
Using Specifications to Check Source Code

David Evans
8 June, 1994

c
Massachusetts Institute of Technology, 1994

This report is a revised version of the author’s thesis, submitted to the Department of
Electrical Engineering and Computer Science on 12 May, 1994 in partial fulfillment
of the requirements for the degrees of Master of Science and Bachelor of Science.
The thesis was supervised by Professor John V. Guttag. The research was supported
in part by ARPA (N00014-89-J-1988), NSF (9115797-CCR), and DEC ERP. The au-
thor’s current address is: MIT Lab for Computer Science, 545 Technology Square,
Cambridge, MA 02139. Internet: evs@lcs.mit.edu .



2



Abstract

Traditional static checkers are limited to detecting simple anomalies since they have
no information regarding the intent of the code. Program verifiers are too expensive
for nearly all applications. This thesis investigates the possibilities of using specifica-
tions to do lightweight static checks to detect inconsistencies between specifications
and implementations. A tool, LCLint, was developed to do static checks on C source
code using LCL specifications. It is similar to traditional lint, except it uses informa-
tion in specifications to do more powerful checks. Some typical problems detected
by LCLint include violations of abstraction barriers and modifications of caller-visible
state that are inconsistent with the specification. Experience using LCLint to check
a specified program and to understand and maintain a program with no specifica-
tions illustrate some applications of LCLint and suggest future directions for using
specifications to check source code.

Keywords: Formal Specifications, Checking, Debugging, Software Maintenance, Pro-
gramming Conventions, Larch, C, LCL, LCLint.



4



Acknowledgements

I would like to thank John Guttag for his insights, direction and perspective. Without
him there is no doubt this work would not have been started, without his guidance
and encouragement it would not have been completed, and without his thorough
reading of drafts of this thesis it would not be as understandable. John and Jim
Horning developed the original ideas behind LCLint, provided invaluable advice on
its functionality and design, contributed the dbase example, and acted as its most
enthusiastic users. I also thank Jim for hosting me during my visit to DEC SRC.

Yang Meng Tan contributed many good ideas for improving LCLint, and explained LCL

objects to me on more than one occasion. LCLint incorporates his LCL checker, and he
helped me understand its intricacies. LCLint also incorporates code from the original
LCL checker written by Gary Feldman, Steve Garland, and Joe Wild. Nate Osgood
provided the original C grammar for LCLint. The quake example was provided by
Steve Harrison. If it were not for his careful coding and good programming style,
this thesis would have been much longer.

I would like to thank my officemates, Yang Meng and Anna Pogosyants for providing
a pleasant atmosphere, as well as many interesting diversions and technical discus-
sions. I would like to thank the other members of the SPDgroup at MIT , Steve Garland,
Raymie Stata, and Mark Vandevoorde, for their helpful feedback and ideas.

Finally, I thank my parents for many years of support and inspiration. My mother
challenged me to finish my thesis before she finished hers, and my father taught me
more about science looking through telescopes as a youngster than all of MIT ’s courses
had to offer.



6



Contents

1 Introduction 11

1.1 Design Goals : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

1.2 Background : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

1.2.1 C : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

1.2.2 Larch : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

1.2.3 LCL : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

1.2.4 Programming Conventions : : : : : : : : : : : : : : : : : : : : : : 16

1.3 Related Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

1.3.1 Program Verifiers : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

1.3.2 Unaided Static Checking : : : : : : : : : : : : : : : : : : : : : : : 18

1.3.3 Static Checkers Employing Specifications : : : : : : : : : : : : : 20

1.4 Overview of Thesis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23

2 Checks 25

2.1 Abstract Types : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25

2.2 Globals Checking : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28

2.3 Modifies Checking : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28

2.3.1 Unseen Modifications : : : : : : : : : : : : : : : : : : : : : : : : : 31

2.3.2 Aliasing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32

2.3.3 Specification Aliasing : : : : : : : : : : : : : : : : : : : : : : : : : 34

2.3.4 Missing Specifications : : : : : : : : : : : : : : : : : : : : : : : : : 35

2.4 Use before Definition Checking : : : : : : : : : : : : : : : : : : : : : : : : 36

2.5 Macro Checking : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 38

2.6 Other Checks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

2.7 LCLint Messages : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 40

3 Checking Specified Programs 41

7



8 CONTENTS

3.1 Code Checks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42

3.2 Specification Derived Checks : : : : : : : : : : : : : : : : : : : : : : : : : 44

4 Maintaining Programs 51

4.1 No Specifications : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 51

4.2 Adding Minimal Specifications : : : : : : : : : : : : : : : : : : : : : : : : 55

4.3 Developing the Specifications : : : : : : : : : : : : : : : : : : : : : : : : : 65

4.4 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 70

5 Conclusions 73

5.1 Design Goals : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 74

5.1.1 Efficiency : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 74

5.1.2 Flexibility : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 76

5.1.3 Incremental Effort and Gain : : : : : : : : : : : : : : : : : : : : : 76

5.1.4 Easy to Learn and Use : : : : : : : : : : : : : : : : : : : : : : : : : 77

5.2 Extensions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 78

5.2.1 Improvements : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 78

5.2.2 Using More of the Specification : : : : : : : : : : : : : : : : : : : 79

5.2.3 Augmenting the Specification Language : : : : : : : : : : : : : : 80

5.3 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 81

A User’s Guide 83

A.1 Type Access : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 83

A.2 Libraries : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 84

A.3 Make : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 84

A.4 Emacs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 84

A.5 Control Flags : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 84

A.6 Messages : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 90

A.7 Availability : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 94



List of Figures

1-1 Example LCL specification : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

2-1 Type abstraction violations : : : : : : : : : : : : : : : : : : : : : : : : : : 26

2-2 Global usage errors : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29

2-3 Modification errors : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30

2-4 Modifications in the presence of aliasing : : : : : : : : : : : : : : : : : : 33

2-5 hideSet.lcl : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 35

2-6 Use before definition errors involving out parameters : : : : : : : : : : 37

2-7 Macro checking : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

3-1 Checking dbase without using specifications : : : : : : : : : : : : : : : 42

3-2 Checking dbase using specifications : : : : : : : : : : : : : : : : : : : : : 45

4-1 Checking quake : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 53

4-2 Checking Set is abstract : : : : : : : : : : : : : : : : : : : : : : : : : : : 56

4-3 Original implementation of ForeachSet : : : : : : : : : : : : : : : : : : 58

4-4 Revised implementation of ForeachSet : : : : : : : : : : : : : : : : : : 59

4-5 Set.lcl after including prototypes : : : : : : : : : : : : : : : : : : : : : 66

4-6 Hash.lcl after including prototypes : : : : : : : : : : : : : : : : : : : : 67

4-7 Modification errors reported using Hash.lcl : : : : : : : : : : : : : : : 69

4-8 Execute.lcl : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 70

4-9 Checking globals using Execute.lcl : : : : : : : : : : : : : : : : : : : : 71

5-1 Statistics for running LCLint on entire programs : : : : : : : : : : : : : : 75

5-2 Statistics for running LCLint on single source files : : : : : : : : : : : : : 75

A-1 Sample makefile : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 85

A-2 Mode settings : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 89

9



10 LIST OF FIGURES



Chapter 1

Introduction

Programmers spend large amounts of time trying to detect and fix errors. Bugs that
are detected statically can usually be fixed easily since the programmer knows the
location and nature of the problem immediately. Bugs that are not detected statically
need to be found by running test cases. When a bug is found through testing we know
an input that produces the incorrect result, but much more effort may be required
before we can localize the problem in the source code and fix it. Worse, the bug
may not be revealed during testing, producing potentially disastrous consequences
when the program is used in production. Programming languages with redundancy
and compilers that check for anomalies can catch some bugs during compilation, but
without additional information about the program many bugs cannot be detected
statically.

This thesis describes LCLint, a tool that detects inconsistencies between code and
specifications. Sometimes these inconsistencies reveal manifest errors in the speci-
fications or code. In other cases, the reported problem indicates a violation of pro-
gramming conventions. While it may not cause program faults, the code depends
on implementation details not apparent in the specification, or violates conventions
upon which other parts of the program may rely. It may lead to problems if imple-
mentations are changed, and makes the code harder to maintain and understand. By
reporting these inconsistencies, LCLint helps programmers produce better programs
and decreases the time spent searching for run-time bugs. LCLint cannot find all
bugs or make any guarantees about the correctness of the code. It can guarantee
that certain types of errors are not present and certain programming conventions are
followed, but does not eliminate the need for adequate testing.

The value of LCLint depends on two assumptions about engineering and maintaining
large programs: modularity is necessary to manage complexity, and clearly defined
module interfaces are useful to abstract details and limit the effects of changes. Pro-
grammers who adhere to these assumptions will attempt to write programs that are
modular and have clearly defined interfaces. If they do, a tool that can detect viola-
tions of the intended interfaces should be useful.

Although LCLint is intended to be a pragmatic and useful tool, the primary motivation

11



12 CHAPTER 1. INTRODUCTION

behind its development is to investigate the possibilities of using specifications to do
lightweight static checks on source code. By developing LCLint, we hope to learn
if using specifications to check source code can be a practical and effective way of
improving software quality. We also hope to gain an understanding of how the desire
for static code checkers may influence the design of formal specification languages
and the adoption of programming conventions. By using LCLint in a variety of ways,
we hope to learn if and how such a tool can enable better software engineering, reduce
the effort required to develop good programs, and help us understand and maintain
existing programs.

1.1 Design Goals

In order for LCLint to be a useful tool for developing and maintaining real programs,
it must detect relevant inconsistencies between specifications and source code. In
addition, certain attributes were considered essential:

� efficiency — Since the intent is that LCLint be run every time the specification
or source code is changed, the time needed to run LCLint should be no more than
the time for compilation. This limits the checking to simple checks that do not
require global analysis.

� flexibility — LCLint is not intended to impose a specific style of coding, other
than one employing abstract types and distinct modules. Hence, it is impor-
tant that its checking can be customized to a particular style of programming.
Users of traditional lint often complain that the number of spurious messages
overwhelms the number they consider important. This often leads to significant
messages being dismissed, or programmers giving up on the tool entirely. We
were wary of this potential flaw in designing LCLint, and tried to include means
for user control so that only the desired messages appear.

This flexibility also enables the use of LCLint to impose a particular coding style.
Command line options to LCLint can be prescribed by a project manager, to
require that all programmers adopt common conventions such as using C prim-
itive types strictly. Then LCLint can be used to check the code conforms to these
conventions.

� incremental effort and gain — Programmers should not have to put much effort
into writing specifications to get significant benefits from using LCLint. Benefits
should increase as further effort is put into the specifications.

� easy to learn and use — Since LCLint is intended to be an entry into writing
formal specifications for programmers who would not otherwise write them,
the knowledge of formal specifications (and Larch specifically) needed to start
realizing the benefits of LCLint should be minimal. LCLint should be as easy to
run as a compiler, and its output should be easy to understand.



1.2. BACKGROUND 13

1.2 Background

LCLint checks ANSI C source code using LCL specifications. This section briefly describes
these foundations. No further knowledge should be necessary to understand this
thesis, although some C programming experience is helpful.

1.2.1 C

C is a general-purpose, block-structured, low-level programming language [KR88,
p. 1]. Several factors contributed to the choice of C as the target language for LCLint’s
source code checks. C does not provide any mechanisms for type abstraction — the
typedef mechanism for defining new types merely introduces a synonym for a con-
crete type. Hence, C provides more opportunity for added value checking than lan-
guages that provide abstract types. This also means C allows added flexibility —
we can implement routines having access to more than one abstract type, or rou-
tines in the module implementing an abstract type that are not allowed to use the
representation.

C is widely used and there are large bodies of existing code which need to be main-
tained. Most C programmers are aware of many language pitfalls [Koe89]. While
experienced programmers in any language make mistakes, C’s economical syntax and
limited type checking make C programmers particularly prone to simple programming
errors that are not detected by the compiler. This makes static checking tools for C

especially useful.

1.2.2 Larch

The Larch family of languages is a two-tiered approach to formal specification [GH93].
A specification is built using two languages — the Larch Shared Language (LSL),
which is independent of the implementation language, and a Larch Interface Lan-
guage designed for the specific implementation language. An LSL specification defines
sorts, analogous to abstract types in a programming language, and operators, analo-
gous to procedures. It expresses the underlying semantics of an abstraction.

The interface language specifies an interface to an abstraction in a particular pro-
gramming language. It captures the details of the interface needed by a client using
the abstraction and places constraints on both correct implementations and uses of
the module. The semantics of the interface are described using primitives and sorts
and operators defined in LSL specifications. Interface languages have been designed
for several programming languages, including C[GH93, p. 15].

1.2.3 LCL

LCL [GH93, Tan94] is a Larch interface language for C. LCL uses a C-like syntax.
Traditionally, a C module M consists of a source file, M.c, and a header file, M.h.



14 CHAPTER 1. INTRODUCTION

mutable type intSet;
uses Set(int, intSet);

int nsets;

bool intSet_member (intSet s, int e) {
ensures result = e 2 s^;

}

bool intSet_insert (intSet s, int e) {
modifies s;
ensures result = e 2 s^ ^ s 0

= insert (e, s ^);
}

intSet intSet_create () int nsets; {
modifies nsets;
ensures fresh(result) ^ result 0

= {} ^ nsets 0
= nsets ^ + 1;

}

bool intSet_choose (intSet s, out int *choice) {
modifies *choice;
ensures if (result) then (*choice) 02 s^

else size(s ^) = 0;
}

int intSet_size (intSet s) {
ensures result = size(s ^);

}

void intSet_initMod () int nsets; {
modifies nsets;
ensures nsets 0

= 0;
}

Figure 1-1: Example LCL specification

The header file contains prototype declarations for functions, variables and constants
exported by M, as well as those macro definitions that implement exported functions
or constants, and definitions of exported types. In common programming practice,
clients of M #include M.h and refer to it for documentation. consult M.c.

When using LCL, a module includes two additional files — M.lcl, a formal specification
of M, and M.lh, which is derived by LCLint from M.lcl. Clients use M.lcl for documen-
tation, and should not need to look at any implementation file. The derived file, M.lh,
contains include directives (if M depends on other specified modules), prototypes of
functions and declarations of variables as specified in M.lcl. The file M.h should now
include M.lh and retain the implementation aspects of the old M.h — but is no longer
used for client documentation.

LCL supports exposed types (equivalent to C types) and abstract types (not supported
by C). Abstract types may be immutable or mutable. An instance of an immutable



1.2. BACKGROUND 15

type cannot change value during execution. An integer, for example, is an immutable
type. An integer variable may be assigned different values during an execution, but
the value of a particular integer never changes. A mutable type is viewed as an object,
whose value is determined by the computation state. The value of a mutable type
may be changed in the course of the execution, but it remains the same object. This
corresponds loosely to the C notion of a pointer to a storage location. LCL provides
notation for getting the value of an object (e.g., x) in the state before (x ^) or after
(x0) a function is invoked. Global variables are declared using C syntax and are also
viewed as objects since their value depends on the computation state.

Figure 1-1 is an example LCL specification for an abstract type to represent mutable
sets of integers. The first line declares intSet to be a mutable abstract type. By
declaring it as an abstract type, the specification leaves it up to the implementation to
decide on a representation and hides implementation details from clients of the mod-
ule. The next line incorporates the Set trait, using int as the name of an element in
the set, and intSet as the name of the set. Set is a trait in the LSL handbook [GH93,
p. 166-167] for describing a mathematical set abstraction. It provides operators such
as 2 and insert on the underlying specification of intSet to provide semantics for
the specification.

The next line declares a global variable of type int . The global variable nsets
represents the number of live intSet s. This may be useful for analyzing program
performance or detecting storage leaks.

The remainder of the specification consists of function specifications. LCL function
specifications are similar to C function definitions, consisting of a header and a body.
The header is identical to an ANSI C function prototype, except global variables may
be listed after the parameter list and function parameters may be preceded by the
out type qualifier. The global list limits the globals which may be used in the imple-
mentation of a function. An out parameter constrains the use of a parameter in the
function body. The pre-state value pointed to by an out parameter should not be used
by the function. Since C does not support multiple return values, typically functions
return additional values by storing them in locations passed as pointer parameters.
LCL specifications make this convention explicit by declaring the parameters with
out .

The body of the specification contains clauses constraining both the implementation
and use of the function. All clauses are optional, and the semantics for missing
clauses is defined. A requires clause gives the pre-conditions — it places constraints
on the parameters and state when the function is called. An omitted requires clause
means there are no constraints on the caller, other than the implied constraint that
all parameters that are not specified out must be defined before the call. A modifies
clause lists those parts of the visible state that the function may change. This includes
global variables, parameters that are mutable abstract types, or values pointed to by
reference parameters. Items in the modifies clause may be specific fields of struc-
tures or elements of arrays. A missing modifies clause means nothing visible may be
changed. An ensures clause gives the post-conditions on valid calls of the function. If
the requires clause is satisfied, the return value and post-state of the function must



16 CHAPTER 1. INTRODUCTION

satisfy its ensures clause. A missing ensures clause means the result and behavior
is unconstrained, except for not modifying anything not given in the modifies clause.

The specification for intSet_member denotes a function that takes intSet and int
parameters and returns a bool . No globals are listed, so no global variable may be
used in its implementation. There is no requires clause, so there is no obligation
on the caller other than the implicit obligation that the actual arguments be defined
before the call. There is no modifies clause, so the function must not modify any
visible state. The ensures clause constrains the value returned by the function to be
equal to e 2 s ^. So, its result is true if and only if e is an element of the pre-state
value of s .

The specification for intSet_insert is similar, except that it also includes a modifies
clause, indicating that s may be modified by the function. The first conjunct of the
ensures clause is identical to the ensures clause for intSet_member . The second
conjunct constrains the value of s when the function returns — the post-state value
of s is the result of inserting e into its pre-state value.

The next function specification, intSet_create , illustrates the use of global vari-
ables. We wish to maintain nsets as a count of the number of live sets. When a
new intSet is created, nsets should increase by one. Hence, intSet_create lists
nsets in its global list and modifies clause, and constrains the value of nset after
the call to be one more than its value before the call.

The specification for intSet_choose illustrates the use of out parameters to re-
turn values. If the result is TRUE, an element of s is returned through the out
parameter choice . If the set it empty, FALSE is returned. The implementation of
intSet_choose may not assume the value pointed to by choice is defined when
the function is called.

The final operation, intSet_initMod initializes the module by setting the post-state
value of nsets to 0. According to LCL conventions, if a module provides an initMod
operation, a client of the module should call it to initialize module state before using
any of its other operations.

All the semantic content of a function specification can be given using requires, mod-
ifies and ensures clauses. Two additional clauses are provided for clarity and redun-
dancy. A checks clause can be used to describe an obligation on the implementation
to test certain conditions and report an error if they are not met. Although the checks
clause provides convenient notation, anything expressed by a checks clause could be
stated explicitly in the ensures clause. A claims clause provides an assertion that
must follow from the specification. It adds redundancy and clarity to the specification.

The only parts of the function specification used by the current version of LCLint are
the header and the modifies clause. Section 5.2.2 discusses possibilities for improving
checking by using more information in the specification.

1.2.4 Programming Conventions

LCLint’s effectiveness depends on certain programming conventions. While it may be



1.3. RELATED WORK 17

run on any C program, it cannot do better checking than a traditional lint unless the
program conforms to stylistic guidelines.

LCLint adds type encapsulation to C, but this is only useful if programs are written
in a modular style employing data abstractions. Although C does not provide type
encapsulation mechanisms, many C programmers adopt a style which emulates ab-
stract types. A well-designed program can usually be broken down into manageable
modules, each implementing an abstract type. This makes development easier, and
produces a program that can be more easily understood and maintained. The details
of a type’s representation are hidden where it is used, meaning clients need only un-
derstand the specification to use the type. Implementors are now free to change the
implementation of the abstract type without fear that new problems will be intro-
duced in clients that use the type. Maintainers can understand a system built using
abstract types in small discrete pieces, and fix problems in one abstraction without
worrying about introducing problems elsewhere.

Since C lacks mechanisms for type abstraction, programmers must rely on conven-
tions. Typically, an abstract type will be implemented using one source file and one
header file. The header file exports the type definition and its operations. Clients
using an abstract type access the type through provided operations, but should not
manipulate the concrete representation of the type directly. LCLint is flexible in al-
lowing modules to be split across files, although this is usually evidence of a poor
design. Ways to control whether code is an implementation or client of an abstract
type are described in Appendix A.1.

In standard C all assignments exhibit copy semantics. Variables may be pointers to
storage locations and share values using pointer indirection. There is no notion of
an object whose value may be mutated. LCL introduces mutable abstract types that
denote objects whose value may change during an execution. In order for clients to
use mutable types, we need to adopt a convention for assignment semantics. We adopt
the convention that assignments of mutable types must have sharing semantics. That
is, if s and t are mutable types, after the assignment s = t, s and t refer to the same
object. Any modification of s will also modify t, and vice versa. Clients may now safely
use assignment with abstract types, knowing that sharing semantics are used. It is
up to the implementation of an abstract type to ensure that assignments involving
the type will have sharing semantics. This is most commonly done by using pointer
indirection or another mutable type in the representation, however it may also be
done by using handles for indexing into a local array or external files. LCLint gives
a warning if a mutable abstract type is not represented using a mutable type or a
pointer indirection, however it cannot confirm that sharing semantics are preserved
if a handle representation is used.

1.3 Related Work

The primary goal of LCLint is to help programmers detect and eliminate bugs. Many
other approaches to this goal exist, including redundancy in programming language



18 CHAPTER 1. INTRODUCTION

design, software engineering methodologies, run-time assertions and debugging envi-
ronments. While these are all useful in developing high quality software, this thesis
focuses only on approaches for detecting bugs statically. Most of these have been
one of two extremes — program verifiers which use a complete description of the
intended behavior to prove that the implementation is correct, and unaided static
checkers which have no information about the program aside from the source code
itself. Less common are attempts to use partial specifications (often as embedded
comments) to do static checking. This middle category encompasses LCLint.

1.3.1 Program Verifiers

Much work has been done in program verification. Program verifiers help in con-
structing a formal proof to show that an implementation satisfies the constraints
given in its specification. Such a proof can be convincing evidence that the program
is correct, but it also relies on our confidence in the correctness of the specification
and the proof. Unfortunately, the cost of program verification is prohibitive for nearly
all projects. It is necessary to write (usually complete) formal specifications before
attempting the verification. Automated tools are available to aid in proof construc-
tion, but it still requires much effort, ingenuity and knowledge from the programmer
to write the complete specification and direct the proof.

1.3.2 Unaided Static Checking

Several tools have been developed for statically checking source code without the
assistance of any specifications. Most of these are based on type checking. Static
type checking has been a popular means for detecting bugs since Algol-60. Many
languages provide type checking, including C, in which types are equivalent if they
have the same concrete structure. Programmers may define new names for a type,
but they are merely aliases for the original type.

Abstract Types

Many modern languages, including CLU [LAB+81, LG86] and Ada [Ada83], provide
mechanisms for defining new types that are distinct from their underlying types.
Abstract types hide their representation and implementation details from clients.
This increases the number of bugs that may be detected during compilation, and
encourages a modular programming style. LCLint adds this functionality to C.

Other methods have been used to provide abstract types in languages that do not
provide them. The Fortran Abstract Data (FAD) system [MMS88] supports data ab-
straction in Fortran by extending the syntax of Fortran and by providing a prepro-
cessor to convert FAD declarations into standard Fortran. The preprocessor prohibits
programs from directly manipulating any variable that is declared as an abstract
type. The interface to an abstract type can be specified either formally or informally



1.3. RELATED WORK 19

and implemented using inline substitutions and standard Fortran. The main differ-
ence between this approach to adding abstract types and LCLint’s approach, is that
to use FAD we need to use not only a different programming style, but an extended
programming language. Programs written using FAD abstractions cannot be compiled
by a standard Fortran compiler or readily understood by a Fortran programmer with
no knowledge of FAD. LCL specifications used by LCLint are orthogonal to the code.
Although the style of programming may change, the source code is still standard ANSI

C.

C++ is a programming language based on C. It adds support for abstract types and
data encapsulation within an object-oriented paradigm [Str86]. For programmers
who want to use an object-oriented style, using C with LCLint is not a viable alternative
to C++. For C programmers who wish to use a style employing abstract types, LCLint
provides data encapsulation and type safety without the additional overhead and
complexity of C++. Further, LCLint does checks not related to data abstraction that
could be useful in both C and C++.

Type States

The NIL compiler [SH83] extends type checking to also check “typestates.” Each type
has a set of typestates defined by the programming language that can be determined
by the compiler at any point in the code. An object can be in only one typestate at
a given point in the code, but its typestate may change during execution. A subset
of all operations of a type are permitted on an object in a particular typestate. Some
operations are declared to change the typestate of an object. For example, a data
structure may have typestates new, allocated and initialized. A new object may not
be read or written, but an allocate operation may be applied to it to create an
allocated object. The allocated object may be assigned a value but not read. Interface
definitions include declarations of the typestates of the call parameters before and
after the call. The NIL compiler determines the typestate of objects using simple rules,
and detects execution sequences that violate typestate constraints at compile time.

A similar concept has been applied to ML . Standard ML includes no type declarations,
but uses type inference to determine the possible types of an expression. This provides
the ability to define polymorphic functions and saves the programmer from having to
write type declarations, but gives up the documentation and bug-detection advantages
of explicit type declarations. Refinement types attempt to enhance bug detection
within the ML type system [FP91]. A type may be refined into several subtypes,
akin to typestates. We could refine a stack type into two subtypes: empty and non-
empty. Then the create operation would have the type signature create : ! empty,
and a top operation that returns the top element of a non-empty stack would have
the signature top : non-empty !t. Unlike typestates in NIL , objects in ML may
have multiple refinement types. Programmers define the refinement types for basic
constructors, and they are inferred by the compiler elsewhere.

The current version of LCLint does not have a notion of type states. It is possible
to extend LCL to allow specifications of states of an abstract types and specify state



20 CHAPTER 1. INTRODUCTION

transitions on parameters. This is probably not worth the effort. Most types have only
uninitialized and initialized states. Errors involving use of uninitialized variables
are detected by simple analysis. More complex conditions can be specified using the
requires or checks clause.

Lint

The lack of type checking for function calls in early versions of C prompted the devel-
opment of lint[Joh78] and its extensive use. Unlike the approaches mentioned above,
lint, like LCLint, is meant to be orthogonal to a compiler.

Some of the errors detected by lint result from stricter type checking than C com-
pilers. In addition, lint detects a number of other problems including unreachable
statements, variables declared but unused, functions that return on some execution
paths but not on others, and inconsistent function argument types. Today, following
the standardization of C and improvements in compilers, many C compilers incorpo-
rate most of the traditional lint checks. There are still benefits from additional lint
checking, especially in writing portable code.

Several academic and commercial systems have been developed to extend or improve
lint checking. Check [Spu90], a static checker for ANSI C, provides many useful source
checks not performed by standard lint or LCLint. Its most notable similarity to LCLint
in contrast to traditional lint is its macro checking (see Section 2.5).

1.3.3 Static Checkers Employing Specifications

Falling between full program verifiers and unaided static checkers are tools that
use formal specifications to some degree but fall short of complete verification of
the correctness of a program. These tools attempt to maintain the simplicity of use
and efficiency of most simple static checkers, while gaining stronger checking using
specifications. These systems relate most closely to LCLint.

Sequencing Constraints

Several checkers have been developed to analyze data usage using some form of for-
mal specifications. Many of these involved constraining the order in which operations
may be performed — for instance, a variable must be initialized before it is used. Fos-
dick and Osterweil [FO76] developed DAVE, a system for detecting data flow anomalies
in Fortran programs using regular expressions to describe acceptable sequences of
actions on data. Typical errors detected by DAVE include using a variable before it is
defined. Wilson and Osterweil [WO85] extended these techniques in a similar tool
for C. LCLint reports errors when a local variable or out parameter is used before it
is defined.

More recent extensions to this research led to systems where programmers could
write specifications to describe specific sequencing constraints. Cesar [OO89, OO92],



1.3. RELATED WORK 21

allowed programmers to specify sequencing constraints for an abstract type using
a specification language based on regular expressions. For example, a programmer
could specify a file type that may be opened, written to multiple times, and closed in
that order. Cesar detects violations of the specified constraints — for instance, if the
file is written to before it is opened. It is unclear what fraction of bugs are manifest
as sequencing constraints — Osterweil and Olender optimistically claim up to 40%,
but not enough experience has been attained to verify this. Their claim assumes that
programs would be constrained to always check that a pointer is not null before it
is referenced unless it is immediately preceded by an initialization, which may be
unacceptable to most programmers. The prototype Cesar system was too inefficient
to be a useful tool in real software development — it was considerably slower than a
compiler. Some of this may be improved with better implementation, but the global
analyses required may render these types of checking impractical in the foreseeable
future.

Comments Analysis

Another approach, taken by Howden [How90], involves annotating programs with
special comments. A specialization of comments analysis, is flavor analysis. Objects
can be described by flavors, similar to typestates, which may change during the ex-
ecution of a program. Programmers add special comments in the code to assert the
flavor of an object at that point of the execution or to denote assumptions about the
flavors of an object. The assertion comments are used to construct a finite state model
of object flavors along program execution paths. This is then checked for consistency
against the assumptions. Although the comments are embedded in the code, they are
only analyzed for consistency against other comments — no analysis involving the
code is done. A class of decomposition errors involving incorrect assumptions about
the state of variables and data structures can be detected, but no attempt is made to
verify that the assertions and assumptions are consistent with the code.

Anna

Anna [Luc90] is a specification language for Ada. Annotations are added to Ada pro-
grams. These annotations may constrain valid values of a type, describe the behavior
of functions, and specify interfaces to packages, the Ada notion of abstract types. Like
LCLint, it provides the freedom to specify and annotate as much or as little as the pro-
grammer desires. The Anna Transformer [San89] transforms the specifications into
run-time assertions that perform consistency checks when the code is executed. Run-
time assertions can detect many bugs that are not statically detectable, however their
effectiveness depends on the programmer choosing appropriate test cases.

Another tool developed for Anna, is the Anna Package Specification Analyzer [Man93].
This is intended primarily for determining the correctness of a specification. Here,
instead of using formal specifications to test a given implementation, the specifica-
tions are used to symbolically model the constraints of any implementation. Given



22 CHAPTER 1. INTRODUCTION

complete enough specifications, the execution of an implementation can be simulated
using the specification.

The Stanford Ada Style Checker [WSS91] used Anna tools to develop a system for
specifying a style of Ada coding and checking that a program conforms to it. A project
manager specifies style guidelines in a style specification language, which are used
to generate a style checker. The style checker is then run on an Ada program and
style violations are reported. In some ways, this corresponds to running LCLint with
no specifications using prescribed flag settings.

Inscape

Inscape explores the constructive use of specifications [Per89]. Rather than serving
solely for documentation and formal verification, specifications are treated as integral
to the development process. The specification language, Instress, can specify pre-
conditions and post-conditions of a function, as well as obligations on the caller that
must hold at some point following the call (such as closing a returned file). Inscape
propagates these specifications through the implementation using a special propa-
gation logic incorporating unknown and possible values. Bugs are detected when a
pre-condition or an obligation is contradicted.

LCL has no means for expressing obligations on the caller after the call has been made.
Some useful checking could be done if specifications could require that the caller at
some point frees a returned object, or that the caller not modify the returned object.
It is an open question if and how LCL can be extended to express these constraints,
and whether they can be used by LCLint effectively.

Aspect

Aspect [Jac92] is an approach for efficiently detecting bugs in CLU programs based on
unsatisfied dependencies. The specification language describes dependencies between
“aspects” of objects (such as an array’s size) in the post-state and pre-state, and the
checker reports when a specified dependency is not present in the implementation.
Dependency information in LCL specifications is often not available, or is hidden deep
within the ensures clause. Moreover, LCL has no notion of aspects of an abstract
type so it cannot do some of the sophisticated checking done by Aspect. Compared to
Aspect, LCLint’s checks are all somewhat superficial — they are unlikely to find bugs
such as using the wrong variable of the correct type or omitting statements that can
be found by Aspect.

Aspect decided soundness was crucial to its effectiveness — every error reported
is guaranteed to be an error in the code or the specification. LCLint relaxes this
restriction — some checks may be unsound, but all unsound checks can be turned off
by the user.

Another difference between LCLint and most of the checkers mentioned here including
Aspect, Anna and comments analysis, is that LCL specifications are separated from



1.4. OVERVIEW OF THESIS 23

the source code. The differences between specifications that are separate from the
code, and those that are integrated, are more than cosmetic. Each approach has
advantages and disadvantages.

Specifications which are integrated into the code can deal with lower level details
of the implementation such as constraining local variables. Since they are readily
apparent when the code is edited, implementors are more likely to adapt the speci-
fications as they change the code. They are less likely to focus on the client view or
provide useful client-level documentation. Even if they function only as client-level
specifications, they are likely to be biased towards a particular implementation.

On the other hand, specifications separate from the code cannot refer to implemen-
tation details. They describe the function from the client’s point of view, and only
constrain the pre-state and post-state of the function. Implementations are uncon-
strained as long as they return with the state satisfying the post-condition. Stand
alone specifications are useful for documentation and formal reasoning. They make
the boundary between specification and implementation clear.

1.4 Overview of Thesis

The remainder of this thesis demonstrates the use of LCLint and discusses the more
general issues involved in using specifications to detect bugs.

Chapter 2 describes some of the specific checks done by LCLint. Chapters 3 and 4
describe experiences using LCLint to check real programs. In Chapter 3, LCLint is
used to check a fully specified program taken from the example in [GH93, Chapter
5]. In Chapter 4, LCLint is used to understand and maintain a program with no
specifications in incremental steps involving adding specifications and fixing source
code. Chapter 5 draws conclusions on the effectiveness of LCLint and speculates on
possibilities for using specifications to check source code.

An appendix contains excerpts from the user’s guide. This includes information on
methods for using LCLint with auxiliary tools, complete descriptions of options, and
explanations of LCLint messages.



24 CHAPTER 1. INTRODUCTION



Chapter 2

Checks

This chapter highlights key checks performed by LCLint, and illustrates them with
contrived examples. A complete description of checks done is given in Appendix A.
Real examples of bug detection are given Chapters 3 and 4.

LCLint was built on the LCL checker [Tan94]. It includes all the checks on specifications
done by the LCL checker. In this thesis, however, we are only concerned with those
checks integrating specifications and source code.

Checks done by LCLint are designed to maximize the number of real bugs reported,
while minimizing the number of spurious messages. Most checks are sound and com-
plete — it is possible to determine and report exactly those cases where a particular
problem is present. Some checks involving modifies checking and use before definition
are unsound and incomplete. There are cases where it is impossible or computation-
ally intractable to determine if a suspected problem is present so a message may
be issued for a problem that is not present. In other cases, a real problem may go
undetected. LCLint resolves these decisions in favor of pragmatic compromises. Given
that the goal is to find bugs in real programs, it is acceptable to attempt some checks
that are not complete — while no guarantees can be made that all instances of a par-
ticular class of bug will be found, finding some instances is still beneficial. Likewise,
it may be acceptable in rare circumstances for checks to be unsound — as long as the
number of spurious messages produced is small compared to the number and impor-
tance of the real bugs that are found. The hope is that the gain incurred by finding
some additional bugs far outweighs the annoyance of occasional spurious messages.
Command line options and control comments allow users to suppress inapplicable
messages.

2.1 Abstract Types

Section 1.2.4 described programming conventions for emulating data abstraction in
C. Without automated checking, programmers must rely on careful coding and visual
inspection to support these conventions. LCLint provides a means for checking these

25



26 CHAPTER 2. CHECKS

Specification: (bigger.lcl )

imports intSet;

bool bigger1 (intSet s1, intSet s2) {
ensures result = size(s1 ^) > size(s2 ^);

}

/* same for bigger2 and bigger3 */

Implementation: (bigger.c )

1 # include "intSet.h"
2
3 bool bigger1 (intSet s1, intSet s2)
4 {
5 return (s1->size > s2->size);
6 }
7
8 bool bigger2 (intSet s1, intSet s2)
9 {

10 return (s1 > s2);
11 }
12
13 bool bigger3 (intSet s1, intSet s2)
14 {
15 return (intSet_size(s1) > intSet_size(s2));
16 }

LCLint execution:

bigger.c:5,11: Arrow access field of abstract type (intSet): s1->size
bigger.c:5,22: Arrow access field of abstract type (intSet): s2->size
bigger.c:10,11: Operands of > are abstract type (intSet): s1 > s2

Figure 2-1: Type abstraction violations

conventions.

Programmers may specify types as abstract using LCL. Abstract types are type-
checked differently from their concrete representations. In the implementation of
an abstract type, the abstract type and its representation are interchangeable. In a
client of an abstract type, the abstract type is checked by name. A client should not
depend on the concrete representation of the type, only on its provided operations.

Figure 2-1 shows three attempts to write a function to check if one intSet (spec-
ified as an mutable abstract type in Figure 1-1) has more elements than another.
Standard lint reports no errors. LCLint reports three errors all involving violations
of abstraction barriers. Each reveals an instance where the client depends on the
concrete implementation of an abstract type.



2.1. ABSTRACT TYPES 27

The first two messages concern bigger1 , where the -> operator accesses a field in
the structure pointed to by its left operand. The expression s1->size produces the
size field of the structure pointed to by the intSet variable s1 . Given the current
implementation of intSet as a pointer to a structure containing an int field named
size , this code compiles without error. It may even get the correct result, if size
represents the number of elements in the intSet . However, it depends unacceptably
on the representation of an abstract type. Suppose intSet is reimplemented using a
type that is not a pointer to a structure containing a size field. The client code would
have to be rewritten. At least in this case, when the client is compiled errors would
be detected. It would be worse, however, if intSet were reimplemented using the
same type, but changing the meaning of the size field. In the new implementation,
size could be the number of elements in the array representing the set as before, but
instead of checking for duplicates we insert all elements into the set. Then, size is
not the number of set elements, but the number of insert operations on the set. The
client code would compile without error, but sporadically return incorrect results.

The final messages concern a similar violation of type abstraction in bigger2 . Two
intSet s are compared directly using the built-in > operator. Standard C allows com-
parison operations on any type except structures and unions, so no error is detected
by a C compiler. The result of a comparison involving abstract types depends on the
representation of the types. If intSet is implemented using a pointer to a structure,
the > operator compares the addresses of the pointers. The result is likely to be
meaningless. One can imagine an implementation of intSet using handles to refer-
ence an array sorted by size where this would produce the correct result. However,
this depends implicitly on the implementation of an abstract type, but changes in
the abstract type representation will not produce C compiler errors when the code is
compiled. It is likely that difficult to detect bugs will be introduced if a programmer
believes the intSet type is abstract and changes its representation.

A correct implementation is given by bigger3 . Here, the abstract intSet_size
operation is used. As long as intSet_size correctly implements its specification,
bigger3 will produce the correct result regardless of the particular representation
of an intSet .

Only two C operators can be used with abstract types: assignment (=), and sizeof .
Assignment is permitted since its meaning does not depend on the representation
of the type, as long as the convention for sharing semantics of mutable types (see
Section 1.2.4) is followed.

The permissibility of sizeof is based on practical concerns. Programmers often
need to use sizeof to allocate memory — for instance, if we want to allocate a
block of ten elements of an abstract type we need to know the size of each element.
This is a legitimate dependence on the representation type, since it is unlikely that
changing the representation would cause problems for the client. On the other hand,
malicious programmers could easily write clients that depend unacceptably on the
representation of an abstract type using sizeof . For instance,

if (sizeof(x) == 4) crash();



28 CHAPTER 2. CHECKS

Despite this, LCLint does not issue warnings when the sizeof operator is used on an
abstract type. Remembering that the goal is to detect real bugs without generating
spurious messages, it seems appropriate to allow use of sizeof on abstract types.

2.2 Globals Checking

As with violating type abstraction barriers, it is problematic for code to depend on
global variables not listed in its specification. Clients may have left this variable in
an inconsistent state at the time of the function call, unaware that it is used by the
called function. It is also likely to be an error if the body of a function does not use
each global listed on at least one execution path. This suggests either an unnecessary
dependency in the specification, or a missing dependency in the implementation.

LCLint will check that an implementation does not use any global variables that are
not listed in its specification, and that each global listed is used somewhere in the
function body. LCLint considers a global to be used if it appears in the body of the
function or it is listed in the globals list of a called function. Determining exactly
what paths through a function may be executed is an undecidable problem, but from
an error-checking perspective it is probably more useful to detect textual references.
It would be useful if an error could be reported when there is no possible execution
of a function that uses a listed global, but this is infeasible.

Figure 2-2 shows typical global usage errors reported by LCLint. The first message
reports access to a global variable not listed in the function’s global list. The second
error illustrates the propagation of global usage through the specification. Since g
specified to use glob2 , the call to g in constitutes a use of glob2 . Note that the
implementation of g is irrelevant — the error is reported based solely on information
in the specification of g and no inter-procedural analysis is required. The final error
reports a global listed in the specification that does not appear in the implementation.

2.3 Modifies Checking

It is often a problem when a called procedure modifies something visible to its caller
without the caller’s knowledge. LCLint attempts to check that no externally visible
value not listed in the function’s modifies clause is modified by the body of the func-
tion.

In general, determining if something can be modified by a code fragment is unde-
cidable. Given the time constraints on both LCLint’s execution and its development,
a simplistic view of modification is taken: an object is deemed modified whenever
it appears on the left hand side of an assignment statement, is an operand to the
increment or decrement operator, or may be modified by a called function according
to the called function’s modifies clause.

Some typical modification errors are shown in Figure 2-3. The first error reports
modification of state visible to the caller through a parameter pointer. The second



2.3. MODIFIES CHECKING 29

Specification: (globals.lcl )

int glob1;
int glob2;

int f () int glob1; { }

int g (int a) int glob2; { }

Implementation: (globals.c )

1 # include "globals.h"
2
3 int f ()
4 {
5 int a = glob2;
6
7 return (g(a));
8 }
9 ...

LCLint execution:

globals.c:5,11: Unauthorized use of global glob2
globals.c:7,11: Called procedure g may access global glob2
globals.lcl:4,1: Global glob1 listed but not used

Figure 2-2: Global usage errors



30 CHAPTER 2. CHECKS

Specification: (incInsert.lcl )

imports intSet;
int nins;

void incInsert (intSet m, int *a) int nins; { }

Implementation: (incInsert.c )

1 # include "intSet.h"
2

3 int nins = 0;
4

5 void incInsert (intSet s, int *a)
6 {
7 *a = *a + 1;
8 if (intSet_insert(s, *a))
9 nins++;

10 }

LCLint execution:

incInsert.c:7,4: Suspect modification of *a: *a = *a + 1
incInsert.c:8,7: Called procedure intSet_insert may modify s:

intSet_insert(s, *a)
incInsert.c:9,5: Suspect modification of nins: nins++

Figure 2-3: Modification errors



2.3. MODIFIES CHECKING 31

error results from the call to intSet_insert . In intSet.lcl (see Figure 1-1),
intSet_insert is specified to modify its first argument, so the call may modify s .
The final error reports modification of a global variable. Note that unlike parameters,
even without a pointer indirection an assignment to a global modifies visible state.
Since other functions have access to the global variable, any change in its value is a
visible modification.

Unlike globals checking, modifies checking is only done in one direction. No errors are
reported if the implementation of a function does not modify all state specified in its
modifies clause. The semantics of modifies places no obligation on the implementation
to modify anything, it only constrains what must not be modified. In practice, though,
a missing modification often suggests a flaw in the specification or implementation.
It would be useful to get errors if there is no execution path through a function which
produces a specified modification, however, this is not done by the current version of
LCLint, and it undecidable in general.

There are several difficulties involved in accurately detecting client-visible modifica-
tions. Because of this modifies checking is necessarily unsound and incomplete.

2.3.1 Unseen Modifications

The semantics of LCL is that a modification only violates the specification if the modi-
fication is visible in the state of the caller after the function returns. LCLint, however,
reports errors whenever a client visible value is modified in the body of a function,
without analyzing the modifications to determine if it is visible to the client when
the function returns. As a result, LCLint may report modification errors that are not
present.

A function may modify a visible value during its execution, but restore the original
value before returning. For instance, it may increment a global variable at the be-
ginning of the function, and decrement it before returning on all possible execution
paths. The value of the global variable is not modified by the function — its value
in the post-state is identical to its value in the pre-state. Determining that a modi-
fication is reversed before a function returns, however, is well beyond the scope of a
simple static checker.

In other cases, an abstract operation may modify the concrete representation of a
type without causing a client-visible modification. There can be several possible con-
crete representations for an abstract value. Sometimes, switching between different
representations can be useful for improving efficiency. For instance we could rep-
resent a set using an array. The order of elements in the array is invisible to the
client, but it may improve the efficiency of certain operations if we re-order the ele-
ments of the array. Since the re-ordered array maps to the same abstract set, there
is no modification visible to a client. A modification that switches between concrete
representations of the same abstract type is known as a benevolent side-effect. Such
modifications should not be listed in the modifies clause, since they do not produce
changes visible to the client. However, LCLint will not be able to determine that the
modification is invisible to the client. Determining if a modification is a benevolent



32 CHAPTER 2. CHECKS

side-effect would require specifiers of abstract types to provide abstraction functions
giving the mapping from concrete representations to abstract values, and require
LCLint to analyze changes at a semantic level. As with reversed modifications, this
is well beyond what can be done by simple static analysis. LCLint provides control
comments for suppressing modification errors when a programmer is aware that an
apparent modification will not be visible to the caller.

2.3.2 Aliasing

In C, variables may be pointers that reference memory locations. Since a pointer may
reference the location of another variable or a location referenced by another variable,
it is possible to modify externally visible state through a local variable. There are also
instances where an apparent modification to a parameter variable does not modify
caller visible state. The parameter variable may have been assigned locally, so that
it no longer references the actual parameter.

It is impossible to statically determine aliases exactly. Even in programs where
execution paths can be easily determined, C pointer arithmetic makes static alias
detection impossible. C allows arbitrary arithmetic using pointers, so programs can
be written that depend unpredictably on the state of the memory system.

Fortunately, in real programs most aliases can be detected. LCLint attempts to analyze
aliases in order to minimize the number of unreported modification errors without
generating messages regarding modifications that are not present because of incorrect
aliases. Rarely, incorrect assumptions are made leading to LCLint recording aliases
that are not present. If these aliases refer to client-visible state, spurious modification
errors may be issued. It is more common that LCLint will fail to detect an alias which
is present. This may lead to modifications to client-visible state in the code that are
not reported by LCLint.

LCLint analyzes aliases according to some simplifying assumptions:

� the result of pointer arithmetic does not alias anything

� the return value of a function call does not alias anything, and function calls do
not create new aliases

� the possible aliases at the end of a while or for loop are the union of the aliases
before the loop and the aliases derived from tracing the body of the loop once

� all paths through conditional branches are possible

The first two assumptions reflect limitations on what can be derived statically. The
minimum assumptions have been chosen to prevent spurious aliases. Alternatively,
the maximal assumptions could be used to eliminate undetected aliases — the re-
sults of pointer arithmetic and function calls may alias anything. These would lead
to incorrect aliases being assumed and may generate spurious messages. Another
possibility would be to use additional information in the specification to determine



2.3. MODIFIES CHECKING 33

Specification: (alias.lcl )

imports intSet ;

int glob;
intSet globSet;

int f(int *a, int **c, intSet s1, intSet s2)
int nsets; int glob; intSet globSet;

{ modifies nsets, globSet, *c; }

Implementation: (alias.c )

1 # include "alias.h"
2
3 intSet globSet;
4 int glob;
5
6 int f(int *a, int **c,
7 intSet s1, intSet s2)
8 {
9 int *x;

10
11 x = a; x aliases a
12 *x = 4; modifies *a
13 *c = &glob; *c aliases &glob
14 **c = 4; modifies glob
15
16 globSet = s1; globSet aliases s1
17 s1 = s2; s1 aliases s2
18 intSet_insert (s1, 4); modifies s2
19 s2 = intSet_create();
20 intSet_insert (s2, 5); no visible modification
21 return 3; returns with *c aliasing &glob
22 } and globSet aliasing s

LCLint execution:

alias.c:12,4: Suspect modification of *a through alias *x: *x = 4
alias.c:14,5: Suspect modification of glob through alias **c: **c = 4
alias.c:18,3: Called procedure intSet_insert may modify s2 through

alias s1: intSet_insert(s1, 4)
alias.c:21,12: Function returns with parameter *c aliasing global &glob
alias.c:21,12: Function returns with global variable globSet aliasing s1

Figure 2-4: Modifications in the presence of aliasing



34 CHAPTER 2. CHECKS

what the value returned by a function may alias. Then, checking could be done to
ensure that functions do not return values that alias variables inconsistently. This
would provide the best results, but requires deeper analysis of specifications than is
done by the current version of LCLint.

The remaining assumptions are necessary to make alias analysis computationally
tractable. Usually it is valid to assume that the possible aliases after many iterations
of the loop are identical to those after a single loop execution. This is not true when
an alias propagates through a loop through several iterations. For example, consider
the loop,

while (i < 3) { a = b; b = c; i++; }

Suppose before the loop, no variables are aliased and a, b and c are mutable function
parameters. After one execution of the loop body, a aliases parameter b, and b aliases
parameter c . After a second execution, a aliases parameter c instead.

To further simplify alias analysis, LCLint assumes either branch of any if statement
may be taken. For conditions involving constants it can sometimes be proven that one
branch is always taken. More common, are programs where one condition depends on
another one — that is, only some paths through a chain of conditionals are possible.
By assuming any may be taken, LCLint may report errors through impossible aliases.

In addition to the problems caused by aliases within a function, checking is jeop-
ardized if a function returns with function parameters aliasing global variables or
globals aliasing other globals. Since the body of the caller was checked using the
assumption that function calls do not create new aliases, a function that introduces
new aliases to global state in its parameters may lead to undetected modifications.
LCLint checks that no execution of a function returns with a global variable being
aliased by a parameter or another global variable. If a function returns with a pa-
rameter aliasing a global variable, the caller now has unrestricted access to the global
variable.

Although simple heuristic-based alias analysis can only approximate run-time aliases,
it can be done efficiently with a single pass of the source code, and is effective in
detecting most aliases in real programs. Modification and global errors detected
through aliases are shown in Figure 2-4.

2.3.3 Specification Aliasing

A parallel problem to source code aliasing occurs when the underlying representation
in a specification may contain other objects. The LSL sorts used in LCL specifications
may contain objects. LCLint cannot determine if objects contained in the underlying
representations are caller-visible.

Consider the hideSet abstraction specified in Figure 2-5. This uses the LSL trait,
hide , defined by:

hide (S, T) : trait
T tuple of real: S



2.3. MODIFIES CHECKING 35

imports intSet;
mutable type hideSet;

uses hide (obj intSet, hideSet);

hideSet hideSet_create (intSet s) {
ensures result 0

= [s];
}

bool hideSet_insert (hideSet s, int e) {
modifies s ^.real;
ensures result = e 2 s^.real ^ ^ s 0.real 0

= insert (e, s ^.real ^);
}

Figure 2-5: hideSet.lcl

A T in the hide trait is a one field tuple (akin to a C struct ). The uses clause in
hideSet.lcl makes hideSet a T where the real field is an obj intSet . The obj
before intSet means it refers to intSet objects, as opposed to their values. So, the
real field of a hideSet may refer to a client visible object, even if the hideSet itself
does not. This corresponds to having a pointer to a global variable inside a locally
declared structure, except that here we are dealing with objects at the specification
level.

According to its specification, hideSet_create takes an intSet and returns a
hideSet whose value is a tuple containing the intSet object. Thus, the real field of
the returned value is the object s . Future modifications to s will modify the real field
of the returned hideSet . Likewise, modifications to the real field of the hideSet
will modify s . Note that this would not be the case if the uses clause do not use obj
before intSet . Then, the real field would contain the value of s in a particular
state instead of sharing the object.

LCLint cannot keep track of these objects being shared, and it is in general impossible
to do this statically. As a result, certain modification errors go undetected.

2.3.4 Missing Specifications

LCLint is designed to be used effectively without having to write specifications for all
functions. This causes problems for globals and modifies checking. By default, no
globals or modifies errors are reported in unspecified functions. For most applications
this is reasonable, since there is no indication of which globals may be used and what
state may be modified for an unspecified function. It does mean, however, that some
modifications and global uses may go undetected. Flags are provided to override these
defaults, so that globals and modifies errors are reported in unspecified functions
following the assumption that an unspecified function should not access any globals
or modify any visible state.



36 CHAPTER 2. CHECKS

A more fundamental problem occurs when a specified function makes a call to an
unspecified one. Since there is no globals list or modifies clause for the unspecified
function, we need to make some assumptions regarding its global usage and caller-
visible modifications. One option is to assume an unspecified function uses all global
variables and modifies all its parameters and all global variables. This assumption
would prevent unreported errors involving the use of unspecified functions, but would
produce many spurious messages reporting global usage and inconsistent modifica-
tions where unspecified functions are used.

The other extreme is to assume an unspecified function modifies nothing and uses
no global variables. This is the approach taken by LCLint. This means global uses
and modifications through calls to unspecified functions will be undetected, so some
inconsistencies will not be reported. The only spurious messages that will be gen-
erated are those when a global is listed in the specification, but the only use in the
implementation is through a call to an unspecified function. If we were building a tool
intended to verify program correctness missing these errors would clearly be unac-
ceptable. However, given LCLint’s goal of finding as many inconsistencies as possible
with as few spurious messages, this incompleteness is reasonable.

Another approach would be to do the required analysis to determine possible modi-
fications for unspecified functions. This could not work in general, since the imple-
mentation of the function is not necessarily given to LCLint. In the case where the
relevant function is in a file checked by LCLint, it would be possible to detect and
record modifications in unspecified functions. This may require several passes of the
source code as modifications are detected and propagated before actual modification
errors can be reported. It did not seem worthwhile to implement such a scheme in
LCLint, since writing specifications eliminates the problem.

There is a problem, however, when a module contains hidden (declared static )
functions. Since these functions are not exported to clients, it would be wrong to
write specifications for them in a client-level LCL specification. However, they may
be called by exported functions in the module. Modifications and global uses in the
hidden function will not propagate to the caller. One solution would be to write
specifications for the hidden functions in an alternate specification file that is not
intended to be seen by clients.

2.4 Use before Definition Checking

Like many static checkers, LCLint detects instances where the value of a location is
used before it is defined. This analysis is done at the procedural level. If there is a
path through a procedure that uses a local variable before it is defined, a use before
definition error is reported.

LCLint can do more checking than standard checkers, because LCL specifications denote
if the values associated with parameters are defined. Normally, if a parameter to a
function is a pointer, it is assumed that the value it points to is defined and may be
used in the body of the function. This can be a dangerous assumption if the caller



2.4. USE BEFORE DEFINITION CHECKING 37

Specification: (outparam.lcl )

int f (out int *h, int *w) { }

int g () { }

Implementation: (outparam.c )

1 # include "outparam.h"
2
3 int f (int *h, int *w)
4 {
5 return (*h + *w);
6 }
7
8 int g ()
9 {

10 int *x, *y;
11
12 return (f(x, y));
13 }

LCLint execution:

outparam.c:5,19: Variable h used before set
outparam.c:12,18: Variable y used before set

Figure 2-6: Use before definition errors involving out parameters

expects that the function will use this parameter only to return a value.

In LCL specifications, pointer parameters may be declared with an out type qualifier to
denote a parameter that is intended only as an address for a return value. The value
pointed to by an out parameter is undefined when the function is entered. LCLint
will report an error if this value is used before it is defined. All other parameters
are assumed to be defined when the function is entered. LCLint will report an error
if a function is called with an argument that is not defined unless that argument is
specified to be an out parameter. Calling a function defines the actual arguments
associated with out parameters.

Typical errors detected involving out parameters are shown in Figure 2-6. The spec-
ification of f declares h to be an out parameter, so the use of *h in line 5 constitutes
a use of an undefined variable. The second argument to f is not an out parameter,
so the caller must pass in a defined value. Since y is undefined, an error message is
generated.



38 CHAPTER 2. CHECKS

2.5 Macro Checking

C preprocessors provide parameterized text substitution macros. Macros are often
used as symbolic constants or as inlined implementations of functions, although more
complicated macros that do not emulate functions are sometimes used. Constants and
functions specified in LCL can be implemented using macros. There are several pitfalls
associated with implementing functions as macros, and faulty macros are a common
cause of subtle bugs in C programs.

A client of a module should not be able to tell when a specified function is implemented
as a macro. When a specified function implemented as a macro is used, it is checked
just like a function call. LCLint checks macros implementing specified functions to
ensure that they act like functions from the perspective of the client:

� Each parameter to a macro must be used exactly once in all possible executions
of the macro, so that side-effecting arguments behave as expected. The order of
evaluation of function arguments is undetermined in C, so it is not an error to
use the macro parameters in the wrong order. To be completely correct, all the
macro parameters should be evaluated before the macro has any side-effects.
Since checking this would require extensive side effects analysis for occasional
modest gain, it was not implemented.

� A parameter to a macro may not be used as the left hand side of an assignment
or as the operand of an increment or decrement operator in the macro text, since
this produces non-functional behavior.

� Macro parameters must be enclosed in parentheses when they are used in po-
tentially ambiguous contexts.

� The type of the macro body must match the return type of the specified function.

Static checkers that do not use specifications have also attempted to check macro
usage to detect likely problems. Check [Spu90] detects uses of macros involving side-
effecting parameters and operator precedence errors. Errors are reported when a
macro is used with a side-effecting parameter regardless of whether the particular
macro used could behave unexpectedly. Without specifications, however, there is no
way to check the types of the parameters or the return value of the macro. Further,
since there is no way for the checker to know which macros are intended to implement
functions, the functional behavior of the macro cannot be checked. The checker is
limited to syntactic checks depending on presumptions about standard macro usage
where the macro is defined and used.

By using specifications, LCLint has information about the intended functionality of a
macro and the types of its parameters and result. For most macros, the body can
be parsed as though it were a function body or expression and all regular checking
can be done. Rarely, programmers may write macros that cannot be parsed normally.
LCLint will check as much as possible, and ignore the remainder of the macro.

An example showing macro checking is shown in Figure 2-7.



2.6. OTHER CHECKS 39

Specification: (macros.lcl )

int first (char a, int b) { }
int choose (int a, int b) { }
int assign (int a) { }

Implementation: (macros.h )

1 # define first(a, b) (a)
2 # define choose(a, b) (((a) == 2) ? (a ) : b + (b))
3 # define assign(a) ((a) = 3)

LCLint execution:

macros.h:1,1: Macro parameter not used: b
macros.h:1,1: Function first specified to return int, implemented as

macro having type char: (a)
macros.h:2,43: Macro parameter used without parentheses: b
macros.h:2,1: Macro parameter used more than once on some path: a
macros.h:2,1: Macro parameter not used on some path, used more than once

on different path: b
macros.h:3,21: Assignment to macro parameter: a

Figure 2-7: Macro checking

2.6 Other Checks

Some other checks are done using specifications at a global level. Every type, function,
variable and constant that is specified should be implemented. Optional warnings
can be issued when a variable, function or type is exported but not specified. Since
LCLint is designed to work with partial specifications and incomplete source code,
this check is not done by default, but can be used to check that the specification is a
completely describes the interface to a module.

In addition to checks that depend on specifications, LCLint also incorporates many
checks that only depend on the source code. Although our primary research interest
is in how specifications can make checking more useful, some useful checks can be
done without specifications. Many of these duplicate checks done by traditional lint,
such as checking for variables that are declared but never used and return values
that are ignored.

More interesting, are those checks that can be used to enforce a particular coding
style. These checks do not detect errors in traditional C style, so they do not cor-
respond to anything reported by traditional lint. In certain programming styles,
however, they may reveal a problem. By setting flags, programmers can use these
checks to verify that a program conforms to an intended coding style, and often catch
bugs in the process.

Some of the extended checks derive from stricter type checking of primitive C types.



40 CHAPTER 2. CHECKS

In standard C, char and int may be used interchangeably. Programmers can direct
LCLint to treat them as distinct types. C does not include a primitive boolean type,
but LCL provides a primitive bool type. LCLint can treat bool as a distinct type
(either abstract or exposed) to detect type errors and check that conditional tests
are booleans. Primitive C comparison operators (e.g., ==) return bool s, and logical
operators (e.g., &&) take bool operands and return bool s.

Additional checking is enabled by the specification of C standard library functions.
LCLint loads a standard library, which is derived from specifications based on the
headers of standard include files. These specifications contain more information than
could be derived from the library header files, such as declaring a return value to be
type bool or a modifies clause. The standard library also declares some abstract
types, such as FILE . Clients of a standard library are afforded the same checking as
clients of a user-specified type.

2.7 LCLint Messages

When LCLint detects an error it prints out a message, consisting of the file name, line
and column numbers where the error was found, and a description of the suspected
problem. The description attempts to provide sufficient context information without
being excessively long. There is no distinction between a warning and an error. In the
text, an error refers to any message produced by LCLint. Often, these are not errors
which cause program failures, but violations of stylistic guidelines or inconsistencies
between the source code and its specification.

Methods are available for suppressing unwanted messages. Command line options
can be used to turn on or off certain classes of checks and make two types indistin-
guishable. For example, +boolint will make bool and int indistinguishable types,
and -modifies will turn off all messages related to modifications. Mode flags can
be used to set many flags at once. The -weak mode sets flags to check according to
common C conventions. It turns off all the macro checking, treats bool , char and
int as equivalent types, and suppresses many other classes of messages. This is
useful for running LCLint on typical C code, but gives up some possibilities for error
detection.

The limit option is useful for preventing avalanches of messages. It is followed by
an integer argument, n, and means that if there is a sequence of more than n+1
consecutive similar messages, only the first n are printed followed by a message
telling the number of unprinted similar messages.

In addition, messages can be suppressed locally by stylized comments in the source
code. No errors will be reported in code between /*@ignore*/ and /*@end*/ . The
ignore and end control comments must be matched — a warning is printed if the file
ends in an ignore region. Finer control is provided by stylized comments that allow
or disallow access to the representation of particular abstract types, or set command
line flags for a section of code and restore them to their original values.

A comprehensive list of flags is given in Appendix A.5.



Chapter 3

Checking Specified Programs

LCLint has been used in a number of different ways, on programs varying from small
test examples to real programs (including, of course, LCLint itself). Running LCLint
often motivated changes to LCLint. Most of these changes involved adding options to
suppress certain messages or adding checks to catch additional problems.

The original purpose of LCLint was to use specifications to check source code as a new
system was being developed. Typically, partial specifications would be written, and
LCLint would be used to check source code as it was completed and the specifications
were refined. In the course of this research, other uses of LCLint became apparent.
The most significant of these is using LCLint to aid in software maintenance, which
is described in the next chapter.

Since LCL was in use before the development of LCLint, there existed programs with
complete specifications which had never been checked. One such program is the
dbase example from the Larch book [GH93, Chapter 5]. This example comprises
seven specified modules and an unspecified test driver comprising over 300 lines of
specifications and 800 lines of code. The program is a database of employee records.
The modules are:

� employee — an exposed type for representing employee records

� empset — a mutable abstract type for representing sets of employees

� eref — an immutable abstract type for referencing an employee (similar to a
pointer)

� erc — a collection of eref s

� ereftab — a table of eref s

� dbase — the top-level interface, including operations for hiring, firing, promot-
ing employees and querying the database.

The specifications had been checked by the LCL checker (whose functionality is now
subsumed by LCLint), and the source code had been compiled and tested extensively.

41



42 CHAPTER 3. CHECKING SPECIFIED PROGRAMS

% lclint drive.c dbase.c ereftab.c erc.c eref.c empset.c employee.c
LCLint 1.2 --- 05 May 94

drive.c:41,6: Return value (type bool) ignored: employee_setName(&e, na)
drive.c:42,6: Return value (type bool) ignored: empset_insert(em1, e)
drive.c:51,6: Return value (type bool) ignored: employee_setName(&e, na)
drive.c:52,6: Return value (type bool) ignored: empset_delete(em1, e)
drive.c:62,6: Return value (type bool) ignored: employee_setName(&e, na)
drive.c:63,6: Return value (type bool) ignored: empset_insert(em2, e)
drive.c:74,6: Return value (type bool) ignored: empset_delete(em3, e)
drive.c:86,6: Return value (type bool) ignored: employee_setName(&e, na)
drive.c:87,25: Return value (type db_status) ignored: hire(e)
drive.c:93,4: Return value (type bool) ignored: fire(17)
drive.c:113,4: Return value (type bool) ignored:

fire(((eref_Pool.conts[((em3->vals)->val)])).ssNum)
drive.c:11,26: Parameter not used: argv
dbase.c:55,7: Return value (type bool) ignored: empset_insert(s, e)
dbase.c:93,9: Return value (type bool) ignored: erc_delete(db[i], er)
dbase.c:114,6: Return value (type bool) ignored:

erc_delete(db[mNON], er)
dbase.c:118,6: Return value (type bool) ignored:

erc_delete(db[fNON], er)
dbase.c:137,8: Variable declared but not used: er
dbase.c:138,12: Variable declared but not used: e
ereftab.c:21,3: Return value (type bool) ignored: erc_delete(t, er)
empset.c:22,8: Variable declared but not used: er
empset.c:90,5: Return value (type bool) ignored: erc_delete(s1, er)
empset.c:95,12: Variable declared but not used: e

Finished LCLint checking --- 22 code errors found

Figure 3-1: Checking dbase without using specifications

Since the code and specifications were written by experts, and checked copiously by
hand prior to publication, it was expected that not many bugs would be found.

By running LCLint on this type of system, we hoped to find the types of bugs that
can be detected automatically, but are often overlooked by humans. This would give
some idea of LCLint’s usefulness as a supplement to human checking, but would not
provide insights into LCLint’s effectiveness during the development process.

3.1 Code Checks

First, we consider the messages which could be detected without using specifications.
To begin, LCLint is run on all source files without using any specifications (Figure 3-
1). These errors are less interesting than those detected when specifications are



3.1. CODE CHECKS 43

used, since they reveal problems that could also be detected by a standard lint. They
illustrate how LCLint can be used to enforce style conventions.

Four of the messages (e.g., dbase.c:137,8 ) concern unused variables. These are
harmless errors, but we can clean up the code by removing the unnecessary declara-
tions. Alternately, we can use the -varuse option to suppress the messages. Unless
we are particularly worried about making changes to the code, it is best to just remove
the unnecessary declarations.

A similar error (drive.c:11,26 ) reports a parameter not being used. Unlike local
variables, there are often good reasons why a function may not use some of its pa-
rameters. For example, we may want to make it type-compatible with some other
function so that they may both be passed as function pointers with the same type.
Here, the parameters to main are fixed, so we cannot remove the unused argument
from the parameter list. Instead, we suppress the message using -paramuse .

The remaining errors all concern ignored return values. Often, ignoring a return
value reveals a missing test of the error status of a function call. Since C provides no
exception mechanisms, it is a common programming idiom to return a value denoting
the success or failure of a call. Here, the function employee_setName returns FALSE
if its second argument, an array of characters, is too long to be stored in the employee
record. Otherwise, it sets the employee name and returns TRUE. Unless we know the
name we are passing to employee_setName is small enough, failing to test the return
code may lead to unexpected problems.

In other situations, it is not dangerous to ignore a return value. The empset_insert
and empset_delete operations return a bool indicating if the employee we inserted
was already in the set. This information may sometimes be useful to the caller, but
ignoring it is harmless.

There are several approaches to eliminating the return value errors. The most robust
approach is to examine each return value error — if it reveals a missing error test,
add code to check the return value; otherwise, add a (void) cast before the call to
denote that the result is safely ignored. This has two disadvantages — it requires
checking every error (here there are only 17 return value errors, so this is not un-
reasonable), and it clutters the code with (void) casts. Another possibility is to
use the -returnval flag to suppress all messages regarding ignored return values.
This is quick and simple, but it abandons the possibility of detecting cases where a
return value is incorrectly ignored. Short of this, we could use -returnvalbool to
suppress only those messages concerning ignoring return values of type bool . For
some coding styles, this may be the best approach if bool return values tend to be
used to return non-essential information to the caller. But this would miss cases like
the call to employee_setName , where ignoring a bool return value may be a bug
in the program.

Perhaps a better approach is to introduce an abstract type, status , for represent-
ing return status codes. A simple implementation of status could use a boolean
representation and provide the operations for creating success and failure status
codes and checking if a status value is success or failure. We can adopt a conven-



44 CHAPTER 3. CHECKING SPECIFIED PROGRAMS

tion that operations returning success or failure status codes are declared to return
status . Because this has been specified as an abstract type, it is distinguished from
bool by LCLint. The difference between the return types of employee_setName and
empset_insert is now made apparent in their declarations: employee_setName
returns a status representing an exit code while empset_insert returns a bool
which may be safely ignored.

Now we can use the -returnvalbool flag to suppress errors relating to unimpor-
tant ignored return values, without losing relevant messages. This generated five
messages regarding ignored return values. Each reveals an untested status return
code, so we add code to check the return status. LCLint has provided the means to a
more robust coding style — we now explicitly distinguish between functions return-
ing booleans that may be ignored, and those returning status codes that must be
checked. Although standard lint can detect ignored return values, the added flexibil-
ity of LCLint combined with abstract types allows us to eliminate spurious errors and
focuses our attention on relevant ignored return values.

By running LCLint on the program without using any specifications, we detected some
simple problems in the code. None of these were actual bugs, except perhaps some of
the ignored return value errors. We also learned about the style conventions followed
by the program. Here, more was discovered by the errors that LCLint did not report
than those it did. Since no errors were uncovered regarding bool s, we can infer that
the program treats bool as a distinct type.

3.2 Specification Derived Checks

The result of running LCLint on the revised code using its specification is shown in Fig-
ure 3-2. Note that we have added the +showfunc flag so that each message reported
is preceded by the name of the function in which it appears, and the -paramuse and
-returnvalbool flags as discussed in the previous section.

The first three messages and a later message for erc.h:15,25 concern the use of
macro parameters without parentheses. Since the macros were specified as functions,
LCLint now checks that they always behave as functions. A static checker could do this
check without specifications (as Check [Spu90] does), but has no way of preventing
the same errors from being reported in macros which are not intended to implement
functions. Since macros are just text substitutions, programmers may want to write
macros which do not use parentheses around their parameters. This is acceptable
as long as the macro is not intended to implement a function. We add parentheses
where suggested to eliminate the macro errors.

None of the remaining errors could be detected without using specifications, so the
added benefits of specifications are apparent. They are errors only because of infor-
mation given in the specification. This leaves open the question whether the error
is in the implementation or the specification. Often, such as when an abstraction
barrier is broken, it is clear the problem is in the implementation. In other cases,
such as when the wrong global is listed in the specification, the problem is in the



3.2. SPECIFICATION DERIVED CHECKS 45

% lclint -paramuse -returnvalbool +showfunc drive.c dbase eref
erc ereftab empset employee status

LCLint 1.2 --- 05 May 94

eref.h: (in macro eref_assign)
eref.h:21,51: Macro parameter used without parentheses: e
eref.h: (in macro eref_equal)
eref.h:23,31: Macro parameter used without parentheses: er1
eref.h:23,38: Macro parameter used without parentheses: er2
erc.c: (in function erc_member)
erc.c:34,9: Operands of == are abstract type (eref): tmpc->val == er
erc.c: (in function erc_delete)
erc.c:58,9: Operands of == are abstract type (eref): elem->val == er
erc.c: (in function erc_sprint)
erc.c:110,28: Called procedure erc_iterStart may modify c:

erc_iterStart(c)
erc.h: (in macro erc_choose)
erc.h:15,25: Macro parameter used without parentheses: c
ereftab.c: (in function ereftab_lookup)
ereftab.c:30,28: Called procedure erc_iterStart may modify t:

erc_iterStart(t)
empset.c: (in function empset_disjointUnion)
empset.c:58,28: Called procedure erc_iterStart may modify s2:

erc_iterStart(s2)
empset.c:58,28: Called procedure erc_iterStart may modify s1 through

alias s2: erc_iterStart(s2)
empset.c: (in function empset_union)
empset.c:75,28: Called procedure erc_iterStart may modify s1:

erc_iterStart(s1)
empset.c:75,28: Called procedure erc_iterStart may modify s2 through

alias s1: erc_iterStart(s1)
empset.c: (in function empset_subset)
empset.c:99,28: Called procedure erc_iterStart may modify s1:

erc_iterStart(s1)

Finished LCLint checking --- 13 code errors found

Figure 3-2: Checking dbase using specifications



46 CHAPTER 3. CHECKING SPECIFIED PROGRAMS

specification. Many times, as we shall see, it is less clear — there is a problem
somewhere since the specification and implementation are inconsistent, but it is not
obvious where the fault lies and how it should be fixed.

The next two messages report the use of a C operator with abstract types. Line 34
for erc.c is,

if (tmpc->val == er) return TRUE;

where er has type eref and tmpc has type ercList which is a pointer to a struc-
ture whose val field has type eref . In eref.lcl , eref was declared to be an
immutable abstract type. So the expression, tmpc->val == er , is an equality test
on abstract types. Without knowing the representation of eref we cannot be sure
what this statement means (see Section 2.1). If they are pointers, C will do a pointer
equality test (i.e., are they the same object), and we are depending on eref being
implemented in such a way that equal eref s always use the same pointer. In the
given implementation, eref is represented by an int handle and the test produces
the desired semantics. However, there is a dangerous hidden assumption about how
eref is implemented.

This can be fixed by adding an eref_equal operation to eref which does equality
checking. If we are concerned with efficiency, eref_equal could be implemented as
a macro with no efficiency loss. Then line 34 can be rewritten as,

if (eref_equal(tmpc->val, er)) return TRUE;

The message for line 58 also reports an equality comparison involving eref s, which
can be rewritten in a similar manner.

The remaining seven errors reported concern modifications. They illustrate two of
the difficulties in accurately detecting client-visible modifications — modifications
that are hidden through a specification alias to an object (Section 2.3.3), and modifi-
cations that are unseen by clients since they are reversed before the function returns
(Section 2.3.1).

Only one message uncovers a bug, although the other errors draw our attention to
potentially confusing code. All the errors concern a macro for iterating through the
elements in an erc . Because C provides no mechanisms for iteration abstraction,
there is no easy way to cycle through each element of an abstract type. The approach
taken by this program is to define an ercIter type that can be used to return a
different element of an erc until every element has been returned.

The message for erc.c:100,28 reports a modification of c in the implementation of
erc_sprint . The specification of erc_sprint is:

char *erc_sprint(erc c) {
ensures isSprint(result[] 0 , c ^) ^ fresh(result[]);
}

There is no modifies clause, so no externally visible values should be modified, in-
cluding the parameter which is a mutable abstract type. The relevant lines in the



3.2. SPECIFICATION DERIVED CHECKS 47

implementation of erc_sprint are shown below:

110 for_ercElems (er, it, c) {
111 employee_sprint(&(result[len]), eref_get(er));
112 len += employeePrintSize;
113 result[len++] = ’\n’;
114 }

The modification error was reported for line 110, which instantiates the following
macro:

#define for_ercElems(er, it, c)\
for(er = erc_yield(it = erc_iterStart(c));\

!eref_equal(er, erefNIL);\
er = erc_yield(it))

The function erc_iterStart returns an ercIter , a mutable abstract type specified
in erc.lcl . An ercIter iterates through the eref s in an erc . Since it is the result
of erc_iterStart(c) , then each call to erc_yield(it) returns an element of c
which has not already been returned, or erefNIL if all elements of c have been
returned.

The specification of erc_iterStart is:

ercIter erc_iterStart(erc c) {
modifies c;
ensures fresh(result) ^ result 0

= [c ^.val, c]
^ c 0

= startIter(c ^);
}

In the implementation of erc_sprint , erc_iterStart(c) is called, where c is the
parameter to erc_sprint . Because of the modifies clause in erc_iterStart , this
constitutes a modification of c as reported in the message.

At this point, we may be tempted to add a cursory modifies clause to erc_sprint to
indicate that c may be modified. This would eliminate the inconsistency between the
implementation and specification, so LCLint would no longer report an error. However,
the specification of erc_sprint would be wrong — as far as the client is concerned,
it does not make sense for it to modify c . We need to look more closely at the erc
module to understand the real problem.

The interface specification of erc uses the sorts erc and ercIter defined by an LSL

trait. An erc is a tuple of two fields: val , a collection of eref s, and activeIters ,
an int . The activeIters field maintains a count of the number of active iterators
associated with this erc . An ercIter is a tuple consisting of toYield , the elements
of the erc that have not yet been returned, and eObj , the erc object that was used
to create this ercIter . This exhibits the problem described in Section 2.3.3, where
an object inside an underlying representation hides a client-visible modification.

The operator startIter produces an erc with the same elements as its argument,
but one more active iterator. The inverse operator, endIter , decrements the number



48 CHAPTER 3. CHECKING SPECIFIED PROGRAMS

of active iterators. The result of erc_iterStart is specified in its ensures clause
by the first two conjuncts. It returns a fresh ercIter whose toYield field contains
the elements of the pre-state value of c and whose eObj field is the object c . This
means future modifications to the eObj field of the result will constitute indirect
modifications of the parameter used to create the ercIter .

The specification of erc_iterStart also reflects the creation of a new active iterator
for c . The final conjunct in the ensures clause is c0 = startIter(c ^) . The post-state
value of the parameter is the result of applying the startIter operator to its pre-
state value. Hence, in the post-state, c has one more active iterator.

The code for for_ercElems loop calls erc_yield(it) until an erefNIL is returned.
The specification of erc_yield is:

eref erc_yield(ercIter it) {
modifies it, it ^.eObj;
ensures if it ^.toYield 6= { }

then yielded(result, it ^, it 0 ) ^ (it ^.eObj) 0
= (it ^.eObj) ^

else result = erefNIL ^ trashed(it)
^ (it ^.eObj) 0

= endIter((it ^.eObj) ^);
}

The ensures clause has two branches. If there are more elements to yield, a new
value is yielded and the value of the eObj field of the ercIter does not change.
Otherwise, erefNIL is returned and the post-state value of it ^.eObj is the result
of applying endIter to its pre-state value. That is, the object which was used to
create this ercIter now has one fewer active iterator. In the for loop, the argument
to erc_yield was returned by erc_iterStart(c) , so we know it ^.eObj refers
to the same object as c . Thus, when erc_yield returns erefNIL , it decrements the
number of active iterators associated with c .

Note that this happens only once, since when erc_yield returns erefNIL , the loop
terminates. Thus, after completing the loop there have been two modifications to c
— the number of active iterators was incremented by the call to erc_iterStart
and decremented by the final call to erc_yield . As long as the loop runs to com-
pletion, there is no modification visible to the client since the modification caused by
erc_iterStart is reversed before the function returns (see Section 2.3.1).

This analysis rests on two assumptions: no element in cˆ.val is erefNIL and the
loop runs to completion. This first assumption is necessary so we know the only
time erc_yield returns an erefNIL (and hence, terminates the loop) is after every
element of the erc has been yielded. This is guaranteed by the requires clause for
erc_insert which prohibits inserting erefNIL into an erc .

The second assumption may be violated when there is a control flow statement in the
loop body. If the loop may exit without completing, we need to make sure the code
ends the iterator, otherwise there is indeed a client visible modification.

The body of the loop in erc_sprint which generated the first error message has
no control statements. Hence, we are guaranteed that c is not modified by the
for_ercElems loop. We can use stylized comments to document this in the code



3.2. SPECIFICATION DERIVED CHECKS 49

and suppress the LCLint messages. Line 110 is surrounded by control comments to
temporarily turn off modifies checking:

/*@-modifies*/ for_ercElems (er, it, c) /*@=modifies*/ {

Now, we consider the other modification errors reported, to check if the loops run to
completion. The next error concerns the following code in ereftab_lookup :

30 for_ercElems(er, it, t) {
31 e1 = eref_get(er);
32 if (employee_equal(&e, &e1)) return er;
33 }

Here, our second assumption is violated — the return on line 32 may prevent the loop
from running to completion and the initial modification to c will not be reversed. We
fix this by adding a call to ercIter_final before the return. Line 32 is rewritten,

if (employee_equal(&e, &e1)) { erc_iterFinal(it); return(er); }

Now we can guarantee that the loop does not modify c since it either runs to com-
pletion or calls erc_iterFinal and returns.

Note that this unspecified modification reveals a real bug in the code — without the
call to erc_iterFinal , there is a storage leak. The ercIter returned by the call
to erc_iterStart would never be freed in the original code if the loop does not run
to completion.

The next two errors concern empset_disjointUnion :

empset.c:58,28: Called procedure erc_iterStart may modify s2:
erc_iterStart(s2)

empset.c:58,28: Called procedure erc_iterStart may modify s1
through alias s2: erc_iterStart(s2)

The same call appears to modify both s1 and s2 . Looking at the code preceding the
for_ercElems instantiation, we see that it could indeed modify either s1 or s2 :

if (erc_size(s1) > erc_size(s2)) {
tmp = s1;
s1 = s2;
s2 = tmp;

}

The code swaps s1 and s2 if the size of s1 is greater than the size of s2 . So if the
test is true, s2 becomes an alias for the parameter s1 . If it is false, s2 still refers to
the original argument. As with erc_sprint there is no control flow within the loop,
so it is guaranteed to complete and not modify the erc .

The next two messages, which concern empset_union , are similar. The final message
concerns empset_subset :



50 CHAPTER 3. CHECKING SPECIFIED PROGRAMS

99 for_ercElems(er, it, s1)
100 if (!empset_member(eref_get(er), s2))
101 erc_iterReturn(it, FALSE);

Here, erc_iterReturn is a macro defined to call erc_iterFinal on its first ar-
gument, and return its second (the earlier fix to ereftab_lookup could use this
macro). This correctly reverses the modification, so no client-visible modification is
apparent.

It is interesting to note that although the modification bug reported by LCLint is only
visible at the specification level, the modifies checking has incidentally uncovered a
real bug in ereftab_lookup . Compared to empset_subset , it is clear the return
in the loop body should have been an instantiation of erc_iterReturn instead.

It may seem accidental that this bug was found since it is not directly related to
LCLint checks. However, the modification error detected by LCLint directed our at-
tention to a segment of code containing the bug. Finding bugs not directly related
to LCLint checks is not as uncommon as one might suspect. It is often the case that
simple modification, globals or type abstraction errors reported by LCLint reveal more
fundamental problems in specifications or code.

As expected, running LCLint on the dbase example did not find many significant prob-
lems. It did uncover two abstraction violations, and one legitimate modification error.
Because modifies checking is unsound, it reported several incorrect modification er-
rors. These illustrate some of the difficulties involved in accurate modifies checking
— determining that the modification was reversed involved reasoning about the un-
derlying semantics of the specification and the control flow of the code. Clearly, these
types of analyses are well beyond the scope of a simple static checker. However, the
places where LCLint incorrectly reports modifications are also likely to be difficult for
programmers to understand. By drawing our attention to these points, LCLint helps
us understand the code, and may lead us to discover subtle errors.



Chapter 4

Maintaining Programs

The previous chapter illustrated how LCLint can be used to check specified programs.
This chapter shows how LCLint can be used to understand and maintain existing C

programs that have no formal specifications. It is common for a programmer to have
to maintain and make changes to a program written by someone else, often without
adequate documentation. When confronted with a large program for the first time,
it is helpful to identify the abstract types. Without a tool like LCLint, we can only
guess if a type is abstract. By using LCLint we can verify type abstractions and often
find a few instances where an intended abstract type is exposed. By specifying the
abstract types and their interfaces, we will gain a high-level understanding of the
program and produce a program that is better documented and easier to maintain.
Further, in the process of writing the specifications and checking the source code, we
may uncover bugs.

This is done in three phases. First, we run LCLint on the source code with no specifi-
cations. Next, minimal specifications are written to make types abstract and LCLint
is used to check source code against the new specifications. Finally the specifications
are developed to include more information together with more LCLint checking.

This example uses quake , a 19-file, 5000-line program for automating system builds
in Modula-3. The code for quake was provided by Steve Harrison at DEC SRC.

4.1 No Specifications

Before writing specifications for an unfamiliar program, it is helpful to get a feel for
the coding style used. We can use LCLint’s flags to discover what coding conventions
are followed.

Running LCLint with no flags on all the source files of quake yields 169 messages.
An inexperienced LCLint user would now be encouraged to use the -weak flag. This
sets several flags to reflect a common loosely-typed C style. Running LCLint with the
-weak flag on all the source files yields a manageable 13 messages. We could accept
the coarseness of the -weak flag at this point, and continue by checking the reported

51



52 CHAPTER 4. MAINTAINING PROGRAMS

errors. Instead, it is instructive to use the fine-grain control flags instead. This way
we can determine the actual conventions followed by this code.

Many of the errors yielded when we run LCLint with no flags relate to the bool
type. Since quake was developed with no knowledge of LCL it had used Boolean ,
typedef ed to int , instead of the conventional bool , to represent booleans. We could
use the +boolint flag to make bool and int (hence, Boolean ) interchangeable.
This, however, would sacrifice all the boolean checking. Instead, we can change the
typedef of Boolean from its original type of int to the bool type and include the
standard header implementing bool . Assuming the original Boolean type was used
in the conventional way, this has no effect on the execution, but allows LCLint to check
booleans as a distinct type. This change eliminates 79 of the original 169 errors.

Half of the remaining errors involve ignored return values of type int . Traditionally,
C programmers declare functions with no return value to return int since functions
with no declared return type are implicitly assumed to return int . To support this,
LCLint provides the -returnvalint flag (analogous to -returnvalbool used in Sec-
tion 3.1) for suppressing just those ignored return value messages where the return
value is an int . The large number of error messages regarding ignored int return
values may lead us to conclude that the coding style employed does not considered
ignoring an int return value to be an error. Looking a little further, we see that
all the return value errors regard calls to yyerror , a function declared by the yacc
parser generator. If this were a user-defined function we could change the declaration
to return void . Since it is not, we use a macro to call yyerror and cast the result to
void . By fixing it this way, instead of using the -returnvalint flag, we preserve a
coding style where all return values are relevant, and do not lose checking for other
functions that return int s.

Running LCLint following these changes produces 45 messages. Eight of these involve
type errors between char and int . If there were only one or two, we might decide
these were mistakes and fix them. Instead, we decide that the style employed uses
char and int interchangeably. The +charint flag reflects this convention.

Seven messages report type matching and casting errors between pointers to the
abstract type FILE and void pointers. FILE is a built-in abstract type, defined in
the standard library. Strictly, this is an abstraction violation — if we can cast an
abstract pointer to a void pointer then when it is referenced there is no longer any
type safety. In practice, however, it is often necessary to do this — for example, many
generic data structures use void pointers to get around C’s lack of polymorphism.
Many of the instances reported are initializations of FILE pointers to NULL. The
others are casts from void pointers in a generalized list data structure. In this case,
we are willing to accept the abstraction violation as a matter of convenience. It would
be just too awkward in some styles of C coding to disallow casts between pointers to
abstract types and void pointers. The +voidabstract flag reflects this convention,
allowing void pointers to match pointers to abstract types.

Running LCLint with the +charint and +voidabstract flags yields the 30 errors
shown in Figure 4-1. Although the initial 169 messages may have seemed overwhelm-
ing, we have eliminated 139 of them by making a few simple changes to the code and



4.1. NO SPECIFICATIONS 53

% lclint -limit 1 +charint +voidabstract Array.c Atom.c builtin.c \
code.c dict.c Execute.c file.c Hash.c iostack.c lexical.c list.c \
Name.c operator.c path.c quake.c Set.c stack.c String.c utils.c

LCLint 1.2 --- 07 May 94

builtin.c:111,35: Parameter not used: argc
builtin.c: (11 more similar errors unprinted)
builtin.c:436,2: Return value (type struct Atom * *) ignored:

Dict_Install(name, Atom_Builtin(name, f->is_function, f->argc,
f->operator), (1 << (1)))

code.c:22,2: Return value (type Array) ignored:
Array_AppendAtom(code->array, atom)

operator.c:99,2: Return value (type struct Atom * *) ignored:
Dict_Install(designator->u.name, value, dict_flags)

operator.c:204,2: Return value (type Set) ignored:
Set_InsertAtom(set, key, value)

operator.c:331,2: Return value (type struct Atom * *) ignored:
Dict_Install(subject, atom, (1 << (0)))

operator.c:400,6: Return value (type struct Atom * *) ignored:
Dict_Install(procedure->arg_names[arg], Pop_Any(), (1 << (0)))

path.c:88,11: if predicate not bool, type int: sp
path.c:77,10: while predicate not bool, type char: *src
quake.c:33,5: Return value (type struct Atom * *) ignored:

Dict_Install(Name_Register(string), Atom_String(String_New(sep)), (0))
quake.c:49,3: Return value (type ExitCode) ignored:

Execute_Stream(stdin, String_New("* stdin *"))
quake.c:53,3: Return value (type ExitCode) ignored:

Execute_File(Path_ExtractPath(temp), Path_ExtractFile(temp))
Set.c:169,5: Return value (type Array) ignored:

Array_AppendAtom(ToArrayTarget, Atom_String(String_New(bucket->key)))
stack.c:33,2: Return value (type Atom) ignored:

Atom_CheckType(Stack[StackPtr], tag)
String.c:38,26: initialized initialized to type bool, expects int: FALSE
String.c:40,10: Operand of ! is non-boolean (int): initialized
String.c:44,2: Assignment of bool to int: initialized = TRUE
utils.c:101,5: Return value (type void *) ignored:

memcpy(to, from, bytes)
utils.c:106,5: Return value (type void *) ignored:

memset(dest, 0, bytes)

Finished LCLint checking --- 30 code errors found

Figure 4-1: Checking quake



54 CHAPTER 4. MAINTAINING PROGRAMS

by adding two command line flags.

The first twelve errors reported (11 of which are not printed because of the -limit 1
flag) concern unused parameters in builtin.c . They all concern an unused integer
parameter declared int argc . Since function passing in C is limited to functions
having the same type, the unused parameter is needed so that these functions may
match other functions that need this parameter. We could use the -paramuse flag
to suppress these messages. However, since all the relevant errors are in one file, it
may be better to use a local control comment instead. The /*@-paramuse*/ control
comment is inserted at the beginning of builtin.c . This way, we eliminate the
messages for builtin.c without losing the checking in other files. If we are even
more concerned about ignored parameters, we could place /*@-paramuse*/ and
/*@=paramuse*/ control comments around the particular functions that do not use
a parameter.

The next six messages, and seven others, concern ignored return values. Earlier, we
removed the ignored int return value errors generated by calls to yyerror . The
remaining errors concern a number of different return types and functions. We could
use the -returnval flag to suppress all ignored return values messages. However,
an ignored return value is often evidence of a real bug, such as failing to check the
return status code of a function call. So, it is worth checking each one individually.
Those that may be ignored are cast to void to make it clear when a return value is
being legitimately ignored. In two cases, the ignored return value is an ExitCode ,
and ignoring it is a bug in the code. We add code to check the return value, and exit
appropriately if it is invalid.

This leaves five messages. The first two deal with non-boolean predicates:

path.c:88,11: if predicate not bool, type int: sp
path.c:77,10: while predicate not bool, type char: *src

In C, a predicate may be any non-structure type — this is a common cause of bugs
that are not detected statically. LCLint checks that predicates have type bool . This
check can be turned off using -pred . However, since there are only two instances
of this it is likely that the coding style uses bool predicates. We replace implicit
tests causing these messages with explicit inequality comparisons with 0 and ’\0’
respectively to eliminate the messages.

The final three messages,

String.c:38,26: initialized initialized to type bool, expects int: FALSE
String.c:40,10: Operand of ! is non-boolean (int): initialized
String.c:44,2: Assignment of bool to int: initialized = TRUE

concern this code fragment:



4.2. ADDING MINIMAL SPECIFICATIONS 55

38 static initialized = FALSE;
39
40 if (!initialized) {
41 String_False = String_New("");
42 String_True = String_New("true");
43
44 initialized = TRUE;

The variable initialized is implicitly declared to be an int , when it should be
a bool . Changing the declaration in line 38 to Boolean fixes this problem, and
eliminates the messages. Since Boolean is represented by an int , this inconsistency
does not lead to program faults. However, using the Boolean declaration makes the
code more readable.

Now, LCLint runs on all the source files with no errors using two flags. We have
learned a lot more about the code than we would have by just using the -weak flag.
For instance we know that the code treats booleans and integers differently, but uses
chars and integers interchangeably. In some cases, we have made rather arbitrary
decisions about the intended coding style. When a particular check floods us with
errors, we decide that the check does not apply to the coding style and turn the check
off. In other cases, a check leads to just a few errors. We could justify turning the
check off and presuming it is also accepted in the coding style. It is usually better,
though, to get as much checking as possible by fixing these few instances that do not
conform to the checked programming convention.

We have used LCLint’s flags to analyze an unknown coding style, without making any
major changes to the code. In the process a few bugs were found and some potentially
confusing code was made more readable. The flexible flag settings and local control
comments of provided by LCLint make it easy to customize checking for a particular
coding style. A similar approach could be taken to enforce a desired coding style
instead. We could have begun with desired flag settings in mind, and adapted the
code to conform to them.

4.2 Adding Minimal Specifications

In the previous section we saw how LCLint can be used without any specifications to
get a handle on an unknown coding style and detect certain classes of bugs, many of
which could also be found by a regular lint. The main benefits of LCLint are realized
after we write specifications. In this section, we show how minimal specifications can
be added to get significant checking benefits. A one-line specification declares a type
to be abstract. This leads to greatly enhanced checking, and further increases our
understanding of the code as well as our confidence in its correctness.

To begin, we need to decide which of the types are intended to be abstract. When
confronted with an unspecified program, there are many clues about which modules
are meant to represent abstract types. The most superficial clue is the name of
the file — good programmers will give their abstract data structures recognizable
names. We can now use LCLint to confirm that they are used as abstract types, and



56 CHAPTER 4. MAINTAINING PROGRAMS

% lclint +charint +voidabstract Array.c Atom.c ... utils.c Set.lcl
LCLint 1.2 --- 06 May 94

builtin.c:131,13: Arrow access field of abstract type (Set): set->body
builtin.c:132,17: Arrow access field of abstract type (Set): set->body
operator.c:282,14: Arrow access field of abstract type (Set): set->body
operator.c:283,14: Arrow access field of abstract type (Set): set->body
operator.c:283,35: Arrow access field of abstract type (Set): set->body
operator.c:529,36: Arrow access field of abstract type (Set): set->body
operator.c:581,33: Arrow access field of abstract type (Set): set->body

Finished LCLint checking --- 7 code errors found

Figure 4-2: Checking Set is abstract

typically uncover abstraction violations and other bugs in the process. This section
describes the process of making types abstract, and illustrates typical errors detected
and how they can be fixed. It focuses on two modules of quake — Set and Hash. Each
reveals some of the benefits achieved by making types abstract, as well as some of the
difficulties involved in programming in C without violating abstraction boundaries.

Set

The module name Set suggests that the module is intended to be an abstract type
representing the standard notion of a mathematical set. As it happens, what Set
implements is actually a key-value table. We can check if Set is an abstract type by
writing a specification file, Set.lcl , containing the single line:

mutable type Set;

This declares Set to be a mutable abstract type. To decide that it should be mutable
we looked to see if it provides any operations that may change the value of a Set .
Since the operation Set_InsertAtom inserts a new atom into its Set argument we
declare Set to be a mutable type.

We add Set.lcl to the command line, and run LCLint as before. LCLint reports
seven places where Set is exposed, shown in Figure 4-2. Now we must decide if Set
was intended to be an abstract type. If no errors had been reported, then Set is
consistently used abstractly and no further work is necessary. If many errors had
been reported, we might question our hypothesis that Set is intended to represent
an abstract type and declare it instead as an exposed type.

In this case seven errors are reported, all involving accessing the body field of a
Set . This suggests that Set is intended to be an abstract type, and these places are
abstraction violations that should be examined and recoded. Although it would be
less work to just say Set is an exposed type, this would give up the benefits of type



4.2. ADDING MINIMAL SPECIFICATIONS 57

abstraction — we could no longer change the Set implementation without worrying
about introducing problems in other parts of the code. Fixing the abstraction viola-
tions will not only allow us to treat Set as an abstract type, but will make the client
code shorter and more readable. An abstraction violation typically suggests a flaw in
either the abstraction or the client, and occasionally a more serious design problem.
Unless the client simply overlooked a provided abstract operation, the abstraction
violation was necessary because the abstract type did not provide an operation to do
what the client needed.

The quickest fix would be to introduce a Set_getBody operation that returns the
body field of a Set . Although this would eliminate the error messages, it is not a
satisfactory solution. For one thing, Set_getBody does not correspond to anything in
our abstract notion of what a Set is. There is no convenient way to describe it using
this particular Set implementation. Worse, if the Set_getBody operation simply
returned the body field of its argument it would expose the representation of Set .
The body of Set is a Hash Table , which can be mutated. A client of Set could use
the Set_getBody operation to get the Hash Table associated with a key in a Set
and then use Hash Table operations directly to manipulate the Set . This violates
a fundamental principle of type abstraction — we are changing the concrete value of
the abstract type without using its defined operations. We can no longer reason about
properties of the abstract type, since there is no guarantee that its representation will
not be changed arbitrarily from outside. Hence, the implementation of Set_getBody
must return a fresh copy of the Hash Table . This would avoid exposing the repre-
sentation, but is too inefficient for most applications. While we can use this approach
to eliminate the error messages, it does not address the underlying problem of why
the abstraction was violated in the first place.

Abandoning the simplistic approach, we need to look at the code fragments where
errors are reported to see if more acceptable solutions can be found. Understanding
why the client needed to access the type representation reveals the inadequacies of
the Set abstraction.

The first two messages relate to this code fragment from builtin.c :

130 is_empty =
131 set->body == NULL ||
132 set->body->nEntries == 0;

This checks if the set is empty. Note that this code uses an awkward level of detail
for a client of Set . We should not have to understand how Set s are represented
to understand the builtin module. The need to access the representation directly
results from the Set abstraction missing the needed operations. We can preserve
our abstract Set type, and clarify the code by adding a Set_isEmpty operation to
the Set module and replacing this code with a call to Set_isEmpty . If we are
concerned about efficiency, Set_isEmpty can be implemented as a macro. Thus, we
have removed an abstraction violation and made the code more readable without any
efficiency penalty.



58 CHAPTER 4. MAINTAINING PROGRAMS

277 static ExitCode ForeachSet(Set set, Name subject, Code code)
278 {
279 List *l;
280 Atom *atom = Dict_Install(subject, NULL, DICTFLAGS_LOCAL);
281
282 for (l = set->body->buckets;
283 l < set->body->buckets + set->body->nBuckets;
284 l++) {
285 if (*l != NULL) {
286 List b;
287
288 for (b = *l; b != NULL; b = b->tail) {
289 Hash_Bucket hash_bucket = (Hash_Bucket) b->first;
290 SetData set_data = (SetData) hash_bucket->data;
291 ExitCode e;
292
293 *atom = set_data->key_atom;
294
295 if ((e = Execute_Code(code)) != Exit_OK)
296 return e;
297 }
298 }
299 }
300
301 return Exit_OK;
302 }

Figure 4-3: Original implementation of ForeachSet

The other five errors reported are in operator.c . The first three are found in the
body of ForeachSet (Figure 4-3).

This unwieldy code fragment obscures the essence of the code. It is iterating through
the elements of set , and executing lines 293–296 for the data associated with each
element in the set. The body of the loop is somewhat more complex than it appears,
since the result of Execute_Code depends on the value of *atom which references
global storage in the dictionary.

The surrounding code iterates through the elements of set . Because it is written
using low-level details of the Set implementation, it is hard to read and understand.
Set is implemented using a Hash Table , so the code for iterating through its ele-
ments involves nested loops using the representations of both Set and Hash Table .

It is no surprise that Set provides no operation that directly implements ForeachSet .
This operation is not natural for a Set abstraction and depends on much external code
not related to the Set type. Although it would eliminate the abstraction violations,
moving this code to the Set module is unacceptable if we desire a well-organized
modular program. However, the ability to iterate through the elements of a Set
corresponds to an abstract notion that is often needed by clients. Since C provides
no mechanisms for iteration abstraction, we have to resort to some other means for



4.2. ADDING MINIMAL SPECIFICATIONS 59

277 static ExitCode ForeachSet(Set set, Name subject, Code code)
278 {
279 Atom *atom = Dict_Install(subject, NULL, DICTFLAGS_LOCAL);
280
281 Set_ElementValues(set, val)
282 {
283 ExitCode e;
284 *atom = val;
285
286 if ((e = Execute_Code(code)) != Exit_OK)
287 return e;
288 } end_Set_ElementValues
289
290 return Exit_OK;
291 }

Figure 4-4: Revised implementation of ForeachSet

abstracting iteration. In Section 3.2, an abstract iterator type was used to iterate
through the elements of an erc . There are other means for emulating iteration ab-
straction in C including non-functional macros or providing an abstract operation that
takes a Set and a function as arguments and applies the function to each element in
the Set .

Thus, we write an abstract iterator, Set_ElementValues for iterating through each
data value of a Set . Set_ElementValues is not a function — it instantiates a macro
that iterates through the elements of its first argument, assigning its second argu-
ment to the current data value in the body of the loop. Here, Set_ElementValues is
implemented so that the end of the loop is balanced with end_Set_ElementValues .
Figure 4-4 shows how ForeachSet can be rewritten using the abstract iterator.

In most senses, this code is significantly easier to read and understand than the
original code. No longer does someone reading operator.c have to guess or look at
the implementation of Set to figure out what is going on here. Further, a program-
mer may reimplement Set without making any non-local changes — everything is
localized to Set.c and Set.h . It does, however, conceal the looping nature of the
construct and may confuse C programmers unfamiliar with stylized iterators.

Because the macro used to implement Set_ElementValues is not a function, it
cannot be specified in LCL. It is expanded in-line and checked like a regular C macro.
As a result, we need to use /*@access Set*/ comments to allow access to the Set
representation in the macro definition, and /*@noaccess Set*/ to disallow access
in the body of the loop. Section 5.2.3 discusses adding methods of specifying iterators
to LCL to provide a better alternative.

This final two messages report problems similar to the first. Both are instances where
an abstraction violation was needed because an abstract operation was not provided.
We consider the messages in reverse order.

The last error reported concerns the code fragment:



60 CHAPTER 4. MAINTAINING PROGRAMS

578 String key = Pop_String();
579 Set set = Pop_Set();
580
581 Push(Atom_Boolean(Hash_Find(set->body,
582 key->body,
583 Hash_String(key->body)) != NULL));

It is not clear from the code that the argument to Atom_Boolean is testing if key
is a member of set . The provided Set abstraction did not include any operation for
testing membership. This is an operation one would expect an abstract Set type to
provide, since it is part of our abstract notion of a Set . So, we add a Set_isMember
operation, which takes a set and a key as arguments and returns a Boolean . Using
Set_isMember , lines 581–583 can be rewritten in a more readable and appropriate
way:

Push(Atom_Boolean(Set_isMember(set, key)))

The remaining message concerns a similar problem, except here we may have to
compromise between efficiency and data abstraction. The code is,

529 Hash_Bucket bucket = Hash_Find(set->body,
530 key->body,
531 Hash_String(key->body));
532
533 if (bucket == NULL)
534 ymerror("Set does not contain an entry for \"%s\"", key->body);
535 Push(((SetData) bucket->data)->value_atom);

The code is like the previous excerpt, except that if a key is found it pushes the
data associated with the key. It finds the Hash Bucket in the body of set that is
associated with the body of key using a hash value obtained from the body of key
(lines 529–531). If the returned Hash Bucket is a NULL pointer, it reports an error
(lines 533–534), otherwise, the data field of the returned bucket is cast to a SetData
type, and its value_atom field is pushed (line 535). This is an unpleasant fragment
of code to have to deal with inside the operator module — it depends heavily on the
representation of Set , as well as the underlying representation of Hash Bucket .

We can replace the first part (lines 529-534) using the Set_isMember operation. We
add a Set_getData operation to the Set abstraction that returns the data associated
with a key in a Set . Then, the excerpt is rewritten as,

if (!(Set_isMember(set, key)))
ymerror("Set does not contain an entry for \"%s\"", key->body);

Push(Set_getData(set, key));

Unlike all the earlier changes, this one results in an efficiency penalty. All the earlier
abstraction violations were fixed with no more efficiency loss than the overhead of
a function call. We hope (perhaps unrealistically) the compiler will be able to opti-
mize this. If we are particularly concerned with performance, we can implement the
function using a macro and eliminate any performance penalty.



4.2. ADDING MINIMAL SPECIFICATIONS 61

In the last example, however, some performance is sacrificed for improved readabil-
ity and maintainability. Before, only one search in the Hash Table was necessary,
since we could use the returned Hash_Bucket data to both test membership and
add the appropriate value when it exists. Now, the calls to Set_isMember and
Set_getValue each duplicate the same search. In most circumstances, this minor
performance penalty is well worth the improvement in code readability and preser-
vation of abstraction. If this were a particularly performance-critical section of code,
however, it may be unacceptable. One possible solution would be to provide an ab-
stract operation to test a set for membership and produce the appropriate error if the
key is not in the set, or push the associated data. This would not belong in the Set
abstraction, since it does not correspond to an abstract operation in a general con-
text. Alternately, we could add a Set_getBucket operation to Set that returns the
Hash_Bucket associated with a key in the set. If Set_getBucket were implemented
by returning the result of the Hash_Find call, this would allow us to write the code
excerpt abstractly with no efficiency loss. However, it would expose the representa-
tion of Set . We could prevent this exposure by copying the Hash_Bucket , but this
would not be an efficiency improvement. Finally, we could to decide accept the ab-
straction violation. The dangers could be minimized, as long as it is well-documented
and localized.

We can now run LCLint with no errors, ensuring the Set type is consistently abstract.
Through the process, we have gained an understanding of the code, and replaced
several awkward and difficult to read fragments with clearer alternatives. Since Set
is now verified to be consistently used as an abstract type, a maintainer of the code
knows that making changes to the Set implementation will not introduce problems
elsewhere.

Hash

Many other modules in quake are also intended to implement abstract types. For
most modules, the process is similar to that described for Set . We will look at con-
verting the types in the Hash module since they illustrate some other benefits of
LCLint, as well as difficulties involved in maintaining strict abstraction boundaries in
a language like C.

There are three types associated with hash tables defined in Hash.h . We declare the
first two to be mutable abstract types, and HashValue to be an immutable abstract
type in Hash.lcl :

mutable type Hash_Table;
mutable type Hash_Bucket;
immutable type HashValue;

An initial run generates 44 messages. This is too many to tackle at one time. We
could conclude that Hash Table is not intended to be an abstract type, and make ev-
erything exposed. However, it seems like Hash Table should be abstract, so instead



62 CHAPTER 4. MAINTAINING PROGRAMS

of rejecting this possibility, we try making each type abstract in turn to see where
the problems lie.

Running LCLint with just Hash Table declared as an abstract type yields twelve
messages. Two of the messages concern the use of the primitive constant NULL where
an abstract Hash_Table is expected:

dict.c:19,38: GlobalDictionary initialized to type void *, expects
Hash_Table: NULL

Name.c:13,27: Names initialized to type void *, expects Hash_Table: NULL

NULL is declared to have type void * , so it cannot be used where an abstract type
is expected. This is a reasonable prohibition since allowing NULL to be used as an
abstract type assumes that the abstract type is represented by a pointer and that
NULLhas some defined meaning. This is a dangerous, and often incorrect assumption.
We can remedy this by creating a new constant, Null_Hash_Table . Its specification
is added to Hash.lcl :

constant Hash_Table Null_Hash_Table;

It is implemented by a macro defining it to be NULL. We replace the NULLs that were
used as Hash_Table s, with Null_Hash_Table .

Some of the remaining errors are the result of missing Hash_Table operations. Like
Set , the Hash Table module does not provide adequate operations for clients to use
it abstractly. We add Hash_isEmpty , Hash_equal , and a Hash_entries iterator to
the Hash_Table abstraction, and rewrite offending client code to use them.

This leaves four errors, all in dict.c :

dict.c:50,34: Cast to abstract type Hash_Table: (Dictionary)f->first
dict.c:70,30: Cast to abstract type Hash_Table: (Dictionary)f->first
dict.c:108,18: Function Hash_Destroy expects arg 1 to be Hash_Table gets

void *: List_Pop(&DictionaryStack)
dict.c:157,33: Cast to abstract type Hash_Table: (Dictionary)f->first

Three of the messages report casting errors, although they seem peculiar since the
cast expression is (Dictionary) , which is not declared as an abstract type. But
Dictionary is typedef ed to Hash Table , so a cast involving Dictionary is as
much of an abstraction violation as one involving Hash Table .

Correcting the abstraction violation, however, is not easy. All the problems we have
seen so far could be readily fixed by adding additional abstract operations or minor
restructuring of the code; here we are faced with a more fundamental problem. Each
of the errors involves using the List type. For the cast errors, f is a List , and we
needed the cast to coerce the first field of the List , which is a void pointer, into
a Dictionary . The other error involves a parameter type mismatch, as a result of
a List operation returning a void pointer.



4.2. ADDING MINIMAL SPECIFICATIONS 63

Because C does not support polymorphic or parameterized types, it is common practice
to use void pointers to implement generic data structures. So, internal List oper-
ations accept and return void pointers. Clients of List are expected to keep track
of the actual types of the List elements, and cast them to the appropriate type. I
know of no elegant way to avoid the type abstraction violation. One solution is to
make a separate list module for every abstract type that needs list operations — e.g.,
DictionaryList , for keeping a list of dictionaries. This is cumbersome and may
involve writing substantial additional code, but it does preserve type abstractions.
The best solution may be to accept the abstraction violation and leave the code as is.
Although this is indeed a type violation, it is likely to be a harmless one. If List
is indeed a faithful implementation of our notion of lists, it does not do anything to
manipulate the actual elements. The burden of maintaining the type of the List is
placed on the client, but it is hoped that well-named variables should keep errors to
a minimum. To eliminate the error messages, we surround the offending code with
/*@access Hash_Table*/ and /*@noaccess Hash_Table*/ control comments.

Now that Hash Table is abstract, we can move on to trying to make Hash Bucket
abstract. Running LCLint with Hash Bucket declared as a mutable abstract type
yields the 26 messages. Some of these involve abstraction violations similar to those
seen for Hash_Table including the use of NULL to initialize an abstract type and
missing abstract operations.

After fixing the simple problems, seventeen errors remain. All report accessing the
field of an abstract Hash Bucket . Looking at the code generating these errors, most
do not appear to be implementing abstract Hash Bucket operations, but need ac-
cess to the underlying data structure at a fundamental level. While each instance
where the data field of a Hash Bucket is manipulated directly could conceivably be
coded to avoid this, in many instances it would involve considerable work and signif-
icant performance penalties to do so. At this point, we have to reconsider whether
Hash Bucket should be made an abstract type at all. Perhaps we could coerce it
into an abstract type, but it seems clear this is not what the programmer originally
intended. Instead, we declare it to be an exposed type.

It remains to make HashValue abstract. Four errors are reported after we add the
declaration of HashValue as an immutable abstract type to the specification:

dict.c:52,7: Function Hash_Find expects arg 3 to be HashValue gets int:
name->hash_value

dict.c:78,60: Function Hash_Find expects arg 3 to be HashValue gets int:
name->hash_value

dict.c:83,45: Function Hash_Insert expects arg 3 to be HashValue gets
int: name->hash_value

Name.c:30,2: Assignment of HashValue to int:
name->hash_value = Hash_String(text)

At first, these errors seem puzzling — each involves a type mismatch with the
hash_value field of a variable name. Further inspection reveals that all the name
variables are declared to be type Name, defined by:



64 CHAPTER 4. MAINTAINING PROGRAMS

typedef struct Name {
char *text;
unsigned int hash_value;

} *Name;

The type of the hash_value field is an unsigned int , not a HashValue , as we
would expect. In this implementation, the type of HashValue is also unsigned
int . However, this naming inconsistency is dangerous, and could lead to bugs if the
representation type of HashValue were changed. Here, LCLint has found a problem
that would probably not be found by other means.

We are left with a Hash Table abstraction that is not completely abstract — it in-
cludes an exposed Hash_Bucket type. There are operations provided which return
Hash_Bucket s that are contained in a Hash Table , thereby exposing the represen-
tation of Hash Table . Ideally, the only type exported by the Hash Table would be
an abstract Hash Table type providing all necessary operations directly. If we were
willing to invest in a major coding effort, we could replace the Hash Table imple-
mentation with a truly abstract type. However, since our goal here is to understand
the code and make it easier to maintain, learning that the type is not abstract is
probably sufficient.

Additional Minimal Specifications

Several more types were made abstract in the same way, with similar results.

Making Array abstract uncovered 23 errors, one involving an initialization to NULL
and the rest involving accessing fields of an Array . The initialization error was
fixed by adding a Null_Array constant, as before with Null_Hash_Table . Closer
inspection of the other errors revealed many omissions from the Array module —
no Array_Fetch , Array_Set , or Array_Size operations were provided. Adding
these operations to Array facilitated easy fixes for most of the errors reported. The
remaining errors are fixed by adding an Array_Elements iterator. Replacing the
direct Array manipulations outside the Array module with calls to the new abstract
operations not only produces smaller and more readable client code, but makes it
easier to consistently do appropriate run-time checks to ensure that array indexes
are not out of bounds. This is easier and more reliable than having to scatter the
checks throughout client code as was done previously.

Declaring the Atom type to be abstract revealed 86 abstraction violations, in many
different source files. Many of these involved explicit tests of the tag field of the
Atom, as well as direct manipulation of its contained data. Given the large number
of errors and their nature, the declaration of Atom changed to make it an exposed
type. Perhaps it would have been better to design the program with an abstract Atom
type; however, it is clear the programmer did not intend for Atom to be treated as an
abstract type.

Making Dictionary an abstract type served as a pleasant contrast — no errors were
reported. Although this does not lead us to change any code, it does provide useful



4.3. DEVELOPING THE SPECIFICATIONS 65

information that could not be easily obtained without using LCLint. By running LCLint
with Dictionary declared as an abstract type, we have certified that it is indeed
abstract. This is helpful for understanding and maintaining the program.

Finally, Code was declared to be abstract. LCLint reported five errors, all regarding
arrow accesses in the body of Execute_Code in Execute.c . We could add abstract
functions to avoid the abstraction violations; however, it seems Execute_Code could
be part of the Code module instead of the Execute module. So, we use control
comments to allow it to access the representation of Code.

In this section, we have seen how LCLint can be used to declare a type to be abstract
and detect and eliminate abstraction violations. Although it may seem that this is
a critique of the code, the effectiveness of this approach depends on the code being
well-designed and implemented in a style employing abstract types. Because the
code was written with abstract types in mind, declaring types to be abstract typically
uncovered only a few abstraction violations. The flaws, then, are not with the code,
but with the methods and tools available when the code was developed. Since C does
not provide abstract types, there is no way for a programmer to denote that a type is
intended to be abstract and check that the abstraction is not violated. LCLint provides
this ability, and hence the benefits associated with type encapsulation.

In the process of making types abstract, no implementation bugs producing incorrect
behavior were found. This may be because quake had already been extensively tested
and used, so it is likely not many bugs remain. However, running LCLint on quake
and adding minimal specifications was still a worthwhile process. We gained an
understanding of the code, and also made it easier to maintain in the future. By
having LCL specifications declaring types to be abstract we now know which types can
be safely modified in isolation and have a better idea what level of detail is needed
to analyze the code. Further, by eliminating the abstraction violations discovered by
LCLint, we made the client code shorter and easier to read, understand, and maintain.

4.3 Developing the Specifications

So far, our specifications have been limited to simple abstract type declarations. Much
can be gained from these minimal specifications relating to error detection and code
maintainability. However, without additional specifications we cannot benefit from
certain other checks, including globals and modifies checking, and our specifications
do not serve well as documentation.

In this section, the specifications for Set , Hash Table and Execute are augmented
by adding the prototype information. The process is incremental — as we add more
specifications, we often uncover additional problems in earlier ones.

Set

As a first step to augmenting the specifications, the prototypes in Set.h are moved
into Set.lcl and their terminating semicolons are replaced with empty specification



66 CHAPTER 4. MAINTAINING PROGRAMS

imports Array, Atom, Boolean, String, < stdio > ;

mutable type Set;
immutable type SetData;

Set Set_New() { }
Set Set_InsertAtom(Set set, Atom key, Atom value) { }
void Set_Put(Set set, Atom key, Atom value) { }
SetData Set_Get(Set set, Atom key) { }
Atom Set_getValue (Set set, String key) { }

Boolean Set_isMember (Set set, String key) { }
Boolean Set_isEmpty (Set set) { }

Set Set_Convert(Atom atom) { }
Array Set_ToArray(Set set) { }
void Set_Dump(FILE *stream, Set set) { }

Figure 4-5: Set.lcl after including prototypes

bodies. Set.h is changed to include Set.lh where the prototypes were removed.
Set.lh is generated automatically by LCLint from the prototypes now in Set.lcl .

Figure 4-5 shows the revised Set.lcl . The first line imports five other modules.
The first four modules are specified as part of this system. We need to use the types
defined in the Array , Atom, Boolean and String specifications in the prototypes for
our functions. The fifth import, <stdio> , refers to a standard library. LCL libraries
are provided to mirror the standard ANSI C libraries. Importing <stdio> provides the
declaration of the FILE abstract type. The next two lines of the specification are the
familiar type declarations from the original specification. The remainder are the func-
tion prototypes taken from Set.h . For now, each function header lists no globals and
each body specification is empty. This implies that no global variables may be used,
and no client-visible state may be modified. By using LCLint, we find where function
implementations violate this specification, and amend the specifications accordingly.

Running LCLint with the new specification reports two errors:

Set.c:173,5: Called procedure fprintf may modify *stream:
fprintf(stream, "{")

Set.c:175,5: Called procedure fprintf may modify *stream:
fprintf(stream, "}")

Both are in the function Set_Dump . The function fprint is specified in the standard
library by:

int fprintf (FILE *stream, char *format, ...) {
modifies *stream;

}

Since fprintf may modify the FILE pointed to by its first argument, the calls in
Set_Dump may modify the FILE pointed to by stream . Since stream is an argument



4.3. DEVELOPING THE SPECIFICATIONS 67

imports Boolean, < stdio > ;

mutable type Hash_Table;
constant Hash_Table Null_Hash_Table;

immutable type HashValue;
HashValue Hash_String(char *string) { }

typedef struct Hash_Bucket {
char *key;
HashValue hash_value;
void *data;

} *Hash_Bucket;

typedef void (*Hash_WalkProc)(Hash_Bucket bucket);

Hash_Table Hash_InitializeTable(Hash_Table t) { }
Hash_Table Hash_NewTable(int initial_buckets) { }
Boolean Hash_isEmpty (Hash_Table t) { }
Boolean Hash_equal (Hash_Table t1, Hash_Table t2) { }

Hash_Bucket Hash_Find(Hash_Table t, char *key, HashValue val) { }
Hash_Bucket Hash_Delete(Hash_Table t, char *key, HashValue val) { }
Hash_Bucket Hash_Insert(Hash_Table t, char *key, HashValue val) { }

void Hash_Walk(Hash_Table t, Hash_WalkProc proc) { }
void Hash_Destroy(Hash_Table t) { }
void Hash_DumpTable(FILE *stream, Hash_Table t) { }

Figure 4-6: Hash.lcl after including prototypes

to Set_Dump, this modification is visible to a client. Hence, it should be reflected by
adding a modifies clause to the specification of Set_Dump:

void Set_Dump(FILE *stream, Set set) { modifies *stream; }

Now, no errors are reported by LCLint. We may wonder why no modification errors
were reported for Set_InsertAtom or Set_Put . These sound like operations that
modify their Set argument. In the implementation, though, the modifications are
hidden in calls to Hash_Insert . Since we have not yet written prototype specifi-
cations for the Hash Table module, LCLint does not propagate the modification in
Hash_Insert . Hence, we see an instance where modifies checking is incomplete
because of missing specifications (see Section 2.3.4).

Hash

As with Set , we augment the specification of Hash by moving prototypes and ex-
posed type declarations from Hash.h to Hash.lcl (shown in Figure 4-6). The only
unusual line is the typedef for Hash_WalkProc . This defines an exposed type
Hash_WalkProc , that is a function with no return value taking a single Hash Bucket
argument. Hash_WalkProc is used as the type of a function argument to Hash_Walk .



68 CHAPTER 4. MAINTAINING PROGRAMS

Figure 4-7 shows the result of running LCLint using the Hash.lcl specification. All
errors reported are for functions which we expect to modify their arguments. True
to their names, Hash_InitializeTable , Hash_Delete and Hash_Insert modify
their Hash Table argument. As in Set_Dump , calls to fprintf in Hash_DumpTable
generate modification errors. We can add the appropriate modifies clauses to reflect
these modifications.

Surprisingly, no modification errors were reported for Hash_Destroy . If the imple-
mentation of Hash_Destroy used a standard memory free routine, a modification
would be detected since the standard library specifies free to modify the value or its
argument. Instead, it used Utils_FreeMemory which is not yet specified.

The case with Hash_Walk is less clear. Since it applies a higher-order parameter
it may contain undetected modifications. Conceivably, the function argument may
modify any argument to Hash_Walk and any global variable. Currently, LCLint is not
designed to deal with higher-order functions effectively, so we disregard this possibil-
ity. (Section 5.2.3 discusses extending LCLint to handle higher-order functions.)

Adding the modifies clauses to the specifications of functions which reported mod-
ification errors eliminates all of the original errors reported. The modifies clauses
propagate to clients of these functions, revealing more unspecified modifications:

Set.c: (in function Set_InsertAtom)
Set.c:51,2: Called procedure Hash_Insert may modify set->body:

Hash_Insert(set->body, key_string->body, Hash_String(key_string->body))
Set.c:59,2: Called procedure Hash_Insert may modify set->body:

Hash_Insert(set->body, key_string->body, Hash_String(key_string->body))
Set.c: (in function Set_Put)
Set.c:137,2: Called procedure Hash_Insert may modify set->body:

Hash_Insert(set->body, key_string->body, Hash_String(key_string->body))
Set.c:146,2: Called procedure Hash_Insert may modify set->body:

Hash_Insert(set->body, key_string->body, Hash_String(key_string->body))

The expected modifications for Set_InsertAtom and Set_Put are now detected,
through the specification of Hash_Insert . Adding the appropriate modifies clauses
to the specifications of Set_InsertAtom and Set_Put corrects the inconsistencies.

Execute

For a final example, we write prototype specifications for the Execute module. Unlike
the other modules we have considered, Execute does not implement an abstract type.
It does, however, export global variables. The specification for Execute is shown in
Figure 4-8. The lines after the imports clause declare five global variables.

Running LCLint produces 46 messages, all regarding the use and modification of
the global variables declared in Execute.lcl . To reduce the number of messages,
the declarations of all globals except Execute_CurrentStream are moved back to
Execute.h . Now, we can focus on messages relating to Execute_CurrentStream .



4.3. DEVELOPING THE SPECIFICATIONS 69

% lclint +showfunc +charint +voidabstract Array.c ... utils.c \
Array.lcl Atom.lcl ... Set.lcl Hash.lcl

LCLint 1.2 --- 07 May 94

Hash.c: (in function Hash_InitializeTable)
Hash.c:18,5: Suspect modification of table->nEntries:

table->nEntries = 0
Hash.c: (in function Hash_Delete)
Hash.c:126,3: Suspect modification of table->buckets[?]:

table->buckets[bucket_index] = temp->tail
Hash.c:128,6: Suspect modification of table->nEntries: table->nEntries--
Hash.c: (in function Hash_Insert)
Hash.c:188,7: Suspect modification of table->buckets[?]:

table->buckets[i] = table->buckets[i]->tail
Hash.c:189,7: Suspect modification of table->buckets[?]->tail through

alias new_buckets[new_index]->tail: new_buckets[new_index]->tail =
new_head

Hash.c:193,2: Suspect modification of table->nBuckets:
table->nBuckets = new_length

Hash.c:196,2: Suspect modification of table->buckets:
table->buckets = new_buckets

Hash.c:204,2: Suspect modification of table->nEntries: table->nEntries++
Hash.c: (in function Hash_DumpTable)
Hash.c:252,5: Called procedure fprintf may modify *stream:

fprintf(stream, "%d buckets\n", table->nBuckets)
Hash.c:253,5: Called procedure fprintf may modify *stream:

fprintf(stream, "%d entries\n", table->nEntries)
Hash.c:266,6: Called procedure fprintf may modify *stream:

fprintf(stream, "\t[%d]:", i)
Hash.c:271,3: Called procedure fprintf may modify *stream:

fprintf(stream, " \"%s\"", b->key)
Hash.c:274,6: Called procedure fprintf may modify *stream:

fprintf(stream, "\n")

Finished LCLint checking --- 13 code errors found

Figure 4-7: Modification errors reported using Hash.lcl



70 CHAPTER 4. MAINTAINING PROGRAMS

imports basic, Name, String, < stdio > ;

int Execute_CurrentLineNumber;
FILE *Execute_CurrentStream;
Name Execute_LastName;
String Execute_CurrentFileName, Execute_CurrentPathPrefix;

void Execute_Initialize(void) { }
void Execute_PushContext(void) { }
void Execute_PopContext(void) { }

ExitCode Execute_Atom(Atom atom) { }
ExitCode Execute_Code(Code code) { }
ExitCode Execute_Stream(FILE *stream, String stream_name) { }
ExitCode Execute_File(String path_prefix, String file_name) { }

Figure 4-8: Execute.lcl

Figure 4-9 shows the output of LCLint. Although the number of errors is large, all of
them are in yylex in lexical.c or in Execute.c . We eliminate the error messages
and improve the interface documentation by adding Execute_CurrentStream to the
globals lists (and, where appropriate, to the modifies clauses) of these functions. The
only message not due to Execute_CurrentStream is the use of errno reported in
Execute_File . The global variable errno is declared in the standard library, and
used by library functions to return error conditions to the caller. It is checked like
a user-specified global, and the inconsistency is eliminated by adding errno to the
globals list of Execute_File .

As with modifies clauses, listing new globals leads to detection of additional er-
rors through propagation of global usage and modification information. Three er-
rors are detected in Execute_Code because of calls to Execute_PushContext and
Execute_PopContext .

Note that no globals or modifies checking is done in functions that are not specified
(see Section 2.3.4). Adding the globals lists to function specifications improves the
documentation of the interface, but does not provide a complete description of where a
global variable is used. Running LCLint with the -globunspec flag detects eighteen
instances where Execute_CurrentStream is used or modified in a function that is
not specified. Most of these functions are not exported, so it would be a mistake to
simply add specifications for them to document the global use. At present, there is
no good solution for this problem.

4.4 Summary

In this chapter, we have seen how LCLint can be used to understand a program that
had no specifications, and in the process document its interfaces, make it easier to
maintain, and detect bugs. Instead of starting with a specification and implemen-



4.4. SUMMARY 71

lclint +showfunc +charint +voidabstract Array.c ... utils.c
Array.lcl ... Execute.lcl

LCLint 1.2 --- 09 May 94

Execute.c: (in function Execute_PushContext)
Execute.c:42,43: Unauthorized use of global Execute_CurrentStream
Execute.c: (in function Execute_PopContext)
Execute.c:54,5: Unauthorized use of global Execute_CurrentStream
Execute.c:54,5: Suspect modification of Execute_CurrentStream:

Execute_CurrentStream = context->stream
Execute.c: (in function Execute_File)
Execute.c:181,82: Unauthorized use of global errno
Execute.c: (in function Execute_Initialize)
Execute.c:193,5: Unauthorized use of global Execute_CurrentStream
Execute.c:193,5: Suspect modification of Execute_CurrentStream:

Execute_CurrentStream = NULL
lexical.c: (in function yylex)
lexical.c:369,26: Unauthorized use of global Execute_CurrentStream
lexical.c:369,21: Called procedure getc may modify

*Execute_CurrentStream: getc(Execute_CurrentStream)
lexical.c:380,27: Unauthorized use of global Execute_CurrentStream
lexical.c:380,22: Called procedure getc may modify

*Execute_CurrentStream: getc(Execute_CurrentStream)
lexical.c:385,30: Unauthorized use of global Execute_CurrentStream
lexical.c:385,25: Called procedure getc may modify

*Execute_CurrentStream: getc(Execute_CurrentStream)
lexical.c:391,28: Unauthorized use of global Execute_CurrentStream
lexical.c:391,23: Called procedure getc may modify

*Execute_CurrentStream: getc(Execute_CurrentStream)
lexical.c:394,31: Unauthorized use of global Execute_CurrentStream
lexical.c:394,26: Called procedure getc may modify

*Execute_CurrentStream: getc(Execute_CurrentStream)
lexical.c:399,134: Unauthorized use of global Execute_CurrentStream
lexical.c:399,114: Called procedure ungetc may modify

*Execute_CurrentStream: ungetc(CurrentChar, Execute_CurrentStream)
lexical.c:406,136: Unauthorized use of global Execute_CurrentStream
lexical.c:406,116: Called procedure ungetc may modify

*Execute_CurrentStream: ungetc(CurrentChar, Execute_CurrentStream)

Finished LCLint checking --- 20 code errors found

Figure 4-9: Checking globals using Execute.lcl



72 CHAPTER 4. MAINTAINING PROGRAMS

tation as was done in Chapter 3, we started with an undocumented implementation
and derived a specification. The automated checks between our hypothetical speci-
fications and the actual source code verify that the specification is reasonable, and
may discover problems in the source code. In practice, a combination of the two ap-
proaches is useful when using LCLint to develop new systems. Some modules may
be well-understood and specified before they are implemented. Then, LCLint is used
to check the source code against the specification. Other modules may be less fully
specified, leading to a more deductive process. The result is the same: a specified pro-
gram where the source code has been checked against the specification. This method
of software development increases our confidence in both the code and specification,
without the heavy burden associated with program verification.

None of the specifications written in this chapter are adequate client-level interface
documentation. To complete the specifications, we need to add requires and ensures
clauses and write LSL traits for the underlying types. Since LCLint does not use any of
this information to perform checks on the source code, it is outside the scope of this
thesis.



Chapter 5

Conclusions

LCLint confirmed the claim that specifications can be effectively used to do simple
static checks on source code. Experience has shown LCLint to be a useful pragmatic
tool, although it only touches the surface of what can be done using specifications to
check source code.

The primary motivation for developing LCLint was as a tool for detecting bugs. Not
enough experience has been had using LCLint as code is being developed to establish
its effectiveness in finding bugs. Since most of the experience with LCLint has been
with well-tested systems, it is not surprising that most of the messages report vio-
lations of data abstractions and style conventions rather than bugs. Our experience
has shown LCLint to be useful in improving code quality, supporting a programming
methodology employing data abstraction and detecting flaws in specifications. It
found a few code bugs that could not be detected without using specifications in pro-
grams that had already been tested, but so far has been more useful in validating
abstraction barriers and detecting violations of style conventions.

Towards the end of LCLint development, I began using LCLint on its own code and
specifications. Many errors were caught, most involving type abstraction violations.
Most of the actual bugs detected by LCLint were not related to specification checking,
although the flexibility and strict type-checking provided by LCLint discovered errors
that would not have found with traditional lint. There was one instance where a
function was declared to return the wrong abstract type that was detected by LCLint.
Many problems were also detected regarding the misuse of macro parameters. Only
minimal specifications were written, so no modifies or globals checking was done.
Since most of the code had already been tested extensively before LCLint was robust
and stable enough to be used on its own source code, many bugs that could have been
detected by LCLint had already been found through testing and corrected.

I derived the most benefit from LCLint when, relatively late in the development, I
decided that the underlying implementation for representing types was too inefficient.
Without LCLint, I would have been reluctant to reimplement such a pervasive type
for fear that unexpected dependencies on the previous implementation would lead
to difficult to detect bugs. By using LCLint, however, I could verify that the type

73



74 CHAPTER 5. CONCLUSIONS

was truly abstract, and change its implementation without concerns that it might
introduce bugs elsewhere.

5.1 Design Goals

The design goals for LCLint were efficiency, ease of learning, incremental gain and
flexibility (see Section 1.1). Most of these were met with at least partial success.

5.1.1 Efficiency

Although early versions of LCLint did not perform as well as a compiler for code
sizes over a thousand lines, reimplementing some abstractions led to major efficiency
improvements. The current version runs in time comparable to a typical compiler.

To enable running LCLint on large systems with long specifications, a library facility
is provided. Specifications can be processed once and stored in a condensed format.
The library can be quickly loaded, allowing an individual source file to be processed
efficiently. By controlling system builds with make (see Appendix A.3), we can ensure
that only files that have changed are rechecked. If external interfaces are specified,
we can depend on changes in a source file having no effect on other files. When a
specification is changed, we need to rebuild the library and check all source files that
use this module. Care was taken in designing the library encoding so that large
libraries can be loaded quickly.

Some statistics for running LCLint on three systems of varying size are shown in
Figure 5-1. As expected, the execution time of LCLint is approximately linear in the
size of the code. Time to process specifications for a fully specified program is long
compared to the time to do the C checks, but for large systems we can build a library
file encoding their specifications. Since we expect the specifications will not change
as frequently as the code during development, it is more essential that source code
processing is quick when a specification library is loaded. For the dbase example,
using a library reduces checking time by more than fourfold.

The difference between the lines of source code and the actual number of lines pro-
cessed by LCLint is due to the nature of file inclusion in C. Since many header files are
included by more than one source file, the actual number of lines processed greatly ex-
ceeds the number of source lines. The +singleinclude flag optimizes file inclusion
by eliminating some reprocessing for header files that are included more than once.
This is not the default, since it may cause incorrect checking if the same identifier is
declared in two different header files with different types.

Although the statistics in Figure 5-1 show that LCLint successfully runs faster than
a typical compiler in processing complete programs, what is more important is how
quickly we can check a single file that is part of a larger system. When code is
developed, typically a few source files will be edited at a time, so the time needed
to recompile changed source files and link a new executable is of prime importance.
If LCLint is to be used in the development process, it should not increase this time



5.1. DESIGN GOALS 75

lines compile LCLint
Program spec source processed (sec) (sec)

dbase (Chapter 3)
complete system 307 997 3 113 3.9 8.7
making spec library 307 7.3
checking source using library 997 3 113 2.0

quake (Chapter 4)
no specifications 6404 75 995 19.7 19.8
final version 149 6812 78 329 21.4 28.7

making spec library 149 6.0
checking source using library 6812 78 329 21.4

using +singleinclude 6812 26 675 7.8

LCLint sources
making spec library 362 3.6
sources using +singleinclude 65 695 217 257 236.2 139.2

Times give are sum of user and system time, measured as the median of five
trials on a DEC 3000 AXP 500. Source line counts include .c , .h and .lh files.
Machine generated source files are included in the line counts and checked for
completeness. Compilation is done using gcc with no optimization or warning
flags.

Figure 5-1: Statistics for running LCLint on entire programs

lines plain LCLint
file lines processed build build increase

globals.c 3 7 3.8 4.3 12%
udnode.c 147 16 693 6.6 15.9 141%
llsymtab.c 534 17 714 6.8 15.8 132%
ctbase.c 1783 20 221 8.2 19.1 133%
abstract.c 4784 26 752 11.8 27.6 134%

As in a realistic development environment, the compilations were run using a
makefile. Build time is total time taken to rebuild the system (including linking)
when the given source file is changed. LCLint build time is the total time taken
to run LCLint on the changed file using the specification, compile the file and link
the program. All times are in seconds.

Figure 5-2: Statistics for running LCLint on single source files



76 CHAPTER 5. CONCLUSIONS

unacceptably. Figure 5-2 shows statistics comparing the time to compile one source
file from the LCLint source and relink the binary, with the time taken running LCLint
on the source file using the specification library. On average, LCLint more than dou-
bles the build time. This is high, primarily because of the number of lines included
through header files. Because of file inclusion, to check a small source file may in-
volve processing tens of thousands of lines. This could be somewhat improved by
structuring header files differently. While more than doubling the build time is cer-
tainly not a negligible cost, I feel that the checking benefits are enough to merit this
time penalty. These results could be substantially improved by recoding portions of
LCLint.

5.1.2 Flexibility

Balancing the needs for flexibility with usability often leads to compromises. As sys-
tems become more flexible, they tend to become harder to use since users need to know
more to customize the tool for their purposes. LCLint provides forty flags for control-
ling which checks are done and which types are considered distinct, and additional
flags for controlling the cosmetic appearance of messages and high-level behavior.
There are too many flags for anyone to remember, although mnemonic names mean
a few commonly used flags are usually remembered. Despite this, certain classes of
messages cannot be suppressed without suppressing desirable messages also. While
there are flags for turning off checking of ignored return values of any type, and
ignored return values that are int or bool only, there is no way to suppress these
messages for some other type without suppressing them for all other types. We can
turn on checking to disallow pointer arithmetic, but cannot allow it for certain types
of pointers and disallow it for others. It would be useful to have more flexibility
than the current flags provide — however, doing so would add considerably to the
complexity of LCLint, both for the user and the implementor.

Originally, we were reluctant to introduce stylized comments to control checking at
a local level. This has the major drawback, that someone running LCLint from the
command line may not see errors they are interested in since control comments in the
source code suppress the messages. This is especially worrisome in the case where
a type abstraction violation is concealed by a control comment, and a programmer
is checking to see if the abstraction can be changed safely. However, being able to
control checking at a local level allows for added flexibility in suppressing specific
messages at specific code points. It might be worth adding an option to override
control comments from the command line, but at present it is up to the programmer
to use them judiciously.

5.1.3 Incremental Effort and Gain

Much is gained by using LCLint without any specifications. In addition to the tradi-
tional lint checks done by LCLint, many bugs were detected as a result of introducing
a true bool type. Other C checks which proved particularly useful are those report-



5.1. DESIGN GOALS 77

ing cases in switch statements which fall-through to the next case and undefined
variable usage errors.

The most significant benefits, though, result from using LCLint to check abstract types.
Only a trivial LCL specification is necessary to detect abstraction violations and make
the code easier to understand and maintain.

Writing more complete specifications can occasionally uncover additional problems,
but it is hard to justify solely for this reason. At present, the primary benefit of
extending specifications beyond type declarations is improved client-level documen-
tation. The modifies and globals checking done by LCLint are useful in improving
this documentation, and may occasionally find bugs. For most programs, though, the
chances of finding significant code bugs are not high enough to justify the extra effort
solely for this reason.

5.1.4 Easy to Learn and Use

Not enough experience has been gained introducing new users to LCLint to make
definitive statements about how easy it is to learn. My intuition is that for program-
mers already accustomed to using abstract types only a little extra effort is needed
to write minimal LCL specifications and gain significant benefits from using LCLint.
Programmers who are not accustomed to using abstract types, may receive some ben-
efits from using LCLint, but are unlikely to benefit considerably without adopting a
programming style employing abstract types. We hope the availability of LCLint will
encourage C programmers who did not program in a style employing data abstraction
or formal specifications to adopt a more modular style and begin to use abstract types
and write specifications. As yet, this is unsubstantiated.

Unfortunately, there are some significant barriers to learning to use LCLint effectively.
Foremost is the difficulty of using many flags to customize checking to a particular
coding style. Although the defaults have been chosen carefully to coincide with what
we consider good programming style, individual programming styles vary widely, and
most C programmers do not adopt some of the default conventions that are checked
by LCLint. Without knowledge of LCLint’s flags, new users are likely to be flooded
with messages. This quickly leads to frustration if the problems reported are not
considered important by the programmer, such as comparisons between char and
int values. If the programmer does not realize there is a flag for suppressing these
messages, it is likely that LCLint will be quickly abandoned.

Several approaches have been attempted to ameliorate this problem. On-line help
provides some assistance — running LCLint with no flags, or with the -help flag
will produce some general help information and a list of available flags. Further
information on particular flags is given when they are listed after -help on the
command line. This is useful to experienced LCLint users who forget the name of a
flag or its precise definition. It is less useful to novice users who have no idea what
types of flags are available or how particular checks can be controlled.

A more effective solution is provided by modes. Instead of needing to set each specific



78 CHAPTER 5. CONCLUSIONS

flag, a mode can be used to set many flags to pre-defined values. For instance, using
-weak turns off checks likely to irritate seasoned C programmers. This is useful for
providing a quick way for new programmers to begin using LCLint, but it also reduces
LCLint’s effectiveness by turning off some checks that could detect bugs. The -strict
mode is provided for doing much stricter checking than normal. In practice, this is
rarely used. Programmers would have to be exceedingly careful to avoid being flooded
with messages when -strict is used.

Perhaps the most important factor in making LCLint attractive to new users, is correct
settings of the defaults. There are many tradeoffs involved — if the default does too
much checking, novice users will be overwhelmed with messages when they first run
LCLint; if it does too little, important errors may go unreported. Since programming
styles vary widely, it is impossible to develop a default setting that works for all
code. The existing default settings are based largely on my own experience and
intuition, as well as some helpful feedback from a few users, none of whom could
be described as typical C programmers. Clearly, much more experience is needed to
develop satisfactory default settings.

5.2 Extensions

The current implementation of LCLint suggests many other possibilities for using
specifications to check source code. The most interesting extensions involve extract-
ing more information from the specification to improve checking, and augmenting the
specification language with constructs that provide addition opportunities for check-
ing as well as improving the documentation of the interface.

5.2.1 Improvements

The range of checks which can be done on C code is virtually unlimited. There are
many common C errors which could be detected statically but are not detected by
LCLint. Many of these have been investigated by other static checking tools since
they do not rely on specifications.

A more relevant improvement would be checking that abstract representations are
not exposed indirectly. Exposing the representation is a common problem in im-
plementations of abstract types, and it often leads to serious bugs that are hard to
detect. LCLint could attempt to check that no abstract operation returns a value which
references a mutable part of an abstract representation or returns with parameters
aliasing mutable parts of the abstract representation. Using the alias analysis al-
ready done by LCLint, it would not involve much additional code to check for simple
cases of representation exposure.

Several changes could be made to the interface to LCLint to make it easier to use. Most
of the difficulty in using LCLint is a result of large numbers of messages generated.
While the existing command-line options and control comments provide mechanisms
for suppressing messages, they are not sophisticated enough to be satisfactory. The



5.2. EXTENSIONS 79

-limit flag provides a coarse means for suppressing similar messages, but it only
works for consecutive messages that are similar in a simple textual way. Better ways
to suppress multiple messages would greatly improve LCLint’s usability. Ideally, we
would like to be able to detect and suppress messages that are similar in content to
some threshold number of previous messages.

Another improvement would be providing optional hints to the user on controlling
messages. If many errors are detected involving incompatible bool and int usage, it
would be helpful to a novice user if LCLint prints a message suggesting the +boolint
option be used.

5.2.2 Using More of the Specification

The only parts of a function specification presently used by LCLint are the header and
the modifies clause. No checking is done relating the source code to other parts of
the specification.

The ensures clause contains the most specific information constraining the implemen-
tation of a function. LCLint foregoes many opportunities for checking by not detecting
problems related to the ensures clause. Ultimately, program verification could be
done using the ensures clause for a fully specified function. This would contradict
our goal of making LCLint a simple, inexpensive tool. Instead, many checks short of
full program verification could be done within our efficiency guidelines.

Some of the ideas from Aspect [Jac92] could be used, with similar benefits in LCLint.
Consider a typical specification, such as this one from Figure 1-1:

bool intSet_choose (intSet s, out int *choice) {
modifies *choice;
ensures if (result) then (*choice) 02 s^

else size(s ^) = 0;
}

LCLint’s checking is limited to type checking, checking the out parameter is not used
before it is defined, and checking that no visible state other than *choice is modi-
fied. But the specification contains much more information that would be useful in
detecting errors. It constrains intSet_choose to return FALSE only when the set
is empty; and if it returns TRUE, the value of *choice in the post-state should be
an element of the set. Checking this completely would be well outside the acceptable
efficiency of LCLint, and would most likely require guidance from the programmer to
direct a proof. But LCLint could check that if TRUEis returned, *choice has been set
to a value that depends on s . Checking that the return value is correct would be more
complicated. There is no direct way to relate the semantics of the size operator to
the concrete representation of an intSet .

Information in the ensures clause could also be used to improve alias analysis in-
volving function calls. Instead of assuming values returned by functions do not alias
any other storage, we could check if the function ensures the result is fresh . If it
does, we know it cannot alias any visible state. If it does not, we could assume it



80 CHAPTER 5. CONCLUSIONS

may alias any state visible to the called function or attempt a deeper analysis of the
ensures clause to determine possible aliases. Further checking can be done on the
implementation to verify that the return value satisfies alias conditions in the speci-
fication. It would be easy enough to determine if the result references fresh storage,
though other conditions may be harder to check.

LCLint could also attempt to verify that the implementation is consistent with the
checks clause. The checks clause constrains the implementation to test a condition
and issue an error message if it is not met. Although we cannot easily verify that the
condition in the checks clause is tested, we can check that some condition dependent
on values used in the checks clause is tested and some branch determined by the test
produces an error message. LCLint could issue an error message when it is clear that
an implementation does not do the test specified by its checks clause. These may
be helpful in detecting problems where an implementation lacks a test of necessary
assumptions.

It might also be interesting to investigate whether any simple checking can be done at
point of call involving requires clauses. Perhaps some of the typestate [SH83] concepts
could be used to detect possible violations of requires clauses. I suspect, however,
that no useful checking of requires clauses could be done without abandoning the
simplicity of LCLint.

5.2.3 Augmenting the Specification Language

In addition to using more information in specifications written in the existing speci-
fication language, additional bugs could be detected if LCL were augmented to allow
more comprehensive specifications and provide more constraints on the implementa-
tion and use of a function.

Iterators

Chapters 3 and 4 each include instances where it would be helpful to have an ab-
stract operation for iterating through the elements of an abstract collection type. LCL

provides no way to specify an iterator. We could add syntax to LCL for specifying
iterators. However, since C does not support user-defined iterators, we would also
need to adopt conventions on how iterators are used and implemented. LCLint could
enforce these conventions in checking the implementation of the iterator and its use.

Higher-Order Functions

The current version of LCL has no way to describe higher-order functions. We can
declare parameters and global variables that are functions using C’s type syntax, but
cannot write specifications for higher-order functions. Ideally, specifiers should be
able to specify a higher-order function using the specification of the argument func-
tion. In Section 4.3, we saw one instance where a higher-order specification would be
useful. We would like to express that if the function passed to Hash_Walk modifies



5.3. SUMMARY 81

its argument, then Hash_Walk modifies the Hash Table . Further, any globals used
or modified by the argument function are used or modified by the called function.
Current LCL syntax has no way of expressing these constraints. The difficulty as-
sociated with handling higher-order functions may outweigh the benefits, especially
given that most C programs rarely use function parameters.

Variable Classes

Currently, the only distinction between variables of the same type made by LCLint
is that between out parameters and regular parameters. The effectiveness of out
parameter checking suggests adding more variable subclasses. In particular, signif-
icant gains could be made if more descriptive pointer declarations were employed.
Traditionally, pointer arguments to C functions serve several purposes — they may
be indirections to improve efficiency of the function call; they may be used to simulate
multiple return values, intended only as an address where the called function should
place a returned value; they may be used to simulate pass by reference; or, they may
be pointers into a block of storage. The out type qualifier distinguishes the case
where the parameter is intended as an address for a return value, but LCL provides
no syntax for distinguishing between other uses of pointers. Additional qualifiers
would enhance the specification’s role as documentation, in addition to providing op-
portunities for additional LCLint checking.

Post-Obligations

The idea of post-obligations as used in Inscape [Per89] provides some interesting
possibilities for improved checking. A simple post-obligation could be expressed as
a type qualifier on a return value. For instance, we could declare a function that
returns a value that may not be modified by the caller, or a pointer to storage that
must be freed at some point. To check post-obligations, we need to propagate the
obligations through specifications in the same way globals usage and modifies clauses
are propagated. This would add some complexity to LCLint, but is likely to have major
benefits in improving error detection.

5.3 Summary

The future of using specifications to check source code seems promising. The power of
checkers that do not use specifications is limited to detecting anomalies in the source
code. Program verifiers require complete specifications and programmer directed
proofs that are too expensive for nearly all applications. Experience with LCLint has
shown that small partial specifications can be combined with an efficient and flexible
tool to detect classes of bugs which could not be found without specifications. Further,
the process of writing specifications and using them to check source code is helpful
in understanding and maintaining programs.



82 CHAPTER 5. CONCLUSIONS



Appendix A

User’s Guide

This appendix is extracted from the LCLint User’s Guide, Version 1.2. Only those
sections of the user’s guide containing information not presented in the body of this
thesis are included here. The latest version of the complete user’s guide is available
electronically (see Section A.7 for directions).

A.1 Type Access

Where code may manipulate the representation of an abstract type, we say the code
has access to that type. There are three ways to control access to abstract types in
LCLint:

� Specifications — if function f is specified in the LCL file that declares abstract
type t, then the implementation of f has access to t.

� File name conventions — if abstract type t is declared in t.lcl , then all func-
tions in t.c have access to t. (The -accessunspec flag overrides this conven-
tion, so that only functions that are specified will have access to the abstract
type.)

� Control comments — /*@access t*/ in the source code allows succeeding code
to access the representation of t. Similarly, /*@noaccess t*/ makes t abstract.
Both access and noaccess may be given a list of types separated by spaces.
Type access applies from the point of the comment to the end of the file or the
next access control comment for this type.

Functions implemented in t.c will have access to all types declared in t.lcl , so it is
possible to have access to several abstract types in the same module.

83



84 APPENDIX A. USER’S GUIDE

A.2 Libraries

To run LCLint efficiently on large systems, mechanisms are provided for creating
libraries containing necessary information. This means source files can be checked
independently, after a library has been created. The command line option -dump
library stores information in the file library (the default extension, .lldmp , is added).
Then, -load library loads the library. (See Appendix A.3 for an example makefile
for using libraries.)

The LCLint dump file, stdlibs.lldmp contains the symbolic state after processing
all the standard libraries. Unless -load is used to load some other library, or -nolib
is used to prevent any library from being loaded, the standard library is loaded every
time LCLint is run.

A.3 Make

For large systems, LCLint can be used more effectively when driven from a makefile.
To support the use of LCLint in makefiles, LCLint returns exit status codes. Checking is
successful when the number of actual errors matches number expected (none, unless
expected number was set using -expect .) If checking is successful the exit status is
0. If it is unsuccessful, the exit status is 1.

Figure A-1 shows an example makefile for driving LCLint. When a source file is
changed, it is checked by LCLint. When a specification is changed, we need to remake
the library, and recheck all the source files against this new specification.

A.4 Emacs

If you use emacs to edit your source code, it can be beneficial to run LCLint directly
from emacs. The LCLint release includes lclint.elc which defined an emacs com-
mand, M-x lclint , for running lclint. The new emacs command is similar to M-x
compile , except it jumps to the exact column location of the error message, instead
of the beginning of the line.

After typing M-x lclint , you will be prompted for a compile command. Enter the
command identically to the command that would be used to run LCLint from the
command line. If errors are found, M-x next-lclint-error jumps to the point
where the next error was found.

A.5 Control Flags

LCLint provides many flags, in the hopes of supporting various programming styles
and degrees of checking. In addition, modes are provided for setting many flags at



A.5. CONTROL FLAGS 85

SPECS = # list .lcl files
LHS = # list derived .lh files
SRC = # list .c files
OBJ = # list derived .o files

LCLINT = lclint # command to invoke lclint
LCLINT_FLAGS = -paramuse -returnvalint +charint

all : $(OBJ)
$(CC) -o test $(OBJ)

check: lib.lldmp $(SRC) $(LHS)
$(LCLINT) $(LCLINT_FLAGS) $(SRC) -load lib

lib.lldmp : $(SPECS)
$(LCLINT) $(LCLINT_FLAGS) $(SPECS) -dump lib
$(MAKE) check

.c.o: lib.lldmp $(LHS)
$(LCLINT) $(LCLINT_FLAGS) -load lib $*.c
$(CC) -c $*.c

.lcl.lh:
$(LCLINT) -quiet $*.lcl

clean:
rm -r lib.lldmp *.o *.lcs $(LHS) test

### list dependencies between specs here, e.g. if
### spec1.lcl imports spec2, we would write:

spec1.lcs: spec2.lcs

Figure A-1: Sample makefile



86 APPENDIX A. USER’S GUIDE

once. Individual message flags override the setting in the mode. Flags listed before
the mode have no effect.

Flags can be preceded by + or - . When a flag is preceded by + it is on; when it is
preceded by - it is off. The precise meaning of on and off depends on the type of flag.
The +/- flag settings are clear and concise, but it is easy to accidentally use the wrong
one. For this reason, LCLint issues warnings when a user redundantly sets a flag to
the value it already had (unless -warnflags is used to suppress these warnings).
Flags can be set at the command line, to apply to all files checked. Some flags can
also be set locally, using stylized comments. At any point in a file, a control comment
can set the flags locally to override the command line settings. The original flag
settings are restored before processing the next file. The syntax for setting flags in
control comments is the same as that of the command line, except that flags may
also be preceded by = to restore their setting to the original command-line value. For
instance,

/*@ +boolint -modifies =charint */

makes bool and int indistinguishable types, turns off modifies checking, and re-
stores the equivalence of char and int to its command line or default setting.

Flags can be grouped into three major functional categories: general flags, for con-
trolling high level behavior; type equivalence flags for denoting particular types as
equivalent or distinct; and message control flags for selecting which messages appear.
General flags are applicable only at the command line; all other flags may be used
both at the command line and in control comments.

General Flags

These flags have the same meaning when used with either + or - . They control
initializations, message printing, and other behavior not related to specific checks.

help — on-line help
dump file — dump state to file (default extension .lldmp )
load file — load state from file (instead of standard library file)
nolib — do not load standard library
whichlib — show pathname and creation information for standard library
i file — set LCL initialization file
I directory — add directory to C include path
Sdirectory — add directory to search path for LCL specs
tmpdir dir — set directory for writing temporary files
showfunc — show name of function containing error (first error in function only)
singleinclude — optimize include files
stats — display information on number of lines processed and execution time
nolh — suppress generation of .lh files
quiet — suppress herald and error count



A.5. CONTROL FLAGS 87

expect n — set expected number of code errors (default 0)
limit n — suppress consecutive similar messages over limit parameter
linelen n — set length of messages in characters (default 80)

The following flags have difference meaning if + or - is used. The default behavior
is on, described below. Using - flag has the opposite effect.

warnflags — warn when command line sets flag to default value in mode
showcolumn — show column number where error is found
accessunspec — representations of abstract types are accessible in unspecified
function in the .c file with the same name as the specification (see Section A.1)

Type Equivalence Flags

Using +flag makes the named types indistinguishable; using - flag makes them dis-
tinct.

boolint — bool and int are equivalent
charindex — char can be used to index arrays
charint — char and int are equivalent
enumint — enum and int are equivalent
forwarddecl — forward struct and union declarations of pointers to abstract
representation match the abstract type
numliteral — int literals can be floats
voidabstract — void * matches pointers to abstract types (dangerous)
zeroptr — 0 can be treated as a pointer

Message Control Flags

Message control flags are preceded by a - to turn the message off, or a + to turn the
message on. Each flag is described by the class of messages that are reported when
it is on, and suppressed when it is off.

Globals and Modifies Checking

globals — unspecified use of global variable
globunspec — use of global in unspecified function
globuse — global listed for a function not used
modifies — unspecified modification of caller-visible state
modunspec — modification in unspecified function
stdio — use/modification of standard streams (stdio , stdout , stderr )



88 APPENDIX A. USER’S GUIDE

Declarations

topuse — declaration at top level not used
paramuse — function parameter not used
varuse — variable declared but not used
fcnuse — function declared but not used
exportvar — variable exported but not specified
exportfcn — function exported but not specified
exporttype — type definition exported but not specified
overload — library function overloaded
incondefs — function or variable redefined with inconsistent type

Type Checking

bool — representation of bool is exposed
pred — type of condition test (for if , while or for ) not boolean
predptr — type of condition test not boolean or pointer
ptrarith — arithmetic involving pointer and integer
ptrcompare — comparison between pointer and number
strictops — primitive operation does not type check strictly

Return Values

returnval — return value ignored
returnvalbool — return value of type bool ignored
returnvalint — return value of type int ignored

Macros

macroundef — undefined identifier in macro
macroparens — macro parameter used without parentheses
macroparams — macro parameter not used exactly once

Others

specundef — function or variable specified but never defined
infloops — likely infinite loop is detected
casebreak — non-empty case in a switch without preceding break
unreachable — code detected that is never executed



A.5. CONTROL FLAGS 89

Modes

Figure A-2 shows the flag settings for each mode. A � means the flag is on (+),
otherwise the flag is off (- ). The default mode is std . Turning type equivalence
flags on makes checking weaker. Turning message control flags on makes checking
stronger.

Type Equivalence Flags

weak std strict weak std strict
boolint � charindex �

charint � enumint � �

forwarddecl � numliteral � � �

voidabstract � zeroptr � � �

Message Control Flags

weak std strict weak std strict
globals � � � globunspec �

globuse � � � modifies � �

modunspec � stdio
topuse � paramuse � �

varuse � � � fcnuse � � �

exportvar � exportfcn �

exporttype � overload
incondefs � � bool �

pred � � � predptr � � �

ptrarith � ptrcompare � �

strictops � returnval � � �

returnvalbool � � returnvalint � �

macroundef � � macroparens � �

macroparams � � specundef � �

infloops � � casebreak � �

unreachable � �

Figure A-2: Mode settings



90 APPENDIX A. USER’S GUIDE

A.6 Messages

This section lists the messages related to source code checking produced by LCLint.
Most messages should be self-explanatory. Explanations are provided for messages
that may not be clear. If a message can be suppressed, information on suppressing
it is given. (The opposite flag setting can be used to get the message.)

Type Checking

Array fetches

� Array fetch from non-array (type): expr
� Array fetch using non-integer, type: expr

+charindex allows char s to be used as array indices

Binary Operators

Abstraction violations
Apply to all operators
� which operand of op is abstract type (type): expr
� Operands of op are abstract type (type): expr

� Assignment of type to type: expr
� var initialized to type type, expects type: expr

Numeric operators (* , *= , / , /= , +, +=, - , -= )
Suppressed by -strictops

� Operands of op are non-numeric (type): expr
� which operand of op is non-numeric (type): expr
� Pointer arithmetic (type, type): expr

Suppressed by -ptrarith

Integer operators (%, <<, >>, | , |= , <<=, >>=, %=)
Suppressed by -strictops

� Operands of op are non-integer (type): expr
� which operand of op is non-integer (type): expr
� Comparison of pointer and numeric (type, type): expr

Suppressed by -ptrcompare

� Operands of op are non-boolean (type): expr
� which operand of op is non-boolean (type): expr

Casting

� Cast from abstract type type: expr
� Cast to abstract type type: expr
� Redundant cast involving abstract type type: expr

Cast type is the same as type of the expression
� Cast to underlying abstract type type: expr

Cast to an exposed type that is typedefined to an abstract type

� Cast from underlying abstract type type: expr



A.6. MESSAGES 91

Function Calls

� Function fcn called with num args, declared void

� Function fcn called with num args, expects num
� Function fcn expects arg num to be type gets type: expr
� Pointer to abstract type (type) used as void pointer (arg num to fcn): expr

Use +voidabstract to allow abstract pointers to be used as void pointers

� Call to non-function (type): var

Structure accesses

� Access field of abstract type (type): expr
� Access field of non-struct or union (type): expr
� Access non-existent field of type: expr
� Arrow access field of abstract type (type): expr
� Arrow access field of non-struct or union pointer (type): expr
� Arrow access of non-pointer (type): expr-> field

Unary Operators
� Operand of op is abstract type (type): expr

Applies to all unary operators except &

� Operand of op is non-numeric (type): expr
Applies to +, -

� Operand of op is non-integer (type): expr
� Operand of op is non-boolean (type): expr

Applies to !

� Reference of non-pointer (type): expr
Applies to * only

General
� test predicate not bool, type type: expr

Reported for for , if , while , and conditional expressions. -pred suppresses all
predicate type checking, -predptr suppresses messages where the predicate
is a pointer, -boolint makes int equivalent to bool so int predicates to not
generate errors

� Conditional clauses are not of same type: expr (type), expr (type)

� Empty return in function declared to return type
� Return value type type does not match declared type type: expr

Globals

Globals checking (see Section 2.2) is suppressed completely by -globals .
Checking in unspecified functions is suppressed by -globunspec .

� Global var listed (where) but not used

Suppressed by -globuse

� Called procedure fcn may access global var



92 APPENDIX A. USER’S GUIDE

Suppressed by -globals

� Unauthorized use of global var

Suppressed by -globals

Global aliases (see Section 2.3.2)

� Function returns with global variable var aliasing loc
� Function returns with parameter var aliasing global loc

Modifies

Modifies checking (see Section 2.3) is suppressed completely by -modifies .
Checking in unspecified functions is suppressed by -modunspec .

� Suspect modification of loc: expr
� Suspect modification of loc through alias loc: expr
� Called procedure fcn may modify loc: expr
� Called procedure fcn may modify loc through alias loc: expr

Macros (see Section 2.5)

� Assignment to macro parameter: expr
� Operand of op is macro parameter (non-functional): expr

Non-functional macro behavior using ++ or -- .

� Specified constant implemented as parameterized macro: var
� Specified variable implemented as parameterized macro: var
� Specified variable implemented as macro: var
� Macro name specified with num args, defined with num
� Macro name specified as function, declared without parameter lists
� Macro parameter used without parentheses: var

Suppressed by -macroparens

� Macro parameter not used: var

Suppressed by -macroparams

� Macro parameter not used on some conditional path: var

Suppressed by -macroparams

� Macro parameter used more than once: var

Suppressed by -macroparams

� Macro parameter used more than once on some path: var

Suppressed by -macroparams

� Macro parameter not used on some path, used more than once on different path: var

Suppressed by -macroparams

Declarations



A.6. MESSAGES 93

Exported but not specified

A variable, function or type is exported in a .h file, but is not specified.

� Variable exported, but not specified: var
Suppressed by -exportvar

� Function exported, but not specified: fcn
Suppressed by -exportfcn

� Type exported, but not specified: type
Suppressed by -exporttype

Inconsistent

A variable, function or constant is declared with different types in the
specification and implementation.

� Function fcn return type type does not match specified type type (ignoring specification)

� Function fcn specified with num args, declared with num args

� Parameter num type mismatch: specified type, declared type
� Function fcn specified with at least num args, declared with num args

� Function fcn specified with num args, declared with num args

� var specified type but declared type
� Constant name specified as type, defined as type: expr
� Function fcn specified to return type, implemented as macro having type type: expr
� Overloading standard library function fcn with inconsistent definition

Suppressed by -overload

� Redefinition of static variable var in same file with inconsistent type: type
Suppressed by -incondefs

� Redefinition of var with inconsistent type: type
Suppressed by -incondefs

Unused

A parameter, function or variable is declared but never used. For decla-
rations in the global scope, checking is suppressed by -topuse .

� Parameter not used: var
Suppressed by -paramuse

� Function declared but not used: fcn
Suppressed by -fcnuse

� Variable declared but not used: var
Suppressed by -varuse

� Return value (type type) ignored: expr
Suppressed by -returnval . To suppress only messages where the return value
type is an int or a bool , use -returnvalint or -returnvalbool respec-
tively.



94 APPENDIX A. USER’S GUIDE

Others

� Fall through case (no preceding break)
A non-empty case is followed by the next case with no intervening break or control
flow statement. Suppressed by -casebreak

� Suspected infinite loop: no condition values modified
The body of a loop does not modify any value in the loop condition and the loop con-
dition is not constant. Assumes any function call may modify any global variable.
Suppressed by -infloops

� Path with no return in function declared to return type
� Unreachable code

Suppressed by -unreachable

� Variable var used before set
� Out parameter var used before set

See Section 2.4
� Mutable abstract type type declared without pointer indirection: type

An abstract mutable type is implemented in a way that may not exhibit sharing
semantics. See Section 1.2.4

A.7 Availability

LCLint is available via anonymous ftp from larch.lcs.mit.edu .

The current release is in pub/Larch/lclint version. platform.tar.Z . The release
includes executables, documentation including the user’s guide, the LCL grammar,
UNIX manual pages, and a few examples including the dbase example used in Chap-
ter 3. The latest version of the user’s guide is available as a separate postscript file
in the file lclint version.userguide.ps in the same directory.

Uncompress this file and unpack the archive:

% uncompress filename
% tar xvf filename

The file INSTALL describes the installation procedure. A shell script, lclintvars , is
provided to set the appropriate environment variables. To start using LCLint, run this
script, and copy the output into one of your login files (such as .environment ). The
imports subdirectory contains specifications for the standard libraries. When an LCL

specification imports a standard library (using imports < libname>), LCLint will look
for the file libname.lcs in the imports directory. The information in these libraries is
based on header files in ULTRIX V4.3. If you are using a different operating system,
you may find some of the definitions are inconsistent and need to edit these files.



Bibliography

[Ada83] The Ada programming language reference manual. ANSI/MIL-STD 1815A,
US Department of Defense, US Government Printing Office, February
1983.

[FO76] L. D. Fosdick and Leon J. Osterweil. Data flow analysis in software relia-
bility. ACM Computing Surveys, 8(3), September 1976.

[FP91] Tim Freeman and Frank Pfenning. Refinement types for ML. In ACM
Conference on Principles of Programming Language Design and Imple-
mentation, 1991.

[GH93] John V. Guttag and James J. Horning, editors. Larch: Languages and
Tools for Formal Specification. Texts and Monographs in Computer Sci-
ence. Springer-Verlag, 1993. With Stephen J. Garland, Kevin D. Jones,
Andrés Modet, and Jeannette M. Wing.

[How90] William E. Howden. Comments analysis and programming errors. IEEE
Transactions on Software Engineering, SE-16(1), January 1990.

[Jac92] Daniel Jackson. Aspect: A formal specification language for detecting bugs.
MIT/LCS/TR 543, Laboratory for Computer Science, MIT, June 1992.

[Joh78] S. C. Johnson. Lint, a C program checker. Computer science technical
report, Bell Laboratories, Murray Hill, NH, July 1978.

[Koe89] Andrew Koenig. C Traps and Pitfalls. Addison-Wesley, 1989.

[KR88] B. W. Kernighan and D. N. Ritchie. The C Programming Language, Second
Edition, 1988.

[LAB+81] B. Liskov, R. Atkinson, T. Boom, E. Moss, J. Schaffert, R. Scheifler, and
A. Snyder. CLU Reference Manual, 1981.

[LG86] Barbara Liskov and John V. Guttag. Abstraction and Specification in Pro-
gram Development. The MIT Electrical Engineering and Computer Science
Series. MIT Press, Cambridge, MA, 1986.

[Luc90] David Luckham. Programming with Specifications: An Introduction to
Anna, A Language for Specifying Ada Programs. Springer-Verlag, 1990.

[Man93] Walter Mann. The Anna Package Specification Analyzer user’s guide. CSL-
TN 93-390, Computer Systems Laboratory, Stanford University, January
1993.

95



96 BIBLIOGRAPHY

[MMS88] Keith W. Miller, Larry J. Morell, and Fred Stevens. Adding data abstrac-
tion to Fortran software. IEEE Software, November 1988.

[OO89] Kurt M. Olender and Leon J. Osterweil. Cesar: A static sequencing con-
straint analyzer. In Proceedings of the ACM SIGSOFT’89 Third Sympo-
sium on Software Testing, Analysis, and Verification (TAV3), 1989.

[OO92] Kurt M. Olender and Leon J. Osterweil. Interprocedural static analysis of
sequencing constraints. ACM Transactions on Software Engineering and
Methodology, 1(1), January 1992.

[Per89] Dewayne E. Perry. The logic of propagation in the Inscape environment.
In Proceedings of the ACM SIGSOFT’89 Third Symposium on Software
Testing, Analysis, and Verification (TAV3), 1989.

[San89] Sriram Sankar. Automatic runtime consistency checking and debugging
of formally specified programs. CSL-TR 89-391, Computer Systems Labo-
ratory, Stanford University, August 1989.

[SH83] Robert Strom and Nagui Halim. A new programming methodology for
long-lived software systems. IBM-RC 9979, IBM T. J. Watson Research
Center, March 1983.

[Spu90] David A. Spuler. Check: A better checker for C. Honours Thesis, Depart-
ment of Computer Science, James Cook University of North Queensland,
Austrailia, November 1990.

[Str86] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,
1986.

[Tan94] Yang Meng Tan. Formal specification techniques for promoting software
modularity, enhancing software documentation, and testing specifications.
MIT/LCS/TR 619, Laboratory for Computer Science, MIT, June 1994.

[WO85] Cindy Wilson and Leon J. Osterweil. Omega — a data flow analysis tool
for the C programming language. IEEE Transactions on Software Engi-
neering, SE-11(9), September 1985.

[WSS91] Michal Walicki, Jens Ulrik Skakkebæk, , and Sriram Sankar. The Stan-
ford Ada Style Checker: An application of the Anna tools and methodology.
CSL-TR 91-488, Computer Systems Laboratory, Stanford University, Au-
gust 1991.


