
MIT/LCS/TR{528

FILE SYSTEMS WITH

MULTIPLE FILE

IMPLEMENTATIONS

Raymie Stata

February 1992

File Systems with Multiple File

Implementations

by

Raymie Stata

Submitted to the Department of Electrical Engineering and Computer Science

in partial ful�llment of the requirements for the degrees of

Bachelor of Science in Electrical Engineering and Computer Science

and

Master of Science in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

May 1990

c
 Massachusetts Institute of Technology 1990

Signature of Author :

Department of Electrical Engineering and Computer Science

May 22, 1990

Certi�ed by :

Barbara Liskov

N.E.C. Professor of Software Science and Engineering

Thesis Supervisor

Certi�ed by :

John Wilkes

Project Manager, Hewlett-Packard Laboratories

Thesis Supervisor

Accepted by :

Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

File Systems with Multiple File Implementations

by

Raymie Stata

Submitted to the Department of Electrical Engineering and Computer Science

on May 22, 1990, in partial ful�llment of the

requirements for the degrees of

Bachelor of Science and Master of Science

in Electrical Engineering and Computer Science

Abstract

This thesis proposes ideas for designing �le system software for large, high-performance

�le server hardware we feel will be common in the middle to late nineties. In particular,

the thesis examines the value and pragmatics of �le systems with multiple �le implemen-

tations. A �le implementation determines how a �le is represented in secondary storage

and the procedures by which that representation is interpreted. A �le system with mul-

tiple �le implementations can use di�erent implementations for di�erent �les. The thesis

also proposes an allocation algorithm designed for a system with device parallelism and

multiple �le implementations, and it reports the results of a trace-driven simulation study

evaluating the algorithm. The thesis proposes parameterizing �le behavior to give users

control over which implementation is used for a �le without exposing the low-level details

of implementations.

Thesis Supervisor: Barbara Liskov

Title: N.E.C. Professor of Software Science and Engineering

Thesis Supervisor: John Wilkes

Title: Project Manager, Hewlett-Packard Laboratories

Contents

1 Introduction 5

1.1 Future �le servers : 6

1.1.1 The growing I/O gap : 6

1.1.2 The proliferation of storage media : : : : : : : : : : : : : : : : : : 7

1.1.3 The increasing use of device parallelism : : : : : : : : : : : : : : : 7

1.1.4 The increasing demand for capacity : : : : : : : : : : : : : : : : : 8

1.1.5 Future �le servers : 8

1.2 Future �le systems for servers : 9

2 File Systems with Multiple File Implementations 11

2.1 File implementations : 11

2.1.1 Mirrored �le implementations : 12

2.1.2 Striping �le implementations : 12

2.1.3 Log-structured �le implementations : : : : : : : : : : : : : : : : : 13

2.1.4 Delayed-write �le implementations : : : : : : : : : : : : : : : : : 14

2.2 Multiple �le implementations : 14

2.3 The Virtual File System : 15

2.3.1 VFS overview : 15

2.3.2 Problems with VFS : 16

2.4 A proposed design for �le systems : 17

2.4.1 File implementations : 19

1

2.4.2 File assigner : 19

2.5 Summary : 21

3 Block Placement 23

3.1 Evaluation method : 25

3.1.1 Disk request trace points : 25

3.1.2 Disk array model : 26

3.1.3 Benchmark traces : 30

3.2 Inter-disk placement : 32

3.2.1 Algorithms for inter-disk placement : : : : : : : : : : : : : : : : : 32

3.2.2 Results : 33

3.3 Intra-disk placement : 37

3.4 Inter-disk placement constraints : 38

3.5 Conclusion : 39

4 User Speci�ed File Behavior 41

4.1 Basic parameters : 42

4.1.1 Normal case behavior : 42

4.1.2 Fault-tolerance : 43

4.1.3 Example : 45

4.2 Templates : 46

4.3 Variances : 47

4.4 File life cycles : 47

4.5 Quotas : 48

5 Summary and Conclusion 51

2

List of Figures

2-1 Design for �le system software : 18

3-1 Service time versus seek distance : 28

3-2 Fitted seek-service time versus seek distance : : : : : : : : : : : : : : : : 30

3-3 Average throughput of benchmark traces : : : : : : : : : : : : : : : : : : 31

3-4 Cumulative histogram of queue sizes and times on Cello : : : : : : : : : : 35

3-5 Cumulative histogram of queue sizes and times on Red : : : : : : : : : : 36

3-6 Cumulative histogram of seek distance on Cello : : : : : : : : : : : : : : 37

3-7 Seek distance after optimization : 38

4-1 Abstraction of failure recovery algorithms : : : : : : : : : : : : : : : : : : 43

3

List of Tables

2.1 Access distributions to disks on two machines : : : : : : : : : : : : : : : 17

3.1 Access distributions to disks on two systems. : : : : : : : : : : : : : : : : 34

4.1 Parameters for normal case behavior : 42

4.2 Summary of fault-tolerance parameters : : : : : : : : : : : : : : : : : : : 45

4.3 Basic parameters for data acquisition : 46

4

Chapter 1

Introduction

A curiosity just ten years ago, networks of single-user computers are now common. And

as computer networks have become more common, so have the �le servers that serve

them. Both hardware and software for �le servers have advanced rapidly in the last ten

years, and the progress continues.

This thesis proposes ideas for designing �le system software for the large, high-

performance �le server hardware we feel will be common in the middle to late nineties. In

particular, the thesis examines the value and pragmatics of �le systems with multiple �le

implementations. A �le implementation determines how a �le is represented in secondary

storage and the procedures by which that representation is interpreted. A typical �le

implementation breaks �les into equal sized blocks and store each block in a contiguous

region on a disk. A variant of this implementation compresses �les before breaking them

into blocks to save space. Another variant stores each block on two di�erent disks to in-

crease fault-tolerance. A �le system with multiple �le implementations can use di�erent

implementations for di�erent �les.

The next section describes our assumptions about �le server hardware in the middle

to late nineties. In brief, we assume that future �le servers will have substantially more

processing power than today. They will contain a large, heterogeneous set of storage

devices in con�gurations that will allow concurrent access. The section following outlines

5

the contents of the thesis and delimits its scope.

1.1 Future �le servers

The ideas in this thesis are based on assumptions about the future of �le servers. These

assumptions are based on current trends in computer system hardware and in �le server

use patterns, including the growing I/O gap, the proliferation of storage media types,

the increasing use of device parallelism, and the increasing overall scale of �le servers.

This section discusses these trends and projects a vision of future �le servers based on

this discussion.

1.1.1 The growing I/O gap

A signi�cant trend faced by �le server designers is the growing I/O gap. CPU perfor-

mance, network bandwidth, and primary and secondary storage density are increasing

exponentially, but the access times and transfer rates of secondary storage are failing

to keep pace [Ousterhout89, Wilkes90]. In fact, the access time to newer media such as

magneto-optical disk is longer than preceding technology. This \I/O gap" is aggravated

by other factors. As computer networks become increasingly common, �le servers must

handle the workloads of increasing numbers of systems. Also, growing use of digitized

sound and video is putting heavy demands on �le server throughput and capacity.

Closing the I/O gap is perhaps the largest problem faced by designers of �le servers.

Fortunately, the trends behind the I/O gap contain the seeds to a solution. First, as

the price of CPU performance drops, designers can put more processing power into the

server. Increased processing power will help close the I/O gap by allowing the use of

sophisticated software that aggressively optimizes �le system performance. Second, as

the density of primary storage increases, designers can use larger �le caches, both at the

server and the client. Large �le caches have already proven e�ective, and researchers are

calling for even larger caches in the future [Ousterhout89].

6

1.1.2 The proliferation of storage media

Another trend faced by �le system designers is the proliferation of secondary storage

media types. Ten years ago, most �les were stored on two media: magnetic disk and tape.

Today, �les are stored on more types of media, including
ash RAM, CD-ROM, optical

WORM, videotape, magneto-optical disk, and digital audio tape (DAT). Additionally,

since �le servers represent long-term investments, a mature server is likely to contain

several generations of the same medium. Given the rapid advances in technology, latter

generations are likely to have important di�erences from their earlier counter-parts.

Each new medium has its own pattern of optimal access and challenges �le system

designers to use it according to its own idiosyncrasies. Since many of the new media types

are both denser and slower than magnetic disk, one result of the new media will be deeper

storage hierarchies. Another result will be a number of specialized �le implementations,

such as log-structured �le systems for optical WORM [Finlayson87].

1.1.3 The increasing use of device parallelism

A third trend faced by �le system designers is the increasing use of storage device par-

allelism. N -dimensional disk arrays are a con�guration of disks with N independent

I/O channels used to increase bandwidth. Recently, researchers in the workstation world

have been looking at disk arrays to both increase bandwidth and decrease latency in

hopes of closing the I/O gap [Patterson88, Livny87].

Although disk arrays have proven successful in bettering performance, they have also

increased demand for better fault-tolerance. Increasing the number of disks on which a

�le is stored in order to increase potential parallelism also increases the probability that

the �le will fail. The more devices a �le is striped across, the higher the probability that

one of them will fail [Schulze89]. Although the failure rates of secondary storage are

decreasing dramatically [Gray90], relying on the reliability of individual devices is not a

cost-e�ective solution to the fault-tolerance problem of disk arrays; rather, redundancy

is needed [Patterson88].

7

1.1.4 The increasing demand for capacity

The �nal trend we will consider is the growing size of �le servers. If past history is

any indication, then as CPU performance continues to grow exponentially, demand for

secondary storage capacity will grow with it. This trend is aggravated by the fact that

servers are being used by increasing numbers of clients. It is further aggravated by

applications using digital audio and video, which require substantial secondary storage

capacity. Finally, the trend towards disk arrays and the proliferation of storage media

both increase the number of devices in servers.

This trend introduces a new challenge for �le system designers: hide the existence of

individual devices from users and administrators. Make the system con�guration trans-

parent. Automate administrative functions, including failure recovery (fault-tolerance),

hierarchy management (archiving), and con�guration management. Given the use of disk

arrays, automatic failure recovery is especially important.

1.1.5 Future �le servers

Based on these trends, one vision of where �le servers will be in the future is as follows.

Future �le servers will be built from a large, heterogeneous set of devices, and they will

have much more RAM and processing power than today's servers. They will overcome the

I/O gap by using caching, device parallelism, and sophisticated software optimizations.

They will perform automatically most administrative functions, in particular failure re-

covery.

An example of such a �le server is the DataMesh, a large, high-performance �le

server being developed at Hewlett-Packard Laboratories [Wilkes89a, Wilkes89b]. The

DataMesh is a large �le server (.1{1.5 terabytes) built from a tightly coupled network

of DataMesh nodes. Each DataMesh node has a secondary storage device (e.g., a hard

disk) and a 20 MIPS processor.

The ideas for �le server software proposed in this thesis were developed speci�cally

for the DataMesh. However, the ideas should be applicable to any �le server �tting the

8

overall vision described above, including ones built around a very fast uniprocessor.

1.2 Future �le systems for servers

This thesis is concerned with �le system software for the type of �le servers described

in the previous section. It presents ideas that may prove useful for building such soft-

ware. The ideas remain largely speculative. Neither an implementation nor a detailed

simulation were built; rather, the ideas are supported by work reported in the literature,

measurements of existing machines, and �rst-order simulations.

Chapter 2 examines the larger issues surrounding the �le systems we are interested in.

The chapter focuses on �le implementations. It argues that �le systems for future servers

should be built with multiple �le implementations, a theme that uni�es the thesis. The

chapter discusses problems faced when building such systems and sketches a design for

a �le system that solves these problems.

Chapters 3 and 4 examine in more detail two parts of the �le system proposed in

Chapter 2. Chapter 3 looks at allocation of secondary storage, in particular, how to �nd

physical disk locations for �le blocks. It proposes an allocation algorithm designed for a

system with device parallelism. It reports the results of a simple, trace-driven simulation

study evaluating the algorithm. It argues that the algorithm is well suited to a �le system

with multiple �le implementations.

Chapter 4 describes parameters for �le behavior. Users will set these parameters

according to their needs, and the system will use these parameters to assign �les to �le

implementations. The parameters are designed to give users control over which imple-

mentation is used for a �le without exposing the low-level details of implementations.

Chapter 5 summarizes the ideas presented in the thesis and discusses their potential

bene�ts.

9

10

Chapter 2

File Systems with Multiple File

Implementations

This chapter outlines a proposed design for �le system software for �le servers of the type

described in the introduction. The chapter focuses on �le implementations, an impor-

tant concept in the design. Section 2.1 de�nes �le implementations and reviews at a few

implementations proposed in the literature. Section 2.2 argues that future servers should

be built with multiple implementations. Section 2.3 describes Sun Microsystems's Vir-

tual File System (VFS)|an existing �le system with multiple �le implementations|and

discusses its weaknesses. Section 2.4 describes the proposed �le system itself. Section 2.5

summarizes the ideas in this chapter and looks ahead to the next chapters.

2.1 File implementations

A \�le implementation" is the part of the �le system software that determines the rep-

resentation of �les in secondary storage and the procedures by which that representation

is interpreted.

No widely accepted term has come to refer to �le implementations, but researchers

have not ignored them. In fact, �le implementations have been the subject of much

11

research recently, work that motivated the ideas in this chapter. Some of this work is

reviewed below. The review is not exhaustive, but it should serve to sharpen the meaning

of \�le implementation" and to point out tradeo�s in the design of �le implementations.

These tradeo�s are the basis of the argument in the next section for building �le systems

with multiple implementations.

2.1.1 Mirrored �le implementations

Diskmirroring is probably the oldest and most common \alternative" �le implementation.

Disk mirroring increases fault-tolerance by keeping two copies of each �le on independent

disks. If one copy is lost due to media failure, the second copy will still be available. Disk

mirroring implementations can increase read performance by reading from both copies

concurrently, which works particularly well for workloads with a heavy read bias. Disk

mirroring is relatively common for large database systems; Tandem, IBM, HP, and other

companies o�er mirroring in their systems.

2.1.2 Striping �le implementations

File striping is a �le implementation that takes advantage of storage device parallelism.

These implementations spread, or \stripe," the data of a single �le across multiple devices

(the number of devices is called the stripe width). Files can be striped at the bit level

[Tucker88, Ng89], at the byte level [Kim85], or at the block level [Livny87, Patterson88,

Henderson89]. File striping can potentially multiply throughput by the stripe width

[Patterson88]. File striping can also decrease queuing time by spreading workload across

disks [Livny87]. File striping has proven successful in practice for very large �les that

are accessed sequentially [Henderson89]. However, it is not clear how well striping works

for small �les [Ousterhout89].

As mentioned in the introduction, striping a �le devices greatly decreases the mean

time to failure (MTTF) for a �le since the MTTF of N disks failing is 1=N that of a

single disk (assuming independent failures). As a result, �le striping is usually joined with

12

redundancy for fault-tolerance. Patterson et. al. survey a range of redundancy schemes

for �le striping [Patterson88]. The most popular of these options is a single parity stripe:

given a stripe width of N disks, each stripe consists of N � 1 data blocks and one parity

block. Because the MTTF of this con�guration is roughly the square of the MTTF of a

single disk divided by N (the number of disks in a stripe), this con�guration is reliable

enough for all but the largest stripes or most unreliable disks.

2.1.3 Log-structured �le implementations

The log-structured �le system (LFS) is another implementation that takes advantage of

storage device parallelism [Ousterhout89, Rosenblum90]. In the o�ce and engineering

environments, �les tend to be small, often less than 8 kilobytes, which limits value of

striping [Satyanarayanan81, Ousterhout85]. The LFS organizes many small �les into one

long, sequentially written log which in turn can be striped to great advantage.

The designers of the LFS assume that as �le-caches increase in size, hit rates will also

increase; eventually, most reads will be satis�ed by the cache, and disk tra�c will be

mostly writes. The LFS combines changes to �les into a log-like structure which it writes

to disk in large, sequential chunks. In essence, the LFS transforms the small, random

transfers seen at the logical level into large, sequential transfers at the physical level, a

workload well-suited to disk arrays.

(This workload is also well-suited to single disks. However, simulation studies indicate

that under most conditions declustering data across multiple disks performs better than

clustering the data on a single disk [Livny87]. Given our assumption that future �le

servers will have multiple devices available, log-structured �le implementations will most

likely be striped.)

13

2.1.4 Delayed-write �le implementations

The delayed-write �le implementation trades-o� fault-tolerance for performance [Ohta90].

Unix
1 uses a write-back cache to speed �le accesses. To minimize data loss in the case of

a failure, Unix makes two exceptions to the write-back discipline. First, it periodically

ushes all dirty bu�ers, usually every half-minute. Second, it writes-through critical

�le system structures to maintain important on-disk invariants. The delayed-write �le

implementation eliminates the periodic cache
ush and writes all data asynchronously.

This \fast-and-loose" �le system trades o� reliability for speed. High reliability is

not a concern for all �les, e.g., compiler intermediate �les. Ohta and Tezuka designed

the delayed-write �le system implementation speci�cally for the /tmp directory, which

usually contains such temporary �les.

2.2 Multiple �le implementations

Multiple implementations will help close the I/O gap. One way they will do this is by

providing a mechanism to aggressively manage trade-o�s. File implementations are spe-

cialized. Di�erent implementations use di�erent amounts of storage and require di�erent

amounts of processor time. Di�erent implementations are optimized for di�erent �le

sizes and di�erent access patterns, and they provide di�erent levels of fault-tolerance.

The design space for �le implementations is large and complex; tradeo� variables include

read and write performance, reliability, space e�ciency, �le access patterns, and �le sizes.

Large �le servers of the future will service a heterogeneous workload, ranging from

small word processing �les to large, real-time video �les, and no single �le implementation

is likely to provide adequately for the entire range. Instead, �le servers will need a number

of complementary �le implementations working together to provide better tuned service.

(Although, if the I/O gap is closed by storage technology such as holographic storage

[Parish90], going back to \one-size-�ts-all" �le systems might be possible.)

1
Unix is a trademark of AT&T, Inc.

14

An example will make this argument more concrete. Parity striping requires less

redundant storage than disk mirroring but requires an extra disk access for small writes

[Patterson88]. A �le system with multiple implementations could take advantage of the

strengths of both by using mirroring when small writes are expected and parity striping

when large writes (or a heavy read bias) are expected.

Another way multiple �le implementations will help close the I/O gap is by providing

a mechanism to focus the increased processing power of future servers. For example, a

�le implementation could compress the �le before sending it to disk [Cate90] or derive a

�le from a set of parameters.

2.3 The Virtual File System

File systems with multiple �le implementations are already being built and sold. For

example, in addition to the BSD 4.3 �le implementation, Hewlett-Packard's Unix o�ers

a disk mirroring �le implementation, a delayed write �le implementation, and a special

�le implementation for their CD-ROM product. At DEC, an experimental Unix system

was built that can access media from MS-DOS, VMS, and BSD 4.3 [Koehler87].

Unix �le systems with multiple implementations are based on Sun Microsystem's

VFS. (Variations on VFS have been proposed and built, e.g., see [Rodriguez86] and

[Karels86].) Although VFS was introduced to allow remote �le access, its design is

general. It provides a general mechanism for multiple implementations; remote access

is achieved by suppling an implementation that implements �le operations by remote

procedure calls to a �le server. This section will sketch the design of the multiple imple-

mentation mechanism in VFS and will examine the problems with it.

2.3.1 VFS overview

VFS is based on two basic concepts: volumes and the �le system switch. A volume is

a disk partition holding �les organized in a tree-like naming structure. (\Volumes" are

15

usually called \�le systems;" to avoid confusion with our own use of \�le system," we

have used \volume" instead.) The internal nodes of the tree structure are directories,

and the leaves are �les. A volume is \mounted" by making its root directory available as

an internal node (directory) of a volume that is already mounted. The mounting process

is boot-strapped by designating a special volume, called the \root," to be mounted at

boot time.

VFS uses the volume construct to assign �les to �le implementations. It associates

each volume with a single �le implementation; all �les in the volume use this implemen-

tation.

The second important concept in VFS is the �le system switch. File system switches

are used to route �le operations from the system call handler to the appropriate �le

implementation. A switch is a table of pointers to the functions that implement �le

operations such as read and write. A �le's �le system switch is stored in the �le's vnode,

a kernel structure holding important information about open �les. When VFS has to

execute a �le operation like read, it �nds the �le's switch in the �le's vnode, then �nds

the code for the operation in the switch. This approach has a de�nite \object-oriented"

avor and is very close to virtual tables in C++. The switch put in a �le's vnode is

determined by the volume holding the �le.

2.3.2 Problems with VFS

VFS has problems caused by volumes, a construct that VFS inherited from Unix. VFS

uses the volume construct for three functions. Volumes are used for naming: all �les in the

same volume share a common root directory. Volumes are used for disk selection: all �les

in the same volume are stored on the same disk. Volumes are used for implementation

selection: all �les in the same volume use the same �le implementation. Combining

naming with disk and implementation selection has drastic consequences.

Combining naming and disk selection interferes with load balancing. Table 2.1 il-

lustrates the problem. On two di�erent machines run by di�erent administrators, disk

16

Table 2.1: Access distributions to disks on two machines

Disk no Cello Red

Percent of accesses

Disk 0 41% 41%

Disk 1 2% 15%

Disk 2 8% 22%

Disk 3 6% 7%

Disk 4 1% 1%

Disk 5 42% 14%

workloads are grossly unbalanced. (Section 3.2 will describe the machines in more detail).

The problem is that systems have \directory locality:" �les in certain directory sub-trees

are accessed more often than those in other directories. In Table 2.1, for example, disk

zero in both cases (the most heavily used disks) contained most of the heavily accessed

/usr directory. By constraining large sub-trees to reside on a single disk,Unix practically

guarantees unbalanced disks unless tedious con�guration precautions are taken.

Finally, combining naming and implementation selection interferes with the purpose

of the name tree. The name tree should be used to express the logical relationships

between �les. The relationship between a �le and its implementation is orthogonal to

the �le's logical relationships to other �les. For example, when organizing the �les used

for the experiments reported in Chapter 3, we wanted the �les in the same sub-tree.

However, the �les holding trace data were large, they had to be assigned to the �le

implementation that used a magneto-optical jukebox. As a result, the trace �les ended

up in a directory unrelated to the project's main directory. Symbolic links help mitigate

this problem, but only by placing an extra burden on the user.

2.4 A proposed design for �le systems

This section sketches a design for the �le system software of �le servers with a large,

heterogeneous set of secondary storage devices. The �le abstraction is central to �le

17

systems, and in this design the abstraction is implemented by multiple �le implementa-

tions. Operations for a �le are directed by a switch to the �le's implementation. Files are

assigned to implementations by the �le assignment module. The design has two types

of persistent storage. The design is illustrated in Figure 2-1. The database holds �le

File
Implementations

BlockPlacementModule

File
Data

Blocks

File
Information

Database

File
Assignment

Module

queries & updates

Storage:
Secondary

requests

File read and write

requests

reassignment

File creation and

File information

assignments

File to implementation

requests

New block

requests

Transfer

Figure 2-1: Design for �le system software

system metadata such as �le names, �le attributes, and �le locations. File block storage

stores �le blocks on various device types. The block placement module �nds physical

locations for �le blocks. The type of device holding a �le block is determined by the �le's

implementation; the particular device and the location within that device are determined

by the block placement module (see Chapter 3).

An example of a �le being created, written and read illustrates how these components

work together. When a �le is created, the �le assignment module makes an entry for

18

the �le in the database and assigns the �le to one of the �le implementations (criteria

for assignment will be discussed later). Write operations are handled by the �le's �le

implementation. This implementation uses the block placement module to �nd free

storage for the �le, and it uses the database to record where the parts of the �le are

located. Read operations are also handled by the �le's implementation, which uses the

database to �nd parts of the �le to be read. Access statistics such as the number and

size of reads are kept for each �le in the database; these statistics can be used by the �le

implementation for optimizations and by the �le assigner to re-assign the �le to a better

implementation.

2.4.1 File implementations

A �le implementation provides customized service on a per-�le basis. It is a means of

managing trade-o�s to tune the �le system to the static and dynamic characteristics of

individual �les. Thus, �le implementations should include only those functions for which

there exist signi�cant trade-o�s.

File implementations should determine a �le's storage media type, its representation

in secondary storage, the code for basic access operations (read and write), and the

code for failure recovery (fault-tolerance). The trade-o�s in these areas are the most

fundamental trade-o�s in �le implementation design. The �le implementation should

also determine �le cache management since this is an integral part of failure recovery

(see Section 4.1.2). File implementations should not determine the particular device

on which �les are stored or the placement of �les within a device; rather, the block

placement module should perform this function for all �le implementations. This point

will be discussed in the next chapter.

2.4.2 File assigner

In a �le system with multiple �le implementations, there must be a means of assigning

�les to implementations. In VFS, a �le's implementation is determined by the location

19

of the �le's directory entry in the �le name tree. The problems with this approach have

already been discussed.

An alternative approach would be for the user to assign �les to implementations by

setting a per-�le parameter to name the desired implementation. (\User" in this context

means both humans and application programs.) Unfortunately, while this approach sep-

arates naming from assignment, solving many problems of VFS, it still exposes low-level

mechanisms to the user, with negative consequences. Making the user assign �les to �le

implementations is not user-friendly. It requires that the user know the costs and bene�ts

of each implementation and how to apply this knowledge in selecting implementations for

�les. Also, exposing �le implementations to the user has the problems associated with an

abstraction violation. For example, it makes modi�cation di�cult. When a new �le im-

plementation is added, existing �les must be checked manually and, where appropriate,

moved to the new implementation. Existing programs must be recon�gured before being

able to use the new implementation. Gelb examines in detail the problems of exposing

�le implementations to the user [Gelb89]; note that these problems also apply to VFS,

since it too exposes implementations to users.

Another alternative approach would be to completely isolate the user from the assign-

ment of �les to implementations. Instead, the assignments could be made transparently

by the system using a heuristic and using measurements such as �le size, read/write bias,

and random/sequential bias. Unfortunately, while the information the system can mea-

sure would be helpful in selecting an implementation, it is not enough. Even ignoring

the boot-strap problem of assigning a new �le to an implementation, the system can

not make assignments by itself. For example, the system can not deduce the level of

fault-tolerance required by the user. Users must be able to express their needs to the

system.

Our approach combines these two alternatives. As in the �rst alternative, the user

must set per-�le parameters to control the assignment of �les to implementations [Wilkes91].

However, unlike before, these parameters are abstract, they hide low-level mechanism

20

from the user. As in the second alternative, the system takes an active role in assign-

ing �les to implementations, using measurements like before and also using the user's

parameter settings. For example, a compiler saving a temporary �le would set the �le's

parameters to \temporary �le;" the �le system would then select the delayed-write imple-

mentation or another implementation meant for temporaries. Through parameters, the

user provides the extra information needed by the system to make assignments, yet the

parameters do not expose low-level mechanism to the user. This approach was pioneered

in IBM's system managed data product [Gelb89]. Chapter 4 discusses the proposed

parameters in detail.

2.5 Summary

The �le system design sketched in this chapter featured multiple �le implementations,

allowing it to exploit device parallelismwhere possible, to utilize idiosyncrasies of di�erent

media types, to match the levels of fault-tolerance to users' requirements, and to select

�le representations based on the peculiarities of individual �les. To avoid problems with

multiple implementations found in VFS, the design uses �le behavior parameters to assign

�les to implementations, isolating naming from implementation assignment, and hiding

low-level mechanism from the user.

The next two chapters examine in more detail two aspects of the proposed �le system.

Chapter 3 examines allocation of disk space for �les. Chapter 4 examines at the �le

behavior parameters for the �le assignment module.

21

22

Chapter 3

Block Placement

This chapter proposes a disk-block placement algorithm for the type of �le system dis-

cussed in the previous chapter. A block is the smallest unit of transfer from physical

devices to the �le system. The �le system breaks �les into blocks to be stored on physi-

cal devices. The block placement problem is to �nd physical space for these blocks. The

block placement problem includes both �nding space for new blocks and moving (mi-

grating) old blocks. This chapter concentrates on block placement for magnetic disks,

which includes picking spindles, cylinders and tracks for the blocks. This chapter assumes

that multiple disks are available and that a single block is to be allocated on contiguous

sectors on a single disk and is not bit or byte sliced across disks.

Block placement is a fertile area for optimization because of non-uniformities in disk

performance and �le access patterns. File system designers can reduce seek distance, and

thus improve �le system performance, by arranging to have the blocks most likely to be

used next closest to the disk heads. For example, the designers at Berkeley reduced seek

time of BSD Unix by ensuring that the data in a given �le is clustered closely on the

disk [McKusick84]. File system designers can improve parallelism through placement as

well. The designers of the RASH system increased performance for large, sequentially

accessed �les by placing the blocks of �les on di�erent disks [Henderson89].

However, placement optimization is one of many system-wide goals that make up

23

a complicated design equation. Foremost among other considerations is software com-

plexity: as a rule, the more aggressive the optimization, the more complex the software

required. The system designer must �nd an acceptable balance between disk performance

and overall system complexity. As �le systems move from one to multiple �le implemen-

tations, software engineering factors force us to reconsider how placement optimization

is done.

In the BSD 4.3 fast �le system, the abstraction boundary between the �le implemen-

tation and the block placement algorithm is weak. In essence, the BSD block placement

algorithm is part of the �le implementation. The BSD placement algorithm uses knowl-

edge of the on-disk representations of �les and directories in order to reduce seek distance

and rotational latency. This algorithm has been e�ective at increasing performance over

that of previous versions of the Unix �le system [McKusick84], but it has problems in

a �le system with multiple �le implementations. Pushing block placement into �le im-

plementations requires that the e�ort of developing and tuning a placement algorithm is

duplicated for each implementation. Furthermore, as the number of �le implementations

increases, it becomes increasingly di�cult to ensure that the placement algorithms of

di�erent implementations do not interfere with one another unless implementations do

not share devices, which introduces other problems.

In a �le system with multiple �le implementations, it would be best to have a single

block placement algorithm shared by all �le implementations. This way, the cost of tun-

ing the algorithm is amortized over all �le implementations, and the e�ort of developing a

new implementation is reduced since no block placement algorithm needs to be written for

it. However, a block placement algorithm shared by all implementations could not make

assumptions about �le layout. One might wonder if such a generalized placement algo-

rithm can su�ciently optimize placement. This chapter proposes such an algorithm and

argues that su�cient optimization is possible while respecting the abstraction boundary

around �le implementations.

Section 3.1 describes the traces and simulation model used to test the placement

24

algorithm. Section 3.2 describes the part of the algorithm responsible for �nding a disk

for a block (inter-disk placement). This part of the algorithm was tested by the trace-

driven simulator, the primary evaluation criteria being the balance of disk workloads.

Section 3.3 describes the part of the algorithm responsible for �nding space within a

disk for a block (intra-disk placement). This part was also tested by simulation, the

evaluation criteria in this case being seek distance. Section 3.4 extends to the proposed

algorithm to give �le implementations more control over which disk a block is placed on.

3.1 Evaluation method

The algorithms were tested using a trace-driven simulator of a disk array with six disks.

This section describes the traces and disk array model. The measurement tools used to

take the traces and �nd parameters for the model are described next. After that, the

disk array model is described. Finally, the benchmark traces used in this chapter are

described.

3.1.1 Disk request trace points

Built into the disk device driver of HP-UX are three trace points:

� Enqueue. This trace point is where a new disk request is put on the driver's request

queue. Speci�cally, it is just after the new request is put on the tail of the device's

request queue and just before disksort is called.

� Physical start. This point is where the disk starts servicing the request. It is after

the request is removed from the device's queue and packaged into an I/O message

and right before the DMA call for I/O message is made.

� Physical completion. This point is where the disk �nishes servicing the request. It

is right before biodone is called by the disk driver's interrupt routine, which means

25

that all of the driver's portion of the interrupt handling is included, but none of

the �le system's is.

Each trace point posts a six-component record into a kernel bu�er. This record contains

a time stamp (accurate to one microsecond), a transfer size, a device number (major and

minor), a block number, a cylinder number, and a
ag indicating read or write. Posting

records incurs an overhead of less than 200 microseconds. Posted records were removed

by a background user process and saved in a �le. This �le is stored on a disk dedicated to

tracing in order to keep disk tra�c due to tracing from interfering with measurements.

After a tracing period (typical trace periods lasted from a few days to two weeks),

the raw trace data was processed into �nal form by combining the three records posted

for each disk request into a single record. This record included the time the request was

made, queueing time for the request (physical start time minus enqueue time), the service

time for the request (physical completion time minus physical start time), the device,

cylinder and block numbers, the transfer size, and a read/write
ag. The raw trace data

contained some inconsistences; for example, completion records were sometimes missing.

These inconsistences a�ected less than 0.06% of the total requests. Requests a�ected by

an inconsistency were �xed by assuming the missing time interval was ten milliseconds.

3.1.2 Disk array model

The disk array simulator was a simple array of �rst-order disk simulators. No attempt

was made to model interference among disks such as contention for I/O bandwidth at

a shared junction. Although real-life experience has proven that such interference can

be a bottleneck [Chervenak90], we assumed that these bottlenecks would be removed by

hardware designers.

The individual disk simulators included a request queue, an elevator scheduling al-

gorithm (taken from the HP-UX �le system), and a model of the disk hardware. This

hardware model had analytical models for seek time as a function of seek distance and

transfer time as a function of transfer size, and it had a probabilistic model for rota-

26

tional latency. This model and its parameters were based on extensive measurements

of the HP7937 disks. The HP7937 has a formatted capacity of 571 megabytes. It has

1396 cylinders and thirteen heads, and it turns at 3600 RPM. The rest this subsection

describes how we modeled this disk.

The HP7937 model is based on traces of read requests with transfer sizes of two,

four, eight and thirty-two kilobytes. The graphs in Figure 3-1 show service time plotted

against seek distance for transfer sizes of two and eight kilobytes. Service time is the

request completion time minus the physical start time as measured by the trace points

above. The data for four and thirty-two kilobytes was similar in shape.

The measurements were taken on a dedicated machine with no other disk tra�c. For

each transfer size, 100 requests of each possible seek distance were measured. (Due to size

constraints, Figure 3-1 shows only one quarter of the original data, sampled randomly.

The model was �tted against all the original data.) All requests of the same transfer

size were measured sequentially; however, the order of seek distances was random. A

random pause between requests was inserted to randomize rotational latency. To avoid

head switches during a transfer, all samples were started on the �rst block of a cylinder.

The upward \swoop" of the data (see Figure 3-1) was assumed to be due to seek time.

This swoop was �tted to a model that is proportional to the square root of seek distance

for short distances and linear in seek distance for longer distances. This model is justi�ed

by the following physical argument. For short seek distances, the head accelerates for half

of the seek and decelerates for the other half. This acceleration pattern leads to square

root time. For longer distances, the disk head accelerates to maximum speed before

the seek is over and coasts at a constant speed before decelerating. The acceleration

and deceleration periods take constant time and the coasting period is linear in the seek

distance, so the overall time is linear in seek distance.

A mixed square root and linear curve was �t to the bottom of the total service time

27

0

20000

40000

60000

80000

100000

0 200 400 600 800 1000 1200 1400Se
rv
ic
e
ti
me
 f
or
 2
K
re
ad
 (
mi
cr
os
ec
)

Seek distance (cylinders)

0

20000

40000

60000

80000

100000

0 200 400 600 800 1000 1200 1400Se
rv
ic
e
ti
me
 f
or
 8
K
re
ad
 (
mi
cr
os
ec
)

Seek distance (cylinders)

Figure 3-1: Service time versus seek distance

28

data. The resulting formula is:

T (d) =

8><
>:

3:50 + 0:794
p
d if d < 394

12:8 + 0:0163d otherwise

which gives seek time (milliseconds) in terms of seek distance (cylinders).

The vertical displacement of the data among di�erent transfer sizes (e.g., the di�erence

in height between the two graphs in Figure 3-1) was assumed to be due to transfer time.

The parameters for transfer time were obtained by taking more measurements: service

time was measured holding seek distance constant and varying transfer size from one

kilobyte to 128 kilobytes. The data �t a linear model the following parameters:

T (s) = 5:76 + 0:00103s

This formula gives transfer time (milliseconds) in terms of transfer size (bytes). It corre-

sponds to a transfer rate of 0:971 megabytes per second.

Figure 3-2 overlays the seek time and transfer time components we have so far against

the measured data. The data in the �gure is of 1=16 of the original data, sampled

randomly; this makes the analytical curve clearly visible.

The only aspect of the data that remains to be explained is the vertical \thickness"

of the upward swoop. This thickness was assumed to be due to rotational latency.

Rotational latency was modeled as a uniform random variable with a mean of eight

milliseconds. To check the model, the seek and transfer time as predicted by the above

models was subtracted from the data. A histogram of remaining time was taken across

all seek distances and transfer sizes. This histogram was uniform ranging from zero to

sixteen milliseconds.

The model of the physical disk consists of these three models for seek time, trans-

fer time and rotational latency. Folded into the constants of the seek time model are

constants for software and other overheads that could not be isolated with the tracing

29

0

20000

40000

60000

80000

100000

0 200 400 600 800 1000 1200 1400Se
rv
ic
e
ti
me
 f
or
 8
K
re
ad
 (
mi
cr
os
ec
on
ds
)

Seek distance (cylinders)

Figure 3-2: Fitted seek-service time versus seek distance

tools.

3.1.3 Benchmark traces

The benchmark traces used were week-long traces from Red and Cello, two time-shared

machines at HP Labs. Cello was an HP PA-RISC machine used by a research group of ten

people. Cello was used mostly for reading mail and \news," for editing, for �le archiving

and for LAN backup. In addition, small-scale development in C++ and C-shell was done

on Cello. Red was an HP PA-RISC machine available for all of HP labs. There were

approximately 200 accounts on Red, with approximately 20 users logged in during the

day. Red was used mostly for reading \notes," editing, and for a few small applications.

Figure 3-3 shows the aggregate throughput demand for each system. Cello was the

busier system even though Red served more people; this is because most processes on Red

were idle. Cello's heavy activity in o�-hours was a result of the nightly news feed which

started at 21:00 and incremental LAN backups that ran from 01:00 to approximately

06:00.

30

50

150

250

350

450

Mon Tue Wed Thu Fri

Th
ro
ug
hp
ut
 (
Kb
/s
,
1
mi
n
av
e)

Average throughput for Cello

50

150

250

350

450

Mon Tue Wed Thu Fri

Th
ro
ug
hp
ut
 (
Kb
/s
,
1
mi
n
av
e)

Average throughput for Red

Figure 3-3: Average throughput of benchmark traces

Tics labeled with day name are at 00:00 of that day; unlabeled tics are at noon.

31

3.2 Inter-disk placement

Chapter 2 noted that Unix has a problem with balancing the workload across disks in

a multidisk system. The Unix �le name tree is divided into large sub-trees called \�le

systems" or \volumes." Volumes are assigned �xed disk partitions when they are created,

and all �les in a volume are stored on that partition, so in essence inter-disk placement in

Unix is determined by �le name. The amount of access to these volumes is non-uniform,

i.e., some volumes are used more than others. To keep a Unix system balanced, system

administrators must carefully tune the dividing lines between volumes and the placement

of volumes on disks. As illustrated in Table 2.1, this is di�cult to do (among other things,

a division into volumes is hard to change once it is made). A more
exible volume system

such as the one in AFS may mitigate this problem [Sidebotham86]. However, over the

long run, as �le servers contain more and more data, the sheer size of the problem will

make manual disk balancing impractical.

The �le system described in Chapter 2 separates naming from block placement: any

block can be placed on any disk regardless of the position of the �le in the name tree.

We take this one step further and allow di�erent blocks from the same �le to be placed

on any disk regardless of the locations of the other blocks in the �le (with one exception,

see Section 3.4). But now the question arises: if block placement is not determined by

�le name, then how is it determined? The remainder of this section compares three

alternatives.

3.2.1 Algorithms for inter-disk placement

The three algorithms are called random, bin-packing, and coloring. The random algo-

rithm randomly selects a disk for each block. The bin-packing algorithm sorts blocks

according to access rates, then greedily selects a disk for blocks in order, i.e., after plac-

ing blocks 1 through i�1, it places block i on the disk with the least accumulated access

rate. The coloring algorithm builds an interference graph by putting an edge between all

32

pairs of blocks accessed sequentially. It then heuristically colors the graph with disk num-

bers, giving priority to edges that appear frequently. The coloring algorithm is meant to

approximate disk striping systems that guarantee that sequential blocks from the same

�le are stored on di�erent disks.

Some points about the implementation of the placement algorithms in the experi-

ments. First, to simplify the experiments, the placement algorithms moved entire cylin-

ders around rather than individual �le blocks. Second, the packed and colored placements

used knowledge of the future, i.e., the access frequencies they used for placement were

measured from the experimental trace period itself. As we shall see, giving these algo-

rithms such an advantage does not alter the end results. Third, the \Unix" placement

is the placement given to blocks by HP-UX, which uses the Berkeley 4.3 �le system

[McKusick84].

3.2.2 Results

Table 3.1 shows the relative disk access frequency according to the di�erent placement

algorithms. The table shows that all three proposed placement methods (random,

packed, and colored) are e�ective at �xing the disk load balancing problem. Although

packed seems to be best, the di�erence is small.

Figures 3-4 and 3-5 provide a �ner analysis of the e�ects of di�erent placements. In

particular, they show the cumulative distributions of both queue size and queue time.

The graphs indicate that load balancing has a signi�cant e�ect on queue time. On Cello,

for example, random placement increased the number of requests waiting less than 10 ms

from approximately 35% in the standard Unix placement to 60%, and decreased the

number of requests waiting more than 100 ms from 20% to 6%.

However, the data is still ambiguous regarding the di�erence between measurement-

based placements and random placement, despite the fact that the measurement-based

placements used access statistics from the future. Although packed placement came out

ahead, the di�erence is small, and it is outweighed by other factors. In particular, random

33

Table 3.1: Access distributions to disks on two systems.

Cello

Disk no Unix Random Packed Colored

Disk 0 41% 16% 18% 17%

Disk 1 2% 18% 17% 15%

Disk 2 8% 15% 17% 19%

Disk 3 6% 18% 16% 17%

Disk 4 1% 15% 16% 16%

Disk 5 42% 15% 16% 16%

Variance 116% 9% 5 % 8 %

Red

Disk no Unix Random Packed Colored

Disk 0 41% 17% 19% 16%

Disk 1 15% 14% 17% 22%

Disk 2 22% 18% 17% 14%

Disk 3 7% 17% 16% 14%

Disk 4 1% 19% 16% 18%

Disk 5 14% 15% 15% 16%

Variance 83% 11% 8% 18 %

34

35

45

55

65

75

85

95

5 15 25 35 45

Cu
mu
la
ti
ve
 p
er
ce
nt
 o
f
re
qu
es
ts

Queue size seen by incoming request (# requests)

Histogram of queue sizes on Cello

Random placement
Packed placement

Dependency placement
Unix placement

35

45

55

65

75

85

95

100 300 500 700 900

Cu
mu
la
ti
ve
 p
er
ce
nt
 o
f
re
qu
es
ts

Queue time seen by incoming request (ms)

Histogram of queue times on Cello

Random placement
Packed placement

Dependency placement
Unix placement

Figure 3-4: Cumulative histogram of queue sizes and times on Cello

35

35

45

55

65

75

85

95

5 15 25 35 45

Cu
mu
la
ti
ve
 p
er
ce
nt
 o
f
re
qu
es
ts

Queue size seen by incoming request (# requests)

Histogram of queue sizes on Red

Random placement
Packed placement

Dependency placement
Unix placement

35

45

55

65

75

85

95

100 300 500 700 900

Cu
mu
la
ti
ve
 p
er
ce
nt
 o
f
re
qu
es
ts

Queue time seen by incoming request (ms)

Histogram of queue times on Red

Random placement
Packed placement

Dependency placement
Unix placement

Figure 3-5: Cumulative histogram of queue sizes and times on Red

36

placement is trivial to calculate, and it does not have to be recalculated over time. Also,

random placement is completely independent of any layout policy. Thus, we conclude

that random placement is a good algorithm.

3.3 Intra-disk placement

The random placement algorithm used in the previous section not only randomized

placement across disks, but randomized placement within disks as well. Unix, on

35

45

55

65

75

85

95

100 300 500 700 900 1100 1300

Cu
mu
la
ti
ve
 p
er
ce
nt
 o
f
re
qu
es
ts

Seek distance (cylinders)

Histogram of seek distances on Cello

Unix placement
Random placement

Figure 3-6: Cumulative histogram of seek distance on Cello

the other hand, carefully places blocks within disks in order to minimize seek distance

[McKusick84]. As Figure 3-6 shows, randomizing placement within a disk results in high

seek distances; some other intra-disk placement is needed.

Seek distance can be reduced using an intra-disk placement algorithm called the

\organ-pipe cylinder optimization" introduced by Grossman and Harvey [Grossman73]

and recently pursued by Carson and Vongsathorn [Carson90] and Ruemmler [Ruemmler90].

In this algorithm, cylinders (or tracks or blocks) are sorted according to access frequency.

37

The most heavily used block is placed in the center of the disk. The second and third

most heavily used blocks are placed on either side of that. The fourth and �fth most

heavily used blocks are placed on either side of those, and so on. The resulting arrange-

ment is called the \organ-pipe" arrangement because the graph of access frequency versus

cylinder number resembles a set of organ pipes [Wong83].

Figure 3-7 shows the e�ect on seek distance of applying the organ-pipe optimization

with randomized inter-disk placement. In this experiment, a reorganization was done

35

45

55

65

75

85

95

100 300 500 700 900 1100 1300

Cu
mu
la
ti
ve
 p
er
ce
nt
 o
f
re
qu
es
ts

Seek distance (cylinders)

Histogram of seek distances on Cello

Unix placement
Random placement
Shuffled random

Figure 3-7: Seek distance after optimization

once per day based on the statistics from the previous day. The resulting seek distance is

slightly better than Unix placement. These results are consistent with other, more de-

tailed experiments on organ-pipe optimization [Carson90, Vongsathorn90, Ruemmler90].

3.4 Inter-disk placement constraints

The previous section suggests a block placement algorithm that randomly selects spindles

for blocks. However, fault-tolerance mechanisms often require that some blocks have

38

failure modes independent from other blocks. For example, the parity stripe scheme

described in Section 2.1 requires that all blocks in a stripe have independent failure

modes. Randomized disk selection can not guarantee these independence constraints.

File implementations must be able to express these constraints to the block placement

module.

To satisfy this need, the block allocation routine should not allocate blocks individ-

ually, but rather in groups. The routine should take the size of the group and return a

list of blocks such that each block in the list is guaranteed to fail independently from

the others. The routine can raise an exception if the stripe is too wide for the con�gura-

tion. Blocks are still placed randomly, but now they are subject to these independence

constraints.

3.5 Conclusion

The placement algorithm proposed in this chapter takes a di�erent approach from BSD's.

It pushes placement out of �le implementations and into a module with strong abstraction

boundaries around it. Neither the random disk selection nor the organ-pipe optimiza-

tion require that the representation of �les be exposed. For �le implementations that

need more control over block placement, viz., �le implementations that use redundancy

for fault-tolerance, the interface between �le implementations and block placement is

extended abstractly, i.e., without exposing the representation of �les.

The results here and elsewhere suggest that the organ-pipe optimization does at least

as well as the layout policies in BSD Unix, indicating that exposing the �le representa-

tion is not necessary for intra-disk optimization. Given that the coloring algorithm is a

good approximation to systems like RASH that use the �le representation for inter-disk

placement optimization, the the results here suggest that exposing the �le representa-

tion is not necessary for inter-disk optimization either. Thus �le systems with multiple

�le implementations can use a block placement algorithm that respects the abstraction

39

boundaries around �le implementations and can still get su�cient placement optimiza-

tion.

40

Chapter 4

User Speci�ed File Behavior

Section 2.4 observed that in a �le system with multiple �le implementations, �les must

be assigned to implementations. The user should not have to do assignments; rather,

the system should select implementations itself. However, the �le system does not have

enough information to make a good selection. Section 2.4 proposed that per-�les pa-

rameters, set by the user, provide the additional information needed by the system to

make good selections. The parameters must satisfy two criteria. First, they must supply

the additional information needed by the �le system to make good assignments. Second,

they must abstract away from the details of �le implementations; instead, they must

re
ect the client's concerns, i.e., re
ect application-level concerns. This chapter explores

on possible set of such parameters.

Section 4.1 examines basic parameters. These parameters control the performance

and level of fault-tolerance of �les. An example of such a parameter is one to control the

throughput of reads on a �le. Section 4.2 describes templates and why they are needed.

A template is a set of basic parameter values that can be referenced by name. Templates

directly re
ect application-level concerns; a typical template might be \temporary �le"

or \important video data." The �nal three sections of this chapter describe extensions

to the parameter scheme.

41

4.1 Basic parameters

For the purpose of de�ning the basic parameters, a �le is modeled as a abstract data type

with four operations: read, write,
ush, and recover. The read and write operations are

similar to those in most operating systems. The
ush operation forces all data written

to the �le onto persistent, secondary storage. The recover operation models automatic

fault-tolerance; it takes as input the state of the �le system after a failure and recovers

as much of the old contents of the �le as possible.

4.1.1 Normal case behavior

Parameters for normal case behavior control the performance of the read, write, and

ush operations. Each operation is controlled by two parameters, one for overhead and

another for throughput. Overhead is the amount of time an operation takes for the �rst

byte of data accessed; throughput is the time for every byte accessed thereafter. (For the

ush operation, the amount of data \accessed" is the number of bytes written since the

previous
ush.)

Table 4.1: Parameters for normal case behavior

Parameter Dimension Description

Or; Ow; Of Time Overhead (read, write, and
ush)

Xr; Xw; Xf Time/Byte Throughput

The parameters for normal case behavior are listed in Table 4.1. According to the

table, the expected time for a read of s bytes is Or +Xrs. For now, these parameters

will be treated as upper bounds. Of course, in any real system such bounds are di�cult

to implement; we will return to this problem in Section 4.3.

42

4.1.2 Fault-tolerance

Parameters for fault-tolerance are based on a two-phase recovery model illustrated in

Figure 4-1. It is a model of the steps that most recovery algorithms undergo, but it

abstracts away from the details of particular algorithms.

210 TTT

Non-functional

Operation
Normal

Performance

Time

Phase 1 Phase 2

Figure 4-1: Abstraction of failure recovery algorithms

At T0, failure is detected, the �le goes o�-line, and recovery is automatically initi-

ated; this is the o�-line phase of recovery. At T1 the �le becomes available again

even though recovery continues; this is the on-line phase of recovery. At T2 all

recovery is �nished and the �le goes back to normal operation. There is a small

probability that another failure will occur during recovery; in this case, behavior is

unde�ned.

In the �rst phase, called the o�-line phase, the �le server detects the failure, takes the

�le o�-line (refuses to service operations for the �le) and automatically initiates recovery

procedures. When recovery proceeds far enough, the �le server enters the second or

on-line phase of recovery, during which read and write operations are serviced but are

slowed by on-going recovery work. Eventually, the �le server completes recovery and

performance returns to normal. There is a small chance that another failure will occur

during recovery; in this case, the result of failure recovery is unde�ned. It is possible for

one of the phases to take no time; for example, a mirrored �le need not go o�-line at all,

and a �le with a compressed backup might not be available until recovery is complete.

Parameters for this model fall into two categories: performance and data loss. The

43

performance parameters are simple. They control the amount of time each phase may

take; Tp1 controls phase one, Tp2 phase two. The data loss parameters are more com-

plicated. They are needed because most �le implementations improve performance by

caching parts of �les in volatile memory. During a CPU failure (client and/or server

CPU), part of a �le might be lost because it has not been
ushed from the cache. In

this situation, the state of the �le after recovery depends on the cache
ushing policy of

the �le implementation. The data loss parameters control the cache
ushing policy in

an abstract way, i.e., in a way that does not expose the implementation details of the

policies to the user. The data loss parameters control two aspects of
ushing.

One aspect of
ushing that is parameterized is the amount of data that is vulnerable

to a failure. This can be parameterized two ways. One way is based on the age of data:

all data written to the �le more than Tdl seconds before a failure will be
ushed. Another

way is based on the amount of data: at most Bdl bytes of data will be vulnerable at

any one time. These approaches can be combined: at most Bdl bytes of data will be

vulnerable, and no data written more than Tdl seconds ago will be. For simplicity, we

assume the time based approach (Tdl) from here on.

Another aspect of
ushing that is parameterized is the order in which data is
ushed.

This parameter controls the the possible states of a �le after recovery. The list below

describes four values for this parameter. These descriptions assume that the data written

by a write operation is broken into equal sized \pages" that are
ushed atomically. Unless

otherwise noted, the order of
ushing described below applies both to explicit
ushes (i.e.,

when the client calls the
ush operation) and implicit
ushes (i.e., when the �le system

automatically evicts pages).

� Unix: no guarantees. Data between explicit
ush operations can be
ushed in any

order.

� Monotonic: no page from a write operation is
ushed until all pages from all pre-

vious writes are. Within a write operation, pages can be
ushed in any order.

44

� Atomic monotonic: same as monotonic, except within writes either all pages are

ushed or none are.

� Atomic
ush: either all un
ushed pages are
ushed during an explicit
ush oper-

ation, or no pages are (e.g., when a failure occurs during the
ush). Furthermore,

no implicit
ushing occurs, i.e., no pages written between explicit
ush operations

will be
ushed. (In this case, Tdl is ignored.)

� Atomic write: either all pages in a write operation are
ushed immediately, or none

are.

Table 4.2: Summary of fault-tolerance parameters

Parameter Dimension Description

Tp1 Time Phase one recovery

Tp2 Time Phase two recovery

Tdl Time Time data remains volatile

FO Order of
ushing

The parameters for fault-tolerance are summarized in Table 4.2.

4.1.3 Example

The settings in Table 4.3 might de�ne the level of service needed for a low-volume data

acquisition program. The modest throughput requirements will allow most disk-based

�le implementations. However, the zero phase-one constraint will require mirroring. The

low data loss constraint and the atomic monotonic
ush policy together suggest that

very little caching should be done; however, this should not be a problem given the low

throughput requirements.

45

Table 4.3: Basic parameters for data acquisition

Parameter Value

Xw 0:5Mbyte/s

Ow 1ms

Xr 0:5Mbyte/s

Or 500ms

Tp1 0

Tp2 0:5 hour

FO Atomic monotonic

Tdl 1ms

4.2 Templates

Templates are de�ned in terms of the basic parameters. The settings in Table 4.3, for

example, might de�ne the level of service for a template called \data acquisition." We

expect that in most instances users will be able to use templates de�ned by the system

administrator, so they will be shielded from the complexities of the underlying basic

parameter scheme.

Templates serve two important functions. First, they bu�er the user from the com-

plexity of the basic parameters. Second, they are an extra level of indirection that can be

used to make modi�cations easier. If the level of performance for executable �les needs

to be changed, the change should be a simple as a change to a single template.

While templates serve a useful role, one might wonder if the basic parameters do.

After all, the system administrator could map templates directly to �le implementations.

This is the approach taken by IBM's system managed data product [Gelb89]. This

alternative has two problems. First, it defeats the purpose of parameters. Directly

mapping templates to implementations would still su�er the problems associated with

exposing low-level mechanism. Second, the information given by parameters is not the

only information used by the system to select implementations; as discussed earlier,

parameters supplement measurements such as �le size and access patterns.

46

Thus, mapping templates to �le implementations is not enough; however, this con-

clusion does not rule out a hybrid scheme. Some templates could be de�ned in terms of

basic parameters and others could map directly to �le implementations. Directly mapped

templates would be for unusual cases, e.g., for specialized �le implementations that defy

de�nition by a generalized parameter scheme.

4.3 Variances

In previous sections, we assumed that parameters were hard bounds. This is an unrealistic

assumption. In reality, the parameters will have to give expectations; they will have to

say what will happen on average. For many applications, such as word processing and

program development, loose averages are �ne. But for other applications, such as real-

time digital video, loose averages are not enough: the correctness of the application

depends on data arriving on time.

In order to let the user specify the tightness of parameters, we can extend our basic

parameters by adding a variance parameter to the read, write, and
ush operations.

The variance controls the tightness of the parameter: the closer the variance is to zero,

the closer the parameter is to a hard bound. Allowing variances of zero is possible, but

would require static, pre-allocation of transient resources such as cache space and network

bandwidth. Obviously, this would greatly lower the utilization of the hardware. (The

DASH system contains many ideas for implementing hard bounds in a server; however,

the DASH system does not do static pre-allocation, and thus can not guarantee that the

required resources will be available on demand [Anderson90].)

4.4 File life cycles

The service level a user needs from a �le is seldom static; it changes over time. A user

working on a paper, for example, may work on it for a week then put it aside inde�nitely.

47

Later, the user may revise it then put it aside again. When working on the paper, the

user would like it to have one level of service, viz., fairly prompt performance. When the

paper is put aside, however, the user would not care if the level of service was lower. To

allow users to specify behavior that changes like this, we extend the parameter scheme

to include a �le life cycle.

To specify a �le life cycle, the user creates a labeled, directed graph. The nodes of

the graph are labeled with templates. (One node is designated the starting node.) The

arcs are labeled with conditions under which transitions occur, e.g., \�le has not been

opened in three days." Higher-level templates can refer to a �le life cycle rather than a

simple set of basic parameters. However, the recursion stops at one level: the templates

used for the nodes of life cycle graphs must refer to basic parameters, not �le life cycles.

4.5 Quotas

An obvious question at this point is \What will keep users from asking for top of the line

service for all their �les?" To solve this problem, we add quotas to the �le system, like

disk-space quotas on traditional �le servers.

For �le servers with multiple device types, a quota system that limits a user to a �xed

amount of storage space will not work. Users must be able to use lots of cheap, slow

media while being limited in the amount of expensive, fast media they use. This might

be accomplished by giving each user a separate quota for each media type; for example,

a user might have the right to use several hundreds of megabytes on digital-audio tape

but be limited to a few tens of megabytes of disk space. However, this approach also

has a problem. It requires too much work from the administrator, because it multiplies

quotas by the number of media types. It burdens the administrator further by requiring

that each user be given a new quota when new media types are added.

An alternative approach is to invent an \currency" inside the �le server and rank the

relative \cost" of space on each device type according to this single standard of measure.

48

For example, a kilobyte of space on magnetic disks might cost ten currency units, while a

kilobyte on magneto-optical disks might cost only �ve. As with traditional quota systems,

this approach requires the administrator to maintain only one quota per user. Further,

when new media are added, the administrator simply has to assign its space a price.

The pricing system has the additional advantage of smooth scaling. As a server grows

in capacity, the administrator can lower the \price" of storage rather than raising the

budget of each user. Since a typical server will have many more users than media types,

this reduces the administrator's workload tremendously.

49

50

Chapter 5

Summary and Conclusion

This thesis proposed ideas for �le systems for future �le servers. The central idea was to

build the �le system with multiple �le implementations. This led to another important

idea: separate �le naming from the assignment of �les to implementations and from the

placement of �les onto physical storage devices. For �le assignment, we proposed isolating

the user from �le implementations with behavior parameters. These parameters allow

the users to control the assignments of �les to implementations without explicitly naming

implementations. The parameter scheme also includes a concept of life-cycles that allow

the user to control archiving. For �le placement, we proposed a placement algorithm

with a strong abstraction boundary between �le implementations and the placement

algorithm.

The proposed �le system promises to increase resource utilization and overall perfor-

mance:

� Multiple implementations allow the �le system to match a �le to an implementation

suited to the idiosyncrasies of the �le and its use patterns. Multiple implementa-

tions also allow the �le system to optimize for the peculiarities of di�erent media.

� Disk selection that is unconstrained by the name-tree allows better balance of disk

workloads.

51

� The parameters for controlling the assignment of �les to implementations ensure

that �les get the level of service needed by the user and thus use only the re-

sources actually needed. Automatic archiving further ensures that �les use only

the resources actually needed.

The system also promises to be more user friendly than previous systems:

� The separation of naming from �le assignment and placement allows the user to

use naming exclusively for organizing �les relative to each other. In addition, the

separation isolates the user from implementation issues such as the physical system

con�guration and the characteristics of di�erent �le implementations. This, in turn,

makes it possible to transparently update software and the hardware con�guration.

� Automatic fault-tolerance increases the reliability and availability of the user's data

(where needed).

Easier administration:

� Automatic fault-tolerance and automatic archiving relieve the administrator of two

burdensome chores.

� The randomized block placement and automatic �le assignment algorithms allow

automatic system con�guration. After the administrator physically installs a new

device or new �le implementation, the system can automatically use it in an e�ective

manner.

Most of the ideas presented in this thesis have not been tested in an implementation

and will doubtless undergo change when going from the drawing board to a real system.

However, they should be useful to those looking to build the next generation of large �le

servers.

52

Bibliography

[Anderson90] David P. Anderson, Shin-Yuan Tzou, Robert Wahbe, Ramesh Govindan,

and Martin Andrews. Support for continuous media in the DASH system. Proceed-

ings of 10th International Conference on Distributed Computing Systems (Paris),

pages 54{61. IEEE, May 1990.

[Carson90] Scott D. Carson. Experimental performance evaluation of the Berkeley �le

system. Technical report UMIACS{TR{90{5 and CS{TR{2387. Institute for Ad-

vanced Computer Studies and Department of Computer Science, University of Mary-

land, January 1990.

[Cate90] Vince Cate. Two levels of �lesystem hierarchy on one disk. Technical report

CMU{CS{90{129. Carnegie-Mellon University, Pittsburgh, PA, May 1990.

[Chervenak90] Ann L. Chervenak. Performance measurements of the �rst RAID proto-

type. UCB/CSD 90/574. University of California at Berkeley, May 1990.

[Finlayson87] Ross S. Finlayson and David R. Cheriton. Log �les: an extended �le

service exploiting write-once storage. Proceedings of 11th ACM Symposium on Op-

erating Systems Principles (Austin, Texas). Published as Operating Systems Review,

21(5):139{48, November 1987.

[Gelb89] J. P. Gelb. System managed storage. IBM Systems Journal, 28(1):77{103,

1989.

53

[Gray90] Jim Gray. A census of Tandem system availability between 1985 and 1990.

Technical Report 90.1. Tandem Computers Incorporated, September 1990.

[Grossman73] David D. Grossman and Harvey F. Silverman. Placement of records on a

secondary storage device to minimize access time. JACM, 20(3):429{38, July 1973.

[Henderson89] Robert L. Henderson and Alan Poston. MSS-II and RASH: a mainframe

Unix based mass storage system with a rapid access storage hierarchy �le manage-

ment system. USENIX Winter 1989 Conference (San Diego, California, January

1990), pages 65{84. USENIX, January 1989.

[Karels86] Michael J. Karels and Marshall Kirk McKusick. Toward a compatible �lesys-

tem interface. European UNIX Systems User Group Autumn'86 (Manchester, Eng-

land, 22�24 September 1986), pages 481{96. EUUG Secretariat, Owles Hall,

Buntingford, Herts SG9 9PL, September 1986.

[Kim85] M. Y. Kim. Parallel operation of magnetic disk storage devices: synchronized

disk interleaving. Proceedings of 4th International Workshop on Database Machines

(Grand Bahama Island), pages 300{30. Springer-Verlag, New York, March 1985.

[Koehler87] Matt Koehler. GFS revisited or how I lived with four di�erent local �le

systems. Proceedings of of the Summer 1987 USENIX Conference (Phoenix, June

1987), pages 291{305. USENIX Association, Berkeley, June 1987.

[Livny87] Miron Livny, Setrag Khosha�an, and Haran Boral. Multi-disk management

algorithms. Proceedings of SIGMETRICS. '87, pages 69{77, 1987.

[McKusick84] Marshall K. McKusick, William N. Joy, Samuel J. Le�er, and Robert S.

Fabry. A fast �le system for UNIX. ACM Transactions on Computer Systems,

2(3):181{97, August 1984.

[Ng89] Spencer Ng. Some design issues of disk arrays. Proceedings of COMPCON Spring

'89, pages 137{42. IEEE, 1989.

54

[Ohta90] Masataka Ohta and Hiroshi Tezuka. A fast /tmp �le system by delay mount

option. 1990 Summer USENIX Technical Conference (Anaheim, California, June

1990), pages 145{50. USENIX, June 1990.

[Ousterhout85] John K. Ousterhout, Herv�e Da Costa, David Harrison, John A. Kunze,

Mike Kupfer, and James G. Thompson. A trace-driven analysis of the UNIX 4.2 BSD

�le system. Proceedings of 10th ACM Symposium on Operating Systems Principles

(Orcas Island, Washington). Published as Operating Systems Review, 19(5):15{24,

December 1985.

[Ousterhout89] John Ousterhout and Fred Douglis. Beating the I/O bottleneck: a case

for log-structured �le systems. Operating Systems Review, 23(1):11{27, January

1989.

[Parish90] Tom Parish. Volume holographic storage devices, or, storing data in crystals

with light. Technical report ACT{BOB{296{90. Microelectronics and Computer

Technology Corporation, September 1990.

[Patterson88] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for re-

dundant arrays of inexpensive disks (RAID). Proceedings of SIGMOD. (Chicago,

Illinois), 1{3 June 1988.

[Rodriguez86] R. Rodriguez, M. Koehler, and R. Hyde. The generic �le system. 1986

Summer USENIX Technical Conference (Atlanta, GA, June 1986), pages 260{9.

USENIX, June 1986.

[Rosenblum90] Mendel Rosenblum. The LFS �le system. Sprite group, Computer Science

Div., Department of Electrical Engineering and Computer Science, University of

California at Berkeley, 1990. Slides for a presentation.

[Ruemmler90] Chris Ruemmler. Shu�eboard | methods for adaptive data reorganiza-

tion. Technical Report HPL{CSP{90{41. Concurrent Systems Project, Hewlett-

Packard Laboratories, 24 August 1990.

55

[Satyanarayanan81] M. Satyanarayanan. A study of �le sizes and functional lifetimes.

Proceedings of 8th ACM Symposium on Operating Systems Principles (Asilomar,

Ca). Published as Operating Systems Review, 15(5):96{108, December 1981.

[Schulze89] Martin Schulze, Garth Gibson, Randy Katz, and David Patterson. How

reliable is a RAID? Spring COMPCON'89 (San Francisco), pages 118{23. IEEE,

March 1989.

[Sidebotham86] Bob Sidebotham. VOLUMES { the Andrew �le system data structuring

primitive. European UNIX Systems User Group Autumn'86 (Manchester, England,

22�24 September 1986), pages 473{80. EUUG Secretariat, Owles Hall, Buntingford,

Herts SG9 9PL, September 1986.

[Tucker88] Lewis W. Tucker and George G. Robertson. Architecture and applications of

the Connection Machine. Computer, 21(8):26{38, August 1988.

[Vongsathorn90] Paul Vongsathorn and Scott D. Carson. A system for adaptive disk

rearrangement. Software|Practice and Experience, 20(3):225{42, March 1990.

[Wilkes89a] John Wilkes. DataMesh | scope and objectives: a commentary. Techni-

cal Report HPL{DSD{89{44. Distributed Systems Department, Hewlett-Packard

Laboratories, 18 July 1989.

[Wilkes89b] John Wilkes. DataMesh TM | scope and objectives. Technical Report

HPL{DSD{89{37rev1. Distributed Systems Department, Hewlett-Packard Labora-

tories, 19 July 1989.

[Wilkes90] John Wilkes. DataMesh | project de�nition document. Technical Report

HPL{CSP{90{1. Concurrent Systems Project, Hewlett-Packard Laboratories, 18

January 1990.

[Wilkes91] John Wilkes and Raymie Stata. Specifying data availability in multi-device

�le systems. Position paper for 4th ACM-SIGOPS European Workshop (Bologna,

56

3{5 September 1990). Published as Operating Systems Review, 25(1):56{9, January

1991.

[Wong83] C. K. Wong. Algorithmic studies in mass storage systems. Computer Science

Press, 11 Taft Court, Rockville, MD 20850, 1983.

57

