLIST 2907 BOUNDP 3
SETNTHSTR 2373 INFOOFF 1




C.2. CONSIM 163

C.2 Consim

C.2.1 Source Code

A large part of the Consim environment is a compiler that translates a high level
description of a circuit down to parallelized Multilisp code. The function psim
actually runs the simulation. It spawns many cycles of the circuit in parallel, passing
the output of one cycle to the input of the next.

(defun psim (sc-proc mstate ckt-in cycles current-cycle)
(let ((elt (future (sc-proc mstate
(future (car ckt-in))
current-cycle))))
(it (= cycles current-cycls) (list elt)
(psim sc-proc
(future (cadr elt))
(cdr ckt-in)
cycles

(+ curreat-cycle 1)))))

C.2.2 Circuit Simulated

The circuit simulated for these experiments was a four bit ALU, configured to act

as a counter.

(defun alusgf (mstate ckt-in cyc-num)
(let* ((g088E mstate)

(a3 (future (field 1 g0885)))

(a2 (future (field 2 g0885)))

(a1 (future (field 3 g0885)))

(a0 (future (field 4 g0885)))

(b3 (future (field 5 g0885)))
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(b2 (future (field 6 g0885)))
(b1 (future (field 7 g0885)))
(b0 (future (field 8 g0885)))
(“cin (future (field 9 g0885)))
(g0886 ckt-in)
(83 (future (field 2 g0886)))
(82 (future (field 3 g0886)))
(81 (future (field 4 g0886)))
(80 (future (field 5 g0886)))
(b3 (future (f-not b3)))
("b2 (future (f-not bH2)))
("b1 (future (f-not b1)))
(b0 (future (f-not b0)))
("m (future (f-not (future (field 1 g0886)))))
(t22 (future (f-nor3 (future (f—ind2 “b3 81))
(future (f-and2 s0 b3)) a3)))
(t23
(future (f-nor2 (future (f-and3 b2 83 a2))
(future (f-and3 a2 s2 "b2)))))
(t26 (future (f-nor3 (future (f-and2 “bi s1))
(future (f-and2 bi s0)) al)))
(e27
(future (f-nor2 (future (f-and3 b0 s3 a0))
(future (f-and3 a0 s2 “b0)))))
(t28 (future (f-nor3 (future (f-and2 b0 s1))
(future (f-and2 s0 b0)) a0)))
(t21
(future (f-nor2 (future (f-and3 b3 s3 a3))
(future (f-and3 a3 s2 ~b3)))))
(t24 (future (f-nor3 (future (f-and2 "b2 s1))
(future (f-and2 s0 b2)) a2)))
(t26
(future (f-nor2 (future (f-and3 bl s3 at))
(future (f-and3 ai s2 “b1)))))




C.2. CONSIM

(f0

(future
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(f-xor2 (future (f-and2 t27 (future (f-not t28))))

(future (f-nand2 "m “cin)))))

(23
(future
(future (f-nor4
(future (f-and4
(future (f-and3
(future (f-and2
(1£2
(future
(future (f-nor3
(future (f-and3
(future (f-and?2
(ckt-out

(f-xor2 (future (f-and2 t21 (future (f-mot t22))))
(future (f-andSs “cin t27 t25 t23 “m))

t25 t23 t28 “m))

t23 t26 “m))

t24 “m)))))))

(f-x0r2 (future (f-and2 t23 (future (f-not t24))))
(future (f-and4 ~“cin t27 t25 “m))

t26 t28 “m))

t26 “m)))))))

(list (future (f-nand2 (future (f-nand5s t21 t23 t26 t27 ~cin))

(future (f-nor4 t22

(future (f-and2 t21 t24))

{(future (f-and3 t21 t23 t26))

(future (f-and4 t21 t23 t26 t28))))))))

(11
(future
(future (f-nor2
(future (f-and2

(f-x0r2 (future (f-and2 t26 (future (f-not t26))))
(future (f-and3 t27 “cin “m))
t28 “m)))))))

(eq (future (f-and4 £3 £2 f1 £0)))

(“eq (future (f-not eq)))
(zero (future (f-and2 eq “eq)))

(nstate (list £3 f2 f1 20 zero zero zero zero zero)))

(list cyc-num nstate ckt-out)))
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C.2.3 Imstruction Mix

The MCODE instructions executed by Consim while simulating a four bit ALU

were as follows:

Instruction Count

Instruction Count
EVAL 36163 )

DETERMINE 3238
ITGOTO 15116

FUTURE 3238
PUSHNUM 13273

COPY 2242
NUMEQ 10866

DIFF 1840
GVAL 10608

SEVAL 1521
GETSTRUCT 10491

SETOPT 1122
NULL 8409

TYPEEQ 1039
CALLRTN 7406

PLUS 472
PUSHNIL 6480

CLOSURE 1
CONS 5920

PUSHVAL 1
POP 4766

SETSTRUCT 1
RETURN 4361

INFOOFF 1
CALL 4361
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C.3 Fboyer

C.3.1 Source Code

The Boyer-Moore benchmark has been used to test a number of Lisp implemen-
tations ?7. The main parts of the program are a tautology checker and a term

rewriting routine.

; Boyer-Moore Theorem prover — works by mcby expansion

; rewritten in Schemes by Seth Steinberg 1886

; Modified to remove useless future

; in tautology? and add a future in apply-subst-list.

H Randy Osborne FNov. 12/88

; Tautology detection checks forms (if predicate consequeat alternate)

; If the predicate is known true then we just check the consequent

; If the predicate is kmown false then we just check the alternate

; Otherwise we see if the consequent is true assuming the predicate is true
; and that the altexmate is true assuming the prodicato is false

(define true #t)
(define false #f)

(define (taut? form)
(tautology? (rewrite form) nil nil))

(define (tautology? form true-list false-list &aux temp)
(cond ((known-true? form true-list) true)

((xnown-false? form false-list) false)

((eq? (car form) ’if)

(cond ((known-true? (cadr form) true-list)

(tautology? (caddr form) true-list false-list))

((xnown-false? (cadr form) false-list)

(tautology? (cadddr form) true-list false-list))
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(else
(setq temp (future (tautology? (cadddr form)
true-list
(cons (cadr form) false-list))))
(and
(tautology? (caddr form)
(cons (cadr form) true-list)
false-list)
temp))))
(else false)))

(define (known-true? form true-list)
(if (equal form ’(t))
true

(member form true-list)))

(define (known-false? form false-list)
(if (equal form ’({f))
true

(menber form false-list)))

; Rewriting matches a form against the list of lemmas associated with the car
; of the form and first rewrites the remainder of the form before
i finding the first lemma whick matches and expanding it accordingly.
(defun rewrite (form)
(if (atom form)
form
(rewrite-with-lemmas (cons (car form) (rewrite-args (cdr form)))
(find-lemmas (car form)))))
(define (rewrite-args args)
(it (aunll? args)
nil

(cons (future (rewrite (car args))) (rewrite-args (cdr args)))))
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(define (rewrite-with-lemmas form lemmas)
(if (null? lemmas)
form
(let ((subst-list (one-way-unify-util form (cadar lemmas) nil)))
(if (not (eq? subst-list ’failed))
(rewrite (apply-subst subst-list (caddar lemmas)))

(rewrite-with-lemmas form (cdr lemmss))))))

;; Weak unification works by a recursive pattern match.
(define (one-way-unify-util form pattern frame)
(cond ((eq? frame ’failed) ’failed)
((atom pattern)
(1ot ((already-matched (fast-assq pattern frame)))
(cond (already-matched ; if matched verify rematch
(it (equal form (cdr already-matched)) frame ’failed))
(else
(cons (cons pattern form) frame)))))
((atom form) ’failed)
((eq? (car torm) (car pattern))
(one-way-unify-list (cdr form) (cdr pattern) frame))
(else 'failed)))

(define (one-way-unify-list form pattern frame)
(if (null? form)
frame
(one-way-unify-list (cdr form) (cdr pattern)

(one-way-unify-util (car form) (car pattern) frame))))

;; Very simple substituter used by rewrite with the result of the unification.
(defun apply-subst (subst-list form)

(if (atom form)
(let ((value (fast-assq form subst-list)))
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(if value (cdr value) form))
(cons (car form) (apply-subst-list subst-list (cdr form)))))

(define (apply-subst-list subst-list form)
(it (null? form)
nil
; added future here (R.0.)
(cons (future (apply-subst subst-list (car form)))
(apply-subst-list subst-list (cdr form)))))

(define (add-lemma lemma)
(cond ((and
(not (atom lemma))
(eq? (car lemma) ’equal)
(not (atom (cadr lemma))))
(push lemma (get (caadr lemma) ’lemmas)))
(else

(print ‘(Bad lemma form ,lemma)))))

(define (find-lemmas key)
(get key ’lemmas))

;33 Speeded-up versions of assq and equal:
(detine (fast-assq key 1lst)
(until (((null 1st) nil)
((eq key (caar 1st)) (car 1st)))
(setq 1st (cdr 1st))))

(defun equal (argl arg2)
(until (((eq argi arg2))
((atom argt)
(cond ((numberp argl)
(if (numberp arg2) (= argl arg2)))
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((stringp argi)
(it (stringp arg2) (string-equal argl arg2)))
((structurep argi)
(if (structurep arg2) (structure-equal argl arg2)))))
((atom arg2) nil)
((not (equal (car argi) (car arg2))) nil))
(setq argl (cdr argl))
(setq arg2 (cdr arg2))))

C.3.2 Test Data

Fboyer uses a data base of 106 lemmas to rewrite the input expressions into a form

containing only if statements. For space reasons, the data base is not included here.

The test case that was used for the runs of Fboyer in this thesis is:

(implies (and (implies (f x) (g x)) (implies (g x) (h x)))
(implies (f x) (h x)))

C.3.3 Instruction Mix

The MCODE instructions executed by Fboyer in proving this test case were as

follows:;
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Instruction

EVAL
GETSTRUCT
ITGOTO
NULL

GVAL

CALL
TYPEEQ

PUSHNIL
PUSHVAL

48913
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C.4 Multilog

C.4.1 Source Code

The Multilog program is designed to be an interactive system. It includes a query-
driver loop, which reads commands from the user and dispatches to the appropriate
database manipulation function. It allows users to load and save databases, to add
and delete clauses.

The code that follows is a sample of routines for evaluating assertions. A more

complete description of the code for Multilog can be found in [51].

; This is the main evaluating mechanism for the interpreter in the case
; of a normal query. If the query (or part of it being evaluated) is

; Ppredicated by some operator such as AND, OR, NOT, or LISP-VALUE,

; then geval will detect this, retrieve the appropriate function name

; from a symbol table (created and used through put’s and get’s)

; and apply this appropriate function to the rest of the input

; eoxpression. Otherwise, the asserted? function is called in the case

; of a simple query with no predicating operators.

(define (qeval query environment-stream)
(let ((qproc (get ’qeval (type-of query))))
(it (null qproc)
(asserted? (make-arg-list query)
environment-strean)

(qproc (contents query) emvironment-stream))))

; The asserted? procedure handles simple queries. It takes an

; argument list which contains a single query and a stream of environments

; to be extended by database matches of that single query. These extensions

; are found by finding explicit assertioms in the database and applying rules.

; The result returned is that extended environment.

(define (asserted? a environment-stream)
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(flatten-stream
(append-streams (future(map (lambda (environment) ; PARALLEL
(find-assertions (pattern-of a)
environment))
environment-stream))

(future(map (lambda (environment) ; PARALLEL

(apply-rules (pattern-of a)

environment))

environment-stream)))))

; Pconjoin is the procedure which handles the parallel AND’s presented to the
; system. It evaluates successive conjuncts in the environment stream
; Treturned by evaluation of the previous conjuncts. It returns the final

; stream of extended environments after evaluation of all of the conjuncts.

(detine (pconjoin conjuncts environment-stream)
(cond ((empty-conjunction? conjuncts)
environment—stream)
(1 (pconjoin (future(rest-conjuncts conjuncts)) ; PARALLEL
(future(qeval (first-conjunct conjuncts)

environment-stream))))))

; Pdisjoin is the procedure which handles the parallel DR’s presented to the
; system. Evaluation of a successive disjunct does not depend on any of the
; variable bindings from evaluation of previous disjuncts, so the procedure
; heed merely merge the extended seavironment streams each formed from

; evaluation in the context of the original emvironment streanm.

(define (pdisjoin disjuncts environment-stream)
(cond ((empty-disjunction? disjuncts)
(the-empty-stream))
¢
(append-streams (future(geval (first-disjunct disjuncts) ; PARALLEL

environment-streanm))
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(future(pdisjoin (rest-disjuncts disjuncts)

environment-stream))))))

; Unify-match is the main unification algorithm, which takes two patterms
; as inputs and an environment, and returns either an extended environment

; or 'failed.

(define (unify-match pi p2 env)
(cond ((not (or (consp env) (null env))) ’failed)
((equal p1 p2) env)
((atom p1)
(cond ((atom p2) ’failed)
((var? p2) (extend-if-possible p2 p1 env))
(1 ’failed)))
((vaxr? p1) (extend-if-possible pi p2 env))
((atom p2) ’failed)
((vax? p2) (extend-if-possible p2 pi env))
(1 (unify-match (cdr pi)

(cdr p2)
(future(unify-match (car p1) ; PARALLEL
(car p2)
- env))))))

i The basic pattern matcher takes a pattern, a data object, and an

; environment and returns either the symbol ’failed or am extemsion of the

i Ggiven environment if such extension would be possible. The pattern matcher
; checks the pattern against the data, symbol by symbol, and returns an

; extended environment, the original environment or the symbol ’failed

; depending on the result of that check. Extensions to the environment must

; be consistent with current bindings.

(define (pattern-match pat dat environment)

(cond ((not (or (consp environment) (null environment))) ’failed)
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((and (numberp pat) (numberp dat))
(cond ((= pat dat) environment)
(1 ’failed)))
((atom pat)
(cond ((eq pat dat) environment)
(1 ’failed)))
((var? pat)
(future(extend-if-consistent pat ; PARALLEL
dat
environment)))
((atom dat) ’failed)
(1 (pattern-match (cdr pat)
(cdr dat)
(future(pattern-match (car pat) ; PARALLEL
(car dat)

environment))))))

The following procedure checks if it is possible to extend the input
environment with the given var to dat binding. If there is no binding
currently in the emvironment for the variable, then the binding is simply
added. Otherwise, extend-if-comsistent matches in the environment the

data against the variable binding value. This will return either ’failed
if the extension would be incomsistent because the pattern match would fail,

or the original environment if the extension would be acceptable.

(define (extend-if-consistent var dat environment)

’
’

(let ((value-cell (binding-pair var environment)))

(if (null value-cell)
(extend var dat environment)

(pattern-match (value-in value-cell) dat environment))))

Find-assertions takes as input a pattern and an environment. It returns
a stream of environments found by extending the original environment by a

database match of the given pattern.
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(define (find-assertions pattern environment)
(map-nofail (lambda (datum)
(pattern-match pattern datum environment))

(fetch-assertions pattern environment)))

C.4.2 Test Case

For the runs of Multilog described in this thesis, I used a simple test case. The
graph path.out describes points connected by edges. The assertion that Multilog
tested was whether there is a path from point a to point 1.

;; The data base for this test
(setq path.out
(
(edge h i)
(edge a h)
(edge a b)
(edge b )
(edge ¢ d)
(edge a ¢)
(edge a g)
(edge g d)
(edge a 1)
(rule (path (7 x) (? y))
(por (edge (7 x) (? y))
(pand (edge (? x) (? i)) (path (? i) (7 Y)))))

;; The assertion to prove
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)

(setq query-test ’{(path a i)))

C.4.3 Instruction Mix

The MCODE instructions executed by Multilog in proving this assertion were as

follows:
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Instruction Count
EVAL 105774
ITGOTO 62675
TYPEEQ 38703
GVAL 23844
GETSTRUCT 23213
RETURN 18966
CALL 18966
NULL 18538
COoPY 15069
POP 15041
EQ 9665
CALLRTN 6058
PUSHNIL 5875
PUSHNUM 3774
PUSHVAL 2997
SEVAL 2139
DETERMINE 2096
FUTURE 2096
PUSHENV 1157
POPENV 11587

Instruction Count
IGOTO 903
CONS 770
NUMEQ 588
PLUS 373
SETNTHSTR 366
CLOSURE 183
PLIST 122
SETSTRUCT 40
NTHSTR 29
SETOPT 17
PUTCH 15
SGVAL 11
MAKESTRING 7
INTERN 6
STRLEN 6
FFLUSH 5
PRINT 3
PRINC 2
INFOOFF 1

179
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C.5 Quicksort

C.5.1 Source Code

Quicksort is a well known algorithm for sorting a list of numbers. The version

shown here uses futures extensively.

; Copyright (c) 1984. Robert H. Halstead, Jr. and Juan R. Loaiza.
; Quicksort programs in Multilisp, REH, April 1984.

(defmacro bundle-parts (left right)
‘(cons ,left ,right))

(defmacro left-part (bundle)
‘(car ,bundle))

(defmacro right-part (bundle)
‘(edr ,bundle))

(defun pgsort (1) (pgs 1 nil))

;+ Recursive parallel quick sort routine
(defun pgs (1 rest &aux parts)
(it (null 1)
rest
(setq parts (ppart (car 1) (cdr 1)))
(pqs (left-part parts)
(future (cons (car 1) (pgs (right~part parts) rest))))))

;; Partition the list in parallel
(defun ppart (elt 1 &aux cdrparts)
(it (null 1)
(bundle-parts nil nil)
(setq cdrparts (future (ppart elt (cdr 1))))
(it (> elt (car 1))




C.5. QUICKSORT 181

(bundle-parts (cons (car 1) (future (left-part cdrparts)))
(future (right-part cdrparts)))

(bundle-parts (future (left-part cdrparts))
(cons (car 1) (future (right-part cdrparts)))))))

;; Function to generate a list of ’n’ random numbers
(defun g (n)
(if (<= n 0)
nil

(cons (- (rand 2000) 1000) (g (- n 1)))))
(define ranseed 12345)
(defun rand (&optional max)

(setq ranseed (% (+ (+ ranseed 54321) 75319) 2000000))

(if wax (% ranseed max) ranseed))

C.5.2 Test Data

All of the runs of Quicksort reported in this thesis sorted a 700 element list of

random numbers.

C.5.3 Instruction Mix

The MCODE instructions executed by Quicksort in sorting a 700 element list were

as follows:
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Instruction Count Instruction Count
EVAL 52126 SEVAL 7220
GETSTRUCT 35939 RETURN 6709
PUSHNIL 18587 CALL 6709
DETERMINE 17562 GT 5683
FUTURE 17562 TYPEEQ 534
ITGOTO 13416 CALLRTN 513
CONS 12390 PUSHNUM 513
NULL 7748 IGOTO 512
GVAL 7222 PLUS 512
POP 7221 INFOOFF 1
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