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Abstract

This thesis presents time-optimal self-stabilizing algorithms for distributed spanning tree com-

putation in asynchronous networks. We present both a randomized algorithm for anonymous

networks as well as a deterministic version for ID-based networks. Our protocols are the �rst

to be time-optimal (i.e. stabilize in time O(diameter)) without any prior knowledge of the

network size or diameter. Both results are achieved through a technique of symmetry breaking

that may be of independent interest.

Executions of randomized distributed algorithms contain a combination of nondetermin-

istic and probabilistic choices; these choices often involve subtle interactions that often make

such algorithms di�cult to verify and analyze. Segala and Lynch have recently developed the

Probabilistic Automata model to aid in reasoning about randomized distributed algorithms;

their model is related to the earlier work of Lynch and Vaandrager. We use the Probabilistic

Automata formalism to analyze the correctness and time complexity of our randomized algo-

rithm for anonymous networks; in doing so, we demonstrate the e�ectiveness of the formalism

in reasoning about randomized algorithms.
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Chapter 1

Introduction

The task of spanning tree construction is a basic primitive in communication networks. Many

crucial network tasks, such as network reset (and thus any input/output task), leader election,

broadcast, topology update, and distributed database maintenance, can be e�ciently carried

out in the presence of a tree de�ned on the network nodes spanning the entire network. Im-

proving the e�ciency of the underlying spanning tree algorithm usually also correspondingly

improves the e�ciency of the particular task at hand.

In practice, computation in asynchronous distributed networks is made much more di�cult

because of the possibility of numerous kinds of faults. Nodes may crash or get corrupted;

links may fail or deliver erroneous messages. Further, nodes or links may enter or leave the

network at any time. A very important concept in the context of this problem is that of self-

stabilization, �rst introduced by Dijkstra [Dij74]. Self-stabilization implies the ability of the

system to recover from any transient fault that changes the state of the system. Dijkstra gave

the example of a token-ring network which is always supposed to have exactly one token. If,

through some error, the network were to have zero or two tokens, a self-stabilizing token ring

protocol would be able to automatically recover or \stabilize" to a state where the network

has exactly one token.

More precisely, a self-stabilizing algorithm on a system S (e.g. the network) reaching a set
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of legal states P is eventually able to bring S to a state in P when started in any arbitrary

initial state. In Dijkstra's token-ring example, P is the set of states in which the ring has

exactly one token. For a self-stabilizing spanning tree algorithm, P would be the set of states

having a spanning tree de�ned on the network nodes. As we can consider the state of the

system after a transient error to be an arbitrary state, a self-stabilizing system will eventually

\recover" from any non-repeating error. Thus self-stabilization is a very strong and highly

desirable fault-tolerance property.

We would therefore like to have an e�cient self-stabilizing algorithm for spanning tree

construction in asynchronous networks.

A key measure of e�ciency is the stabilization time, which is the maximum time taken for

the algorithm to converge to a \spanning tree" state, starting from an arbitrary state. Let �

be the diameter of the network, and let n be the network size { the number of nodes in the

network. Then that the optimal stabilization time must necessarily be 
(�).

Several factors in
uence the \di�culty" of the protocol. The protocol can be designed for

networks that are either ID-based (each node has a unique \hard-wired" ID), or for networks

that are anonymous (in which nodes lack unique IDs, so there is no a priori way of distinguish-

ing them). The protocol may either \know" the network size n, or it may \know" some upper

bound on n, or it may \know" nothing whatsoever. Similarly, it may or may not \know" in

advance a bound on the diameter �. Of course, the more \knowledge" a protocol \is given"

about the network, the easier it becomes to achieve its objectives.

Previous Work

Following the pioneering work of [Dij74], there has been considerable work in this area. [Ang

80] showed that no deterministic algorithm can construct a spanning tree in an anonymous

symmetric network. [AKY90] gave an ID-based self-stabilizing spanning tree protocol with a

stabilization time of O(n2) and a randomized protocol for anonymous networks that runs in

O(n logn) time. They presented the technique of \local checking" and \local detection," used in
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many subsequent papers. [AG90] gave an ID-based self-stabilizing spanning tree protocol with

time complexity O(N2), where N is a pre-speci�ed bound on the network size n. [APV91] gave

an ID-based self-stabilizing spanning tree protocol (based on a reset protocol) that stabilizes

in O(n) time.

[DIM91] gave a self-stabilizing spanning tree algorithm for anonymous networks that runs

in expected O(� logn) time. [AM89] gave a Monte-Carlo spanning tree protocol for anonymous

networks that works in O(�) time; however, their protocol is not self-stabilizing. (A Monte-

Carlo algorithm terminates in bounded time but succeeds with probability p < 1; a Las-Vegas

algorithm may not terminate in bounded time but always succeeds.) With the exception of

[AG90], all the other works mentioned above do not assume any prior knowledge of the network

size n or the diameter �.

[DIM91] also mentioned a self-stabilizing spanning tree protocol for anonymous networks

that requires O(�) time (and is thus time-optimal), but requires prior knowledge of a bound

N on the network size. Recently, [AKMPV93] have developed a time-optimal self-stabilizing

spanning tree protocol for ID-based networks; they, too, require prior knowledge of a bound

D on the diameter of the network.

Our Results

We present the �rst time-optimal self-stabilizing spanning tree algorithms that do not need

any prior knowledge of the network size or diameter. We present both a randomized Las-Vegas

algorithm for anonymous networks and a deterministic version for ID-based networks. Both

our protocols stabilize in expected O(�) time.

Thus, with respect to the O(� log n)-time protocol of [DIM91], we decrease the time com-

plexity to O(�), and compared to their O(�)-time protocol, we do not need a bound N on the

network size. Unlike [AKMPV93], we do not need a bound D on the diameter.

Note that for random graphs, the expected diameter � is comparable to log n. For real

networks, such as the Internet, the diameter is usually less than logn. Thus, decreasing the
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time complexity from O(� logn) (as in [DIM91]) to O(�) represents an improvement in the

time required to less than the square root of that required earlier.

Both of our protocols employ a novel technique in self-stabilization. A major concern

in self-stabilizing systems has been contending with \wrong information". For example, an

important problem that arises in spanning tree algorithms is the ghost root phenomenon|

some nodes in the network may \believe" the existence of a root node that doesn't really exist.

Most previous approaches to the problem have relied on costly non-local operations such as

root veri�cation, network reset, or tree dismantling to eliminate the ghost root. Our technique,

on the other hand, is to modify incorrect information instead of perform the expensive process

of eliminating it. (A similar idea to that of \correcting information" was implicitly used by

[DIM91].) The modi�cation is done locally but in a careful manner: local modi�cations of

wrong information have important desirable global consequences. We do it without incurring

the large overhead of global operations such as reset etc. Compared to [DIM91], we do stronger

corrections (but still without causing global overhead). The stronger local corrections enable

us to have a better running time.
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Chapter 2

The Model

We assume that the network is represented by an undirected graph G = (V;E);G consists of a

set of processors denoted by V = fv1; v2; : : : ; vng and a set of links denoted by E = fE1; E2; : : :g

where each Ei 2 E = (vj; vk) for some j; k. In an ID-based network, each processor is assigned

a unique ID that is \hard-wired" in its memory. In an anonymous or uniform network, all

processors of the same degree are identical; they do not have unique IDs assigned to them. We

refer to the number of processors n as the size of the network. The distance between any two

processors u and v is the lowest number of links on any path connecting u and v in G. (In an

anonymous network, the labels u and v are used for convenience|they are not the IDs of the

nodes referred to.) The diameter of the network is the maximum distance between any two

nodes in V ; we denote the diameter by �. The set of neighbors of node u, denoted Nbrs(u), is

the set fv 2 V j (u; v) 2 Eg.

The degree of a node v is the number of links incident upon node v. We assume that each

processor maintains a total order on its neighbors.

The network is asynchronous; processors perform computation steps independently of each

other and at arbitrary rates.

We assume that processors communicate by shared memory. In the shared memory model,

each processor is associated with a set of registers, possibly partitioned into a set of local
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registers and a set of shared registers. Processors communicate by performing write operations

on their registers and read operations on the shared registers of their neighbors. All reads and

writes are atomic|reads/writes behave as though they occur instantaneously.

A network communicating through shared memory, as described above, can be modeled as

a probabilistic automaton ([SL94], [LSS94]).

2.1 Probabilistic Automata

In this section we give only a simpli�ed version of the model of [SL94] which is su�cient for

our purposes.

2.1.1 Automata

De�nition 2.1 A probabilistic automaton M consists of four components:

� a set states(M ) of states.

� a nonempty set start(M ) � states(M ) of start states.

� a set acts(M ) of actions.

� a transition relation steps(M ) � states(M )�acts(M )�Probs(states(M )), where the set

Probs(states(M )) is the set of probability spaces (
;�; P ) such that 
 � states(M ) and

� = 2
.

Thus, a probabilistic automaton is a state machine with a labeled transition relation such

that the state reached during a step is determined by some probability distribution. For

example, the process of choosing a random color from f0, 1, 2g is represented by a step labeled

with an action NEXT-COLOR where the next state contains the random color choice and

is determined by a probability distribution over the three possible outcomes. A probabilistic
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automaton also allows nondeterministic choices over steps. A key instance of nondeterminism

is the choice of which processor in a network takes the next step.

Given a state s, let D(s), the Dirac distribution on s, denote the probability space that

assigns probability 1 to s. Speci�cally, D(s) = (fsg; 2fsg; P ) such that P [fsg] = 1. As a

notational convention we write (s; a; s0) 2 steps(M ) whenever (s; a;D(s0)) 2 steps(M ).

2.1.2 Executions

An execution fragment � of a probabilistic automaton M is a (�nite or in�nite) sequence of

alternating states and actions starting with a state and, if the execution fragment is �nite,

ending in a state; � = s0a1s1a2s2 � � �, where for each i there exists a probability space (
;�; P )

such that (si; ai+1; (
;�; P )) 2 steps(M ) and si+1 2 
. I� i < j, we say \si precedes sj in

�," or \sj follows si in �." Denote by fstate(�) the �rst state of � and, if � is �nite, denote

by lstate(�) the last state of �. Furthermore, denote by frag�(M ) and frag(M ) the sets of

�nite and all execution fragments of M , respectively. An execution is an execution fragment

whose �rst state is a start state. Denote by exec�(M ) and exec(M ) the sets of �nite and all

executions of M , respectively. A state s of M is reachable if there exists a �nite execution of

M that ends in s. Denote by rstates(M ) the set of reachable states of M .

A �nite execution fragment �1 = s0a1s1 � � �ansn of M and an execution fragment �2 =

snan+1sn+1 � � � of M can be concatenated . In this case the concatenation, written �1a�2, is

the execution fragment s0a1s1 � � �ansnan+1sn+1 � � �. An execution fragment �1 of M is a pre�x

of an execution fragment �2 of M , written �1 � �2, if either �1 = �2 or �1 is �nite and there

exists an execution fragment �01 of M such that �2 = �1a�
0
1. If � = �1a�2, then we denote

�2 with �3�1 (read � after �1).

Let U be a subset of states(M). Set U is closed, written U �! U�, if for any s 2 U and

any step (s; a; (
;�; P )), 
 � U . Thus if U �! U�, once an execution reaches a state in U,

it remains in U. We say that an execution fragment � is in U if every state in � is in U.
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2.1.3 Adversaries

In order to study the probabilistic behavior of a probabilistic automaton, some mechanism to

remove nondeterminism is necessary. The mechanism that removes the nondeterminism can

be viewed as an adversary. In distributed systems the adversary is often called the scheduler ,

because its main job may be to decide which process should take the next step.

De�nition 2.2 An adversary for a probabilistic automaton M is a function A taking a �nite

execution fragment of M and giving back either nothing or one of the enabled steps of M if

there are any. Denote the set of adversaries for M by AdvsM .

2.1.4 Execution Automata

Once an adversary is chosen, a probabilistic automaton can run under the control of the chosen

adversary. The result of the interaction is called an execution automaton. Note that there are

no nondeterministic choices left in an execution automaton.

De�nition 2.3 An execution automaton H of a probabilistic automaton M is a fully proba-

bilistic automaton such that

1. states(H ) � frag�(M ).

2. for each step (�; a; (
;�; P )) of H there is a step (lstate(�); a; (
0;�0; P 0)) of M , called

the corresponding step, such that 
 = f�asjs 2 
0g and P [�as] = P 0[s] for each s 2 
0.

3. each state of H is reachable, i.e., for each � 2 states(H ) there exists an execution of H

leading to state �.

De�nition 2.4 Given a probabilistic automaton M , an adversary A 2 AdvsM , and an execu-

tion fragment � 2 frag�(M ), the execution H(M ;A; �) of M under adversary A with starting

fragment � is the execution automaton ofM whose start state is � and such that for each step

(�0; a; (
;�; P )) 2 steps(H(M ;A; �)), its corresponding step is the step A(�0).
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To ease the notation, we de�ne an operator �" that takes an execution of M and gives

back the corresponding execution of H, and �# that takes an execution of H and gives back

the corresponding execution of M.

2.1.5 Events

Given an execution automatonH , an event is expressed by means of a set of maximal executions

of H , where a maximal execution of H is either in�nite, or it is �nite and its last state does

not enable any step in H . For example, the event \eventually action a occurs" is the set of

maximal executions of H where action a does occur. A more formal de�nition follows. The

sample space 
H is the set of maximal executions of H . The �-algebra �H is the smallest

�-algebra that contains the set of rectangles R�, consisting of the executions of 
H having �

as a pre�x. The probability measure PH is the unique extension of the probability measure

de�ned on rectangles as follows: PH [R�] is the product of the probabilities of each step of H

generating �.

De�nition 2.5 An event schema e for a probabilistic automaton M is a function associating

an event of �H with each execution automaton H of M .

2.1.6 Timing

To mark the passage of time, we include in each state s a real component s:now, and include

a special time passage action � in acts(M ), which increments s:now . For all s 2 start(M ),

s:now = 0.

De�nition 2.6 (Duration of an execution fragment) The duration of an execution frag-

ment � is de�ned as (lstate(�):now � fstate(�):now).

A statement of the form \within time t in execution �, property P holds" means that

property P holds for some state s in � such that s:now � fstate(�):now + t. The statement
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\after time t, property P holds" implies that property P holds for all states s in � such that

s:now > fstate(�):now + t.

2.1.7 Adversary Schemas

We close this section with one �nal de�nition. The time bound for our randomized protocol

states that starting from any state, no matter how the steps of the system are scheduled, the

network forms a spanning tree within expected O(diameter) time. However, this claim can

only be valid if the adversary is fair (as de�ned above). Thus, we need a way to restrict the

set of adversaries for a probabilistic automaton. The following de�nition provides a general

way of doing this.

De�nition 2.7 An adversary schema for a probabilistic automaton M , denoted by Advs, is

a subset of AdvsM .

2.2 Composability

In this section, we introduce a key theorem of [SL94], the composability theorem.

The statement U
t
�!
p
Advs U 0 means that, starting from any state of U and under any

adversary A of Advs, the probability of reaching a state of U 0 within time t is at least p. The

su�x Advs is omitted whenever we think it is clear from the context.

De�nition 2.8 Let eU 0;t be the event schema that, applied to an execution automaton H ,

returns the set of maximal executions � of H where a state from U 0 is reached in some

state of � within time t. Then U
t
�!
p
Advs U 0 i� for each s 2 U and each A 2 Advs,

P
H(M ;A;s)

[eU 0;t(H(M ;A; s))] � p.

Proposition 2.9 Let U ;U 0;U 00 be sets of states of a probabilistic automaton M .

If U
t
�!
p

U 0, then U [U 00 t
�!
p

U 0 [ U 00.
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In order to compose time bound statements, we need a restriction for adversary schemas

stating that the power of the adversary schema is not reduced if a pre�x of the past history of

the execution is not known. Most adversary schemas that appear in the literature satisfy this

restriction.

De�nition 2.10 An adversary schema Advs for a probabilistic automaton M is execution

closed if, for each A 2 Advs and each �nite execution fragment � 2 frag�(M ), there exists an

adversary A0 2 Advs such that for each execution fragment �0 2 frag
�
(M ) with lstate(�) =

fstate(�0), A0(�0) = A(�a�0).

Theorem 2.11 (Composability theorem) Let Advs be an execution closed adversary schema

for a probabilistic timed automaton M , and let U ;U 0;U 00 be sets of states of M .

If U
t1�!
p1

Advs U
0 and U 0 t2�!

p2
Advs U

00, then U
t1+t2�!
p1p2

Advs U
00.

Corollary 2.12 Let Advs be an execution closed adversary schema for a probabilistic timed

automaton M , and let U ;U1;U2; : : : ;Un;U
� be sets of states of M .

If U
t
�!
1
Advs U1 [U2;[ : : :[Un, and if Ui

ti�!
pi

Advs U
� for all i, then

U
t+max(t1;t2;:::;ti)

�!
min(p1;p2;:::;pi)

Advs U �

2.3 Networks as Probabilistic Automata

In this section we brie
y describe how self-stabilizing protocols running on networks with

shared-memory links can be modeled using probabilistic automata.

Self-stabilizing network protocols operate on networks that are dynamic|the set of pro-

cessors or links may change during the execution. A change in the status of a processor or link

is communicated to the processors it connects by a low level self-stabilizing protocol. Further,
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the state of a processor may change arbitrarily (not by an algorithmic step, but by \memory

corruption"). We assume that the sequence of topological changes and non-algorithmic state

changes is �nite and that eventually such events cease. This allows us to ignore topological and

state changes during an execution � of our protocol, as the last such change can be considered

to change the network state to an arbitrary start state s of a new change-free execution. The

time complexity measures the time taken for the protocol to succeed after the last such change.

The network G(V;E) can be represented by a \global" probabilistic automaton M whose

state contains a vector of states of all its processors. We assume that the state s[i] of a processor

i fully describes its internal state and the values written in all its registers. Thus the global

state s contains fs[1]; s[2]; : : : ; s[n]g; in addition, it also contains timing information (e.g. now).

The local computation at each processor consists of a sequence of atomic actions; the set

acts(M ) of actions of the global network includes the set of actions of each of its nodes, and

the time passage action �.

2.3.1 Fairness

Let vis(M ) denote the non-time-passage actions of acts(M ). For the time complexity analysis,

our protocols require that each action of vis(M ) be executed in every unit of time. To this

end, for each action a in vis(M ), we include in state s a (real) \deadline" for that action,

s:deadline(a); this deadline represents the latest time by which action a must be performed

again. For all s 2 start(M ), s:deadline(a) = 1. A time passage step (s; �; s0) of M must satisfy

the following condition: s0:now � mina2vis(M)fdeadline(a)g. For a non-time-passage action

(s; a; s0), s0:now = s:now, and s0:deadline(a) = s:now +1. Note that this construction guaran-

tees that in any execution fragment � = s0a1s1a2 : : : ofM if lstate(�):now � fstate(�):now+1,

then for every action a in vis there exists a step (s; a; s0) in �.

For stating time bounds, we will need to assume fair adversaries. A is said to be fair i� the

time advances without bound in every in�nite execution fragment generated by A. (Note that

this rules out \Zeno executions.") Let Fairadvs(M) denote the adversary schema consisting
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of fair adversaries of M . From the de�nitions, it can be seen that any in�nite execution � =

s0a1s1a2 : : : of M generated by a fair adversary A can be partitioned into an in�nite number

of \rounds," such that each processor performs each one of its enabled actions at least once in

every round.

Also, note that the adversary schema Fairadvs(M) is execution-closed (cf. De�nition 2.10).
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Chapter 3

General Approaches to Spanning

Tree Construction

Spanning tree algorithms usually utilize variants of a common overall scheme. We �rst describe

the basic scheme which assumes the existence of unique node IDs. Each node is associated with

a \priority," which could initially be the node's ID, for instance. At any instant during the

algorithm's progress, the network is logically partitioned into a spanning forest, which is de�ned

by parent pointers maintained by the nodes. Initially (unless initialized by the adversary), this

forest consists of the single-node trees de�ned by the network nodes themselves (i.e. parent =

nil at all nodes, so each node is a root). Starting from this con�guration, the nodes gradually

coalesce into larger trees. Each node keeps track of the priority of the root of its tree. The

goal is to produce a spanning tree rooted at the node with the highest priority. Nodes in

the forest keep on exchanging root priorities with their neighbors. When a node u notices

a neighbor v with a higher root priority, it attaches itself to v's tree by making v its parent

(parentu  v). Thus, trees with higher root priorities overrun trees with lower ones. Since the

priorities are totally ordered, eventually all nodes in the network form a single tree rooted at

the node with the highest priority. This simple ID-based scheme is not self-stabilizing, since

if we allow \corrupted" initial states, nodes may \believe in" a highest priority that is not
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actually possessed by any root.

To adapt the ID-based scheme to an anonymous network (i.e. with no pre-assigned IDs),

we need randomization to break symmetry between the processors. Each node in the network


ips coins to arrive at a random ID, and participates in the tree construction process described

above. Since IDs (and hence priorities) are chosen randomly, it is possible that the node

with the highest priority in the network is not unique; there could be several such nodes with

highest priority p. In such a situation, the above algorithm would halt when the network forms

a spanning forest, with each tree rooted at one of the nodes with priority p. In this �nal state,

all nodes would have the same ID; thus coalescing would cease at this point.

To detect such \multiple highest priorities," [AKY90] and [DIM 91] proposed the method of

recoloring trees. In typical recoloring schemes, each tree is associated with a randomly chosen

color. The root chooses a color at random from a small set of \colors" C of constant size (e.g.

C =f0, 1, 2, 3g). This color is propagated through the entire tree rooted at that root. When

the root receives con�rmation that the entire tree has been colored with its color (through a

simple acknowledgement mechanism), it chooses a new color. The process is repeated forever.

If there are several neighboring trees with priority p, there must exist nodes that are linked

to neighbors not in their own tree. Since tree colors are chosen randomly, neighboring nodes

that belong to di�erent trees will assume di�erent sequences of colors over time; this fact can

be exploited to let such neighbors detect their a�liation to di�erent trees.

In the scheme proposed by [AKY90], the sequence of colors chosen by a root to color its tree

is \alternating" - of the form (c1, cs, c2, cs, c3, cs, : : :), where cs is a special color, \no-color,"

and ci 6= no-color for all i. We can represent \no-color" by the color 0; then ci 6= 0 for all i.

Thus when a root receives acknowledgement about its entire tree being colored with a non-zero

color, it colors its tree with color 0. When its tree is entirely colored with color 0, it again

recolors its tree with a non-zero color. In this scheme, if the node's own color ci is non-zero,

then if it notices a neighbor with a non-zero color di�erent from its own color, it can correctly

conclude that that neighbor belongs to a di�erent tree. Since the scheduler is assumed to be

adversarial, additional constraints are imposed on the acknowledgement mechanism; details
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are presented in Section 5.

If a node v detects another tree, its root is informed of the condition. When a root learns

of the existence of another tree rooted at the same ID, in the [AKY90] and [DIM91] schemes

the root extends its ID by a randomly chosen bit and continues the protocol. Extending IDs

is a way of breaking symmetry; eventually the roots in the network have appended enough

random bits to their IDs so that there is a unique root with the highest ID, and subsequently

a unique tree spanning the entire network.

Our technical contribution in this paper is twofold. First, we develop a framework for ID

extension and generalize the concept. Our generalization enables us to reduce the time com-

plexity of the randomized protocol to O(d), without prior knowledge of the size or diameter of

the network. Our second main contribution is to use the concept of extension to e�ciently con-

fer the property of self-stabilization upon the basic deterministic scheme for ID-based networks,

thus enabling us to give the �rst deterministic spanning tree protocol that is time-optimal (i.e.

O(d) time) without prior knowledge of bounds on the network size or diameter.

Intuitively, the logn factor in the previous randomized result came from the need to initiate

a new competition every time two trees \collided." Every time a tree T noticed another tree

T with the same root ID, T would randomly extend its ID to try to \win" over T . Our new

method usually needs just O(1) ID extensions per node to converge to a spanning tree, as

opposed to O(logn) extensions in the previous scheme. To achieve this the extension needs to

be done in a careful way. When several IDs are independently extended, only one extended ID

ought to \win," in order to prevent the need for additional competition. Further, independent

extensions must attempt to preserve existing order: they must not make a previously \beaten"

tree become the maximum, since this will prevent progress by possibly necessitating new

competition(s).

Previous approaches to the deterministic version attempt to form a spanning tree at the

node vl with the highest (or lowest) \hard-wired" ID. In doing so, they have to contend with the

ghost root problem|eliminating all \belief" in the ghost root usually necessitates an \extra"


(d) addition to the time complexity. We exploit our intuitive results about ID extension to
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modify belief in the ghost root. In our scheme, as opposed to previous schemes, the node with

the \distinguished" hardwired ID IDl need not be the root of the spanning tree. The �nal root

is determined by the state s set by the adversary at the start of the algorithm|the root is one

of the nodes that believes in the highest ID.
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Chapter 4

A Key Approach to Representing

IDs

4.1 The Afek-Matias Probability Distribution

In [AM89], Afek and Matias proposed a probability distribution which can be used to break

symmetry in sets of unknown size. Let p be a pair (s; t) of integers, and let pairs be ordered

lexicographically. [AM89] proposed a probability distribution on s and t, such that if several

(say k) pairs (si; ti) are randomly computed, there is a unique highest pair with probability at

least �, where � is a constant independent of k. The number si is randomly selected according

to the probability distribution

P (si = y) =
1

2y

and the number ti is randomly uniformly selected from the range [1, 20 ln(4r)] where r = 1=�

(� = 1 - �). � is the probability of error we are prepared to tolerate for a given collection of

randomly chosen values of ti|with probability � �, such a collection will not have a unique

maximum). The purpose of ti is to break symmetry between pairs that have the same si, since

a small constant number of pairs are expected to have the same highest si. For our purposes,

we choose � = � = 1=2, so si is chosen from the range [1, 20 ln 8]. The choice of � a�ects the
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running time of our randomized algorithm by only a constant factor; we have not attempted to

compute the optimal value. Our choice of � implies that if k pairs are 
ipped, there is exactly

one highest pair with probability � 1=2.

Since the protocols and the time complexity analysis do not need to access the individual

components of a pair, to ease the notation, we will henceforth assume that a pair (s; t) is

uniquely represented as a single integer x. The mapping must preserve the order on (s; t);

since the range of t is �nite, it is easy to construct such a mapping.

We now formally describe the Afek-Matias probability spaces that we will use. Let �kAM

denote the probability space that represents the outcome of k independent pair 
ips. Let

X1; X2; : : : ; Xk be independent identically distributed random variables on this space repre-

senting the k 
ips. The distribution of each X is the AM distribution speci�ed earlier; let

P (X = x) be denoted by P�(x) . A sample point p on this space is an outcome of k 
ips,

(p1; p2; : : : ; pk). The set of events on this space is the set 2O, where O is the set of integer

k-tuples. Let P�k(E) be the probability of event E. Let Highest be the random variable that

returns the highest coin 
ip:

Highest(p1; p2; : : : ; pk)
4

= max(p1; p2; : : : ; pk)

Also, we de�ne the event UNIQH to be the event that \there exists a unique highest coin 
ip";

thus

UNIQH
4

= fp j (9i j pi > pj8j 6= i)g

We now state some properties of �kAM . The �rst property is the main result of [AM89]:

Theorem 4.1 For any k, P�k(UNIQH) � 1=2.

The next two theorems are proved in appendix A:

Theorem 4.2 For any k; i, P�k(UNIQH j (Highest > i)) � 1=2.

Theorem 4.3 For any k; i, P�k(Highest 6= i) � (1� e�1=4) > 0:22.
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4.2 ID Representation

IDs are represented as tuples of entries; each entry is an integer. In the randomized protocol,

an entry may represent the result of a number randomly chosen according to the AM scheme

(cf. Section 4.1).

We impose a lexicographic order � on IDs; this order is a total order. Thus if X =

(x1; : : : ; xj) and Y = (y1; : : : ; yk) are two IDs, then

X � Y () j < k and (x1; : : : ; xj) = (y1; : : : ; yj)

OR

9m � min(j; k) j (x1; : : : ; xm�1) = (y1; : : : ; ym�1) and xm < ym

If the �rst case holds, i.e. if X is a proper pre�x of Y , we de�ne the precedence to hold in

the weak sense, or X
w
� Y . In the second case, X is not a pre�x of Y ; we de�ne the precedence

to hold in the strong sense, or X
s
� Y . We de�ne the relations

w

� and
s

� similarly, but they

also include equality (i.e. same IDs).

The concatenation of two IDs X = (a1; : : : ; aj) and Y = (b1; : : : ; bj), written X : Y , is

de�ned as the ID (a1; : : : ; aj; b1; : : : ; bj).

For an ID X , let idlength(X) denote the number of entries in X , and let X [i] denote the

ith entry of X. Let X [1::i] denote the pre�x (X [1]; X [2]; : : : ; X [i]).

We now state some basic properties of our ID representation:

Proposition 4.4 For any IDs A, B, A0, B0, and C, the following properties hold:

1. A
w
� A:B.

2. (A
w

� B) ^ (B
w
� C) =) (A

w
� C).

3. (A
s
� B) ^ (B � C) =) (A

s
� C).
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4. (A
s
� B) ^ (A

w

� C) =) (C
s
� B).

5. (A
s
� B) =) (A:A0

s
� B:B0).

4.3 Motivation behind our ID Representation

As mentioned earlier, nodes compete with one another for being the root of the eventual

spanning tree. The competition is on the basis of IDs; a higher ID \beats" a lower one;

correspondingly, a tree with a high root ID overruns a tree with a lower root ID. If two

trees with the same root ID detect each other's existence, their root nodes need to break the

symmetry so that only one of the two advances in the competition. A highly desirable model

to impose on this competition is the tournament model, to pick a unique winner starting with

n competitors. As the tournament progresses, we have a shrinking pool of \candidates" for the

eventual winner; once a player leaves the pool, it is out of the running.

Our de�nition of IDs and the ordering de�ned on them captures the tournament model.

A root can only change its ID by appending an entry to it. When two roots with equal IDs

independently extend their IDs in this manner, one of the new IDs is ordered higher than the

other (if they are di�erent). Further, note that the �rst ID is now higher in the strong sense: if

the roots perform further (possibly none) extensions, the �rst root ID will remain higher even

after additional extensions (by Proposition 4.4(5)). The second root, with the lower ID, can

never compete with the �rst root after this extension. Hence there exists a shrinking pool of

\candidate" roots. The fact that a root \beaten" in this manner cannot compete further for

being the eventual root is crucial to the time complexity of our algorithm, since competitions

between non-candidate roots do not contribute to the overall time complexity.

If, on the other hand, ID X is higher than ID Y in the weak sense, it is still possible for Y ,

through some sequence of extensions, to eventually be higher than X in the strong sense. Thus

a weak-sense relationship between two IDs implies that the roots possessing those IDs are not
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yet \di�erentiated" in the competition; either of them might eventually \beat" the other.
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Chapter 5

Speci�cation of the Randomized

Algorithm

Section 3 described the basic approach used by our randomized algorithm. This section states

the algorithm. The deterministic version is very similar to the randomized one; we brie
y

describe the deterministic version in Section 8.

The network can be modeled as a probabilistic automaton RSST (for \Randomized Self-

stabilizing Spanning Tree") whose state s contains a global time component s:now , a set of

deadlines fs:deadline(a)g (cf. Section 2.3.1), and the states of the network nodes. The state

s[u] of each node u consists of a set of shared variables IDu; distanceu; parentu; coloru;modeu;

other-treesu; and, for each neighbor v of u, nbr-coloruv. In addition, the state of each node u

contains a set of local variables IDuv; distanceuv; parentuv, coloruv;modeuv, other-treesuv and

self-coloruv for each neighbor v of u; these are local copies of the corresponding variables at v

(with the exception of self-coloruv, which is a local copy of colorvu) which node u maintains

and periodically updates by reading v's shared variables. These variables can be partitioned

into two categories: those associated with tree overrunning|ID, distance, parent; and those

associated with recoloring or the process of detecting \competing" trees|color, mode, other-

trees, self-color, and nbr-color (cf. Section 3). The state variables and their types are listed in
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Shared variables:

Variables for tree overrunning:

IDu 2 ID-tuples (cf. Section 4), current ID

distanceu 2 f0, 1, 2...g, estimate of current distance from root

parentu 2 fnilg [ Nbrs(u), pointer to parent

Variables for tree recoloring:

coloru 2 f0, 1, 2, 3g, current color

modeu 2 fbroadcast, echog, recoloring phase

other-treesu 2 ftrue, falseg, existence of other trees with same ID

8v 2 Nbrs(u), nbr-coloruv 2 f1, 2, 3, unde�nedg, last \real" color of nbr v

Local variables:

8v 2 Nbrs(u),

/* local copy of corresponding shared variables at neighbor v */

IDuv, parentuv, distanceuv, coloruv, modeuv, other-treesuv, self-coloruv

(Note that coloruv, self-coloruv 2 f0, 1, 2, 3, unde�nedg)

Figure 5-1: Set s[u] | State components of node u

Figure 5-1.

Nodes maintain IDs; these IDs are not \hard-wired" (since we are considering anonymous

networks here), and are susceptible to change. The parentu variable at u points to a neighboring

node (or \nil"); the set of parentu variables at all nodes u 2 V de�ne a subset Eparent of the

set of edges E. We attempt to make the parent subgraph Gparent = (V;Eparent) represent a

forest; thus we attempt to make each node u belong to a tree Tu. The distanceu variable is an

estimate of the distance from u to the root of its tree Tu (if such a tree exists).

The priority of a node u is de�ned to be the tuple (IDu,distanceu). We de�ne a total order

� on priorities:
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/* copy neighbor variables into local memory */

8v 2 Nbrs(u), COPYuv

/* become child of neighbor with maximum priority, or become root */

MAXIMIZE-PRIORITYu

/* if local neighborhood \looks" stable, participate in recoloring etc.*/

DETECT-TREESu

/* if root's tree has acknowledged color, choose new color */

NEXT-COLORu

/* if root has detected other trees with same ID, extend ID */

EXTEND-IDu

Figure 5-2: Actions of node u

De�nition 5.1 (Order � on priorities) (IDu; distanceu) � (IDv; distancev) i� either

IDu > IDv, or their IDs are equal and distanceu < distancev. The analogous relation �

includes equality.

The protocol at each node u is implemented through the atomic actions speci�ed in Figure

5-2. Note that each action is always enabled; actions need not be performed in any particular

order. At each state of an execution � = s0a1s1a2s2:::, the adversary chooses the next processor

u to perform an action, as well as the particular action of u that is performed.

The action COPYuv (Fig. 5-3) reads the values of neighbor v's shared variables and copies

it into the corresponding local \opinions" at node u. Besides, it performs tasks related to the

coloring algorithm. The action MAXIMIZE-PRIORITYu (Fig. 5-4) makes u participate in the

important task of tree overrunning; it sets the ID, distance and parent variables. (It makes node

u maximize its priority by attaching to neighboring nodes, if possible.) The action DETECT-

TREESu (Fig. 5-5) makes u participate in recoloring its tree to detect \competing" trees with
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the same ID. If u is a root whose tree has acknowledged being colored with a certain color,

the action NEXT-COLORu (Fig. 5-6) makes u choose the next color to color its tree with.

Finally, if u is a root node and the recoloring process has informed it of a \competitor" tree,

the action EXTEND-IDu (Fig. 5-7) causes u to extend its ID randomly to break symmetry.

De�nition 5.2 (RSST) The probabilistic automaton RSST is de�ned as follows:

1. The set states(RSST) consists of all states s such that

� The values of all variables in s[u] belong to their corresponding types (listed in

Figure 5-1),

� s:now � 0, and

� for each a 2 acts(RSST), s:deadline(a) � 1.

2. start(RSST) = fs j s:now = 0 ^ 8 a 2 acts(RSST); s:deadline(a) = 1g.

3. acts(RSST) = � (time passage), and for all u and all v 2 Nbrs(u), fCOPYuv;MAXIMIZE-

PRIORITYu, DETECT-TREESu, NEXT-COLORu, EXTEND-IDug.

4. steps(RSST) is speci�ed by the code for the individual actions in acts(RSST), listed in

Figures 5-3 { 5-7.

Henceforth, the code is organized, for convenience, into statements labeled [A], [B], [C],

etc.

Statement [A] in action COPYuv (Figure 5-3) invoked by node u performs the task of

reading the shared variables of the neighbor v and copying them into local memory. For

example, the value of IDu at node u is the value of u's current ID, and IDuv is intended to

hold the latest \opinion" of the ID of neighbor v. Statements [B], [C] and [D] perform tasks

required for the tree detection algorithm; they are described in Section 5.1.

We want trees with high root IDs to \overrun" trees with lower root IDs. To this end,

each node u tries to \optimize" its ID: if it notices a neighbor with an ID higher than itself, it
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COPYuv

/* make local copies of neighbor variables */ [A]

IDuv  IDv

distanceuv  distancev
parentuv  parentv
coloruv  colorv
modeuv  modev
other-treesuv other-treesv
self-coloruv colorvu

/* perform coloring tasks if necessary */

if (IDv = IDu and j(distancev � distanceu)j � 1) [B]

then

/* record color of neighbor if necessary */ [C]

if (coloru 6= 0) and (colorv 6= 0)

then

nbr-coloruv  colorv
if colorv 6= coloru then other-trees true

/* copy parent's color if necessary */ [D]

if (parentu = v) and (coloru 6= colorv)

then Reset-Coloru(colorv)

Figure 5-3: Action COPYuv
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MAXIMIZE-PRIORITYu

/* let l be the \largest" of all neighbors that have max priority */

Let l  max fx j (IDux; distanceux) = max0v2Nbrs(u)(IDuv; distanceuv) g [E]

(where max0 is maximum over the relation �, cf. De�nition 5.1)

/* force root to extend �rst, if about to be overrun by a su�x ID */

if (parentu = nil) and IDu

w
� IDul then [F]

while IDu

w
� IDul

Append-Entryu()

/* if u can improve its priority, by becoming child of another */

/* neighbor, do so, otherwise become root */

if (IDul; distanceul)� (IDu; distanceu) /* see def. of � */

then [G]

IDu  IDul

distanceu  distanceul + 1

parentu  l

else /* no neighbor has a larger priority; become root */ [H]

distanceu  0

parentu  nil

Figure 5-4: Action MAXIMIZE-PRIORITYu
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attaches to the neighbor with the highest ID, and changes its ID to the observed ID. Further,

once it has optimized its ID, it also tries to optimize its distance: it prefers to attach to the

node with the smallest distance. The purpose of the distance counters is to \shrink" long

branches in trees so that no branch can exceed diameter length. Hence in [E] of MAXIMIZE-

PRIORITY, we make u determine the neighbor l with the highest priority. Many neighbors

may all have the same highest priority; we break ties by choosing the highest-ordered neighbor

(each processor is assumed to maintain a total order on its neighbors, so that such ties can be

resolved in a consistent manner).

The purpose of statement [F] is rather technical; it is not required for correctness but plays

an important role in maintaining an overall O(�) time complexity for our algorithm. (Note that

� is the network diameter.) As will be explained in the time complexity analysis of Section 6,

statement [F] limits the power of an adversary to alter the probability distribution of existing

root IDs.

Statement [G] determines whether node u can increase its priority by attaching to the

\highest" neighbor l determined by [E]. If the priority cannot decrease, it then makes the

neighbor l its parent, assumes its ID, and assumes its distance incremented by one.

However, if node u can only decrease its priority by attaching to the neighbor l, [H] makes

it become a root, keeping its ID unchanged and resetting its distance to zero. This is the

mechanism of handling the ghost root problem described earlier|if node u notices that it was

a nonroot node with a ID Ig that is not possessed by any of its neighbors and is higher than

all its neighbors IDs, it was erroneously \believing" in the existence of a root node with ID Ig.

In this situation, node u simply becomes a root with ID Ig by setting its distance to zero, thus

obviating the need to \correct" erroneous belief in that root elsewhere in the network. Hence

statement [H] plays an important role in self-stabilization.
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5.1 The Tree Detection Algorithm

The Tree Detection Algorithm has the following purpose: if two or more neighboring trees

have the same root ID, we want their roots to detect this condition, so that they can then

extend their IDs to break symmetry and advance in the competition. The complexity in the

code arises from having to contend with faults, asynchrony, and the fact that we regard the

scheduler as an adversary capable of altering the schedule to thwart our intentions. The Tree

Detection Algorithm is implemented through statements [B], [C] and [D] in action COPY,

and through actions DETECT-TREES, NEXT-COLOR and EXTEND-ID.

Statements [B] and [I] test for a \stability condition"; the rest of the tree detection code in

actions COPY and DETECT-TREES is only executed if the neighborhood of node u appears

to \believe in" only one ID. If this is not the case, tree overrunning is still in progress in the

neighborhood of u, and so tree detection can not be performed.

Let node u belong to a tree T de�ned on the parent subgraph. (As will be shown in the

proof, the action MAXIMIZE-PRIORITY guarantees that u eventually belongs to some tree.)

Let the root of T be node ru. The tree detection algorithm colors the tree T with an alternating

sequence of colors f c1; 0; c2; 0; c3; 0; ::: g, where ci 6= 0 for all i. The color variable of a node

represents its current color.

Let the color of the root ru at some instant be c. Nodes in the tree propagate color c

to their children, so that eventually all nodes in tree T will set their color to c. When the

entire tree is colored with c, nodes acknowledge this fact to the root. This propagation and

acknowledgement is done through a standard \broadcast-echo" mechanism: the mode �eld of

a node is set to either broadcast or echo, depending on which phase of the recoloring is in

progress at that node.

When a node notices that its own color is di�erent from that of its parent (in statement

[D]), it calls the subroutine Reset-Coloru (Fig. 5-8), which \resets" its coloring variables,

and causes it to broadcast its parent's color (by setting its mode to broadcast and copying its

parent's color). In this manner, when a root r chooses a new color, its descendants successively
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DETECT-TREESu

if 8v 2 Nbrs(u) , (IDuv = IDu and j(distanceuv � distanceu)j � 1) [I]

then

/* check for echo */

if [J]

f (modeu = broadcast)

/* and if all children echo v's color */

and (8v 2 Childrenu, modeuv = echo and coloruv = coloru )

/* and if \mirror technique" is applicable : see text. If node u has */

/* some color (6= 0), it should have observed neighbors' colors, and */

/* neighbors should have observed u's color, detected by self-coloruv */

and (coloru 6= 0 =) 8v 2 Nbrs(u) ,

nbr-coloruv 6= unde�ned and self-coloruv = coloru)

g

then [K]

modeu  echo

if (9v 2 Childrenu j other-treesuv = true) then other-treesu  true

Figure 5-5: Action DETECT-TREESu

NEXT-COLORu

/* If root, choose new color if necessary */

if (parentu = nil and modeu = echo and other-treesu = false)

then

Reset-Coloru(New-Coloru())

Figure 5-6: Action NEXT-COLORu
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EXTEND-IDu

if (parentu = nil and modeu = echo and other-treesu = true)

then

Append-Entryu()

Reset-Coloru(New-Coloru())

Figure 5-7: Action EXTEND-IDu

copy that color, and a \broadcast wave" propagates throughout T .

In a simple echoing scheme that does not need to take into account an adversarial scheduler,

each node u sets its direction to \echo" when all its children are echoing the same color (i.e.

all children have the same color c as node u and have their mode set to echo). This is also

part of our condition for echoing, which is tested in [J]. In this manner, an \echo wave" travels

upwards from the leaves to the root.

When the root ru notices that all its children are echoing its color c, it concludes that its

entire tree is colored with c, and then changes its color (through action NEXT-COLOR, in

Fig. 5-6). Its new color is a function of the previous color c: it alternates between 0 and a

color randomly chosen from f1, 2, 3g. The rationale for the coloring sequence was described

in Section 3.

When a node is broadcasting some color (i.e., modeu = broadcast), it checks for the ex-

istence of competing trees with the same ID. This check is performed in [C]. In the scheme

for a non-adversarial scheduler, if a node observes that some neighbor is colored with a color

di�erent from its own (provided neither color is 0), it can correctly conclude that that neigh-

bor belongs to a tree di�erent from itself. If node u detects such a competing tree, it sets its

other-trees to true; the echoing mechanism conveys this information to the root of the tree

(through statement [K]). If a root is thus informed of the existence of a competing tree (i.e.

another tree with the same root ID), it attempts to break symmetry by extending its ID (action
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Append-Entryu()

IDu  IDu:x

where x is an entry chosen by the Afek-Matias [AM89] scheme

New-Coloru()

if coloru = 0

then return color randomly chosen from f1, 2, 3g

else return 0

Reset-Coloru(color) /* reset local recoloring-related variables */

coloru  color

modeu  broadcast

other-treesu false

8v 2 Nbrs(u) ,

nbr-coloruv  unde�ned

self-coloruv  unde�ned

8v 2 Childrenu , coloruv  unde�ned

Childrenu : f v j parentuv = u g

Figure 5-8: Macros
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EXTEND-ID, Fig. 5-7). After extending its ID the root participates in the overrunning and

recoloring processes all over again.

However, this scheme of detecting duplicate IDs (i.e. u is colored with a non-zero color

di�erent from that of some neighbor v implies that v is in a di�erent tree) is not su�cient if the

scheduler is adversarial. Consider the recoloring process operating on two neighboring trees T

and T having the same root ID, containing two neighboring nodes u and v respectively. We

want our tree detection process to eventually let at least one of the trees detect this situation.

However, the schedule could be manipulated by the adversary such that the two trees are never

both colored with a non-zero color; the adversary could schedule steps such that always exactly

one of the trees is colored 0 and the other is colored with a non-zero color. In such a schedule,

the trees can continue the recoloring process inde�nitely without ever detecting each other.

An idea proposed in [AKY90] modi�es the scheme so that it can accomodate an adversarial

scheduler. The idea is that when a node u is colored with a non-zero color, it waits for each

neighboring node to be colored with a non-zero color, and records this color individually for

each neighbor v as soon as available, in the variable nbr-coloruv (in [C]). Correspondingly, it

waits till it observes that each neighbor v has observed its own color, by examining the variable

self-coloruv, which it copied from its neighbor. The test for this mirror-like scheme is part of

the condition [J] for echoing. Section 7 shows that this scheme succeeds for the adversarial

scenario described earlier.
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Chapter 6

Correctness and Complexity Proof

for the Randomized Algorithm:

Part 1

The probabilistic automaton RSST implementing our randomized protocol was de�ned in Def-

inition 5.2. We prove that RSST constructs a spanning tree within expected O(�) time, where

� is the network diameter. In this section we give some basic de�nitions and an overview of

the proof.

6.1 Spanning Trees

We �rst de�ne the states of RSST that de�ne a spanning tree.

De�nition 6.1 For any s 2 states(RSST),

� �(s) is the multiset of the node ids in s, i.e.

�(s)
4

= s:fIDv1 ; IDv2 ; IDv3 ; : : : ; IDvng
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� Node u is a root in state s if s:parentu = nil.

� The set �(s) is the set of root nodes in s, i.e.

�(s)
4

= fu 2 V j s:parentu = nilg

� Node u is an ancestor of node v (u 6= v) in s if there exists a sequence of nodes

fu; u1; u2; : : : ; uj; vg such that parentu1 = u; parentu2 = u1; : : : ; parentuj = uj�1; parentv =

uj.

� State s contains a cycle if there exists a node that is an ancestor of itself.

� State s de�nes a forest if it does not contain a cycle.

� State s de�nes a spanning tree if it de�nes a forest and j�(s)j = 1.

Let the set

S
4

= start(RSST)

denote the set of start states of RSST. The set ST is de�ned as the set of states de�ning a

spanning tree. Thus,

ST
4

= fs 2 states(RSST) j s de�nes a spanning treeg

6.2 Overview of the Proof

In this section we give an outline of the proof. We need to prove that departing from a state

of S, the expected time to reach a state of ST is O(�).

Our proof is divided into several phases, each one of which proves a property of making

a partial time bounded progress toward a \success state", i.e., a state of ST . The state sets
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associated with the di�erent phases are S, F 0, F , C=, C1, G, and ST . Here,

F 0 4

= fs j s de�nes a forestg

is the set of forest-de�ning states, and

F
4

=

8><
>:s j 8u; v;

2
64
1: v = s:parentu =) s:(IDu; distanceu)� s:(IDuv; distanceuv)

2: v 2 Nbrs(u) =) s:(IDuv; distanceuv)� s:(IDv; distancev)

3
75

9>=
>;

is a subset of the set of closed forest-de�ning states (this property will be shown in Section

6.3). Thus, once a state of F is reached, the global state always de�nes a forest.

To motivate the de�nitions of C=, C1, and G, we introduce the set

�(s)
4

= fu 2 �(s) j :(9v 2 �(s) j IDu

s
� IDv)g

of \candidate" roots in state s. This set plays a crucial role in maintaining progress of our

algorithm. As mentioned in the description of the algorithm, root nodes compete for being the

root of the eventual spanning tree. We show that the root of the eventual spanning tree must

always be present in � after time 2, and moreover, that � can only shrink with time (and thus

j�j can never increase). These properties imply that if a state is in the set of \good" states

G
4

= fs 2 F j ( j�(s)j = 1)g

then the root of the �nal spanning tree is uniquely determined. Let s be a state in F such that

s 62 G. Since j�(s)j > 1, for achieving progress we need to show that starting from a state in

F , j�j is reduced to 1 (i.e., a state in G is reached) in expected O(�) time. We do so using

the intermediate state sets C= and C1. C= is de�ned as the set of states

C=
4

= fs 2 F j 8u; v 2 �(s); IDu = IDvg
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S
3
�! F (Proposition 6.11)

F �! F� (Proposition 6.12)

F
2�
�! C= [ C1 (Proposition 6.24)

C=
77�+36
�!
2=9

C1 (Proposition 7.80)

C1
2�
�!
0:11
G (Proposition 6.49)

G
2�
�! ST (Proposition 6.23)

Figure 6-1: Proof Phases

in which the IDs of all candidate roots are equal. To de�ne C1, we �rst de�ne subsets �i(s) of

� as follows:

�i(s)
4

= fu 2 �(s) j idlength(IDu) = ig

�i(s) is de�ned as that subset of �(s) whose elements have IDs of a particular length i. (The

set �>i(s) contains elements having IDs of length greater than i; �<i(s) is de�ned similarly.)

We de�ne the special subset

�lmax
(s)

4

= fmax
i
(�i j �i 6= �)g

as that subset of � whose elements have IDs of maximal length. Finally, we are in a position

to de�ne C1 as

C1
4

= fs 2 F j j�lmax
(s)j = 1g

i.e., C1 is the set of states in which there is just one element in � whose ID is of maximal

length.

Having de�ned the relevant state sets, we now formally describe the phases of our proof;

they are summarized in Figure 6-1.

The �rst statement states that starting from a start state, a forest-de�ning state is reached

within time 3; the second statement states that once a forest-de�ning state is reached, the
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state always de�nes a forest. The last statement states that once a \good" state is reached,

within time 2� the state de�nes a spanning tree.

By combining the statements above using Theorem 2.11 and Corollary 2.12, we obtain

F
81�+36
�!
0:025

G

and consequently

S
83�+39
�!
0:025

ST

Using the results of the proof summary above, we can derive an upper bound ofO(diameter)

on the expected time required to reach a state of ST starting from a state of S.

Theorem 6.2 Under any fair adversary, starting from any start state, the automaton RSST

that implements our randomized self-stabilizing spanning tree algorithm reaches a state de�ning

a spanning tree within expected O(�) time.

Proof. Departing from a state in F , RSST reaches a state in G in time (at most) 81�+36

with probability at least 0.025. Consider an execution of RSST starting from a state s in

F , and consider successive epochs of duration 81�+36. In the �rst epoch, the probability of

attaining membership in G (\success in the �rst epoch") is at least 0.025. Since F is closed,

the probability of success in every such epoch is at least 0.025. Hence, the expected number of

epochs needed to attain success has an upper bound of d1=0:025e, or 40. Hence, starting from a

state in F , the expected time taken to reach a state in G has an upper bound of 40� (81�+36),

which is O(�). Since S
3
�! F and G

2�
�! ST , the expected time to reach a state in ST starting

from a state in S is O(�).

We now proceed with the details of the proof, i.e. the proofs of the probabilistic statements

given above. Let A 2 Fairadvs be a fair adversary for RSST. Let z 2 S be an arbitrary starting

state. Let Ĥ denote the execution automaton H (RSST;A; z). Let �0 denote an execution of

Ĥ, and let � be the corresponding execution �0# of RSST.
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In Section 6.3, we prove the statements S
3
�! F , F �! F�, F

2�
�! C=[C1, and G

2�
�! ST .

The statement C=
77�+36
�!
2=9

C1 is proved in Section 7, and the statement C1
2�
�!
0:11
G is proved in

Section 6.4.

6.3 Stabilization of Forest Structure, Candidate Root Proper-

ties

In this section we prove the statements S
3
�! F , F �! F�, F

2�
�! C= [ C1, and G

2�
�! ST .

6.3.1 Forest Structure - Establishment and Preservation

Each node v maintains an \opinion" of the values of the shared variables of its neighbors in

its own local variables. Claim 6.3 states that after time 1, this \opinion" must have actually

been read from the neighbors, i.e. it is no longer arbitrarily set in the start state.

Claim 6.3 For any s such that s:now > 1, s:VARuv = s0:VARv for some s
0 preceding s in �,

where VAR is one of fID ; distance; parentg.

Proof. Within time 1, node u will have performed COPY-NBRSuv for all neighbors v, and

hence will have read the local variables of all its neighbors at least once.

Claim 6.4 and Lemma 6.5 show that the priority (de�ned as the tuple (ID,distance)) of a

node cannot decrease (in terms of the order � de�ned on priorities; cf. De�nition 5.1); if it

changes, it can only increase.

Claim 6.4 For any step (s; EXTEND-IDu; (
;�; P )) of RSST, for any state s0 2 
,

s:IDu

w

� s0:IDu.

Proof. Follows directly from Proposition 4.4(1).
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Lemma 6.5 For any step (s; a; (
;�; P )) of RSST, for any s0 2 
,

s:(IDu; distanceu)� s0:(IDu; distanceu).

Proof. The only actions which change (IDu; distanceu) are MAXIMIZE-PRIORITYu and

EXTEND-IDu. If MAXIMIZE-PRIORITYu is executed, only statements [F], [G] and [H]

are capable of changing (IDu; distanceu). Let the \intermediate" value of IDu after executing

statement [F] be I ; then s:IDu � I . If [G] is executed, the value of (IDu; distanceu) cannot

decrease, because of the direction of the precedence test. [H] leaves IDu intact and sets

distanceu to 0; thus s:IDu � I = s0:IDu and s:distanceu � s0:distanceu, and so the priority

(IDu; distanceu) cannot decrease. By Claim 6.4, EXTEND-IDu increases IDu, and therefore

increases the priority (IDu; distanceu).

Corollary 6.6 For all s and s0 such that s precedes s0 in �,

s:(IDu; distanceu)� s0:(IDu; distanceu).

Since priorities do not decrease, then, by Claim 6.3, priorities as observed by neighbors do

not decrease:

Corollary 6.7 For any node u, any v, the value of (IDuv; distanceuv) cannot decrease after

time 1.

We now establish that in any execution, any state after time 2 belongs to the set F , and

thus de�nes a forest.

Lemma 6.8 For all s such that s:now > 2, each node u obeys the priority invariant:

(parentu = v) =) (IDu; distanceu)� (IDuv; distanceuv).

Proof. Consider any node u which is a child of node v in some state s such that s:now > 2;

thus s:parentu = v. Node u last executed the statement (parentu  v) in [G] at some step

(s1,MAXIMIZE-PRIORITYu,s2), where (s:now � 1) � s2:now � s:now . By [G], we have

s2:(IDu; distanceu) = s1:(IDuv; distanceuv + 1). Since s1 precedes s in � and s1:now > 1, by

Corollary 6.7, s1:(IDuv; distanceuv) � s:(IDuv; distanceuv). Hence, we have:
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s:(IDu; distanceu) = s2:(IDu; distanceu)

= s1:(IDuv; (distanceuv + 1))

� s1:(IDuv; distanceuv)

� s:(IDuv; distanceuv)

Hence s:(IDu; distanceu)� s:(IDuv; distanceuv).

Corollary 6.9 For all s such that s:now > 1, for any node u and any v 2 Nbrs(u),

s.(IDuv; distanceuv) � s.(IDv; distancev).

Proof. Let the last COPYuv step executed by u be (s1;COPYuv; s2). Then s:(IDuv; distanceuv) =

s2:(IDuv; distanceuv) = s1:(IDv; distancev). Since s1 precedes s in �, by Corollary 6.6,

s1:(IDv; distancev) � s:(IDv; distancev). Hence s:(IDuv; distanceuv) � s:(IDv; distancev).

Corollary 6.10 F � F 0.

Proof. Let s 2 F . By the de�nition of F , for any u; v such that v = parentu, s:(IDu; distanceu)

� s:(IDv; distancev). Since each node must have a strictly lower priority than its parent, s

cannot contain a cycle.

Proposition 6.11 S
3
�! F.

Proof. Immediate from Lemma 6.8 and Corollary 6.9.

Proposition 6.12 F �! F�.

Proof. Let (s; a; (
;�; P )) be a step of RSST. Let s 2 F , and let s0 2 
. We need to show

that s0 2 F . Recall the de�nition of F :

F
4

=

8><
>:s j 8u; v;

2
64
1: v = s:parentu =) s:(IDu; distanceu)� s:(IDuv; distanceuv)

2: v 2 Nbrs(u) =) s:(IDuv; distanceuv)� s:(IDv; distancev)

3
75

9>=
>;
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The only variables that determine membership in F are parent, ID, and distance (both local

and shared copies). Thus the only actions that can change membership in F are COPY,

MAXIMIZE-PRIORITY and EXTEND-ID.

Case 1 a = COPYuv.

The only relevant e�ect is that s0:(IDuv; distanceuv) = s0:(IDv; distancev); thus predicate

2 of the de�nition of F holds for u. If v = parentu, then

s0:(IDu; distanceu) = s:(IDu; distanceu)

� s:(IDuv; distanceuv) (since s 2 F)

� s0:(IDuv; distanceuv) (by Corollary 6.7)

Hence s0:(IDu; distanceu)� s0:(IDuv; distanceuv), and predicate 1 holds. Since no other

node predicates are a�ected, s0 2 F .

Case 2 a = MAXIMIZE-PRIORITYu .

The only variables set are IDu, distanceu, and parentu, so we only need to check that

in state s0, u satis�es predicate 1, and that all neighbors of u satisfy predicate 2. Ei-

ther statement [G] or [H] of MAXIMIZE-PRIORITYu must be executed. If [G] is

executed, s0:(IDu; distanceu) = s0:(IDul; (distanceul+ 1)) � s0:(IDul; distanceul), where

l = s0:parentu. Hence u satis�es predicate 1. If [H] is executed, u trivially satis�es

predicate 1 in s0. For any v 2 Nbrs(u),

s0:(IDvu; distancevu) = s:(IDvu; distancevu)

� s:(IDu; distanceu) (since s 2 F)

� s0:(IDu; distanceu) (by Corollary 6.6)

Thus any neighbor v satis�es predicate 2, and hence s0 2 F .

Case 3 a = EXTEND-IDu.

If IDu is extended, u 2 �(s0), so u trivially satis�es predicate 1 in state s0, and since

s 2 F , u satis�es predicate 2 in s0. By an argument identical to that for Case 2, all

neighbors v of u also satisfy the predicates, and so s0 2 F .
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Henceforth in the proof, for all states mentioned we will assume that s 2 F.

Thus each state under discussion de�nes a forest.

We now show that the set of root nodes �(s) can only diminish with time|a root may

become a nonroot, but not vice-versa.

Lemma 6.13 �(s0) � �(s) for all s; s0 such that s0 follows s in �.

Proof. Suppose not, i.e. suppose 9u such that u 2 �(s0) but u 62 �(s). Then s0:parentu = nil

and s:parentu 6= nil. Hence there must exist a step (s3,MAXIMIZE-PRIORITYu,s4) in �, such

that s3:parentu 6= nil, s4:parentu = nil, and [H] was executed in MAXIMIZE-PRIORITYu.

Let s3:parentu = v. From the test that causes [H] to be executed, s3:(IDuv; distanceuv)

� s3:(IDu; distanceu). (Note that since s3:parentu 6= nil, [F] was not executed in this step.)

But since s3:parentu = v, there must exist a preceding step (s1,MAXIMIZE-PRIORITYu,s2)

in which (s2:(IDu; distanceu) = s3:(IDu; distanceu)) and parentu was set to v. Since [G] was

executed in this step, s2:(IDuv; distanceuv)� s2:(IDu; distanceu). By Corollary 6.7,

s3:(IDuv; distanceuv) � s2:(IDuv; distanceuv).

Hence s3:(IDuv; distanceuv)� s3:(IDu; distanceu), which contradicts the earlier assertion.

6.3.2 ID Overrunning Properties

We now show that nodes must \learn" about \high" IDs existing in the network within 2�

time|the smallest ID in the network after time t+ 2� is at least as large as the highest ID at

time t. In this sense, high IDs \overrun" lower IDs.

Lemma 6.14 Let Dist(u; v) = d. For any state s, there exists a state s0 following s such that

s0:now � s:now + 2d and s0:(IDv; distancev) � s:(IDu; (distanceu + d)).

Proof. By induction on d.
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First, let d = 0. u is the only node a distance of 0 from itself. Substituting d = 0 in the

statement, it can be seen to be trivially true (s0 = s).

Now for the inductive step, for any node v such that Dist(u; v)=k, assume that there exists

s0 such that s0:now � s:now +2k and s0:(IDv; distancev) � s:(IDu; (distanceu+k)). Consider

a node w such that Dist(u; w) = k + 1. We need to show that there exists s00 such that

s00:now � s:now + 2(k + 1) and s00:(IDw; distancew) � s:(IDu; (distanceu + k + 1)).

Node w must then have a neighbor v such that Dist(u; v)= k. By the inductive hypothesis,

there exists a s0 such that s0:now�s:now + 2k and s0:(IDv; distancev) � s:(IDu; (distanceu +

k)).

Now there must exist a step (s1;COPYwv; s2) at some time after (s:now + 2k) and upto

(s:now + 2k + 1), since our adversary must allow w to execute every action in every unit of

time. Since s1:now > s0:now , by Lemma 6.5, s1:(IDv; distancev) � s0:(IDv; distancev). Hence

s1:(IDv; distancev) � s:(IDu; distanceu + k). Hence s2:(IDwv; distancewv) �

s:(IDu; (distanceu + k)).

There must exist another step (s3;MAXIMIZE-PRIORITYw ; s
00) at some time after (s:now+

2k+1) and upto (s:now+2k+2). By Claim 6.7, s3:(IDwv; distancewv) � s2:(IDwv; distancewv).

After statement [E] of MAXIMIZE-PRIORITYw , (IDwl; distancewl) � (IDwv; distancewv).

Either statement [G] or [H] must be executed. If [G] is executed, s00:(IDw; distancew)

= s3:(IDwl; (distancewl + 1)) � s3:(IDwv; (distancewv + 1)) � s2:(IDwv; (distancewv + 1)

� s:(IDu; (distanceu+ k+1)): Hence there exists s00 such that s00:now�(s:now + 2k+2) and

s00:(IDw; distancew) � s:(IDu; (distanceu + k + 1)).

If [H] is executed, let the intermediate value of IDu after executing [F] be I . Then, since

[H] is executed, s00:(IDw; distancew) = (I; 0)
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� (I; s3:distancew)

� s3:(IDwl; distancewl)

� s3:(IDwv; distancewv)

� s2:(IDwv; distancewv)

� s:(IDu; distanceu + k)

� s:(IDu; distanceu + k + 1):

Corollary 6.15 Let Dist(u; v) = d. For any state s, for all states s0 such that s0:now �

(s:now + 2d), s0:(IDv; distancev) � s:(IDu; distanceu + d).

Proof. Immediate from Lemma 6.5 and Lemma 6.14.

Corollary 6.16 Let Dist(u; v) = d. For any s, there exists s0 following s in � such that

s0:now � s:now + 2d and s0:IDv � s:IDu.

De�nition 6.17 (MAXID) Given a state s 2 C=, s:MAXID
4

= max(�(s)).

Corollary 6.18 For any s, there exists s0 following s in � such that s0:now � s:now +2� and

8u 2 V, s0:IDu � s:MAXID. For all s00 such that s00:now > s:now + 2�, s00:IDu � s:MAXID.

6.3.3 Candidate Root Properties

We �rst state a very important property of the set �(s). In e�ect, the ID of each root in �(s)

is a pre�x of the highest such ID.

Observation 6.19 For any s and any u; v 2 �(s),

1. idlength(s:IDu) < idlength(s:IDv) =) s:IDu

w
� s:IDv.
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2. idlength(s:IDu) = idlength(s:IDv) =) s:IDu = s:IDv.

Proof. If u; v 2 �(s), by the de�nition of �(s), it cannot be the case that IDu

s
� IDv or

IDu

s
� IDv. Hence IDu = IDv, or IDu

w
� IDv, or IDu

w
� IDv. Hence idlength(s:IDu) <

idlength(s:IDv) must imply IDu

w
� IDv, and idlength(s:IDu) = idlength(s:IDv) must

imply IDu = IDv.

Consider any root node r. The following lemma states that as long as r stays a root, its

ID can only change by extension (only by invoking the call Append-Entry() through actions

MAXIMIZE-PRIORITYr or EXTEND-IDr).

Lemma 6.20 Let s; s0 be any states such that s0 follows s in �.

If r 2 (�(s) \ �(s0)), s:IDr

w

� s0:IDr.

Proof. Consider a node r 2 (�(s) \ �(s0)). Let �1 be the execution fragment sa1s1 : : :ais
0. If

there exists a state si 2 �1 such that r 62 �(si), then r 62 �(s
0) by Lemma 6.13. Hence r 2 �(si)

for every state si in �1.

Hence for every step (si; a; (
;�; P )) in �1, for every state sj in 
, si:parentr = sj :parentr =

nil. Thus in action a, statement [G] of MAXIMIZE-PRIORITYr could not have been executed.

Hence the only way IDr can change is through the call to Append-Entry(), made by [F] of

MAXIMIZE-PRIORITYr or by EXTEND-IDr . By Proposition 4.4(1), for every such si and

sj , si:IDr

w

� sj :IDr . By transitivity of
w

� , it follows that s:IDr

w

� s0:IDr .

The following is a crucial property of our algorithm. To ensure fast progress, we want

to ensure that if a root r1 has an ID that is smaller than that of another root r2, then the

relationship will stay that way, even if the two roots never communicate directly. We can

ensure this only if r2's ID is higher in the strong sense.

Lemma 6.21 For all s; s0 such that s0 follows s in �,

if r1; r2 2 (�(s) \ �(s
0)), s:(IDr1

s
� IDr2) =) s0:(IDr1

s
� IDr2).
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Proof. Immediate from Lemma 6.20 and Proposition 4.4(5).

We now show that the set � is the set of roots that have a chance of \surviving" - a root

not in this set cannot be the root of the �nal spanning tree, and will de�nitely be overrun by

some other tree. We now have a \competition" between roots in the forest. The \winner" of

the competition will be the root of the eventual spanning tree. The set � is the set of roots

still in the fray; all other roots have \lost" and will be overrun. All roots change their IDs only

by extension (unless they cease to be a root), and by changing their ID they may lose their

membership in �.

Lemma 6.22 For all s; s0 such that s0 follows s in �, �(s0) � �(s).

Proof. Suppose not. Then there exists a node r such that r 2 �(s0) but r 62 �(s). Since

r 2 �(s0), by Lemma 6.13 r 2 �(s). By the de�nition of �(s), there exists some node q 2 �(s)

such that s:IDr

s
� s:IDq. But by Corollary 6.6, s:IDq � s0:IDq. Hence by Proposition 4.4(3),

s:IDr

s
� s0:IDq. By Lemma 6.20, s:IDr

w

� s0:IDr. Applying Proposition 4.4(4), s
0:IDr

s
� s0:IDq.

Thus r 62 �(s0), contradicting our earlier supposition.

Proposition 6.23 states that if in some state s the set � has just one member, a state s0

de�ning a spanning tree is reached within 2� time.

Proposition 6.23 G
2�
�! ST

Proof. Let s be a state in G. By Corollary 6.18, there exists a state s0 following s such that

s0:now � s:now + 2� and for all u 2 V, s0:IDu � s:MAXID.

We have j�(s)j = 1; therefore, a unique node r has the maximum ID in s. Consider any

node q 6= r in �(s). By de�nition of �(s), s:IDq

s
� s:ID r. Now if q 2 �(s0), by Lemma 6.20,

s:IDq

w

� s0:IDq, which implies s0:IDq

s
� s:ID r by Proposition 4.4(4). But this contradicts our

choice of s0, since s0 was chosen such that s0:IDq � s:IDr. Thus any node q 6= r in �(s) cannot

be in �(s0). Since �(s0) � �(s) by Lemma 6.13, it follows that �(s0) = frg, and so s0 2 ST .

62



Proposition 6.24 F
2�
�! C= [ C1

Proof. Let s 2 F . Consider any execution � = sa1s1a2s2 : : :; let � = s:MAXID. By Corollary

6.18, there exists a state sk following s in � such that sk:now � s:now + 2�, and for all u 2 V ,

sk:IDu � �. Consider the execution pre�x �1 = sa1s1a2 : : :sk of �. We show that there must

exist some state s0 in �1 such that s0 2 C= [ C1. For all u in �(sk), sk:IDu � �. Consider the

following mutually exhaustive possibilities for �(sk):

Case 1 For all u 2 �(sk), sk:IDu = �.

Then sk 2 C
=, and we are done.

Case 2 For some u 2 �(sk), sk:IDu

s
� �.

Since �(sk) � �(s), by Lemma 6.22, sk:IDu

s
� � for some u 2 �(s). Since each step in

� changes at most one ID, and since s:IDx � � for all x 2 �(s), there must exist some

state s0 in � such that there is exactly one node v 2 �(s) for which s0:IDv

s
� �. Since

�(s0) � �(s) by Lemma 6.22, v is the only node in �(s0) such that s0:IDv

s
� �. Hence

IDv = max
w2�(s0)

(IDw), which implies that v 2 �lmax
(s0). There cannot exist another

node w 2 �lmax
(s0), since that would imply that s0:IDw = s0:IDv, which would violate our

assumption that v is the only node in �(s0) such that s0:IDv

s
� �. Hence j�lmax

(s0)j = 1,

and so s0 2 C1.

Case 3 IDu

w

� � for all u 2 �(sk), and there is at least one node u 2 �(sk) such that

sk:IDu

w
� �.

Since �(sk) � �(s), by Lemma 6.22, there is at least one node u 2 �(s) such that

sk:IDu

w
� �. Since each step in � changes at most one ID, and since s:IDx � � for all x 2

�(s), there must exist some state s0 in � such that there is exactly one node v 2 �(s) for

which s0:IDv

w
� �. There cannot exist a node w 2 �(s) such that s0:IDw

s
� �, since that

would imply by Corollary 6.6 that sk:IDw � s0:IDw and hence by Proposition 4.4(3) that

sk:IDw

s
� �, which contradicts our assumption that sk:IDu

w

� � for all u 2 �(sk). Thus
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for all u other than v in �(s), s0:IDu

w

� �. Thus �lmax
(s0) = fug; hence j�lmax

(s0)j = 1

and s0 2 C1.

6.4 The ID-forcing Proposition

In this section we prove the statement C1
2�
�!
0:11
G, i.e., starting from a state in which there

is only one candidate of maximal ID length, within 2� time, with probability at least 0:11,

we reach a \good" state|a state in which there is just one candidate. This is a substantial

progress property, since if a state is \good" then within 2� additional time we reach a state

de�ning a spanning tree.

Let s be a state in C1, and let H be the execution automaton H (RSST;A; s). Let �0 be

a maximal execution of H, and let � = �0# = sa1s1a2s2 : : : be the corresponding execution

of RSST. Let lmin denote min
u2�(s)

(idlength(s:IDu)), and let lmax be de�ned analogously.

Thus all nodes in �(s) have ID lengths between lmin and lmax . Let � = s:MAXID, and let r

be the unique element of �(s) such that s:IDr = �. (Since s 2 C1, r is unique.) Thus r is the

unique candidate root in s having the maximum ID length lmax .

By the ID overrunning property, Corollary 6.18, there exists a state sk following s in �

such that sk:now � s:now+ 2� and for all u 2 V , sk:IDu � �. Let sk be the �rst such state in

�. Let �1 be the execution pre�x sa1s1a2s2 : : : sk.

We will use these de�nitions of s, sk, �, �1, lmin , lmax , �, and r throughout the rest of this

section.

We �rst give some basic de�nitions and observations related to these de�nitions.

De�nition 6.25 (Competitive and dominant nodes) Let H, s, sk, �, � and �1 be as

de�ned above, and let i � lmax . Then,

� Node u is competitive at the ith position in �, if there exists s0 2 �1 such that u 2 �(s0)

and s0:IDu[1::i] = �[1::i].
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� Node u is dominant at the ith position in �, if there exists s0 2 �1 such that u 2 �(s0),

s0:IDu[1::(i� 1)] = �[1::(i� 1)], and s0:IDu[i] > �[i]. Node u is dominant before the ith

position in �, if there exists a j < i such that u is dominant at the jth position.

We now state some observations arising from the above de�nitions. The �rst property

states that competitiveness and dominance of a node at a particular position are mutually

exclusive:

Claim 6.26 A node u cannot be both competitive and dominant at the ith position, for any i.

Proof. Suppose u is competitive and dominant at the ith position in �. Since it is competitive,

there exists s0 2 � such that u 2 �(s0) and s0:IDu[i] = �[i]. Since it is dominant, there exists

s00 2 � such that u 2 �(s00) and s00:IDu[i] > �[i]. Clearly, s0:IDu[i] 6= s00:IDu[i].

Now s0 must either precede or follow s00 in �. If s0 precedes s00, Lemma 6.20 implies that

s0:IDu

w

� s00:IDu, which implies s0:IDu[i] = s00:IDu[i], which is a contradiction. Similarly, the

other case, s0 follows s00, leads to the same contradiction.

Claim 6.27 If a node u is either competitive or dominant at the ith position in �, it is com-

petitive at the jth position for all j < i.

Proof. Straightforward from De�nition 6.25.

Claim 6.28 If a node u dominant at the ith position in �, it cannot be competitive at the jth

position for any j � i.

Proof. Follows directly from Claims 6.26 and 6.27.

Claim 6.29 Any u 2 �(s) is competitive at the lthmin position in �.

Proof. By the de�nition of �, and by Observation 6.19, s:IDu

w

� �, and further, idlength(s:IDu)

> lmin . Hence s:IDu[1::lmin] = �[1::lmin].
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Corollary 6.30 No node u 2 �(s) is dominant before the (lmin + 1)th position in �.

Proof. Follows directly from Claims 6.28 and 6.29.

De�nition 6.31 (Competitive and dominant executions) Let H, s, sk, �, � and �1 be

as de�ned above. Then,

� Execution � is competitive at the ith position if no node is dominant before the (i+ 1)th

position.

� Execution � is dominant at the ith position if no node is dominant before the ith position

and there exists u 2 �(s) such that u is dominant at the ith position.

Claim 6.32 An execution � cannot be both competitive and dominant at the ith position, for

any i.

Proof. Follows directly from De�nition 6.31.

Claim 6.33 Let i < lmax . If � is competitive at the ith position, it is either competitive or

dominant at the (i+ 1)th position.

Proof. Since � is competitive at the ith position, no node is dominant before the (i + 1)th

position. If some node is dominant at the (i+1)th position, � is dominant at the (i+1)th posi-

tion. Otherwise, no node is dominant before the (i+ 2)th position, and hence � is competitive

at the (i+ 1)th position.

Having described competitive and dominant executions, we now de�ne the corresponding

events of H.

De�nition 6.34 (Competitive and dominant events) Let H , s, and sk, be as de�ned

above. Then,

� The event e
[i]
C , \competitiveness at position i," is de�ned as

e
[i]
C

4

= f�" 2 

H
j � is competitive at the ith positiong
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� The event e
[i;j]
C consists of those executions in e

[i]
C in which exactly j nodes in �(s) are

competitive at the ith position.

� The event e
[i]
D , \dominance at position i," is de�ned as

e
[i]
D

4

= f�" 2 

H
j � is dominant at the ith positiong

� The event eG is de�ned as a subset of the set of executions in which a state in G is reached

within time 2�; in particular,

eG
4

= f�" 2 

H
j sk(�) 2 Gg

We now state some important properties of events.

Claim 6.35 e
[i]
C =

n[
j=1

e
[i;j]
C .

Proof. From the de�nitions (recall that n is the size of the network).

Claim 6.36 For any i � lmax, e
[i]
C \ e

[i]
D = �.

Proof. Follows from Claim 6.32.

Claim 6.37 For any i � (lmax � 1), e
[i+1]
C ; e

[i+1]
D � e

[i]
C .

Proof. Follows from De�nitions 6.34 and 6.31.

Claim 6.38 For any i < (lmax � 1), e
[i]
C = e

[i+1]
D [ e

[i+1]
C .

Proof. By Claim 6.37, e
[i+1]
D [ e

[i+1]
C � e

[i]
C . By Claim 6.33, e

[i]
C � e

[i+1]
D [ e

[i+1]
C . Hence follows.

Claim 6.39 

H

= e
[lmin ]
C .
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Proof. Consider any execution �" 2 

H
. From Corollary 6.30, it follows that � is competitive

at the lthmin position.

Claim 6.40 

H

= e
[lmin+1]
D [ e

[lmin+2]
D [ e

[lmin+3]
D [ : : :[ e

[lmax�1]
D [ e

[lmax�1]
C .

Proof. We have,



H

= e
[lmin ]
C (Claim 6.39)

= e
[lmin+1]
D [ e

[lmin+1]
C (Claim 6.38)

= e
[lmin+1]
D [ e

[lmin+2]
D [ e

[lmin+2]
C (Applying Claim 6.38 again)

= e
[lmin+1]
D [ e

[lmin+2]
D [ : : :[ e

[lmax�1]
D [ e

[lmax�1]
C (Inductively applying Claim 6.38)

Note that Claim 6.40 de�nes a partition of 

H
.

De�nition 6.41 Node u 
ips at the ith position in �, if in �1 there exists a step (s
0; a; s00) such

that in a, u makes a call to Append-Entry which appends an entry to IDu at the i
th position.

Lemma 6.42 Let � 2 e
[i]
C . For any u 2 �(s), if idlength(s:IDu) � i, and if u is competitive

at the ith position in �, then u 
ips at the (i+ 1)th position in �.

Proof. Consider �1 = sa1s1a2 : : : sk. Since u is competitive at the ith position in �, there

exists a si 2 � such that u 2 �(si) and si:IDu[1::i] = �[1::i]. Also, by the de�nition of sk,

sk:IDu � �. Now, by Lemma 6.20, IDu can only change by extension in sa1s1a2 : : : sk, so we

can choose si such that si:IDu = �[1::i].

Consider the su�x of the execution that starts with si. The only way IDu can change

between si and sk is by executing calls to Append-Entry or by executing statement [G]. If

Append-Entry is performed �rst, an entry is appended at the (i+1)th position, so we are done.

If [G] is executed, there exists a node l such that IDul � IDu. By Claim 6.3, IDul = ID l for

some preceding state. Since � 2 e
[i]
C , l is not dominant before the (i+ 1)th position, and hence

ID l[1::i] = �[1::i]. Hence IDu

w
� IDul, and so the call to Append-Entry in [F] must have been

executed �rst, in which case u would have 
ipped at the (i+ 1)th position.

68



Lemma 6.43 For any i � lmax , e
[i;1]
C � eG.

Proof. If � 2 e
[i;1]
C , no node is dominant before the (i + 1)th position, so for any u 2 �(sk),

sk:IDu[1::i] = �[1::i]. But then any such node is competitive at the ith position, and there is

only one such node, since � 2 e
[i;1]
C . Hence j�(sk)j = 1, and so sk 2 G.

We now list, without proof, some basic results of conditional probability:

Proposition 6.44 Let A, Ai, B, Bi, and X be events on a sample space. Then,

1. If A =
k[
i=1

Ai, then P (X j A) � mini P (X j Ai).

2. If A �
k[
i=1

Ai, then P (X j A) � mini P (X j A \Ai).

3. Let
k[
i=1

Ai � A. If P ((
k[
i=1

Ai) j A) = p, and if P (X j Ai) = pi, then

P (X j A) � p�minifpig.

Lemma 6.45 For any i such that (lmin + 1) � i � lmax and any j � 1, P (eG j e
[i]
D \ e

[i�1;j]
C ) �

1=2.

Proof. Consider any execution � 2 e
[i]
D \ e

[i�1;j]
C . Since � 2 e

[i�1;j]
C , there are j nodes com-

petitive at the (i � 1)th position. Of these j nodes, there are exactly j�>(i�1)(s)j nodes u

such that idlength(s:IDu) > (i� 1), and consequently k = j � j�>(i�1)(s)j nodes such that

idlength(s:IDu) � (i � 1). Thus by Lemma 6.42, each of these k nodes must 
ip at the ith

position. Hence �kAM describes the sample space corresponding to these k 
ips. If � 2 e
[i]
D ,

there exists a 
ip higher than �[i]. If exactly one of these 
ips is the highest, then � 2 eG .

Thus,

P (eG j e
[i]
D \ e

[i�1;j]
C ) � P�k(UNIQH j (Highest > �[i])) � 1=2;

by Theorem 4.2.

Theorem 6.46 For any i such that (lmin + 1) � i � lmax, P (eG j e
[i]
D) � 1=2:
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Proof. We have e
[i]
D � e

[i�1]
C by Claim 6.38. Thus by Claim 6.35,

e
[i]
D �

n[
j=1

e
[i�1;j]
C

which implies, by Proposition 6.44(2), that

P (eG j e
[i]
D) � min

j
P (eG j e

[i]
D \ e

[i�1;j]
C ):

Since by Lemma 6.45 P (eG j e
[i]
D \ e

[i�1;j]
C ) � 1=2 for all j, it follows that P (eG j e

[i]
D ) � 1=2.

Lemma 6.47 For any j � 1, P ((e
[lmax ]
D [ e

[lmax ;1]
C ) j e

[lmax�1;j]
C ) � 0:22.

Proof. Consider any � 2 e
[lmax�1;j]
C . There are j nodes competitive at the (lmax�1)

th position;

of these, idlength(s:IDr) > lmax � 1 for exactly one node r, and thus idlength(s:IDu) �

lmax�1 for exactly (j�1) nodes u. Thus by Lemma 6.42 these (j�1) nodes must 
ip at the l
th
max

position in �, and the sample space �j�1AM describes these 
ips. The event e
[lmax ]
D is equivalent to

the event (Highest > �[lmax ]). The event e
[lmax ;1]
C is equivalent to the event (Highest < �[lmax ]),

since one node r is already known to be competitive at the lthmax position. Thus,

P ((e
[lmax ]
D [ e

[lmax ;1]
C ) j e

[lmax�1;j]
C ) = P�j�1(Highest 6= �[lmax ]) � 0:22

by Theorem 4.3.

Theorem 6.48 P (eG j e
[lmax�1]
C ) � 0:11

Proof. Consider the event e
[lmax�1;j]
C .

By Lemma 6.47, P ((e
[lmax ]
D [ e

[lmax ;1]
C ) j e

[lmax�1;j]
C ) � 0:22. Thus, we have

P ((e
[lmax ]
D \ e

[lmax�1;j]
C ) [ (e

[lmax ;1]
C \ e

[lmax�1;j]
C ) j e

[lmax�1;j]
C ) � 0:22

Also, by Lemma 6.45,

P (eG j e
[lmax ]
D \ e

[lmax�1;j]
C ) � 1=2
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and by Lemma 6.43,

P (eG j (e
[lmax ;1]
C \ e

[lmax�1;j]
C )) = 1:

Hence applying Proposition 6.44(3), we have

P (eG j e
[lmax�1;j]
C ) � (0:22)(1=2) = 0:11:

Now by Claim 6.35, e
[lmax�1]
C =

n[
j=1

e
[lmax�1;j]
C . Thus by Proposition 6.44(1),

P (eG j e
[lmax�1]
C ) � min

j
P (eG j e

[lmax�1;j]
C ) � 0:11:

Proposition 6.49 P (eG j 
H
) � 0:11, or equivalently, C1

2�
�!
0:11
G.

Proof. By Claim 6.40, 

H

= e
[lmin+1]
D [e

[lmin+2]
D [e

[lmin+3]
D [ : : :[e

[lmax�1]
D [e

[lmax�1]
C . By Theorem

6.46, P (eG j e
[i]
D) � 1=2, and by Theorem 6.48, P (eG j e

[lmax�1]
C ) � 0:11. Hence applying

Proposition 6.44(1),

P (eG j 
H
) = P (eG j e

[lmin+1]
D [ e

[lmin+2]
D [ : : :[ e

[lmax�1]
D [ e

[lmax�1]
C )

� min(1=2; 1=2; : : : ; 1=2; 0:11)

= 0:11
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Chapter 7

Correctness and Complexity Proof:

Part 2 { The Coloring Algorithm

In this section we prove the Tree Detection Proposition, C=
77�+36
�!
2=9

C1 (Proposition 7.80). Thus,

starting from a state in C=, within time 77� + 36, with probability at least 2=9, we reach a

state in which only one candidate has the maximal ID length. This is the \tree detection"

property|if, in some state, all root nodes in the network have equal IDs, then, because of the

coloring, the competition makes \progress" within expected O(�) time.

The overall strategy of the proof is as follows: We �rst show, in Lemma 7.1, that starting

from a state s 2 C=, any execution fragment � must remain in C= until a state in C1 is

reached. Thus, to show the partial progress properties of the coloring algorithm, we consider

an execution fragment �1 in C
=. Next, in Section 7.1, we show that within time 2�+1 in �1, a

state de�ning a \stable forest" is reached. (We denote the set of states de�ning a stable forest

by C=SF .) Let �2 be any execution fragment in C=SF . The graph of parent pointers remains

�xed in C=SF ; the network can thus be visualized as a collection of \�xed" trees over which the

coloring algorithm runs.

When a state in C=SF is reached, the coloring variables (i.e., color, mode) may be in an

inconsistent state|normal \broadcast" and \echo" waves (cf. Section 5.1) may not be able to
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commence immediately. Section 7.2 shows that within time 17�+7 in �2, a state is reached in

which the coloring variables become consistent. (C=WC is the state set consisting of such states.)

The coloring algorithm can proceed normally in any execution fragment �3 in C
=
WC .

Let �3 be a fragment in C
=
WC . For any tree Tr, �3 can be partitioned into coloring epochs for

Tr. In each coloring epoch 
 in C=WC , the root color is propagated to all nodes in Tr (through

a \broadcast wave"), and the root waits for all nodes in its tree to echo before choosing a new

color and initiating the next coloring epoch. If a node with a non-zero color in some tree T

notices that a neighbor has a non-zero color di�erent from its own color, it sets other-trees

to true, and this information is propagated to its root. (It is \piggy-backed" on the \echo

wave"; its ancestors successively set their other-trees to true while echoing.) After a root sets

other-trees to true, it extends its ID, thus reaching a state in C1.

As discussed in Section 5.1, when a node receives a new non-zero color it waits until 1)

it has observed a non-zero color for each of its neighbors, and 2) each neighbor has observed

its own color. Section 7.2.2 and Lemma 7.61 show that a node cannot be \blocked" by its

neighbors in this fashion for more than 10� + 5 time. Based on this result, a coloring epoch

cannot last more than 13�+6 time. (Note that the individual node \waits" are not dependent

on each other; they can overlap.)

Each coloring epoch in C=WC gives a tree at least one \opportunity" to detect neighboring

trees, and each epoch lasts at most 13� + 6 time. Section 7.3 formalizes this notion. If T and

T are neighboring trees, we show that starting from a state in C=WC , at least one of the two

trees must detect the existence of the other within time 58�+28, with probability at least 2=9.

When this information is conveyed to the root of the \noticing" tree shortly thereafter, that

root extends its ID, and a state in C1 is reached. Since the total time elapsed starting from a

state in C= would then be 77�+36, the Tree Detection Proposition (Proposition 7.80) follows.

We now proceed with the details of the proof.

Lemma 7.1 Let � = s0a1s1 : : :sk be an execution fragment of RSST, and let s0 2 C
=. Then,

unless a state in C1 is reached in �, the following conditions hold for all states s in �:
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1. s 2 C=

2. �(s) = �(s0)

3. s:MAXID = s0:MAXID.

Proof. Consider any step (s; a; s0) such that s 2 C=. Since C= � F , by the de�nition of F ,

s:IDuv � s:MAXID for every u,v. Let u be the node executing action a. Then there exist two

possibilities:

Case 1 u 62 �(s).

Then u 62 �(s0) by Lemma 6.22, and since all other IDs are unchanged, (1) s0 2 C=, (2)

�(s0) = �(s), and (3) s0:MAXID = s:MAXID.

Case 2 u 2 �(s).

Then umust be in �(s0), since otherwise umust have executed statement [G] in MAXIMIZE-

PRIORITYu, which would imply that there exists a node l such that s:IDul � s:IDu,

which is impossible since s 2 F and s:IDu = s:MAXID. Thus by Lemma 6.20, s:IDu

w

� s0:IDu.

If s:IDu = s0:IDu, (1) s
0 2 C=, (2) �(s0) = �(s), and (3) s0:MAXID = s:MAXID. If

s:IDu

w
� s0:IDu, then since the IDs of all other roots in � are unchanged, s0 2 C1.

By induction on the steps in �, the Lemma follows.

The following de�nition makes it convenient to describe progress properties of executions

starting from a state in C=. By Lemma 7.1, such an execution must either reach a state in C1

or remain in C=. Thus, progress towards a subset U 0 of C= can be described in terms of the

following notation:

De�nition 7.2 If U and U 0 are state sets, then

U
t

=) U 0 4

= U
t
�! U 0 [ C1
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Recall from Section 2 that set U is closed, written U �! U�, if for any s 2 U and any

step (s; a; (
;�; P )), 
 � U . We now give an analogous de�nition for analyzing the coloring

algorithm:

De�nition 7.3 U =) U�, if for any s 2 U and any step (s; a; (
;�; P )), 
 � U [ C1.

Thus if U =) U�, any execution fragment beginning with a state in U remains in U until

a state in C1 is reached.

7.1 Forest Stability

We now de�ne a very important notion, that of a \stable forest." In order for the recoloring

algorithm (used to detect other trees) to succeed in O(�) expected time, the forest structure

must be \stable" while the algorithm is operating, i.e., the parent pointers remain �xed. We

now precisely de�ne the set C=SF of states de�ning a stable forest. We then show that starting

from a state in C=, within time 2�+1, unless a state of C1 is reached, a state de�ning a stable

forest is reached.

De�nition 7.4 (C=SF ) The set C=SF (\SF" for \Stable Forest") is the set of all states s 2 C=

for which the following conditions hold for all nodes u:

1. s:IDu = s:MAXID,

2. u 2 �(s) =) distanceu = 0, and

3. (parentu = v) =)

� distanceuv = distancev,

� distanceu = distancev + 1, and

� v = maxx2Nbrs(u)fx j (IDx; distancex) = maxw2Nbrs(u) (IDw; distancew)g

Lemma 7.5 For any step (s; a; (
;�; P )) such that s 2 C=SF and for any s0 2 
, for all u and

v, s:(parentu = v) =) s0:(parentu = v).
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Proof. Let s0 2 
. The only action a that could change parentu is MAXIMIZE-PRIORITYu.

Since s 2 C=SF , for any w 2 Nbrs(u) such that w 6= s:parentu, s:(IDuw; distanceuw)�

s:(IDw; distancew) = (s:MAXID; s:distancew). Thus if v = s:parentu, (IDuv; distanceuv) =

maxx2Nbrs(u) (IDux; distanceux). Hence l is set to v in [E], [F] does not change IDu, and [G]

ensures that s0:parentu = v.

Lemma 7.6 C=SF =) C=SF�.

Proof. Let (s; a; (
;�; P )) be a step such that s 2 C=SF . Let s
0 2 
, and let a be performed

by u. Since membership in C=SF is determined by the variables ID, distance and parent, the

actions DETECT-TREES and NEXT-COLOR cannot change membership in C=SF . Consider

the following remaining possibilities for a:

Case 1 a =COPYuv.

The only statement of interest is [A]; by clause (3) of the de�nition of C=SF , distanceu�parentu

must remain unchanged, and s0 2 C=SF .

Case 2 a =MAXIMIZE-PRIORITYu .

If u 2 �(s), [H] is executed, and s0 2 C=SF . If u 62 �(s), let v = s:parentu. Then [E] sets l

to v, [F] has no e�ect, and [G] preserves the values of IDu, distanceu and parentu. Thus

s0 2 C=SF .

Case 3 a =EXTEND-IDu.

If IDu is extended, then s0 2 C1.

Lemma 7.7 C=
2�+1
=) C=SF .

Proof. Let s0 2 C
=, and consider any execution fragment � = s0a1s1a2 : : : aksk in C= of

duration � 2� + 1. Let the minimal distance of node u be de�ned as

D(u)
4

= min
v2�(s0)

Dist(u; v)
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We show by induction that for any i � �, there must exist a state s0 in � such that s0:now �

s0:now +2i+1, and for each node u such that D(u) � i, u satis�es the conditions (1), (2) and

(3) in De�nition 7.4, for membership in C=SF . (Let such a node be called locally stable.) Since

D(u) < � for all nodes, there must then exist a state s in � such that s:now < s0:now + 2�+1

and all nodes are locally stable, which implies that s 2 C=SF .

First, let i = 0. The only nodes u for which D(u) = 0 are those in the set �(s0); within 1

time unit, each such node will have executed statement [H] of MAXIMIZE-PRIORITY and

will have set its distance to 0 and will have thus become locally stable.

For the inductive step, let there exist a state s0 in � such that s0:now < s0:now + 2i+ 1,

and each node u for which D(u) � i is locally stable. We show that there exists a state s00

following s0 such that s00 < s0 + 2(i+ 1) + 1 and each node u such that D(u) � i+ 1 is locally

stable.

The conditions for local stability imply that in state s0, IDu = s0:MAXID and distanceu =

D(u) for each node u such thatD(u) � i. Consider any node u for which D(u) = i+1. LetN (u)

be the set of neighbors w of u for which D(w) = i; s0:IDw = s:MAXID and s0:distancew = i for

all such w. There must then exist a state s000 following s0 in � such that s000:now < s0:now+1 and

(IDuw; distanceuw) = (s0:MAXID; i) for all w 2 N (u). Since there must exist a MAXIMIZE-

PRIORITYu step within time 1 after s
000, there exists a s00 following s000 in � such that s00:now �

s000:now + 1 and u is locally stable. Hence the inductive step follows.

7.2 Self-Stabilization of the Coloring Algorithm

As was stated in the previous section, the forest structure must be stable, i.e. the state must

be in C=SF , while the algorithm is operating. Lemma 7.7 guarantees that starting from any

state in C=, a state in C=SF is reached within 2� + 1 time. However, when a state in C=SF is

reached, the coloring variables may not be in a consistent state|they may be arbitrarily set,

so the broadcast-echo mechanism may not commence immediately. In this section we show
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that within time 17� + 7, these variables become consistent, and the coloring algorithm can

proceed correctly.

In De�nition 7.9, we de�ne a \coloring predicate" L(u) on individual nodes; if all nodes in

a tree Tr satisfy L(u) and if Tr satis�es another predicate L
0, the coloring variables in that tree

are consistent. Tr is then said to be \well-colored," and the state set GT r (\GT " for \Good

Tree") is de�ned as the set of states in C=SF in which Tr is well-colored. C
=
WC is de�ned as the

set of states in C=SF in which all trees are well-colored.

We show that starting from a state s in C=SF , unless a state in C
1 is reached, for any tree Tr

a state in GT r is reached within time 17� + 7 (Lemma 7.65). We do so using the intermediate

state set MT r|the set of states in which Tr is monocolored, i.e. all nodes in Tr possess the

same color. Section 7.2.1 shows that any tree must get monocolored within time 4�+1. Section

7.2.2 shows that once a tree is monocolored, it must get well-colored within 13�+ 6 additional

time.

We �rst de�ne what it means for coloring variables to be \consistent."

De�nition 7.8 (Tr, tree(v), leaf, root interval, branch, height, branches(Tr))

� Let r 2 �(s). A tree rooted at node r is the set

Tr
4

= fu j r is an ancestor of u.g

� tree(v), the tree containing node v, is de�ned as the unique tree containing v.

� A leaf is a node that is not an ancestor of any other node.

� A sequence of nodes R = u1u2 : : :uk is a root interval of Tr if u1 = r and parentui = ui�1

for every i > 1.

� A root interval B = u1u2 : : :uk is a branch if it terminates in a leaf (i.e., uk is a leaf).

� The height of a tree, written Height(Tr), is the maximal length of a branch in Tr.
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� branches(Tr) denotes the set of all branches in Tr.

De�nition 7.9 (Coloring predicates) Let v = parentu. Then the following coloring predi-

cates are de�ned for node u:

� L1(u): (coloru 6= colorv) =) (modeu = echo) and (modev = broadcast).

� L2(u): modeu = broadcast =)

{ modev = broadcast

{ coloru = colorv

{ If w 2 Childrenu,

(modeuw = echo and coloruw = coloru) =) modew = echo and colorw = coloru.

� L3(u): modeu = echo =) 8w 2 Childrenu;

{ coloru = coloruw = colorw, and

{ modeuw = modew = echo.

� L(u)
4

= L1(u)^ L2(u) ^ L3(u).

De�nition 7.10 (Well-coloredness) A tree Tr is well-colored in state s if it satis�es the

following conditions:

1. All nodes u 2 Tr satisfy L(u) in s.

2. (Predicate L0) At most two colors are contained in Tr, i.e.,

j
[
u2Tr

s:coloruj � 2

De�nition 7.11 (GT r)

GT r
4

= fs 2 C=SF j Tr is well-coloredg
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The following Lemma shows that once a tree is well-colored, it stays well-colored:

Lemma 7.12 GT r =) GT r�.

Proof. Let (s; a; s0) be a step such that s 2 GT r . Note that the only variables that are

referenced by the coloring predicates are coloru, modeu, and for all v 2 Childrenu, coloruv and

modeuv. We consider each a 2 acts(RSST), in turn:

Case 1 a = COPYuv.

Since u can only copy a color from v, L0 must be true in s0. If v 6= parentu and v 62

Childrenu, the coloring predicates remain unchanged. If v = parentu, then [D] may be

executed. If s:coloru 6= s:colorv, then s0:coloru = s0:colorv, and s0:modeu = s0:modev =

broadcast. Also, because L0 holds in s, for all w 2 Childrenu, s:colorw = s:coloru, which

implies s0:colorw 6= s0:coloru. Thus L1(u), L2(u), and L3(u) are true in s0. Further,

L2(v) holds in s0. Since s:modew = s0:modew = echo for any child w of u, w satis�es L1,

L2 and L3 in s0.

If v 2 Childrenu, L1(u), L2(u) and L3(u) continue to hold in s0.

Case 2 a =MAXIMIZE-PRIORITYu .

Since s 2 C=SF , all variables in s0 are identical to those in s.

Case 3 a =DETECT-TREESu.

If [K] is executed then s0:modeu = echo. L1 and L2 are trivially satis�ed, and L3 is

satis�ed in s0 because of the conditions in [J] and the fact that L2 was satis�ed in s.

Case 4 a =NEXT-COLORu.

If the test in NEXT-COLOR is true, u 2 �(s), and L3 implies that all nodes v 2 tree(u)

have the same color c in s. Hence L0 is satis�ed. The coloring predicates can be seen to

hold.
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Case 5 a =EXTEND-IDu.

If the test is satis�ed, then s0 2 C1.

De�nition 7.13 (C=WC)

C=WC

4

= fs 2 C=SF j s 2 GT r 8r 2 �(s)g

Corollary 7.14 C=WC =) C=WC�.

Proof. This is a direct consequence of Lemma 7.12 and De�nition 7.13.

Once a state is in C=WC , the coloring algorithm can proceed \normally" over all trees in the

forest. We show that starting from a state in C=SF , unless a state in C
1 is reached, within time

17�+7 each tree becomes well-colored, so within time 17�+7 a state in C=WC is reached. Thus

we show that C=SF
17�+7
=) GT r for all roots r, which implies that C=SF

17�+7
=) C=WC (this is shown in

Lemma 7.65).

De�nition 7.15 (Monocolored, bicolored intervals and trees;MT r) A tree Tr ismono-

colored in s 2 C=SF if it contains only one color, i.e. coloru = c for some color c and all u 2 Tr.

(We say that Tr is monocolored with color c.) The setMT r is de�ned as the set of states in

C=SF in which Tr is monocolored. Similarly, a root interval is monocolored if it contains only

one color. Tr is bicolored if it contains two colors (cf. De�nition 7.10).

The statement C=SF
17�+7
=) GT r is proved using two main results: C=SF

4�+1
=) MT r (the \Mono-

coloring" Result) andMT r
13�+6
=) GT r (the \Blocking" Result).

7.2.1 The \Monocoloring" Result

In this section we establish the �rst of the two self-stabilization results, C=SF
4�+1
=) MT r. Thus,

starting from a state in C=SF de�ning a stable forest, any execution � reaches a state in which

tree Tr is monocolored, within time 4� + 1.
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An overview of the proof follows. A coloring epoch of color c for Tr is de�ned as a maximal

execution fragment contained in � in which the root color colorr remains �xed at c; colorr

changes from one epoch to the next. As will be apparent from the code for COPY, if a node

notices that it has a color di�erent from that of its parent, it copies its parent's color. A root-

color interval for a branch in Tr is the maximal root interval in the branch that has the same

color as the root. Since children copy their parents' color, in any coloring epoch the root-color

interval for any branch can only increase. Thus, in the last state of a coloring epoch 
, the

root-color intervals in a tree are of maximal length; the scope of 
 is the depth upto which the

root color has propagated in epoch 
. Thus in the last state of an epoch 
, all root intervals

of length � Scope(
) are colored with the root color.

Consider any branch B in Tr of scope m in some coloring epoch 
 of color c. When the

root chooses a new color c0 and sets its mode to broadcast, thus initiating the next coloring

epoch 
0, all its descendants of depth � m are colored c. Because a root must echo before it

can choose the next color, all descendants of depth � m+1 must be colored with c0 in coloring

epoch 
0. Thus each coloring epoch has a higher scope than its predecessor (provided that this

is feasible, i.e., the scope of its predecessor was not Height(Tr)). If a coloring epoch of scope

Height(Tr) is reached, there must exist some state in that epoch in which Tr is monocolored.

A �ner analysis, in Lemmas 7.37 { 7.39, shows that if a coloring epoch 
0 is of duration

�, its scope is at least b�c higher than that of its predecessor 
 (if feasible). Based on this

progress property, Lemma 7.40 shows that the scope of a coloring epoch beginning after time

t in � must be at least t=2. Thus we conclude, in Lemma 7.41, that within time 3� an epoch

of scope � Height(Tr) is reached, and therefore, in Lemma 7.42, that a monocolored state is

reached in time � 4� + 1.

De�nition 7.16 (Root-color interval) Let s 2 C=SF ; let Tr be a tree, and let B 2 branch-

es(Tr). The root-color interval of B, denoted RC(B), is the maximal pre�x u0 : : :ui of B having

the same color as the root u0, i.e., for which color(u) = color(u0) for every u 2 RC(B).
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De�nition 7.17 (Root-color extent) Let B 2 branches(Tr). The root-color extent of B,

written Extent(B), is de�ned as:

Extent(B)
4

=

8><
>:

1. jRC(B)j , if RC(B) 6= B (i.e., RC(B) is a proper pre�x of B).

2. Height(Tr), if RC(B)= B.

Thus the root-color extent of a branch is the length of the maximal pre�x that has the

same color as the root, unless the whole branch has the same color, in which case it is the

height of the tree.

De�nition 7.18 (Root-color domain) The root-color domain of tree Tr, written Dom-

ain(Tr),

Domain(Tr)
4

= min
B2branches(Tr)

Extent(B):

Claim 7.19 Let (s; a; s0) be a step in C=SF . For any root r 2 �(s)\�(s
0), if s:colorr 6= s0:color r,

then a = NEXT-COLORr .

Proof. From the code, the only statements that can change the color of r are [D] of COPY

and the actions NEXT-COLORr and EXTEND-IDr . Since parentr = nil, [D] of COPY is not

executed. If a =EXTEND-IDr and s:color r 6= s0:colorr, then s:IDr � s0:IDr, and so s0 62 C=SF .

Hence the only possibility for a is NEXT-COLORr .

De�nition 7.20 (Coloring epochs) Let � be an execution fragment in C=SF . A coloring

epoch for tree Tr is a maximal execution fragment 
 contained in � such that color r remains

constant in 
. Let Color(
) denote the color of epoch 
, i.e. s:color r for any s 2 
.

Observation 7.21 From Claim 7.19, for any tree Tr, any execution � in C=SF contains coloring

epochs 
1, 
2, 
3,: : : for Tr, such that � = 
1a
2a
3a : : :, where a = NEXT-COLORr .
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Claim 7.22 If 
i and 
i+1 are successive coloring epochs in some execution � then

� Color(
i) = 0 =) Color(
i+1) 6= 0

� Color(
i) 6= 0 =) Color(
i+1) = 0

Proof. Follows from the code for NEXT-COLOR, New-Color() and Reset-Color().

De�nition 7.23 (Scope) Let 
 be a coloring epoch for Tr. The scope of a coloring epoch 


for Tr is

Scope(
)
4

= max
s2


s:Domain(Tr)

The scope of 
 for a branch B in Tr is de�ned similarly:

ScopeB(
)
4

= max
s2


s:Extent(B)

Lemma 7.24 Let u 62 �(s) and let � be an execution fragment in C=SF starting with s. In

any step (s0; a; s00) in � such that s00:coloru 6= s0:coloru, s
00:coloru = s0:colorparent

u
, s00:modeu =

broadcast, and for all v 2 Childrenu, s
00:coloruv = unde�ned.

Proof. From the code, a must be COPYu, and [D] must be executed.

Lemma 7.25 In any step (s; a; s0) in some coloring epoch 
 for Tr, s:coloru = s0:coloru for

any u 2 s:RC(B), where B 2 branches(Tr).

Proof. By induction on the depth of u in Tr. Let s:RC(B) = u1 : : :ui. Since s; s0 2 
,

s:coloru1 = s0:coloru1 . Suppose s:coloruk = s0:coloruk for some uk 2 u1 : : :ui�1. Since uk+1 2

RC(B), s:coloruk+1 = s:coloruk . If s
0:coloruk+1 6= s:coloruk+1 , then by Lemma 7.24 s

0:coloruk+1 =

s:coloruk , which is a contradiction since s:coloruk+1 = s:coloruk .
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Corollary 7.26 Let 
 be a coloring epoch. If (s; a; s0) is a step in 
, for any branch B 2

branches(Tr), s:RC(B) is a pre�x of s0:RC(B).

Proof. Let B 2 branches(Tr). From Lemma 7.25, for every u 2 RC(B), s0:coloru =

s:coloru = s:color r . Hence the Corollary follows.

Corollary 7.27 In any coloring epoch 
, Domain(Tr) cannot decrease.

Proof. Immediate from De�nition 7.17 (Extent), De�nition 7.18 (Domain), and Corollary

7.26.

Lemma 7.28 Let � be an execution fragment contained in some coloring epoch for Tr. Let t =

(lstate(�):now� fstate(�):now). Then lstate(�):Domain(Tr) � min((fstate(�):Domain(Tr)+

btc);Height(Tr)).

Proof. We show that for anyB 2 branches(Tr), lstate(�):Extent(B) �min(fstate(�):Extent(B)

+btc, Height(Tr)). The Lemma then follows from the de�nition of Domain(Tr) (De�nition

7.18).

Consider any branch B = u1 : : : ul in Tr, and an execution fragment � = s0a1s1a2 : : : aksk

contained in some coloring epoch 
 of color c for Tr. Let t = sk:now � s0:now , and let t0 = btc.

Let R = s0:RC(B) = u1 : : : ui.

We show that if l � i+ t0, i.e., the length of branch B is at least i+ t0, then u1 : : : ui+t0 is

a pre�x of sk:RC(B). Otherwise, sk:RC(B)= B.

If t0 = 0, then Corollary 7.26 implies that u1 : : :ui is a pre�x of sk:RC(B).

If t0 � 1, and if l � i + 1, then there must exist a step (s;COPYui+1ui ; s
0) in � such that

s0:now � s0:now + 1. Corollary 7.26 implies that s:colorui = c; hence s0:colorui+1 = c, and

u1 : : : ui+1 is a pre�x of s0:RC(B) and sk:RC(B).
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If t00 � 2 and l � i+ 2, then there must exist a step (s00;COPYui+2ui+1 ; s
000) in � such that

s000:now � s0:now+2 and s
00 follows s0 in �. Again, Corollary 7.26 implies that s00:colorui+1 = c;

therefore u1 : : : ui+2 is a pre�x of s00:RC(B).

The Lemma follows by proceeding inductively as above.

Lemma 7.29 Let u; v 2 Tr, and let parentu = v. Let (s0;COPYuv,s1) be a step in which

s0:coloru 6= s1:coloru, and let � = s0a1s1a2 : : : be an execution fragment starting with this step,

contained in some coloring epoch for Tr. Let w be a child of u. If there exists si 2 � (i 6= 0)

such that si:modeu = echo, then there exists s0 between s0 and si such that s
0:coloru = s0:colorw.

Proof. From the code, statement [D] in COPYuv must have been executed in the �rst step,

so from the code for Reset-Color(), s1:modeu = broadcast, and s1:coloruw = unde�ned.

Since si:modeu = echo, there must exist a step (s0; a; s00) between s1 and si such that

s0:modeu = broadcast and s00:modeu = echo. From the code, the only possibility for a is

DETECT-TREESu. From statement [J], it follows that s0:modeuw = echo and s0:coloruw =

s0:coloru. Since s
0:colorw = s0:coloruw, s

0:coloru = s0:colorw.

Let var be one of the state components for a node (e.g. mode, color), and let value be one

of the corresponding values that can be assumed by the state components (e.g. \broadcast,"

for the mode component). Henceforth, to ease the notation, the expression var(u1u2 : : : uk) =

value will be used to denote the relation varu1 = varu2 = : : := varuk = value.

De�nition 7.30 (Broadcast and echo intervals) Let R = u1u2 : : : uk be a root interval.

Then,

� R is a broadcast interval if mode(u1u2 : : :uk) = broadcast, and L(u) is true for all u in

R. (Note that the conditions of L imply that for such an interval, color(u1u2 : : :uk) =

some color c, and for each uj in u1u2 : : : uk�1, :(modeujuj+1 = echo and colorujuj+1 = c).)

A broadcast interval of color c is a broadcast interval in which every node has color c

(coloru = c).
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� R is an echo interval if mode(u1u2 : : :uk) = echo, and L(u) is true for all u in R. (Note

that the conditions of L imply that for such an interval, color(u1u2 : : :uk) = some color

c, and for each uj in u1u2 : : : uk, (modeujuj+1 = echo and colorujuj+1 = c).) An echo

interval of color c is an echo interval in which every node has color c.

Lemma 7.31 Let R = u1u2 : : :uk be a a broadcast interval of color c in s, and let � be an

execution fragment in C=SF starting with s. If there exists s0 in � such that s0:coloru 6= s:coloru

for some u 2 R, then there exists s00 before s0 in � such that R is an echo interval of color c

in �.

Proof. The coloring epoch containing s0 must be di�erent from that containing s. A new col-

oring epoch for R can only begin after a state s1 in which s1:modeu1 = echo. From the code for

DETECT-TREES, s1 must follow a state s2 such that s2:modeu1u2 = echo and s2:coloru1u2 = c.

Also, s2:modeu2 = echo and s2:coloru2 = c. Thus u1 satis�es L(u). Proceeding inductively, s2

must follow some state sk in which sk:modeuk�1uk = sk:modeuk = echo, and sk:coloruk�1uk =

sk:coloruk = c. Hence R is an echo interval of color c in s1.

Lemma 7.32 Let 
 be a coloring epoch for Tr, and let s be a state in 
 such that in a branch

B = u1u2 : : : uk of Tr, there exist i; j such that u1 : : : ui is a broadcast interval of color c, and

color(ui+1 : : :uj) = c0 6= c. (Such an interval u1 : : :uj is called properly bicolored.) Then,

� There exists s0 following s in 
 such that u1 : : :uj is a broadcast interval of color c, and

(therefore)

� ScopeB(
) � j.

Proof. u1 : : :ui is a broadcast interval of color c in state s. In any execution fragment �

beginning with s, a new coloring epoch 
0 can only begin after a state s1 such that s1:modeu1 =

echo (from the code for NEXT-COLOR). But since s:modeu1 = broadcast and L2(u1) holds

in s, s1 must follow some state s2 in which coloru2 = c and modeu2 = echo. Continuing
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inductively, s1 must follow some state si+1 in which colorui+1 = c and modeui+1 = echo. But

si+1 must follow some step (s0i+1;COPYui+1ui ; s
00
i+1) in which ui+1 \copies" color c from ui;

u1 : : : ui+1 is a broadcast interval of color c in s00i+1. Proceeding inductively, there must exist s
0

in which u1 : : : uj is a broadcast interval of color c.

Claim 7.33 Any pre�x of a monocolored root interval is monocolored, and a pre�x of a properly

bicolored interval is monocolored or properly bicolored.

Proof. Follows from the de�nitions.

Claim 7.34 Let R = u1u2 : : : uk be a root interval in Tr. Let 
 be a coloring epoch for Tr, and

let s 2 
. Then,

1. If R is monocolored in s, it is monocolored for all s0 following s in 
.

2. If R is properly bicolored (cf. Lemma 7.32) in s, it is monocolored or properly bicolored

for all s0 following s in 
.

Proof. Follows from Lemma 7.24 and Corollary 7.26.

Corollary 7.35 Let 
1a
2 be an execution fragment in C=SF such that 
1 and 
2 are coloring

epochs for Tr of colors c1 and c2 respectively. Let Scope(
1) = m. Then for any root interval

R = u1 : : : um in Tr of length m, there exists s 2 
2 such that u1 : : : um is a broadcast interval

of color c2.

Proof. Note that in fstate(
2), u1 : : :um is properly bicolored. The Corollary then follows

from Lemma 7.32.

Lemma 7.36 Let 
1a
2a
3 be an execution fragment in C=SF such that 
1, 
2 and 
3 are

coloring epochs for Tr. Then Scope(
2) � min( Scope(
1) + 1; Height(Tr)).
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Proof. Let 
1 and 
2 be of colors c1 and c2 respectively. Let Scope(
1) = m; note that

Height(Tr) � m. Let B = u1 : : : uk be a branch in Tr of height � m, and let R = u1 : : :um

be a pre�x of B.

From Corollary 7.35, there exists a s 2 
2 such that R is a broadcast interval of color

c2. If k = m, then ScopeB(
2) = Height(Tr). If k > m, then s:colorum+1
= c1 or

c2. If s:colorum+1
= c1, then u1 : : :um+1 is a properly bicolored interval, so by Lemma 7.32

ScopeB(
2) � m+ 1. If s:colorum+1
= c2, then ScopeB(
2) � m+ 1 by de�nition.

Lemma 7.37 Let 
1a
2 be an execution fragment in C=SF such that 
1 and 
2 are coloring

epochs for Tr, and let Scope(
1) = m.

For any integer i, if (lstate(
2):now � fstate(
2):now) � i, then for any root interval R =

u1 : : : uk of length � (m+ i), there exists a state s 2 
2 such that s:now � fstate(
2):now + i,

and R is either monocolored or properly bicolored in s.

Proof. By induction on i.

Base (i = 0): Clearly, in fstate(
2), any interval u1 : : : uk of length � m is monocolored if

k = 1, and is properly bicolored if k > 1.

Now suppose the Lemma holds for i. We need to show that it must hold for i+ 1.

Consider any root interval R = u1 : : : u(m+i+1). Since the Lemma holds for i, there exists

a state s 2 
2 such that s:now � fstate(
2):now + i, and u1 : : : um+i is either monocolored or

properly bicolored in s. There must exist a step (s1;COPYu(m+i+1)u(m+i)
; s2) in 
2, such that s1

follows s, and (s1:now � s:now + 1). Thus s2:now � (fstate(
2):now + i + 1). Consider the

two cases:

Case 1 u1 : : : um+i is monocolored in s.

Then, by Claim 7.34, u1 : : : um+i must be monocolored in s1, and therefore it must be

monocolored in s2. Hence the Lemma follows.
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Case 2 u1 : : : um+i is properly bicolored in s.

Then by Claim 7.34, u1 : : :um+i is either monocolored or properly bicolored in s1. If

u1 : : :um+i is monocolored in s1, u1 : : : u(m+i+1) must be monocolored in s2. If u1 : : :um+i

is properly bicolored in s1, u1 : : :u(m+i+1) must be properly bicolored in s2. Hence the

Lemma follows.

Corollary 7.38 Let 
1a
2 be an execution fragment in C=SF such that 
1 and 
2 are coloring

epochs for Tr, and let Scope(
1) = m.

For any integer i, if (lstate(
2):now � fstate(
2):now) � i, there exists a state s 2 
2 such

that s:now � fstate(
2):now + i, such that every root interval of length � (m + i) is either

monocolored or properly bicolored in s.

Proof. Follows from Lemma 7.37 and Claim 7.34.

Lemma 7.39 Let 
1a
2 be an execution fragment in C=SF such that 
1 and 
2 are coloring

epochs for Tr, and let Scope(
1) = m. Let � = (lstate(
2):now � fstate(
2):now). Then

Scope(
2) � min( (Scope(
1) + b�c) ; Height(Tr) ):

Proof. Let �0 = b�c. From Lemma 7.38, there exists a state s in 
2 such that (s:now �

fstate(
2):now) � �0, and every root interval of length � m + �0 is either monocolored or

properly bicolored in s. Hence by Lemma 7.32, ScopeB(
2) � min(m + �0;Height(Tr)) for

every branch B. Hence Scope(
2) � min(m+�0;Height(Tr)).

Lemma 7.40 Let � = 
1a
2a
3 : : :be an execution in C=SF , where 
1, 
2, 
3,: : :are coloring

epochs for tree Tr. Then for any coloring epoch 
,

Scope(
) � min( fstate(
):now=2 ; Height(Tr) )
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Proof. By induction on 
.

Clearly, Scope(
1) � 0.

Now suppose the Lemma holds for 
i, i.e. Scope(
i)�min( fstate(
i):now=2 ; Height(Tr) ).

If Scope(
i) = Height(Tr), then Lemma 7.36 implies Scope(
i+1) = Height(Tr), which sat-

is�es the Lemma. If Scope(
i) < Height(Tr), then by the inductive hypothesis, Scope(
i) �

fstate(
i):now=2. We show that Scope(
i+1) > fstate(
i+1):now=2, which would satisfy the

Lemma. Consider the two cases:

Case 1 (fstate(
i+1):now � fstate(
i):now) < 1.

Then Lemma 7.36 yields

Scope(
i+1) � Scope(
i) + 1

� fstate(
i):now=2 + 1 (by the inductive hyp.)

= (fstate(
i):now + 2)=2

� fstate(
i+1):now=2

Case 2 (fstate(
i+1):now � fstate(
i):now) � 1.

Then by Lemma 7.39,

Scope(
i+1) � Scope(
i) + bfstate(
i+1):now � fstate(
i):nowc

� fstate(
i):now=2 + bfstate(
i+1):now � fstate(
i):nowc

(by the inductive hypothesis)

> fstate(
i):now=2 + (fstate(
i+1):now � fstate(
i):now)=2

(since x � 1 implies bxc > x=2)

= fstate(
i+1):now=2

Lemma 7.41 Let � = 
1a
2a
3 : : : be an execution fragment in C=SF , where 
1, 
2, 
3,: : : are

coloring epochs for Tr. There exists an epoch 
i in � such that fstate(
i):now � 3Height(Tr),

and Scope(
i) = Height(Tr).
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Proof. If there exists an epoch 
i in � such that 3Height(Tr) � fstate(
i):now � 2Height(Tr),

then by Lemma 7.40 Scope(
i) = Height(Tr). If there is no such epoch 
i, then there must

exist an epoch 
i such that fstate(
i):now < 2Height(Tr) and lstate(
i):now > 3Height(Tr).

Since blstate(
i):now � fstate(
i):nowc � Height(Tr), Lemma 7.39 implies that Scope(
i) =

Height(Tr).

Lemma 7.42 C=SF
4�+1
=) MT r 8r 2 �.

Proof. Let s 2 C=SF . Let � be any execution fragment in C=SF beginning with s, for which

(lstate(�):now � fstate(�):now) � 4�+ 1. Let � = 
1a
2a
3 : : :, where 
1, 
2, 
3,: : : are color-

ing epochs. By Lemma 7.41, there exists an epoch 
i such that fstate(
i):now � 3Height(Tr)

and Scope(
i) = Height(Tr).

If lstate(
i):now � 4Height(Tr), then since Scope(
i) = Height(Tr), there exists a state

s0 = lstate(
i) such that s0:now � 4Height(Tr) + 1 and s0 2 MT r .

If lstate(
i):now > 4Height(Tr), then since fstate(
i):now � 3Height(Tr), Lemma 7.28

implies that for any state s0 in 
i such that 4Height(Tr) < s0:now � (4Height(Tr) + 1),

s0:Domain(Tr) = Height(Tr), which implies that s0 2 MT r.

Since Height(Tr) � �, the Lemma follows.

7.2.2 The \Blocking" Result

In this section we establish the second of the two self-stabilization results, MT r
13�+6
=) GT r.

Thus, starting from a state in C=SF in which Tr is monocolored, any execution reaches a state

in which tree Tr is well-colored, within time 13� + 6.

If a tree Tr is monocolored with some color c in some state s, it stays monocolored until the

root chooses a new color c0. When the new color c0 is propagated to all nodes in the tree (as it

must be, from Lemma 7.36), the tree becomes well-colored, since in the process of copying a

new color from its parent a node resets its own coloring variables (through Reset-Coloru). We

show, in Lemma 7.62, that within 12� + 6 time the root must choose a new color.
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In order to choose a new color, the root must �rst set its mode to echo (from the code),

which requires that all its children echo. A node u could be prevented from echoing because it

may be blocked by its neighbors|if its color is non-zero, it needs to notice a non-zero color at

each of its neighbors (i.e., nbr-coloruv 6= unde�ned), and it needs to notice that all neighbors

have observed its color (self-coloruv = coloru). Theorem 7.60 shows that a node can be blocked

for at most 10�+ 5 time, which implies that an \echo wave" must reach the root and cause it

to choose a new color within 12� + 6 time.

De�nition 7.43 (Waiting) A node u waits in state s 2 C=SF if it is in a broadcast interval

(cf. De�nition 7.30). It waits with color c if it is waiting in s and s:coloru = c.

De�nition 7.44 (Waiting epoch) Let � be an execution fragment in C=SF . A waiting epoch

! for u is a maximal fragment contained in � such that u waits in each state of ! and coloru

remains constant in !. A waiting epoch of color c is a waiting epoch in which u waits with

color c.

De�nition 7.45 (Blocking, enabling) Let u be waiting in s with color c 6= 0, and let

v 2 Nbrs(u). Then,

� u is blocked by v on self-color in s if s:self-coloruv 6= coloru. Otherwise, u is enabled by v

on self-color.

� u is blocked by v on nbr-color in s if s:nbr-coloruv = unde�ned. Otherwise, u is enabled

by v on nbr-color.

� u is blocked by v in s if it is blocked by v on self-color or nbr-color.

� u is enabled by v in s if it is enabled by v on both self-color and nbr-color.

De�nition 7.46 (Recoloring) A node u is recolored in a step (s; a; s0) if s:coloru 6= s0:coloru.
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Lemma 7.47 Let r 2 �(s), and let � be an execution fragment in C=SF starting with s. If

s:moder = broadcast, and if there exists s0 2 � such that s0color r 6= s:color r, then there exists

a state s00 preceding s0 in � such that s00:colorr = s:color r and s00:moder = echo.

Proof. Let (s1; a; s2) be the �rst step in � such that s1:colorr 6= s2:colorr ; there must exist

such a step between s and s0 in �. From the code, a can only be NEXT-COLORr . Since

s1:colorr = s:color r, and since s1:moder = echo from the condition in NEXT-COLORr , the

Lemma follows.

Claim 7.48 In any step (s; a; s0) in C=SF such that s:modeu = broadcast and s0:modeu = echo,

u is enabled by all v 2 Nbrs(u) in s.

Proof. Follows since a can only be DETECT-TREESu and the conditions in [J] must be

satis�ed.

Lemma 7.49 Let u be waiting in s, and let � be any execution fragment in C=SF starting with

s. If there exists a step (s0; a; s00) in � in which u is recolored, then there must exist a state s1

between s and s00 in � such that u is enabled by all v 2 Nbrs(u) in s1.

Proof. Since u is waiting in s, there exists a broadcast interval R = u1u2 : : :u in s. From

Lemma 7.31, there exists s2 between s and s00 such that R is an echo interval in s2. Since

s2:modeu = echo, the Lemma follows from Claim 7.48.

Lemma 7.50 Let ! be a waiting epoch for u of color c. In any state s 2 ! such that (s:now >

fstate(!):now + 2), u is enabled by all v 2 Nbrs(u) on self-color.

Proof. Let ! be a waiting epoch of color c. For any v 2 Nbrs(u), there must exist a step

(s1;COPYvu; s2) in ! such that s1:now = s2:now � fstate(!):now + 1. Since s1:coloru = c,

s2:colorvu = c. There must exist another step (s3;COPYuv; s4) following s2 in ! such that

s3:now = s4:now � s2:now + 1. Since s3:colorvu = c, s4:self-coloruv = c. Hence u is enabled

by v on self-color in s4. Further, for all states s following s4 in ! u must remain enabled by v

on self-color. Hence the Lemma follows.
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Lemma 7.51 Let � be an execution fragment of duration > 1 contained in a waiting epoch

for u. If u is blocked by v on nbr-color in lstate(�), then lstate(�):coloruv = 0.

Proof. Consider the last step (s; a; s0) in � such that a = COPYuv. Since lstate(�):nbr-

coloruv = unde�ned, and COPYuv is the only action that can change nbr-coloruv between s0

and lstate(�), it follows that s0:nbr-coloruv = unde�ned. Since statement [C] must have been

executed in the COPYuv step, s
0:colorv = 0, and therefore s0:coloruv = 0 = lstate(�):coloruv.

Lemma 7.52 Let ! be a waiting epoch for u. If u is enabled by v on nbr-color in some s 2 !,

u is enabled by v on nbr-color for all s0 following s in !.

Proof. From the code, if s:nbr-coloruv 6= unde�ned, the only code that can change s:nbr-

coloruv to unde�ned is the call to Reset-Color(), which can be made either through [D] of

COPYuv or through NEXT-COLORu or EXTEND-IDu. Since ! is a waiting epoch for u, none

of these possibilities is feasible.

Lemma 7.53 Let s be a state in C=SF in which u is blocked by v on nbr-color, s:coloruv = 0

or unde�ned, and v is blocked by u on self-color. Let � be any execution fragment in C=SF

beginning with s. Then if there exists s0 2 � such that v is enabled by u on self-color, there

exists s00 before s0 in � such that u is enabled by v on nbr-color.

Proof. s:coloruv = 0 or unde�ned, s:self-colorvu 6= s:colorv, and s0:self-colorvu = s0:colorv.

From Lemma 7.49, it is possible to choose an s0 in � satisfying the given conditions such that

s0:colorv = s:colorv. Since s:self-colorvu 6= s:colorv and s0:self-colorvu = s:colorv, there must

exist a step (s1;COPYvu; s2) between s and s0 in � such that s1:self-colorvu 6= s:colorv and

s2:self-colorvu = s:colorv. Hence s1:coloruv = s:colorv 6= 0. Since s:coloruv = 0 or unde�ned,

and s1:coloruv > 0, there must exist a step (s3;COPYuv; s4) between s and s1 such that

s3:coloruv = 0 or unde�ned and s4:coloruv > 0. Since s3:colorv 6= 0, statement [C] in COPYuv

sets s4:nbr-coloruv = s3:colorv 6= unde�ned. Thus u is enabled by v on nbr-color in s4.
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Lemma 7.54 Let s be a state in C=SF in which u is blocked by v on nbr-color, s:coloruv = 0

or unde�ned, and v is blocked by u on self-color. Then in any execution fragment � in C=SF

beginning with s, there exists s0 following s in � such that s0:now � s:now +1 and u is enabled

by v on nbr-color.

Proof. There exist two exhaustive possibilities:

Case 1 There exists s0 following s in � such that s0:now � s:now + 1 and v is enabled by u

on self-color.

Then from Lemma 7.53, there exists s00 before s0 in � such that u is enabled by v on

nbr-color, and the Lemma follows.

Case 2 There exists no s0 following s in � such that s0:now � s:now + 1 and v is enabled by

u on self-color.

There must exist a step (s1;COPYuv; s2) in � such that s1:now � s:now + 1. Since v

is not enabled by u between s and s1, s1:colorv = s:colorv > 0. From statement [C] in

COPYuv, s2:nbr-coloruv = s1:colorv > 0; hence the Lemma follows.

Lemma 7.55 Let (s; a; s0) be a step in C=SF in which s0:coloru 6= s:coloru. Then u is blocked

by all v 2 Nbrs(u) in s0.

Proof. Follows since a must have called Reset-Color.

Lemma 7.56 Let Tr be monocolored with color 0 in s. In any execution fragment in C=SF of

duration > 2� beginning with s, there exists a state s1 in which moder = echo.

Proof. From the code in statement [J] in DETECT-TREES, nodes with color 0 do not \wait"

for neighbors to enable them before echoing; a node u with color 0 echoes as soon as it notices

that all its children are echoing. Thus the root must echo within time 2�.
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Lemma 7.57 Let tree(u) be monocolored with color 0 in s 2 C=SF . For any execution frag-

ment � in C=SF beginning with s, there exists s0 following s in � such that s0:now � s:now +4�,

u waits in s0, and u is blocked by all neighbors v 2 Nbrs(u) in s0.

Proof. By Lemma 7.56, within time 2� in � a state is reached in which moder = echo. Thus

within time 2�+1, r must choose a new color (through NEXT-COLORu). Within � additional

time, u must be recolored with this new color. The Lemma follows from Lemma 7.55.

Lemma 7.58 Let tree(u) be monocolored with a color 6= 0 in s, and let � be an execution

fragment in C=SF beginning with s. If there exists a state s0 following s in � such that s0:now �

s:now+1 and s0:coloru = 0, then there exists a state s00 following s in � such that s00 � s+1+2�

and tree(u) is monocolored with color 0 in s00.

Proof. Let Tr = tree(u). Since non-root nodes can only copy new colors from their parents,

the coloring epoch 
0 containing s0 is di�erent from the epoch 
 containing s. Since Tr is mono-

colored in s, Scope(
) = Height(Tr). Hence from Lemma 7.36, Scope(
0) = Height(Tr).

Since 
0 is of color 0, there exists a state s00 in 
0 such that Tr is monocolored with color 0.

Since s0:coloru = 0, and each child copies its parent's color within time 2, such a state s00 exists

for which s00:now < s0:now + 2�.

Lemma 7.59 Let u be blocked by v on nbr-color in s, and let � be a fragment starting with s

that is contained in some waiting epoch for u. If there exists an execution fragment �1 in �

such that (lstate(�):now � fstate(�):now > 1) and s0:colorv 6= 0 for every s0 2 �1, then u is

enabled by v on nbr-color in lstate(�1).

Proof. There must exist a step (s1;COPYuv; s2) in �1. Since s1:colorv > 0, [C] in the code

for COPYuv sets s2:nbr-coloruv = s1:colorv > 0, and so u is enabled by v on nbr-color in s2.

The Lemma then follows from Lemma 7.52.
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Theorem 7.60 Let � be an execution fragment in C=SF , and let ! be a waiting epoch of duration

> (10� + 5) contained in �. In any s0 2 ! such that s0:now > fstate(!):now + (10� + 5), u is

enabled by all v 2 Nbrs(u) on nbr-color.

Proof. Let s = fstate(!), and let u be blocked by some neighbor v on nbr-color in s. Let s1

be a state in ! such that (s:now + 1 < s1:now � s:now + 2). If u is blocked by v on nbr-color

in s1, then by Lemma 7.51 s1:coloruv = 0. By Lemma 7.42, there exists s2 following s1 in �

such that s2:now � (s1:now + 4� + 1) and tree(v) is monocolored in s2. If u is blocked by

v on nbr-color in s2, by Lemma 7.51 s2:coloruv = 0. Note that s2:now � s:now + (4� + 3).

Consider the two cases:

Case 1 tree(v) is monocolored with color 0 in s2.

By Lemma 7.57, there exists s3 following s2 in � such that s3:now � s2:now + 4� and v

is blocked by u in s3. If u is blocked by v on nbr-color in s3, Lemma 7.51 implies that

s3:coloruv = 0. Then by Lemma 7.54, there exists s4 following s3 in � such that s4:now �

s3:now + 1 and u is enabled by v on nbr-color. Note that (s4:now � s:now + (4� + 3)

+4� + 1) = (s:now+ 8� + 4).

Case 2 tree(v) is monocolored with some color 6= 0 in s2.

Then there must exist a step (s3; COPYuv; s4) such that s3 follows s2 in � and s3:now �

s2:now + 1. If s3:colorv 6= 0, u is enabled by v in s4 on nbr-color. (Note that s4:now �

s:now+(4�+3)+1 = s:now+4�+4.) If s3:colorv = 0, by Lemma 7.58 there exists a state

s4 following s2 in � such that (s4:now � s2:now +1 + 2�) and tree(v) is monocolored

with color 0 in s4. We now proceed as in Case 1 and conclude that there exists s5 following

s4 in � such that (s5:now � s4:now + (4�+ 1)) and u is enabled by v on nbr-color in s5.

Note that s5:now � (s2:now + 6� + 2) � (s:now + 10� + 5).

By Lemma 7.52, u is enabled by v on nbr-color for all s0 following s in ! such that s0:now >

(fstate(!):now + 10� + 5).

99



Lemma 7.61 Let � be an execution fragment in C=SF , and let ! be a waiting epoch of duration

> (10� + 5) contained in �. In any s0 2 ! such that s0:now > fstate(!):now + (10� + 5),

(s0:self-coloruv = coloru) and (s0:nbr-coloruv 6= unde�ned).

Proof. Follows from De�nition 7.45, Lemma 7.50, and Theorem 7.60.

Lemma 7.62 Let s 2 MT r. In any execution fragment � in C=SF of duration � 12� + 6

beginning with s, there exists a step (s0;NEXT-COLORr ; s
00) in � such that (s0:now � s:now +

12� + 6), s0:color r 6= s00:colorr, and s0 2 MT r.

Proof. This is a consequence of Lemma 7.61 and the fact that a node enabled by all its

neighbors echoes at most 2 time units after all its children have echoed.

Lemma 7.63 Let (s; a; s0) be a step in C=SF such that s 2 MT r and s
0:color r 6= s:colorr. Then

in any execution fragment � in C=SF of duration > � beginning with (s; a; s0), there exists s00 in

� such that s00:now � s:now + � and s00 2 GT r.

Proof. Let c0 = s0:colorr . Each branch B 2 branches(Tr) is properly bicolored in s0, and

thus by Lemma 7.32, for each branch B there exists a state sB such that B is a broadcast

interval of color c0. State sB must be reached within time � (since color c0 can take upto � time

to propagate); any state following the latest such sB in � must be in GT r.

Lemma 7.64 MT r
13�+6
=) GT r.

Proof. Follows from Lemmas 7.62 and 7.63.

7.2.3 Self-stabilization of the Coloring Algorithm: Main Result

Lemma 7.65 C=SF
17�+7
=) C=WC .
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Proof. For all r 2 �, from Lemma 7.42 C=SF
4�+1
=) MT r , and from Lemma 7.64,MT r

13�+6
=) GT r.

Hence for all r, C=SF
17�+7
=) GT r . Since GT r =) GT r� by Lemma 7.12, the Lemma follows.

Lemma 7.66 (Main coloring self-stabilization result) C=
19�+8
=) C=WC .

Proof. From Lemma 7.7, C=
2�+1
=) C=SF . From Lemma 7.65, C=SF

17�+7
=) C=WC . Thus the Lemma

follows.

7.3 Tree Detection

From Lemma 7.66, starting from any state in C=, within time 19�+8, unless a state in C1 is

reached, a state in C=WC is reached, which implies that all trees are well-colored. Thus the

coloring algorithm can proceed \normally."

In this section we show that the coloring algorithm achieves its goal of detecting the exis-

tence of multiple trees with the same root ID, by showing that C=WC

58�+28
�!
2=9

C1.

De�nition 7.67 (Neighboring trees) Trees Tr and Tr0 are said to be neighbors if there exist

u 2 Tr and v 2 Tr0 such that v 2 Nbrs(u).

Let � be any execution starting with a state in C=WC , and let �0 be the maximal pre�x of

� that is in C=WC , if � is �nite, or � itself, if it is in�nite. Let T and T be neighboring trees.

From Observation 7.21, �0 can be partitioned into coloring epochs 
i for T and 
i for T such

that �0 = 
1a
2a
3 : : : = 
1a
2a
3 : : :.

De�nition 7.68 (
i notices 
j) Let T and T be neighboring trees. Let 
i and 
j be coloring

epochs for T and T respectively, and let Color(
i);Color(
j) 6= 0. Then, in execution �, 
i

notices 
j if there exists a step (s;COPYuv; s
0) in � such that u 2 T , v 2 T , v 2 Nbrs(u), and:

1. s 2 
i, s 2 
j ;
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2. s:coloru = Color(
i), s:colorv = Color(
j);

3. s:modeu = broadcast.

If these conditions hold, we also say that 
i notices 
j in step (s;COPYuv; s
0).

De�nition 7.69 (
i confronts 
j) 
i confronts 
j if 
i notices 
j andColor(
i) 6= Color(
j).

Lemma 7.70 Any coloring epoch 
 for a tree Tr has duration � 13� + 6.

Proof. If fstate(
) 62 MT r , then because a new color propagates within one time unit from

a parent to its child, there exists a state s 2 
 such that s:now � fstate(
):now + � and

s 2 MT r. From Lemma 7.62, there exists a step (s0;NEXT-COLORr ; s
00) such that s0:now �

s:now + 12� + 6 and s0:colorr 6= s00:colorr. Thus s
00 begins a new coloring epoch. The Lemma

follows from the fact that s00:now � fstate(
):now + 13� + 6.

Lemma 7.71 Any coloring epoch 
 of color 0 for a tree Tr has duration � 3� + 2.

Proof. Similar to that of Lemma 7.70, with the exception that from statement [J], a node

colored 0 does not need to be enabled by its neighbors in order to echo.

Lemma 7.72 If 
i confronts 
j, there exists s
0 following fstate(
i) in � such that s0 2 C1 and

s0:now < fstate(
i):now + (13� + 6).

Proof. If 
i confronts 
j , some node in T must set other-trees to true in 
 within time 11�+5,

since all nodes in T cannot remain broadcasting for more than time 11�+ 5. By time 13�+ 5,

the root of T must set other-trees to true, and by time 13� + 6, it must extend its ID by

executing EXTEND-IDu, thus reaching a state in C
1.

Lemma 7.73 There exists i � 3 such that 
i notices 
j for some j.

Proof. Consider the following possibilities:
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Case 1 Color(
1) = 0.

Then by Claim 7.22 Color(
2) 6= 0. There must then exist a step (s; a; s0) in 
2 such

that s:coloru = 0, s0:coloru = Color(
2), s
0:modeu = broadcast, and s0:nbr-coloruv =

unde�ned. Since u is blocked by v on nbr-color in s0, there must exist another step

(s00;COPYuv; s
000) following s0 in 
2 such that s00:nbr-coloruv = unde�ned and s000:nbr-

coloruv > 0. s00 must then belong in some epoch 
j for T , such that Color(
j) 6= 0.

From the de�nitions, 
2 notices 
j.

Case 2 Color(
1) 6= 0.

If there exists a state s0 in 
1 such that s0:coloru = Color(
1), s
0:modeu = broadcast

and s0:nbr-coloruv = unde�ned, then by an argument similar to that in Case 1, 
1 notices

some 
j. If there exists no such s0, we use the fact that Color(
2) = 0 (Claim 7.22).

Then, by reasoning identical to that in Case 1, 
3 must notice some 
j .

7.3.1 The \Order" Results

Claim 7.74 Let i < i0. If 
i notices 
j and 
i0 notices 
j0, then j � j0.

Proof. Let 
i notice 
j in step (s1; a; s2) and 
i0 notice 
j0 in step (s3; a; s4). Since 
i precedes


i0 in �0, s2 precedes s3. Since s1 2 
j and s3 2 
j0 , 
j cannot follow 
j0 in �0; hence j � j0.

Claim 7.75 Let 
i notice 
j and 
j0 notice 
i0. Then,

1. (j < j 0) =) (i � i0).

2. (j > j0) =) (i � i0).

Proof. Let 
i notice 
j in step (s1; a; s2) and let 
j0 notice 
i0 in step (s3; a; s4).

If (j < j0), 
j precedes 
j0 , so s2 precedes s3. Hence 
i must precede or coincide with 
i0 ,

and i � i0.

If (j > j0), 
j follows 
j0 , so s4 precedes s1. Thus 
i cannot precede 
i0 , and i � i0.
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Lemma 7.76 Let i < i0, and let 
i notice 
j and 
i0 notice 
j0. For any coloring epoch 
j00

such that j < j00 < j0, if 
j00 notices some coloring epoch 
i00, then i � i00 � i0.

Proof. From Claim 7.75(1), i � i00, and from Claim 7.75(2), i0 � i00. Hence i � i00 � i0.

Lemma 7.77 Let Color(
i) = Color(
j) 6= 0, and let Color(
i), Color(
i+2), and

Color(
j+2) all be di�erent. If 
i notices 
j, then either 
i+2 confronts (
j or 
j+2) or 
j+2

confronts (
i or 
i+2).

Proof. 
i+2 must notice 
k for some k. From Claim 7.74, k � j. If k = j, 
i+2 confronts 
j.

(Note that k 6= j + 1, since Color(
j+1) = 0.) If k = j + 2, 
i+2 confronts 
j+2. Suppose

k > j + 2. 
j+2 must then notice some 
i0 , and by Lemma 7.76, i � i0 � i + 2. Since Col-

or(
i+1) = 0, i0 6= i + 1. Hence 
j+2 must notice either 
i or 
i+2; it then confronts 
i and


i+2 respectively.

Corollary 7.78 Let Color(
i) = Color(
j) 6= 0, and let Color(
i), Color(
i+2), and

Color(
j+2) all be di�erent. If 
i notices 
j, then there exists s following fstate(
i) in � such

that s 2 C1 and (s:now < fstate(
i):now + 42� + 20).

Proof. From Lemma 7.77, either 
i+2 confronts (
j or 
j+2), or 
j+2 confronts (
i or


i+2). Let (s1; a; s2) be a \confrontation step" from those mentioned above. From Lem-

mas 7.70 and 7.71, the durations of 
i and 
j are at most 13�+6, and those of 
i+1 and


j+1 are at most 3� + 2. Hence fstate(
i+2):now � fstate(
i):now+ (13� + 6)+ (3� + 2), and

fstate(
j+2):now � fstate(
j):now+ (13�+6)+ (3�+2). Since 
i notices 
j , Lemma 7.70 implies

that fstate(
j):now � fstate(
i):now+ (13�+6). Therefore fstate(
j+2):now � fstate(
i):now

+(29�+14). Lemma 7.72 then implies that there exists a state s following fstate(
i) in � such

that s 2 C1 and s:now < fstate(
i):now+ (29� + 14)+ 13� + 6, which yields the result.

7.3.2 The Tree Detection Proposition

Theorem 7.79 C=WC

58�+28
�!
2=9

C1.
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Proof. Let s 2 C=WC . If s 62 C
1, then js:�j � 2, so there exists more than one tree in s. Let

T and T be two neighboring trees. Let � be any execution fragment of RSST starting with

s, and let �0 be the maximal pre�x of � that is in C=WC . Let �0 be partitioned into coloring

epochs 
i for T and 
i for T such that �0 = 
1a
2a
3 : : : = 
1a
2a
3 : : :. By Lemma 7.73,

unless a state in C1 is reached in � before lstate(
3), there exists i � 3 such that 
i notices 
j

for some j. By Lemmas 7.70 and 7.71, fstate(
i):now � s:now + (16� + 8).

If Color(
i) 6= Color(
j), by Lemma 7.72 there exists state s0 in � such that s0 2 C1

and s0:now < fstate(
i):now+(13� + 6) � s:now + (29� + 14). If Color(
i) = Color(
j),

let (s1; a; s2) be a step in which 
i notices 
j . Consider the execution automaton ~H =

H (RSST;A; s1).

Let the event e0 be de�ned as the event in which Color(
i),Color(
i+2), andColor(
j+2)

are all di�erent. Then,

P ~H
(e0) = P ( Color(
i) 6= Color(
i+2) )� P ( Color(
j+2) 62 fColor(
i);Color(
i+2)g )

= 2=3� 1=3 (since the colors are chosen from f1,2,3g)

= 2=9

For any execution � 2 e0, Corollary 7.78 implies that there exists s0 following fstate(
i) in

� such that s0 2 C1 and s:now < fstate(
i):now +42�+20. Since fstate(
i) � s:now +16�+8,

the Lemma follows.

We are now in a position to state the Tree Detection Proposition:

Proposition 7.80 C=
77�+36
�!
2=9

C1.

Proof. From Lemma 7.66, C=
19�+8
=) C=WC , and from Lemma 7.79, C=WC

58�+28
�!
2=9

C1. Hence the

Proposition follows.
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Chapter 8

The Deterministic Version

In this chapter we describe the main ideas behind the deterministic version of the algorithm,

for ID-based networks.

For our deterministic algorithm, we assume that each node has access to a \hardwired"

unique ID. We refer to the unique ID as the node's UID to prevent confusion with the nodes

\other" ID, which is a tuple of entries as in the randomized case. The \hardwiring" of the

UID implies that the UID cannot be corrupted by the adversary; a nodes' UID always remains

�xed and unique.

The deterministic protocol is very similar to the randomized version. Each node has an

ID consisting of a tuple of entries; each entry is now an integer instead of a pair as for the

randomized version. The tree overrunning process (and action MAXIMIZE-PRIORITY) is

also identical: nodes attempt to form rooted trees, and trees compete with one another for

being the eventual spanning tree.

The main simpli�cation, compared to the randomized version, arises in the method for

recoloring trees. We no longer need random coin 
ips to break symmetry: the unique UIDs

are exploited for fully reliable symmetry breaking. Each node, as before, has a color. However,

the main di�erence is that trees do not need to be repeatedly recolored. The root of a tree

always attempts to propagate its UID as the color of its tree, so nodes repeatedly copy their
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parent's color. If a leaf notices a neighbor with the same ID but a di�erent color, it concludes

that its neighbor belongs to a di�erent tree, and informs its root through the other-trees variable

which is echoed to its root by its ancestors in the tree. When a root detects the presence of

a competing tree, it appends its own UID to its ID; this change in its ID is automatically

propagated to its leaves. Note that we do not need the variables direction and recorded-color

in the deterministic case.

The correctness and complexity proofs are analogous to those for the randomized version,

with the exception that all probabilities in Chapter 6 are now certainties.
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Chapter 9

Conclusions and Discussion

In this thesis we have presented self-stabilizing algorithms for constructing spanning trees

in asynchronous networks in O(diameter) time; our algorithms are time-optimal. We have

presented both a randomized version for anonymous networks and a deterministic version for

ID-based networks; both versions use the same general paradigm. We have presented a formal

analysis of the randomized protocol using the Probabilistic Automata formalism of Segala and

Lynch; in doing so, we have demonstrated the capability of the model to e�ectively analyze

the interactions between the probabilistic choices made by the random algorithmic steps and

the nondeterministic choices made by the scheduler.

Besides the stabilization time, another key measure of e�ciency (which we have hitherto

not dwelt upon) is the space required at each node, i.e. the size of the local memory needed at

each node to execute the algorithm. The optimal space requirement for an ID-based protocol

must necessarily be 
(logn) (since there must exist IDs of size 
(logn)).

Our deterministic protocol requires ID extensions of size O(logn), and our randomized

protocol requires extensions of expected size O(log log n). Since in a \well-colored" state (cf.

Section 7) a root extends only if there exists another root with the same ID, it is likely that

each root requires a total of O(1) extensions in both versions of the protocol. If so, both

protocols would require space only O(logn) bits larger than the space occupied at the \start"
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of the algorithm. (For the purposes of self-stabilization, the adversary is allowed to set the

\initial" state, which might occupy an arbitrary amount of space (since in our protocols IDs

can get arbitrarily large). However, the protocols then would \consume" at most expected

O(logn) bits of memory more than the size of the longest \initial" ID.)

A current weakness of our scheme is that it is not guaranteed to function in bounded space;

if the adversary sets \too much" of the initial bounded memory, the protocol could run out

of space. An important open problem is to construct a time-optimal self-stabilizing spanning

tree protocol that runs in bounded space, without any prior knowledge about the network

parameters.
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Appendix A

Properties of the Afek-Matias

Probability Distribution

We now prove Theorems 4.2 and 4.3 stated in Section 4.1. Recall the de�nitions of Section

4.1. We �rst prove Theorem 4.2:

Theorem A.1 For any k; i, P�k(UNIQH j (Highest > i)) � 1=2.

For the rest of this chapter, to ease the notation, let U denote the event UNIQH, and let

H denote the random variable Highest.

Recall that a 
ip x actually represents a pair (s; t), where P (s = y) = 1=2y, and P (t =

y) = 1=�, where for our purposes � = 20 ln 4r.

We will use the following result throughout this section:

Claim A.2 P�(x) = P�((s; t)) = 1=(2s � �).

Claim A.3 (a < b) =) (P�(a) � P�(b)).

Proof. Let a = (sa; ta) and b = (sb; tb), and let a < b. Then if sa < sb, P�(a) > P�(b). If sa =

sb and ta < tb, P�(a) = P�(b).
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Lemma A.4 If a < b, then

P�((X < a) j (X � a)) < P�((X < b) j (X � b)):

Proof. We have,

P�((X < a) j (X � a)) =
P�(X < a)

P�(X � a)

=
P�(X � a)� P�(X = a)

P�(X � a)

= 1�
P�(X = a)

P�(X � a)

Similarly,

P�((X < b) j (X � b)) = 1�
P�(X = b)

P�(X � b)

But clearly P�(X � a) < P�(X � b) , and from Claim A.3, P�(X = a) � P�(X = b).

Hence the Lemma follows.

Henceforth, unless otherwise mentioned, all probabilities are assumed to be in the space

�kAM .

Lemma A.5 If a < b, P�k(U j (H = a)) � P�k(U j (H = b)) .

Proof. In the event (U \ (H = a)) in �kAM , the highest of the k 
ips is unique and

is equal to a; all the other k � 1 
ips are less than a. Hence P�k(U j (H = a)) = k �

[P�((X < a) j (X � a))]k�1, and similarly P�k(U j (H = b)) = k� [P�((X < b) j (X � b))]k�1.

The Lemma follows from Lemma A.4.

Lemma A.6 For any i, P (U j (H > i)) � P (U j (H � i)).
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Proof. We have,

P (U j (H � i)) =
P (U \ (H � i))

P (H � i)

=
P (U \ ((H = 1)[ (H = 2) [ : : :[ (H � i)))

P (H = 1) + P (H = 2) + : : :+ P (H = i)

=

Pi

m=1 P (U \ (H = m))Pi
m=1 P (H = m)

=

Pi
m=1 P (H = m)P (U j (H = m))Pi

m=1 P (H = m)
(A.1)

Similarly,

P (U j (H > i)) =

P1
m=i+1 P (H = m)P (U j (H = m))P1

m=i+1 P (H = m)
(A.2)

Now by Lemma A.5, maxm�i P (U j (H = m)) � infm>i P (U j (H = m)). Thus, we can

choose a z such that

max
m�i

P (U j (H = m)) � z � inf
m>i

P (U j (H = m))

Then from (A.1), P (U j (H � i)) � z, and from (A.2), P (U j (H > i)) � z. Hence the

Lemma follows.

Theorem A.7 P�k(UNIQH j (Highest > i)) � 1=2.

Proof. We have,

P (U) = P (U \ (H � i)) + P (U \ (H > i))

= P (H � i)P (U j (H � i)) + P (H > i)P (U j (H > i))

= [fP (H � i) + P (H > i)]P (U j (H > i))

where f � 1, because of Lemma A.6. Since P (H � i) + P (H > i) = 1, we have

P (U) � P (U j (H > i))
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Since P (U) � 1=2 by Theorem 4.1, it follows that P (U j (H > i)) � 1=2.

We now proceed with the proof of Theorem 4.3, which states that for any k; i, P�k(Highest 6= i)

� (1� e�1=4) = 0:22.

We �rst prove an ancillary lemma:

Lemma A.8 For any � such that 0 � � � 1=2, and any n � 0,

f(�; n)
4

= (1� �)n � (1� 2�)n < 0:78

Proof. If (1� 2�)n � 1=2, then f(�; n) � 1=2, so the Lemma holds. We now consider the case

in which (1� 2�)n < 1=2. Since (1� 2n�) � (1� 2�)n, it follows that (1� 2n�) < 1=2, which

implies that � > 1=4n. Thus

f(�; n) � (1� �)n < (1�
1

4n
)n < e�1=4 < 0:78;

thus proving the Lemma.

Given a random 
ip x, let x:s and x:t denote its two �elds. Recall that P�(X:s = j) =

1=2j.

Claim A.9

P�(X:s > j) =
1

2j

Proof.

P�(X:s > j) =
1X

m=j+1

P�(X:s = m)

=
1X

m=j+1

1

2m

=
1

2j
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Corollary A.10

P�(X:s � j) = 1�
1

2j

Corollary A.11

P�(X:s < j) = 1�
1

2j�1

Claim A.12

P�k(Highest:s < j) = (1�
1

2j�1
)k

Claim A.13

P�k(Highest:s > j) = 1� (1�
1

2j
)k

We now prove the main theorem:

Theorem A.14 For any k; i, P�k(Highest 6= i) � (1� e�1=4) > 0:22.

Proof. Let i:s = j. Then,

P�k(H 6= i) = P�k(H < i) + P�k(H > i)

� P�k(H :s < j) + P�k(H :s > j)

= (1�
1

2j�1
)k + 1� (1�

1

2j
)k

= 1� [(1�
1

2j
)k � (1�

1

2j�1
)k]

Setting 1=2j = �, the last expression reduces to

P�k(H 6= i) � 1� [(1� �)k � (1� 2�)k]

Since by Lemma A.8 (1� �)k � (1� 2�)k < 0:78, the Theorem follows.
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