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Abstract

To provide high availability for services such as mail or bulletin boards, data must be replicated. One way to
guarantee consistency of replicated data is to force service operations to occur in the same order at all sites, but this
approach is expensive. In this paper, we propose lazy replication as a way to preserve consistency by exploiting the
semantics of the service’s operations to relax the constraints on ordering. Three kinds of operations are supported:
operations for which the clients define the required order dynamically during the execution, operations for which the
service defines the order, and operations that must be globally ordered with respect to both client ordered and
service ordered operations. The method performs well in terms of response time, amount of stored state, number of
messages, and availability. It is especially well suited to applications in which most operations require only the

client-defined order.
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1. Introduction

Many computer-based services must be highly available: they should be accessible with high probability despite
site crashes and network failures. To achieve availability, the server’s state must be replicated. 'This paper
describes a new method for constructing highly available services to be used in a distributed environment. Our
method takes the semantics of the service into account to relax constraints on the implementation. Weakening
constraints in this way can improve response time and increase availability. We take advantage of the weak
constraints by having an operation call happen at a single replica. The effects of the call are then propagated to
other replicas by lazy exchange of gossip messages — hence the name "lazy replication”. We guarantee, however,

that the replicated service appears to clients to provide the same behavior as a single copy.

A service provides operations that can be used by its clients to interact with it. There are two kinds of operations:
update operations, which modify (but do not observe) the service state, and query operations, which observe (but do
not modify) the state. (Operations that both modify and observe the state can also be provided.) Clients make use of
the service by calling its operations. Our method allows clients to specify the order in which updates must be
executed, and to specify what updates must precede a query so that their effects are recorded in the state observed by
the query.

To illustrate how semantics can be used to relax constraints, consider an electronic mail system with send_mail
and read_mail operations. Normally, the delivery order of mail messages sent by different clients to different
recipients, or even to the same recipient, is unimportant, as is the delivery order of messages sent by a single client
to different recipients. (Here, a client is the program acting on behalf of a person who is the real sender or receiver
of the mail.) Therefore, the mail system can leave the execution order of these send_mail operations unrestricted,
which can lead to better performance. However suppose client ¢/ sends two messages to clients c2 and c3, and the
second message refers to information contained in the first one. Clearly, c expects c2 to read its messages in the
order in which they were issued. Furthermore, if as a result of reading c/’s two messages, ¢2 sends an inquiry

message 10 ¢3, c2 would expect its message to be delivered after c/’s messages.

With our method, clients indicate what updates must precede the execution of a call of a query operation (such as
read_mail). We provide three ways for clients to control the order in which updates are executed. The first, the
client-specified order, would be appropriate for send_mail operations. Here the client explicitly identifies all
updates that must precede a particular call. The service performs updates in an order consistent with the client-
specified order. Updates that are not ordered may be executed in different orders at different replicas, so this
method is appropriate only when the execution order of unordered calls does not matter, as in the mail system

example above.

We also support two stronger orders for updates, the server-specified order and the global order, which can be
used when the client-specified order is insufficient to guarantee correct behavior. The system guarantees that
server-ordered operations are performed in the same order at all replicas; the order for parallel server-ordered
updates can be chosen non-deterministically, but once chosen it must be followed by all replicas. Such an order
would be useful in the mail system to guarantee that if two clients are attempting to add the same user-name on

behalf of two different users simultaneously, only one would succeed.



The relationship of server-ordered operations and client-ordered updates is not constrained by the service but
instead is determined by the client. For example, a client might require that a send_mail operation be ordered after a
particular add_user operation, or might choose to leave the order unspecified. Therefore usually there will be no
global total order that relates all client-ordered and server-ordered updates.

Sometimes, however, a global total order is required and therefore we provide globally-ordered updates, which
arc guaranteed to be totally ordered with respect to all other operations, both updates and queries. Such an order
would be useful for an operation that removes an individual from a classified mailing-list "at once”, i.e., NO
messages addressed to that list should be delivered to that user after the remove operation returns. Such an

"immediate” operation will behave in a way that is consistent with external events [14].

In this paper we describe a replication method that allows construction of highly-available services. The service
operations arc individually atomic; our scheme does not support multi-operation transactions. The method has the

following desirable properties:

1.1t allows three categories of update operations within a service: client-ordered operations (e.g.,
send_mail), server-ordered operations (e.g., add_user), and globally-ordered operations (e.g.
delete_user from a mailing-list).

2.1t performs well in terms of response time, amount of stored state, number of messages,_and
availability in the presence of node and communication failures provided most updates are client-
ordered.

3. A user can define a replicated service without having to understand the complications due 1o
distribution and replication, He or she simply instantiates our method to provide a particular service
by supplying the definition of the replica data structures, their initial values, and the interpretzfnion of
the operations. In addition, the categories of the updates are defined when the service is instantiated.

We have applied the method to a number of applications, including detecting orphans in a distributed system
[21,22], locating movable objects in a distributed system [15], garbage collection of a distributed heap {171,
deletion of unused versions in a hybrid concurrency control scheme [33], and deadlock detection in a distributed

transaction system [9].

We begin in Section 2 by describing our assumptions about the environment. Section 3 describes the method that
preserves the client-defined order; this is the most important part of our method and therefore it is presented in the
most detail. The section also describes a prototype implementation of our technique, and gives some performance
results; the data indicate that our replicated system has a larger operation processing capacity then a nonreplicated
system with comparable response time. Section 4 extends our method to handle the other two orders. Section 5
discusses some issues that arise when using our method in practice. Section 6 relates our work to other replication
methods, including the ISIS system [4, 3, 5], which is the closest to our approach. We conclude with a discussion of

what we have accomplished.

2. The Environment

The method is intended to be used in an environment in which individual computers, or nodes, are connected by a
communication network. The network has an arbitrary topology; for example, it might consist of a number of local
area nets connected via gateways to a long-haul network. Both the nodes and the network may fail, but we assume
the failures are not Byzantine. The nodes are failstop processors [31]. The network can partition, and messages can



be lost, delayed, duplicated, and delivered out of order. The configuration of the system can change, that is, nodes

can leave and join the network at any time.

We assume that nodes have loosely synchronized clocks that never run backwards. The correctness of our
protocol depends only on the monotonicity assumption, but performance can suffer when clocks drift too far apart.
There are protocols that with low cost synchronize clocks in geographically distributed networks, e.g., the NTP
protocol [24] provides a clock skew on the order of a hundred milliseconds. Typically clocks are monotonic both
while nodes are up and across crashes. If they need to be adjusted this is done by slowing them down or speeding
them up. Also, clocks are usually stable; if not the clock value can be saved to stable storage [20] periodically and
recovered after a crash.

3. The Client-Order Method

In this section we describe the service that supports the client-ordered operations. We begin by giving an
overview of what a service provides to clients, and then provide a formal specification for the service. Next we
present the overall architecture of a service, describe the mechanisms and protocols used in our implementation, and

prove that our implementation is correct. Finally, we discuss the performance of our method.

3.1. Client Interface

For the client-specified order, clients identify the updates that must precede a particular update or query. This is
accomplished as follows: Every invocation of an update operation returns a unique identifier, uid, that names that
invocation. In addition, every (query and update) operation o takes a set of uids as an argument; we will refer to
such a set as a label. The label identifies the updates whose execution must precede the execution of o. In the mail
service, for example, the client can indicate that one send_mail must precede another by including the first’s uid in
the label passed to the second. Finally, a query operation returns a value and also a label that identifies the updates
reflected in the value; this label is a superset of the argument label, ensuring that every update that must have
preceded the query is reflected in the result.

Thus, the service operations are;

update (prev: label, op: op) returns (uid: uid)
query (prev: label, op: op) returns (newl: label, value: value)

where op describes that actual operation to be performed (i.e., gives its name and arguments). We require that
clients not create uids but only use ones returned by the service. Given this constraint, the service will be able t0

execute operations in an order consistent with that indicated by their labels.

A label may include the uids of both the client’s own update operations and those executed by other clients that it
might have observed. The client learns about operations of other clients cither directly, by communicating with
other clients, or indirectly, by viewing the service’s state. Clients must send labels in messages they exchange so
that they can provide the proper ordering information to the service: any message from one client to another that
reveals information about the state of the service should include a label that corresponds to the updates reflected in
that state.



Since the service respects only explicitly specified dependencies, a client must make sure all its intended ordering
requirements are conveyed to the service in the argument label. One way to manage labels is to have the system
append them to all messages automatically and merge them whenever messages are received. Using this approach
will lead to the well known causal or "happened before” order defined by Lamport [18]. However, better
performance can be achieved if clients control the use of labels explicitly. This "explicit" approach can lead to
smaller messages, since often it will not be necessary to include labels in them; this point is discussed further in
Section 5.2. Also, the client has considerable freedom in how it chooses the label sent to the service. For example,
if the client knows about some update u, but wants to run an operation that need not be after u, it does not include
u’s uid in the label of the call. Letting operations "run in the past” like this can improve performance as discussed
further below.

3.2. Service Specification

We model an execution of a service as a sequence of events, one event for each update and query operation
performed by a client. At some point between when an operation is called and when it returns, an event for it is
appended to the sequence. An event records the arguments and results of its operation. In a query event g, g.prev is
the input label, g.op defines the query operation, g.value is the result value, and g.new! is the result label; for update
u, u.prev is the input label, u.op defines the update operation, and u.uid is the uid assigned by the service. If e is an
event in execution sequence E, we denote by P(e) the set of events preceding e in E. Also, for a set S of events,
S.label denotes the set of uids of update events in S.

The specification of the client-order service is given in Figure 3-1. Since the client is able to observe the state
resulting from execution of updates only by executing queries, the specification relates the updates and their
dependency constraints to what can be observed by queries.

Let g be a query. Then
1. q.prev C q.newl.
2. w.uid € g.newl = for all updates v s.t. dep(u, v), v.uid € q.newl.
3. g.value = q.op ( Val (q.newl) ).

4. g.newl c P(q).label.

Figure 3-1:  Specification of the Client-Order Service.

The first part of the specification states that the label returned to the client identifies all updates the client required
plus possibly some additional ones. The second part states that the returned label is dependency complete: if some
update operation u is identified by the label, then so is every update that 4 depends on. An update u depends on an
update v if it is constrained to be after v:

dep(u, v) = (v.uid € u.prev)



The dependency relation dep is acyclic because of the constraint on clients not to create uids.

The third part of the specification defines the relationship between the value and the label returned by a query:
the result retumned must be computed in a state Val arrived at by performing the updates identified by the label in an
order consistent with the dependency relation. For label L,

Val(L) = compute (init, { ulu.uid e L })
where "init" is the initial state of the service, and compute performs the updates identified by L in an order consistent
with the dependency order:

dep (u, v) = v.op is executed before u.op.
Note that operations not ordered by clients can be performed in arbitrary order in computing Val. Note also that this
clause guarantees that if the returned label is used later as input to another query, the client will observe the effects
of all updates it has already observed. Finally, the fourth clause of the specification requires that all updates
identified by the label have actually occurred.

3.3. Service Architecture

A service is implemented by a number of replicas. We assume there is a fixed number of replicas residing at
fixed locations and that clients and replicas know how to find replicas; a technique for reconfiguring services (i.e.,
adding or removing replicas) is described in [15]. We also assume that replicas eventually recover from crashes,
and that the state of each replica is kept on stable storage [20] and restored after a crash; this assumption is discussed
in Section 3.6.2.

Each client runs a front end at its node. When the client calls a service operation, its front end sends an
appropriate request message to some convenient replica. The replica executes the operation and sends back a reply
message. Replicas communicate new information (e.g., about updates) among themselves by lazily exchanging

Zossip messages.

If the response is slow, the front end might send the request to a different replica or it might send the same request
to several replicas in parallel. Therefore a single operation can result in duplicate messages being sent 10 several
replicas. In addition, messages may be duplicated by the network. Our scheme can cope with messages that are
lost, delayed, duplicated, and delivered out of order; it hides the fact that a call has resulted in multiple messages
from clients, and guarantees that calls are performed at most once at each replica. To allow the service to
distinguish between different calls with the same parameters and thus to prevent multiple executions of an update,
the front end associates a unique call identifier, or cid, with each update. That cid is included in every message sent
by the front end on behalf of that update.

Interdependent operations may execute at distinct replicas; for example, a read_mail operation that is supposed to
observe the effects of a send_mail operation may be sent to a replica that does not yet know about the send_mail.
Replicas use labels to determine whether all updates on which an operation depends are known locally. A query
operation will be delayed until all needed updates are known; this is why it is advantageous for clients to run queries
"in the past", since doing so increases the probability that all needed updates are known when the query arrives at a



replica. In the case of an update, there is no delay in responding to the client; it is sufficient to assign the update a

uid and record it for later execution.

3.4. Implementation

In this section we describe the implementation of the service in detail. We describe the implementation of uids
and labels, present the replica data structures, explain how the implementation controls the size of the data structures
and the volume of communication while guaranteeing that updates are executed only once, and present the detailed

replica protocol.

For our method to be efficient, we need to represent labels compactly and we need a fast way 0 determine when
an operation is ready to be executed. In addition, replicas must be able to generate uids independently. All these
properties are provided by a single mechanism, the multipart timestamp. A multipart timestamp ¢ is a vector of size
n

t= <t,.,l,>
where n is the number of replicas in the service. Each part is a nonnegative integer counter, and the initial (zero)
timestamp contains zero in each part. Timestamps are partially ordered in the obvious way:

t<s = (4 <s; AL AL SS))
Two timestamps ¢ and s are merged by taking their component-wise maximum. (Multipart timestamps were used in
Locus [30] and also in our own earlier work [21, 16].)

We implement both uids and labels as multipart timestamps. Every update operation is assigned a unique
multipart timestamp as its uid. A label is created by merging timestamps; a label timestamp ¢ identifies the updates
whose timestamps are less than or equal to £. We implement the dependency relation as follows: if an update v is
identified by u.prev then u depends on v. Furthermore, if ¢ and ¢’ are two timestamps that represent labels, t < ¢
implies that the label represented by ¢ identifies a subset of the updates identified by #. This test is used to

determine whether an operation is ready to be executed.

node: int % replica’s id.

log: {log-record} % replica’s log

rep_ts: mpts % replica’s multipart timestamp

val: value % replica’s view of service state

val_ts: mpts % timestamp associated with val

inval: {log-record} % updates that participated in computing val

ts_table: {mpts] % ts_table(p)= latest multipart timestamp received from p
where

log-record = < msg: op-type, rmode: int, ts: mpts > o _
op-type = oneof [ update: < prev: mpts, op: op, cid: cid, time: time >, ack: < cid: cid, time: time > ]
mpts = [ int ]

Figure 3-2:  The state of a replica.




Figure 3-2 shows the state at a replica. (In the figure, { } denotes a set, [ ] denotes a sequence, oneof means a
tagged union with component tags and types as indicated, and < > denotes a record, with components and types as
indicated.) The log is a set of timestamped records that correspond to the messages that the replica received directly
from the clients and those that were processed at other replicas and have been propagated to it in gossip. There are
two kinds of client messages, updates and acks; acks are discussed below. The replica’s timestamp, rep_ts,
expresses the extent of the replica’s knowledge of messages that were cither directed to it or that it heard about via
gossip; it uniquely identifies the set of records in the node’s log. A replica increments its part of its timestamp when
it processes a client message. Therefore, the value of the replica’s own part of its timestamp rep_ts corresponds to
the number of messages that it has accepted directly from clients. The replica increments other parts of its
timestamp when it receives gossip from other replicas containing messages it has not seen yet. The value of any
other part i of rep_ts counts the number of client messages processed at replica i that have propagated to this replica

via gossip.

Each replica maintains in val its view of the current state of the service. It obtains this view by executing the
updates in the log in an order consistent with the dependency order. The label timestamp val_ts is the merge of the
timestamps of updates reflected in val. It is used to determine whether an update or query is ready to execute; an
operations op is ready if op.prev < val_ts. The set inval is used to prevent executing duplicate updates. We store an
update record in inval the first time an update is executed, and use the cid to avoid executing that update again.
Since the same update may be assigned more than one uid timestamp (this may happen when the front end sends the
update to several replicas), the timestamps of duplicate records for an update are merged into val_ts. In this way we
can honor the dependency relation no matter which of the duplicates the client knows about (and therefore includes
its uid in future labels).

The description above has ignored two important implementation issues, controlling the size of the log and the
size of inval. An update record can be discarded from the log as soon as it is known everywhere and has been
reflected in val. In fact, if an update is known to be known everywhere, it will be ready to be executed and therefore
will be reflected in val, for the following reason. A replica knows some update record u is known everywhere if it
has received gossip messages containing « from all other replicas. Each gossip message includes enough of the
sender’s log to guarantee that when the receiver receives record u from replica i, it has also received (either in this
gossip message or an earlier one) all records processed at i before u. Therefore, if a replica has heard about « from
all other replicas, it will know about all updates that u depends on, since these must have been performed before u

(because of the constraint on clients not to create uids). Therefore, u will be ready 1o execute.

The table ts_table is used to determine whether a log record is known everywhere. Every gossip message
contains the timestamp of its sender; ¢s_table(k) contains the largest timestamp this replica has received from replica
k. Note that the current timestamp of replica £ must be at least as large as the one stored for it in ts_table. If
ts_table(k)j = ¢ at replica i, then replica i knows that replica k has learned of the first ¢ client records created by
replica j. Every record r contains the identity of the replica that created it in field r.node. The predicate isknown(r)
holds at replica i if i knows that r has been received by every replica:

isknown(r) = V replicas j, ts_table(j), po4e = T-15; node



The second implementation issue is controlling the size of inval. It is safe to discard a record 7 from inval only if
we can be certain that the replica will never attempt to apply s update to val in the future. To achieve such a
guarantee, we need to establish an upper bound on when messages containing information about 7’'s update can

arrive at the replica.

A front end will keep sending messages for an update until it receives a reply. The replicas have no way of
knowing when the front end will stop sending these messages unless it informs them. The front end does this by
sending an acknowledgment message ack containing the cid of the update to one or more of the replicas. In most
applications, separate ack messages will not be needed; instead, acks can be piggybacked on future client calls.

Acks are added to the log when they arrive at a replica and are propagated to other replicas in gossip.

Even though a replica has received an ack, it might still receive a message for the ack’s update since the network
can deliver messages out of order. We deal with late messages by having each ack and update message contain the
time at which it was created, and we require that the time in an ack be greater than or equal to the time in any of the
messages for the ack’s update. We discard an update message m because it is "late” if
m.time + & < the time of the replica’s clock

where 8 is greater than the anticipated network delay. Each ack a is kept at least until
a.time + 3 < the time of the replica’s clock

After this time any messages for the ack’s update will be discarded because they are late.

A replica can discard update record r from inval as soon as an ack for r's update is in the log and all records for
r's update have been discarded from the log. The former condition guarantees a duplicate of 7's update will not be
accepted from the client or network; the latter guarantees a duplicate will not be accepted from gossip (see Section
3.5 for a proof). A replica can discard ack a from the log once a is known everywhere, a's update has been
discarded from inval, and all client-introduced duplicates of a’s update are guaranteed to be late at the replica. Note

that we rely on the clock monotonicity assumption here.

For the system to run efficiently clocks of servers and clients should be loosely synchronized with a skew
bounded by some €. Synchronized clocks are not needed for correctness, but without them certain suboptimal
situations can arise. For example, if a client’s clock is slow, its messages may be discarded even though it just sent
them. The delay & must be chosen to accommodate both the anticipated network delay and the clock skew.

3.4.1. Processing at Each Replica
This section describes the processing of each kind of message. Initially, rep_ts and val_ts are zero timestamps,
ts_table contains all zero timestamps, val has the initial value, and the log and inval are empty.

Processing an update message:
Replica i discards an update message  from a client if it is late (i.e., if u.time + & < the time of the replica’s clock)
or it is a duplicate (i.e., a record  such that r.cid = u.cid exists in inval or the log). If the message is not discarded,
the replica performs the following actions:

1. Advances its local timestamp rep_ts by incrementing its i*h part by one while leaving all the other parts
unchanged.



2. Computes the timestamp for the update, fs, by replacing the i*# part of the input argument u.prev with
the i part of rep_ts.

3. Constructs the update record r associated with this execution of the update,
r := makeUpdateRecord(u, i, ts)
and adds it to the local log.

4. Executes u.op if all the updates that « depends on have already been incorporated into val. If uprev <
val_ts, then:

val := apply(val, u.op) % perform the op
val_ts := merge(val_ts, r.ts)
inval :=inval L {r}

S. Returns the update’s timestamp r.s in a reply message.

The rep_ts and the timestamp r.¢s assigned to u are not necessarily comparable. For example, u may depend on
update u’, which happened at another replica j, and which this replica does not know about yet. In this case r.1s; >
rep_tsj. In addition, this replica may know about some other update u” that u does not depend on, e.g., u” happened
at replica £, and therefore, r.ts, < rep_ts,.

Processing of updates (and other messages) can be sped up by maintaining both the log and inval as hash tables
hashed on the cid.

Processing a query message:
When replica i receives a query message ¢, it needs to find out whether it has all the information required by the
query’s input label, g.prev. Since val_ts identifies all the updates that are reflected in val, the replica compares
q.prev with val_ts. If q.prev < val_ts, it applies q.op to val and returns the result and val_ts. Otherwise, it waits
since it needs more information. It can either wait for gossip messages from the other replicas or it might send a
request to another replica to elicit the information. The two timestamps g.prev and val_ts can be compared part by

part to determine which replicas have the missing information.

Processing an ack message:
A replica processes an ack as follows:

1. Advances its local timestamp rep_ts by incrementing the i*h part of the timestamp by one while leaving
all the other parts unchanged.

2. Constructs the ack record r associated with this execution of the ack:
r := makeAckRecord(a, i, rep_ts)
and adds it to the local log.
3. Sends a reply message to the client.

Note that ack records do not enter inval.

Processing a gossip message:
A gossip message contains m.ts, the sender’s timestamp, and m.new, the sender’s log. The processing of the
message consists of three activities: merging the log in the message with the local log, computing the local view of

the service state based on the new information, and discarding records from the log and from inval.
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When replica i receives a gossip message m from replica j, it proceeds as follows: If m.ts < Jj's timestamp in

ts_table, i discards the message since it is old. Otherwise, it continues as follows:
1. Adds the new information in the message to the replica’s log:

log:=logu {re mnew|—~(rits<rep ts)}

2. Merges the replica’s timestamp with the timestamp in the message so that rep_ts reflects the
information known at the replica:

rep_ts ;= merge(rep_ts, m.ts)
3. Inserts all the update records that are ready to be added to the value into the set comp:
comp = { r € log | type(r) = update A r.prev<rep _ts )
4. Computes the new value of the object:

while comp is not empty do
select r from comp s.t. 3nor’ € comps.t.r'.us<r.prev
comp :=comp— {r )
if 7 is not a duplicate of an clement of inval then

val := apply(val, r.op)
inval .=inval U (r )
val_ts := merge(val_ts, r.ts)

5. Updates s _table:
ts_table(j) := m.ts
6. Discards update records from the log if they have been received by all replicas:
log := log — { r € log | type(r) = update A isknown(r) }

7. Discards records from inval if an ack for the update is in the log and there is no update record for that
update in the log:

inval := inval - { r € inval | 3 a € log s.t. type(a) = ack A a.cid = r.cid A
Anor € log s.t. type(r’) = update A r'.cid =r.cid }

8. Discards ack records from the log if they are known everywhere and sufficient time has passed and
there is no update for that ack in inval:

log = log — { a € log | type(a) = ack A isknown(a) A a.time + & < replica local time A
3nore invals.t. r.cid=a.cid }

The new value can be computed faster by first sorting comp such that record r is earlier than record s if rias <
s.prev. Also, it is not necessary to send the entire log in gossip. Instead the sender can omit any records that it

knows the receiver knows.

Since the decision to delete records from the log uses information from all other replicas, we may have a problem
during a network partition. For example, suppose a partition divided the network into sides A and B and that r is
known at all replicas in A and also at all replicas in B. If no replica in A knows that r is known in B, there is nothing
we can do. However, as was pointed out by Wuu and Bernstein [34], progress can be made if replicas include their
copy of ¢s_table in gossip messages and receivers merge this information with their own ts_tables. In this way, each

replica would get a more recent view of what other nodes know.
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3.5. Analysis
In this section we argue informally that our implementation is correct and makes progress, and that records are
removed from the log and inval eventually. We also discuss an aspect of our implementation related to the

availability of the server.

The specification in Figure 3-1 defines a centralized server in which each update is performed only once and is
assigned a single uid. However, our implementation is distributed and a single update may be processed several
times at the different replicas and may thus be assigned several different uids. We will show that in spite of the
duplicates, our implementation satisfies the specification, i.e., as far as client can tell from the information received

from queries, each update is executed only once.

The implementation uses timestamps to represent both uids and labels. As far as uids are concerned, we require
only uniqueness, and this is provided by the way the code assigns timestamps to updates. Several timestamps may
correspond to the same update; these correspond to duplicate requests that arrived at different replicas and were
assigned different timestamps. For labels, timestamps provide a compact way of representing a set of uids: a label
timestamp ¢ identifies an update u if there exists a record 7 for u such that r.ts < .

We now consider the four clauses of the specification. The first clause requires that the updates identified by the
query input label g.prev also be identified by the query output label g.newl. This clause follows immediately from

the timestamp implementation of labels and from the query code, which returns only when g.prev < val_ts.

The second clause requires that the label g.newl be dependency complete. This clause follows from the
timestamp implementation of uids and labels and from the update processing code, which guarantees that if u
depends on v then there exists a record 7 for v such that r.ts < u.prev and therefore the set of updates identified by a

label timestamp is trivially dependency complete.

The third clause of the specification ties together the label g.newl and the value g.value returned by the query. It
requires that ¢.value be the result of applying the query g.op to the state derived by evaluating the set of updates
identified by g.newl in an order consistent with the dependency relation. Before proceeding with the proof of this
clause, we establish several useful facts about our implementation. Each fact is stated as a lemma that refers to the
state variables of a single replica. We assume in the proofs that each operation is performed atomically at a replica

and also that gossip is processed in a single atomic step.

Lemma 1: After an ack record a enters the log at a replica, no duplicate of a’s update will be accepted
from the client or network at that replica.

Proof: By inspection of the code we know that after an ack record a enters a replica’s log, the following
holds: a is in the log or a left the log at a point when a.time + 8 < the time of the replica’s clock. Ifa
message for a’s update arrives later, it will be discarded by the update processing code if a is in the log,
and otherwise it will be rejected because it is late, assuming the client front end guarantees that an update
message contains an earlier time than any ack message for its update, and the replica’s clock is monotonic.

0
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Lemma 2: After an update record r enters the log at a replica, no duplicate of the update will be
accepted from the client or network at that replica.

Proof: By inspection of the code we know that after a record 7 enters the log at a replica, the following
holds: r is in the log, or r has entered inval, or r has left inval but at that point an ack for r was in the log.
The update processing code and Lemma 1 ensure that these conditions are sufficient to eliminate all future
duplicates of r, whether these duplicates are created by the network or by the client. [

Lemma 3: Replica i has received the first n records processed at replica k if and only if the k'™ part of
replica i’ s timestamp is greater than or equal to n, i.€., rep_ts, 2 n.

Proof: First note that part i of replica i’s timestamp rep_ts counts the number of client messages
processed at i that entered i’s log. A record in i’s log is transmitted by gossip to other replicas until it is
deleted from the log. A record r is deleted from the log only when isknown(r) holds at i, i.e., when i
knows r has reached all other replicas. Therefore, each replica knows a prefix of every other replica’s log.
Since the gossip timestamp is merged into the timestamp of the receiving replica, it is easy to see that part
j, i #j, of replica i's timestamp counts the number of records processed at j that have been brought by
gossip to replica i. [J

Lemma 4: If isknown(r) holds at replica i, all duplicate records for 7’s update have arrived at i.

Proof: Recall that a replica i knows that all replicas have received an update record r when it has
received a gossip message containing r from each replica. But at this point it has also received from each
replica j all the records processed by j before receiving r. Therefore, at this point it has received all
duplicates of r that were processed at other replicas before they received r. By Lemma 2, no duplicate will
be accepted from the client or network at a replica after receiving r. Therefore, i must have received all
duplicates of r at this point. (]

Lemma 5: If isknown(r) holds at replica i, all duplicate records d for r’s update have d.ts <rep_ts.

Proof: By Lemma 4 we know that all duplicates of r's update u have arrived at this replica.
Furthermore, records for all updates that « depends on are also at this replica because of the constraint that
clients not manufacture uids: u.prev can only contain uids generated by the service, so any update whose
timestamp was merged into u.prev must have been processed at a replica before that replica knew about
update record r, and therefore when all replicas have sent gossip containing 7 to replica i, they have also
sent records for all updates that u depends on. Now, let 7" be either r, a duplicate of r, or a record for an
update that u depends on and let k be the replica where 7 was created. By Lemma 3, we know that rep_ts,
> r'.ts,. Since this is true for all such 7, rep_ts > d.ts for all duplicates d. [

Lemma 6: When a record  for an update u is deleted from the log, u is reflected in the value.

Proof: When r is deleted from the log at replica i, isknown(r) holds at  and therefore by Lemma 5, 7.5
< rep ts. This implies that r.prev < rep_ts. Therefore r enters the set comp and either u is executed, or a
duplicate of r is in inval and therefore u was executed earlier. [1

Lemma 7: Atany replica val ts<rep ts.
Proof: It is easy to see that the claim holds initially. It is preserved by the update processing code
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because if an update is executed, only field i of val_ts changes and val_ts; = rep_ts; Itis preserved by
gossip processing because for each record r in comp, r.prev < rep_ts. Since r.ts differs from r.prev only in
field j, where r was processed at j, and since r is known locally, r.ts; < rep_s; by Lemma 3. OJ

Lemma 8: For any update u, if there exists a record r for u s.t. r.ts <rep_ts, u is reflected in the value.

Proof: The proof is inductive. The basis step is trivial since there is no record with a zero timestamp.
Assume the claim holds up to some step in the computation and consider the next time rep_ts is modified.
Let r be an update record for u s.t. r.ts < rep_ts after that step. We need to show that u is reflected in the
value. First, consider a gossip processing step. Since r.ts < rep_ts, we know u.prev <rep_ts. If risin the
log, it enters comp and either u is executed now or a duplicate record for u is present in the set inval and
therefore u is already reflected in the value. If  is not in the log, then r.ts < rep_ts implies (by Lemma 3)
that r was deleted from the log and by Lemma 6, u is already reflected in the value. Therefore we have
shown that u is reflected in the value after a gossip processing step. Now consider an update processing
step. If r.ts < rep_ts before this step, our claim holds by the induction assumption. Otherwise, we have
—(r.ts < rep_ts) before this step and r.ts < rep_ts after the message was processed. In the processing of an
update, replica i’s timestamp rep _ts increases by one in part i with the other parts remaining unchanged.
Therefore, the record being created in this step must be 7 and furthermore u.prev < rep_ts before this step
occurred. Therefore, any v that u depends on has already been reflected in the value by the induction
assumption, and u.prev < val_ts. Therefore u is reflected in the value in this step. O

We are now ready to prove the third clause of the specification. Recall that a query returns val and val_ts.
Lemmas 7 and 8 guarantee that for any update record 7 such that r.ts < val_ts, r’'s update is reflected in the value val.
Therefore, all updates identified by a query output label are reflected in the value. We will now show that the

updates are executed only once and in the right order.

To prove that updates are executed only once at any particular replica, we show that after an update u is reflected
in the value, it will not be executed again. The record r that entered the set inval when u was executed must be
deleted from inval before u can be executed again. However, when r is deleted from inval no duplicate record for u
is present in the log and an ack for r is present in the log. By Lemma 1, the presence of the ack guarantees that no
future duplicate from the client or the network will reenter the log. Furthermore, when r is deleted from inval,
isknown(r) holds, so by Lemma 4, all duplicates d of r have arrived at the replica. By Lemma 5, d.ts < rep_Is and
therefore step 1 of the gossip processing code ensures that any future duplicate d arriving in a gossip message will

not reenter the replica’s log.

We now show that updates are reflected in the value in an order consistent with the dependency relation.
Consider an update record 7 such that r.s < val_ts and an update v such that 7’s update u depends on v. We need to
show that v is reflected in the value before u. From the implementation of the dependency relation we know there
exists an update record s for v such that u.prev > s.ts. Therefore, by Lemmas 7 and 8 both # and v are reflected in
val. Consider the first time « is reflected in the value. If this happens in the processing of an update message, at that
step u.prev < val_ts; by Lemma 7, u.prev < rep_ts, and therefore by Lemma 8 v has already been reflected in val. If

this happens while processing a gossip message, a record for u has entered the set comp and so u.prev < rep_1s and
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therefore s.ts < rep ts. By Lemma 3, s has entered the log at this replica and will enter comp now unless it has
already been deleted. The code guarantees that when both s and a record for u are in comp either v is reflected
before u because u.prev > s.ts, or there is already a duplicate for v in inval and so v was reflected earlier. If s was
deleted from the log earlier, then by Lemma 6 v has already been reflected.

The fourth clause of the specification requires that only updates requested by clients are executed by the service.
It follows trivially from the code of the protocol, which only creates update timestamps in response {0 update

messages from clients.

We have shown that our implementation is correct, i.e., that when queries return, their results satisfy the service
specification. To ensure system progress, we now need to show that updates and queries indeed retum. It is easy to
see that updates return provided replicas eventually recover from crashes and network partitions are eventually
repaired. These assumptions also guarantee that gossip messages will propagate information between replicas.
Therefore, from the gossip processing code and Lemma 3, replica and value timestamps will increase and queries

will eventually return.

Next, we prove that records are garbage collected from the service state. Update records will be removed from
the log assuming replica crashes and network partitions are repaired eventually. Also, acks will be deleted from the
log assuming crashes and partitions are repaired eventually and replica clocks advance, provided records are deleted
from inval. To show that records are deleted from inval, we need the following lemma, which guarantees that an

ack stays in the log long enough to prevent its update from reappearing in inval:

Lemma 9: Isknown(a) A type (a) = ack = d.ts < rep_ts for all duplicates d of a’s update.
Proof: Similar to Lemma 5. []

Lemmas 8 and 9 and the ack deletion code guarantee that an ack is deleted only after its update record is deleted
from inval. By Lemma 1, no duplicates of the update message from the client or network arriving after this point
will be accepted assuming the time in the ack is greater than or equal to the time in any message for the update.
Furthermore, step 1 of gossip processing ensures that duplicates of the update record arriving in gossip will not enter
the replica’s log. Therefore records will be removed from inval assuming crashes and partitions are repaired

eventually and clients send acks with big enough times.

Finally, we discuss how our implementation of uids and labels affects the availability of queries in our system.
The service uses the query input label to identify the requested updates so it is important that the label identify just
the required updates and no others. However, our labels in fact do sometimes identify extra updates. For example,
consider two independent updates u and v with u.prev = v.prev and assume that v is processed at replica before u.
This means that r.ts > s.ts, where r and s are the update records created by i for u and v, respectively. When r.ts is
merged into a label L, L also identifies v as a required update. Nevertheless, a replica in our implementation never



15

needs to delay a query waiting for such an "extra” update to arrive because our gossip propagation scheme ensures
that whenever the "required” update record r arrives at some replica, all update records with timestamps smaller than
r's will be there. Note that the timestamp of an "extra” update record is always less than the timestamp of some
"required” update record identified by a label.

3.6. Performance
In this section we discuss the performance of our client-order method. First we discuss the impact of replication
on the rate at which queries and updates can be processed in the absence of failures. Then we discuss service

availability and reliability.

3.6.1. Capacity

To determine how well our replication method performs in the absense of failures, we built a prototype
implementation and compared its performance with an unreplicated prototype. To collect the performance
measurements, we used a three replica system running on a network of VAXStation 3200°s connected by a 10
megabits per second ethernet. We focused on measuring system capacity, which is the number of operations the
system can process per unit time with a given response time. Our measurements indicate that the replicated system
has a higher overall capacity then the nonreplicated system without significant degradation in responsc time.

Measurements of system capacity provide a basis for determining how many clients a service can support and still
provide reasonable response time. To estimate the number of clients, the system designer needs to know what mix
of operations occurs in the application and also how often individual clients use the service. For example, in a
location service [15] that allows movable objects to be located in a network, updates are probably much rarer than
queries since objects move infrequently. Such a system may have a mix in which 99% of the operation calls are
queries; furthermore calls to the service are very infrequent, since clients cache recent information. A mail system
may have a mix that is dominated by updates, since mail tends to be read in batches, but clients interact with the

system relatively infrequently.

Our prototypes implement a simple location service with insertion and lookup operations. The prototypes were
implemented in Argus [23]. An Argus program is composed of a number of modules called guardians that may
reside on different nodes of a network. Each guardian contains local state information and provides operations
called handlers that can be called by other guardians to observe or modify its state; it carries out each call ina
separate thread and in addition can run some background threads. A computation in Argus runs as an atomic
transaction [23]; transactions are not needed in our implementation and add to the cost of using the service, but the

additional cost is incurred equally in both the replicated and unreplicated prototypes.

The replicated service is implemented as a number of guardians, one for each replica. Each guardian provides
handlers that can be called to do lookups, inserts, and acks. In addition, acks can be piggybacked on lookup and
insert calls (as an additional argument). Each replica has a background thread that sends and receives gossip
messages. The gossip thread first processes all waiting messages; then, if sufficient time has passed since it last sent

gossip, it sends two gossip messages. Each gossip message is constructed and sent separately; we do not use a
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broadcast mechanism. A replica does not send its entire log in gossip messages; instead it sends only those records
that it created? and the recepient may not know. Therefore, when a gossip message is received, we do not merge its
entire timestamp into rep_ts; instead the sender’s part of the timestamp in the message replaces its part of rep ts.

The unreplicated service is implemented as a single guardian that is similar to the one that implements a replica.
The guardian needs to handle dropped, re-ordered and duplicated messages from clients, so it provides an ack
handler and allows acks to be piggybacked on inserts and lookups. An update is ready to be processed when it
arrives, and a record for it is entered in inval at that point (unless it is a duplicate); update records are not kept in the
log, which contains only ack records. When an ack arrives, its update is removed from inval and an ack record

enters the log where it remains until sufficient time has elapsed.

To carry out our experiments, we had the replicas simulate the client calls. This allowed us to control the rate at
which client calls arrived at the server and the operation mix, i.e., the proportion of inserts and lookups in the
experiment. We use a uniform arrival rate distribution. To control the gossip rate we had the replicas send gossip
using the following policy: gossip will be sent the next time the gossip thread runs provided it is at least G

milliseconds since the last time gossip was sent.

Operation calls are simulated by an Argus thread. Each call consists of two parts, the computation part and the
communication part. The computation part includes the actual work of doing the operation, e.g., checking for a
duplicate, adding a record to the log, etc. The communication part is a busy loop that simulates the communication
overhead at the server node, namely the receipt of the operation message and delivery to the Argus guardian,
decoding of the message to obtain the arguments, construction of the reply message, and moving the message from
the guardian onto the network. The duration of the communication overhead was determined by measuring the cost

of null calls; such calls incur a cost of 5.6 ms at the server node (and another 5.4 ms. at the client).

Figure 3-3 shows the results of experiments using a gossip rate G of 100 ms. In these experiments there were no
separate ack messages; instead acks were piggybacked on inserts and lookups. Also, operations were always ready
to run when they arrived. The figure shows the behavior of a single replica in a system in which all three replicas
are processing the same mix of operations arriving at the same rate. Curves are given for different operation mixes
(all queries, 1% updates, 10% updates, 50% updates, 100% updates). The horizontal axis shows the request arrival
rate in operations per second; the vertical axis shows the mean response time for operations at that arrival rate and
operation mix. The response time measures only the time spent at the replica’s node; the response time as seen by

the client is 5.4 milliseconds larger, since it includes the overhead at the client node.

Figure 3-4 shows the results for the unreplicated system with the same operation mixes and arrival rates. From
these two figures we can compare the capacities of the two systems. If the system is query-bound, the replicated
system can handle nearly three times the number of operations without a degradation in response time (it has three
times the capacity because each replica, as shown in Figure 3-3, handles almost as many operations per second as
the unreplicated system). If the system is update-bound, the replicated system can still handle more operations than

2When a replica failure or recovery is detected, there is a period during which replicas send their entire logs in gossip messages.
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Figure 3-3: Capacity of a Single Replica. This figure shows the average response time
as a function of operation arival rate for selected operation mixes.

the unreplicated one with some degradation of response time, in spite of the fact that ultimately each replica must
perform each update. For example, if we are willing to accept a response time of 20 ms. for an operation mix of half
queries and half updates, the capacity of the replicated system is 87 X 3 operations per second whereas the
unreplicated system saturates at 140 operations per second. The reason for the improved capacity is that £OSSip
messages typically contain entries for several updates, thus amortizing the communication overhead for the updates

in gossip messages.
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Figure 3-4: Capacity of the Unreplicated System.

The performance of the system is likely to be sensitive to the relative prioritics of gossip and operations. The
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measurements above correspond to a system in which gossip has higher priority than operation processing: when
there is a gossip message to send or receive, the gossip process will run. If operations have higher priority than
gossip, this will probably lead to better response time, although gossip cannot be allowed to lag too far behind,
because it is important to propagate information about updates reasonably rapidly. We have not experimented with
changes in relative priorities, but it will be important to do this in a real implementation.

3.6.2. Availability and Reliability

In this section we discuss service availability (i.c., the probability that the service will be accessible when needed)
and service reliability (i.c., the probability that the service will retain information entrusted to it). Our goal is to
achieve better availability than a single copy system, and to provide the same kind of reliability that could be

achieved without replication.

To understand the availability of our system, we look first at partitions and then at crashes. If a partition isolates a
client from all replicas, no replication scheme will help. A more common case, however, is a partition that divides
nodes into groups containing both replicas and clients. Our updates can proceed as long as the client’s group
contains a single replica. A partition could prevent queries from being processed if the query required information
about an update that was processed on the other side of the partition. Since we assume that a partition divides the

network into disjoint sets of nodes (client and service), there are two cases to consider:

1. A client requires information about an update it did earlier, but the replica that processed that update is
separated from the client by a partition that happened after it sent the response to the client but before
it communicated with other replicas. This situation is highly unlikely if gossip is frequent. We could
make it even more unlikely by sending gossip in parallel with, or even before, sending the update
response to the client.

2. A client requires information about an update done by a different client on the other side of the
partition. This situation is impossible if the update was done after the partition formed, because there
is no way for the clients to communicate the timestamp of the update (assuming no out-of-band
communication). Therefore, the situation is similar to case 1.

Note that in either case we have better availability than replication techniques (e.g., [11], [26]) based on majorities.

Now we consider the case of crashes. Our scheme continues to provide service as long as a single site is up.
However, we do have a problem with crashes that is similar to partition case (1), i.e., the crash happened just after
the replica processed an update and responded to the client but before it communicated with other replicas. We can
make this situation less likely by sending gossip before or in parallel with the update response. If the probability of
failure is still considered too high, we can do the following: a replica notifies some number of other replicas, and
waits for acknowledgments, before sending the client response. Note that this solution differs from voting [11] and
primary copy schemes [1, 26] in that a majority of replicas is not needed. For example, only two replicas out of five
or seven might be involved in an update. However, the extra communication does mean that the availability of

updates will decline and response time will increase.

Finally we consider the reliability of the service. If replicas process updates without communicating with one
another, stable storage seems wise, since otherwise the crash of a single replica could lose some updates forever. In
particular, a replica would need to log an update on stable storage before responding to the client. However, if
replicas communicate (with acknowledgments) before replying, stable storage is not needed. Storing the new update
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at more than one replica protects it against a certain number of failures (e.g., if two replicas have the information,
the information will survive a crash of one of them). We still need to be concerned about a simultaneous failure of
all replicas that store the information. The most likely cause of a simultaneous failure, a power failure affecting
nodes that are physically close together, can be handled by equipping each replica with an uninterruptible power
supply and a disk; in the case of a power failure, the replica’s volatile information would be written to disk before it

shuts down.

4. Other Orders

In the introduction, we described two additional update orderings that might be needed in applications. There are
the server-ordered updates, such as the add_name operation in the mail system, which are totally ordered with
respect to one another even when no dependency relationship is defined by the client. In addition, there are the
globally-ordered updates, such as an operation to revoke user rights immediately, which are totally ordered with
respect to all other operations.

In this section we discuss how our system can be extended to support server-ordered and globally-ordered
updates. These two stronger orders are provided only for updates; queries continue to be ordered as specified by the
client. We assume that the system knows a priori what the type of an update is; this would be established when the
system is created or instantiated. Typically, a system will have several different update operations, e.g., send_mail,
add_user. Each such operation will have a declared ordering type.

Like client-ordered updates, server-ordered updates take an input label and return a uid. The uids for server-
ordered updates are totally ordered. Labels now identify both the client-ordered and server-ordered updates, and the
input label for an update or query identifies the client-ordered and server-ordered updates that must precede it.

Unlike other operations, a globally-ordered update u does not take a label as an argument; instead, the system
decides what operations precede u. Furthermore, although the system does assign 4 a uid, it does not return it to the
client. Returning the uid is not necessary because any operation that runs after « returns is guaranteed to be ordered
after u.

Let g be a query. Then
1. q.prev L G(q).label c q.newl.
2. u.uid € g.newl = for all updates v s.t. dep(u, v), v.uid € g.newl.
3. q.value = q.op ( Val (gq.newl) ).

4. gq.newl c P(q).label.
Figure 4-1:  Specification of the Service.

The specification of the complete service is given in Figure 4-1. As before we model the execution of a service as
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a sequence of events, one for each update and query operation performed by a client. If e is an event in execution
sequence E, we denote by G(e) the set containing all events up to and including the most recent globally-ordered
update that precedes e in E.

The first clause of the specification now requires that queries reflect the most recent globally-ordered update in
the execution as well as what the client required. Clauses 2 - 4 are unchanged except that the dependency relation
for clause 3 is extended as follows:

dep(u, v) = if globally-ordered(u) then v € P(u)
else (v.uid € uprev) v
( server-ordered(u) & server-ordered(v) & v.uid < u.uid )

4.1. Implementation of Server-ordered Updates

To implement server-ordered updates we must provide a total order for them and we must provide a way to relate
them to client-ordered updates and queries. This is accomplished as follows. As before, we represent update-ids
and labels by multipart timestamps, but the timestamps have one additional field. Conceptually this field
corresponds to an additional replica R that runs all server-ordered updates; the order of the server-ordered updates is
the order assigned to them by this replica, and is reflected in R’s part of the timestamp. Therefore it is trivial to
determine the order of server-ordered updates: if u and v are server-ordered updates, u.uid < v.uid if w.uidg <

v.uidg.

Of course, if only one replica could run server-ordered updates, we would have an availability problem if that
replica were inaccessible. To solve this problem, we allow different replicas to act as R over time. We do this by
using the primary copy method (1,27, 26] with view changes [8, 7] to mask failures. An active view always
consists of a majority of replicas; one of the replicas in the view is the designated primary and the others are
backups. The current primary is in charge of R’s part of the timestamp as well as its own, and all server-ordered
updates are handled by it.

To carry out a server-ordered update u, the primary carries out a two-phase protocol. In phase 1 it assigns a uid to
the update by advancing R’s part of the timestamp and merging it with u.prev. Then it creates a log record for u and

sends it to the backups. The operation can commit as soon as:
1. a sub-majority of the backups acknowledge receipt of its record, and

2. all carlier server-ordered updates have committed.
(A sub-majority is one less than a majority of all the replicas in the service; once a sub-majority of backups know
about the update, then a majority knows (since the primary does t00), and therefore it is safe to commit the update
since its effects will persist into subsequent views.) When the operation commits, the primary adds its record to its
log, applies the update to the value if it is ready, and responds to the client. The backups are informed about the
commit in subsequent gossip messages.

A view change is accomplished by a two phase protocol conducted by a coordinator who notices a failure or
recovery of a replica. The other replicas act as participants; the coordinator can go ahead with the view change if a
sub-majority of the replicas agree to act as participants. The view change must ensure that all committed server-
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ordered updates persist into the next view. In phase one of the view change, each participant informs the
coordinator about all server-ordered updates it knows. Note that any update that may have commitied in the old
view will be known 1o at least one member of the new view. The coordinator aborts any server-ordered update u
that depends on a server-ordered update not known to any member of the new view, i.e., it aborts u if it has no
record of a v with v.uidy < u.uid,. (The update 4 must be uncommitted in this case because v is uncommitted and
updates are committed in order.) Then it sets R’s part of the timestamp for the new view to the largest value it
knows for any (unaborted) server-ordered update. The primary of the new view will carry out the two-phase
protocol for any remaining uncommitted updates.

In a system of N replicas, and when there are no failures, a server-ordered update requires 2M messages, where M
is the smallest integer greater than N/2, and encounters a delay of roughly 2 message round trips. Its execution does
not interfere with the execution of client-ordered updates or queries; all replicas proceed with these as before,
including replicas that are disconnected from the current active view. Furthermore, a view change has no effect on
what client-ordered updates are known in the new view. Instead, these continue to be propagated by gossip just like

they were in the system of Section 3.

If there are many server-ordered updates, the primary may become a bottleneck. In this case, a voting
method [11, 2, 13] could be used, but this has the disadvantage that it will be blocking (i.c., if the client becomes
disconnected from the service during phase 1, no more server-ordered updates could be performed until the client
recovered). Blocking can be avoided by using a three-phase protocol [32], but then more messages are needed than
with our scheme. Another possibility is to have several different orders for the server-ordered operations. For
example, in a mail system we might choose to have one order for add_user operations that add users whose names
start with "a" through "m", and a different order for users whose names start with "n" through "z". Each order would
have a different part of the timestamp, and would be managed by a different primary. However, it is not practical to

have a large number of different orders, since this would lead to large timestamps.

4.2. Implementation of Globally-ordered Updates

To implement a globally-ordered update u we need to carry out a global communication among all the replicas
during which the system determines what updates precede u and computes the label u.prev, which identifies all such
updates. At the end of this step u« can actually be performed.

Our implementation works as follows. We use the primary of the active view to carry out globally-ordered
updates, but the primary will execute a globally-ordered call from the client only if the view contains all replicas of
the service. We assign timestamps for globally-ordered updates in the same way as for server-ordered updates, by
using the R part of the timestamp. We use a non-blocking three-phase algorithm [32]: if a failure causes the
primary to be unable to communicate with the other replicas, a new majority view will be able to decide whether to
commit or abort the globally-ordered update without waiting for the old primary to recover.

Phasc 1 is a "pre-prepare” phase in which the primary asks every backup to send its log and timestamp. Once a
backup receives this message, it stops responding to queries; it can continue 1o process client-ordered updates, but it
cannot reflect them in its val. (We discuss why these constraints are necessary below.) When the primary receives
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information from all the backups, it enters phase 2, the "prepare” phase; at this point it becomes unable to process
queries and to reflect client-ordered updates into its val. The primary computes u.prev, assigns ¥ a timestamp by
advancing the R part of the timestamp, creates a log record for u, and sends the record to the backups. When a
sub-majority of backups acknowledge receipt of this record, the primary commits the operation: it enters the record
in its log, performs the update (it will be ready because the primary heard about all updates in u.prev in the
responses in phase 1), and sends the reply to the client. The other replicas find out about the commit in gossip; since

they are unable to process queries until they know about the commit, the gossip is sent immediately.

If a view change occurs, the participants tell the coordinator everything they know about globally-ordered
updates. Any operation known to be prepared will survive into the new view, and the primary of the new view will
carry out phase 2 again; such an operation must survive, since the old primary may have already committed it. An
operation not known to be prepared will be aborted; such an operation cannot have committed in the old view, since
a commit happens only after a sub-majority of backups enter the prepare phase, so at least one participant in the new

view will know about the prepare.

Now we discuss why backups cannot respond to queries once they enter the pre-prepare phase and why the
primary cannot respond to queries once it enters the prepare phase. (Client-ordered updates cannot be reflected in
val during these phases for the same reason.) Recall that once a globally-ordered update happens, any query must
reflect the effects of that operation. However, once a backup is in the pre-prepare phase, or the primary is in the
prepare phase, it does not know the outcome of the operation. Returning a value that does not reflect the update is
wrong if the operation has already committed; returning a value that reflects the update is wrong if the operation

aborts. Therefore, the only option is to delay execution of the query.

Globally-ordered updates slow down queries. In addition, if a replica becomes disconnected from the others
while in phase 1 or phase 2, it will be unable to process queries until it rejoins a new active view. This is analogous
to what happens in other systems that support atomic operations: reading is not allowed in a minority partition,
since if it were inconsistent data could be observed [7].

We chose to use a three-phase protocol because it is non-blocking: replicas in the new majority view are able to
continue processing client requests. Having a non-blocking protocol is important because replicas cannot perform
queries while a globally-ordered update is running. A two-phase protocol would require fewer messages, but an
inopportune failure would prevent the entire system from processing queries.

5. System Issues

Our method is generic and can be instantiated to provide a particular service. The instantiator provides what is
essentially an abstract data type with a procedure for each update and query operation of the service. He or she need
be concerned only with the implementation of the unreplicated object; all details of replication are taken care of
automatically.

The instantiator needs to define the class of each operation, i.e., whether it is client-ordered, server-ordered, or
globally-ordered. The easiest way to do this is by operation name, e.g., send_mail is client-ordered, while add_user
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is server_ordered. However, finer groupings are possible in which both the operation name and the input arguments
are considered; such groupings can be defined by providing a procedure that would be called at runtime to determine
the class of a particular call.

To create an application service, it is necessary to decide how many replicas there are and where they reside. A
service can be adjusted to changes in load (e.g., as clients are added to the system, or as the system grows) by
reconfiguration. This is accomplished by carrying out what is essentially a view change [8] during which replicas
can be added and removed from the service. An adaptation of the view change algorithm to our multipart timestamp
replication scheme is described in [15].

In the remainder of this section we discuss the two main issues that determine the effectiveness of our technique
in large systems: the cost of replication, and the cost of managing the timestamps returned by replicated services.

5.1. Cost of Replication

In our scheme the service nodes are disjoint from the client nodes, which means that the number of replicas is
independent of the number of clients. Since typically there will be large numbers of clients, this is an important
consideration. Having fewer replicas reduces the size of the timestamps, the storage requirements (since each
replica needs to store the service state), and message traffic (since replicas need to communicate, even if gossip is

done infrequently).

Some applications may need a large number of replicas, either to provide adequate processing power, or (o ensure
that every client is "close” to a replica. When most calls to a service are queries, having lots of replicas can improve
performance. However, having many replicas increases the cost of updates because more gossip messages must be
sent and also because each update must be performed at every replica. This latter cost is a problem only if executing
an update is expensive. In this case, it may be possible to reduce the cost of processing an update received in gossip
by doing "value logging”. In this scheme, if an update request is ready when it arrives from the client (and most
updates will be ready, just as most queries are ready when they arrive), the receiving replica would perform it and
log a description of its effect on val. Other replicas would simply incorporate the logged effect into their val instead
of performing the update. This technique will be worthwhile provided the amount of information to be logged is
small and the cost of incorporating that information into val is less than performing the update.

Sometimes the amount of gossip can be reduced by partitioning the service state. Partitioning can be used in any
application in which different parts of the state are independent, i.e., each operation can be performed using the
information in just one part of the state. For example, in a mail system there might be two partitions, the first
storing mail for users with names in the first part of the alphabet, and the second storing the rest. Such a service still

appears to be a single entity to clients, but better performance can be achieved by partitioning.

With partitioning, the replicas can be divided into disjoint groups, each of which is responsible for a disjoint part
of the state. All queries and updates concerning a particular part of the state are handled by the replicas in the group
that manages that part; the front end for such a system would probably maintain information about the partitioning
so that a client request could be sent to one of the replicas in the request’s group. The timestamps would contain
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components for all replicas; this is necessary so that the client can control the ordering of operations across
partitions. However, the timestamp components for other partitions are ignored when processing a query or update:
an operation is ready to execute if the timestamp components for its group indicate that it is ready. Therefore, the

extra components do not delay operation execution. In addition, gossip is exchanged only among group members.

Partitioning can reduce the amount of gossip and update processing, but such a system may have large
timestamps. The size of timestamps can be reduced by distinguishing between read-replicas and write-replicas.
Read-replicas handle only query operations. Write-replicas perform updates and timestamps contain entries only for
them. Each write-replica is responsible for sending new information to some subsct of the read-replicas; to
compensate for the failure of a write-replica, these subsets could overlap, or some reconfiguration scheme could
switch the responsibility to another write-replica temporarily. In addition, a read-replica could request recent
information from a write-replica if desired.

In essence this scheme places read-only caches at various convenient locations in the network, e.g., one in each

local area net. It is suitable for a system in which updates are relatively rare but queries are frequent.

Another possibility is to use a hierarchical approach. This approach is valid only when all client interaction that
exposes information about the service state happens through calls on service operations. The idea is to partition the
clients among a number of different replica groups, each consisting of a small number of replicas, and each having
its own timestamps. Clients communicate only with replicas in their own group; they use only that group’s
timestamps and never exchange timestamps with one another. The replica groups communicate with one another
via a lower-level replica group, i.c., they are clients of the lower-level group; in fact, the scheme can be extended to
an arbitrary number of levels. This scheme has been proposed for the garbage collection service [17]; in this
application, a client’s query depends only on its own updates, although the speed with which inaccessible objects are
discarded depends on how quickly global information propagates from one replica group to another (via the
lower-level replica group). Another application that could profit from this approach is deadlock detection [9].

5.2. System Structure

Up to now we have considered services in isolation; now we consider a system containing many services. In such
a system there will be many different multipart timestamps, one kind for each service, and it will sometimes be
necessary to distinguish them. This is easily done by having each timestamp identify its service.

The service interfaces described so far do not allow the operations of different services to be ordered relative to
one another. An open service supports inter-service operation ordering; an isolated service does not provide this
ability. The operations of an open service need extra parameters because we must be prepared to send and receive
label timestamps for other services in these calls:

update (prev: label, others: setflabel], op: op) returns (uid)
query (prev: label, op: op) returns (newl: label, new_others: setflabel], value: value)

An update operation takes in labels for other services in addition to the label for its own service; a query operation
returns labels for other services in addition to its own. By including a label Ly for some service T in a call to an
operation o of service S, a client is indicating that 0 must be ordered after all the T operations identified by L.
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When a query (perhaps by a different client) observes the effects of o, it will return a label for T that identifies all
updates identified by L. (and possibly some additional ones). This allows the client to require thatalatercallona T
operation be ordered after all updates in L1. (An open system is similar to a partitioned one as discussed in Section
5.1 in the sense that the the labels for other services correspond to the parts of the timestamps for the other
partitions.)

The implementation of an open service is also a little different from what was discussed earlier. Each replica
maintains a list of labels for other services. When it processes an update, it merges its labels with the corresponding
ones in the list. When a query returns, it returns the list of labels in addition to its result. Just as a query need not
return val but instead can return a result computed using val, so it need not return the entire list, but instead just
some of the labels in the list.

Services are often encapsulated in the sense that they are used by a number of predefined clients. In fact, the
most common situation we have observed is an isolated service used by a single predefined kind of client. The
timestamps of an encapsulated service are used only by its clients and are never visible to any other part of the
system. For example, the part of a system that implements remote procedure calls might use a location service to
determine the location of the called module. Clients of the RPC service know nothing about the location service,
and never need to manipulate its timestamps.

Encapsulated services raise no general timestamp management problem; the vast majority of programmers need
never be concemned with their timestamps. The same is not true for unencapsulated services, however. One
possibility is to provide implicit management of their timestamps; each client front end maintains a list of
timestamps (just like the replicas of an open service), sends all timestamps in all messages to other clients and in
calls to updates of open services, and merges all received timestamps with the corresponding ones in its list.
Implicit management would be costly if there were many unencapsulated services, however. An altemative is for
the person implementing a client to deal with timestamps explicitly, i.e., the client program explicitly specifies what
timestamps should be sent in what messages. Performance will be better with the explicit approach primarily
because timestamps will need to be sent in fewer messages. Furthermore, we believe it is not difficult to decide
what timestamps to send in what messages, because the needed information will be contained in the specifications of
the modules with which the client interacts.

6. Related Work

Our work builds on numerous previous results in the area of highly available distributed systems and algorithms,
including general replication techniques such as voting 11, 13, 2] and the primary copy method [1, 27, 26]. Our
work is also related to gossip schemes [12, 10, 34]. In this section, we focus on the most closely related work,
namely providing high availability for applications where operations need not be ordered identically at all replicas.
In this light, we compare our method with the relevant gossip schemes and with the work on ISIS. We also consider

approaches where consistency is relaxed in order to improve performance.

Some gossip methods [10, 34] require that a replica of the service exist at every client node, leading to increased
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storage requirements and message traffic. Furthermore, these methods are application specific and do not allow the

operation order to be controlled by clients.

In the replication method used in the implementation of the Grapevine system [6], service nodes are distinct from
client nodes, operations are performed at exactly one replica, and updates propagate in the background to other
replicas. However, in Grapevine consistency is sometimes sacrificed to improve performance, leading to

undesirable behavior such as the existence of distinct users with the same name.

The sweep-based replication method used in the design of Lampson’s global-name service [19] was developed to
address some of the shortcomings that existed in Grapevine [6] while satisfying the original goals of fast response
time and high availability. As in Grapevine, the name-service client operations interact directly with one replica; the
method for spreading updates to all replicas is to periodically perform a global "sweep" operation, enforcing the
same total order on all updates that preceded the sweep. However, the order induced may be inconsistent with the
order observed by clients, and furthermore, no consistency is guaranteed for operations that executed after the last
sweep. In contrast, our method allows clients to prevent such inconsistencies completely and without degrading the
performance of operations that require the weaker (partial) ordering.

ISIS [4, 3] provides a replication method that supports causal order but in a different fashion with its CBCAST
broadcast method. Instead of using timestamps, ISIS piggybacks all CBCAST messages received by a node on all
messages sent by a node and in this way ensures that needed updates are known at the replicas. The advantage of
the ISIS technique is that queries never need to be delayed. However, our system is more efficient in terms of
information that must be remembered and the size of messages. Our messages are much smaller since they contain
timestamps rather than the messages these timestamps identify. Also, we avoid a major system wide garbage
collection problem that exists in ISIS, namely, knowing when it is safe to discard information about old messages.

Futhermore, unlike ISIS, our method works in wide area nets and in the presence of network partitions.

In addition to CBCAST, ISIS provides two other broadcast protocols, ABCAST and GBCAST (counterparts to
our server-ordered and globally-ordered operations). Our implementation of these operations is more efficient than
ISIS’s implementation of ABCAST and GBCAST. The processing of a server-ordered operation requires only a
majority of service replicas, providing improved availability and response time compared to ABCAST. Our
implementation of globally-ordered operations is also more efficient. The synchronization part of the ISIS protocol
that makes sure that the current GBCAST is executed in the same state everywhere requires that all nodes in the
network participate in the synchronization part of the protocol. In contrast, our method uses fewer messages and

requires that only the service nodes participate in the global synchronization.

The Psynch protocol [29] is an IPC mechanism that supports causal message ordering by explicitly encoding this
ordering in each message. It operates in the presence of network and process crashes and can be viewed as an
optimized implementation of ISIS CBCAST that transmits message ids instead of messages and thus cuts down the
costs of the message traffic and message garbage collection. A recent paper [25] describes a way of using the
protocol to implement replicated services; it supports two kinds of operations, commutative operations (where the
order of execution does not matter), and totally ordered operations, so it is less general than our method.
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The recent "bypass" implementation of ISIS [S] has adopted multipart timestamps to reduce the inefficiencies in
their original method. In ISIS a system is composed of a number of "process groups”. Two process groups can
communicate only if they have a member in common, which means that client and server groups must overlap. For
example, there might be a single group containing all clients and the service replicas. Alternatively, if clients do not
communicate with one another, there could be a separate group for each client consisting of the client process and a
process for each service replica. Each group has its own multipart timestamp, and when communication occurs the
message is multicast to all members of the target group. Like our system, this new ISIS implementation trades

occasional delay in message processing for smaller messages and easier garbage collection.

In the "straightforward" bypass implementation, every message would contain a timestamp for every group in the
system. Even if we also send a timestamp for every service in every message, our implementation would perform
better. Our timestamps are smaller since they only contain components for the service replicas; in ISIS, timestamps
must contain components for clients as well. In addition, we send fewer messages than ISIS because it broadcasts
each operation call to all group members; in our scheme replicas communicate using gossip messages that do not
include information about query operations and can contain information about many different update calls.
Furthermore, if ISIS uses the structure of having each client in a separate group with the service replicas, it will send
many more timestamps in messages, since its messages must contain a timestamp for each such group; we need to
include only the service timestamp.

To reduce the size and number of messages, the ISIS bypass paper describes some alternative mechanisms. For
example, it discusses a method for performing analysis of a graph representing communication paiterns in a system
to determine when optimizations are possible, but the analysis method is limited; many systems would not be
considered optimizable using their analysis. Therefore, the paper also discusses some protocols that can reduce
number and size of messages by delaying certain activities (e.g., when a client can send the next message).

In addition to the differences in detail discussed above, there is also a difference in philosophy between our
system and ISIS. As discussed in Section 5, we expect builders of applications (and services) to decide explicitly
what to do with the uids and labels returned by calls to service operations. Clients should communicate labels only
when it matters to what they are doing. In fact, a person will also have to decide what to do in ISIS in order to
improve performance.

7. Conclusion

This paper has described a new, lazy replication method that allows application scmantics to be taken into account
to weaken implementation constraints. Three kinds of operations are supported: client-ordered operations, server-
ordered operations, and globally-ordered operations. The method is generic and can be instantiated to provide a
particular service. The instantiator need be concerned only with the implementation of the unreplicated object; all
details of replication are taken care of by the our method.

For applications that can use it, the method provides good availability and response time with low communication
costs. The method is optimal in the sense that it does not introduce unnecessary synchronization among client-



28

ordered operations and therefore does not delay the processing of queries. The method is particularly suitable for
applications in which most of the update operations are client-ordered. The other two orders are important because
they increase the applicability of our approach: They allow it to be used for applications in which some operation
calls require a stronger order than the client-specified order. However, they must be used sparingly. If most calls
are server-ordered, our method will perform similarly to techniques such as voting [11] and primary copy [28]. If
many calls are globally-ordered, our method will not perform well. Globally-ordered calls are expensive because
this is where we pay for the good performance of the client-ordered calls.

When confronted with the need for a highly available service, a designer has a limited number of choices. One
possibility is to trade consistency for performance as in Grapevine [6]. Another is to use standard atomic
methods [27, 11, 2, 13]; with these methods operations really happen by the time they return, so there is no need to
carry information (e.g., timestamps) in messages to indicate ordering constraints. Like the atomic methods, our
approach provides consistency, but ordering information is needed because updates happen lazily. Our method is a
good choice provided the size of the extra information in the messages is small (i.e., there is a modest number of
write-replicas) and provided most operations can take advantage of the laziness (i.e., client-defined ordering is

appropriate).
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