Serializing Parallel Programs
by Removing Redundant Computation

Michael D. Ernst

August 31, 1992
Revised August 21, 1994

Abstract

Programs often exhibit more parallelism than is actually available in the target architecture. This
thesis introduces and evaluates three methods—Iloop unrolling, loop common expression elimination,
and loop differencing—for automatically transforming a parallel algorithm into a less parallel one
that takes advantage of only the parallelism available at run time. The resulting program performs
less computation to produce its results; the running time is not just improved via second-order
effects such as improving use of the memory hierarchy or reducing overhead (such optimizations can
further improve performance). The asymptotic complexity is not usually reduced, but the constant
factors can be lowered significantly, often by a factor of 4 or more. The basis for these methods
is the detection of loop common expressions, or common subexpressions in different iterations of
a parallel loop. The loop differencing method also permits computation of just the change in an
expression from iteration to iteration.

We define the class of generalized stencil computations, in which loop common expressions can
be easily found; each result combines w operands, so a naive implementation requires w operand
evaluations and w — 1 combining operations per result. Unrolling and application of the two-
phase common subexpression elimination algorithm, which we introduce and which significantly
outperforms other common subexpression elimination algorithms, can reduce its cost to less than 2
operand evaluations and 3 combining operations per result. Loop common expression elimination
decreases these costs to 1 and log w, respectively; when combined with unrolling they drop to 1
operand evaluation and 4 combining operations per result. Loop differencing reduces the per-result
costs to 2 operand evaluations and 2 combining operations. We discuss the tradeoffs among these
techniques and when each should be applied.

We can achieve such speedups because, while the maximally parallel implementation of an
algorithm achieves the greatest speedup on a parallel machine with suffliciently many processors, it
may be ineflicient when run on a machine with too few processors. Serial implementations, on the
other hand, run faster on single-processor computers but often contain dependences which prevent
parallelization. Our methods combine the efficiency of good serial algorithms with the ease of
writing, reading, debugging, and detecting parallelism in high-level programs.

Our three methods are primarily applicable to MIMD and SIMD implementations of data-
parallel languages when the data set size is larger than the number of processors (including unipro-
cessor implementations), but they can also improve the performance of parallel programs without
serializing them. The methods may be applied as an optimization of a parallelizing compiler after
a serial program’s parallelism has been exposed, and they are also applicable to some purely serial
programs which manipulate arrays or other structured data.

The techniques have been implemented, and preliminary timing results are reported. Real-world
computations are used as examples throughout, and an appendix lists more potential applications.

This technical report is a revision (clarifying and expanding some sections) of the author’s
M.S. thesis [48], supervised by Charles Leiserson. This work was supported by a National Defense
and Science Graduate Fellowship, by Defense Advanced Research Project Agency contract N00014-
91-J-1698, and by Microsoft Corporation.

Contents

Introduction and Motivation

1.1 Serializing parallel programs oL
1.2 Three techniques for serialization
1.3 The problem domain L e
1.4 Categorizing loop common eXpressions oo v v vt vt e e e
1.5 Serialization is effectiveo
1.6 Outline L o e
Unrolling with Common Subexpression Elimination
2.1 Common subexpression elimination o oo
2.2 Loopunrolling e
2.3 Common subexpression eXposure v b et e e e e e e e
2.3.1 Scaling operations L e
2.3.2 Basevalues
2.3.3 Combining operations o e
2.4 Loop common expression exposure and rerolling 0 000,
2.4.1 Massive unrolling oL
2.4.2 Edgelinkingo o
Loop Common Expression Elimination
3.1 Finding patternso e e e
3.2 Scaling operations
3.2.1 Unrolling to scalarize arrays o o oo
3.3 Basevalues L
3.3.1 Adjusting the sizes of temporary arrays
3.4 Combining operations L e
3.4.1 Combining operation costs L o s
3.4.2 Space TeqUITEMENTS« .« L i i e e e e e e e e e e e e
Loop Differencing
4.1 Inverting the combining operator Lo o oo
4.2 Differencing L e e e e e
4.2.1 Aperiodic stencils e
4.3 Numerical stability

17
17
19
19
20
21
22
30
32
33

35
36
37
38
40
40
43
43
45

2 CONTENTS

5 Implementation Issues 55
5.1 Details of the implementation L oo o0 55
5.1.1 Connections with other optimizations 56

5.1.2 Wide base elements Lo 56

5.1.3 Loop initialization Lo e 57

5.1.4 Reassociationo e e e e 57

5.2 Alternative implementations L L o 60
5.2.1 Factoring scaling operations oL L L oL 60

B.2.2 Scans . . oL e e e e 60

6 Timing results 63
6.1 Aperiodic stencils L oL 63
6.2 Periodicstencilso 64

7 Extensions 67
7.1 Scheduling jobs onto processors Lo 67
7.2 Two-dimensional stencilso oL 68
7.3 Loop common expressions in serial algorithms00, 69
7.4 Other complications L 71

8 Perspective 73
8.1 Reducing overhead oL oL 73
8.2 Vectorization L e e e e 74
8.3 Tterator inversion e e e e e e e e 75
8.4 Reversing parallelization L 75
8.5 Stencil computations oL oL L e 76
8.6 Parallel intermediate representations oL L Lo oo 76
8.7 Contributions e 77

A Optimality of (w + 1)-unrolling 79
B Applications 83
B.1 Convolutions o e 83
B.1.1 Why not use FF'T7 o o 83

B.1.2 Applicationso 84

B.2 Vision and digital signal processing oL o . 85
B.3 Partial differential equations L L L o L 86
B.4 Other applications oL e 87

Bibliography 89

Chapter 1

Introduction and Motivation

Programmers would like to write a single program for efficient execution on parallel computers of
different configurations and sizes, including the degenerate case of a single processor. This problem
has received quite a bit of attention, but historically, the focus has been on parallelizing serial code.
This report argues that the reverse—serializing parallel code—is both more natural and more
effective. We show how to transform data-parallel programs (specifically, those which can be cast
as generalized stencil computations—see page 8 for a definition) into programs that are partially
parallel and partially serial. Such hybrid programs can take advantage of exactly the parallelism
available at run time, resulting in running times that are competitive with implementations targeted
for any specific number of processors.

Efficiently executing a single program on both parallel and serial computers is challenging be-
cause parallel and serial programs are written with different goals. Fast parallel programs permit
processors to operate independently by eliminating dependences between computations on different
processors. Efficient serial programs, on the other hand, have heavily optimized loops, and depen-
dences often exist between iterations due to sharing of variables or results. In a parallel program,
the critical path in any particular processor is made as short as possible without regard to whether
a computation is also performed by another processor: while sharing results can pay, typically
communication is much more expensive than computation. Serial implementations, on the other
hand, aim to reduce the total amount of work done; communication through variables is cheap. As
a result, when a serial program is naively run on a parallel machine, or a parallel program naively
run on a serial computer, the performance is disappointing. We must transform the program in
order to make it more amenable to fast execution by the target architecture.

The traditional approach toward execution of a single program on both parallel and serial
architectures is to perform concurrentization or vectorization (collectively, parallelization) [143],
transforming a serial program into one which can be sped up by being run on several processors
or on a vector processor. Dependence analysis is the key to parallelization: each loop in the
serial program is analyzed to determine whether its iterations may be run simultaneously. Data
dependences prevent loop iterations from being run in parallel because of multiple uses of a variable.
For instance, when a variable is set by one loop iteration and read by another, then reordering the
loop iterations could change the program’s result, so the loop cannot be parallelized.

While much progress has been made in parallelization, the field is far from mature. Most
parallelizers just replace certain paradigms with a parallel version of the operation; since they
operate by pattern-matching, a small change to the input program can affect its performance by
orders of magnitude. Understanding the system’s behavior requires detailed knowledge of the

4 CHAPTER 1. INTRODUCTION AND MOTIVATION

compiler, and the quest for good performance may force the user to write in a style easy for
the compiler, but hard for people, to understand. Fven the best dependence analysis is only
approximate, erring on the conservative side for safety, and as a result parallelizers are often unable
to take advantage of loops which have no real inter-iteration dependences. It is only fair to mention
that the serial code programmers write in the quest for efficiency can be extremely complicated,
with many artificial dependences added in order to permit reuse of variables and of results; the task
of parallelization is inherently difficult. We avoid the difficulties of parallelization by transforming
programs from parallel to serial form instead.

In the remainder of this chapter we first explain how serialization can speed up a program’s
execution, even on a parallel computer, by eliminating repeated computations. We present and
give examples of three methods for doing so. Next we describe the problem domain and give a
taxonomy of the types of repeated computation we can eliminate. We argue that serialization is an
effective approach to the problem of running a single program on both serial and parallel computers.
Finally, we outline the rest of the report.

1.1 Serializing parallel programs

This report takes the opposite approach from parallelization by starting with an explicitly parallel
program and removing some of its parallelism. The resulting program can be run efficiently on
either a serial computer or a parallel computer which does not have enough processors to exploit
all of the parallelism inherent in the original problem.

Any parallel program can be run on a serial computer if the serial computer simulates each of the
processors of a parallel machine; the simulated processors are called wvirtual processors. Similarly,
any serial program can be run on a parallel machine by simply loading it onto one of the processors.
Neither of these methods makes good use of the available resources, however. The execution time
of the serial program naively run on a parallel computer is not decreased, even though additional
processing power is available. The total work performed by the parallel program naively run on a
serial computer is not decreased, even though the same computations may occur in different virtual
processors being simulated by a particular physical processor.

The reason that a program can do less work when executed by a serial machine than by a parallel
one is that when a value is computed on different processors of a parallel machine, there is no
opportunity for elimination of redundant computation without incurring communication, which is
even more expensive. When several virtual processors are simulated by a single physical processor,
then redundant computations that were immune to elimination by virtue of being on different
processors are suddenly being computed on a single physical processor; the virtual processors can
share work at the cost of storing and retrieving a value—or even at no extra cost.

Virtual processors are simulated by a virtual processor emulation loop which executes in turn the
instructions that would have been executed by each of the virtual processors. Therefore, in order
to detect values used by more than one virtual processor, and to eliminate excess computations of
those values, we only need to detect expressions computed during more than one execution of a
loop body. When the program calls for multiple evaluations of an expression, then we can store the
result after it is first computed; whenever it is needed thereafter, the result can be inexpensively
retrieved from its storage location.

This method, applied to expressions for which only one value is considered at a time—for in-
stance, in straight-line code or in a loop iteration considered independently of other iterations—is
known as common subexpression elimination. No previously known common subexpression elimina-

1.2. THREE TECHNIQUES FOR SERIALIZATION 5
for i = 1 to 500
y[il = £(i-1) * g(£(i+2))

Figure 1: A simple example of a loop common expression: £(j) is computed on both the (j — 2)nd and
(j + 1)st loop iterations.

for i = 2 to 97
newx[i] = (x[i-2] + x[i-1] + x[i] + x[i+1] + x[i+2]) / 5

Figure 2: Another loop common expression example. Each pair of loop iterations repeats 4 array references
and 3 array element additions.

tion method works across loop boundaries, in which case a value is computed by lexically distinct
expressions on different loop iterations. We provide methods for detecting and eliminating this
important class of common subexpressions, which we call loop common expressions.

Figure 1 gives a simple example of a loop containing a loop common expression: £(22) is com-
puted by both the 20th and 23rd iterations (those two appearances of the loop common expression
are called its instantiations). No ordinary common subexpression elimination algorithm discovers
this repeated computation: not only are the two expressions lexically distinct, but they also occur
in different loop iterations. Another example with even more opportunity for optimization appears
in figure 2. Not only can the computation of many summands (array references) be shared from one
loop iteration to the next, but additions also appear multiple times: for example, x[42] + x[43]
appears in the expressions for the 41st through 44th results, and the 92nd and 93rd results share
x[91] + x[92] + x[93] + x[94].

The examples throughout this report are written in pseudocode in the style of figures 1 and 2.
Our implementation of the optimizations produces C [84], but the syntax and semantics of that
language are somewhat obscure—particularly its for construct. For clarity, we have also renamed
compiler-generated variables and occasionally performed simple restructuring. In all cases the result
is true to the output generated by the compiler; no manual optimizations have been performed.

1.2 Three techniques for serialization

This report gives three techniques—unrolling, loop common expression analysis, and loop differ-
encing—for optimizing data-parallel programs. These techniques eliminate repeated computation,
but they also partially serialize the programs by adding data dependences. This is not a drawback,
since we can exploit exactly the parallelism available at run time. The three methods are all program
transformations that convert a straightforward data-parallel algorithm into a more complicated
but more efficient serial one. This section briefly describes and demonstrates (on the examples of
figures 1 and 2) the methods. Fach of these optimization methods is discussed in greater detail in
a chapter of its own.

The first method, unrolling, transforms loop common expressions into ordinary common subex-
pressions. In the unrolled loop, the texts of several iterations of the original loop lie side-by-side, so
a common subexpression elimination algorithm can eliminate the repeated computation. Figure 3
shows the code of figure 1 after unrolling; the amortized number of function calls of £ per result
has been reduced from 2 to 1.6 (8 function calls for 5 results). In figure 4, the code of figure 2
has been unrolled, resulting in a reduction in the per-result number of array references from 4 to

6 CHAPTER 1. INTRODUCTION AND MOTIVATION

for i = 1 to 496 step 5

ylil = £(i-1) x g(£(i+2))
yli+1] = £(i) * g(£(i+3))
y[i+2] = £(i+1) * g(£(i+4))
y[i+3] = £(i+2) * g(£(i+5))
y[i+4] = £(i+3) * g(£(i+6))

Figure 3: The loop of figure 1 after unrolling to compute 5 results per loop iteration. Ordinary common
subexpression algorithms can now arrange that £(i+2) and £(i+3) are each computed only once, reducing
the number of calls to £ from 2 per result to 8 per 5 results.

for i = 2 to 94 step 4

newx [i] = (x[i-2] + x[i-1] + x[i] + x[i+1] + x[i+2]) / &
newx[i+1] = (x[i-1] + x[i] + x[i+1] + x[i+2] + x[i+3]) / 5
newx[i+2] = (x[i] + x[i+1] + x[i+2] + x[i+3] + x[i+4]) / &5
newx[i+3] = (x[i+1] + x[i+2] + x[i+3] + x[i+4] + x[i+5]) / &

Figure 4: The loop of figure 2, unrolled to compute 4 results per iteration. Eliminating the maximal number
of intra-loop common subexpressions cuts the per-result number of additions by half and array references,
by more than half. The two-phase common subexpression elimination introduced in this report finds all
possible common subexpressions, but other algorithms fail to do so.

1.75 and additions from 8 to 4. This method is always applicable, it uses simple, familiar building
blocks, and the results can be quite good. However, we may have to unroll many times in order to
expose common subexpressions, and some loop common expressions will always remain. Deciding
how much to unroll can be tricky: if the latter example were unrolled to compute 6 results per loop
iteration, it would require 3.5 additions per result, but if unrolled to compute 7 results, more than
3.7 additions per result would be required. This is surprising because usually more unrolling leads
to better performance. Standard common subexpression elimination algorithms fail to find much
of the repeated computation in figure 2. The two-phase algorithm, introduced in section 2.3.3.2 on
page 25, does far better in practice, but the problem of finding optimal common subexpressions is
NP-complete [5, 23].

The second method, loop common expression analysis, takes direct advantage of expressions
that can be used by more than one loop iteration, or loop common expressions. Each iteration
computes (and leaves in a temporary storage location such as a register) expressions that will be
useful to subsequent loop iterations. In other words, iteration ¢ arranges its computations so as to
help iteration ¢+ 1, possibly resulting in slightly increased costs for iteration ¢, relative to ordering
its computations in the greediest way. Any extra cost is more than offset by the fact that iteration
¢ — 1 has done the same thing, relieving iteration ¢ of some work it would otherwise have to do.
Unrolling can often reduce costs added by loop common expression analysis, further improving the
overall gain. Figure 5 shows the code of figure 1 after elimination of multiple evaluations of loop
common expressions; only 1 function call of £ is required per result, though we have introduced a
new temporary array and some extra operations to access it. Unrolling just twice eliminates the
need for the array. Figure 6 shows that the number of additions and array references in figure 2 can
be halved by unrolling to produce 2 results per iteration. Further unrolling to produce 4 results
per iteration reduces the number of array references to 1 per result and the number of additions
to 3 per result; it also eliminates the register-to-register move of figure 6. Like the method of

1.2. THREE TECHNIQUES FOR SERIALIZATION 7

integer array t[0..3]

t[1] = £(0)

t[2] = £(1)

t[0] = £(2)

for i =1 to 500
s = £(i+2)

y[i] = t[i mod 3] + g(s)
t[i mod 3] = s

Figure 5: The method of loop common expression elimination applied to the code of figure 1. Only 1
application of £ occurs per result computed, but accessing array t can be costly. Unrolling can eliminate the
modulus and array indexing operations, though 3 temporary locations are still needed to hold old values of
£(1).

t2 = x[1] + x[2]
for i = 2 to 98 step 2
tl = t2
t2 = x[i] + x[i+1]
t1 t1 + t2
newx[i] = (x[i-2] + t1) / 5
newx[i+1] = (t1 + x[i+3]) / &5

Figure 6: Loop common expression elimination applied to the code of figure 2. Each loop iteration computes
two results while performing the same number of array references and additions as the loop of figure 2 (and
one more division and register-to-register move). The reader is invited to determine how to reduce the
per-result number of array references to just 1, without increasing the addition cost, by unrolling the loop
to compute 4 results per iteration and taking advantage of additional loop common expressions.

unrolling and applying common subexpression elimination, loop common expression elimination is
always applicable and is quite easy to implement. It usually outperforms simple unrolling in terms
of operations performed, temporaries used, and code size.

The third method, loop differencing, computes a new result not from subexpressions of a pre-
vious result, but from the previous result itself, by adding it to the difference between the values
computed by two loop iterations. This has some similarities with strength reduction optimizations.
Figure 7 shows the result of applying loop differencing to the code of figure 2: array references
are reduced to 2 per iteration and additions, to 4 per iteration. The loop differencing method is
not always applicable—it cannot be used to speed the execution of the code of figure 1—but it
often produces excellent speedups with no unrolling required at all. Its chief disadvantage is the
use of the inverse of the original combining operator. Even if this inverse exists, if it is not exact,
then overflow, underflow, or value drift may be a problem. The technique is numerically stable
when the dynamic range of the numbers being operated on is not excessive—that is, their values
are all approximately equal.’ Despite its problems, this method is much better than the others for
operations that combine many values into each result.

!Ordinarily, operating on two values that are nearly equal can significantly increase the relative error even while
leaving the error’s magnitude unchanged. Our restriction is that no value is nearly equal to and a sum containing
that value, which happens only if the value is much larger than the other summands.

8 CHAPTER 1. INTRODUCTION AND MOTIVATION

runningsum = x[0] + x[1] + x[2] + x[3]
for i = 2 to 98
runningsum = runningsum + x[i+2]
newx[i] = runningsum / 5
runningsum = runningsum - x[i-2]

Figure 7: Loop differencing applied to the code of figure 2. Rather than computing each result from scratch,
the difference between two adjacent results is added to one result to compute the next.

So S S5 S5 Sy S5 <« base expressions
— combining operations
Ry Ry Rs Ry

Figure 8: Relationship between the three components of the stencil R; = S;_1 4+ 25; + 25;41. The base
expressions are the uses of S| the scaling operations are multiplications by 2, and the combining operations
are additions.

1.3 The problem domain

Elimination of loop common expressions—those which appear in at least two loop iterations—often
provides significant speedups, but unrolling, loop common expression analysis, and loop differencing
are not applicable to every parallel program. This section describes the kinds of computation which
produce loop common expressions and lists assumptions about the parallel program to be serialized.
Appendix B presents a sampling of real-world problems to which our methods are applicable.

The most important stipulation is that we must be able to determine ahead of time where
the repeated computation will occur: every result must be computed from the loop index in the
same way. We cannot arrange to share computations from one loop iteration to the next if we
don’t even know ahead of time which computations will be performed.? For instance, a pointer
jumping [35] loop contains no loop common expressions. Although many virtual processors—even
many being simulated by the same physical processor—may follow a particular pointer, which ones
do is data-dependent.

Fach result of a stencil computation (or simply stencil [22]) depends on a small set of values
with a particular structural relationship to one another. For instance, a result array is computed
from one or more similarly-shaped source arrays; each result array element depends on source array
elements at particular relative offsets from it. Figure 2 is a stencil computation. We extend the
class of stencil computations to those using the loop index arbitrarily in the result expression, as
in figure 1. A stencil is comprised of three types of computation, as illustrated in figure 8.

e The base expression of a stencil appears in all of its subexpressions; a base value is the value
of a base expression. In figure 1, £(-) is the base expression, and in figure 2, x[-] is.

?Memoization [1, 109] may be profitable in such cases. A memoized function stores all the results it has computed,
along with the arguments that produced those results. When the function is called, it first does a table lookup with
its actual parameters and possibly just returns a previously-computed result; otherwise the result is computed in the
ordinary way, saved for future reference, and returned. Memoization can eliminate redundant computation that no
static analysis could, but its run-time costs are high.

1.3. THE PROBLEM DOMAIN 9

o A scaling operation is any computation performed on some but not all of the base values;
application of the function g in figure 1 is a scaling operation, and there is no scaling operation
in figure 2.

e The stencil’s combining operation produces a result from the scaled base values; this is mul-
tiplication in figure 1 and addition in figure 2.

The discussion is simplified by addressing loops which compute just one stencil; the generaliza-
tion to multiple stencils per loop is straightforward. For pedagogical simplicity, most of examples
are weighted-sum stencils in which the base expression is an array reference, the scaling operations
are multiplications by fixed coeflicients, and the combining operation is addition. A convenient
shorthand for such stencils is a list of scaling coeflicients; for instance, the stencil of figure 2 would
be rendered (1,1,1,1,1). (The relative offset of the result is ignored, because it has no effect on
any of the optimizations, so (1,0,0,1) represents both z; = y;_1 + yi42 and @; = yir1 + Yipa.)
The techniques of this report apply to the much larger class of generalized stencil computations,
however, not just to weighted sums.

We make the following further assumptions about the computation being optimized.

explicitly parallel program The iterations of the input loops may be safely run in parallel. Pre-
vious stages of the compiler may have transformed parallel constructs into such loops, or may
have marked some sequential loops as free of data dependences. We ignore loops contain-
ing data dependences that could change the value of a potential loop common expression
between uses. These transformations may require introduction of temporaries; for instance,
independent execution of the iterations of

doall i, 1 < i < 100
ali]l = (ali-1] + ali+1]) / 2

requires the use of a temporary array [143]. We use loops because they are more familiar than
parallel constructs (each of which has its own semantics) and to emphasize the applicability
of our techniques to serial as well as parallel programs.

evenly distributed work The programming style described above—explicitly parallel, with many
virtual processors performing exactly the same computations—is known as data-parallel. We
add one more assumption common among data-parallel and scientific programs: each loop
iteration completes in about the same amount of time. The assumption is satisfied if the
amount of computation in the loop body is not heavily data-dependent and the processors
of the physical machine are equally powerful and equally heavily loaded. Small irregularities
in the cost per iteration, which are lost in the noise when enough iterations are considered
together, present no problem if the target machine is MIMD (multiple-instruction, multiple-
data); data-parallel programs targeted for such machines are often referred to as SPMD (same
program, multiple data) [40, 129].

This assumption reduces scheduling to evenly distributing loop iterations among processors,
which can be done at compile time even if the run-time number of iterations and processors
is not yet determined. If such a scheduling policy could assign some processors much more
work than others, then the more lightly-loaded processors will finish earlier and then sit idle
while waiting for the others to finish; this could easily wipe out the optimization gains or even
the speedups that accrue from parallelization. Supporting a future [59] command, arbitrary

10

CHAPTER 1. INTRODUCTION AND MOTIVATION

message-passing, or process migration greatly increases the complexity and overhead of a
programming system.

efficient implementation Since we care about performance on machines with any number of

processors from 1 to as many as the problem’s inherent parallelism, we demand that the
input program run fast on a machine with infinitely many processors. It is not difficult to
write poor parallel programs that can be transformed to produce good serial implementations,
but our goal is to permit a single program to run well on a serial machine, an infinitely parallel
one, and anything in between.

While many algorithms are amenable to such transformations, not all are. For instance, a
good smoothing operation in digital signal processing is to determine the median element
of every window of width w in a vector of size v [69, p. 86; 108, p. 516]. On a computer
with v processors, the best way to compute this is to use an algorithm with O(w) worst-case
running time on each processor [19]. On a serial computer, that would require O(vw) time;
it is better to use an order statistic tree [35, p. 281] which can be constructed in O(wlog w)
time and updated in O(logw) time, for a total cost of O((v + w)logw). It is not obvious
how to transform the parallel algorithm into the sequential one (or vice-versa) except by
pattern-matching.

Similarly, we cannot hope to convert bubble sort into AKS sort [7] or to convert a convolution
into a Fast Fourier Transform (FFT; see [108] for references), an elementwise multiply, and
another FF'T. (Section 7.3 does show how loop common expression elimination enables bubble
sort to be transformed into insertion sort. Section B.1 discusses tradeoffs between computing
convolutions via stencils and FFTs—the former is sometimes preferable.) The optimizations
presented in this paper result in a new implementation of an algorithm but not in an entirely
new algorithm: the transformed program computes all the results that the original one did,
though it performs fewer operations in order to do so. Typically this reduces the constant
factors in the cost of execution rather than improving its asymptotic running time.

non-speculative computation When excess resources are available, processors that would oth-

high

erwise be idle can perform speculative computations whose results might never be needed.
This does not slow the computation down, and it may speed it up. On a machine without
extra processors, on the other hand, speculative computation never improves performance
and often degrades it. Since the serialized program computes all the results computed by the
original implementation, a speculative program cannot be efficient when serialized.

virtual processor ratio If there are few virtual processors per physical processor, then the
virtual processor emulation loops are not run many times. Their execution doesn’t consume
a significant amount of the machine’s resources, so it is not worthwhile to spend a lot of effort
optimizing them. Additionally, when the virtual processor ratio is very low, there may be
fewer optimization opportunities since little serialization is acceptable.

associative operations For some of our optimizations, the stencil combining operation must be

associative, because a key part of those methods is reordering computations so that they are
not all done left-to-right. The method of loop differencing also requires that the operator be
commutative and have an inverse.

repeated computation Obviously, we cannot speed up a program by removing repeated com-

putation unless some computations are repeated. The input program must contain a stencil

1.4. CATEGORIZING LOOP COMMON EXPRESSIONS 11

v[i] = 2 * w[i-3] + 2 * w[i-1] + 2 * w[i+1] + 2 * w[i+3]

Figure 9: A periodic stencil computation with base expression 2 * w[-]; addition is the combining operation.

14 . . 64 . . 24 .. 64 . . 14 .
bode; = Ef(—2)+ Ef(l_ 1)+ Ef(l)-l- Ef(l-l-l)-l- Ef(l-l-Q)

Figure 10: An aperiodic stencil computing Bode’s rule for numerical integration [108], which is exact for
polynomials up to and including degree 5. The area under the curve f(i) between i — 1/2 and ¢4 1/2 is

better approximated by bode; than by f(7), by Simpson’s rule, or by the trapezoidal rule. The base values

are applications of f and the scaling operations are (%, %, %, %, %).

computation in which a base expression appears at least twice. For instance, a loop with
the body r[i] = al[i] + b[i+1] + c[i+2] would not be worth optimizing by eliminating
redundant loop common expressions, because only the loop index additions could be sped up.

The optimizations discussed in this report are orthogonal to the second-order ones which some
researchers call serialization of parallel computations. Those improvements, which typically depend
on better use of the memory hierarchy or reduced overhead for simulating processors, can be applied
to a program after our transformations in order to speed it up even more. Section 8.1 discusses
those efforts.

1.4 Categorizing loop common expressions

This section describes periodic and aperiodic stencils, explicates the loop common expressions
appearing in them, and shows how to transform complicated stencils into simpler ones that are
easier to process.

Recall from in section 1.3 (page 8) that there are three types of loop common expression: base
expressions, scaled expressions, and applications of combining operators. A stencil is called peri-
odic if the operands of its combining operations form a pattern which repeats at least 3 times; that
entire pattern is considered the base expression, and there is no scaling operation. Computations of
periodic stencils can benefit from sharing computation of base values and applications of combin-
ing operations. Aperiodic stencils permit computations of base values and applications of scaling
operations to be shared among loop iterations.

Figures 9 and 10 give examples of periodic and aperiodic stencil computations, respectively.
The opportunities for avoiding repeated computation are as follows:

base values In figure 9, 2 * w[14] appears in the expressions for the 11th, 13th, 15th, and 17th
results. In figure 10, f(3) is computed for 5 results.

scaled values In figure 10, % (91) is needed twice, for bodesg and bodegs. Periodic stencils, such

as that of figure 10, have no scaling operation.

combining operations In figure9,2 * w[51] + 2 * w[53] appears in the expressions for v[50],
v[52], and v[54].

12 CHAPTER 1. INTRODUCTION AND MOTIVATION

For each of the three methods for reducing redundant computation in stencils, we give concrete
numbers for its performance on base values, on scaling operations, and on combining operations
(when the scaling operations are identical), and describe how the method treats the cases differently.
In many cases the treatment of base values is a special case of that for scaling operations and
succumbs to the same methods.

How effectively a stencil’s loop common expressions can be exploited depends on the stencil’s
base expression and and scaling and combining operations. Those elements can be chosen in
multiple ways (selecting a larger base expression leads to fewer scaling and combining operations),
and a stencil can sometimes be split into simpler stencils which can be handled individually. Here
we give an overview of how these choices are made; section 5.1.2 on page 56 provides more details.

Elimination of loop common expressions can be simplified by splitting a stencil into pieces which
are optimized separately; the optimized pieces are then recombined into a single computation. For
instance, the aperiodic stencil (2,3,2,1,2,3,2) can split into (2,0,2,0,2,0,2) and (3,0,1,0,3); the
former is periodic, so it can be efficiently processed by the method of loop differencing. Since it
is convenient for all non-zero scaling factors to be the same even in aperiodic stencils, the latter
could be further split into (3,0,0,0,3) and (1). This divide-and-conquer approach greatly simplifies
the code for processing stencils, because only simple patterns need be explicitly addressed. Scaling
and combining operations are optimized using these simplified forms; base values are optimized
after the recombining step, so it is easy to guarantee that the result is as good as it would have
been, were the more complicated form directly processed—no common computation is hidden by
appearing in two separately processed stencils.

Another way to split a stencil into simpler ones is to selecting base expressions which use the
index expression ¢ multiple times. For the computation

Ty = 2Yi—2 + 3y + 2y + 29501 + 3Yigo + 29545

the obvious base element is a y value, the scaling operations are multiplications by 2 and 3, and the
combining operation is addition; (2, 3,2,2,3,2) represents this view of the computation. Another
decomposition of this computation uses base expression 2y; 1 + 3y; + 2y;41, the identity scaling
operation, and a combining operation which adds two scaled values from three loop iterations
apart; (1,0,0,1) is the shorthand for this presentation of the computation, which abstracts away
the fact that the base elements are themselves stencils which can be represented (2,3,2). Any
stencil which can be represented (1,0,0,1) should be optimized in the same way. (As another
example, (3,14,3,14,3,14, 3, 14) is optimized exactly like (2,0,2,0,2,0,2) of figure 9, except that
the base expressions are different. Base elements which are stencils can be optimized by a recursive
application of these techniques.

For a given stencil, the base expression should be chosen as small as possible such that the entire
computation can be expressed in terms of (non-trivial) scaling and combining that expression. For
instance, (1,2,1,2,2,4,1,2) would be recast as (1,0,1,0,2,0,1) with base expression (1,2). After
choosing the smallest possible base expression, if the resulting stencil can be reduced further, it
should be. The only real problem with splitting stencils or using large base expressions is one
of terminology: a stencil may have several different sets of base values, one for each recursive
application of loop common expression elimination. The one in question should be clear from
context; we will sometimes speak of z; = 3y,_1 + 3y,42 as (3,0,0,3) (in which case the base
expression is y;) and sometimes as (1,0,0,1) (with base values three times as great).

1.5. SERIALIZATION IS EFFECTIVE 13

1.5 Serialization is effective

In order to achieve efficient execution on all computers, with numbers of processors ranging from
1 to infinity, we can either maintain multiple versions of a program, each tuned for use on a
specific number of processors, or we can maintain one efficient canonical version of the program
and generate from it versions appropriate for any specific number of processors. Maintaining
multiple programs, either explicitly or by way of conditional statements in a single source, is easily
dismissed, because the versions must be independently written, debugged, and maintained. Thus,
the only realistic possibilities are serialization of a parallel program and parallelization of a serial
program. Sequentialization is a better strategy because it guarantees good parallel performance,
because sequentialization is easier than parallelization, and because data-parallel programs tend to
be clearer and simpler than their serial counterparts. (Parallelization has the advantage of being
applicable to dusty-deck codes as well as to new ones, which accounts for the interest in it.)

When parallel performance is important, it is better to write data-parallel than sequential
algorithms. When we start with an efficient parallel algorithm, we are guaranteed good performance
on parallel hardware, time on which is usually much more valuable than time on a serial machine.
If serialization fails, the results are not as dire as if parallelization fails, and each is certain to fail
some of the time.

Sequentialization also has the advantage of being easier than parallelization. The task of a
parallelizer is to remove data dependences, while a serializer may add them wherever convenient.
It hard to find accurate approximations to data dependence and to remove them without changing
the value computed. The difficulty is compounded by the fact that good serial algorithms tend to
be complicated and hard for a parallelizer to manipulate because of data dependences that are not
strictly necessary to achieve the correct result but which were introduced incidentally in the process
of hand-optimizing the code. While progress has been made on parallelization, it has resisted the
efforts of many talented researchers. Many parallelizers do little more than pattern-match against
the input program, which makes them unreliable and their behavior hard to understand. Serializa-
tion, on the other hand, is an easier task which avoids these problems inherent in parallelization.
This report gives three simple methods—unrolling, loop common expression elimination, and loop
differencing—for serializing parallel programs by eliminating redundant computation. Two of them
are optimal when it is possible to unroll sufficiently, and all three perform well even when the un-
rolling amount is limited. This stands in sharp contrast to the failures of parallelizers even on loops
that, to humans, obviously have no data dependences [143, p. 96].

Another reason to prefer serialization to parallelization is that data-parallel programs tend to
be much simpler than their serial counterparts, in large part due to the local view of the computa-
tion that the data-parallel model permits. The programmer can concentrate on the data and the
computations, and spend less time manipulating control structures and thinking about program
flow and dependences. Built-in data structures such as the vector or array, and uniform methods
for manipulating them, make large-scale programming significantly easier and less error-prone. As
a result, data-parallel programs are easier to write, read, maintain, and manipulate than serial
programs solving the same problem.

14 CHAPTER 1. INTRODUCTION AND MOTIVATION

To illustrate the comparative complexity of the two types of programming, consider two imple-
mentations of convolution with a two-dimensional binomial filter; this is an important preprocessing
step in the Canny edge detector [25] and other vision applications. The kernel of the data-parallel
version [27] is 4 lines of *Lisp [92, 135, 136], each containing 2 arithmetic operations. The kernel
of the sequential version [85] is 24 lines of C [84], containing 174 arithmetic operations in all. The
comment at the beginning of the procedure reads,

/* do the 2D convolution as two 1D convolutions */
/* this code is VERY hairy. see wjr’s */
/* for an example of what it’s really doing */

The folk theorem that parallel programs are harder to write than serial ones may be true for some
models of MIMD programming, but it is not the case for data-parallel programming.

While not every program can be efficiently written in this style, the data-parallel model has
come to be widely accepted in the parallel processing and scientific computation communities,
even for programming serial machines. There are data-parallel versions of the most popular serial
languages—C (C* [110, 133], Dataparallel C [60]), Fortran (Fortran 90 [13], CM Fortran [134, 115],
Fortran D [55], and others), and Lisp (CM Lisp [126], Paralation Lisp [113, 114], *Lisp [92, 135,
136])—as well as data-parallel languages designed from first principles (NESL [17], VCODE [18])
and sequential languages that were already partly data-parallel (APL [76] and its dialects [73,
77, 80, 142], SETL [41, 116], etc.). This list is far from exhaustive. Data parallelism is not a
radical departure from existing programming practice—it is primarily a matter of using some new
abstractions.

1.6 Outline

This section outlines the report and highlights its original contributions.

The introduction has explained the goal of permitting a single program to run efficiently on
both parallel and serial computers. Our method is to eliminate recomputation of loop common
expressions, which appear in two or more loop iterations; loop iterations correspond to virtual
processors in a parallel program. We introduced three techniques for removing redundant compu-
tation (unrolling, loop common expression elimination, and loop differencing) and defined stencil
computations and their constituent parts (base expressions, scaling operations, and combining op-
erations). Next we argued that serialization of parallel programs can be even more effective and
natural than parallelization of serial ones. This report recognizes the important opportunity for
optimization represented by loop common expressions and introduces methods for optimizing mul-
tiple iterations of a loop while examining only one copy of the loop body’s text. Even if performing
extra work appears to increase the cost of a single loop iteration, it can decrease overall running
time.

The next three chapters each address one of our techniques for eliminating redundant computa-
tion. The first is unrolling with common subexpression elimination; the unrolling step converts loop
common expressions into ordinary common subexpressions, while the common subexpression elim-
ination step prevents their reevaluation. We give formulas for the costs (extra operations and extra
temporary variables) and benefits (operations eliminated) of unrolling. After evaluating a number
of common subexpression elimination strategies, we introduce the two-phase common subexpression
elimination algorithm, which separates the subproblems of determining which computations may
be shared and deciding which ones will actually be computed, and give algorithms for implementing

1.6. OUTLINE 15

it. This method far outperforms traditional common subexpression analysis, which combines the
two stages in a greedy or even arbitrary manner. Unrolling can sometimes degrade rather than
improve performance; we show how to choose a good unrolling. We prove upper and lower bounds
on the minimum number of operations required to compute unrolled stencil computations. Finally,
we examine the use of unrolling and ordinary common subexpression elimination to uncover loop
common expressions in the original, non-unrolled loop.

Chapter 3 presents a direct method for finding and eliminating loop common expressions; it
hinges on discovering patterns in the structure of the computation performed by each iteration. We
give simple methods for removing all recomputation of loop common expressions and prove bounds
on the cost of computations after loop common expression elimination has been run. We also show
how all array reference and index manipulation overhead can be eliminated by unrolling loops to
scalarize arrays and how to adjust the sizes of temporary arrays when they cannot be scalarized.

The third method for eliminating redundant computation is loop differencing, which symboli-
cally computes the difference between the results computed by consecutive loop iterations. Given
the result computed by a particular iteration, subsequent ones can be computed more efficiently
by subtracting the difference than by computing them from scratch (or even from subexpressions
computed by the previous iteration). This optimization uses operators’ inverses to undo some work,
creating subexpressions that were never used in computing the previous result. The method results
in very good code for evaluating periodic stencils. We also show how to generate extremely effi-
cient code for certain aperiodic stencils, then discuss the method’s primary problem, its potential
numerical instability, and how to avoid it.

In chapter 5 we discuss implementation topics, including relatively minor algorithmic details
glossed over in previous sections, the integration of our techniques with other compiler optimiza-
tions, design decisions in our implementation, and other methods for optimizing stencil compu-
tations. Timing results obtained by running the compiler output and comparing the different
methods with one another and with the original code are presented in the next chapter. Chapter
7 deals with extensions to our methods, including scheduling of jobs onto processors, extensions to
two-dimensional stencils, optimization of purely serial algorithms, and other topics.

Finally, we discuss previous research related to the serialization of parallel programs, which has
focused on the reduction of system overhead, not on the computations being performed. Other work
of interest includes iterator inversion, parallelization, and direct attacks on stencil computations.

The two appendices present auxiliary material. The first contains an outline of the proof that
unrolling to compute w + 1 results per loop iteration, where w is a stencil’s width, optimizes the
number of combining operations required to compute the results. Appendix B lists numerous real
applications to which our optimizations are applicable and discusses when stencil implementations
are preferable to other implementations.

16

CHAPTER 1. INTRODUCTION AND MOTIVATION

Chapter 2

Unrolling with Common
Subexpression Elimination

Common subexpression elimination is the traditional method for removing redundant computation
from computer programs, but it cannot find loop common expressions, because it considers only one
representative loop iteration. Loop unrolling can transform loop common expressions into ordinary
common subexpressions. Even after this transformation, most common subexpression elimination
algorithms find only part of the redundant computation. We show how to augment these algorithms
to enable them to perform well on computations with this structure. The resulting method is fairly
straightforward and uses readily available technology.

This chapter first briefly reviews common subexpression elimination and loop unrolling, then
gives two ways to couple these methods to prevent recomputation of loop common expressions. The
first is to execute the unrolled and optimized code, which outperforms the original version, though it
may have to be unrolled quite a bit to improve the results significantly. Furthermore, the traditional
methods for common subexpression elimination do not find all its common subexpressions. We
introduce a new two-phase method for common subexpression elimination which separates the
conceptually distinct stages of identifying which expressions appear multiple times and deciding
which of those redundant computations to eliminate. We show how to achieve theoretically optimal
results by unrolling the proper number of times and using a good common subexpression elimination
algorithm. Unrolling and common subexpression elimination are well-known, but their application
to elimination of loop common expressions and the analyses of their efficacy are original. The
second way to use unrolling and common subexpression elimination is to find, in the common
subexpressions detected in an unrolled loop, a pattern of results which can be used as loop common
expressions. These methods are ad hoc and computationally expensive; chapter 3 shows a more
direct way to find loop common expressions.

2.1 Common subexpression elimination

The traditional method for removing redundant computation in computer programs is common
subexpression elimination, which uses textual analysis to detect when an expression occurs multi-
ple times in the source program. The computation is performed only once and the expression’s value
is saved; thereafter, when the value is needed, the stored value is retrieved, which is cheaper than
reevaluating the expression. There are two classes of algorithm for common subexpression elimina-
tion: partial redundancy elimination and value numbering. Because each method has advantages

17

18 CHAPTER 2. UNROLLING WITH COMMON SUBEXPRESSION ELIMINATION

for 1 = 1 to 400
sm[i] = .25 % r[i-1] + .5 * r[i] + .25 % r[i+1]

Figure 11: Smoothing a signal by convolving it with a small binomial filter.

and drawbacks, many compilers use both.

Partial redundancy elimination [42, 43, 82, 83, 101, 123, 139] identifies lexically identical ex-
pressions appearing anywhere in the program text. To prevent lexically identical but semantically
different expressions from being considered equivalent, partial redundancy elimination is used in
conjunction with an algorithm which identifies which expressions are generated, transmitted, and
killed by each basic block. For instance, there are no common subexpressions in

y=a+bhb

and a+b must be recomputed because the intervening redefinition of b might change its value.

Value numbering [5, 6, 23, 30, 57, 58, 79, 122] assigns a unique identifier to each value computed
(not to the identifier that names the value). When an operator is reapplied to a set of operands,
the previous result can be used instead. For instance, in

x=a+b

y=a+c

value numbering would recognize that (in the absence of other assignments to a, b, or c) the
expressions a+b and a+c stand for the same value. Value numbering is restricted to extended
basic blocks (sequences of instructions with only one entry point), but a start toward extensions to
whole-program optimization has been made [10, 111].

Neither method can find loop common expressions—whose values are multiply computed by a
loop even though no particular iteration contains redundant work—because both methods consider
only one loop iteration; partial redundancy elimination has the further weakess of only identifying
lexically identical expressions. As an example of a loop common expression which they cannot
detect, consider smoothing a digital signal by convolving it with a binomial filter, which is the
discrete approximation to a Gaussian filter. The code in figure 11 implements this operation; the
filter has been kept small for simplicity. The expression .25 * r[22] is computed at both the 21st
and 23rd iterations; we would like to avoid repeating this multiplication.?

?We ignore for the time being that we can eliminate a multiplication by transforming the loop body into sm[i] =
.25 * (r[i-1] + 2 * r[i] + r[i+1]) (but see section 5.2.1 on page 60 for a discussion of this optimization). The
multiplications stand for arbitrary operations which may not distribute over addition; for instance, this could have
been sm[i] = £(r[i-11) + g(r[il) + £(r[i+1]).

2.2. LOOP UNROLLING 19

for i = 1 to 397 step 4

sm[i] = .25 x r[i-1] + .5 * r[i] + .25 x r[i+1]
sm[i+1] = .25 * r[i] + .5 x r[i+1] + .25 * r[i+2]
sm[i+2] = .25 * r[i+1] + .5 % r[i+2] + .25 * r[i+3]
sm[i+3] = .25 * r[i+2] + .5 * r[i+3] + .25 * r[i+4]

Figure 12: A 4-unrolled version of the code of figure 11.

2.2 Loop unrolling

The obvious way to permit common subexpression elimination algorithms to consider several loop
iterations at once is by wnrolling: producing a new loop each of whose iterations does the work
of several iterations of the original loop. Figure 12 shows the result of unrolling the smoothing
operation of figure 11; if the old loop was performed 400 times, the new loop only needs to be
performed 100 times. More to the point, expressions computing the same value which used to be
in different loops (and thus hidden from ordinary common subexpression elimination algorithms)
now occur together in straight-line code.

The original loop iterations (the iterations of the non-unrolled loop) are called logical iterations,
while the loop iterations of the unrolled loop are called physical iterations. In figure 12, each of
the physical iterations contains 4 logical iterations. The number u of logical iterations per physical
iteration is called the loop unrolling amount or just the loop unrolling; we say that the loop has been
u-unrolled. The loop in figure 12 has been 4-unrolled, while that in figure 11 is 1-unrolled—that
is, it isn’t unrolled at all.

The benefits of loop unrolling go far beyond transformation of loop common expressions into
ordinary common subexpressions. Loop unrolling plays an important role in all of the optimizations
described in this paper. Loop unrolling is also commonly used to achieve second-order improvements
by reducing loop iteration overhead, improving use of the memory, etc. Unrolling can also have
negative second-order consequences such as overflowing the instruction cache; all of these second-
order effects are ignored.

Unrolling and common subexpression analysis can be used in two ways to eliminate redundant
computation of loop common expressions. The initial step of either method is unrolling, which
transforms some loop common expressions into ordinary common subexpressions. The first method
leaves the loop unrolled and takes advantage of the savings gained from common subexpression
elimination. The second method infers a pattern of loop common expressions from the common
subexpressions in the unrolled loop, then attempts to reroll the optimized unrolled loop into one
which reuses values from iteration to iteration. We discuss these two methods in the following
sections.

2.3 Common subexpression exposure

Our first method for using unrolling to reduce the recomputation of loop common expressions is to
unroll the loop, changing loop common expressions into ordinary common subexpressions, and then
to apply standard techniquest to avoid redundant computation. (We introduce a new method for
common subexpression elimination because those appearing in the literature perform poorly in this
problem domain.) Following the taxonomy of loop common expressions introduced in section 1.4,
we discuss in turn the impact of this optimization on scaling operations, on base values, and on

20 CHAPTER 2. UNROLLING WITH COMMON SUBEXPRESSION ELIMINATION

combining operations.

2.3.1 Scaling operations

Suppose that a stencil contains (only) 2 occurrences of a scaling expression. (This discussion ignores
loop common expressions besides scaling expressions.) In figure 11, d = 2, and the scaling expression
is multiplication by .25. If we ignore the .5 * r[i] term, then when the loop is l-unrolled, as in
figure 11, it requires two scaling operations per result and (by definition) no additional temporary
locations. When the loop is 4-unrolled, as in figure 12, two extra temporary locations are required,
to store the values of .25 * r[i+1] and .25 * r[i+2], and this reduces the number of scaling
operations to 6 for 4 results, or 1.5 per result.

If d loop iterations intervene between reapplications of the scaling operation and the unrolling
amount is u, then the numbers of scaling operations required and saved per unrolled loop, and the
total number of additional temporary variables required, are given by the following table.

Unrolling | Scaling operations | Extra

vs. width | Required | Saved | temps
u<d 2u 0 0

d<u<2d u+d u—d | u—d
u > 2d u+d u—d d

We can justify the values in this table in the following way.

o If u < d, then the unrolling has not converted any loop common expressions into common
subexpressions. If the first logical iteration scales base values 7 and ¢ + d, then the uth logical
iteration scales base values 1 +u— 1 and i +d+ u — 1; since i1 + u — 1 > 7 + d, the base values
operated upon by the u logical iterations are disjoint.

o If u>d, then (i+u—1)—(i4+d)+1=u—dof the values computed by logical iterations
1 through u — d can be reused by logical iterations d + 1 through u, if they are saved in
temporary storage.

o If w > 2d, then some logical loop iterations are both the beneficiaries of work previously
done and the benefactors of later logical iterations. No more than d storage locations need
to be allocated because each value is last reused d logical iterations after it is first computed,
and only one new scaled value is produced per logical iteration. Thus, the transformed code
requires as many extra temporary variables as operations are saved, up to a maximum of d.

The per-result costs are graphed in figure 13 for d = 2 and d = 5. Compare the left side of the
figure with the results given at the beginning of this section.

The savings for aperiodic stencils which contain more than 2 instances of a scaling expression
are similar. If there are ¢ instances of the scaling expression and the distances between neighboring
instances are dy,ds, ..., d;_;, then when the loop is u-unrolled, the original w - ¢ scaling operations
are reduced by

(u—dy)+(u—ds)+---+(u—di_y),

where the parenthesized expressions, if less than zero, should be taken to be zero instead. The same
expression gives the number of temporary variables required to remember old scaled values, except
that each parenthesized expression is also upper-bounded by the appropriate d;, so the maximum

2.3. COMMON SUBEXPRESSION EXPOSURE 21

5| widh=3 | | |] 5| widh=6 | ‘extratemporaries

4t . 4t .

3t . 3t .

o — extratemporaries 2 A

1} T i et 1} scaling opsiresit |

0 1 0 1
> 4 6 8 10 1 > 4 6 8 10 1

Unrolling Unrolling

Figure 13: Plots of the number of scaling operations per result, and total additional temporary storage
locations, required to avoid recomputation of scaling operations for the stencils {a,0,a) (for which d = 2)
and {a,0,0,0,0,a) (for which d = 5) at various unrollings. The width w is one greater than the index
difference d.

is Z;;ll d; = d. Figure 14 shows the scaling savings gained by unrolling an aperiodic stencil of
width 8 (d = 7) which contains 3 instances of a scaling expression. In general, we cannot save any
stencil combining operations (in this example, the additions which produce the final results from
the scaled values) when there is no pattern to the occurrences of the scaling expressions.

To analyze the efficacy of unrolling for an aperiodic stencil containing multiple occurrences
of more than one scaling operation, we split the stencil into multiple ones, each containing only
one scaling expression (stencil splitting was discussed in section 1.4 on page 12). For instance,
{a,0,b,0,a,b) would be split into (a,0,0,0,a) and (b,0,0,b). Fach of the resulting stencils is
analyzed independently to determine its the costs and savings, and these results are added up to
get a total for the entire stencil.

A great deal of unrolling is required in order to approach the theoretical limit of one operation
per logical iteration. While the unrolled loops permit some of the repeated computation to be
avoided, they still contain unexploited loop common expressions. (For example, the 6-unrolled
loop on the right side of figure 14 performs 13 scaling operations, but the lower bound is 1 scaling
operation per result. If the scaling operation appears twice, There are min(d, u) unexploited loop
common expressions per physical loop.) Simply unrolling and performing common subexpression
analysis is not a real solution to the problem of removing loop common expressions.

2.3.2 Base values

Unrolling also results in a reduction of recomputations of base values. The formulas for the number
of base value recomputations avoided are exactly the same as for scaling operations. In the usual
case, every slot of a w-element stencil has a nonzero scaling operation; that is, w consecutive base
elements, possibly scaled, appear in the expression for each result. The total cost to compute u
results in a u-unrolled loop is u + d base operations (plus the costs of scaling and combining).
The formula of section 2.3.1 says that up to d additional temporaries are required. We can
reduce the number of extra temporaries to min(u,d) by computing several results simultaneously
rather than remembering many base values. The idea is to localize all the references to a particular

22 CHAPTER 2. UNROLLING WITH COMMON SUBEXPRESSION ELIMINATION

T T T

L Width=8

7 extratemporaries
6 r A
5 [7 a
4+ . a - .o
fC J] a . a
T R —— a -a
2 i ““'"*f——»\,, 7777 ’""’"*"f———””,,,; . . . a
scaling ops/result

1 N g p 7 a
0 i

2 4 6 8 10 12

Unrolling

Figure 14: Scaling costs per iteration and temporaries required to remember scaled values for the stencil
(a,0,0,a,0,0,0,a), which has dy = 3 and d» = 4. A schematic of the 6-unrolled loop is also shown: each row
corresponds to a different loop iteration, and the loop iterations are offset so that common computations
appear in the same column. Boxes indicate opportunities for saved scaling operations: only one of the scaling
operations in each column need be performed. If we u-unroll for u > 7, then some scaled values can be used
thrice.

base element rather than all the computations for a particular result. For instance, the code of
figure 2, when 2-unrolled and rescheduled, becomes that of figure 15, which requires only 2 extra
temporary variables. (This number is a conservative estimate, because the behavior of the code
scheduler or the structure of the computation many cause the rescheduled code to require even
fewer extra temporaries. In figure 15, we have only really added one temporary variable because
the unrescheduled code required analogs to both nxi and xt.)

At u = d, which may be a fairly high unrolling, the number of base element computations per
result has only been reduced to 2. See figure 16 for a graph of the base value cost versus unrollings
for stencils of various widths, when the rescheduling optimization is applied.

In general, to find the total operation cost for an aperiodic stencil, we consider the base values
and each particular scaling operation separately and add those to the combining operation cost
(which usually cannot be reduced by unrolling or elimination of loop common expressions). The
total number of extra temporaries is computed similarly, except that in some cases scaling operation
optimizations reduce the number of base expression temporaries required. For instance, suppose we
are computing the code of figure 12 (on page 19) one result at a time and we are also maintaining
the previous 2 scaled values (multiplications by .25). In other words, when we are about to compute
sm[j], we have stored .25 * r[j — 1] and .25 * r[j]. We only need to have remembered 1 old
base value (r[j], which we will multiply by .5), not 2; there is no need to remember r[j — 1], which
was first computed 2 iterations earlier. One base value temporary is saved for every redundant
scaling operation at the trailing edge of the stencil (but usually several temporaries were used for
storing scaled values). When the index increases with each iteration, this is the left side, where the
smaller indices are used. (This optimization appears again in section 3.3.)

2.3.3 Combining operations

In this section we address the effects of unrolling and common subexpression elimination on reducing
the computation of loop common combining operations in periodic stencils. The section is divided

2.3. COMMON SUBEXPRESSION EXPOSURE 23

for i = 2 to 96 step 2
nxi = x[i-2]
xt = x[i-1]
nxi = nxi + xt
nxil = xt
xt = x[i]
nxi = nxi + xt
nxil = nxil + xt
xt = x[i+1]
nxi = nxi + xt
nxil = nxil + xt
xt = x[i+2]
newx[i] = (nxi + xt) / 5
newx[i+1] = (nxil + xt + x[i+3]) / &5

Figure 15: The code of figure 2, 2-unrolled and rescheduled to consolidate references to each source array
element. Temporary variables nxi and nxil serve as accumulators for the values of newx[i] and newx [i+1],
respectively, and xt holds a base value—an element of array x. The unrescheduled 2-unrolled code appears
in figure 17.

\ T T ' I I
. extratemporaries ——
base expressions/result -----
width=3 o
6k | i width=6 o
L width=8 =2
5+ \\ = = = = = = P’
N
sl i
o} N
o A
3 i
\B\ \A\
-
5 8- - A
. = S ey S |
o o o B L Bl
Ll oo O mmmmm AR EEE R
oW ' : :)
Unrolling

Figure 16: A graph similar to that of figures 13 and 14. The solid lines show how many extra temporaries
are required in order to take full advantage of the base expressions exposed as common subexpressions by
unrollings from 1 to 12. The number of base expressions evaluated per physical loop iteration is v + d =
u + w — 1; the dashed lines show this cost prorated over the number of results computed.

24 CHAPTER 2. UNROLLING WITH COMMON SUBEXPRESSION ELIMINATION

for i = 2 to 96 step 2
newx[1i] = (x[i-2] + x[i-1] + =x[i] + x[i+1] + x[i+2]) / 5
newx[i+1] = (x[i-1] + x[i] + =x[i+1] + x[i+2] + x[i+3]) / 5

Figure 17: The code of figure 2, 2-unrolled and formatted to emphasize that not only the base values (array
references), but also the operations upon them can be shared between these two results. We can see that 3
additions of array elements are identical in the two expressions.

into three parts. The first notes that fixing the parse of the source expression (determining how
operations are associated) has severe negative consequences. We propose either the use of an
intermediate representation with m-ary operators or a reassociation component of the compiler
to correct the problem. The second part demonstrates that choosing common subexpressions
is hard; not only is it NP-complete [5, 23], but good heuristics are hard to come by even in the
limited problem domain of unrolled stencil computations. We propose a new common subexpression
elimination algorithm that performs well on unrolled stencils (and generally); it first determines
which computations appear more than once and only then selects some to evaluate. The last part
of this section argues that even choosing how much to unroll is a difficult problem; surprisingly,
unrolling more may actually degrade performance, even in the absence of poor interactions with
the memory hierarchy.

2.3.3.1 Fixed association obscures common subexpressions

In the computation of a periodic stencil, not only can computations be saved in computing the
operands, but some of the combining operations can be saved as well. Consider the loop of figure 17;
this is just the loop of figure 2, 2-unrolled and formatted to emphasize that 3 of the additions may
be shared between the two sums. After computation of the base value array references (which
we shall ignore for the remainder of this section), each iteration of this physical loop should only
require 5 additions, not 8.

Unfortunately, few compilers would find any shared additions in this code, because most com-
pilers perform common subexpression elimination on either three-address machine code or on a
binary tree representing the computations to be performed. No matter how the two expressions of
figure 17 are parsed (into left-associative, right-associative, or minimum-height binary trees), they
have no addition nodes in common.

There are two obvious solutions to the problem of fixed association. We can permit the nodes of
the intermediate representation to have arbitrary degree, so that all of the operands which can be
shared are readily accessible; this adds slightly to the cost of operations on the intermediate form.
Alternately, we can permit reassociation; for instance, we might transform (a+b)+c into a+(b+c)
in the hope that b+c is used elsewhere in the program. This approach is computation-intensive
and uncertain of success in the reassociator, but the rest of the compiler is unaffected. These two
methods are discussed in more detail on page 57 in section 5.1.4; we assume from now on that this
nontrivial problem has been taken care of.

After discovering which computations are repeated in an unrolled loop, we still must choose
which common subexpressions to compute; we also must decide how far to unroll loops, if we have
a choice.

2.3. COMMON SUBEXPRESSION EXPOSURE 25

a+b+c
b+c+d
c+d+e
d +e+ f
e+ f +g
f+g+h
g+h+ 1

Figure 18: Simultaneously choosing two common subexpressions to be evaluated can degrade performance,
even if the subexpressions are disjoint and equally heavily used. If both c+d and f+g are computed, then at
least 12 additions are required to compute these 7 results. The optimal result—11 additions—is achieved by
computing one or the other of c+d and f+g, but not both.

2.3.3.2 Finding good common subexpressions

To effectively reduce redundant computation in a program, we must first determine which compu-
tations may be shared, then choose which ones actually will be shared. Most compilers leave the
first step—determining which computations could be shared—to the vicissitudes of the parser and
so might find no common subexpressions at all in the code of figure 18. In that figure, choosing
both c+d and f+g as common subexpression yields poor results. Finding optimial common subex-
pressions is NP-complete [5, 23], but the potential savings can be large, and fast heuristics can
perform well. Such heuristics take as input an expression forest (one tree per result) of n-ary trees,
where the arity of associative operator nodes is arbitrary, and return a forest of binary trees which
may share structure. We now compare several such heuristics and discuss the tradeoffs involved
with using them.

multiple commonest The obvious approach to finding a good binary parse of an expression forest
is to choose some of the common subexpressions occurring most frequently. Choosing multiple
such subexpressions simultaneously is sub-optimal. Even if two choices appear equally good,
selecting one may make the other into a poor choice, even if if no result contains both of
the subexpressions. For instance, in figure 18, c+d and f+g play symmetric roles in the
computation, and one must be selected as a common subexpression, but both should not be.

arbitrary commonest The common subexpressions to be evaluated should be selected one at
a time, but making an arbitrary choice among those with highest multiplicity is also a bad
idea. In the following code, first choosing c+d instead of (say) b+c results in a total cost of 7
instead of 6 additions.

a+b+c
b+c+d
c+d+ e
d+e+ £

leftmost commonest Stencil computations can be ordered in a logical way from left to right.
Choosing to evaluate the most commonly occurring subexpressions from one end or the
other—but not both—results in a better strategy, than making an arbitrary choice. Fig-
ure 19 shows the result of applying this heuristic to a 9-unrolled 5-element periodic stencil.
Two more operations are performed than need to be.

26 CHAPTER 2. UNROLLING WITH COMMON SUBEXPRESSION ELIMINATION

BO Bl B2 B3 B4 B5 B6 B7 BS B9 BlO Bll B12
Ny Ny Ny

NS AN

@/@\@ D D D D @/@\@ D

R R R R R R R Ry Ry

2 3 4 5 6 7 8

Figure 19: Schematic of a 9-unrolled 5-element periodic stencil, such as the window sum of figures 2 and 17.
The B;s are base values and the R;s are results. The pattern of binary addition nodes shown is that chosen
by most heuristics (such as leftmost-commonest and leftmost-oldest-commonest) for selecting among the
possible execution orders, though those which include randomness or simultaneous choice do worse. Where
lines do not connect addition nodes to addends, the node represents the combination of the obvious nodes
(for instance, Rs = (B3 + B4) + (Bs + Bs) + B7), but the associativity of those additions is incidental. The
total cost is 21 additions for 9 results, or 2.33 additions per result.

leftmost commonest oldest The “leftmost commonest” heuristic has no history—after the left-
most among the most frequently occurring subexpressions has been chosen, the next round
recomputes which subexpressions are most common. A variation on this rule which performs
better in some circumstances is to, at the next step, only consider subexpressions which were
also under consideration at the previous step—that is, those whose multiplicities at the last
step were the same as that of the expression we actually chose. The scope of the search is
expanded only when none of the old elements has multiplicity greater than 1. For figure 19,
this variation happens to perform identically to the simpler “leftmost commonest” heuris-
tic. Many other variations of the “leftmost commonest” were tested; their performance is
uniformly disappointing, even on the restricted subproblem of unrolled stencil-based compu-
tations.

leftmost shallowest commonest Common subexpressions that can be incorporated into larger
common subexpressions are more valuable than those whose value can be used just once. The
“leftmost shallowest commonest” heuristic chooses, among the nodes with highest multiplicity,
the one with the smallest expression depth—that is, the one closest to the leaves. There are
more opportunities for a shallow node to contribute to future common subexpressions than
for a deep one, so given that choosing them has the same immediate benefit, it pays to invest
in the one that’s more likely to pay off in the future. This argument is far from rigorous, of
course: that is why we call the technique a heuristic (the problem is NP-complete). Figures 19
and 20 show the results of two representative algorithms on a 9-unrolled 5-element periodic
stencil.

leftmost largest commonest restricting The final heuristic chooses the largest (in terms of
number of summands), leftmost common subexpression, but immediately after doing so,
restricts its attention to that expression’s subexpressions until they are fully parsed. This
rule performs optimally for unrolled stencil computations, as demonstrated in figure 21.

Determining which common subexpression elimination heuristics perform best is not easy: even
ones which intuitively seem to be good bets perform poorly in some domains. We have, however,
discovered which ones give acceptable performance. Two difficulties with many of these heuristics

2.3. COMMON SUBEXPRESSION EXPOSURE 27

B5 B6 B7 BS B BlO Bll B12

\\>B/ \/\ N \@\/
ZaN ZaN

& & & D & & D & D
R, R R, R Ry R Rs Ry Rio

Figure 20: Schematic similar to that of figure 19, but with the leftmost-shallowest heuristic used to choose
addition nodes. The total cost 1s 20 additions for 9 results, or 2.22 additions per result.

BO Bl B2 BS B4 B5 B6 B7 BS B9 BlO Bll B12
\ AN NS N N
AN /B
N
@/@\@ S5, S5, @ﬁ\@ @/@\@ S5,
R, Ry R, Ry Ry R: Ry Ry Ry

Figure 21: Schematic similar to that of figures 19 and 20 in which an optimal pattern of common subex-
pressions for the 9-unrolled loop is shown. The total cost 1s 19 additions for 9 results, or 2.11 additions per
result. For a 6-unrolled loop, the cost is to 2 additions per result, as demonstrated by the 12 additions that
produce the first 6 results Rs, ..., R7.

are that they require an ordering of the arguments left-to-right and they are not local. Nevertheless,
they are better than performing exhaustive search.

There is a good, cheap alternative to these complicated heuristics: split the logical loop iterations
into groups of w + 1 results each (plus one group for the remainder), then optimize each group
separately. This works because (as we shall shortly prove) the per-result combining operation cost
is minimized at an unrolling of w + 1: we can get optimal performance at any particular unrolling
by splitting the results into as many groups of size w+ 1 as possible, plus one more group containing
the remaining results. Furthermore, at an unrolling of w+ 1, nearly every heuristic described above
can find the optimum association, even if they do poorly at other unrollings.

2.3.3.3 Determining how much to unroll

The number of loop common expressions turned into ordinary common subexpressions increases
with the amount that a loop is unrolled. Since unrolling by a greater amount has other benefits
as well (for instance, the physical loop overhead is prorated over more logical iterations), it seems
reasonable to conclude that a compiler should unroll as much as possible, subject to such constraints
as the target machine’s instruction cache size. Surprisingly, this is not the case: the incremental
benefit of unrolling a loop one more time can be negative, and the cost per logical iteration can
be higher for a loop that has been unrolled more, even when the other benefits of loop unrolling
are factored in and even when memory hierarchy effects are ignored. This section explains why
and substantiates the claim that (w + 1)-unrolling leads to optimal per-result combining operation

28 CHAPTER 2. UNROLLING WITH COMMON SUBEXPRESSION ELIMINATION

Width=5
Base ops/iteration ——
o Combining opg/iteration -+ 1
L Base + Comb. =
r o .5* Base+2* Comb. —»- 1

X

O P N W b~ OO N

Unrolling

Figure 22: This graph shows the per-result costs, in terms of base expression evaluations and of combining
operations, of a b-element periodic stencil. The graph also shows the combined per-result cost of both base
and combining operations, both when they are equally expensive and when the combining operation costs
four times as much as evaluating the base expressions. This would be the case when, for instance, the base
operations were array references and the combining operations were min or max macros; if the combining
operations were function calls, the cost ratio would be even higher.

costs.

Figure 22 illustrates an example in which prorated costs are larger at greater unrollings. The
per-result combining operation cost for a 5-element stencil increases by over 14% from a 6-unrolled
to a 7-unrolled loop; the per-result combining operation cost for an 8-unrolled loop is 6% higher
than for a 6-unrolled one. These effects are even more dramatic for wider stencils. The graph shows
the results obtained by the optimal association; if we use an association from figure 19 or 20 instead,
then the per-result cost is also greater at an unrolling of 9 than at 8 or 10. The graph also shows the
combined cost of the base element evaluations and the combining operations, for two ratios of those
individual costs. When the base operations are more expensive than the combining operations, then
the reduction in the base expression cost washes out the cost of the combining operations and the
total cost is monotonically decreasing until the unrolling is very large. (That plot is not shown.)
At very high unrollings it is easier to find instances of negative incremental benefits for additional
loop unrolling, but the percentage differences are less, and no one would unroll that much anyway.
In each case the loop overhead contributes insignificantly to the per-result cost, so it has not been
added in.

Computing any number of w-element sums requires a minimum of 3(w — 1)/(w + 1) operations
per result; this minimum can (only) be met at unrollings which are multiples of w+ 1. Showing that
this is an upper bound on the minimum is straightforward: we simply give a construction which
meets the bound. Proving its optimality at that unrolling, which is also fairly easy, introduces
methods that will be used in the subsequent proofs. For this section only, we number both the
source and result elements starting at 1.

Theorem 1 All the results of a (w+ 1)-unrolled w-element periodic stencil can be computed using
3(w—1)/(w+ 1) binary combining operations; furthermore, it is impossible to do better.

Proof: Suppose that no operations have yet been performed. Regardless of how we associate its w
summands, w — 1 operations are required in order to compute R, the leftmost result. Similarly, it

2.3. COMMON SUBEXPRESSION EXPOSURE 29

Bl B2 BS B4 B5 B6 B7 BS B9 BlO Bll B12 B13 B14

Figure 23: The optimal combining operation cost of 2.25 per result is achieved for the T-element sum by
8-unrolling. Note that the subscripting conventions are different for this figure than for figures 19-21.

takes w — 1 operations to produce R, 1, the rightmost result, which shares no summands with R;.
The w — 1 other results require at least 1 addition operation each—the one that actually produces
the result. This proves that 3(w — 1) operations is a lower bound for producing w 4 1 results
and so, when considering w 4 1 results at a time, we cannot better the claimed lower bound of
3(w—1)/(w+ 1) operations per result.

However, we can meet the bound. If we fully right-associate the sum which computes R, and
fully left-associate that for R,,,, then for any R; such that 2 < 7 < w, two subexpressions are
available that sum to R;, namely B;+---+ B, and By, 1 +-- -+ B;yy_1. The former was computed
as a subexpression of R; and the latter as a subexpression of R, as illustrated by figure 23.
Thus, we can compute the w — 1 summands R, ..., R, with only 1 additional operation each, for
a total cost of 3(w — 1) operations, or 3(w — 1)/(w + 1) operations per result. ll

Now that we have shown that the per-iteration cost of 3(w —1)/(w+1) = 3 —6/(w+1) is
an upper and lower bound for (w + 1)-unrollings, it remains to be shown that this cost cannot be
bettered at any other unrolling. For v < w4+ 1 we show a stronger result, that it cannot even be
equaled, except when w = 2. In that case we do not even consider the stencil to be periodic, since
there are no combining operations to share.

Theorem 2 When v < w and w > 3, every association of binary combining operations in a
u-unrolled w-element periodic stencil requires at least 3 — 4/w operations per result.

Proof: Computing R, requires w — 1 operations. Since R; and R, share w+ 1 — v summands,
they can share up to w — u operations, if both sums are associated correctly. Therefore, R,’s
additional cost can be as low as u — 1 operations. Figure 24 shows this situation.

The remaining u — 2 results require a minimum of one operation each, even if two expressions
that sum to them have already been computed in the course of computing R, and R,. The total
cost for the u results is therefore lower-bounded by (w—1)+(u—1)4+(u—2) = w4 2u—4, and the
per-element cost is (w4 2u — 4)/u = 24 (w — 4)/u, which decreases monotonically with u. Since
we assumed that v < w, its minimum is 3 —4/w. A

Proving that even at larger unrollings we cannot do better than 3(w — 1)/(w + 1) combining
operations per result is more intricate; we defer that proof to appendix A and here show a weaker
result.

30 CHAPTER 2. UNROLLING WITH COMMON SUBEXPRESSION ELIMINATION

Figure 24: When v < w, Ry and R, share w — v + 1 summands. After Ry and the base values have been
computed, computing R, can cost as little as « — 1 more combining operations.

Theorem 3 Computing u w-element periodic stencils requires at least 2(u — (v — 1)/w])+w —3
combining operations, which is no less than 2(w — 1)/w operations per result.

Proof: This theorem is a corollary of the proofs of the preceding two theorems.

Every wth result (Ry, Ry41, .. .) requires w—1 operations; there are 1+ |(u — 1)/w| such results.
R, requires an additional (u — 1) mod w operations, at best, and there are v — (v —1)/w] — 2
additional results to be computed, each requiring a minimum of 1 more operation. The total
operation cost is

(1—|—{u;lJ)(w—l)—l—((u—l)modw)—l—u— {UT_lJ -2

Since |(v —1)/w] w4+ ((v — 1) mod w) = u — 1, we can rewrite this as

S et) P

The per-result claim of the theorem follows from the fact that [(v — 1)/w]| /u < 1/w. A

2.4 Loop common expression exposure and rerolling

Unrolling loops and performing common subexpression elimination cannot reduce the number of
loop common expressions in a physical loop, only prorate the cost over a greater number of logical
loop iterations. As a result, the method often requires large amounts of unrolling in order to
approach its best performance. Although we show in the next chapter a direct way to remember
the values of loop common expressions from iteration to iteration, first we briefly investigate the
use of unrolling and common subexpression elimination to do so. In particular, we introduce and
evaluate the methods of massive unrolling and edge linking.

Finding reused base expressions and scaling operations is fairly easy, so this section focuses
on detecting loop common combining operations. It is worthwhile to to try to find loop common
expressions even if unrolling is an option, because exploiting loop common expressions is usually
superior to unrolling, even though the theoretical lower bound on combining operations per result
is lower for unrolling. The bound for unrolling is about 3 — 6 /w, but that value is only attainable
at relatively high unrollings; at lower unrollings the number is O(w). The bound for loop common

2.4. LOOP COMMON EXPRESSION EXPOSURE AND REROLLING 31

Combining operations, width =5

Combining operations, width = 11

5 T T 10 T T
CSE ——
g | LCE -~ |
6 - 4
ar -]
1t . 2 .
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
2 4 6 8 10 12 14 2 4 6 8 10 12 14
Unrolling Unrolling

Figure 25: The tradeoffs between (optimal) common subexpression elimination and loop common expression
elimination, when considering combining operations in periodic stencils. While unrolling and then performing
common subexpression elimination can achieve better results, that requires wide stencils and quite a bit of
unrolling. At low amounts of unrolling, loop common expression elimination is superior, though it is more

sensitive to the exact amount of unrolling.

2 3

By

Figure 26: Bs + Ba is a loop common expression, since it can be used at this iteration and at the next one
(when it plays the role played here by By + B»).

expression elimination is about 4, but even if no unrolling is done the method reduces combining
operations per result to less than 2log, w. Figure 25 graphs the tradeoffs between the two methods.

The key to finding loop common expressions is forcing the subexpressions computed by two
physical iterations to line up. In figure 26, the next iteration of the physical loop computes R,
and Rs. For that physical iteration, the value Bs + By can play the role played by By, + By at this
iteration. Since B3+ B, need not be recomputed, only 4 additions, not 5, are required per physical
loop iteration. Ordinary common subexpression elimination does not construct computations that
can be shared between physical loops because it is greedy: it attempts to optimize the current
computation (the current loop iteration, basic block, etc.) without regard for other users of its
subexpressions. Common subexpression algorithms arrange that the expressions computed are
used by as many results as possible, and this means choosing to compute expressions near the
center of the unrolled loop, not near the edges. Figures 19 and 20 give evidence of this proclivity:
at the left side of the physical loop iteration, the sums are primarily right-associative, and on the
right side, they are mostly left-associative.

We present two methods for overcoming the local, one-iteration view of ordinary common
subexpression elimination. The first, massive unrolling, unrolls sufficiently to dilute or nullify

32 CHAPTER 2. UNROLLING WITH COMMON SUBEXPRESSION ELIMINATION

the edge effects caused by the fact that some computations near the edges of the loop are used
less frequently than others near the center. The second method, edge linking, forces the edges to
line up by either wrapping the computation into a ring or, whenever a sum is chosen on one edge,
choosing the corresponding one on the other edge.

2.4.1 Massive unrolling

The massive unrolling method performs ordinary common subexpression elimination on heavily
unrolled loops. Common subexpression elimination algorithms tend to associate computations
away from the edges of the unrolled computation, but if the unrolling amount is sufficiently large,
then the center is far from the edges and will be optimized in a non-greedy way even by an ordinary
common subexpression elimination algorithm. After the algorithm has run, we look in the center
of the expression forest for a pattern of loop common expressions among the nodes chosen. To put
it another way, we snip out a section of the middle whose ragged edges mesh with one another.

It is possible that no pattern of common subexpressions that double as loop common expressions
can be found. If they can, we presume that they optimize the combining operations well, because
that was the criterion for choosing them as good common subexpressions. Register-to-register moves
may also be required because of a need for the old and new values to be active simultaneously. For
instance, in figure 26, Bs + B4 will eventually need to occupy the register which holds B; + B5, but
the former cannot be evaluated into that register because the two values need to be added. Moving
Bs; + B, into the location where it is expected by the next loop iteration is an example of altruistic
work done by one iteration that saves work for another iteration.

We can arrange that no base elements are recomputed; this requires w — u register-to-register
moves (or zero, if u > w). If the stencil is periodic, then not all of the base elements need to be
saved (for instance, Bs in the example above), and the total number of register-to-register moves
is w — u. The number of scaling operations is reduced in a similar fashion; we leave the details as
an exercise for the interested reader.

While this method can save work, it is an ineffective way to find loop common combining
expressions. Here we examine a few of the scheme’s failings.

First, the loop must be very heavily unrolled before a pattern emerges in its center, because
edge effects (which result from the common subexpression algorithm’s greediness at the edges of
the unrolled loop) can affect the pattern of expressions which computes a result up to w elements
distant from either edge. In order to find a pattern of size w, the loop must be unrolled to compute
3w + wu results, which requires 4w 4 u source elements. (Another way to say this is that the u
centermost results share no base expressions with the leftmost and rightmost results.)

The unrolling amount actually required depends on the common subexpression elimination
algorithm chosen. For instance, when using the leftmost-oldest-commonest heuristic, a pattern of
size 4 becomes apparent for a width-7 periodic stencil when w-unrolling for u > 20 (and also for
w = 17, if the arbitrary associations that it does not fully specify happen to line up correctly, but
not for uw = 18 or 19). The pattern can first emerge for a width-9 stencil after 22 unrollings. The
shallowest-commonest heuristic does better on the 7-element stencil but worse on the 9-element
one. (These heuristics are defined on pages 25ff.)

Computing common subexpressions for such a large expression forest noticeably slows the com-
piler, but smaller ones are not guaranteed to produce an acceptable result. Even after finding the
common subexpressions in the large unrolled loop, we still must find a pattern in them. This is
a complicated problem, but the difficulty is assuaged by the fact that we only have to look in the

2.4. LOOP COMMON EXPRESSION EXPOSURE AND REROLLING 33

center of the expression forest. (Chapter 3 gives a better loop common expressions algorithm which
only requires one search of the base expressions.)

Finally, we have no control over the size of the repeated computation that we find—that is, the
number of results it computes. If it is larger than the maximum tolerable unrolling, it is useless.
This is a reason why the optimal common subexpression elimination algorithm may be undesirable:
the result requires (w 4 1)-unrolling. We may need to decide how much we are willing to unroll
before choosing the common subexpression elimination heuristic.

In the next section we give another way to find loop common expressions by using ordinary
common subexpression elimination; the next chapter gives a more direct way for doing the same
thing.

2.4.2 Edge linking

Rather than unroll enough to mitigate the edge effects by distance from the edges, we can attempt
to eliminate edge effects altogether by guaranteeing that the edges mesh. The effect is of a circular
rather than linear set of iterations.

There are several similar ways to achieve this effect; the two most straightforward are to reduce
the source and result array indices modulo some value, or to arrange that whenever a computation
near one edge is performed, its mate at the other edge is also chosen. Indices that are affected by
the modulus reduction (we must keep track of which ones are) represent cross-iteration temporary
values—that is, loop common expressions. The biggest problem with this technique is that it
requires an unrolling of at least © = w so that no two source array elements are mapped onto the
same element in the circle; in fact, we must have v > w because at u = w all of the results are
identical. If we unroll that much, we might as well just use the optimal association. We want to
use loop common expressions to permit a small unrolling amount, but this technique is no help in
doing so. We can try to extract a smaller pattern, but there is no guarantee that one can be found.
This technique also suffers from the fact that some unrollings are inherently better than others, as
graphed in figure 22.

On the other hand, if the unrolling amount is fixed beforehand (perhaps by other constraints),
this is an effective way of determining what loop common expressions to use. It also illustrates the
advantages of the non-optimal common subexpression elimination heuristics. For instance, when a
width-5 periodic stencil is 8-unrolled, 17 operations are required. No loop common expressions exist
if these are arranged as a block of width 6 = w + 1 and another of width 2. Non-optimal heuristic
are likely to arrange the computations so as to reveal at least one loop common expression, reducing
the cost to 16 combining operations per 8 results. Furthermore, the pattern of computations is
actually only 2 results wide and so we can see that such a large unrolling is not really necessary
after all.

Finding loop common expressions by unrolling and doing ordinary common subexpression elim-
ination can work, but the unrolling amount, either of the expression upon which common subex-
pression elimination is run or of the resulting loop, can be unmanageably large. Loop common
expressions do not naturally fall out of common subexpressions in unrolled loops. The technique
has the merit of applying familiar technology, but we will shortly see a method for finding loop
common expressions which is nearly as easy to implement and is conceptually simpler to boot.

34 CHAPTER 2. UNROLLING WITH COMMON SUBEXPRESSION ELIMINATION

Chapter 3

Loop Common Expression
Elimination

This chapter gives direct methods for eliminating redundant computation of loop common expres-
sions (expressions that appear in more than one loop iteration). This represents an improvement
over the unrolling and common subexpression elimination method of chapter 2, which could only
reduce the number of redundant computations per logical loop iteration, not eliminate them en-
tirely. Loop common expression elimination is simple to implement, runs efficiently in a compiler,
and is always applicable. The method achieves its greatest incremental gains at small unrolling
amounts; if large unrollings are permissible, other methods are superior (see, for example, sec-
tion 2.4.1 on page 32). Even at small unrollings, loop common expression elimination is nearly
as optimal common subexpression elimination at high unrollings. Application of loop common
expression elimination requires the use of a modest number of extra temporary variables; fewer
temporaries are required by this method than by unrolling.

Loop common expression elimination is similar to common subexpression elimination in that
after an expression’s first appearance, its value is placed in a temporary storage location and
retrieved whenever it is needed thereafter. Since it is cheaper to retrieve the value than to recompute
it, the resulting program is more efficient. Loop common expression elimination is a good method for
improving the running time of a parallel program when run on a machine with limited parallelism,
because different virtual processors which are emulated by the same physical processor can share
results without incurring any communication cost. This method can also speed up parallel programs
even when the virtual processor ratio is low, and it is applicable to some serial algorithms as well
(see section 7.3).

Computing and storing a value that can be used by the next loop iteration incurs space and
time costs. Extra space is needed to store values across loop iterations. The time cost comes
from two sources. First, the value may have to be moved to the storage location. Second, the
optimal way to compute the current loop iteration’s result may not compute the loop common
expression—it might associate operations differently, for example. While arranging that the loop
common expression is available for the next loop iteration causes extra work to be done, such costs
are typically more than offset by the work done by the previous loop iteration to help the current
one.

As an example, consider again the 5-element periodic stencil, exemplified by the window sum of
figure 2. It must be 6-unrolled in order to reduce the cost of combining operations to 2 per result by
unrolling and common subexpression elimination alone; figure 27 shows this. We can do just as well

35

36 CHAPTER 3. LOOP COMMON EXPRESSION ELIMINATION

By By By 3 B, B B Bz By By
. N\,
N
AN
@/@\@ & & @ﬁ\@
R

B
Rz R3 4 R5 R6 R7

Figure 27: The optimal combining operation cost achievable via unrolling a 5-element periodic stencil (such
as the window average of figure 2) is 2 per result, achieved by 6-unrolling.

By By B, B; B, Bs B, B; B, Bs Bg B
R2 R3 R4 RS
Figure 28: Two physical iterations of a 2-unrolled 5-element periodic stencil; each of the physical iterations
contains 2 logical iterations and so computes 2 results. B3 + B is a loop common expression, since it can
be used at both the physical iteration on the left and the one on the right. Bs + Bg is also a loop common

expression which can be used at the next physical iteration. When loop common expressions are taken into
account, the cost per result is 2 combining operations, just as in figure 27.

by 2-unrolling and using loop common expressions. Figure 28 shows the computation of 2 results;
this appears to require 5 operations. However, on the next loop iteration we can reuse the value
B3+ B, and avoid doing the figure’s leftmost addition. The number of combining operations, after
a single startup operation, is just 4 per 2 results, or 2 per result.? The number of registers required
to hold intermediate values is also decreased from 5 to 3. Figure 6 gives the code corresponding to
figure 28.

We now describe simple methods for finding and eliminating loop common expressions in scaling
operations, in base expressions, and in combining operations.

3.1 Finding patterns

Finding loop common expressions is difficult because the lexical expressions differ even though their
instantiations in different loop iterations are identical. To get around this difficulty, we temporarily
replace all (possibly shifted) instances of the index variable with a distinguished value. For instance,
the loop bodies of figures 1 and 2 become, respectively,

y[i]l = £() * g(£())

*Since By + B> and Bs + Bi need to be live simultaneously, 1 extra register-to-register move per physical iteration
may be needed; 4-unrolling eliminates it entirely.

3.2. SCALING OPERATIONS 37

for i = 2 to 398
sm[i] = (1/16) * r[i-2] + (1/4) * r[i-1] + (3/8) * r[i] +
(1/4) * r[i+1] + (1/18) * r[i-2]

Figure 29: Unoptimized code for convolution by the binomial filter of width 5, which is commonly used for
smoothing digital signals. Array r contains the input signal, and the smoothed result is placed in array sm.

and

newx[i] = (x[] + x[] + x[-] + x[] + x[1) / 5.

This representation makes it easier to find common expressions. Base expressions—in these cases,
(1) and x[i]—are then discovered by ordinary common subexpression elimination. Scaling oper-
ations are whatever is left after combining operations; ordinary common subexpression elimination
can identify which ones are shared.

The key to the methods discussed in this chapter is finding patterns in the input stencil. We
do not look for common expressions at particular distances; rather, we find common expressions at
any distance and use as many of them as possible.

We now discuss loop common expression elimination applied to scaling operations, base expres-
sions, and combining operations in turn. Optimization of these parts individually is conceptually
simpler than considering the computation as a whole.

3.2 Scaling operations

Once a stencil has been separated into base expressions, scaling operations, and combining opera-
tions, dealing with the scaling operations is quite straightforward. As in section 2.3.1, we initially
consider only aperiodic stencils with exactly two instances of a particular scaling operation. We
defer the optimization of base expressions to section 3.3 on page 40.

The algorithm is as follows. Allocate enough temporary storage locations to hold the values of
the scaling operation applied to the last d base values, where d is the number of loop iterations
between uses of the loop common scaling expression. This guarantees that the value which is needed
at the current iteration, which was computed d iterations previously, is still available. Treat the d
storage locations like a first-in first-out queue, storing a new value into each location after using its
old value. The only additional requirement is the addition of some startup code to fill the queue
before entering the loop. This method works analogously when a scaling operation is used more
than two times, as in the stencil («,0,0,a,0,0,0,a); a single queue still suffices.

In order to optimize several scaling operations at once, we create several queues and perform
the optimization on them individually. Figures 29 and 30 show the result of applying the method
to convolution by the binomial filter of width 5, whose stencil is <%, i, %, i, 11—6>

Several criticisms can be made of the code of figure 30. A minor one is that we cannot fill in
new array values until the old ones have been used (or safely moved elsewhere), which results in the
use of 2 extra temporary variables s1 and s2. These variables are not necessary in this particular
example, because the code scheduler can reorder the computations to require no more temporaries
than (the best scheduling of) the unoptimized version of this loop. An extra temporary and/or
register-to-register move is sometimes required; it can be eliminated by expanding the size of the
array by one element. (See section 3.3.1 on page 40 for a discussion of when and how to adjust the
array size.)

38 CHAPTER 3. LOOP COMMON EXPRESSION ELIMINATION

t16[0] = (1/16) * r[0]
t16[1] = (1/16) * r[1]
t16[2] = (1/16) * r[2]
t16[3] = (1/16) * r[3]

t4[0] = (1/4) =* r[1]
t4[1] = (1/4) * r[2]
i16 = 0
i4 =0
for i = 2 to 398
s1 = (1/4) * r[i+1]
s2 = (1/16) * r[i+2]
sm[i] = t16[i16] + t4[i4] + (3/8) * r[i] + s1 + s2
t4[i4] = si
t16[i16] s2
i4 = (i4 + 1) mod 2
i16 = (i16 + 1) mod 4

Figure 30: Elimination of loop common scaling expressions in the code of figure 29. The scaling operations

11—6 and % are used aperiodically with dig = 4 and ds = 2. The arrays t16 and t4 act as queues, holding

previous results of the scaling operations until they are needed.

A more significant complaint is that for each division saved, we have introduced an array
reference, an addition, and a modulus reduction. The additions can be eliminated by performing
the modulus reductions directly on the loop variable i. (When the modulus is a power of 2, as
in this case, the modulus reduction can be replaced by a bitwise and operation.) Also recall that
the scaling operation could be a function call or other expensive operation(s) and so its cost could
swamp the array overhead. The cost of the array-accessing operations need not be a worry, as the
next section show how to eliminate them.

3.2.1 Unrolling to scalarize arrays

This section presents a method, based on unrolling and ordinary compiler optimizations, for chang-
ing an array used as a queue into a set of scalar variables. An array is a convenient queue representa-
tion because the code for each loop iteration is identical and no unrolling is required. Nevertheless,
temporary variables are preferable to an array because they can be kept in registers and carry no
overhead for accessing or storing, and no index variables need be maintained. The disadvantage of
using a set of scalar variables is that each temporary variable holds the value of a particular lexi-
cal expression, so different instantiations of a loop common expression may be placed in different
variables.

The simplest way to maintain a queue with a set of registers is to arrange them in a chain and
shift live values forward when the first element is no longer needed. In figure 30, such code would

look like

3.2. SCALING OPERATIONS 39

i1t6 = 0

for 1 = 2 to 395 step 4 for i = 2 to 395 step 4
... = ... tie[ile6] = ... t16[0]
t16[i16] = ... tie[o0] =
i16 = (i16 + 1) mod 4
... = ... tie[ile6] ... Loo= ... ti18[1]
t16[i16] = ... t16[1] =
i16 = (i16 + 1) mod 4 =
... = ... tie[ile6]o = ..o t1e[2]
t16[i16] = ... t16[2] =
i16 = (i16 + 1) mod 4
... = ... tie[ile6] = ... t18[3]
t16[i16] = ... t16[3] =

i16 = (i16 + 1) mod 4

Figure 31: An example of scalarizing an array by unrolling the code of figure 30. Since the value of 116 is
0 at the beginning of every physical loop iteration, constant folding can convert the loop on the left side to
that on the right. Then the array elements, which are not used or set elsewhere, can be placed in registers
or changed into temporary scalar variables.

. t16_0 ...

t16_0 = ti16_1

t16_1 = t16_2

t16_2 = t16_3

t16_3 = al[i+2] / 16
. t16_3 ...

Each variable has a fixed meaning—for instance, t16_1 contains the third most recently com-
puted value; that value will be reused by the next iteration. The d temporary locations can be
allocated in registers; the array implementation used d locations in main memory. There is no
array reference overhead, but d — 1 register-to-register moves are used per physical iteration. The
register-to-register moves can be eliminated entirely by w-unrolling, where w > d, though then
(u mod d) + d temporary variables are required; this is d iff d divides u.

A more direct way to eliminate array referencing and register-to-register move operations is to
unroll the code of figure 30 and apply standard optimizations. Figure 31 shows part of the unrolled
code before and midway through optimization; we have concentrated on the 4-element array t16.

Scalarizing arrays is an underappreciated but highly valuable effect of loop unrolling. When
the unrolling amount is a multiple of the array size, the array references become compile-time
constants. The compiler can treat each array reference as a variable whose home location in the
store is known, just like any other local variable.> The resulting code should be exactly the same
as when scalar temporaries were used in the first place, whether or not the entire array fits in the
machine’s registers.

If the unrolling amount is not a multiple of the array size, the array can be scalarized by
expanding the array until its size divides the unrolling amount. Regardless of how big this makes
the array, constant folding and liveness analysis reduce the number of storage locations required to

®Determining that no other program commands read or write the storage location is made more difficult if the
array is declared globally or the language permits arbitrary pointer manipulations.

40 CHAPTER 3. LOOP COMMON EXPRESSION ELIMINATION

(u mod d) + d, the same number as are required in the register case. There is never any real reason
to use temporaries instead of arrays as the queue abstraction, since arrays can be conveniently
resized and both methods usually result in the same machine code after optimization. Temporary
scalars should be used, however, if the unrolling amount is constrained to be small and the queue
size is just a little larger than that, in which case the overhead of temporary scalars is less than an
array’s would be.

3.3 Base values

Base values are maintained analogously to scaled values: the last several values are remembered so
that each base expression need only be evaluated once. In this section we discuss why loop common
expression elimination should be performed on base expressions last, why recursive application of
loop common expression elimination is worthwhile, and when and how to change the sizes of the
queues used for loop common values.

Base value optimization is performed after scaled values are optimized because the scaling
optimizations may reduce the number of base values that need to be maintained. Once a scaled
value is computed, the base value may not need to be remembered—only the scaled value need
be stored. Thus, the space requirements for optimizing both base and scaled values can be little
or no more than those for optimizing base values alone. For instance, in the binomial stencil
<11—6, i, %, i, 11—6>, although each base expression appears in 5 logical iterations, it only appears in 3
iterations of the loop of figure 30, because each scaling operation is applied to each base element
only once. We previously saw this optimization on page 22 of section 2.3.2 as a reduction in the
number of temporary variables required to take full advantage of an unrolled loop. Here the same
savings apply, namely 1 storage location for each loop common scaling operation at the left edge
of the stencil.

Recall that the base values of a stencil may involve the loop iteration variable more than once.
On page 12 we noted that when optimizing we should treat the stencil (2,3,2,2,3,2) exactly like
(1,0,0,1) with base value 2y;_;+3y;4+2y,41. In this case, computations of the base values themselves
contain loop common expressions: the base values at elements 22 and 24 are 2y.; + 3922 + 293
and 2yas3 + 3ys4 + 2ys5, respectively. When computing these values, we can share not only the y;
expressions, but also some of the multiplications: in other words, this base expression is itself a
stencil! After a stencil computation has been split into its base expressions and scaling operations,
it pays to perform loop common expression optimization on both the base expressions and the
scaling operations. The base expressions of (2,3,2,2,3,2) can be optimized. An example whose
the scaling operations can be optimized is h(g(f(¢)))+ g(f(i+ 1)) + f(i + 2), in which the base
expression is f(-) and the scaling operations are (h(g(-)),¢(-),-). A part of the pattern of scaling
operations may yield a new base expression—in this case, the first two scaling operations can be
considered a stencil with base expression ¢(-) and scaling operations (h(-), -).

3.3.1 Adjusting the sizes of temporary arrays

This section discusses tricks for adjusting the sizes of the queues used to maintain temporary
values from iteration to iteration. Changing the array size to be compatible with the unrolling
amount can permit the array to be scalarized, significantly reducing overhead (section 3.2.1). The
technique is equally applicable to scalar variables as to an array representation: in the scalar case,
the savings are primarily eliminated register-to-register moves. Naturally, all of these optimizations

3.3. BASE VALUES 41

t1 = y[0]
t2 = y[1]
t3 = y[2]
t4 = y[3]

for i = 4 to 92 step 4
x[i] = t1 + t3 + t4 + y[i+4]
t1 = y[il
x[i+1] = t2 + t4 + t1 + y[i+5]
t2 = y[i+1]
x[i+2] = £3 + t1 + t2 + y[i+6]
t3 = y[i+2]
x[i+3] = t4 + t2 + t3 + y[i+7]

Figure 32: Computation of stencil (1,0,1,1,0,0,0,0,1) using a queue of length 4. (A queue of length 3 also
suffices, but more complicated code results and a temporary variable must be used.) Two array references
are required per result; to reduce that number to one, the queue must have length 8.

are only worthwhile if repeating the computation is more expensive than maintaining the queue;
reducing the queue maintenance cost makes the method of loop common expression elimination
more attractive and applicable to even more expressions. We start by discussing maintaining large
arrays, then extend our techniques to deal with several arrays at once.

When an array is large (compared to either the maximum unrolling amount or the number
of registers available), it can pay to reduce its size to cover only some of its uses. For instance,
consider the stencil (1,0,1,1,0,0,0,0,1). It could be worthwhile to forget the base value after the
rightmost computation, but after computing it for the next time, to then remember it for 3 more
loop iterations so that it can be reused twice. Figure 32 illustrates the result. In this case, to
eliminate one base value computation requires a queue of length 1, to eliminate a second requires
an additional 2 queue elements, and to eliminate a third requires 5 more than that.

The cost of queue maintenance is not linear in the number of storage locations. The cost is
increased significantly if the number of registers is exceeded (because some values must be spilled
and later reloaded from memory) or if the maximum permissible unrolling is exceeded (because then
register-to-register moves or array references are unavoidable). We also saw that if the unrolling
is more than, but not a multiple of, the queue size, then eliminating register-to-register moves or
array references may require up to twice as many storage locations as the queue size.

Another way to reduce the number of storage locations and the unrolling required to elim-
inate queue operations is to use two smaller queues rather than one large queue. The stencil
(1,0,1,0,0,0,1,1,1), for instance, could have its storage cost reduced to 4 locations while comput-
ing the base value only twice by using 2 arrays, each of size 2.

If exterior constraints prevent us from 8-unrolling but permit us to 4-unroll, we can still eliminate
all repeated computations. We would use 2 queues of size 4 and at each logical iteration move a
value from the head of the first queue to the tail of the second one. The additional cost is 1
register-to-register move per logical loop iteration. We can even split arrays more than once, but
the returns diminish quickly. If the original stencil had size d + 1 and the original queue of size d
is split into [d/u]| queues of size u (the unrolling amount), then the per-physical iteration cost is
u([d/u] — 1) register-to-register moves. The v = d/2 case is illustrated in figure 33.

Sometimes it is desirable to make an array slightly larger or smaller. For instance, we may want

42 CHAPTER 3. LOOP COMMON EXPRESSION ELIMINATION

t1 = y[0]
t2 = y[1]
t3 = y[2]
t4 = y[3]
ri = y[4]
r2 = y[5]
r3 = y[6]
r4 = y[7]

for i = 4 to 92 step 4
nx = t1 + t3 + t4
tl = rl
rl = y[i+4]

x[i] = nx + r1

nx = t2 + t4 + t1
t2 = r2

r2 = y[i+5]

x[i] = nx + 2
nx = t3 + tl + t2
t3 = r3

r3 = y[i+6]

x[i] = nx + r3

nx = t4 + t2 + t3
t4 = r4d

r4 = y[i+7]

x[i] = nx + r4

Figure 33: Computation of stencil (1,0,1,1,0,0,0,0,1) using two queues of length 4 rather than one of
length 8. No repeated computation occurs, but use of the smaller queues requires the extra register-to-
register moves t: = ri.

to adjust the array size to be the same as that of another array (so that we can use a single index
into both) or the same as the unrolling (so that it can be scalarized). Changing the array size may
also reduce other costs—for instance, if the size is a power of two, then modulus operations can be
performed with a single bitwise operation.

Increasing a uniform array’s size is trivial: just add the extra elements, as mentioned in sec-
tion 3.2.1 on page 39, and then some of its values are dead across the loop iteration boundary.
Decreasing the array’s size, on the other hand, makes a value unavailable. We can either recom-
pute it when it is needed or remember it until then, which requires another queue and an operation
to move the value from one queue to the other; in the simplest case, when we only need to decrease
an array’s size by 1 element, the entire additional cost is 1 register-to-register move per logical
iteration. Significantly shrinking an array can be costly.

A final technique, for use as a last resort and only when the queue representation is an array,
is to partially unroll and then convert a single array into two interleaved ones. For instance, most
of the physical loops in this paper are unrolled by at least 2, so we could use separate arrays for
odd and even values. This helps to reduce the modulus. For instance, if the modulus is 2, then the
add-and-modulus operation can be expressed as a single arithmetic operation: if i € {0, 1}, then

3.4. COMBINING OPERATIONS 43

((i 4+ 1) mod 2) = 1 — ¢. Further unrolling would be even cheaper, but might not be possible.

3.4 Combining operations

Periodic stencils offer an opportunity for loop common expression optimization of combining op-
erations. For stencils of width w, combining operation costs decrease from w — 1 to no more than
2 |log, w| per result, even without unrolling. For w-unrolled loops, the upper bound is less than
44 2(log, w)/u combining operations per result. Meeting these bounds requires w storage locations.
We assume that v < w, because when the unrolling is very large, we can do better with the tech-
niques of section 2.3.3, which discover no loop common combining operations. We sometimes used
large unrollings to show when unrolling with common subexpression elimination does well, but the
constraint that u < w is reasonable if w is large. We further assume that u = 2’ for some integer
?, because if u is not a power of 2, the storage requirements become excessive and the operation
bound also increases somewhat.

We first discuss the combining operation costs, then the storage requirements, of the code
produced by our algorithms; we also prove the bounds claimed.

3.4.1 Combining operation costs

The algorithm for non-unrolled loops is extremely simple: we compute each result by building a
minimum-height binary tree, associating the largest binary subtrees leftward, left-associating the
combining operations, and reusing computations wherever possible. This arrangement makes the
number of distinct heights at which nodes are found (the number of levels in the tree) equal to the
conventional definition of the tree’s height (the length of the maximum-length path from the root
to a node). If at least 2 subexpressions represent the combination of 2 values, for any i, a queue is
allocated for them, so they can be reused. Using a minimum-height tree minimizes the number of
results that must be remembered and so the number of queues. Naturally, we must fill the queues
before the first loop iteration.

Theorem 4 By using a minimum-height binary tree and loop common expressions wherever pos-
stble, a 1-unrolled periodic stencil of width w can be computed using as many combining operations
as the number of levels in the tree, which is bounded between log, w and 2 |log, w|.

Proof: We can establish both bounds on the number of levels in the tree by considering the
binary representation of w. Summing 2° values requires a tree with 4 levels of operation nodes.
We can sum 2/ values, for any j < ¢, without using any additional levels (all such sums are loop
common expressions when the 2-element sum has already been computed).

Summing w values requires b — 1 + by — 1 operations, where the binary representation of w
has b bits, b; of which are set to 1. If w = 2° the operation total is ¢ = log, w; otherwise
b = [log, w]| = |log, w| + 1 and b; < b, which gives us the upper bound.

The number of combining operations required per result is equal to the number of tree levels.
Exactly one combining operation is performed per level because we presumed that, if there was more
than one operation at a particular level the values were maintained as loop common expressions. l

If the loop is u-unrolled, we can share even more operations without jeopardizing the use of loop
common expressions. The following simple algorithm combines two previously-seen algorithms in
a straightforward way.

44 CHAPTER 3. LOOP COMMON EXPRESSION ELIMINATION

BO Bl B2 BS B4 B5 B6 B7 BS B9 BlO Bll

SN NS NS
\
N

@
Ry R,

Figure 34: Optimizing combining operations by eliminating loop common expressions from a 2-unrolled
periodic stencil of width 11. The dotted circles are base elements which must be computed at this (physical)
loop iteration, and the circles containing plus signs represent combining operations which must be performed
at this iteration. Empty circles are values that have been computed by a previous iteration. The total cost
per 2 results is 2 base expression evaluations and 6 combining operations.

First, sum the centermost ¢ = w—u+1 operations, taking advantage of loop common expressions
where possible. Call this value C'. This sum (but no larger one) is a subexpression of every result, so
each result is now a sum of u subexpressions. Associate those sums as advantageously as possible
according to the methods of section 2.3.3.3; it is possible to take advantage of a few more loop
common expressions at this step.

Figure 34 illustrates the method for w = 11 and u = 2, and figure 35 gives a more intricate
example in which w = 29 and u = 8. (These numbers are not outrageously large; some vision
applications average 64 x 64 blocks of pixels [112].) If u is not a power of 2, then the previously-
computed values may not conveniently line up with the ones used at this iteration. Since we build a
binary tree, most results can be used twice without going through the contortions of the algorithm
for finding loop common expressions which was given in section 2.4.2 on page 33 and which has no
guaranteed performance lower bound anyway.

Theorem 5 The algorithm given above computes u w-element periodic stencil results using 4u +
2 [log,(w — u +1)| — 2log, u — 4 combining operations.

Proof: Theorem 4 showed that we can compute C' with 2 [log, ¢| operations by using loop
common expressions and a minimum-height binary tree with ¢ = w —u+ 1 leaves. We require a few
more operations than that in this case, however. Because the loop is u-unrolled, none of the values
depending on the rightmost u base values have been computed yet. This means that computing
the first log, u levels of the tree requires u — 1 operations; the other (up to) 2 [log, ¢| —log, u levels
require 1 operation each.

We have now reduced each result to the sum of u subexpressions. Theorem 2 on page 29 showed
that we can compute u overlapped u-element sums with 3u — 4 combining operations. In fact, if

3.4. COMBINING OPERATIONS 45

—y—-1—

Figure 35: Loop common expression elimination applied to a periodic stencil with width w = 29 and unrolling
u = 8. Dark nodes are computation done at this physical iteration; light nodes are loop common expressions
that need not be recomputed. Combining operation costs are noted at the sides of the diagram.

we have associated C' so that the largest complete binary tree is on the far right or far left, then
(log, u) — 1 of the combining operations are loop common expressions, which reduces this part of
the cost to 3u — 3 — log, v operations.

The total operation count for the u results, then, is

(u—1)4 (2 log,] —log, u) + (3u — 3 —log, u) = 4u + 2 |log, c| — 2log, u — 4

combining operations, which proves the theorem. It is easy to see that this is less than 4+2(log, w)/u
operations per result, which verifies the claim made at the beginning of this section. B

We conjecture that by slightly modifying the algorithm and performing a more sophisticated
analysis, the bound can be reduced by approximately 1 operation per result, making it even more
competitive with common subexpression elimination, even at larger unrollings.

3.4.2 Space requirements

This method appears to require a large number of temporary storage locations, because we remem-
ber base values, plus values at |log, u| — 1 tree levels. In fact, a total of w locations can store all
the base values and results of combining operations that will be reused. (We might have required
w — 1 storage locations to hold the base elements alone.) Furthermore, these w storage locations
can be arranged as a single queue (or as several smaller ones, if desired).

The key to reducing the storage requirements to a single w-element queue is noticing that,
because we associated the largest of the b, binary trees to the left, every value is the left argument
of only one combining operation. Furthermore, after that use, the value is not used by subsequent
physical loop iterations and so need no longer be remembered as a loop common expression. For
instance, in figure 34, after Bs + Bs has been used to compute (Bs + Bs) + (B7 + Bs), it will not
be needed again, so we can use one storage location for both of these values. (In fact, this can be
the storage location that originally contained By, which is not used again after the computation
of Bs + Bgs.) Despite the replacement of some old queue values, the (log, u) — 1 loop common
expressions that will be used on the left side of the physical loop will be available.

46

CHAPTER 3. LOOP COMMON EXPRESSION ELIMINATION

Chapter 4

Loop Differencing

This chapter introduces the method of loop differencing for optimizing the combining operations of
periodic stencils. The method is easy to implement, and the resulting code requires only 2 operations
per result, no unrolling, and no extra temporaries (except any used to maintain base values).
While loop differencing requires less unrolling and results in fewer operations per result (when
width w > 3) than our other methods for exploiting loop common expressions, loop differencing
is not without its drawbacks. Loop differencing requires that the stencil combining operator be
associative and commutative and have an inverse. The method can be numerically unstable, and it
is applicable only to periodic stencils and certain aperiodic ones with distributive scaling operations.
Loop differencing has some similarities with iterator inversion [44, 52, 53, 104, 105]; see section 8.3
on page 75 for more about iterator inversion.

Adjacent logical iterations of a periodic stencil (one whose combining operations form a re-
peating pattern) can theoretically share all but one of each of their computations, but fixing a
particular association of the operands prevents most pairs of iterations from sharing that many.
For instance, consider the 7-element periodic stencil (1,1,1,1,1,1,1), which we represent as z; =
Ui + Yiz1 + Yizo + Yins + Yiva + Vizs + Yirs. After computing .., we could compute x5, with only 1
operation if we had associated x4, as

Too = (Y22 + Yoz + Yoa + Y25 + Y26 + Y27) + Yos -

Similarly, we could compute 253 with only 1 operation if the previous sum had been

Too = Yoo + (Y23 + Y2a + Y25 + Y26 + Y27 + Y2s) -

However, we cannot start from x5 and compute both z,; and z.3 with 1 operation apiece, because
T99 was computed one way or the other (or neither); it could not have contained both (ys2 4 y23 +
You + Yo5 + Yoo + Yor) and (Yas + Yoa + Yos5 + Y26 + Yor + y2s) as subexpressions. This is the crux of
the proofs in section 2.3.3.3 and appendix A that width-w periodic stencil computations require at
least 3(w — 1)/(w + 1) combining operations per result.

When computing a;, we would like to have computed, as a subexpression of z;_;, the sum of
the leftmost 6 (more generally, w — 1) elements needed by #;, so the new result can be calculated
with a single operation. If the previous iteration didn’t compute the sum of those w — 1 elements,
we can compute it ourselves, then pay 1 extra operation to get this iteration’s total by adding in
the element we don’t have in common with the previous iteration. Computing the w — 1-element
sum could take up to w — 2 operations, depending on how the previous iteration’s operations

47

48 CHAPTER 4. LOOP DIFFERENCING

rs = y[0] + y[1] + y[2] + y[3] + y[4] + y[5]
for i = 0 to 94
rs = rs + y[i+6]
x[i] = rs
rs = rs - yl[i]

Figure 36: Loop differencing applied to the stencil (1,1,1,1,1,1,1). Rather than computing each result from
scratch, the difference between two adjacent results is added to one result to compute the next.

were associated. We will see how to compute it efficiently by working backward from the final
result rather than forward from subexpressions that have already been computed. This technique
computes the w — l-element sum with a single operation, leading to a total cost of 2 combining
operations per result.

4.1 Inverting the combining operator

Even if we did not compute the sum of the w — 1 shared summands as a subexpression of the
previous result, we can find its value with a single operation by applying the following identity,
which we have illustrated using the 7-element stencil introduced earlier in this chapter.

i =Y+ (Yixr + Vivo + Yizs + Yiza + Yivs + Yivs)
T — Y= (Yirr + Yivo + Yirs + Yiva + Virs + Yivs)
Tig = (Yirr + Yivz + Yirs + Yiva + Yirs + Yivs) + Yiyr
Tipr = (T — ¥i) + Yigr

This arithmetic identity holds regardless of how z; was actually calculated, if the combining operator
(here, +) is associative and commutative and has an inverse. Commutativity and the inverse were
both required in order to get from the first line to the second. Applying an inverse can lead to a loss
of precision; see section 4.3 for a discussion. Some combining operations—such as the minimum
operator—have no inverse.

Programs embodying this idea compute a running sum into which new values are added and
from which old ones are subtracted. Figure 7 on page 8 shows the code produced by loop differencing
for a 5-element periodic stencil.

We have used a subexpression of the previous result, but one that was not computed in the
course of producing that result. To create this subexpression, it proved cheaper to work backward
from the final result than forward from its subexpressions that had already been computed.

This is interesting because we have used an inverse to go backward, something which is rarely
worthwhile in straight-line code. For instance, to compute

X +Y
Y + Z

a
b

where X, Y, and Z are arbitrary expressions, it is always more efficient to use

=Y
a= X +t
b=t + Z

4.2. DIFFERENCING 49

than

t =X
a t +Y
b=a-t+ 7

and so ordinary common subexpression elimination algorithms do not even attempt this transfor-
mation. This use of the inverse is only useful when a has been computed at some other location
in the program, but Y has not, and the extra cost of computing X (and doing a subtraction) is
less than the cost of computing Y. Most compilers would try to store the value of ¥ while a was
being computed, and if that was not possible, would give up on performing common subexpression
elimination on the computation of b.

4.2 Differencing

A perhaps more intuitive way to determine how to obtain one result from another is by symbolically
computing the difference between the two results. This method gives the loop differencing method
its name, but in most cases we need not resort to it, for we can simply recognize patterns in the
stencil’s scaling operations. Computing these differences is more general than pattern-matching,
however, and can be used when it fails.

As an example of the method, we can compute the difference between two iterations of the
7-element window sum as follows:

Tiy1 = Yivr + Yiso + Vixs + Yiva + Yigs T Yigve + Yigr
- i = Yt Yip1 T Yiso T Yits + Yita + Yivs + Yizve

Tip1 — Ty = — Y + Yigr

We can perform just 2 operations to get from one result to the next.

In this case (and in the examples that follow) we found a good result by comparing a loop
iteration with the immediately preceding one. In general the method requires examining multiple
iterations. This can be expensive, though finding good base elements helps, since in most cases
shifting by the width of a base element is most advantageous.

4.2.1 Aperiodic stencils

Loop differencing is applicable not only to periodic stencils, but also to some aperiodic ones, if the
scaling operation is distributive over the combining operation. Distributivity permits base values
to be broken into parts; the scaling operation is applied to each part and the resulting values are
combined. Weighted window sums—the most common sort of stencil—satisfy this property; any
linear function satisfying the equation f(z + y) = f(x) + f(y) distributes over addition.

We now examine a few types of aperiodic stencil to which loop differencing is applicable. These
examples are important enough, and common enough, that recognition of them should be built
into a compiler, and symbolic loop iteration differencing would be performed only if none of the
built-in patterns were recognized. Like any optimization, in most cases symbolic loop differencing
is not applicable, so other optimizations such as loop common expression elimination should also
be attempted.

The following diagrams show only scaling operations, not base or combining operations, for
clarity.

50 CHAPTER 4. LOOP DIFFERENCING

4.2.1.1 Arithmetic sequences

Consider the stencil (5,4,3,2,1), whose scaling operations (coefficients) form an arithmetic se-
quence. When we compare two iterations with one another, we get the following result:

The difference looks no easier to compute than the results themselves. Although it includes
only 1 non-unity scaling operation, it has 6 summands, which is more than the results do. All
is not lost because the difference contains loop common expressions and so can be computed ef-
ficiently. In particular, the difference can be split into the stencils (=5) and (1,1,1,1,1). The
former requires 1 scaling operation, and loop differencing permits us to compute the latter with
2 combining operations per result.® Adding these 2 stencil sums to the previous result takes 2
more combining operations. Our total cost per result (after base values) to compute (5,4,3,2,1)
is not 4 scaling operations and 4 combining operations but 1 scaling operation and 4 combining
operations. Obviously, this trick works for any arithmetic sequence, regardless of the first value or
the (constant) difference between adjacent coefficients.

We can compute an ascending and descending arithmetic sequence in a similar way, except that
the extra scaling and combining operations are not needed:

N W

2 1
1

NN
NN

1 2 4 4
-1 2 3 5 3
-1-1-1-1-1 1

1 1 11

The stencil (1,2,3,4,5,5,4,3,2,1), which has no distinguished middle element, is no more difficult
to compute than this one. Either requires just 6 combining operations to compute a new result:
2 each to maintain the values of the stencils (—1,—-1,—1,—1,—1) and (1,1,1,1,1), and 2 more
to add those values to the previous result. We can do even better by noticing that the best way
to optimize the stencil (-1,—-1,-1,—-1,-1,1,1,1,1,1) is like (—1,0,0,0,0, 1) with base expression
(1,1,1,1,1). This requires no more temporary storage locations than the previous method but
saves an additional 2 combining operations per result.

We saved several combining and scaling operations by considering the difference between full
results rather than splitting (1,2,3,4,5,4,3,2,1) into two smaller stencils, each an arithmetic se-
quence, and optimizing them individually. More to the point, using loop differencing is significantly
better than using loop common expression elimination to prevent reapplication of the scaling op-
erations 2, 3, etc. A compiler should always check whether loop differencing is applicable before
attempting loop common expression elimination.

A practical use for weighted window sums with coeflicients in two arithmetic progressions is data
windowing. Convolving with a square window results in “leakage” because the window turns on
and off rapidly and so has substantial high-frequency components. The leakage can be reduced by
using a window function which changes more gradually from zero to a maximum and back to zero.
One recommended function is the N-element Parzen window (or the similar Bartlett window) [108],

5A stencil of this size can also be optimized to 2 combining operations per result by using unrolling (chapter 2)
or loop common expression elimination (chapter 3).

4.2. DIFFERENCING 51

which ramps linearly approximately from 0 to 1 and back down again:

2j — (N —1)

0<3<N-1.
N+1) >7=>

4.2.1.2 Geometric sequences

Stencils whose coefficients form a geometric sequence succumb to the same sort of analysis, except
that instead of symbolically subtracting a previous result from the one we wish to compute, we
perform elementwise division. For instance, consider the stencil (a°,a*, ¢, a?, a):

We have enclosed in parentheses the results which cannot be considered (since both dividing by
zero and dividing zero are meaningless in this context). We can compute a new result with only 2
combining operations and 2 scaling operations:

In this figure, “xa” represents a single scaling operation applied to the entire sum. This method
works for any a > 0, including negative and fractional values.

If the stencil’s last scaling coefficient is not a, then 1 more scaling operation per timestep is
required. (This cost could be absorbed into the cost of computing the base values, but it must be
paid at some point.)

If multiplication by 1/a is preferred to multiplication by @ (for instance, the latter is inexact
because @ = 1/3), then the stencil (¢, a* a®,a? a) can be treated as (b, b, b, b*,b), where b = 1/a,
and processed from right to left instead of from left to right.

We saw on page 50 that when a stencil’s coefficients contain ascending and descending arithmetic
sequences, similar methods to those used for simply ascending or descending sequences could be
used to extract even more performance. Differencing can indicate when a stencil’s coefficients
form an ascending and descending geometric sequence, but there is no simple-to-compute value
which can be added to or multiplied by a previous result in order to obtain a new one. The best
method is to split the stencil into two simple geometric sequences and optimize them separately.
Although it may seem that we are giving up the opportunity to avoid some recomputations (for
instance, of multiplication by «? in (a,a?, ¢, a*, a3, a?, a)), we save much more than we would have
by optimizing those operations—in fact, no scaling by a? need be done explicitly!

Practical examples of stencils whose coeflicients form a geometric sequence abound. Most phys-
ical systems suffer exponential decay as exemplified by the unit response of a resistor-capacitor
circuit to an impulse of current or voltage; such circuits are frequently used to model other sys-
tems [117, 119]. The circuit’s decay is mirrored exactly by such a stencil, except that subtraction
of the last term («® in our example) is an artifact of the limited window size and the desire for

52 CHAPTER 4. LOOP DIFFERENCING

quick parallel evaluation. It is interesting that in this example, the serialized code is more natural
and more like the system being modeled than the parallel implementation.

Convolution by the ascending-and-descending geometric stencil h[n] = al”! is used to smooth
digital signals. It also provides an excellent approximation to the blurring effect of an imperfect
lens or out-of-focus imaging system [69, 119].

4.3 Numerical stability

The chief disadvantage of the loop differencing method is its potential numerical instability. In
practice, instability is not a serious problem, because it occurs only when one base value is much
larger than the sum of the others and when inexact floating-point operations are used. Loop
differencing guarantees exact results when exact operations such as integer addition and logical
operations are used.

Numerical instability has two sources. First, some mathematical methods are not guaranteed
to converge; certain inputs produce an incorrect answer or no answer at all. A simple example is
Newton’s iterative method r, .y = 7, + f(rn)/f(rn) for finding a root of an equation [45, p. 128],
which does not converge for the function f(z) = /2 when the initial estimate r, = £1. The second,
more interesting, type of numerical instability results when the computer implementation of a well-
defined mathematical method produces incorrect results because of the computer’s finite precision
or approximations to ideal mathematical operations. As an example, consider calculating all the
non-negative integer powers of the golden ratio ¢ = (v/5 — 1)/2. Since ¢"+! = ¢ —¢"~!, the results
can be obtained iteratively by subtraction, without any exponentiation. However, this method gives
completely wrong answers by about n = 16 because of roundoff error and the admixture of the
other solution, (—y/5 — 1)/2, to the recurrence [108, p. 27].

We have shown that, if the combining operation is associative and commutative and has an
inverse, the code resulting from application of the loop differencing optimization produces the
same results as did the original, unoptimized code. (This is the definition of a correct optimization.)
Although reasonable computer implementations of such operations as floating-point addition and
multiplication are commutative, they are not necessarily associative or distributive and may not
have true inverses [87]. The IEEE standard [33, 70, 74, 75] guarantees commutativity, and a limited
form of associativity (to within rounding error) is provided by the inclusion of denorms [32, 34],
which ensure that —y = 0 iff z = y and that (y —) 4 returns y even if y — 2 underflows. As an
example of associativity failure, consider adding the author’s mass (67.7 kg) to the rest mass of a
proton (1.67 x 10727 kg), then subtracting out the author’s mass again. We would hope to be left
with the proton’s mass, but in fact on most computers we get

(1.67e-27 + 67.7) - 67.7 - 0.

This error is due to the computer’s limited precision, not to spontaneous proton decay [96].

Errors can be introduced by roundoff error (for instance, 1/3 might equal .33333333, which,
multiplied by 3, produces .99999999, not 1), by underflow (as illustrated above), or by overflow
(which is similar). The order in which operations are performed can have an important effect on
the final result.

In floating point additions and subtractions, roundoff error amounts to about half of the least
significant bit (call this quantity €) in the result. If the magnitudes of the operands and the results
are approximately equal, this is not too bad, and the order of the operations does not matter. When
nearly equal numbers are subtracted from one another, then the relative error can be increased even

4.3. NUMERICAL STABILITY 53

when the absolute error remains approximately the same [87, 108]; in the proton example above,
67.7 is a good approximation to 67.7 4+ 1.67 x 10727, but 0 is a bad approximation to 1.67 x 10727,
even though both approximation err by the same amount, 1.67 x 10727,

Even if the roundoff error for a particular sum is small, it can accumulate from repeated addi-
tions. After n results have been computed, the cumulative error (or drift) may be as great as 2ne
(suppose that all the subtractions were rounded down, while all the additions were rounded up).
If the roundoff occurs up and down with equal probability, the expected drift is only v/2ne, but
properties of the data or the machine implementation may produce the worse result [108]. This
problem can be solved by computing the sum from scratch (i.e., without inverses) every so often;
this brings the error back down to zero and resynchronizes the results with what they ought to be.
Another trick is to work in both directions (left and right) from wherever the result is known to be
accurate; this reduces the number of operations between resynchronizations by half.

54

CHAPTER 4. LOOP DIFFERENCING

Chapter 5

Implementation Issues

The methods of this report have been implemented in a compiler optimization phase which was
used to generate most of the examples in this report and the results presented in chapter 6. (The
implementation ordinarily produces C, but it was modified to produce pseudocode instead for the
examples of this report, in order to avoid burdening the user with C’s baroque for-loop syntax.)
The methods are simple, so we spend only a little time discussing our particular implementation
and leave the details to the reader. In the second part of the chapter we point out how these opti-
mizations interact with other compiler optimizations and present two alternative ways to compute
stencils, one taking advantage of distributivity and the other using scans to perform combining
operations.

5.1 Details of the implementation

Our improved common subexpression elimination algorithms, loop common expression elimination,
and loop differencing have been implemented in a prototype compiler. The compiler, which consists
of little besides those optimizations, peephole optimizations, and a back end which outputs C [84],
proves the practicality of these optimizations. While we discuss the compiler’s performance only
on stencil kernels, it operates on entire programs. Adding an existing C front end [81] would
have been easy, but it was more direct to use the compiler’s intermediate representation as input.
Construction of the compiler occupied only a few weeks of work.

The compiler is written in GNU Emacs Lisp [94, 91, 144] because of its excellent programming
environment. The intermediate language is a medium-level list-based multiple-arity representa-
tion; converting to a low-level representation such as three-address code would have obscured the
structure of the program and made the compiler’s job harder, not easier.

At present the compiler only recognizes stencils whose scaling operations are multiplications and
whose base expressions are array references; the combining operation can be arbitrary. Extending
the compiler to recognize arbitrary scaling operations would be straightforward. We have not done
so because the compiler is intended as a proof of concept, not a production-quality optimizer.

The input need not be in any stylized form (such as that required by the CM convolution
compiler [22]). An initial simplification step exposes stencil computations by folding constants,
consolidating expressions, distributing operations, ordering expression operands canonically, and
performing other peephole optimizations. The stencil may contain some base elements which are
not used at all, or some which are used without a scaling operation.

If a stencil computation is found, it and the containing loop are replaced by a higher-level

55

56 CHAPTER 5. IMPLEMENTATION ISSUES

construct, and optimizations are performed on this more tractable form. It explicitly lists the
scaling operations, the base expression, the combining operation, the relative offset of the result
(which we have ignored elsewhere in this report), and several types of information about the
context in which the result is used. Contexts such as £(-+2) are used to represent computation on
an unknown value, particularly for base expressions and scaling operations.

The compiler chooses base expressions that are as large as possible, following the rules given
in section 1.4 on page 12. The optimizer first attempts to apply loop differencing (only pattern
matching, not symbolic loop differencing, has been implemented to date). If loop differencing is not
applicable, loop common expression elimination is tried. If either of these methods succeeds, the
resulting code can either compute one result at a time (as most of our examples do) or reference
each source array element only once (as does the code of figure 15 on page 23), depending on what
resources are scarcest. If neither method succeeds, the stencil is computed naively.

5.1.1 Connections with other optimizations

It is important that standard compiler optimizations be linked with the ones presented in this
paper; the synergy results in better code than either could produce alone. For instance, peephole
optimizations and code reorganization can expose apparently unstructured computations as stencils,
and further simplifications are convenient midway through our optimizations to simplify the code
and to evaluate compile-time constants. Elimination of loop common expressions may enable a
compiler’s other optimizations to be performed more effectively (for instance, by removing false
data dependences); see section 7.3 for an example.

Optimizations which improve the use of the memory hierarchy, such as loop jamming or schedul-
ing loop iterations onto particular processors, often reduce the opportunity for optimizations based
on loop common expressions but can still be successfully applied after loop common expression
elimination.

5.1.2 Wide base elements

Most of the base elements in our examples contain only a single instance of the loop index variable,
but we saw on page 12 that it is more profitable to consider some stencils to have wider base
elements. For example, consider the periodic stencil (1,2,1,2,1,2,1,2), whose pattern has period 2
and occurs 4 times. As for any width-8 stencil, eight base elements must be remembered if none are
to be computed; when the base elements have period greater than 1, some of these base elements
overlap. Each result only combines 4 of the queue elements, however; we effectively have two
interleaved queues, each of size 4.

Figures 37 and 38 show code for this stencil before and after loop differencing optimization.
We have departed from our practice of giving pseudocode to show actual C input and output. For
clarity, some variables have been renamed, and some optimizations have been disabled in order to
make the code simpler. Some such disabled optimizations are:

1. Temporaries have been allocated as a two-dimensional array; ordinarily they would be stored
in a one-dimensional array (or, more commonly, in registers).

2. Modulus operations have been left in the program rather than being converted to bitwise
operations; ordinarily x % 4 would be transformed into x & 3.

3. Arithmetic operations performed modulo 2 have not been simplified; ordinarily (x + 1) % 2
would be transformed into 1-x.

5.1. DETAILS OF THE IMPLEMENTATION 57

int eight_elt()
{
int i;
for (i=minindex; i<=maxindex; i++)
R[i+2] = S[i] 2 x S[i+1]
+ S[i+2] + 2 * S[i+3]
+ S[i+4] + 2 * S[i+5]
+ S[i+6] + 2 * S[i+7];

+

¥

Figure 37: Original C code for the eight-element stencil (1,2,1,2,1,2,1,2). S is the source array, and R is
the result array.

4. Unrolling has been disabled in order to keep the code small; unrolling would reduce loop
overhead, scalarize arrays, and eliminate some arithmetic operations.

5.1.2.1 Partial patterns

We can conveniently process stencils such as (1,2,3,1,2,3,1,2) whose last base element is incom-
plete. We use the entire base expression ((1,2,3) in this case) as our loop common expression, and
the code generated is nearly the same as it would have been if the last base expression had been
complete. Fach base expression is first used before it is fully computed, but the full base expression
(which will be used by one or more future loop iterations) is placed on the queue. This is a good
example of altruistic computation, since the full value placed on the queue is not used by the current
loop iteration. Figure 39 gives an example for the case when each base expression is computed all at
once; the details are similar when the code should refer to each expression containing a particular
loop reference (in figure 39, array references) only once.

5.1.3 Loop initialization

Since each loop iteration assumes that the previous iteration has computed some results and left
them in temporary storage locations, we must add initialization code to set up these variables for
the first few iterations.

The initialization code is trivial to compute: we simply run a modified copy of the main loop
for w — 1 iterations. The modified copy fails to store results, or even to compute them, but every
expression which is needed to compute a loop common expression is computed.

Figure 38 gives an example; although w = 4, the initialization loop runs 6 times because there
are two interleaved queues to be initialized.

5.1.4 Reassoclation

Section 2.3.3.1 showed that if a compiler is to discover common subexpressions effectively, the
parse of the source program must not be fixed ahead of time. In most existing compilers, however,
the common subexpression elimination phase operates on a binary tree representing one parse
of the input program; only common subexpressions made explicit by that particular parse will be
discovered. The result can be very poor code in certain important situations, such as unrolled loops.

58 CHAPTER 5. IMPLEMENTATION ISSUES

int diff_eight_elt()

{
int B[2][4] = { {0, 0, 0, 0 %},
{0,0,0,0%}3;
int RS[2] = { 0, 0 };
int i;
int thisshift = 1;
int thisoffset = 0;
for (i=minindex; i<=minindex+5; i++)
{
B[thisshift] [thisoffset] = S[i] + 2 * S[i+1];
RS[thisshift] += B[thisshift] [thisoffset];
thisshift = (thisshift + 1) % 2;
if (thisshift == 0)
thisoffset = (thisoffset + 1) % 4;
+;
for (i=minindex+6; i<=maxindex+6; i++)
{
RS[thisshift] -= B[thisshift] [thisoffset];
B[thisshift] [thisoffset] = S[i] + 2 * S[i+1];
RS[thisshift] += B[thisshift] [thisoffset];
R[i-4] = RS[thisshift];
thisshift = (thisshift + 1) % 2;
if (thisshift == 0)
thisoffset = (thisoffset + 1) % 4;
+;
}

Figure 38: Optimized C code produced by the implementation for the eight-element stencil (1,2,1,2,1,2,1,2)
after loop differencing. S is the source array, and R is the result array. Temporary arrays B and RS hold
the base values and the running sums. There are two running sums, one each for even- and odd-indexed
results, and also two four-element queues of base values. Most examples, though also produced by the
implementation, appear in a simpler pseudocode for clarity.

for i = ...
newbase = S[i+6] + 2 * S[i+7]
R[i] = (first queue element) + (fourth queue element) + newbase

newbase = newbase + 3 * S[i+8]
(Insert newbase onto queue.)

Figure 39: Pseudocode for evaluation of the stencil {(1,2,3,1,2,3,1,2), whose last base expression is incom-
plete. S is the source array, and R is the result array.

5.1. DETAILS OF THE IMPLEMENTATION 59

This section discusses the two general solutions to this problem: adding operators of arbitrary arity
to the compiler’s intermediate form or performing associative transformations on the input.

Actually, the problem is not always soluble. Reassociation might be illegal because the operators
are not associative or because the value of the expression could be changed by the transformation.
Some languages explicitly disallow reassociation in certain circumstances; for instance, a Fortran
compiler may cause the processor to “evaluate any mathematically equivalent expression, provided
that the integrity of parentheses is not violated” [13, sec. 6.6.4]. Therefore, a+b+c could be evalu-
ated as either (a+b)+c or a+(b+c), but neither of those may be substituted for the other. In some
cases, the situation is even worse than it appears. In the IBM X1 Fortran compiler, “The [VAST]
preprocessor rewrites the expression with additional parentheses to make the common expression
apparent to the compiler” [72, ch. 4]. In fact, this compiler requires this preprocessing step be-
cause “the compiler can [only] recognize. ..duplicate expressions [when] they are either coded in
parentheses or coded at the left end of the expression” [72, ch. 7]. The XL C compiler is similar [71].

Our implementation represents associative operators as nodes of unlimited degree [21, 98], and
the children of commutative operators are unordered: the intermediate form reflects the semantics
of the source program rather than those of the target machine. This makes sense because it
simplifies implementation of our optimizations, which are machine-independent but source-code-
dependent. A disadvantage of this method is that operations on variable-arity trees tend to be
slightly more expensive than those on fixed-arity trees in other parts of the compiler. The internal
representation of the list of a node’s children is similar to the internal representation of a supernode
or cluster [118] of binary nodes all representing the same operation, but the complexity is hidden
behind an abstraction barrier instead of being exposed to the compiler writer.

Another approach is to use the standard binary tree intermediate representation, but to permit
reassociation, such as transforming (a+b)+c into a+(b+c) in the hope that the latter form will
expose more common subexpressions than the former. Reassociation can have other benefits as well.
Transforming scalarl * (scalar2 * vector) into (scalarl * scalar2) * vector changes a
vector multiplication into a scalar multiplication [97], and transforming 11+(11+x) to (11+11)+x
removes a run-time addition entirely, since addition of two constants can be done by the compiler.
Often commutative as well as associative transformations are required in order to achieve these
gains. Simply ordering the operands canonically can cause common subexpressions to be missed,
and canonical ordering will not expose the common subexpression shared by a+c and a+b+c.

Reassociation is attractive because it can be easily integrated into existing compilers and ap-
plied only where desired. However, reassociation can be very expensive: for a particular ordering of
n operands, there are O((n — 1)!) associations. (There are n — 1 choices for the first pair, and then
we are basically associating n — 1 elements. Some of the (n — 1)! associations thus produced will
be duplicates, but not enough to reduce the asymptotic bound.) For each of these associations, a
common subexpression elimination algorithm must be run to determine how many common subex-
pressions that association exposes. The complexity can be reduced by using dynamic programming
or computing only the overall change in code cost caused by a small change in the association, but
the methods are still time-intensive. In addition, for any set of n operands, there are n! ways to
commute them before the associativity is even considered.

The PL.8 [15, 31] and Id [137] compilers perform reassociation of loop invariants to increase the
effectiveness of loop-invariant code motion. Since these expressions are typically very small, the cost
is small, but the speedups were not found to be dramatic either, for loop-invariant expressions [62].

60 CHAPTER 5. IMPLEMENTATION ISSUES

5.2 Alternative implementations

This section describes two other ways to optimize stencils. When the scaling operation distributes
over the combining operation, factoring out scaling operations reduces the number of scaling opera-
tions performed for aperiodic stencils to the same number that loop common expression elimination
achieves, and it is slightly simpler to boot. Scans can be used to evaluate periodic stencils and, if
hardware support is available, may be competitive with the methods we have presented.

5.2.1 Factoring scaling operations

When the scaling operations distribute over the combining operation, we can directly factor a
stencil to reduce the number of operations performed. For instance, the 5-element binomial stencil

(5,3, 2,4, 15) can also be viewed as & x (1,z,1), where 2 is 4 x (1,2,1); this form contains

? ? ? ?

0%1613743 Ssczlillfg operations. (Loop COInHllf)Il expression elimination structures this computation as
(:5,0,0,0,:=) 4 (5,0, %) + (2) and so also requires just 3 scaling operations per result.)

The resulting code is slightly more straightforward than that produced by loop common expres-
sion elimination, and the method can be performed automatically. Furthermore, it uses 2 fewer
temporaries in this example, since only base values, not scaled values, need to be remembered.
Even if we used this method for optimizing the scaling operations, we still must use loop common
expression elimination to optimize base expression evaluations, so the result is essentially the same
as that produced by loop common expression elimination, except that some of the computations
have been rearranged. This method is also not as general as loop common expression elimination,
since it requires distributivity. Therefore, in our implementation we find it more convenient to use
a single mechanism than to implement a general one and a specialized one as well, but in practice
adding this method would be worthwhile.

When the coefficients form an arithmetic or geometric sequence, loop differencing outperforms

this technique, as demonstrated in sections 4.2.1.1 and 4.2.1.2.

5.2.2 Scans

Scans (also known as reductions or parallel prefix computations) [93, p. 32] can compute periodic
stencils via a method similar to loop differencing. After the base operations have been computed,
a single @-reduction (where @ is the combining operation) sets the ¢th value of the result vector
to the sum of the first ¢ base elements. To find the value of a window of width w, we only need to
subtract (that is, perform the combining operation’s inverse upon the two values) two values which
are separated by width w.

This implementation’s cost is 1 scaling operation and 1 combining operation per result, plus 1
scan, which costs around O(logn), where n is the machine size. The differencing implementation
required 1 scaling operation and 2 combining operations per result.

Computing stencils using scans reduces the danger of instability or inaccuracy due to round-
off problems, but it increases the danger due to truncation and overflow. Roundoff errors are
reduced because the depth of the operation tree for computing a particular value is shallower—
since fewer operations were performed, the maximum cumulative drift is smaller. The worst case
error is reduced to about (2logn)e, compared to 2ne for the standard running-sum implementa-
tion. (Section 4.3 gave methods for arbitrarily reducing the latter value, at the cost of some extra
computation.)

5.2. ALTERNATIVE IMPLEMENTATIONS 61

While the roundoff problem is reduced, the problem of truncation is exacerbated, and it is
difficult to predict which will be worse for a particular application. The error analysis predicting
precision within (w + 1)e holds only if the combining operation and its inverse each cause a loss of
no more than ¢ precision. This will not necessarily be the case if two approximately equal values are
subtracted. Suppose that our computer has b bits of precision, we are computing a total of t window
sums, and the base values are all about equal (say, approximately 1). The last few scan values are
equal to about ¢, so they have the same first logt bits; their difference will only have b — log ¢ bits
of precision. If ¢ is large (1,000,000 data elements is modest for today’s supercomputers), then we
have lost 20 bits of precision.

While the scan operation may have hardware support or be very efficiently coded at a low
level as system software, that is not a sufficient justification for its use. On a machine of size
n, a scan requires O(logn) time, much more than the running sum method. Intuitively, we do
not need the scan’s ability to communicate information all the way across the machine, and that
feature slows down even nearby communications. Purely local communication patterns will be
more efficient since they provide exactly what we need. Even if we use the scan operation, we still
need to perform local communications to move the values that will be subtracted near one another.
When the virtual processor ratio is high, scans are implemented using sequential algorithms on
each processor anyway; we might as well do so directly ourselves and avoid the overhead performed
by the combining tree.

62

CHAPTER 5. IMPLEMENTATION ISSUES

Chapter 6

Timing results

This chapter compares the efficacy of our three methods for reducing recomputation of loop common
expressions. We present timings of the code produced for both periodic and aperiodic stencils
by unrolling, by loop common expression elimination, and by loop differencing. The performance
depends on the actual stencil and the cost of its execution, but we can usually improve performance
by at least a factor of four and sometimes by even more.

We ran our compiler on serial programs whose loops were marked as parallelizable but which
were otherwise unannotated; this information could easily have been provided by a good dependence
anlysis algorithm. The compiler produced serial C code. In some cases, to make testing easier, the
transformed code was rewritten using C preprocessor macros [124], but no hand-optimization was
performed beyond that done automatically by the compiler. The C program was compiled with
a standard compiler [125, 130] with optimization flags on. We report timings from executing the
object code on a Sun-4 SPARCstation 14 [131].

We used a variety of base expressions, scaling operations, and combining operations in order to
see the effect of varying the relative costs of those parts of the stencil. The base expressions were
either an array reference or an evaluation of the polynomial (z+1)(2+42)(z+3) = 2> +62?+112+6; in
each case the value was coerced to an extended-precision floating-point type. The aperiodic stencils
were binomial filters; their scaling operations were multiplications and their combining operation
was addition. The periodic stencils used addition and minimum (each implemented as a macro and
as a function) as their combining operations.

The times reported are seconds on a SPARCstation 14. When the base expression is an
array reference, the time is that required for the computation of 1,000,000 results; when the base
expression is a polynomial evaluation, 100,000 results were computed.

We give results for aperiodic stencils (binomial filters) and periodic stencils (window averages)
of widths 5, 7, 9, and 11, at unrolling amounts of 1, 2, 4, 6, 8, 10. There is nothing magic about
odd widths or even unrollings; those are just the values we happened to choose.

These results are somewhat preliminary; we expect to give fuller results in a future version of
this paper.

6.1 Aperiodic stencils

Figure 40 graphs the relative effectiveness of loop common expression elimination and common
subexpression elimination on aperiodic stencils—in particular, binomial filters. (Loop differencing
is not applicable to this stencil.) When the loop common expressions do not represent much

63

Time (seconds per 1,000,000 results)

(@]
s

CHAPTER 6. TIMING RESULTS

6 @ 25
5L g
s 20
S
N R =1
o
el g 15
3 - \E/B/‘E\ﬂ b
o1
;;;;;;;;;;;;;;; o
i 5 10
1t qu,’ 5
0 Array reference base = 0 Polynomial base
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Unrolling Unrolling
Figure 40: Timings for optimized aperiodic stencils with base ex- L.oop common expressions ——
pression an array reference (left graph) and a polynomial evaluation Common subexpressions -
. . width=5 -
(right graph). The legend for these graphs appears at right. The width=7 =
line type indicates whether loop common expressions or just com- width=9 «x
mon subexpressions were eliminated, and the point type indicates width=11 =

the size of the binomial filter used.

computation (an array reference, in the left graph), there is little to be gained from optimizing
them. When they represent more work (a polynomial evaluation containing several multiplications,
on the right side of the figure), the savings are significant even at low unrollings. Nothing is gained
by unrolling more than w — 1 times, where w is the stencil’s width, and large unrollings can even
decrease performance due to the allocation and manipulation of many extra temporary variables.
Common subexpression elimination also gained little performance in this case.

The speedups shown in the graph for loop common expression elimination are a severe under-
estimate, because many of our techniques were not implemented in the prototype compiler or were
turned off for this test to avoid even the appearance of fudged data. For instance, when the un-
rolling was too small for the entire base queue to be scalarized, then only part of it was scalarized;
we could have split the queue into two or more smaller ones of size no greater than the unrolling
and scalarized them individually. Similarly, when a queue for a scaling operation was larger than
the unrolling, it was omitted entirely. No effort was made to optimize loop common expressions
when the loop was 1-unrolled, though that would have saved more time.

6.2 Periodic stencils

We performed similar experiments for periodic stencils, but here there was an additional variable:
the combining operation used. We only report the results for an addition macro (which is very
inexpensive: a single machine instruction) and an addition function (whose function call overhead
is fairly expensive), because they are representative of a spectrum of costs.

In this case common subexpression elimination has a larger effect, as indicated by figure 41,
which shows speedups gained without any cross-iteration optimization at all. The graph for loop
common expression elimination is similar, but drops off even faster; to avoid graph overload, we do
not plot this. The time required for loop differencing is essentially independent of the unrolling and
the stencil size, since it performs just two base element evaluations and two combining operations

Time (seconds)

6.2. PERIODIC STENCILS 65

8 ‘ ‘ ‘ ‘ ‘ ‘
; Addition combiner 20 Function combiner ,
Array reference base —— Array reference base ——
6 Polynomial base 1 Polynomial base
width=5 - g5 width=5 o 1
5 width=7 o < width=7 o
4 width=9 = | é_’; width=9 x
width=11 - 210 width=11 -
3 E
S ~
2 54
14
0 0

1 2 3 4 5 6 7 8 9 10
Unrolling Unrolling

Figure 41: Speedups for a periodic stencil (a window average) achieved by unrolling and performing our
common subexpression elimination algorithm. (Ordinary algorithms find no common subexpressions, so the
performance is nearly independent of the unrolling amount.) The combining operation for the left graph is
addition; the right graph uses a function (whose body happens to be a simple addition) as its combining
operation. The legends for the two graphs are identical: the line style indicates whether the base expression
was an array reference or a polynomial evaluation, and the point style indicates the size of the window of
values being averaged.

per result. The following table gives timings at a few points for all three methods. The base
expression is a polynomial evaluation; when it is an array reference, the relative numbers are
similar (though their magnitudes are smaller), except that loop differencing is dramatically better
when the combining operation is addition.

‘ Addition combiner ‘ ‘ Function combiner ‘
w=7|w=9|w=11 w=7|w=9|w=11
u=2|u=2| u=4 u=2|u=2| u=4

CSE 7.1 8.1 5.4 CSE 8.9 10.8 8.0

LCE 5.0 3.4 5.6 LCE 7.3 4.8 7.6

Diff. 4.3 4.3 4.3 Diff. 5.5 5.5 5.5

Like the numbers for loop common expression elimination, those for loop differencing are an
underestimate, because the current implementation never tries to optimize loop common expres-
sions.

66

CHAPTER 6. TIMING RESULTS

Chapter 7

Extensions

In this chapter we present several extensions to our methods for reducing the number of loop
common expressions recomputed by a program. First we discuss scheduling of jobs onto processors,
which can be done at compile time using standard techniques even if the problem size and machine
size are not known at compile time. Next we show how to efficiently compute two-dimensional
stencils using the methods we have developed for one-dimensional ones. We give an example of
how loop common expressions can be optimized even in purely serial programs and, lastly, discuss
some miscellaneous extensions.

7.1 Scheduling jobs onto processors

While our goal is to improve the performance of parallel programs on both parallel and serial
machines, we have only discussed compilation for a single physical processor. A collection of
serial programs does not make a parallel program, and in this section we briefly discuss additional
concerns in a real system, primarily the allocation of data, virtual processors, and work among
physical processors, and communication among physical processors.

Perhaps most importantly, the data (and virtual processors) must be assigned to physical pro-
cessors. We rely on previous work, which has primarily been concerned with minimizing commu-
nication [2, 86]. Our optimizations are only applicable if a particular physical processor executes a
collection of subsequent loop iterations, in order. (If the loop iterations are randomly distributed
among the processors, then it may be the case that no physical processor is assigned internally
redundant work, even though work is being repeated in the system.) This requirement is met
by most data distribution algorithms. Another issue for a real compiler for a parallel machine is
communication of values from processor to processor; not all of the data is local, though much of
it may be if the virtual processor ratio is high. This issue has also been adequately discussed in
the literature [2, 22, 60, 61, 63, 86, 141].

Although some previous scheduling work has required compile-time specification of the number
of physical processors [37, 38], all that is really needed is a simple way to allocate work at run time.
For instance, if each physical processor can determine the data set size n, the machine size m, and
its own processor number ¢ (0 < ¢ < n), then it can compute at run time the lower and upper bounds
on its virtual processor emulation loops, namely |in/m| and [(¢ 4+ 1)n/m]| — 1. These values could
have been compile-time constants, but the information is likely not to be available then and the
cost of computing them at run time is very slight. Furthermore, if they are compile-time constants,
then the programs run on each processor are different, complicating storing and debugging. More

67

68 CHAPTER 7. EXTENSIONS

complicated expressions involving run-time loads or processors of differing powers can be derived
but are of limited use.

Although the machine and problem sizes need not be known at compile time, that is when
the jobs are scheduled onto physical processors. This differs from the work pile model of parallel
processing in which, when a processor becomes idle, it obtains more work from a centralized loca-
tion [54, 59, 95, 99, 100]. If the tasks do not all complete in about the same amount of time, efficient
execution in that model requires additional overhead in the form of communication and synchro-
nization. For the stencil-based computations considered in this paper, instruction-level simulation
of the Alewife parallel architecture [4, 28, 103] has shown a work pile scheme to be up to 250%
as expensive as prescheduling [46, 47]. The non-prescheduled code also has fewer opportunities for
further optimization.

7.2 Two-dimensional stencils

Two-dimensional stencils are found especially in relaxation problems, but also in numerous other
applications. In this report we have considered only one-dimensional stencils, primarily because
the exposition is considerably easier for them. Here we outline two approaches to optimizing
two-dimensional stencils (directly or by doing multiple one-dimensional stencils) and discuss some
implementation issues.

The loop common expressions of a two-dimensional stencil can be directly exposed. For instance,
the coefflicients corresponding to a formula for the Laplacian operator V2 [12, 26, 67, 69], which is
used to compute two-dimensional derivatives, are

1/20 1/5 1/20
1/5 -1 1/5
1/20 1/5 1/20

The result at a location is the negative of the location’s data value, plus one-fifth of each of its
horizontal and vertical neighbors, plus one-twentieth of its diagonal neighbors. A more popular,
but worse-behaved, version of this is

1/4
1/4 -1 1/4
1/4

If either stencil is strip-mined (producing a multistencil [22]), then the common scaling operations
can be relatively easily exposed, even those in different rows and columns. The major difficulty with
this method—and the others for two-dimensional stencils—Ilies in choosing heuristics for splitting a
stencil into smaller pieces in order to optimize the size of the base expressions and how often each
is used.

A simpler method for computing a two-dimensional stencil is to combine the results of several
one-dimensional stencils. If the two-dimensional convolution can be performed as two orthogonal
one-dimensional convolutions, then the resulting program is trivial. Relatively few stencils can be
so decomposed [66], but some important ones—including many smoothing operators—can.

Any two-dimensional stencil can be performed as a series of one-dimensional stencils. First a
one-dimensional stencil computation is performed for each column of the original two-dimensional
stencil; then these results are added up by performing a one-dimensional row stencil. (We can just

7.3. LOOP COMMON EXPRESSIONS IN SERIAL ALGORITHMS 69

as easily reverse the order of the directions.) For instance, to compute the nine-point Laplacian
shown above for an array a, we would first compute, for each point, the stencils

€ij = Qi1+ 4a;; +a; i

and

Cij = 4a; ;1 —200;; +4a; 54, .

Then the final value can be computed by the stencil
Vi]' =€i_1; T ¢t €ip1; -

When several one-dimensional stencils are combined to produce the two-dimensional convolu-
tion, then either the first pass can be done completely before starting the orthogonal one, or they
can be interleaved via strip mining. The former is conceptually simpler, but in the presence of
virtual memory the latter is probably better because the computation is more local and less extra
storage is required; the latter may also expose more computations as loop common expressions. In
any event, a single horizontal (vertical) pass over the data can compute several horizontal (vertical)
stencils, even if they have different sizes. In the example above, e and ¢ would be computed in a
single loop.

7.3 Loop common expressions in serial algorithms

Loop common expression elimination can be as profitable for serial algorithms as for parallel ones.
We have so far concentrated on parallel programs (though we have examined execution on a single
processor) because they provide particularly fruitful ground for application of the method. Another
advantage of parallel applications is their lack of data dependences, which simplifies the application
of our methods: we don’t have to worry about whether an expression’s value will change from one
iteration to the next, invalidating our stored copy. This problem prevents most compilers from
even attempting such transformations.

Properly applied, however, loop common expression analysis can improve the performance of
serial algorithms. Here we give, as an example, the transformation from bubble sort to insertion
sort. (We will show two implementations of bubble sort; one cannot be transformed into insertion
sort, and the other can.) Bubble sort is among the most trivial of algorithms: it sorts n values in
O(n?) time. Insertion sort also requires O(n?) time, but it reduces the number of array references
and stores by more than half. Here is an implementation of bubble sort:

for j =2 ton
for i = j-1 to 1 step -1
if ali+1] > a[i]
then
swap(ali+1], al[il)

Ordinary common subexpression elimination and inlining of swap can transform this to

70 CHAPTER 7. EXTENSIONS

for j =2 ton
for i = j-1 to 1 step -1

olda = ali+1]

newa = al[i]

if olda > newa

then

ali]l = olda
ali+1] = newa

but no further. Even cross-iteration optimization seems likely to be foiled, because there are
apparently no guarantees about the values of elements of array a: it can be assigned to in the body
of the loop. If we maintain the temporaries olda and newa as loop common expressions, however,
we can optimize away an array reference:

for j =2 ton
olda = alj]
for i = j-1 to 1 step -1
newa = al[i]
if olda > newa

then
ali]l = olda
ali+1] = newa
else

olda = newa

The inner loop now accesses each array element only once; at the beginning of each iteration
olda = a[i+1], but when the then clause is taken, it does not need to be set at all. The remainder
of the transformation to insertion sort requires the insight that the inner for loop does not need
to run all the way down to 1, but only until the test fails. Since the first j — 1 elements are already
in order, the jth element only needs to be inserted in its proper place. Recognizing this property
probably requires human intervention, though it is possible that a theorem-prover could determine
it. Let us suppose, then, that the original bubble sort implementation is as follows:

for j =2 ton
i= -1
while (i > 0) and (alil > ali+1])
swap(ali+1],al[i])
i=i-1

We can quickly get to

for j =2 ton
olda = alj]
newa = al[j-1]
i= -1
while (i > 0) and (newa > olda)
ali] = olda
ali+1] = newa
newa = al[i-1]
i=i-1

7.4. OTHER COMPLICATIONS 71

Now it is not too difficult to notice that one of the array assignments undoes the other one. The
code’s final form is

for j =2 ton

olda = alj]
newa = al[j-1]
i=j-1

while (i > 0) and (newa > olda)
ali+1] = newa
newa = al[i-1]
i=i-1

ali+1] = olda

This version contains only 1 array load and 1 array store in its inner loop; this is even more efficient
than the version of insertion sort in [35, p. 3].

The optimizations were mostly standard ones, but they could not be applied until the loop
common expressions had been eliminated, making clear where the dependences actually were.
What is noteworthy about this is not so much that bubble sort was converted to insertion sort, but
that it was done by general optimizations rather than by pattern-matching. (It would still work if,
for instance, the loops were reversed to run in the opposite directions.) We did have to start with
a reasonable implementation of bubble sort. It is no surprise that we can write implementations
(like the first one, on page 69) that our methods cannot transform all the way to insertion sort.

7.4 Other complications

In this section we discuss a few more of the finer points in a practical implementation of our
methods. We show how to perform loop common expression optimizations even when the stencil
computation being performed is not known at compile time, how to deal with inactive virtual
processors, and how to optimize when a single value, not an array, is the result.

If a stencil’s pattern of scaling operations, but not the scaling operations themselves, can be
determined at compile time, then all of the methods of this report are still applicable without
change. (For instance, occasionally the weights

1/12 1/6 1/12
1/6 -1 1/6
1/12 1/6 1/12

are preferable to those on page 68 for the Laplacian operator [68, p. 191]. At compile time, even if
we did not know which version we desired, we would know the pattern of loop common expressions.)
In fact, the methods become even more attractive in this case, because optimizations of the scaling
operations cannot be performed as effectively and so they will be relatively more expensive than
when they are known at compile time. In fact, all of the optimizations of this report can be
performed at run time, if desired. When a computation is applied to a great many data, this may
be worthwhile.

We have so far assumed that every virtual processor computes a stencil and remembers the
result, but in many applications not all virtual processors participate in every computation. There
are two possibilities for inactive or masked-out processors: they can contribute a base element but
not store a result, or they can not contribute a base element. (The former may be the case even if

72 CHAPTER 7. EXTENSIONS

there is no valid data at that point—the contribution may be the combining operation’s identity.)
If no base element is contributed, then none of the w results that depend on it are valid, where
w is the width of the stencil. Since the results on either side of this gap have no computation in
common, we might as well stop the computation and start it from scratch, as at the beginning
of a loop. If there are many such results, then the loop startup overhead consumes a relatively
high proportion of resources. If, on the other hand, every virtual processor contributes a base
element but some do not compute results, then it is rarely advantageous to change the pattern
of computations. The combining operation which produces that result can be omitted (except in
the case of loop differencing), but stopping the loop and starting it up again is usually much more
expensive.

The examples in the rest of this report have produced entire arrays as results, but sometimes we
want a single result, such as the sum of that array’s elements. (In this case we would not actually
produce the array at all.) For instance, when numerically integrating, we might not be interested
in the improved approximations to the area under each interval of the curve, but only in the total
area under the curve. Our methods are still applicable in this case, but other simple techniques
are even more attractive. For example, if the scaling operation is distributive and all references to
a particular base element are moved to one loop iteration, then all loop common base expressions
are eliminated and only one scaling operation per base value is required.

Chapter 8

Perspective

While the methods of this report are original, some of them have been independently discovered in
the past and used to hand-optimize inner loops [127]. Our techniques also share some similarities
with previously published work. This chapter surveys related work in serializing parallel programs
to reduce overhead, in iterator inversion (a form of strength reduction which is similar to loop
differencing), in parallelizing serial programs, and in other attacks on stencil computations and
loop common expression elimination. Finally, we recap our contributions.

8.1 Reducing overhead

Previous work on serializing parallel programs can be viewed as overhead reduction, because it
makes no change to the program’s computations but only reduces its overhead. The number and
type of program computations remain fixed, but the operations may be reordered and/or some
system operations may be removed. Such transformations reduce overhead for looping constructs,
task management, and storage allocation. The methods of this report reduce overhead, but more
importantly, they reduce the amount of computation required to generate the program’s output.
The false metric of MIPS (millions of instructions per second) count is not necessarily improved by
elimination of loop common expressions, but the program completes faster, which is what the user
really cares about.

The most direct way to reduce a loop’s resource usage is to unroll the loop, prorating the fixed
physical loop overhead over several logical iterations. This effect is only noticeable if the loop body
cost is comparable to the loop overhead. Other benefits of loop unrolling include better use of the
data and instruction caches and exposure of more instructions to optimizations and to the register
allocator and instruction scheduler.

Loop fusion (also known as loop jamming) [8, 143] also reduces loop overhead. If the bounds
on two adjacent loops are identical, and the transformation would not change the data dependence
relation between the loop bodies, then they can be consolidated into a single loop. Not only is the
loop overhead for the second loop removed, but data locality can be improved. Figure 42 displays
an example of this transformation.

Most overhead reduction work for parallel programs focuses on increasing the grain size of com-
putations [138]. When tasks are very small, a disproportionate amount of time is spent switching
between tasks rather than performing the program’s computations. Increasing the size of each
thread decreases the overhead and so the program’s running time. Since the data-parallel pro-
gramming model has no concept of a task, grain size modification is not directly applicable to our

73

74 CHAPTER 8. PERSPECTIVE

for i=L to U
ali]

for i=L to U
dfil] = ... ali]

Figure 42: Loop fusion or loop jamming. The two loops can be joined, reducing loop overhead, if the bounds
on the two loops are identical and the fusion does not change the data dependence relation(s) between the
two loop bodies. The values of the expressions L and U must not be modified by the loop bodies or between
the loops. In this example loop fusion also improves data locality, since ali] is accessed while its value is
still in the cache or a register.

for i =L to U
— ali]
d[i]

ali]

problem domain.

Loop throttling (also known as k-bounded loops) [36, 37, 38] is another method for partially
sequentializing a parallel program. In a loop whose iterations are independent and so can all be run
simultaneously, loop throttling limits the parallelism by permitting only a limited number of loop
iterations to be active at once. So long as this leaves enough parallelism to keep the machine busy,
it does not result in idle processors. Throttling lowers resource usage, because the presence of extra
tasks adds to task management overhead, including time for task switching and space for storing
swapped-out tasks. These methods are more applicable to our problem domain than increasing the
grain size, but data-parallel programs rarely have either a task queue which consumes resources
or run-time interlocks to delay computations whose values are not yet ready. In any event, the
methods of this paper do at least as well as loop throttling, since the number of loop iterations
active at once is exactly the number of processors actually available.

8.2 Vectorization

Vectorization, or optimization of computations for execution on vector processors, is an important
and active area of research, in part because vector processors were long the machine of choice
for computation-intensive programming. Compilation for vector processors can employ all the
optimization techniques used for serial code, plus additional techniques aimed at two goals: ensuring
that the machine’s most valuable resource, the vector unit, is fully utilized, and managing the
memory hierarchy to avoid loads and stores (and, where loads or stores are required, to avoid cache
misses). Allen and Kennedy [9] present many examples of the field’s technology, though they have
no implementation of the techniques for demonstrating their effectiveness. Allen and Kennedy
view the main problems vector register allocation as subdividing the vector operations into sections
that fit the hardware of the target machine and transforming the program to improve locality of
reference.

Because vector unit operations are much faster than the equivalent number of scalar operations,
it is advantageous to transform loops into vector operations where possible. The first step is
checking data dependence, which indicates whether the iterations really are independent and so
can be processed by the vector unit. Loops must then be sectioned into pieces that fit in the
vector registers. In some cases, loop indices can be adjusted in order to align vectors and permit
them to be processed by the vector unit; when references overlap, the entire vector register must
be reloaded. This is in contrast to the work described in this report, which makes a virtue of
misalignment on different loop iterations in order to reduce the total work done by a loop.

The focus in vectorizaton is effective use of the vector registers, which are expensive to empty
and fill. They may also be a scarce resource. Thus, much attention is paid to ensuring that results

8.3. ITERATOR INVERSION 75

can be used as computed. This work is analogous to standard register allocation, which seeks to
arrange that results can be used soon after being computed, though vector register allocation is
complicated by the fact that not only the data, but also the particular subset of it being operated
upon, must match. Another important optimization is data placement to avoid cache thrash-
ing. Transformations such as loop interchange, loop reversal, loop splitting, and use of temporary
registers aid in these goals.

All of these transformations achieve speedups by moving computations into more effective ALUs
or by improving use of the memory hierarchy. They are quite different from loop common expression
elimination, which changes the computations being performed in order to reduce the total work
required. It is likely that each could be extended into the other’s domain in order to complement
one another and further improve performance.

8.3 Iterator inversion

The method of loop differencing has similarities to iterator inversion (also known as finite differ-
encing) [44, 52, 53, 104, 105, 106], a form of strength reduction intended to transform high-level
abstract code into efficient code. An expression’s value is kept available by updating it when values
it depends on change. Instead of recomputing the expression’s value from scratch, the new value is
determined from its old value; the code that does this is called the expression’s derivative. Given
a large collection of simple derivative rules and a chain rule for combining them [105], we can
determine the derivatives for many expressions.

The iterator inversion work is targeted for the SETL language [41, 116], and the only modi-
fications to a program value supported are adding an element to a set and removing an element
from a set (derivatives are provided, or can be inferred, for a number of interesting operations on
sets). In that limited problem domain, significant speedups are achieved, but most of the speedup
results from the inefficiency of the input programs. (The canonical example is computation of the
size of a set once per iteration, where each iteration also removes one element from the set.) The
optimizations are performed only when they can be proved to asymptotically improve running time;
constant factor speedups are not considered cost-effective in the compiler.

Loop differencing differs from iterator inversion in several important ways. Most importantly,
it can improve efficient input programs. We have given methods for computing the exact costs and
savings for each optimization, so that the compiler can tell which ones will improve a program’s
performance. Loop differencing’s unique use of inverses also sets it apart from iterator inversion and
other optimizations. Iterator inversion is theoretically more widely applicable than loop differencing
since it can operate on any expression reused from loop to loop, but in practice it is more limited.
Loop differencing does not even require the particular reused expression to be explicitly mentioned
in the source program, much less be a set. (The summands of a periodic stencil may be thought of
in that way if desired; scaling operations complicate the picture.)

8.4 Reversing parallelization

There is a sizable body of work on parallelizing sequential programs, both automatically and by
hand; the ideal mechanism for sequentializing parallel programs would be to simply reverse those
techniques. The prospects for this are poor because parallelization techniques are ad hoc, because
removal of data dependences is very different from their addition, and because most parallelization
work is vectorization rather than concurrentization.

76 CHAPTER 8. PERSPECTIVE

While each parallelization method is internally consistent, they do not all fit into a common
framework; even after some parallelizations had been turned into serialization techniques, the next
one would not be any easier to reverse. In fact, most parallelizations simply recognize patterns
and transform the input according to heuristics specified by the programmer. Casting parallel and
serial algorithms into a more general form is an interesting and challenging research problem which
would make parallelizations conceptually simpler and would also make reversing them less tedious.

While a parallelizing compiler attempts to remove dependences, a sequentializing compiler adds
them. Parallelizing compilers devote much of their energy to discovering the “unnecessary” depen-
dences that efficient single-threaded implementations usually add. Dependence analysis indicates
which control and data dependences are not inherent in the computation but are added by the
implementation (by reusing variables, for instance). It is much harder to decide where they can
be most advantageously added, without affecting performance. Dependences can be arbitrarily
added, so choosing the right ones can be difficult; when removing dependences, on the other hand,
there are a finite number of possibilities. Another difficulty in dependence removal is the lack of
hard-and-fast algorithms for telling when the job is done.

Our goal has been to make data-parallel programs execute more efficiently. Concurrentization,
which results in code runnable on a multiprocessor, is the sort of parallelization that could be
most advantageously reversed to address this goal, since its output is typically a data-parallel
SPMD program. The literature on concurrentization continues to grow, but that body of work
is still relatively small because historically most work on parallelizing dusty-deck code has been
vectorization.

8.5 Stencil computations

The Connection Machine Convolution Compiler [22] addresses the same problem domain as this
paper: its techniques are designed to optimize the performance of stencil computations on the CM-
2 [132]. Most of its optimizations, such as strip mining, software pipelining, and loop unrolling, are
well-known; the others are specific to, or mandated by, details of the architecture (floating point
and vector unit timing, vector sizes, and so forth). Its schemes for register reuse in multistencil
computations are similar to our cyclic reuse of temporary variables.

8.6 Parallel intermediate representations

Compilers of serial languages to serial machines may use a parallel intermediate representation, such
as the program dependence graph [51], program dependence web [16, 24], MIT dataflow graph [14],
or value dependence graph [140]. Such a representation exposes instruction-level parallelism, en-
ables code motion, and can simplify analyses and transformations.

The potential drawback of a parallel representation is that it must be serialized before serial
code is emitted [49, 50, 120, 121, 128]. A frequent strategy is to produce a control flow graph
(CFQG) from the parallel representation and to geneate code from the CFG using well-understood
methods.

While this work can also be viewed as serializing parallel code, the intent and approach are
completely different from those used in transforming explicitly parallel code into a serial form. In
particular, it shares nothing with loop common expression elimination.

8.7. CONTRIBUTIONS 7

8.7 Contributions

The analysis and the techniques (with the exception of unrolling and traditional common subex-
pression elimination, which are well-known) of this report are original. In this section we highlight
our new contributions, which primarily appear in the chapters devoted to our three optimization
methods: unrolling with common subexpression elimination, loop common expression elimination,
and loop differencing.

The primary contribution is the idea of loop common expressions, which can be optimized
despite occurring in different loop iterations. Ordinary optimizations do not remove redundant
computation (or do much of anything else) across loop boundaries. We showed that altruistically
computing loop common expressions for the use of future iterations, which a greedy optimizer
with a narrow (inter-loop-iteration) view would never do, improves overall performance. The small
additional cost is more than washed out by the work done by the previous iteration to help the
current one. We show how to optimize three types of loop common expression: base expressions,
scaling operations, and combining operations.

In our discussion of unrolling with common subexpression elimination to reduce redundant com-
putation, we observe two interesting phenomena. First, although the topic is considered mature,
current common subexpression elimination methods do quite badly in many common and impor-
tant applications. Their problem is that they work on a fixed parse of the input, and any obvious
parsing method obscures most common subexpressions in unrolled stencil computations. We solve
the problem by using a multiple-arity (rather than binary) intermediate representation and by sep-
arating the common subexpression elimination process into two stages. The first stage determines
which expressions appear multiple times, taking advantage of associativity and commutativity, and
the second stage chooses some of them to actually execute. Previous algorithms left the first stage
to the vicissitudes of the parser or, at best, combined the two stages in a greedy way. Our method
improves the performance of the resulting code by 4 times or more.

Our second observation is that unrolling can degrade performance by up to 33%, even if the
resulting code does not exceed hardware limits such as instruction cache size or number of registers.
This is surprising because the common wisdom is to unroll as much as possible subject to those
constraints. We show how to select an unrolling thgat does not incur extra costs.

We prove that in the absence of loop common expression optimization or use of inverses, at
least 3(w — 1)/(w + 1) combining operations per result are required to evaluate a stencil of width
w, no matter how much the stencil computation loop is unrolled or what common subexpression
elimination algorithm is used. When the unrolling v < w, the bound is about 2 + w/u We give an
algorithm that meets these bounds and characterize performance at all unrollings.

Next we turn our attention to direct methods for optimizing loop common expressions. We
give simple algorithms for removing all redundant base and scaling operation computations. These
techniques are interesting in that they implement cross-iteration optimizations without performing
unrolling or examining more than one copy of the loop body; they examine the structure of the
computation, which is a more straightforward method. We proved that, even without unrolling,
a stencil computation’s combining operation costs can be reduced to logw per result, its scaling
operation costs to 1 per result per distinct scaling operation, and its base expression costs to 1 per
result. For w-unrolled loops, the combining operation costs drop to less than 4 + 2(log, w)/u per
result; the other costs are already minima and are not included.

We showed that unrolling can scalarize arrays, transforming them into collections of scalar
variables. The latter representation is significantly more efficient because no array manipulation

78 CHAPTER 8. PERSPECTIVE

is required and all loads and stores are to locations known at compile-time or link-time. This
optimization alone makes unrolling worthwhile in many cases. We also showed how to adjust the
sizes of arrays when they cannot be scalarized, or in order to make them scalarizable.

Our third method, loop differencing, permits a loop iteration to share with the preceding loop
iteration a unique type of common expression—one that was never computed. The essential in-
sight is that undoing work can be faster than doing work, so such expressions can be computed
more cheaply by working backward from previously-computed values than by working forward
from (other) previously-computed values. Results can be computed with just 2 base expression
evaluations (or fewer if loop common expression elimination is also performed) and 2 combining
operations each.

Finally, we discuss some implementation details stemming from our experience with a prototype
and present experimental verification that our methods do improve programs’ performance.

Throughout we emphasize practical, rather than synthetic, appliations; many examples are
taken from real programs. An appendix lists further real-world problems to which our techniques
are applicable.

While our main thrust is improvement of parallel execution times, our methods are applicable
to serial programs too.

Appendix A

Optimality of (w 4+ 1)-unrolling

This appendix outlines the method used to show that if loop common expressions are not taken
advantage of and the combining operator’s inverse is not used, then at least 3(w —1)/(w+ 1)
operations per result are always necessary when evaluating a w-element stencil, regardless of its
unrolling amount .

We have already shown this result for v < w + 1 in theorems 1 and 2, but for u > w + 1 we
only showed, in theorem 3, that we need at least 2(w — 1)/w operations per element. We assume
the reader is familiar with these proofs, which appear in section 2.3.3.3 on pages 28-30.

As the full proof is extremely tedious, we illustrate the method for only a few cases and let the
dedicated reader finish the rest.

Theorem 6 At least 3(w — 1)/(w+ 1) operations per result are required to evaluate a (w + 2)-
unrolled w-element sum.

Proof: This theorem is obvious for w = 2 and true by inspection for w = 3. For w > 4, we will
prove that at least 3w operations are required to compute the w + 2 results; this proves our claim
since 3w/(w+2) > 3(w—1)/(w+1).

The proof is by contradiction. Suppose we can compute all w + 2 results, Ry,..., Ry,2, from
base elements By, ..., Bay, 1, using just 3w — 1 combining operations.

Regardless of how they are computed, Ry and R, 1, having no summands in common, require
w — 1 operations each to produce. Results Rs,..., R, require at least 1 additional operation each;
this boosts the total to at least 3w — 3.

There are two possibilities for the number of operations performed to compute R, 5, in addition
to those already used for Ry, 1: 1 or 2. If R, 5 required 3 additional operations, the grand total
would be at least 3w, contradicting our hypothesis.

The operation cost for R, .. is lower-bounded by the depth s of B,,; in the expression for
Ry 1. Figure 43 graphically represents the computation of R, 1; s is the number of addition nodes
between B, i and R, inclusive (in this case, s = 4). Computing R, 4o requires the summation
of Byya,...s Bawyr, and there are at least s + 1 operands to be combined: Bs, 1, which has not
yet been operated upon at all, and s more in the range By .2, ..., Bay.

We examine the two cases s = 1 and s = 2 in turn.

s = 1 The final operation which produced R, ;; summed B, with (Byi2+ -+ Bay). To com-
pute R, , we must add a minimum of 3 terms: By, Byy1, and (Byy2 + -+ + Bay). The first
two terms, which are base values, have not yet been used in any sums useful to R,,, but the

79

80 APPENDIX A: OPTIMALITY OF (w+ 1)-UNROLLING

Bua+1 B.Zw B27~.v+1

@
Rw+1 Rw+2

Figure 43: Computing R, 42 requires at least s operations, where s is the number of addition nodes directly
between By 41 and Ry 41, inclusive. In this figure w = 12 and s = 4.

third term may have been computed as a subterm of R, i and of R, ... If it was not, then
computing R, costs at least 3 operations, and we are over our operation limit, so we must
assume that it was. Figure 44 shows the situation so far.

Computation of the next result, R, _;, requires at least 2 operations. When all the operations
performed so far are added to the minimum of 1 per result required for the w — 2 results not
vet considered, the total is at least 3w, which contradicts our hypothesis.

s = 2 There are two additions between B,,; and R, ;. Figure 45 shows three of the w — 2
possibilities for the last few elements added to create R, s.

If we are to use fewer than 3w operations, then each of R,,..., R, must require only 1
additional operation. We can arrange this for R, by choosing the third association shown in
figure 45. If we do so, R, _; requires a minimum of 2 operations, so all w + 2 sums require at
least 3w operations, contradicting our hypothesis. B

Theorem 7 At least 4(w — 1) operations are required to evaluate a (w + 2)-unrolled w-element
sum. This bound is tight.

Proof: The proof, a minor extension of the proof of theorem 6, is left as an exercise in book-
keeping for the reader. The idea is to show that if computing R, - is cheap, then computing R,
is expensive.

Theorem 8 At least 3(w — 1)/(w+ 1) operations per result are required to evaluate a (w + 3)-
unrolled w-element sum.

This is a corollary of theorem 7, but since we gave no proof of theorem 7, we sketch one here
which also shows some of the subtleties in extending this series of theorems.

Proof: For small w, the theorem can be shown on a case-by-case basis. When w > 6, we will
show that at least 3w + 3 operations are required to evaluate a (w + 3)-unrolled w-element sum.

APPENDIX A: OPTIMALITY OF (w+ 1)-UNROLLING 81

B,y

w1

B, B
N

. B?w Bz%”"‘l
o) s> s> \@
Rw -1 Rw Rw +1 Rw 42

Figure 44: The s = 1 case in the proof of theorem 6. After K, 1 has been computed, if R, 2 requires only
1 additional operation, then R, requires at least 2.

The proof is by contradiction; suppose the u = w 4 3 results can be computed with 3w — 2
operations.

We can think of ourselves as being granted 5 = 3 -2 — 1 operations with which to compute
Ryi2 and R,y 3, so long as we do not increase the number of operations required for Ry, ..., Ry
above 3(w — 1), which is optimal. If we use fewer than 5 operations for R, and R, .3, then we
are permitted to increase the operation count for the first w + 1 sums correspondingly while still
using fewer than 3w + 3 operations overall.

Let s442 and 8,43 be the incremental costs to compute R, ., and R,.s, respectively. We
consider four cases for s, 2.

Swt+2 = 1 R, 41’s right subexpression was By 42 + -+ Bay,, and we know from the proof of the-
orem 6 that s, > 2. By inspection, s,,35 > 3, but if we are to meet the operation limit, then
Swis < 3, so suppose s,43 = 3. Now s, = 2 (it cannot be 1, and if s, > 2, we exceed our
operation limit), but that forces s, _; > 2, which is too many operations.

Swt+2 = 2 We consider three possibilities for s, 3.

Swt+3 = 1 We must have chosen the first diagram in figure 45. Now computing each of
Ry, ..., R, costs at least 2 operations, far outspending our budget.

Sw+3 = 2 The right child of R, 1’s left child must have been either a base element or a sum
whose left operand was a base element.
Since we have now used 4 of our 5 free operations, we require that s, < 2. If R,’s left
child is a sum of [base elements, then Rs,q,..., R, _; Tequire 2 operations each, and the
total is too large.

Swt+s = 3 R.,..., R, must require only one operation apiece. If s,, = 1, we must have chosen
the third diagram in figure 45, but then s, _; > 2.

Swt2z =3 If 5,43 = 1, then s, > 2 and s,y > 2. On the other hand, if s, 13 = 2, we can have
sw = 1, but in that case s,,_; > 3. In either case we have used too many operations.

Swt2z = 4 Every other result (R,,..., R,, and R, 3) must require only one operation, but we
cannot have both s, =1 and s,_.; =1. R

82 APPENDIX A: OPTIMALITY OF (w+ 1)-UNROLLING

By—1BwBuysr BBy By—1BuwBuyyr BB

o D D o D D
Rw_1 Rw Rw+1Rw+2 Rw—l Rw Rw+1Rw+2
Buy—1Buw But1 | BauwBayia

© @ ©®
Ry_1 Ry Ruygillugo

Figure 45: The s = 2 case in the proof of theorem 6. After R, 1 has been computed, if Ry, 42 requires 2
additional operations, then there are w — 2 different possibilities for the immediate subexpressions of Ry 1.
Three of those possibilities are shown.

The proof proceeds similarly for larger unrollings and is much simplified by strategic use of
theorem 7. The number of extra operations is actually

s

4w+ 1)

uJ —3w—-3-1; for

An added complication at high unrollings is that we must consider the possibility that s; is
big enough that some precomputed expressions can be ignored. For the small s; that we have
considered, we must use those subexpressions or fail to meet our operation goal.

We can partially simplify the situation by assuming that every adjacent pair of results R; and
R; ;1 share at least one computation. If they did not, then we we might as well split the unrolled
computation into two smaller ones of sizes 7 and u — 7 and optimize them separately. By induction
on u, their per-result operation costs are at least 3(w — 1)/(w + 1), and therefore so is that of the
original computation.

Appendix B

Applications

This appendix lists several important and common types of stencil computation. For each of them
a justification for not using some other implementation, and a list of practical applications, is
provided.

B.1 Convolutions

A weighted sum stencil is another name for a convolution, which is an important problem in signal
processing and other applications. All window sums are really convolutions [108]. Every linear
shift-invariant or linear time-invariant system performs a convolution [69].

B.1.1 Why not use FFT?

Most implementations of convolution operate not in the original problem domain but in its Fourier
transform. The convolution code operates by performing a Fast Fourier Transform (FFT; see [108]
for references), a single element-by-element multiplication, and another FFT, for a running time of
O(nlogn) on n data points. When the stencil’s size is O(n), the cost of a direct implementation
can be O(n?) operations. While the FFT implementation is attractive (and sometimes superior to a
stencil-based implementation), efficiency or correctness concerns can dictate that the computation
be performed directly.

B.1.1.1 Efficiency

The cost of directly performing a convolution with a filter of width w is O(wn); when w < log n, this
is less than O(nlogn), the cost of the FFT implementation. Furthermore, the constant factors are
lower in the stencil computation than in the FFT one, which performs multiplications of complex
numbers, among other operations. If efliciency is a primary concern and n is large, then only a
small constant number of operations per datum may be acceptable, but the cost of FF'T grows
super-linearly.

An algorithm which makes good use of the machine’s resources can outperform an asymptoti-
cally faster algorithm. On a machine organized as a grid, a stencil implementation of convolution is
natural [88], while the FFT implementation requires expensive operations such as communication
with distant processors. Grids are an attractive and common parallel architecture because they
are easy to build, scalable, and have been shown to be faster than other networks even for many
computations which are not grid-based [3, 39].

83

84 APPENDIX B. APPLICATIONS

Perhaps the most important practical case in which FFT is unacceptable is when real-time
response is required. FFT is a batch algorithm which works on many data at once, but (even after
our optimizations have been performed) the stencil implementation can produce outputs at the
same rate as inputs are provided.

B.1.1.2 Correctness

If high-frequency components are present in either the stencil or the data with which it is convolved,
then the Fourier representation is very large. For instance, a square wave’s frequency-domain
representation is infinite; convolution with any finite portion is inaccurate to some degree. (When
the tails are very thin, as in the binomial and Gaussian distributions, it does not take a very large
filter to accurately approximate the result of an infinitely large one for many problems.) Inaccuracy
also results from adding together the results of several small applications of the FFT method in
order to reduce its O(logn) overhead. Such a decomposition is very complex and its gains are
slight [108, p. 431]. The stencil implementation, on the other hand, gives exact answers.

When convolutions model real systems, such as the human visual system, physical realizability
is important: it is desirable that what the model does, could be the real system’s mechanism as
well. Therefore, the computation should be causal (depending on only inputs seen so far) and have
finite support (depend only on a finite number of input values). The FFT method is acausal: data
are processed in a batch, not incrementally. The Fourier transform of any finite stencil is infinite,
so the requirement of finite support is also violated.

B.1.2 Applications

Convolutions are widely used for noise smoothing, linear edge enhancement, edge crispening, digital
filtering, numerical relaxation, and other applications [89]. Some of these applications appear below;
others are deferred to later sections.

Correlation is a measure of how closely two inputs are related [88, p. 287; 108, p. 433] and is
computed by the formula

N-1
Corr(g,h); = Y girrh -
k=0

Correlations of delayed signals can be computed to see how much the signals must be shifted
(this is called the lag) to achieve the best correlation. While the FFT method can compute
the correlation at all lags simultaneously, this information isn’t very useful. For instance, in
stereo matching, if the two pictures are shifted by more than a few pixels, then they probably
aren’t related at all.

Smoothing makes trends more evident in noisy data and removes glitches and other spurious
anomalies. Smoothing is the first step of many signal processing applications, because some
algorithms perform particularly well on smoothed surfaces [65]. Even when smoothing is
not an explicit step, the desired convolution is sometimes first convolved with a smoothing
operator and the resulting stencil, which simultaneously smooths and performs the original
operation, is used instead. In fact, estimation formulae with large support (wide stencils)
are typically equivalent to formulae of small support applied to smoothed images [68, p. 190;
64]. Averaging, weighted-sum, minimum or maximum, and median filters are all common
in digital signal processing [108]; all but the median filter can be efficiently implemented as
stencils.

B.2. VISION AND DIGITAL SIGNAL PROCESSING 85

Blurring or simulating the effect of an imperfect lens or an out-of-focus imaging system is done
with the stencil h[n] = a/™! [119, p. 275; 69, p. 104]. Section 4.2.1.2 on page 51 showed how
to process this stencil efficiently. This convolution cannot be performed by the FFT method
because lenses are only linear-shift-invariant only for limited displacements and because aber-
rations vary with distance from optical axis [69, p. 105].

Polynomial multiplication is just convolution [78, p. 386; 90, p. 198]; so is integer multiplica-
tion [90, pp. 162, 174].

B.2 Vision and digital signal processing

Many vision algorithms iteratively produce new images from old ones by local operations [69,
pp. 77-80]; for an extensive list of papers using the iterative approach, see [67, pp. 534-536]. One
example is finding an image’s skeleton by etching away the boundaries of an object; like many of
the algorithms, this one may require some communication with neighboring processors [69, p. 81].

Basically all low- and medium-level vision algorithms, even non-iterative ones, are paralleliz-
able [88, p. 272]. Parallel algorithms are particularly attractive for machine vision because they
simulate the parallel operation of the human visual apparatus.

Most of the applications mentioned in the previous section could be classified as signal process-
ing; here we mention some others.

Filtering to remove noise need not be done via a convolution. In fact, averaging (which is a
stencil computation, but not a convolution) is effective at smearing details and reducing
spatial resolution. Other good filtering combining operators are minimum, maximum, and
median [69].

Edge detection often involves convolution with an edge detection matrix; examples of vertical
and horizontal ones are

-1 —c -1 -1 0 1
0 0 and —c 0 ¢
1 1 -1 0 1

Usually ¢ = 1 or 2. When the magnitude of (the result of) the convolution is large, an edge
has been detected [107].

Other more sophisticated edge detection methods (such as Canny’s [25], mentioned in the
introduction as an example of the relative complexity of parallel and serial code) also use
stencils in the course of their computation.

Brightness estimation is another application for large-scale averaging. To estimate the bright-
ness difference across an edge, a large area on each side of it must be averaged (so that local
effects do not dominate the average). A larger averaging area reduces the effects of noise and
makes weak edges easier to detect (but an excessively large area can include other edges by
accident) [69].

Repetitive smoothing is required by some stereo matching algorithms that use very heavily
smoothed images to find an initial match and successively less-smoothed images for finer
matching, once an approximate match has been computed [69].

86 APPENDIX B. APPLICATIONS

Reconstructing images from their projections is done via convolution [107]. This problem is
also known as the inverse Radon or inverse Hough transform. There are also interesting ad
hoc approaches to removing redundant computations for this problem [20].

Template matching can be solved by performing two-dimensional convolution [88].

Stereo matching is done by shifting an image by a small amount and checking correlation locally
(using a small section of the image). Motion detection is similar but may have to deal with
two-dimensional shifts and different shifts in different parts of an image [56].

B.3 Partial differential equations

Partial differential equations (PDEs) [108, pp. 636ff] are very common in scientific applications.
Perhaps the most popular method for solving them is the finite element method (the finite differ-
encing method is the same solution, recast in a different light).

An iterative relaxation method can be used to solve partial differential equations. The key is
computing a partial derivative using old values at adjacent points and using fixed values where
boundary conditions apply. (This is the Dirichlet space [29].) The discrete approximations of these
partial derivative operators are also called computational molecules [66]; these are just stencils, so
our methods are directly applicable.

We briefly discuss just one vision application, the variational approach to machine vision. It
sets up a criterion function to determine the goodness of fit between an actual image and that
predicted from one’s solution. The Euler equations for these variational problems are typically
coupled partial differential equations, often including second, fourth, or other higher even order.

Direct solutions are out of the question because the problems have hundreds of thousands of
unknown parameters. Iterative finite element solutions of systems of partial differential equations
like this one often use the multigrid method. However, multigrid does not work when the PDE
is nonlinear (as in this case: the reflectance map usually depends nonlinearly on the gradient”),
and multigrid becomes complicated when there are boundary conditions [65]. The traditional
characteristic strip method is neither biologically likely nor efficient and robust [67].

Optical flow (computing a vector field showing how image brightness patterns appear to be
moving) [68, 69] was the first problem solved using the variational approach. Another application
is determining height and gradient from shading [65]. Hundreds of iterations may be required,
even for images of moderate size, especially if the contrast is low, so it is a good candidate for
optimization.

The fourth-order biharmonic operator is preferable to the second-order Laplacian for iteratively
computing these partial derivatives [66]. The Laplacian is only marginally stable, while the bihar-
monic is numerically stable even in the presence of noise. The biharmonic is also more amenable to
our optimizations because its stencil is larger. (Generally, large stencils are desirable, to ensure sta-
bility [108]. When stencils are large, then there is more opportunity for redundant computation to
be eliminated, and the expense of the computation makes efficient execution even more important.)
The Laplacian uses only 5 to 9 points, but the biharmonic uses 13 to 25 points. The obvious form

"The moon is a notable exception: the full moon is just as bright at the edges as at the center, which is why it
looks more like a disc than a sphere.

B.4. OTHER APPLICATIONS 87

for the two-dimensional stencil is the convolution of the 5-point Laplacian operator with itself [11]:

1
2 -8 2
1 -8 20 -8 1 ,
2 -8 2
1

Starting from the 9-point form of the Laplacian results in a better stencil,

1 8 18 8 1
§ -8 —-144 -8 8
18 —144 468 —144 18
§ -8 —-144 -8 8
1 8 18 8 1

but this still isn’t as good as one customized to work well for a 4th-order equation. One used in a
program for interpolating digital terrain models from contours [66] was:

-1 -1 -4 -1 -1
-1 B 18 8 -1
-4 18 —-76 18 —4
-1 B 18 8 -1
-1 -1 -4 -1 -1

There are many other applications for the biharmonic operator, such as the stress function for
the edges of a plate under tension [26].

B.4 Other applications

Our optimizations can benefit many other applications, from the direct implementation of Neville’s
algorithm for constructing an interpolating polynomial [108] to histogram equalization, which com-
putes the average of the neighborhood around each point [107]. We have already mentioned others,
such as numerical integration, and simulation of physical systems such as electrical circuits. Some
of these only use a value twice, but that use is in the inner loop, where any gain is worthwhile.
Band-pass filters are used to convert an ordinary or suppressed-carrier AM signal into single-
side-band (SSB) AM signal, which only occupies half as much bandwidth [119]. Because of the
real-time constraint, if this is done digitally, it should be done in the time domain as a stencil
convolution.
The methods used in the vision examples (differentiation and solution of systems of equations)
are quite general and apply to alarge class of problems even when no partial derivatives are involved.
Subsurface imaging, an important seismic application used for oil exploration, uses iterative
methods which involve the stencil
-1
16
-1 16 —-60 16 -1
16
-1

and a few other terms; this operator is fourth order in both space dimensions [102].

88

APPENDIX B. APPLICATIONS

Bibliography

(1]
[2]

Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of Computer Programs. MIT
Electrical Engineering and Computer Science Series. MIT Press and McGraw-Hill, 1985.

Santosh G. Abraham and David E. Hudak. Compile-time partitioning of iterative parallel loops to
reduce cache coherency traffic. IEEE Transactions on Parallel and Distributed Systems, 2(3):318-328,
July 1991.

Anant Agarwal. Limits on interconnection network performance. IFEE Transactions on Parallel and
Distributed Systems, 2(4):398-412, October 1991.

Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz. APRIL: A processor ar-
chitecture for multiprocessing. In Proceedings, 17th Annual International Symposium on Computer
Architecture, pages 104-114, Seattle, Washington, May 1990.

A. V. Aho, S. C. Johnson, and J. D. Ullman. Code generation for expressions with common subex-

pressions. Journal of the ACM, 24(1):146-160, January 1977.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools.
Computer Science Series. Addison-Wesley, Reading, Massachusetts, 1986.

M. Ajtai, J. Komlés, and E. Szemerédi. An O(nlogn) sorting network. In Proceedings of the Fifteenth
Annual ACM Symposium on Theory of Computing, pages 1-9, 1983.

F. E. Allen and J. Cocke. A catalogue of optimizing transformations. In R. Rustin, editor, Design and
Optimization of Compilers, pages 1-30. Prentice-Hall, Englewood Cliffs, New Jersey, 1972.

Randy Allen and Ken Kennedy. Vector register allocation. Technical report, Rice University, Houston,
Texas, April 1986. Revised March 1988.

Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck. Detecting equality of variables in programs.
In Conference Record of the 15th Annual ACM Symposium on Principles of Programmaing Languages,
pages 296-306, San Diego, California, January 1988.

William F. Ames. Numerical methods for partial differential equations. Academic Press, second edition,
1977.

R. S. Anderssen and P. Bloomfield. Numerical differentiation procedures for non-exact data. Numer.
Math., 22:157-182, 1974.

ANSI. ANSI Fortran Draft S8, Version 111.

Arvind and Rishiyur S. Nikhil. Executing a program on the MIT tagged-token dataflow architecture.
IEEE Transactions on Computers, 39(3):300-318, March 1990.

M. Auslander and M. Hopkins. An overview of the PL.8 compiler. In Proceedings of the SIGPLAN ’82
Symposium on Compiler Construction, pages 22-31, Boston, Massachusetts, June 1982. Proceedings
were also published as SIGPLAN Notices 17(6).

Robert A. Ballance, Arthur B. Maccabe, and Karl J. Ottenstein. The program dependence web: a
representation supporting control-, data-, and demand-driven interpretation of imperative languages.
In Proceedings of the SIGPLAN "90 Conference on Programming Language Design and Implementation,
pages 257-271. ACM Press, June 1990.

Guy E. Blelloch. NESL: A nested data-parallel language. Technical Report CMU-CS-92-103, Carnegie
Mellon University, Pittsburgh, Pennsylvania, January 1992.

89

90

[18]

[36]
[37]
[38]
[39]

[40]

BIBLIOGRAPHY

Guy E. Blelloch and Siddhartha Chatterjee. VCODE: A data-parallel intermediate language. In
Proceedings of the Third Symposium on the Frontiers of Massively Parallel Computation, pages 471—
480, College Park, Maryland, October 1990.

Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan. Time
bounds for selection. Journal of Computer and System Sciences, 7(4):448-461, 1973.

Martin L. Brady and Whanki Yong. Parallel discrete approximation algorithms for the Radon trans-
form. In Proceedings of SPAA ’92: The jth Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 91-99, San Diego, California, June 29-July 1, 1992.

Melvin A. Breuer. Generation of optimal code for expressions via factorization. Communications of
the ACM, 12(6):333-340, June 1969.

Mark Bromley, Steven Heller, Tim McNerney, and Guy L. Steele Jr. Fortran at ten gigaflops: The
Connection Machine convolution compiler. In Proceedings of the ACM SIGPLAN ’91 Conference on
Programmang Language Design and Implementation, pages 145-156, June 26-28, 1991.

John Bruno and Ravi Sethi. Code generation for a one-register machine. Journal of the ACM,
23(3):502-510, July 1976.

Philip L. Campbell, Ksheerabdhi Krishna, and Robert A. Ballance. Refining and defining the program
dependence web. Technical Report CS593-6, University of New Mexico, Albuquerque, March 1993.
John Francis Canny. Finding edges and lines in images. Technical Report 720, MIT Artificial Intelli-
gence Laboratory, Cambridge, Massachusetts, June 1983.

Brice Carnahan, H. A. Luther, and James O. Wilkes. Applied Numerical Methods. John Wiley & Sons,
New York, 1969.

Todd Cass. canny.lisp, 1987. Connection Machine implementation of Canny’s edge detector.

David Chaiken, Beng-Hong Lim, and Dan Nussbaum. ASIM users manual. Alewife Systems Memo 13,
MIT Laboratory for Computer Science, Cambridge, Massachusetts, August 1990. 9 pages; revised
November 26, 1991.

K. Mani Chandy and Stephen Taylor. An Introduction to Parallel Programmang. Jones and Bartlett,
Boston, Massachusetts, 1992.

J. Cocke. Global common subexpression elimination. SIGPLAN Notices, 5(7):20-24, July 1970.
John Cocke and Peter Markstein. Measurement of program improvement algorithms. Computer
Science 35193, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, February 7,
1980.

W.J. Cody. Analysis of proposals for the floating-point standard. IJEEE Computer, 14(3):63-68, March
1981.

Jerome T. Coonen. An implementation guide to a proposed standard for floating-point arithmetic.
IEEE Computer, 13(1):68-79, January 1980. Errata appear in IEEE Computer, 14(3):61, March 1981.
Jerome T. Coonen. Underflow and the denormalized numbers. IEEE Computer, 14(3):75-87, March
1981.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. [Introduction to Algorithms. MIT
Electrical Engineering and Computer Science Series. MIT Press and McGraw-Hill, Cambridge, Mas-
sachusetts and New York, New York, 1990.

David E. Culler. Managing parallelism and resources in scientific dataflow programs. Technical Report
MIT-LCS-TR-446, MIT Laboratory for Computer Science, Cambridge, Massachusetts, March 1990.

Ron Cytron. Doacross: Beyond vectorization for multiprocessors. In Proceedings of the 1986 Interna-
tional Conference on Parallel Processing, pages 836-844, August 1986.

Ron Cytron. Limited processor scheduling of doacross loops. In Proceedings of the 1987 International
Conference on Parallel Processing, pages 226-234, August 1987.

William J. Dally. Performance analysis of k-ary n-cube interconnection networks. IFEE Transactions

on Computers, 39(6):775-785, June 1990.
F. Darema-Rogers, V. A. Norton, and G. F. Pfister. Using a single-program-multiple-data computa-

BIBLIOGRAPHY 91

tional model for parallel execution of scientific application. Technical Report RC 1152, IBM, Yorktown
Heights, New York, November 12, 1986. Revised version.

Robert B. K. Dewar. The SETL programming language. Manuscript, 1978.

D. M. Dhamdhere. A usually linear algorithm for register assignment using edge placement of load
and store instructions. Computer Languages, 15(2):83-94, 1990.

Karl-Heinz Drechsler and Manfred P. Stadel. A solution to a problem with Morel and Renvoise’s
“Global optimization by suppression of partial redundancies”. ACM Transactions on Programming

Languages and Systems, 10(4):635-640, October 1988.

J. Earley. High level iterators and a method for automatically designing data structure representation.
Computer Languages, 1(4):321-342, 1975.

Charles Henry Edwards, Jr. and David E. Penney. Elementary Differential Fquations with Applications.
Prentice-Hall, Englewood Cliffs, New Jersey, 1985.

Michael D. Ernst. Sequentializing parallel grid programs. Manuscript, May 13, 1992.

Michael D. Ernst. Serializing parallel programs (abstract). In Charles E. Leiserson, editor, Proceedings

of the 1992 MIT Student Workshop on VLSI and Parallel Systems, pages 13—1-13-2, July 21, 1992.

Michael D. Ernst. Serializing parallel programs by removing redundant computation. Master’s thesis,
Massachusetts Institute of Technology, Cambridge, Massachusetts, August 1992.

Jeanne Ferrante and Mary Mace. On linearizing parallel code. In Proceedings of the Twelfth Annual
ACM Symposium on Principles of Programming Languages, pages 179-190, January 1985.

Jeanne Ferrante, Mary Mace, and Barbara Simons. Generating sequential code from parallel code. In
Proceedings of the 1988 International Conference on Supercomputing, pages 582-592, June 1988.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graph and its use in
optimization. ACM Transactions on Programming Languages and Systems, 9(3):319-349, July 1987.

Amelia C. Fong. Inductively computable constructs in very high level languages. In Conference Record
of the Sizth ACM Symposium on Principles of Programming Languages, pages 21-28, San Antonio,
Texas, January 29-31, 1979.

Amelia C. Fong and Jeflrey D. Ullman. Induction variables in very high level languages. In Confer-
ence Record of the Third ACM Symposium on Principles of Programming Languages, pages 104-112,
Atlanta, Georgia, January 19-21, 1976.

G. C. Fox, A. Kolawa, and R. Williams. The implementation of a dynamic load balancer. Pages
114-121.

Geoffrey Fox, Seema Hiranandani, Ken Kennedy, Charles Koelbel, Uli Kremer, Chau-Wen Tseng, and
Min-You Wu. Fortran D language specification. Technical Report COMP TR90-141, Rice University
Department of Computer Science, Houston, Texas, December 1991. Revised February, 1991.

W. Eric L. Grimson. Computing stereopsis using feature point contour matching. In A. Rosenfeld,
editor, Techniques for 3-D Machine Perception, pages 75-111. Elsevier Science Publishers B.V. (North-
Holland), 1986.

Patrick A. V. Hall. Common subexpression identification in general algebraic systems. Technical
Report UKSC 0060, IBM United Kingdom Scientific Centre, Peterlee;, County Durham, England,
November 1974.

Patrick A. V. Hall. Optimization of single expressions in a relational data base system. IBM Journal
of Research and Development, 20:244-257, May 1976.

Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation. ACM Transac-
tions on Programming Languages and Systems, 7(4):5601-538, October 1985.

Philip J. Hatcher and Michael J. Quinn. Data-Parallel Programming on MIMD Computers. Scientific
and Engineering Computation. MIT Press, Cambridge, Massachusetts, 1991.

Philip J. Hatcher, Michael J. Quinn, Anthony J. Lapadula, Bradley K. Seevers, Ray J. Anderson, and

Robert R. Jones. Data-parallel programming on MIMD computers. IEEFE Transactions on Parallel
and Distributed Systems, 2(3):377-383, July 1991.

BIBLIOGRAPHY

James E. Hicks. Personal communication, 1992.

Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiler optimizations for Fortran D on
MIMD distributed-memory machines. Technical Report CRPC-TR91162, Rice University Center for
Research on Parallel Computation, Houston, Texas, April 1991. Revised August, 1991.

Berthold K. P. Horn. Hill shading and the reflectance map. Proceedings of the IEEE, 69(1):14-47,
January 1981.

Berthold K. P. Horn. Height and gradient from shading. International Journal of Computer Vision,
5(1):37-75, 1990.

Berthold K. P. Horn. Personal communication, 1992.

Berthold K. P. Horn and Michael J. Brooks, editors. Shape From Shading. Artificial Intelligence. MIT
Press, Cambridge, Massachusetts, 1989.

Berthold K. P. Horn and Brian G. Schunck. Determining optical flow. Artificial Intelligence, 17:185—
203, 1981.

Berthold Klaus Paul Horn. Rebot Vision. MIT Electrical Engineering and Computer Science Series.
MIT Press, Cambridge, Massachusetts, 1986.

David Hough. Applications of the proposed IEEE 754 standard for floating-point arithmetic. TEEE
Computer, 14(3):70-74, March 1981.

IBM. XL C User’s Guide.

IBM. XL FORTRAN Compiler/6000 Version 2.2 User’s Guide.

IBM. APL2 Programming: Language Reference, August 1984. Order number SH20-9227-0.

Institute of Electrical and Electronics Engineers. IEEE standard for binary floating-point arithmetic.
345 East 47th Street, New York, NY 10017, August 12, 1985. IEEE Standard 754-1985.

Institute of Electrical and Electronics Engineers Computer Society. A proposed standard for binary
floating-point arithmetic: Draft 8.0 of IEEE Task P754. IEEE Computer, 14(3):51-62, March 1981.

K. E. Iverson. A Programming Language. Wiley, New York, 1962.

K. E. Tverson. A dictionary of apl. APL Quote Quad, 18(1):5-40, September 1987.

Joseph JaJa. An Introduction to Parallel Algorithms. Addison-Wesley, Reading, Massachusetts, 1992.
Mattias Jarke. Common subexpression isolation in multiple query optimization. In Won Kim, Davis S.
Reiner, and Don S. Batory, editors, Query Processing in Database Systems, Topics in Information
Systems, pages 191-205. Springer-Verlag, Berlin, 1985.

M. A. Jenkins, J. I. Glasgow, and C. McCrosky. Programming styles in Nial. ITEFE Transactions on
Software Engineering, January 1986.

Kirk Johnson. Using the LALR parser generator, September 19, 1991. Documentation version 0.9.

S. M. Joshi and D. M. Dhamdhere. A composite hoisting-strength reduction transformation for global
program optimization: Part 1. International Journal of Computer Mathematics, 11:21-41, 1982.

S. M. Joshi and D. M. Dhamdhere. A composite hoisting-strength reduction transformation for global
program optimization: Part II. International Journal of Computer Mathematics, 11:111-126, 1982.
Brian W. Kernighan and Dennis M. Ritchie. The C' Programming Language. Software Series. Prentice
Hall, Englewood Cliffs, New Jersey, second edition, 1988.

Greg Klanderman. Canny edge detector. smooth.c, May 18, 1990.

Kathleen Knobe, Joan D. Lukas, and Guy L. Steele Jr. Data optimization: Allocation of arrays to
reduce communication on SIMD machines. Journal of Parallel and Distributed Computing, 8:102-118,
1990.

Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming.
Addison-Wesley, Reading, Massachusetts, second edition, 1981.

Vipin Kumar, P. S. Gopalakrishnan, and Laveen N. Kanal, editors. Parallel Algorithms for Machine
Intelligence and Vision. Symbolic Computation—Artificial Intelligence Series. Springer-Verlag, New
York, 1990.

BIBLIOGRAPHY 93

[89]

[99]
[100]
[101]
[102]
[103]

[104]

[105]

[106]
[107]
[108]
[109]
[110]

[111]

H. T. Kung and S. W. Wong. A systolic array chip for the convolution operator in image process-
ing. VLSI Document V046, Carnegie-Mellon University Computer Science Department, Pittsburgh,
Pennsylvania, February 1980.

S. Lakshimivarahan and Sudarshan K. Dhall. Analysis and Design of Parallel Algorithms: Arithmetic
and Matriz Problems. Supercomputing and Parallel Processing. McGraw Hill, New York, 1990.
Daniel Laliberte. Edebug User Manual: A Source Level Debugger for GNU Emacs Lisp, March 1992.
Edition 1.2.

C. Lasser. The Essential *Lisp Manual. Thinking Machines Corporation, Cambridge, Massachusetts,
July 1986.

F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hyper-
cubes. Morgan Kaufmann, San Mateo, California, 1992.

Bil Lewis, Dan LaLiberte, and the GNU Manual Group. GNU Emacs Lisp Reference Manual Free
Software Foundation, Cambridge, Massachusetts, December 1990. Version 1.03.

John D. C. Little, Kattta G. Murty, Dura W. Sweeney, and Caroline Karel. An algorithm for the
traveling salesman problem. Operations Research, 11(6):972-989, November—December 1963.

J. M. LoSecco, Frederick Reines, and Daniel Sinclair. The search for proton decay. Scientific American,
252:541f) June 1985.

Larry Meadows. Personal communication, 1992.

Randall Mercer. The CONVEX FORTRAN 5.0 compiler. In Lana P. Kartashev and Steven I. Karta-
shev, editors, Third International Conference on Supercomputing, volume 11, pages 164-175, Boston,
Massachusetts, May 1988.

Joseph Mohan. A study in parallel computation—the traveling salesman problem. Technical Report
CMU-CS-82-136, Carnegie-Mellon University Department of Computer Science, August 18, 1982.
Joseph Mohan. Experience with two parallel programs solving the traveling salesman problem. In
Proceedings of the 1983 International Conference on Parallel Processing, pages 191-193, 1983.
Etienne Morel and Claude Renvoise. Global optimization by suppression of partial redundancies.
Commaunications of the ACM, 22(2):96-103, February 1979.

Jacek Myczkowski and Guy L. Steele Jr. Seismic modeling at 14 gigaflops on the Connection Machine.
In Proceedings, Supercomputing '91, pages 316-326, Albuquerque, New Mexico, November 18-22, 1991.
Dan Nussbaum. ASIM reference manual. Alewife Systems Memo 28, MIT Laboratory for Computer
Science, Cambridge, Massachusetts, January 1991. 17 pages; revised November 26, 1991.

Bob Paige and J. T. Schwartz. Expression continuity and the formal differentiation of algorithms. In
Conference Record of the Fourth ACM Symposium on Principles of Programming Languages, pages
58-71, Los Angeles, California, January 17-19, 1977.

Robert Paige and Shaye Koenig. Finite differencing of computable expressions. Technical Report
LCSR-TR-8, Rutgers University Laboratory for Computer Science Research, New Brunswick, New
Jersey, August 1980. Revised December, 1981.

Robert Paige and Shaye Koenig. Finite differencing of computable expressions. ACM Transactions on
Programming Languages and Systems, 4(3):402-454, July 1982.

Theodosios Pavlidis. Algorithms for Graphics and Image Processing. Computer Science Press,
Rockville, Maryland, 1982.

William H. Press, Brian P. Flannery, Saul A. Teukolksy, and William T. Vetterling. Numerical Recipes
wm C: The Art of Scientific Computing. Cambridge University Press, Cambridge, England, 1988.
William Pugh and Tim Teitelbaum. Incremental computation via function caching. In Principles of
Programming Languages, pages 315-328, 1989.

J. Rose and G. L. Steele Jr. C*: An extended C language for data parallel programming. Technical
Report PL87-5, Thinking Machines Corporation, Cambridge, Massachusetts, April 1987.

Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Global value numbers and redundant com-
putations. In Conference Record of the 15th Annual ACM Symposium on Principles of Programming

94

[112]
[113]
[114]

[115]

[116]

[117]
[118]

[119]

[120]

[121]

[122]

[123]

[124]
[125]
[126]

[127]
[128]

[129]
[130]
[131]
[132]

[133]

[134]

BIBLIOGRAPHY

Languages, pages 12-27, San Diego, California, January 1988.

Bill Ross. Personal communication, 1992.

Gary Sabot. Paralation Lisp Reference Manual May 1988.

Gary W. Sabot. The Paralation Model: Architecture-Independent Parallel Programmaing. MIT Press,
Cambridge, Massachusetts, 1988.

Gary W. Sabot. Optimized CM Fortran compiler for the Connection Machine computer. In Proceedings
of Hawait International Conference on System Sciences 25, pages 161-172. IEEE Computer Society,
1992.

J. T. Schwartz. On programming: An interim report on the SETL project, Installments I and II.
Technical report, Courant Institute of Mathematical Sciences, New York University, New York, New
York, 1974.

Stephen D. Senturia and Bruce D. Wedlock. Electronic Circuits and Applications. John Wiley & Sons,
New York, New York, 1975.

Ravi Sethi and J. D. Ullman. The generation of optimal code for arithmetic expressions. Journal of
the ACM, 17(4):715-728, October 1970.

William McC. Siebert. Circuits, Signals, and Systems. MIT Electrical Engineering and Computer
Science Series. MIT Press and McGraw-Hill, Cambridge, Massachusetts and New York, New York,
1986.

Barbara Simons, David Alpern, and Jeanne Ferrante. A foundation for sequentializing parallel code
— extended abstract. In Proceedings of the 2nd ACM Symposium on Parallel Algorithms and Archi-
tectures, pages 350-359, 1990.

Barbara Simons and Jeanne Ferrante. An efficient algorithm for constructing a control flow graph
for parallel code. Technical Report TR, 03.465, IBM, Santa Teresa Laboratory, San Jose, California,
February 1993.

John Miles Smith and Philip Yen-Tang Chang. Optimizing the performance of a relational algebra
database interface. Communications of the ACM, 18(10):568-579, October 1975.

Arthur Sorkin. Some comments on “A solution to a problem with Morel and Renvoise’s ‘Global
optimization by suppression of partial redundancies’”. ACM Transactions on Programming Languages
and Systems, 11(4):666-668, October 1989.

Richard M. Stallman. The C' Preprocessor. Free Software Foundation, Cambridge, Massachusetts, first
edition, April 1989.

Richard M. Stallman. Using and Porting GNU CC. Free Software Foundation, Cambridge, Mas-
sachusetts, February 1992. For GNU CC version 2.0.

Guy L. Steele Jr. CM-Lisp. Technical report, Thinking Machines Corporation, Cambridge, Mas-
sachusetts, 1986.

Guy L. Steele Jr. Personal communication, 1992.

Bjarne Steensgaard. Sequentializing program dependence graphs for irreducible programs. Technical

Report MSR-TR-93-14, Microsoft Research, Redmond, WA, August 1993.

J. M. Stone, F. Darema-Rogers, A. Norton, and G. F. Pfister. The VM/EPEX FORTRAN preprocessor
reference. Technical report, IBM, Yorktown Heights, New York.

Sun Microsystems. C Programmer’s Guide, 1989. Part number 800-3844-10.

Barbara Tansy. SPARCstationi Sun System User’s Guide. Sun Microsystems, 1989.

Thinking Machines Corporation. Connection Machine Model CM-2 technical summary. Technical
Report HA87-4, Cambridge, Massachusetts, April 1987.

Thinking Machines Corporation, Cambridge, Massachusetts. C* Programming Guide, 1990. Version
6.0 Beta.

Thinking Machines Corporation, Cambridge, Massachusetts. CM Fortran User’s Guide, preliminary
edition, October 1991. Thinking Machines confidential.

BIBLIOGRAPHY 95

[135]
[136]
[137]
[138]
[139]

[140]

[141]
[142]

[143]

[144]

Thinking Machines Corporation, Cambridge, Massachusetts. Geiting Started in *Lisp, June 1991.
Version 6.1. First printing.

Thinking Machines Corporation, Cambridge, Massachusetts. *Lisp Dictionary, October 1991. Version
6.1. Revised printing.

Kenneth R. Traub. A compiler for the MIT tagged-token dataflow architecture. Technical Report
MIT-LCS-TR-370, MIT Laboratory for Computer Science, Cambridge, Massachusetts, August 1986.
Kenneth R. Traub. Sequential implementation of lenient programming languages. Technical Report
LCS-TR-~417, MIT Laboratory for Computer Science, Cambridge, Massachusetts, October 1988.

J. D. Ullman. Fast algorithms for the elimination of common subexpressions. Acta Informatica,
2(3):191-213, 1973.

Daniel Weise, Roger F. Crew, Michael Ernst, and Bjarne Steensgaard. Value dependence graphs:
Representation without taxation. Technical Report MSR-TR-94-03, Microsoft Research, Redmond,
WA, April 13, 1994.

Skef Wholey. Automatic data mapping for distributed-memory parallel computers. Technical Report
CMU-CS-91-121, Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1991.

Robert G. Willhoft. Parallel expression in the APL2 language. IBM Systems Journal, 30(4):498-512,
1991.

Michael Wolfe. Optimizing Supercompilers for Supercomputers. Research Monographs in Parallel and
Distributed Computing. MIT Press and Pitman, Cambridge, Massachusetts and London, England,
1989.

Jamie Zawinski and Hallvard Furuseth. Compilation of Lisp code into byte code. bytecomp.el,
March 9, 1992. Version 2.05.

