
Virtual Wires: Overcoming Pin Limitations in

FPGA-based Logic Emulation

by

Jonathan William Babb

B.S. Electrical Engineering

Georgia Institute of Technology, 1991

Submitted to the Department of Electrical Engineering and

Computer Science

in partial ful�llment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1994

c
 Massachusetts Institute of Technology, 1993

The author hereby grants to MIT permission to reproduce and

to distribute copies of this thesis document in whole or in part.

Signature of Author :

Department of Electrical Engineering and Computer Science

November 15, 1993

Certi�ed by :

Anant Agarwal

Associate Professor of Computer Science and Electrical Engineering

Thesis Supervisor

Accepted by :

Fred Morgenthaler

Chairman, Departmental Committee on Graduate Students

2

3

Virtual Wires: Overcoming Pin Limitations in

FPGA-based Logic Emulation

by

Jonathan William Babb

Submitted to the Department of Electrical Engineering and Computer Science
on November 15, 1993, in partial ful�llment of the

requirements for the degree of
Master of Science

Abstract

Existing FPGA-based logic emulators are limited by inter-chip communication band-
width, resulting in low gate utilization (10 to 20 percent of usable gates). This
resource imbalance increases the number of chips needed to emulate a particular logic
design and thereby decreases emulation speed, since signals must cross more chip
boundaries. Current emulators only use a fraction of potential communication band-
width because they dedicate each FPGA pin (physical wire) to a single emulated
signal (logical wire). These logical wires are not active simultaneously and are only
switched at emulation clocking speeds.

Virtual Wires overcome pin limitations by intelligently multiplexing each physical
wire among multiple logical wires and pipelining these connections at the maximum
clocking frequency of the FPGA. A virtual wire connects a logical output of one
FPGA to a logical input on another FPGA. Virtual Wires relax the absolute limits
imposed on gate utilization. The resulting increase in bandwidth reduces the need for
global interconnect, allowing e�ective use of low dimension inter-chip connections.

This thesis presents and analyzes the concept of Virtual Wires, and describes a
Virtual Wires compiler which utilizes static routing and relies on minimal hardware
support. Results from compiling netlists for the 18K gate Sparcle microprocessor
and the 86K gate Alewife Communications and Memory Management Unit indicate
that Virtual Wires can increase FPGA gate utilization beyond 80 percent without a
signi�cant slowdown in emulation speed.

Thesis Supervisor: Anant Agarwal
Title: Associate Professor of Computer Science and Electrical Engineering

4

5

Acknowledgments

The intellectual contribution of both Russ Tessier and Anant Agarwal have been

essential to the Virtual Wires project. Greatly magnifying our initial hacking e�orts

has been Matt Dahl, essential in the implementation of the Virtual Wires compiler

system { most critically in the back-end interfaces. His work in conjunction with

Russ's expertise in the detailed design and implementation of an initial wire-wrapped

prototype board, and more recently of a full scale pc board, will give us the joy of

seeing these raw concepts turned into a real working system. Alongside Matt and

Russ, Silvina Hanono has implemented the initial debugging interfaces which will

greatly enhance the usability of this system.

I also acknowledge the contributions of InCA, ltd. By allowing our research group

to use their partitioning programs at maintenance costs, they have both saved us the

e�ort of writing a partitioner and added credibility to our initial measurements of pin

limitations.

I have most of the Alewife team to thank for their initial scepticism of our ideas

- forcing us to wring them into something actually doable. Initial reactions such as

\Why don't you go work for Quickturn..." eventually turned into stimulating discus-

sions on issues of hardware design (Donald Yeung and Ken Mackenzie), large scale

design veri�cation (John Kubiatowitz), and FPGA Computing (David Chaiken and

Kirk Johnson). John has also been helpful in supplying the two Alewife benchmark

designs.

My o�cemate Gino Maa has been essential in in�nitely long discussions on a

range of issues that needed to be explored (but no thanks for his similarly instigated

discussions). Comments and suggestions from those who reviewed the initial versions

of this thesis are greatly appreciated. Thanks to mom and dad for their never failing

love and support.

6

Contents

1 Introduction 15

1.1 Design Veri�cation : 15

1.2 FPGAs and FPGA Computing : 20

1.3 FPGA-based Logic Emulation : 22

1.4 Contributions of Thesis : 23

1.5 Organization of Thesis : 26

2 Background 29

2.1 Hardware Accelerated Logic Simulation : : : : : : : : : : : : : : : : : 29

2.2 FPGA-based Logic Emulation : 30

2.3 Network Communication : 32

3 The Pin Limitation Problem 33

3.1 Pin Limitations in Logic Emulation : : : : : : : : : : : : : : : : : : : 33

3.2 Theoretical Formulation: Graph Partitioning : : : : : : : : : : : : : : 35

3.3 Empirical Observation: Rent's Rule : : : : : : : : : : : : : : : : : : : 36

4 Virtual Wires 39

4.1 Conceptual Overview : 39

4.2 Resource Scheduling : 41

7

8 CONTENTS

4.3 The Emulation Clocking Framework : : : : : : : : : : : : : : : : : : 43

4.4 Limitations and Assumptions : 44

5 Software Framework 45

5.1 Overview : 45

5.2 Netlist Translation : 47

5.3 Technology Mapping : 47

5.4 Partitioning : 48

5.5 Global Placement : 48

5.6 Dependency Analysis : 53

5.7 Virtual Routing : 57

5.8 Route Embedding : 58

5.9 Vendor Speci�c APR : 59

6 Hardware Implementation 61

6.1 Hardware Support for Virtual Wires : : : : : : : : : : : : : : : : : : 61

6.1.1 Shift Loops : 61

6.1.2 Intermediate Hops : 63

6.1.3 Phase Control Logic : 63

6.2 Prototype Emulation System : 64

6.2.1 Simulation Acceleration : 64

7 Results 67

7.1 Overview : 67

7.2 Benchmarks : 70

7.3 Target FPGAs : 72

7.4 Pin Limitation Severity : 73

7.5 Virtual Wires Overhead : 75

CONTENTS 9

7.6 Number of Component Comparison : : : : : : : : : : : : : : : : : : : 76

7.7 Emulation Speed Comparison : 77

7.8 Bandwidth Requirements : 82

7.9 Combination with Hard Wires : 83

8 Analysis 85

8.1 Hard Wires Gate Utilization : 85

8.1.1 Rent Ratios : 86

8.1.2 Topological Factor : 87

8.2 Virtual Wires Gate Utilization : 88

8.2.1 Optimal Partition Size : 90

8.3 Scalability : 92

9 Conclusions and Future Research 95

9.1 Conclusions : 95

9.2 Future Research : 96

10 CONTENTS

List of Figures

1-1 Veri�cation Speed Tradeo�s : 17

1-2 Architecture of an SRAM-based FPGA : : : : : : : : : : : : : : : : : 21

1-3 Typical Logic Emulation System : 22

3-1 Example Rent's Rule Plot : 38

4-1 Hard Wire Interconnect : 42

4-2 Virtual Wire Interconnect : 42

4-3 Emulation Phase Clocking Scheme : : : : : : : : : : : : : : : : : : : 43

5-1 Softwire Tool Flowchart : 46

5-2 Unpartitioned Circuit : 49

5-3 Partitioned Circuit : 49

5-4 Mesh Topology : 51

5-5 Crossbar Topology : 51

5-6 Sequential Machine : 54

5-7 A Signal Flow Graph : 56

6-1 Shift Loop Architecture : 62

6-2 Intermediate Hop Pipeline Stage : 63

6-3 Scalable, Low-Cost Emulation Board : : : : : : : : : : : : : : : : : : 65

6-4 Simulation Accelerator Interfaces : 66

11

12 LIST OF FIGURES

7-1 Topology of the Alewife Machine and Detail of One Node. : : : : : : 71

7-2 Pin Count as a Function of FPGA Partition Size : : : : : : : : : : : 74

7-3 A-1000 Emulation Speed (Communication only Component) : : : : : 82

8-1 Gate Utilization without Virtual Wires : : : : : : : : : : : : : : : : : 86

8-2 Gate Utilization with Virtual Wires : : : : : : : : : : : : : : : : : : : 89

8-3 Determination of Optimal Partition Size : : : : : : : : : : : : : : : : 91

8-4 Scalability with FPGA Device Size : : : : : : : : : : : : : : : : : : : 93

9-1 Virtual Machine Computing Engine : : : : : : : : : : : : : : : : : : : 98

List of Tables

3.1 Possible Partition Limitation Scenarios : : : : : : : : : : : : : : : : : 34

5.1 Distance Matrix for a 3x3 Mesh Topology : : : : : : : : : : : : : : : 52

5.2 Distance Matrix for a 3x3 Crossbar Topology : : : : : : : : : : : : : 52

5.3 Dependence Rules for Library Primitives : : : : : : : : : : : : : : : : 55

6.1 Shift Loop Operations : 62

7.1 Software Tools used For Experiments : : : : : : : : : : : : : : : : : : 68

7.2 Current Software Tools : 68

7.3 Design Statitics : 70

7.4 A Few FPGA Device Characteristics : : : : : : : : : : : : : : : : : : 72

7.5 Rent's Rule Parameters (slope, o�set of log-log curve) : : : : : : : : : 73

7.6 Parameters for Empirical Analysis : 76

7.7 Required number of 5K Gate, 100 Pin, 50% mapping e�cient FPGAs 77

7.8 Parameter's Used for Speed Estimation : : : : : : : : : : : : : : : : : 78

7.9 Emulation Clock Speed Estimate (Crossbar Topology) : : : : : : : : 81

7.10 Emulation Clock Speed Estimate (Torus Topology) : : : : : : : : : : 81

7.11 Reduction Of Critical Path with Hybrid Wiring : : : : : : : : : : : : 83

8.1 Rent Ratios and Topological Factor : : : : : : : : : : : : : : : : : : : 87

8.2 Parameters for Scalability Comparison : : : : : : : : : : : : : : : : : 93

13

14 LIST OF TABLES

Chapter 1

Introduction

1.1 Design Veri�cation

Designers of complex digital logic systems are constantly faced with the problem of

design veri�cation. They must perform extensive tests to verify the correctness of their

design before the fabrication, manufacture, and end use of any hardware systems. For

many such systems this veri�cation e�ort requires more time and money than that

invested in the initial design. In particular, the high non-recurring expense (NRE)

and long fabrication cycle time of VLSI chips makes such testing essential. For these

chips, the need for thorough testing heavily impacts the design methodology itself.

Continuing growth in the scale of circuit integration and the resulting increase

in the number of components in current designs [24] are compounding veri�cation

costs. To make matters worse, the computational power required to verify systems

increases at a greater than linear rate with system size and circuit complexity. Thus

even if computation speeds increase at the same rate as typical design size, the need

for e�ective design veri�cation will continue to increase.

Veri�cation techniques fall into two categories: formal methods and empirical

methods. Formal veri�cation methods attempt to prove that an implementation

15

16 CHAPTER 1. INTRODUCTION

satis�es a given speci�cation. By using algorithmic shortcuts such as binary decision

diagrams [32] and symbolic simulation [21], formal methods are able to reduce the

computational requirements of system testing. Formal methods have also succeeded

in the areas of automatic test pattern generation [27], synthesis for testability [18],

and static timing analysis. However, the use of formal veri�cation is quite limited if

high-level speci�cations are not necessarily consistent and correct.

For the majority of their veri�cation needs, system designers must then rely on

empirical methods. These methods consist of building and testing software and hard-

ware prototypes of the �nal system. They must test individual components and test

how these components will interact in the complete system. In verifying functional

logic, these prototypes can take the form of logic simulations, hardware models, and

logic emulations.

Figure 1-1 shows the tradeo� between compilation speed and execution speed for

these design prototypes in relation to the �nal system. The y-axis measures relative

speeds for compiling or constructing a hypothetical design. The x-axis measures

relative speeds for executing one set of test vectors on this design. For example,

consider a �nal system which takes months to construct and runs a set of vectors in

less than one minute. The same design and vector set could be compiled for a logic

simulator on the order of minutes, but would take years to execute.

The following sections discuss these prototypes in more detail.

1.1. DESIGN VERIFICATION 17

1 / year 1 / month 1 / day 1 / hour 1 / minute1 / week

Execution
Speed

1 / minute

1 / hour

1 / day

1 / week

1 / month

Compilation
Speed

Hardware
 Model

 Logic
Emulation

 Logic
Simulation

Accelerated
 Simulation

 Final
System

Figure 1-1: Veri�cation Speed Tradeo�s

18 CHAPTER 1. INTRODUCTION

Logic Simulation

Most logic simulators are software only and are extremely time consuming. As a

consequence, only partial testing can be done on all but the smallest of designs. For

larger designs, testers must carefully orchestrate their limited set of input test vectors

to e�ciently exercise the design's major functions. On the other hand, no special

hardware is required for software only simulations. Such simulations can run on a

standard workstation or personal computer. Of the three classi�cations of prototypes,

simulations are the most
exible in terms of making incremental design changes, and

in allowing detailed timing analysis and debugging.

To improve simulation time, engineers have used both software and hardware

techniques. Software based accelerations include compiled-code simulation, parallel

simulation, and high level simulation. In compiled-code simulation [8], digital logic

that is to be simulated is compiled directly into machine instructions rather than

being interpreted. Parallel simulation techniques [40] have been reported to achieve

speed-ups for digital logic simulation as well. In conjunction with these methods,

researchers are speeding up simulation by directly simulating high-level description

languages (HDLs) such as VHDL and Verilog [15].

Hardware acceleration ranges from co-processors for software simulators, to spe-

cial purpose logic processors [10]. Co-processors allow a standard computer to be

accelerated for logic simulation much like a
oating point unit speeds up numerical

calculations. However, in co-processors, the I/O transfer between the coupled host

and hardware accelerator can easily become a bottleneck. In comparison, special pur-

pose logic processors are computers in their own rights, often resembling a mainframe

or supercomputer rather than a simple workstation (in both complexity and price).

They permit even faster logic simulation, but are complicated to use and do not easily

track today's fast moving technology curve. Section 2.1 discusses two such simulation

engines in greater detail.

1.1. DESIGN VERIFICATION 19

Hardware Models

At the other end of the prototyping spectrum, in terms of
exibility and cost versus

speed, is hardware modeling. A hardware model, or hardware prototype, is usually

designed to function as close as possible to the actual system being veri�ed. For

example, a wire-wrapped protoboard may be used as a hardware model of a small

VLSI chip under design. Models can often be directly integrated into a target sys-

tem. In contrast to simulation, these models can usually run at near real time speeds;

however, costs, in both money and time to build, are often prohibitively high. Fur-

thermore, there is usually very little
exibility in making more than small design

changes. There is also the added di�culty of verifying the custom model itself! In

the case of a chip, this di�culty may result in modeling costs that are higher than

the original design costs of the �nal system [43].

Recent improvements in hardware models include the use of programmable logic

and programmable PC boards [4]. The added complexity of recon�gurability can

be o�set by the ability to make design changes more rapidly. As software improves

for such models, the distinction between hardware models, and the next category of

prototypes, logic emulation, is becoming blurred.

Logic Emulation

Logic emulation o�ers a compromise between the
exiblity of software simulation

and the speed of a hardware model. Logic emulation is distinguished from logic

simulation in that the circuits being simulated are compiled directly into hardware.

However, unlike the hardware model, a logic emulator can be quickly re-programmed,

via software only, to emulate a new circuit. Besides the cost saving of re-use, the

ability to quickly recon�gure minimizes time between design iterations. Like the

hardware model, a logic emulator can be integrated directly into a target system.

20 CHAPTER 1. INTRODUCTION

In comparison with simulation, emulation compile time overheads are much higher,

and analysis detail is lower. However, with the correct interfaces, a logic emulator

can be connected directly into a simulation environment, allowing a simulation and

an emulation to complement one another.

Before continuing the discussion of logic emulation in Section 1.3, we examine

one of the most promising devices for implementing logic emulation: the Field Pro-

grammable Gate Array.

1.2 FPGAs and FPGA Computing

Since the birth of programmable logic devices in 1974, and the Field Programmable

Gate Array (FPGA) around 1986 [11], programmable logic has traditionally been

used to replace �xed discrete logic and gate array logic. In particular, the numerous

advantages of FPGAs - reduced manufacturing time, the ability to accommodate

design changes easier, and uniform part replacement, have made the FPGA a very

attractive building block for logic design.

As the use of FPGAs has become more re�ned, another powerful property has

become apparent - the ability for a system containing an FPGA to recon�gure that

device to perform di�erent functions at di�erent times. In particular, static random

access memory (SRAM) based FPGAs, such as the Xilinx 4000 Series [47], can be

recon�gured. Figure 1-2 shows the high level architecture of an SRAM-based FPGA.

The SRAM, shown to the side in a separate box for clarity, is actually interspersed

throughout the programmable logic, interconnect, and I/O. By downloading memory

con�gurations into the SRAM, the functionality of the FPGA can be completely

de�ned, subject to the constraints of logic capacity, interconnect capacity, and I/O

capacity.

If we take advantage of recon�gurability, we can build FPGA-based computing

1.2. FPGAS AND FPGA COMPUTING 21

Configurable I/O

Configurable Logic

Configurable Interconnect

Configuration Port

On−chip Configuration SRAM

Figure 1-2: Architecture of an SRAM-based FPGA

machines. Users can specialize such a machine for the needs of their particular appli-

cation by re-programming the FPGAs. In these machines, the binding of functions

occurs at an even more primitive level than a reduced instruction set computer - at

the circuit level. While this late binding can allow an application to run at hardware

speeds, with the inherent parallelism of circuits, there is a price to be paid. The price

is in terms of longer compilation time (we must synthesize circuits!), and a non-trivial

con�guration time.

Because of slow con�guration time, re-use of FPGA logic, called virtual logic, is

computationally expensive. More e�cient virtual logic has been introduced to the

FPGA world, in the Plessey ERA [23], with the hardware subroutine - \a circuit or

part circuit optimized for the particular situation encountered, performing a speci�c

task at a speci�c time, and then being replaced by another and another as the appli-

cation demands." However, currently available high density FPGAs are not targeted

22 CHAPTER 1. INTRODUCTION

at computing, and thus their manufactures have not optimized con�guration time.

Con�guration time can be more than �ve orders of magnitude slower than circuit

execution speeds. Without virtual logic, current FPGAs are too small to be useful

singly for most computing applications. Furthermore, when multiple FPGAs are used

in an array, an application's computational working set, de�ned as the set of active

circuits within a given con�guration period, must completely �t within the bounds

of the array.

1.3 FPGA-based Logic Emulation

Logic emulation is a particularly well suited application for FPGA computing. We

can use existing high level design language (HDL) compilers, or directly execute gate-

level netlists. Although typical application size is larger than one FPGA, an array

of FPGAs can emulate a circuit if we partition the circuit. With a large enough

array, the computational working set of the algorithm is small enough to avoid the

con�guration overhead of using virtual logic. And �nally, the application can be

compiled with purely static communication patterns.

Target System

FPGA

Host Workstation Emulation System

Figure 1-3: Typical Logic Emulation System

1.4. CONTRIBUTIONS OF THESIS 23

FPGA-based logic emulators are capable of emulating complex logic designs at

clock speeds six orders of magnitude faster than a software simulator [44]. This per-

formance is achieved by partitioning a logic design, described by a netlist, across

an interconnected array of FPGAs (Figure 1-3). This array is connected to a host

workstation which is capable of downloading design con�gurations, and is directly

wired into the target system for the logic design. The netlist partition on each FPGA

(termed FPGA partition throughout this thesis), con�gured directly into logic cir-

cuitry, can then be executed at hardware speeds.

Once con�gured, an FPGA-based emulator is a heterogeneous network of special

purpose processors. Each FPGA processor is speci�cally designed to cooperatively

execute its embedded circuit partition. As parallel processors, logic emulators are

characterized by their interconnection topology (network), target FPGA (processor),

and supporting software (compiler). The interconnection topology describes the ar-

rangement of FPGA devices and routing resources (e.g. full crossbar, two dimension

mesh, etc.). Important target FPGA parameters include gate count (computational

resources), pin count (communication resources), and mapping e�ciency. Support-

ing software is extensive, combining netlist translators, logic optimizers, technology

mappers, global and FPGA-speci�c partitioners, placers, and routers.

1.4 Contributions of Thesis

In existing FPGA-based logic emulation architectures, both the logic con�guration

and the network connectivity remain �xed for the duration of the emulation. Thus the

computational working set consists of the entire netlist to be emulated. Furthermore,

each inter-FPGA partition signal consumes dedicated FPGA I/O resources { FPGA

pins. For mapping typical circuits onto available FPGA devices, FPGA partitions

are predominately pin limited; all available gates can not be utilized due to lack of

24 CHAPTER 1. INTRODUCTION

pin resources to support them. Low utilization of gate resources increases both the

number of FPGAs needed for emulation and the time required to emulate a particular

design. Pin limits set a hard upper bound on the maximum usable gate count any

FPGA gate size can provide. In other words, for a pin limited design, if we increase

the number of available FPGA gates without increasing the number of available pins,

we cannot use the additional gates. Trends indicate that this discrepancy will only get

worse as technology scales - available gate counts are increasing faster than available

pin counts.

To overcome pin limitations in FPGA-based logic emulators [5], 1 this thesis pro-

poses the use of a compilation technique based on Virtual Wires [6]. This method can

be applied to any topology and FPGA device, although some bene�t substantially

more than others. A virtual wire represents a connection between a logical output

on one FPGA and a logical input on another FPGA. Established via a pipelined,

statically routed [30] communication network, these virtual wires increase available

o�-chip communication bandwidth by multiplexing the use of FPGA pin resources

(physical wires) among multiple emulation signals (logical wires).

We show that Virtual Wires e�ectively relax pin limitations. While low pin counts

may decrease emulation speed, there is no longer a hard pin constraint which must

be enforced. Since pin limits no longer restrict the amount of logic per FPGA,

fewer FPGAs will be needed to emulate a given design. If this reduction in system

size is large, the use of Virtual Wires can potentially increase emulation speed. We

demonstrate that the gate overhead of using Virtual Wires is low, comprising gates

which could not have been utilized anyway in the purely hardwired implementation.

Furthermore, the
exibility of Virtual Wires allows the emulation architecture to be

balanced for each logic design application.

1Although this paper focuses on logic emulators, Virtual Wires technology can be employed in
any system comprising multiple interconnected FPGAs.

1.4. CONTRIBUTIONS OF THESIS 25

In our �rst implementation, we support Virtual Wires with a Virtual Wires com-

piler. We augment available o�-the-shelf technology, with special tools for Virtual

Wires. These additional software tools are used after the translation, mapping, and

partitioning programs, and before the FPGA speci�c software. In particular, we

have developed a Global Placer, Dependency Analyzer, Virtual Router, and Route

Embedder (Chapter 5).

The Global Placer assigns FPGA partition to speci�c FPGAs in the emulator

hardware. After global placement, the Dependency Analyzer is run to analyze the

logic signal dependencies among the FPGA partitions. With this dependency infor-

mation, the Virtual Router then statically schedules and routes inter-FPGA commu-

nication. The Route Embedder uses the resulting schedule and route to construct, in

the FPGA technology, a statically routed network. This constructed FPGA hardware

consists of a sequencer and shift loops (Chapter 6). The sequencer is a distributed

�nite state machine. It establishes virtual connections between FPGAs by strobing

logical wires into special shift registers, the shift loops. Shift loops are then alternately

connected to physical wires according to a predetermined schedule. These structures

are embedded directly into the netlist for each FPGA.

In our results from compiling two complex designs, the 18K gate Sparcle micro-

processor [3] and the 86K gate Alewife Communications and Memory Management

Unit (A-1000) [29] (to be presented in Chapter 7), we show that the use of Virtual

Wires can decrease FPGA chip count by a factor of 3 for Sparcle and 10 for the

A-1000, assuming a crossbar interconnect. With Virtual Wires, a two dimensional

torus interconnect can be used for only a small increase in chip count (17 percent for

the A-1000 and 0 percent for Sparcle). Without Virtual Wires, the cost of replac-

ing the full crossbar with a torus interconnect is over 300 percent for Sparcle, and

practically impossible for the A-1000. Estimated emulation speeds are comparable to

speeds without using Virtual Wire, ranging from 1 MHZ for the A-1000 to 2 MHZ

26 CHAPTER 1. INTRODUCTION

for Sparcle. Neither design compilation is bandwidth limited, but rather constrained

by its critical path. With Virtual Wires, use of a low dimension network reduces

emulation speed proportional to the network diameter: a factor of 2 for Sparcle and

6 for the A-1000. Based on the implications of these results we have fabricated a

scalable, low cost emulation system [42].

Our �nal contribution is an analysis of the overhead of Virtual Wires and hard

wires. We introduce Rent ratios and a topological factor for predicting pin limitation

overhead without Virtual Wires. For Virtual Wires, we derive the optimal partition

size. To conclude, we show how Virtual Wires gate utilization can scale with increas-

ing FPGA device size, while hardwired utilization may even decline with increasing

FPGA device size.

1.5 Organization of Thesis

This thesis continues with Chapter 2 detailing background information in several re-

lated �elds. Previous work on hardware accelerated logic simulation provides much of

the insight for today's logic emulators. Details of recent FPGA-based logic emulation

systems, in industry and academia, support the pin limitation claims to be presented

in Chapter 3. We also contrast Virtual Wires with related work in multiprocessor

computing and data networks. Chapter 3 discusses the extent of the pin limitation

problem in FPGA emulators and presents both a theoretical and an experimental

formulation of the partitioning problem.

We present the basic concept behind Virtual Wires in Chapter 4, and give some

details of a complete software system based on VirtualWires in Chapter 5. In Chapter

6 we continue by describing the internal FPGA logic necessary for Virtual Wires. This

chapter also describes a scalable, low cost emulation board which has been fabricated

to verify this research. In Chapter 7 we use the front end of this software system to

1.5. ORGANIZATION OF THESIS 27

determine the bene�t of using Virtual Wires. We perform these experiments by com-

piling two current benchmark designs for various interconnect topologies and FPGA

device sizes. Following this empirical study, Chapter 8 presents a theoretical com-

parison of emulation with and without Virtual Wires. Finally, Chapter 9 concludes

the thesis, summarizing the contributions made and presenting an extensive outline

of directions for future research.

28 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Hardware Accelerated Logic Simulation

At a high level, hardware accelerated logic simulation is very similar to FPGA-based

logic emulation. The common approach to making these simulations go fast is to use

large amounts of hardware. This section brie
y discusses two such systems which do

not use FPGAs, but are related to the ideas presented in this thesis. Both systems

are parallel and require circuit partitioning. The �rst also has an attribute which isn't

normally considered a simulator function - the ability to directly interface with real

hardware (logic emulators use special \pods" which plug into the target system for

interfacing). The second uses a communication technique analogous to static routing,

the communication technique used by Virtual Wires.

Designed at the IBM T. J. Watson Research Center, the Yorktown Simulation

Engine (YSE) [38] is a special-purpose highly-parallel programmable logic machine

for the gate-level simulation of logic. It can simulate up to one million gates at a

speed of over two billion gate simulations per second. It is composed of an array

of logic processors, each capable of simulating 4096 gates. An inter-processor switch

provides communication among up to 256 logic array processors. Applications range

29

30 CHAPTER 2. BACKGROUND

from design veri�cation and fast simulation, to logic analysis and \partial hardware

bring-up" (i.e. logic emulation). This engine is a follow-on to the previous Logic

Simulation Machine [12], both of which are based on the concepts of John Cocke.

The Very Large Simulation Subsystem (VLSS) [45] is another massively parallel

simulation engine, capable of performing hundreds of billions of gate evaluations per

second. It is a compiled simulator with each processor being a special purpose full-

custom chip containing 64 two-input one-output programmable gates. A full system,

with 128,000 such chips, is required to achieve the rated performance. Communication

is done with a hierarchy of buses using a time-division multiplexing (TDM) technique.

In this technique, data is strobed from/to the bus by comparing a stored time-slot

value for each pin with an on-board time-slot counter.

See [10] for a more comprehensive survey of hardware accelerators used in com-

puter aided design.

2.2 FPGA-based Logic Emulation

Even before FPGAs existed, logic emulation based on cellular arrays [39] was being

explored in academia. Cellular arrays can be traced back to work on cellular automata

in the 1960's [37]. However this work could not be applied to logic emulation without

the enabling technology of large scale integration, rapidly progressing in the 1970's.

In Frank Manning's 1975 thesis [34], the use of rectangular arrays of programmable

logic cells, in which information stored in a cell tells that cell how to behave, was

proposed as an e�cient means of logic simulation. Parts of his work explicitly show

how such an \embedded machine" can be used in the place of another machine -

conceptually very similar to FPGA-based logic emulation.

Since this work, FPGA-based logic emulation systems have been developed for

design complexities ranging from several thousand to several million gates. The soft-

2.2. FPGA-BASED LOGIC EMULATION 31

ware for these systems is considered the most complex component and comprises a

major portion of system price. In 1992, the price for a system was in the range of $2

to $3 per emulated gate. Thus such a system can easily merit a million dollar price

tag.

Quickturn Inc. has developed emulation systems which interconnect FPGAs in

a two-dimensional mesh [44] and, more recently, in a partial crossbar topology [33].

In both systems, they used the Xilinx 3090 series FPGA [46]. In the �rst system,

they used FPGA for logic as well as inter-FPGA routing. In the second system,

the Enterprise system, they added a custom crossbar chip alongside each FPGA. In

this second system, nearly �fty FPGAs and �fty crossbar chips are contained on a

single board capable of emulating up to 30,000 gates. These boards communicate via

a sophisticated backplane structure (containing more custom crossbar chips). The

system hierarchy can be further expanded by cabling together multiple boxes (each

with a backplane) for a maximum capacity of over 6 million gates. Up to 64 Mbytes

of memory can be emulated with the addition of special memory emulation cards.

Quickturn also sells MARS emulators, originally developed by Pie Design Sys-

tems, Inc. This system is very similar to Quickturn's Enterprise system. The MARS

systems use the more advanced Xilinx 4000 series [47] and do not have special cross-

bar chips. The MARS system takes advantage of the Xilinx 4000's ability to emulate

memory directly in the FPGA.

The Virtual ASIC system by InCA, ltd. [25] uses a combination of nearest neighbor

and crossbar interconnect. This system is targeted at the low-end of the market and

is not scalable like the Quickturn system. InCA also provides a logic partitioning tool

which can be used for designers who build their own hardware.

AnyBoard, developed at North Carolina State University, [17] is an FPGA-based

recon�gurable system. Among other uses, Anyboard can be used as a logic emulator

for designs of a few thousand gates. The Anyboard project is focused on providing a

32 CHAPTER 2. BACKGROUND

low cost, rapid prototyping solution for universities.

For an overview of other available prototyping and emulation solutions, see [14].

2.3 Network Communication

Related network communication concepts for improving usable bandwidth include

static routing, virtual circuit routing, and virtual channels.

The set of inter-FPGA communications established via Virtual Wires makes up a

statically routed network. Static routing can be used whenever communication can

be predetermined. Static refers to the fact that all data movement can be determined

and optimized at compile-time. This mechanism has been used in scheduling real-

time communication in a multiprocessor environment [30]. More recently, simulated

annealing and linear programming techniques have been used to statically schedule

communication patterns for the Numesh multicomputer [35]. Static routing has also

been used in FPGA-based systolic arrays, such as Splash [20].

Virtual circuit routing [9], found in connection-oriented networks, is store-and-

forward switching in which a particular path is set up when a communication session

is initiated, and is maintained for the duration of that session. A session in this

context is like a call in a telephone network - it represents a node pair that are

sending messages to each other. The virtual aspect of such a circuit is that the

physical connections are not dedicated to a single session, but can be multiplexed,

like Virtual Wires, among several sessions. This allows transmission bandwidth to be

used on an as-needed basis.

Using Virtual Wires for static routing for logic emulation is also similar to the

use of virtual channels [16] in dynamically-routed networks. These channels decouple

resource allocation, allowing active packets to pass blocked packets to use bandwidth

that would otherwise be left idle.

Chapter 3

The Pin Limitation Problem

One of the high level design issues faced in FPGA-based logic emulation is the pin

limitation problem. This problem is not unique to logic emulation - any attempt

to split a large design onto multiple modules, as in the construction of mainframes

in the 1960's, can potentially evoke this problem. If each module had an unlimited

number of pins, then this problem would not exist. We could simply pack the modules

randomly, connect up the pins, and have a functional system.

3.1 Pin Limitations in Logic Emulation

In existing FPGA-based emulator architectures, both the logic con�guration and the

network connectivity remain �xed for the duration of the emulation. Each emulated

gate is mapped to one FPGA equivalent gate and each FPGA partition signal is

allocated to one FPGA pin. For a partition to be feasible, the partition's gate and pin

requirements must be no greater than the available FPGA resources. This constraint

yields the four scenarios shown in Table 3.1.

For mapping typical circuits onto available FPGA devices, partitions are predomi-

nately pin limited; all available gates can not be utilized due to a lack of pin resources

33

34 CHAPTER 3. THE PIN LIMITATION PROBLEM

Not Limited Gate limited

(unused FPGA pins and gates) (no unused gates, some unused pins)

Pin Limited Balanced

(no unused pins, some unused gates) (no unused pins or gates)

Table 3.1: Possible Partition Limitation Scenarios

to support them. For example Figure 7-2, in Chapter 7, shows that for equal gate

counts in the FPGA partitions and FPGA devices, the required pin counts for FPGA

partition sizes of our sample designs are much greater than the available FPGA device

pin counts. Low utilization of gate resources increases both the number of FPGAs

needed for emulation and the time required to emulate a particular design. Pin limits

set a hard upper bound on the maximum usable gate count any FPGA gate size

can provide. This discrepancy will only get worse as technology scales; trends (and

geometry) indicate that available gate counts are increasing faster than available pin

counts.

Besides the primary e�ects of pin limitation just outlined, logic emulators are

also limited by several secondary e�ects. For example, when emulating VLSI chips,

we would like to emulate on-chip SRAM memory. Current emulators either use the

internal FPGA SRAM to emulate this memory, or provide recon�gurable cards which

consume valuable pins. But most on-chip memories are much smaller than a single

o�-the-shelf SRAM memory chip, which is very cheap. Pin limitations restrict us

from placing these cheap memories where they can be most useful - directly inside

the FPGA array.

3.2. THEORETICAL FORMULATION: GRAPH PARTITIONING 35

Another problem is observability. Since the purpose of logic emulation systems is

to help debug and verify a design, we would ideally like access to all internal signals.

But any signals we observe must use pins!

3.2 Theoretical Formulation: Graph Partitioning

As de�ned in set theory, a partition of A is a collection of pairwise disjoint nonempty

sets, fAig, whose union is A:

� Ai; Aj 2 A and i 6= j implies Ai \Aj = ;, and

� A =
S
Ai2AAi.

In particular, we are interested in network partitions, where each set member is a

node of a directed hypergraph network. In electrical circuits, these nodes represent the

primitive cells of a digital design (usually de�ned in a library) and are interconnected

by hyperedges which represent the digital wiring. \Hyper" refers to the possibility of

fanout in a digital network. The graph partitioning problem belongs to the class of

NP-hard problems [36] - given n nodes to partition into m subsets, the number of

possible di�erent partitionings, P , is:

P =
n!

(n=m)!mm!

In FPGAs, di�ering internal resources, such as registers and lookup tables, com-

plicate the partitioning problem. However, for simplicity we assume that all FPGA

resources are either gates or pins. The number of feasible partitionings is then reduced

only by the �nite pin and gate restrictions on each subset, or partition.

Given partitions with maximum gate capacity G and �xed pin capacity P , and

individual gate and pin requirements of gi and pi, we can then de�ne an optimal

36 CHAPTER 3. THE PIN LIMITATION PROBLEM

partitioning, with respect to circuit size, as one which partitions a set of n nodes into

the minimal number of subsets m:

min(m)

gi < G; i 2 m

pi < P; i 2 m

Pin requirements for a given partitioning can be determined from a two dimen-

sional adjacency matrix derived from the edges in the unpartitioned network. In

adjacency matrixM , each termMij , stores how many connections go from node i to

node j. When partitioning a network, we collapse this matrix into a new adjacency

matrix,M 0, in whichM 0

ij stores the number of connections from partition subset i to

partition subset j. M 0 can be derived from M by summing the rows or columns of

all the nodes collapsed into each partition row or column.

Because the partitioning problem can not be solved in polynomial time, program-

mers must use e�cient heuristic partitioning algorithms to optimize partitions with a

reasonable amount of computational e�ort. Well-known algorithms include the Kern-

inghan and Lin (K&L) [26] mincut algorithm which has complexity in the number

of components of O(n2 log n) for an optimization pass, and an e�cient bisection

heuristic by Fiduccia and Mattheyses (F&M) [19] which exhibits linear complexity in

the number of pins, running in O(p).

3.3 Empirical Observation: Rent's Rule

In 1960, E.F. Rent of IBM prepared two internal memoranda containing the log plots

of pins versus gates (termed blocks in the literature of that time) for portions of the

IBM series 1400 computers. In [31], Landman and Russo present a careful analysis of

3.3. EMPIRICAL OBSERVATION: RENT'S RULE 37

his results based on a computer algorithm used to partition several designs for various

pin limits. The basic result is the following equation:

Rent0s Rule : Np = KpN
B
g (3:1)

where Np is the number of pins, Ng is the number of gates, Kp is a proportionality

constant, and B is Rent's constant. The values of Kp and B reported for the IBM

computers were 2.5 and 0.6, respectively. This rule only applies if Ng � 1. As with

most rules, it has limitations. See [31] and [7].

Equation 3.1 can be used to measure the communication parameters of a given im-

plementation technology as well as the parameters of a design speci�cation. A design's

architecture and organization greatly a�ect its parameters. For example, pipelining

increases communication requirements due to dependencies between pipeline stages.

In high-speed systems, reliance on parallel I/O and avoidance of multiplexed or bidi-

rectional I/O places high demands on communication requirements.

Figure 3-1 shows design parititioning data points �tted to Rent's rule on a log-log

scale.1 When Rent's curve is applied to di�erent size partitions of the same circuit,

then we can assign a special meaning to the constants Kp and B (since this is a

log-log curve, B is the slope of the curve and Kp is the intercept). Kp gives us a

rough indication of the magnitude of the communication requirements of the circuit,

while B provides information about the inherent locality of the partitioned circuit.

For a circuit, the larger B is, the less communication locality there is. Typical values

of B for circuits are in the range of 0:4 � 0:7. For a technology, the larger B is the

more long-distance interconnect is available. For example, B = 0:5 for a 2-d mesh

and B = 1 for a crossbar. Rent's constant can tell us how well a category of designs

will scale - if Rent's constant for the technology is smaller than that of the design,

then we know that at some point we cannot continue to scale e�ciently.

1these points are from the Sparcle design to be discussed in Chapter 7.

38 CHAPTER 3. THE PIN LIMITATION PROBLEM

|

1200
|

1897
|

3795
|

6000

|60

|70

|80

|90

|100

|200

|300

 Partition Gate Count, Ng

 P
ar

tit
io

n
P

in
 C

ou
nt

, N
p

 slope = B

�

�

�

�

�

�

�

Figure 3-1: Example Rent's Rule Plot

Assuming we are in the pin-limited region, values of B near 0.5 mean that a

reduction in total pin requirements can result in a roughly quadratic increase in the

usable gates per module. Thus an optimizing partitioner can be quite valuable. In

fact any mechanism which reduces the requirements on FPGA pin resources, such as

the use of a crossbar network, can have the same quadratic increase. However, when

Virtual Wires are employed, this quadratic e�ect will be mitigated to a linear tradeo�

of pins for internal gate resources. See Sections 7.6, Section 7.8, and Chapter 8 for

more detail on these tradeo�s.

Chapter 4

Virtual Wires

To overcome pin limitations in FPGA-based logic emulators, we propose the use of

a compilation technique which utilizes Virtual Wires [6]. This chapter describes an

implementation of Virtual Wires in the context of a complete emulation software

system, independent of target FPGA device and interconnect topology. Chapter 5

will continue with focus on the implemented software framework itself: the Virtual

Wires Compiler.

4.1 Conceptual Overview

One to one allocation of emulation signals (logical wires) to FPGA pins (physical

wires) does not exploit available o�-chip bandwidth because:

� emulation clock frequencies are one or two orders of magnitude lower than the

potential clocking frequency of the FPGA, technology.

� all logical wires are not active simultaneously.

The emulation clocking frequency is slower than the potential FPGA clocking

frequency because of long internal FPGA routing delays and because of long inter-

39

40 CHAPTER 4. VIRTUAL WIRES

FPGA routing delays. The internal FPGA routing delays are long because the signals

must pass through the programmable switches which determine how the FPGA is

routed. Inter-FPGA delays are slow because of chip-to-chip crossings. In comparison

with a non-programmable circuit, logical functions are also slower. However, internal

registers can toggle just as fast as in a non-programmable circuit.

In end-product FPGA circuits, higher clocking speeds are achieved by pipelining

the design more deeply. In other words, the maximum circuit depth is reduced so

that less delay is incurred in the critical paths. But when we map a VLSI chip design

for a fast technology onto FPGAs, this extra pipelining is not automatically added.

Logical wires are not active simultaneously because of di�ering computational de-

lays, and signal dependencies. While glitches (changes in a signal during the early part

of the clock cycle, before the signal settles to a �nal value) can propagate throughout

the circuit, their e�ects are irrelevant in a synchronous design. Thus each signal only

needs enough bandwidth to transfer its value once per emulation clock. Furthermore,

these windows of transfer are not restricted to happen at any particular time during

the emulation clock period, so long as signal dependencies are observed.

Thus although the FPGA partitions are pin limited, each pin is severely under-

utilized. For an example, if an FPGA's pins could be clocked at 50 MHz, but are

only clocked at an emulation clock of 1 MHz, a system which utilizes 100 percent of

available pins can only exploit 2 percent of the theoretically available bandwidth! We

would like to make better use of available bandwidth, especially since I/O limitations

are causing low gate e�ciency.

By pipelining and multiplexing physical wires, we can create Virtual Wires to

increase usable bandwidth. A virtual wire represents a single connection between a

logical output on one FPGA partition and a logical input on another FPGA partition.

However, this connection is composed of one or more intermediate physical wires,

and furthermore, each of these physical wires may be shared, in a time multiplexed

4.2. RESOURCE SCHEDULING 41

fashion, with other virtual connections. Figure 4-1 shows an example of six logical

wires allocated to six physical wires. In comparison, Figure 4-2 shows the same

example with the six logical wires sharing a single physical wire. In this example,

the physical wire is multiplexed, or virtualized, between two pipelined shift loops (see

Section 6.1.1). By clocking the physical wires at the maximum frequency of the

FPGA technology, several logical connections can share the same physical resources

without a signi�cant slowdown in the emulation clock speed.

4.2 Resource Scheduling

Multiplexing and pipelining pin resources introduces the issues of resource contention

and data dependency. In a hardwired system, where FPGA pins are dedicated, there

can be no resource contention: pins are not shared. Also, data dependencies are

automatically met when pins are locked for the entire emulation clock. In our Virtual

Wires system we must rely on resource scheduling to avoid contention and to meet

any data dependencies.

Systems based on Virtual Wires exploit several properties of digital circuits to

allow e�cient resource scheduling. In a logic design, evaluation
ows from system

inputs to system outputs. In a synchronous design with no combinational loops,

this
ow can be represented as a directed acyclic graph. Thus, through intelligent

dependency analysis of the underlying logic circuit, logical values between FPGA par-

titions only need to be transmitted once per emulation clock period (see Section 5.6).

Furthermore, since circuit communication is inherently static (the wiring does not

change from one clock period to the next), communication patterns will repeat in a

predictable fashion. By exploiting this predictability, communications can be stati-

cally scheduled to increase the utilization of pin bandwidth. Section 5.7 discusses our

resource scheduling solution in detail.

42 CHAPTER 4. VIRTUAL WIRES

Logical InputsLogical Outputs

Physical Wire

FPGA #1 FPGA #2

Figure 4-1: Hard Wire Interconnect

Logical Outputs

Logical Inputs

Logical Inputs
Logical Outputs

Physical Wire

FPGA #1 FPGA #2

Mux
Shift Loops

Figure 4-2: Virtual Wire Interconnect

4.3. THE EMULATION CLOCKING FRAMEWORK 43

Emulation Clock

Phase 1 Phase 2 Phase 3

Pipeline Clock
Eval Eval Eval

Figure 4-3: Emulation Phase Clocking Scheme

4.3 The Emulation Clocking Framework

The various clocks used in the Virtual Wires system de�ne a framework for system-

level design with Virtual Wires. Let us �rst describe this framework based on multiple

clocks (see Figure 4-3).

The emulation clock period is the clock period of the logic design being emulated.

We break this clock into evaluation phases. We use multiple phases to evaluate

the multiple FPGA partitions across which the combinational logic between
ip-

ops in the emulated design may be split. In other words, evaluation within each

FPGA partition, followed by the communication of results to other FPGA partitions

is accomplished within a phase.

A phase is divided into two parts: an evaluation portion and a communication

portion. Evaluation takes place at the beginning of a phase, and logical outputs of

each FPGA partition are determined by the logical inputs in the input shift loops. At

the end of the phase, outputs are sent to other FPGA partitions with the pipelined

shift loops and intermediate hop stages (see Chapter 6). These pipelines are clocked

with a pipeline clock (Figure 4-3) at the maximum frequency of the FPGA. After all

phases within an emulation clock period are complete, the emulation clock is ticked.

44 CHAPTER 4. VIRTUAL WIRES

In contrast, hardwired systems dedicate a physical pin to a distinct wire in the

circuit and let the evaluation \
ow" through multiple partitions within the emulation

clock period until the entire system settles. Phases in Virtual Wires systems allow a

physical pin that is unused during some portion of the emulation clock period to be

utilized by other signals.

4.4 Limitations and Assumptions

The use of Virtual Wires is limited to the synchronous logic portion of a digital

design. Any asynchronous signals must still be \hardwired" to dedicated FPGA

pins. This limitation is imposed by the inability to statically determine dependencies

in asynchronous cycles. Furthermore, we assume that each combinational loop (such

as a
ip-
op) in a synchronous design is completely contained in a single FPGA

partition. This last assumption is taken care of if combinational loops are contained

in the base library primitives of the input technology.

For simplicity, this model assumes that the emulated logic uses a single global

clock. We also assume that the circuit contains no internal busses or tri-state devices.

There is no fundamental reason why these limitations cannot be overcome with a

more sophisticated implementation of Virtual Wires. However, such improvements

are beyond the scope of this thesis.

Chapter 5

Software Framework

In our �rst implementation, we support Virtual Wires with a Softwire Compiler.

The Virtual Wires portion of this compiler analyzes logic signal dependencies and

statically schedules and routes FPGA communication. These results are then used

to embed, in the FPGA technology, a statically routed network.

5.1 Overview

The input to the Softwire compiler consists of a netlist of the logic design to be em-

ulated, target FPGA device characteristics, and FPGA interconnect topology. The

compiler then produces a con�guration bitstream which can be downloaded onto the

emulator. Figure 5-1 outlines the compilation steps involved. Brie
y, these steps

include translation and mapping of the netlist to the target FPGA technology, parti-

tioning the netlist, placing the partitions into an interconnect topology, routing the

inter-node communication paths, and �nally FPGA-speci�c automated placement

and routing (APR). The shaded tools in Figure 5-1 are the tools which we designed

for implementing Virtual Wires. These tools include the Global Placer, Dependency

Analyzer, Virtual Router, and Route Embedder. These tools take the place of the

45

46 CHAPTER 5. SOFTWARE FRAMEWORK

Logic Netlist

Partitioner

Global
Placer

FPGA Configuration Data

 Route
Embedder

FPGA−Specific
 APR

Dependency
 Analyzer

 Netlist
Translator

Technology
 Mapper

Virtual
Router

Existing Components

New or Modified
Components

Key:

Figure 5-1: Softwire Tool Flowchart

5.2. NETLIST TRANSLATION 47

hardwired global place and route tools of hardwired logic emulators. We implemented

these new tools with less than 10,000 lines of C and Unix scripts.

5.2 Netlist Translation

The input netlist to be emulated is usually generated with a hardware description

language or schematic capture program. This netlist must be syntactically translated

into a format readable by our Softwire tools. Commercial tools are available for

generic translation.

5.3 Technology Mapping

The translated netlist is speci�ed in terms of the source technology library - for

example LSI's LCA100K technology. This netlist must next be mapped to a target

library of FPGA primitives. The technology mapping problem can be de�ned as

follows:

TechnologyMapping Problem: Given a netlistNs and a source library

Ls, which de�nes the functionality of the primitives in Ns, produce a

netlist Nt which is de�ned in terms of a given target library Lt.

It is important to perform this operation before partitioning so that partition gate

counts accurately re
ect the characteristics of the target FPGAs. Otherwise, di�er-

ences in technology e�ciencies will adversely a�ect the partitioning step.

A very simple technology mapping involves de�ning each primitive in the source

library in terms of primitives in the target library. The ine�ciency of this kind of

mapping can be largely made up if followed by a logic optimization pass. If more

sophisticated mapping is required, commercially available tools can be purchased

which will map from one technology to another.

48 CHAPTER 5. SOFTWARE FRAMEWORK

After completion of this step, the netlist has been mapped as if the target system

were one large FPGA. If desired, we can use logic optimization tools on this netlist

to further optimize for the target technology.

5.4 Partitioning

After mapping the netlist to the target technology, it must be partitioned into logic

blocks which can �t into the target FPGAs. With only hardwires, each partition must

have both fewer gates and fewer pins than the target device. With Virtual Wires, the

total gate count (logic gates and virtual wiring overhead) must be no greater than

the target FPGA gate count. In our current implementation, we use the Concept

Silicon partitioner by InCA [25]. This partitioner performs K-way partitioning with

min-cut and clustering techniques to minimize partition pin counts.

The output of the partitioning tool consists of a set of FPGA partitions, and a top

level netlist which contains the information for wiring the partitions together to form

the original netlist. It is important to note that partitioning in no way a�ects the

underlying digital circuit - it only involves a re-arrangement of the circuit hierarchy

to produce top level modules which will each �t into an individual FPGA, and which

have minimum interconnection costs. Figures 5-2 and 5-3 show an example circuit

before and after partitioning. The elements in each dotted circle will be grouped

together in the same FPGA partition.

5.5 Global Placement

Following logic partitioning, individual FPGA partitions must be assigned to speci�c

FPGAs. In a crossbar topology, placement is not important, since each FPGA is

a distance of one from each other FPGA. However, in a mesh, placement is more

5.5. GLOBAL PLACEMENT 49

X

Connection

Logic Element

+ &

& + &

&

+

Figure 5-2: Unpartitioned Circuit

X

Connection

Partition

Logic Element

+ &

& + &

&

+

Figure 5-3: Partitioned Circuit

50 CHAPTER 5. SOFTWARE FRAMEWORK

important. Initially, we have implemented a placer which minimizes total system

communication for a given topology, thus reducing the required bandwidth for trans-

ferring the digital information. In the future, we would like to place the FPGA's to

minimize the distances of signals along the critical path.

Total system cost T , is determined by multiplying the adjacency matrix M 0 (de-

�ned in Chapter 3) for the input partitioning by a Manhattan distance matrix D

determined by the emulation system topology. All terms in this resulting product

matrix are then summed to yield total system costs:

T =
X
ij

M 0

ij �Dij

By allowing any positive integer distance matrix, our compiler can map and op-

timize for arbitrary topology. Tables 5.1 and 5.2 show example distance matrices for

the 3x3 mesh and crossbar topologies shown in Figures 5-4 and Figure 5-5.

We formally de�ne this placement problem as follows:

Global Placement Problem: Given a set of FPGA partition with its

associated inter-partition connection matrix,M 0 and a set of FPGAs with

its associated inter-FPGA distance matrixD, assign each FPGA partition

to exactly one FPGA such that total system cost T is minimized.

By our de�nition of total system cost, an optimal global placement will minimize

the total number of chip-to-chip virtual wires, including through wires. The disad-

vantage of this cost metric is that it will not optimize for potential hot spots in the

network interconnection. However, since there is no limit to the number of logical

wires than can be multiplexed on a given physical wire, the net e�ect of any network

congestion will be a slow down in emulation speed, not an increase in the number of

FPGA devices required.

As de�ned, global placement is an NP-complete integer assignment problem. How-

ever, simple algorithms to improve a given placement do exist. Our implemented

5.5. GLOBAL PLACEMENT 51

1 2 3

4 5 6

7 8 9

Figure 5-4: Mesh Topology

1
2

3

4

5

67

8

9 CROSSBAR

Figure 5-5: Crossbar Topology

52 CHAPTER 5. SOFTWARE FRAMEWORK

���������������������

0 1 2 1 2 3 2 3 4
1 0 1 2 1 2 3 2 3
2 1 0 3 2 1 4 3 2
1 2 3 0 1 2 1 2 3
2 1 2 1 0 1 2 1 2
3 2 1 2 1 0 3 2 1
2 3 4 1 2 3 0 1 2
3 2 3 2 1 2 1 0 1
4 3 2 3 2 1 2 1 0

���������������������

Table 5.1: Distance Matrix for a 3x3 Mesh Topology

���������������������

0 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1
1 1 1 1 0 1 1 1 1
1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 0

���������������������

Table 5.2: Distance Matrix for a 3x3 Crossbar Topology

5.6. DEPENDENCY ANALYSIS 53

placement optimizer �rst makes a random placement. This is followed by a local

search for cost-reducing swaps. The swaps are discovered by looping through all pos-

sible

0
B@ m

2

1
CA pairwise swaps, and choosing either the best possible swaps, or choosing

good swaps when they are �rst found. For further optimization, we have implemented

a simulated annealing [28] algorithm. This algorithm is iteratively used to improve

the resulting placement. The advantage of using simulated annealing is that local

minima can be avoided. However, there is no useful upper bound on the time it takes

to �nd an optimal solution.

5.6 Dependency Analysis

The circuits in the FPGA partition for each FPGA form a sequential machine (Fig-

ure 5-6). Since each FPGA partition is to be completely contained in a single FPGA,

the execution of the internal circuitry may not seem relevant to forming multi-FPGA

circuits. This is not the case - we must know which outputs depend on which inputs

for each FPGA partition in order to correctly meet circuit dependencies.

We de�ne signal dependence as follows:

Signal Dependence: An output depends on an input if a change in that

input can combinationally change the output.

In the spirit of �nite state machines (FSMs), we de�ne a Moore output to be a

partition output which only depends on the internal next state. A Mealy output can

depend on the next state, as well as inputs to the machine. If all FPGA partitions

are strictly Moore machines (with only Moore outputs), then there is no need for

dependency analysis. However, this is not the case - combinational paths may pass

through multiple FPGA partitions.

54 CHAPTER 5. SOFTWARE FRAMEWORK

Inputs Outputs

Current StateNext State

Registers

Combinational
 Logic

Figure 5-6: Sequential Machine

5.6. DEPENDENCY ANALYSIS 55

Primitive Dependence
Combinational Element All Inputs
Register Element No Inputs

Table 5.3: Dependence Rules for Library Primitives

The combinational logic in each FPGA partition forms a directed acyclic graph

(DAG), which we refer to as the signal
ow graph (SFG). Given a netlist, we calculate

a dependence matrix P , by backtracing all combinational paths from Mealy outputs

towards the inputs. In backtracing we assume that all outputs depend on all inputs

for combinational library primitives, and that no outputs depend on any inputs for

register library primitives (Table 5.3). In hierarchical netlists, the procedure is sim-

pli�ed with recursion - we can calculate a dependence matrix for each submodule,

and then use the submodule matrices when determining the parent's matrix.

In our initial implementation, P consists entirely of 1s and 0s. Pij = 1 if output i

depends on input j, and 0 otherwise. In the future, we plan to augment this analysis

with static timing information. In this case we will replace the values in P with the

propagation delay from each input to each output. If there is no dependence, the

propagation delay is �1.

Once we have determined P for each FPGA partition, we then determine the

SFG for the toplevel netlist which interconnects the FPGA partitions. Figure 5-7

shows an example of such a graph. Each node in this SFG represents a partition

output (or external I/O). Analysis of this graph reveals the critical paths. These will

a�ect the execution speed of our emulation. We de�ne the longest critical path to

be the path which passes through the most FPGA partitions combinationally. This

path may originate at an external input or internal register, and will terminate at an

external output or internal register. We cannot assume that each FPGA partition

is a combinational primitive - this could potentially produce combinational cycles.

56 CHAPTER 5. SOFTWARE FRAMEWORK

1 2

2 3

1

Out

In

X

External I/O

An Output of Partition X

In

Figure 5-7: A Signal Flow Graph

5.7. VIRTUAL ROUTING 57

Note that in Figure 5-7 there is a path that passes through partition 1 twice. While

a combinational path may pass through a partition more than once, it cannot pass

through a particular partition output multiple times - this would imply that the

original network is not acyclic. Thus the worst case path length is at most the sum

of all FPGA partition outputs. In fact, given an arbitrarily partitioned circuit, the

tightest upper bound on combinational path length is equal to the maximum circuit

depth of the unpartitioned netlist1. The maximum circuit depth is de�ned as the

maximum levels of logic from any input (or register) to any output (or register).

5.7 Virtual Routing

The Virtual Router combines the operations of phase assignment and global routing.

Inputs consists of a set of FPGA partitions that have been assigned to FPGA devices,

the SFG from the dependency analysis, the topology of the emulation architecture,

and the pin assignment of the external pod connectors to the target system. We route

in both space and time simultaneously. This is achieved by scheduling each logical

wire to a particular phase and assigning pipeline time and space slots on physical

ports to form a virtual path. A port represents all direct connections from one FPGA

to another FPGA. Actual pin assignment for each port is reserved until the embed

phase.

Before phase assignment, we determine the criticality of each logical wire. Criti-

cality is determined by the length of the longest dependency path (in the SFG) which

originates at a logical wire. We want to schedule critical signals as early as possible

for the fastest execution.

Phase assignment uses the following methodology. In each phase, the router �rst

1Given at least two partitions, this worst case can be constructed by walking the critical path and
placing every element at an even level in partition 1 and every element at an odd level in partition
2. The remaining elements can go anywhere.

58 CHAPTER 5. SOFTWARE FRAMEWORK

determines the schedulable wires. A wire is schedulable if all wires it depends upon

have been scheduled in previous phases. The router then uses weighted shortest path

analysis, with a cost function based on pin utilization to route as many schedulable

signals as possible, routing the most critical signals �rst. Any schedulable signals

which cannot be routed are delayed to the next phase.

When signals must traverse multiple hops, global paths must be routed. All wires

in a given shift loop are pipelined along the same global path during the phase assigned

to that shift loop. These global paths are not restricted to dimension-order routes,

where signals must travel the complete distance in one dimension before turning to

travel in the next dimension. Such routing is often used to simplify dynamic routing in

multiprocessors. However, we do restrict these global paths to travel along a shortest

distance path in FPGA hops. For a global crossbar, this restriction allows only one

path. However, for a 2d-mesh, this restriction still allows available paths of

(X + Y)!

X! Y !

where X and Y are the 2-D manhattan distances between the neighboring nodes.

Our routing algorithm is allowed to choose among these alternate paths to avoid

congestion.

5.8 Route Embedding

The Route Embedder transforms the virtual routes assigned in the previous phase

to appropriately-sized shift loops and associated logic. This logic is in the form of a

netlist, and is added to each FPGA partition to complete the internal FPGA hardware

description. The details of this constructed FPGA hardware are described in the next

chapter.

In this implementation, the embed phase also assigns signals to particular pins

(the router only assigns them to an abstract port going to a neighbor FPGA). Further

5.9. VENDOR SPECIFIC APR 59

optimization to permute this pin assignment are performed at this stage to improve

intra-FPGA routing and timing.

After embedding is complete, there is one complete netlist for each FPGA. In order

to verify that all the transformations to get to these netlists worked correctly, we insert

all FPGA netlists into the top level netlist description of the emulator topology. We

simulate this system level netlist (it's just another circuit) in software to verify that

the virtual wires were constructed correctly. If our simulation vectors pass, then we

have successfully virtualized the original netlist. (This step is not necessary once we

trust that the virtualization is correct by construction.)

5.9 Vendor Speci�c APR

The netlists for each FPGA is then processed with vendor-speci�c FPGA automatic

place and route (APR) software to produce con�guration bitstreams. This software

step is usually somewhat time consuming - each FPGA must be separately place and

routed. However, this step is also very easy to parallelize, for example on a network

of workstations.

The resulting con�guration bitstream can then be downloaded to an FPGA array,

such as the system described in Section 6.2, with the vendor download software.

Once this last step is successful, we have an emulated machine which should be able

to completely mimic all external functionality of the original system.

60 CHAPTER 5. SOFTWARE FRAMEWORK

Chapter 6

Hardware Implementation

6.1 Hardware Support for Virtual Wires

The hardware for Virtual Wires is very simple. In fact, Virtual Wires requires no cus-

tom hardware support:1 the software compiler synthesizes the required components

directly into the FPGAs netlists. This \hardware" is downloaded into the con�gura-

tion for the FPGA device. Thus, any existing multi-FPGA system can take advantage

of virtual wiring.

There are many possible ways to implement hardware support for Virtual Wires.

This section describes a simple and e�cient implementation. The additional logic to

support Virtual Wires can be composed entirely of shift loops and a small amount of

phase control logic.

6.1.1 Shift Loops

A shift loop (Figure 6-1) is a circular, loadable shift register with enabled shift-in

and shift-out ports. Each shift register is capable of performing one or more of the

1unless one considers re-designing an FPGA optimized for Virtual Wires.

61

62 CHAPTER 6. HARDWARE IMPLEMENTATION

ld

si so

ld

si so

ld

si so

ld

si so

Drive

Load
Shift/Rotate

Physical
 Input

Logical Inputs

Logical Outputs

Physical
Output

ld

si so

Pipeclock

D

Q QQ

DD D

Q

Figure 6-1: Shift Loop Architecture

� Load | Strobes logical outputs into shift loop.

� Store | Drives logical inputs from shift loop.

� Shift | Shifts data from a physical input into shift loop.

� Drive | Drives a physical output with last bit of shift loop.

� Rotate |Rotates bits in shift loop.

Table 6.1: Shift Loop Operations

following operations: load, store, shift, drive, and rotate (Figure 6.1). In our current

design, for simplicity, all outputs loaded into a shift loop must have the same �nal

destination FPGA. As described in Section 5.6, a logical output can be strobed once

all its corresponding depend inputs have been stored. The purpose of rotation is to

preserve inputs which have reached their �nal destination, and to eliminate the need

for empty gaps in the pipeline when shift loop lengths do not exactly match phase

cycle counts. Note that in this implementation store cannot be disabled.

Shift loops can be re-scheduled to perform multiple output operations. However,

since the outputs of internal latches being emulated will depend on the logical inputs,

inputs will need to be stored until the tick of the emulation clock.

6.1. HARDWARE SUPPORT FOR VIRTUAL WIRES 63

6.1.2 Intermediate Hops

D Q
PI

Pipeclock

Drive

PO

Figure 6-2: Intermediate Hop Pipeline Stage

For networks where multiple hops are required (i.e. a mesh), one bit shift loops which

always shift and sometimes drive are used for intermediate stages (Figure 6-2). These

stages are chained together, one per FPGA hop to build a pipeline connecting the

output shift loop on the source FPGA with the input shift loop on the destination

FPGA.

6.1.3 Phase Control Logic

The phase control logic directs execution in our simple implementation. This logic

is distributed across the FPGA array to avoid bottlenecks and maximize speed. It

functions as a sequencer which controls the phase enable (denoted drive in Figure 6-1)

and strobe lines (denoted load in Figure 6-1), the pipeline clock, and the emulation

clock. The phase enable lines control the the shift loop to FPGA pin connections.

Recall that multiple shift loops (including single-bit shift stages for intermediate hop

pipelining) can connect to a single physical pin through tri-state drivers as depicted

in Figure 4-2. The phase strobe lines load the shift loops on the correct phases. The

control logic is generated with a state machine speci�cally synthesized and optimized

for a given phase speci�cation and FPGA partitioning.

64 CHAPTER 6. HARDWARE IMPLEMENTATION

6.2 Prototype Emulation System

While this paper focuses primarily on software, the ultimate goal of this research is

a low-cost, recon�gurable emulation system. Figure 6-3 shows a high level diagram

of a Virtual Wires prototype board. This board contains a 2-D mesh of 16 Xilinx

4005 FPGAs. Connecting each FPGA with its neighbors are 8 bit point-to-point

connections. The edges of the mesh are routed to connectors, allowing multiple board

systems to be built by plugging boards together.

To allow for low cost memory emulation, each FPGA has an optional 64Kx4

SRAM. The cost of these memories is not signi�cant compared to the FPGA costs.

Communication with the host can be established either through a low bandwidth

serial interface (via an HC11 microcontroller), or through a high bandwidth SBUS

interface. The SBUS interface is programmed into a 17th Xilinx chip. This high

bandwidth interface is important when running in a tightly coupled mode with a

software simulator (Section 6.2.1). External I/O to the target systems is connected

to unused edge connectors. In the case of VLSI chip emulation, this I/O, in the form

of an emulation pod, is inserted in the chip socket of the target system.

6.2.1 Simulation Acceleration

Prior to performing in-circuit emulation in a target system, it is desirable to simulate

the logical behavior of the design either individually or as a part of a target system

simulation. Current simulation technology limits comprehensive testing of this type

due to the slow gate evaluation speed of contemporary software simulators. Our

prototype system addresses this limitation by allowing the logical behavior of the

design under test to be emulated while the rest of the system is simulated. This tight

coupling of di�erent type of logic simulators is referred to as cosimulation.

Simulation is accelerated by replacing the design simulation model in a standard

6.2. PROTOTYPE EMULATION SYSTEM 65

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

XC4005

68HC11

Ground

5 Volts
Clock

8

8

8 8

64Kx4

 North
Connector

 South
Connector

RS−232
Serial

64Kx4

64Kx4

64Kx4 64Kx4

64Kx4

64Kx4

64Kx4 64Kx4

64Kx4

64Kx4

64Kx4

64Kx4

64Kx4

64Kx4

64Kx4

 West East

 Sbus
Interface

 Sbus

Figure 6-3: Scalable, Low-Cost Emulation Board

66 CHAPTER 6. HARDWARE IMPLEMENTATION

simulator with a remote call to the emulation system. Data inputs to the design which

otherwise would be evaluated by the simulator are instead passed to the FPGA-based

hardware through a host workstation. Results of evaluation in the emulator are sub-

sequently returned to the simulation for graphical display or for use by other portions

of the system simulation. This technique of remote access to the emulation system

works particularly well for synchronous logic, since evaluation times may be limited to

transitions of the system clock. Figure 6-4 shows our current simulation accelerator

interface. See [42] and [22] for more detail on the simulation accelerator.

Simulator

generated
interface
module

client
software
driver

Workstation performing simulation

SCSI or Serial
Interface

Emulator Hardware

FPGA

Figure 6-4: Simulation Accelerator Interfaces

Chapter 7

Results

7.1 Overview

We have implemented the entire Virtual Wires software system described in Chap-

ter 5 and the Xilinx-based prototype hardware described in Section 6.2. The results

described in this chapter are focused on the front-end of the Virtual Wires software

system. This front-end includes all components up to and including the Virtual

Router. Since the Route Embedder and FPGA-Speci�c APR tools are not included,

we did not execute our benchmark designs on the hardware for this set of experi-

ments. We used the toolset shown in Table 7.1 for our measurements. For reference,

Table 7.2 show the tools which we have upgraded to since these measurements.

Except for the InCA partitioner, which can take hours to optimize a complex

design, running times on a SPARC 2 workstation were usually 1 to 15 minutes for

each front-end tool. Running times for the remaining tools were also from 1 to 15

minutes; however, the FPGA compiler must be executed for every FPGA partition

in the design.

67

68 CHAPTER 7. RESULTS

Tool Function Software Used

Netlist Translator InCA Translator
Technology Mapper InCA Libraries
Partitioner InCA Partitioner
Global Placer New C program
Dependency Analyzer Modi�ed lisp parser program
Virtual Router New C program

Table 7.1: Software Tools used For Experiments

Tool Function Software Used

Netlist Translator Synopsys [41]
Technology Mapper Synopsys FPGA Compiler [41]
Partitioner InCA Partitioner
Global Placer New C program
Dependency Analyzer Modi�ed lisp parser program
Virtual Router New C program
Route Embedder New C program
FPGA-Speci�c APR Xilinx XACT

Table 7.2: Current Software Tools

7.1. OVERVIEW 69

Since this analysis does not include the embed stage or the �nal FPGA-speci�c

stage, we will estimate the FPGA mapping e�ciency, Em, and the Virtual Wires gate

overhead, VWi. The FPGA mapping e�ciency is the percentage of vendor claimed

FPGA gates, Nfpga
g , that can actually be used. We could factor this overhead out

by normalizing all FPGA device capacity to usable gates, Nfpga
g � Em. However,

to preserve claimed FPGA gate count numbers, we instead scale up our designs

requirements to mapped gates:

N circuit
g =

N
circuitunmapped
g

Em

mapped gates:

Of the usable gates, some will be consumed by the Virtual Wires logic. Our

estimate for Nvw
G , the Virtual Wires overhead, is based on expected control logic,

virtual inputs, intermediate hops, and tri-state drivers required to embed the route

produced by our Virtual Router.

The �rst set of experiments analyzes the pin limitations imposed when we at-

tempt to partition our benchmark circuits for current FPGA technologies. Then we

estimate the Virtual Wires overhead based on a particular FPGA technology. With

this information, we can estimate both the number of FPGAs required and the em-

ulation clock speed when using Virtual Wires. We compare these estimates with the

baseline hardwired case. Finally, we analyze the sensitivity of the emulation clock

period when the design is bandwidth dominated, and we examine the bene�ts of a

hybrid combination of Virtual Wires with hard wires.

70 CHAPTER 7. RESULTS

Statistic Sparcle A-1000

LSI Gate Count 17,252 85,721
Element Count 4802 37,871
Element Complexity 3.6 2.3
% Sync. Elements 15% 25%
% Comb. Elements 85% 75%
External IO count 129 245

Table 7.3: Design Statitics

7.2 Benchmarks

The benchmarks in this chapter are both ASICs used in the Alewife Machine, a

distributed shared memory machine being designed at MIT [2]. Alewife consists of a

scalable number of homogeneous processing nodes connected in a 2-dimensional mesh

network. Each Alewife node (Figure 7-1) consists of a RISC processor, a
oating point

coprocessor, a cache, a portion of globally-shared distributed memory, a controller

memory management unit (CMMU), and a network switch.

The RISC microprocessor, Sparcle [3] [1], is an 18K gate SPARC processor with

some modi�cations to the basic hardware. These modi�cations enhance the usefulness

of Sparcle as the processing element in a multiprocessor. The CMMU [29] part is an

86K gate cache controller for this distributed shared memory machine being designed

at MIT. It implements the shared memory abstraction and provides a message passing

interface as well as performing the basic cache controller functionality.

For these experiments we use the production version of the Sparcle netlist, and an

early working version of the A-1000 netlist. Both designs have SRAM memory (not

included in the total gate count) which we temporarily removed for these measure-

ments. Table 7.3 presents basic statistics of these two designs.

7.2. BENCHMARKS 71

Alewife machine

Network
Router

Cache

DataX:

FPU

Cache
Controller

SPARCLE

Alewife
Node

Network
Router

Cache

DataX:

FPU

Cache
Controller

SPARCLE

Network
Router

Cache

DataX:

FPU

Cache
Controller

SPARCLE

Network
Router

Cache

DataX:

FPU

Cache
Controller

SPARCLE

Network
Router

Cache

DataX:

FPU

Cache
Controller

SPARCLE

Network
Router

Cache

DataX:

FPU

Cache
Controller

SPARCLE

Network
Router

Cache

DataX:

FPU

Cache
Controller

SPARCLE

Network
Router

Cache

DataX:

FPU

Cache
Controller

SPARCLE

Network
Router

Cache

DataX:

FPU

Cache
Controller

SPARCLE

Network
Router

Cache

DataX:

FPU

Cache
Controller

SPARCLE

Network
Router

Cache

DataX:

FPU

Cache
Controller

SPARCLE

Network
Router

Cache

DataX:

FPU

Cache
Controller

SPARCLE

Network
Router

Cache

DataX:

FPU

Cache
Controller

SPARCLE

Network
Router

Cache

DataX:

FPU

Cache
Controller

SPARCLE

Network
Router

Cache

DataX:

FPU

Cache
Controller

SPARCLE

Network
Router

Cache

DataX:

FPU

Cache
Controller

SPARCLE

Network
Router

Cache

DataX:

FPU

Cache
Controller

SPARCLE

Distributed
Memory

Figure 7-1: Topology of the Alewife Machine and Detail of One Node.

72 CHAPTER 7. RESULTS

Device XC4005 XC4010 XC4003H XC4005H Cli6002 Cli6005
Gates 5K gates 10K gates 3K gates 5K gates 2K gates 5K gates
Cells 14X14 20X20 30X30 10X10 32X32 56X56
Flip-Flops 616 bits 1,120 bits 200 bits 392 bits 1,024bits 3136 bits
I/Os 112 pins 160 pins 160 pins 192 pins 96 pins 108 pins

Table 7.4: A Few FPGA Device Characteristics

7.3 Target FPGAs

For target FPGAs, we consider the Xilinx 3000 and 4000 series (including the new

4000H series) [46] [47] and the Concurrent Logic Cli6000 series [13]. These are all

SRAM-based FPGAs. The Xilinx 3000 series is the previous generation of Xilinx

FPGAs, and the Xilinx 4000 series is the latest generation. The largest size FPGA

in this series will contain 20,000 claimed gates and 240 external I/O pins. The Xilinx

4000H series is based on the same internal architecture as the 4000 series, except for

a higher I/O count.

The Concurrent Logic Cli6000 series contains �ner grained programmable logic

cells than the Xilinx FPGAs. This series also has a higher proportion of registers

than the Xilinx series. Table 7.4 shows some feature of a few of these devices.

For these experiments, we must estimate the mapping e�ciency, Em, for any

FPGA we consider. Since Em is a function of both the FPGA technology and the

circuit to be mapped, we can't measureEm without actually mapping our benchmarks

to each FPGA technology. Based on previous experience with these devices, we will

use an assumed mapping e�ciency of Em = 50% for all calculations. Thus each

design gate will consume 2 mapped gates.

7.4. PIN LIMITATION SEVERITY 73

7.4 Pin Limitation Severity

Before compiling the two test designs, we compared their communication requirements

to the communication resources of available FPGA technologies. For this comparison,

we used the InCA partitioner to partition each design for various mapped gate counts

and measured the pin requirements. Figure 7-2 shows the resulting curves, plotted

on a log-log scale (note that partition gate count is scaled up to represent a mapping

ine�ciency of 50%).

Both design curves and the technology curves �t Rent's Rule as discussed in

Chapter 3. Table 7.5 shows the resulting Rent equations. For the technology curve,

B near 0.5 roughly corresponds to the area versus perimeter for the FPGA die.1

For the circuit implementations, the lower B, the more locality there is within the

circuit. Thus, the A-1000 has more locality than Sparcle, although it has higher total

communication requirement.

As Figure 7-2 shows, both Sparcle and the A-1000 will be pin-limited for any

choice of FPGA size. In hardwired designs with pin-limited partition sizes, usable

gate count is determined solely by available pin resources. For example, a 5000 gate

FPGA with 100 pins can only utilize 1000 Sparcle gates or 250 A-1000 gates.

Parameter FPGA Technology High I/O FPGAs Sparcle A-1000
B 0.57 0.60 0.62 0.45
KP 0.84 0.93 1.3 8.4

Table 7.5: Rent's Rule Parameters (slope, o�set of log-log curve)

1If we include all pins: the con�guration programming I/Os, JTAG, and power and grounds,
then B is almost exactly 0.5 for the FPGA devices.

74 CHAPTER 7. RESULTS

� Alewife Cache Controller partitions
� Sparcle partitions
� Xilinx 3000 & 4000 FPGAs
� Xilinx 4000H FPGAs
� Future Xilinx 4000 FPGAs

 Concurrent Logic FPGAs

|
100

| | | | | | | | |
1000

| | | | | | | | |
10000

| | | | | | | | |
100000

|
|

|
|

|
|100

|
|

|
|

|
|

|
|

|1000

 FPGA Partition Gate Count

 F
P

G
A

 P
ar

tit
on

 P
in

 C
ou

nt

�

�

�
�

�

�

�

�

�

�

�

�
�

�
�

�

�

�
�
�
�
�

�

�

�
� �

�
�
�

Figure 7-2: Pin Count as a Function of FPGA Partition Size

7.5. VIRTUAL WIRES OVERHEAD 75

7.5 Virtual Wires Overhead

In the following analysis, we estimate the FPGA gate costs of Virtual Wires based

on the architecture described in Section 6.1. In this architecture, gate overhead is

consumed by phase control logic, shift loops, and intermediate hops. Each shift loops

is composed of a number of shift register bits combined with one tri-state driver.

Thus for FPGA partition i, the Virtual Wires gate overhead, Nvw
g , consist of:

1. Phase Control Logic: One state machine.

2. Inputs: Ii shift register bits for partition inputs.

3. Hops: Hi shift register bits for intermediate hops.

4. Muxing: Mip tri-state drivers to multiplex the shift loops on each pin p.

Note that we do not count partition output shift register bits because the storage of

logical outputs can be overlapped with logic inputs.

Assuming the state machine takes Cp gates and the shift register bits and tri-state

drivers each take Cs gates, the Virtual Wires Gate overhead for partition i is then:

(Nvw
g)i = Cp + Cs �

Ii + Hi +

X
p

Mip

!
mapped gates: (7:1)

For our empirical estimates, we use the actual number of logical inputs, Ii, for

each partition as determined by our partitioning tool. When routing in a mesh or

torus, intermediate hops cost one shift register bit per hop. The number of tri-state

drivers needed per physical wire is equal to the number of shift loops connected to

that physical wire. We use our Virtual Router to determine Li for each partition and

Mpi for each partition pin.

76 CHAPTER 7. RESULTS

For numerical comparisons in the remaining analysis, we use estimated FPGA

gate costs based on the Concurrent Logic CLI6000 series FPGA. We estimate the

phase control logic will be Cp � 300 mapped gates based on hand design of a few

sample state machine. In the Cli6000, both a single-bit shift register and a tri-state

driver take 1 of 3136 cells in the 5K gate part, which implies that Cs � 3 mapped

gates. Table 7.6 shows these costs along with our assumed gate and pin count, Nfpga
g

and Nfpga
p .

Phase control logic Cp � 300 mapped gates
Shift register bit or tri-state driver Cs � 3 mapped gates
FPGA Gate Count Nfpga

g � 5000 mapped gates
FPGA Pin Count Nfpga

p � 100 pins

Table 7.6: Parameters for Empirical Analysis

7.6 Number of Component Comparison

To determine empirically the number of components needed for our benchmark de-

signs, we compiled the netlists with the front-end of the Virtual Wires compiler and

estimate the mapping e�ciency and Virtual Wires overhead. We compiled both de-

signs for a two dimensional torus and for a full crossbar interconnect of 5000 mapped

gate, 100 pin FPGAs, assuming a 50 percent mapping e�ciency. Virtual Wires over-

head estimation is discussed in Section 7.5. Table 7.7 shows the results for both

hard wires and Virtual Wires. Compiling the A-1000 to a torus, hardwires only, was

not practical with our partitioning software. The gate utilizations obtained for the

hardwired cases agree with reports in the literature [25] [44] on designs of similar

complexity.

7.7. EMULATION SPEED COMPARISON 77

Design Hardwires Only Virtual Wires Only

2-D Torus Full Crossbar 2-D Torus Full Crossbar
Sparcle >100 31 9 9

(18K gates) (<7%) (23%) (80%) (80%)
A-1000 Not Practical >400 49 42

(86K gates) (<10%) (71%) (83%)
Number of FPGAs (Mapped Gate Utilization)

Table 7.7: Required number of 5K Gate, 100 Pin, 50% mapping e�cient FPGAs

For the crossbar, the use of Virtual Wires can decrease the number of FPGA

devices needed by a factor of 3 for Sparcle and a factor of 10 for the A-1000. This

decrease will results in a direct saving in emulation costs.

The torus topology is impractical for the hardwired case, costing over 300% due

to increased pin limitations for Sparcle and making the A-1000 circuit practically

impossible to emulate. However, when using Virtual Wires, the extra FPGAs needed

to implement intermediate hops did not increase the chip count for Sparcle, and only

increased the chip count by 17% for the A-1000.

The gate utilization percentages in Table 7.7 re
ect the average number of mapped

gates available to each design's FPGA partition. In the hardwired case, the utilization

is low because of pin limitations, while in the Virtual Wires case this utilization is less

than 100% because of the Virtual Wires gate overhead in each partition. Chapter 8

provides further analysis of these overheads.

7.7 Emulation Speed Comparison

Emulation clock cycle time TE is determined by:

� Communication delay per hop, tc: the time required to transmit a single bit on

a wire between a pair of FPGAs.

78 CHAPTER 7. RESULTS

TE Emulation clock period
tc Inter-FPGA wire delay
L Longest dependency path
TL Total critical path delay
N Total pipeline cycles
D Network diameter

Table 7.8: Parameter's Used for Speed Estimation

� Length of longest path in dependency graph, L, in terms of number of FPGA

partitions.

� Total FPGA gate delay along the longest path TL, which is the sum of the

FPGA partition delays in the longest path (not counting communication time).

� Sum of pipeline cycles across all phases, N .

� Network diameter, D (D = 1 for a crossbar).

These parameter are summarized in Table 7.8.

The emulation clock period is directly related to the number of phases in an

emulation clock, and the number of pipeline clocks within each of the phases. The

total number of phases in an emulation clock is at least equal to the largest number

of partitions through which a combinatorial path passes, L. The number of pipeline

cycles in each phase is directly related to network diameter and/or physical wire

contention.

If the emulation is latency dominated, then the minimal number of phases will be

exactly L, and the pipeline cycles per phase should be no greater than D, giving:

N = L�D:

The upper bound of the network diameter, D, is imposed by the worst case number

of intermediate hops.

7.7. EMULATION SPEED COMPARISON 79

On the other hand, if the emulation is bandwidth dominated, then the total pipeline

cycles (summed over all phases) will be at least:

N =MAXi

�
Vi

Pi

�
;

where Vi and Pi are the number of virtual and physical wires respectively for FPGA

partition i. We call the ratio Vi=Pi the pin multiplication factor, PMFi. If there are

hot spots in the network (not possible with a crossbar), the bandwidth dominated

delay will be higher due to the extra contention.

Emulation speeds for Sparcle and the A-1000 were both latency dominated. Using

the worst case number of pipeline cycles, N , we compare estimated execution speeds

for the Virtual Wires and hardwired cases. Without performing timing analysis on

the underlying circuit, we can estimate emulation speed by considering a computation

only delay component, TEP , and a communication only delay component TEC. This

dichotomy is de�ned as follows.

Computation only delay:

T hw
EP = TL

T vw
EP = TL + tc � N

The computation-only bound assumes that communication time between chips is

negligible. For the Virtual Wires case we add in a component equal to tc � N to

re
ect the extra cost of multiplexing at every chip boundary.

Communication only delay:

T hw
EC = T vw

EC = tc �N:

80 CHAPTER 7. RESULTS

This delay is the inter-chip delay multiplied by the total number of pipeline cycles.

For the hardwired case, N is not the number of pipeline cycles, as we earlier de�ned

it, but the total number of FPGAs along the critical path (including intermediate

hops). Since we are clocking the FPGA at the maximum clock rate for the Virtual

Wires case, then tc will also be the period of the pipeline clock.2

We combine these two components to estimated the emulation clock period:

T hw
E = TL + tc �N (7:2)

T vw
E = TL + 2 � tc �N: (7:3)

Based on CLi6000 speci�cations we assumed that tc = 20ns (a 50MHZ pipeline

clock). Based on a 40MhZ design clock rate and an FPGA slowdown factor of

10 (the ratio of our ASIC technology to the CLi6000 technology), we assume that

TL = 250ns. From our compilation of both designs, we determined N . Table 7.9

shows the resulting emulation speeds for Virtual Wires and hardwires for the crossbar

topology. Note that we have made the conservative assumption that TL for Virtual

Wires remains the same as that for hardwires, even though Virtual Wires yields fewer

partitions. Since the use of Virtual Wires allows a design to be partitioned across

fewer FPGAs, N is decreased, decreasing TEC. However, the pipeline stages will

increase TEP proportional to tc per pipeline cycle. Table 7.10 shows the resulting

worst case speed for Virtual Wires on the torus topology. Virtual Wire torus speeds

are slower by a factor of D, the network diameter.

2The extra delay introduced by the multiplexor (assumed to be tc here, but is typically much
smaller) will actually increase the clock period to 2 tc; however, in a bandwidth limited design we
may choose the alternative of adding an extra pipeline stage, increasing the number of pipeline cycles
per hop to 2 pipeline clocks, but allowing maximum inter-FPGA bandwidth utilization. Ignoring
any added register delays, the factor of 2 in Equation 7.3 accounts for either case.

7.7. EMULATION SPEED COMPARISON 81

Hardwire Only Virtual Wire Only

Sparcle Longest path, L 9 partitions 6 partitions
Network diameter, D 1 hop 1 hop
Pipeline cycles, N 9 cycles 6 cycles
Computation delay, TEP 250 ns (58%) 370 ns (76%)
Communication delay, TEC 180 ns (42%) 120 ns (24%)
Total delay, TE 430 ns (100%) 490 ns (100%)
Estimated emulation clock, 1=TE 2.3 MHz 2.0 MHz

A-1000 Longest path, L 27 partitions 17 partitions
Network diameter, D 1 hop 1 hop
Pipeline cycles, N 27 cycles 17 cycles
Computation only delay, TEP 250 ns (32%) 590 ns (63%)
Communication only delay, TEC 540 ns (68%) 340 ns (37%)
Total delay, TE 790 ns (100%) 930 ns (100%)
Estimated emulation clock, 1=TE 1.3 MHz 1.1 MHz

Table 7.9: Emulation Clock Speed Estimate (Crossbar Topology)

Virtual Wire Only

Sparcle Longest path, L 6 partitions
Network diameter, D 2 hops
Pipeline cycles, N 12 cycles
Computation delay, TEP 370 ns (61%)
Communication delay, TEC 240 ns (39%)
Total delay, TE 610 ns (100%)
Estimated emulation clock, 1=TE 1.6 MHz

A-1000 Longest path, L 17 hops
Network diameter, D 6 hops
Pipeline cycles, N 102 cycles
Computation only delay, TEP 590 ns (22%)
Communication only delay, TEC 2040 ns (78%)
Total delay, TE 2630 ns (100%)
Estimated emulation clock, 1=TE 0.38 MHz

Table 7.10: Emulation Clock Speed Estimate (Torus Topology)

82 CHAPTER 7. RESULTS

� Full Crossbar
� 2d Torus

|

0
|

20
|

40
|

60
|

80
|

100

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

 FPGA Partition Pin Count

 E
m

ul
at

io
n

S
pe

ed
 (M

H
Z)

�
�

�

�

�

�

�

�

�

�� � �

�

�

�
�

� � � �

Figure 7-3: A-1000 Emulation Speed (Communication only Component)

7.8 Bandwidth Requirements

In Table 7.9, the Virtual Wire emulation clock was determined solely by the length

of the longest path; the emulation clock period was latency dominated. In order to

determine what happens when bandwidth limitations dominate, we reduced the pin

count and recorded the resulting emulation clock (based on TEC only) for both a

crossbar and torus topology. Since the Virtual Router can use an arbitrary FPGA

topology �le, we can generate these data points by varying the FPGA pin counts in

the topology �le and re-running the Virtual Router. Using the resulting total pipeline

cycles, N , we can then estimate the emulation clock. Figure 7-3 shows the results for

the A-1000.

7.9. COMBINATION WITH HARD WIRES 83

Emulation speeds switch from bandwidth dominated to latency dominated at the

knee of the curves in Figure 7-3. The torus is slower because it has a larger diameter,

D. However, it moves out of the latency dominated region sooner because it exploits

locality; several short wires can be routed during the time of a single long wire. This

analysis has assumed that the crossbar can be clocked as fast as the torus; the increase

in emulation speed obtained with the crossbar is lower if tc is adjusted accordingly.

Circuit Hard Wires Only Virtual Wires Only Hybrid
Sparcle 9 hops 6 hops 3 hops
A-1000 27 hops 17 hops 15 hops

Table 7.11: Reduction Of Critical Path with Hybrid Wiring

7.9 Combination with Hard Wires

With Virtual Wires, neither design was bandwidth limited, but rather limited by its

respective critical paths. As shown in Figure 7-3, the A-1000 only needs about 20 pins

per FPGA to run at the maximum emulation frequency. While this allows the use of

lower pin count (and thus cheaper) FPGAs, another option is to trade this surplus

bandwidth for speed. This tradeo� is accomplished by hardwiring logical wires at

both ends of the critical paths. Critical wires can be hardwired until there is no more

surplus bandwidth, thus fully utilizing both gate and pin resources. We added this

feature to the Virtual Router to obtain the results shown in Table 7.11. Besides the

added feature in the hybrid case, all other steps are the same as those used for the

previous measurements. This hybrid combination reduces the longest virtual path

in Sparcle by 50% and in Alewife by 12%. Since part of the path is now hardwired,

there will be a corresponding speedup of the emulation clock cycle and reduction in

Virtual Wires overhead.

84 CHAPTER 7. RESULTS

Chapter 8

Analysis

In this chapter we derive theoretical gate utilization for logic emulation with and

without Virtual Wires. Much of our analysis relies on Rent's Rule, as introduced in

Chapter 3. For the hardwired case, we derive relative Rent's rule factors, which we call

Rent ratios. We also derive a topological factor which explains why a mesh topology

is not e�ective without Virtual Wires. For the Virtual Wires case, we mathematically

determine the optimal FPGA partition size. In conclusion, we show how the derived

Virtual Wire utilization scales with increasing FPGA device size, while hardwired

utilization may not.

8.1 Hard Wires Gate Utilization

For circuits which obey Rent's rule, we can determine the overhead for hardwires,

under pin-limited conditions (Figure 8-1). Given pin limitations, the number of FPGA

pins dictates the number of FPGA partition pins available for the circuit:1

N circuit
P =

1

d
�N

fpga
P pins: (8:1)

1For this analysis, we work with average partition pin and gate requirements. Pin limitation
e�ects are worse when the circuit is non-uniform.

85

86 CHAPTER 8. ANALYSIS

All Pins
Used

FPGA

N g
circuit

Ng
hw

Unused
 Gates

Figure 8-1: Gate Utilization without Virtual Wires

In Equation 8.1, d is the average number of FPGA hops for each wire. This factor

accounts for pins consumed by intermediate hop routing. We next substitute Rent's

equation for both sides of Equation 8.1:

Kcircuit
P (N circuit

g)B
circuit

=
1

d
Kfpga

P (Nfpga
G)B

fpga

pins: (8:2)

Solving for N circuit
G yield the predicted gates available to each FPGA partition:

N circuit
g =

K

fpga
P

dKcircuit
P

(Nfpga
g)B

fpga

!1=Bcircuit

mapped gates: (8:3)

8.1.1 Rent Ratios

We can simplify Equation 8.3 by de�ning Rent ratios for mapping a circuit on to an

FPGA, Kf c and Bf c. We also need a topological factor, d
f c

, for multiple hops

in the network.2

2Note that d
f c

= 1 for a crossbar topology, and can be expressed purely as a function of N circuit
g ,

N circuit
c (number of chips), and Bcircuit for a mesh topology, as we shall we in Equation 8.11.

8.1. HARD WIRES GATE UTILIZATION 87

K
f c
P =

�
K
fpga

P

Kcircuit
P

�
1=Bcircuit

Bf c = Bfpga

Bcircuit

d
f c

= (d)1=B
circuit

Table 8.1: Rent Ratios and Topological Factor

Substitution of these newly de�ned Rent ratios and topological factor, summarized

in Table 8.1, into Equation 8.3 yields

N circuit
g =

1

d
f c

Kf c
P (Nfpga

g)B
f c

mapped gates: (8:4)

The average pin-limited hardwire overhead per FPGA partition is then

Nhw
g = Nfpga

g �
1

d
f c

K
f c
P (Nfpga

g)B
f c

mapped gates; (8:5)

and the FPGA utilization with hardwires is

Uhw =
1

d
f c

Kf c
P (Nfpga

g)B
f c
�1 � 100 percent: (8:6)

Here we can see the signi�cance of Bf c: if Bf c < 1 FPGA utilization will decline

with increasing FPGA device size. Utilization is directly proportional to the ratio

Kf c for a �xed device size, and inversely proportional to the topological factor d
f c

.

8.1.2 Topological Factor

To see why a non-crossbar topology is so di�cult for the hardwired case, we simplify

Equation 8.6 by assuming that the circuit is balanced for the FPGA device. That is,

Bf c = 1 and Kf c
P = 1:

U balanced
hw =

1

d
f c

� 100 percent: (8:7)

88 CHAPTER 8. ANALYSIS

Equation 8.7 captures the e�ect of multiple hop overhead. For example, if Bcircuit =

0:5, we can express this component directly in terms of the average wire length:

U balanced
hw = (

1

d
)2 � 100 percent: (8:8)

For a crossbar, d = 1; there will be no pin-limitations and thus a hardwired

emulation can achieve 100% utilization. However, for any other topology there will

be serious degradation. For example, in a 4X4 mesh topology with N circuit
c = 16

and Bcircuit = 0:6, Rent's rule predicts d � 2 hops. This average distance drops

utilization to U balanced
hw � 30 percent! As another example, if Quickturn were to

mesh connect all 528 FPGAs in a 330K gate Enterprise Emulation System [33], with

the same Bcircuit = 0:6 design, a predicted d � 4 hops would drop utilization to

U balanced
hw � 10 percent of their current crossbar topology's e�ciency.3

8.2 Virtual Wires Gate Utilization

If we consider the entire set of partitions, we can express the average Virtual Wires

gate overhead, Nvw
g (Figure 8-2), in terms of the virtual logic costs, Cp and Cs (Sec-

tion 7.5), and the average number of virtual inputs, bits per shift register, and hops

per Virtual Wire: I, S, and d:

Nvw
g = Cp + Cs � I + (1 + (d� 1) + d=S) mapped gates: (8:9)

Each Virtual Wire consumes an average of Cs gates for the initial input register,

Cs � (d � 1) for intermediate hops, and d=S gates for each multiplexor it passes

through. For Savg � 1 (many bits per shift register):

N
vw�avg
g = Cp + Cs � I � d mapped gates: (8:10)

3Assuming their partial crossbar can achieve the same e�ciency as a full crossbar.

8.2. VIRTUAL WIRES GATE UTILIZATION 89

All Pins
Used

FPGA

N g
circuit

Used Gates

N g
vw

Overhead

Figure 8-2: Gate Utilization with Virtual Wires

In this case the overhead is directly proportional to the average number of inputs per

partition and to the average wire length.

For mapping a circuit which obey Rent's rule onto a mesh topology, Equation 8.10

can be expressed as:

Nvw
g = Cp+Cs�

Iz }| {
1

2

�
KPN

B
g

�
�

dz }| {
2

9

7
NB�0:5

c � 1

4B�0:5 � 1
�
1 �NB�1:5

c

1 � 4B�1:5

!
1� 4B�1

1�NB�1
c

mapped gates:

(8:11)

Where NC = N total
g =N circuit

g , the total number of FPGAs needed for a design of size

N total
g , and KP and B are for the circuit. The term for I is Rent's rule for the circuit

with a factor of 1=2 to allow for overlapping inputs with outputs. The term for d

is an upper limit to the average wire length, in Manhattan hops, which can also be

derived from Rent's rule [7]. Thus given Rent's parameters, Kcircuit
p and Bcircuit, for

a given design, the Virtual Wires overhead, Nvw
g , can be expressed strictly in terms

of design and partition sizes.

90 CHAPTER 8. ANALYSIS

For a crossbar toplogy, d = 1, and Equation 8.10 reduces to:

Nvw
g = Cp + Cs � I mapped gates (8:12)

Or, in terms of the Rent equation:

Nvw
g = Cp + Cs �

1

2
Kcircuit

P (N circuit
g)B

circuit

mapped gates: (8:13)

Given that Rent's Rule holds, we can use the general Virtual Wires equation,

Equation 8.9, to estimate the number of mapped gates available to each FPGA par-

tition:

N circuit
g = Nfpga

g �

�
Cp + Cs �

1

2
d

�
1 +

1

S

�
Kcircuit

P (N circuit
g)B

circuit

�
mapped gates:

(8:14)

Solving Equation 8.14 for N circuit
g yields the optimal Virtual Wires FPGA partition

size, N circuit
g

�

, for a particular circuit. Why is the equation not a function of Nfpga
p ?

As long as there is at least one available pin, we can multiplex that one pin as often

as we need.4 To get utilization, we divide this optimal partition size by the FPGA

device size:

Uvw =
N circuit

g

�

Nfpga
g

� 100 percent; (8:15)

8.2.1 Optimal Partition Size

The optimal partition size, N circuit
g

�

, is the largest design partition size which will �t

in the FPGA device. By comparing the optimal partition size for both the hardwired

and the Virtual Wires case, we illustrate the tradeo�s allowed by Virtual Wires. For

the hardwired case, we use Nfpga
g and Nfpga

p , the maximum gate and pin count of the

device, to de�ne a feasible region for each partition. For the Virtual Wires case, we

4In fact, in our initial demonstration of Virtual Wires we successfully executed circuits on a
9-node wire-wrapped board with only one wire connecting nearest neighbors.

8.2. VIRTUAL WIRES GATE UTILIZATION 91

� A-1000 partitions
� SPARCLE partitions

 Hard Wires Constraints
� Virtual Wires Tradeoff

|

0
|

1000
|

2000
|

3000
|

4000
|

5000
|

6000

|0

|100

|200

|300

|400

|500

 FPGA Partition Gate Count

 F
P

G
A

 P
ar

ti
ti

o
n

 P
in

 C
o

u
n

t

�

�

�

�

�
�

�

�
�

�

�

�

�

�

Figure 8-3: Determination of Optimal Partition Size

must consider the tradeo� between gates and pins as the FPGA partitions pin count

increases beyond the number of available pins on the FPGA device. Assuming d = 1

and S � 1, we evaluate Equation 8.12 with our FPGA numbers from Table 7.6 to

determine the Virtual Wires pin/gate constraint curve. This curve is for a 5K gate,

100 pin FPGA, with Cp = 300 mapped gates and Cs = 3 mapped gates.

Figure 8-3 shows the both the hard wires pin/gate constraint and the VirtualWires

pin/gate constraint curve plotted against the partition curves for our benchmark

designs (Section 7.2). The regions enclosed by the axes and the constraint curves

represents feasible regions in the design space. The hard wires constraint region

corresponds to the area where FPGA partition pin and gate requirements are less

than the FPGA constraints. On the other hand, the Virtual Wires curve corresponds

to the area where the combined FPGA partition gate count and VirtualWire overhead

92 CHAPTER 8. ANALYSIS

gate count is less than the FPGA gate count. The intersection of the partition curves

and the wire curves gives the optimal partition and sizes. Notice how Virtual Wires

add the
exibility of trading gate resources for pin resources.

8.3 Scalability

To summarize this analysis, Figure 8-4 compares FPGA device utilization for Virtual

Wires and hardwires on both a 4X4 mesh and a 16 chip crossbar topology for increas-

ing FPGA device size. This graph is on a semi-log scale, with the y-axis measuring

percent of usable gates and the x-axis logarithmically measuring FPGA device size.

Table 8.2 shows the assumed parameter for this graph. Note that since the FPGA

device size is increasing, with a constant number of devices, we are increasing the

circuit size as well. Also, the FPGA pin count is increasing with the gate count in

accordance with Rent's rule.

The slope of both hardwired curves is Bf c. Thus if Bf c > 1 this curve would

slope upwards instead. The log-intercept is similarlyKf c
P for the hardwires crossbar.

For the hardwired mesh, the o�set is lower than the crossbar by 1=d
f c

in accordance

with Equation 8.6. For this example, the FPGA pin count decreases with decreasing

gate count such that the FPGA can never be fully utilized in the hardwired case.

For Virtual Wires, the utilization is low for small gate count due to the constant

factor of Cp = 300 control logic overhead. However, with increasing circuit size, this

overhead is rapidly diluted : the Virtual Wires gate utilization approach 100% with

increasing FPGA size. For a mesh toplogy, the utilization increases more slowly,

however it too asymptotically approaches 100%.5

5By working in terms of mapped gates, this analysis hides the associated decrease in mapping
e�ciency, Em, when we increase FPGA device size and Bf c < 1 for the internal FPGA wiring.
This problem is due to hardwires within the FPGA device itself! If we overcome this problem by
using Virtual Wires for routing intra-FPGA signals, then Figure 8-4 will hold.

8.3. SCALABILITY 93

Parameter Value
Bcircuit 0.60
Bfpga 0.55
Kcircuit

P 2.0

K
fpga
P 1.0

d
crossbar

1 hop

d
mesh

2 hops
Cp 300 mapped gates
Cs 3 mapped gates

Table 8.2: Parameters for Scalability Comparison

� Virtual Wires, 16 Chip Crossbar
� Virtual Wires, 4X4 Mesh

 Hard Wires, 16 Chip Crossbar
� Hardwires, 4X4 Mesh

|

100
| | | | | | | | |

1000
| | | | | | | | |

10000
| | | | | | | | |

100000

|0

|10

|20

|30

|40

|50

|60

|70

|80
|90

|100

 FPGA Device Gate Count

 F
P

G
A

 D
ev

ic
e

U
ti

liz
at

io
n

�

�

�

�

�

�
�

� � �

�

�

�

�

�

�

�
�

� �

� � � � � � � � � � �

Figure 8-4: Scalability with FPGA Device Size

94 CHAPTER 8. ANALYSIS

Chapter 9

Conclusions and Future Research

9.1 Conclusions

This thesis has presented detailed evaluation of the Virtual Wires compilation tech-

nique for overcoming pin limitations in FPGA-based logic emulations. We have de-

scribed the software portion of a project at MIT to produce a scalable, low cost

FPGA-based emulation system which maximizes FPGA resource utilization.

Careful analysis of existing logic partitioning schemes for hardwired logic emula-

tion revealed that the pin limitations of current FPGA technology cause emulation

resource e�ciency to be as low as 10 to 20 percent. As FPGA technologies scale,

this e�ciency will decrease without the use of Virtual Wires (or some similar tech-

nique). This e�ciency is low because of pin limitations; however, we found that in

the hardwired scheme most of the usable o�-chip bandwidth is wasted.

The Virtual Wires technique is independent of topology. Investigation of emu-

lation on both a torus and a full crossbar reveal some interesting results: Virtual

Wires allows the use of the less complex topologies, the torus, in cases where only

the crossbar topology was practical before.

95

96 CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

The Virtual Wires concept has been successfully implemented. Construction of a

robust Virtual Wires compiler and the hardware to support such a system is near-

ing completion. Preliminary results from this system show that the use of Virtual

Wires allows maximum utilization of FPGA gate resources, at estimated emulation

speeds competitive with existing hardwired techniques. While this thesis has focused

on using Virtual Wires for improving performance in FPGA-based logic emulation

systems, the Virtual Wires concept is also applicable to other types of FPGA-based

systems.

9.2 Future Research

This project has uncovered several possible areas for future research, in both the

context of FPGA-based logic emulation with Virtual Wires, high-level digital logic

synthesis, and FPGA computing.

Virtual Wires Research Group Directions

In the Virtual Wires research group at MIT, we are implementing a complete emula-

tion system based on Virtual Wires, including the Virtual Wires compiler, simulator

interfaces, and hardware prototype. By utilizing the pin multiplication e�ect of vir-

tual wires in combination with a low dimensional interconnect, we are producing a

logic emulation system capable of simulating/emulating 30K gates for less than $3000.

By using this compiler and the scalability of our current system, we plan to emulate

circuits in the 100K+ gate range.

We are continuing with the design of an automatic memory compiler { in our initial

system, capable of emulating up to 1 Megabit of SRAM, the user must still hand-

partition ASIC memory. With a high speed Sbus host interface, a tightly coupled

interface between a software simulator and the emulation system will be used for

9.2. FUTURE RESEARCH 97

cosimulation. We are also exploring using the Virtual Wires Prototype board as a

general purpose computing engine. This will involve compiling a parallel language,

such as parallel C, directly into the Virtual Wires hardware.

Virtual Wires Improvements

Using timing and/or locality sensitive partitioning with Virtual Wires has potential

for reducing the required number of routing sub-cycles. Communication bandwidth

can be further increased with pipeline compaction, a technique for overlapping the

start and end of long virtual paths with shorter paths traveling in the same direction.

A more robust data
ow implementation of Virtual Wires replaces the global barrier

imposed by routing phases with a �ner granularity of communication scheduling,

possibility overlapping computation and communication as well.

Logic Synthesis Applications of Virtual Wires

Further logic resource improvements can be obtained if we apply Virtual Wires to

high-level digital circuit synthesis. Using the information gained from dependency

analysis, we can now predict which portions of the design are active during which

parts of the synchronous clock cycle. If new FPGA devices support fast partial re-

con�guration, this information can be used to implement virtual logic via invocation

of hardware subroutines [23]. Even without fast recon�guration, we can use Virtual

Wires to automate combinational logic resource sharing. Because of the long routing

delays and high register count in FPGAs, Virtual Wires could also be used to im-

plement a form of wave pipelining in these shared resources. For multiple chip ASIC

design, Virtual Wires can be used to automate the inter-chip interface design.

98 CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

Host Workstation

Download
config

VPLC

FPGA−based Virtual Machine

Figure 9-1: Virtual Machine Computing Engine

Virtual Machines

VirtualWires allow us to treat an array of FPGAs as one large FPGA, while only using

nearest neighbor interconnect. This allows the possibilty of a Virtual Programmable

Logic Chip (VPLC) incorporates multiple FPGAs on an MCM substrate module.

Arbitrary logic could be automatically synthesized onto the module, and could be

used directly in systems as one giant FPGA.

A Virtual Machine is a customized computing engine based on FPGA substrates

(Figure 9-1), potentially in the form of VPLC's. By including appropriate interfaces to

the external world, such a machine could replace entire customized hardware systems.

This concept would allow designers to extend the philosophies behind using FPGA's

to the entire system - in much the same way Manning (and Von Neumann before)

originally imagined with their cellular arrays.

Bibliography

[1] A. Agarwal, J. Babb, D. Chaiken, G. D'Souza, K. Johnson, D. Kranz, J. Kubia-
towicz, B.-H. Lim, G. Maa, K. MacKenzie, D. Nussbaum, M. Parkin, and D. Ye-
ung. Sparcle: Today's Micro for Tomorrow's Multiprocessor. In HOTCHIPS,
August 1992.

[2] A. Agarwal et al. The MIT Alewife machine: A large-scale distributed memory
multiprocessor. In Scalable Shared Memory Multiprocessors. Kluwer Academic
Press, 1991.

[3] A. Agarwal, J. Kubiatowicz, D. Kranz, B.-H. Lim, D. Yeung, G. D'Souza, and
M. Parkin. Sparcle: An Evolutionary Processor Design for Multiprocessors.
IEEE Micro, 13(3):48{61, June 1993.

[4] Aptix, Inc. Aptix AXB-AP4 Data Sheet, oct 1993.

[5] J. Babb and R. Tessier. Virtual Wires: Overcoming Pin Limitations in FPGA-
based Logic Emulators. In Proceedings 1993 MIT Student Workshop on Super-

computing Technologies, pages 4.0 { 4.1, Plimoth Plantation, August 1993.

[6] J. Babb, R. Tessier, and A. Agarwal. Virtual Wires: Overcoming Pin Limitations
in FPGA-based Logic Emulators. In Proceedings IEEE Workshop on FPGA-

based Custom Computing Machines, pages 142{151, Napa, CA, April 1993. IEEE.
Also as MIT/LCS TM-491, January 1993.

[7] H. B. Bakoglu. Circuits, Interconnections, and Packaging for VLSI. Addison-
Wesley, 1990.

[8] Z. Barzilai, J. Carter, B. Rosen, and J. Rutledge. HSS - A High Speed Simulator.
Technical Report RC 11738, IBM T. J. Watson Research Center, March 1986.

[9] D. Bertsekas and R. Gallagher, editors. Data Networks. Prentice Hall, Englewood
Cli�s, N.J., 1992.

99

100 BIBLIOGRAPHY

[10] T. Blank. A survey of hardware accelerators used in computer aided design.
IEEE Design and Test of Computers, Aug. 1984.

[11] S. Brown, R. Francis, J. Rose, and Z. Vranesic. Field-Programmable Gate Arrays.
Kluwer Academic Publishers, Norwell, Mass., 1992.

[12] J. Cocke and R. E. Miller. Con�gurable Computer System. Technical Report 9,
IBM Technical Disclosure Bulletin, Feb. 1973.

[13] Concurrent Logic, Inc. CLi6000 Series Field-Programmable Gate Arrays, May
1992. Revision 1c.

[14] D. Conner. IC prototyping: When simulation isn't enough. Electronic Design

News, pages 74{74, July 1993.

[15] D. Thomas and P. Moorby. The Verilog Hardware Description Language. Kluwer
Academic Publishers, Boston, 1991.

[16] W. J. Dally. Virtual-channel
ow control. IEEE Transactions on Parallel and

Distributed Systems, 3(2), Mar. 1992.

[17] D. V. den Bout, J. Morris, D. Thomae, S. Labrozzi, S. Wingo, and D. Hallman.
Anyboard: An FPGA-based, recon�gurable system. IEEE Design and Test of

Computers, Sept. 1992.

[18] S. Devadas and K. Keutzer. Synthesis of robust delay-fault-testable circuits:
Practice. IEEE Transactions on Computer Aided Design, 11(3):277{300, March
1992.

[19] C. Fiduccia and R. Mattheyses. A linear time heuristic for improving network
partitions. In Proceedings of the 19th Design Automation Conference, pages
175{181, 1982.

[20] M. Gokhale, W. Holmes, A. Kopser, S. Lucas, R. Minnich, D. Sweeney, and
D. Lopresti. Building and using a highly parallel programmable logic array.
Computer, 24(1), Jan. 1991.

[21] A. Gupta. Formal Hardware Veri�cation Methods: A Survey. PhD thesis,
Carnegie Mellon University, School of Computer Science, October 1991.

[22] S. Hanono. Lsi and verilog serial interface to fpga board. Alewife Systems Memo
39, MIT Computer Architecture Group, Oct. 1993.

BIBLIOGRAPHY 101

[23] N. Hastie and R. Cli�. The implementation of hardware subroutines on �eld
programmable gate arrays. In IEEE Custom Integrated Circuits Conference,
May 1990.

[24] J. Hennessy and D. Patterson. Computer Architecture A Quantitative Approach.
Morgan Kaufmann, Palo Alto, California, 1990.

[25] InCA Inc. Concept Silicon Reference Manual, Nov. 1992. Version 1.1.

[26] B. Kerninghan and S. Lin. An E�cient Heuristic Procedure for Partitioning
Graphs. Technical Report 2, Bell Syst. Tech. J., Feb. 1990.

[27] T. Kirkland and M. Mercer. Algorithms for automatic-test pattern generation.
IEEE Design & Test of Computers, 5(3):43{55, June 1988.

[28] S. Kirkpatrick, C. D. Gellatt, and M. P. Vecchi. Simulated annealing. Science,
220, 1983.

[29] J. Kubiatowicz. User's Manual for the A-1000 Communications and Memory
Management Unit. ALEWIFE Memo No. 19, Laboratory for Computer Science,
Massachusetts Institute of Technology, January 1991.

[30] H. T. Kung. Systolic communication. In Proceedings of the International Con-

ference on Systolic Arrays, San Diego, California, May 1988.

[31] B. Landman and R. Russo. On a pin versus block relationship for partitions of
logic graphs. IEEE Transactions on Computers, C-20(12), Dec. 1971.

[32] C. Y. Lee. Representation of switching circuits by binary-decision progams. Bell.
Syst. tech. J., 38:958{999, July 1959.

[33] L. Maliniak. Multiplexing enhances hardware emulation. Electronic Design, Nov.
1992.

[34] F. P. Manning. Automatic Test, Con�guration, and Repair of Cellular Arrays.
PhD thesis, Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, June 1975.

[35] M. Minsky. Scheduled routing for the numesh. Master's thesis, EECS Depart-
ment, MIT, Sept. 1993.

[36] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory or NP-Completeness. Freeman, San Francisco, 1979.

102 BIBLIOGRAPHY

[37] J. V. Neumann. Theory of Self-Reproducing Automata. edited and completed by
A.W. Burks, U. of Ill. Press, Urbana and London, 1966.

[38] G. F. P�ster. The yorktown simulation engine: Introduction. In Proc. 19th

Design Automation Conference, pages 51{54. IEEE Computer Society Press,
1982.

[39] R. Shoup. Programmable Cellular Logic Arrays. PhD thesis, Carnegie Mellon
University, School of Computer Science, March 1970.

[40] L. P. Soul�e. Parallel Logic Simulation: An Evaluation of Centralized-Time and

Distributed-Time Algorithms. PhD thesis, Standford University, Department of
Electrical Engineering and Computer Science, June 1992.

[41] Synopsys, Inc. Command Reference Manual, Version 3.0, dec 1992.

[42] R. Tessier, J. Babb, M. Dahl, S. Hanono, and A. Agarwal. The Virtual Wires
Emulation System: A Gate-E�cient ASIC Prototyping Environment. In Submit-
ted to 1994 ACM International Workshop on Field-Programmable Gate Arrays,
Berkeley, CA, February 1994. ACM.

[43] S. Walters. Prototyping ASICs in reprogrammable hardware meets system re-
quirements. Computer Design, pages 76{77, May 1990.

[44] S. Walters. Computer-aided prototyping for ASIC-based systems. IEEE Design

and Test of Computers, June 1992.

[45] Y.-C. Wei, C.-K. Cheng, and Z. Wurman. Multiple-level partitioning: An appli-
cation for the very large-scale hardware simulator. IEEE Journal of Solid-State

Circuits, 26(5), May 1991.

[46] XILINX, Inc., 2100 Logic Drive, San Jose, California, 95214. The Programmable
Gate Array Data Book, Aug. 1992.

[47] XILINX, Inc., 2100 Logic Drive, San Jose, California, 95214. The XC4000 Data
Book, Aug. 1992.

