
Run-Time Thread Management for

Large-Scale Distributed-Memory Multiprocessors

by

Daniel Nussbaum

B.S., Electrical Engineering and Computer Science

Massachusetts Institute of Technology, 1985

S.M., Electrical Engineering and Computer Science

Massachusetts Institute of Technology, 1988

Submitted to the Department of Electrical Engineering and Computer Science

in partial ful�llment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1993

c
 Massachusetts Institute of Technology 1993

Signature of Author :

Department of Electrical Engineering and Computer Science

August 31, 1993

Certi�ed by :

Anant Agarwal

Associate Professor of Computer Science and Engineering

Thesis Supervisor

Accepted by :

Frederic R. Morgenthaler

Chairman, EECS Committee on Graduate Students

Run-Time Thread Management for

Large-Scale Distributed-Memory Multiprocessors

by

Daniel Nussbaum

Submitted to the Department of Electrical Engineering and Computer Science
on August 31, 1993, in partial ful�llment of the

requirements for the degree of
Doctor of Philosophy

Abstract

E�ective thread management is crucial to achieving good performance on large-scale distributed-memory
multiprocessors that support dynamic threads. For a given parallel computation with some associated task
graph, a thread-management algorithm produces a running schedule as output, subject to the precedence
constraints imposed by the task graph and the constraints imposed by the interprocessor communications
network. Optimal thread management is an NP-hard problem, even given full a priori knowledge of the
entire task graph and assuming a highly simpli�ed architecture abstraction. Thread management is even
more di�cult for dynamic data-dependent computations which must use online algorithms because their task
graphs are not known a priori. This thesis investigates online thread-management algorithms and presents
XTM, an online thread-management system for large-scale distributed-memory multiprocessors. XTM has
been implemented for the MIT Alewife Multiprocessor. Simulation results indicate that XTM's behavior
is robust, even when run on very large machines.
XTM makes the thread-management problem more tractable by splitting it into three sub-problems:

1. determining what information is needed for good thread management, and how to e�ciently collect
and disseminate that information in a distributed environment,

2. determining how to use that information to match runnable threads with idle processors, and

3. determining what interprocessor communication style XTM should use.

XTM solves these sub-problems as follows:

1. Global information is collected and disseminated using an X-Tree data structure embedded in the
communications network. Each node in the X-Tree contains a \presence bit," the value of which
indicates whether there are any runnable threads in the sub-tree headed by that node. On a machine
with a su�ciently high, balanced workload, the expected cost of maintaining these presence bits is
proved to be asymptotically constant, regardless of machine size.

2. The presence bit information, along with a combining process aided by the X-Tree, is used to match
threads to processors. This matching process is shown to be eight-competitive with an idealized
adversary, for a two-dimensional mesh network.

3. A message-passing communication style yields fundamental improvements in e�ciency over a shared-
memory style. For the matching process, the advantage is shown to be a factor of log l, where l is the
distance between an idle processor and the nearest runnable thread.

Asymptotic analyses of XTM's information distribution and thread distribution algorithms are given, show-
ing XTM to be competitive with idealized adversaries. While the solutions to the sub-problems given above
have provably good characteristics, it is di�cult to say anything concrete about their behavior when com-
bined into one coherent system. Simulation results are therefore used to con�rm the validity of the analyses,
with the Alewife Multiprocessor as the target machine.

Thesis Supervisor: Anant Agarwal
Title: Associate Professor of Computer Science and Engineering

2

Acknowledgments1

I owe many people thanks and more for the assistance and support they lent during the
time I was working on this thesis. I owe the most to Professor Anant Agarwal, my thesis
advisor, for the guidance, encouragement and prodding he gave me throughout the course
of the project. Many times I walked into his o�ce convinced that this work was worthless
and that the thesis would be a failure. Every time, I walked out armed with a new outlook
and new and fresh ideas about how to proceed. In the time I have worked with Anant, not
only have I learned about runtime systems, I have also developed ways of looking at large
and complex computer systems that will be applicable throughout my career. Anant has
been a pleasure to work with and to learn from.

I also want to thank Steve Ward, Bert Halstead and Baruch Awerbuch for the advice
and insights I got from them. Steve and Bert not only acted as thesis readers, they also
got involved early enough in the process that they could o�er constructive suggestions and
criticisms throughout the project. Baruch gave invaluable advice on theoretical matters. He
�rst suggested modifying XTM into XTM-C, which seemed to be easier to write proofs
for. We are currently working together on polylog-competitiveness proofs for TTM, XTM
and XTM-C.

David Kranz, Beng-Hong Lim, David Chaiken, Kirk Johnson, Patrick Sobalvarro and
Terri Iuzzolino took the time to read early, unreadable versions of this thesis. If the resulting
work bears any resemblance to a coherent whole, it is through their e�orts. Any remaining
errors of omission, commission, awkwardness or inaccuracy are entirely my fault.

John Kubiatowicz, my o�ce-mate, has probably borne the brunt of this thesis. He has
had to put up with all kinds of annoyances, ranging from two-hour phone calls to the hurling
of insults and stacks of paper. My only saving grace is that I expect no di�erent from him
when he writes his thesis.

Anne McCarthy was responsible for insulating me from most of the administrivia that
can drive you crazy when other things have already pushed you over the edge. She handled
all the planning for committee meetings, thesis talks and the like, and she constantly o�ered
her assistance in any way that would save me from getting tangled up in red tape. If she
had written this thesis, it would have been �nished years ago.

Finally, I would like to thank my family and friends for bearing with me for all these
years. There were times when I was convinced I would never �nish, but my parents always
kept the faith. They, more than anybody, convinced me that the long haul was worth it,
and that I should see this through to the end. My brother Michael, my sister Beth and
my sister-in-law Jill were also full of encouragement, willing to o�er a sympathetic ear or a
warm meal when the whole thing seemed overwhelming.

I can only hope that my gratitude can repay all these people for the help and support
they have given me. Without them, this thesis would never have been written.

1The research reported in this thesis was funded by ARPA grant # N00014-91-J-1698 and NSF grant
MIP-9012773.

3

Contents

1 Introduction 11

1.1 Principles for Algorithm Design in Distributed Environments : : : : : : : : 12

1.2 Contributions of This Thesis : 13

1.3 Systems Framework and Assumptions : 16

1.4 Terminology and Notation : 19

1.5 Outline : 19

2 Background 20

2.1 Centralized Self-Scheduling : 21

2.2 Fully Distributed On-Line Algorithms : 22

2.2.1 Bidding Methods : 22

2.2.2 Drafting Methods : 24

2.2.3 Hybrid Methods : 24

3 High-Level System Design 27

3.1 Global Information Management : 28

3.1.1 The Need for Global Information : 29

3.1.2 Prospective Solutions : 30

3.2 Matching Threads with Processors : 32

3.2.1 X-Tree-Based Design : 33

3.3 Shared-Memory vs. Message-Passing : 34

4 X-Tree-Based Thread Management 36

4.1 X-Trees : 39

4.1.1 Notation : 39

4.1.2 Embedding a Tree in a k-ary n-Dimensional Mesh : : : : : : : : : : 42

4.2 Updating Information in the X-Tree : 47

4.3 Thread Search : 49

4.4 An Example : 50

5 Analysis 60

5.1 One-Dimensional Case : 62

5.1.1 Search : 62

5.1.2 Presence Bit Update : 67

5.2 Two-Dimensional Case : 72

4

5.2.1 Search : 73

5.2.2 Presence Bit Update : 76

5.3 n-Dimensional Case : 79

5.3.1 Search : 80

5.3.2 Presence Bit Update : 82

6 Experimental Method 85

6.1 NWO: The Alewife Simulator : 86

6.2 The PISCES Multiprocessor Simulator : 88

6.2.1 Timing Parameters : 90

6.2.2 Inaccuracies : 91

6.2.3 Synchronization Datatypes : 91

6.3 Finding the Optimal Schedule : 92

6.4 Thread Management Algorithms : 93

6.4.1 Unrealizable Algorithms : 94

6.4.2 Realizable Algorithms : 95

6.4.3 Queue Management : 97

6.5 Applications : 97

6.5.1 Application Parameters : 101

7 Results 102

7.1 Parameters : 105

7.1.1 Machine Parameters : 105

7.1.2 Thread Management Parameters : 107

7.1.3 Application Parameters : 108

7.2 Experiments : 109

7.3 Machine Size and Problem Size - \Regions of Interest" : : : : : : : : : : : : 111

7.4 Comparing Tree-Based Algorithms to Unrealizable Algorithms : : : : : : : 115

7.5 Comparing Tree-Based Algorithms to Other Realizable Algorithms : : : : : 119

7.6 Steal-One vs. Steal-Half : 123
7.7 Di�erences Between Tree-Based Algorithms : : : : : : : : : : : : : : : : : : 125

7.8 Faster Processors : 128

7.9 MATMUL: The E�ects of Static Locality : : : : : : : : : : : : : : : : : : : 132

8 Conclusions and Future Work 139

8.1 Future Work : 140

A Presence Bit Update Algorithm 143

B Application Code 144

B.1 AQ : 144

B.2 FIB : 146

B.3 TSP : 147

B.4 UNBAL : 160

B.4.1 Dynamic : 160

B.4.2 Static : 161

5

B.5 MATMUL : 162
B.5.1 Common Code : 162
B.5.2 Cached Versions : 168
B.5.3 Uncached Versions : 179

C Raw Data 184

C.1 AQ : 184
C.1.1 tn = 1 Cycle / Flit-Hop : 184
C.1.2 Variable tn : 187

C.2 FIB : 189
C.2.1 tn = 1 Cycle / Flit-Hop : 189
C.2.2 Variable tn : 191

C.3 TSP : 193
C.3.1 tn = 1 Cycle / Flit-Hop : 193
C.3.2 Variable tn : 195

C.4 UNBAL : 197
C.4.1 tn = 1 Cycle / Flit-Hop : 197
C.4.2 Variable tn : 199

C.5 MATMUL: Coarse, Cached : 201
C.5.1 tn = 1 Cycle / Flit-Hop : 201
C.5.2 Variable tn : 203

C.6 MATMUL: Fine, Cached : 204
C.6.1 tn = 1 Cycle / Flit-Hop : 204
C.6.2 Variable tn : 206

C.7 MATMUL: Coarse, Uncached : 207
C.7.1 tn = 1 Cycle / Flit-Hop : 207
C.7.2 Variable tn : 209

C.8 MATMUL: Fine, Uncached : 211
C.8.1 tn = 1 Cycle / Flit-Hop : 211
C.8.2 Variable tn : 213

6

List of Tables

1.1 Machine Parameter Notation : 19

6.1 Timing Parameters : 90

6.2 Application Characteristics : 101

7.1 Experiments Performed (tn = 1) : 109

7.2 Experiments Performed (variable tn) : 110

7.3 Regions of Interest : 114

C.1 AQ(0.5) { Running Times : 184

C.2 AQ(0.1) { Running Times : 185

C.3 AQ(0.05) { Running Times : 185

C.4 AQ(0.01) { Running Times : 185

C.5 AQ(0.005) { Running Times : 186

C.6 AQ(0.001) { Running Times : 186

C.7 AQ(0.01) { tn = 2 Cycles / Flit-Hop { Running Times : : : : : : : : : : : : 187

C.8 AQ(0.01) { tn = 4 Cycles / Flit-Hop { Running Times : : : : : : : : : : : : 187

C.9 AQ(0.01) { tn = 8 Cycles / Flit-Hop { Running Times : : : : : : : : : : : : 187

C.10 AQ(0.01) { tn = 16 Cycles / Flit-Hop { Running Times : : : : : : : : : : : 188

C.11 AQ(0.01) { tn = 64 Cycles / Flit-Hop { Running Times : : : : : : : : : : : 188

C.12 FIB(15) { Running Times : 189

C.13 FIB(20) { Running Times : 189

C.14 FIB(25) { Running Times : 190

C.15 FIB(20) { tn = 2 Cycles / Flit-Hop { Running Times : : : : : : : : : : : : 191

C.16 FIB(20) { tn = 4 Cycles / Flit-Hop { Running Times : : : : : : : : : : : : 191

C.17 FIB(20) { tn = 8 Cycles / Flit-Hop { Running Times : : : : : : : : : : : : 191

C.18 FIB(20) { tn = 16 Cycles / Flit-Hop { Running Times : : : : : : : : : : : : 192

C.19 FIB(20) { tn = 64 Cycles / Flit-Hop { Running Times : : : : : : : : : : : : 192

C.20 TSP(8) { Running Times : 193

C.21 TSP(9) { Running Times : 193

C.22 TSP(10) { Running Times : 194

C.23 TSP(11) { Running Times : 194

C.24 TSP(10) { tn = 2 Cycles / Flit-Hop { Running Times : : : : : : : : : : : : 195

C.25 TSP(10) { tn = 4 Cycles / Flit-Hop { Running Times : : : : : : : : : : : : 195

C.26 TSP(10) { tn = 8 Cycles / Flit-Hop { Running Times : : : : : : : : : : : : 195

C.27 TSP(10) { tn = 16 Cycles / Flit-Hop { Running Times : : : : : : : : : : : : 196

7

C.28 TSP(10) { tn = 64 Cycles / Flit-Hop { Running Times : : : : : : : : : : : : 196
C.29 UNBAL(1024) { Running Times : 197
C.30 UNBAL(4096) { Running Times : 197
C.31 UNBAL(16384) { Running Times : 198
C.32 UNBAL(65536) { Running Times : 198
C.33 UNBAL(16384) { tn = 2 Cycles / Flit-Hop { Running Times : : : : : : : : 199
C.34 UNBAL(16384) { tn = 4 Cycles / Flit-Hop { Running Times : : : : : : : : 199
C.35 UNBAL(16384) { tn = 8 Cycles / Flit-Hop { Running Times : : : : : : : : 200
C.36 UNBAL(16384) { tn = 16 Cycles / Flit-Hop { Running Times : : : : : : : : 200
C.37 UNBAL(16384) { tn = 64 Cycles / Flit-Hop { Running Times : : : : : : : : 200
C.38 MATMUL(16) (coarse, cached) { Running Times : : : : : : : : : : : : : : : 201
C.39 MATMUL(32) (coarse, cached) { Running Times : : : : : : : : : : : : : : : 201
C.40 MATMUL(64) (coarse, cached) { Running Times : : : : : : : : : : : : : : : 202
C.41 MATMUL(64) (coarse, cached) { tn = 2 Cycles / Flit-Hop { Running Times 203
C.42 MATMUL(64) (coarse, cached) { tn = 4 Cycles / Flit-Hop { Running Times 203
C.43 MATMUL(64) (coarse, cached) { tn = 8 Cycles / Flit-Hop { Running Times 203
C.44 MATMUL(16) (�ne, cached) { Running Times : : : : : : : : : : : : : : : : 204
C.45 MATMUL(32) (�ne, cached) { Running Times : : : : : : : : : : : : : : : : 204
C.46 MATMUL(64) (�ne, cached) { Running Times : : : : : : : : : : : : : : : : 205
C.47 MATMUL(64) (�ne, cached) { tn = 2 Cycles / Flit-Hop { Running Times : 206
C.48 MATMUL(64) (�ne, cached) { tn = 4 Cycles / Flit-Hop { Running Times : 206
C.49 MATMUL(64) (�ne, cached) { tn = 8 Cycles / Flit-Hop { Running Times : 206
C.50 MATMUL(16) (coarse, uncached) { Running Times : : : : : : : : : : : : : 207
C.51 MATMUL(32) (coarse, uncached) { Running Times : : : : : : : : : : : : : 207
C.52 MATMUL(64) (coarse, uncached) { Running Times : : : : : : : : : : : : : 208
C.53 MATMUL(64) (coarse, uncached) { tn = 2 Cycles / Flit-Hop { Running Times209
C.54 MATMUL(64) (coarse, uncached) { tn = 4 Cycles / Flit-Hop { Running Times209
C.55 MATMUL(64) (coarse, uncached) { tn = 8 Cycles / Flit-Hop { Running Times210
C.56 MATMUL(16) (�ne, uncached) { Running Times : : : : : : : : : : : : : : : 211
C.57 MATMUL(32) (�ne, uncached) { Running Times : : : : : : : : : : : : : : : 211
C.58 MATMUL(64) (�ne, uncached) { Running Times : : : : : : : : : : : : : : : 212
C.59 MATMUL(64) (�ne, uncached) { tn = 2 Cycles / Flit-Hop { Running Times 213
C.60 MATMUL(64) (�ne, uncached) { tn = 4 Cycles / Flit-Hop { Running Times 213
C.61 MATMUL(64) (�ne, uncached) { tn = 8 Cycles / Flit-Hop { Running Times 213

8

List of Figures

1-1 Self-Scheduled Model : 17

1-2 Self-Scheduled Implementation : 18

2-1 Taxonomy of Load Sharing Methods : 21

3-1 Combining Tree with Exact Queue Lengths : : : : : : : : : : : : : : : : : : 31

3-2 Combining Tree with Presence Bits : 32

4-1 Binary X-Tree on a One-Dimensional Mesh Network : : : : : : : : : : : : : 37

4-2 Quad-X-Tree on a Two-Dimensional Mesh Network : : : : : : : : : : : : : : 38

4-3 Embedding a Binary Tree in a One-Dimensional Mesh: Naive Solution. : : 42

4-4 Embedding a Binary Tree in a One-Dimensional Mesh: Better Solution. : : 43

4-5 Embedding a Quad-Tree in a Two-Dimensional Mesh. : : : : : : : : : : : : 45

4-6 Two-Dimensional Presence Bit Cache Update : : : : : : : : : : : : : : : : : 49

4-7 Thread Search Example { I : 51

4-8 Thread Search Example { II : 52

4-9 Thread Search Example { III : 53

4-10 Thread Search Example { IV : 54

4-11 Thread Search Example { V : 55

4-12 Thread Search Example { VI : 56

4-13 Thread Search Example { VII : 57

4-14 Thread Search Example { VIII : 58

4-15 Thread Search Example { IX : 59

5-1 One-Dimensional Search { Worst Case : 64

5-2 Two-Dimensional Search { Worst Case : 74

6-1 The Alewife Machine : 86

6-2 NWO Simulator Organization : 87

6-3 PISCES Multithreader Organization : 87

6-4 A Typical PISCES Thread : 88

6-5 PISCES Thread Execution Order : 88

6-6 PISCES Alewife Simulation : 89

6-7 Thread Queue Management : 97

6-8 Coarse-Grained MATMUL Partitioning : 99

6-9 Fine-Grained MATMUL Partitioning : 100

9

7-1 Experimental Parameters : 105
7-2 AQ: Regions of Interest : 112
7-3 FIB: Regions of Interest : 113
7-4 TSP: Regions of Interest : 113
7-5 UNBAL: Regions of Interest : 113
7-6 AQ: XTM vs. P-Ideal, C-Ideal-1 and C-Ideal-2 : : : : : : : : : : : : : 115
7-7 FIB: XTM vs. P-Ideal, C-Ideal-1 and C-Ideal-2 : : : : : : : : : : : : : 115
7-8 TSP: XTM vs. P-Ideal, C-Ideal-1 and C-Ideal-2 : : : : : : : : : : : : : 116
7-9 UNBAL: XTM vs. P-Ideal, C-Ideal-1 and C-Ideal-2 : : : : : : : : : : : 116
7-10 AQ: XTM vs. Di�-1, Di�-2, RR-1 And RR-2 : : : : : : : : : : : : : : : 119
7-11 FIB: XTM vs. Di�-1, Di�-2, RR-1 And RR-2 : : : : : : : : : : : : : : : 119
7-12 TSP: XTM vs. Di�-1, Di�-2, RR-1 And RR-2 : : : : : : : : : : : : : : 120
7-13 UNBAL: XTM vs. Di�-1, Di�-2, RR-1 And RR-2 : : : : : : : : : : : : 120
7-14 Steal One vs. Steal Half : 123
7-15 AQ: Comparing Various Tree-Based Algorithms : : : : : : : : : : : : : : : 125
7-16 FIB: Comparing Various Tree-Based Algorithms : : : : : : : : : : : : : : : 125
7-17 TSP: Comparing Various Tree-Based Algorithms : : : : : : : : : : : : : : : 126
7-18 UNBAL: { Comparing Various Tree-Based Algorithms : : : : : : : : : : : 126
7-19 AQ(0.01): Variable tn : 130
7-20 FIB(20): Variable tn : 130
7-21 TSP(10): Variable tn : 131
7-22 UNBAL(16384): Variable tn : 131
7-23 MATMUL (Coarse, Cached) : 135
7-24 MATMUL(64) (Coarse, Cached): Variable tn : : : : : : : : : : : : : : : : : 135
7-25 MATMUL (Fine, Cached) : 136
7-26 MATMUL(64) (Fine, Cached): Variable tn : : : : : : : : : : : : : : : : : : 136
7-27 MATMUL (Coarse, Uncached) : 137
7-28 MATMUL(64) (Coarse, Uncached): Variable tn : : : : : : : : : : : : : : : : 137
7-29 MATMUL (Fine, Uncached) : 138
7-30 MATMUL(64) (Fine, Uncached): Variable tn : : : : : : : : : : : : : : : : : 138

10

Chapter 1

Introduction

MIMD multiprocessors can attack a wide variety of di�cult computational problems in

an e�cient and
exible manner. One programming model commonly supported by MIMD

multiprocessors is the dynamic threads model. In this model, sequential threads of execution

cooperate in solving the problem at hand. Thread models can be either static or dynamic. In

the static threads model, the pattern of thread creation and termination is known before run-

time. This makes it possible for decisions regarding placement and scheduling of the threads

to be made in advance, either by the user or by a compiler. Unfortunately, many parallel

applications do not have a structure that can be easily pre-analyzed. Some have running

characteristics that are data-dependent; others are simply too complex to be amenable to

compile-time analysis. This is where the dynamic aspect of the dynamic threads model

enters the picture. If such programs are to be run in an e�cient manner on large-scale

multiprocessors, then e�cient run-time thread placement and scheduling techniques are

needed. This thesis examines the problems faced by an on-line thread-management system

and presents XTM, an X-Tree-based [25, 6] Thread-Management system that attempts

to overcome these problems.

The general thread-management problem is NP-hard [7]. The standard problem has the

following characteristics: precedence relations are considered, the communications network

is
at and in�nitely fast, tasks take di�ering amounts of time to �nish, preemptive schedul-

ing is not allowed, and the thread-management algorithm can be sequential and o�-line.

Even if precedence relations are ignored, the problem is still NP-hard when tasks vary in

11

length and preemption is not allowed: it reduces to the bin-packing problem [7]. In the

real world, such simpli�cations often do not apply: real programs contain precedence rela-

tions, communications networks are neither
at nor in�nitely fast, and in order for thread

management algorithms to be useful, they must be distributed and run in real time.

Since the overall problem is too di�cult to tackle all at once, XTM breaks the thread-

management problem down into three sub-problems, attacking each one separately. The

sub-problems are identi�ed as follows:

1. determining what global information is needed for good thread management and how

to e�ciently collect and disseminate that information in a distributed environment,

2. determining how to use that information to match runnable threads with idle proces-

sors, and

3. determining what interprocessor communication style to use.

For each of these sub-problems, we present a solution and show through formal analysis that

the chosen solution has good behavior. Finally, we demonstrate, using high-level simulation

results, that the mechanisms work well together.

1.1 Principles for Algorithm Design in Distributed Envi-

ronments

The optimal thread management problem is NP-hard, even when signi�cantly simpli�ed.

The problem is further complicated by the requirement that it be solved in a distributed

fashion. However, it is neither necessary nor practical to expect a multiprocessor thread

manager to achieve an optimal schedule. The primary goal of such a system is to max-

imize processor utilization, thus minimizing overall running time. This task is especially

challenging because information about the state of the machine is generated locally at the

processors, but information about the state of the entire machine is needed in order to make

good thread-management decisions. Collection and distribution of this type of global state

information is di�cult in a distributed environment. Therefore, we set forth several general

principles to guide our design e�orts:

12

Eliminate ALL Hot-Spots: At any given time, the number of processors accessing a

single data object and the number of messages being sent to a single processor should be

limited. Otherwise serialization may result, with a corresponding loss in e�ciency.

Preserve Communication Locality: Threads should be run physically near to the data

they access, so as to minimize time spent waiting for transmissions across the communication

network.

Minimize System Overhead: Overhead imposed by the thread manager should be kept

to a minimum: time spent by a processor running system management code is time spent

not running the application being managed.

Given a design choice, the path that follows these principles more closely will be more

likely to attain good performance in a large-scale distributed system. Experience shows

that overall system performance will su�er if any piece of the thread-management system

should fail to follow any of these principles.

1.2 Contributions of This Thesis

This thesis examines and develops thread-management algorithms for large-scale distrib-

uted-memory multiprocessors. Guided by the design principles given above, we have de-

veloped XTM, a thread management system that is sound from both a theoretical and a

practical perspective.

XTM solves the sub-problems identi�ed above as follows:

1. Global information is collected and disseminated using an X-Tree [25, 6] data structure

embedded in the communications network (see Figures 4-1 and 4-2). Each node in the

tree contains a \presence bit" whose value indicates whether there are any runnable

threads in the sub-tree headed by that node. We show that on a machine with a

su�ciently high, balanced workload, the expected cost of maintaining these presence

bits is asymptotically constant, regardless of machine size.

13

Presence-bit maintenance follows a simple or rule at the nodes of the tree. The state of

a node's presence bit only changes when its �rst child's presence bit goes from zero to

one, or when its last child's presence bit goes from one to zero. In this fashion, presence

bit update messages are naturally combined at the nodes of the tree. This combining

behavior has the e�ect of avoiding hot-spots that may otherwise appear at higher

nodes in the tree and reduces XTM's bandwidth requirements. Furthermore, the

tree is embedded in the communications network in a locality-preserving fashion, thus

preserving communication locality inherent to the application. Finally, the operations

involved in maintaining global information are very simple, burdening the system with

very little overhead.

2. The presence bit information, along with a combining process aided by the X-Tree,

is used to match threads to processors. We show that this matching process can take

no more than eight times as much time as a particular idealized (unimplementable)

adversary, running on a two-dimensional mesh network.

Multiple requests for work from one area of the machine are combined at the X-Tree

nodes, allowing single requests for work to serve many requesters. In this manner, large

volumes of long-distance communication are avoided, and communication locality is

enhanced. Furthermore, if a single area of the machine contains a disproportionately

large amount of work, a few requests into that area are made to serve large numbers

of requesters, therefore avoiding hot-spot behavior in that area of the machine.

3. A message-passing communication style yields fundamental improvements in e�ciency

over a shared-memory style. For the matching process, the advantage is a factor of

log l, where l is the distance between an idle processor and the nearest runnable thread.

The message-passing vs. shared-memory design choice boils down to an issue of

locality. In a message-passing system, the locus of control follows the data; in a

shared-memory system, the locus of control stays in one place. The locality gains

inherent to the message-passing model yield signi�cant performance gains that appear

in both analytical and empirical results.

14

Chapter 5 gives asymptotic analyses of XTM's information-distribution and thread-dis-

tribution algorithms that show XTM to be competitive with one idealized adversary.

In summary,XTM makes use of an X-Tree data structure to match idle processors with

runnable threads. The X-Tree is used to guide e�cient information distribution about where

runnable threads can be found. The tree is also used to combine requests for work, so that a

single work request can bring work to multiple idle processors. Finally, the mapping of the

tree onto the physical processor array enhances communication locality of the application

in a natural way, usually causing threads to run on processors near to where they were

created.

An implementation of XTM has been written for the MIT Alewife Multiprocessor [1, 2].

Alewife provides both an e�cient implementation of the shared-memory abstraction and

e�cient interprocessor messages. XTM employs message-passing as its primary communi-

cation style. This message-passing implementation is made possible by the static mapping

of the X-Tree data structure onto the physical processor array. Use of messages not only

lowers the cost of primitive functions like thread creation, but it also improves commu-

nication locality over a shared-memory implementation. These locality-related gains are

shown to become important as machine size increases. This thesis presents a detailed de-

scription of XTM. It presents asymptotic analyses of XTM's information distribution and

thread-distribution algorithms, showing XTM to be competitive with idealized algorithms.

Simulation results bear out the theoretical analyses.

In the process of studying the behavior of XTM and other thread-management algo-

rithms, we have come to the following conclusions, using both analytical and empirical

arguments:

� As machines become large (� 256 processors), communication locality attains a po-

sition of overriding importance. This has two consequences: First, a thread manager

is itself an application. If the structure of the application is understood well enough,

it can be implemented in a message-passing style, instead of using shared-memory.

A message-passing implementation can achieve signi�cant performance gains by low-

ering demands on the communication system. This is the case when the locus of

computation follows the data being manipulated, drastically reducing the cost of ac-

15

cessing that data. Second, a good thread manager should attempt to keep threads

that communicate with one another close together on the machine.

� Thread management is a global optimization problem. A good thread manager must

therefore achieve e�cient collection and distribution of relevant global information.

� Parallel algorithms for large machines must avoid hot-spot behavior, or else risk losing

the bene�ts of large-scale parallelism. Therefore, the algorithms presented in this

thesis are all fully distributed, employing combining techniques for the collection and

distribution of the threads being managed and of the global information needed to

achieve good thread management.

While the solutions to the sub-problems given above have provably good characteristics,

it is di�cult to say anything concrete about their behavior when combined into one coherent

system. In order to study the behavior of di�erent thread-management algorithms and to

con�rm the validity of the analyses, we developed a simulator for large-scale multiproces-

sors. This simulator, called PISCES, models the Alewife architecture and produced nearly

all of the data comparing di�erent thread managers on various-sized multiprocessors. These

simulation results con�rmed the theoretical results: for large machines, the techniques em-

ployed by XTM performed well. For example, a numerical integration application run on

16384 processors and managed by XTM ran ten times faster than the same application

managed by a di�usion-based thread manager, and three times faster than the same ap-

plication managed by a round-robin thread manager. In fact, the XTM run was within a

factor of three of a tight lower bound on the fastest possible running time.

1.3 Systems Framework and Assumptions

The systems framework under which this research was performed has the following charac-

teristics:

1. Thread creation is fully dynamic: a new thread may be created on any processor at

any time.

16

Runnable Thread
Queue

P P P P

Shared Memory

. . .

Figure 1-1: Self-Scheduled Model: Any thread can run on any processor. The processors

themselves determine which thread runs on which processor.

2. Threads follow the Self-Scheduled Model [14], as depicted in Figure 1-1. This means

that the processors that execute application code also contend between themselves to

decide on which processor the various threads that make up the application are run.

There is no fundamental link between threads and processors: any thread can run

on any processor. The actual thread queue is implemented in a distributed fashion.

Every processor maintains its own local queue of threads (see Figure 1-2).

3. The scheduling policy is non-preemptive. A processor runs a thread until the thread

either terminates or blocks on some synchronization construct. When the thread

running on a processor blocks or terminates, the processor becomes idle: it needs

to �nd another runnable thread to execute. The behavior of an idle processor varies

signi�cantly depending on the thread-management strategy. When a consumer-driven

search is in place, idle processors search the machine for work; when a producer-driven

search is being used, idle processors simply wait for more work to be delivered to them.

This non-preemptive policy places two requirements on applications being managed.

First, fairness among threads that constitute an application must not be an issue.

Second, deadlock issues are handled entirely by the application. We assume that

applications that need a contended resource will block on a synchronization construct

associated with the resource, thus taking themselves out of the runnable task pool.

17

P P P P
. . .

Communications Network

Figure 1-2: Implementation of the Self-Scheduled Model: Every processor maintains a local

queue of threads.

4. Di�erences between individual threads are ignored. Threads can di�er with respect

to such parameters as running time and communication behavior. For the purposes

of this thesis, we assume that all threads run for the same amount of time.

5. For the purposes of formal analysis, we assume that there is no inter-thread commu-

nication. Furthermore, the shape of the application's task graph is assumed to be

unknown. However, the actual implementation of XTM optimizes for the case where

the task graph is a tree, with the likelihood of inter-thread communication between

two threads diminishing with distance in the tree.

In order to analyze the performance of any algorithm on any multiprocessor, we need to

know the communication structure provided by the machine. In this thesis, we examine that

class of machines based on k-ary n-dimensional mesh communications networks connecting

p processors, where p = kn. Such an architecture is simple and can scale to arbitrarily

large sizes without encountering wire-packing or wire-length problems for n � 3 [5]. Similar

analyses can be performed for networks with richer communication structures. In our

analyses, we ignore the e�ects that network contention may have on performance.1

1In [10], it is shown that for a large class of machines, the e�ect of network contention on performance
is no worse than the e�ect of network latency, within a constant factor. This is true for all of the machines
and applications simulated for this thesis.

18

Parameter Description

p Number of processors on a particular machine

Pi Labeling for processor number i

Parameters for a k-ary n-cube Mesh Network

k Network Radix

n Network Dimensionality

Pi0;i1;:::;in�1 Labeling for processor with mesh coordinates

i0; i1; :::in�1: 0 � ix � k � 1

tn Network Speed: Cycles per Flit-Hop

Table 1.1: Machine Parameter Notation.

1.4 Terminology and Notation

Table 1.1 lists notation used throughout this thesis. The parameters in Table 1.1 describe

the particular machine under discussion, in terms of size, labeling, network parameters and

the ratio between network speed and processor speed. A multiprocessor of a given size

is referred to as a p-processor machine; the processors on that machine are labeled Pi,

where i varies from 0 to p� 1. Mesh-based multiprocessors are de�ned in terms of n, their

dimensionality, and k, their radix. On a k-ary n-cube mesh multiprocessor, p = kn. Finally,

the ratio between processor speed and network speed is given as tn, the number of processor

cycles it takes for one
it to travel one hop in the interconnection network.

1.5 Outline

The rest of this thesis is organized as follows. Chapter 2 presents other research in this

area. Chapter 3 discusses high-level decisions that were made in the early stages of XTM's

design. In Chapter 4, we give a more detailed presentation of the information-distribution

and thread-distribution algorithms at the heart of XTM. These algorithms are subject to a

formal analysis in Chapter 5, especially with respect to asymptotic behavior. An empirical

approach is taken in Chapters 6 and 7. Chapter 6 describes the experimentation method-

ology used in examining the behavior of XTM's algorithms and other interesting thread-

distribution algorithms; Chapter 7 compares XTM with the other thread-management

algorithms, as run on several dynamic applications. Finally, Chapter 8 presents conclusions

and suggestions for future research.

19

Chapter 2

Background

Although the practical aspects of thread management and load sharing have been discussed

in the literature for the past decade, thread management for large-scale multiprocessors has

only been seriously examined during the latter half of that period. Kremien and Kramer [13]

state

...a
exible load sharing algorithm is required to be general, adaptable, stable,

scalable, transparent to the application, fault tolerant and induce minimum

overhead on the system...

This chapter explores the work of other investigators in this area and evaluates that work

with respect to Kremien and Kramer's requirements.

Znati, et. al. [31], give a taxonomy of load sharing algorithms, a modi�ed version of which

appears in Figure 2-1. Characteristics of generalized scheduling strategies are discussed

in [16], in which the scalability of various candidate load-sharing schemes is examined,

and [30], which looks at the e�ects of processor clustering.

In order to meet the criteria given in [13], a thread management system must be dynamic

and fully distributed. In this thesis, we are especially interested in dynamic methods because

we want to be able to solve problems whose structure is not known at compile time. The �rst

widely-discussed dynamic Self-Scheduling schemes were not fully distributed; they employed

a central queue, which posed no problem on small machines.

20

Load Balancing

Static Dynamic

Centralized Fully Distributed

Hybrid Bidding Drafting

Gradient Scatter

Semi−Distributed

Figure 2-1: Taxonomy of Load Sharing Methods.

2.1 Centralized Self-Scheduling

One of the �rst references to the Self-Scheduling model in the literature appeared in 1985

in [14]. In this paper, the authors described Self-Scheduling, although they never explicitly

named it such:

There are p processors, initially idle. At t = 0, they each take K subtasks from

a job queue, each experiencing a delay h in that access. They then continue

to run independently, taking batches of jobs and working them to completion,

until all the jobs are done.

Assuming that the subtask running times are independent identically distributed random

variables with mean � and variance �2, and given a requirement that K remain constant,

the authors derive an optimal value for K, as a function of n (the total number of subtasks),

h, p, and �. They go on to show that when n
p log p

� 1 and �
�
� 1, the system e�ciency1 is

1System e�ciency, for a given problem run on a given number of processors, is de�ned to be the total
number of cycles of useful work performed divided by the total running time (in cycles) times the number

21

at least 1

1+
p
2
.

In 1987, Polychronopoulos and Kuck introduced Guided Self-Scheduling [21]. Their

scheme, which is oriented towards the e�cient scheduling of parallel FORTRAN loops,

varies K with time. More speci�cally, whenever a processor becomes idle, it takes d r
p
e jobs

from the central queue, where r is the number of jobs in the queue at the time. Guided Self-

Scheduling handles wide variations in thread run-times without introducing unacceptable

levels of synchronization overhead. For certain types of loops, they show analytically that

Guided Self-Scheduling uses minimal overhead and achieves optimal schedules.

All of the early Self-Scheduling work assumes that h is both independent of p and

una�ected by contention for the central job queue. These assumptions limit this work to

be only applicable to small machines.

2.2 Fully Distributed On-Line Algorithms

We de�ne fully distributed algorithms to be algorithms that contain no single (or small

number of) serialization points on an arbitrarily large multiprocessor. Znati, et. al. [31],

divide such algorithms into three sub-categories: bidding methods, drafting methods and

hybrid methods. In bidding or producer-oriented methods, the creators of new work push

the work o� onto processors with lighter loads. In drafting or consumer-oriented methods,

processors with light workloads locate and then steal excess work from processors with

heavier workloads. In hybrid methods, producers and consumers cooperate in the load-

sharing process. In the rest of this section, we give examples that have appeared in the

literature for each of these categories of load-sharing algorithms.

2.2.1 Bidding Methods

Wu and Shu [28] present a Scatter Scheduling algorithm that is essentially the producer-

oriented dual of the round-robin drafting algorithm described in Chapter 6. When running

of processors the problem was run on:

E =
W

pT

22

this algorithm, processor i sends the �rst thread it creates to processor i + 1, the second

to processor i + 2, and so on. Assuming that the application is suitably partitioned, this

algorithm should get a relatively even load balance on machines of small and moderate size.

This expectation is borne out in the results presented in [28]. However, since producer-

processors send threads to essentially arbitrary destinations over time, any aspect of locality

concerning data shared between related threads is lost. Furthermore the cost of thread

creation goes up with the diameter of the machine, so on large machines, one would expect

this algorithm to behave rather poorly.

Znati, et. al. [31], present a bidding scheme that takes distance between sender and

receiver into account. When a new thread is created on a given processor, the processor

recomputes and broadcasts its load to the rest of the system. Every processor then compares

this new load with its own, taking the distance between itself and the source processor and

itself into account. All processors that are eligible to receive the task based on the source

processor's load, their own load and the distance between source and potential destination

then contend for the job, the winner being the closest processor with the lightest load.

There are two problems with this scheme, both related to scalability. First, every time

a new task is created, a global broadcast takes place. The bandwidth requirement for

such a scheme is not satis�able on an arbitrarily large machine. Second, every processor

has to participate in every scheduling decision. As the multiprocessor gets large and the

corresponding number of threads needed to keep it busy gets large, the thread scheduling

overhead required of each processor will become unacceptably large. In fairness to the

authors, one must realize that this work was done in the context of

...a loosely coupled large scale multiprocessing system with a number of process-

ing elements interconnected through a broadcast based communication subnet...

This statement implies that the machines this algorithm is intended for are of limited size

(despite the use of \large-scale"), and that the grain size of the tasks is also rather large,

minimizing the e�ect of scheduling overhead on overall performance.

23

2.2.2 Drafting Methods

Ni, Xu and Gendreau [20] present a drafting-style load-sharing algorithm that also seems

to be oriented towards a relatively small number of independent computers connected to a

single Local Area Network. In this scheme, each processor has an idea of the state of all

other processors by maintaining a \load table," which has an entry for every other processor

in the system. Processors can be in one of three states, light load, normal load or heavy

load. As in [31], every processor in the system is informed of all changes in load on every

other processor by means of broadcasts. When a processor Pi goes into the lightly loaded

state, it sends a request for work to every processor in the system that it thinks is in the

heavy load state. Each of those processors will respond with a \draft-age," which is a

measure of how much the entire system would bene�t from an exchange of work between

that processor and Pi. Pi then determines which candidate will yield the highest bene�t

and gets work from that processor.

The same objections that applied to the scheme proposed in [31] apply here: such an

algorithm isn't really scalable. Furthermore, the \draft-age" parameter used to compare

drafting candidates does not take the distance between the two processors into account. This

lack of attention to communication distances further limits this algorithms e�ectiveness on

large multiprocessors.

2.2.3 Hybrid Methods

Di�usion

Halstead and Ward proposed di�usion scheduling [9] as a means of propagating threads

throughout the machine. Their description is a rather brief part of a larger picture and

gives no speci�c details. However, the settling time for Jacobi Relaxation is proportional

to the square of the diameter of the mesh upon which the relaxation takes place [3]. More

sophisticated relaxation techniques, such as Multigrid methods [3], achieve much better

convergence times at the expense of the locality achieved by simple di�usion methods.

The XTM algorithm presented by this thesis can be thought of as the multigrid version

of di�usion scheduling. We implemented both the simple di�usion scheduling algorithm

24

described here and XTM. Results are given in Chapter 7.

Gradient Model

The Gradient Model proposed in [19] has a communication structure similar to that of

di�usion scheduling. Processors are de�ned to be in one of three states: lightly loaded,

moderately loaded or heavily loaded. Instead of moving threads based on the di�erence

in the workload on neighboring processors, this scheme builds a gradient surface derived

from estimates of the distance to the nearest lightly loaded processor. The gradient surface

is de�ned to have a value of zero on lightly loaded processors; on every other processor,

the value of the surface is de�ned to be one more than the minimum of its neighbors.

The resulting surface gives an indication of the distance from and direction towards the

nearest lightly loaded processor. The gradient surface is built by propagating information

between nearest neighbors. A heavily loaded processor acts as a job source, sending jobs

down the gradient in any \downhill" direction. A lightly loaded processor acts as a job

sink, accepting jobs
owing towards it. A moderately loaded processor accepts jobs as if

it were lightly loaded, but acts like a heavily loaded processor with respect to building the

gradient. Finally, when there are no lightly loaded processors in the system, the gradient

surface eventually
attens out at a maximum value equal to the machine diameter plus one.

A machine in this state is said to be saturated.

The Gradient Model appears to scale well, independent of machine topology. However,

there are some questions regarding its performance. The �rst question concerns the behavior

of a saturated machine. In such a case, when a single processor becomes lightly loaded, a

wave propagates out from that processor throughout the entire machine. In this manner,

a number of tasks proportional to the square of the diameter of the machine will move

between processors in response to a small local perturbation in the state of the machine.

Second, gradient construction and job propagation takes place as a periodic process on

every processor regardless of the state of the machine. This imposes a constant overhead

on all processors independent of how well the processing load is spread about the machine:

a price is paid for load-sharing whether needed or not. Finally, there is some question as

to the stability of this scheme. It is easy to see that it tends to move jobs from heavily

25

loaded processors towards lightly loaded processors; however, it seems possible to construct

situations in which the time lag imposed by the propagation of gradient information could

cause jobs to pile up at a single location, leading to a poor load balance at some time in

the future.

Random Scheduling

Rudolph, et. al. [24], propose a load balancing scheme in which processors periodically

balance their workloads with randomly selected partners. The frequency of such a load

balancing operation is inversely proportional to the length of a processor's queue, so that

heavily loaded machines (which have little need for load balancing) spend less time on load

balancing leaving more time for useful computation. A probabilistic performance analysis

of this scheme shows that it tends to yield a good balance: all task queues are highly likely

to be within a small constant factor of the average task queue length.

Unfortunately, this work assumes that the time to perform a load balancing operation

between two processors is independent of machine size. Clearly, in a large machine, it is

more costly to balance between processors that are distant from each other than between

processors that are close to each other. Since this scheme picks processors at random, the

cost of a load balancing operation should rise for larger machines. Also, nothing is said in

this paper about settling times or rates of convergence. The claim that a load-balancing

scheme yields a balanced system is not worth much if the time it takes to achieve that

balance is longer than the time a typical application is expected to run.

We have brie
y surveyed a number of thread management algorithms given in the lit-

erature. For each algorithm, we have listed one or more potential problems that may be

encountered when implementing the algorithm on a large-scale multiprocessor. In the rest

of this thesis, we describe and evaluate a new thread management scheme that attempts to

overcome all of these objections and tries to meet the requirements set forth by Kremien

and Kramer [13].

26

Chapter 3

High-Level System Design

In this chapter, we present several high-level decisions that we made early on in the XTM

design e�ort. These decisions were based mainly on the design principles given in Chapter 1:

eliminate hot-spots, preserve communication locality and minimize system overhead. The

details of the algorithms used by XTM will be given in Chapter 4. The goal of this chapter

is to give the intuition behind the design of those algorithms.

As stated in Chapter 1, we break the thread management problem down into three

sub-problems:

1. determining what global information is needed for good thread management and how

to e�ciently collect and disseminate that information in a distributed environment,

2. determining how to use that information to match runnable threads with idle proces-

sors, and

3. determining what interprocessor communication style to use.

Stated brie
y, the high-level solutions to each of those sub-problems are:

1. Global information is collected and disseminated using an X-Tree [25, 6] data structure

embedded in the communications network. Each node in the tree contains a \presence

bit" whose value indicates whether there are any runnable threads in the sub-tree

headed by that node.

27

2. The presence bit information, along with a combining process aided by the X-Tree, is

used to match threads to processors.

3. A message-passing communication style yields fundamental improvements in e�ciency

over a shared-memory style.

In this chapter, we discuss each of these solutions in detail.

3.1 Global Information Management

In order to make good scheduling decisions, information about the state of the entire ma-

chine is needed, but this information is generated locally at the processors. A tree is a

scalable data structure that can be used to e�ciently collect and disseminate global in-

formation while avoiding hot-spots through combining techniques. Therefore, we use a

tree-based data structure to aid in the e�cient distribution of information about the state

of the machine.

A tree, while good for e�ciently collecting and distributing data, can create arti�cial

boundaries where none actually exist. Processors that are physically near one another

can be topologically distant from one another, depending on their relative positions in the

tree, even when the tree is laid out so as to preserve as much of the locality a�orded by

the communications network as possible. This loss of locality can be alleviated by adding

connections in the tree between nodes that are physically near each other. Such a tree,

called an X-Tree, is the basic data structure upon which XTM's algorithms are based.

Despain, et. al. [25, 6], �rst introduced the X-Tree data structure as a communications

network topology. The particular variant of X-Tree we use is a full-ring X-Tree without

end-around connections.

The rest of this section discusses the need for global information in solving the dy-

namic thread management problem. We then suggest combining trees as a mechanism for

e�ciently collecting and disseminating such global information.

28

3.1.1 The Need for Global Information

As discussed in Chapter 1, thread management is essentially a global optimization problem.

Even if we forego optimality, it is easy to see how global knowledge is necessary in order

to make good local decisions. For example, in a system where the producers of threads are

responsible for deciding where they should be run, the choice of where to send a new thread

is strongly in
uenced by the overall state of the machine. If the machine is relatively \full,"

then we want to keep a newly created thread near its creator to enhance locality, but if the

machine is relatively \empty," we may need to send the thread to some distant processor

to improve load-sharing. Similarly, in a system where idle processors are responsible for

\drafting" work, the overall state of the machine is just as important. If there is no work to

be found on nearby processors, a searcher has to know what regions of the machine contain

threads available to be run.

As shown in Chapter 7, di�usion methods and round-robin methods perform relatively

poorly on large multiprocessors. Such thread-management algorithms share the attribute

that they use no knowledge about the overall state of the machine. This seems to reduce the

e�ectiveness of such methods, since some knowledge of overall machine state is necessary

to achieve good load-sharing.

Management of global knowledge can be prohibitively expensive on large-scale machines.

The minimum latency for a global broadcast is proportional to the machine diameter. Fur-

thermore, such a broadcast places a load on the communications network at least propor-

tional to the number of processors. If every processor continually produces information

that changes the global state, it is clearly unacceptable for each processor to broadcast that

information to the all other processors every time a local state change occurs. Similarly, if

global information is concentrated on one node, prohibitive hot-spot problems can result.

If every processor has to inform that node in the event of a change, and if every processor

has to query that node to �nd out about changes, then the network tra�c near that node

and the load on the node itself becomes overwhelming, even for relatively small machines.

So the key question is the following: if global information is necessary in order to perform

e�ective thread management, how can we manage that information in such a way as to not

put an unacceptable load on any processor or any part of the communications network?

29

3.1.2 Prospective Solutions

As discussed in Section 1.3, we implement the global Self-Scheduled model [14, 21] by main-

taining a queue of runnable threads on every processor. Therefore, the global information

useful to a thread-management algorithm could potentially include the state of every one

of these queues. However, the cost of keeping every processor informed of the state of

every other processor's thread queue would quickly become unmanageable, even for rel-

atively small machines, irrespective of communications architecture. Some way to distill

this global information is needed, such that the cost of collecting and disseminating the

distilled information is acceptable, while keeping around enough information to make good

thread-management decisions.

Software combining [29] presents itself as the obvious way to keep information collection

and dissemination costs manageable. When combining techniques are employed, the load

on the communications network can be held to an acceptable level. Furthermore, if one is

careful, certain combining strategies can guarantee an acceptably low load on all processors,

even ones that contain nodes high up in the combining tree. Consequently, we require that

the global information used by the thread manager must be organized in such a manner

that combining techniques apply: any operation used to distill two separate pieces of global

information into one piece must be associative.

The most straightforward way to distill the state of an individual processor queue into

one piece of information is to take the length of that queue. A simple sum can then be

used to combine two such pieces of data (see Figure 3-1). Each node in such a combining

tree keeps track of the sum of the queue lengths for the processors at the leaves of the

subtree headed by that node. Unfortunately, it quickly becomes apparent that maintaining

an exact sum is both expensive and impossible: impossible because of the communication

delays along child-parent links in the tree, and expensive because in such a scheme, nodes

near the root of the tree are constantly updating their own state, leaving no time for useful

work (execution of threads).

Since maintenance of exact weights in the tree is impossible anyhow, perhaps approxi-

mate weights could keep costs acceptably low, while still providing su�cient information for

the thread manager to function acceptably. In Chapters 5 and 7, we explore two such ap-

30

0 0 0 0

0

P P P P P P P

N N N N N N N N

N N N N

N N

N

P

2

0

0 1 2 3 4 5 6 7

3

2

1 1 1 1

0 0 0 0 0 0 0
0 1 2 3 4 5 6 7

1 3 5 7

2 6

4

1

1 2

2

3

6 3

9

9

12

Figure 3-1: Combining Tree with Exact Queue Lengths: The tree is implemented as a data

structure distributed among the various processors in the system. Each node in the tree keeps track

of the total number of runnable threads on queues on the processors at the leaves of the subtree

headed by that node. The rectangular boxes labeled Pi represent processors in a one-dimensional

mesh. Each processor holds a queue of threads; in some cases, that queue is empty. The circles

represent nodes in the combining tree. Node N l
i represents a node at level l in the tree residing on

processor Pi. Details of the mapping of tree nodes onto processors are given in Section 4.1.2.

proximation techniques. The �rst of these techniques maintains weights at each node of the

combining tree as before, but instead of informing its parent whenever its weight changes,

a node only informs its parent of a weight change that crosses one of a well-chosen set of

boundaries. Details of this technique for disseminating global information are discussed

more thoroughly in Section 6.4, under the heading XTM-C.

Results in Chapter 7 show that an even simpler approximation technique gives bet-

ter practical results. Figure 3-2 illustrates this simpler approximation, which reduces the

\weight" maintained at each node to a single \presence" bit. A node's presence bit is turned

on when any of the processors at the leaves of the subtree headed by that node has at least

one runnable thread on its queue.

31

1 1

1

1

1

0 0 0 0

0

P P P P P P P

N N N N N N N N

N N N N

N N

N

P

2

0

0 1 2 3 4 5 6 7

3

2

1 1 1 1

0 0 0 0 0 0 0
0 1 2 3 4 5 6 7

1 3 5 7

2 6

4

1

1

1 1

1

Figure 3-2: Combining Tree with Presence Bits: The tree is distributed among the processors

as described in Figure 3-1. Each node in the tree maintains a \presence bit," which is turned on

whenever any queue on any processor at any leaf on the subtree headed by that node contains at

least one runnable thread.

3.2 Matching Threads with Processors

In many dynamic computations, it is unavoidable that situations arise in which one area

of the machine is rich with work, with most or all processors busy, while another area is

starved for work, with most or all processors idle. In such situations, the communications

network can easily be overloaded as work is transferred from the rich area to the sparse

area. Furthermore, a tree-based algorithm is prone to hot-spot behavior at higher-level

nodes. Both of these problems can be avoided if combining is employed: a single request

can be made to serve multiple clients.

Combining techniques are not only useful for collecting and disseminating information,

they can also be used to collect and disseminate the threads themselves. As an example of

why combining is essential, consider the case where one section of a large machine is very

32

busy, containing an excess of runnable threads. At the same time, some other section of

the same machine is nearly idle, with very few runnable threads. If combining is not used,

then drafting-style thread managers would have each processor in the idle section requesting

work from the busy section, while producer-driven managers would have each processor in

the busy section sending work over to the idle section. In either case, there would be many

messages being sent over long distances.

We propose the use of combining to cut down on the number of long-distance messages.

This combining should cause a single message to go from an idle section to a busy section,

where all threads to be sent over are gathered, sent back in a single chunk, and then

distributed among the idle processors.

3.2.1 X-Tree-Based Design

The need for combining suggests the development of algorithms based on trees: a tree is

an ideal structure around which to build algorithms that employ combining. Furthermore,

trees are easy to embed in most known architectures in a natural, locality-preserving fashion.

However, most communications architectures provided a richer communications structure

than that of a tree. Therefore, if simple tree-based designs are used, there is a potential

for a loss of locality: the tree can introduce topological boundaries where no physical

boundaries exist. Locality lost in this manner can be regained by adding connections in the

tree between nodes that are physically near each other. A tree enhanced with such links,

introduced in [25] and [6] as a full-ring X-Tree without end-around connections, is the basic

data structure upon which XTM's algorithms are based (see Figures 4-1 and 4-2).

In Chapter 5, we show that the nearest-neighbor links are needed to get good theoretical

behavior. However, results in Chapter 7 demonstrate that for most applications, the simple

tree-based design attains signi�cantly higher performance than the X-Tree-based design.

For systems in which the ratio of processor speed to network speed is higher, the X-Tree's

performance surpasses the simple tree's performance.

33

3.3 Shared-Memory vs. Message-Passing

We use message-passing as the primary means of interprocessor communication. This re-

duces XTM's communication requirements, thus increasing performance over a shared-

memory implementation. In Chapter 5 these performance gains are shown to become sig-

ni�cant on large machines.

One of the earliest design decisions concerned programming style: should programs

employ shared-memory or message-passing? This may seem odd, since any algorithm im-

plemented in one of the two styles can be implemented in the other. However, there are

compelling theoretical and practical arguments in favor of the message-passing style. This

research was performed with the Alewife machine as the primary target machine. Since

Alewife supports both e�cient shared-memory and message-passing, we had the luxury of

choosing between the two styles.

To start with, we give informal de�nitions of the terms \shared-memory" and \message-

passing." Brie
y, the central di�erence between the two mechanisms is whether or not each

communication transaction is acknowledged individually. In a message-passing environ-

ment, no acknowledgment is required for individual messages; in a sequentially consistent

shared-memory environment, every communication transaction requires either a reply con-

taining data or an acknowledgment that informs the requesting processor that the requested

transaction is complete.

The two kinds of nodes in a shared-memory environment: processing nodes and memory

nodes. Throughout this thesis, when we say shared-memory, we really mean the sequentially

consistent shared-memory [17]. Communication takes place in the form of a request from

a processor to a memory node, requiring an acknowledgment when the request has been

satis�ed. The actual low-level particulars of such a transaction depend on such machine-

speci�c details as the existence of caches and the coherence model employed. Requests come

in the form of reads, which require a reply containing the data being read; writes, which

modify the data and require an acknowledgment, depending on the machine details, and

read-modify-writes, which modify the data and require a reply containing the data.

In a message-passing environment, there are only processing nodes. Data is kept in

memories local to the processors, and one processor's data is not directly accessible by an-

34

other processor. Communication takes place in the form of messages between the processors,

which require no acknowledgments.

Message-passing systems have the potential to achieve signi�cantly more e�cient use of

the interprocessor communications network than do shared-memory systems. In many cases,

the message overhead required to support the shared-memory abstraction is not needed for

correct program behavior. In those cases, a message-passing system can achieve signi�cantly

better performance than a shared-memory system [11]. When, however, a large fraction

of interprocessor communication is in the read, write, or read-modify-write form directly

supported by a shared-memory system, then using a shared-memory system may yield

better performance because shared-memory systems are usually optimized to support such

accesses very e�ciently. When the distance messages travel in the communications network

is taken into account, the advantage held by a message-passing system over a shared-memory

system can be signi�cantly greater. For the algorithms employed by XTM, the gain can

be as high as a factor of log p, where p is the number of processors in the system (see

Chapter 5). The advantages of message-passing are not limited to asymptotics. Kranz and

Johnson [11] show that the cost of certain primitive operations such as thread enqueueing

and dequeueing can improve by factors of �ve or more when message-passing is used.

If message-passing is so superior to shared-memory, why use shared-memory at all? This

question is also addressed in [11]. There are two answers to this question. First, certain

types of algorithms are actually more e�cient when run on shared-memory systems. Second,

it seems that the shared-memory paradigm is easier for programmers to handle, in the same

way that virtual-memory systems are easier for programmers than overlay systems. Even

for the relatively simple algorithms employed by XTM, implementation was signi�cantly

easier in the shared-memory style. However, the performance gains a�orded by message-

passing outweighed the additional complexity of implementation, and message-passing was

the ultimate choice.

In this chapter, we have presented and argued for a number of early high-level design

decisions. In the next chapter, we show how we assembled these decisions to produce a

detailed design of a high-performance thread-management system.

35

Chapter 4

X-Tree-Based Thread

Management

This thesis presents a thread distribution system based on an X-Tree-driven search. An

X-Tree [25, 6] is a tree augmented with links between same-level nodes. The particular

variant we use contains near-neighbor links between touching same-level nodes. In the

parlance used in [25] and [6], this is a full-ring X-Tree without end-around connections (see

Figures 4-1 and 4-2). In this chapter, we describe in detail the algorithms that go into

XTM, an X-Tree-based Thread Manager.

When a new thread is created, its existence is made public by means of presence bits

in the X-Tree. When a node's presence bit is set, that means that there are one or more

runnable threads somewhere in the sub-tree rooted at that node; a cleared presence bit

indicates a sub-tree with no available work. Presence information is added to the X-Tree

as follows: when a thread is either created or enabled (unblocked), it is added to the

runnable thread queue associated with some processor. If the queue was previously empty,

the presence bit in the leaf node associated with that processor is set. The presence bits

in each of the node's ancestors are then set in a recursive fashion. The process continues

up the X-Tree until it reaches a node whose presence bit is already set. In Chapter 5,

we show that although this algorithm can cost as much as O (nk),1 the expected cost is

1n is the mesh dimensionality; k is the mesh radix.

36

P P P P P P P P P P P P P P P0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15P

Figure 4-1: Binary X-Tree on a One-Dimensional Mesh Network: Labels of the form Pi indicate

physical processors. Circles indicate nodes in the X-Tree. Thick lines indicate parent-child links.

Thin lines indicate near-neighbor links.

actually O
�

n
�2

�
, when the distributions of thread queue lengths are independent, identically

distributed random variables with probabilities of non-zero length of at least �, for some

� : Prob (qlen > 0) � �. Whenever a thread is taken o� of a queue, if that causes queue to

become empty, a similar update process is performed, with similar costs.

When a processor becomes idle, it initiates a thread search. A thread search recursively

climbs the X-Tree, examining successively larger neighborhoods in the process. When a

given node is examined, it and all of its neighbors are queried as to the status of their

presence bits. If none of the bits is set, the search continues with the node's parent.

Otherwise, for one of the nodes whose presence bits are set, the searcher requests half of the

work available on the sub-tree rooted at that node. Such a request is satis�ed by recursively

requesting work from each child whose presence bit is set. In Chapter 5, we show that this

search algorithm is guaranteed to �nish in O (nd) time, where n is the dimensionality of

the mesh and d is the distance between the searcher and the nearest non-empty queue.

This is O (n)-competitive with an optimal drafting-style thread manager. Furthermore, in

order to limit long-distance accesses, the search algorithm combines requests from multiple

37

P

P

P

P

P P

P

P

P

P

P

PP

P P

P

0,1

1,1

2,1 2,3

0,0

1,0

2,0

3,0 3,1 3,2 3,3

0,30,2

1,2 1,3

2,2

Figure 4-2: Quad-X-Tree on a Two-Dimensional Mesh Network: Labels of the form Pi0;i1 indicate

physical processors. Circles indicate nodes in the X-Tree. Thick lines indicate parent-child links.

Thin solid lines indicate near-neighbor links to edge-adjacent neighbors. Thin dashed lines indicate

near-neighbor links to corner-adjacent neighbors.

children of each node: for a given sub-tree, only a single representative searches outside

that sub-tree at a time. When the representative comes back with a collection of runnable

threads, the threads are divided among the other searchers that were blocked awaiting the

representative's return.

XTM is based on an X-Tree data structure embedded into the communications network.

The nodes of the X-Tree contain presence bits whose values are updated whenever a thread

is either created or consumed. The presence bits are used to drive a search process that gets

runnable threads to idle processors. Section 4.1 describes the details of the X-Tree, including

its embedding in the network. Section 4.2 gives the details of the presence bit update

algorithm. Section 4.3 describes the process that sends runnable threads to idle processors.

38

Finally, Section 4.4 gives an example of these algorithms in action. All algorithms described

in this chapter are assumed to employ the message-passing communication style.

4.1 X-Trees

One- and two-dimensional X-Trees are pictured in Figures 4-1 and 4-2. For the algorithm

presented in this thesis, an X-Tree is a software data structure. The nodes that make up the

X-Tree are distributed around the communications network on the processors. The X-Tree

nodes include one leaf node on each processor and enough higher-level nodes to make up

the rest of the tree. The higher-level nodes are distributed throughout the machine in such

a way as to keep nodes that are topologically near to one another in the tree physically

near to one another in the network (see Section 4.1.2). The X-Tree guides the process of

matching idle processors with runnable threads, using near-neighbor links between nodes

that are physically near to each other. On an n-dimensional mesh network, each node in

the X-Tree has up to 3n � 1 near-neighbor links. Each leaf of the X-Tree is associated with

a physical processor, and is stored in the memory local to that processor.

4.1.1 Notation

The X-Tree data structure is embedded in the communications network. The individual

nodes that make up the X-Tree are resident on the processors. Each node is labeled with

its level in the tree and the mesh coordinates of the processor it resides on. Tree levels start

at zero at the leaves, one at the next higher level and so on. A node is identi�ed as:

N l
i0;i1;:::

where l is the level of the node in the tree and i0; i1; ::: are the mesh coordinates of the

processor on which the node resides (Pi0;i1;:::). This notation does not distinguish between

two or more same-level nodes on a single processor. This is not a problem because we

are not interested in any embeddings that put two or more same-level nodes on the same

processor: any embedding that puts more than one same-level node on a single processor

will tend not to distribute tree management costs as well as embeddings that put only one

39

node at each level on a single processor; experience shows that systems that distribute their

overheads poorly tend to perform poorly overall.

The Manhattan distance through the mesh between two nodes N l
i0;i1;:::

and Nm
j0;j1;:::

is writ-

ten:

D
�
N l

i0;i1;:::
; Nm

j0;j1;:::

�
= jj0 � i0j+ jj1 � i1j+ :::

We assume that the cost of communicating between two nodes is equal to the Manhattan

distance between the nodes. This is true, for example, for the e-cube routing scheme [26].

We use di�erent notation to refer to the distance covered when taking the shortest path

through the X-Tree between two nodes:

X
�
N l

i0;i1;:::
; Nm

j0;j1;:::

�

In other words, while D
�
N l

i0;i1;:::
; Nm

j0;j1;:::

�
is the shortest distance between N l

i0;i1;:::
and

Nm
j0;j1;:::

through the mesh, while X
�
N l

i0;i1;:::
; Nm

j0;j1;:::

�
is the shortest distance between the

two nodes when traversing the X-Tree.

The mth ancestor of node N0
i0;i1;:::

is written:

Am
i0;i1;:::

More generally, the mth ancestor of any node N l
i0;i1;:::

, which is the m+ lth of node N0
i0;i1;:::

,

is written:

Al+m
i0;i1;:::

We use this notation to discuss relationships between X-Tree nodes and their ancestors. In

particular, we need to discuss costs associated with climbing the tree from a node to one of

its ancestors.

40

The relationship between a node (N l
i0;i1;:::

) and its parent (Al+1
i0;i1;:::

= N l+1
i0
0
;i0
1
;:::
) can be

expressed through a set of (usually simple) embedding functions:

i00 = f0 (i0; i1; :::; l) ; i01 = f1 (i0; i1; :::; l) ; :::

Clearly, the costs associated with traversing an X-Tree depend on how the tree is embedded

into the communications network. These embedding functions are used to formalize a

particular embedding scheme. Formal statements of embedding functions re used in formal

algorithm statements and in mathematical proofs.

41

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N0 N N N N N N N N N N N N N N N1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N N N N N N N N

N N N N

N N

N

0 2 4 6

0 4

0

0
4

3

2 2

1 1 1 1 1 1 1 1

2 2

3
8

8 12

8 10 12 14

P P P P P P P P P P P P P P P0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15P

Figure 4-3: Embedding a Binary Tree in a One-Dimensional Mesh: Naive Solution.

4.1.2 Embedding a Tree in a k-ary n-Dimensional Mesh

An X-Tree embedding has to capture the locality in the communications network while bal-

ancing the overhead its management costs place on the individual processors. The locality

captured by the X-Tree depends on its embedding in the underlying space: a \good" em-

bedding places nodes that are topologically near one another in the X-Tree physically near

one another in the network. The X-Tree should also be distributed so as to minimize the

maximum load placed on any individual processor by any part of the thread-management

algorithm.

One-Dimensional Case

Figure 4-3 illustrates a straightforward embedding of a binary tree in a one-dimensional

mesh. Each processor's leaf node is resident on that processor. The following expression

captures the relationship between a node and its ancestors:

Al
i = N l

i0 ; i0 = i ^
�
�2l

�

42

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N0 N N N N N N N N N N N N N N N1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N N N N N N N N

N N N N

N

N N

1
1 1 1

2 2

3

4
8

4

2 6

3 5 7
1 1 1 1 1

2 2

3
12

10 14

9 11 13 15

P P P P P P P P P P P P P P P0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15P

Figure 4-4: Embedding a Binary Tree in a One-Dimensional Mesh: Better Solution.

Using this embedding, if a node on Pi has an ancestor at level l, that ancestor is on Pi0 ,

where i0 is simply i with l low-order bits masked o�. This embedding has two major

drawbacks. First, worst-case tree-traversal costs between leaf nodes are worse than they

need to be. Second, note that some processors (e.g., P0) contain more nodes of the tree

than others. This leads to higher network contention near those heavily used nodes, cutting

down on overall performance. Also, the processors and memories on those nodes are more

heavily loaded down with thread management overhead, leading to even more unbalance

and worse performance.

Figure 4-4 illustrates a better embedding of a binary tree in a one-dimensional mesh:

Al
i = N l

i0 ; i0 =
h
i ^

�
�2l�1

�i
_ 2l�1 (for l � 1)

Using this embedding, if a node on Pi has an ancestor at level l, that ancestor is on Pi0 ,

where i0 is i with l� 1 low-order bits masked o� and with the lth bit set to one. This gives

a better worst-case tree traversal cost than the �rst embedding. Furthermore, it guarantees

that at most two tree nodes are resident on any given processor, yielding better hot-spot

43

behavior.

The distance between any two nodes in a one-dimensional mesh is:

D
�
N l

i ; N
m
j

�
= jj � ij :

For the suggested embedding, the distance between any node at level m and its parent is:

D
�
Nm

i ; Am+1
i

�
= 2m�1;

except at the leaves of the tree.

The distance between a leaf node and its parent is:

D
�
N0

i ; A
1
i

�
= either 0 or 1;

depending on whether the parent is on the same processor as the child or not.

In the one-dimensional case, all of a node's near neighbors are the same distance from the

node:

D
�
Nm

i ; Nm
i�2m

�
= 2m:

44

N
0
0,0 N

0
0,1 N

0
0,2

0
N0,3

N1,0 N1,1 N1,2 N1,3
0 0 0 0

N2,0 N2,1 N2,2 N2,3
0 0 0 0

N
0
3,0 N

0
3,1 N

0
3,2 N

0
3,3

N
1
1,1 N

1
1,3

N
1
3,3

N
2
2,2

N
1
3,1

P

P

P

P

P P

P

P

P

P

P

PP

P P

P

0,1

1,1

2,1 2,3

0,0

1,0

2,0

3,0 3,1 3,2 3,3

0,30,2

1,2 1,3

2,2

Figure 4-5: Embedding a Quad-Tree in a Two-Dimensional Mesh.

Two-Dimensional Case

Figure 4-5 illustrates a well-distributed embedding of a quad-tree in a two-dimensional

mesh:

Al
i0;i1

= N l
i0
0
;i0
1

; i00 =
h
i0 ^

�
�2l�1

�i
_ 2l�1; i01 =

h
i1 ^

�
�2l�1

�i
_ 2l�1 (for l � 1)

Using this embedding, if a node on Pi;j has an ancestor at level l, that ancestor is on Pi0;j0 .

i0 is i with l � 1 low-order bits masked o� and with the lth bit set to one; j0 is j with l � 1

low-order bits masked o� and with the lth bit set to one.

For any two-dimensional embedding, the distance between any two nodes is:

D
�
N l

i0;i1
; Nm

j0;j1

�
= jj0 � i0j+ jj1 � i1j :

For the suggested embedding, the distance between any node at level m and its parent is:

D
�
Nm

i0;i1
; Am+1

i0 ;i1

�
= 2

�
2m�1

�
;

45

except at the leaves of the tree.

The distance between a leaf node and its parent is:

D
�
N0

i0;i1
; A1

i0;i1

�
= either 0, 1 or 2;

depending whether the parent is on the same processor as the child or not.

In the two-dimensional case, a node has two classes of near neighbors: those that are

edge-adjacent and those that are vertex-adjacent. Each node has up to four edge-adjacent

neighbors and up to four vertex-adjacent neighbors. For example, in Figure 4-2, node N0
0;1

has �ve near neighbors: N0
0;0, N

0
1;0, N

0
1;1, N

0
1;2 and N0

0;2. N0
0;0, N

0
1;1 and N0

0;2 are edge-

adjacent; N0
1;0 and N0

1;2 are vertex-adjacent.

The distance between any node at level m and its face-adjacent nearest neighbors is:

D
�
Nm

i0;i1
; Nm

i0�2m;i1

�
= D

�
Nm

i0;i1
; Nm

i0;i1�2m
�
= 2m:

The distance between any node at level m and its vertex-adjacent nearest neighbors is:

D
�
Nm

i0;i1
; Nm

i0�2m;i1�2m
�
= 2 (2m) :

n-dimensional Case

It would be di�cult to illustrate an tree embedded in an n-dimensional mesh. However, we

can generalize the results presented in earlier sections to obtain the following embedding

functions for l � 1:

Al
i0;i1;:::;in�1

= N l
i0
0
;i0
1
;:::;i0

n�1

i00 =
h
i0 ^

�
�2l�1

�i
_ 2l�1

i01 =
h
i1 ^

�
�2l�1

�i
_ 2l�1

i0n�1 =
h
in�1 ^

�
�2l�1

�i
_ 2l�1

Using this embedding, if a node on Pi0;i1;:::in�1
has an ancestor at level l, that ancestor is

on Pi0
0
;i0
1
;:::i0

n�1
. All the i0x's are obtained by taking the corresponding ix, masking o� the

l � 1 low-order bits and setting the lth bit to one.

46

For any n-dimensional embedding, the distance between any two nodes is:

D
�
N l

i0;i1;:::;in�1
; Nm

j0;j1;:::;jn�1

�
= jj0 � i0j+ jj1 � i1j+ :::+ jjn�1 � in�1j :

For the given embedding, the distance between any node at level m and its parent is:

D
�
Nm

i0;i1;:::;in�1
; Am+1

i0;i1;:::;in�1

�
= n

�
2m�1

�
;

except at the leaves of the tree.

The distance between a leaf node and its parent is:

D
�
N0

i0;i1;:::;in�1
; A1

i0 ;i1;:::;in�1

�
= either 0, 1, ..., or n:

In the n-dimensional case, a node has n classes of near neighbors, each of which is a di�erent

distance from the node. We label these classes with the index i, where i ranges from 1 to

n. The maximum number of neighbors in class i is:

0
B@

n

i

1
CA 2i:

Note that this yields a maximum total of 3n � 1 neighbors.

The distance between any node at level m and a neighbor of class i is:

i (2m) :

4.2 Updating Information in the X-Tree

Every processor has its own runnable thread queue. When a new thread is created, it is

added to the creating processor's queue. Similarly, when a thread is enabled (unblocked), it

is added to the queue of the processor on which it most recently ran. Threads can be moved

from one processor's queue to another by a thread search initiated by an idle processor (see

below). Before a thread is run, it is removed from its queue.

When a thread is added to or taken from a queue, this fact is made public by means of

presence bits in the X-Tree. When a node's presence bit is set, that means that there are

47

one or more runnable threads to be found somewhere in the sub-tree rooted at that node;

a cleared presence bit indicates a sub-tree with no available work. Of course, since the

X-Tree is a distributed data structure, updating this presence information can not occur

instantaneously; as long as an update process is in progress, the presence information in

the tree is not absolutely accurate. Therefore, the thread distribution algorithm can only

use these presence bits as hints to guide a search; it must not depend on their absolute

accuracy at all times.

Presence information is disseminated as follows: when a runnable thread queue goes

either from empty to non-empty or from non-empty to empty , an update process is initiated.

This process recursively climbs the tree, setting or clearing presence bits on its way up. A

presence-bit-setting update process terminates when it reaches a node whose presence bit is

set; likewise, a presence-bit-clearing update process terminates when it reaches a node that

has some other child whose presence bit is set. Appendix A gives a more formal pseudocode

description of the presence bit update algorithm.

Update processes have the responsibility of making it globally known that work is avail-

able. These e�orts are combined at each node of the tree. The world only needs to be

informed when a queue goes either from empty to non-empty or from non-empty to empty.

When that happens, presence bits in the tree are set or cleared by an update process that

recursively climbs the tree, terminating when it reaches a node whose presence bit state

is consistent with its children's states. When more than one update process arrives at a

given node in the tree at one time, the processes are executed atomically with respect to

each other. Assuming that no new information is received between the execution of these

processes, only the �rst process ever proceeds on up the tree. In this way, the information

distribution algorithm combines its e�orts at the nodes of the tree.

Whenever a presence bit in a node changes state, the node's neighbors and parent are

all informed. The presence-bit status of each of a node's neighbors and children is cached

locally at the node, decreasing search time signi�cantly. Of course, this increases the cost

of distributing information throughout the tree, but as Chapter 5 shows, the expected cost

of information distribution is very low due to the decreasing likelihood of having to update

nodes higher up in the tree.

48

N N N N

N N N N

N N N N

N N N N0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

Figure 4-6: Two-Dimensional Presence Bit Cache Update: When the state of a node's presence

bit changes, it informs its nearest neighbors, which cache presence bit information in order to cut

down on usage of the communications network. This information is disseminated using a simple n-

level multicast tree algorithm. Thick arrows indicate the �rst phase of the information dissemination

process (N0

1;2 informs N0

0;2 and N0

2;2); thin arrows indicate the second phase (N0

1;2 informs N0

1;3 and

N0

1;1, while N0

0;2 informs N0

0;3 and N0

0;1, and N0

2;2 informs N0

2;3 and N0

2;1). In an n-dimensional

system, there are n such phases.

Cached presence bits are updated in a divide-and-conquer fashion. The updating node

�rst informs its two nearest near-neighbors in the �rst dimension. Then all three nodes

inform their nearest near-neighbors in the second dimension. This continues until the nth

dimension is complete. Figure 4-6 illustrates the cached presence bit update algorithm.

4.3 Thread Search

An idle processor initiates a thread search process, which traverses the tree looking for

runnable threads to execute. It starts at the leaf node local to the idle processor.

When examining a given node, a searcher �rst checks the state of the node's presence

bit. If it is set, then there is work somewhere in the sub-tree rooted at the node. If not, the

presence bits of the nodes' neighbors are examined. If none of them are set, the searcher

starts again one level higher in the tree. If more than one searcher arrives at the same node,

then only one representative continues the search, and the rest wait for the representative

49

to �nd work for them all.

When a searcher encounters a node whose presence bit is set, the searcher goes into

gathering mode. A gatherer collects work from all of the leaves under the node where the

gatherer originated. It starts by requesting work from those of the node's children whose

presence bits are set. The children request work from their children, and so on down to the

leaves. Each leaf node sends half of its runnable threads back to its parent, which combines

the work thus obtained from all of its children, sending it on up to its parent, and so on,

back up to the node where the gathering process originated.

Finally, the set of threads thus obtained is distributed among the waiting searchers. As

a representative searcher makes its way back down the tree to the processor that spawned

it, at each level, it hands an equal share of the work o� to other searchers awaiting its

return.

4.4 An Example

Figures 4-7 through 4-15 illustrate the thread search process on an 8-ary 1-dimensional

mesh. In all of these �gures, X-Tree nodes are represented by circles labeled N l
i . Numbers

inside the circles indicate the state of the presence bits associated with each node. X-Tree

nodes are joined by thin lines representing near-neighbor links and thick lines indicating

parent-child links.

At each leaf node in the X-Tree, there is a square processor box labeled Pi indicating

that the leaf node is associated with processor i. A shaded square indicates that the

processor has useful work to do; a non-shaded square indicates an idle processor. Under

each processor square is a small rectangle representing the runnable thread queue associated

with the processor. A queue rectangle with a line through it is empty; a non-empty queue

points to a list of squares indicating runnable threads.

Throughout this example, we disregard the fact that presence bits are cached by parents

and neighbors. This has no e�ect on the functioning of the search algorithm; it is simply

an optimization that improves search costs.

50

1 1

1

1

1

0 0 0 0 0 0

000

0

P P P P P P P

N N N N N N N N

N N N N

N N

N

P

2

0

0 1 2 3 4 5 6 7

3

2

1 1 1 1

0 0 0 0 0 0 0
0 1 2 3 4 5 6 7

1 3 5 7

2 6

4

Figure 4-7: Thread Search Example { I.

We start with processors P0, P1, P2, P3, P4, P6 and P7 busy and processor P5 idle.

All runnable thread queues are empty except for those on P0 and P1, which contain six

and three threads, respectively.

51

1 1

1

1

1

0 0 0 0 0 0

000

0

P P P P P P P

N N N N N N N N

N N N N

N N

N

P

2

0

0 1 2 3 4 5 6 7

3

2

1 1 1 1

0 0 0 0 0 0 0
0 1 2 3 4 5 6 7

1 3 5 7

2 6

4

Figure 4-8: Thread Search Example { II.

P5, which is idle, initiates a thread search. The search process �rst examines P5's leaf

node (N0
5), where it �nds no work. It then examines N0

5 's two nearest neighbors, N0
4 and

N0
6 , �nding both of their presence bits to be zero, so it continues one level higher in the

tree with node N1
5 . N1

5 's presence bit is zero, as are those of both its neighbors, N1
3 and

N1
7 , so the search continues one level higher at node N2

6 . N
2
6 's presence bit is zero, but its

neighbor, N2
2 has its presence bit set, so the search goes into gathering mode.

52

1 1

1

1

1

0 0 0 0 0 0

000

0

P P P P P P P

N N N N N N N N

N N N N

N N

N

P

2

0

0 1 2 3 4 5 6 7

3

2

1 1 1 1

0 0 0 0 0 0 0
0 1 2 3 4 5 6 7

1 3 5 7

2 6

4

S6

Figure 4-9: Thread Search Example { III.

The search process that originated on P5 initiates a gathering process starting at node

N2
2 . A request for work is sent to node N1

1 , the one child of N2
2 whose presence bit is set.

Requests for work are then sent to nodes N0
0 and N0

1 , both children of N1
1 and both of

which have set presence bits.

Meanwhile, P6 has become idle, presumably because the thread it was executing either

blocked or terminated. It initiates a second thread search process, which examines the

presence bits of the following nodes: N0
6 , N

0
5 and N0

7 , N
1
7 and N1

5 , �nding them all to be

zero. When it gets to node N2
6 , it �nds that the other search process is searching outside

the immediate neighborhood, so it waits for the other searcher to return with work. The

waiting searcher is indicated in the �gure by the symbol S6.

53

1 1

1

1

1

0 0 0 0 0 0

000

0

P P P P P P P

N N N N N N N

N N N N

N N

N

P

2

0

0 1 2 3 4 5 6 7

3

2

1 1 1 1

0 0 0 0 0 0
0

N0
1

2 3 4 5 6 7

1 3 5 7

2 6

4

S

S

6

7

Figure 4-10: Thread Search Example { IV.

The gathering process initiated at node N2
2 has reached the leaves of the tree and now

goes into gather mode. Requests for work that went to nodes N0
0 and N0

1 cause half of

the work on P0's and P1's queues to be detached and sent back up the tree towards the

requester.

Meanwhile, yet another processor (P7) has become idle. It initiates a third thread search

process, which examines the presence bits of nodes N0
7 and N0

6 , which are both still zero.

When it gets to node N1
7 , it waits for the second searcher to return with work. The waiting

searcher is indicated in the �gure by the symbol S7.

54

3

1 1

1

1

1

0 0 0 0 0 0

000

0

P P P P P P P

N N N N N N N N

N N N N

N N

N

P

2

0

0 1 2 3 4 5 6 7

3

2

1 1 1 1

0 0 0 0 0 0 0
0 1 2 3 4 5 6 7

1 3 5 7

2 6

4

S

S

6

7

Figure 4-11: Thread Search Example { V.

The gather process continues. The threads taken from processors P0 and P1 are com-

bined at node N1
1 and sent on up to node N2

2 , where the gathering process started.

55

1 1

1

1

1

0 0 0 0 0 0

000

0

P P P P P P P

N N N N N N N N

N N N N

N N

N

P

2

0

0 1 2 3 4 5 6 7

3

2

1 1 1 1

0 0 0 0 0 0 0
0 1 2 3 4 5 6 7

1 3 5 7

2 6

4

S7

Figure 4-12: Thread Search Example { VI.

The threads are sent back to node N2
6 , where they are split between searcher S5, which

initiated the gathering process, and searcher S6, which waited back at node N2
6 for S5's

return.

56

1 1

1

1

1

0 0 0 0 0 0

000

0

P P P P P P P

N N N N N N N N

N N N N

N N

N

P

2

0

0 1 2 3 4 5 6 7

3

2

1 1 1 1

0 0 0 0 0 0 0
0 1 2 3 4 5 6 7

1 3 5 7

2 6

4

Figure 4-13: Thread Search Example { VII.

Searcher S5 sends its threads one link closer to P5. Meanwhile, the work brought back

by searcher S6 is split up between S6 and S7, which was waiting at node N1
7 for S6's return.

57

1 1

1

1

1

0 0 0 0 0 0

000

0

P P P P P P P

N N N N N N N N

N N N N

N N

N

P

2

0

0 1 2 3 4 5 6 7

3

2

1 1 1 1

0 0 0 0 0 0 0
0 1 2 3 4 5 6 7

1 3 5 7

2 6

4

Figure 4-14: Thread Search Example { VIII.

All searchers have returned to their originating processors. At each processor, the �rst

thread brought back is run and the rest are put on the runnable thread queue. Note that

the presence bits in the tree have not yet been updated to re
ect the new work that has

just become available.

58

1 1

1

1

1

0 0 0 0 0

00

P P P P P P P

N N N N N N N N

N N N N

N N

N

P

2

0

0 1 2 3 4 5 6 7

3

2

1 1 1 1

0 0 0 0 0 0 0
0 1 2 3 4 5 6 7

1 3 5 7

2 6

4

1

1

1

Figure 4-15: Thread Search Example { IX.

A tree update process is sent out from P5 because its runnable thread queue, which was

previously empty, now contains threads that may be run by other processors. The process

updates nodes N0
5 , N

1
5 and N2

6 . N3
4 's presence bit was already set and therefore did not

have to be modi�ed.

This example illustrated the thread search algorithm in action. Note that a single search

process brought back work for three searching processors from the same neighborhood.

In this chapter, we gave a detailed description of the two algorithms at the heart of

XTM: the global information update algorithm and the thread search algorithm. In the

next chapter, we give asymptotic analyses for the two algorithms.

59

Chapter 5

Analysis

In this chapter, we analyze the various pieces of XTM in terms of both execution time and

network bandwidth consumed. In particular, we look at the thread search and presence-

bit-update algorithms, analyzing the one-dimensional case, the two-dimensional case and

the n-dimensional case for each.

Our most important results are the following:

1. On a machine with a su�ciently high, balanced workload, the expected cost of main-

taining presence bits in the X-Tree is proved to be asymptotically constant, regardless

of machine size.

2. The algorithm that matches runnable threads with idle processors is shown to be eight-

competitive with an idealized drafting-style adversary, running on a two-dimensional

mesh network.

3. The message-passing communication style is shown to yield fundamental improve-

ments in e�ciency over a shared-memory style. For the matching process, the ad-

vantage is a factor of log l, where l is the distance between an idle processor and the

nearest runnable thread.

In addition, we give asymptotic cost bounds for XTM's search and update algorithms on

one-, two- and n-dimensional mesh networks. We give results in terms of maximum latency

and bandwidth requirements.

60

Unless otherwise stated, we assume that an e�cient message-passing mechanism is em-

ployed, i.e., a message can be sent from any processor in the machine to any other with no

acknowledgment necessary [15]. When such a message represents an active entity moving

about the system, then decisions about where it is to be sent next can be made without

having to communicate with the processor from which the message �rst originated.

In addition, all analyses of search costs in this chapter assume that information in the

tree is accurate. This is in fact an approximation: due to delays in the communications

network, in a dynamic environment, it is impossible to guarantee that dynamic data struc-

tures are consistent at all times. The logic of the presence bit update algorithm guarantees

that soon after the global state stops changing, the information in the tree will be accu-

rate and consistent. It would be interesting to speculate as to the e�ect of the temporary

inaccuracies of the information in the tree.

Finally, all analyses assume that local computation is free; all costs are measured in

terms of communication latency. To obtain execution time, we look at the (serialized)

communication requirements of the algorithm's critical path, assuming that non-critical-

path pieces of the algorithm do not interfere with the critical path. We also assume that

all messages are the same size, therefore consuming the same network bandwidth per unit

distance. This is again an approximation: in fact, the more work that is moved, the more

network bandwidth is consumed. However, for the Alewife machine, most of the bandwidth

consumed by a message is start-up cost: it takes far longer to set up a path than it does

to send
its down a path that has already been set up. For this reason, we stay with the

constant-message-size approximation.

61

5.1 One-Dimensional Case

The one-dimensional case is easiest to illustrate. This section presents in-depth analyses of

the various pieces of the thread-distribution algorithm as implemented on a one-dimensional

mesh. In Section 5.2, we extend the analyses to two dimensions; in Section 5.3, we perform

the same analyses for an n-dimensional mesh.

Throughout this section, the minimum distance d between two nodes on processors Pi and

Pj is simply jj � ij:
d = D

�
N0

i ; N
0
j

�
= jj � ij

This is the lowest possible cost for communicating between Pi and Pj .

Also, when following the shortest path through the tree between nodes N0
i and N0

j , we have

to ascend l levels. l, which is an integer, is either blog2 dc or dlog2 de, depending on how the

two nodes are aligned with respect to the tree.

blog2 dc � l � dlog2 de

Finally, L is the height of the tree:

blog2kc � L � dlog2ke

5.1.1 Search

The search algorithm can be executed using either the message-passing style or the shared-

memory style. In this section, we derive lower bounds on the latency using both styles.

We show that for the message-passing style, the X-Tree-guided search algorithm is four-

competitive with the optimal. For the same algorithm, the shared-memory style yields

results that are worse by a factor of log d, where d is the distance between a processor and

the nearest available work.

Message-Passing

Here, we show that the cost of searching the X-Tree for nearby work is four-competitive

with the optimal adversary. In a k-ary one-dimensional mesh, a path from a node N0
i to

62

node N0
j is established by ascending l levels in the tree from node N0

i to its level-l ancestor

Al
i, crossing over to Al

j and descending back down to node N0
j . The following analysis

demonstrates the competitive factor of four.

The distance covered when taking shortest path through the tree between nodes is the

following:

X
�
N0

i ; N
0
j

�
= D

�
N0

i ; A
l
i

�
+D

�
Al

i; A
l
j

�
+D

�
Al

j ; N
0
j

�

�

1 +

l�1X
x=1

2x�1
!
+ 2l +

1 +

l�1X
x=1

2x�1
!

� 2l�1 + 2l + 2l�1

� 2
�
2l
�

� 2
�
2dlog2 de

�
� 4d

Therefore, the traversal cost for the X-Tree is no more than a factor of four worse than

direct access through the mesh.

So far, we have given an upper bound on the tree traversal cost between two leaf nodes.

The actual search process is a bit more complicated for two reasons. First, once a runnable

thread is found, it is has to travel back to the requesting processor. Second, since the

X-Tree is used for combining as well as search-guiding purposes, it employs a gathering

process once work is located, so that half of the work on the subtree with work is sent

back to the requesting sub-tree, to be distributed among all requesting processors from that

sub-tree. The gathering process �rst broadcasts requests to the entire sub-tree rooted at the

node and then waits for replies, which are combined at the intermediate nodes between the

source of the gathering process and the leaves of the sub-tree rooted at that node. Since the

gathering process executes in a divide-and-conquer fashion, the latency for the gathering

process is the same as the time it takes for a single message to be sent to a leaf from the

originating node, and for a reply to be sent back. Therefore, the critical path for the search

algorithm costs at most 8d, which is twice as much as the worst-case traversal calculated

above.

The optimal adversary simply sends a request to the nearest processor containing work.

63

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N0 N N N N N N N N N N N N N N N1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P P P P P P P P P P P P P P P0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15P

N N N N N N N N

N N N N

N

N N

1
1 1 1

2 2

3

4
8

4

2 6

3 5 7
1 1 1 1 1

2 2

3
12

10 14

9 11 13 15

A B

Figure 5-1: One-Dimensional Search { Worst Case: A direct path from node A (N0
7) to node

B (N0
12) covers �ve network hops. The corresponding tree traversal covers 15 network hops: N0

7 !

N1
7 ! N2

6 ! N3
4 ! N3

12 ! N2
14 ! N1

13 ! N0
12.

The destination processor then sends some of its work back to the requester. If the request-

ing processor is Pi and the destination processor is Pj, then this entire process has a cost

of 2d. This gives us a competitive factor of four when comparing the X-Tree-based search

to the optimal adversary.

Figure 5-1 gives an example of a worst-case tree traversal scenario on a 16-processor

one-dimensional mesh: the tree traversal is three times more expensive than the direct

path. Similar examples on larger meshes approach the worst-case factor of four.

64

We now derive the worst-case network bandwidth requirement for a search that begins

at N0
i when the closest work is at N0

j . The bandwidth consumed is broken into four pieces:

ascending the tree to the lowest level that has a neighbor that has work, sending a \gather"

message to that neighbor, gathering half the available work from that neighbor, and sending

that work back to the original source of the request.

B
�
N0

i ; N
0
j

�
�

1 +

l�1X
x=1

2x�1
!
+ 2l +

1 +

l�1X
x=0

2l�x2x�1
!
+ 2l +

1 +

l�1X
x=1

2x�1
!

� 2l�1 + 2l + l2l�1 + 2l + 2l�1

� (l + 6)
�
2l�1

�
� (7 + log2 d)

�
2dlog2 de�1

�
� (7 + log2 d) d

The network bandwidth consumed by the search process is O (d log d), as compared to a

running time of O (d). This is the expected behavior, due to the use of a gathering process

to collect threads from the entire sub-tree rooted at Al
j.

65

Shared-Memory

When shared-memory processing is used, the matching algorithm becomes more expensive.

The path from a node N0
i to node N0

j is established by ascending l levels in the tree from

nodeN0
i to its level-l ancestor Al

i, crossing over to A
l
j and descending back down to nodeN

0
j .

Each step in the algorithm requires communication between the original source processor

Pi and a di�erent node in the X-Tree.

X
�
N0

i ; N
0
j

�
=

lX
x=1

D
�
N0

i ; A
x
i

�
+

0X
x=l

D
�
N0

i ; A
x
j

�

� �1 +

l�1X
x=0

2x
!
+

0X

x=l

2l�1
!

� (l + 1) 2l�1 � 1

� (blog2 dc+ 1) 2blog2 dc�1 � 1

� (log2 d)
d

4
� 1

In other words, for the shared-memory case, the cost is
 (d log d). This is more expensive

than the idealized adversary by a factor of (log d). This cost derives from repeated long-

distance accesses through the communications network as the search closes in on its quarry.

66

5.1.2 Presence Bit Update

In this section, we derive lower bounds on the latency using both shared-memory and

message-passing communication styles. We show that for the message-passing style, the X-

Tree-guided update algorithm has a worst-case cost proportional to the network diameter,

but an expected cost independent of machine size, given a machine load that is both balanced

and su�ciently high. The asymptotic behavior of the update algorithm is not nearly as

sensitive to the communication style as the search algorithm. We show that the worst case

cost only goes up by a factor of two when the shared-memory communication style is used.

Message-Passing

Whenever a runnable thread queue changes state between empty and non-empty, that infor-

mation is recorded in the form of presence bits in the tree. Three sub-tasks are performed

at each level in the tree:

1. Determine whether the presence bit at this node needs to be modi�ed. If so, set this

node's presence bit to the new value and continue with step two. If not, exit.

2. Direct this node's neighbors to change their cached presence bit copies for this node

to the new value.

3. Inform this node's parent { continue the update process by starting this algorithm at

step one on the parent node.

Step 1 incurs no cost: it only requires local calculations. Step 2 is not included in the

critical path analysis because it is not in the algorithm's critical path and can execute

concurrently. Therefore, it is only the child-parent communication cost that a�ects the

algorithm's critical-path cost.

67

The update cost can be characterized in terms of worst case and expected behavior.

We show that although the worst-case cost is proportional to the network diameter, the

expected cost is independent of machine size for certain machine load conditions. First, the

bad news: U , the worst-case tree update critical-path cost, can be as bad as O (k). We now

show why this is the case.

U � 1 +
L�2X
i=0

2i

� 2L�1

� 2dlog2 ke�1

� k

Note that the worst-case tree update cost is proportional to the network diameter. We will

�nd that this is also true in the general (n-dimensional) case.

68

Now, the good news: the expected tree update cost is much lower. We calculate the

expected cost for a su�ciently loaded, balanced machine. By balanced, we mean that every

thread queue has the same probability distribution for its queue length. By su�ciently

loaded, we mean that there exists some non-zero constant lower bound on the probability

that the queue is non-empty: �. In other words, every processor's thread queue has a

distribution of queue lengths such that the probability of non-zero queue length is at least

�, for some � : Prob (qlen > 0) � �. In the following derivation, E[U] signi�es the expected
update cost, Prob (lev = i) represents the probability that the algorithm makes it to exactly

the ith level and C (i) is the expected cost of communicating between a node at the ith level

and its parent. Finally, let � = (1� �).

E[U] =
L�2X
i=0

C (i) Prob (lev = i)

� 2�1
h
�(2

0) � �(2
1)
i
+ 20

h
�(2

1) � �(2
2)
i

+:::+ 2L�4
h
�(2

L�3) � �(2
L�2)

i
+ 2L�3

h
�(2

L�2)
i

� �2�2 +
L�2X
i=0

2i�2�(2
i)

� 1

4

"
�+

L�2X
i=0

2i�(2
i)
#

� 1

4

2
4�+ 1X

j=1

j�j

3
5

� �

4

2
41 + d

d�

1X
j=0

�j

3
5

� �

4

�
1 +

d

d�

1

1� �

�

� �

4

"
1 +

1

(1� �)2

#

� (1� �)

4

�
1 +

1

�2

�

Most of this derivation is straightforward algebraic manipulation. The only subtlety con-

cerns the transition from
PL�2

i=0 2i�(2
i) to

P1
j=1 j�

j . The second of the two expressions is

simply a restatement of the the �rst expression, adding some (strictly positive) terms to

69

the sum and changing the summation index.

This result shows that although the worst-case tree update cost is proportional to the

network diameter, on a machine whose workload is both balanced and su�ciently high, the

expected update cost is O
�

1
�2

�
, which does not depend on the network diameter.

The network bandwidth requirement for the tree update process is somewhat higher; not

only does it include child-parent communication costs, but it also includes costs incurred

when updating neighbors' cached presence bits.

B (U) � k +
L�1X
i=0

2
�
2i
�

� k + 2
�
2dlog2 ke

�
� k + 4k

Like the critical-path cost, the worst-case bandwidth requirement for the tree update process

is O (k), di�ering from the critical-path cost by a constant factor only. We will �nd that

this constant factor is a function of n, the network dimensionality.

The expected bandwidth requirement for the tree update process is also signi�cantly

lower than the worst case:

E[B (U)] = E[U] + E[B (neighbor-cache update)]

� (1� �)

4

�
1 +

1

�2

�
+

L�1X
i=0

2
�
2i
�
�(2

i)

� (1� �)

4

�
1 +

1

�2

�
+ 2�

d

d�

1

1� �

� (1� �)

4

�
1 +

1

�2

�
+
2 (1� �)

�2

On a machine whose workload is both balanced and su�ciently high, the expected band-

width requirement is O
�
1
�2

�
, which is independent of k, the network diameter. Note that

the expected update bandwidth di�ers from the critical-path bandwidth only by a constant

factor. In this case as well, we will see that this factor is a function of n.

70

Shared-Memory

For the matching process, the cost became fundamentally higher when going to the shared-

memory programming style. For the tree update process, this is not the case; the rise in

cost is a constant factor.

U � 1 +
L�1X
i=1

2i

� 2L

� 2dlog2 ke

� 2k

In the case of message-passing, the worst-case tree update cost was O (k). Here in the

shared-memory case, the worst-case update cost is also O (k).

71

5.2 Two-Dimensional Case

This section presents in-depth analyses of the various pieces of the thread-distribution al-

gorithm as implemented on a two-dimensional mesh. Two-dimensional mesh networks pro-

vide more communication capacity than one-dimensional networks. Also, both one- and

two-dimensional networks can scale to arbitrarily large sizes without encountering any the-

oretical snags related to wire lengths, wire densities or heat dissipation. Networks of three

or more dimensions have problems existing in real space, due to wire packing, wire lengths

and heat dissipation issues.

Throughout this section, the minimum distance d between two nodes on processors Pi0;i1

and Pj0;j1 is simply jj0 � i0j+ jj1 � i1j:

d = D
�
N0

i0;i1
; N0

j0;j1

�
= jj0 � i0j+ jj1 � i1j

This is the lowest possible cost for communicating between Pi0;i1 and Pj0;j1 .

Also, when following the shortest path through the tree between nodes N0
i0;i1

and N0
j0;j1

,

we have to ascend l levels:

max (blog2 jj0 � i0jc; blog2 jj1 � i1jc) � l � max (dlog2 jj0 � i0je; dlog2 jj1 � i1je)

bmax (log2 jj0 � i0j; log2 jj1 � i1j)c � l � dmax (log2 jj0 � i0j; log2 jj1 � i1j)e

blog4 dc � l � dlog2 de

The exact value for l depends on how the nodes are aligned with respect to the tree.

Finally, L is the height of the tree:

blog2kc � L � dlog2ke

72

5.2.1 Search

In this section, we derive lower bounds on the latency and bandwidth costs using the

message-passing style. We also show that for the message-passing style, the X-Tree-guided

search algorithm is eight-competitive with the optimal. For the same algorithm, the shared-

memory style yields results that are worse by a factor of log d, where d is the distance

between a processor and the nearest available work. Proof of this fact follows the derivation

for the one-dimensional network.

Message-Passing

In this section, we show that the cost of searching the X-Tree for nearby work is eight-

competitive with the optimal adversary. In a k-ary two-dimensional mesh, a path from a

node N0
i0;i1

to node N0
j0;j1

is established by ascending l levels in the tree from node N0
i0;i1

to node Al
i0;i1

, crossing over to node Al
j0;j1

and descending back down to node N0
j0;j1

. The

following analysis demonstrates the competitive factor of eight:

X
�
N0

i0;i1
; N0

j0;j1

�
= D

�
N0

i0;i1
; Al

i0;i1

�
+D

�
Al

i0;i1
; Al

j0;j1

�
+D

�
Al

j0;j1
; N0

j0;j1

�

�
"
1 +

l�1X
x=1

2
�
2x�1

�#
+ 2

�
2l
�
+

"
1 +

l�1X
x=1

2
�
2x�1

�#

� 2
�
2l�1 + 2l + 2l�1

�
� 4

�
2l
�

� 4
�
2dlog2 de

�
� 8d

Therefore, the traversal cost for the X-Tree is no more than a factor of eight worse than

direct access through the mesh.

As is shown for the one-dimensional case, both for the X-Tree algorithm and for the

optimal adversary, a search costs twice as much as a simple message send from source to

destination. Therefore, the competitive factor of eight holds for a search as well as for a

one-way message send.

73

0,0 0,31

31,3131,0

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

2 2

22

3

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

2 2

22

3

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

2 2

22

3

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

2 2

22

3

4

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

2 2

22

3

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

2 2

22

3

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

2 2

22

3

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

2 2

22

3

4

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

2 2

22

3

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

2 2

22

3

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

2 2

22

3

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

2 2

22

3

4

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

2 2

22

3

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

2 2

22

3

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

2 2

22

3

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

2 2

22

3

4

5A

B

Figure 5-2: Two-Dimensional Search { Worst Case: A direct path from node A (N0
16;15) to

node B (N0
15;24) covers ten network hops. The corresponding tree traversal covers 62 network hops:

N0
16;15 ! N1

17;15 ! N2
18;14 ! N3

20;12 ! N4
24;8 ! N4

8;24 ! N3
12;28 ! N2

14;26 ! N1
15;25 ! N0

15;24.

Figure 5-2 gives an example of a worst-case tree traversal scenario on a 32 by 32 mesh:

the tree traversal is more than six times more expensive than the direct path. Similar

examples on larger meshes approach the worst-case factor of eight.

74

We now derive the worst-case network bandwidth requirement for a search that begins

at N0
i0;i1

when the closest work is at N0
j0;j1

:

B
�
N0

i0;i1
; N0

j0;j1

�
�

1 +

l�1X
x=1

2
�
2x�1

�!
+ 2

�
2l
�
+

"
1 +

l�1X
x=0

�
4l�x

�
(2)
�
2x�1

�#

� 2
�
2l�1 + 2l + l4l�1

�
� 2 (l + 3)

�
4l�1

�
� 2 [3 + dlog2de]

h
4dlog2de�1

i
� 2 [4 + log2 d] d

2

Although the latency for the search isO (d), where d is the distance between the searcher and

the nearest work, the network bandwidth consumed is O �d2 log d�. This is not surprising,
due to the use of a gathering process to collect threads from the entire sub-tree rooted at

Al
j0;j1

.

Shared-Memory

The shared-memory analysis for the two-dimensional case follows the message-passing anal-

ysis in the same way that it does for the one-dimensional case. The resulting cost goes up

by a factor of log d for the matching algorithm.

75

5.2.2 Presence Bit Update

In this section, we derive lower bounds on the latency and bandwidth using the message-

passing communication style. We the X-Tree-guided update algorithm has a worst-case cost

proportional to the network diameter, but an expected cost independent of machine size,

for certain load conditions. We argue that the worst case cost only goes up by a factor

of two when the shared-memory communication style is used. The derivation of this fact

follows that given for the one-dimensional case.

Message-Passing

The presence bit update analysis for two dimensions is similar to that for one dimension.

First, the bad news: the worst-case tree update critical-path cost can be as bad as O (k).

We now show why this is the case:

U � 2

1 +

L�2X
i=0

2i
!

� 2
�
2L�1

�
� 2

�
2dlog2 ke�1

�
� 2k

Again, we �nd that the worst-case tree update cost is proportional to the network diameter.

76

Now, the good news: again, the expected tree update cost is much lower on a machine

whose workload is both balanced and su�ciently high. These load conditions are expressed

by any distribution of thread queue lengths such that the probability of non-zero queue

length is at least �, for some � : Prob (qlen > 0) � �.

E[U] =
L�2X
i=0

C (i0; i1)P (i0; i1)

� 2
�
2�1

h
�(4

0) � �(4
1)
i
+ 20

h
�(4

1) � �(4
2)
i

+:::+ 2L�4
h
�(4

L�3) � �(4
L�2)

i
+ 2L�3

h
�(4

L�2)
i�

� 2

�2�2 +

L�2X
i=0

2i�2�(4
i)
!

� 2

4

"
�+

L�2X
i=0

2i�(4
i)
#

� 1

2

"
�+

L�1X
i=0

4i�(4
i)
#

� 1

2

2
4�+ 1X

j=1

j�j

3
5

� �

2

"
1 +

1

(1� �)2

#

� (1� �)

2

�
1 +

1

�2

�

This result shows again that although the worst-case tree update cost is proportional to the

network diameter, on a machine whose workload is both balanced and su�ciently high, the

expected cost is O
�
1
�2

�
, which does not depend on the network diameter.

77

The network bandwidth requirement for the tree update process is somewhat higher:

not only does it include child-parent communication costs, but it also includes costs incurred

when updating neighbors' cached presence bits.

B (U) � k +
L�1X
i=0

�
32 � 1

�
2i

� k + 8
�
2dlog2 ke

�
� k + 16k

The worst-case bandwidth requirement for the tree update process is again O (k).

The expected bandwidth requirement is signi�cantly lower:

E[B (U)] = E[U] + E[B (neighbor-cache update)]

� (1� �)

4

�
1 +

1

�2

�
+

L�1X
i=0

8
�
2i
�
�(4

i)

� (1� �)

4

�
1 +

1

�2

�
+ 8�

d

d�

1

1� �

� (1� �)

4

�
1 +

1

�2

�
+
8 (1� �)

�2

The expected bandwidth requirement is again O
�
1
�2

�
.

Shared-Memory

The shared-memory analysis for the two-dimensional case follows the message-passing anal-

ysis in the same way that it does for the one-dimensional case. The resulting cost goes up

only by a constant factor.

78

5.3 n-Dimensional Case

This section generalizes the analyses presented in the previous two sections. Here, we look

at the behavior of the X-Tree algorithm on an n-dimensional mesh, for any n. We only

examine the case of message-passing: the shared-memory costs go up by a factor of log l for

search and a constant for update.

Throughout this section, the smallest number of hops d between two nodes on processors

Pi0;i1;:::;in�1 and Pj0;j1;:::;jn�1 is simply jj0 � i0j+ jj1 � i1j+ :::+ jjn�1 � in�1j:

d = D
�
N0

i0;i1;:::in�1
; N0

j0;j1;:::;jn�1

�
= jj0 � i0j+ jj1 � i1j+ :::+ jjn�1 � in�1j

This is the lowest possible cost for communicating between Pi0;i1;:::;in�1 and Pj0;j1;:::;jn�1.

When following the shortest path through the tree between N0
i0;i1;:::;in�1

and N0
j0;j1;:::;un�1

,

we have to ascend l levels:

max (blog2 jj0 � i0jc; :::; blog2 jjn�1 � in�1jc) � l � max (dlog2 jj0 � i0je; :::; dlog2 jjn�1 � in�1je)

bmax (log2 jj0 � i0j; :::; log2 jjn�1 � in�1j)c � l � bmax (log2 jj0 � i0j; :::; log2 jjn�1 � in�1j)c

blog(2n) dc � l � dlog2 de

The exact value for l depends on how the nodes are aligned with respect to the tree.

Finally, L is the height of the tree:

blog2kc � L � dlog2ke

79

5.3.1 Search

In this section, we show that the cost of searching the X-Tree for nearby work is n-

competitive with the optimal adversary. In a k-ary n-dimensional mesh, a path from a

node N0
i0;i1;:::;in�1

to node N0
j0;j1;:::;jn�1

is established by ascending l levels in the tree from

node N0
i0;i1;:::;in�1

to node Al
i0;i1;:::;in�1

, crossing over to node Al
j0;j1;:::;jn�1

and descending

back down to node N0
j0;j1;:::;jn�1

. The following analysis demonstrates the competitive factor

of n:

X
�
N0

i0;i1;:::;in�1
; N0

j0;j1;:::;jn�1

�
= D

�
N0

i0;i1;:::;in�1
; Al

i0;i1;:::;in�1

�
+ D

�
Al

i0;i1;:::;in�1
; Al

j0;j1;:::;jn�1

�
+ D

�
Al

j0;j1;:::;jn�1
; N0

j0;j1;:::;jn�1

�

�
"
1 +

l�1X
x=1

n
�
2x�1

�#
+ n

�
2l
�
+

"
1 +

l�1X
x=1

n
�
2x�1

�#

� n
�
2l�1 + 2l + 2l�1

�
� 4n

�
2l�1

�
� 4n

�
2dlog2 de�1

�
� 4nd

Therefore, the traversal cost for the X-Tree is no more than a factor of 4n worse than direct

access through the mesh.

As is shown for the one- and two-dimensional cases, both for the X-Tree algorithm and

for the optimal adversary, a search costs twice as much as a simple message send from

source to destination. Therefore, the competitive factor of 4n holds for a search as well as

for a one-way message send.

80

We now derive the worst-case network bandwidth requirement for a search that begins

at N0
i0;i1;:::;in�1

when the closest work is at N0
j0;j1;:::;jn�1

:

B
�
N0

i0;i1;:::;in�1
; N0

j0;j1;:::;jn�1

�
�

1 +

l�1X
x=1

n
�
2x�1

�!

+ n
�
2l
�

+

"
1 +

l�1X
x=0

h
(2n)l�x

i
(n)

�
2x�1

�#

� n
h
2l�1 + 2l + l (2n)l�1

i
� n [l + 3]

h
(2n)l�1

i
� n [3 + dlog2 de]

h
(2n)dlog2 de�1

i
� n [4 + log2 d] d

n

Although the running time for the search is O (nd), where d is the distance between the

searcher and the nearest work, the network bandwidth consumed is O (ndn log d). Again,

this is expected behavior, due to the use of a gathering process to collect threads from the

entire sub-tree rooted at Al
j0;j1;:::;jn�1

.

81

5.3.2 Presence Bit Update

The presence bit update analysis for n dimensions is similar to that for one and two dimen-

sions. First, the bad news: the worst-case tree update critical-path cost can be as bad as

O (nk). We now show why this is the case.

U � n

1 +

L�2X
i=0

2i
!

� n2L�1

� n2dlog2 ke�1

� nk

Yet again, we �nd that the worst-case tree update cost is proportional to the network

diameter.

82

As usual, the expected tree update cost is much lower on a machine whose workload is

both balanced and su�ciently high. As before, these load conditions are expressed by any

distribution of thread queue lengths such that the probability of non-zero queue length is

at least �, for some � : Prob (qlen > 0) � �.

E[U] =
L�2X
i=0

C (i0; i1; :::; in�1)P (i0; i1; :::; in�1)

� n
h
2�1

�
�[(2

n)0] � �[(2
n)1]

�
+ 20

�
�[(2

n)1] � �[(2
n)2]

�
+:::+ 2L�4

�
�[(2

n)L�3] � �[(2
n)L�2]

�
+ 2L�3

�
�[(2

n)L�2]
�i

� n

�2�2 +

L�2X
i=0

2i�2�[(2
n)i]
!

� n

4

�+

L�2X
i=0

2i�[(2
n)i]
!

� n

4

�+

L�2X
i=0

[2n]i �[(2
n)i]
!

� n

4

2
4�+ 1X

j=1

j�j

3
5

� �n

4

"
1 +

1

(1� �)2

#

� n (1� �)

4

�
1 +

1

�2

�

This result shows that although the worst-case tree update cost is proportional to the

network diameter, on a machine whose workload is both balanced and su�ciently high, the

expected cost is O
�

n
�2

�
, which does not depend on the network diameter.

83

The network bandwidth requirement for the tree update process is somewhat higher; not

only does it include child-parent communication costs, but it also includes costs incurred

when updating neighbors' cached presence bits:

B (U) � k +
L�1X
i=0

(3n � 1) 2i

� k + (3n � 1)
�
2dlog2 ke

�
� k + (3n � 1) k

The worst-case bandwidth requirement for the tree update process is O (3nk).

The expected bandwidth requirement is signi�cantly lower on a machine workload is

balanced and high enough:

E[B (U)] = E[U] + E[B (neighbor-cache update)]

� n (1� �)

4

�
1 +

1

�2

�
+

L�1X
i=0

(3n � 1)
�
2i
��

�[(2
n)i]
�

� n (1� �)

4

�
1 +

1

�2

�
+ (3n � 1)�

d

d�

1

1� �

� n (1� �)

4

�
1 +

1

�2

�
+
(3n � 1) (1� �)

�2

The expected bandwidth requirement is O
�
3n

�2

�
.

84

Chapter 6

Experimental Method

This chapter describes experiments carried out in the course of this research. This descrip-

tion covers three main areas: simulation environments, thread management algorithms and

applications.

Our tests employed two simulation environments. The �rst, named NWO, is an accurate

cycle-by-cycle simulator of the Alewife machine. NWO is the primary vehicle for Alewife

system software development. The second, named PISCES, is a faster but less accurate

simulator built speci�cally for this research. PISCES was the main data-gathering apparatus

for this thesis, allowing us to simulate systems of up to 16384 processors. We extracted

the parameters used to drive PISCES from simulations run using NWO, as described in

Section 6.1.

A number of thread management algorithms were implemented to run on PISCES. These

include the X-Tree algorithm used by XTM, two other combining-tree algorithms (TTM

and XTM-C), two di�usion-based thread managers (Di�-1 and Di�-2), two round-robin

thread managers (RR-1 and RR-2) and four idealized thread managers (Free-Ideal, P-

Ideal, C-Ideal-1 and C-Ideal-2). All of these thread managers share a single queue

management discipline, which tends to increase thread locality and avoid memory over-

ow problems, while encouraging a uniform spread of threads around the machine. See

Section 6.4 for the details of the various thread managers.

Five applications were run on PISCES under the various candidate thread managers: a

two-dimensional integrator that employs an adaptive quadrature algorithm (AQ), a branch-

85

Cache

Distributed Shared Memory

Alewife node

INTERFACE
VME

HOST
SUN−4

I/O
Distributed Directory

Controller
Node

Router
Network

Floating
Point
Unit

SPARCLE
Processor

Figure 6-1: The Alewife Machine.

and-bound solver for the traveling salesman problem (TSP), doubly recursive Fibonacci

(FIB), a block matrix multiply (MATMUL), and a synthetic unbalanced application (UN-

BAL) which tests system behavior in the face of an initially poor load distribution. Details

of the various applications are given in Section 6.5.

6.1 NWO: The Alewife Simulator

Alewife is an experimental multiprocessor being developed at MIT (see Figure 6-1). Alewife

is primarily a shared-memory machine, containing coherent caches and a single shared

address space for all processors. Alewife also supports e�cient interprocessor messages,

allowing programs which use a message-passing communication style to execute as e�ciently

as shared-memory programs.

At the time of this writing, hardware development for the Alewife machine is nearing

completion. While actual hardware is not yet available, a detailed cycle-by-cycle simulator

for Alewife is the primary vehicle for system software development. This simulator, dubbed

NWO, performs a cycle-by-cycle simulation of the processors, the memory system and the

interprocessor communications network, all of which will eventually be present in the actual

Alewife hardware (see Figure 6-2). NWO is faithful enough to the Alewife hardware that

86

Network
Simulator

Mul−T Program

Mul−T
Compiler

SPARCLE Machine Language Program

SPARCLE
Simulator Runtime System Code

Cache
Simulator

Network Transactions

Memory Requests / Acknowledgments

Figure 6-2: NWO Simulator Organization.

Simulated Application

Dispatcher

Time−Ordered Thread Queue

Entry Point

Figure 6-3: PISCES Multithreader Organization.

it has exposed many Alewife hardware bugs during the design phase.

NWO's primary drawback is its slow execution speed. NWO provides accuracy, at the

cost of relatively low performance: on a SPARC-10, simulations run at about 2000 clock

cycles per second. This means that a typical 64-processor simulation runs approximately two

million times slower than it would on the actual hardware. For this reason, it is impossible

to run programs of any appreciable size on NWO. Therefore, for the purposes of this thesis,

NWO was primarily employed as a statistics-gathering tool. Parameters from NWO runs

were used to drive PISCES, a faster, higher-level simulator, described in the next section.

87

begin

(suspend <x>)

(suspend <y>)

(suspend <z>)
end

Figure 6-4: A Typical PISCES Thread.

Simulated
 time

. . .
Start Finish

T2T1 T3 Tn

Figure 6-5: PISCES Thread Execution Order.

6.2 The PISCES Multiprocessor Simulator

The PISCES multiprocessor simulator is a general, low-overhead multiprocessor simulation

system, consisting of a simple multithreading system and a machine model. The entire

system is written in T [23], a dialect of LISP.

The multithreader diagrammed in Figure 6-3 supports multiple independent threads

of computation executing in a common namespace. Each thread is a T program with its

own execution stack. A typical thread consists of a series of blocks of code, separated

by expressions of the form (suspend <t>). Each suspend expression informs the system

that the associated code block requires t cycles to run (see Figure 6-4). The suspend

mechanism is the only way for a thread to move forward in time; all code run between

suspend expressions is atomic with respect to the rest of the simulation.

PISCES threads are sorted into a time-ordered queue. The multithreader takes the �rst

thread from the queue, runs it until it encounters the next (suspend <t>) expression, and

re-enqueues it to execute t cycles later (see Figure 6-5). New threads are created by calling

88

Annotated Mul−T Program

ALEWIFE
 Model

 T Compiler +
Pseudo−Mul−T
 Macros

 PISCES
Multithreading
 System

Compiled T Program

 NWO
 Simulations

Parameters

Figure 6-6: PISCES Alewife Simulation.

(make-ready <proc> <t>), which creates a new thread to run t cycles from the current

simulated time, and which will run procedure proc when it �rst wakes up. When proc

�nishes, the thread terminates.

The PISCES Alewife machine model diagrammed in Figure 6-6 is built on top of the

PISCES multithreader. A simulated processor can be in one of three states:

Thread Manager A processor begins its life running the thread manager. It continues

in this state until it �nds an application thread to run. At this point, the thread

manager associated with this processor is put aside and the processor begins to run

the application thread.

Application The threads that make up the application being run on the simulated machine

are implemented as PISCES threads. An application thread continues to run until it

either terminates or suspends on a synchronization datatype.

Interprocessor Message Messages that are sent between simulated processors are also

implemented as PISCES threads. When a simulated processor sends a message to

another processor, it creates a new PISCES thread to be run on the other processor

c cycles in the future, where c is the number of cycles that it takes to send a message

between the two processors. At that time, the destination processor is interrupted,

and the message thread is executed. The interrupt mechanism is described below.

PISCES threads run until they release control through suspend expressions. Further-

more, application threads can be suspended by performing operations on certain synchro-

89

Parameter Description Default Value

Int-Ovh Interrupt Processing Overhead 18 cycles
Msg-Send-Ovh Message Send Overhead 18 cycles
Msg-Rcv-Ovh Message Receive Overhead 18 cycles
Thd-Cre-Ovh Time to Create a New Thread Message 13 cycles
Thd-Rcv-Ovh Time to Receive and Instantiate a Thread 67 cycles
Thd-Enb-Ovh Time to Enable a Suspended Thread 14 cycles
Thd-Load-Ovh Time to Load a New Thread 29 cycles
Thd-Spnd-Ovh Time to Suspend a Thread 99 cycles
Thd-Rld-Ovh Time to Reload a Thread 56 cycles
Thd-Term-Ovh Time to Terminate a Thread 32 cycles
Sched-Entry Time to Enter the Thread Manager 8 cycles
Sched-Local Time to Check the Local Thread Queue 18 cycles

Table 6.1: Timing Parameters: Obtained from NWO simulations.

nization datatypes, described below. Since this is a uniprocessor simulation, nothing can

change the state of the simulated machine while a given thread is running (between suspend

or synchronization operations). Therefore, users of the PISCES multithreading package are

encouraged to keep blocks between suspend calls small, in order to improve the accuracy

of the simulation.

A processor can be interrupted at any time. When an interrupt message is received,

the associated interrupt thread is executed at the next break. This could result in poor

timing behavior in the presence of long suspend operations: if a thread is suspended for

a long period of time when an interrupt is received, the interrupt will not be processed

until the thread resumes execution and is then suspended again. For this reason, all \long"

suspend operations are executed as a series of shorter suspend operations. Currently, the

suspend quantum is ten cycles: this seems to give a fair balance between performance of

the simulation and accuracy of timing behavior.

6.2.1 Timing Parameters

The PISCES Alewife simulation requires a number of timing parameters to be set. These

parameters describe the timing behavior of the machine being simulated. For the purposes

of this thesis, these parameters were obtained through measurements of NWO simulations.

They are summarized in Table 6.1.

90

6.2.2 Inaccuracies

The PISCES Alewife simulation executes from one to two orders of magnitude faster than

NWO. This gain in performance has a cost: PISCES simulations contain a number of

inaccuracies not found in NWO simulations.

First, cache behavior is ignored unless speci�cally modeled in the application (see de-

scription of Cached MATMUL given below). All timing �gures given in Table 6.1 assume

cache hits, except in those sections of the code where the cache is guaranteed to miss, in

which case local cache miss timing is assumed. Furthermore, all data accesses are free,

except those whose cost is explicitly modeled through suspend expressions. For most of

the applications described below, all data accesses are to the execution stack, which is in

local memory and usually resident in the cache, thus minimizing the e�ect of this inaccurate

behavior.

Second, the network model assumes no contention. The costs associated with a message

send include �xed source and destination costs and a variable cost depending on the size of

the message, the distance between source and destination, and the network speed:

MsgCost = MsgSendOvh+ MsgRcvOvh+ [MsgSize+ Dist(Src) Dst)]� NetSpeed

Third, as discussed above, the behavior of suspend calls a�ects the timing behavior

of the entire simulation. Blocks of code executed between suspend calls appear atomic to

the rest of the simulation. Furthermore, any inaccuracies in the argument to the suspend

associated with a block show up as inaccuracies in the running time of that thread. Finally,

interrupts can only occur at suspend quantum boundaries. This means that if a message

shows up at a processor at time t, it might not be executed until time t + q, where q is

the suspend quantum. For all data given in Chapter 7, this quantum was set to ten cycles,

which is small enough to be insigni�cant.

6.2.3 Synchronization Datatypes

The PISCES Alewife simulation system supports a number of synchronization datatypes,

including j-structures, l-structures, and placeholders. These make up a subset of

the datatypes provided by Mul-T [12].

91

J-structures are arrays whose elements provide write-once semantics. A read oper-

ation on a j-structure element is deferred until a write to that element takes place. A

processor issuing such a read is suspended on a queue associated with the element. A

write operation to an unwritten j-structure element writes a value and then frees all

threads suspended while waiting for the write to take place. A write operation to a written

j-structure element causes an error.

L-structures are arrays of protected data. A read performs a lock operation on the

addressed element, returning the associated piece of data when it succeeds. A thread

that attempts to read an l-structure cell that is already locked is suspended on a queue

associated with that cell. A write performs a unlock operation on the addressed element,

reenabling any threads suspended on that element through failed reads. A write to an

unlocked l-structure element causes an error.

Placeholders are used for communication between parent and child in a future call.

Conceptually, a placeholder consists of a value, a queue and a flag, which signi�es

whether the data item in the value slot is valid. When a placeholder is �rst created,

the flag is set to empty. To change the
ag to full, a determine operation must be

performed on the placeholder. When a future call occurs, a child thread is created,

and an associated placeholder is returned to the parent. If the parent tries to read the

value associated with the placeholder before the determine operation has taken place,

the parent is suspended on the placeholder's queue. When the child thread terminates,

it determines the value of the placeholder, reenabling any associated suspended threads.

The semantics of a placeholder are very similar to those of a single j-structure cell.

6.3 Finding the Optimal Schedule

When evaluating the various candidate thread management algorithms, it is desirable to

have a standard to compare the candidates to. The \best" schedule would be ideal for this

purpose, but, as discussed in Chapter 2, the general thread management problem is NP-

hard, even when the entire task graph is known. For examples of the size we're interested

in, this e�ectively makes the optimal schedule impossible to obtain.

However, we can �nd a near-optimal schedule in most cases. The approach we've taken

92

is three pronged:

1. For all applications, we know the single-processor running times and we can calcu-

late the critical path lengths. An \optimal" T -vs.-p curve is derived from these two

numbers as follows:

Tp = max (
T1

p
; Tcrit)

where T1 is the running time on one processor, p is the number of processors and Tcrit

is the critical path length. This yields a relatively tight lower bound on the best-case

running time, and shows up in the data given in Chapter 7 under the label Ideal.

2. For certain applications, a near-optimal static schedule can be derived from the regular

structure of the application. This approach gives a relatively tight upper bound on

best-case running times when applied to the UNBAL and MATMUL applications

described below.

3. For applications for which a good static schedule is not practical to obtain, we employ

a more empirical approach. A number of the thread managers described below are not

physically realizable. Such idealized thread managers can assume, for example, that

the state of every processor's thread queue is known instantaneously on every other

processor. Since we are running simulations, implementing such unrealistic thread

managers is straightforward.

Together, these three approaches yield an estimate of the running time that could be

achieved by an optimal schedule.

6.4 Thread Management Algorithms

A number of candidate thread management algorithms were tested for comparison against

XTM. These algorithms can be split into two groups: realizable and unrealizable. The

realizable algorithms are those that can be implemented on a real multiprocessor; the un-

realizable algorithms make unrealistic assumptions that preclude their use in an actual

multiprocessor. The unrealizable algorithms make it possible to gauge the e�ect of certain

93

thread management costs by eliminating those costs, yielding corresponding performance

�gures.

6.4.1 Unrealizable Algorithms

Calculated: The Ideal performance �gures given in Chapter 7 are not taken from any

thread manager at all; they are calculated as described above in Section 6.3.

Free Idealized: Free-Ideal employs a single global thread queue. Push and pop opera-

tions to this queue are free, can go on concurrently. This algorithm is implemented

to get a near-lower-bound on application running times, discounting communication

and queue contention costs.

Idealized Producer-Driven: P-Ideal gives every processor instantaneous knowledge of

the state of the thread queue on every other processor. When a new thread is created

on a given processor, it is sent to the processor with the least amount of work on its

queue, where the cost of moving the thread (which increases with distance) is added

to the processor's perceived workload, so as to make distant processors less attractive

than nearby processors.

Idealized Consumer-Driven 1 { steal-one: We look at two variants of an idealized con-

sumer-driven thread manager: C-Ideal-1 and C-Ideal-2. Both versions allow every

processor to have instantaneous knowledge of the state of the thread queue on every

other processor. This information is used by idle, consumer processors, instead of

busy, producer processors. An idle processor steals one thread from the nearest pro-

cessor that has work on its queue by sending a steal message to that processor. If

more than one processor at a given distance has work, the processor with the most

work on its queue is selected.

Idealized Consumer-Driven 2 { steal-half: C-Ideal-2 has exactly the same behavior as

C-Ideal-2, save for one di�erence concerning the number of threads moved during a

steal operation. C-Ideal-1 only moves one thread at a time, while C-Ideal-2 moves

half of the threads from the producer processor's queue to the consumer processor's

queue.

94

6.4.2 Realizable Algorithms

Static: Stat is the simplest of the real thread managers. Every thread created is sent

to a speci�c processor on the machine, as directed by the code itself. This is useful

for examining static schedules, produced either by some compiler or explicitly by the

user. A processor only runs those threads that are assigned to its queue.

Round-Robin-1 { steal-one: The round-robin thread manager comes in two forms,RR-1

and RR-2, both of which use pseudo-random drafting strategies. A processor scans

the queues of all other processors in a near-to-far order obtained by successively XOR-

ing its PID with each number between 0 and p�1, where p is the number of processors
in the machine. In this manner, each processor scans the machine in its own unique

order. This order proceeds from near to far due to the mapping from PID to mesh

location used by the Alewife processor [15]. In RR-1, when a non-empty queue is

found, one thread is moved from that queue to the processor making the request.

Round-Robin-2 { steal-half: As was the case for C-Ideal-1 and C-Ideal-2, the only

di�erence between RR-1 and RR-2 concerns the number of threads that are moved.

While RR-1 moves only one thread at a time, RR-2 moves half of the threads from

producer processor to consumer processor.

Di�usion-1: Di�usion scheduling is suggested in [9]. In both Di�-1 and Di�-2, every

h cycles, a di�usion step is executed on each processor (the default value for h is

1000, which seems to give the best tradeo� between thread-manager overhead and

e�ectiveness). On each di�usion step, a processor compares its queue length with those

of its four nearest neighbors. For each neighbor, if the local processor's queue is longer

than the neighbor's queue, r threads are sent to the neighbor, where r = (l0�ln)+3
6 , l0

is the length of the local processor's queue and ln is then length of the neighboring

processor's queue.

The particular choice of the \6" in the expression r = (l0�ln)+3
6 comes out of a Jacobi

Over-Relaxation [3] with relaxation parameter
 set to 2
3 . The 3 in the numerator

is present to ensure roundo� stability: for any number greater than three, a single

thread can bounce back and forth between processors.

95

Di�usion-2: Di�-2 only di�ers from Di�-1 in that the expression to determine the

amount to di�use from a processor to its neighbor is r = (l0�ln)+5
6 , not r = (l0�ln)+3

6

as for Di�-1. The di�erence in performance can be dramatic, because Di�-2 spreads

work more uniformly around the machine. This increased performance comes at the

price of roundo� stability: Di�-2 is not completely stable in that on alternate di�usion

steps, a single thread can bounce back and forth between two processors.

Single-Bit X-Tree: XTM is described in Chapter 4. One bit of presence information is

maintained at each node in the tree, signifying whether there is any work available to

be stolen in the subtree headed by that node.

Simple Tree: TTM is a simple tree-based thread manager similar to XTM, except that

the tree-structure employed has no nearest-neighbor links. This lowers the cost of

updating the tree, since presence bit information doesn't have to be sent to neighbors

when the state of the presence bit changes. However, there is some loss of locality

since tree nodes that are next to one another can be topologically distant in the tree.

Multi-Bit X-Tree: XTM-C is a multi-bit X-Tree algorithm very similar toXTM, except

that more than one bit of presence information is maintained at each node in the

tree. In order to limit the cost of updating the \weights" maintained at the tree

nodes, a node informs its parent only of weight changes that cross one of a set of

exponentially-spaced thresholds. In this manner, small changes in small weights are

transmitted frequently while small changes in large weights, which don't matter as

much, are transmitted less frequently. Furthermore, hysteresis is introduced into the

system by choosing a di�erent set of boundaries for positive and negative changes, in

order to avoid repeated updates resulting from multiple small changes back and forth

across a single boundary.

The node weights add a degree of conservatism to the algorithm employed by XTM.

When a search process encounters a node with work, it doesn't always balance between

the empty node and the non-empty node. Instead, a searching node balances with a

neighbor only if the amount of work brought back justi�es the cost of bringing the

work back.

96

.

Thread Queue

Local Dequeue Operations Non−Local Dequeue Operations
Head Tail

Local Enqueue Operations Non−Local Enqueue Operations

Figure 6-7: Thread Queue Management.

6.4.3 Queue Management

Certain functional aspects are shared by all of the thread management algorithms described

above. In particular, they all share the same queue discipline, as pictured in Figure 6-7.

When a processor creates a new thread to be put on its own local queue, it puts the thread

on the head of the queue. When one or more threads are moved from one processor to

another, they are taken from the tail of one queue and put on the tail of the other. Threads

taken from the local queue for execution are always taken from the head of the thread

queue. This causes threads to be executed in depth-�rst order locally, thereby minimizing

memory consumption, while moving parallel threads around the machine in a more breadth-

�rst fashion, thereby spreading work around the machine e�ciently (as suggested in [8]).

Furthermore, since every processor has its own thread queue, the depth-�rst order tended

to cause threads created on a processor to remain on that processor, reducing demands on

the communications network.

6.5 Applications

The candidate thread managers described above were tested on a number of example ap-

plications. These applications were chosen to �ll the following requirements:

1. Any candidate application has to run for a short enough period of time so as to make

PISCES simulations practical.

97

2. Any application chosen should be \interesting." An application is deemed to be inter-

esting if for some machine size and problem size, near-linear speedup is possible when

good thread management decisions are made. At the same time, \bad" thread man-

agement decisions should yield poor speedup for the given machine size and problem

size.

3. The collection of applications chosen has to cover a range of behaviors deemed to be

\typical" of dynamic applications.

The actual code for these applications can be found in Appendix B.

We �rst consider applications that are relatively �ne-grained. Their task graphs are tree-

structured; virtually all communication takes place directly between parents and children

in the task tree:

Numerical Integration AQ makes use of an Adaptive Quadrature algorithm for inte-

grating a function of two variables. This algorithm, given in [22], has a task tree

whose shape is determined by the function being integrated. The particular function

integrated is x4y4, over the square bounded by (0:0; 0:0) and (2:0; 2:0). Problem size is

determined by the accuracy threshold: higher accuracy requires more work to achieve

convergence.

Traveling Salesman TSP [18] �nds the shortest path between randomly placed cities on

a two-dimensional surface. In this case, problem size is determined by the number of

cities scanned. The search space is pruned using a simple parallel branch-and-bound

scheme, where each new \best" path length is broadcast around the machine. For

problem and machine sizes tested, the detrimental e�ects of such broadcasts were

small.

This application is unique in that the total work depends on the order in which the

search tree is scanned. For the largest problem size we explored (11 cities), di�erences

in scanning order could result in up to a factor of four in total work. However, the

actual di�erences in total work between di�erent runs on various machine sizes using

various thread management algorithms amounted to less than a factor of two.

98

0 15

0

15

0,0

3,3

1,1 2,2 3,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2

0 15

0

15

0,0

3,3

1,1 2,2 3,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2

0 15

0

15

0,0

3,3

1,1 2,2 3,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2

Figure 6-8: Coarse-Grained MATMUL Partitioning: A 16-by-16 matrix times a second 16-by-16

matrix gives a third 16-by-16 matrix. Each matrix is partitioned up into 16 4-element by 4-element

blocks. A single thread multiplies the entire top row of sub-blocks in the �rst matrix times the entire

left-hand column of sub-blocks in the second matrix to calculate sub-block 0,0 of the destination

matrix.

The Ideal �gures for this application were calculated assuming that the minimal

search tree was scanned.

Fibonacci FIB(n) calculates the nth Fibonacci number in an ine�cient, doubly-recursive

manner. In this case, n determines the problem size.

Other applications in the test suite have more speci�c purposes.

Matrix Multiply All of the applications described above have a very limited communica-

tion structure. In order to test machine behavior for applications that contain more

communication, a blocked matrix multiply application was included in the test suite.

Four variations on the basic MATMUL were tried: coarse-grained and cached, �ne-

grained and cached, coarse-grained and uncached, and �ne-grained and and uncached.

The cached versions simulated full-mapped caches [4]. The uncached versions were

tested in order to separate out the e�ect of caching on the application from the thread

managers' e�ects.

Two partitioning strategies were employed for this application, as pictured in Fig-

ures 6-8 and 6-9. The coarse-grained partitioning strategy takes advantage of locality

inherent to the application. The �ne-grained strategy potentially loses some of this

locality, but gives the thread managers more
exibility by creating more than one

thread per processor.

99

0 15

0

15

0,0

3,3

1,1 2,2 3,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2

0 15

0

15

0,0

3,3

1,1 2,2 3,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2

0 15

0

15

0,0

3,3

1,1 2,2 3,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2

Figure 6-9: Fine-Grained MATMUL Partitioning: A 16-by-16 matrix times a second 16-by-16

matrix gives a third 16-by-16 matrix. Each matrix is partitioned up into 16 4-element by 4-element

blocks. One thread multiplies sub-block 0,0 of the �rst matrix with sub-block 0,0 of the second

matrix to get a partial result for sub-block 0,0 of the destination matrix; another thread multiplies

sub-block 0,1 of the �rst matrix with sub-block 1,0 of the second matrix to get another partial

result for sub-block 0,0 of the destination matrix; and so on. The partial results for each destination

sub-block are added together to achieve a �nal value; consistency is ensured using l-structures to

represent the destination sub-blocks.

In all cases, the data was distributed around the machine in the obvious way, with

the upper left-hand corner of each matrix residing on the upper left-hand processor,

and so on.

UNBAL UNBAL is a synthetic application whose purpose is to test the \impulse response"

of a thread manager. In this application, a number of �xed-length, non-communicating

threads are made to appear on one processor in the system. The program terminates

when the last thread completes. This test gives some insight into a thread manager's

behavior with a load that is initially severely unbalanced. In all test cases , each

thread ran for 500 cycles.

100

Application T1 Tcrit No. Threads Avg. Grain Size

FIB(15) 652,439 4,495 1,219 535
FIB(20) 7,244,462 6,110 13,529 535
FIB(25) 80,350,904 7,725 150,889 533

AQ(0.5) 437,191 11,725 309 1,415
AQ(0.1) 2,141,754 13,480 1,513 1,416
AQ(0.05) 4,169,108 13,480 2,943 1,417
AQ(0.01) 20,201,061 16,990 14,269 1,416
AQ(0.005) 43,062,592 16,990 30,417 1,416
AQ(0.001) 213,632,152 20,020 150,049 1,424

TSP(8) 3,635,870 4,760 � 4,000 900
TSP(9) 12,613,984 5,605 � 15,000 850
TSP(10) 41,708,532 6,500 � 50,000 830
TSP(11) 326,034,362 7,445 � 400,000 810

UNBAL(1024) 601,451 587 1,024 587
UNBAL(4096) 2,404,715 587 4,096 587
UNBAL(16384) 9,617,771 587 16,384 587
UNBAL(65536) 38,469,995 587 65,636 587

Table 6.2: Running Characteristics for Applications in the Test Suite: T1 is the running time in

cycles on one processor. Tcrit is the running time in cycles of the critical path. This is how long the

program would take to run on an in�nitely large multiprocessor with no communication or thread

management overheads. The Average Grain Size is the average running time of the threads in the

application, in cycles.

6.5.1 Application Parameters

Table 6.2 gives the running characteristics of the various applications in the test suite for a

range of application sizes.

In the next chapter, we describe the results of simulating these applications. We try to

use those results to gain some insight into the behavior of the various thread management

algorithms.

101

Chapter 7

Results

In this chapter, we present experimental results obtained using the PISCES simulator. In

doing so, we attempt to demonstrate a number of points about the thread management

problem in general, and about tree-based algorithms in particular.

For each application and problem size, we �rst identify a \region of interest" of machine

sizes. If a machine is in this range, it is large enough with respect to the application so

that thread management is not trivially easy, but small enough to make it possible for an

incremental increase in machine size to yield a signi�cant decrease in running time. For

most of the rest of this chapter, we will only look at results that fall into that region.

We then show that the tree-based algorithms we have developed are competitive with

a number of unrealizable \ideal" thread managers. The di�erent idealized managers ignore

di�erent costs inherent to the thread-management task in order to identify the e�ects those

costs have on overall performance. The most radical idealization, Free-Ideal, pays no

communication or contention costs at all by scheduling threads on a single contention-free

queue with zero thread enqueue and dequeue costs. In most cases, the tree-based algorithms

get performances that are within a factor of three from Free-Ideal. The other idealized

managers are usually within a factor of two of Free-Ideal.

A comparison of realizable algorithms then shows that the tree-based algorithms we have

developed are competitive with simpler algorithms on machines with 256 or fewer processors,

and that for larger machines, the tree-based algorithms yield signi�cant performance gains

over the simpler algorithms. In particular, because of their simplicity, the Round-Robin

102

algorithms perform best of all real algorithms on small machines, but on larger machines,

their performance su�ers. The di�usion algorithms, on the other hand, seem to perform

marginally worse than the others on machines with 256 or fewer processors; as machine size

is increased, Di�-1 and Di�-2 perform very poorly with respect to the others.

When a processor from which threads can be stolen is located, consumer-based thread

managers have a choice of policies when determining how much work to steal. The two

choices we examine are steal-one and steal-half. These options di�erentiate C-Ideal-1

and C-Ideal-2 thread managers from each other, as well as RR-1 and RR-2. We were

interested in the e�ects of this policy choice while XTM was under development because

XTM implicitly follows the steal-half policy: it always attempts to evenly balance the

workload between two branches of a tree when moving work from one branch to the other.

We then compare the three candidate tree-based algorithms with each other. For the

Alewife parameter set, we �nd that TTM (no nearest-neighbor links) performs better

than XTM. XTM-C always performs poorly, despite the theoretical prediction of optimal

behavior, for two reasons:

1. The work estimates maintained at the tree nodes can be inaccurate, due to time delays

inherent to the update process, inaccuracies built into the system to lower update

costs, and, most importantly, the incorrect assumption that all threads represent the

same amount of work.

2. Maintaining work estimates in the tree carries signi�cantly higher overhead than main-

taining one-bit presence information. This added overhead results in correspondingly

lower performance.

It is interesting to see what happens when the processor speed is increased with respect

to the network speed. As the processor speed is increased with respect to the speed of the

communications network, e�ects that previously showed up on large machines running large

problems begin to appear on smaller machines running smaller problems. Furthermore, on

machines with faster processors, the locality gains inherent in XTM become more impor-

tant, and XTM's performance surpasses that of TTM. This will be especially relevant if

current trends in technology continue, in which processor performance is going up faster

103

than network performance. In addition, cutting the processor cycle time gives us an inex-

pensive way of investigating \large machine" behavior without paying for it in simulation

cycles.

Finally, we look at MATMUL, an application that demonstrates strong static data-task

locality. When caches are simulated, performance depends heavily on good partitioning.

The �nely partitioned version fails to keep data locality within a single thread; in this case,

none of the dynamic thread managers can recapture that locality. Conversely, the coarsely

partitioned case keeps more accesses to the same data within each thread. For the coarsely

partitioned version, the tree-based thread managers perform very nearly as well as any of

the idealized dynamic managers, and almost as well as a good statically mapped version.

104

Choice of Application

Machine Architecture

Memory System
Processor

Interconnection Network

Architectural Parameters

Network Speed

Thread Management Algorithm

Realizable Algorithms

Unrealizable Algorithms

Algorithm−Specific Parameters

Low−Level Software Costs

Problem Size

Application

Machine

Number of Processors

Figure 7-1: Experimental Parameters.

7.1 Parameters

When examining the performance of thread management algorithms, there are many pos-

sible parameters that can be varied, as illustrated in Figure 7-1. We separate simulation

parameters into three major groups: Machine, Thread Management Algorithm and Appli-

cation. In the following subsections, we discuss each major group in turn. We also classify

the parameters according to whether they will remain �xed or be varied.

7.1.1 Machine Parameters

This section discusses the various architectural parameters that go into a PISCES simula-

tion.

Machine Architecture:

Processor

Memory System

Interconnection Network

105

Machine Size p: The number of processors in the machine.

Network Speed tn: The time, in cycles, that it takes one
it to travel from one switch to

the next.

Low-Level Software Costs: A number of low-level activities such as thread creation,

thread suspension, etc. carry costs that are independent of the thread management

algorithm.

All of the above parameters were taken directly from the Alewife machine. All of these

parameters except p and tn are �xed throughout the simulations. Low-level software is

assumed to be that of the prototype Alewife runtime system; the corresponding overheads

were measured from NWO runs, and are given in Table 6.1.

The two machine parameters that are varied are p and tn. We are interested in run-

ning programs on machines of various sizes, so we vary p in order to study the behavior of

di�erent thread management algorithms as machines become large. We use tn in the same

manner: one way of simulating a \large" machine is to increase interprocessor communi-

cation times. Increased tn gives the impression of increased machine size without taking

correspondingly greater time to simulate. Furthermore, as the state of the prevailing tech-

nology advances, the trend is moving towards faster and faster processors. Communication

latencies are already near the speed of light and can not be reduced very far from current

levels. Therefore, as processors continue to improve, we expect tn to show a corresponding

increase.

106

7.1.2 Thread Management Parameters

In Chapter 6, we described a number of candidate thread management algorithms to be

compared against one another. These were split into two groups: realizable and unrealizable.

The applications listed above were each run using each of the thread managers, repeated

here for completeness:

Unrealizable

Ideal: Optimal case, calculated based on single-processor running time and critical

path calculations.

Free-Ideal: Simulates a single zero-cost, zero-contention thread queue.

P-Ideal: Simulates free instantaneous knowledge of the state of all processors' thread

queues. Threads are moved around by the processors that create them.

C-Ideal-1: Simulates free instantaneous knowledge of the state of all processors'

thread queues. Threads are moved around by idle processors, using the \Steal-

One" policy.

C-Ideal-2: Same as C-Ideal-1 except that the \Steal-Half" policy is used.

Realizable

RR-1: A simple round-robin thread manager in which each processor scans every

other processor for work, using the \Steal-One" policy.

RR-2: Same as RR-1 except that the \Steal-Half" policy is used.

Di�-1: Di�usion-based thread manager with no instabilities.

Di�-2: Di�usion-based thread manager with a small instability; performs better than

Di�-1.

XTM: X-Tree algorithm as described in Chapter 4.

TTM: Same as XTM except that no nearest-neighbor links are used: threads can

only migrate between subtrees that share a parent.

107

XTM-C: Similar to XTM except that more accurate work estimates are maintained

at the nodes. XTM maintains a single-bit work estimate (present or absent);

this variant uses a multi-bit work estimate to determine whether the cost of a

balance operation between two nodes justi�es the expected gains.

Stat: For certain applications, a near-optimal static schedule can easily be produced.

The associated thread management algorithm does nothing but run the threads

that are sent to each processor in a statically determined fashion.

7.1.3 Application Parameters

Data were taken for a number of applications and problem sizes, as described in Chap-

ter 6. We list the chosen applications and corresponding problem sizes below. For a list of

application-speci�c characteristics, see Table 6.2.

Application

AQ: Adaptive quadrature integration.

TSP: Traveling salesman problem.

FIB: Doubly-recursive Fibonacci.

UNBAL: Synthetic \unbalanced" application.

MATMUL: Matrix Multiply.

Problem Size

AQ: Sensitivity for convergence: ranges from 0.5 to 0.001.

TSP: Number of cities in tour: ranges from 8 to 11.

FIB: Calculates the nth Fibonacci number: ranges from 15 to 25.

UNBAL: Number of threads: ranges from 1024 to 65536.

MATMUL: Matrix size n ([n� n]� [n� n] = [n� n]): ranges from 16 to 64 .

108

Application Problem Size p Range Managers

AQ 0.5 1{16384 all but Stat
0.1 1{16384
0.05 1{16384
0.01 1{16384
0.005 1{16384
0.001 1{16384

FIB 15 1{16384 all but Stat
20 1{16384
25 1{16384

TSP 8 1{4096 all but Stat
9 1{4096
10 1{4096
11 1{4096

UNBAL 1024 1{16384 all
4096 1{16384
16384 1{16384
65536 1{16384

MATMUL 16 1{64 all but Ideal and XTM-C

(coarse, cached) 32 1{256
64 1{1024

MATMUL 16 1{64 all but Ideal and XTM-C

(coarse, uncached) 32 1{256
64 1{1024

MATMUL 16 1{64 all but Ideal and XTM-C

(�ne, cached) 32 1{256
64 1{1024

MATMUL 16 1{64 all but Ideal and XTM-C

(�ne, uncached) 32 1{256
64 1{1024

Table 7.1: Experiments Performed (tn = 1): In all cases, RR-1 and RR-2 were tested for

p � 4096, Di�-1 and Di�-2 were tested for p � 1024 and Coarse Uncached MATMUL with Di�-1

and Di�-2 was tested for p � 256. For UNBAL(16), P-Ideal, C-Ideal-1 and RR-1 were tested for

p � 1024; for UNBAL(32) and for UNBAL(64), they were tested for p � 256. For UNBAL(1024),

Stat was tested for p � 1024; for UNBAL(4096), Stat was tested for p � 4096.

7.2 Experiments

For each application, data were taken over a range of machine sizes, problem sizes, ratios of

processor speed to network speed, and thread management algorithms. Tables 7.1 and 7.2

describe the resulting (nearly complete) cross product. For a listing of raw experimental

results, see Appendix C.

Note that in all cases, RR-1 and RR-2 were only tested for machine sizes up to 4096

processors, and Di�-1 and Di�-2 were only tested for machine sizes up to 1024 processors.

These thread managers performed poorly on large machines; consequently, simulations of

machines larger than these maximum sizes took too long to be practical.

109

Application Problem Size tn p Range Managers

AQ 0.01 2 1{16384 all but Stat
4 1{16384
8 1{16384
16 1{4096
64 1{4096

FIB 20 2 1{16384 all but Stat
4 1{16384
8 1{16384
16 1{4096
64 1{4096 all but XTM-C and Stat

TSP 10 2 1{4096 all but Stat
4 1{4096
8 1{4096
16 1{4096
64 1{4096

UNBAL 16384 2 1{16384 all
4 1{16384
8 1{16384
16 1{4096
64 1{4096

MATMUL 64 2 1{1024 all but Ideal and XTM-C

(coarse, cached) 4 1{1024
8 1{1024

MATMUL 64 2 1{1024 all but Ideal and XTM-C

(coarse, uncached) 4 1{1024
8 1{1024

MATMUL 64 2 1{1024 all but Ideal and XTM-C

(�ne, cached) 4 1{1024
8 1{1024

MATMUL 64 2 1{1024 all but Ideal and XTM-C

(�ne, uncached) 4 1{1024
8 1{1024

Table 7.2: Experiments Performed (Variable tn): For each application, a suitable problem size

was selected; for that problem size, tn was then varied. In all cases, RR-1 and RR-2 were tested

for p � 4096, Di�-1 and Di�-2 were tested for p � 1024 and Coarse Uncached MATMUL with

Di�-1 and Di�-2 was tested for p � 256. Furthermore, for UNBAL(64), P-Ideal, C-Ideal-1 and

RR-1 were tested for p � 256.

110

7.3 Machine Size and Problem Size - \Regions of Interest"

For each application and problem size, for the purpose of evaluating thread management

algorithms, there exists a \region of interest" of machine sizes. Figures 7-2 through 7-5

display performance curves for a number of applications. All graphs in this chapter are log-

log plots of machine performance (cycles) against p (number of processors) for a number

of di�erent thread managers. Virtually all of these curves have the same general shape:

for small machine sizes, they are nearly linear (running time is inversely proportional to

p); for large numbers of processors, they are nearly
at (running time stays constant with

increasing p). Somewhat inaccurately, we term this
at region the saturation region for a

given performance curve.

For a given application and problem size, a machine size is \interesting" if near-linear

speedup is possible, but not trivial, to obtain, on a machine of that size. More speci�cally,

for a given application and problem size, a machine size is in the region of interest if it is

large enough so that thread management is not trivially easy, but small enough to make

it possible for an incremental increase in machine size to yield a signi�cant decrease in

running time for some thread management algorithm. The region of interest is that range

of machine sizes for which all performance curves of interest undergo the transition from

linear to saturated. Good thread managers achieve nearly linear performance throughout

most of the region, only reaching saturation towards the right hand size of the region (larger

p). Bad thread managers, on the other hand, saturate near the left hand side of the region

(smaller p). For most of the rest of this chapter, we will only look at results for machine

sizes that are in this region.

Figures 7-2 through 7-5 give the regions of interest for AQ, FIB, TSP and UNBAL.

In addition to displaying �ve performance curves, each graph contains two vertical dotted

lines, which mark the range of p that makes up the region of interest. Notice how the

region of interest moves to the right (larger machines) as problem size increases. We give

the entire progression for AQ (see Figure 7-2), and the endpoints of the progressions for

FIB (see Figure 7-3), TSP (Figure 7-4) and UNBAL (Figure 7-5). The region of interest

data are summarized in Table 7.3.

111

 Ideal
� Free-Ideal
� Diff
� Diff2

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 AQ(0.5)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

�

�

�

�
� � � �

�

�

�
� � �

�

�

�

� � �

 Ideal
� Free-Ideal
� Diff
� Diff2

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 AQ(0.1)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

�

�

�

�

�
� � �

�

�

�

�
� �

�

�

�

�
� �

 Ideal
� Free-Ideal
� Diff
� Diff2

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 AQ(0.05)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

�

�

�

�

�

� � �

�

�

�

� � �

�

�

�

� �
�

 Ideal
� Free-Ideal
� Diff
� Diff2

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 AQ(0.01)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

107

�

�

�

�

�

�

� �

�

�

�

�

� �

�

�

�

�

� �

 Ideal
� Free-Ideal
� Diff
� Diff2

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 AQ(0.005)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

107

�

�

�

�

�

�

� �

�

�

�

�

� �

�

�

�

�

�
�

 Ideal
� Free-Ideal
� Diff
� Diff2

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 AQ(0.001)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

107

108

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

Figure 7-2: AQ: Regions of Interest.

112

 Ideal
� Free-Ideal
� Diff
� Diff2

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 FIB(15)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

�

�

�

�

�
� � �

�

�

�

� � �

�

�

�

� � �

 Ideal
� Free-Ideal
� Diff
� Diff2

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 FIB(25)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

107

108
�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�
�

Figure 7-3: FIB: Regions of Interest.

 Ideal
� Free-Ideal
� Diff
� Diff2

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
 TSP(8)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

�

�

�

�

�

� �

�

�

�

� � �

�

�

�

� � �

 Ideal
� Free-Ideal
� Diff
� Diff2

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 TSP(11)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

105

106

107

108

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 7-4: TSP: Regions of Interest.

 Ideal
	 Stat
� Free-Ideal
� Diff
� Diff2

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 UNBAL(1024)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

103

104

105

106

	

	

	

	

	

	

�

�

�

�

�

�
� �

�

�

�
� � �

�

�

�
� � �

 Ideal
	 Stat
� Free-Ideal
� Diff
� Diff2

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 UNBAL(65536)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

103

104

105

106

107

	

	

	

	

	

	

	
	

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

� �

Figure 7-5: UNBAL: Regions of Interest.

113

Application Argument T1 nt pint
AQ 0.5 437,191 1,219 4{256

0.1 2,141,754 1,513 16{1024
0.05 4,169,108 2,943 16{1024
0.01 20,201,061 14,269 64{4096
0.005 43,062,592 30,417 64{16384
0.001 213,632,152 150,049 256{16384

FIB 15 652,439 309 4{1024
20 7,244,462 13,529 16{4096
25 80,350,904 150,889 64{16384

TSP 8 3,635,870 � 4,000 16{4096
9 12,613,984 � 15,000 64{4096
10 41,708,532 � 50,000 64{4096
11 326,034,362 � 400,000 64{4096

UNBAL 1024 601,451 1,024 16{1024
4096 2,404,715 4,096 16{4096
16384 9,617,771 16,384 64{16384
65536 38,469,995 65,636 64{16384

Table 7.3: Regions of Interest: T1 is the running time in cycles on one processor. nt is the number

of threads needed for a given run. pint is the range of p that makes up the region of interest. Note

that the upper limit of a given region of interest is limited by the maximum number of processors

on which that particular experiment was run.

The data presented in these �gures leads us to the following conclusions:

1. In all cases, to the left of the region of interest, there is very little di�erence between

the various thread management algorithms shown. In particular, XTM performs as

well as the others in this region. This is not surprising, since to the left of the region of

interest, any thread management algorithm should do pretty well as long as it doesn't

add much overhead.

2. In the region of interest, the quality of the various thread managers becomes apparent.

In this region, for large applications, \good" thread managers (e.g., XTM) achieve

near-linear speedup over most of the range, while \bad" thread managers (e.g., Di�-

1 and Di�-2) perform poorly, with run times that remain constant or increase as p

increases.

3. To the right of the region of interest, all thread managers reach saturation. In some

cases, adding processors actually decreases performance; in all cases, adding processors

does not yield signi�cant performance gains.

114

 Ideal
� Free-Ideal
� P-Ideal
� C-Ideal-1
� C-Ideal-2

 XTM

| |

4
| | |

16
| | |

64
| | |

256

|
|

|
|

|
|

|
|

|
|

|

 AQ(0.5)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105
�

�

�
�

�

�

�
�

�

�

�
�

�

�

� �

 Ideal
� Free-Ideal
� P-Ideal
� C-Ideal-1
� C-Ideal-2

 XTM

|

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 AQ(0.001)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 7-6: AQ: XTM vs. P-Ideal, C-Ideal-1 and C-Ideal-2.

 Ideal
� Free-Ideal
� P-Ideal
� C-Ideal-1
� C-Ideal-2

 XTM

| |

4
| | |

16
| | |

64
| | |

256
| | |

1024

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 FIB(15)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

 Ideal
� Free-Ideal
� P-Ideal
� C-Ideal-1
� C-Ideal-2

 XTM

|

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 FIB(25)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 7-7: FIB: XTM vs. P-Ideal, C-Ideal-1 and C-Ideal-2.

7.4 Comparing Tree-Based Algorithms to Unrealizable Al-

gorithms

The tree-based algorithms we have developed exhibit performance that is competitive with

a number of unrealizable \ideal" thread managers. The most idealized of these is Free-

Ideal. This manager pays none of the communication or contention costs inherent to thread

management, using a single contention-free queue with zero thread enqueue and dequeue

costs. This gives a lower bound on the achievable running time when there are no inter-

thread dependencies. For all but one of the applications tested here, such dependencies do

exist, but a simple heuristic seems to get near optimal performance in all cases: run threads

115

 Ideal
� Free-Ideal
� P-Ideal
� C-Ideal-1
� C-Ideal-2

 XTM

| |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 TSP(8)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

�

�

�

�

� �

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

 Ideal
� Free-Ideal
� P-Ideal
� C-Ideal-1
� C-Ideal-2

 XTM

|

64
| | |

256
| | |

1024
| | |

4096
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 TSP(11)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

105

106

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 7-8: TSP: XTM vs. P-Ideal, C-Ideal-1 and C-Ideal-2.

 Ideal
� Free-Ideal
	 Stat
� P-Ideal
� C-Ideal-1
� C-Ideal-2

 XTM

| |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 UNBAL(1024)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

103

104

105

�

�

�

�

�
�

	

	

	

	

	

�

�

� � �

�

�

� � �

�

�

�

�

� �

 Ideal
� Free-Ideal
	 Stat
� P-Ideal
� C-Ideal-1
� C-Ideal-2

 XTM

| |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 UNBAL(65536)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

103

104

105

106

107 �

�

�

�

�

�

�

	

	

	

	

	

	

	

�

�

� �

�

�

� �

�

�

�

�

�

�

�

Figure 7-9: UNBAL: XTM vs. P-Ideal, C-Ideal-1 and C-Ideal-2.

116

on a single processor in a depth-�rst fashion and put all reenabled threads on the head of

the running queue.

The other idealized thread managers pay communication costs for moving threads and

values around, but have \free" information on the state of the system at all times. The

producer-oriented version (P-Ideal) uses this information to \push" newly created threads

from the creating processor to destinations chosen by distance and queue length. The

consumer-oriented versions (C-Ideal-1 and C-Ideal-2) \pull" threads from the nearest

non-empty queue. When P-Ideal sends a thread to a queue, it makes a note of the fact

so that other processors realize that the queue is about to get longer and act accordingly.

When C-Ideal-1 or C-Ideal-2 decides to take one or more threads o� a queue, it makes a

similar note so that other processors know that those threads are \spoken for."

The relation between P-Ideal to C-Ideal-1 and C-Ideal-2 is that of eager to lazy.

When the delay between when a thread is created and when it is sent to its �nal destination

is most relevant to achieving good performance, P-Ideal does well. However, in general,

the later a decision is made, the more information is available and the better the choice.

Therefore if the inaccuracy of choice inherent to P-Ideal is a major factor, C-Ideal-1 and

C-Ideal-2 will perform better. For the applications tested, dispatch time was slightly more

important than accuracy of choice, so P-Ideal usually beat out C-Ideal-1 and C-Ideal-

2by a slight margin. Figure 7-9 is the exception, again by a small margin.

In all cases, Free-Ideal achieved the best performance, followed by P-Ideal and then

C-Ideal-1 and C-Ideal-2. On large numbers of processors, The idealized thread managers

outperformed XTM by a factor of 1.5 to four. It seems that the primary advantage the

idealized managers have over XTM stems from the availability of free, completely up-to-

date global information; the real thread managers only have the information that is made

available to them. This information is in general both late and inaccurate.

From the data presented in Figures 7-6 through 7-9, we derive the following conclusions:

1. There doesn't seem to be much di�erence between eager and lazy decision-making for

the applications we tested.

2. The costs inherent to the collection and dissemination of global information can be

prohibitively high.

117

Finally, note that in Figure 7-9, the P-Ideal and C-Ideal-1 results saturate very early

in the region of interest. This is due to a serialization inherent to those algorithms (see

Section 7.6).

118

 Ideal
� Free-Ideal

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2

 XTM

| |

4
| | |

16
| | |

64
| | |

256

|
|

|
|

|
|

|
|

|
|

|

 AQ(0.5)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105
�

�

�
�

�

�

�

�

�

�

� �

�

�

� �

 Ideal
� Free-Ideal

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2

 XTM

|

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 AQ(0.001)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

Figure 7-10: AQ: XTM vs. Di�-1, Di�-2, RR-1 And RR-2.

 Ideal
� Free-Ideal

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2

 XTM

| |

4
| | |

16
| | |

64
| | |

256
| | |

1024

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 FIB(15)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

�

�

�

�

�

�

�

�

� �

�

�

� � �

�

�

� � �

 Ideal
� Free-Ideal

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2

 XTM

|

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 FIB(25)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106
�

�

�

�

�

�

�

� �

�

� �

�

�

�

Figure 7-11: FIB: XTM vs. Di�-1, Di�-2, RR-1 And RR-2.

7.5 Comparing Tree-Based Algorithms to Other Realizable

Algorithms

A comparison of realizable algorithms speaks favorably forXTM. Figures 7-10 through 7-13

compareXTM,Di�-1,Di�-2, RR-1 andRR-2, using Ideal and Free-Ideal as baselines.

Note that for small problem sizes, whose regions of interest cover relatively small machine

sizes, there is little to choose from between the various thread managers. However, for larger

problem sizes, a signi�cant performance di�erence between the thread managers begins to

appear.

119

 Ideal
� Free-Ideal

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2

 XTM

| |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 TSP(8)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

�

�

�

�

� �

�

�

�

� �
�

�

�

� � �

�

�

� � �

 Ideal
� Free-Ideal

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2

 XTM

|

64
| | |

256
| | |

1024
| | |

4096
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 TSP(11)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

105

106

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 7-12: TSP: XTM vs. Di�-1, Di�-2, RR-1 And RR-2.

 Ideal
	 Stat
� Free-Ideal

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2

 XTM

| |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 UNBAL(1024)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

103

104

105

	

	

	

	

	

�

�

�

�

�
�

�

�

�

� � �

�

�
� � �

�

�
� � �

 Ideal
	 Stat
� Free-Ideal

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2

 XTM

| |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 UNBAL(65536)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

103

104

105

106

107 	

	

	

	

	

	

	

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

� �

�

�

�

� �

Figure 7-13: UNBAL: XTM vs. Di�-1, Di�-2, RR-1 And RR-2.

120

RR-1 and RR-2 run well on small machines. Their simple structure requires no ad-

ditional overhead on any thread creation or consumption activities; no distributed global

data structures need to be updated. As long as communication costs remain low, Round-

Robin is �ne, but as machine size increases, RR-1 and RR-2 place requirements on the

communication system that it can't �ll. In particular, if when running a Round-Robin

thread manager, a processor queries �ve other processors before �nding work, then as long

as that query time is small compared to the thread loading, running and termination times,

the Round-Robin manager will achieve good performance. As machine sizes increase, the

latency of each query goes up, and eventually the query time dominates the performance.

Di�-1 and Di�-2 perform slightly worse than the others on small machines, and very

poorly on large machines. There are several reasons for this. Most important, the need for

algorithmic stability in the relaxation leads to a \minimum slope" in the load on adjacent

processors: when the load on two neighboring processors di�ers by two or less, no exchange

takes place on a relaxation step. This means that for a p-processor square machine on a

2-D mesh, 2p
p
p threads are needed to �ll the machine, not p as one would hope for on a

p-processor machine. This is the main reason that Di�-1 performs poorly.

This problem is �xed in Di�-2, at the price of a small instability: the constants are

set in such a way that a single thread can bounce back and forth between two processors

on alternate di�usion steps. This same set of constants yields a \minimum slope" of 0,

eliminating the requirement for 2p
p
p to �ll the machine.

Unfortunately, even when there is no such interaction between integer queue lengths

and stability requirements, the relaxation time is still �
�
l2
�
, where l is the diameter of

the communications network [3]. This is very slow compared to the tree algorithms, which

balance neighboring tree nodes in time proportional to the distance between the nodes, not

the square of that distance.

Finally, the overhead of unneeded relaxation steps slows down all processors some �xed

amount. This amount varies from one or two percent on four processors to more than 75

percent on a large machine with high tn. This variation results from the fact that the

cost of a di�usion step depends on the communication time between a processor and its

nearest neighbors. For these reasons, even a perfectly balanced application achieves inferior

121

performance under Di�-1and Di�-2.

Figures 7-10 through 7-13 lead us to the following conclusions:

1. The Round-Robin algorithms perform best of all real algorithms on machines of 256

or fewer processors, but their performance saturates early on larger machines.

2. XTM is competitive with simpler algorithms on small machines. On larger ma-

chines, XTM continues to achieve speedup, outperforming the Round-Robin thread

managers by a large margin in some cases.

3. The Di�usion algorithms performmarginally worse than the others on small machines.

As machine size is increased, Di�-1 performs extremely poorly with respect to the

others. Di�-2 achieves somewhat better results than Di�-1, but is still signi�cantly

inferior to the others.

Again, as in the previous section, note that in Figure 7-13, the P-Ideal and C-Ideal-1

results saturate very early in the region of interest. This is again due to a serialization

inherent to those algorithms (see next section).

122

 Ideal
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2

|

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 FIB(25)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

 Ideal
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2

|

64
| | |

256
| | |

1024
| | |

4096

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 TSP(11)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

105

106

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 Ideal
	 Stat
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 UNBAL(1024)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

103

104

105

106

	

	

	

	

	

	

�

�

�

�

�

�
� �

�

�

�

� � �

�

�

�

�

�

� � �

�

�

�

�

� � �

 Ideal
	 Stat
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

|
||

||
|

|
|

|
|

||
||

|
|

|
|

 UNBAL(65536)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

103

104

105

106

107

108

	

	

	

	

	

	

	
	

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�
� �

Figure 7-14: Steal One vs. Steal Half.

7.6 Steal-One vs. Steal-Half

When a processor from which threads can be stolen is located, consumer-based thread

managers have a choice of policies when determining how much work to steal. The two

choices we examine are steal-one and steal-half; they di�erentiate C-Ideal-1 and C-Ideal-

2, as well as RR-1 and RR-2. For non-pathological applications, either choice can win

out. However, when the initial load is severely unbalanced, as is the case with UNBAL, the

performance of steal-half far exceeds that of steal-one (see Figure 7-14), due to serialization

on the producer side.

For the UNBAL results shown, the poor performance curves for C-Ideal-1 and RR-1

123

are a direct result of the fact that only one thread at a time is taken from a processor whose

queue contains runnable threads. Since UNBAL initially places all runnable threads on one

processor, that processor becomes a bottleneck in the thread distribution process. It takes

time for each thread-moving operation to run; if each thread is handled separately, then

the rate at which threads can migrate from that processor to the rest of the machine is

limited to the inverse of the amount of time it takes to move one thread o� that processor.

This \serialized" behavior puts a hard upper limit on the number of processors that can be

e�ectively used.

Most applications do not display the kind of pathological behavior shown in UNBAL.

All threads do not represent the same amount of work, and it is rare that a large number

of small threads end up clustered in a very small region of a machine. However, UNBAL

represents an extreme case of a machine whose load is severely unbalanced, and results of

UNBAL runs give some insight into how a thread management scheme will behave in the

presence of an unbalanced load.

For the other applications we simulated, the choice between steal-one and steal-half

made very little di�erence. In the FIB graph in Figure 7-14, RR-1 achieved slightly better

results than RR-2; in the TSP graph, RR-2 slightly outperformed RR-1. In both cases,

there was no discernible di�erence in performance between C-Ideal-1 and C-Ideal-2.

The tree-based algorithms are based on a policy that attempts to balance neighboring

tree nodes evenly whenever one of the neighbors becomes empty. This section justi�es this

choice independently of the use of tree-type data structures. In particular, this section gives

a case in which an uneven load balance will cause thread managers that employ a \steal-

one" policy to exhibit serialized behavior. In other cases, the choice between steal-half and

steal-one doesn't seem to be particularly important.

124

 Ideal
� Free-Ideal
� TTM

 XTM
� XTM-C

| |

4
| | |

16
| | |

64
| | |

256

|
|

|
|

|
|

|
|

|
|

|

 AQ(0.5)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105
�

�

�
�

�

�

�

�

�

�

�

�

 Ideal
� Free-Ideal
� TTM

 XTM
� XTM-C

|

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 AQ(0.001)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 7-15: AQ: Comparing Various Tree-Based Algorithms.

 Ideal
� Free-Ideal
� TTM

 XTM
� XTM-C

| |

4
| | |

16
| | |

64
| | |

256
| | |

1024

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 FIB(15)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

�

�

�

�

�

�

�

�

� �

�

�

� �
�

 Ideal
� Free-Ideal
� TTM

 XTM
� XTM-C

|

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 FIB(25)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

Figure 7-16: FIB: Comparing Various Tree-Based Algorithms.

7.7 Di�erences Between Tree-Based Algorithms

Three variants on a tree-based thread management theme were explored: TTM, XTM

and XTM-C. TTM gives the best results for machines as large as the ones we measured,

with tn= 1. XTM-C performs very poorly on all but very slow networks for the following

reasons:

1. The work estimates maintained at the tree nodes can be inaccurate, due to time

delays inherent to the update process, inaccuracies built into the system to lower

update costs, and, most importantly, the incorrect assumption that all threads are

leaves in the application's task tree.

125

 Ideal
� Free-Ideal
� TTM

 XTM
� XTM-C

| |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 TSP(8)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

�

�

�

�

� �

�

�

�

�
�

�

�

�

�

�

�
�

 Ideal
� Free-Ideal
� TTM

 XTM
� XTM-C

|

64
| | |

256
| | |

1024
| | |

4096
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 TSP(11)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

105

106

�

�

�

�

�

�

�

�

�

�

�

�

Figure 7-17: TSP: Comparing Various Tree-Based Algorithms.

 Ideal
	 Stat
� Free-Ideal
� TTM

 XTM
� XTM-C

| |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 UNBAL(1024)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

103

104

105

	

	

	

	

	

�

�

�

�

�
�

�

�

�

� � �

�

�

�

� � �

 Ideal
	 Stat
� Free-Ideal
� TTM

 XTM
� XTM-C

| |

16
| | |

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 UNBAL(65536)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

103

104

105

106

	

	

	

	

	

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

Figure 7-18: UNBAL: { Comparing Various Tree-Based Algorithms.

126

2. Maintaining work estimates in the tree carries signi�cantly higher overhead than main-

taining one-bit presence information. This added overhead results in correspondingly

lower performance.

The data presented in Figures 7-15 through 7-18 suggests the following conclusions:

1. For the match between processor speed and network speed in Alewife (tn= 1), TTM

without the X-Tree's nearest-neighbor links is preferable, at least for machines con-

taining up to 16,384 processors, which were the largest we could simulate. For a

discussion of the e�ect of increasing tn, see Section 7.8.

2. XTM-C never performs particularly well due to overhead costs and inaccurate weight

estimates.

127

7.8 Faster Processors

Most of the data presented in this thesis assumes tn= 1. Current technological trends

suggest that in the future, the ratio between processor speed and network speed will become

quite high. Since this research is primarily concerned with a world in which large-scale

multiprocessors are commonplace, it is only natural that we should investigate a situation

in which processors are very fast with respect to the interconnection network.

In addition, even PISCES simulations are orders of magnitude slower than actually

running real programs on real hardware. This is compounded by the fact that simulating

a p-processor multiprocessor on a uniprocessor is further slowed by a factor of p. When

investigating the behavior of large machines, it would be very nice if simulations of smaller

machines could in some way \fake" large-machine behavior. Arti�cially scaling the commu-

nication latency by increasing tn seems to have just that e�ect, at least for the purposes of

this thesis.

Figures 7-19 through 7-22 show the e�ect of increasing tn from one cycle to 64 cycles.

In each case, note that as the network slows down, the qualitative di�erences between the

thread managers become more apparent on smaller machines. In particular, the drawbacks

ofDi�-1,Di�-2,RR-2 andXTM-C show up more clearly. More interesting is the relation

between TTM and XTM. As tn is increased, the gains due to XTM's near-neighbor links

become more important, and the XTM's performance surpasses that of TTM.

Another item of interest appears in Figure 7-20. Even for the case where tn= 1, XTM-

C's performance takes a sharp dive on more than 1024 processors. For tn= 8, the perfor-

mance degradation begins at 256 processors, and for tn= 64, performance was so bad that

it was impractical to simulate. This poor performance results from the fact that XTM-C

will not balance the load between two neighboring nodes unless the cost, which is measured

as a function of the communication time between the two nodes, is outweighed by the ad-

vantage, which is predicted as a function of the amount of work the manager thinks is on

the two nodes. For FIB in particular, these work estimates are poor, due to the system's

lack of knowledge about how threads create other threads. It is therefore often the case

that the XTM-C does not balance the workload on neighboring nodes when it should have

done so. Note, however that when the manager knows about all the work in the system, as

128

in Figure 7-22, XTM-C's performance surpasses that of XTM for tn= 64, by the slimmest

of margins.

A �nal item of interest that occurs for large tn concerns Di�-1 and Di�-2. In all cases,

the running time for the two Di�usion schedulers is actually longer on four processors than

on one processor when tn= 64. This is because on a machine with more than one processor,

the cost of a di�usion step depends on tn. When tn is large, this overhead overwhelms the

performance gains when going from one processor (no external communication takes place)

to four processors (external communication takes place on every di�usion cycle).

The most important lesson to learn from the data presented in Figures 7-19 through 7-22

is the con�rmation of asymptotic analysis. In all our analyses, we assumed that interpro-

cessor communication is the dominating factor in large-scale system performance. When

we adjust the ratio between computation and communication speeds so that this is the case

for the machines we examined, the thread managers that yield good theoretical behaviors

also yield good simulated behavior.

129

 Ideal
� Free-Ideal
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM
� XTM-C

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 AQ(0.01) -- T[Net] = 1 cycle / flit-hop

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

107

�

�

�

�

�

�

� �

�

�

�

�

�

� �

�

�

�

�

� �

�

�

�

�

� �

�

�

�

�

�

�

� �

�

�

�

�

�

� � �

 Ideal
� Free-Ideal
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM
� XTM-C

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 AQ(0.01) -- T[Net] = 8 cycles / flit-hop

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

107

�

�

�

�

�

�

� �

�

�

�

�

� � �

�

�

�

�

� �

�

�

�

�

� �

�

�

�

�

�

�

�
�

�

�

�

�

�

� � �

 Ideal
� Free-Ideal
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM
� XTM-C

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 AQ(0.01) -- T[Net] = 64 cycles / flit-hop

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

107

�

�

�

�

�

�

�

�

�

�

�

� � �

�
�

�

�
� �

�
�

�

�

� �

�

�

�

�

�
� �

�

�

�

�

� �

�

Figure 7-19: AQ(0.01): Variable tn.

 Ideal
� Free-Ideal
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM
� XTM-C

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
 FIB(20) -- T[Net] = 1 cycle / flit-hop

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

107
�

�

�

�

�

�

� �

�

�

�

�

�
� �

�

�

�

�

� �

�

�

�

�

� �

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

 Ideal
� Free-Ideal
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM
� XTM-C

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 FIB(20) -- T[Net] = 8 cycles / flit-hop

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

107
�

�

�

�

�

�

� �

�

�

�

�
� � �

�

�

�

�

� �

�

�

�

�
� �

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�

�

 Ideal
� Free-Ideal
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 FIB(20) -- T[Net] = 64 cycles / flit-hop

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

107
�

�

�

�

�

� �

�

�

�

� �
� �

�

�

�

�
� �

�

�

�

�
� �

�

�

�

�

� �
�

Figure 7-20: FIB(20): Variable tn.

130

 Ideal
� Free-Ideal
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM
� XTM-C

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 TSP(10) -- T[Net] = 1 cycle / flit-hop

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

107

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

� �

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�
�

 Ideal
� Free-Ideal
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM
� XTM-C

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 TSP(10) -- T[Net] = 8 cycles / flit-hop

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

107

�

�

�

�

�

�

�

�

�

�

�

� �
�

�

�

�

�

� �

�

�

�

�

� �

�

�

�

�

�

�
�

�

�

�

�

�

� �

 Ideal
� Free-Ideal
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM
� XTM-C

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 TSP(10) -- T[Net] = 64 cycles / flit-hop

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

107

�

�

�

�

�

�

�

�

�

�

� �
�

�

�
�

�

�

� �

�
�

�

�

� �

�

�

�

�

�

�
�

�

�

�

�

�
� �

Figure 7-21: TSP(10): Variable tn.

 Ideal
	 Stat
� Free-Ideal
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM
� XTM-C

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096
| | |

16384
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 UNBAL(16384) -- T[Net] = 1 cycle / flit-hop

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

103

104

105

106

107 	

	

	

	

	

	

	
	

�

�

�

�

�

�

�

�

�

�

�

�

� � �

�

�

�

�
� �

�

�

�

�
� �

�

�

�

�

�

�
� �

�

�

�

�

�

�
� �

 Ideal
	 Stat
� Free-Ideal
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM
� XTM-C

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096
| | |

16384

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 UNBAL(16384) -- T[Net] = 8 cycles / flit-hop

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

103

104

105

106

107 	

	

	

	

	

	

	
	

�

�

�

�

�

�

�

�

�

�

�

�

� � �

�

�

�

� � �

�

�

�

�
� �

�

�

�

�

�

� � �

�

�

�

�

�

� �
�

 Ideal
	 Stat
� Free-Ideal
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM
� XTM-C

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024
| | |

4096

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 UNBAL(16384) -- T[Net] = 64 cycles / flit-hop

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

103

104

105

106

107 	

	

	

	

	

	 	

�

�

�

�

�

�

�

�

�

�

� � � �

�
�

�

� � �

�
�

�

�
� �

�

�

�

�

� � �

�

�

�

�

�
� �

Figure 7-22: UNBAL(16384): Variable tn.

131

7.9 MATMUL: The E�ects of Static Locality

Finally, we look at MATMUL, a simple matrix multiply application. The two aspects of

MATMUL performance we were most interested in were the e�ects of caching and the e�ects

of di�erent partitioning strategies. We therefore studied four cases: coarse-grained cached,

�ne-grained cached, coarse-grained uncached and �ne-grained uncached. The data from

these cases are presented in Figures 7-23 through 7-30.

When we say that MATMUL demonstrates strong static locality, we mean the following.

In both the coarse-grained case and the �ne-grained case, each thread accesses certain data

elements in each matrix. The blocked algorithm breaks each matrix into a number of sub-

blocks, which are spread out over the processor mesh in the obvious way. The overall

multiply algorithm is then decomposed into sets smaller matrix multiplies, each of which

�nds the product of two sub-blocks (see Figures 6-8 and 6-9). Each thread accesses certain

data elements of each matrix, in many cases more than once. A thread that accesses a block

of data that resides on a given processor will run faster if it runs on or near to the processor

on which its data is resident. Since the data is allocated in a static fashion, we say that the

application demonstrates static locality.

Halstead and Ward[27] de�ne locality of reference as follows:

Reference to location X at time t implies that the probability of access to loca-

tion X +�X at time t+�t increases as �X and �t approach zero.

Caching is one mechanism that takes advantage of locality: when a remote data item is

cached, multiple accesses to the item only pay the remote access cost once. Clearly, the

behavior of an application that demonstrates locality will be strongly a�ected by the caching

strategies of the machine on which the application is run. Since MATMUL is interesting

primarily for its locality-related behavior, we decided to look at its running characteristics

both in the presence and the absence of caches.

Except for Stat, all the thread management strategies we tested are dynamic, and can

make use of no speci�c information about individual threads. Consequently, the managers

have no way to make use of locality characteristics tying speci�c threads to speci�c proces-

sors, other than general heuristics that try to keep threads close to their point of origin.

132

For this reason, in the uncached case, all potential locality-related performance gains are

inaccessible to the thread managers.

Two partitioning strategies for MATMUL are described in Chapter 6. The coarsely

partitioned approach exhibits strong locality-related ties between each thread and the parts

of the matrices it reads and writes. The �nely partitioned approach loses much of that

locality, but creates more threads, giving thread managers more
exibility. As might be

expected, when caches are simulated, the coarsely-partitioned version runs much faster

than the �nely-partitioned version. For thread managers that exhibit load-sharing problems

(di�usion algorithms, for example), the extra parallelism in the �nely-partitioned version

was necessary in order to avoid disastrous performance degradations.

Coarse Partitioning, with Caches

We now examine the details of the coarsely-partitioned version of MATMUL, with caches

(see Figures 7-23 and 7-24). In this case, there is very little separation between the Stat, the

idealized managers (Free-Ideal, C-Ideal-1 and C-Ideal-2) and the tree-based managers

(TTM andXTM). On large machines, the performance of the round-robin managers (RR-

1 and RR-2) begins to su�er. The di�usion managers (Di�-1 and Di�-2) perform poorly

for all problem sizes, machine sizes and network speeds.

Fine Partitioning, with Caches

For the �nely-partitioned case with caches, the loss of locality due to the �ne partitioning

hurts the performance of all managers with respect to Stat(see Figures 7-25 and 7-26).

The separations between managers observed for the coarsely-partitioned case nearly dis-

appears, although the tree-based managers still perform marginally better than the other

realizable managers. The managers' performance curves begin to separate out for large tn,

but the Statalways performs about twice as well as its nearest rival, primarily due to lower

communication costs due to better locality behavior.

133

Coarse Partitioning, without Caches

Without caches, the system can't make use of the higher degree of locality in the coarsely-

partitioned version (see Figures 7-27 and 7-28). However, the advantages of that locality

are mostly lost to Stat, since local cache misses also carry a signi�cant expense, so the

results are similar in nature to the cached case, although the gap between Stat and the

others is signi�cantly larger than in the uncached case.

Fine Partitioning, without Caches

As in the �nely-partitioned cached case, the �nely-partitioned uncached case doesn't show

much separation between the various thread managing strategies (see Figures 7-29 and 7-

30). As expected, the di�usion algorithms perform poorly and for large machines, the

round-robin managers do worse than the others.

MATMUL gives some insight into the behaviors of the various candidate thread man-

agers when locality is an issue. Since a near-optimal static schedule can be derived from the

regular structure of the application, the Statalways outperforms the other managers by a

discernible margin. However, when a coarse partitioning strategy is used and when caches

are available to recapture most of the locality inherent to the application, TTM and XTM

perform nearly as well as Stat, as do Free-Ideal, C-Ideal-1 and C-Ideal-2.

134

	 Stat
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM

|

1
| | |

4
| | |

16
| | |

64

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 MATMUL(16) (Coarse, Cached)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

	

	

	

	

�

�

�

�

�

�

�
�

�

�

� �

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

	 Stat
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 MATMUL(32) (Coarse, Cached)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

	

	

	

	

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

	 Stat
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 MATMUL(64) (Coarse, Cached)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

107
	

	

	

	

	

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�
�

�

�

�
�

�

�

�

�

� �

�

�

�

�

�

�

Figure 7-23: MATMUL (Coarse, Cached).

	 Stat
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 MATMUL(64) (Coarse, Cached) -- T[Net] = 2 cycles / flit-hop

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

107
	

	

	

	

	
	

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

� �

�

�

�

�

� �

�

�

�

�

�
�

�

�

�

�

�
�

	 Stat
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 MATMUL(64) (Coarse, Cached) -- T[Net] = 4 cycles / flit-hop

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

107
	

	

	

	

	 	

�

�

�

�

� �

�

�

�

�

� �

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�
� �

�

�

�

�
�

�

�

�

�

�

� �

	 Stat
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 MATMUL(64) (Coarse, Cached) -- T[Net] = 8 cycles / flit-hop

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

107
	

	

	

	

	 	

�

�

�

�

� �

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�
�

�
�

�

�

� �

�

�

�

�

�

� �

Figure 7-24: MATMUL(64) (Coarse,

Cached): Variable tn.

135

	 Stat
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM

|

1
| | |

4
| | |

16
| | |

64

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 MATMUL(16) (Fine, Cached)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

	

	

	

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

	 Stat
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 MATMUL(32) (Fine, Cached)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

	

	

	

	

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

	 Stat
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 MATMUL(64) (Fine, Cached)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

107
	

	

	

	

	

	

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

� �

Figure 7-25: MATMUL (Fine, Cached).

	 Stat
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 MATMUL(64) (Fine, Cached) -- T[Net] = 2 cycles / flit-hop

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

107
	

	

	

	

	
	

�

�

�

�

� �

�

�

�

�

�
�

�

�

�

�

� �

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

� �

	 Stat
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 MATMUL(64) (Fine, Cached) -- T[Net] = 4 cycles / flit-hop

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

107
	

	

	

	

	 	

�

�

�

�

� �

�

�

�

�

� �

�

�

�

�

� �

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

� �

�

�

�

�

� �

	 Stat
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 MATMUL(64) (Fine, Cached) -- T[Net] = 8 cycles / flit-hop

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

107
	

	

	

	

	 	

�

�

�

�

� �

�

�

�

�

� �

�

�

�

�

� �

�

�

�

� �

�

�
�

�

�

�
�

�
�

�

�

� �

�

�

�

�

� �

Figure 7-26: MATMUL(64) (Fine, Cached):

Variable tn.

136

	 Stat
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM

|

1
| | |

4
| | |

16
| | |

64

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 MATMUL(16) (Coarse, Uncached)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

	

	

	

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

	 Stat
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 MATMUL(32) (Coarse, Uncached)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

	

	

	

	

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�
�

�

�

�

�

�

	 Stat
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 MATMUL(64) (Coarse, Uncached)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

106

107

	

	

	

	

	

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

Figure 7-27: MATMUL (Coarse, Uncached).

	 Stat
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 MATMUL(64) (Coarse, Uncached) -- T[Net] = 2 cycles / flit-hop

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

105

106

107

108

	

	

	

	

	

	

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

	 Stat
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 MATMUL(64) (Coarse, Uncached) -- T[Net] = 4 cycles / flit-hop

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

105

106

107

108

	 	

	

	

	

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	 Stat
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 MATMUL(64) (Coarse, Uncached) -- T[Net] = 8 cycles / flit-hop

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

105

106

107

108

	

	

	

	

	

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 7-28: MATMUL(64) (Coarse, Un-

cached): Variable tn.

137

	 Stat
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM

|

1
| | |

4
| | |

16
| | |

64

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 MATMUL(16) (Fine, Uncached)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

104

105

	

	

	

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

	 Stat
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 MATMUL(32) (Fine, Uncached)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

105

106

	

	

	

	

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

	 Stat
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 MATMUL(64) (Fine, Uncached)

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

105

106

107

	

	

	

	

	

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

Figure 7-29: MATMUL (Fine, Uncached).

	 Stat
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

 MATMUL(64) (Fine, Uncached) -- T[Net] = 2 cycles / flit-hop

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

105

106

107

	

	

	

	

	

	

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

	 Stat
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 MATMUL(64) (Fine, Uncached) -- T[Net] = 4 cycles / flit-hop

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

105

106

107

108

	 	

	

	

	

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	 Stat
� Free-Ideal
� C-Ideal-1
� C-Ideal-2

 Round-Robin-1
� Round-Robin-2
� Diff
� Diff2
� TTM

 XTM

|

1
| | |

4
| | |

16
| | |

64
| | |

256
| | |

1024

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 MATMUL(64) (Fine, Uncached) -- T[Net] = 8 cycles / flit-hop

 Number of Processors

 R
u

n
n

in
g

 T
im

e,
 in

 C
yc

le
s

105

106

107

108

	

	

	

	

	

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 7-30: MATMUL(64) (Fine, Un-

cached): Variable tn.

138

Chapter 8

Conclusions and Future Work

In the process of studying the behavior of XTM and other thread-management algorithms,

we have learned a number of lessons, by both analytical and empirical means. Most im-

portantly, we found that on small machines, there is no need to do anything clever about

thread management: almost anything that avoids hot-spot behavior and that doesn't im-

pose a high overhead will perform well. The results in Figures 7-2 through 7-5 point this

out most clearly: for machines smaller than those in the \regions of interest," there is very

little di�erence between XTM, one of the best realizable algorithms we tested, and Di�-1,

one of the worst. The same �gures show that on small machines, the added complexity

of the tree-based algorithms doesn't cost very much; the tree-based thread managers work

nearly as well as any of the others even where their added sophistication is not needed.

We also found that on large machines, communication locality becomes very important.

One way to achieve lower communication costs is to use a message-passing style of computa-

tion, which is possible for well-understood statically structured algorithms. Chapter 5 give

asymptotic cost arguments in favor of XTM to this e�ect. Second, the MATMUL results

given in Chapter 7 show that when locality can be exploited to lower communication costs,

it can lead to better program behavior. The fact that Stat runs were always the fastest

points this out; the coarsely-partitioned case with caching also gives evidence to this e�ect.

Section 7.6 demonstrated that that parallel algorithms for large machines must avoid

hot-spot behavior, or else risk losing the bene�ts of large-scale parallelism. Therefore,

the tree-based thread-management algorithms presented in this thesis are all fully dis-

139

tributed, employing combining techniques for the collection and distribution of the threads

being managed and of the global information needed to achieve good thread management.

Other candidate thread-management algorithms that contained serialized behavior su�ered

severely when that serialized behavior became important (see Figure 7-14, for example).

We also learned that thread management is a global optimization problem. A good

thread manager must therefore achieve e�cient collection and distribution of relevant global

information. One of the reasons that TTM and XTM work as well as they do is that they

collect and distribute enough global information in order to make well-informed thread

management decisions, without paying an excessive price for that information. Di�-1,

Di�-2, RR-1 and RR-2 do not make use of global information and their performance

su�ers accordingly.

Although our analytical results point out the need for locality to minimize communi-

cation costs on large machines, it seems that for the particular set of parameters used for

most of our simulations, the added locality gained by XTM's near-neighbor links doesn't

pay for the higher costs associated with passing presence information over those links, as

compared with TTM. However, as as processor speeds increase with respect to network

speeds, locality becomes more important and XTM performance surpasses that of TTM,

as shown in Figures 7-19 through 7-22. More generally, as processor speed increases with

respect to communication speed, \theoretically sound" thread management methodologies

become necessary, even on smaller machines.

8.1 Future Work

There are a number of issues relevant to this research that we have left unresolved in

this thesis. The �rst involves optimality proofs for the tree-based thread managers. In

this thesis, our approach was to verify the good behavior of the overall algorithm through

simulation. From the outset, we assumed that although we could analyze pieces of thread

management algorithms with suitable approximations, when the pieces were assembled into

an entire system, only simulations could give us insight into their behaviors. We have reason

to believe, however, that we can make stronger formal statements about the behavior of

our algorithms. It seems that the tree algorithms as a whole might be provably polylog-

140

competitive with the optimal: we intend to continue work in that area.

It would be useful to study how inaccuracy in information kept in the tree a�ects our

analytical results. In general, the information kept in the tree is out-of-date: it takes time

to migrate up from the leaves to higher-level nodes. In all our analyses, we assumed the

information in the tree was accurate; it would be interesting to explore the e�ects of the

potential inaccuracies. Along the same lines, we assumed, for analytical purposes, that all

interprocessor messages were the same length. In fact, messages that carry more information

(e.g., a number of threads to be moved from one area of the machine to another) are di�erent

lengths. It would be useful to see what the varying of message lengths does to our results.

In Chapter 5, we give bounds on the cost of the update algorithms. These bounds are in

some sense worst-case and best-case. The worst-case cost assumes there are very few threads

on queues in the machine; the best-case cost is an expected cost given a su�ciently high,

balanced workload. It would be useful to explore the region between these two extremes.

For example, what kind of behavior is achieved if only a section of the machine has a

su�ciently high workload or if we relax the balance criterion to some degree?

It would be nice to verify our simulation results on actual machines. Perhaps the 128-

processor CM-5 recently purchased by the lab would be useful for that purpose, or maybe a

128-processor Alewife machine that is planned to be built sometime next year. Although by

our predictions, in many cases, 128 processors is not large enough to be interesting, perhaps

we can observe some of the predicted trends beginning to occur. Furthermore, if we can

�gure out how to arti�cially increase tn, 128 processors may be big enough to encounter

large-machine behavior.

It would be interesting to pay more attention to the e�ects of locality inherent to the

applications being managed. Although the algorithms that make up XTM have good

locality, the applications being managed are kept local inasmuch as XTM tries to keep

threads close to their point of origin; other than that, no attention is paid to locality in the

application. It would be interesting to study how well this heuristic works on an application

that carries a higher degree of inter-thread communication.

Finally, this work assumed no communication path from the compiler to the runtime

system. In some cases, the compiler should be able to distill information about the running

141

characteristics of a given application that the runtime system can use. What form would

that information take, such that the compiler can extract it and the runtime system can put

it to work? Perhaps some work on compiler-generated annotations of individual threads or

pro�le-driven compilation would be appropriate for this purpose.

142

Appendix A

Presence Bit Update Algorithm

The following pseudocode gives a formal statement of the presence bit update algorithm.

Update_Presence_Bit(Node)

{

if ((Node_Presence_Bit(Node) == 0)

&& ((Node_Is_Leaf_Node(Node)

&& Thread_Queue_Not_Empty(Node))

|| (Node_Not_Leaf_Node(Node)

&& Child_Presence_Bits_Not_All_Zero(Node))))

Node_Presence_Bit(Node) = 1;

Update_Neighbor_Presence_Bit_Caches(Node, 1);

if (Node_Has_Parent(Node))

Update_Parent_Presence_Bit_Cache(Node, 1);

Update_Presence_Bit(Node_Parent(Node));

else if ((Node_Presence_Bit(Node) == 1)

&& ((Node_Is_Leaf_Node(Node)

&& Thread_Queue_Is_Empty(Node))

|| (Node_Not_Leaf_Node(Node)

&& Child_Presence_Bits_Are_All_Zero(Node))))

Node_Presence_Bit(Node) = 0;

Update_Neighbor_Presence_Bit_Caches(Node, 0);

if (Node_Has_Parent(Node))

Update_Parent_Presence_Bit_Cache(Node, 0);

Update_Presence_Bit(Node_Parent(Node));

}

143

Appendix B

Application Code

B.1 AQ

;; See pgms/aq/faq.c for documentation. Adapted from SemiC output.

(herald FAQ)

(DEFINE (MAIN LEV)

(set *task-cycles* 1740)

(LET ((TOL (CASE LEV

((8) 0.5)

((7) 0.1)

((6) 0.05)

((5) 0.01)

((4) 0.005)

((3) 0.001)

((2) 5.0E-4)

((1) 1.0E-4)

(ELSE 5.0E-5))))

(AQ 0.0 0.0 2.0 2.0 TOL (Q 0.0 0.0 2.0 2.0))))

(DEFINE (Q X0 Y0 X1 Y1)

(LET ((DX (- X1 X0))

(DY (- Y1 Y0))

(XM (/ (+ X0 X1) 2.0))

(YM (/ (+ Y0 Y1) 2.0)))

(/ (* (+ (F X0 Y0) (F X0 Y1) (F X1 Y0) (F X1 Y1)

(* 2.0 (F XM YM)))

DX DY)

6.0)))

(DEFINE (F X Y)

(LET* ((R0 (* X Y))

(R1 (* R0 R0)))

(* R1 R1)))

144

(DEFINE (AQ X0 Y0 X1 Y1 TOLERANCE Q0)

(LET* ((XM (/ (+ X0 X1) 2.0))

(YM (/ (+ Y0 Y1) 2.0))

(Q1 (Q X0 Y0 XM YM))

(Q2 (Q XM Y0 X1 YM))

(Q3 (Q X0 YM XM Y1))

(Q4 (Q XM YM X1 Y1))

(SUM (+ Q1 Q2 Q3 Q4)))

(IF (< (IF (> SUM Q0) (- SUM Q0) (- Q0 SUM)) TOLERANCE)

(BLOCK (PAUSE 1000) SUM)

(LET* ((TOLERANCE (/ TOLERANCE 4.0))

(SUM0 (BLOCK (PAUSE 1220)

(FUTURE (AQ X0 Y0 XM YM TOLERANCE Q1))))

(SUM1 (BLOCK (PAUSE 80)

(FUTURE (AQ XM Y0 X1 YM TOLERANCE Q2))))

(SUM2 (BLOCK (PAUSE 80)

(FUTURE (AQ X0 YM XM Y1 TOLERANCE Q3))))

(SUM3 (BLOCK (PAUSE 80)

(FUTURE (AQ XM YM X1 Y1 TOLERANCE Q4))))

(VAL (BLOCK (PAUSE 100)

(+ (TOUCH SUM0) (TOUCH SUM1)

(TOUCH SUM2) (TOUCH SUM3)))))

(PAUSE 100)

VAL))))

145

B.2 FIB

(herald ffib)

(define (ffib n)

(if (fx<= n 2)

(block

(pause 60)

1)

(let* ((lhs (block

(pause 62)

(future (ffib (fx- n 1)))))

(rhs (block

(pause 41)

(future (ffib (fx- n 2)))))

(val (block

(pause 229)

(fx+ (touch lhs) (touch rhs)))))

(pause 66)

val)))

(define (main x)

(set *task-cycles* 398)

(ffib x))

146

B.3 TSP

;;;

;;; Branch-and-bound TSP solver.

;;;

;;; Objective: find shortest tour of all N cities starting at city 0.

;;;

(herald tsp)

(define (main n ordered?)

(set *task-cycles* (* 300 n))

(if (fx< n 1)

(error "TSP solver only works with 1 or more cities!"))

(let ((initial-path (make-path n))

(first-guess (make-path n)))

(dotimes (i n) (set (path-element first-guess i) i))

(set (path-element initial-path 0) 0)

(let ((ic-d-mat (cond ((null? ordered?)

(vref unordered-ic-d-mats n))

((eq? ordered? '#t)

(vref ordered-ic-d-mats n))

(else (vref opt-ordered-ic-d-mats n))))

(cities (cond ((null? ordered?) (nth unordered-cities n))

((eq? ordered? '#t) (nth ordered-cities n))

(else (nth opt-ordered-cities n)))))

(init-best-so-far first-guess ic-d-mat cities)

(let* ((s-path

(find-shortest-path initial-path 1 n ic-d-mat cities))

(s-path (if (null? s-path) first-guess s-path)))

(message (format nil "Shortest Path: ~s"

(output-path s-path cities)))

(message (format nil "Shortest Len : ~d"

(path-length s-path ic-d-mat)))

s-path))))

147

;;;

;;; main recursive path finder: returns #f if no path shorter than

;;; current best along current path.

;;;

(define (find-shortest-path path-so-far step-index n-cities ic-d-mat

cities)

(cond ((fx>= (path-length path-so-far ic-d-mat) (best-so-far))

(pause 50)

'#f)

((fx>= step-index n-cities)

(message (format nil "New Best Path: ~s"

(output-path path-so-far cities)))

(message (format nil "New Best Len : ~s"

(path-length path-so-far ic-d-mat)))

(set (best-so-far) (path-length path-so-far ic-d-mat))

(pause 50)

path-so-far)

(else

(pause 50)

(iterate loop ((paths '()) (next-city 0))

(cond ((fx>= next-city n-cities)

(pause 50)

(select-best-path paths ic-d-mat))

((city-part-of-path next-city path-so-far)

(pause 50)

(loop paths (fx+ next-city 1)))

(else

(let ((new-path (copy-path path-so-far)))

(set (path-element new-path step-index) next-city)

(pause 200)

(loop (cons

(future

(find-shortest-path new-path

(fx+ step-index 1)

n-cities

ic-d-mat

cities))

paths)

(fx+ next-city 1)))))))))

148

(define (select-best-path paths ic-d-mat)

(iterate loop ((best-path '#f) (best-path-length '#f) (paths paths))

(if (null? paths)

best-path

(let ((candidate (touch (car paths))))

(cond ((null? candidate)

(pause 50)

(loop best-path best-path-length (cdr paths)))

((null? best-path-length)

(pause 50)

(loop candidate

(path-length candidate ic-d-mat)

(cdr paths)))

(else

(let ((current-length

(path-length candidate ic-d-mat)))

(pause 100)

(if (fx< current-length best-path-length)

(loop candidate current-length (cdr paths))

(loop best-path best-path-length (cdr paths))))

))))))

149

;;;

;;; Best-so-far abstraction

;;;

(lset *best-so-far* '#f)

(define (init-best-so-far first-guess ic-d-mat cities)

(let ((len (path-length first-guess ic-d-mat)))

(message (format nil "Initial Best Path: ~s"

(output-path first-guess cities)))

(message (format nil "Initial Best Len : ~s" len))

(set *best-so-far* (make-vector *N-Processors* len))))

(define-constant best-so-far

(object (lambda ()

(vref *best-so-far* *my-pid*))

((setter self)

(lambda (len)

(broadcast (row col)

(when (fx< len (best-so-far))

(set (vref *best-so-far* *my-pid*) len)))))))

150

;;;

;;; PATH abstraction

;;;

(define-constant path-element

(object (lambda (path elt)

(vref path elt))

((setter self)

(lambda (path elt val)

(set (vref path elt) val)))))

(define (make-path n)

(make-vector n '#f))

(define copy-path copy-vector)

(define (city-part-of-path city path)

(let ((len (path-steps path)))

(iterate loop ((i 0))

(cond ((fx>= i len) '#f)

((eq? city (path-element path i)) '#t)

(else (loop (fx+ i 1)))))))

(define (path-length path ic-d-mat)

(let ((len (path-steps path)))

(iterate loop ((step 1) (p-city (path-element path 0)) (sum 0))

(if (fx>= step len)

sum

(let ((current-city (path-element path step)))

(if (null? current-city)

sum

(loop

(fx+ step 1)

current-city

(fx+ sum

(ic-dist p-city current-city ic-d-mat)))))))))

(define-integrable (path-steps path)

(vector-length path))

(define (output-path path cities)

(cons path

(iterate loop ((i 0) (coords '()))

(if (fx>= i (path-steps path))

(reverse coords)

(loop (fx+ i 1)

(cons (nth cities (path-element path i))

coords))))))

(define-constant (ic-dist x y ic-mat)

(vref (vref ic-mat x) y))

151

(herald cities)

;;;

;;; Lists of city coordinates (unordered).

;;;

(define unordered-cities

'(()

((-1 . 1))

((-2 . 0) (-2 . -1))

((-1 . 3) (3 . -1) (-1 . 0))

((-3 . -1) (-2 . 1) (0 . 2) (-1 . 4))

((-5 . -3) (-2 . -2) (-1 . 3) (1 . 2) (1 . 0))

((6 . 6) (6 . 1) (0 . 0) (2 . 0) (-4 . 1) (-6 . -6))

((-1 . 3) (-5 . 0) (1 . 5) (-2 . 1) (5 . -5) (-3 . 6) (3 . 6))

((4 . -1) (-6 . 3) (-1 . 4) (2 . -5) (7 . 7) (3 . -4) (8 . 2)

(-1 . 6))

((1 . 7) (1 . 4) (-5 . 1) (6 . -6) (-9 . -2) (1 . 4) (8 . -6)

(5 . -2) (-4 . 9))

((2 . -8) (1 . 0) (7 . -10) (-3 . -9) (-6 . 8) (-5 . -8)

(2 . -9) (-3 . 3) (1 . 7) (10 . 10))

((5 . -6) (-1 . -9) (-2 . 0) (1 . -9) (8 . -9) (-2 . 6) (0 . 10)

(5 . 1) (7 . 1) (-9 . 9) (0 . 6))

((11 . 11) (-9 . 12) (8 . -3) (12 . -10) (5 . -4) (-11 . 9)

(-1 . 3) (-4 . 9) (-3 . -2) (-9 . 10) (-7 . 11)

(-7 . 6))))

;;;

;;; Identical lists of city coordinates (ordered by greedy algorithm).

;;;

(define ordered-cities

'(()

((-1 . 1))

((-2 . 0) (-2 . -1))

((-1 . 3) (-1 . 0) (3 . -1))

((-3 . -1) (-2 . 1) (0 . 2) (-1 . 4))

((-5 . -3) (-2 . -2) (1 . 0) (1 . 2) (-1 . 3))

((6 . 6) (6 . 1) (2 . 0) (0 . 0) (-4 . 1) (-6 . -6))

((-1 . 3) (1 . 5) (3 . 6) (-3 . 6) (-2 . 1) (-5 . 0) (5 . -5))

((4 . -1) (3 . -4) (2 . -5) (-1 . 4) (-1 . 6) (-6 . 3) (7 . 7)

(8 . 2))

((1 . 7) (1 . 4) (1 . 4) (-5 . 1) (-9 . -2) (-4 . 9) (5 . -2)

(6 . -6) (8 . -6))

((2 . -8) (2 . -9) (7 . -10) (-3 . -9) (-5 . -8) (1 . 0) (-3 . 3)

(-6 . 8) (1 . 7) (10 . 10))

((5 . -6) (8 . -9) (1 . -9) (-1 . -9) (-2 . 0) (-2 . 6) (0 . 6)

(0 . 10) (-9 . 9) (5 . 1) (7 . 1))

((11 . 11) (8 . -3) (5 . -4) (-3 . -2) (-1 . 3) (-4 . 9)

(-7 . 11) (-9 . 12) (-9 . 10) (-11 . 9) (-7 . 6)

(12 . -10))))

152

;;;

;;; Identical lists of city coordinates (optimal ordering).

;;;

(define opt-ordered-cities

'(()

((-1 . 1))

((-2 . 0) (-2 . -1))

((-1 . 3) (-1 . 0) (3 . -1))

((-3 . -1) (-2 . 1) (0 . 2) (-1 . 4))

((-5 . -3) (-2 . -2) (1 . 0) (1 . 2) (-1 . 3))

((6 . 6) (6 . 1) (2 . 0) (0 . 0) (-4 . 1) (-6 . -6))

((-1 . 3) (1 . 5) (3 . 6) (-3 . 6) (-5 . 0) (-2 . 1) (5 . -5))

((4 . -1) (2 . -5) (3 . -4) (8 . 2) (7 . 7) (-1 . 4) (-1 . 6)

(-6 . 3))

((1 . 7) (-4 . 9) (-9 . -2) (-5 . 1) (1 . 4) (1 . 4) (5 . -2)

(6 . -6) (8 . -6))

((2 . -8) (7 . -10) (2 . -9) (-3 . -9) (-5 . -8) (1 . 0) (-3 . 3)

(-6 . 8) (1 . 7) (10 . 10))

((5 . -6) (8 . -9) (1 . -9) (-1 . -9) (-2 . 0) (5 . 1) (7 . 1)

(0 . 6) (-2 . 6) (0 . 10) (-9 . 9))

((11 . 11) (-4 . 9) (-7 . 11) (-9 . 12) (-9 . 10) (-11 . 9)

(-7 . 6) (-1 . 3) (-3 . -2) (5 . -4) (8 . -3)

(12 . -10))))

153

;;;

;;; Intercity distance matrices for unordered cities

;;;

(define unordered-ic-d-mats

'#(#()

#(#(0))

#(#(0 1)

#(1 0))

#(#(0 5 3)

#(5 0 4)

#(3 4 0))

#(#(0 2 4 5)

#(2 0 2 3)

#(4 2 0 2)

#(5 3 2 0))

#(#(0 3 7 7 6)

#(3 0 5 5 3)

#(7 5 0 2 3)

#(7 5 2 0 2)

#(6 3 3 2 0))

#(#(0 5 8 7 11 16)

#(5 0 6 4 10 13)

#(8 6 0 2 4 8)

#(7 4 2 0 6 10)

#(11 10 4 6 0 7)

#(16 13 8 10 7 0))

#(#(0 5 2 2 10 3 5)

#(5 0 7 3 11 6 10)

#(2 7 0 5 10 4 2)

#(2 3 5 0 9 5 7)

#(10 11 10 9 0 13 11)

#(3 6 4 5 13 0 6)

#(5 10 2 7 11 6 0))

#(#(0 10 7 4 8 3 5 8)

#(10 0 5 11 13 11 14 5)

#(7 5 0 9 8 8 9 2)

#(4 11 9 0 13 1 9 11)

#(8 13 8 13 0 11 5 8)

#(3 11 8 1 11 0 7 10)

#(5 14 9 9 5 7 0 9)

#(8 5 2 11 8 10 9 0))

154

#(#(0 3 8 13 13 3 14 9 5)

#(3 0 6 11 11 0 12 7 7)

#(8 6 0 13 5 6 14 10 8)

#(13 11 13 0 15 11 2 4 18)

#(13 11 5 15 0 11 17 14 12)

#(3 0 6 11 11 0 12 7 7)

#(14 12 14 2 17 12 0 5 19)

#(9 7 10 4 14 7 5 0 14)

#(5 7 8 18 12 7 19 14 0))

#(#(0 8 5 5 17 7 1 12 15 19)

#(8 0 11 9 10 10 9 5 7 13)

#(5 11 0 10 22 12 5 16 18 20)

#(5 9 10 0 17 2 5 12 16 23)

#(17 10 22 17 0 16 18 5 7 16)

#(7 10 12 2 16 0 7 11 16 23)

#(1 9 5 5 18 7 0 13 16 20)

#(12 5 16 12 5 11 13 0 5 14)

#(15 7 18 16 7 16 16 5 0 9)

#(19 13 20 23 16 23 20 14 9 0))

#(#(0 6 9 5 4 13 16 7 7 20 13)

#(6 0 9 2 9 15 19 11 12 19 15)

#(9 9 0 9 13 6 10 7 9 11 6)

#(5 2 9 0 7 15 19 10 11 20 15)

#(4 9 13 7 0 18 20 10 10 24 17)

#(13 15 6 15 18 0 4 8 10 7 2)

#(16 19 10 19 20 4 0 10 11 9 4)

#(7 11 7 10 10 8 10 0 2 16 7)

#(7 12 9 11 10 10 11 2 0 17 8)

#(20 19 11 20 24 7 9 16 17 0 9)

#(13 15 6 15 17 2 4 7 8 9 0))

#(#(0 20 14 21 16 22 14 15 19 20 18 18)

#(20 0 22 30 21 3 12 5 15 2 2 6)

#(14 22 0 8 3 22 10 16 11 21 20 17)

#(21 30 8 0 9 29 18 24 17 29 28 24)

#(16 21 3 9 0 20 9 15 8 19 19 15)

#(22 3 22 29 20 0 11 7 13 2 4 5)

#(14 12 10 18 9 11 0 6 5 10 10 6)

#(15 5 16 24 15 7 6 0 11 5 3 4)

#(19 15 11 17 8 13 5 11 0 13 13 8)

#(20 2 21 29 19 2 10 5 13 0 2 4)

#(18 2 20 28 19 4 10 3 13 2 0 5)

#(18 6 17 24 15 5 6 4 8 4 5 0))))

155

;;;

;;; Intercity distance matrices for ordered cities

;;;

(define ordered-ic-d-mats

'#(#()

#(#(0))

#(#(0 1)

#(1 0))

#(#(0 3 5)

#(3 0 4)

#(5 4 0))

#(#(0 2 4 5)

#(2 0 2 3)

#(4 2 0 2)

#(5 3 2 0))

#(#(0 3 6 7 7)

#(3 0 3 5 5)

#(6 3 0 2 3)

#(7 5 2 0 2)

#(7 5 3 2 0))

#(#(0 5 7 8 11 16)

#(5 0 4 6 10 13)

#(7 4 0 2 6 10)

#(8 6 2 0 4 8)

#(11 10 6 4 0 7)

#(16 13 10 8 7 0))

#(#(0 2 5 3 2 5 10)

#(2 0 2 4 5 7 10)

#(5 2 0 6 7 10 11)

#(3 4 6 0 5 6 13)

#(2 5 7 5 0 3 9)

#(5 7 10 6 3 0 11)

#(10 10 11 13 9 11 0))

#(#(0 3 4 7 8 10 8 5)

#(3 0 1 8 10 11 11 7)

#(4 1 0 9 11 11 13 9)

#(7 8 9 0 2 5 8 9)

#(8 10 11 2 0 5 8 9)

#(10 11 11 5 5 0 13 14)

#(8 11 13 8 8 13 0 5)

#(5 7 9 9 9 14 5 0))

156

#(#(0 3 3 8 13 5 9 13 14)

#(3 0 0 6 11 7 7 11 12)

#(3 0 0 6 11 7 7 11 12)

#(8 6 6 0 5 8 10 13 14)

#(13 11 11 5 0 12 14 15 17)

#(5 7 7 8 12 0 14 18 19)

#(9 7 7 10 14 14 0 4 5)

#(13 11 11 13 15 18 4 0 2)

#(14 12 12 14 17 19 5 2 0))

#(#(0 1 5 5 7 8 12 17 15 19)

#(1 0 5 5 7 9 13 18 16 20)

#(5 5 0 10 12 11 16 22 18 20)

#(5 5 10 0 2 9 12 17 16 23)

#(7 7 12 2 0 10 11 16 16 23)

#(8 9 11 9 10 0 5 10 7 13)

#(12 13 16 12 11 5 0 5 5 14)

#(17 18 22 17 16 10 5 0 7 16)

#(15 16 18 16 16 7 5 7 0 9)

#(19 20 20 23 23 13 14 16 9 0))

#(#(0 4 5 6 9 13 13 16 20 7 7)

#(4 0 7 9 13 18 17 20 24 10 10)

#(5 7 0 2 9 15 15 19 20 10 11)

#(6 9 2 0 9 15 15 19 19 11 12)

#(9 13 9 9 0 6 6 10 11 7 9)

#(13 18 15 15 6 0 2 4 7 8 10)

#(13 17 15 15 6 2 0 4 9 7 8)

#(16 20 19 19 10 4 4 0 9 10 11)

#(20 24 20 19 11 7 9 9 0 16 17)

#(7 10 10 11 7 8 7 10 16 0 2)

#(7 10 11 12 9 10 8 11 17 2 0))

#(#(0 14 16 19 14 15 18 20 20 22 18 21)

#(14 0 3 11 10 16 20 22 21 22 17 8)

#(16 3 0 8 9 15 19 21 19 20 15 9)

#(19 11 8 0 5 11 13 15 13 13 8 17)

#(14 10 9 5 0 6 10 12 10 11 6 18)

#(15 16 15 11 6 0 3 5 5 7 4 24)

#(18 20 19 13 10 3 0 2 2 4 5 28)

#(20 22 21 15 12 5 2 0 2 3 6 30)

#(20 21 19 13 10 5 2 2 0 2 4 29)

#(22 22 20 13 11 7 4 3 2 0 5 29)

#(18 17 15 8 6 4 5 6 4 5 0 24)

#(21 8 9 17 18 24 28 30 29 29 24 0))))

157

;;;

;;; Intercity distance matrices for ordered cities

;;;

(define opt-ordered-ic-d-mats

'#(#()

#(#(0))

#(#(0 1)

#(1 0))

#(#(0 3 5)

#(3 0 4)

#(5 4 0))

#(#(0 2 4 5)

#(2 0 2 3)

#(4 2 0 2)

#(5 3 2 0))

#(#(0 3 6 7 7)

#(3 0 3 5 5)

#(6 3 0 2 3)

#(7 5 2 0 2)

#(7 5 3 2 0))

#(#(0 5 7 8 11 16)

#(5 0 4 6 10 13)

#(7 4 0 2 6 10)

#(8 6 2 0 4 8)

#(11 10 6 4 0 7)

#(16 13 10 8 7 0))

#(#(0 2 5 3 5 2 10)

#(2 0 2 4 7 5 10)

#(5 2 0 6 10 7 11)

#(3 4 6 0 6 5 13)

#(5 7 10 6 0 3 11)

#(2 5 7 5 3 0 9)

#(10 10 11 13 11 9 0))

#(#(0 4 3 5 8 7 8 10)

#(4 0 1 9 13 9 11 11)

#(3 1 0 7 11 8 10 11)

#(5 9 7 0 5 9 9 14)

#(8 13 11 5 0 8 8 13)

#(7 9 8 9 8 0 2 5)

#(8 11 10 9 8 2 0 5)

#(10 11 11 14 13 5 5 0))

158

#(#(0 5 13 8 3 3 9 13 14)

#(5 0 12 8 7 7 14 18 19)

#(13 12 0 5 11 11 14 15 17)

#(8 8 5 0 6 6 10 13 14)

#(3 7 11 6 0 0 7 11 12)

#(3 7 11 6 0 0 7 11 12)

#(9 14 14 10 7 7 0 4 5)

#(13 18 15 13 11 11 4 0 2)

#(14 19 17 14 12 12 5 2 0))

#(#(0 5 1 5 7 8 12 17 15 19)

#(5 0 5 10 12 11 16 22 18 20)

#(1 5 0 5 7 9 13 18 16 20)

#(5 10 5 0 2 9 12 17 16 23)

#(7 12 7 2 0 10 11 16 16 23)

#(8 11 9 9 10 0 5 10 7 13)

#(12 16 13 12 11 5 0 5 5 14)

#(17 22 18 17 16 10 5 0 7 16)

#(15 18 16 16 16 7 5 7 0 9)

#(19 20 20 23 23 13 14 16 9 0))

#(#(0 4 5 6 9 7 7 13 13 16 20)

#(4 0 7 9 13 10 10 17 18 20 24)

#(5 7 0 2 9 10 11 15 15 19 20)

#(6 9 2 0 9 11 12 15 15 19 19)

#(9 13 9 9 0 7 9 6 6 10 11)

#(7 10 10 11 7 0 2 7 8 10 16)

#(7 10 11 12 9 2 0 8 10 11 17)

#(13 17 15 15 6 7 8 0 2 4 9)

#(13 18 15 15 6 8 10 2 0 4 7)

#(16 20 19 19 10 10 11 4 4 0 9)

#(20 24 20 19 11 16 17 9 7 9 0))

#(#(0 15 18 20 20 22 18 14 19 16 14 21)

#(15 0 3 5 5 7 4 6 11 15 16 24)

#(18 3 0 2 2 4 5 10 13 19 20 28)

#(20 5 2 0 2 3 6 12 15 21 22 30)

#(20 5 2 2 0 2 4 10 13 19 21 29)

#(22 7 4 3 2 0 5 11 13 20 22 29)

#(18 4 5 6 4 5 0 6 8 15 17 24)

#(14 6 10 12 10 11 6 0 5 9 10 18)

#(19 11 13 15 13 13 8 5 0 8 11 17)

#(16 15 19 21 19 20 15 9 8 0 3 9)

#(14 16 20 22 21 22 17 10 11 3 0 8)

#(21 24 28 30 29 29 24 18 17 9 8 0))))

159

B.4 UNBAL

B.4.1 Dynamic

(herald generate-n-tasks)

(lset *tasks-remaining* 0)

(define (main n t)

(set *task-cycles* t)

(spawn-and-wait (lambda () (pause t)) n))

(define (spawn-and-wait thunk n)

(set *tasks-remaining* n)

(let* ((done (make-placeholder))

(thunk-1 (lambda ()

(thunk)

(when (fx<= (modify *tasks-remaining*

(lambda (x) (fx- x 1)))

0)

(determine done '#t)))))

(iterate loop ((tasks '()) (i n))

(if (fx> i 0)

(loop (cons (make-dummy-task thunk-1) tasks) (fx- i 1))

(sched-tasks (link-tasks tasks))))

(touch done)))

(define (make-dummy-task thunk)

(let ((new-task (make-task))

(old-task (get-my-task)))

(when old-task

(set (task-level new-task) (fx+ (task-level old-task) 1)))

(set (task-created-on new-task) *my-pid*)

(set (task-closure new-task)

(new-task-wrapper new-task thunk '()))

(stats-creating-task)

(task-message "Creating " new-task)

new-task))

(define (link-tasks tasks)

(if (null? tasks)

'()

(let ((first (car tasks)))

(iterate loop ((current (car tasks)) (rest (cdr tasks)))

(cond ((null? rest) first)

(else

(set (task-next current) (car rest))

(loop (car rest) (cdr rest))))))))

160

B.4.2 Static

(herald generate-n-stat)

(lset *tasks-remaining* 0)

(define (main n t)

(set *task-cycles* t)

(spawn-and-wait (lambda () (pause t)) n))

(define (spawn-and-wait thunk n)

(set *tasks-remaining* n)

(let* ((done (make-placeholder))

(n-local (fx/ (fx+ n (fx- *N-Processors* 1)) *N-Processors*))

(thunk-1 (lambda ()

(thunk)

(when (fx<= (modify *tasks-remaining*

(lambda (x) (fx- x 1)))

0)

(determine done '#t)))))

(do-in-parallel (r c)

(iterate loop ((tasks '()) (i n-local))

(if (fx> i 0)

(loop (cons (make-dummy-task thunk-1) tasks) (fx- i 1))

(sched-tasks (link-tasks tasks)))))

(touch done)))

(define (make-dummy-task thunk)

(let ((new-task (make-task))

(old-task (get-my-task)))

(when old-task

(set (task-level new-task) (fx+ (task-level old-task) 1)))

(set (task-created-on new-task) *my-pid*)

(set (task-closure new-task)

(new-task-wrapper new-task thunk '()))

(stats-creating-task)

(task-message "Creating " new-task)

new-task))

(define (link-tasks tasks)

(if (null? tasks)

'()

(let ((first (car tasks)))

(iterate loop ((current (car tasks)) (rest (cdr tasks)))

(cond ((null? rest) first)

(else

(set (task-next current) (car rest))

(loop (car rest) (cdr rest))))))))

161

B.5 MATMUL

The various versions of MATMUL were actually written as eight nearly identical programs.
In this section, we present the code that is common to those programs �rst. We then
separately list the code that contains di�erences.

B.5.1 Common Code
;;;

;;; timing parameters

;;;

(define-constant *loop-cycles* 7)

(define-constant *mul-cycles* 40)

(define-constant *add-cycles* 1)

(define-constant *matref-cycles* 7)

(define-constant *matset-cycles* 8)

(define-constant *lmatref-cycles* 10)

(define-constant *lmatset-cycles* 20)

(define-local-syntax (blocking-forpar header . body)

(destructure (((name start end) header)

(loop (generate-symbol 'loop))

(upper (generate-symbol 'upper))

(mid (generate-symbol 'mid))

(pl (generate-symbol 'placeholder)))

`(iterate ,loop ((,name ,start) (,upper ,end))

(cond ((fx> ,upper (fx+ ,name 1))

(let* ((,mid (fx+ ,name (fx-ashr (fx- ,upper ,name) 1)))

(,pl (future (,loop ,name ,mid))))

(,loop ,mid ,upper)

(touch ,pl)))

(else ,@body)))))

162

;;;

;;; the following code is snarfed from dmatrix.t

;;;

(define-integrable (%my-ceiling x y)

(fx/ (fx+ x (fx- y 1)) y))

;;; index calculation: more efficient to use FP.

(define (index->block+offset i blocksize)

;; returns (fx/ i blocksize), (fx-rem i blocksize) in 40 cycles.

(let ((fl-i (fixnum->flonum i))

(fl-blocksize (fixnum->flonum blocksize)))

(let* ((quotient (flonum->fixnum (fl/ fl-i fl-blocksize)))

(remainder (fx- i (flonum->fixnum

(fl* (fixnum->flonum quotient)

fl-blocksize)))))

(return quotient remainder))))

;;;

;;; %dmatrix data structure

;;;

(define-structure %dmatrix

top-matrix

submat-w

submat-h)

(define (%make-dmatrix height width make-mat-fn val)

(let* ((radix *Procs-Per-Dim*)

(top-matrix (make-matrix radix radix))

(submat-h (%my-ceiling height radix))

(submat-w (%my-ceiling width radix)))

(do-in-parallel (row col)

(set (MATREF top-matrix row col)

(make-mat-fn submat-h submat-w val)))

(let ((dm (make-%dmatrix)))

(set (%dmatrix-top-matrix dm) (CREATE-DIR-ENTRY top-matrix))

(set (%dmatrix-submat-h dm) (CREATE-DIR-ENTRY submat-h))

(set (%dmatrix-submat-w dm) (CREATE-DIR-ENTRY submat-w))

dm)))

163

;;;

;;; MATRIX

;;;

(define (MAKE-MATRIX height width . val)

(let ((matrix (make-vector height))

(initval (if val (car val) 0)))

(do ((row 0 (fx+ row 1)))

((fx= row height))

(let ((vec (make-vector width)))

(dotimes (i width)

(set (vref vec i) (CREATE-DIR-ENTRY initval)))

(set (vref matrix row) (CREATE-DIR-ENTRY vec))))

matrix))

(define-constant MATREF

(object (lambda (matrix row col)

(DIR-READ (vref (DIR-READ (vref matrix row)) col)))

((setter self)

(lambda (matrix row col value)

(DIR-WRITE (vref (DIR-READ (vref matrix row)) col) value)))))

(define-integrable (MATRIX-HEIGHT m)

(vector-length m))

(define-integrable (MATRIX-WIDTH m)

(vector-length (DIR-READ (vref m 0))))

164

;;;

;;; LMATRIX (matrix of lstructs)

;;;

(define (MAKE-LMATRIX height width . val)

(let ((matrix (make-vector height))

(initval (if val (car val) 0)))

(do ((row 0 (fx+ row 1)))

((fx= row height))

(let ((vec (make-vector width)))

(dotimes (i width)

(let ((pl (make-placeholder)))

(set (placeholder-determined? pl) '#t)

(set (placeholder-value pl) initval)

(set (vref vec i) (CREATE-DIR-ENTRY pl))))

(set (vref matrix row) (CREATE-DIR-ENTRY vec))))

matrix))

(define-constant LMATREF

(object (lambda (matrix row col)

(let* ((dir (vref (DIR-READ (vref matrix row)) col))

(lcell (DIR-READ dir))

(val (*lref lcell)))

(DIR-WRITE dir lcell)

val))

((setter self)

(lambda (matrix row col value)

(let* ((dir (vref (DIR-READ (vref matrix row)) col))

(lcell (DIR-READ dir)))

(*l-set lcell value)

(DIR-WRITE dir lcell)

value)))))

(define-integrable (LMATRIX-HEIGHT m)

(vector-length m))

(define-integrable (LMATRIX-WIDTH m)

(vector-length (DIR-READ (vref m 0))))

165

;;;

;;; Distributed matrix

;;;

(define (MAKE-DMATRIX height width . val)

(%make-dmatrix height width MAKE-MATRIX (if val (car val) 0)))

(define-constant DMATREF

(object (lambda (dmat row col)

(let ((sub-h (DIR-READ (%dmatrix-submat-h dmat)))

(sub-w (DIR-READ (%dmatrix-submat-w dmat)))

(top-matrix (DIR-READ (%dmatrix-top-matrix dmat))))

(receive (vblock voffset)

(index->block+offset row sub-h)

(receive (hblock hoffset)

(index->block+offset col sub-w)

(MATREF (MATREF top-matrix vblock hblock)

voffset hoffset)))))

((setter self)

(lambda (dmat row col value)

(let ((sub-h (DIR-READ (%dmatrix-submat-h dmat)))

(sub-w (DIR-READ (%dmatrix-submat-w dmat)))

(top-matrix (DIR-READ (%dmatrix-top-matrix dmat))))

(receive (vblock voffset)

(index->block+offset row sub-h)

(receive (hblock hoffset)

(index->block+offset col sub-w)

(set (MATREF (MATREF top-matrix vblock hblock)

voffset hoffset)

value))))))))

(define (DMATRIX-SUBMATRIX dm row col)

(MATREF (DIR-READ (%dmatrix-top-matrix dm)) row col))

166

;;;

;;; Distributed l-matrix

;;;

(define (MAKE-DLMATRIX height width . val)

(%make-dmatrix height width MAKE-LMATRIX (if val (car val) 0)))

(define-constant DLMATREF

(object (lambda (dmat row col)

(let ((sub-h (DIR-READ (%dmatrix-submat-h dmat)))

(sub-w (DIR-READ (%dmatrix-submat-w dmat)))

(top-matrix (DIR-READ (%dmatrix-top-matrix dmat))))

(receive (vblock voffset)

(index->block+offset row sub-h)

(receive (hblock hoffset)

(index->block+offset col sub-w)

(LMATREF (MATREF top-matrix vblock hblock)

voffset hoffset)))))

((setter self)

(lambda (dmat row col value)

(let ((sub-h (DIR-READ (%dmatrix-submat-h dmat)))

(sub-w (DIR-READ (%dmatrix-submat-w dmat)))

(top-matrix (DIR-READ (%dmatrix-top-matrix dmat))))

(receive (vblock voffset) (index->block+offset row sub-h)

(receive (hblock hoffset) (index->block+offset col sub-w)

(set (LMATREF (MATREF top-matrix vblock hblock)

voffset hoffset)

value))))))))

(define (DLMATRIX-SUBMATRIX dm row col)

(MATREF (DIR-READ (%dmatrix-top-matrix dm)) row col))

167

B.5.2 Cached Versions

These versions of MATMUL simulate coherent full-mapped directories. The code for sim-
ulation of cache operations that are kept coherent using those directories is given here.

;;;

;;; Coherence protocol constants

;;;

(define-constant *rreq-msg-size* 8)

(define-constant *rresp-msg-size* 24)

(define-constant *wreq-msg-size* 8)

(define-constant *wresp-msg-size* 24)

(define-constant *invr-msg-size* 8)

(define-constant *invr-ack-msg-size* 8)

(define-constant *invw-msg-size* 8)

(define-constant *update-msg-size* 24)

(define-constant *process-rreq-cycles* 4)

(define-constant *process-rresp-cycles* 4)

(define-constant *process-wreq-cycles* 4)

(define-constant *process-wresp-cycles* 4)

(define-constant *process-invr-cycles* 4)

(define-constant *process-invr-ack-cycles* 4)

(define-constant *process-invw-cycles* 4)

(define-constant *process-update-cycles* 4)

;;;

;;; DIR-ENTRY abstraction

;;;

(define-structure DIR-ENTRY

HOME-PID

DIRECTORY ;; write: [fixnum] pid

;; read: [list] (len <pid> <pid> ...)

;; [vector] #(<0 has permission>

;; <1 has permission> ...)

VALUE

(((print self port)

(format port "#{DIR-ENTRY (~s) <~s:~s> ~s}"

(object-hash self)

(DIR-ENTRY-HOME-PID self)

(DIR-ENTRY-DIRECTORY self)

(DIR-ENTRY-VALUE self)))))

168

(define-constant *max-directory-list-length* 16)

(define (CREATE-DIR-ENTRY val)

(let ((de (make-dir-entry)))

(set (dir-entry-home-pid de) *my-pid*) ; home node is here

(set (dir-entry-directory de) *my-pid*) ; I get write permission

(set (dir-entry-value de) val)

de))

(define-integrable (DIR-READ x)

(get-read-permission x)

(DIR-ENTRY-VALUE x))

(define-integrable (DIR-WRITE x val)

(get-write-permission x)

(set (DIR-ENTRY-VALUE x) val))

(define-integrable (pid->dir-index pid)

(fx-ashr pid 4))

(define-integrable (pid->dir-bit pid)

(fx-ashl 1 (fx-and pid #xf)))

(define-integrable (I-have-write-permission x)

(has-write-permission *my-pid* x))

(define-integrable (has-write-permission pid x)

(let ((dir (dir-entry-directory x)))

(and (fixnum? dir) (fx= dir pid))))

(define-integrable (add-write-permission pid x)

(set (dir-entry-directory x) pid))

169

(define-integrable (I-have-read-permission x)

(let ((dir (dir-entry-directory x)))

(or (and (list? dir) (has-read-permission-list *my-pid* x))

(and (vector? dir) (has-read-permission-vector *my-pid* x))

(I-have-write-permission x))))

(define-integrable (has-read-permission-list pid x)

(%has-read-permission-list pid (dir-entry-directory x)))

(define-integrable (%has-read-permission-list pid l)

(memq? pid (cdr l)))

(define-integrable (has-read-permission-vector pid x)

(%has-read-permission-vector pid (dir-entry-directory x)))

(define-integrable (%has-read-permission-vector pid vec)

(fxn= (fx-and (vref vec (pid->dir-index pid))

(pid->dir-bit pid))

0))

(define-integrable (add-read-permission-list pid x)

(let ((l (dir-entry-directory x)))

(set (cdr l) (cons pid (cdr l)))

(set (car l) (fx+ (car l) 1))))

(define-integrable (add-read-permission-vector pid x)

(let ((vec (dir-entry-directory x))

(index (pid->dir-index pid)))

(set (vref vec index)

(fx-ior (vref vec index) (pid->dir-bit pid)))))

170

(define-integrable (get-read-permission x)

(cond ((I-have-read-permission x))

((fixnum? (dir-entry-directory x)) ; someone else has write

(get-read-permission-from-write-state x)) ; permission

((vector? (dir-entry-directory x))

(get-read-permission-from-read-state-vector x))

(else

(get-read-permission-from-read-state-list x))))

(define (get-read-permission-from-write-state x)

(let ((fpid (dir-entry-directory x)))

(set (dir-entry-directory x) (cons 1 (cons *my-pid* '())))

(pause-read-from-write-time x fpid)))

(define (get-read-permission-from-read-state-vector x)

(add-read-permission-vector *my-pid* x)

(pause-read-from-read-time x))

(define (get-read-permission-from-read-state-list x)

(cond ((fx>= (car (dir-entry-directory x))

max-directory-list-length)

(read-directory-list->vector x)

(get-read-permission-from-read-state-vector x))

(else

(add-read-permission-list *my-pid* x)

(pause-read-from-read-time x))))

(define (read-directory-list->vector x)

(let ((l (dir-entry-directory x))

(v (make-vector (fx-ashr *n-processors* 4))))

(set (dir-entry-directory x) v)

(dolist (pid (cdr l))

(add-read-permission-vector pid x))))

171

(define (pause-read-from-read-time x)

(let ((hpid (dir-entry-home-pid x)))

(pause (+ (transit-time *rreq-msg-size* *my-pid* hpid)

process-rreq-cycles

(transit-time *rresp-msg-size* hpid *my-pid*)

process-rresp-cycles))))

(define (pause-read-from-write-time x fpid)

(let ((hpid (dir-entry-home-pid x)))

(pause (+ (transit-time *rreq-msg-size* *my-pid* hpid)

process-rreq-cycles

(transit-time *invw-msg-size* hpid fpid)

process-invw-cycles

(transit-time *update-msg-size* fpid hpid)

process-update-cycles

(transit-time *rresp-msg-size* hpid *my-pid*)

process-rresp-cycles))))

172

(define-integrable (get-write-permission x)

(cond ((I-have-write-permission x))

((fixnum? (dir-entry-directory x)) ; someone else has write

(get-write-permission-from-write-state x)) ; permission

((vector? (dir-entry-directory x))

(get-write-permission-from-read-state-vector x))

(else

(get-write-permission-from-read-state-list x))))

(define (get-write-permission-from-write-state x)

(let ((fpid (dir-entry-directory x)))

(add-write-permission *my-pid* x)

(pause-write-from-write-time x fpid)))

(define (get-write-permission-from-read-state-vector x)

(let ((dir (dir-entry-directory x)))

(add-write-permission *my-pid* x)

(pause-write-from-read-time-vector x dir)))

(define (get-write-permission-from-read-state-list x)

(let ((dir (dir-entry-directory x)))

(add-write-permission *my-pid* x)

(pause-write-from-read-time-list x dir)))

173

(define (pause-write-from-write-time x fpid)

(let ((hpid (dir-entry-home-pid x)))

(pause (+ (transit-time *wreq-msg-size* *my-pid* hpid)

process-wreq-cycles

(transit-time *invw-msg-size* hpid fpid)

process-invw-cycles

(transit-time *update-msg-size* fpid hpid)

process-update-cycles

(transit-time *wresp-msg-size* hpid *my-pid*)

process-wresp-cycles))))

(define-integrable (pause-write-from-read-time-vector x vec)

(pause-write-from-read-time x vec %has-read-permission-vector))

(define-integrable (pause-write-from-read-time-list x l)

(pause-write-from-read-time x l %has-read-permission-list))

(define (pause-write-from-read-time x dir permission-fn)

(let ((hpid (dir-entry-home-pid x)))

(pause (+ (transit-time *wreq-msg-size* *my-pid* hpid)

process-wreq-cycles

(transit-time *wresp-msg-size* hpid *my-pid*)

process-wresp-cycles))

(iterate loop ((pid 0) (n 0) (max-dist 0) (max-pid hpid))

(cond ((fx>= pid *N-Processors*)

(pause (+ (transit-time *invr-msg-size* hpid max-pid)

process-invr-cycles

(transit-time *invr-ack-msg-size* max-pid hpid)

process-invr-ack-cycles

(* (fx- n 1) *invr-msg-size*))))

((permission-fn pid dir)

(let ((dist (node-distance hpid pid)))

(if (fx<= dist max-dist)

(loop (fx+ pid 1) (fx+ n 1) max-dist max-pid)

(loop (fx+ pid 1) (fx+ n 1) dist pid))))

(else

(loop (fx+ pid 1) n max-dist max-pid))))))

174

Coarse-Grained, Dynamic, With Caches

(define (main i j k)

(let ((m1 (MAKE-DMATRIX i j 1))

(m2 (MAKE-DMATRIX j k 2))

(m3 (MAKE-DMATRIX i k 0)))

(message "finished initialization!")

(matmul m1 m2 m3)

m3))

(define (matmul m1 m2 m3)

(let ((n *Procs-Per-Dim*))

(blocking-forpar (i 0 n)

(blocking-forpar (j 0 n)

(matmul-row-col i j m1 m2 m3 n)))))

(define (matmul-row-col i j m1 m2 m3 n)

(for (k 0 n)

(matmul-blocks (DMATRIX-SUBMATRIX m1 i k)

(DMATRIX-SUBMATRIX m2 k j)

(DMATRIX-SUBMATRIX m3 i j))))

(define (matmul-blocks x y z)

(let ((x-height (MATRIX-HEIGHT x))

(x-width (MATRIX-WIDTH x))

(y-width (MATRIX-WIDTH y)))

(dotimes (i x-height)

(pause *loop-cycles*)

(dotimes (j y-width)

(pause *loop-cycles*)

(set (MATREF z i j)

(fx+ (MATREF z i j)

(acc (k 0 x-width)

(pause (+ *mul-cycles* *add-cycles*

loop-cycles))

(fx* (MATREF x i k) (MATREF y k j)))))

(pause (+ *matref-cycles* *add-cycles* *matset-cycles*))))))

175

Coarse-Grained, Static, With Caches

(define (main i j k)

(let ((m1 (MAKE-DMATRIX i j 1))

(m2 (MAKE-DMATRIX j k 2))

(m3 (MAKE-DMATRIX i k 0)))

(message "finished initialization!")

(matmul m1 m2 m3)

m3))

(define (matmul m1 m2 m3)

(let ((n *Procs-Per-Dim*))

(do-in-parallel (i j)

(for (k 0 n)

(matmul-blocks (DMATRIX-SUBMATRIX m1 i k)

(DMATRIX-SUBMATRIX m2 k j)

(DMATRIX-SUBMATRIX m3 i j))))))

(define (matmul-blocks x y z)

(let ((x-height (MATRIX-HEIGHT x))

(x-width (MATRIX-WIDTH x))

(y-width (MATRIX-WIDTH y)))

(dotimes (i x-height)

(pause *loop-cycles*)

(dotimes (j y-width)

(pause *loop-cycles*)

(set (MATREF z i j)

(fx+ (MATREF z i j)

(acc (k 0 x-width)

(pause (+ *mul-cycles* *add-cycles*

loop-cycles))

(fx* (MATREF x i k) (MATREF y k j)))))

(pause (+ *matref-cycles* *add-cycles* *matset-cycles*))))))

176

Fine-Grained, Dynamic, With Caches

(define (main i j k)

(let ((m1 (MAKE-DMATRIX i j 1))

(m2 (MAKE-DMATRIX j k 2))

(m3 (MAKE-DLMATRIX i k 0)))

(message "finished initialization!")

(matmul m1 m2 m3)

m3))

(define (matmul m1 m2 m3)

(let ((n *Procs-Per-Dim*))

(blocking-forpar (i 0 n)

(blocking-forpar (j 0 n)

(blocking-forpar (k 0 n)

(matmul-blocks (DMATRIX-SUBMATRIX m1 i k)

(DMATRIX-SUBMATRIX m2 k j)

(DLMATRIX-SUBMATRIX m3 i j)))))))

(define (matmul-blocks x y z)

(let ((x-height (MATRIX-HEIGHT x))

(x-width (MATRIX-WIDTH x))

(y-width (MATRIX-WIDTH y)))

(dotimes (i x-height)

(pause *loop-cycles*)

(dotimes (j y-width)

(pause *loop-cycles*)

(set (LMATREF z i j)

(fx+ (LMATREF z i j)

(acc (k 0 x-width)

(pause (+ *mul-cycles* *add-cycles*

loop-cycles))

(fx* (MATREF x i k) (MATREF y k j)))))

(pause (+ *lmatref-cycles* *add-cycles* *lmatset-cycles*))))))

177

Fine-Grained, Static, With Caches

(define (main i j k)

(let ((m1 (MAKE-DMATRIX i j 1))

(m2 (MAKE-DMATRIX j k 2))

(m3 (MAKE-DLMATRIX i k 0)))

(message "finished initialization!")

(matmul m1 m2 m3)

m3))

(define (matmul m1 m2 m3)

(let ((n *Procs-Per-Dim*))

(do-in-parallel (i j)

(blocking-forpar (k 0 n)

(matmul-blocks (DMATRIX-SUBMATRIX m1 i k)

(DMATRIX-SUBMATRIX m2 k j)

(DLMATRIX-SUBMATRIX m3 i j))))))

(define (matmul-blocks x y z)

(let ((x-height (MATRIX-HEIGHT x))

(x-width (MATRIX-WIDTH x))

(y-width (MATRIX-WIDTH y)))

(dotimes (i x-height)

(pause *loop-cycles*)

(dotimes (j y-width)

(pause *loop-cycles*)

(set (LMATREF z i j)

(fx+ (LMATREF z i j)

(acc (k 0 x-width)

(pause (+ *mul-cycles* *add-cycles*

loop-cycles))

(fx* (MATREF x i k) (MATREF y k j)))))

(pause (+ *lmatref-cycles* *add-cycles* *lmatset-cycles*))))))

178

B.5.3 Uncached Versions

These versions of MATMUL do not simulate caches for global memory. The caching code
given above is replaced by the following macros.

;;;

;;; No Coherent Caches -- reads and writes of shared structures always

;;; generate reads and writes over the network.

;;;

(define-local-syntax (DIR-READ x)

(let ((data (generate-symbol 'data))

(pid (generate-symbol 'pid))

(rval (generate-symbol 'rval)))

`(let* ((,data ,x)

(,pid (DIR-ENTRY-HOME-PID ,data))

(,rval (cond ((fx= ,pid *my-pid*)

(pause *process-rreq-cycles*)

(DIR-ENTRY-VALUE ,data))

(else

(remote-access

,pid

rreq-msg-size

process-rreq-cycles

rresp-msg-size

(DIR-ENTRY-VALUE ,data))))))

(pause *process-rresp-cycles*)

,rval)))

(define-local-syntax (DIR-WRITE x val)

(let ((data (generate-symbol 'data))

(pid (generate-symbol 'pid))

(wval (generate-symbol 'wval)))

`(let* ((,data ,x)

(,wval (cond ((fx= ,pid *my-pid*)

(pause *process-wreq-cycles*)

(set (DIR-ENTRY-VALUE ,data) ,val))

(else

(remote-access

,pid

wreq-msg-size

process-wreq-cycles

wresp-msg-size

(set (DIR-ENTRY-VALUE ,data) ,val))))))

(pause *process-wresp-cycles*)

,wval)))

179

Coarse-Grained, Dynamic, No Caches

(define (main i j k)

(let ((m1 (MAKE-DMATRIX i j 1))

(m2 (MAKE-DMATRIX j k 2))

(m3 (MAKE-DMATRIX i k 0)))

(message "finished initialization!")

(matmul m1 m2 m3)

m3))

(define (matmul m1 m2 m3)

(let ((n *Procs-Per-Dim*))

(blocking-forpar (i 0 n)

(blocking-forpar (j 0 n)

(matmul-row-col i j m1 m2 m3 n)))))

(define (matmul-row-col i j m1 m2 m3 n)

(for (k 0 n)

(matmul-blocks (DMATRIX-SUBMATRIX m1 i k)

(DMATRIX-SUBMATRIX m2 k j)

(DMATRIX-SUBMATRIX m3 i j))))

(define (matmul-blocks x y z)

(let ((x-height (MATRIX-HEIGHT x))

(x-width (MATRIX-WIDTH x))

(y-width (MATRIX-WIDTH y)))

(dotimes (i x-height)

(pause *loop-cycles*)

(dotimes (j y-width)

(pause *loop-cycles*)

(set (MATREF z i j)

(fx+ (MATREF z i j)

(acc (k 0 x-width)

(pause (+ *mul-cycles* *add-cycles*

loop-cycles))

(fx* (MATREF x i k) (MATREF y k j)))))

(pause (+ *matref-cycles* *add-cycles* *matset-cycles*))))))

180

Coarse-Grained, Static, No Caches

(define (main i j k)

(let ((m1 (MAKE-DMATRIX i j 1))

(m2 (MAKE-DMATRIX j k 2))

(m3 (MAKE-DMATRIX i k 0)))

(message "finished initialization!")

(matmul m1 m2 m3)

m3))

(define (matmul m1 m2 m3)

(let ((n *Procs-Per-Dim*))

(do-in-parallel (i j)

(for (k 0 n)

(matmul-blocks (DMATRIX-SUBMATRIX m1 i k)

(DMATRIX-SUBMATRIX m2 k j)

(DMATRIX-SUBMATRIX m3 i j))))))

(define (matmul-blocks x y z)

(let ((x-height (MATRIX-HEIGHT x))

(x-width (MATRIX-WIDTH x))

(y-width (MATRIX-WIDTH y)))

(dotimes (i x-height)

(pause *loop-cycles*)

(dotimes (j y-width)

(pause *loop-cycles*)

(set (MATREF z i j)

(fx+ (MATREF z i j)

(acc (k 0 x-width)

(pause (+ *mul-cycles* *add-cycles*

loop-cycles))

(fx* (MATREF x i k) (MATREF y k j)))))

(pause (+ *matref-cycles* *add-cycles* *matset-cycles*))))))

181

Fine-Grained, Dynamic, No Caches

(define (main i j k)

(let ((m1 (MAKE-DMATRIX i j 1))

(m2 (MAKE-DMATRIX j k 2))

(m3 (MAKE-DLMATRIX i k 0)))

(message "finished initialization!")

(matmul m1 m2 m3)

m3))

(define (matmul m1 m2 m3)

(let ((n *Procs-Per-Dim*))

(blocking-forpar (i 0 n)

(blocking-forpar (j 0 n)

(blocking-forpar (k 0 n)

(matmul-blocks (DMATRIX-SUBMATRIX m1 i k)

(DMATRIX-SUBMATRIX m2 k j)

(DLMATRIX-SUBMATRIX m3 i j)))))))

(define (matmul-blocks x y z)

(let ((x-height (MATRIX-HEIGHT x))

(x-width (MATRIX-WIDTH x))

(y-width (MATRIX-WIDTH y)))

(dotimes (i x-height)

(pause *loop-cycles*)

(dotimes (j y-width)

(pause *loop-cycles*)

(set (LMATREF z i j)

(fx+ (LMATREF z i j)

(acc (k 0 x-width)

(pause (+ *mul-cycles* *add-cycles*

loop-cycles))

(fx* (MATREF x i k) (MATREF y k j)))))

(pause (+ *lmatref-cycles* *add-cycles* *lmatset-cycles*))))))

182

Fine-Grained, Static, No Caches

(define (main i j k)

(let ((m1 (MAKE-DMATRIX i j 1))

(m2 (MAKE-DMATRIX j k 2))

(m3 (MAKE-DLMATRIX i k 0)))

(message "finished initialization!")

(matmul m1 m2 m3)

m3))

(define (matmul m1 m2 m3)

(let ((n *Procs-Per-Dim*))

(do-in-parallel (i j)

(blocking-forpar (k 0 n)

(matmul-blocks (DMATRIX-SUBMATRIX m1 i k)

(DMATRIX-SUBMATRIX m2 k j)

(DLMATRIX-SUBMATRIX m3 i j))))))

(define (matmul-blocks x y z)

(let ((x-height (MATRIX-HEIGHT x))

(x-width (MATRIX-WIDTH x))

(y-width (MATRIX-WIDTH y)))

(dotimes (i x-height)

(pause *loop-cycles*)

(dotimes (j y-width)

(pause *loop-cycles*)

(set (LMATREF z i j)

(fx+ (LMATREF z i j)

(acc (k 0 x-width)

(pause (+ *mul-cycles* *add-cycles*

loop-cycles))

(fx* (MATREF x i k) (MATREF y k j)))))

(pause (+ *lmatref-cycles* *add-cycles* *lmatset-cycles*))))))

183

Appendix C

Raw Data

The following tables list the running times for the various applications run under the various
thread managers for the machine sizes and network speeds given.

C.1 AQ

C.1.1 tn = 1 Cycle / Flit-Hop

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096 16384

Free-Ideal 435035 112062 34129 15087 14005 14005 14005 14005
P-Ideal 437191 118076 36085 18346 16616 16627 16627 16627
C-Ideal-1 437209 115735 35832 18254 16467 16970 17304 17432
C-Ideal-2 437209 114419 36058 16989 16942 16875 17279 17416
RR-1 437191 117456 40417 19950 17684 18907 18694 { {
RR-2 437191 116304 37367 21135 17932 18534 18539 { {
Di�-1 445119 126182 49405 44363 45505 45523 { { { {
Di�-2 445119 126875 46455 33036 34017 34019 { { { {
TTM 437191 119230 39386 21287 18493 18410 18385 20405
XTM 437191 116045 40749 22285 25064 24280 21566 21999
XTM-C 437191 121966 47901 26724 31433 32781 29542 29138

Table C.1: AQ(0.5) { Running Times (cycles).

184

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096 16384

Free-Ideal 2131170 542674 141886 43030 19226 16149 16149 16149
P-Ideal 2141754 564540 150438 45283 22013 19394 19443 19443
C-Ideal-1 2141772 542714 145202 47139 23980 19464 20160 20465
C-Ideal-2 2141772 542502 145551 46704 22398 19618 20188 20801
RR-1 2141754 545377 150423 53676 28722 28662 27506 { {
RR-2 2141754 544633 149842 52986 33086 30014 26958 { {
Di�-1 2180964 592222 174096 89890 100840 100836 { { { {
Di�-2 2180964 609435 173445 68067 62344 63054 { { { {
TTM 2141754 551045 156336 53321 28386 24167 25213 25497
XTM 2141754 550285 152832 54432 39297 29941 27228 31589
XTM-C 2147417 560526 158993 60323 54796 49488 72479 56160

Table C.2: AQ(0.1) { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096 16384

Free-Ideal 4148500 1054102 270814 73986 27454 16150 16150 16149
P-Ideal 4180434 1095981 283181 77950 30024 19828 18991 19330
C-Ideal-1 4169126 1050843 274270 78660 30961 19750 20033 20417
C-Ideal-2 4169126 1049507 273153 79023 31423 19869 19759 20818
RR-1 4169108 1055143 279758 89091 40828 35272 33974 { {
RR-2 4169108 1054012 276636 87606 38038 38258 40102 { {
Di�-1 4244440 1147785 310130 119954 125941 122621 { { { {
Di�-2 4244440 1178724 320553 102799 101305 86826 { { { {
TTM 4180434 1066320 284062 91730 38763 29169 25684 25957
XTM 4169108 1055502 287066 87052 50737 33773 34173 33661
XTM-C 4169108 1076687 303061 97568 61870 57997 68921 66078

Table C.3: AQ(0.05) { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096 16384

Free-Ideal 20101185 5092266 1292960 333877 92863 31235 20438 20438
P-Ideal 20212387 5298344 1346799 344455 96475 36430 25419 25218
C-Ideal-1 20201079 5059478 1282056 341638 98190 38078 26236 26977
C-Ideal-2 20201079 5063978 1280377 333620 97802 40671 25788 26697
RR-1 20201061 5062577 1287129 356119 116679 81243 81555 { {
RR-2 20201061 5062895 1286878 351224 119718 77522 73782 { {
Di�-1 20562663 5531705 1448165 410432 297889 316372 { { { {
Di�-2 20562663 5690009 1508596 406821 185665 176581 { { { {
TTM 20201061 5083434 1323368 365086 111199 55613 36051 37040
XTM 20201061 5080273 1309375 359148 121911 64274 47564 42096
XTM-C 20201061 5155594 1363204 391722 158337 81674 80557 86459

Table C.4: AQ(0.01) { Running Times (cycles).

185

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096 16384

Free-Ideal 42849680 10853983 2753885 702964 184603 56967 25354 23975
P-Ideal 43073918 11294466 2856836 723780 191625 62944 30202 25601
C-Ideal-1 43062610 10776279 2717726 710372 189768 62878 32043 26622
C-Ideal-2 43068273 10781077 2715584 698536 189189 63505 32768 26708
RR-1 43062592 10780173 2720015 726801 223000 125034 117578 { {
RR-2 43062592 10792555 2728316 723552 210191 104606 105919 { {
Di�-1 43832400 11785704 3060293 806422 449619 441495 { { { {
Di�-2 43832400 12127888 3201159 851806 276455 241594 { { { {
TTM 43062592 10802275 2763857 746424 214560 84572 51378 41642
XTM 43062592 10809656 2763583 731563 226962 105396 64571 62185
XTM-C 43068255 10974037 2877550 800739 312924 141977 100445 131108

Table C.5: AQ(0.005) { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096 16384

Free-Ideal 212564610 53811875 13609923 3448238 878585 231076 69970 29874
P-Ideal 213632152 55949997 14130644 3554005 900669 239586 74201 34876
C-Ideal-1 213609518 53409304 13379388 3442923 877465 238533 78261 38143
C-Ideal-2 213615181 53436659 13389600 3371806 864727 238743 78432 38528
RR-1 213620826 53416489 13385074 3423732 954951 403871 326324 { {
RR-2 213609500 53438267 13406936 3467763 934271 328244 280841 { {
Di�-1 217412192 58408211 15120932 3888689 1080120 916236 { { { {
Di�-2 217440993 60112951 15824024 4111792 1094066 640743 { { { {
TTM 213632152 53479234 13505753 3549928 950098 301909 118771 63726
XTM 213626489 53500740 13502898 3448766 932373 345939 157037 96147
XTM-C 213615163 54176113 14022452 3741867 1121419 426006 202913 158011

Table C.6: AQ(0.001) { Running Times (cycles).

186

C.1.2 Variable tn

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096 16384

Free-Ideal 20101185 5092493 1293694 333288 93357 31832 20537 20537
P-Ideal 20212387 5299453 1344679 346903 99621 36910 24814 24775
C-Ideal-1 20201097 5059462 1283266 334912 98373 39536 26821 27556
C-Ideal-2 20201097 5064448 1279749 333313 97137 41090 27873 27584
RR-1 20201061 5062318 1301370 383990 153659 99295 97459 { {
RR-2 20201061 5067324 1297694 367722 140735 104137 97089 { {
Di�-1 20562131 5873382 1573857 445112 325325 305601 { { { {
Di�-2 20562131 6046213 1636698 451022 250021 247527 { { { {
TTM 20201061 5079447 1324433 362120 120322 53782 39983 41869
XTM 20201061 5079338 1310847 352478 126063 66980 53855 46578
XTM-C 20206724 5157174 1378281 399026 159428 72177 87160 127863

Table C.7: AQ(0.01) { tn = 2 Cycles / Flit-Hop { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096 16384

Free-Ideal 20101211 5092227 1294561 332725 91614 34278 20743 20743
P-Ideal 20212423 5303939 1345158 349025 98403 38643 25714 25778
C-Ideal-1 20212477 5061063 1285544 336478 99937 40093 28199 29359
C-Ideal-2 20201151 5065698 1283590 333864 98301 41170 27550 30351
RR-1 20201113 5066859 1308516 376101 163530 122435 144460 { {
RR-2 20201113 5065651 1313859 375094 175093 150910 164107 { {
Di�-1 20563652 6565006 1829308 528693 352323 377463 { { { {
Di�-2 20563652 6732366 1893449 524699 306926 309844 { { { {
TTM 20201197 5085276 1330267 382041 126112 60398 44935 43657
XTM 20201235 5073495 1309611 355473 120086 70032 47941 46875
XTM-C 20201153 5148725 1370046 396630 146105 80171 84630 93370

Table C.8: AQ(0.01) { tn = 4 Cycles / Flit-Hop { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096 16384

Free-Ideal 20101263 5089159 1296128 336103 92870 33446 21237 21237
P-Ideal 20206850 5305578 1347103 346523 98524 40262 28304 27134
C-Ideal-1 20201223 5060382 1287232 338458 104206 45293 31178 36547
C-Ideal-2 20201223 5066227 1287395 339847 104544 43762 31813 38917
RR-1 20201820 5089136 1321956 439734 226899 188339 196214 { {
RR-2 20201191 5100399 1333196 383770 213222 198026 199654 { {
Di�-1 20562577 7935005 2334166 673266 440028 468642 { { { {
Di�-2 20568330 8080183 2388992 693360 478788 442468 { { { {
TTM 20206986 5093238 1346358 378601 139401 78497 54012 67661
XTM 20201343 5076740 1309959 359356 146317 72398 54588 54363
XTM-C 20201225 5157686 1362555 399678 142857 87429 82477 85041

Table C.9: AQ(0.01) { tn = 8 Cycles / Flit-Hop { Running Times (cycles).

187

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096

Free-Ideal 20101367 5087882 1289253 330762 93377 35005 21432
P-Ideal 20201349 5313573 1349120 348855 100552 40071 28722
C-Ideal-1 20201385 5061883 1296083 340302 105081 47603 38895
C-Ideal-2 20212711 5073267 1287423 342404 107550 49316 41389
RR-1 20202285 5094770 1330448 480289 272499 276916 254097
RR-2 20201347 5129123 1353045 461425 317963 313609 304211
Di�-1 20562599 10683379 3333567 994517 702582 687026 { {
Di�-2 20574141 10838485 3401989 1036899 685123 657468 { {
TTM 20213124 5110798 1374152 423894 173319 93025 87635
XTM 20224039 5101166 1323069 382214 180691 94893 84169
XTM-C 20201387 5162093 1368166 439721 170311 93938 93656

Table C.10: AQ(0.01) { tn = 16 Cycles / Flit-Hop { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096

Free-Ideal 20197722 5099148 1292733 335858 95552 36017 26176
P-Ideal 20300389 5279082 1344262 354152 112299 59733 55886
C-Ideal-1 20300533 5098486 1336288 388929 133236 83669 92458
C-Ideal-2 20300533 5112646 1318222 382564 144596 90679 115074
RR-1 20300435 5219740 1599019 808819 633466 634270 615613
RR-2 20300435 5219832 1550463 808250 593332 658476 683631
Di�-1 20804163 27373382 9347160 3095301 2713481 2643436 { {
Di�-2 20804163 27637925 9500319 3103397 2176886 2129328 { {
TTM 20301711 5163685 1457252 464483 273988 207599 192060
XTM 20306500 5209530 1396477 470213 236521 152687 158708
XTM-C 20300837 5194643 1464410 495743 283201 263703 358852

Table C.11: AQ(0.01) { tn = 64 Cycles / Flit-Hop { Running Times (cycles).

188

C.2 FIB

C.2.1 tn = 1 Cycle / Flit-Hop

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096 16384

Free-Ideal 635387 157638 40751 12845 6451 5413 5412 5412
P-Ideal 652439 181509 50068 16011 9000 7615 7597 7615
C-Ideal-1 652457 168317 47300 17914 10660 9565 10007 10601
C-Ideal-2 652457 168714 47871 18885 10564 9907 9701 10493
RR-1 652439 168910 51950 23679 19527 17932 18455 { {
RR-2 652439 169247 51134 23742 19366 20220 20292 { {
Di�-1 664725 187087 59471 40830 40976 40976 { { { {
Di�-2 664725 188783 59769 29616 30894 29412 { { { {
TTM 652439 176628 56311 25182 18826 18883 19984 17928
XTM 652439 174038 54483 23898 20975 18556 20204 17600
XTM-C 652439 184850 67767 33709 33980 30217 53639 57930

Table C.12: FIB(15) { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096 16384

Free-Ideal 7055052 1745573 429066 110201 31113 12109 7712 7353
P-Ideal 7244444 1988825 517631 135793 39242 16469 10926 10432
C-Ideal-1 7244462 1816654 461306 125929 40277 19130 14831 15353
C-Ideal-2 7244462 1821342 464670 126670 40658 18865 15266 15659
RR-1 7244444 1818304 471419 142426 62004 52717 51408 { {
RR-2 7244444 1820234 484434 147437 73138 58001 54714 { {
Di�-1 7373624 1981124 526230 160245 119901 112094 { { { {
Di�-2 7373624 2044501 552452 164149 94144 92985 { { { {
TTM 7244444 1837674 494438 146775 62914 40510 29899 29988
XTM 7244444 1845089 487584 155452 76146 44160 30403 34245
XTM-C 7244444 1909502 574192 193382 96755 73132 156931 224980

Table C.13: FIB(20) { Running Times (cycles).

189

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096 16384

Free-Ideal 78250232 19331725 4740547 1179706 300767 80132 24342 11750
P-Ideal 80350904 21979404 5697561 1444026 368877 100119 33108 17178
C-Ideal-1 80350922 20095167 5036588 1282851 337300 96459 37280 23350
C-Ideal-2 80350922 20106973 5045701 1280106 338657 97064 38695 24434
RR-1 80350904 20096730 5052170 1317302 406706 187035 178050 { {
RR-2 80350904 20108332 5108362 1353515 434266 233167 222011 { {
Di�-1 81777562 21829318 5678117 1469149 463284 437829 { { { {
Di�-2 81777562 22609164 5959726 1562207 448102 343993 { { { {
TTM 80350904 20141997 5169924 1392524 437969 160430 72452 48338
XTM 80350904 20152893 5158704 1390949 444279 205754 99185 72473
XTM-C 80350904 24481883 5845312 1727970 609347 256368 399127 453817

Table C.14: FIB(25) { Running Times (cycles).

190

C.2.2 Variable tn

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096 16384

Free-Ideal 7055052 1748341 432185 110991 31265 11900 7559 7546
P-Ideal 7244444 1986597 518016 135509 40521 17006 11760 11202
C-Ideal-1 7244462 1818527 464326 126800 40595 21158 16430 18562
C-Ideal-2 7244462 1820591 466078 127340 42450 21794 16587 17976
RR-1 7244444 1822291 474991 145363 73299 60292 63251 { {
RR-2 7244444 1828478 478125 150398 84345 71391 75580 { {
Di�-1 7373688 2107538 572836 176241 148413 151513 { { { {
Di�-2 7373688 2167362 592608 171304 116465 103883 { { { {
TTM 7244444 1841130 491086 153799 67428 42574 37743 39717
XTM 7244444 1867459 494315 151894 60812 44486 34242 30249
XTM-C 7244444 1961428 597400 206157 106275 86053 178461 171457

Table C.15: FIB(20) { tn = 2 Cycles / Flit-Hop { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096 16384

Free-Ideal 7055078 1759182 432740 110666 31683 11952 8003 7912
P-Ideal 7244480 2010998 523937 139389 41342 17634 12827 12977
C-Ideal-1 7244498 1819160 464584 128870 42968 23543 20391 25006
C-Ideal-2 7244498 1821243 468578 126515 43370 24341 20821 25325
RR-1 7244470 1824799 474802 152429 87893 80588 79072 { {
RR-2 7244470 1837599 480901 161541 119573 110197 112267 { {
Di�-1 7408048 2374267 671046 208648 160240 163791 { { { {
Di�-2 7408048 2424098 693433 205738 128446 130195 { { { {
TTM 7244562 1837908 497081 163188 69283 48931 38727 46445
XTM 7244572 1821505 481610 150663 75886 51016 44460 38472
XTM-C 7244490 1943942 558931 197515 123996 118058 194132 170883

Table C.16: FIB(20) { tn = 4 Cycles / Flit-Hop { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096 16384

Free-Ideal 7055130 1780261 433159 111205 31719 13377 8936 8872
P-Ideal 7244516 2019017 527771 140046 42754 20686 15818 16647
C-Ideal-1 7244534 1820232 465783 133385 47757 26280 26155 33170
C-Ideal-2 7244534 1826416 467037 130588 48097 30072 27037 39954
RR-1 7244522 1827965 490870 179041 108505 113288 108732 { {
RR-2 7244522 1850326 508744 210175 171235 165516 157364 { {
Di�-1 7373992 2862551 858206 281516 213001 208463 { { { {
Di�-2 7373992 2917805 875363 293488 240687 236879 { { { {
TTM 7244652 1848180 524020 181886 80810 65572 78751 70533
XTM 7244662 1836490 495480 159742 70338 53176 40310 47491
XTM-C 7244544 1936986 604019 210688 119359 141378 198389 270567

Table C.17: FIB(20) { tn = 8 Cycles / Flit-Hop { Running Times (cycles).

191

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096

Free-Ideal 7055234 1798918 452382 117620 34243 14341 10598
P-Ideal 7244624 1921304 500173 135957 45422 25199 22033
C-Ideal-1 7244642 1824620 469412 133447 54192 34348 42492
C-Ideal-2 7244642 1836399 475337 138790 56358 41800 56770
RR-1 7244626 1868163 523030 212272 159375 148379 153555
RR-2 7244626 1934930 620762 332189 275455 250806 222271
Di�-1 7373786 3852791 1243938 420987 348716 327626 { {
Di�-2 7373786 3902435 1249959 403378 311929 307490 { {
TTM 7244850 1878020 535304 191020 111846 95326 117295
XTM 7244850 1855064 537298 202074 103859 74319 66744
XTM-C 7244634 1947001 600314 278499 305830 244221 390895

Table C.18: FIB(20) { tn = 16 Cycles / Flit-Hop { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096

Free-Ideal 7130049 1834009 467888 128719 42126 21906 21585
P-Ideal 7324486 1865705 499085 156675 82806 88391 77426
C-Ideal-1 7316384 1853647 493737 151475 79889 69690 97937
C-Ideal-2 7316384 1866739 502636 160024 82932 76475 112934
RR-1 7324510 1958795 699563 420188 352456 330024 345677
RR-2 7324510 2015863 688651 440963 476833 422665 435985
Di�-1 7425235 9997839 3553327 1417313 1256328 1249922 { {
Di�-2 7425235 10069369 3524931 1321262 1144075 1132898 { {
TTM 7325460 1905376 618049 284587 179006 198796 240065
XTM 7331310 1868209 587810 229439 156843 128660 123495

Table C.19: FIB(20) { tn = 64 Cycles / Flit-Hop { Running Times (cycles).

192

C.3 TSP

C.3.1 tn = 1 Cycle / Flit-Hop

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096

Free-Ideal 3514490 543917 144389 51611 16562 11679 11643
P-Ideal 3635870 631272 157874 47468 20371 14114 17196
C-Ideal-1 3635888 589285 148815 49261 22223 14651 18501
C-Ideal-2 3635888 598458 147554 47614 20880 14809 18059
RR-1 3635870 579768 152304 56602 33108 28385 30616
RR-2 3635870 590096 154367 55765 31167 29900 32736
Di�-1 3701646 799186 170323 73824 70035 68972 { {
Di�-2 3701646 622469 175249 62027 65226 64838 { {
TTM 3635870 785756 156168 55840 29353 24169 20781
XTM 3635870 599244 158474 58582 39826 34023 30325
XTM-C 3635870 805614 171855 74057 50162 40302 49346

Table C.20: TSP(8) { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096

Free-Ideal 12188860 2810166 600440 179353 50518 19740 24325
P-Ideal 12613984 3313219 910147 222944 61708 22862 24671
C-Ideal-1 12614002 3257010 867710 218874 60053 24028 25192
C-Ideal-2 12614002 3068803 813595 222760 63100 24771 26176
RR-1 12613984 3254456 877521 237613 89107 64305 61712
RR-2 12613984 3125429 829885 243429 94477 59541 66103
Di�-1 12839426 3633033 1048051 259083 151099 159196 { {
Di�-2 12839426 3189390 966454 265024 133908 135128 { {
TTM 12613984 3651367 862041 226416 80278 40875 31815
XTM 12613984 3012289 845888 242000 82588 60266 39302
XTM-C 12613984 3824205 959277 273300 125548 68458 89273

Table C.21: TSP(9) { Running Times (cycles).

193

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096

Free-Ideal 40284900 9170942 2153612 547642 142919 42270 17978
P-Ideal 41708532 10508192 2695097 685780 184424 51549 23096
C-Ideal-1 41708550 10198072 2463512 635929 171185 52522 25641
C-Ideal-2 41708550 10248470 2457766 627366 167683 54446 26210
RR-1 41708532 9996082 2532657 667974 243249 141835 135856
RR-2 41708532 10047895 2547202 651861 222340 109408 113971
Di�-1 42453008 10753891 2828432 733163 301146 283301 { {
Di�-2 42453008 11890537 2876274 762911 246536 244190 { {
TTM 41708532 10359111 2493742 668676 217039 78791 48531
XTM 41708532 10288864 2489987 661523 218532 113345 78960
XTM-C 41708532 10510311 2785668 774362 293431 128218 158858

Table C.22: TSP(10) { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096

Free-Ideal 315040750 70025896 14156147 3044056 948044 197421 57253
P-Ideal 326034362 67583229 15875151 3913158 1009189 264798 85029
C-Ideal-1 326034380 60800979 14483211 3640721 954195 257512 88977
C-Ideal-2 326034380 60790603 14446087 3546869 923410 252880 87020
RR-1 326034362 60805849 14489584 3618116 1194730 608160 477571
RR-2 326034362 60805439 14484518 3595915 1006446 415116 325957
Di�-1 331848858 80648967 15999477 4115066 1102629 798231 { {
Di�-2 331848858 82344330 16588289 4588820 1143817 670868 { {
TTM 326034362 75165863 17027508 4171091 1041265 332591 143688
XTM 326034362 60856918 14520085 3841879 1089472 450306 247843
XTM-C 326034362 75548463 19239072 4262388 1450355 555329 377919

Table C.23: TSP(11) { Running Times (cycles).

194

C.3.2 Variable tn

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096

Free-Ideal 40284900 9176567 2153693 542931 142919 43319 19411
P-Ideal 41708532 10818194 2823914 686782 177128 53554 22804
C-Ideal-1 37268656 8938208 2277964 582686 157152 51602 27831
C-Ideal-2 37268656 9183199 2325136 567449 154608 52818 27902
RR-1 41708532 10277961 2607727 674641 269242 179227 185395
RR-2 41708532 10286993 2608425 663625 258329 156383 149001
Di�-1 42452926 11835760 3068563 794801 328435 307961 { {
Di�-2 42452926 12295460 3248999 841093 326841 330127 { {
TTM 41708532 10420442 2597085 702539 218844 91096 46915
XTM 41708532 10210999 2522599 665090 257221 139872 79813
XTM-C 41708532 10523375 2799160 782442 299168 141508 128238

Table C.24: TSP(10) { tn = 2 Cycles / Flit-Hop { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096

Free-Ideal 40284926 9030180 2154774 541963 143003 41477 19069
P-Ideal 37268674 9753003 2602473 623167 164079 49003 24135
C-Ideal-1 37268728 8939314 2312564 583627 159735 54946 28877
C-Ideal-2 37268728 9176764 2329364 568503 155500 53938 29785
RR-1 37268680 9206744 2221696 675244 280451 226709 214749
RR-2 37268680 9218272 2358436 659935 283511 200450 186491
Di�-1 38004678 12072635 3174203 852180 383371 377469 { {
Di�-2 38004678 12072548 3270547 870392 345094 338349 { {
TTM 37268756 9203473 2454967 660813 203593 91824 51894
XTM 37268756 9235892 2236277 635671 246553 117606 75326
XTM-C 37268740 9375229 2538273 717532 284910 128558 189253

Table C.25: TSP(10) { tn = 4 Cycles / Flit-Hop { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096

Free-Ideal 40284978 9211855 2244573 545730 142692 44985 20207
P-Ideal 37268782 9825104 2622276 629292 166593 50832 25689
C-Ideal-1 37268836 8940971 2254033 581546 170192 58026 33841
C-Ideal-2 37268836 9515668 2337640 571036 170004 57057 33969
RR-1 37268784 9194751 2358986 710430 338604 326150 312106
RR-2 37268784 9213020 2326764 733383 346484 334363 257655
Di�-1 37933850 14963301 4036970 1109184 507669 535733 { {
Di�-2 37933850 14795072 4143477 1191087 480872 543859 { {
TTM 37268918 9219140 2372481 662891 214460 95477 73486
XTM 37268918 9224555 2349966 616615 220696 96298 82983
XTM-C 37268830 9365410 2547801 763238 255896 126461 120770

Table C.26: TSP(10) { tn = 8 Cycles / Flit-Hop { Running Times (cycles).

195

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096

Free-Ideal 38269172 8956924 2230310 543726 143442 43646 21654
P-Ideal 36262376 9675295 2463593 622066 164949 51854 28741
C-Ideal-1 36262430 8941216 2264960 594370 168014 61959 41406
C-Ideal-2 36262430 9169046 2288068 578868 170942 64228 42374
RR-1 36262370 8953442 2298015 708163 433603 387426 401201
RR-2 36262370 9196652 2382659 823730 501444 434040 454685
Di�-1 36989341 18241108 5591049 1601684 879497 794900 { {
Di�-2 36989341 19612318 6200907 1773702 851644 885747 { {
TTM 36262602 9038395 2313249 697930 287532 128701 102346
XTM 36262602 9288592 2383363 627707 236523 123597 87116
XTM-C 36262442 9143246 2495478 773513 285475 141128 117284

Table C.27: TSP(10) { tn = 16 Cycles / Flit-Hop { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096

Free-Ideal 35747304 8661550 2157590 518554 146707 49450 27169
P-Ideal 35125384 9015423 2449341 642126 174718 67864 48381
C-Ideal-1 35139827 8438390 2233736 609085 192904 101322 89819
C-Ideal-2 35139827 8743088 2238134 619288 204183 120543 191787
RR-1 35125382 8802746 2393383 987733 693296 679959 673072
RR-2 35125382 9071328 3103631 1525561 1410619 1693728 983679
Di�-1 35712861 44713664 16255811 4879927 2499625 2493885 { {
Di�-2 35712861 46952858 15475347 4958644 2593371 2733879 { {
TTM 35126186 9088347 2505409 866710 423920 260616 336035
XTM 35126186 9027484 2530795 789966 324328 262660 225875
XTM-C 35125796 9169307 2645049 881426 451001 378891 386189

Table C.28: TSP(10) { tn = 64 Cycles / Flit-Hop { Running Times (cycles).

196

C.4 UNBAL

C.4.1 tn = 1 Cycle / Flit-Hop

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096 16384

Free-Ideal 601423 150552 37856 9712 2794 1193 1061 1041
Stat 601451 151116 38503 10513 3837 2745 { { { {
P-Ideal 601451 172279 43975 11901 11143 11143 { { { {
C-Ideal-1 601469 252194 83453 48228 48236 48179 { { { {
C-Ideal-2 601469 150932 39699 11790 4659 3032 3215 3418
RR-1 601451 219990 81157 48730 52629 60438 { { { {
RR-2 601451 151408 41001 13621 9918 9964 9964 { {
Di�-1 612669 165953 49035 42096 41461 41414 { { { {
Di�-2 612669 174799 48831 38377 38381 38381 { { { {
TTM 601451 153845 41067 13657 7987 7969 7567 7978
XTM 601451 152570 45179 15052 8778 7120 7402 6769
XTM-C 601451 153482 42785 18586 12128 12555 12853 13973

Table C.29: UNBAL(1024) { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096 16384

Free-Ideal 2404687 601368 150560 37888 9838 2954 1337 1213
Stat 2404715 601932 151207 38689 10881 4573 4243 { {
P-Ideal 2404715 688383 173725 44712 41863 { { { { { {
C-Ideal-1 2404733 1005902 331239 189530 189540 { { { { { {
C-Ideal-2 2404733 601748 153127 41090 12241 5135 3420 4158
RR-1 2404715 876055 322285 190020 193884 { { { { { {
RR-2 2404715 602224 155512 44082 19137 19393 19327 { {
Di�-1 2448707 655806 175443 82893 82891 83576 { { { {
Di�-2 2448707 691825 183335 77300 79073 78355 { { { {
TTM 2404715 604955 154410 44036 17450 10850 10214 10680
XTM 2404715 603999 168387 50501 23673 12772 11159 10280
XTM-C 2404715 604513 158667 54386 30082 19281 17258 17765

Table C.30: UNBAL(4096) { Running Times (cycles).

197

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096 16384

Free-Ideal 9617743 2404632 601376 150592 38014 9998 3098 1466
Stat 9617771 2405196 602023 151393 39057 11617 6045 7343
P-Ideal 9617771 2752767 693743 175652 164761 { { { { { {
C-Ideal-1 9617789 4021080 1321857 754685 754703 { { { { { {
C-Ideal-2 9617789 2405012 604920 156373 42418 12682 5666 5202
RR-1 9617771 3504936 1287644 755413 759764 { { { { { {
RR-2 9617771 2405488 607116 159412 50449 45451 45390 { {
Di�-1 9790833 2613558 680367 194927 165819 165819 { { { {
Di�-2 9790833 2757652 722464 192409 158327 158215 { { { {
TTM 9617771 2408675 605047 156720 44180 18919 13928 14276
XTM 9617771 2407272 653619 176066 60498 32323 17090 14391
XTM-C 9617771 2408467 611832 203270 77201 40920 28618 26859

Table C.31: UNBAL(16384) { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096 16384

Free-Ideal 38469967 9617688 2404640 601408 150718 38174 10142 3227
Stat 38469995 9618252 2405287 602209 151761 39793 13089 9265
P-Ideal 38469995 11010295 2772303 699430 656281 { { { { { {
C-Ideal-1 38470013 16082583 5284667 3015695 3015695 { { { { { {
C-Ideal-2 38470013 9618068 2409301 609976 160415 43098 13519 6791
RR-1 38469995 14013649 5144331 3016122 3020315 { { { { { {
RR-2 38469995 9618544 2413725 616066 172794 113002 110970 { {
Di�-1 39159316 10443171 2699916 705746 326855 327737 { { { {
Di�-2 39159316 10836040 2881729 745833 315577 317237 { { { {
TTM 38469995 9622751 2409216 611494 161329 48019 22966 16276
XTM 38469995 9620153 2581413 663652 220112 86345 31563 23082
XTM-C 38469995 9621468 2420705 679842 225614 106160 51351 42882

Table C.32: UNBAL(65536) { Running Times (cycles).

198

C.4.2 Variable tn

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096 16384

Free-Ideal 9617743 2404639 601377 150587 38047 10027 3101 1430
Stat 9617771 2405193 602025 151393 39057 11617 6347 7628
P-Ideal 9617771 2752791 693761 175705 164779 { { { { { {
C-Ideal-1 9617789 4071548 1361492 754675 754783 { { { { { {
C-Ideal-2 9617789 2405040 606718 160359 42102 13424 6439 6848
RR-1 9617771 3553078 1448347 806942 757143 { { { { { {
RR-2 9617771 2405541 607736 157020 50633 50529 51265 { {
Di�-1 9790833 2776406 741372 215166 184825 184825 { { { {
Di�-2 9790833 2929302 779836 212838 176715 177217 { { { {
TTM 9617771 2409171 611465 158732 48466 19116 15863 15170
XTM 9617771 2406975 612818 176934 60980 30603 18385 14383
XTM-C 9617771 2408469 618841 183654 72119 36257 30331 30669

Table C.33: UNBAL(16384) { tn = 2 Cycles / Flit-Hop { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096 16384

Free-Ideal 9617769 2404671 601403 150587 37997 9935 2991 1330
Stat 9617797 2405223 602051 151419 39203 11997 6919 8746
P-Ideal 9617807 2752863 693851 175741 164887 { { { { { {
C-Ideal-1 9617825 4170649 1421874 754783 754847 { { { { { {
C-Ideal-2 9617825 2405126 607960 159723 44227 14748 8883 11462
RR-1 9617797 3924496 1820303 1092005 814483 { { { { { {
RR-2 9617797 2406452 607471 160118 65828 66643 67182 { {
Di�-1 9790839 3101269 862372 255089 221957 221973 { { { {
Di�-2 9790839 3207796 897689 253329 212636 212614 { { { {
TTM 9617889 2405702 611702 156291 48826 23947 18998 21534
XTM 9617899 2407064 612264 171181 70299 30271 19512 16630
XTM-C 9617817 2410994 621515 194880 66717 38731 34593 30769

Table C.34: UNBAL(16384) { tn = 4 Cycles / Flit-Hop { Running Times (cycles).

199

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096 16384

Free-Ideal 9617821 2404715 601447 150631 37935 9873 2927 1266
Stat 9617875 2405299 602171 151669 39593 12673 8115 11008
P-Ideal 9617861 2752969 694029 175959 165049 { { { { { {
C-Ideal-1 9617897 4365593 1548553 754959 755143 { { { { { {
C-Ideal-2 9617897 2405416 606438 159604 45425 17084 12060 17379
RR-1 9617875 4514350 2436622 1616026 1256941 { { { { { {
RR-2 9617875 2406931 607667 162251 85907 84961 83197 { {
Di�-1 9790841 3752572 1101869 334303 293799 293830 { { { {
Di�-2 9790841 3848858 1136623 331840 281839 282227 { { { {
TTM 9617997 2412800 609717 162150 57617 27659 27477 26717
XTM 9618071 2407142 614168 169452 70525 39641 30924 25241
XTM-C 9617953 2410835 626021 192675 76777 31209 30432 35682

Table C.35: UNBAL(16384) { tn = 8 Cycles / Flit-Hop { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096

Free-Ideal 9617925 2404825 601555 150735 38031 9871 2927
Stat 9618031 2405679 602613 152267 40425 13999 8447
P-Ideal 9618023 2753261 694249 176581 165427 { { { {
C-Ideal-1 9618059 4723315 1791979 755411 755377 { { { {
C-Ideal-2 9618059 2405902 608150 163851 52190 21361 20516
RR-1 9618031 5386174 3382293 2456214 2004639 { { { {
RR-2 9618031 2408169 612522 175209 113314 113940 113940
Di�-1 9790835 5056912 1578660 491322 436759 434702 { {
Di�-2 9790835 5177838 1615852 487891 418464 417133 { {
TTM 9618249 2413018 612189 172037 59377 42768 36099
XTM 9618139 2410285 627809 193619 81576 39756 37971
XTM-C 9618139 2410051 629739 193416 66044 44412 39689

Table C.36: UNBAL(16384) { tn = 16 Cycles / Flit-Hop { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024 4096

Free-Ideal 9618497 2405385 602123 151307 38603 10427 3383
Stat 9618993 2407995 605315 155699 45443 22059 23033
P-Ideal 9618995 2754645 696277 179861 168321 { { { {
C-Ideal-1 9619031 6141369 2867639 1086767 759677 { { { {
C-Ideal-2 9619031 2409300 620783 187299 71467 50757 74059
RR-1 9618993 7516640 6079406 5169356 4650767 { { { {
RR-2 9618993 2418036 653437 233753 218988 219018 219048
Di�-1 9791855 12874161 4393430 1433882 1273437 1273225 { {
Di�-2 9791855 13157159 4471812 1418808 1225454 1231163 { {
TTM 9619797 2430299 657701 215213 127622 118838 122469
XTM 9619511 2430879 644648 234714 124675 85494 90431
XTM-C 9619511 2426418 640117 219719 107551 89765 95154

Table C.37: UNBAL(16384) { tn = 64 Cycles / Flit-Hop { Running Times (cycles).

200

C.5 MATMUL: Coarse, Cached

C.5.1 tn = 1 Cycle / Flit-Hop

p (number of processors)
Mgr. 1 4 16 64

Free-Ideal 202748 85405 30022 16537
Stat 202748 73246 26632 14552
P-Ideal 202748 155980 52801 26328
C-Ideal-1 202766 85546 32618 29992
C-Ideal-2 202766 85420 31749 30742
RR-1 202748 86639 31723 23556
RR-2 202748 86639 31731 23916
Di�-1 207312 305232 106888 92857
Di�-2 207312 94855 66531 56341
TTM 202748 86551 31932 21687
XTM 202748 86311 32470 22454

Table C.38: MATMUL(16) (coarse, cached) { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256

Free-Ideal 1596780 522831 151081 55333 33011
Stat 1596780 475054 139342 49758 29680
P-Ideal 1596780 996878 285914 99288 52622
C-Ideal-1 1596798 519578 154498 106256 38648
C-Ideal-2 1596798 519452 153179 110077 40071
RR-1 1596780 524139 153245 62641 62336
RR-2 1596780 524139 153371 61945 67559
Di�-1 1625990 2042920 609992 383851 324903
Di�-2 1625990 571057 315347 196457 144490
TTM 1596780 524581 153364 59810 42205
XTM 1596780 523784 153964 61025 46732

Table C.39: MATMUL(32) (coarse, cached) { Running Times (cycles).

201

p (number of processors)
Mgr. 1 4 16 64 256 1024

Free-Ideal 12677708 3642945 975307 293114 115611 78707
Stat 12677708 3454414 930719 272724 101960 68808
P-Ideal 12677708 7103884 1900267 559296 212970 127776
C-Ideal-1 12677726 3626061 981311 574234 123416 91185
C-Ideal-2 12677726 3626236 978331 587114 127164 94167
RR-1 12677708 3644334 979545 301534 154241 189835
RR-2 12677708 3644334 980529 301534 178596 189722
Di�-1 12905516 14956668 4150412 2410011 1690097 1434242
Di�-2 12905516 3962996 2103620 983793 527595 490766
TTM 12677708 3647009 979384 301944 129253 98591
XTM 12677708 3643966 980768 302552 132229 109426

Table C.40: MATMUL(64) (coarse, cached) { Running Times (cycles).

202

C.5.2 Variable tn

p (number of processors)
Mgr. 1 4 16 64 256 1024

Free-Ideal 12677708 3957887 1114522 359008 171385 143073
Stat 12677708 3662215 1025773 323144 137551 109961
P-Ideal 12677708 7675991 2124355 678152 300156 210318
C-Ideal-1 12677726 4003137 1109886 653285 183618 163289
C-Ideal-2 12677726 4003209 1119695 721482 182743 161251
RR-1 12677708 3971817 1111480 378743 222136 296526
RR-2 12677708 3971817 1107161 381229 279793 309123
Di�-1 12905516 16812535 4983120 3135747 2308575 2303854
Di�-2 12905516 4617377 2511591 1194111 798020 1038068
TTM 12677708 4003598 1118800 380311 183951 160132
XTM 12677708 4003087 1115395 386395 195183 173381

Table C.41: MATMUL(64) (coarse, cached) { tn = 2 Cycles / Flit-Hop { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024

Free-Ideal 12677734 4671729 1361143 500790 269279 245655
Stat 12677734 4077887 1212061 423526 209041 192405
P-Ideal 12677744 8820271 2572751 1623274 821318 623514
C-Ideal-1 12677762 4663054 1393226 951210 298032 296650
C-Ideal-2 12677762 4721735 2552324 530808 303810 355427
RR-1 12677734 4733047 1375338 531811 364024 524772
RR-2 12677734 4733047 1373995 536321 477251 651379
Di�-1 12905522 20843250 6875081 4379999 3537360 3922007
Di�-2 12905522 6086145 3557104 1784404 1402990 1982218
TTM 12677826 4687756 1388807 531672 299655 280959
XTM 12677836 4662978 1390074 532596 317845 283898

Table C.42: MATMUL(64) (coarse, cached) { tn = 4 Cycles / Flit-Hop { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024

Free-Ideal 12677786 5976757 1885091 767245 473356 489364
Stat 12677786 4909247 1573680 622191 352013 357029
P-Ideal 12677780 19367269 6617909 4626254 2491020 2045932
C-Ideal-1 12677798 6045105 1932253 836134 527621 542246
C-Ideal-2 12677798 5961410 1918050 1401302 802316 544580
RR-1 12677786 6181500 1903260 839083 673275 1076066
RR-2 12677786 6181500 1918744 852106 816666 1197341
Di�-1 12905508 30206673 11568874 8175276 6822981 10101494
Di�-2 12905508 9620614 6085170 2803742 2844984 4614953
TTM 12677916 6093536 1918809 838308 529080 543875
XTM 12677926 6159988 1931450 838568 529658 575220

Table C.43: MATMUL(64) (coarse, cached) { tn = 8 Cycles / Flit-Hop { Running Times (cycles).

203

C.6 MATMUL: Fine, Cached

C.6.1 tn = 1 Cycle / Flit-Hop

p (number of processors)
Mgr. 1 4 16 64

Free-Ideal 206588 98109 41702 30878
Stat 206588 75586 28785 18080
P-Ideal 206588 87531 50217 28605
C-Ideal-1 206606 87737 42438 30552
C-Ideal-2 206606 87614 46266 30994
RR-1 206588 94881 42822 32049
RR-2 206588 94881 42568 35718
Di�-1 211181 159275 70891 62538
Di�-2 211181 106361 59980 46141
TTM 206588 97739 45650 36879
XTM 206588 97495 47762 37482

Table C.44: MATMUL(16) (�ne, cached) { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256

Free-Ideal 1612140 564232 190014 91165 70210
Stat 1612140 483180 144385 54702 36922
P-Ideal 1612140 530486 244005 95223 51175
C-Ideal-1 1612158 527529 194412 81280 58083
C-Ideal-2 1612158 527406 207535 83619 63370
RR-1 1612140 554513 192097 87192 73708
RR-2 1612140 554513 193783 91924 90078
Di�-1 1641775 1039193 408126 201852 161551
Di�-2 1641775 618588 276325 121551 108735
TTM 1612140 566269 196513 102050 75651
XTM 1612140 566021 199196 97434 86918

Table C.45: MATMUL(32) (�ne, cached) { Running Times (cycles).

204

p (number of processors)
Mgr. 1 4 16 64 256 1024

Free-Ideal 12739148 3841845 1120468 408020 215175 188504
Stat 12739148 3485580 947240 283918 112888 83668
P-Ideal 12739148 3673909 1532939 437126 171883 125121
C-Ideal-1 12739166 3657353 1136724 369822 170071 136810
C-Ideal-2 12739166 3657230 1275774 388444 185461 143820
RR-1 12739148 3763194 1131171 389605 193748 232248
RR-2 12739148 3763194 1130461 403760 233886 263437
Di�-1 12968121 7534645 2246912 1101161 515466 577223
Di�-2 12968121 4250445 1498754 566448 278983 338331
TTM 12739148 3810409 1157229 412023 209896 192461
XTM 12739148 3810157 1144804 406853 214161 211593

Table C.46: MATMUL(64) (�ne, cached) { Running Times (cycles).

205

C.6.2 Variable tn

p (number of processors)
Mgr. 1 4 16 64 256 1024

Free-Ideal 12739148 4230706 1461846 569716 344047 325631
Stat 12739148 3693069 1042397 334749 149421 124975
P-Ideal 12739148 4033242 1802870 599083 251095 195476
C-Ideal-1 12739166 4033821 1391797 500962 243240 203183
C-Ideal-2 12739166 4033922 1399579 513653 255174 236947
RR-1 12739148 4291014 1376186 499651 284547 385371
RR-2 12739148 4189308 1417673 582338 399629 480874
Di�-1 12968121 8455841 2595856 1478620 814831 911810
Di�-2 12968121 5152450 1959171 819888 488674 434751
TTM 12739148 4243316 1469110 613282 324196 292144
XTM 12739148 4224525 1710448 597103 334786 396301

Table C.47: MATMUL(64) (�ne, cached) { tn = 2 Cycles / Flit-Hop { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024

Free-Ideal 12739174 5479655 1939592 919830 595148 582113
Stat 12739174 4108928 1229619 436145 222657 207695
P-Ideal 12739184 4751970 2523022 822453 432767 345164
C-Ideal-1 12739202 4694431 1875179 737853 407837 367605
C-Ideal-2 12739202 5107929 1899364 824117 474256 460087
RR-1 12739174 5034938 1763291 738044 461916 679977
RR-2 12739174 5105081 1887344 912465 716178 1034937
Di�-1 12968147 10456151 3949960 1964292 1118369 1711399
Di�-2 12968147 7235875 2945461 1499787 893749 833174
TTM 12739266 5145965 2007646 938104 523968 502553
XTM 12739276 5034013 1936568 904656 571756 594734

Table C.48: MATMUL(64) (�ne, cached) { tn = 4 Cycles / Flit-Hop { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024

Free-Ideal 12739226 7244817 2822331 1573203 1097566 1124149
Stat 12739226 4940097 1592199 636931 368665 373035
P-Ideal 12739220 11276943 3474505 844856 942091 679288
C-Ideal-1 12739238 6076809 2748770 1184658 711988 674017
C-Ideal-2 12739238 6731273 2811055 1413270 920755 955788
RR-1 12739226 6733202 2541415 1089971 805437 1234849
RR-2 12739226 6697210 3046785 1529806 1432862 2474518
Di�-1 12968103 15091855 6980501 4039756 2802365 3605615
Di�-2 12968103 10664163 5885315 3157172 2189743 2089678
TTM 12739356 6951140 2942752 1491604 953380 965724
XTM 12739366 6876345 3394139 1520421 980527 1002713

Table C.49: MATMUL(64) (�ne, cached) { tn = 8 Cycles / Flit-Hop { Running Times (cycles).

206

C.7 MATMUL: Coarse, Uncached

C.7.1 tn = 1 Cycle / Flit-Hop

p (number of processors)
Mgr. 1 4 16 64

Free-Ideal 352508 240678 79771 34179
Stat 352508 167642 59880 27422
P-Ideal 352508 468542 157456 65735
C-Ideal-1 352526 256062 136715 60244
C-Ideal-2 352526 256080 136429 61813
RR-1 352508 256350 83284 39200
RR-2 352508 256350 82216 39955
Di�-1 359550 920988 329679 267911
Di�-2 359550 278965 167711 122882
TTM 352508 255493 83489 40247
XTM 352508 255274 83843 43488

Table C.50: MATMUL(16) (coarse, uncached) { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256

Free-Ideal 2719340 1854235 545222 177033 86106
Stat 2719340 1265849 416058 136358 64582
P-Ideal 2719340 3518236 1111024 374400 165215
C-Ideal-1 2719358 1911692 941978 303277 124840
C-Ideal-2 2719358 1911692 941700 318808 137320
RR-1 2719340 1911665 563090 191270 119261
RR-2 2719340 1911665 562283 191270 148610
Di�-1 2768358 6937270 2332532 1539427 1554854
Di�-2 2768358 2075989 1109216 396603 346164
TTM 2719340 1911289 563301 190608 95920
XTM 2719340 1909555 562160 194963 103078

Table C.51: MATMUL(32) (coarse, uncached) { Running Times (cycles).

207

p (number of processors)
Mgr. 1 4 16 64 256 1024

Free-Ideal 21361484 14616058 4098472 1252586 465082 251516
Stat 21361484 9901976 3189039 966169 324456 171770
P-Ideal 21361484 27300058 8394160 2662464 993452 475717
C-Ideal-1 21361502 14842476 7144121 2086614 699671 292729
C-Ideal-2 21361502 14842476 7143944 2210214 737067 284211
RR-1 21361484 14842428 4234827 1343622 522189 400868
RR-2 21361484 14842428 4234827 1343622 514305 424984
Di�-1 21745016 53908520 17628461 11008495 8519769 { {
Di�-2 21745016 16109183 8286869 2925353 1518827 { {
TTM 21361484 14842060 4234487 1342960 502354 262824
XTM 21361484 14837264 4234703 1343355 530603 301307

Table C.52: MATMUL(64) (coarse, uncached) { Running Times (cycles).

208

C.7.2 Variable tn

p (number of processors)
Mgr. 1 4 16 64 256 1024

Free-Ideal 21525444 24315676 6772491 2116706 803574 506830
Stat 21525444 14445449 5007631 1571689 545821 304603
P-Ideal 21525444 43885347 14049797 4607224 1786114 881951
C-Ideal-1 21525462 24325948 7001378 2319178 1146674 524898
C-Ideal-2 21525462 24326002 12410385 2326264 1247303 547914
RR-1 21525444 24326392 7099113 2326224 903004 760273
RR-2 21525444 24326392 7099113 2341043 913442 781196
Di�-1 21911988 88868137 31243325 20490675 14961017 { {
Di�-2 21911988 28054956 15505433 4992768 2868938 { {
TTM 21525444 24315762 7114661 2325380 901946 560805
XTM 21525444 24318261 7098634 2325622 902170 505961

Table C.53: MATMUL(64) (coarse, uncached) { tn = 2 Cycles / Flit-Hop { Running Times

(cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024

Free-Ideal 21853390 42734468 12086239 3833564 1529273 913449
Stat 21853390 23532545 8644873 2782885 988735 570531
P-Ideal 21853400 77056037 25361019 15568379 6644712 3346389
C-Ideal-1 21853418 43277393 12426237 6002250 1956558 1037355
C-Ideal-2 21853418 43292853 12827078 6326226 1714143 1001108
RR-1 21853390 43277928 12827177 4291610 1702392 1474251
RR-2 21853390 43277928 12858605 4291472 1710295 1473729
Di�-1 22245878 164351591 65073757 44780797 32965603 { {
Di�-2 22245878 43584348 29828811 10460863 7253197 { {
TTM 21853482 43273046 12826090 4290254 1701284 958138
XTM 21853492 43292710 12826406 4290516 1701680 1004857

Table C.54: MATMUL(64) (coarse, uncached) { tn = 4 Cycles / Flit-Hop { Running Times

(cycles).

209

p (number of processors)
Mgr. 1 4 16 64 256 1024

Free-Ideal 22509282 81192208 22817227 7416160 2955165 1834319
Stat 22509282 41706687 15919325 5205121 1874563 1102101
P-Ideal 22509276 247271123 91569791 61080065 25048328 12866223
C-Ideal-1 22509294 81194714 24282197 8220647 4417729 2019579
C-Ideal-2 22509294 81194822 24282150 8220403 3300310 1993246
RR-1 22509282 81189238 24283314 8222348 3324033 2829060
RR-2 22509282 81189238 24283222 8222256 3355445 3039472
Di�-1 22914102 385614536 157274311 107850359 62692673 { {
Di�-2 22914102 126621352 71501656 36834573 15225247 { {
TTM 22509412 81187665 24281540 8219678 3299472 1998814
XTM 22509422 81195257 24281956 8220220 3300050 2055491

Table C.55: MATMUL(64) (coarse, uncached) { tn = 8 Cycles / Flit-Hop { Running Times

(cycles).

210

C.8 MATMUL: Fine, Uncached

C.8.1 tn = 1 Cycle / Flit-Hop

p (number of processors)
Mgr. 1 4 16 64

Free-Ideal 370684 250140 87530 41128
Stat 370684 177405 65854 33010
P-Ideal 370684 269771 122941 43855
C-Ideal-1 370702 270194 93391 46055
C-Ideal-2 370702 270194 93190 46376
RR-1 370684 235411 92211 47934
RR-2 370684 235411 91800 51745
Di�-1 377815 442983 194642 129980
Di�-2 377815 351660 121258 68191
TTM 370684 307706 93874 54221
XTM 370684 256891 94969 50456

Table C.56: MATMUL(16) (�ne, uncached) { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256

Free-Ideal 2792044 1890956 579679 192066 95283
Stat 2792044 1303664 437048 149906 78204
P-Ideal 2792044 1965900 837430 211729 101752
C-Ideal-1 2792062 1967841 591216 197795 102040
C-Ideal-2 2792062 1967841 582517 200821 99186
RR-1 2792044 1687823 586390 199798 116810
RR-2 2792044 1687823 586169 207368 129038
Di�-1 2842495 3225583 1275404 698435 322556
Di�-2 2842495 2176414 782205 280134 152494
TTM 2792044 1896675 581469 206778 112407
XTM 2792044 1896498 575366 206040 117651

Table C.57: MATMUL(32) (�ne, uncached) { Running Times (cycles).

211

p (number of processors)
Mgr. 1 4 16 64 256 1024

Free-Ideal 21652300 14761832 4310075 1258299 454422 245181
Stat 21652300 10051914 3269131 1012307 360160 207622
P-Ideal 21652300 15057941 6120650 1385310 510794 248728
C-Ideal-1 21652318 15066041 4305572 1279048 457170 263063
C-Ideal-2 21652318 15066041 4275520 1302630 456183 255201
RR-1 21652300 12830193 4286631 1265566 490239 389978
RR-2 21652300 12830193 4277495 1308846 478205 351479
Di�-1 22042307 24687501 9370095 4527924 1925214 1490239
Di�-2 22042307 22131834 5515578 1771289 755502 381221
TTM 21652300 14771918 4205281 1325285 478531 295849
XTM 21652300 14648811 4183621 1386063 509640 293876

Table C.58: MATMUL(64) (�ne, uncached) { Running Times (cycles).

212

C.8.2 Variable tn

p (number of processors)
Mgr. 1 4 16 64 256 1024

Free-Ideal 21980100 24690836 6839050 2160918 778212 428396
Stat 21980100 14681413 5134823 1645509 603049 359433
P-Ideal 21980100 24692899 10466311 2491841 873255 444641
C-Ideal-1 21980118 24709519 6995476 2202244 779288 439381
C-Ideal-2 21980118 24709494 7590497 2149679 788517 441756
RR-1 21980100 24709900 7033305 2179351 839849 744295
RR-2 21980100 19942596 7106609 2242132 846729 735381
Di�-1 22375593 39955831 17147603 7744693 3928718 2728089
Di�-2 22375593 32066133 10217894 3163537 1291874 665254
TTM 21980100 20236650 7030368 2216803 827828 485835
XTM 21980100 20236722 7113994 2227559 856148 482915

Table C.59: MATMUL(64) (�ne, uncached) { tn = 2 Cycles / Flit-Hop { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024

Free-Ideal 22635726 34523875 12826214 3907302 1450599 776006
Stat 22635726 23940537 8866307 2911965 1088959 663265
P-Ideal 22635736 43962980 18526642 5067859 1691956 850316
C-Ideal-1 22635754 43964034 12670352 3913197 1434321 820946
C-Ideal-2 22635754 43996199 13600879 4023379 1453164 824704
RR-1 22635726 43964713 12670904 3980386 1543615 1426384
RR-2 22635726 43964713 12738699 4037218 1656624 1606775
Di�-1 23043277 75314543 35094067 12392624 6762955 4680617
Di�-2 23043277 61019441 22382573 6749695 2731156 1470231
TTM 22635818 35050760 12489330 3983824 1595955 855229
XTM 22635828 34460805 12803942 4328527 1588434 862245

Table C.60: MATMUL(64) (�ne, uncached) { tn = 4 Cycles / Flit-Hop { Running Times (cycles).

p (number of processors)
Mgr. 1 4 16 64 256 1024

Free-Ideal 23946978 83584666 23243558 7312834 2729209 1490544
Stat 23946978 42458765 16329195 5444747 2060857 1270617
P-Ideal 23946972 145982731 49409278 8785571 3687700 1955760
C-Ideal-1 23946990 82568456 25688816 7530983 2688134 1546855
C-Ideal-2 23946990 63498041 24806013 7494771 2728884 1546171
RR-1 23946978 62516654 23005915 7560244 2969496 2801732
RR-2 23946978 82569647 24360516 7669920 3107173 2968417
Di�-1 24377597 165325301 110036655 32052696 14765763 11118528
Di�-2 24377597 133560749 45395985 16573886 7476504 3802137
TTM 23947108 64678466 23483204 8317440 2890945 1588285
XTM 23947118 64677713 24778887 8562822 3086391 1655296

Table C.61: MATMUL(64) (�ne, uncached) { tn = 8 Cycles / Flit-Hop { Running Times (cycles).

213

Bibliography

[1] Anant Agarwal. Overview of the Alewife Project. Alewife Systems Memo #10., July
1990.

[2] Anant Agarwal, David Chaiken, Godfrey D'Souza, Kirk Johnson, David Kranz, John
Kubiatowicz, Kiyoshi Kurihara, Beng-Hong Lim, Gino Maa, Dan Nussbaum, Mike
Parkin, and Donald Yeung. The MIT Alewife Machine: A Large-Scale Distributed-
Memory Multiprocessor. In Proceedings of Workshop on Scalable Shared Memory Mul-

tiprocessors, 1991.

[3] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computing: Nu-

merical Methods. Prentice Hall, 1989.

[4] Lucien M. Censier and Paul Feautrier. A New Solution to Coherence Problems in Mul-
ticache Systems. IEEE Transactions on Computers, C-27(12):1112{1118, December
1978.

[5] William J. Dally. Performance Analysis of k-ary n-cube Interconnection Networks.
IEEE Transactions on Computers, C-39(6):775{785, June 1990.

[6] Alvin M. Despain and David A. Patterson. X-TREE: A Tree Structured Multi-
Processor Computer Architecture. In Proceedings of the Fifth International Symposium
on Computer Architecture, 1978.

[7] Michael R. Garey and David S. Johnson. Computers and Intractability. W. H. Freeman
and Company, 1979.

[8] Robert H. Halstead. Multilisp: A Language for Concurrent Symbolic Computation.
ACM Transactions on Programming Languages and Systems, 7(4):501{538, October
1985.

[9] Robert H. Halstead and Stephen A. Ward. The MuNet: A Scalable Decentralized
Architecture for Parallel Computation. In Proceedings of the Seventh International

Symposium on Computer Architecture, 1980.

[10] Kirk Johnson. The Impact of Communication Locality on Large-Scale Multiproces-
sor Performance. In Proceedings of the 19th International Symposium on Computer

Architecture, 1992.

214

[11] David Kranz, Kirk Johnson, Anant Agarwal, John Kubiatowicz, and Beng-Hong Lim.
Integrating Message-Passing and Shared-Memory; Early Experience. In Proceedings of

Practice and Principles of Parallel Programming (PPoPP) 1993, 1993.

[12] David A. Kranz, R. Halstead, and E. Mohr. Mul-T: A High-Performance Parallel Lisp.
In Proceedings of SIGPLAN '89, Symposium on Programming Languages Design and

Implementation, 1989.

[13] Orly Kremien and Je� Kramer. Methodical Analysis of Adaptive Load Sharing Algo-
rithms. IEEE Transactions on Parallel and Distributed Systems, 3(6):747{760, Novem-
ber 1992.

[14] Clyde P. Kruskal and Alan Weiss. Allocating Independent Subtasks on Parallel Pro-
cessors. IEEE Transactions on Software Engineering, SE-11(10):1001{1016, October
1985.

[15] John Kubiatowicz. User's Manual for the A-1000 Communications and Memory Man-
agement Unit. Alewife Memo No. 19, Laboratory for Computer Science, Massachusetts
Institute of Technology, January 1991.

[16] Vipin Kumar, Grama Y. Ananth, and Vempaty Nageshwara Rao. Scalable Load Bal-
ancing Techniques for Parallel Computers. Technical Report 92-021, Army High Per-
formance Computing Research Center, University of Minnesota, January 1992.

[17] Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Transactions on Computers, C-28(9), September 1979.

[18] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors. The

Traveling Salesman Problem. John Wiley and Sons, 1985.

[19] Frank C. H. Lin and Robert M. Keller. The Gradient Model Load Balancing Method.
IEEE Transactions on Software Engineering, SE-13(1):32{38, January 1987.

[20] Lionel M. Ni, Chong-Wei Xu, and Thomas B. Gendreau. A Distributed Drafting
Algorithm for Load Balancing. IEEE Transactions on Software Engineering, SE-
11(10):1153{1161, October 1985.

[21] Constantine D. Polychronopoulos and David J. Kuck. Guided Self-Scheduling: A Prac-
tical Scheduling Scheme for Parallel Supercomputers. IEEE Transactions on Comput-

ers, C-36(12):1425{1439, December 1987.

[22] William H. Press, Brian P. Flannery, Saul A Teukolsky, and William T. Vetterling.
Numerical Recipes in C. Cambridge University Press, 1988.

[23] J. Rees and N. Adams. T: A Dialect of LISP. In Proceedings of Symposium on Lisp

and Functional Programming, 1982.

[24] Larry Rudolph, Miriam Slivkin-Allalouf, and Eli Upfal. A Simple Load Balancing
Scheme for Task Allocation in Parallel Machines. In Proceedings of the Third Annual

Symposium on Parallel Algorithms and Architectures (SPAA), 1991.

215

[25] C. H. Sequin, A. M. Despain, and D. A. Patterson. Communication in X-TREE: A
Modular Multiprocessor System. In Proceedings of the 1978 Annual Conference of the

Association for Computing Machinery, 1978.

[26] H. Sullivan and T. R. Bashkow. A Large Scale, Homogeneous, Fully Distributed Parallel
Machine. In Proceedings of the Fourth Annual Symposium on Computer Architecture,
1977.

[27] Stephen A. Ward and Jr. Robert H. Halstead. Computation Structures. MIT Press,
1990.

[28] Min-You Wu and Wei Shu. Scatter Scheduling for Problems with Unpredictable Struc-
tures. In Sixth Distributed Memory Conference Proceedings, 1991.

[29] Pen-Chung Yew, Nian-Feng Tzeng, and Duncan H. Lawrie. Distributing Hot-Spot
Addressing in Large-Scale Multiprocessors. IEEE Transactions on Computers, C-
36(4):388{395, April 1987.

[30] Songnian Zhou and Timothy Brecht. Processor Pool-Based Scheduling for Large-Scale
NUMA Multiprocessors. In Proceedings of the 1991 ACM Sigmetrics Conference on

Measurement and Modeling of Computer Systems, 1991.

[31] Taieb F. Znati, Rami G. Melhem, and Kirk R. Pruhs. Dilation Based Bidding Schemes
for Dynamic Load Balancing on Distributed Processing Systems. In Sixth Distributed

Memory Conference Proceedings, 1991.

216

