S,

This empty page was substituted for a
blank page in the original document.

Table of Contents

Table of Contents
1. Overview
1.1. Objects and Variables

2. Concepts for Distributed Programs

2.1. Guardisns

2.2. Actions
2.2.1. Nested Actions
2.2.2. Atomic Objects and Atomic Types
2.2.3. Nested Topactions

2.3. Remote Calls

3.1. The Library

32. waammmga
3.3. Guardian Creation

3.4. The Catalog

4. Notation

5. Lexical Considerations

5.1. Reserved Words

5.2. identifiers

5.3. Literals

5.4. Operators and Punctuestion Tokens
5.5. Comments and Other Separators

6. Types, Type Generators, and Type Specifications
6.1. Type inclusion
6.2. The Sequential Built-in Types and Type-generators
6.2.1. Null
6.2.2. Bool
6.2.3. Im
6.2.4. Real
6.2.5. Char
6.2.6. String
6.2.7. Any
6.2.8. Sequence Types
6.2.9. Array Types
6.2.10. Structure Types
6.2.11. Record Types
6.2.12. Oneof Types
6.2.13. Variant Types
6.2.14. Procedure and erator Types
6.3. Atomic_Array, Atomic_Record, and Atomic_Variant
6.4. Guardian Types
6.5. Handier and Creator Types

-l b ek

BLBURRNRRNRRENNRRRR R B8R

T T e R ek RGN I e e el S Sl

e e M?&MMQ‘**.{:&'{V“NW 3

CEL s et b e R R R AT

6.6. image

6.7. Mutex

6.8. Node

6.9. Other Type Specifications

7. Scopes, Declarations, and Equates

7.1. Scoping Units
7.1.1. Variables

7.1.2. Declarations

7.2. Equates and Constants
7.2.1. Abbreviations for Types
7.2.2. Constant Expressions

8. Assignment and Calis

8.1. Assignment
8.1.1. Simple Assignment

8.1.2. Muitiple Assignment
8.2. Local Calis

8.3. Handler Calis

8.3.1. Semantics of Handler Calls
8.4. Creator Calis

8.4.1. Semantics of Creator Calls

9. Expressions

913.1.804:&\0.0«1%!:

%:
$28889 U SRR URRRBI22USBELIANANAI R L2228 S LBULKE B LR

104 Fork Statement

-

dsgsSsessBessesns Y l»‘uuaa dydN3388 avnnuuanauzzn

v Table of Contents

15.5. Commuting Operations 102
15.6. Multiple Mutexes 104
Appendix |. Syntax 107
Appendix Ii. Bulit-in Types and Type Generators 119
il.1. Null 120
I1.2. Nodes 120
I1.3. Booleans _ 121
IL4. Integers 121
I1.5. Reals 123
11.6. Characters 125
IL7. Strings 126
Il.8. Sequences 128
IL9. Arrays 130
I1.10. Atomic Arrays 133
il.11. Structs 138
11.12. Records 139
I1.13. Atomic Records 141
li.14. Oneofs 143
il.18. Variants 144
i1.16. Atomic Variants 146
il.17. Procedures and iterators 148
I1.18. Handlers and Creators 149
I.19. Anys 150
1.20. images 150
121. Mutexes 151
Appendix lil. Rules and Guidelines for Using Argus 153
lil.1. Serializabiiity and Actions 1583
il.2. Actions and Exceptions 153
i.3. Stable Variables 154
lil.4. Transmission and Transmissibllity 154
HL5. Mutex 154
1i1.6. User-Defined Atomic Objects 156
liL.7. Subordinate Where Clauses 157
Appendix IV. Changes from CLU 159
IV.1. Exception Handling 159
V2. Type Any 159
IV3. Buikt-In Types 159
IV.A. Type inclusion 160
IV.5. Where Clauses 160
IV.6. Uninitialized Variables 160
IV.7. Lexical Changes 160
IV.8. Input/Output Changes 160

Index 161

List of Figures v

List of Figures
Figure 2-1: Locking and Version Management Rules for a Subaction S, on Object X 10
Figure 13-1: Spooler Guardian 91
Figure 14-1: Partial implementation of table. 95

Vi

List of Tables

List of Tabies

-i

2

a8rarss

This empty page was substituted for a
blank page in the original document.

Gulde to the Manual 1

Guide to the Manual
This document serves both as a reference manual and as an introduction o Argus. Sections 1 through
3 present an overview of the language. These sections highlight the essential features of Argus.
Sections 4 through 15 and the appendices form the reference manual proper. These sections describe
each aspect of Argus in detail, and discuss the proper use of various features. Appendices | and I
provide summaries of Argus’s syntax and data types. Appendix Ill summarizes some of the pragmatic
rules for using Argus.

Since Argus is based on the programming language CLU, the reader is expected to have some
familiarity with CLU. Those readers needing an introduction to CLU might read Liskov, B. and Guttag, J.,
Abstraction and Specification in Program Development (MIT Press, Cambridge, 1986). A shorter
overview of CLU appears in the article Liskov, B., ef a/., "Abstraction Mechanisms in CLU" (Comm. ACM,
volume 20, number 8 (Aug. 1977), pages 564-578). Appendix IV summarizes the changes made to
Argus that are not upward compatible with CLU.

An overview and rationale for Argus is presented in Liskov, B. and Scheifler, R., "Guardians and
Actions: Linguistic Support for Robust, Distributed Programs™ (ACM Transactions on Programming
Languages and Systems, volume 5, number 3 (July 1983), pages 381-404).

The Preliminary Argus Reference Manual appeared as Programming Methodology Group Memo 39 in
October 1983. Since that time several new features have been added to the language; the most
significant of these are closures (see Section 9.8), a fork statement (see Section 10.4), equate modules
(see Section 12.4), and a more flexible instantiation mechanism (see Section 12.6). An earlier version of
thhdomeappowodangmanMMbgyerpm&humww;mvmbnis
essentially identical, except that the locking policy for the bulit-in type generator atomic_array has been
simplified.

We would greatly appreciate receiving comments on both the language and this manual. Comments
should be sent to: Professor Barbara Liskov, Laboratory for Computer Science, Massachusetts Institute
of Technology, 545 Technology Square, Cambridge, MA 02139,

The authors thank all the members of the Programming Methodology group at MIT for their help and
suggestions regarding the language and this manual, with special thanks going to Elliot Kolodner,
Deborah Hwang, Sharon Perl, and the authors of the CLU Reference Manual.

Guide to the Manual

Though her unhappy rival was hers to keep
Queen Juno aiso had a troubled mind:

What wouid Jove turn to next? Better, she thought,
To give the creature to Arestor's son,

The frightful Argus whose unnatural head
Shone with a hundred eyes, a perfect jailer
For man or beast: the hundred eyes took tums
At staring wide awake in pairs, and two

At falling off to sieep; no matter how or

Where he stood he gazed at lo; even when
His back was turned, he heid his prisoner

In sight and in his care.

— Ovid, The Metamorphoses, Book 1
Transiated by H. Gregory
The Viking Press, inc., New York, 1958

vmmmmmumnnm ™
survive crashes (see Section 2) and sre colled A

4 Overview

1.2. Assignment and Calls

The basic events in Argus are assignments and calls. The assignment statement x = E, where x is a
variable and E is an expression, causes x 10 denote the object resulting from the evaluation of E. The
object is not copied.

A call involves passing argument objects from the caller to the called routine and retumning result
objects from the routine to the caller. For local calls, argument passing is defined in terms of assignment,
or call by sharing; for remote calls, call by value is used. In a local call, the formal arguments of a routine
areoonsideredtobebcatvauablesm:hemandmmmd.bym.tomwjects
resulting from the evaluation of the argument expressions. in a remote call (see Section 2.3), a copy of
theobjeasresunimfmmthaovakmiononhoamummexmbmisnmdoandtrmmaodtothe
called handier or creator (see Section 2.4). These copies are then used to initialize the formal arguments
as before. Local objects are shared between the caller and a called procedure or Rerator, but local
objects are never shared between the caller and a called handier or creator.

1.3. Type Correctness

Thededarationotavaﬁabhspedﬁesthetypeoﬂheobieds%thvaﬁablemaydenote. In a legal
assighment statement, x = E, the type of the expression E must be inciuded in the type of the variable x.
Typemwnisemwauyoqwmydtypes(m&abmas).mbrmtm& (A routine type
withfewerexcepuomislncludodinanothombommwwikhmexoeptbns. See
Section 6.1 for details.)

Argusisatype-safolanguage.inthatltisnotposablototuannobbadtwo T as ¥ it were an object
of some other type S (the one exception is when Tis a routine type and S inchudles 7). The type safety of
Argus, plus the msmabnmuomythacodohawswmayoomnmmmtypemdtm
concrete representation (see Section 12.3), ensure that the behavior of an object can be characterized
compiletely by the operations of its type.

1.4. Rules and Guidelines

Throughout this manual, andespedallyinthediswssbnsofatonﬁely,timmmmﬁicmbsand
guidelines for the use of the language. Certain properties that the language would tke to guarantee, for
example that atomic actions are really atomic, are difficult or impossible for the language to guarantee
completely. As in any useful programming language, programmers have enough rope to hang
themselves. The rules and guidelines noted throughout the manual (and collected in Appendix H) try to
make the responsbilities of the language and the programmer clear.

1.5 Program Structure 5

1.5. Program Structure

An Argus distributed application consists of one or more guardians, defined by guardian modules.
Guardian modules may in tum use all the other kinds of modules that Argus provides. Argus
programmers may also write single-machine programs with no stable state, using Argus as essentially a
"concurrent CLU.” Such programs may be used to start up multi-guardian applications. Each module is a
separate textual unit, and is compiled independently of other modules. Compilation is discussed in
Section 3.

2 Concepts for Distributed Programs 7

2. Concepts for Distributed Programs

in this chapter we present an overview of the new concepts in Argus that support distributed programs.
in Section 2.1, we discuss guardians, the module used in Argus to distribute data. Next, in Section 2.2,
we present atomic actions, which are used to cope with concurrency and fallure. In Section 2.3 we
describe remote calls, the inter-guardian communication mechanism. In Section 2.4 we discuss
transmissible types: types whose objects can be sent as arguments or results of remote calis. Finally, in
Section 2.4 we discuss orphans.

2.1. Guardians

Distributed applications are implemented in Argus by one or more modules called guardians. A
guardian abetraction is a kind of data abstraction, but it differs from the data abstractions supported by
clusters (as found in CLU). In general, data abstractions consist of a set of operations and a set of
objects. In a cluster the operations are considered to belong to the abstraction as a whole. However,
guardian instances are objects and their handlers are their operations. Guardian abstraction is similar to
the data abstractions in Simula and Smalitalk-80; guardians are like class instances.

A node is a single physical location, which may have multipie processors. A guardian instance resides
at a single node, although a node may support several guardians. A guardian encapsulates and controls
access to one or more resources, such as data or devices. Access 10 the protected resource is provided
by a set of operations called handlers. intemally, a guardian consists of a collection of data objects and
processes that can be used to manipulate those objects. In general, there will be many processes
executing concurrently in a guardian: a new process is created 10 execute each handler call, processes
may be expilicitly created, and there may be other processes that carry out background aclivity of the
guardian.

The data objects encapsulated by a guardian are local thay cannot be accessed directly by a process
in another guardian. In contrast, guardians are giobal objects: a single guardian may be shared among
processes at several different guardians. A process with a referencs 1o a guardian can call the guardian’s
handiers, and these handiers can access the data objects inside the guardian. Handler calls aliow access
to a guardian’s local data, but the guardian controis how that data can be manipulated.

When a node fails, it crashes. A crash is a "clean"” failure, as opposed to a "Byzantine" failure. A
guardian survives crashes of its node (with as high a probability as needed). A guardian’s state consists
of stable and volatile objects. When a guardian’s node crashes, all processes running inside the guardian
at the time of the crash are lost, along with the guardian's volatile objects, but the guardian's stable
objects survive the cragh. Upon recovery of the guardian's node, the guardian runs a special recovery
process to reconstruct its volatile objects from its stable objects. Since the volatile objects are lost in a
crash, they typically consist only of redundant data that is used % improve performance (for example, an
index into a database). The persistent state of an application shouid be kept in stable objects.

Guardians are impiemented by guardian definitions. These define:

8 Concepts for Distributed Programs

1. The creators. These are operations that can be called to create new guardian instances
that perform in accordance with the guardian definition.

2. The guardian’s stable and volatile state.
3. The guardian’s handlers.

4. The background code. This is code that the guardian executes independent of any handier
calls, for example, to perform some periodic activity.

5. The recover code. This is code that is executed after a crash to restore the volatile objects.
Guardians and guardian definitions are discussed in Section 13.

2.2. Actions

The distributed data in an Argus application can be shared by concurrent processes. A process may
attempt to examine and transform some objects from their current states to new states, with any number
of intermediate state changes. Interactions among concurrent processes can leave data in an
inconsistent state. Failures (for exampie, node crashes) can occur during the execution of a process,
raising the additional possibiiity that data will be left in an inconsistent iMtermediate state. To support
applications that need consistent data, Argus permits the programmer 1o make processes atomic.

We call an atomic process an action. Actions are aftomic in that they are both serializable and
recoverable. By serializable, we mean that the overall effect of executing mukiple concurrent actions is
as if they had been executed in some sequential order, even though they actually execute concurrently.
By recoverable, we mean that the overall effect of an action is "all-or-nothing:" elther all changes made to
the data by the action happen, or none of these changes happen. An action that completes ali its
changes successfully commits; otherwise it aborts, and objects that it modified are restored to their
previous states.

Before an action can commit, new states of all modified, stable objects must be written to stable
storage!: storage that survives media crashes with high probability. Argus uses a two-phase commit
protocol? to ensure that either all of the changes made by an action occur or none of them do. If a crash
occurs after an action modifies a stable object, but before the new state has been written to stable
storage, the action will be aborted.

2.2.1. Nested Actions
Actions in Argus can be nested: an action may be composed of several subactions. Subactions can be
used to limit the scope of failures and to introduce concurrency within an action.

An action may contain any number of subactions, some of which may be performed sequentially, some

Lampeon, B. W., "Atomic Transactions®, in Distribited Systems—Architecture and implementation, Lecture Nows in Compunter
Saencevolumws pages 246-265. SpmoerVe'hg New York, 1981.

2Gray, J. N., "Notes on data base operating systems®, in Operating Systems, An Advanced Course, Bayer, R., Graham, R. M.,
and Seegmtlier, G. (editors), Leciure Notes in Computer Science, volume 60, pages 393-481. Springer-Veriag, New York, 1978,

2.2.1 Nested Actions 9

concurrently. This structure cannot be observed from outside the action; the overall action is still atomic.
Subactions appear as atomic actions with respect to other subactions of the same parent. Thus,
subactions can be executed concurrently.

Subactions can commit and abort independently, and a subaction can abort without forcing its parent
action to abort. However, the commit of a subaction is conditional: even if a subaction commits, aborting
its parent action will abort it.

The root of a tree of nested actions is called a fopaction. Topactions have no parent; they cannot be
aborted once they have committed. SincetheeﬂecbofaaMbncmalwaysboundombyaboﬁing
nspamm,mmmasewmnitpmtoco”sueodmwhemopmbmaﬂemtocom&

In Argus, an action (e.g., a handier call) may returmn objects through either a normal retumn or an
exception and then abont. The following rule should be followed to avoid violating serializability: a
subaction that aborts should not retum any information obtained from data shared with other concument
actions.

2.2.2. Atomic Objects and Atomic Types

Atomicity of actions is achieved via the data objects shared among those actions. Shared objects must
be implemented so that actions using them appear to be atomic. Objects that support atomicity are
referred to as atomic objects. Atomic objects provide the synchronization and recovery needed 10 ensure
that actions are atomic. An atomic type is a type whose objects are all atomic. Some objects do not need
to be atomic: for example, objects that are local 1o a single process. Since the synchronization and
recovery needed to ensure atomicity may be expensive, we do not require that all types be atomic. (For
example, Argus provides all the built-in mutable types of CLU; these types are not atomic.) However, it is
important to remember that atomic actions must share only atomic objects.

Argus provides a number of bullt-in atomic types and type generators. The built-in scalar types (null,
node, bool, char, int, real, and string) are atomic. Parameterized types can also be atomic. Typically,
ankmamdawemmmwmmmlwmwwmmmmm. The
built-in immutable type generators (sequence, struct, and oneof) are atomic if their parameter types are
atomic. In addition, Argus provides three mutable atomic type generators: stomic__ amay,
atomic_record, and atomic_variant. The operations on these types are nearly identical to the normal
array, record, and variant types of CLU. Users may aiso define their own atomic types (see Section 15).

The implementation of the built-in mutable atomic type generators is based on a simple locking model.
There are two kinds of locks: read locks and write locks. When an action calls an operation on an atomic
obiem,tmmmwonmknabd(mthaobhahﬂumm: it acquires a write lock
ifitmnatestheobioct,orareadbdcilnomyexamhesﬂnm The built-in types allow muttiple
concurrent readers, but only a single writer. If necessary, an action is forced to wait until R can obtain the
appropriate lock. Whenawritelockonanob)octisﬁrstobtah.dbymaction,thesystemmd«saoopy

10 Concepts for Distributed Programs

of the object’s state in a new version, and the operations calied by the action work on this version3. I,
ultimately, the action commits, this version will be retained, and the oid version discarded. A subaction's
locks are given to its parent action when it commits. When a topaction commits, its locks are discarded
and its effects become visible to other actions. If the action aborts, the action’s locks and the new version
will be discarded, and the old version retained (see Figure 2-1).

Figure 2-1: Locking and Version Management Rules for a Subaction S, on Object X

Acquiring a read lock:
All hoiders of write locks on X must be ancestors of S.

Acquiring a write lock:
All holders of read and write locks on X must be ancestors of S.
if this is the first time S has acquired a write lock on X,
push a copy of X on the top of its version stack.

Commit:
S’s parent acquires S's lock on X.
if S hoids a write lock on X, then S's version becomes S's parent's version.

Abort:
S's lock and version (if any) are discarded.

More precisely, an action can obtain a read lock on an object if every action holding a write lock on that
object is an ancestor of the requesting action. An action can obtain a write lock on an object if every
action holding a (read or write) lock on that object is an ancestor. When a subaction commits, its locks
are inherited by its parent and its new versions replace those of its parent; when a subaction aborts, its
locks and versions are discarded (see Figure 2-1). Because Argus guarantees that parent actions never
run concurrently with their children, these rules ensure that concurrent actions never hold write locks on
the same object simultaneously.

The ancestors of a subaction are itself, its parent, its parent's parent, and so on; a subaction is a
descendant of its ancestors. A subaction commits to the top ¥ & and all ks ancestors, including the
topaction, commit. A subaction is a committed descendant of an ancestor action i the subaction and all
intervening ancestors have committed. When a topaction attempts to commit, the wo-phase commit
protocol is used to ensure that the new versions of all objects modified by the action and all ks committed

descendants are copied to stable storage. After the new versions have been recorded stably, the oid
versions are thrown away.

User-defined atomic types can provide greater concumency than built-in atomic types. An

%hop«aﬁmdduaipﬁm(mdoﬂmhﬁsmanud)hmtmmmmmm. However, this particular
description does reflect our current implementation.

‘Anexupphe-nbofwwhm. W. and Liskov, B., ‘knﬂqrnomideAmﬁcDahTym,'ACMTmmm
Programming Languages and Systems, volume 7, number 2 (April 1965), pages 244-260.

2.2.2 Atomic Objects and Atomic Types 11

implementation of a user-defined atomic type must address several issues. First, it must provide proper
synchronization so that concurrent calis of its operations do not interfere with each other, and so that the
actions that call its operations are serialized. Second, it must provide recovery for actions using its
objects so that aborted actions have no effect. Finally, it must ensure that changes made 10 its objects by
actions that commit to the top are recorded properly on stable storage. The built-in atomic types and the
mutoxtypegeneratorareuseM|ncoplngwiththesemues User-defined atomic types are discussed
further in Section 15.

2.2.3. Nested Topactions

in addition to nesting subactions inside other actions, it is sometimes useful 1o start a new topaction
inside another action. Such a nested topaction, uniike a subaction, has no special privileges relative to its
"parent™; for example, it is not able to read an atomic object modified by its "parent”. Furthermore, the
commit of a nested topaction is not relative to its "parent™; its versions are written 10 stable storage, and
its locks are released, just as for normal topactions.

Nested topactions are useful for benevolent side effects that change the representation of an object
without affecting its abstract state. For example, in a naming system a name look-up may cause
information to be copied from one location to another, to speed up subsequent look-ups of thet name.
Copying the data within a nested topaction that commits ensures that the changes remain in effect even if
the "parent” action aborts.

A nested topaction is used correctly if it is serializable before its "parent”. This is true ¥ either the
nested topaction performs a benevolent side effect, or ¥ all communication between the nested topaction
and its parent is through atomic objects.

2.3. Remote Calls

An action running in one guardian can cause work to be performed at another guardian by calling a
handler provided by the latter guardian. An action can cause a hew guardian to be created by calling a
creator. Handier and creator calls are remote calis. Remote calis are similar to local procedure calls; for
example, the calling process walts for the call to retum. Rmoukd‘!ertmmlocdpmoowmcalsm
several ways, however.

First, the arguments and results of a remote call are passed by value (see below and aiso Section 14)
rather than by sharing. This ensures that the local objects of one guardian remain local to that guardian,
even if their values are used as arguments or results of remote calls 10 other guardians. The only objects
that are passed by sharing in remote calls are the global objects: guardians, handiers, creators, and
nhodes.

Second, any remote call can raise the exceptions falure and unavailable. (Unilke CLU, not all local
calls can raise failure, see Appendix 1V.) The occurrence of faliure means that the cail is uniikely 1 ever
succeed, so there is no point in retrying the call in the future. Unevadable, on the other hand, means that

!

12 Concepts for Distributed Programs

the call should succeed if retried in the future, but is uniikely to succeed if retried immediately. For
example, failure can arise because it is impossiblie to transmit the arguments or results of the call (see
Section 14); unavailable can arise if the guardian being called has crashed, or ¥ the network is
partitioned.

Third, a handier or creator can be called only from inside an action, and the call runs as a subaction of
the calling action. This ensures that a remote call succeeds al most ance: either a remote call completes
successfully and commits, or it aborts and all of its modifications are undone (provided, of course, that the
actions involved are truly atomic). Although the effect of a remote call coours at most once, the system
may need to attempt it several times; this is why remote calis are made within actions.

2.4. Transmissible Types

Arguments and results of remote calls are passed by value. This means that the argument and result
objects must be copied to produce distinct objects. Not all objects can be copied like this; those that can
are called transmissible objects, and their types are calied ranemigsible Hpes. Only transmissbile
objects may be used as arguments and results of a remote call. In addition, image objects (see Section
6.6) can contain only transmissible objects. Parameterized types may be transmissbie in some instances
and not in others; for example, instantiations of the built-in type generators are transmissible only If their
parameter types are transmissible. While guardians, creators, and handiers are always transmissible,
procedures and Herators are never transmissile.

Users can define new transmissible types. For each transmissible type 7 the external representation
type of T must be defined; this describes the format in which objects of type T are transmitted. Each
cluster that implements a trangmisgible type 7 must contain two procedures, encode and decode, 1o
translate objects of type T to and from their external representation. More information about defining
transmissible types can be found in Section 14.

2.5. Orphans

An orphan is an action that has had some ancestor "perish” or has had the pertinent results of some
relative action lost in a crash. Orphans can arise in Argus due to crashes and explick aborts. For
example, when a parenmt action is aborted, the active descendents & leaves behind become orphans.
Crashes also cause orphans: when a guardian crashes, all active actions with an ancestor at the crashed
guardian and all active actions with commitied descendanis that ran at the crashed guardian become
orphans5. However, having a descendent that is an orphan does not necessarily imply that the parent is
an orphan; as previously described, actions may commit or abort independently of their subactions.

Argus programmers can largely ignore orphans. Argus guarantees that orphans are aborted before

Swalker, E. F., "Orphan Detection in the Argus System", Massachusetts institute of Technology, Laboratory for Computer
Science, Technical Report MITALCS/TR-326, June 1964, .

2.5 Orphans ' 13

mmmmmmmambmmwmw

WMMW“WH*M“ |
types), tmwmm& T

14

3 Environment 15

3. Environment
The Argus environment ensures complete static type checking of programs. It also supports separate
compilation and the independence of guardians.

3.1. The Library

Argus modules are compiled in the context of a lbrary that gives meaning to external identifiers and
allows inter-module type checking. The Argus library contains type information about abstractions; for
each abstraction, the Hbrary contains a description unit, or DU, describing that abstraction and its
implementations. Each DU has a unique name and these names form the basis of type checking.

3.2. Independence of Guardian Images

The code run by a guardian comes from some guardian image. A guardian image contains all the code
needed to carry out any local activity of the guardian; any procedure, iterator or cluster used by that
guardian will be in its guardian image. Any handier calis made by the guardian, however, are carried out
at the called guardian, which contains the code that performs the call. Thus a guardian is independent of

the implementations of the guardians it calls and the implementation of a guardian can be changed
without affecting the implementations of its clients.

3.3. Guardian Creation

When a guardian is created, it is necessary to select the guardian image that will supply the code run
by the new guardian. To this end, each guardian has an associated creation environment that specifies
the guardian images for other guardians it may create. The creation environment is a mapping from
guardian types 1o information that can be used to select a guandian image appropriate for each kind of
node. For greater flexibility, this information can be associated with particular creator objects.

3.4. The Catalog

Somehow, guardians must be able to find other guardians to call for services. A guardian usually has a
reference to any guardian it creates. Also, if a guardian can call some other server guardian, & can learn
about the guardians that the server "knows", because guardians can be passed in remote calls. In
addition, Argus provides a built-in subsystem known by all guardians. This subsystem is called the
catalog. The catalog provides an atomic mapping from names 1o transmissible objects. For example,
when a new guardian is created, it can be catalogued under some well-known name, so that other
guardians can find it in the future. Since we are currently experimenting with various interfaces to the
catalog, we do not include an interface specification here.

16

4 Notation 17

4. Notation
We use an extended BNF grammar to define the syntax of Argus. The general form of a production is:
nonterminal .= altemative

| alternative
| atternative
The following extensions are used:
a, e a list of one or more a's separated by commas: "a" or "a, a" or "a, a, a" etc.
{a} a sequence of zero or more a's: " " or "a” or "a a" etc.
[a] an optional a: " "or "a".

Nonterminal symbols appear in normal face. Reserved words appear in bold face. All other terminal
symbols are non-aiphabetic, and appear in normal face.

Full productions are not always shown in the body of this manual; often alternatives are presented and
explained individually. Appendix | contains the complete syntax.

18

5 Lexical Considerations 19

5. Lexical Considerations

A module is written as a sequence of tokens and separators. A foken is a sequence of "printing" ASCI|
characters (values 40 octal through 176 octal) representing a reserved word, an identifier, a literal, an
operator, or a punctuation symbol. A separafor is a "blank" character (space, vertical tab, horizontal tab,
carriage return, newline, form feed) or a comment. Any number of separators may appear between
tokens.

5.1. Reserved Words
The following character sequences are reserved word tokens:

Table 5-1: Reserved Words

abort eise leave : signails
action elseif mutex stable
any end nil string
array enter node struct
atomic_array equates null tag
atomic_record except oneof tagcase
atomic_variant oxit others tagtest
background false own tagwait
begin for pause terminate
bind foreach proc ~ then
bool fork process topaction
break guardian proctype transmit
cand handier real true
char handiertype record type
cluster handles recover up
coenter has rep variant
continue i resignal when
cor image retum where
creator in retums while
creatortype int seize with

ovt is self wiag
do iter sequence yield
down itertype signal yieids

Upper and lower case letters are not distinguished in reserved words. For example, "end’, 'END’, and
‘'eNd’ are all the same reserved word. Reserved words appear in bold face in this document.

5.2. Identifiers
An identifier is a sequence of letters, digits, and underscores (_) that begins with a letter or underscore,
and that is not a reserved word. Upper and lower case letters are not distinguished in identifiers.

In the syntax there are two different nonterminals for identifiers. The nonterminal ion is used when the
identifier has scope (see Section 7.1); idns are used for variables, parameters, module names, and as
abbreviations for constants. The nonterminal name is used when the identifier is not subject to scope
rules; names are used for record and structure selectors, oneof and variant tags, operation names, and
exceptional condition names.

20 Lexical Considerations

5.3. Literals

There are literais for naming objects of the built-in types null, bool, Int, real, char, and string. Their
forms are described in Appendix |.

5.4. Operators and Punctuation Tokens
The following character sequences are used as operators and punctuation tokens.

Table 5-2: Operator and Punctuation Tokens

([. ~ ¢ < ~< =

)] $ b | <= ~Cm ~m
{ = n + >= ~>m= &
} , @ / - > ~> |

5.5. Comments and Other Separators
A comment is a sequence of characters that begins with a percent sign (%), ends with a newline
character, and contains only printing ASCIl characters (including blanks) and horizontal tabs in between.

For example:
z := afi] + % a comment in an expression
bfi]

A separator is a blank character (space, vertical tab, horizontal tab, carriage retum, newtine, form feed)
or a comment. Zero or more separators may appear between any two tokens, except that at least one
separator is required between any two adjacent non-sel-terminating tokens: reserved words, identifiers,
integer iterals, and real literals. This rule is necessary to avoid lexical ambiguities.

6 Types, Type Generators, and Type Specifications 21

6. Types, Type Generators, and Type Specifications

A lype consists of a set of objects together with a set of operations used to manipulate the objects.
Types can be classified according to whether their objects are mutable or immutable, and atomic or
non-atomic. An immutable object (e.g., an integer) has a value that never varies, while the value (state)
of a mutable object can vary over time. Objects of atomic types provide serializability and recovery for
accessing actions. Non-atomic types may provide synchronization by specifying that particular operations
are executed indivisibly on objects of the type. An operation is indivigible if no other process may affect or
observe intermediate states of the operation’s execution. indivisibility properties will be described for all
the built-in non-atomic types of Argus.

A type generator is a parameterized type definition, representing a (usually infinite) set of related types.
A particular type is obtained from a type generator by writing the generator name along with specific
values for the parameters; for every distinct set of legal values, a distinct type is oblained (see Section
12.6). For exampie, the array type generator has a single parameter that determines the element type;
array[int], array{real], and array{array{int]] are three distinct types defined by the array type generator.
Types obtained from type generators are calied parameterized types or instandiations of the type
generator; others are called simple types.

in Argus code, a type is specified by a syntactic construct calied a type_spec. The type specification
for a simple type is just the identifier (or reserved word) naming the type. For parameterized types, the
type specification consists of the identifier (or reserved word) naming the type generator, together with the
actual parameter values.

To be used as arguments or results of handier and creator calis, or as image objects (see Section 6.6),
objects must be transmissible. Most of the built-in Argus typee are transmissible, that is, they have
transmissible objects. However, procedures and iterators are never transmissible. For type generators,
transmissibility of a particular instantiation of the generator may depend upon transmigsibility of any type
parameters. A transmissible type provides the pseudo-operation tranamit and iwo intemal operations
encode and decode. Generally, encode and decode are hidden from clients of the type. They are called
implicitly during message transmission (see Section 14) and in creating and decomposing image objects
(see Section 6.6). Transmissibillty is discussed further in Section 14.

Argus provides ail the built-in types of CLU as well as some new types and type generators. This
section gives an informal introduction to the built-in types and type generators provided by Argus. Many
details are not discussed here, but a complete definition of each type and type generator is given in
Appendix II.

22

6.1. Type inciusion
mmammnmbmmmam mmqmwhm

6.2.1. Nuli

6.2.3 Int 23

The binary operations add (+), sub (-), mul (*), div (/), mod (//), power (**), max, and min are provided, as .
well as unary minus (-) and abs. There are binary comparison operations /t (<), /e (<=), equal (=),
ge (>=), and gt(>). There are two operations, from_to and from_{o_ by, for Rerating over a range of
integers. See Section |1.4 for details.

6.2.4. Real

The type real models (a subset of) the mathematical real numbers. The exact subset is not part of the
language definition. Reals are immutable, atomic, and transmissible, although transmission of real
objects between heterogeneous machine architectures may not be exact. Real lterals are written as a
mantissa with an optional exponent. A mantissa is either a sequence of one or more decimal digits, or
two sequences (one of which may be empty) joined by a period. The mantissa must contain at least one
digit. Anexponentis’E'or'e',optionalyblbwedby'#or'—',iomdbyomommdecmm. An
exponent is required if the mantissa does not contain a period. As is usual, mEx = nr10%. Examples of
real literals are:

3.14 3.14E0 314e-2 .0314E42 3. .14

As with integers, the operations add(+), sub(~), mui(*), div(), mod /), power(**), max, min,
minus (), abs, It (<), le (<=), 6qual (=), ge (>=), and gt (>), are provided. It is important 10 note that there
is no form of implicit conversion between types. The 2r operation converts an integer 10 a real, r2/ rounds
a real to an integer, and trunc truncates a real to an integer. See Section 1.5 for details.

6.2.5. Char

The type char provides the alphabet for text manipulation. Characters are immutable, atomic,
transmissible, and form an ordered set. Every implementation must provide at least 128, but no more
than 512, characters; the first 128 characters are the ASCII characters in their standard order.

Literals for the printing ASCII characters (octal 40 through octal 176), other than single quote (') or
backslash (\), can be written as that character enclosed in single quotes. Any character can be written by
enclosing one of the escape sequences listed in Table 6-1 in single quotes. The escape sequences may
be written using upper case letters, but note that escape sequences of the form \&* are case sensitive. A
table of literals is given at the end of Appendix |. Exampies of character literals are:

\7 a " - " \B' \177

There are two operations, i2c and c2i, for converting between integers and characters: the smallest
character corresponds to zero, and the characters are numbered sequentially. Binary comparison
operations exist for characters based on this numerical ordering. It (<), /e (<=), equal (=), ge (>=), and
gt (>). For details, see Section I1.6.

the ond of & Sing Wi aMpWNt. v comvmee
mnm&m -
m»).maw W“ﬁ”i&?

6.2.7. Any
m«mmmmwnmm-

Angas. 'rnumnima:“ ot - o SRR

operalion genessior of YPs SNy

”M“WWﬂhmﬁazv aiing o shiees ae
‘Operations provides by P Sy RSt ShangE Sl MU,

6.2.7 Any 25

the mutability and atomicity of an any object depend on the mutability and atomicity of the contained
object. Objects of type any are not transmissible.

The create operation is parameterized by a type; create takes a single argument of that type and
retums an any object containing the argument. The force operation is also parameterized by a type; it
takesananyandextradsanouodofthdtype.signaﬂmmwlmmmdslypeis
not included in the parameter type. The is_1ype operation is parameterized by a type and checks whether
its argument contains an object whose type is included in the parameter type. The detalled specification
is found in Section 11.19.

6.2.8. Sequence Types
Sequences are immutable and they are atomic or transmissible when instantiated with atomic or
transmissible type parameters. Although an individual sequence can have any length, the length and
members of a sequence are fixed when the sequence is created. The elements of a sequence are
indexed sequentially, starting from one. A sequence type specification has the form:
sequence [type_actual |
where a type_actualis a type_spec, possibly augmented with operation bindings (see Section 12.6).

The new operation returns an empty sequence. A sequence constructor has the form:

type_spec $ [[expression, ...]]
and can be used o create a sequence with the given elements.

Although a sequence, once created, cannot be changed, new sequences can be constructed from
existing ones by means of the adoh, addl, remh, and rem/ operations. Other operations include feich,
replace, top, bottom, size, the elements and indexes iterators, and subseq. invocations of the fetch
operation can be written using a special form:

qli] % fetch the element at index iof q .

Two sequences with equal elements are equal. The equal (=) operation tests i two sequences have
equal elements, using the equal operation of the element type. Sim#ar tests i two sequences have
similar elements, using the similar operation of the element type.

All operations are indivisible except for fil_copy, equal, similar, copy, encode, and decode, which are
divisible at calls to the operations of the type parameter.

For the detailed specification, see Section 11.8.

6.2.9. Array Types

Arrays are one-dimensional, and mutable but not atomic. They are transmissible only if their type
parameter is transmissible. The number of elements in an array can vary dynamically. There is no notion
of an "uninitialized” element.

Wmam e

"0 slomerts. Ao Ill "m@
mtﬁ.t 2.3.41

craates an veger sy with low bound §, and four slements, whily
mmm

mmmm-mwu“mmmmmumwm
divieibie st calis o opemtions of e

§.2.10. Structuse Types
A snchre iﬁ””d”&ﬂ‘ ‘

,:\‘.,’.‘ /‘ II.' L ‘

6.2.10 Structure Types 27

A structure is created using a structure constructor. For example, assuming that "info” has been
equated to a structure type:
info = structflast, first, middle: string, age: Int)
the following is a legal structure constructor:
info $ {last: "Scheifler”, first: "Robert", age: 32, middle: *W."}
Anexpressbnmstbeolvenforeachso%r,bmunomrmdgrwpmgofsabmrsneednot
resembie the corresponding type specification.

For each selector "sel", there is an operation get sel to extract the named component, and an
operation replace_sel to create a new structure with the named component replaced with some other
object. Invocations of the get operations can be written using a special form:

st.age % get the "age’ component of st

As with sequences, two structures with equal components are in fact the same object. The equal (=)
operation tests Iif two structures have equal components, using the equal operations of the component
types. Similar tests if two structures have similar components, using the similar operations of the
component types.

All operations are indivigible except for equal, similar, copy, encode, and decode, which are divisible at
calis to the operations of the type parameter.

For the detailed specification, see Section 11.11.

- 6.2.11. Record Types
Arecordisamableoolleaionofoneormomnamedobjoas. Records are never atomic, and are
transmissible only i the parameter types are ali transmissible. A record type specification has the form:
record | field_spec, ..]
where (as for structures)
field_spec .:= name , ... : type_actual
Salectorsnmstbeunimewmﬁnaweclﬁcaﬂon.butthoorderingandgfouphgofscloclonbuﬂmponarn.

A record is created using a record constructor. For example:
professor § {last: "Hertihy", first: "Maurice", age: 32, middie: "P.")

For each selector "sel", there is an operation get se/ to extract the named component, and an
operation set sel 1o replace the named component with some other object. Invocations of these
Operations can be written using a special form:

r.middie % get the ‘middie’ component of r
r.age := 33 %setthe'aoe'con'pommofrtosa(bycalm\gsat_age)

As with arrays, every newly created record has an identity that is distinct from all other records; two
records can have the same components without being the same record object. The identity of records

28 Types, Type Generators, and Type Specifications

can be distinguished with the equal (=) operation. The similar? operation tests if two records have equal
components, using the equa/ operations of the component types. Similar tests if two records have similar
components, using the similar operations of the component types.

All operations are indivisible, except similar, similar1, copy, encode, and decode, which are divisble at
calis to operations of the type parameters.

For the detailed specification, see Section I1.12.

6.2.12. Oneof Types
A oneof type is a tagged, discriminated union. A oneof is an immutable labeled object, to be thought of

as "one of" a set of akemnatives. The label is calied the fag, and the object is called the value. A oneof
type specification has the form:

oneof | field_spec, ...]
where (as for structures)

field_spec ::= name , ... : type_actual
Tagsmstbeun’wewithhaspocmcatbn.buttheordoﬂngandgmuplmoﬂagsisunirmoﬂam. An
instantiationlsatombmtmmbsﬂelaMoMylaﬂthetypomMmmaombomammwue.

Foreadnag"t'ofaomoftype,thereisannke_topordmwhlehtmsanobjoctofthetype
associatedwiththotag,andretumstheobiea(asaonoof)labebdmm't'.

Todomnmmmetagandvahoofaomdobhct.ommmdymummmmwoo
Section 10.14).

The equal (=) operation tests i two oneofs have the same tag, and ¥ 80, tests if the two value
components are equal, using the equal operation of the value type. Similar tests if two oneofs have the
sametag.aMWw.mlﬂnMvwown\pommamm,mmmmdmvm
type.

All operations are indivisible, except equal, similar, similar?, copy, encode, and decode, which are
divisible at calis to operations of the type parameters.

For the detailed specification, see Section Il.14.

6.2.13. Varlant Types
A variant is a mutable oneof. VaHaMsareneverabmicandmtraMMssiblellmdomyﬂheirtype
parameters are all transmissible. A variant type specification has the form:
variant [field_spec, ...]
where (as for oneofs)

field_spec ::= name , ... : type_actual

6.2.13 Variant Types 29

The state of a variant is a pair consisting of a label called the tag and an object called the vajue. For each
tag "t of a variant type, there is a make_t operation which takes an object of the type associated with the
tag, and retums the object (as a variant) labeled with tag “t". In addition, there is a change_t operation,
whichtakesanexistmvafhmaruanobbdotﬂntwomwlh'r,andctwmsthosmaofthe
variant to be the pair consisting of the tag "t" and the given object. To determine the tag and value of a
variant object, one normally uses the tagcase statement (see Section 10.14).

Every newly created variant has an identity that is distinct from akt other variants; two variants can have
the same state without being the same variant object. The identity of variants can be distinguished using
the equal (=) operation. The similar1 operation tests if two variants have the same tag, and ¥ so, tests If
the two value components are equal, using the equal operation of the value type. Similar tests ¥ two
variantshavethesametag.andlfso.testsilthetwovaﬂneomneﬁsarestnﬁhr,uslngthoslmilar
operation of the value type.

All operations are indivisible, except similar, similar1, copy, encode, and decode, which are divisible at
calls to operations of the type parameters.

For the detailed specification, see Section 11.15.

6.2.14. Procedure and lterator Types

Procedures and iterators are created by the Argus system or by the bind expression (see Section 9.8).
They are not transmissible. As the Identity of a procedure or ierator is immutable, they can be
considered to be atomic. However, their atomicity can be violated if a procedure or Rerator has own data
and thus a mutable state. The immutabilty and atomicity of a procedure or Rerator with own data
depends on that operation’s specified semantics.

The type specification for a procedure or iterator contains most of the information stated in a procedure
ofr iterator heading, a Mm type speciica

where

returns «:= retumns (type_spec , ...)
yields s:=yields (type_spec , ...)
signals «:= signals (exception , ...)
exception :i=name [(type_spec,...)]

The first list of type specifications des bes the number, types, and order of arguments. The returns or

ylekis clause gives the number, types, s
clause lists the exceptions raised by the

types, and order of the objects to be remrr:oi:

unique. The ordering of exceptions is not

order of the objects to be retumed or yieided. The signais
procedure or Rerator; for each exception name, the number,
also given. ANl names used in a signais clause must be
ant.

30 Types, Type Generators, and Type Specifications

Procedure and iterator types have an equal(=) operation. Invocation is not an operation, but a
primitive in Argus. For the detailed specification of proctype and Rertype, see Section I1.17.

6.3. Atomic_Array, Atomic_Record, and Atomic_Variant

Having described the types that Argus inherited from CLU, we now describe the new types in Argus.
The mutable atomic type generators of Argus are atomic_airay, atomic_record, and atomic_variant.
Types obtained from these generators provide the same operations as the analogous types obtained from
array, record, and variant, but they differ in their synchronization and recovery properties. Conversion
operations are provided between each atomic type generator and is non-atomic partner (for example,
atomic_array|t}$aa2a converts from an atomic array to a (non-atomic) aray).

An operation of an atomic type generator can be classified as a reader or writer depending on whether
it examines or modifies its principal argument, that is, the argument or result object of the operation’s
type. (Forbinatyopemions,suohasar_gos_anmoparalionhdasﬂhdmmbeach
argument.) Intuitively, a reader only examines (reads) the state of its principal argument, while a witer
modifies (writes) its principal argument. Operations that create objects of an atomic type are classified as
readers. Reader/writer exclusion is achieved by locking: readers acquire a read lock while writers
acquire a write lock. The locking rules are discussed in Section 2.2.2.

lfoneormoreofthetypopawmtersismn-abnﬁc,monﬂwmwlmwpeismtatonicbecause
modifications to component objects are not controlied. However, read/write locking still occurs, as
described above. Ms.mamwmmmam:mmm«mm
ememdabmwswmmawmm;amhmmmwonkumwbbeawm
solution to a problem. Awmiclypegemratorsyhldlmnsnmbletypesaﬂylthetwoparammmau
transmissible.

Specialoperatbnsareprovidodioread\ammictypeoenernortohstmdrmnimlatatlwlocks
associated with reader/writer exclusion. These operations are useful for implementing user-defined
atomic types (see Section 15). The tagtest and tagwalt statements (see Section 10.15) provide
additional structured support for atomic_variants. The operations can_read, can_write, Test_and_read,
and test_and_write provide relatively unstructured access to lock information. For complete definitions of
these operations, see Sections 11.10, 11.13, and 11.16.

Assuming normal termination, the following operations acquire read locks on their principal arguments
or the objects that they create.

atomic_array: creals, new, predict, fill, fil_copy, size, low, high, empty, top, botlom, feich, similar,
similar1, copy, copy1, elements, indexes, test _and__read, a2aa, aala, encode,
decode

atomic_record. create, get _, similar, similar1, copy, copy1, test_and_read, ar _gets _ar (second
argument), r2ar, ar2r, encode, decode

atomic_varlant: make_, is_, value_, av _gets_av (second argumennt), simvlar, similar1, copy, copy1,
test_and_read, v2av, av2v, encode, decode

6.3 Atomic_Array, Atomic_Record, and Atomic_Variant 31

The operations similar and similar1 acquire read locks on both arguments. The operations copy and
copy1 acquire a read lock on the value retumed as well as their principal argument. Test_and_readis a
reader only if it retums true; otherwise It is neither a reader nor a writer.

Assuming normal termination, the foliowing operations acquire write locks on their principal arguments.
atomic_array: set_low, trim, store, addh, addl, remh, remi, test_and_write
atomic_record: set_, ar_gets_ar (first argument), fest_and_write
atomic_varlant: change_, av_geis_av (first argument), lest_and_write

Test_and_write is a writer only if it returns true; otherwise It is nelther a reader nor a writer.

The equal, can_read, and can_write operations are neither readers nor writers.

When an operation of atomic_ array terminates with an exception, Rs principal argument is never
modified; however, the atomic_array operations listed above as writers always obtain a write lock before
the principal argument is examined, hence there are cases in which they will obtain a write lock and only
read, but not modify their principal argument. For example, atomic_ amay{t}$irim is a writer when It
signais bounds. On the other hand, when an atomic_amray operation raises a signal because of an
invalid argument, no locks are obtained. For exampie, when atomic_arraylt}$rim signais negative_size,
itisneltheramadernorawmersmootheanay'sstmbmm-xuumdnornaodmod(oMytheimagar
argument is examined).

For the detailed specification of atomic arrays, see Section 11.10; for atomic records, see Section 11.13;
and for atomic variants, see Section 11.16.

6.4. Guardian Types
Guardian types are user-defined types that are implemented by guardian definitions (see Section 13).
A guardian definition has a header of the form:

idn = guardian [pamms] s idn, ... [handiesidn, ...] [where]
Thecreatorsamtheoperatiomnanndhtheidermﬁerlstuwlmls;amatorisaspecialkindof
operatbnthatcanbecalbdmcmaaanumumbohanhawommewnhtmmm
definition. Each guardian optionally provides handiers that can be called to interact with it; the names of
these handlers are listed in the identifier list following handies. (See Section 13 for more details.)

A guardian definition named g defines a guardian interface type g. An object of the guardian interface
typepmvbesankﬂenacebaguamnmatmm”hmmwkmmmdeﬁmm. An
interfmeobiectbcmmadmmveranewwardanbmw,wmonmmnmobhdmbeused
to access the guardian’s handlers. Interface objects are trangmissible, and after transmission they still
give access to the same guardian. In this manual a "guardian interface object” is often called simply a
"guardian object".

The guardian type g for the guardian definition named g has the following operations.

32 Types, Type Generators, and Type Specifications

1. The creators listed in the is list of the guardian definition.

2. For each handler name h listed in the handies Kist, an operation get h with type:
proctype (g) returns (h?), where htis the type of h.

3. Equal and similar, both of type: proctype (g, 9) returns (boof), which return true only if
both arguments are the same guardian object.

4. Copy, of type: proctype (g) returns (g), which simply returns its argument.
5. transmit.
A creator may not be named equal, similar, copy, print, or get_hwhere his the name of a handler.

ThusKxisavaﬂabledenotk\gaguardlanhuedacaob]ectdtypea.mdhisahandlerofg,then
g%get_h(x) will return this handler. As usual with get _ operations, this call can be abbreviated 10 x.h.
NMathatmehandemtm"mwesarenmwemmmmwmmtwe;tmmmbe
illegal.

A guardian interface type is somewhat like a structure type. Its objects are constructed by the creators,
and decomposed by the get_ operations. Guardian interface objects are immutable and atomic.

6.5. Handler and Creator Types
Creators are operations of guardian types. Handler objects are created as a side-effect of guardian
creation. Unlike procedures and Herators, handiers and creators are transmissible.

Thetypesofhandlefsandcreatorsresenbletmwpuotpmcoams:

handiertype ([type_spec, ...]) [retums] [signais]
creatortype ([type_spec, .-.l)[rowml[ml

Thearwmem,nomalmwn,andexoeptbnmultypesmmbomm. The signais list for a
mmwmmmmmamm,ammmwm
the interface of all creators and handiers.

Handler and creator types provide equal and similar operations which return true ¥ and only ¥ both
ammmsamtheumobba.mdoopyopemmmmmmw. For the detalled
specification of handiertype and crestortype, see Section 11.18.

6.6. Image

The image type provides an escape from complie-time type checking. The main difference between
Image and any is that Image objects are transmissible. An image object can be thought of as a portion
danmwmatmmmmmmmmmw. image
objects are immutable and atomic.

The createoperationispammtorizodbyatransmssbblwe;ilt&uasmwofﬂmtypo
and encodes it (using the encode operation of that type) into an image object. The force operation is also

6.6 Image 33

parameterized by a transmissibie type; it takes an image object and decodes it (using the decode
operation of that type) to an object of that type, signaling wrong_#ype if the encoded object’s type is not
included in the parameter type. The is_type operation is parameterized by a type and checks whether its
argument is an encoded object of a type included in the parameter type. See Section 11.20 for the
detaited specification.

6.7. Mutex

Mutex objects are mutable containers for information. They are not atomic, but they provide
synchronization and control of writing to stable storage for their contained object. Mutex iself does not
provide operations for synchronizing the use of mutex objects. Instead, mutual exclusion is achieved
using the seize statement (see Section 10.16), which allows a sequence of statements to be executed
while a process is in exclusive possession of the mutex object. Mutex objects are transmissible if the
contained object is transmissible.

TMtypogmomtorthasasmparMMbmwdthmMobim. A mutex
type specification has the form:
mutex [type_actual]
Mutex types provide operations to create and decompose mutex objects, and to notify the system of
modifications to the mutex object or its contained object.

Thea'eateoporationtakosashglearuummoﬂtwparmtypeandcreatosanewrmtexobied
containing the argument object. The get_value operation obtains the contained object from its mutex
argument, while set_value modifies a mutex object by repiacing its contained object. As with records,
these operations can be called using special forms, for example:

m: mutex{int] := mutex{int}$create (0)
x: Int := m.value % extract the contained object
m.value ;= 33 % change the contained object

Set_value and get_value are indivisible.

Mutexes can be distinguished with the equa/ (=) operation. There are no operations that could cause
or detect sharing of the contained object by two mutexes. Such sharing is dangerous, since two
processeswouldnotbesynchrorﬁzodwnhoachou\erhttwmofmeoommedob}eaueach
possessed a different mutex. in general, i an object is contained in a mutex object, it should not be
containedinanyotherobied.norshoulditbereferredtobyavaﬁableexceptwhenlnaumstakmem
that has possession of the containing mutex.

There are some mutex operations that seize the mutex object automatically. Copy seizes its single
argument object. Similar seizes its two argument objects; the first argument object is seized first and then
the second. in both cases possession is retained until the operations returmn. Also, when a mutex object
isenooded(foramsageorwhenmakknganmgo).moobjodbmwwbmuwy. See Section
I1.21 for the detailed specification of mutex.

34 ‘ Types, Type Generators, and Type Specifications

Mutexes are used primarily to provide process synchronization and mutual exclusion on shared data,
especially to implement user-defined atomic types. In such implementations, it is important to control
writing to stable storage. The mutex operation changed provides the necessary control. Changed
informs the system that the calling action requires that the argument object be copied to stable storage
before the commit of the action’s top-level parent (topaction). Any mutex is asynchronous: its contained
object is written to stable storage independently of objects that contain that mutex. See Section 15 for
further discussion of user-defined atomic objects.

6.8. Node

Objects of type node stand for physical nodes. The operation here takes no arguments and returns
the node object that denotes its caller's node. Equal, simiar, and COpy operations are also provided.

Themainuseofnodoobiedsisinwardiancreatbn(msm13),whemheymusedtocwsea
newly created guardian 1o reside at a particular node. Objects of type node are immutable, atomic, and
transmissible. For the detalled specification, see Section .2.

6.9. Other Type Specifications
A type specification for a user-defined type has the form of a reference:
reference .=

| idn { actual_parm, ...]

| reference $ name
whereeachactual_pannnustbeaconpﬂﬂmwnquemM(mSodbn72)wam_md
(see Section 12.8). Anmmm.mmwmbuuuaaawmﬂ;m
sywhpmmdbrmmmadatawmwonmubmhmmm(msm
12.4). Fortypegonm.mwwmmmmewmmwmmmmw.
The order of parameters is aways significant for user-defined types (see Section 12.5).

TMreamMospechltypespodwbmthamusedmnkMMMnewMadm: rep, and
ovt. Thesefonnsmayomybeusedwittﬁnacmter;theymdbcusudmh&dbn 123.

Within an Wemematbnofmabdmbn,fonnalpwmmdodmdmhtypocmbouuduwpe
specifications. Finally, idemﬂiemmalhavebeonomaodtotypoapwﬂcabmmnmbemdastype
specifications.

7 Scopes, Declarations, and Equates 35

7. Scopes, Declarations, and Equates
This section describes how to introduce and use constants and variables, and the scope of constant

and variable names. Scoping units are described first, followed by a discussion of variables, and finally
constants.

7.1. Scoping Units
Scoping units follow the nesting structure of statements. Generally, a scoping unit is a body and an
associated "heading”. The scoping units are as follows (see Appendix | for detalls of the syntax).
1. From the start of a modse to its end.
2. From a cluster, proc, er, equates, guardian, handler, or creator to the matching end.

3. From a for, do, begin, background, recover, enter, coenter, or seize to the matching
end.

4. From a then or else in an If statement to the end of the comesponding body.

5.Fromatag,mc,orothoninahcuu.ugm,orwuammtomoondonhe
corresponding body.

6. From a when or others in an except statement to the end of the corresponding body.
7. From the start of a fype_set to its end.
8. From an action or topaction to the end of the corresponding body.

The structure of scoping units is such that ¥ one scoping unit overiaps another scoping unit (textually),
then one is fully contained in the other. The contained scope Is called a nested scope, and the containing
scope is called a surrounding scope.

New constant and variable names may be introduced in a scoping unt. Names for constants are
introduced by equates, which are syntactically restricted to appear grouped together at or near the
beginningofscopingunﬂs(excepﬂntypesets). For example, equates may appear at the beginning of a
body, but not after any statements in the body.

In contrast, declarations, which introduce new variables, are allowed wherever statements are allowed,

and hence may appear throughout a scoping unit. Equates and declarations are discussed in more detail
in the following two sections.

In the syntax there are two distinct nonterminals for identifiers: idn and name. Any identifier introduced
byanaquateordochratbnisanIdn,as!sthonmonhemmhbeingdeﬁmd.andanyoperatbmn
has. An idn names a specific type or object. The other kind of identifier is a name. A name is generally
used to refer to a piece of something, and is always used in context; for example, names are used as
record selectors. The scope rules apply only to idns.

The scope rules are simple:
1. An idn may not be redefined in its scope.

2. Any idn that is used as an external reference in a module may not be used for any other
purpose in that module.

36 Scopes, Declarations, and Equates

Unlike other "block-structured™ languages, Argus prohibits the redefinition of an identifier in a nested
scope. An identifier used as an external reference names a module or constant; the reference is resolved
using the compilation environment.

7.1.1. Variables

Objects are the fundamental "things” in the Argus universe; variables are a mechanism for denoting
(i.e., naming) objects. A variable has three properties: its type, whether & is stable or not, and the object
that it currently denotes (if any). A variable is saki to be uninitialized ¥ R does not denote any object.
Attempts to use uninitialized variables are programming errors and (if not detected at compile-time) cause
the guardian to crash.

There are only three things that can be done with variables:

1. New variables can be introduced. Declarations perform this function, and are described
below.

2. An object may be assigned to a variable. After an assignment the variable denotes the
object assigned.

3. A variable may be used as an expression. The value of a variable is the object that the
variable denotes at the time the expression is evaluated.

7.1.2. Declarations
Declarations introduce new variables. The scope of a variable is from its deciaration 10 the end of the
smaliest scoping unit containing its declaration; hence, variables must be deciared before they are used.

There are two sorts of declarations: those with initialization, and those without. Simple declarations
(those without initialization) take the form
decl ..=idn, ... : type_spec
A simple declaration introduces a list of variables, ail having the type given by the fype_spec. This type
determines the types of objects that can be assigned to the variable. The variables introduced in a simple
declaration initially denote no objects, i.e., they are uninitiaitzed.

A declaration with initialization combines declarations and assignments into a single statement. A
declaration with initialization is entirely equivalent to one or more simple deciarations followed by an
assignment statement. The two forms of declaration with inttialization are:

idn : type_spec := expression
and

decl,, «.., decl, := call [@ primary]
These are equivalent to (respectively):

idn : type_spec
idn = expression

and

7.1.2 Declarations 37

decl, ... decl, % declaring idn, ... idn,,

idn,, .., idn,, = call [@ primary]
in the second form, the order of the idns in the assignment statement is the same as in the original
declaration with initialization. (The call must return m objects.)

7.2. Equates and Constants

An equate allows an identifier to be used as an abbreviation for a constant, type set, or equate module
name that may have a lengthy textual representation. An equate also permits a mnemonic identifier to be
used in place of a frequently used constant, such as a numerical value. We use the term constant in a
very narmow sense here: constants, in addition to being immutable, must be computable at compile-time.
Constants are either types (built-in or user-defined), or objects that are the results of evaluating constant
expressions. (Constant expressions are defined below.)

The syntax of equates is:

equate ..= idn = constant

| idn = type_set
| idn = reference

constant ..= type_spec
| expression

type_set 3= { idn | idn has oper_decl, ... { equate } }

reference .. idn
| idn [actual_pam , ...]
| reterence $ name
References can be used to name equate modules.

An equated identifier may not be used on the left-hand side of an assignment statement.

The scope of an equated identifier is the smallest scoping unit surrounding the equate defining &; here
we mean the entire scoping unit, not just the portion after the equate. All the equates in a scoping unit
must appear grouped near the beginning of the scoping unit. The exact placement of equates depends
on the containing syntactic construct; usually equates appear at the beginnings of bodies.

Equates may be in any order within the a scoping unit. Forward references among equates in the

same scoping unit are allowed, but cyclic dependencies are illegal. For example,
X=Y
y=2z
zZ=3

is a legal sequence of equates, but

38 Seopes, Deciarations, and Equates

Xmy
y=2
ZmX

is not. Since equates introduce idns, the scoping resiricions on idns apply (L.e., the idns may not be
defined more than once).

7.2.1. Abbrevistions for Types , o
identifiers may be equated 1o type speciiications, giving shinevistions Ko Yo names.

7.2.2. Constant Expressions
We define the subset of objecis thet equalted ideniiers may dencle by Siing which expressions are
constant exprassions. mthﬁﬁmu hmmhm
expression that can be evalusted at COmplle-thne 15 Prochns on Innishie SN of & bulk-in type. This
inciudes: ’
1. Literals.

2. identifiers equsted to constants.

3. Formal paramsiers.

4. Procediure, Rerstor, and crealor names.

5. mm(mmmmnmwnmwm

&mmummuﬁm’m*mnﬂ

The bullin inwrulsble types are: n.u.“m;
mmmmmmum

mwmnmﬂmmaMhmkmmm

8 Assignment and Calis 39

8. Assignment and Calls

The two fundamental activities of Argus programs are calls and assignment of computed objects to
variables.

Argus programs should use mutual exclusion or atomic data to synchronize access to all shared
variables, because Argus supports concurrency and thus processes can interfere with each other during
assignments. For example,

i=1

j=2
is not equivalent to

Lj=1,2
in the presence of concurrent assignments to the same variables, because any interieaving of indivisible
events is possible in the presence of concurrency.

Argus is designed to aliow complete compiie-time type-checking. The type of each variable is known
by the compiler. Furthermore, the type of objects that couki result from the evaluation of any expression
is known at compile time. Hence, every assignment can be checked at compile time to ensure that the
variable is only assigned objects of its declared type. An assignment v := E is legal only ¥ the type of Eis
included the type of v. The definition of type inclusion is given in Section 6.1.

8.1. Assignment
Assignment causes a variable to denote an object. Some assighments are implicitly performed as part
of the execution of various mechanisms of the language (in exception handiing, and the tagcase, tagtest,

and tagwalt statements). All assignments, whether implicit or expiicit, are subject to the type inclusion
rule.

8.1.1. Simple Assignment
The simplest form of assignment statement is:
idn := expression

In this case the expression is evaluated, and then the resulting object is assigned to the variable named
by the idn in an indivisible event. Thus no other process may observe a "half-assigned™ state of the
variable, but another process may observe various states during the exprassion evaluation and between
the evaluation of the expression and the assignment. The expression must return a single object (whose
type must be included in that of the variable).

8.1.2. Multiple Assignment
There are two forms of assignment statement that assign to more than one variable at once:
idn , «.. = expression , ...
and

40 Assignment and Calls

idn , ... := call [@ primary]

The first form of multiple assignment is a generalization of simple assignment. The first variable is

are all evaluated (from left to right) before any assignments are performed. The assignment of multiple
obiectstormmplevariablesbmmmmm.mmmahowmhmmmtho
actual assignment. Themmberofvaﬁabbsmthaﬂstmstequdunmﬂbordexprusbm,mvaﬂable
may occur more than once, andthetypeoieachvaﬂablemmmmetwooﬁheoomspondim
expression.

The second form of multiple assignment allows one to retain the objects resulting from a call returning
two or more objects. Thefirstvaﬁabhisassbdeﬁrstobiect,hosmadvadabbhesecoMobiea,
andsoon,bmautheassignmmsarecarrledoutindivisbly. The order of the objects Is the same as in
the return statement executed in the called routine. The number of variables must equal the number of
objectsretumed,mvaﬁab!emayocqnmretrwnonce.ammetypedmmmimbdethe
corresponding return type of the called procedure.

8.2. Local Calls
In this section we discuss procedure calls; iterator calls are discussed in Section 10.12. However,
argument passing is the same for both procedures and iterators.

Local calis take the form:
primary ([expression, ...])

The sequence of activities in performing a local call are as follows:
1. The primary is evaluated.

2. The expressions are evaluated, from left to right.

3.vaaﬂauumnmmmbmmwdmemm being
called (i.e., a new environment is created for the called routine to execute in).

4. The objects resulting from evaluating the expressions (the actual arguments) are assigned
totrneoorrespondingnewvaﬂabbs(mefonmlw). The first formal is assigned the
first actual, the second formal the second actual, and so on. The type of each expression
mstbehcbdedlnthetypeoitheeonupommglonnﬂammm.

5. Cornrolistransferredtotherouﬂneatthestanoﬂsbody.
A call is considered legal in exactly those situations where all the (implicit) assignments are legal.

Aroutinermyassignanobjecttoafonnalarwmemvaﬁm;thedfedlsimaslmatobjoctwere
assigned to any other variable. From the point of view of the called routine, the only difference between
its formal argument variables and its other local variables is that the formals are initialized by its calier.

Procedures can terminate in two ways: they can terminate normally, returning zero or more objects, or
they can terminate exceptionally, signalling an exceptional condition. When a procedkire terminates

8.2 Local Calls 41

normally.anyresultobpdsboeomeavailabletotheedor,mdcmbomiomdtovariabbcorpassedas
arguments to other routines. Mnnapmad;mtem“oxeeptbmy.mﬂowofoommmnnotgoto
thepointofretumoﬂhecau,Mratherwi!!gotoanexoeptbnhmder(mSeaion11).

8.3. Handler Calls

AsexplainedinSedionzandinSection13,ahanaorisanoporationthatbelongstosomeguardian.
Ahandlercallcausesanacmaﬁonofthomdhandbrbmnaﬂhehamm'swammn;theactivation is
performed at the called handler's guardian by a new subaction created solely for this purpose. Usually
thehandlersguardianlsnotthesmasmoonehwmchuucdws.andthecaﬂodhandler’s
guardianis&elytoresideatadﬂemmmmmmmmmm. However, k is legal
tocauahandlerthatbebnostoawafdanresidﬁummmrsmde,ormntocalahandler
belonging to the caller’s guardian.

Although the form of a handiler call looks like a procedure call:

primary ([expression, ...])
its meaning is very different. Ammotherthm.ahm\dhrhcaﬂodmw,wnhtheammmand
resullsbeingtrammmdbyvaheinrrmsms,andmecaﬂsmnuaSMnofﬂsM\gadion.
Bebwwemsemanwmhwdwhathppemwhenemmﬁuahﬁbrcaﬂarﬂﬂunadotaued
description.

Ahandlercallmnsasasubadbnofﬂncallmaaion. We will refer to this subaction as the ca¥ action.
Thefirstthkudombymecailadbnisﬂummattnmmmofﬂucau. Transmission is
acwmpushedbyenwdmeachammmobiod,mmmmmofntwo. The arguments
memamwmmwaMnamwmwmmm. Each
arwmemisdocododbyumgthedooodaopemionofnstypo. The eflect of transmission is that the
arguments are passed by value from the calier to the handier activation: new objects come into existence
atthehander'swardiantrmarocopiosofﬂnalwmoblm. Object values are transmitted in such a
waymmmmmmmmmdmwmbm.aMumy
shamcstnm:rebeiwoonthearwmemobiechhaﬂndecal. See Section 14 for further discussion of
transmission.

Anermearmmmshavebeentransmittod,meaotwmbnldbnperlommhandlefbody. When the
handbrbodytenninates.byoxmhganmm,mm,m.or&ondgmlmmm.the
mmsmtmmmwthmMWMM¢wmmm.mwﬂWw
aborlinglheactivationaction(asitapocmod). The call action then decodes the results at the caller's
guardian. Oncetme&sMwbeontmmmtomm.mocdmbnmmdean
continues in the caller as indicated by the caller's code. (Note that the call action will commit even i the
activation action aborts.)

°Thisisonlyshicﬂykueforﬂ’nbdﬂ~in types. Amor-doﬁnedlypomigh!nolptumhmndshcﬁng structure.

42 Assignment and Calls

mmmmwnmcimmnmmmma

S0nels no_such_user, In ot liee %0 &
raoull,

mmmm«mmm) ouch_user, lulwe, and |

8.3.1 Semantics of Handler Calls 43

8.3.1. Semantics of Handler Calls
In this section we describe the semantics of a handier call in detall. A handler call causes activity at
both the calling guardian and at the called guardian. At the calling guardian, the sequence of activities in
performing a handier call is as follows:
1. The primary is evaluated.
2. The argument expressions are evaluated from left to right.

3. A subaction, which we will refer to as the call action, is created for the te call. All
Mmmmwawmwumwmwmnumam
descendants. &rummmwmmmm.mwmmu

calling guardian to cragh

4. A call message is constructed As part of constructing this message, éncode operations
are performed on the argument i any of the encode aperations terminates with a
fahmoxceptbn.ﬂunﬂnmmcalwﬂtmmm:mcmeptbn, and the call
action will be aborted.

5. The call message is sent to the guardian of the called handier, and the calt action waits for
the compiletion of the call.

6.“thecaﬂmssageanhesattMmdeonmwmgum,lﬂd#nWmmdoos
Mexm,tmmmmbnbmwmmmoxmhmmm

“guardian does not exist" as ks exception result. '

7.nmmmmnmmmmmmmmw
call action. mwmmummmmumpmhmw
communicate. ummumam”m.mmmm
uumwmmeﬂwmm~mmm The sysiem will
mazmmmmmwmnbmmmmmmm
immediately will succeed.

a.mm.ammmammmmmuw. When
thereptymsagouﬁwsdthocdm.lhmmmmmmnch
result object. nmymummamm.mwmum.
and the call terminates with the same exception. Otherwige, the call action commits.

9.Thacallwiﬂtennhatemmuﬂy“hemulmsaoomnmdtmmmabn
returned (instead of signalled); otherwise it terminates with whatever exception was
signalled.

At the called guardian, the following activities take place.

1.Asuba:tbnofthecallactbn!screaodatthemwardanbmnmm. We will refer
to this subaction as the activation action. All activity at the target guardian occurs on behalf
of the activation action or one of its descendants.

2.Thecallmssaoeisdeconpoudimollsconstmm. As part of this process
daoodoopomlommpeﬁmdonoaohammeu. ¥ any decode terminates with a
faﬂmexumbn,mmmwmbnwbnhm.wmwmmwnm
exception.

3. The calied handler is called within the activation action. This call is iike a reguiar procedure
call. mobjomsommdfmmmnm"nmmmmws,mdthey
are bound to the formals via implicit assignments.

4.Hmehandbrtenmnatesbyexomningmmmaormmmmmmee
swmn.n,mwmwmmammubnmm. Then
tmmwmmbmmwmmmmmmmm

44 Assignment and Calls

aborted, and the reply message is sent to the caller. Otherwise, when the handier
temms.mmmmbmwwummmm.mmm
action commits, and the reply message is sent 1o the caller. it one of the calls of encode
terminates with a faiure exception, then the activ
terminates with the same exception.

g
:
:
a
3
g

When the Argus system terminates a call with the unavaiable exception, it is possible that the
activationaclionand/orsomeofitsdescendmareaauaﬂymm This could happen, for example, if
the network partitions. These running processes are called "orphans”. The Argus system makes sure
that orphans wili be aborted before they can view inconsistent data (see Section 2.5).

8.4. Creator Calls

Creatorsarecaﬂedtocausenewwardianstocommoxm. As part of the call, the node at
which the newly created guardian will be located may be specified. i the node is not specified, then the
new guardian is created at the same node as the caller of the creator. The form of a creator call is:

primary ([expression, ...]) [@ primary]
The primary following the at-sign (@) must be of type node.

Acreatorcallccumtwoadmmwtmplaoo. First, 2 new guardian is created at the indicated
node. sm,mm&«m“ammaunnwmwm. This handler call has
basically the same semantics as the regular handier call described above.

The Argus system may also cause a creator call o abort with the faliure or unavallable exceptions.
Thereasonsforsuchtennhatbmaremsamasthoseforhmm.awuwmmmamme
same: mefaikvooxeeptbnmmmﬂtmmmwmtbommd,wMQMMavm“cewon
means that the call should not be retried immediately.

8.4.1. Semantics of Creator Calls

The activities carried out in executing a creator call are as foliows.
1. The (first) primary is evakiated.

2. The argument expressions are evaluated from left to right.

3. The optional primary following the at-sign is evaluated to obtain a node object. If this
primary is missing, the node at which the call is taking place is used.

4.Asubaction,whichwewiﬂrefertoastheoallac!on.iecMed. All subsequent activity
takes place within this subaction. As was the case for handier calis, creators can be called
only from within actions. Acreatorcallbyamn-actionisapmgwmﬂnnmmdcms
the calling guardian to crash. ‘

5. A new guardian is created at the indicated node. The creator obtained in step 1 will indicate

the type of this guardian. Theseloctionofapaﬂiculwloadimmforttﬁstypowiﬂowuras
discussed in Section 3.3.

6. As was the case for handler calis, if the system cannot communicate with the indicated
node, the creator call will terminate with the unavailable exception. If the system is unable

8.4.1 Semantics of Creator Calis 45

to determine what implementation to load, or i there is no implementation of the type that
can run on the indicated node, or i the manager of the node refuses o0 aliow the new
guardian to be created, the creator call will terminate with the fallure exception. In either
case the call action will be aborted.

7. A remote call is now performed o the creator. This call has the same semantics as
descrbedmrhandhrcahabovehmps4umm9dumumcmm
and aiso steps 1 through 4 of activities at the called node. However, ¥ either the call action
mmeadwmbnacﬁonabons,themvdymatodwmmlbedewoyed.

For example, suppose we execute the creator call
x: G 1= G$create(3) @ n
whereGisaguaMiantype,ndomtosanOEedoﬂypom,mdmhasheadef
create = creator (n: int) returns (G) signais (not _possible(string))
Thesystemwmselectaninplememabnthhatbwmmuseamden,andwilthancreatea
guardian at node n running that implementation. Next create (3) is performed as a handier call at that
new guardian. Haroateremms.thentheasslgnmntoxwﬂlm,causlngxtoreforlothonew
wardianthatcromremm;mwemmmmmbys.mommmﬁnbe
signalied by this call are not_possible, failure, and unavailable. An example of a call that handies all
these exceptions is:
x: G = G$create (3) @ n
except when not_possible (s: string): ...

when failure (s: string): ...
m unavailable (s: string): ...

Creators are described in more detail in Section 13.

46

9 Expressions 47

9. Expressions

An expression evaluates to an object in the Argus universe. This object is said to be the resuilt or value
of the expression. Expressions are used to name the object 10 which they evaluate. The simplest forms
of expressions are literals, variables, parameters, equated identiflers, equate module references,
procedure, iterator, and creator names, and self. These forms directly name their result object. More
complex expressions are built up out of nested procedure calls. The result of such an expression is the
value returned by the outermost call.

9.1. Literals

integer, real, character, string, boolean and null Kterals are expressions. The type of a literal
expression is the type of the object named by the literal. For example, true is of type bool, “abc” is of
type string, etc. (see the end of Appendix | for details).

9.2. Variables

Variables are identifiers that denote objects of a given type. The type of a variable is the type given in
the declaration of that variable. An attempt to use an uninitialized variable as an expression is a
programming error and causes the guardian to crash.

9.3. Parameters
Parameters are identifiers that denote constants supplied when a parameterized module Is instantiated

(see Section 12.5). Thetypodaparammisﬂntypogﬂenhﬂudodaratbnofﬂmtpammter. Type
parameters cannot be used as expressions.

9.4. Equated Identifiers
Equated identifiers denote constants. The type of an equated identifier is the type of the constant

which it denotes. Idemtﬂemoqmedtotypes,type_sets,mdommemodubscamolbeusedas
expressions.

9.5. Equate Module References
Equate modules provide a named set of equates (see Section 12.4). To use a name defined in an
equate moduie as an expression, one writes:
reference $ name
where
reference .=
| idn [actual_pam, ...]
| reference $ name
The type of a reference is the type of the constant which & denctes. identifiers equated to types,
type_sets, and equate modules cannot be used as expressions.

9.8 Bind 49

The evaluation of a bind expression proceeds by first evaluating the entity and then evaluating, from
left to right, any bind__args that are expressions. The entily may evaluate 10 a procedure, iterator,
handler, or creator object. Suppose that the entity is a procedure or terator object. (Creator and handler
bindings are discussed below.) Then the resuk is formed by binding the argument objects to the
corresponding formals of the entity to form a closure; note that the procedure or iterator is not calied when
the bind expression is evaluated. When the closure is called, the object denoted by the entity is passed
all the bound objects and any actual arguments supplied in the call, all in the comresponding argument
positions.

For example, suppose we have:
P = proc(x: T, y: int, w: S) returns(R) signais(too_big)
Then
q:=bindp(*,3+4,"
produces a procedure whose type is proctype(7, S) retums(R) signais(foo_big) and assigns 10 q. A
call of g(a, b) is then equivalent to the call p(a, 7, b).

Bwndmuﬁmswiﬂbostorodhstaﬁostmaooiheymmubhﬂomastaﬂevambb(see
Section 13.1). In this case the entity and the bind_args shoukd denote atomic objects.

Theroisonlyoneinstanooofamuthn'smdﬂaiorowhmﬂzaﬁon;thzsaﬂthobindkusofa
routine share its own data, ¥ any (see Section 12.7). Each binding is generally a new object; thus the
relevant equal operation may treat syntactically identical bindings as distinct.

Thesemantlesofbindlngacreatororhandleraresmllarlobkdnqaprooodwemiteramr;the
differences arise from argument transmission. Encoding of bound argument objects happens when the
blndexpmssbniswahatedarﬂshadmhmlywmwedmmmmmthesamﬁme(see
Section 14). In more detail, the evaluation of a bind expression proceads by first evaluating the entity
and then evaluating, from left to right, any bind_args that are expressions. Then the argument objects
are encoded, from left to right, Preserving sharing among these objects. The result is formed by binding
theenoodadargumemobjectstotheconespommfomtalsofmemytotomacbsure. Note that the
entity is not called when the bind expression is evaluated.

When the closure is called, first any other arguments are evaluated and encoded (not sharing with the
bound objects) and then the call to the entity is initiated. Decoding of the arguments at the called
guardianisdomhreversedﬁnoderofemodim;m&omwarwmemsmdeoodedbmoboum
arguments and the most recently bound arguments are decoded first. Sharing is preserved on decoding
only among groups of bound arguments and among the other arguments, not between groups.
Thereafter the call proceeds as normaily.

For example, if we execute

h1 = bind h(x, y, *)
hi(z)

50 Expressions

then sharing of objects betweenxandywmbepresorvedbytrmmbsion, but sharing will not be
preserved between x and zor y and z.

Closures can be used in equates, provided all the expressions are constants (see Section 7.2.2).
However, ahandlercmappearhaneqmo,smnismtaoonm.

9.9. Procedure Calls
Procedure calls have the form:

primary ([expression , ...])
Thepﬂmaryisavahatodtooﬁahapmood:reobba.andtrnnmoowmareevabatedIdttorioht
to obtain the argument objects. Thoproooduroiacalbdﬂhﬂmmm&ammeobjeammodis
the result of the entire expression. For more discussion see Section 8.

Anypmcedurecaup(E,, E,,)nustsatistylwoconﬂmﬂstobeuudumexmesbn: the type of p
must be of the form:
proctype (T,, ..., T,) returns (R) signals (...)
andthetypeofeachemmssionE,nustbemnedhtheeomspondmgtype T;. The type of the entire
call expression is given by R.

9.10. Handler Calls
Handiler calis have the form:

primary ([expression, ...])
Theywnaryisevalumodmouahammwobiom,ammmoexpmubmmevahamIemorightto
obtain the argument objects. mmmbtmwmmmmasdwmsm
8.3. The following expressions are examples of handier calls:

h(x)
ino_guard.who_is_user("john", “doe")
dow_jones.info("XYZ Corporation”)

Any handler call ME,, ... E,) must satisfy the following constraints when used as an expression. The
type of h must be of the form:
handlertype (T, ... T,) returns (R) signais (...)
andthetypeofeachexpresslonﬁnustbeinchmdlnthecomspondmgtype T;. The type of the entire
call expression is given by R.

AsexplainedhSoetiona.a,moaxecutbnofahandlercalstmsbymﬁmasubaabn. Therefore
anaﬂmbcaﬂahmﬂbrfmmammﬁubmtmm&nmmnbamamﬂmmamm

cause the calling guardian to crash. Thiscrashocursaﬂoraﬁomneonmmoxprmbmhavoboen
evaluated.

Wi sy R T S o et B R R S e 1 SR s il Y e e

9.11 Creator Calls 51

9.11. Creator Calls
Creator calls have the form:

primary ([expression, ...]) [@ primary]
The first primary is evaluated to obtain a creator object, the argument expressions are evaluated left to
righttoobtahthoammm.wmwmmma-dm(@),lpmsem,is

evaluated to obtain a node object. nmmmmmhm.mwm)is
used. Theguardlmhthenm.daﬂhamde,mdthocredorwod,admsodhs«nbnsA. The

following are examples of creator calls:

mailer§create() @ n
spooler{devtypel$create()

Acreatorcm!c(E,,...,E,,)@nmustsaidymobmmmmnusodaanexmssbn. The
type of ¢ must be of the form:
creatortype (T,,...,T,) returns (R) signais (...)
where each Tiir\clxdesﬂntypeofthecomtpondingoxprmnﬁ. N must be of type node. The type
of the entire cafl expression Is given by R.

Aswlthhandlerca!ls,ananemtoealiacremrtmmapmsﬂhﬂisnotmminganactbnwﬂlcwse
thecalﬁmmardiantocmshaﬂaralcmmommmmwm.

9.12. Selection Operations

&lmmmmmmmmmum«mmaawm. Simple
notations are provided for calling the feich operations of array-iike types, and the get aperations of record-
like types. tnwm,mwmmm-mmmmuwwrmrm
types with the appropriate properties.

9.12.1. Element Selection
An element selection expression has the form:
primary [expression]
Thbfombmmacucwforacandafolchopombn,andhcoﬂmamﬂyomivabmm:
T$tetch(primary, expression)
where T is the type of the primary. Tnustpmvidoapmcewmop«dbnnmdmch.mukestwo
ammentswhosetyposincudethelypesofprlmaryw axplmn,andwhichmmm;slmle result.

9.12.2. Component Selection
The component selection expression has the form:
primary . name
This form is just syntactic sugar for a call of a get_name operation, and is computationally equivalent to:
T$get_name(primary)
where T is the type of primary. T must provide a procedure operation named get_name, that takes one

52 Expressions

argument and retums a single result. Of course, the type of the procedure’s argument must include the
type of the primary.

9.13. Constructors

Constructors are expressions that enable users 10 create and initiakze sequences, arrays, atomic
arrays, structures, records, and atomic records. There are no constructors for user-defined types.

9.13.1. Sequence Constructors
A sequence constructor has the form:

type_spec $ [[expression , ...]]
The type_spec must name a sequence type: sequence{7]. This is the type of the constructed sequence.
The expressions are evaluated to obtain the elements of the sequence. They correspond (left to right) to
the indexes 1, 2, 3, efc. For a sequence of type sequence{7), the type of each element expression in the
constructor must be included in T.

Asomemomnﬂmhwnnﬂaﬁomuyoqumbmmammopembn,folbwedbya
number of sequence adoh operations.

9.13.2. Array and Atomic Array Constructors
An array or atomic array constructor has the form:

type_spec $ [[expression :] [expression , ...]

The lype_specmstmmanmyoratonﬁcmytype:lmymorm_mym. This is the type of
the constructed array. Thooptbndomesbnmd&uﬂnwbn(:)mﬂwabﬂebmhoger.and
becomes the low bound of the constructed array or atomic array. If this expression is omitted, the low
bound is 1. The optional list of expressions is evaluated to obtain the elements of the array. These
expressions correspond (left to right) to the indexes low_bound, low_bound+1, low_bound+2, etc. For an
arrayoratomicarrayo“ypemymoraanlc_tmym.thetypoofuchobmaxpreabninthe
constructor must be included in 7. A constructor of the form array{ T}${] has a low bound of 1 and no
elements.

An array constructor is computationally equivalent to a create operation, followed by a number of addh
operations.

9.13.3. Structure, Record, and Atomic Record Constructors
A structure, record, or atomic record constructor has the form:
type_spec $ { field , ... }
where
field ..= name , ... : expression
Whenever a field has more than one name, it is equivalent 1o a sequence of fields, one for each name.
Thus, if R = record{ a: int, b: Int, c: int}, then the following two constructors are equivalent:

9.13.3 Structure, Record, and Atomic Record Constructors 53

R${a, b: p(), ¢:9)
R${a:p(), b:p(), c:9}

lntmwmmmmommmmm;mmmmmm
similar. In a record construcior, the type specification must name a record type: record(S,.T,, ..., S,:7,).
This is the type of the constructed record. The component names in the field ist must be exactly the
names S,, ..., S, although these names may appear in any order. The expressions are evaluated left to
right,andtherebomevahatbﬁp«oommmmmmnlmmnmsamqmuped
with the same expression. Thetypedttnexpmssbnforommommsimatbemhdodinn The
results of these evaluations form the components of a newly constructed record. This record is the value
of the entire constructor expression.

9.14. Prefix and Infix Operators

Argus allows prefix and infix notation to be used as a shorthand for the operations listed in Table 9-1.
ThetaNeshowsﬂnsMﬂMﬂbmwunmmmmvaMexpamdbmbreach
operation. For each operation, the type Tis the type of the first operand.

Table 9-1: Prefix and Infix Operators: shorthands and expansions

Shorthand form Expansion
expr, ** expr, T$power(expr 1+ 8XPr))
expry // expr, TS$mod(expr,, expr,)
expr, / expr, TSdiv(expr,, expr,)
expry * expr, T$mul(expr,, expr,)
expr, || expr, T$ooncat(expr,, expr,)
expry + expr, TSadd(expr,, expry)
expr, — expr, TSsub(expr,, expr,)
expr, < expr, T$(expr,, oxpr,)
6xpry <= expr, TSle(expr,, expr,)
expry = expr, TSequal(expr,, expr,)
8Xpry >= Xpr, TSge(expr,, expr,)
expr, > expr, TSgt{expr,, expr,)
expr, ~< expr, ~ (expry < expr,)
expr, ~<= expr, ~ :expr1 <= oxpr)z)
expry ~= expr, ~ (expr, = expr,
OxXpry ~>= expr, ~ (expr; >= 6xpr,)
expry ~> expr, ~ (expr, > expr,)
expry & expr, TSand(expr,, expr,)
expr, | expr, 1+ OXpr)

- expr Mﬂl‘(:

~ @xpr TSM(O":OM

Operator notation is used most heavily for the built-in types, but may be used for user-defined types as
well. When these operations are provided for user-defined types, they should be free of side-effects, and

54 Expressions

they should mean roughly the same thing as they do for the buik-in types. For example, the comparison
operations should only be used for types that have a natural partial or total order. Usually, the
comparison operations (I, le, equal, ge, gf) will be of type

proctype (T, T) returns (bool) :
the other binary operations (e.g., add, sub) will be of type

proctype (T, T) returns (T) signals (...)
and the unary operations will be of type

proctype (T) retums (T) signais (...)

9.15. Cand and Cor
Two additional binary operators are provided. These are the conditional and operator, cand, and the

conditional or operator, cor. The result of evaiuating:

expression, cand expression,
is the boolean and of expression, and expression,. However, if expression, is faise, expression,, is
never evaluated. The result of evaluating:

expression, cor expression,
is the boolean or of expression, and expression,, but expression,, is not evaluated unless expression, is
false. For both cand and cor, expression, and expression, must have type bool.

Because of the conditional expression evaluation invoived, uses of cand and cor are not equivalent to
any procedure call.

9.16. Precedence

Whmmexwmbnismtmwwmed,uwpmp«mwmdmxprmmm
ambiguous. Thetolow\gprocodomemhomusodbmsomwmmy. The precedence of
each infix operator is given in the table below. Higher precedence operations are performed first. Prefix
operators always have precedence over infix operators.

Table 9-2: Precedence for infix Operators

Precedence Operators

5 .

4 rn

3 + - |

2 <= = >® > ~< ~<=m vm ~>= ~>
1 & cand

o
g

9.16 Precedence 55

The order of evaluation for operators of the same precedence is left to right, except for **, which is right
to left.

9.17. Up and Down
There are no implicit type conversions in Argus. Two forms of expression exist for explicit conversions.
These are:
up (expression)
down (expression)

Up and down may be used only within the body of a cluster operation (see Section 12.3). Up changes
the type of the expression from the representation type of the cluster to the abstract type. Down converts
the type of the expression from the abstract type to the representation type.

56

10. Statements

mmm:-mmanmm,j_ g the

10.1. Calls
A call statement may be used 15 oall 3 PrECEtNe, handier, OF CPORNOY. mmwmn
form is the same 48 & call sxpression: :
primary { [suprossion , ... })
mmmucmxmm“mmdmmmmu

Inoluded in the type of the-Semeny ol Sgenard. . TH JOature or handier may or mey not
mmummﬂ&j e .

For oreasor alls the symiax is siwilar bt one cie aptiely apesly e fude &t which the guardien s
to be created: o :

primary ([exprassion , ...]) [@ pmary] |
The primary tolowing e si-oign () sl 46 ot type 8als.

58 Statements

10.2. Update Statements

Two special statements are provided for updating components of record and array-like objects. In
addition they may be used with user-defined types with the appropriate properties. These statements
resemble assignments syntactically, but are actually call statements.

10.2.1. Element Update
The element update statement has the form:
primary [expression,] := expression,
This form is merely syntactic sugar for a call of a store operation; it is equivalent to the call statement:
T$store(primary, expression,, expression,)
where T is the type of the primary. T must provide a procedure named store that takes three arguments
whose types include those of primary, expression,, and expression,, respectively.

10.2.2. Component Update
The component update statement has the form:
primary . name := expression
Thistonnissymadicsugarforacauo!aset_operatbnwrnsenameisfomndbyattadmgsol_tothe
name given. For example, if the name is 7, then the statement above is equivalent to the call statement:
T$set_f(primary, expression)
where T is the type of the primary. T must provide a procedure operation named set_f, where f is the
name given in the component update statement. ‘This procedure must take two arguments whose types
include the types of primary and expression, respectively.

10.3. Block Statement
Theblockstatemntpennusasoq:amoofmtemmsmbeqmwedmmhornoasmstatemem.
its form is:
begin body end
Since the syntax already permits bodies inside control statements, the main use of the block statement is
to group statements together for use with the except statement (see Section 11).

10.4. Fork Statement
A fork statement creates an autonomous process. The fork statement has the form:
fork primary ([expression, ...])
where the primary is a procedure object whose type has no results or signals (see Section 12.1). The
type of each actual expression must be included in the type of the corresponding formal.

Execution of the fork statement starts by evaluating the primary and actual argument expressions from
left to right. Any exceptions raised by the evaluation of the primary or the expressions are raised by the
fork statement. f no exceptions are raised, then a new process is created and execution resumes after

10.4 Fork Statement ‘ 59

the fork statement in the old process. The new process starts by calling the given procedure with the
argument objects. Thisnewpmesstenninateslandw!nnﬂnpmce@ecandm. However, if the
guardiancrashestheprooessooesaway(lkeanyotherprocoss).

Note that the new process does not run in an action, although the procedure called can start a
topaction if desired. Thereismmdmnismforwaitingforuwmbnottmnewprocess. The
Mmmhamaammmmwmwsmdmyoxwm.

10.5. Enter Statement
Sememwmmanmuodbymamoﬂhemstmmwmmmm:

enter topaction body end
and

enter action body end
Thetopawonmalmefcwmthobodytooxoamasammmmn. The action qualifier
causostheMymoxmuammmwm;mmtooxmemmmlon
statememhamssthdhmtexoadknmadbnbamumﬁnmandmmgumanto
crash. When the body terminates, k does so either by commitiing or aborting. Normal completion of the
body results in the action committing. msmmummammumm(exu.
leave, break, continue, return, signal, and resignal) normally commit the action unless are prefixed
with abort (e.g., abort exit). Two-phase commit of a topaction may fail, in which case the enter
topaction statement raises an unavaiiable exception.

10.6. Coenter Statement
Concurrent actions and processes are created by means of the coenter statement:
coenter coarm { coarm } end
where

coarm ::= armtag [foreach decl , ... in call]
body

armtag «.= action
| topaction
| process

ExeanbnduweoaMﬂansbycrealmaﬂofmecomm,sequemmy,intexmalorder. A
foreach clause indicates that muitiple instances of the coarm will be created. The call in a foreach
clause must be an kerator call. At each yield of the Rerator, a new coarm process is created and the
obiactsyieldodamasslgnedtomwtydoduodvambhshﬂum. (This implick assignment must
be legal, see Section 6.1.) Each coarm process has separate, local instances of the variables declared in
the foreach clause.

60 Statements

The process executing the coenter is suspended until after the coenter Is finished. Once all coarm

in a separate pmoess,andeachcoamwﬁhmamﬁaaoftop.ﬂbnoraetbnoxoﬂoswiﬂﬁnanew
top-level action or subaction, respectively. An attempt to execute a cosnter with a process coarm when
inanaction.mbexeaneammwﬂhanaetbnooannwhennotinanadionisanerrorandwill
cause the guardian to crash (see Table 10-1).

Tabie 10-1: Legality of coenter statements.

‘ process executing the coenter is:
armtag not in an action running an action
action not legal logai
topaction legal legal
process legal not legal

A simple example making use of foreach is:
coenter action foreach i: Int in Int$from_to (1, 5)
p (i)
end
whichcreatesﬂveprocesses,eadnwnhalomlvaﬂablei,havingthevaiuﬂ in the first process, 2 in the
second process, and so on. Each process runs in a newly created subaction. This statement is legal

only if the process executing it is running an action.

A coarm may terminate without terminating the entire coenter (and sibling coarms) either by normal
completion of its body, or by executing a leave statement (see Section 10.7). The commit of a coarm
dedamdasahpmbnmytenﬁnmhanwwvdmmbnnm-phmwmm& Such an
exoeﬂbncanonlybohuﬂedmmmemstmm,wmwbmtemngndm entire
coenter (as explained below). '

A coarm may aiso terminate by transferring control outside the coenter staternent. When such a
transfer of control occurs, the following steps take place.
1.Anycomakﬂngstatemmmtennilmoddlvisbly,wthemnmstlevelofthecoann,at
whichpointtheeoannbecomsmeoomomcoann.

2.0ncethereisaoommmgooann,everyotheracehmmamwmbomminated(wabonif
declamdasanaction)assoonasnleavesauumstatMs;mecontmmOoannis
suspended until all other coarms terminate.

3.Theoommuhgcomm.noomnusormmldodaudummbmlmdua
topawonmtmwmaemmnfm,mumvmmnhmbymm

4. Finally, the entire coenter terminates, and control flow continues outside the coenter
statement.

Divisible termination implies, for instance, that a nested topaction may commit while its parent action
aborts.

10.6 Coenter Statement 61

A simple example of early termination is reading from a replicated database, where any copy can
supply the necessary information:

coenter action foreach db: database in all_replicas (...)
return(database$read (db))
end

When one of these coarms completes first, it tries to commit kse¥ and abort the others. The aborts take
place immediately (since there are no selze statements); it is not necessary for the handler calls to finish.
It is possible that some descendants of an aborted coarm may be running at remote sites when the coarm
aborts; the Argus system ensures that such orphans will be aborted before they can make their presence
known or detect that they are in fact orphans (see Section 2.5).

10.7. Leave Statement
The leave statement has the form:
[abort] leave
Executing a leave statement terminates the innermost enter statement or coenter coarm in which it
appears. If the process terminated is an action, then it commits uniess the abort qualifier is present, in
which case the action aborts. The abort qualifier can only be used textually within an enter statement or
within an action or topaction coarm of a coenter statement.

Note that unikke the other control flow statements, leave does not affect concurrent siblings in a
coenter (see Section 10.6).

10.8. Return Statement
The form of the retum statement is:

[abort] retum [(expression , ...)]
The return statement terminates execution of the containing routine. If the return statement occurs in an
iterator no results can be retumed. if the return statement is in & procedure, handier, or creator the type
of each expregsion must be included in the corresponding retum type of the routine. The expressions (if
any) are evaluated from lett fo right, and the objects obtained become the results of the routine.

It no abort qualifier is present, then all containing actions (f any) terminated by this statement are
committed. If the abort qualifier is present, then all terminated actions are aborted. Note that uniike the
leave statement, return will abort concurrent siblings if executed within a coarm of a coenter statement
(see Section 10.6). The abort qualitier can only be used textually within an enter statement, an action or
topaction coarm of a coenter statement, or the body of a handier or creator.

Within a handler or creator, the result objects are encoded just before the activation action terminates,
but after all control flow and nested action termination. If encoding of any result object terminates in a

failure exception, then the activation action aborts and the handier or creator terminates with the same
exception.

62 Statements

10.9. Yield Statement
The form of a yleld statement is:

ylekd [(expression , ...)]
Thayloldstatemntmayoowromyinthebodyofanlerator. The effect of a yield statement is to
suspendexowtbnonheitomorimocaﬂon,wrammcomolmmmmmmorbmch
clause. TMkuoumdwwwmmm(mnmmmmmmmm.
mwdewhammmmmmmmmmmoﬂmmw. Upon
resumption, execution of the ummmammmmmammem.

A yleid statement cannot appear textually inside an oMer, coenter, or selxe statement.

10.10. Conditional Statement
The form of the conditional statement is:
If expression then body

{ olseif expression then body }

[eise bocy]

end
The expressions must be of type bool. They are evaluated successively until one is found to be true.
Thebodycompondmgtothaﬂmtmeoxpfmbnhoxmod.mmexmbndmnmm
then terminates. If there is an else clause and ¥ none of the expreagions is true, then the body in the
eise clause is executed.

10.11. While Statement
The while statement has the form:
while expression do body end
Its effect is to repeatedly execute the body as long as the expression remains true. The expression must
be of type bool. mhevamoﬂheoxprossbnkuue.hbodyboxm.andmenmomm

statement is executed again. When the expression evaluates to faise, execution of the while statement
terminates.

10.12. For Statement
Anlomor(seeSaaionm.z)canbecauedbyaforstatemom. The Rerator produces a sequence of

itm(wlmeanﬂomisamofzemormmobjects)omlomdam;mbadyofﬂnbrmm
is executed for each item in the sequence.

The for statement has the form:

for [decl, ...] in calt do body end
or

for [idn, ...] in call do body end

10.12 For Statement 63

The call must be an iterator call. The second form (with an /dn list) uses distinct, previously declared
variablestoseweasthebopvaﬁables,wﬁleﬂmefks”orm(wﬁadcdﬁst)fonniummcesnew
variables, local to the for statement, for this purpose. In either case, the type of each variable must
includetheoorrespmdngyieldtypeoﬂhecanedhrator(m Section 12.2) and the number of variables
must also match the yield type.

Execution of the for statement begins by calling the iterator, which either yields an kem or terminates.
It it yieids an item (by executing a yleld statement), its execution is temporarily suspended, the objects in
the itemareasslgnedtothebopvambles,andthebodydmbrstammhoxmed. The next
cydeoftheloopisbegunbyrewmingexomnofthomdmmyhldstatomentwhich
suspended it. Whenever the iterator terminates, the entire for statement terminates.

10.13. Break and Continue Statements
The break statement has the form:
[abort] break
s effect is to terminate execution of the smallest for or while loop statement in which & appears.
Execution continues with the statement following that loop.

The continue statement has the form:
[abort] continue
Its effect is to start the next cycle (it any) of the smaliestlororwhllobopstatomenthwhichlappears.

Terminating a cycle of a bopmayalsotemhateomormrecomahmacﬁom. ¥ no abort qualifier
is present, then all these terminated actions (it any) are committed. If the abort qQualifier is present, then
all of the terminated actions are aborted. Uniike bm,buckandoommwwonconwmntsbﬁng
actions when control flow leaves a containing coenter (see Section 10.8).

The abort qualifier can only be used textually within an enter statement or an action or topaction
coarm of a coenter statement.

10.14. Tagcase Statement
Themccmumammcmbeusedtodewnposeomdammmwim;uomb_vammabiem
canbedecomposodwiththeuntouorumustmm. The decomposition is indivisibie for variant
objects; thus, use of the tagcase statement for variants is not equivalent 1o using a conditional statement
in combination with is_ and value_ operations (see Section I1.15). '

The form of the tagcase statement is:
tagcase expression
tag_arm { tag_arm }
[others : boay]
end
where

64 Statements

tag_arm :i= tag name, ... [(idn: type_spec)] : body
Theaxprassbnmstevahatabaomolorvmmobhct. The tag of this object is then matched
against the names on the fag_arms. When a match is found, if a declaration (idn: lype_spec) exists, the
value component of the object is assigned to the new loca! variable idn. The matching body is then
executed; idn is defined only in that body. If no match is found, the body in the others arm is executed.

In a syntactically comrect tagcase statement, the following three constraints are satisfied.
1. The type of the expression must be some oneof or variant type, 7.

2. The tags named in the tag_arms must be a subset of the tags of T, and no tag may occur
more than once.

3.1f all tags of T are present, there is no others arm; otherwise an others arm must be
present.

On any tag__arm containing a declaration (idn: lype__spec), type__spec must include the type(s) of T
corresponding to the tag or tags named in that tag_arm.

10.15. Tagtest and Tagwait Statements

The tagtest and tagwait statements are provided for decomposing atomic_variant objects, permitting
theselectionofabodybasedonthetagofﬂmobjecttobermdehdﬂisblywﬂhthelestmoraomlsulon
of specified locks.

10.15.1. Tagtest Statement
The form of the tagtest statement is:
tagtest expression
atag_arm { atag_arm }
[othon:body]
end
where ’
atag_arm i =tag_kind name , ... [(idn: type_spec)] : body
tag_kind ..=
| wiag
The expression must evaluate 1o an atomic_ variant object. if a read lock couid be obtained on the
atanlc_vmwiodbythecummactbn,mnthetagofﬂnobhdismmodaoaMthonmson
the atag_amms; otherwise the others am, if present, is executed. if a matching name is found, then the
lag_kind is considered.
thetagjlndishg.amadbdﬂsobtahedontheobjedandﬂnmtchiscomm.

o if the tag__klndiswhgandthewnemactbncanobtainambd(ontheobjod,thena
write lock is obtained and the match is complete.

When a complete match is found, i a declaration (idn: type__spec) exists, the value component of the
object is assigned to the new local variable idn. The matching body is then executed; idn is defined only
inthat body. The entire matching process, including testing and acquisition of locks, is indivisible.

10.15.1 Tagtest Statement 65

Ifacompletematchisnotfound.ortheobjedwasnotreadablebymeadion,thentheothmann(if
any) is executed; if there is no others arm, the tagteet statement terminates. If no compiete match is
found, then no locks are acquired.

The tagtest statement will only obtain a lock if it is possible 1o do so without "walting”. For example,
supposethatthewenmlstaieofmem_vmm:mdsomprwbusadbnacmireda
conflicting lock. This action may have since aborted, or may have committed up to an ancestor of the
action executing the tagtest, but determining such facts may require system-level communication to other
guardians. in this case the tagtest statement may give misleading information, because & may not
indicate a match. Apparent anomalies in testing locks may occur even K the action executing the tagtest
"knows"thatthebckcanbeaomkad,sothauhemdmtoavoudeadbdcsorbngdolaysmay
result in excessive aborts.

10.15.2. Tagwalit Statement
The form of the tagwalkt statement is:
tagwalt expression

atag_arm { atag_arm }

end
Exoctmonoftheuomnstatmruprooeedsasformemswmm,butifmcomplotamalchis
found,mﬂﬂnoﬂoﬂbnﬂmaddahbyﬂnwmmaﬁbn.ﬂunﬂnmmmhmmed
(after a system-controlled delay), until a complete match is found. Although there is no others am in a
tagwait statement, all tag names do not have 1o be listed.

10.15.3. Common Constraints
Tagtest and tagwalt statements may be executed only within an action. An attempt to execute a

ugtwormaatmmhaprooossthaﬂsnouxoctnhganactionisanerrorandwﬂlcausethe
guardian to crash after evaluating the expression.

In a syntactically correct tagtest or tagwalt statement, the following three constraints are satisfied.
1. The type of the expression must be some atomic_variant type, T.

2.Thetagsnamedintheatag_armémstbeawbsetoﬂintagsof T, and no tag may occur
more than once.

3. Finally, on any atag_arm containing a declaration (idn: fype_spec), lype_spec must inchude
the type(s) specified as corresponding in Tto the tag or tags named in the atag_arm.

A simple example of a tagtest statement is garbage collecting the elements of an array that are in the
dequeued state:

W mulipia, nesiad setses on the mutee Ghjest heve: S
For —piy i
*nﬁt
seine mdo
Plms % coss ot realy selsase possessien
end
In ganeesl, nesied seizes should be svelded when

SONe should be svoided

10.18 Terminate Statement 67

10.18. Terminate Statement
The terminate statement may occur only within a guardian definkion (see Sect 13). The form of a
terminate statement is:
terminate
When executed within an action, its effect is to cause the eventual destruction of the guardian after the
enclosing action commits to the top. f a process atiempts 1o execite terminate while not running an
action, a topaction is created 1o execute the terminate and immedistely commi.

Let A be the action that s executing the Wrminate. The effect of this statement is the following:
1.mnAmmmunmumanmbmm»A In
memaammmmm‘mwnwmnmm
wﬂ.MmammmMmmam.

2.nmmmmwmmm,mmwmax
time may proceed 10 the next step.

3.«Ammnu»mnp,mmmumammwwm.
it some ancestor of A aborts, however, the guardien will be ynafiected. The guardian is
MMMNWMAMWNAMbM
top.

|nommmmmm.mwma.mmumw
whmmmtgmmMMMshM(mwa.ﬂ.

68

11 Exception Handling and Exits 69

11. Exception Handling and Exits

A routine is designed 1o perform a certain task. However, in some cases that task may be impossible
to perform. In such a case, instead of returning normally (which would imply suocessful performance of
the intended task), the routine should notify its caller by signaliing an exception, consisting of a descriptive
name and zero or more result objects.

The exception handling mechanism consists of two parts: signalling exceptions and handling
exceptions. Signalling is the way a routine notifies its caller of an exceptional condition; handiing is the
way the caller responds to such notification. A signalled exception aways goes to the immediate caller,
and the exception must be handied in that caller. When a routine signais an exception, the current
activation of that mhohminaeswthemwﬂucd(hwm Is said to raise the exception.
Whenacaﬂrdmmewbn,mmm"molytmmmmwexcoption
handier. Exception handiers are attached to statements; when execution of the exception handler
mm,mmmmmmbmmmbmmumm«km.
For brevity, axmnmmmmwmm'mmm;umsmwmmmwuh
the remote call handiers of guardians (see Section 13).

11.1. Signal Statement
Anexoeptionissbna‘edwkhaﬂqmlstatemem,wmchhasﬂwm:

[abort] signai name [(expression , ...)]
Adgmmhmmwmmnhmbodydam. The execution of a signal statement
bogimwhhwababndmm(nm.mmh«bmwmahdammm
The activation of the routine is then terminated. Execution continues in the caller as described in Section
11.2 below.

Theexceptbnnamenustbeoneoftheexcepﬁonmktedhthemuﬁneheadhq. f the
corresponding exception specification in the heading has the form:
name(Ty, ..., T,)
then there must be exactly n expressions in the signal statement, and the type of the ith expression must
be included in T;.

If no abort qualifier is present, then all containing actions (K any) terminated by this statement are
committed. ntholbonqmﬂiwiaprmnt,menantanﬁmdawommaboﬂed. Uniike the leave
statement, signal will terminate (abort) concurrent silings ¥ execut d within a cosnter statement (see
Section 10.6). Thaabonqualuhrcanomybouaedwdudywm'ammm,mmor
topactlonooarmofacoomasmemom.orthebodyofahandororm.

Withinahandlerorcreator,therewnobjectsareencodedwbdoreunacﬁvﬁonmbntominaws,
bmaﬂerteminaﬁondaﬂoomolﬂowandnestodadm if encoding of any resukt object terminates in a
failure exception, then the activation action aborts and the handier or creator terminates with the failure
exception,

70 Exception Handling and Exits

11.2. Except Statement

When a routine activation terminates by signalling an exception, the called routine is said to raise that
exception. By attaching exception handlers to statements, the caller can specify the action to be taken
when an exceﬂionisraisodbyacalwithhastatmrﬂorbythemmhd.

A statement with handiers attached is calied an except statement, and has the form:
statement except { when_handier }
[others_nandier]
end
where
when_handler 2:= when name , ... [(decl, ...)] : body
| when name , ... (*) : body

others_handler ::= others [(idn : string)] : body
LetSbothestatomenttowmchthehand!ersareaumd,andHXbemeemkouuptstatemem.
Eachwhen_handlerspecmesonoornmeexcepﬁonmsandabodx The body is executed i an
exceptionwithoneofthosemmsisraisadbyacauins. Each of the names listed in the
when__handlers must be distinct. The optional others__handier is used to handle all exceptions not
explicitly named in the when_handiers. The statement S can be any form of statement, and can even be
another except statement. As an example, consider the following except statement:

m.send_mali(user, my_message)
oxcept when no_such_user: ... % body 1
when unavailable, failure (s: string): ... % body 2
when others (ename: string): ... % body 3
end

This statement handies exceptions arising from a remote call. If the call raises a no__such__user
exception, then "body 1" will be executed. If the call raises a failure or Unavallable exception, then "body
2" will be executed. Any other exception will be handled by "body 3."

If, during the execution of S, some call in S raises an exception E, control transfers to the textually
cbsestharulertorEMisauachedtoastatmmcommmcﬂ. When execution of the handier
wnpbtes.oonﬂolpasusmtmmwbmmeommmmmmhm. Thus ¥ the
cbsosthandiefisattachodtos,mestatémmtolbwingXisexanodmxt. if execution of S completes
without raising an exception, the attached handiers are not executed.

Anexoepﬂonraisedinsidoaharderistmodthesmaswoﬂmexceptbn: control passes to the
closest handler for that exception. Note that an exception raised in some handier attached to S cannot be
handbdbymyhandmauadwdb&meexceubncmbohandodwmnmm,almbe
handied by some handlerattachodbastatemmoontaumgx. For example, in the following except
statement:

11.2 Except Statement (4l

times3_pius1(a)
except when limits:
a=a+a
when overfiow: ... % body 2
end

any overfiow signal raised by the expression a + a will not be handled in "body 2," because this overflow
handlerismtmanexeoptstaememauachedtothemignmemmma:=a+‘a.

We now consider the forms of exception handlers in more detall. The form:
when name , ... [(ded!, ...)] : body
is used to handle exceptions with the given names when the exception results are of interest. The
optionaldoclaredvaﬂables.whlcharebcdtothehmdlor.madomdﬂnexcoptionresultsbeforsthe
body is executed. EvewexcepﬁonpotomialyhardodbythhfommhawMummdmsuns

astherearededamdvariwm,andthetwesoﬂhovaﬂablesmstknhdethetypesmmerosuns. The
form:

when name , ... (*) : body
handles ail exceptions with the given names, regardiess of whether or not there are exception results; any
actual results are discarded. Using this form, exceptions with differing numbers and types of results can
be handied together.

The form:

others [(idn : string)] : body
is optional, and must appear last in a handler list. This form handies any exception not handied by other
handlers in the list. it a variable is declared, t must be of type string. The variable, which is local to the
handbr,lsmmdabwucmndngmpmmmmmdoxaﬂbnmm;anymwusare
discarded.

Note that number and type of exception results are ignored when matching exceptions to handlers;
only the names of exceptions are used. Thus the following is illegal, in that Imt$div signals Zero_divide
without any results (see Section 11.4), but the closest handler has & declared variable:

begin
y:int:=0
x:im=3/y
except when zero_divide (z: Int): return end
end
except when zero_divide: return end

A call need not be surrounded by except statements that handle ali potential exceptions. In many
casesmepmgranmmcanprovethatapamaﬂarexceptbnwnmm;breum,thecall
Int$am(x, 7) will never signal zero_divide. However, if some call raises an exception for which there is no
handler, then the guardian crashes due to this error®.

’Theﬁnphmrmﬁmofhkuushddbgmhuﬂodomhmw,bwmmm. During debugging,
anunhmdodempﬁonmldbonppodbyhedobwgorbdonhamh.

72 Exception Handling and Exits

11.3. Resignal Statement
A resignal statement is a syntactically abbreviated form of exception handling:

statement [abort] resignal name , ...
EachnamelistednmstbeddM,andeachnustbeomdﬂncondﬂbnmmﬁstodhthemmme
heading. mmwaammmmemmmam«fmewhmm
nanwd,meeachhandersiMWMomwonmmmmm. Thus, i the
reslonalclausemsanexoeptbnwlhaspedbdbnhhemﬂmh&lngow\ofom:

name(Ty, «es, T))
then effectively there is a handler of the form:

when name (x;: Ty, ..., x,: T,): [abort] signat name(x,, ..., x)
whichhasanaboﬂmaliiorimdomylmmlcndmm As for an explicit handier of this
m,wwexmmmwmmhmmmunmmm“dwns
asdeciaredhtheexceptionspewcabn.wmetypesdanmwhnwbomodmhetypeeﬁsted
in the exception specification.

lfmabonmaﬂfierisprasam,menaﬂcommingadbm(Nany)tonninatedbythisstatmrﬂare
committed. if the abort qualifier is present, then all terminated actions are aborted. Uniike the leave
statemem,nﬂcndwwwonmsblnwlumﬂhhammuusm
10.6). mﬁoﬂmﬂmunomeWmemm.MMan
coarm of a coenter statement, or the body of a handier or creator.

11.4. Exit Statement
An exit statement has the form:

[abort] exit name [(expression , ...)]
Mmmmerbawwummawmmmmme
exception to the mm,mmmmmwmhmmmm
Tmmmuucwmamﬂammm:mmudoammmm. An
emerMWmuhmmmmmwww:mwmm:
handier of the form:

when name , ... [(dedl, ...)] : body
Asusual,lhetypesotmeexpressbmlntheoxustatemmmstbomInthetypesofthovadables
declared in the handier. Theharﬂhrmstbeannpﬁclm,l.e..exlsbﬂnﬁrpﬂeﬂhuﬂemdnﬂanﬂ
statements are illegal.

if no abort qualifier is present, then all containing actions (if any) terminated by the exit statement are
committed. ntmaboanerisprmm.monautemmammm. Uniike the leave
statement, exuwiﬂabonmnwmmsummmmmmammm
(see Section 10.6). The abort qualifier can only be used textually within an enter statement or an action
or topaction coarm of a coenter statement.

11.4 Exit Statement 73

The exit statement and the signal statement mesh nicely to form a uniform mechanism. The signal
statement can be viewed simply as terminating a routine activation; an exit is then performed at the point
of invocation in the caller. (Because this exit is implicit, it is not subject to the restrictions on exits listed
above.)

11.5. Exceptions and Actions

Anewactionismatodbyahandlercau,creabrcau.muamm,ormbnormpmbnarmofa
coenter statement. In addition, the recover code of a guardian runs as an action. When control flows
om&anaabn.mataabnhmmmmbnbt&mwmhmwm. To abort an
action,Risnecessarytomaﬁ!ycomolﬂowsmmmaudmsm.m.ndgnd,andhwowththe
keyword abort (see Section 10).

However, there is an additional complication. Not only will expiicit termination of actions by exit,
slgnal,ammwstatenmummrﬂmm.wlbohmmhmﬁonbyﬂwdmwdan
actbnbodywhonmomnbnnbodw!mmdbodyhhmdodoubmmoactbn‘sbody. Thus, if an
exceptbnuﬂchhuhadbyacanwmnanwuonlsnotmcomunadbn,mitisnooossaryto
catch the exception within the action. mbpanhmumommndealhgwnhtopaabns. A
common desire is to catch all "unexpected” exceptions, but still have the topaction abort. In this case, the
catch-all exception handier must be placed inside the topaction. However, an unavailable handier must
sﬁHbeplacedoutsidethetopadbn.s&metheMphmoocmﬁmaym.

Anactlonortopauloncoannoiaeoem.rstatmﬁwmnotabonlscotmrreMSbungswhonilends
inaithernomralcompletionofitsbodyorbyammm. However, if control tiows otherwise out of
theeoomorstatememtmmwuhhoneoftheoom.mommisteminaedasdowﬁbedin
Section 10.6. Tm.ammummmshouldmﬂbeusedwehﬁ!ybcmummpmwbohamm
case of exceptions. Themmaybedrcqnﬂamuwhmamoexcopﬁonhuﬂbrwmtobe
usedforeachcoanntoemurethepmperbehavior.evenmnmeexcenionhandﬁngbldomlcalfor
each coarm.

11.6. Failure Exceptions

Argus responds to unhandied exceptions differentty than CLU. In CLU, an unhandied exception in
some routine causes that routine to terminate with the faiure exception. In Argus, however, an
unhandied exception causes the guardian that is running the routine to crash. Our motivation for this
chameisthatmuMbdempﬁonbtyucauyasynpmeamummgmrmmbe
handied by the calling routine. Furthermore, crashing the guardian limits the damage that the
programming error can cause.

Procedures and iterators in Argus no longer have an implicit failure exception associated with them.
Instead, such a routine may list failure explicitly in its signals clause and failure may have any number
(and type) of exception results. Failure should be used to indicate an unexpected (and possibly

74 Exception Handling and Exits

catastmphic)mlumofaMrwumn,moxm.MMhamhawmeﬂ
routhos(forhdamehWarorcapyop«atbm). Another exampie is when there is an unwanted side
eﬁect.suchasaboundsexoepﬁanhdmdmmmodbynmlwndh amay argument.
vmmmmtmmmmmmmmm.

memwaem,mbuudmmuauamumw;mmmﬂm
faikxa(drhq)hWhthatymdwwWMM(mWﬂ&. When a remote call
terminates with the WOW,MMMMWMWNW.MMWMIB
unikety to succeed i repeated.

12 Modules 75

12. Modules
Besides guardian modules, Argus has procedure, Herator, cluster, and equate modules.
module ::= { equate } guardian
{ equate } procedure
| { equate } kerator
| { equate } cluster
| { equate } equates
Guardians are discussed in Section 13, the rest are described below.

12.1. Procedures

A procedure performs an action on zero or more arguments, and when it terminates it retums zero or
more results. A procedure impiements a procedural abstraction: a mapping from a set of argument
objécts to a set of result objects, with possible modification of some of the argument objects. A procedure
mayterminatemoneofanunberofcondmons;onedﬂwuhuunmmlcondmon,wmeothers are
exceptional conditions. Differing numbers and types of results may be retumed in the different conditions.

The form of a procedure is:
idn = proc [parme] args [retums] [signais] [where]
routine_body
end idn
where
args 2= ([ded, ...])
returns == retumns (type_spec , ...)
signals +2= signals (exception , ...)
exception ::= name [(type_spec, ...)]
routine_body 2i={ equate }
{ own_var }
{ statement }

In this section we discuss non-parameterized procedures, in which the parms and where clauses are

missing. Parameterized modules are discussed in Section 12.5. Own variables are discussed in Section
12.7.

The heading of a procedure describes the way in which the procedure communicates with its caller.
The args clause specifies the number, order,andtypesotmm:mﬂudtocalltheprooo&re, while
the retums clause specifies the number, order, andtypecofrosuasrmmdwhenthepmcedure

terminates normally (by executing a retum statement or reaching the end of its body). A missing retums
clause indicates that no results are returned.

The signals clause names the exceptional conditions in which the procedure can terminate, and
specifies the number, order, and types of result objects retumed in each condition. AN names of

76 Modules

exceptions in the signals clause must be distinct. The idn following the end of the procedure must be the
same as the idn naming the procedure.

A procedure is an object of some procedure type. For a non-parameterized procedure, this type is
derived from the procedure heading by removing the procedure name, rewrlting the formal argument
declarations with one idn per ded), deleting the idns of all formai arguments, and finally, replacing proc by
proctype.

The call of a procedure causes the introduction of the formal variables, and the actual arguments are
assigned to these variables. Then the procedure body is executed. Execution terminates when a return
statement or a signal statement is executed, or when the textual end of the body is reached. If a
procedure that should retumn results reaches the textual end of the body, the guardian crashes due to this
error. At termination the result objects, if any, are passed back to the caller of the procedure.

12.2. lterators

An iterator computes a sequence of items, one tem at a time, where an item is a group of zero or more
objects. In the generation of such a sequence, the computation of each iem of the sequence is usually
controlied by information about what previous kems have been produced. Such information and the way
it controis the production of items is local to the iterator. The user of the Rerator is not concemed with
how the items are produced, but simply uses them (through a for statement) as they are produced. Thus
the Rerator abstracts from the detalis of how the production of the items ls controlied; for this reason, we
consider an iterator 1o implement a control abstraction. Herstors are particularly useful as operations of
data abstractions that are collections of objects (e.g., sets), since they may produce the objects in a
collection without revealing how the collection is represented.

An iterator has the form:

idn = iter [parms] args [yieids] [signais] [where]
routine_body
end idn
where

yiekds .= ylelds (type_spec, ...)
In this section we discuss non-parameterized Rerators, in which the parms and where clauses are

missing. Parameterized modules are discussed in Section 12.5. Own variables are discussed in Section
12.7.

The form of an iterator is similar to the form of a procedure. There are only two differences:

1. An fterator has a ylelds clause in its heading in place of the retums clause of a procedure.
The yields clause specifies the number, order, and types of objecls yiekied each time the
iterator produces the next kem in the sequence. if zero objects are yiekied, then the ylelds
clause is omitted. The idn following the end of the Rerator must be the same as the idn
naming the Rerator.

2. Within the iterator body, the yleld statement is used to present the caller with the next item

12.2 lterators 7

in the sequence. An iterator terminates in the same manner as a procedure, but it may not
return any results.

An iterator is an object of some iterator type. For a non-parameterized terator, this type is derived from
the nemtmheadklgbymmwngmenomum.mmmmwdodmmhom
idnperded,debtmﬂnmmalbnmlamumms,.mmwy.mwwm.

An iterator can be called onlybyabrstatemrﬂorbyaioruehclauseinamm.rstatmm.

12.3. Clusters

Aclusterisusodminpbmmanewdatatwe,dsﬁndfmmmyothorm-hwuser-deﬂneddata
type. Adatatype(ordataabctndbn)mmhndamdmmamdpﬁmmm. The
pﬁmuweoperabmmwuowmbubmysdﬂwm\gmm;MMywew
conma:ionthatcanbepeﬁonmdontheobjmmstbooxpmmdhmoﬂhepmmiveopemions.
Thus the primitive operations define the lowest level of observabie object behavior'0.

The form of a cluster is:
idn = cluster [parms] is opidn , ... [where]

cluster_body
end idn
where
opidn 1=
| transmit

cluster_body ::= E equate }i'op = type_spec { equate }
routi:;{ routine }

routine .= procedure
| iterator
In this section we discuss non-parameterized clusters, in which the parms and where clauses are
migsing. Parameterized modules are discussed in Section 12.5. Own variables are discussed in Section
12.7.

The primitive operations are named by the list of opidns following the reserved word Is. All of the
opidns in this list must be distinct. Theidnfonowingmomofmecumrmstbethemasthewn
naming the cluster.

To define a new data type, it is necessarytochoosaaoormtaraprosontaﬁontormobjodsofthe
type. The special equate:

‘%wmmtmnmmummofdmmmmtwm,a.mm,a..mmmwmm
ngramDewbmmmMITPms,thidpo, 10886.

78 Modules

rep = type_spec
within the cluster body identifies the fype_spec as the concrete representation. Within the cluster, rep
may be used as an abbreviation for this type_spec.

The identifier naming the cluster is available for use in the cluster body. Use of this identifier within the
cluster body permits the definition of recursive types.

in addition to giving the representation of objects, the cluster must implement the primitive operations
of the type. One exception to this, however, is the transmit operation. The transmit operation is not
directly implemented by a cluster; instead, the cluster must implement two operations: encode and
decode (see Section 14 for details). The primitive operations may be either procedural or control
abaractbns;thaymknuemmbypmcoawumm.mwm. Any additional routines
implemented within the cluster are hidden: they are private o the cluster and may not be named directly
by users of the abstract type. Al the routines must be named by distinct identitiers; the scope of these
identifiers is the entire cluster.

Outsidemecuster.thetype'sobiectsmayon!ybemaedmly(l.o..maniwlaudbyustngme
primitive operations). ToWMoporﬁom,Mmm,thm&rytoman‘pulatethe
objects in terms of their concrete representation. it is also convenient sometimes 10 manipulate the
objects abstractly. Th«dm.MﬂnclmarlispmuobmmwﬂMMrmwor
in terms of their representation. The syntax is defined to specify unambiguously, for each variable that
refers to one of the type's objects, which view is being taken. Thus, inside a cluster named T, a
declaration:

v:T
indicates that the object referred to by v is to be treated abstractly, while a declaration:

w: rep
Mica!esthatmobiodmfonedtobywisbbetreatodooncrmly. Two primitives, up and down, are
available for converting between these two points of view. The use of up permits a type rep object to be
MWN.MMMaﬂWMhmMM. For example, given
tmmmm.tmmmmsmm:

v = Up{w)
w = down(v)

Only routines inside a cluster may use up and down. Note that up and down are used merely 1o inform
tmmtmmmhmmmmmwmm,w.

Aconmnphcewhonmmmanobhdchmguisammmtoomofmetwo's
operations: mm.um.mmmm.mmmop«ammmis
viewed concretely. Tommw.am'wm.m,hpmvmd. The use of cvt
isrestrictodtotheams,mmmaﬂemmwmdwmdmm:m.andmybouud
at the top level only (e.g., array{cvt] is illegal). When used inside the args clause, it means that the view
MWammmWmeWbm%ikmbmmw
variable. Whencvtisusedintheretun)s,yields.orsigmbdausc,lmthomamreaulobjed

12.3 Clusters 79

changes from concrete to abstract as it is retumned (or yielded) to the caller. Thus cvt means abstract
outside, concrete inside: whenconstmctmthetypedamuﬂm.cvtbemivalemtomeabstracttype,
butwhentype-cheddngthebodyofarmmne.cvtisomivalefuothe representation type. The type of
eachroutineisderivedfromnsheadingintheusualmmm,oxcaﬂ&ateachoccumnceofevtis
replaced by the abstract type. Thecvtionndoesnothmdmanynewabﬂlyoverwhatispmvided by
up and down. It is merely a shorthand for a common case.

Inside the cluster, it is not necessary to use the compound form (type__specSop__name) for naming
locally defined routines. Furthermore, the compound form cannot be used for calling hidden routines.

12.4. Equate Modules

Anequatentoduleprovidesaoorwerﬁerﬁwaytodefmaasetofequatasiorlaterusebyother
modtules.

The form of an equate module is:

idn = equates [parms [where]]
equate { equate }
end idn
The usual scope rules apply. Thekinfolbwmthemdo”hommmodmomstbemosameasthe
idn naming the equate module.

Momommawdm.mth,umawdmmdmm. The set of
equatesisalsoaconuam,am\oughhsnotmobba. Thus the name of an equate module can be used
hmoquao.wmomaomwbcmbomtoam. The equates defined by an equate
mnsmuMmmquUnmmummmmmdam. For
oxame,mobbamtypemmdnhmmnmsmbomtouan i equate modules
Mainoquamsmatgmnamstommoquaam,eonpouMnmscanbeused. For example:

where A, B.andCamequatemdulesislegal.

As aways, equates to type specifications do not define new types but merely abbreviations for types.
For example, in the following:
my_types = equates

ai = arrayfint]
float = real

end my_types
the types my_types$ai and array{int] are equivalent.

80 Modules

12.5. Parameterized Modules

Procedures, iterators, clusters, guardians (see Section 13), and equate modules may all be
parameterized. Parameterization permits a set of related abstractions to be defined by a single module.
in each module heading there is an optional parms clause and an optional where clause (see Appendix 1).
The presence of the parms clause indicates that the module is parameterized; the where clause declares
the types of any operation parameters that are expected to accompany the formal type parameters.

The form of the parms clause is:

[parm, ...]
where

pam ::=idn, ... : type_spec

Iidn,...:typo

Each parm declares some number of formal parameters. Only the following types of parameters can be
declared in a parme clause: int, real, bool, char, string, null, and type. The declaration of operation
parameters associated with type parameters is done in the where clause, as discussed below. The actual
vahesforpamndusmmqﬁrodwbommmmmwedacompﬂe-m. This

w%mMethaummkmam,mmmmmm
checking.

In a parameterized module, the scope rules permit the parameters 1o be used throughout the module.

Typeparametmanbeuudfrodyastypom.malotherplmnucrs(k\cudhgthe
operations parameters specified in the where clause) can be used freely as expressions.

A parameterized module implements a set of related absiractions. A program must instantiate a
parameterized module before it can be used; that is, k must provide actual, constant values for the
parameters (see Section 12.6). The result of an instantiation is a procedure, iterator, type, guardian, or
equate module that may be used just like a non-parameterized module of the same kind. Each distinct
list of actual parameters produces a distinct procedure, Herator, type, guardian, or equate module (see
Section 12.6 for details).

The meaning of a parameterized module is given by binding the actual parameters to the formal
parameter names and deleting the parms clause and the where clause. That is, in an an instantiation of a
parameterized module, each formal parameter name denotes the corresponding actual parameter. The
resutting module is a regular (non-parameterized) module. in the case of a cluster some of the operations
may have additional parameters; further bindings take place when these operations are instantiated.

Inthecaseofatypepwamer,oneoanalsododam%opembnmmmmaccompanythe
type by using a where clause. Thewhareclausealsospoeiﬁesttmtypeotoachromifedoperaﬂon
parameter. The where clause constrains the parameterized module as wel: the only operations of the
type parameter that can be used are those listed in the where clause.

12.5 Parameterized Modules 81

The form of the where clause is:

where ..= where restriction , ...
restriction :.= idn has oper_decl , ...
| idn in type_set
oper_decl ..= name , ... : type_spec
transmit
type_set 2i= { idn | idn has oper_decl , ... { equate }}
idn
| reference $ name

There are two forms of restrictions. In both forms, the initial idn must be a type parameter. The has
fomﬁstsmesetofmmmdoperatbnpammetemdroaw,bymmofopor_dad& The type_spec in
eachopor_dednmstbeapmdypo.bﬂypo,orcnﬂoﬂm(mmmn. The In form requires that
theacmaltypobeamanborofatypo_sof,asetoﬂypocwnhthonquhdopom. The two identifiers
inthelypo_satnudmm,mmenamumadmmmm;braxm,

{tithasft: ...}
means "the set of all types tsuch that thas 7...". The scope of the identifier is the type_set.

TheInfonnisusefulbocwseanabbmviationcanbegiveniorafypo_setvhanoquate. if it is helpful
tointroduoesomabbrcviaﬂomindeﬁmngml)po_sot‘.thoumgmnhmeopﬁondemaieswnhin
the type_set. Thesoopeofﬂnuommismmhrypa_ut.

Aroutimlnaparamemtzodcmtormyhaveadeuhnsheadm,mdcanphcoﬁmher
constraints on the cluster parameters. For example, any type is permissbie for the aray element type,
MManaysinthropombnmqukeemmeebthQMnMaropemﬁon. This means that
arraymexistsioranytypeIbmmatmy[msﬁnﬂaroxmon!ywmnmmdopombnparmoris
provided for T$similar (see Section 12.6). Note that a routine need not include in ks where clause any of
the restrictions included in the cluster where clause.

12.6. Instantiations
To instantiate a parameterized module, constants or type specifications are provided as actual
parameters:
actual_parm .i= constant
| type_actual

type_actual ::= type_spec [with { opbinding , ... }]

opbinding i:= name , ... : primary
if the parameter is a type, the module’s whereclausemayreqﬁrothatsomemmsbepasudas
parameters. These routines can be passed implicitty by omitting the with clause; the routine selected as a
defaunwillbetheoperatbnofthotypethathasmesamonameasthatusedinthemrsclause.

82 Modules

Routines may aiso be passed explicitly by using the with clause, overriding the default. In this case, the
actual routine parameter need not have the same name as is required in the where clause, and need not
even be one of the type’s primitive operations.

The syntactic sugar that allows default routines to be selected implicitly works as follows. If a generator
requires an operation named op from a type parameter, and i the comesponding fype_actual, TS with (
... }, has no explicit binding for op, then Argus adds an opbinding of ap to TS$op. (it will be an emor i
TS$op is not defined.) Thus one only has to provide an explick opbinding if the default is unsatisfactory.

For example, suppose a procedure generator named sort has the following heading:
sort = procit: type}(a: arrayft]) where t has gt: proctype(t.t) returns(bool)
and consider the three instantiations:

sori{int with {gt: intSgt}]
sort[int]
sort{int with {it: inmt$it)]

The first two instantiations are equivalent; in the first the routine Int$gt is passed expiicitly, while in the
second it is passed implicitly as the default. In the third instantiation, however, Int$/ is passed in place of
the default. All three instantiations result in a routine of type:

proctype (array{int])
and so each could be called by passing it an array{int] as an argument. However a call of the third
instantiation will sort ts array argument in the opposite order from a call of either the first or second
instantiation.

Within an instantiation of a parameterized module, an operation of a type parameter named $op
denotes the actual routine parameter bound to op in the instantiation of that module. For example,
suppose we make the cali:

sori{int with {gt: Int$&}] (my_ints)
where my _ints is an amray of integers. If, in the body of sort, there is a recursive call:

sorift with {gt: 1$gt}] (a, i, j)
then t denotes the type int, and gt denotes the routine Int$1, so that the recursive sort happens in the
correct order.

A cluster generator may include routines with where clauses that place additional requirements on the
Cluster's type parameters. A common example is to require a copy operation ohly within the cluster's
copy implementation. :

set = clustert: type] is ..., copy
where t has equal: proctype(t.t) returns(bool)
rep = arrayft]

COpY = Proc(s: Cvt) returns(cvt) where t has copy: proctype(t) returns(t)

Theimontmmmmmaomwsesbtoabwmowmbbewmnmaclualtypo
parameter has the additional required operations, but not to make the additfonal operations an absokite

12.6 Instantiations 83

requirement for obtaining an instance of the type generator. For example, with the above definition of set,
se[any]wouldbedefhed.Mse(anypoopywmndnotbedﬁmdbomsemydoosnothaveawpy
operation. We shall call the routine parameters required by subordinate where clauses optional
paramelers.

Likaregularreq:iredpm,optionalpamnntmmnboprovidodwhenhcbﬁerasawholeis
instantiated and can be provided explicitly or by default. For any optional parameter op that is not
provided expiicitly by the type_actual, TS with { ... }, we add an apbinding of op to TS$op ¥ TS$op exists;
otherwise the opbinding is not added. The resulting cluster contains just those operations for which
opbindings exist for all the required routine parameters. For example, as mentioned above, setfany]
muwthmawpyowubnmmySwpydoosMuummmﬁnnmanls
not present. On the other hand, setfint] does have a copy operation because Int$copy does exist.
Finally.so(anywlth{copy.foa}],wherefoolsapmoodnthdwmsmwuanuwmmrﬁums
an any as a result, would have a copy operation.

For an instantiation to be legal it must type check. Type checking is done after the symactic sugars are
applied. mwsawmmmmmmhmhmmm,wmmm
types.andmetyposottheaaualmmmmmmhmw.lm,or
creatortypes declared in the appropriate where clauses. Of course, the number of parameters declared
mstmatchthemnberofadualspassodammhsaehwmupumwttwumustbean
opbinding for each required routine parameter. if the generstor is a cluster, then opbindings must be
providedforallopemionsreqmedinmechmr'swhereelauso;apblndlmscan(hﬂmodnot)be
provided for optional parameters. Extra actual routine parameters are ilegal.

Because the meaning of an instantiation may depend on the actual routine parameters, type equality
makes instances with different actual routine parameters distinct types. For example, consider the set
type generator again; the instance

sef array(int] with {equal: array{int}$equal} |
is not equal to

sef{ array{int] with {equal: array{int]$similar} |
Intuitively these instances should be unequal because the two équal procedures define different
equivalence classes and therefore the abstract behaviors of the two instances are different. However,
optional parameters do not effect type equality. For example,

sef{array(int] with {copy: int$copy} |
and

sef{arrayfint] with {copy: my_copy}]
are equal types. This is intuiltively justified because in each case set objects behave the same way even
though different sets are produced when sets are copied in the two cases.

Thus we have the following type equality rule, which defines when two lype_specs denote equal types
(after syntactic sugars are applied). A similar notion is also needed for routine equality. A formal type

84 Modules

identifier is equal only to kself for type checking purposes. Otherwies, two type names denote equal
types if they denote the same Description Unit (DU).'! Similarly, Argus compares the names of routine
formals or the DUsofMims,mMsmattheymthosammbnhemaltypes. To decide the
equality of two type generator instantiations:

nr:é with {op,: act,, ... op,: act}, ..., t, with {..}]

a

T1t," with {op,: act,’, ... op,,:act)} , ..., t, with {...}]
Argus first checks whether:

1. Tand T denote the same DU, and whether

2. they have the same number of type_actuals, and t, is equal to 1, etc.
Second, any optional parameter opbindings in either instantiation are deleted. After this step, Argus
checks that for each corresponding type__actual there is the same number of opbindings and that each
corresponding opbinding is the same. (That is, the corresponding aciual routines are equal.) The order
of the actual routine parameters does not matter, since Argus matches opbindings by operation names.
(The definition of routine equality for instantiations of routine generators I8 similar.) This definition, for
exampile, tells us that

sef] array{int] with {equal: array{intj$equal}]
is different from

sei{ array{int] with {equal: arrayfint]$similar}] ,
(assuming set requires an equal operation from its type parameter). i aiso telis us that:

set] int with {equal: foo, copy: bar}]
and

sef Int with {equal: foo, copy: xerox}]
are equal (assuming copy is required only by the sef{Int]$ copy operation).

Thistypeequalﬂymbaﬂowspmgramrstoeomwwhatmmwedtypeequalltyby
chooshgwhethertoputﬂnmonawstororoneachop«aﬂon. A requirement on the cluster should be
used whenever the actuals make some difference in the abstraction. For example, in the set cluster, the
type parameter's equalopemtbnshouhbemm&edbythedmhrasamb,skmusmmm
equality tests for a set's objects causes the set's behavior to change.

One can require that a type parameter, say 1, be transmissible by stating the requirement:

t has transmit
Thismqukemmbregamdasabrmalpammdodamnmawﬂmmw.butAmus
doosnotpmvidesyruaxtorpasslngnemmly. The “transmit actual” is passed implicitly just when the
actual type parameter is transmissibie and the generator requires it.

"'Thie is name equality uniess the type environment has synoryms for types.

12.7 Own Variables 85

12.7. Own Variables

Occasionally it is desirable to have a module that retains information internally between calis. Without
suchanabuity,thewonnationwouldeitherhavetobomcommmrycan,whichmnbe
expensive (and mayevenbekmossﬂoithemmatbnmmprwbusm).onhommon
muuhavemmpassedhtmougharoumma.Mhumm.mﬂnNMBmen
wbjedtoumommwﬂbdnbmbnhomfmdnm(unmabothebhﬂngmmdin
Section 9.8).

Procedures, iterators, handiers, creators, and clusters may all retain information through the use of
own variables. An own variable is similar to a normal variable, except that i exists for the We of the
program or guardian, rather than being bound o the life of any particular routine activation. Syntacticalty,
wnvmmmmmmmmmwmummmammmmm;mey
cannot appear in bodies nested within statements. Declarations of own variables have the form:

own_var 1.3 own decl
| own idn : type_spec := expression
| own dect , ... = cail [@ primary]
Note that initiaitzation is optional.

Theownvadabbsofanndubaremabdwhonagummexeanbnorrmma
crash, and they always start out uninitialized. The own variables of a routine (including cluster
operations)areinlializodmmmuomraspandﬂnwcdumepﬂﬁbndmm(ortMﬂm
suchcaﬁamracrash),bom:nymmhhbodydemwmmexoqnd. Cluster own
vaﬂablesaroMahodhlmmaspmdmwmldﬂnmmopombnbbocaud
(evenilthoop«dlondoumtuuthemvaﬁabhs). Cluster own variabies are initialized before any
operation own variables are initialized. Argus insures that only one process can execute a cluster's or a
routine’s own variabie initializations.

AsidetromtheplacememofMdeclambns.m&mthmaﬁzatbn,andthoirmtm, own
vaﬁauuammmmmmmmmummmm. As with normal variables,

anmwmmmmmmmum(lmmamm)mcmmmm
crash.

Declaratiomofownvariablesindﬂfamnmsmmmbmmvm:.wm
guardians never share own variables. Furthermore, own varisble declarations within a parameterized
nbdulepmdbtkctmvadabbstoreachmmmmm. For a given
instamiationofaparammzedcmter,aIMmMomdﬁntyp.‘soporﬁomsham&oumsetof

cluster own variables, but distinct instantiations of parameterized operations have distinct routine own
variables.

Declarationsofownvarlablescammbeancbsedbyanwudmm,socarenustbeoxmised
when writing initialization expressions. If an exception is raised by an initialization expression, it will be

86 Modules

treated as an exception raised, but not handled, in the body of the routine whose call caused the
initialization to be attempted. Thus, the guardian will crash due to this error.

88 Guardians

stabie buffer: atomic_array{int] := atomic_array{int}$new ()

cache: array[int] .= array{int}$new ()
thenmaomic_afmyomdonmodbybuﬂorwwuwrwveagumﬁancrash.mme array object
denoted by cache would not. See Section 13.3 for more details of crash recovery. Volatile variables can
beassignodwherevoranassigmfustatememislegal. However, siable variables may only be
assigned by an initialization when declared or in the body of a creator. The inkializations of both stable
and volatile variables are executed within an action, as described below. However, the stable variables
are not reinitialized upon crash recovery, whereas volatile variables are reintialized upon crash recovery.

Stable variables should denote resilient objects (see Section 15.2), because only resilient data objects
(reachablofromthostablevaﬂables)arewrltontostablestoragomnabpadionoomks. (This can
beensuredbyhavhgst&iovaﬂ&lesonlydendoobiocuofmmmclypeorobjectspmmedby
mutex.) Non-msubmobiedsswodhstabbvambhsmomwﬂﬁmtommramome,mntm
guardian is created. Furthermore, the stable variables should usually denote atomic objects, because the
stablevaﬂablesarepotemalysharedbyaltheaabmhawadan.

13.2. Creators

A guardian definition must provide one or more creators. The names of these creators must be listed
inthewardianhoador(iﬁomalmamsmnotalbwod);owhw&mmmmoonupondtoasmh
creator definition appearing in the body of the guardian definition.

Amatordefkﬂbnhasﬁwsamefonnasaprocodwedommon,oxeeptthalcreaorscannotbe
parameterized,andtherosewodwordcmisusodhplaceofpmc:

idn = creator ([args]) [retums] [signais]
routine_body

end idn

The initial idn names the creator and must agree with the final idn. The types of all arguments and all
results (normal and exceptional) must be transmissible.

A creator is an object of some creator type. This type is derived from the creator heading by removing
the creator name, mwrhingthofomalargummdochmtbmwnhomunpermmmmomam
formal arguments, deleting any failure or unavailable signals, and finally, replacing crestor by
Creatortype. The signals failure(string) and unavailable(string) are implicit in every creator type (since
they can arise from any creator call). However, i these signals are raised expiicitly by a creator, they
must be listed in the signals clause with string resuit types.

The semantics of a creator call are explained in Section 8.4. Typically, the body of a creator will
initialize some stable and volatile variables. ncanalsorommthenmofmeguardanbeingcmatod
using the expression self. Smmecreator(andthestammidizatbn)mmasanmn.vwmm
terminates by committing or aborting. if it aborts, the guardian is destroyed. If it commits, the guardian
beginstoaooepthandlercaus.andmnsthebad(groundoode,lmy(nebolw). if an ancestor of the
creator aborts, the guardian is destroyed. If the creator and all is ancestors commit, the guardian
becomes permanent, and will survive subsequent crashes.

13.2 Creators 89

13.3. Crash Recovery

Onoeagtmdianbecompenmnem.ltwillbemcreatedaﬂomatiea"yaﬁeracrashwithitsstable
variablesMiauzedtothemsmameywemhammttopmbncommﬁmﬂash. The
volatuevaﬁablesarethonmializod(indeclamionordor)byatopactbn. To aid in this reinitialization, the
guardian definition can provide a recover section:

recover body end

tobemn,aspanonhistopaction.aﬂertheimﬁalkatbnsauamodlottuvolaﬁlevaﬁabledoclaratbnsare
performed. Themcoversectbnconmkswhencmﬂroimadmﬂnmdoﬂhebody,orwhmamn
statement is executed. The recover section may abort by executing an abort return siatement or as a
result of an unhandied exception. The guardian crashes if the recover section aborts.

13.4. Background Tasks
Tasksthatnustbepeﬂomedperbdicauy,truependemmhafmercaus,canbedoﬂnedbya
background section:
background body end
Thesystemmasapmcustomnthisbodyassoonasmdionorrocovofycommmssfuuy.
Tmmwdtmmmmmwmtmnummn;twwthmmammeof

utmmmmmm“mhm(mwmmmwamm«by
mM).mMutmm«.mmmmnmmnnmmwmm.

13.5. Handlers and Other Routines

Typically, the principal purpose of a guardian is to execute incoming handler calls. A guardian accepts
handler calls as soon as creation or recovery commits.

The guardian header lists the names of the externally available handlers. Each handler listed must be
defined by a handier definition. Mdnbndhamddmmmymboolven,mm“handerscan
benamedonlywithintheguafdiantowmchmybelong.

A handier definition has the same form as a procedure definition, except that handiers cannot be
parameterized.andtheraservodwo«dhandlorisusedhplaeoofproc:

idn = handier ([args]) [retums] [signats]
routine_body
end idn
The initial Hnnamesthehandbrandnustaoreewiththefm idn. The types of all arguments and all
results (normal and exceptional) must be transmissible.

Ahandlerisanobjectofsomehandiertype. This type is derived from the handier heading by
removing the handler name, rewriting the formal argument declarations with one idn per deci, deleting the

tu,mw

ot s e BRI SR e e

13.7 An Example 91

consumption. The spooler provides an operation for adding (object, consumer) pairs, and for destroying
the guardian.

Figure 13-1: Spooler Guardian

spooler = guardian [t: type] Is create handies eng, finish
where t has tranemit

utype = handiertype (1)
entry = struct{object: t, consumer: utype]
Queue = semiqueusfentry]

stable state: queue = QueueS$create()

background
while true do
enter topaction

create = creator () retumns (spoolerft]))
retumn(selif)
ond create

enq = handier (item: t, user: utype)
queueS$enq(state, entry${object: #tem, consumer: user})
end enq

finish = handier ()
terminate
end finish

end spooler

Thespoolerguardianisparamteﬂzodbythotypeofobbenobom. The enq handier takes an
objectonhistype,arﬂahanderfwummmmmmm.mmtwwmnmtm
stable state of the spooler. Tmsstateisanobjoctofthommmm‘z. Each entry in
tmmmlsaammwmwammmuwmnmm. The
badmmundeodeoftheguacdanmmanmlebopmmuombn.remvesanomryfromthe
queue, and sends the object using the associated handier.

Note that an unavailable exception arising from this handier call is caught inside the topaction, so that
an expilicit abort can be performed. lftheexoepuonmcatmmthatopwm,ﬂwouldmusethe

'2See W. Weihl and B. Liskow, mmﬂdw,MD&Tm'.hACMTMMﬁwm
Languages and Systems, volume 7, number 2, (April 1965), pages 244-260.

92 Guardians

topactiontoconmit.andthsemywwldbemmwedwmnbehgcomumed. Note also that failure is
caught outside the topaction, s&noeﬂanencodsmtofal.orlﬂnwardhndidnotexist.the
background process might aimiessly loop forever, because it would not be able to remove that entry.

A more extended example of a distributed system appears in the paper Liskov, B. and Scheifler, R.,
"Guardians and Actions: Linguistic Support for Robust, Distributed Programs,” ACM Transactions on
Programming Languages and Systems, volume 5, number 3, (July 1983), pages 381-404.

14 Tranemiselbility 9

“14. Transmissibility
A typs is s8id © be Summinelbio ¥ & dafines. & SRR apesation that allows the values of s abjects
1o be sent in messages or slered In mage chiacts: Qe SN AL IS Y0e may be used as
. pindiuspmedignsjgosy ———
Argus bulit-in types and for vesn-defined ypes.

14.1. mrm

muum*mmu"

mmmmummm\ ¥

mimaummmﬁmmmmummdn
cornponent typue does.

The mwmmmmmﬁmmmmm

Plishov, B. eral, CLU Referance Mamal, Lasksme Nobws in Conpeter Suisans, wiikins 114, (Bptingor-Verieg, New Yark, wer).

94 Transmissibliity

14.3. Transmit for Abstract Types

The type implemented by a cluster is transmigsible if the reserved word transmit appears in the Is-list
at the head of the cluster. Umtetheothoropemiompmvidodbyaw,mvmuopemﬁonwm
bewlbddirecﬂybyusem.mdhfacthmth\phmmddhwyhmm«. Instead, transmit is
implemented indirectly in the following way. Each transmissbble type is given a canonical representation,
called its external representation type. TMeﬂomﬂanwammwpo Tis any
convenient transmissible type XT. Thhtypecanbeanothuabdmtypendesm;mmisno
requirement that XT be a built-in type. intultively, the meaning of the external representation is that
vabesoftypeXTwulbeusodhmssagestompmsomwuudtwot The choice of extemal
represemmiontypeismadebrthoabstmtypoasawhohmdmbouudhwwmmm
that type. (Thereamwmtﬂymprovisbmfwchangimﬂnextonulnprmmmionofatypeomen
has been established in the kbrary.)

Each implementation of the abstract type T must provide two operations 1o map between values of the

abstract type and values of the external representation type. There is an operation

encode = proc (a: T) retumns (XT) [signais (failure(string))]
to map from T values to XT values (for sending messages) and an operation

decode = proc (x: XT) retums (T) [signals (failure(string))]
to map from XT values to T values (for receiving messages). The transmit operation for T is defined by
the following identity:

T$transmit (x) = T$decode (XT$transmit (T $encode(x)))
Intuitively, the correctness requirement for encode and decode is that they preserve the abstract T values:
encode maps a value of type T into the XT value that represents R, while decode performs the reverse
mapping 4.

Encode and decode are called krtplicitlybyﬂwkwssyﬂemmhmdbrandcreatorcms. it
encodaanddeoodedonotappearhthechstersb-lm,mmoywﬂbommmmomwssyﬂem,
btnmaynotbenamddirecﬂybyusorsonhetypa. A fallure exception raised by one of these operations
willbecaugmbytheAmssystemandresignauedtothecauor(mSedbna.a).

An abstract type's encodeanddooodeoporatbnsshouidnotcausowsldeeﬂects. This is because
themmberofcaustoenoodeordecodaisurlpredictable,s&marwnnmorresulsmybowmded
ammwdodwvwdthmasmesystemmmomnhcommcdbn. in addition, verifying the
mdummmheubrlarmdomdm“mmmmbwufmtm
external representation.

When defining a parameterized module (see Section 12.5), it may be necessary to require a type
parameter to be transmissible. A special type restriction:

“Herlihy, M. and Liskov, B., "A Value Transmission Method for Abstract Data Types", ACM Transactions on Programeming
Languages and Systems, volume 4, number 4, (Oct. 1982), pages 527-551.

14.3 Transmit for Abstract Types 95

has transmit
is provided for this purpose. To permit instantiation only with transmissible type parameters, this
restriction should appear in the where ciause of the cluster. Altematively, by placing identica! where
clauses in the headings of encode and decode procedures, one can ensure that an instantiation of the
cluster is transmissible only ¥ the type parameters are transmissible (see Section 12.5).

As an example, Figure 14-1 shows part of a cluster defining a key-item tabie that stores pairs of values,
where one value (the key) is used to retrieve the other (the itsm). The key-item table type has operations
for creating empty tables, inserting pairs, retrieving the item paired with a given key, deleting pairs, and
iterating through all key-item pairs. The table is represented by a sorted binary tree, and its external
representation is an array of key-item pairs. The table type Is transmissible only ¥ both type parameters
are transmissible.

Figure 14-1: Partial implementation of table.

table = cluster [key, item: type] Is create, insert, lookup, alipairs, delete, transmit, ...
where key has k: proctype (key, key) retums (bool),
equal: proctype (key, key) returns (bool)

pair = recordlk: key, i: kem]

nod = recordik: key, I: item, left, right: tabie[key, item]]
rep = variantfempty: null, some: nod]

xrep = array{pair} % the external representation type

% The internal representation is a sorted binary tree. Ali pairs in the table
%totholeft(rloht)o(anodohavekeysbssﬂm(m«ﬁm)mekeyh
% that node.

% ... other operations omitted

encode = proc (t: tablefkey, tem]) retumns (xrep)
where key has tranemit, kem has tranemit

Xr: Xrep = xrep$new() % create an empty aray

% use alipairs to extract the pairs from the tree

for p: pair in alipairs(t) do
%Addthepairtomohighendonhoarray.
xrep$addh(xr, p)
end

return(xr)
end encode

decode = proc (xtbi: xrep) returns (table[key, item])
where key has transmit, tem has tranemit
t: tablefkey, tem] := create() % create empty table
for p: pair In xrep$elements(xr) do
% xrep$elements yields all elements of array xr
insert(t, p.key, p.tem) % enter pair in table
end

return(t)
end decode
end table

96 Transmissiblility

14.4. Sharing

When an object of structured built-in type is encoded and decoded, sharing among the object's
components is preserved. For exampie, let a be an array{ 7] object such that afi] and afj] refer to a single
object of type T. IfazisanamymobjedcraatedbyhamniuhQa.MaZﬁ]anduﬂ]alsonamea
single object of type T.

All sharing Is preserved among all components of multiple objects of built-in type when those objects
are encoded together. Thus.shadmisprmwodtorobbeuﬂumummmofmmmmotecan
orareresultsofthesamemmem,umwwmmmmadmmﬁm(mthe
discussion of the bind expression in Section 9.8). For example, let a and b be array| 7] objects such that
a[i] and bfj] refer to a single object of type T if a2 and b2 are amays created by sending a and b as
argumentsinasinglehandlercall,thenaﬂi]andbzma!mrdertoamwioct.

Whetheranabsﬁacttype‘summuopembnprmwesshamwsmdthatype'sspecibmbut
sharing should usually be preserved for abstract types. in the key-tem table implementation of Figure
14-1,merearetwotypesofshaﬂmthatsrnuldbeprmetvod: sharing of keys and kems among muttiple
taﬂessﬂhanm,aMMdhmehmkoyhamtabh. The
key'nemtauooxamemmwmmmmmtmmuamnmbnmm
by choosing an extemnal mpresemationtypemsotnnmlopefauonpnwvesshamg.

Care must be taken when the rﬁemmesanmgobiemtobotrmmmcyclic,asham

list. Dewdimsuchobiedscanmsuﬂhafaﬂumoxcopﬁonuﬂmanodowﬂdmdammmw
in one of two ways:

1.thememalandextomalmenmbntyposmmmoncodaanddooodorotum
thoiramumob]eawnmm"bd*yhguwammgltacomm«

2. the external representation object must be free of cycles.

15 Atomic Types 97

15. Atomic Types

In Argus, atomicity is enforced by the objects shared among actions, rather than by the individual
actions themselves. Typeswhoseobbdsomumdonlolyowummshamgﬂnmmmuodam
types;obioctsofatonﬁctypesmcalbdatondcodoas. In this chapter we define what it means for a
typetobeatomicaMdesorbethemchanismpmvidodbyAmstowpponthe implementation of
atomic types.

Atomicity consists of two properties: serializability and recoverability. An atomic type’s objects must
synchronize actions to ensure that the actions are serializable. An atomic type's objects must also
recover from actions that abort to ensure that actions appear to execute either completely or not at all.

In addition, an atomic type must be resilient the type must be irpplememad so that its objects can be
saved on stable storage. This ensures that the effects of an action that commits to the top (that is, an
action that commits, as do all of its ancestors) will survive crashes.

Thischaplerprovidesdﬂmmdmmmusadmm-ddmdtyposhm. For
example implementations, see Weihi, W. and Liskov, B., "implementation of Resilient, Atomic Data
Types,” ACM Transactions on Programming Languages and Systems, volume 7, number 2 (April 1985),
pages 244-269.

The remainder of this chapter is organized as follows. In Section 15.1 and Section 15.2, we present
the details of the mechanisms. Section 15.1 focuses on synchronization and recovery of actions, while
Section 15.2 deals primarily with resilience. In Section 15.3, we discuss some guideiines to keep in mind
when using the mechanisms described in Section 15.1 and Section 15.2. In Sections 15.4 and 15.5, we
define more precisely what it means for a type to be atomic. Finally, in 15.6, we discuss some details that
are important for user-defined atomic types that are implemented using multiple mutexes.

15.1. Action Synchronization and Recovery
lnmisseabnmdewmmummwmbwnwmubnamem

of actions. TmmmmmbmimmmMathw
auowhlghlyconwmmacceasbobjeds.

Like a non-atomic type, anatomictypeisWedebyaMeﬂhatdofmarepmmtbnbrthe
obieclsofthetype,andanimemmwonbroachopomﬂonowntypohtemdmdfemmabn.
However,thekmlomematbnofanaton\btypomasomsompmumthatdonotocwrlo:on!hary
types, namely: symmmmmm,mmmmmmmmumw
ambns,hwwmeeﬁmofabonodadm,ammmwm.

Animplenwmationofauser-deﬁnedatonictypomustbeabbtothdomabomtheconmtsandabons
of actions. InAmus,inplemmmomusooblomo'wll-hmtwesbrMpmpou. The
representationofauser—defmdatombtypelstypbaﬂyaco'mbnofaWandmmoMcobjocts;

15.2 Resllience 99

changed = proc (m: mutex{T])
isprovidedfornotilyingthesystommatmexismgmmxobiocummdbemmmaablestorage.
CaHMWsmmnmwumwaumhmm(uwmlismossble)by
thetimeﬂweactionthatexouﬂodthedmuadopwdbnwﬁbhbp. Sometime after the action
calis changed, and before Rstop-levolmuowomm.tmmwmcopytlnmtuobbutombb
storage. Changadnnstbocakdfromapmcossmmkmanmbn.

Mmexobbctsabodefinohwnudlmmbnmmhombmm. Copying a mutex
objoctinvolvescopymgmecomakndobbq. Bymmuumpummmm.xobhasme
usercancommlhownuchdatanustbemntomblemaamm. For example, a large data
basecanbebmkenmopanhbnsthatamwﬂmnwmmkmpommbyMImm
several mutex objects. Suchadiﬁsbncanbeusodtommmnofdammntommrage
by calling changed only for those partitions actually modified by a committing action.

In copying a mutex object, the system will copy all objects reachable from i, excluding other mutex or
built-in atomic objects. A contained mutex or built-in atomic object will be copied only if necessary; that Is,
only if itis: ‘

oannnexobjectforwhich(adescendarﬁof)theoompleﬁngactioncaledthedmgod

operation,

oabuilt-inaton\icobiectmawasn\odmdbytheaaion,or

-anewlymssibhobhdforwhhhnodabhoopym.
Funhenmre.thoconmuhoopbdindopom.myomncommm“obm;thoymaybeoopied
ineitherocdar(onmmhmoudy),subhamtheoonsﬁammdﬂwsystemcannotcopyamaxobjed
without first gaining possession of it.

Finally, mnaxobbmanbousedtoemumma!WOmbnhmacomistemmmwhenliswritten
to stable storage. msystomwmmmssbndaMxobhabommntoMsmmoe.
Bymakingaﬂmodubatbmtomnaxobjeasmmm.ﬂwuserscodecmwwomme
system from copying a mutex object when it is in an inconsistent state.

Some details of the effect of changed are important for atomic types that are implemented as multiple
mutexes. These details are presented in Section 15.6. '

15.3. Guidelines

Tmmdmmsmmmﬁmshmwmm«mmmm. There are
additionalwldeﬁnestobuowwhenmlblennnexesammdtohvbmemanaonictwo;those
guidelines are discussed in Section 15.6.

Anmmwmeufwmmﬂnmsubmeofusomdmmmhwndmny. An object
bsyndwmmusnbnumsmebobuwomNanymnbnmmoobhuhmdbmwaa
different time from any other portion. For example, an object of type arrayimutex{int]] would not be

100 Atomic Types

synchmnous.becauseelemomonheanaycanbecopbdmdmmmms: A type is synchronous if all
of its objects are synchronous. Whether a type is synchronous or not is an imporant property of its
behavior and should be stated in its specification. The built-in atomic types are synchronous; user-
defined types must also be synchronous i they are to be atomic.

To ensure the resilience and serializability of a user-defined atomic. type independently of how it is
used, the form of the rep for an atomic type should be one of the following possibitities.
1. The rep is itself atomic. Note that mutex is not an atomic type.

2. The rep is mutex{f] where t is a synchronous type. For example, t could be atomic, or it
could be the representation of an atomic type, if the operations on the this fictitious atomic
typearecodadin-limsothatmemwmhamm.

3.Thenpisanatomicooﬂeabnofmnextypesoonmm|gsyndwomustypes.

4.Therepisamﬁabbcouembnofsyndwomustypos,madob§-maﬂnmprmmabn
type are never modified after they are initialized. That is, mutation may be used o create
theinitialstateofsuchanobjed,btnomemmmmunobimmmverbo
modified.

When using mutex objects, there are a few rules to remember. First, changed must be called after the
last modification (on behalf of some action) to the contained object. This is true because the Argus
systemisfreetocopythemﬂextostablestorageassoonasd)mhnbeencauod.

Inaddition,changadshouldbecalledevenIf!heobjocﬂsnotaccmbhfmmthestablevaﬂablosofa
guardian. in part this rule is just an example of separation of concerns: the implementation of the atomic
tmmummmmmmwmmmmmwmm Therefore the
typeshouldbelmmwaHMmemwumvmdmwm.
However,mmmummumw,unmmmwmmmwed
properly. This situation can occur ¥ an object was accessible, then becomes inaccessible, and later
becomes accessible again. Thesystemwameesthatmpmblommldamdisahvayscanod
after the last modification to the object.

Mmexobjectsshouldnotsharedatawﬂhonearﬂher,unlessﬂnsharedddaisatomicormmax.

Onereasonforthisruleisthatincopyingmﬁexobjoctstomuoragemsdoesrmmsewethis
kind of sharing.

Aﬂnalpoimaboutrrunexobiedsisthatnisunwisetodoanyadivlymaisﬁkelytotakeabngtime
inside a selze statement. For example, a handler call should not be done from inside a seize statement ¥
possible. Also,nisumvisebwailbraMMaMumuthomgm\ercanbeeenﬁthm
lock is available or will be soon. Otherwise, a deadiock may occur. An exampie of where walting for a
MMammwmumkaMbmammmmmwiommmsm
order.

15.4 A Prescription for Atomicity 101

15.4. A Prescription for Atomicity

lnthbsodbn.mdbwssMwbdooﬂoMMconwnomybpocsbbhkmlomeminganatonﬁc
type. lnwmhgspedﬁmﬁomlammm,mmmulmwwphmmmmmnm
operations, initially assuming no concurrency and no fallures, and to deal with concurrency and failures
later. In other words, we imagine that the objects will exist in an environment in which all actions are
executed sequentially, andhwhlchactbnsmvoramn._

AnnghasequemuspodﬁeatbndmismdoesnmaymmepeMb
concurrency, it does impose limits on how much concurrency can be provided. implementations can
differ in how much concurrency is provided, but no impiementation can exceed these limits. Therefore, it
is important to understand what the limits are.

ThbsedbnaMthlbwhgsedbntogmhmmvHeamcbedﬁdeom&sﬂommy
for an atomic type. This definition is based on two facts about Argus and the way i supports
implementations of atomic type. First, in implementing an atomic type, it is only necessary to be
concermned about active actions. mmmmmnummhmmwamm
aborted later, and its changes to atomic objects become visbie o other actions. So, for example, an
implementation of an atomic type needs 1o prevent one action from cbserving the modifications of other
amhnsthatareninadm,hnldo«mthwebpmmmmnmmobummmby
actions that have already committed. Second, the only method avaiiable 1o an atomic type for controliing
theactivniesofactionsbtodehyactbmwhkthoymexmmdhtypo. An atomic type
mmmwmmadbnfmmcaﬁnmmm.mnmmmmmmmdm
Aho,anaWtypecanmtpmeMmadbnMprwbmﬂyModacﬂdanop«aﬂonﬁom
completing either by committing or by aborting.

Given the sequential specification of the operations of a type, these facts lead to two constraints on the
concurrency permitted among actions using the type. While an implementation can allow no more
mmnemmmwmm.mmm.mmmnmw
generator atomic__array (see Section 11.10), may allow less concurrency than permitted by their
sequential specifications and our concurrency constraints.

The first constraint is that

* an action can observe the effects of other actions only i those actions committed relative to
the first action.

Thisoonstrahhplbsthﬂhmsuﬂaretunndbyoporﬁomexoaﬂodbyomaﬂmmmmmes
made by operations executed by other actions only ¥ those actions commitied relative o the first action.
Forexample,mMmWa.HmmnMaMga.n,amw(mmmm
rooeivetheanswer'?"fmmacaﬂolWxa.a)mlwmmmhmhp. if the first
actbnisstmacﬁve,meucommbnnuubodehmmﬂmwmnm‘ This first
mmﬂwmmwmmummmammmmmw
other actions. nalwwmmy,mnmmmaakamMOm
another’s changes.

102 Atomic Types

However, more is needed for serializability. Thus, we have our second constraint:

* operations executed by one action cannot invalidate the resulls of operations executed by a
concurrent action.

Forexarrple.supposeanambnAexeanesthesizaopefwononmabﬂicmyobbd.recoMngnas
the result. Now suppose another action B is permitted 1o execute addh. The addh operation will increase
thesizeofthearrayton+1,MMNtMMdmmmumdbyA Since A
observedthestateoftheanaybdoreBexmwadm.AMMmayWexmd
tmmm(mmmmmoxmmmmmmmmmmmmmmatm
objects). Now suppose that B commits. By assumption, A cannot be prevented from seeing the effects of
B. it Aobserves any effect of B, it will have to follow B in any sequential execution. Since A cannot both
preoodeaMfo&wahammdoxoanbn,ummvhm. Thus, once A executes
size, an action that calis addh must be delayed until A compietes.

15.5. Commuting Operations

To state our requirements more precisely, consider a simple situation involving two concurrent actions
eachexeaningasinqleoperationonasharodatomlcobjectx (The actions may be executing
operationsonomershmdob]ectsalso.btniansoachobiectmmmallyememaomcRyof
theactbnsusingit.sowefowsonﬂwopembnsmwhgaﬂmow.) A fairly simple condition that
guarantees serializability is the following. Suppose X is an object of type T. X has a curent state
determined by the operations performed by previously committed actions. Suppose O, and O, are two
executions of operations on Xiin its current state. (O, and O, might be executions of the same operation
or different operations.) It O, has been executed by an action A and A has not yet committed or aborted,
Ozcanbopeﬂornndbyacomomacﬁonsontylo,wozm given the current state of X,
theeﬂeet(asdoscrbedbytheaememlalmdncalbnofndpoﬂomo,onxmwbyozbtho
samaspedonnth,oanolowodbyO,. It is important o realize that when we say "effect" we
include both the results returned and any modifications to the state of X,

The intuitive explanation of why the above condition works is as follows. Suppose O, and O, are
performed by concurrent actions A and B at X, if O, and O, commute, then the order in which A and B
are serialized globally does not matter at X It Als serialized before B, then the local effect at X is as if O,
werepedormedbeforeO,MﬂeﬁBisseﬂahodbﬂomA.mobcalmmasnozwerepomfmed
before O,. Bmthesetwoeﬁeasareﬂwsamslmeo,andozoonm.

MwmmdemmwembmhommmnaMMmrmmmm
bacwseﬂauowsopembmmbeexmbymmnﬂmwmntmmcom.
Mmmmmhm&%wrmﬂywﬂbnﬂmwﬁnmmm
mmmmmmmwmwdmmanumm. For example,
callsoftheatomicarrayoperaﬂonmmmmemmmmwmmmmW
writers. As another example, store(X, i, e,) and store(X, j, @,) commute if i+ .

WerequireonlythatO,andozoonwmtewhentheymexoqnodswmgmmewmm.

15.5 Commuting Operations 103

Consider a bank account object, with operations to deposit a sum of money, to withdraw a sum of money
(with the possible result that it signals insufficlent funds ¥ the current balance is less than the sum
requested), and to examine the current balance. Two withdraw operations, say for amounts m and n, do
not commute when the current balance is the maximum of m and n: elther operation when executed in
this state will succeed in withdrawing the requested sum, but the other operation must signal insufficient
funds i executed in the resulting state. They do commute whenever the current balance is at least the
sum of m and n. Thus i one action has executed a withdraw operation, our condition aliows a second
action to execute another withdraw operation while the first action is still active as long as there are
sufficient funds to satisfy both withdrawal requests.

Our condition must be extended to cover two additional cases. First, there may be more than two
concurrent actions at a time. Suppose A,...A, are concurrent actions, each performing a single
operation execution O,,...,0,, respectively, on X. (As before, the concurrent actions may be sharing
other objects as well.) Since A,,...,A, are permitted 10 be concurrent at X, there is no local control over
the order in which they may appear to occur. Therefore, all possible orders must have the same effect at
X. This is true provided that all permutations of O,,...,0, have the same effect when executed in the
current state, where effect includes both results obtained and modifications to X.

The second extension acknowledges that actions can perform sequences of operation executions.
Consider concuirent actions A,,...,A, each performing a sequence S,....5,, respactively, of operation
executions. This is permissible ¥ all sequences S;,,...,S,, oblained by concatenating the sequences
S,...S, in some order, produce the same effect. For example, suppose action A executed addh
followed by remh on an array. This sequence of operations has no net effect on the array. It is then
permissible to allow a concurrent action B to execute size on the same amay, provided the answer
returned is the size of the array before A executed addh or after it executed remh.

Note that in requiring certain sequences of operations 10 have the same effact, we are congidering the
effect of the operations as described by the specification of the type. Thus we are concermed with the
abstract state of X, and not with the concrete state of Its storage representation. Therefore, we may allow
two operations (or sequences of operations) that do commute in terms of their effect on the abstract state
of X to be performed by concurrent actions, even though they do not commute in terms of their effect on
the representation of X. This distinction between an abstraction and s implementation is crucial in
achieving reasonable performance.

It is important to realize that the constraints that are imposed by atomicity based on the sequential
specification of a type are only an upper bound on the concumrency that an implementation may provide.
A specification may contain additional constraints that further constrain implementations; these
constraints may be essential for showing that actions using the type do not deadiock, or for showing other
kinds of termination properties. For example, the specification of the built-in atomic types expiicily
describes the locking rules used by their implementations; users of these types are guaranteed that the
built-in atomic types will not permit more concurrency than aliowed by these rules (for ingtance, actions
writing different components of an array, or different fiekis of a record, cannot do 8o concurrently).

104

1s.s.mm

mmm;mqimmf

Lishav, 8., “nplommettion of
hmuﬁu?'&m-tm

mmmm MM«.M
24-000

15.6 Multiple Mutexes 105

1. Before that crash, B aiso committed {o the top. In this case the data read back from stabie
storage is, in fact, consistent, since it must reflect B's changes to both the first and second
semiqueues.

2. B aborted or had not yet committed before the crash. In either case, B aborts. Therefore,
thechangesmadototheﬁmsomqnuobyswﬂbohlddonbymesem“
implementation: at the abstract level, the two semiqueues do have the same state.

memimmmeaboveoxmpbismnﬂnobjmbommmmaomeareatomic,thenthe
fact that they are written incrementally causes no problems.

On the other hand, when an atomic type is implemented with a representation consisting of several
mnexobiects,theprooranmmstbewamﬂ;dthmaﬂeﬁsmwrwmbstabb storage
incrementally,andcaremﬂ%takenmamumthammhwmnstlmmodam
thatirﬂomntbnisnoilosﬂnspaeofmmalm. if the implementation of a type requires that one
mutexobjed(callitMI)bewmtentommmgebetmmwdﬂua,themhewmodmmst
beoontainedinanactionthatoomnﬂstothotopbeforetheactbnmmesmlsmn.

106 Syntax

WemmMmemuvmmmuaMh
nonterminal == slemalive
| ahemative
The following extensions are used:
B ~ 8, a list of one or MOre 25 separated by CEMINEL: " Or °8, 87 0 "8, &, 8, 0.
- {a} 8 5000n08 0f 2070 Or MORS 35 * 07 "W er 8 ¢, 0.
[] on opensl & ** or Y. | |

"y
(X3
H

4

i

reutire { moutine }
ond idn

108

operation

routine

procedure

iterator

creator

handler

routine_body

parms

parm

args
decl
returns
yiekds
signals
exception

creator
handler
routine

procedure
iterator

idn = proc [parms] args [retums] [signais] [where]
routine_body
ond idn

idn = her [parms] args [yieids] [signals] [where]
routine_body
ond iin

idn = creator args [retums] [signais]
routine_body
end idn

idn = handier args [retums] [signals]
routine_body
ond idn

{ equate }

{ own_var }
{ statement }
[parm, ...)

idn , ... : type
idn , ... : type_spec

([decl, ...])

idn , ... : type_spec
returns (type_spec, ...)
ylelds (type_spec, ...)
signais (exception , ...)

name [(type_spec, ...)]

Syntax

| Syntax

opidn e idn
| transmn
where == where restriction , ...
restriction ::= idn has oper_decl, ...
| ionin type_set
type_set = {idn | idn has oper_dec! , ... { equate } }
| idn
| reference $ name
oper_decl = name, . :type_spec
| transmit
constant «:= expression
| type_spec
state_dec 3i= [stable] deci

| [stable]idn : type_spec = expression
| [stable]dect, ... = cat

equate == idn = constant
| ion=type_set
| idn = reference

own_var =:= own decl

| ownidn :type_spec = expression
| owndedl, ... = call [@ primary]

110

statement

enter_stmt

decl

idn : type_spec := expression

decl , «.. = call [@ primary]

idN , ... 3= call [@ primary]

idn , ... = expression , ...

primary . name := expression

primary [expression] := expression

call [@ primary]

fork call

selze expression do body end

pause

terminate

enter_stmt

coenter coarm { coarm } end

[abort] eave

while expression do body end

for_stmt

if_stmt

tagcase_stmt

tagtest_stmt

tagwakt_stmt

[lborl]ntum[(expresslon,...)]

yield [(expression., ...)]

[abort] signal name [(expression | ...)]

[abort] exit name [(expression ,)]

[abort] break

[abort] continue

begin body end

statement [abort] resignai name

statement except { when_handier }
[others_handier]
end

enter topaction body end
enter action body end

Syntax

I Syntax

coarm

armtag

for_stmt

if_stmt

tagcase_stmt

tagtest_stmt

tagwait_stmt

tag_arm
atag_arm

tag_kind

when_handier

others_handler

body

for [deci , ...] In call do body end
for [idn, ...] in call do body end

if expression then body
{ elseit expression then body }
[eiee body |
end

tagcase expression
tag_amm { tag_arm }
[others : body]
ond

tagtest expression
atag_arm { atag_am }
[others : body]
end

tagwalit expression
atag_arm { atag_arm }
end

tag name , ... [(idn :type_spec)] : body
tag__kindname,....[(idn:type_spec)]:body

tag
wtag

when name , ... [(dect, ...)] : body
when name , ... (*) : body

others [(idn : type_spec)] : body

{ equate }
{ statement }

111

112

type_spec

field_spec

reference

actual_parm

type_actual

opbinding

string

sequence [type_actual |
array [type_actual |

atomic_array [type_actual |

struct [field_spec , ...]

record | fieid_spec , ...]

atomic_record [field_spec , ...]

oneof | field_spec , ...]

variant [field_spec , ...]

atomic_variant | field_spec , ...]

proctype ([type_spec. ...]) [retums] [signais]
Hertype ([type_spec ...]) [yields] [signais]
creatortype ([type_spec, ...]) [retums] [signais]
handiertype ([type_spec]) [rewms] [signas |
mutex [type_actual |

reference

name, ... : type_actual
idn

idn [actual_parm, ...]
reference $ name

constant
type_actual

type_spec [with { where opinding , we}]

= Name, u.. : primary

Syntax

| Syntax

expression

primary

call

primary

call @ primary

(expression)

~ expression

- expression

expression ** expression
expression // expression
expression / expression
expression * expression
expression || expression
expression + expression
expression — expression
expression < expression
expression <= expression
expression = expression
expression >= expression
expression > expression
expression ~< expression
expression ~<= expression
expression ~= expression
expression ~>= expression
expression ~> expression
expression & expression
expression cand expression
expression | expression
expression cor expression

entity

call

primary . name
primary [expression]

primary ([expression , ...])

% 6 (precedence)

RRREARRRRARAEARRRRARRAR LR

6

[3))

F

W

N NRNMNDNDMMMNMDBNODN

113

114

entity

field

bind_arg

hil

true

false
int_literal
real_literal
char_literal
string_literal
self
reference

entity . name

entity [expression |

bind entity ([bind_arg , ...])
type_spec $ { field , ... }

type_spec $ | [expression :] [expression , ...]]

type_spec § name [[actual_parm , ...]]
up (expression)

down (expression)

name , ... : expression

expression

Syntax

I Syntax 115

Comment. a sequence of characters that begins with a percent sign (%), ends with a newline
character, and contains only printing ASCHi characters and horizontal tabs in between.

Separator. a blank character (space, vertical tab, horizontal tab, carriage return, newline, form feed) or
a comment. Zeroormomupamnmayappoarbmnnmym:okms. except that at least one
separator is required between any two adjacent non-self-terminating tokens: reserved words, identifiers,
integer literals, and real literals.

Reserved word: one of the identifiers appearing in bold face in the syntax. Upper and lower case
letters are not distinguished in reserved words.

Name, idn: a sequence of letters, digits, and underscores that begins with a letter or underscore, and
that is not a reserved word. Upper and lower case letters are not distinguished in names and idns.

Int_literal: aseqxenceofomormmdecknaldlols(o-s)orabwksiash(\)bw by any number of
octal digits (0-7) or a backslash and a sharp sign (W) followed by any number of hexadecimal digits (0-9,
A-F in upper or lower case).

Real_literal: a mantissa with an (optional) exponent. A mantissa is either a sequence of one or more
decimaldiqits,orlwoseqmnoos(oneofwhichmaybeenpty)bhodbyapedod. The mantissa must
contain at least one digh. An exponent is 'E’ or 'e’, optionaily followed by '+ or *-', followed by one or
more decimal digits. Anexponemismmkedhtnmamhsadoesnotcomamapeﬁod.

Char__literal. a character representation other than single quote, enclosed in single quotes. A
character representation is either a printing ASCH character (octal value 40 through 176) other than

mm.ormmmmaammbm“mmmmrm
as shown in Table 6-1 or Table |-1 below.

String_literal: a sequence of zero or more character representations other than double quote, enclosed
in double quotes.

Table I-1 shows most of the character literals supported by Argus, except for the higher numbered octal
escape sequences. For each character, the cotresponding octal literal, hexadecimal literal, and normal
literal(s) are shown. Uppororlwercasslottemmaybousﬁhmaomencos of the form \#**, \A*,
\",\b, &, \n, W, \p, and \. mthdanknphmomatbnnoednolswponzsecharmrs,inwhichcase
only a subset of the literals listed will be legal.

116

Table 1: Character Escape Sequences

Syntax

000" 'W00' W@
001" W1 WA
002" 'Wo2' B’
003" W03’ \AC'
004’ W04’ \AD"
\005’ W05’ \AE'
006" W06’ \WF"
007" W07 WG’

010’ W08’ \AH" b’

011" \HOD* AP

012" \HOA’ "W’ A\’
013’ "WOB’ \AK' v’
014’ "HOC' \AL" \p'
015’ "\¥OD’ \AM' "\

016’ "HOE’ "\"N’
017" \#OF \O’

020 10" \AP*
021" \#11° QY
\022' W12 "R’
023’ W13’ \ng’
024’ \#14' \AT
025’ \#15° \AU'
026’ "\¥16' \AY
027" \#17' \\W'

030" "#18" \AX'
031’ W19’ WY
032" H1A' \WZ
033’ 1B’ W'
034’ W1C W
035’ 1D’ W)
036" W E’ \an
"037" W An

\041" W21’
042" "w22' ™ A"
\043" W23 ¥
044" W24’ '§’
\045' W25’ "%’
"046' 26" '8’
\047 27"

050" "w2e’ '(
\051" W29’y
w’ W’ "
\053' "W2B' '+’
1054 "W2C’ ")
mssl w] !
057 W2F 7

\100 40" '@’
101 41" A
102 42" B’
103" 43" 'C’
104 WB44' D’
\105’ M5’ E’
106" W4g' F
107 47" G

A\110° \wdg' 'H'
\111° 49" P

12 WA Y

13 4B K
14 \w4C' L
115" WD 'w
\116' W4E' N’
\MAT 4P 'O

\120° \#50° P’
21 51" °Qr
\122' W52' R’
123 W53’ 'S’
124 w54’ T
\125' "Ws5' U’
\126' \#56' 'V
27 ST 'W

130’ 58" X'
131 S0’ Y
\132 \WSA' 77
\133 WSB' T
\134' W5C' W
135’ D' T
136’ WISE' '~
M37 SF

\140° 60" **
141 61" "o’
142 962" b
1143 463" ¢
144’ W64 'd'
\145’ 965’ ‘e’
\146' 466 T
47 W67 g’

\150° '\#68’ '’
151 w69’ i’
\152' \WeA'
1153’ "\#6B' k'
\154' "WeC' 'r
155’ \#6D" 'm'
\156’ "\#6E’ 'n’
57 "#eF o’

200’ "W#80' \k@’
201" W81 A
\202° \82' \IB’
203" W83’ \IC’
204’ \#84' \ID'
205" "\#85’ \IE’
208" W86’ \IF
207" \#87 \\G'

210’ \#68' \IH'
211 "\wee' i

\212' \#8A’ "\

213" W8B' \IK
214’ \#8C' W’
\215° "W8D' \im'
216" "WeE' \IN'
217 \#9F \O’

220" S0’ \IP*
\221" Wo1’ QY
\222' We2' \IR
223" o3’ \IS’
\224' W4’ \IT
\225' 496" W'
\226' Woe' \IV
227" ST W'

\230' o6’ X’
\231" 99" Iy
\232" WA’ \Z
\233' WoB' "\
\234’ WeC’ W
\235' W9D' "I
\236" WOE’ "\
\237 WP A\

240" \FAO' &’
241’ \WA1’ \&F
N242' \#A2' %"
243’ \FAS’ "\&¥
N244' WAL \8$'
245’ "WAS' &%’
\246° "WAB' 3.8’
247" \WAT "&"

\250' WAG' \& ("
251’ \#AQ' \&)'
252" \WAA' 8"
253" \FAB' "B+’
254’ WAC' \&,’
"\255' \BAD' "&-"
266" WAE' 8.
257" \WAF "8/

300" 'WCO' \&@’
\301' WC1' "&A’
\302 'WwC2' "&b’
303 'WC3' "&C’
304’ "WC4' 8D’
305" "WC5' &E’
\306' "WwCe' \&F
307" "WC7 &G’

\310° "WC8' "\&H’
311’ "IC9’ &l

312 "WCA’ &y
313 "#CB' &K
\314' "WCC’ Nal’
315 "WCD’ \aM’
\31¢' "WCE' &N’
317 \¥CF &0’

\320' "WDO' &P’
321" D1 \&Q'
322 "wD2' &R’
323 'WD3' "&.S8'
324 WD4' T
\325° "WD§' BV
\32¢' 'wD8' &V
\327 "WD7 "\awW

\330' "WDE' &X'
\331" 'WDY' WY’
\332 "WDA' \&Z
\333' 'WDB' \a[
1334’ 'WDC' AV
\335' 'WDD' 8]
\336" "WDE' &
\337 "WDF \8_

N3O "WEO &
\341' WE1' 8o’
342 "FE2' "Bb’
343 "WE3' "\&c'
344’ 'WE4' "8’
\345' "WE5' "¢’
\346' "#EE’ "8
\347 "WET "&g'

350 "WES’ "\&h'
\351' 'WE9’ &'
\362' "WEA' "&j'
\353' "WEB’ \&k’
354’ "MEC' "I
355 "WED' "\&am’
356" "WEE' \&n’
357 "WEF’ "\&o’

| Syntax

080" "w30' ‘0’
081’ Wa1' 'Y
08 oY 'Y
IF W Y
00’ W4 4
WeF W ¥
008 38" '
067 937 T

70 s 'y
71 e 'y
072 WA 2
73 Wl
TS WG ¢
78 W
OIS WIE >’
OTT W P

Raedhiidk 4
A Yy g
T WY Y
I Y 'y
i olinih 8
A WS v
oy e v
NST W W

NP W X
Wy
NI N T
Ml . A
M WIC T
N WD Y
P
MTT WPy

17

118 Built-in Types and Type Generators

Il Built-in Types and Type Generators 119

Appendix I
Built-in Types and Type Generators
The following sections specify the built-in types and the types produced by the buikt-in type generators
of Argus. Fmeachtypom\dbreachmymof'awhtwom.mmmmtypoare
characterized, and all of the operations of the type are defined. (An implementation may provide
additional operations on the built in types, as long as these are operations that could be implemented in
terms of those described in this section.)

All the built-in types (except for any) are transmissible. Al instances of the built-in type generators
(except for proctype and Mertype) are transmissible ¥ alil their type parameters are transmissible.
Transmission of the built-in types preserves vaiue equality, except for objects of type real. However, in a
homogeneous environment, reals can be transmitied without approximations. In a homogeneous
environment, the only possible encode or decode fallures are exceeding the representation limits of an
Image, mutating the size of an array or atomic__array while & is being encoded or decoded, and
improper decoding of cyclic objects (see Section 14.4).

All operations are indivisible except at calls to subsidiary operations (such as Im$simiar within
array[int]$similar), at yields, and while waiting for locks.

The specifications given below are informal and are adapted from the book Abstraction and
Specification in Program Development (Liskov, B. and Guttag, J., MIT Press, 1986). A specification starts
mwgwmammtmmwmmmawmmmmmw. This is
bﬂowedbyanwuvhw,ﬁichohuanhmdﬁonbﬂntyp‘mdlqueﬁmawayof
describing the type’s objects and their values. Following this the individual operations are described. For
each operation there is a heading and a statement of the operation's effects. in the heading, the return
values may be given names. The effects section describes the normal and exceptional behavior of the
operation. The effects given are m,mnuymmmmmmuy(or model)
defined in the overview section. For exampie, objects of type int are described using mathematical
integers. Thus arithmetic expressions and comparisons used in defining Int operations are 1o be
computed over the domain of mathematical integers.

Anoperationthat(abs!ractly)Mesoneofitsammmmmwmnmmhtm
clause following the word modifies. An operation is not allowed to mutate any objects, except for those
listed in the modifies clause. (Futmm-mmmmwmmmmmmm
tMsaquamum;ldoumtrdarmd\mhmbddmmMonkmbrMM) When
anamumom,saya.bmm,nhwmmesmbmnmummamwawdu
its final state at the end of the call. Weuuunmammnmamumomnmmm
notation &, for its state at the end of the call.

Someoperationsofthebuatintypegenetatommomyddhedlmetypogommarhpassad
appropriate actual routine parameters (see Section 12.6). For example, the copy operation of the array

120 Bulit-in Types and Type Generators

type generator, is only defined if there is an actual parameter passed (expiicitly or implicitly) for the type
parameter's copy operation. Thus array[int}$copy is defined but arrayfany]$copy is not defined. These
requirements are stated in a requires clause that precedes the description of the operation's effect. The
type of the expected routine is also described; remember that the actual operation parameter can have
fewer signals (see Section 6.1 and Section 12.6).

By convention, the order in which exceptions are listed in the operation type is the order in which the
various conditions are checked.

Operations with the same semantics (for example, null$equa/ and nult$similar) or that can be
described in the same way (for example, MaddandhtsstJ)aremnpodboem«tosavespm.

in defining the built-in types, we do not depend on users satistying any constraints beyond those that
can be type-checked. Thig decision leads to more complicated specifications. For example, the behavior
of the elements iterator for arrays is defined even when the loop modifies the array.

I.1. Null

null = data type is copy, equal, similar, transmit
Overview

The type null has exactly one, immutable, atomic object, represented by the literal nil. Nii is
generally used as a place holder in type definitions using oneofs or variants.

Operations

equal = proc (n1, n2: null) returns (bool)
similar = proc (n1, n2: null) returns (bool)
effects Returns true.

copy = proc (n: null) retumns (null)
transmit = proc (n: null) returns (null)
effects Retumns nil.

II.2. Nodes
node = data type Is here, copy, equal, similar, transmit
Overview

Objects of type node are immutable and atomic, and stand for physical nodes. implementations
sMuMprovbesomemedmbmbrtmanamdo'ud&m‘Moamdoobieamdvico
versa. (However, these do not have to be operations of type node.)

Operations

here = proc () retums (node)
effects Retums the node object for the caller's node.

equal = proc (n1, n2: node) returmns (bool)
similar = proc (n1, n2: node) returns (bool)
effects Retumns true i and only i n1 and n2 are the same node.

H.2 Nodes 121

bool = date type is and, or, not, equal, similar, copy, Sranemit
Overview

The wo immutable, alomic objects of type ook, with Memsls Seus and falss, reprasent logical truth

mmumnmmﬁquMdm
oxpressions, see Sedlion §.15. ‘
m

and = prec (b1, b2: beet) retume (heal)
Mmm!uﬁmmmmnm

“-mmw -2 m
Mmimammmm

&ckd = proc {x, y: Int) stune. (g} of
mEmE prse
otingle

ﬁ“#&ﬂ, ord fum <

from_10 = Ber (e, to: it} yhelie gt
“%“?W*m) mgt;_

max = proe (x, y: int) stens el
otiocis ¥ x 2 y, thee sobame x, otherwine retums .

min = BIOC (x, y: k) RASRS)
Mhsnmm:.mm;

W*“fﬂ“mmmm
COpY = Proc (x: Int) awturne (Int)
eftects Aetums x.

I.4 Integers 123

transmit = proc (x: int) retums (y: int) signals(failure(string))
effects Rmmyeuchthntx-yorsionah fallure ¥ x cannot be represented in the
implementation on the receiving end.

II.5. Reals

real = data type is add, sub, minus, mul, div, power, abs, max, min, exponent, mantissa, i2r, r2i,
trunc, parse, unparse, i, le, ge, gt, equal, similar, copy, transmit

Overview

Thetypemlmdelsasubsatofﬁnemathamwwnm. It is used for approximate or floating
point arithmetic. Roalsarekmmtabloanda&aﬁc,arﬂmwﬁtenasamm&saw&hanoptbnal
exponent. See Appendix | for the format of real iterals.

Eachkvplememationmpresemaawbutdthonalmmbouh:
D = {-real_max, —real_min} U {0} U {real_min, real_max}
where
0 <real_min < 1 < real_max

NumberslnDamapproxknaté'dbymein'plemmwonwmaapmdsiondpdecimaldignssuch

that:
Vre D Approx(r) € Real
Vr e Real Approx(r) = r
Vre D- {0} | (Approx(r) — ryr] < 101
vrse D IS 8 = Approx(r) s Approx(s)
Vre D —T) = ~Approx(r)

Real operations signal an exception i the result of a computation lies outside of D; overfliow

D
occurs if the magnitude exceeds rea/_max, and underfiow occurs if the magnitude is less than
real_min.

Operations

add = proc (x, y: real) returns (real) signals (overflow, underfiow)
MComesthemzofxandy:Womﬂowor underfiow ¥ z is outside of D, as
explained earlier. Otherwise retume an approximation such that:
(x.y 20 v x,y < 0) => add(x, y)-AangHy)
add(x, y) = (1 +e)(x + y) le| < 10'-P
add(x, 0) = x
add(x, y) = add(y, x)
X < x' = add(x, y) < add(x’, y)

sub = proc (x, y: reel) retumns (real) signais (overfiow, undertiow)
offects 68 X — y; the result is identical to add\x, —y).

nums-proc(x:nd)uturm(nd)
effects Retums —x.

mul = proc (x, y: real) retums (real) signais (overfiow, undertiow)
effects Retumns approx(x*y); signais overflow or underflow if x*y is outside of D.

div = proc (x, y: real) returns (real) signals (zero_divide, overflow, underfiow)

effects If y = 0, signals zero_divide. Otherwise returns approx(x'y); signals overflow or
underfiow it X'y is outside of D.

124

Bulit-in Types and Type Generators

power = proc (x, y: real) returns (real)
signals (zero_divide, complex_result, overfiow, underfiow)
Mﬂx-omy<o,ﬂomlszom_dtvldo. # x < 0 and y is nonintegral, signals
complex__result. mm.nmnhi.ooodbpmmm&
signals overflow or underfiow ¥ »¥ is outside of D.

abs = proc (x: real) returmne (ree)
effects Returns the absokute value of x.

max = proc (x, y: real) retums (real)
oﬂmnxzy,ﬂnnruunnx,mmn\sy.

min = proc (x, y: real) returns (real)
oﬂoctslfxs;r,tlnnrdumx,oﬂnmiamumy.

exponent = proc (x: reel) returns (int) signais (undefined)
effects if x = 0, signais undefined. Otherwise retums the exponent that would be used in
representing x as a iteral in standard form, thet is, returns
max ({i | abs(x) 2 10%))

mantissa = proc (x: real) retums (real)
oﬁmnmmmaxmwmmmmm,mum
approx(x/109%), where @ = exponent(x). x = 0.0, returmns 0.0.

wr-pm(i:nn)mm(n.ndgm(mﬁbu:)
effects Returns approx()); signais overfiow i /is not in D.

12i = proc (x: real) returns (Int) signals (overfiow)
effects Rounds x to the nearest integer and toward zero in case of a tie. Signals overfiow if

therewltﬁesomsldotmmpnumdwd&m

trunc = proc (x: real) returns (int) signals (overfiow)
effects Truncates x toward zero; signals overflow i the resut would be outside the

represented range of integers.
parse-proc(s:mmmd)m(bﬁ_mm,umﬂbw
effects Returns

S must reprasent a real or integer ieral with an optional leading plus or minus sign;
otherwise signals bad_format. Signais underfiow or overfiow ¥ 2 is not in D. '

unparse = proc (x: real) returns (string)
mm:wmummtwuwx))-x. The general form of the literal
is:
[-1i_fielo.t feid [o+ x_fioit]
Leading zeros in /_fleld and tralling zeros in _fiekd are suppressed. I x is integral and
mmWNWMMLMthmmm. i

= proc (x, y: real) returns (bool)
= proc (x, y: real) returns (bool)
proc (x, y: real) retums (bool)
proc (x, y: real) retums (bool)

effects These are the standard ordering relations.
equal = proc (x, y: real) returns (bool)
similar = proc (x, y: real) retumns (bool)
effects Returns true i x and y are the same number; retume falee otherwise.

i
le
ge
gt

126 Bulit-In Types and Type Generators

I.7. Strings

string = data type Is c2s, concat, append, substr, rest, size, empty, fetch, chars, indexs, indexc,
82ac, ac2s, $2sc, sc2s, R, le, ge, gt, equal, similar, copy, transmht
ring is

Overview

Type string is used for representing text. A st an immutable and atomic tuple of zero or
more characters. Thectwactmdasﬁmmkﬂoxodwaanmfmmone. Strings
arelexioographicnnyordemdbasedonthommm.

Astﬂnghoralbwrﬂtenuasmnceofzemormchmumnsendosedm
double quotes. Smmmlbramndmdwmmsmmswcanbe
used within string literals. No string can have a size
implemmubnmymmumvgbmtoavmmmm_m
operation would be a string containing more than the

€28 = proc (c: char) returns (string)
ofmmtumammeoruainkncas!sonwawm.

concat-pm(ﬂ,sa:m)M(nM)m(ms)
effects Returns the concatenation of §1 and 2. That is, {A=s7[] for i an index of s7 and
nsize(s1)+A=s) for i an index of s2. Signale Amis ¥ r would be too large for the
implementation.

append = proc (s: string, c: char) returns (r: string) signais (limits) _
Mnetumanews!dnghavhgmechanamo(shorderfolowedbya That is,
nsize{s)+1]} = c. Slgnalslimitsnhemwhgwouidbobohmeform implementation.

substr = proc (s: string, at: int, cnt: Int) returns (string) signais (bounds, negative_size)
oftects It cnt < 0, signals negative_size. N at < 1 or at > size(s)+1, signals bounds.
Othemiserommastwhevmmmqq. sat+1], ... in that order; the new
string contains min(cnt, size-at+1) characters. For example,
substr ("abcdef®, 2, 3) = "bed”
substr ("abcdef”, 2, 7) = "bedef”
substr ("abcdef”, 7, 1) = ™
Note that i min(cnt, slzo—am)-o,swstrreMmsttnmwstrk\g.

rest = proc (s: string, i: int) returns (r: string) signais (bounds)
effects Signais bounds if i < 0 or / > size(s) + 1; otherwise relums a string whose first
character is 5[/, whose second is g[i+1), ..., and whose size(/th character is 8 size(s)).

Notetlmll-slze(s)ﬂ,mtmﬁ:mtmwym.

size = proc (s: string) retums (int)
effects Returns the number of characters in s.

empty = proc (s: string) returns (bool)
effects Returns true if s is empty (contains no characters); otherwise returns false.

fetch = proc (s: string, i: int) returns (char) signais (bounds)
effects Signals bounds if i < 0 or / > size(s); otherwise returmns the kh character of s.

chars = lter (s: string) ylekds (char)
effects Yieids, in order, each character of s (i.e., {1}, 82}, ...).

1.7 Strings 127

indexs = proc (s1, s2: string) returns (int)
effects If s7 occurs as a substring in 82, retums the least index at which s1 occurs. Returns
0 if 57 does not occur in 82, and 1 ¥ 1 is the empty string. For example,
indexs("abc", "abche™) = 1
indexs{"bc", "abcbe™) = 2
indexs(™, "abode”) = 1
indexs("bcb®, “abcde”) = 0

indexc = proc (c: char, s: string) retumns (Int)
ﬂhctsﬂcooamins,rmmsthebasthdexmwhlchcoowrs; retums 0 ¥ ¢ does not
occurins.

s2ac = proc (s: string) retumns (array{char]) -
effects Stores the characters of s as slements of a new amray of characters, &. The low
bound of the array is 1, the size is size(s), and the Ah element of the array is the kh
character of s, for 1 < /< size(s).

ac2s = proc (a: array{char}) retumns (string)
effects This is the inverse of s2ac. The resull is a string with characters in the same order
:ina. That is, the &h character of the string is the (i+arrayichar}$iow(a)—1)th element
a.

$2sC = proc (s: string) returmns (sequenceichar})
effects Transiorms a string into a sequence of characters. The size of the sequence is
size(s). The kh element of the sequence Is the Ah character of s, for 1 <ix size(s).

$C2s = proc (s: sequenceichar]) returns (string)
effects This is the inverse of s2sc. The resulk is a siring with characters in the same order
as in s. That is, the th character of the string is the th element of s.

It = proc (81, s2: string) returns (bool)
le = proc (s1, s2: string) returns (bool)
ge = proc (s1, s2: string) retumns (bool)
gt = proc (s1, s2: string) retums (bool)
MThmmmumdbxWapﬁcordoﬂmmmbnsonstﬁngs.basedonthe
ordering of characters. For example,
"abc” < "aca”
Imﬂ<IMI

equal = proc (s1, s2: string) returns (bool)
similar = proc (s1, 82: string) retumns (boot)
effects Returns true ¥ s7 and s2 are the same string; otherwise returns faise.

Copy = proc (s1: string) returns (string)
effects Retums s17.

transmit = proc (s1: string) returns (string) signals (failure(string))
effects Returns s1. Signale faiiure only i $1 is not representable on the receiving end.

128 Buiit-in Types and Type Generators

I1.8. Sequences

sequence = data type [t: type] Is new, e2s, fill, fill_copy, replace, addh, add!, remh, reml, concat,
subseq, size, empty, feich, bottom, top, elements, indexes, a2s, s2a,
equal, similar, copy, transmit

Overview

Sequencesrepresemirmmableh:phsotoﬂedsoﬂwet. The elements of the sequence can be
indexed sequentially from 1 up to the size of the sequence. ARhough a sequence is immutable,
the elements of the sequence can be mutable objects. The state of such mutable elements may
change; thus, a sequence object is atomic only if ks elements are also atomic.

Soqueneescanbecreatedbycallingsequencoopordbnsandbymansoftheseqmme
constructor, see Section 6.2.8.

Any operation call that attempts to access a sequence with an index that is not within the defined
range terminates with the bounds exception. The size of a sequence can be no larger than the
WMMM(M_M.MMMWMWMWbaMWr
bound. MmmbmwathmWMMaMGmpﬁon.

Operations

new = proc () returns (sequenceit])
effects Retums the emply sequence.

e2s = proc (elem: t) returns (sequencelt])
MR«umaom—obmomummhavﬁuabmubm&ehmom.

fill = proc (cnt: int, elem:) returns (sequence(t]) signais (negative_size, limits)
effects If cnt < 0, signals negative_size. if ont is larger than the maximum sequence size
supported by the implementation, signals ¥mits. Otherwise retuns a sequence having
cnt elements each of which is elem.

fill_copy = proc (cnt: int, elem: t) retums (sequence(t])
signais (negative _size, limits, failure(string))

requires t has copy: proctype (1) retums (1) signels (failure(string)

effects if cnt < 0, signais negative__size. # ont is bigger than the maximum size of
sequences that the implementation supports, signals #mits. Otherwise retums a new
semencehamgcmmmuchofmnacopye!wm.asmww. Note
that Scopy is called cnt times. Any fallure signal raised by Scopy is immediately
resignalied. This operation does not originate any falure signais by itsel.

repiace = proc (s: sequence{t], I: int, elem: 1) returns (sequenceft]) sighais (bounds)
effects if i < 1 or i > high(s), signals bounds. Otherwise retums a sequence with the same
elements as s, except that elem is in the th position. For exampile,

repiace(sequence{int}${2,5], 1, 6) = sequencelint}$is, 5]

addh = proc (s: sequenceft], elem: t) returns (r: ssquenceft]) signals (limits)
oﬂm%mmam%ﬂnsm*musmwom
element, elom. That is, Ail=o{i] for i an index of 8, and fsize(s)}+1]=elem. I the resulting
sequence would be larger than the implementation supports, signais kmits.

addl = proc (s: sequenceft], elem:) returne (r: sequenceft]) signais (limits).
mmammmmuﬂ'm*MkhmdbymoQMds
in order. That is, A1]=elem and f{j=a{i-1] for i = 2, ..., size(r). i the resulting sequence
would be larger than the implementation supports, signals Amits.

remh = proc (s: sequenceft]) retums (r: sequenceft]) signals (bounds)
effects if s is empty, signais bounds. Otherwise retums a sequence having all elements of s
in order, except the last one. That is, size(rj=size(s)-1 and A=A fori=1, ..., size(s)-1.

iL.8 Sequences 129

remi »

of s onder, mﬂn”u& et

ity ...,mt
oomu-puc(ﬂ u:m i

130 Built-in Types and Type Generators

COpy = pProc (s: sequenceit]) returns (sequenceit]) signais (failure(string))
nqulmthasoopy:pmetypo(t)mmmmﬂun(m»
MMmamhavimnmmdmmmmms. The effect is

equivalemtomdoltmblbwhgmmwy:
qt = sequencaelt)
y: qt = gt$new()
for e: t In giSelements(s) do
z'; Gt$addh(y, t$copy(e)) resignal faikure

return (y)

transmit = proc (s: sequencet]) returns (sequencet]) signais (fallure(string))
requires { has transmit
oﬂmﬂewmsasomemehavhgasebmmwwmdmmmrnsofsh
the same order. Sharing among elements is preserved. Signais failure If this cannot be
meonmmmmmmmwmmm.

I1.9. Arrays

array = data type [t: type] Is create, new, predict, fill, fill_copy, addh, addl, remh, rem,
set_low, trim, store, fetch, bottom, top, empty, size, low, high, elements, indexes,
equal, similar, similar1, copy, copy1, transmit

Overview

Arrays are nmableobjoasthatmpresemmplesofOMMtypetmatangrwmdshﬁnk
dynamically. Each amy'sdatooonﬂohdthbhprdohmwdabwbound(or index). The
elements are indexed sequentially, starting from the low bound. Each array also has an identity
as an object.

Arrayscanbecreatedbycallingarrayopcmbmmm,nemﬂ,ﬂl__capy.mdprodict. They can
alsobematedbymamdt#wmaycomw,mmmmybwboum,man
arbitrary number of initial elements, see Section 6.2.9.

Operations low, hiah.andslzoretumthewrremlowandmghboundsandsizeonheamy. For
arraya,sa‘ze(a)isthemumerofelennmma.whbhiszomlahomy. These are related by
the equation: high(a) = low(a) + size(a) — 1.

ForanyindexIbetweenmelowandrﬁghboundotananay.ﬁnreisadethodolemem, a4. The
bomdsexoeﬂbnbrabodwhenmaﬂenptisMbmmebMoutsmmech
range. Anyarnymmhaveabwboum.auolmmu.mamm“dm «

create = proc (ib: int) retumns (arrayit]) signais (limits)
effects Returns a new, empty amay with low bound /. Limits occurs if the resulting array
would not be supported by the implementation.

new = proc () returns (arrayft))
effects Returns a new, empty array with low bound 1. Equivalent to create(1).

132 Bullt-in Types and Type Generators

store = proc (a: arrayft], i: Int, eiem: t) signals (bounds)
modifies a.
effects if / < loma) or i > high(a), signals bounds; otherwise makes elem the element of a
with index /.

fetch = proc (a: array{t], i: int) returns (1) signais (bounds)
offects If / < low(a) or / > highla), signals bounds; otherwise returns the element of a with
index i.

bottom = proc (a: arrayit]) returns (t) signais (bounds)
effects it ais empty, signals bounds; otherwise retlums alow(a)].

top = proc (a: array{t]) returns (t) signals (bounds)
effects if ais empty, signals bounds; otherwise returns g high(a)).

emply = proc (a: arrayft]) returns (beol)
effects Retums true if a contains no elements; otherwise retums false.

size = proc (a: arrayft]) returns (int)
effects Retumns a count of the number of elements of a.

low = proc (a: array{t]) retumns (int)
effects Returns the low bound of a.

high = proc (a: array{t]) retums (int)
effects Retums the high bound of a.

elements = iter (a: arrayft]) yleids (t) signals (failure(string))
mmmmma;owymwmm.mmtmmmwmmh
bound (i.e., botom(&,,), ..., fop(a,,,)). The elemenis are feiched one at a time, using
the indexes that were legal at the stast of the call. i, during the teration, a is modified so

thathiclingdapnvbuslyhgdbﬁnxmmmmnemm failure
with the string "bounds”. The iterator is divisible at yields.

indexes = Rer (a: arrayft]) yiekis (int)
omctsYleldstheindoxesolafromthelowboundofa”tothehighboundof . Note
thatindaxosisunaffectodbyanymodmcaﬁonsdonebythebopbody. it is divisible at
yields.

equal = proc (a1, a2: arrayit]) returns (bool)
effects Returns true if a7 and a2 refer to the same array object; otherwise returns faise.

similar = proc (a1, a2: arrayft]) returns (bool) signals (fallure(string))
requires t has similar: proctype (t, t) returnes (bool) signals (falkure(string))
effects Retums true if a7 and a2 have the same low and high bounds and ¥ their elements
are palrwise similar as determined by Ssimiiar. This effect of this operation is equivalent
t;s'me,;guowmgpmcedmbody(exceplmmbopQMbnhowmacmw
imilar).
at = arrayit]
If at$low(a1) ~= at$low(a2) cor at$size(al) ~= at$size(a2)
then retum (faise)
end

for i: int In at$indexes(al1) do
it ~t$similar(a1[l], a2[T]) then return (faise) end
resignal fallure

except when bounds: signai failure("bounds”) end
end
retum (true)

H.9 Arrays 133

similar1 = proc (a1, a2: arrayit]) returns (bool) signais (failure(string))
requires ¢ has equal: proctype (t, t) retums (book) signais (failure(string))]

are pairwise equal as determined by Sequal. This operation works the same way as
similar, except that $equal is used instead of Seimiar

Copy = proc (a: m[t])m'no(b: wnu?r(mumzm»
requires copy: proctype (1) retums (1) signais (falure(
mmammbmmmmmmmum“nmmmamh
slement b{] contains Scopy(a(f). The effect of this operation is equivalent to the
fomum(owmnnwmammm:
b: array{t] - arreyfi}Soopy1(a)
for i: int in arrayft}$indexes(a) do
bif] := t$copy{afi])
resignel failure
except when bounds: signal fallure("bounds”) end
ond
return (b)

copy1 = proc (a: array[t]) returns (b: arrayit))
omeuReiumanewmybwithﬁnsmbwandhighbomdsasaandsuchthatsach
elemmtﬂcommmummatﬂ.

transmit = proc (a: arrayft]) returns (b: arrayft]) signals (failure(string))
requires t has transmit
Mﬁeumamwanaybwthnnsmbwmdhighboundsasaandmhthateach
elommb{dooﬂalmatmnmhdeawof(&. Sharing among the elements of a is
preserved in b. Swmlbmbomaonﬂnmomm“ii
fetanganobmommahga!Mda,,mabuMexceptbnandesany
fallure signals raised by $transmit.

I1.10. Atomic Arrays

atomic_array = data type [t: type] Is create, new, predict, fil, fil_copy, addh, addi, remh, remi,
set_low, trim, store, fetch, bottom, top, emply, size, low, i
aa2a, a2aa, equal, similar, similart, copy, copy1, tranemit,
test_and_read, test_and_write, can_read, can

Overview

Atomic_anaysaremnableamnicobiectsmatmpmsomwbsotelememsonypetﬁmcan
grow and shrink dynamically. mm_m's(m)mmwuwumof
ehmmandalowbound(orhdex). Tmmm“mmhny,ﬂmﬁomthe
low bound. Eacha!onic_arrayalsohasanborﬁyasanobbd.

Atomic_ arrays can be created by calling atomic array operations creats, new, fil, fil_copy, and
predict. Theycanahobemaodbymemdﬁom_maymm,whbhspodﬁesthe
array low bound, and an arbitrary number of initial elements, see Section 6.2.9.

Opemﬁonsbmmgh,andsizsmmemmbwandmghboundsammeofthe
atomic_array. Foranaonﬁc___mya.siza(a)bhemmborofebmmha.whichiszeroifais
empty. These are related by the equation: high(a) = low(a) + size(a) - 1.

134

Foranyindoxibmmmommhbhmummnamy.Mbadﬂmmm.
4. mm«mumwnnmmnm»mm

defined range. Awm_mmmm:hwheu\d.uwmmammbhmw
legal integers. mmnwnmmnmmwamm. A call
thmmmwmm_mmm«mbwvnumummmm
terminates with a /imits exception. #mits e .

Atomic__arrays use read/mlteloddngtoadmmy. The locking rules are described in
Section 2.2.2. ubmmlapthhmmmmmmwaownabck;
whenthishappomﬂnquudmmmmmwm As defined below, the only
operationtha:(hthommdm)doesnﬁdtmﬂtotoﬂoroﬂ&abdﬂsmoaqualopombn.

Operations

create = proc (bb: int) returns (a:atomic_array{t]) signais (imits)

mnmmam,mm__mammbwndb. Limits occurs i the
mummm_mmummwwmmmm The caller obtains
a read ona

new = proc () returns (stomic_array{t])
effects Equivalent to create(1).

predict = proc (ib, cnt: int) retume (a: atomic_arrayft]) signals (limits)

fill = proc (Ib, cnt: int, elem: 1) mm_mnm(m_M. limits)
MNW<O.WW__&¢. Retums a new stomic_array with low bound b and
mmwmamumam;lumm Srvay would ot be supported
by the implementation, signals #mits. The caller & read lock on the result.

e R o e

i1.10 Atomic Arrays 135

m-m(a:m_mm:nm(M)
modifies a.
effects Obtains a write lock on a. if extending a on the low end would causes the low bound
ordmdabbommwwwhm,mm Mmits.
o:mmmm;mmmmm.wmm::mmmm That
bl wm‘m)—‘l-m-

emh = a: atomic retums (t
r proc (- ;. array(t)) (1) signais (bounds)

effects Oblains a write lock on a. i ais empty, signals bounds. Otherwise shrinks a by
removing ks high element, and retums the removed slement. Mk,ﬁqﬂ(w-
g Bg) — 1.

reml = proc (a: atomic_arrayit]) returns (1) signais (bounde)
modifies a.

offects Obtains a write lock on a. it als emply, signals bounds. Otherwise shrinks a by
removing s low element, and retums the removed element. That is, low(a,,,) =

set_low = proc (a: atomic_array(t], b: int) signals (Hmits)
modifies a.

effects Obtains a write lock on a. i the new low (or high) bound would not be supported by
the implementation, then signals ¥mite. OCtherwise, modifies the low and high bounds of
a:themlwbouadofahbmhmhmbemdhmw-
igh(Boeg) +1-iow(;).

trim = proc (a: atomic_arrayft], i, cnt: int) signais (negative_stze, bounds)
modifies

a
offects If cnt < 0, signais negative_size and doss not oblsin any locks. Otherwise obtains a
write lock on a. i b < low(a) or b > high(a)+1, signals bounds. Otherwise modifies a by
removing all slements with index < & or grester Jhen or agual 10 Decnt: the new low
bound is . For example, ¥ 2 = alomic_areyfniif1,2,3,45], then: .
tim(a, 2, 2) results in 2 having vaius Slomie_smapfint)2: 2, 3]
tim(a, 4, 3) results in & having value stomic_srreyBnt}$i4: 4, 5]

store = a: atomic i: I, elem: : '
proc (" _aayfl], 1) sighaie (bounds)

effects Obtaing a write lock on a. K i< loma) or | > higia), signals bounds: otherwise
makes e/em the element of & with index /.

fewh-m(a:m_mkmmmmm)
muumg«uma..mmmmmmaam
index /. Always obtains a read lock on a.

botiom = proc (a: atomic_arrayit]) returns (1) signais (bounds)
unguabm.mmmmqmm Always oblaing a read
ona

top = proc (a: atomic_arrayft]) retuns (1) signais (bounds)
uh::lahom.wmmwwqw. Always obtains a read
ona.

empty = proc (a: atomic_aray{t]) returns (bool)
MMM!:MMM,MMM. in either case
obtains a read lock on a.

size = proc (a: stomic_arrayft]) returne (int)
mm;mamm«ﬂMdgMnamﬁbwmm

-

136

Buiit-In Types and Type Generators

low = proc (a: atomic_arrayit]) returns (int)
effects Returns the low bound of a, obtains a read lock on a

high = proc (a: atomic_arrayft]) returns (int)
effects Returns the high bound of a, obtains a read lock on a.

elements = Rer (a: atomic_ D yields () signais (fallure(string))
MMaMMmaNMNMGunwﬂymmem
index, from the low bound to the high bound (i.e., botiom(a,,,), ..., top(a,,,). The
mmmmaam.mmmnmmammam
call. n,mmm,nhmwMMCammm
signals bounds, then the Rerator signals /allure with the string "bounds”. The Rerator is
divisible at yieids.

indexes = iter (a: atomic_srray(t])) yleids (int)
MMaMMmLMMNm«dlMWMMM%w
thohu!bounddap,,. Note that indexes is unaffected by any modifications done by the
loop body. It is divisible at yields.

aa2a = proc (aa: atomic_arrayft]) returns (arrayit])
Moum:nadbd(onuandmummamyaﬂhttwsame(semommo state.

a2aa = proc (arrayft]) returns (aa: atomic_arrayft])
effects Returns an atomic_array aa with the same state as a. Obtains a read lock on aa.

equal = proc (a1, a2: atomic_sitayft]) returns (bool)
effects Returns true ¥ a7 and a2 refer to the same atomic_armay object; otherwise retums
faise. No locks are obtained.

similar = proc (a1, a2: atomic_arrayft]) retums (bool) signais (fallure(string))
nqmmthasm:pmctm(t.t)num(M)mMmm)
effects Retumns true K a7 and a2 have the same low and high bounds and ¥ their elements
are pairwise similar as determined by Seimiar. See the description of the similar
operation of array for an equivalent body of cods. This operation is divisible at calis to
$similar. Read locks are obtained on a1 and a2, in that order.

similar1 = proc (a1, a2: atomic_array{t)) returns (bool) signels (fallure(string))
mmmthamd:ma,t)mmmmm»
effects Returns true if a7 and a2 have the same low and high bounds and if their elements
are pairwise equal as determined by . This operation works the same way as
%%uwhmmum Read locks are obtained on a7
and a2, in order.

copy = proc (a: atomic_srrayft]) returns (b: stomic_arraylt]) signels (fallure(string))
uqﬂmthascopy:pmﬁmmmmmmm»
effects Retums a new atomic array b with the same low and high bounds as 2 and such
that each element {4 contains Scopy(a(). See the desoription of the copy operation of
airay for an equivalent body of code. This operation is divisible at calls to Scopy, and
obtains read locks on a and b.

copy1 = proc (a: atomic_sirayft]) retums (b: atomic_|
mmﬁm:muomigmybwmmbwmdhmm“awm

thr:gmummmmmm:ﬂ. Read locks are obtained on a
and b.

11.10 Atomic Arrays 137

transmit = proc (a: atomic_arrayit]) retums (b: atomic_arrayit]) signails (failure(string))
requires t has transmit

oﬂmRatumanewanaybwlhttnsmbwmhiyhboundsasaandﬂmhthaeach

clemnmmmummninedoopyofql. Read locks are obtained on a and b.

test_and_read = proc (aa: atomic_array{t]) returns (bool)
effects Tries to obtain a read lock on aa. umobckkobmned,rmmmn;oﬂ\emieeno

test_and_write = proc (aa: atomic_arrayit]) returns (bool)
effects Tries to obtain a write lock on aa. it the lock ie obtained, returns true; otherwise no
lock is obtained and the operation returns false. The operation does not "walt” for a lock.
Evenlmeoxomnawon'kmws'mdabd(couidhom.hlumybe
returned. Emihbbwm.amqmmtOMambckmigm
succeed without waiting.

can_write = proc (aa: atomic_array(t]) returns (bool)
mmmlammmmmonnWMwam.m
retums false. No lock is actually obtained. Even i the executing action "knows" that a
lock couid be obtained, false may be retumed. Since some concumrent action may obtain
or release a lock on an atomic_ &t any time, the information returned is unreliable:
wmimhmm.ammbmmmmmmw
mumnm.ammnm:mmmmm

without walting.

read_lock = proc (aa: atomic_arrayit])
effects Obtains a read lock on aa.

write_lock = proc (aa: atomic_arrayit])
effects Obtains a write lock on aa.

Il.11 Structs 139

similar = proc (s1, s2: st) returns (bool) signals (fallure(string))
requires each 1; has similar: proctype (t, t) returns (bool) signais (failure(string))
effects Retumns true if 37 and s2 contain simitar objects for each component as determined
by the {$similar operations. Any faiiure signal is immediately resignalied. This operation
does not itsek originate any failure signal. The comparieon is done in lexicographic order
of the selectors; f any comparison retume faise, falee Is retumed immediatetly.

copy = proc (s: st) retumns (st) signals (faliure(string))
requires each ¢, has copy: proctype (1) returns (1) signais (failure(string))
effects Retumns a struct containing a copy of each component of &; copies are obtained by
calling the tScopy operations. Any fakwe signal is immediately resignalled. This
operation does not itself originate any fadwre signal. Copying is done in lexicographic
order of the selectors.

transmit = proc (s: st) retums (st) signais (fallure(string))
requires each {; has transmit
effects Retumns a struct containing a transmitied copy of each component of 5. Sharing is
preserved among the components of s. Any failure sighal from iStransmit is
immediately resignalied. This operation does not itself originate any faiure signal.

Il.12. Records

record = datatype [n,:t,, .., n: t]isr_gets_r,r_gets_s, set_n,, ..., set_n,, get_n,, ..., get_n,,
equal,similar, similar1, copy, copy1, tranemit

Overview

A record is a mutable collection of one or more named objects. The names are called seleciors,
and the objects are called components. Different components may have different types. A record
also has an identity as an object.

An instantiation of record has the form:

record [field_spec , ...]
where

field_spec .= name, ... : type_actual
{see Appendix I). Sobdorsnuﬂbouﬁhnw&ﬂnanmuhﬁon(lgmmgcaphﬁzabn),bmthe
ordering and grouping of selectors is unimportant. For example, the following name the same
type:

recordflast, first, middie: string, age: int]
record(last: string, age: int, first, middie: string]

A record is created using a record constructor, see Section 6.2.11.

For purposes of the certain operations, the the names of the seleciors are ordered
lexicographically. Lexicographic ordering of the selectors is the aiphabetic ordering of the selector
names written in lower case (based on the ASCIi ordering of characters).

In the following definitions of record operations, let 1t = record(n,:t,, ..., n,: t,].
Operations

r_gets_r=proc (r1, r2: nt)
modifies r1.
effects Sets each component of r1 to be the corresponding component of r2.

r mw(r:n,o:l)
.
mmwnmmmmmu%mmmun

Sets ench component of 710 be the
set n=proc(rn, ey
modifies 7.
MMf&WhWMMbmha There is a sef__
operation for sach sslecior.

get_n, = proc (r: rt) retume {t)
anmdrmu‘haurku; There is & get_ operation for each
selacior.

equal = proc (rt, r2: 1) retums ool
MMM!&“&..MMM“MMM

Copy1 = PIOG (r: 1t) PORImMS {#1) A ‘
otiocts Reyhurve a Row record containing the companants of 7 e A» components.

{ -2 "ohmn () aqrets Survienton

.12 Records 141

I.13. Atomic Records

atomic_record » datatype [n, :t,, ..., n:t,] is ar_gets_ar, sot_n,, ..., set_ny, get_n,, ..., get_n,,
ar2r, r2ar, equal,similar, similart, oopy, copy1, tranemit,
test_and_read, test_and_write, can_read, can_write, read_lock, write_lock

Overview

Anmw_Mbammmmamwmmm. The names are
caﬂedsolacbm,arﬂtheobjectsmcaﬂodcwponm Different components may have different
types. Anaonic_rocordabohummmuyumobjoa.

An instantiation of stomic_record has the form:

atomic_record | field_spec, ...]
where

field_spec ::= name, ... : type_spec
(se@ Appendix I). Selectors must be unique within an insterntiation (Jgnoring capitalization), but the
ordering and grouping of selectors is unimportant. For exampie, the following name the same
type:

atomic_recordflast, first, middie: string, age: int)
atomic_recordilast: string, age: In, first, middie: string]

An atomic_record is created using a atomic_record constructor, see Section 6.2.11.

Forpumososofthoconainopombm.mmomofmemmomred
lexicographically. mwmummnmmbmmmmor
mmswmmhm«cm(basodonﬂwASCIloMofMus).

Atonic_mcordsuseread/wrﬂeloddngtoadvbndonﬂy. The locking rules are described in
Section 2.2.2. nhmmlapmschMMMmmbmﬂorMabck;
whmmlshappomunwmmﬁmﬂnmwlm As defined beiow, the only
operationtha!(lnthemm)&oammnmuaﬂdﬂamhﬂnwdopombn.

in the following, let art = atomic_recordin,:t, ..., n: 4].
Operations

ar_gets_ar = proc (r1, r2: art)
modifies r1.

oﬂmouamawrnebckonriam”oadlockonr2,thensotseachcormonemofr1to
be the corresponding component of r2.

get_n,-pmc(r:an)mm(m
Mouaimareadbdonrammmﬂnconpommofrwtmeselectorisnf There
is a get operation for each selector.

set_n; = proc (r: art, e: t)
modifies .
mouwnaMebckonrammrbymakmtheconmmesesobaoﬁs

n;be e. There is a set_operation for each selector.

ar2r = proc (ar. art) returns (r: art)
mouahsareadbckonarandmarooordrwthesmstate.

r2ar = proc (r: art) retumns (ar: ar)
effects returns an atomic_record arwith the same state as r. Obtains a read lock on ar.

142

Buiit-in Types and Type Generators

equal = proc (r1, r2: art) returns (bool)
dmetsRotumtnnnriandrzammeverysammonic_mcomwject;mmseretums
false. No locks are obtained.

similar = proc (r1, r2: art) retumns (bool) signals (failure(string))
requires each £, has similar: proctype (t, t) returns (bool) signais (failure(string))
oﬂmoumamadbckonn,umawbd(onm.ﬂnncomcomwdm
components from r7 and r2 using the ($similar operations. Any lallure signal is
immediately resignafied. mmmmmmwmm. The
m&mmmwmmamm;lwmm
false, faise is retumed immediately. If al comparisons retum true, retums true.

similar1 = proc (r1, r2: art) returns (bool) signeis (fallure(string))
mmqmm:m(g,g)mmm«mm(m»
Mmbopembnszamum.WMWbuude
1$similar.

copy1 = proc (r: art) retumns (res: art)
ofhetsouam:nadbd(onnmonretumsamwaonic_moordmmmme
componems of r as its components. A read lock is also obtained on the new

transmit = proc (ar: art) retums (art) signais (failure(string))
requires each ¢, has transmit :

MW:MM_MM:MWNMWM

ar. Sharing is preserved among the components of ar. A read lock is obtained on ar and

the new atomic__array. Any fallure signal from {Stranemit is immediately resignalied.
Thisoperaﬂondoesnotltsellodghauanyfdfmsigml.

test_and_write = proc (ar: art) returns (bool)
effects Tries to obtain a write lock on ar. if the lock is obtained, retumns true; otherwise no
lock is obtained and the operation retums faise. The operation does not "wait" for a lock.
EvenifmooxoanhgaabnM'thdabdtoouubom.hlumaybe
returned. Ewnﬂfduisrammed,asub“mmmeoouﬂnawrhbeknm
succeed without waiting.

1.13 Atomic Records 143

can_read = proc (ar: ast) etume (haoh
ofonts Retums e ¥ & 1ead ook asuld be olieined an o wihout waking, olharwies retums
feise. No lock is aciually chiuieed. Bven ¥ e enonth ,MW”"”‘

read_lock = pro (ar: an)

offegts Obtaine & read lock on ar.
el ot ot fock on
iL.14. Oneofs
m-mm ty . .&:E a:;u“‘ N IRy, ... I8_ny, value_n,, ..., valbe_n,,
Overview |

Am«hmummmmmm & aneot is atomic only # aiil of
the types of &3 date pasie are siomic.

I the following, let ot = eneolin,: t,;...., n,: 4]
Operations

make_n, = Proc (e: {) retsrme (o)
MM:MMWQ@“*& There is & make_ . Operstion for each

is_n, = proc (o: ot) returne (bool)
MM“!MUMB&&”M-& Mknb__mu
each selecior.

144 Buiit-in Types and Type Generators

value_n; = proc (o: ot) returns (t) signals (wrong_tag)
effects if the tag of 0 is n, retums the value of o; otherwise signals wrong_tag. There is a
value_ operation for each selector.

02v = proc (o: of) retums (vt)
effects Here vt is a variant type with the same selectors and types as of. Retumns a new
variant object with the same tag and value as 0.

v20 = proc (v: vi) returns (ot)
effects Here vt is a variant type with the same selectors and types as of. Returns a oneof
object with the same tag and value as v.

equal = proc (01, 02: of) returns (bool) signais (fallure(string))
requires each f; has equal: proctype (i, t) retums (bool) signals (failure(string))
effects Retums true ¥ 07 and 02 have the same tag and equal values as delermined by the
equal operation of their data peit's type. Any falkre signal is immedistely resignelied.
Thie operation does not kself originate any failure signal. This operation is divisible at the
call of tSequal.

similar = proc (01, 02: of) returns (boof) signals (fallure(string))
requires each 1, has similar: proctype (t, t) returns (bool) signais (failure(string))
offects Returmns true it 07 and o2 have the same tag and similar values as determined by
the similar operation of their value’s type. Any falkre signai is immediately resignalied.
This operation does not itself originate any fallure signal. This operation is divisible at the

copy = proc (o: ot) returns (ot) signals (falilure(string))
requires each 1, has copy: proctype (t) returns (t) signals (failure(string))
effects Returns a oneof object with the same tag as 0 and contalning as a value a copy of
o's value; the copy is made using the copy operation of the value's type. Any faikwre
signal is immediately resignalied. This operation does not Rself originate any fa/lur
signal. This operation ig divisibie at the call of {$copy.

transmit = proc (o: ot) returns (ot) signais (failure(string))
requires each {; has transmit
effects Retums a oneof object with the same tag as o0 and containing as a value a
transmitted copy of o's value. Any falure signal is immediately resignalled. This
operation does not itself originate any faiure signal.

I.15. Variants

variant = data type [n,:t,, ..., n,: t,] Is make_n,, ..., make_n,, change_n,, ..., change_n,,

is_ny, ..., i8_ny, value_n,, ..., value_n,, v_gets v,v_gets o,
equal, similar, similar1, copy, copy1, transmit

Overview

A variant is a mutable, tagged, discriminated union. Hs state is a oneof, that is, a labeled object,
to be thought of as "one of” a set of alternatives. The label is called the tag part, and the object is
called the value (or data part). A variant also has an identity as an object.

An instantiation of variant has the form:
variant [field_spec , ...]
where
field_spec ::= name, ... : type_actual
(see Appendix I). Tags must be unique within an instantiation (ignoring capitalization), but the
ordering and grouping of tags is unimportant.

115 Varlants 145

Although there are variant operations for decomposing variant objects, they are usually
demnmedvhtmmmm.whbhhmmmw.u.

In the following let vt = variantin,:t,, ..., n:1,].

Operations

make_n, = proc (e: t) returns (vt)
effects Returns a new variant object with tag n;and value 6. There is a make_ operation for
each selector.

change_n; = proc (v: vt, e: t)
modifies v.

MModKiesvbhavetagn,-andvame. There is a change__ operation for each
selector.

is_n; = proc (v: vi) retums (bool)
effects Retums true if the tag of v is n; otherwise retumns false. There is an is_ operation
for each selector.

value_n; = proc (v: vi) retums (t) signais (wrong_tag)
effects If the tag of v is n, retums the vaiue of v; otherwise signals wrong_tag. There is a
value _ operation for each selector.

v_gets_v = proc (vi, v2: vt)
modifies v1.
effects Modities v7 to contain the same tag and value as v2.

v_gets o = proc (v: vt, o: ot)
modifies v.
Mmmwhmeomdtwowﬂhmsamsﬂemmdtypesasvt Modifies v to
comntain the same tag and vaiue as o.

equal = proc (v1, v2: vt) retumns (bool)
Mﬂotummlwwmmmoumvmm.

simuar-pmc(vtvz:vt)!uurnc(bool)dummmm»
mmqmmmmgmmwamm»
MMmﬂmlvt“vﬂMhmhmﬂmmumwme
simiiar operation of their value's type. Any failure signal is immediately resignalled. This
g'penﬁondoosmtmmywmm. This operation is divisible at the call
tﬁcllﬂlar.

similar1 = proc (v1, v2: vt) returns (bool) signais (faliure(string))
requires each {; has equal: proctype (t;, t) retume (bool) signais (fallure(string))
effects Same as similar, except that tSequalis used instead of t$similar.

Copy = proc (v: v) retums (vt) signals (failure(string))
nqulnseacht,hucopy:pmaypo(g)mmm(mm»
effects Rmavaﬂmobbuwkhhmtqavmm\gnavwoacopyof
Vs vm;tmmnmmwmwamvm'sw. Any failure
signal is immediately resignalied. This operation does not iself originate any failure
signal. Tmmmnbmammmw.

copy1 = proc (v: vt) returns (vt)
Mﬁemmsanewvaﬂamobiectwlhﬁnmtagas v and containing v's value as its
value.

146

Bulilt-in Types and Type Generators

transmit = proc (v: vt) returns (vt) signais (failure(string))
requires each ¢; has transmit
oﬁmﬂetumavmmabjedwithmmtagnvmdcomwngasavaluea

transmitted copy of vs value. Any faliure signal is immediately resignalied. This
operation does not itself originate any fa#we signal.

Il.16. Atomic Variants

a‘lO"“c_V.ﬂ.m = m w [n1: t1, weay

ny: 4] I8 make_n,, ..., make_n,, change_n,, ..., change_n,,
av_gets_av,is_n,, .., is_n,, value_n,, ..., value_n,, av2v, v2av,
equal, similar, similart, copy, copy1, transmit,
test_and_read, test_and_write, can_read, can_write, read_lock, write_lock

Overview

An atomic_variant is a mutable, atomic, tagged, discriminated union. is state is a oneof, that is, a
labeled object, to be thought of as "one of" a set of akematives. The label is calied the tag part,
and the object is called the value (or data part). An atomic_variant also has an identity as an
object.

An instantiation of atomic_variant has the form:
atomic_variant [field_spec, ...}
where
field_spec .= name, ... : type_actual
(see Appendix I). Tags must be unique within an instantiation (ignoring capitalization), but the
ordering and grouping of tags is unimportant.
Although there are atomic_variant operations for decomposing atomic_ variant objects, they are
;ﬁ&thmmﬂmMmmm,Mmdmmdm
10.15.

In the following, let avt = atomic_varient{n,:t,, ..., n,: .

Operations

make_n, = proc (e: t;) returns (av: avt)
effects Retums a new atomic_variant object av with tag n; and value 6. Obtains a read lock
on av. There is a make_ operation for each selector.

change_n, = proc (v: avt, e: 1)
modifies v.

effects Obtains a write lock on v, then modifies v 10 have tag n; and value ¢. There is a
change_ operation for each selector.
av_gets_av = proc (v1, v2: avt)
modifies v71.

effects Obtains a read lock on v2 and then a write lock on v1, then modifies v7 to comtain
the same tag and value as v2.

is_n; = proc (v: avt) returns (bool)
effects Obtains a read lock on v, then retums true if the tag of v is n; otherwise returns
false. There is an is_ operation for each selector.

value_n, = proc (v: avi) returns (t) signais (wrong_tag)
effects Obtains a read lock on v. Then, i the tag of vis n, retums the value of v; otherwise
signals wrong_tag. There is a value_ operation for each selector.

11.16 Atomic Variants 147

avav = proc (av: avt) retums (v: vt)
mmwnavaﬂmmmmoammw:ypesasaw. Obtains a read
lock on av and retumns a variant v with the same state.

vaav = proc (v: vt) returns (av: avt)
MHerevthavmwpemmommw:yposuaw. Returns an
atomic_variant av with the same state as v. Obtains a read lock on av.

equal = proc (v1, v2: avt) returns (bool)
mnomuuoiwmvzaremesammnﬁc__vaﬁamobject. No locks are
obtained.

similar = proc (v1, v2: avl) returns (bool) signais (failure(string))
nqdmoacht,hassﬂar:pmﬂm(q.wmmmc(fammum@»
effects Obtains read locks on vl and v2, in order, and then compares the objects; retumns
true it v7 and v2 have the same tag and similar values as determined by the similar
operation of their type. Any failure signei is immediately resignalled. This operation does
not itself originate any fa/lure signal. This operation is divigible at the call of {$similar.

similar1 = proc (v1, v2: avt) returns (bool) signais (fallure{string))
requires each f; has equal: proctype (t,) retums (bool) signals (fallure(string))
effects Same as similar, except that 1$equalis used instead of t$similar.

Copy = proc (v: avt) returns (avt) signais (fallure{string))
nqmmewht,huoopy:pmam(g)ma‘)m(fa&m(m»
moumamaaMmmmm-vm_mmmmmmas

vammmnavanaoowdnvun:ﬁnmwhmthwpy
operation of the value's type. Any faiiure signal is immediately resignalied. This
operation does not itsek originate any faure signal. This operation is divisible at the call
of tScopy. A read lock is obtained on the resul.

copy1 = proc (v: avt) returns (avt)
omctsObtainsaroadbd(onmﬂwnmmmammmt_vmmmmhsmmg
as vand containing v's value as its value. A read lock is obtained on the result.

transmit = proc (v: avt) returns (avt) signals (failure(string))
requires each f, has transmit
Mmmm_vmmmmMmgasvmdwmm“avma
transmitted copy of v's value. Obtains a read lock on v, Any failure signal is immediately
resignalied. ThisopombndoeaMMonvasignal.

test_and_read = proc (av: avt) returns (bool)
effects Tries to obtain a read lock on av. If the lock is obtained, returns true: otherwise no
lock is obtained and the operation retums faise. The operation does not “walkt” for a lock.
Evenumeoxmmms'maammum.mwbe
retumed. Evmlm%ma,ammtoMamadbdmm
succeed without waiting.

test_and_write = proc (av: avt) retums (bool)
effects Tries to obtain a write lock on av. if the lock is obtained, returns true; otherwise no
lock is obtained and the operation retums false. The i .
Evenﬁunoxoammnm'maahdtcmﬂbom,“mybo
retumed. Ewnﬁhh.bmhmod,ammmdomtoomnina - ,
succeed without waiting.

148

without walting.
can_write = proc (av: avi) returns (bool)
effects mhmmmummwmwmm
returns fales. No lock is obtained. Even ¥ the executing action "knows® that a

read_lock = proc (av: avt)
effects Obtains a read lock on av.

write_lock = proc (av: avt)
offects Obtains a write lock on av.

I.17. Procedures and Rerators

proctype = data type is equal, similar, copy
ltertype = data type is equal, similar, copy

Overview

mmmmmmmwwmm The type specification for a
mummmamMthamummn
procedure type specification has the form:

proctype ([type_spec. ...]) [retums] [signais]
and an Rerator type specification has the form:

Rertype ([type_spec, ...]) [yieids] [signais]
where

retums «s= retums (type_spec, ...)

yields e yleids (type_spec, ...)

signals - signales (exception , ...)

exception ii= name [(type_spec, ...]
(see Appendix 1). mmuuwmu;mmmm.mmm::
arguments. The reiuns or yeids clause number, types, and orcer objects

Mm(m.n,wn-inmwmm.m)
proctype (string, m,mmm-wm_m. bounds)

.17 Procedures and Herators 149

In the following operation descriptions, ¢ stands for a proctype or ikertype.
Operations

equal = proc (x, y: t) returns (bool)
similar = proc (x, y: t) returns (bool)
MsTheseoporauonsretumtmifandonlylxandyarethe same implementation of
the same abstraction, with the same parameters (see Section 12.6).

Copy = proc (x: t) returns (t)
effects Retumns x.

11.18. Handlers and Creators

handiertype = data type Is equal, similar, copy, tranasmh
Creatortype = data type Is equal, similar, copy, transmit

Overview

Handlemandcreatorsarecfeatedbythokmssyﬂom. The type specification for a handier or
creatorcorualnsmstoﬂtwinfonnaﬁonstatedhahmmormabrhomng;ahuﬂertype
specification has the form:

handiertype ([type_spec, ...]) [retums] [signais]
and a creator type specification has the form:

creatortype ([type_spec, ...]) [retums] [signais]

where
retumns === returns (type_spec, ...)
signals ««= signals (exception , ses)

exception ii= name [(type_spec, ...)]

Creators are created by compiling modules, and handiers are created as a side-effect of guardian
creation. HandbrsaMcreatomamtmnsmbsbbandmmidwedtobokmMaﬂemdatomic
in normal use. Cenalnusesofowndatainhafderscmvbuotms assumption.

In the following operation descriptions, ¢ stands for a handilertype or creatortype.
Operations

equal = proc (x, y: t) returns (bool)
similar = proc (x, y: t) returns (bool)
omcuTheseopembmmmmtmouandauyﬁxandywethesmobiect(mSecﬁon
12.6foranexactdeﬂmtionforthecaseofcroatofshwamngonem).

150 Bulit-in Types and Type Generators

Copy = proc (x: t) returns (t)
transmit = proc (x: t) returns ®
offects Retu

ms X.
I.19. Anys
any = data type Is create, force, is_type
Overview

Anobiedoftypelnyoomainsatype T and an object of type T. Anys are immutable and are not
transmissible. Anysaro&onﬁconlylltholrcoﬁahedobhdbdomc.

Operations

create = proc[T: type] (contents: T) returns (any)
effects Retumananyobiectoomahmgcomantsmdthetype T.

force = proc{T: (thing: any) returns (T) signais (wrong_type)
o?fm:ﬁ%Mmmo(pammmhm EthentMObjecHsrommed;
otherwise wrong_type is .

is = proc{T: : any) retums (bool)
—Wﬂf:a:nm]wmzmdammhwEthentmoisretumed;
otherwise, faise is ,

11.20. Images
image = data type Is create, force, is_type, copy, transmit
Overview

An object of type image is the vak:oofanarburarytmmmhsbbtype. See Section 14 for more
details. Images are immutable, atomic, and transmissible.

Operations

create = prociT: type] (mm:nmm(m)ﬂcmamhg)
requires T has tranemit
mnmwmmouoaoummmmmme encode operation of 7.
nmawmmmw T's encode operation.

force = proc{T: type] (thing: image) returns (T) signais (wrong_type, fallure(string))
requires T has transmit
Mﬂm«mdamobbdoutypammdhwe 7, then that object is extracted
usmﬂndaoodaopombnofTandm. MW&_WBMM.
Resbndsanyfmmmw T's decode operation.

i - : : retums
is_type PMITT w’::l (thing: Image) (bool)

Mnmmmobjoadatypomdhtwotﬁmmnm;
otherwise, falee is returned.

Copy = proc (thing: image) returns (image)
tmnm-pfoc(M:M)muno(m)
effects Retums thing.

.21 Mutexes 151

i1.21. Mutexes
Mmutex = data type|t: type] is create, set_value, get_value, changed, equal, similar, copy, transmit
Overview

A mutex is a mutable container for an object of type t. A mutex aiso has an identity as an object.

Anmmmmt]mmmmmmqmm.wwom
expﬁcﬁwxmlwwmmmmakndhmmﬂubmmmwwee
Section 15.1).

The seize statement is used in order to gain possession of a mutex. See section 6.7.

anmtewammm,MmmeBuwmem,mtm
cortained object should only be accessible through the mutex. Hence there is no copy?
W.thmmmwmonbmmmmmmmm
sharing (see Section 6.7).

Operations

create = proc (thing: t) retums (mutex(t])
effects Returns a new mutex object containing thing.

set_value = proc (container: mutex]t], contents: t)
modifies container.
effects Modifies container by replacing its contained object with contents.

get_value = proc (container: mutexit}) retums (t)
effects Retumns the object contained in container.

changed = proc (container: mutexit])

' MImmmmmMmaﬂmkauWnMMSdtho
mmmmmwmmwmm,mmmﬁmis
accessible from a stable variable. i is a programming eror ¥ a process that is not
mnninganaabncalsﬂisopomm,mﬂﬁsbmm;pmmwmmsh.

equal = proc (m1, m2: mutex|t]) returns (bool)
oﬂmﬂetumsuuollmdomyﬁmundmzmthesameobjea.

similar = proc (m1, m2: mutexit]) retumns (bool) signals (fallure(siring))
requires t has similar: proctype(t, 1) retums(bool) (fallure(string))

effects Seizes m1, then seizes m2, and calls o determine s result; any failure
signal is immediately resignalied. Possession of both mutexes is retained until 8§ similar
terminates.

copy = proc (m1: mutex(t]) returns (m2: mutexit)) signais (tailure(string))
requires t has copy: proctypet) returns(t) signais (failure(string))
MSeizumf,thoncﬂsﬁcopthaoopyMlpheeshtmeMexobied
m2. Any failure signal is immediately resignalied. Possession of m1 is retained until

transmit = proc (m1: mutexit]) retums (mutexit)) signals (fallure(string))
requires t has tranemit
MSoizesmLMdWmsanowmmxmw'QakmsmmdoopydtMMamd
object. Any failure signal is immediately resignalied. Possession of m? is retained until
fStransmit terminates.

152 Rules and Guidelines for Using Argus

Il Rules and Guidelines for Using Argus 153

Appendix lil
Rules and Guidelines for Using Argus
This appendix collects the rules and guidelines that should be followed when programming in Argus.
Foliowing these rules makes selze statements meaningful, actions atomic, and so on. In some rare
cases there may be valid reasons for violating these guidelines, but doing so greatly increases the
difficulty of building, debugging, and running the resulting system.

All of the rules listed in this appendix are based on Information appearing elsewhere in the manual.
Each rule is followed by a brief rationale, including a reference to the section of the manual from which it
is drawn.

lil.1. Serializability and Actions
* Actions should share only atomic objects.
Rationale: Actions that share non-atomic data are not necessarily serlalizable. [Section 2.2.2]

* A subaction that aborts should not retum any information obtained from data shared with other
concurrent actions.

Rationale: Returning such data may violate serializability. [Section 2.2.1)

-Anestedtopaetbnshouldboserlalizabbbdorﬂtsparem. Thig is true if either

1.the nested topaction performs a benevolent side effect (a change to the state of the
representation that does not affect the abstract state), or

2. all communication between the nested topaction and its parent is through atomic objects.
Rationale: Other uses may violate serializability. [Section 2.2.3]

* The creation or destruction of a guardian must be synchronized with the use of that guardian via
atomic objects such as the catalog.

Rationale: Otherwise serializability may be violated. [Section 10.18]

ll.2. Actions and Exceptions

oH‘anexcepﬂonraisedbyaallshouldnotconmitanacﬂon,theexceptbnmubehandlodwithin
that action.

Rationale: If an exception raised within an action body is handied outside the action, the implicit flow of
control outside of the action will commit the action. [Section 11.5)

154 Rules and Guidelines for Using Argus

ll1.3. Stable Variables
« Stable variables should denote resilient data objects.

Rationale: Only data objects that are (reachable from the stable variables and) resilient are written to
stable storage when a topaction commits. (mscanbeenwndbyhmuabbvamblosodydenote
objectsofanatomlctypeorobbdspmmodbym.) Non-resilient objects stored in stable variables
are only written to stable storage when the guardian is created. [Section 13.1]

-naboundpmoedureorleratorwﬂlbemm!maumvaﬂdﬂe.
1.thepmced:morneratorbommummbomm

2. only atomic objects shouid be bound as arguments.
Rationale: The bound procedure or iterator may be stored in stable storage, and non-atomic data is
only written to stable storage once. [Section 9.8]
lll.4. Transmission and Transmissibility
* An abstract type's encode and decode operations should not cause side effects.

Rationale: Tmmnberofcalbtommmdoordecodombnhm,smWMSw
resunsmymemwmwm«mmmmmm. In
addnbn.veruymmmdwmbabnbmnmmwwdemsm
transformations to and from the external representation. [Section 14.3]

2.Thee)dernalrepresema:ionobioctmstbeacycuc.
Rationale: A circular external representation may cause decode to fail. [Section 14.4]

-Objectsthatshareothorobiectsshouldbeboundlrnoahamllerorcreaorinthesameblnd
expression.

Rationale: Sharing is only preserved among objects bound at the same time. [Section 9.8]

I11.5. Mutex
* Mutual exclusion or atomic data should be used to synchronize access to all shared objects.
Rationale: Mﬂmpresenoeofcormnemy,anymmmofhdvbbeSisposm. Without

smmmmmmmm.mmwwmmbnmm.mwmm
coding and testing. [Section 8]

.5 Mutex 155

oANmodﬂica:bnstomRexobieassmwdbomadoMum-mm.

Rationale: The system will gain possessionofamﬂoxowwomwmmhoshbhstorage: thus,
seizingaMxmmwmumemmmmamwmnBMM
inconsistent state. This also prevents other processes from seeing inconsistent data [Section 15.2 and
Section 15.1]

oNestedseizesshouldboavoidadwhenpmolsusod,andpummstbeavoidodwhennested
seizes are used.

Rationale: A pause in a nested seize does not actually release possession of the mutex object.
[Section 10.17]

olfanobjectisreferredtobyamﬁexobied.ltshouldnotberderrodtobyanyomerobiect, nor
should it be denoted by a variable except when in possession of the containing mutex.

Rationale: Hanobjectoornainedmamcanhomadndbyamundotherthanseizmmemmx,
the mutual exclusion property of the mutex is undermined. [Section 6.7]

oNoactivitythatislkelytotakeabngtkmahou!dbopeﬂonmdwhﬂehaulnstatemem. in
particular, mamsmummmakwwﬂmmmmmmmmn
of a mutex.

Rationale: Wamngtoralockwhilohanutexblke!ytouuuadoadbd(whhothoradionsor
between the action holding the mutex and the Argus system. [Section 15.3]

-Mutexobiectsshouidnotmaredatawihomamthor,unmm:hafoddataisatomicormmx.

Rationale: Sharing of non-atomic objects between mutex objects is not preserved when the mutexes
are written to stable storage. [Section 15.3]

¢ Mutex{fi$changed must be calied after the last modification (on beha of some action) to the
contained object of a mutex.

Rationale: mArgussystemisfreetocopytheMextomaoraoeassoonasmmcx(&tchanged
has been called. cwmmmmmmmmmwmﬂmﬂm
be written to stable storage. [Section 15.3]

-Mo:qqsmmmubecalbdwennﬂnmexobpdchamodisnmmssbhmmme
stable variables.

Rationale: In a scenario where the object was accessible, becomes inacoessible, then becomes
woassﬂeagah.hbmssﬂethm&aﬂe&mmhnmboupdﬁodwopeﬂyﬁﬂ#mhmmt
foliowed. mmmmm«tMmmmmmmmwmu
mutex{$changed is always called after the last modification to the object. [Section 15.3]

156 Rules and Guidelines for Using Argus

-Anatonictypeinplemmodwkharepresematbnmumaumal mutex objects should use
separate topactions to ensure that the mutexes are written to stable storage in an order that preserves
the correctness of the representation.

Rationale: Mutexes are wriften to stable storage incrementally. Sometimes, subtie timing problems
can be caused by incremental writing if this rule is not followed. [Section 15.3]

ll.6. User-Defined Atomic Objects

* If an atomic object X of type T provides operations O, and O,, and action A has executed O, but not
yet committed, then operation Ozcanbepeﬁormdbyacmmmmnaomyn O, and O, commute:
giventhect.urremstateofX.theM(asdewtbedbytmwmd T) of performing
Oy, then O, is the same as performing O, then O,. "Effect" includes both results retumed and the
(abstract) state modified.

Rationale: There are two concurrency constraints for user-defined atomic objects:

1.Anaotioncanobsarvottnoﬂoctaofothoraabmomynﬁmaabmeonminedrolativeto
the first action.

2.0peratiomexoomodbyoheactioncamotimaudmumesumaopomionsexecmdby
a concurrent action.

Twooperations(orsamemosotoporaﬂom)mmhmmctmmmmadx"\ay
be permitted to run concurrently, wonlthoydomtcomﬂohtholroﬂeaontheropmematbnofx.
ThisdisthnbeMenmabwaabnwnmmisomuhacmw\gmmmbb
performance. [Section 15.4]

. lfauser—deﬂnedatomicobbctisaccossblofromthestwovaﬁablesofsomwacdlan,Rshouldbe
written to stablestoragewheneveranactionthatmodiﬁesitcommmthotop.

Rationale: A user-defined atomic type that is not written to stable storage on topaction commit will not
be resilient. [Section 15.2]

oThoformoﬂhenpforauser-deﬁnedatonictypeshouldbeomoﬁhewnpossbﬂbs.
1. The rep is itself atomic. Note that mutex is not an atomic type.

Rationale: In any other case it will be impossible to guarantee the resilience or serializability of the
type’s objects independently of how they are used. [Section 15.3]

.7 Subordinate Where Clauses 157

li.7. Subordinate Where Clauses

» A where clause requirement on a cluster as a whole shouid be used whenever the actual parameters
make some difference in the abstraction. For example, in a set cluster, the type parameter's equal
operationmstborequimdbythecbsterasawholo,lnomartopreservetypesamyandthe
representation invariant.

Rationale: Amsassumsthatromiremmsmmarenotphoodonmechs!erasawholedonot
affect the semantics of the abstraction or the representation. [Section 12.6]

158 Changes from CLU

EET S s - S

IV Changes from CLU 159

Appendix IV
Changes from CLU
This appendix lists the changes made to Argus that are not upward compatible with CLU, that Is, those
which are not merely additions to CLU and that would cause a CLU program to be itlegal or to run
differently.

IV.1. Exception Handling

Unlike CLU, which propagated unhandled exceptions (by tuming them into fa/lure exceptions) and gave
the failure exception special status, unhandied exceptions in Argus are considered errors and always
cause a crash of the guardian, and failure is not given special status. All exceptions signalled in a
procedure, iterator, handier, or creator must be declared in the routine’s header, and there are no implicit
resignals of failure exceptions. See Section 11.6 for detaiis.

IV.2. Type Any

Thetypemybnowatypelkeanyothortype,w%parmwmm. create, and is_type.
ThusthoCLUmamal'snotbndﬂypehduobn‘ismbng«m(buﬂhemhanewmﬁonoﬂype
inclusion in Argus, see Section 6.1). The any$force routine only signais "wrong_type" if the any object’s
undeﬂymgtypelsnotmawedmmtypeparmm,mmtypeofmemsultofanyStorceisits
type parameter. The any$is_type routine retums false ¥ the any object’s underlying type is not included
in the type parameter given. The CLU reserved word force" was eliminated from Argus, and the creation
of an any object is never implicit in an assignment in Argus.

IV.3. Built-in Types

Several changes to the interfaces of the buiit-in types were necessitated by the changes to exception
handling. Specifically, the following changes were made to the built-in types.

1.Thestdngopemiomoancat.appond,s-?ac,m,sac.mdm,canmwaﬂsignalm.
Astrhulitomlthatwouldbetoohrgﬁompmwﬁmboeomphd.

2. The sequence operations i, fil_copy, addh, addi, and concat can now all signal imits. A
sequenoeconstmdormatwouldbo!oolargetompmmwﬂnotboconpaed.

3. The array (and atomic_array) operations create, predict, set_low, fill, fill_copy, addh, and
add/ can now all signal imits. mmmmmmum‘mww
ehhernotbooomplod(nthhcanbomummm)orwmm.

4.Thacopyoporatbmonheﬂmmodbuil—htypomn,mdw fi__copy operations
dmaﬂm(mmw_m.mm”ymﬁomdmm
parameters to have a falure(string) exception. They will resignal such a faitre exception.
(NotethathetypeMsbnmleaﬂowsatypopam«tobeusedovenﬂnscopy
operation does not have exceptions.)

5. The similar operations of the built-in structured type generators allow the similar operations
of their type parameters to have a failure(string) exception. They will resignal such a failure
exception.

6. The equal operations of the type generators soquence, struct, and oneof, and the similart

160 Changes from CLU

operations of the type generators array, record, and varlamt (and their atomic
counterparts), allow the equa/ operation of their type parameters to have a failure(string)
exception. They will resignal such a faiure ex .

7.meekmmnemaammmammmmdmmmmm

(andatomlc_my)wllmboamuqm)mnm“whmmedm
suchawayastocauseaboundsoxoowonwhonmobmhm.

IV.4. Type Inclusion
Type inclusion (the new notion, see Section 6.1) is used in all contexts, including the decis of except
and tagcase statements, where CLU had previously required type equality.

IV.5. Where Clauses

CLU had syntax in the where clause (specﬂicauymepmductbnimop_namo)thatauowodoneto
require an instantiation of a type parameter's generator. This little used feature has been superseded by
the mechanism described in Section 12.6.

IV.6. Uninitialized Variables
An uninitialized variable reference error is defined 1o cause a crash of the guardian, rather than raising
a failure exception, which could conceivably be caught.

IV.7. Lexical Changes :
Several new reserved words were added. In addition, the semicoion (;) was banished from the syntax.

IV.8. Input/Output Changes ,

The ﬁonumdmatypos(f!e_nam, stream, and istream) and the library procedures described in
appendix IllottheGLUnmualarenoHumbhedbyheAmsayﬂem. Our current implementation of
Argus provides a keyboardchstorforkmandapsh'eamchﬂoﬂormn. in addition, most of the
built-in types currently have print operations defined, for pretty-printing objects onto pstreams. These /O
mechanisms, however, are still experimental, and so are not documented in this reference manual.

Index

Index

See also atomic
Activation action 41,43
Actual argument 40
Actual parameter 80, 81
Ancestor 10
Any 22,24, 32, 150

versus CLU 159

versus image 32
Argument

actual 40

versus parameter 80
Amray 25,52, 130

constructor 26
Assignment 4, 30, 40

and concurrency 39

implicit 39

multiple 39

simple 39

siatement 39

type checking for 39
Avmic 3,8,9

action 8
buiit-in atomic types 9, 30, 133, 141, 146
object 9
type 9,97
Aomic_array 30,

Call 4,40, 41, 44,50, 51, 57
action 41
by sharing 4, 40
byvalue 4,12, 41,03
creator 44,51

CLU 3, 11,21,24, 73, 150
bulltin types taken from 22
dilsrences from 150

Chustor 77

Coarm 60

Comment 20, 115
Commit 8, 10, 50, 60, 69, 88, 97
and exception handling 73

161

162

sequence 25, 52
struct 27
structure 52
Continue 63
Controliing coarm 60
Cor 54
Crash 8,85, 80
and own variables 85
recover code 8
recovery 89
Creator 7, 11, 32, 44, 48, 88, 149
bound 49
equality of bound creators 49
typo 149
Creator call 44
as expression 51
as statement 57
semantics of 44
Creatortype 32, 149
Critical section 13, 86
Cvt 78

Data abstraction 7, 77
Data type 77
Deadlock 13
Declaration 38,57, 78

as statement 57

simple 38

with initialization 36
Decode 12, 21, 41, 43, 40,94
Description unit 15, 84
Divisible

fermination 60
Divisible termination 60
Down 585,78
DU

See also description unit

Effects 119

Else 62

Elseif 62

Encode 12, 21, 41, 43, 44, 49, 61,94
with bind 49

Enter 8¢

Entity 48

Equate 37,79

Equate module 34, 79

forms of 47
Extemal representation type 12, 94

Failure 11,42,43, 44,73

of communications in a romote call 43

versus CLU 73, 150

See also crash
False 22,121
Fetch 51

point

See also real
For 82
Force

Ses also any
Foreach 58
Fork 58
Formal

argument 40, 78

parameter 80

Generator 21, 80
insiantistion 81

Got 8t

Giobal object 3,7

Guardian 8,7, 15, 31, 41, 44, 87
background code 89
crash 73
crealion 135, 44, 88
definition 87
guardian image 15
interface 31

See also exceplion
Handlorype 32, 140
Hidden routine 78, 50

Identifler 10
oquated 47
Ses also idn, name
ldn 38, 115
versus name 35
If 82
image 12, 21, 32, 93, 150

int 22, 121

Index

Itorator 48, 82, 76, 148
bound 48
equality of bound iterators 49
type 148

ltertype 148

Keyboard 160

Leave 61
Lexicographic order 126, 138, 130, 141
Library 15
Literal 20, 47
char 115
int 115
real 115
sting 115
Local 3
call 40,50
object 7
Locking 9, 10, 13, 30
deadiock 13
for bulit-in atomic types 9
table of locking ruies 10
Loop 62

Modifies 119
Module 5, 75,87
instantiation of 80, 81

as value of expression 47
atomic 3, 21,97

global 3,7
immutable 3, 21

indivisibllity 21, 119

Parameterized typo 21, 81
instantistion of 81
Parert 9
Pause 86
Post 119
Pragmatics
Pre 119

Precadonce 54
Principal argument 30
Print 160
Private reutine 78
Procedure 48, 75, 148
bound 48
closure 48
equality of bound procedures 49
ypo 148
Process 8, 50
Ses also action

153

Peforence 34, 47

163

164

Staternent 57
abortbreak 63

abort leave 61
abort prefix 50
abort resignal 72
abort return 81
abort signal 69
assignment 39

component update 58

Syntax 107

Table example, ransmission of 95

Tagcase 63
Tagwet 64
Tagwait 65
Terminate 67
Temination

exocaplional 69
of a guardian 67, 90
ofaroutine 40
Then 62
Token 19, 118
Topaclion 9,50
nested 11
Tranemiesible 3, 12, 21,93
object 12
Transmit 21, 41, 78, 84, 93
scual 84
for parameterized mociuies 94
True 22, 121
Two-phase commit 8, 59, 60, 73
Type 3,4, 15, 21, 39, 77, 81
aclusl 81
stomic 0, 97
bulltin 22, 119
built-in atomic types 9

index

Index 165

Unavailable 11, 42, 43, 44, 59, 60
Unhandled exception 73
versus CLU 159
Uninitialized variable 36
versus CLU 160
Up 55,78
Update statement 58

Value 47
Variable 3, 36, 47
own variable 85
stable 3,97
uninitialized 36
versus object 3
Variant 63, 144
Version
of an atomic object 9
Volatile
object 7
state 8,87
variable 87

Where clause 80, 160
subordinate 82

While 62

Write lock 9

Writer 30

Yield 62

Tius blank page was inserted to preserve pagination.

 pate: 1/ 26 9(

Report #_<5-Tees Y09

Each of the following should be identified by a checkmark: -
Originating Department: ;

[Artificial Intellegence Laboratory (Al)
M\ Laboratory for Computer Science (LCS)

Document Type:

‘ﬁqechniml Report (TR) 0 Technical Memo (TM)
O other:

Document Information Number of pages: _5(i€!-iméss)

Not to include DOD forme, printer intstructions, elc... original pages ony.

Originals are: intended to be printed as :
TX Single-sided or [J Single-sided or
O Double-sided "R Double-sided
Print type:

[0 Typewriter [OffsetPress [} LasarPrint
[inkJet Printer ‘ﬁ\ummn [other

Check each if included with document:

\ﬁ\DOD Form (J_) [0 Funding Agent Form [J cover Page
O spine O Pprinters Notes O Photo negatives
O other:
Page Data:
Blank Pagesm,,..wkg q \()]g ’fG TG Gg AND PRgES Pollow; NG T. Tl fact
RIEEPRS

Photographs/Tonal Material aysese sumbes:

Other (e ssscriptonsage numbes; _
Description : Page Number:

T oaGE MPE (\ -1%) UNKTITLE PAGE, Wl £h 8wk,
1= Vi unkeQlavk 1~ 169

(126~ I‘U’) Squgmhmjmg)

Scanmng Agent Signoff.
Date Received: 7LI 96/ 96 Date Scanned: _Y4/941%¢ Date Retumed: BYES S

Scanning Agent Signature: W‘ l’\/ J CmLJ

Rev /54 DSA.CS Document Control Form cstrform.ved

P

=y

1a. REPORT SECURITY CLASSIFICATION

28. SECURITY CLASSIFICATION AUTHORITY NSRS A

REPORT DOCUMENT AT!ON PAGE

Unclassified

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Approved for public release; distribution
~is unlimited.

4

PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
MIT/LCS/TR-400 N00014-83-K-0125

63. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

MIT Laboratory for Computer (if applicabie)

‘ Office of Waval Research/Department of Navy
Science

6¢c. ADDRESS (City, State, and ZIP Code)

7b. ADDRESS (City, State, and ZIP Code)

545 Technology Square Information Systems Program
Cambridge, MA 02139 Arlington, VA 22217

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
DARPA/DOD

8¢c. ADDRESS (City, State, and 2iP Codle) 10. SOURCE OF FUNDING NUMBERS
1400 Wilson Blvd, PROGRAM PROJECT TASK WORK_UNIT
Arlington, VA 22217 ELEMENT NO. [INO. NO. ACCESSION NO.

H.

TITLE {include Security Classification)
Argus Reference Manual

12. PERSONAL AUTHOR(S) Liskov, Barbara; Day, Mark; Herllhy, Maurlce; Johnson, Paul; Leavens, Gary .
(gditor); Scheifler, Robert; and Weihl, William
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yesr, Month, Day) |15. PAGE COUNT
Technical FROM 10 1987 November 165
16. SUPPLEMENTARY NOTATION i
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Distributed systems, fault-tolerance, nested transactionmns,

concurrency, concurrency control locking, persistent

19.

ABSTRACT (Continue on reverse if necessary and identify by block number)

Argus is an experimental language/system designed to support the construction and
execution of distributed programs. Argus is intended to support only a subset of the
applications that could benefit from being implemented by a distributed program. Two
properties distinguish these applications: they make use of on-line data that must remain
consistent in spite of concurrency and hardware failures, and they provide services under
real-time constraints that are not severe. Examples of such applications are office
automation systems and banking systems.

Argus is based on CLU. It is largely an extension of CLU, but there are number of
differences. Like CLU, Argus provides procedures for procedural abstraction, iterators
for control abstraction, and clusters for data abstraction. In addition, Argus provides
guardians that encapsulate and control access to one or more resources, Argus also
provides equate modules as a convenient way to refer to congtants. As in CLU, modules
may be parameterized, so that a single module can define a class of related abstractionms.

‘] 22a. NAME OF RESPONSIBLE INDIVIDUAL

20.

DD FORM 1473, 8a MAR 83 APR edition may be used untit exhausted

DISTRIBUTION / AVAILABILITY OF ABSTRACT
[uncLASSIFIEDAUNUIMITED [J SAME AS RPT.

21. ABSTRACT SECURITY CLASSIFICATION

C] oTic Users

Asea Code) | 22¢. OFFICE SYMBOL

-tle, Publications Coordinator (617)’253-5894

]

All ather editions are obsonete | ——SECURITY CLASSIFICATION OF THIS PAGE

LS. Guvernmaet Priming Ofies: 1005807047
Unclassified

18. procedure call, orphans, exception handling.

