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Abstract

Many classical problems of computer science | such as paging, scheduling, and maintaining

dynamic data structures | are naturally on-line; an algorithm for such a problem is constantly

making irrevocable decisions without knowing what its future input will be. The competitive

analysis of on-line algorithms was brought into prominence by the work of Sleator and Tarjan

in 1985 as a theoretical framework in which to measure the performance of such algorithms.

Since then, a variety of on-line problems have been studied from this perspective.

We consider two such problems in this setting: robot navigation, and computationally

e�cient algorithms for the k-server problem of Manasse, McGeoch, and Sleator. For the �rst

of these, we give algorithms for a robot searching for a goal in an unknown simple polygon; our

approach can be viewed as an extension of some of the strategies of Baeza-Yates, Culberson,

and Rawlins to a more general class of geometric search spaces. We also provide the �rst

competitive analysis of the robot localization problem | a fundamental task for an autonomous

mobile robot, in which it must determine its location in a known environment.

Finally, we address the general question of how the performance of an on-line algorithm

varies with the computational resources it has at its disposal. Within the context of the k-server

problem, a natural specialization of this question is the following: can an algorithm which uses

only constant space, and constant time in processing each request, match the performance of

algorithms which are allowed to perform an arbitrary amount of computation at each step? We

show a non-trivial lower bound for the class of 2-server balancing algorithms, a subclass of the

constant-time algorithms; this represents one of the �rst lower bounds for an on-line algorithm

based solely on its computational resources.

Thesis Supervisor: Michel X. Goemans

Title: Assistant Professor of Applied Mathematics

Keywords: On-line algorithms, robot navigation, robot localization, k-server problem
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Chapter 1

Introduction

The distinction between on-line and o�-line algorithms is an old one in computer science, yet

the current surge of on-line algorithms research in the theory community is relatively new. In

large part this is due to the surprisingly rich structure of the competitive ratio, brought into

focus by Sleator and Tarjan [ST] in 1985 as a means of analyzing on-line algorithms.

At a general level, an on-line algorithm is one which receives its input in a piecemeal fashion;

at each step, it must make irrevocable decisions before seeing the remainder of the input. An o�-

line algorithm, on the other hand, has the luxury of reading the entire input before performing

any computation. The competitive ratio of an on-line algorithm is then de�ned to be the worst-

case ratio of the cost it incurs on a given problem instance to the cost of the optimum (o�-line)

solution. (Readers not familiar with the de�nitions in this area should read Chapter 2 before

this Introduction.)

In this thesis, we consider two naturally on-line problems within the framework of compet-

itive analysis: robot navigation, and the k-server problem.

In a typical on-line navigation problem, a robot with vision is placed in a geometric envi-

ronment for which it does not have a map; it must perform some task in this environment, such

as constructing a map, or �nding a recognizable goal hidden in the environment. Baeza-Yates,

Culberson, and Rawlins [BCR], in one of the �rst papers in this area, considered the latter type

of search problem. They gave algorithms for searching in a number of structured situations,

including the problem of searching for a point on a line, a line in the plane, and a point in a

grid graph. The basis for these algorithms is a collection of techniques that have found wide
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application in subsequent papers.

In Chapter 3, we consider more geometric versions of this search problem | speci�cally the

problem of a robot searching for a goal in an unknown rectilinear polygon. This di�ers from

the model of [BCR] in that the structure of the space to be searched is not known to the robot;

the generality of rectilinear polygons also makes possible a much wider class of search spaces.

The search algorithm we give is fairly natural, performing exploration on larger and larger

regions of the polygon. This problem of exploration in a simple rectilinear polygon has been

considered separately by Deng, Kameda, and Papadimitriou [DKP], who gave an algorithm

with a competitive ratio of 2; we o�er a simple randomized variant with competitive ratio 5=4.

It is also interesting to consider special cases of the search problem in a polygon | re-

stricting the type of polygon so that better competitive ratios can be obtained. This was the

approach taken by Klein [K], who considered the class of streets and gave a search algorithm

with competitive ratio at most 1+ 3
2
� (� 5:71). We give an algorithm for streets with compet-

itive ratio at most

q
4 +

p
8 (� 2:61), improving on this bound by more than a factor of two.

A number of other types of polygons may well be amenable to the same type of approach, and

this appears to be an interesting direction for further work.

Not all on-line navigation problems assume a complete lack of information about the envi-

ronment, however. For example, a fundamental task for an autonomous mobile robot is that

of localization | determining its location in a known environment. This problem arises in set-

tings that range from the computer analysis of aerial photographs to the design of autonomous

Mars rovers. Typically, localization occurs in two phases: �rst the robot determines all possible

locations consistent with its current local view of the environment; then it moves around, per-

forming enough \reconnaissance" to determine uniquely where it is. Despite the attention that

localization has received in the robotics literature, the �rst theoretical work on it appeared only

recently in a paper of Guibas, Motwani, and Raghavan [GMR]; they gave geometric algorithms

for the �rst part of the problem | enumerating locations consistent with a view | but did not

address the issue of strategies for the second part.

In Chapter 4, we consider this aspect of localization, providing algorithms for a mobile robot

to move around in its environment so as to determine e�ciently where it is. We argue that

localization is a natural setting in which to apply the competitive analysis of on-line algorithms;
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the distance traveled by the robot is compared to the length of the shortest possible localizing

tour. The search strategies of [BCR] allow one to obtain a fairly straightforward, and non-

optimal, localization algorithm; our main result here is an algorithm which makes stronger use

of the robot's knowledge of the map in order to improve asymptotically on this approach. An

interesting feature of our technique is the way in which the robot is able to identify \critical

directions" in the environment which allow it to perform late stages of the search more e�ciently.

Finally, in Chapter 5, we consider some problems related to the computational resources

required by an on-line algorithm. The overwhelming majority of research in competitive analysis

has proceeded along information-theoretic lines; that is, the only factor limiting the performance

of an on-line algorithm is its lack of information about the nature of future input. But for any

given problem, a natural question to ask is whether the best competitive ratio attainable by an

on-line algorithm depends on the computational resources it has at its disposal. We consider

such questions within the context of the k-server problem | an elegant generalization of paging

and certain types of scheduling problems, and one of the most well-studied problems in the area

of on-line algorithms. Here, an algorithm is presented with a metric space M and k mobile

servers that can move within M . Points of M request service, one after another, and the

algorithm must move a server to the location of each request before seeing the next one. The

goal is to minimize the total distance traveled by the servers. (See Chapter 2 for background

on the k-server problem.)

We say that a real-time server algorithm is one which uses only a constant amount of space,

and constant time per request. This notion has been studied especially with respect to the 2-

server problem, by Irani and Rubinfeld [IR] and Chrobak and Larmore [CL2]. In this setting it

has been observed that, while there are computationally expensive 2-server algorithms achieving

the optimal competitive ratio of 2 [MMS, CL1, CL4], the best known competitive ratio for a

real-time algorithm is 4 [CL2].

In Chapter 5, we give a real-time 2-server algorithm which is 2-competitive in n-dimensional

space under the L1 (\Manhattan") metric. This considerably extends the class of metric spaces

known to have optimal real-time algorithms; the technique we use can be seen as a higher-

dimensional generalization of the elegant \Double-Coverage" algorithm discovered for k servers

on a line by Chrobak, Karlo�, Payne, and Vishwanathan [CKPV]. We also prove a lower bound
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for 2-server balancing algorithms, a sub-class of the real-time algorithms. Balancing algorithms

have been proposed for a number of special cases of the k-server problem; they are so named

because they seek to \balance" the distance traveled evenly among the servers. We show that

no such algorithm can achieve a competitive ratio better than (5 +
p
7)=2 (� 3:82) for the

2-server problem; this shows that no optimal on-line 2-server algorithm can be expressed as a

balancing algorithm. This also represents, to our knowledge, one of the �rst lower bounds for

an on-line algorithm based solely on its computational resources.

Some Notation

We use standard order-of-growth notation (O, 
, �) throughout; additionally we say that f(n)

is o(g(n)) if

lim
n!1

f(n)

g(n)
= 0

and f(n) is !(g(n)) if g is o(f).

Two di�erent metrics in Rd will be used at various places: L1 and L2. In the L1 (\Man-

hattan") metric, the distance between points x = (x1; : : : ; xd) and y = (y1; : : : ; yd) is given

by

L1(x; y) =
dX
i=1

��xi � yi
��:

The L2 metric is the standard Euclidean distance; that is,

L2(x; y) =

 
dX
i=1

(xi � yi)2
!1=2

:
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Chapter 2

On-Line Algorithms: An Overview

The study of on-line algorithms stems from the issue of how an algorithm receives its input. In

the traditional view, all input is present immediately: for example, if the algorithm is supposed

to be computing the shortest path between two nodes in a graph, then one assumes that it has

access to entire graph from the start. This is clearly a reasonable assumption in a large number

of situations; however, there are equally natural situations in which it makes sense to imagine

that the algorithm is receiving its input in an on-line fashion: the input arrives in a sequence

of small pieces, and with the arrival of each piece, the algorithm must make certain immediate

and irrevocable decisions.

In this sense, there is nothing new about on-line algorithms. Certainly, the di�erence be-

tween \one-pass" and \two-pass" algorithms has always been a fundamental issue in designing

computer programs; and this is essentially the same distinction expressed in di�erent termi-

nology. In other cases, the circumstances of the problem force us to work within the on-line

framework | for example, paging algorithms evict pages from memory, call-control algorithms

route connections through a network, and trading strategies tell investors to buy and sell, all of

them without knowing what the future sequence of \input" will look like. For such problems,

there are only on-line algorithms.

At the same time, however, there has been a tremendous increase in the number of \on-

line algorithms" papers over the last ten years; this has derived mainly from the increasing

popularity of competitive analysis as a perspective from which to discuss the performance of

such algorithms. In the following section, we discuss competitive analysis in general, and
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speci�cally the paper of Sleator and Tarjan [ST].

2.1 Competitive Analysis

Typically, an on-line algorithm is trying to solve some optimization problem (as in the examples

cited above). Thus, if A is an on-line algorithm, and � is an input sequence, then the crucial

parameter which must be minimized in most on-line problems is A(�), the cost incurred by A
on �.

For any given problem, we can consider the optimal o�-line algorithm OPT , which sees the

entire input ahead of time and thus always achieves the minimum possible cost on �. In the

traditional analysis of algorithms, the fundamental question is how computationally \expensive"

(in terms of time or space complexity) it is to design the algorithm OPT . In the competitive

analysis of on-line algorithms, one instead takes OPT as a given and asks how close an on-line

algorithm A can come to achieving the performance of OPT .

Thus we say that an on-line algorithm A is c-competitive if for some absolute constant �,

the expression

A(�)� c �OPT (�)

is bounded by � for all input sequences �. We will sometimes say that A is \competitive" if it

is c-competitive for some constant c; the in�mum of the set of c for which A is c-competitive is

its competitive ratio.

From a historical point of view, it is quite di�cult to identify the �rst use of this performance

measure as applied to on-line algorithms. It appears in the bin-packing literature of the 1970's,

which considered the well-known problem of determining the fewest number of \bins," each

of capacity 1, which are required to contain a set of n objects with weights w1; : : : ; wn � 1.

This problem is NP-Complete, but a number of very natural heuristics, several of them on-line

algorithms, give constant-factor approximations to the minimum number of bins required.

In this setting, an on-line algorithm is simply one which decides where to place the ith

object before seeing the values of wi+1; : : : ; wn. One such example is First Fit, which puts the

object in the �rst bin in which it will �t, starting a new bin only if necessary. Garey, Graham,

and Ullman [GGU] proved that the competitive ratio of First Fit is 17
10
, and an almost exact
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characterization of the performance of First Fit, as well as a number of other approximation

algorithms, was given by Johnson in his Ph.D. thesis [J]. In a result very much in the spirit

of current work in on-line algorithms, Yao proved in 1980 that there is no on-line bin-packing

algorithm with a performance ratio better than 3
2
[Yao].

The competitive ratio also appears sporadically (and again not cast in the current terminol-

ogy) in work on graph-coloring. The First Fit algorithm has a natural meaning in this world

as well: proceed through the vertices one at a time, coloring each with the lowest-numbered

color possible. While First Fit performs abysmally on some classes of graphs, it has long been

observed to have relatively good behavior on others. The survey paper of Kierstead and Trotter

[KT] mentions a number of problems related to the First Fit coloring algorithm; for example,

Woodall asked in 1974 whether the number of colors used by First Fit was within a constant

factor of �(G) when G is an interval graph (see also [Kier]). In the new language, this is simply

the question of whether First Fit achieves a constant competitive ratio for this type of graph.

In the last �ve years, there have been a number of papers on \on-line graph coloring" in the

competitive framework; these will be discussed brie
y in Section 2.3.

But it was the work of Sleator and Tarjan in 1985 [ST] which launched the current deluge

of papers. [ST] considered two classical problems of computer science, within the setting of

competitive analysis: the maintenance of a dynamic data structure, and paging.

On the �rst of these questions, [ST] dealt speci�cally with the problem of maintaining a

linked list under a sequence of insert, delete, and member? requests. This problem had a long

history, and many heuristics had been proposed. In the context of on-line algorithms, as in the

actual applications, one is trying to minimize the total number of memory references over the

course of a request sequence (i.e. one always wants the current item referenced to be as close

to the front of the list as possible). What Sleator and Tarjan showed was that the well-known

heuristic move-to-front (always put the item just accessed at the front of the list) is 2-

competitive. One thing that makes this result particularly striking is that the competitive ratio

of such a simple rule should be so low, especially when there is in fact no good characterization

known for the optimal o�-line algorithm. The proof was also interesting for its use of a potential

function argument, a technique that was to become extremely common in subsequent research

in on-line algorithms (we will give an example of such an argument in Section 2.2).
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The results in [ST] concerned with paging gave much stronger lower bounds. Here one

pictures a computer with k pages of fast memory and an unlimited number of additional pages

of slow memory (e.g. a disk). When a reference is made to a page not in fast memory, a \page

fault" occurs: the referenced page must be moved in, and some page currently sitting in fast

memory must be swapped out. The goal is to minimize the number of page faults, over the

course of a string � of memory references. In [ST] it was proved that no on-line paging algorithm

with k pages can be better than k-competitive, and a number of well-known algorithms such

as LRU (evict the least-recently used page) and FIFO (evict the page that was brought in

longest ago) match this bound. Of course, from the point of view of operating system design,

a performance guarantee of k is ridiculously large | a rule such as LRU actually performs

extremely well in practice | but the result does lend some insight into why looking at previous

requests should help in designing a paging algorithm. Various extensions to the model of [ST]

have been proposed [BIRS, KPR], but the question of why on-line paging works so well in real

life remains an intriguing one.

Following [ST], the paper [KMRS] analyzed additional on-line strategies for cache manage-

ment (which is essentially the same as paging in this model), and [BLS] proposed \metrical task

systems" as an abstract model for studying on-line algorithms. The following year, Manasse,

McGeoch, and Sleator [MMS] introduced what has become perhaps the most well-known and

well-studied on-line problem: the k-server problem.

2.2 The k-Server Problem

We imagine the following situation. An on-line algorithm A controls k mobile servers which are

free to move around in some metric space M . A �nite request sequence � is now presented to

the algorithm, one request at a time. Each request is a point in the spaceM ; the algorithm must

move one of the servers to this point before seeing the next request. The goal is to minimize the

total distance traveled by the servers, over the entire request sequence. The k-server problem

generalizes paging in the following sense: if M is the set of possible pages of memory, with

the uniform metric (all non-trivial distances are 1), and the servers are the k \slots" of fast

memory, then the problem becomes that of minimizing the number of page faults.

In their original paper, Manasse, McGeoch, and Sleator showed that for every metric space
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M and every on-line algorithm A, there are arbitrarily long request sequences on which

A(�) � k �OPT (�)�O(1):

That is, no on-line algorithm can be better than k-competitive in any metric space. Note that

LRU or FIFO provides a matching upper bound for the uniform metric space; [MMS] also

provided a 2-competitive 2-server algorithm and a k-competitive k-server algorithm for any

metric space with only k + 1 points. Based on these special cases, they advanced the k-server

conjecture: for every metric space M , there is a k-competitive k-server algorithm. At the time

of this writing, the conjecture is still open; however, signi�cant progress has recently been

achieved in [KP].

One of the tantalizing aspects of this problem is that most natural algorithms| for example,

the greedy algorithm (move the closest server) as well as most straightforward generalizations

of LRU | do not achieve any bounded competitive ratio in general. Indeed, it was not known

initially whether one could even achieve a constant competitive ratio (depending only on k)

in an arbitrary metric space, even for the case of three servers. This was settled by Fiat,

Rabani, and Ravid [FRR], who gave a general algorithm with a competitive ratio of at most

2O(k logk). Grove improved this bound to 2O(k) [Gr] using a simple randomized algorithm, and

derandomization techniques of Ben-David et. al. [BBKTW]. And very recently, Koutsoupias

and Papadimitriou [KP] have shown that the \work-function algorithm" proposed by Chrobak

and Larmore [CL4], as by well as other researchers, is at most (2k � 1)-competitive.

In a separate direction, a number of papers extended the set of metric spaces for which good

server algorithms were known. Chrobak, Karlo�, Payne, and Vishwanathan [CKPV] gave an

elegant k-competitive algorithm for k servers on the line (i.e. M = R1). The algorithm works

as follows: let [a; b] denote the interval on the line whose left endpoint is the leftmost server

and whose right endpoint is the rightmost server. If the request falls outside this interval, move

only the closest server; otherwise, move the two \neighboring" servers at the same speed toward

the request until the closer one reaches it. Subsequently, Chrobak and Larmore showed that a

natural generalization of this algorithm for the case in which M is a tree is also k-competitive

[CL3].

The proof that this algorithm is k-competitive makes use of a short, if somewhat mysterious,
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potential function argument. We describe the proof for the case of two servers on a line, since

it provides a good example of how such a proof proceeds.

A potential function � is a function de�ned on the set of possible con�gurations of the

on-line and o�-line servers. Thus, when any server moves, the value of � may change. We

denote the ith request in the request sequence � by �i, and the cost incurred by A and OPT

on this single request by A(�i) and OPT (�i) respectively. Consider the following sequence of

events: for each i = 1; 2; : : :, �rst OPT serves the request �i, and then A serves �i. We will

watch how the value of � changes over the course of these movements of the servers. Suppose

we can show the following three facts:

1. � is always non-negative.

2. There is a constant c such that whenever OPT serves a request �i, � goes up by at most

c �OPT (�i).

3. When A serves a request �i, � decreases by at least A(�i).

Note that over the course of the whole request sequence, the total of the increases in � is

at most c
P

iOPT (�i) = c � OPT (�), and similarly the sum of the decreases in � is at leastP
iA(�i) = A(�). Thus, if we let �0 denote the value of � on the initial con�guration of the

servers, then the fact that � is always non-negative implies

A(�) � c �OPT (�) + �0:

That is, A is c-competitive.

It is not di�cult to show (see [MMS]) that we can assume OPT is a lazy algorithm: it

always moves at most one server on each request, and does not move if it already covers the

requested point. If x and y are points on the line, let xy denote the distance between them. For

the case of two servers in M = R1, let s1; s2 denote the positions of algorithm A's servers, o1; o2
the positions of OPT 's servers, and Mmin the minimum of s1o1+ s2o2 and s1o2+ s2o1 (i.e. it is

the minimum-cost matching between the servers of A and OPT .) The potential function used

in [CKPV] is an adaptation of one used by Coppersmith, Doyle, Raghavan, and Snir [CDRS];
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for our purposes, we can write it as

� = 2Mmin + s1s2:

Clearly � is always non-negative. When OPT moves a distance d, it cannot a�ect the second

term, and it increases the �rst term by at most 2d. On a request in which A moves only one

server, say a distance d, the �rst term will go down by 2d and the second will go up by d. On a

request in which A moves both servers a distance d0, the �rst term cannot increase, while the

second goes down by 2d0. (Verifying each of these facts is a fairly straightforward exercise.) As

this shows that � has the required three properties, the proof is complete.

In this thesis, we will only be considering 2-server algorithms. Note that in this setting,

there is no \k-server conjecture" | it has been known since the origin of the problem that

there is a 2-competitive, on-line algorithm for two servers in a general metric space, and that

no on-line algorithm can achieve a better ratio. (Other 2-competitive 2-server algorithms, based

on quite di�erent techniques, have been given by Chrobak and Larmore in [CL1, CL4].) Thus

the emphasis here has been to give competitive algorithms that are as \simple" as possible |

simple both in the e�ort required to analyze them, and in the amount of computation they

must perform on each request.

Speci�cally, all known optimal 2-server algorithms use more than a constant amount of

time and space per request; indeed, when deciding which server to send to a point in M , they

must perform computations based on the entire set of points constituting the previous requests.

Given the nature of the problem, it might not have been unreasonable to have conjectured that

this much computation is required to achieve any constant ratio. This is not the case, however.

Irani and Rubinfeld [IR] gave the �rst competitive 2-server algorithm which performs only a

constant amount of work on each request; its competitive ratio is known to be somewhere

between 6 and 10. A \fast" 2-server algorithm with a competitive ratio of 4 was subsequently

given by Chrobak and Larmore [CL2]. This issue of the computational resources required by

server algorithms will be the subject of Chapter 5.
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2.3 Other On-Line Problems

We now give a brief description of some other areas which have been studied from the perspective

of competitive analysis, before turning to robot navigation, the other main area considered in

this thesis. By now, many on-line problems have been studied; the following is not meant to

be comprehensive.

As mentioned above, the surge of activity following [ST] led to some new results in on-line

graph coloring, already a topic of interest in the 1970's. One basic question was the following:

is there an on-line graph coloring algorithm with competitive ratio o(n)? Neither First Fit nor

any of the other standard on-line coloring algorithms are better than O(n)-competitive, which

is unfortunately also (to within constant factors) the competitive ratio of the algorithm which

never re-uses a color. This question was answered in the a�rmative in 1989 by Lov�asz, Saks,

and Trotter [LST], who gave an on-line algorithm with performance ratio O( n

log� n
). In terms

of lower bounds, Halldorsson and Szegedy [HS] showed that for every on-line algorithm A and

integer k, there is a graph with at most k(2k� 1) vertices and chromatic number k on which A
will use 2k�1 colors. Thus, no on-line algorithm can be better than 
( n

log2 n
)-competitive on all

graphs. Related work on on-line graph coloring has been done by Irani [Ir] and Vishwanathan

[Vi].

The problem of virtual circuit routing through a network is naturally on-line, and has been

studied from that point of view in a number of recent papers. The model here is the following:

one has a graph G which represents a high-speed network, and users at the nodes of the network

who wish to transmit large amounts of data to each other. At each step, a pair of users requests

that a connection be established between them. There are many variations, but in general a

connection is speci�ed by its two endpoints s and t, the amount of bandwidth requested, and

the amount of time for which the connection must be in place. It is then the job of the on-line

algorithm A to decide on a path from s to t on which the connection will be routed. Typically,

A is trying to minimize the congestion in the network; thus, the cost incurred by A could be

the maximum amount of bandwidth that passes through any link of G at any point in time.

The above description is essentially of the model considered in [AAFPW], and in [AAPW]

when the duration of the connection is unknown but re-routing is allowed. An alternative, but

similar, scenario is the following: the network does not have su�cient bandwidth to handle all

20



requests; thus the on-line algorithm A must �rst decide whether to accept the connection, and

if so, to route it through the network. This is the set-up considered in [AAP, ABFR]; a closely

related problem is that of scheduling \intervals" on a line [LT]. One recurring theme in this

work is that randomized algorithms often can achieve competitive ratios that are exponentially

better than the lower bound for deterministic algorithms.

A somewhat related problem was proposed by Imase and Waxman [IW], though it has been

suggested independently in a number of sources. This is the on-line Steiner tree problem: one

has a metric space M , and n points in M which must be joined together by a minimum-cost

Steiner tree. The sequence is presented on-line, and each new point must be immediately

connected to the existing tree. The on-line/o�-line distinction here sort of resembles an \urban

growth" phenomenon | after the fact, it is much easier to �nd a reasonably short spanning

network than when the points are appearing one at a time and must be hooked up immediately.

[IW] shows that the greedy algorithm (when point x is requested, connect it to the existing

network via the shortest possible path) is O(logn)-competitive in any metric space; they also

present a somewhat contrived metric space M in which no on-line algorithm can be better than


(logn)-competitive. Alon and Azar [AA] subsequently showed that in the Euclidean plane,

no on-line Steiner tree algorithm can be better than 
( logn
log logn

)-competitive, leaving a slight gap

between the upper and lower bounds in this case.

2.4 Robot Navigation

Maze-solving is an old obsession. The interest in such problems can be seen in the labyrinths of

mythology and medieval architecture; and, the bridges of K�onigsberg notwithstanding, it was

one of the original motivations for study of graph theory. Maze-solving algorithms phrased in

the terminology of graphs can be found in work of Tarry and Tremeaux that reaches back a

century and more [Ore]. More recently, such questions have been addressed in the contexts of

automata theory by Blum and Kozen [BK] and robotics by Lumelsky and Stepanov [LuS].

On-line navigation is concerned with questions somewhat more general than maze-solving:

the environment will not always be nefarious, the goal not always to escape. Rather, we will be

interested in a variety of tasks which must be performed in an environment for which the map,

or some other crucial piece of information, is not known. Although the focus is theoretical,
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the motivation comes from the ever-growing �eld of autonomous mobile robots, and we should

frequently ask whether the problems we consider have some bearing on the real-world issues of

robotics.

Navigation in an unknown environment does not �t precisely into the framework described

above, in that the mobile robot has a more interactive relationship with the \input" than in

previous problems. Nevertheless, the problem is naturally on-line, in that the environment is

presented in a piecemeal fashion, as the robot sees new parts of it, and the goal is (in general)

to minimize the total distance traveled. The recent incorporation of navigation problems into

the setting of competitive analysis comes mainly from the work of Baeza-Yates, Culberson, and

Rawlins [BCR], and Papadimitriou and Yannakakis [PY].

[BCR] does not speak directly in terms of the competitive ratio, but its focus on the ratio of

the robot's distance traveled to the length of the shortest path is clear enough. The questions it

considers are variations on the theme of searching for an object at an unknown location in the

plane or on a line. These include, for example, the problem of searching for a point on a line

or a collection of lines, and the well-known \lost-at-sea" problem, in which one must determine

the optimal search pattern for �nding a line (the shore) in the plane (the ocean) [Be, Is].

A fundamental technique introduced in [BCR] is that of spiral search | an uncomplicated

idea which has proved to be a valuable building block in numerous on-line algorithms. A good

example of its use is in the problem of a robot searching for a goal which lies on one of n roads

meeting at the origin. We will assume here that the robot is constrained to move on these roads

and cannot use vision; however, it will recognize the goal when it comes to it. Moreover, to

prevent certain pathologies, we will assume that the goal is at least one unit of distance away

from the origin.

Clearly no on-line algorithm can be better than 
(n)-competitive for this problem: to

construct a lower bound, we simulate the robot on a set of roads which does not contain a goal,

and number the roads r1; : : : ; rn according to when the robot �rst travels one unit of distance

on each. We then simply place the goal one unit from the origin on road rn. The robot will

travel a distance of 2n � 1, whereas the shortest path to the goal is 1. A simple form of the

spiral search solution to this problem goes as follows: for d = 1; 2; 4; : : : ; 2j; : : :, explore each

road out to a distance d and return to the origin. If the goal is found when d = 1, the robot has
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traveled at most 2n� 1 times the length of the shortest path. Otherwise, suppose the goal was

found when d = 2j for some j � 1. Then the total distance traveled by the robot is at most

jX
i=0

n � 2 � 2j < 2j+2n:

Meanwhile, since the goal was not found when d was equal to 2j�1, the length of the shortest

path is at least 2j�1. Thus, the robot travels at most 8n times the length of the shortest path.

In [BCR] it is shown that by modifying these parameters a little, one achieve a competitive

ratio of 2en � o(n), and that this is optimal up to low-order terms.

As is the case with most of the basic notions discussed here, one can �nd the spiral search

technique being used implicitly in a wide range of previous papers; its wide applicability is

obviously due to its simplicity | keep doubling until you succeed | and the relative ease of

analyzing the performance guarantee one gets | the sum of all that you've done in previous

phases is only a constant fraction of what you do in the current phase. Recently, it has been

used in many of the robot search papers we will discuss below [BCR, PY, BRaSc, KRT, Kl],

an abstract kind of navigation problem known as layered graph traversal [PY, FFKRRV], the

design of hybrid algorithms [KMSY], and even the approximation of some NP-hard problems

[BCCPRS, TWSY].

s

t

Figure 2-1: A rectangle packing

The work of Papadimitriou and Yannakakis followed [BCR] and deals with navigation prob-

lems that are somewhat less stylized. Speci�cally, they consider a robot with vision moving

around in a plane �lled with rectangular obstacles. The robot can move through any part of the
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plane not �lled in by an obstacle, and there is always room to move between adjacent obstacles

(i.e. they cannot be \stuck together" to make more complex shapes). By vision, both here and

in what follows, we mean the following: if the robot is at x, it can see the point y if the line

segment xy does not meet any obstacle. Finally, let d(s; t) denote the length of the shortest

obstacle-avoiding path between points s and t.

Based on the above de�nitions, we will say that a rectangle packing is a collection of axis-

aligned rectangles, each of which has at least unit thickness, such that there is always just

enough room for the robot to pass between neighboring rectangles. [PY] deals with shortest-

path problems in this setting: the robot starts at a point s and knows the coordinates of a point

t that it wants to reach. The point t is assumed to be in free space | i.e not in the middle of

an obstacle. Let n denote the straight-line distance from s to t; note that this could be much

less than d(s; t). When all the obstacles in the packing are squares, [PY] gives an algorithm

with competitive ratio 1
3

p
26 � 1:70, and shows that no on-line algorithm can be better than

3
2
-competitive. For the case of an arbitrary rectangle packing, no bounded competitive ratio is

possible: [PY] shows a lower bound of 
(
p
n) on the best possible competitive ratio.

Blum, Raghavan, and Schieber [BRaSc] address the same type of shortest-paths problems

and give an O(
p
n)-competitive algorithm for the s-t path problem in a rectangle packing; this

matches the lower bound of [PY] up to constant factors. [BRaSc] also introduced the elegant

\room problem" | consider a rectangle packing inside a large 2n � 2n square room (so there

is space to move along the walls as well), such that the center of the room is in free space. The

robot wants to start at one corner s of the room and reach the center t. The intriguing point

here is that there is always a path from s to t of length 2n | simply start at t, move west as

far as possible, then south as far as possible, then west : : : and so on | and this construction

is of course on-line. But can the robot starting at s somehow reverse this process and �nd a

path to t of length O(n)? [BRaSc] left this as an open question, providing only an algorithm

to generate a path of length O(n2
p

logn); the question was answered a year later by Bar-Eli,

Berman, Fiat, and Yan [BBFY], who showed by a very complicated argument that no on-line

algorithm can be guaranteed to �nd a path shorter than 
(n logn), and gave an algorithm with

a performance guarantee matching this up to constant factors.

Less work has been done on geometric problems more in the spirit of [BCR] | that is, trying
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to �nd a short path to a goal t when neither the map of the environment nor the location of t

is known. This will be the subject of Chapter 3.

Finally, there have been several papers on the related problem of exploring an unknown

environment. Here, the goal is to traverse a path that sees all parts of the environment, both

the obstacles and the free space. For the problem of exploring the interior (or exterior) of

a simple rectilinear polygon, Deng, Kameda, and Papadimitriou [DKP] give a 2-competitive

algorithm. The o�-line version of this problem (what is the shortest path for exploring a given

polygon P?) is perhaps better motivated as the \Shortest Watchman's Route Problem"; Chin

and Ntafos [CN] give a polynomial-time algorithm for computing such a route, and some of

their de�nitions are used in the algorithm of [DKP]. Betke, Rivest, and Singh [BRiSi] consider

compact exploration algorithms: the robot always knows the shortest path back to the origin

whenever it reaches a new point. Their main result is a compact exploration algorithm for

rectangle packings, which travels at most a constant times the total perimeter length of all

rectangles in the scene (this is a lower bound for the optimal solution if, for example, we

assume that the robot has very limited vision).

For our purposes, exploration algorithms (on suitably restricted parts of the environment)

will prove useful as subroutines in Chapters 3 and 4.
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Chapter 3

Searching an Unknown Polygon

We are interested in geometric variants of the problem of searching with uncertainty. A natural

problem in robotics is that of searching for a goal in an unknown polygonal region. For example,

a robot with vision is placed at a starting point in a simple polygon, and it must traverse a

path to some target point in the polygon. Both the location of the target and and the geometry

of the polygon are unknown, but the robot will recognize the target when it sees it.

As discussed in the previous chapter, on-line search algorithms have generally been devel-

oped for situations in which the geometry is kept to a minimum | for example, the case of

searching for a point on one of m concurrent rays [BCR, KRT, KMSY], a line in the plane,

or a point in an integer lattice [BCR]. Moreover, the structure of the space to be searched is

assumed to be known | only the location of the target is unknown. [BCR] writes, \: : : these

problems are (very simple) models of searching in the real-world. It is very often the case that

we do not know many of the parameters that are usually taken for granted in designing search

algorithms."

Here, we provide an on-line algorithm for the general problem of searching for a target

point at an unknown location in an unknown and arbitrary simple rectilinear polygon. Thus,

the robot must adapt its search pattern as it sees more and more of the polygon. For a given

rectilinear polygon P , we identify the number of essential cuts of P [CN, DKP] as a fundamental

parameter in determining the best competitive ratio attainable in searching P | it is easy to

cast the problem of searching m concurrent rays as a search problem in a polygon with m

essential cuts, whence the [BCR] lower bound of 2em � o(m) on competitive ratio applies (e
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is being used to denote the base of the natural logarithm here). Thus, the natural question

is whether there is an algorithm which is O(m)-competitive for the problem of searching an

arbitrary simple rectilinear polygon with m essential cuts. In Section 3.3, we present such an

algorithm.

The algorithm is based on the problem | �rst considered in [DKP] | of exploring a simple

rectilinear polygon P , starting from and returning to a �xed point s in P ; we use an exploration

algorithm iteratively as the search proceeds. We show in Section 3.2 how an adaptation of the

technique in [DKP] gives a randomized algorithm which is 5=4-competitive in the L1 norm when

s is any point inside P .

Another direction in which one could investigate such search problems is to restrict the

class of polygons and target points in such a way that a constant competitive ratio can be

achieved for the search problem. Such an approach has been adopted by Klein in his work on

streets. The papers [IK, K] introduce the term street to de�ne a class of general (not necessarily

rectilinear) polygons with two distinguished points s and t, such that the two st boundary

chains are mutually weakly visible (see below for an elaboration on this de�nition). In [K],

Klein gives a 1 + 3
2
�-competitive (� 5:71-competitive) algorithm for �nding t from s in an

unknown street P . However, the algorithm and its analysis are quite involved. In Section 3.1

we give a simple algorithm with a competitive ratio of at most

q
4 +

p
8 (� 2:61). Moreover

when P is rectilinear, it achieves the optimal ratio of
p
2. We believe it would be interesting in

general to �nd other natural classes of polygons that can be searched competitively.

Finally, a word about the distance metrics used in this chapter. The distance between two

points as measured in the L1 and L2 (Euclidean) metrics di�ers at most by a factor of
p
2;

thus, an algorithm which is c-competitive in L1 is c
p
2-competitive in L2. With the exception

of the algorithm for traversing streets, which is analyzed directly in the Euclidean metric, we

present our results in the conceptually neater framework of the L1 metric. In view of the tight

correspondence between L1 and L2, our �nal search algorithm is O(m)-competitive in both.

3.1 Traversing an Unknown Street

Let P be a simple polygon and s and t two distinguished points on the boundary. The removal

of s and t would disconnect the boundary into two polygonal chains, L and R. We say that
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P is a street [IK, K] if each point on the boundary of P can see some point on the opposite

boundary chain. The goal is for a robot with vision to travel from s to t; neither the map of P

nor the coordinates of t are known. The cost incurred by the robot is the length of the path it

generates, and its competitive ratio is taken with respect to the length of the shortest s-t path

in P ; distances are measured in the Euclidean metric.

right

cavemouth

X Y

s

a)

Indecision

left cavemouth

cl

L

b)

cr

R

cave

robot
x

Figure 3-1: Streets and their views

Figure 3-1(a) can be completed to form a rectilinear street in which t could be just around

the corner from either X or Y [K]. The robot will incur the best worst-case performance if it

moves directly to segment XY , then to t (it will see t when it reaches XY ). This can be at most

a factor of
p
2 longer than the shortest path. Curiously, this is the only known lower bound on

the competitive ratio achievable for the problem. In [K], an algorithm with a competitive ratio
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of at most 1 + 3
2
� (� 5:71) is presented. Below, we give an algorithm with competitive ratio at

most

q
4 +

p
8 (� 2:61).

The example of Figure 3-1(a) is central to the proof technique we develop in this section,

and it highlights a principle that will appear repeatedly in what follows | on-line algorithms

hate making decisions. Speci�cally, it is useful in many navigation problems to adopt a strategy

that preserves the robot's options for as long as possible. In the �gure, suppose the robot at

point s is moving towards segment XY , but it has not yet decided whether it ultimately wants

to visit point X or Y . Let us de�ne a polygonal path to be monotone if the x- and y-coordinates

of the points on the path change from their initial to �nal values monotonically. Then the key

observation is that in the L1 metric, any monotone path between two points is a shortest path,

so the robot can defer its decision (X or Y ) until it reaches segment XY and still have the

option of traveling optimally to either point. The related fact for the Euclidean metric is that

any monotone path between two points in the plane has length at most a factor of
p
2 times

the straight-line distance between them. Thus, in this example, the robot can move to segment

XY before making a decision and travel only
p
2 times too far (Euclidean distance) in the worst

case.

Let P be a street, and assume that the robot is currently located at a point x inside P . The

robot maintains an extended view of P ; this consists of all points on the boundary of P that it

has seen so far. The robot's extended view will typically look like the example of Figure 3-1(b).

We de�ne a cave C to be a connected chain of the boundary of P such that the robot has seen

the endpoints of the chain but no other points of it. At some point p0 on the robot's path, these

two endpoints were on the same line of sight from p0; call the one closer to p0 the \mouth" of

C. Each cavemouth v is a re
ex vertex of P ; in the neighborhood of v, P lies either to the left

or right of the ray p0v. We accordingly refer to v as being either a left or right cavemouth.

At any given point in time, it is useful to picture the \forward" direction for the robot

as being along the positive y-axis; so the negative x-axis lies immediately to its left and the

positive x-axis immediately to its right. In keeping with this terminology, if u and u0 are two

vectors, each with non-negative y coordinate, we will say that u is to the left of u0 if it forms a

smaller angle with the negative x-axis. Assume that t has not yet been seen, and the robot has

maintained the invariant that the points in its extended view immediately to its left and right
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belong to L and R respectively. In view of these assumptions, we assemble some facts about

extended views of a street before presenting the algorithm itself. The �rst is a standard fact

about shortest paths inside any simple polygon.

Lemma 3.1 If t is contained in a cave C, then the shortest x-t path touches the mouth of C.

Lemma 3.2 Let p be a point on boundary chain L (resp. R), and let 	 be the boundary chain

sp of P contained in L (R). If the robot moves from s to p, it will have seen every point on 	.

Proof. Every point on boundary chain 	 must be able to see some point on R; but all such

lines of sight to R cross the robot's path from s to p. Thus the robot has seen every point on

	.

Lemma 3.3 If v is a left (right) cavemouth, it belongs to boundary chain L (R).

Proof. Assume v is a left cavemouth, v 2 R, and v was seen from point p0. The chain

determined by a clockwise scan of the boundary from v to s (taken from point p0) is entirely

contained in R. Thus, if the robot were to walk directly from p0 to v, it would have seen all

of this chain, by Lemma 3.2. But since v is a cavemouth, it would not have seen any point

on the boundary of P just around the corner from v, which belongs to this chain; this is a

contradiction.

Corollary 3.4 In the extended view, all left cavemouths lie to the left of all right cavemouths.

If the extended view contains any left cavemouths, we de�ne cl to be the rightmost one. The

point cr is de�ned analogously for right cavemouths. If both cl and cr are de�ned, the chain

between the far endpoints of their respective caves must be completely visible in the extended

view; otherwise, it would contain an additional left or right cavemouth. Combining this with

Lemma 3.1 and the fact that t has not been seen,

Lemma 3.5 The point t lies in the cave of either cl or cr. Consequently, the shortest path

from x to t touches either cl or cr.
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Let d(�; �) denote the length of the shortest path between two points in P . The shortest

path from s to t, denoted by �, is a chain of line segments joined at re
ex vertices of P . There

is a natural order on the vertices of �, determined by traversing it from s to t. Our algorithm

works iteratively, allowing the robot to move from a given vertex of � to a later one, with small

\detour." The following theorem provides the main inductive step.

Theorem 3.6 Assume that the robot is currently located at a vertex x 2 �. Then it can move

to a later vertex x0 2 � while traveling at most (

q
4 +

p
8)d(x; x0).

Proof. We present an (on-line) algorithm for doing this. Based on the robot's extended view,

there are four cases to consider. (See Figure 3-2.)

x

cl

Case 2

x

cl

cr

Case 3

x

x
cl

cr

r

Case 4

u
p
2

X

Figure 3-2: The algorithm at work

Case 1. If t is visible, the robot moves directly to t. The distance traveled is d(x; t).

Case 2. If cr (cl) is not de�ned (there are no right (left) cavemouths), then by Lemma 3.5,

� passes directly through cl. Thus, the robot moves directly to cl, following � the whole way.

Otherwise, both cl and cr are visible. The robot chooses a direction of motion such that

cl lies to its left and cr lies to its right. We view this as a coordinate system in which the

robot is the origin and it is moving in the direction of the positive y-axis; thus, cl has negative

x-coordinate and cr has positive x-coordinate. The robot moves in this direction, updating its
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extended view and the points cl; cr, until one of of the above two cases applies, or one of the

following two:

Case 3. The point cl (or respectively cr) \jumps" to the opposite side of the y-axis. At the

moment when this happens, both cl and cr will lie on the same line of sight. If the robot moves

in this direction until it hits the nearer one, it will once again be on a point x0 2 �, having

followed a path from x to x0 that was monotone with respect to the chosen coordinate system.

Thus, it has traveled no more than
p
2 times the distance from x to x0 along �.

Case 4. If none of Cases 1, 2, or 3 applies, then there comes a point at which the robot's

line of sight to cl (cr) is parallel to the x-axis. At the moment when this happens, the robot

is \confused"; it can no longer follow a path guaranteed to be monotone to either cl or cr.

However, the robot can adopt the following approach to return to the shortest path.

Let us translate the coordinate system so that the robot is again at the origin (so cl now

lies on the negative x-axis). Since t has not yet been seen, and since the second quadrant (i.e.

fx � 0; y � 0g) is free of cavemouths, the robot can see all of the contiguous boundary chain X
lying in this quadrant. Thus, X must be entirely contained in L or R; the robot can return to

� once it discovers which of these cases holds. De�ne LX to be the portion of boundary chain

between cl and the endpoint of X lying on the negative x-axis; de�ne RX to be the portion of

boundary chain between cr and the endpoint of X lying on the positive y-axis.

The robot begins moving in the direction of the vector (�1; 1), updating its extended view

and the points cl, cr , until it sees t or one of the following events occurs:

1. cl has the same x-coordinate as the robot, or cr has the same y-coordinate as the robot.

2. One of the chains LX or RX becomes completely visible.

If event (2) occurs �rst, then the robot will be able to move to the opposite cavemouth, thereby

returning to �. Suppose event (1) occurs �rst; assume for the sake of concreteness that cl has

the same x-coordinate as the robot (the other case is strictly analogous). Then a point just

around the corner from cl can only see points lying on X [ LX ; this implies that X � R, and

so the robot can return to � by moving to cl.

We must now bound how far the robot travels by implementing this strategy. Let r denote

the distance traveled by the robot prior to becoming confused. First consider the case in which
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event (1) occurs, and cr has the same y-coordinate as the robot. Suppose that the coordinates

of cr are (v; u); then the robot travels r+u(1+
p
2)+v, while we have d(x; x0) � p(r + u)2 + v2.

Thus, the worst-case ratio incurred by the robot is bounded by

r + u(1 +
p
2) + vp

(r + u)2 + v2
:

A somewhat lengthy but straightforward argument shows that this expression attains its max-

imum when r = 0 and u = v(1 +
p
2), with a value of

q
4 +

p
8.

Now suppose event (1) occurs, and cl has the same x-coordinate as the robot. If the

coordinates of cl are (�u;�v), then the robot travels r+u(1+
p
2)+ v. Assume that when the

robot �rst became confused, the coordinates of cl were (�u1; 0) (recall that this point lies on
the negative x-axis). Let u2 = u� u1; then we have

d(x; x0) �
q
r2 + u21 +

q
v2 + u22

In view of the simple inequality a+b
c+d

� max(a
c
; b
d
), the worst-case ratio is upper-bounded by the

maximum value of
r + u1(1 +

p
2)p

r2 + u21
:

As above, this is maximized by taking u1 = r(1 +
p
2), with a value of

q
4 +

p
8.

The case in which event (2) occurs �rst is similar. Suppose that all of LX becomes visible

and the goal has not been seen (the other case is analogous). Then we can set x0 to be the

current value of cr . Suppose that the coordinates of cr are (v; u); then since event (1) did not

occur, the robot's y-coordinate is no more than u. Thus it can get to cr having traveled at most

r + u(1 +
p
2) + v, while again d(x; x0) � p(r + u)2 + v2:

Finally, we should note that it is possible for the robot's motion to be stopped by the

boundary of P . As in Lemma 3.2, however, it will have seen the entirety of one of the caves

associated with cl or cr by the time this happens, so it can return to �; the preceding analysis

is not a�ected.

Corollary 3.7 For any street P , repeatedly applying the above algorithm produces a path from

s to t that is at most

q
4 +

p
8 times as long as the shortest s-t path in P .
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In the case in which P is rectilinear, the above algorithm can be implemented so that the

robot's direction of motion is always along one of the coordinate axes. Then the key observation

is that Case 4 cannot occur in a rectilinear street (since all angles are right angles, either a

point just around the corner from cl could not see R, or a point just around the corner from cr

could not see L). Thus we can show

Theorem 3.8 When P is rectilinear, the above algorithm is
p
2-competitive, and this is opti-

mal.

3.2 Exploring a Rectilinear Polygon

First, we present some basic de�nitions of [CN, DKP] on the structure of rectilinear polygons.

In this and the remaining sections, distances will be measured in the L1 metric.

b)

Polygon Pm

s

s

horizon

essential cut

essential cut

a)

Figure 3-3: Some simple rectilinear polygons

Let P be a simple rectilinear polygon and s a distinguished point in P . An edge e of P is

contained in a line `; we say that an extended edge is a line segment ê � ` in P which shares one
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endpoint with e, and whose other endpoint is also on the boundary of P . Each edge e induces

at most two extended edges. Also, note that an extended edge is either horizontal or vertical,

depending on the orientation of its associated edge e. Call ê a horizon if there is no path from s

to e that does not cross ê. We can de�ne a partial order on horizons as follows: if h and h0 are

horizons, then h � h0 (h dominates h0) if any path from s to h0 must cross h, or if h = h0. The

horizons of P which are maximal are called essential cuts; for an essential cut h, it is possible

to start at s and follow a path which crosses every horizon except h. See Figure 3-3.

A special case of the following lemma is given in [DKP]; it is the underlying reason for the

success of \greedy" exploration algorithms in rectilinear polygons.

Lemma 3.9 Let �1; : : : ; �n be a set of horizontal and vertical segments in P , and v a point

in P . The (L1) shortest path beginning at v and touching the �i in order is generated by the

greedy algorithm, which, from segment �j, always chooses the shortest path to �j+1.

The problem we are considering here is that of traversing an exploration route in P : a

path, starting and ending at s, such that every point of P can be seen from some point on

the path. The robot does not know the map of P in advance. As noted in [CN, DKP] (see

also the discussion above), a closed path through s has this property if and only if it touches

all essential cuts in P . In [CN, DKP], it is observed that since any exploration route can be

traversed (o�-line) without self-crossings, the shortest exploration route will touch the essential

cuts in clockwise order. Moreover, by Lemma 3.9, it will touch the cuts in this order using the

greedy algorithm.

Consider the case in which the point s lies on the boundary of P , between the endpoints of

essential cuts e and e0. The on-line algorithm given in [DKP] is essentially a greedy strategy

which crosses each upcoming horizon as quickly as possible; it is shown in [DKP] that it will

traverse the greedy path which touches the essential cuts in clockwise order, beginning with

e. Consequently, this algorithm �nds the optimal exploration route on-line; it is 1-competitive

when s lies on the boundary of P .

When s does not lie on the boundary, the choice of which essential cut to start with becomes

crucial, and the robot does not have enough information to make this choice.

Proposition 3.10 No deterministic algorithm for exploring a simple rectilinear polygon can

be better than 5=4-competitive.
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A B

C D

Add small "caves" at

three of the four points

A, B, C, D

Figure 3-4: Lower bound construction

Proof. Consider Figure 3-4. All the long edges of the polygon P have length 2, the short

edges have some length " much less than 2, and s is at the center. A robot exploring P crosses

either the upper or lower horizon �rst; assume the former case. At this point, it will see two

tiny \caves" at points A and B, both of which must be visited. Assume that it visits A before

visiting B or crossing the lower horizon (other cases are similar).

We now add an extra cave at C but not at D. Even if the robot now had the map of P ,

it would have to travel a distance of 8 to visit the caves at B and C and return to s. It has

traveled a distance of 2 to reach A; thus its total distance is 10. On the other hand, the greedy

exploration route which visits C �rst travels a distance of 8.

The algorithm given in [DKP] is 2-competitive when s is an arbitrary starting point in

P , and this is the best known deterministic ratio. In the remainder of this section, we give

a simple randomized algorithm whose performance matches the deterministic lower bound of

Proposition 3.10.

Theorem 3.11 There is 5=4-competitive randomized exploration algorithm when s is an arbi-

trary starting point in P .

Proof. Consider �rst the following construction. If the robot standing at s were to imagine

a thin \needle" of boundary extending from the real boundary of P to s, it would then be

on the boundary of this new polygon and could explore optimally. If we restrict ourselves to

horizontal or vertical segments, then there are four possible needles that can be inserted in P .
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See Figure 3-5.

b)

E

needle

s

The exploration route E avoiding a needle

s

Inserting needles in the polygon

a)

Figure 3-5: Polygon with needles

Let L(�) denote the length of a path in P , E denote the optimal exploration route in P ,

and Pi denote polygon P with the ith needle inserted, i = 1; 2; 3; 4. Finally, we denote by Ti the

(optimal) exploration route generated by the robot starting from s in Pi (s is on the boundary

of each Pi). Of course, we are not really interested in the performance of Ti in Pi; we must

show that Ti is also not far from optimal in the original polygon P . Set di = L(Ti)� L(E).

We claim that
P4

i=1 di � L(E); the proof is as follows. Since E visits the essential cuts of

P in clockwise order, it meets each needle in at most one point. E can be traversed so as to

avoid the ith needle (it takes a detour through s); let us denote this longer route by Ei. Since

Ei is an exploration route for Pi and Ti is optimal in this polygon, we have L(Ti) � L(Ei).

Let d0i = L(Ei)�L(E). Consider the four points at which E hits the needles (some of these

points may be s); connect these by shortest paths to form a closed path ~T . ~T is not necessarily

an exploration route for P , but we have L( ~T) � L(E) and L( ~T) =
P4

i=1 d
0
i. Since di � d0i for
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each i,
4X

i=1

di �
4X

i=1

d0i � L(E):

Thus, if the robot chooses any needle, the exploration route Ti it generates will have length

at most 2L(E) (and simple examples show that, standing at s, there is no way to choose a needle

guaranteeing a performance better than this). However, the expected value of the quantity di

is bounded by L(E)=4, so if the robot chooses one of the four needles uniformly at random, the

expected length of the exploration route it generates is at most 5
4
L(E).

3.3 Searching a Rectilinear Polygon

Using the exploration algorithm of the preceding section, we can give an O(m)-competitive

algorithm for the general search problem described at the beginning of this chapter. A point t

is hidden in a simple rectilinear polygon P with m essential cuts; however, the point t can be

recognized when it is �rst seen. A robot starting at s, and without knowledge of the map of P ,

must travel to t; its distance traveled is compared to d(s; t), the length of the shortest s-t path.

As mentioned in the introduction, O(m) is the best bound possible on the competitive ratio: if

we take the polygon Pm of Figure 3-3, make the m \arms" extremely long, and introduce tiny

bends to limit visibility, then the [BCR] lower bound for searching m concurrent rays applies

| no deterministic algorithm can be better than (2em� o(m))-competitive. (An 
(m) lower

bound clearly holds for randomized algorithms as well, with a somewhat smaller constant.)

We �rst assemble some basic lemmas that will be useful in analyzing the exploration algo-

rithm. Because P is a simple polygon, we have the following fact.

Lemma 3.12 Let h and h0 be horizons with the same orientation such that for some point v in

P , every path from s to v must cross both h and h0. Then h and h0 are comparable with respect

to � (h � h0 or h0 � h).

Based on this lemma, we can represent the partial order � restricted to the horizontal segments

by a directed tree Th in which the root is the point s and the other nodes are horizontal horizons.

For vertical horizons, there is the analogous representation as a tree Tv.

Lemma 3.13 Each of Th and Tv has at most m leaves.
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Proof. A leaf of Th corresponds either to a horizontal essential cut, or a horizon h that

dominates some vertical essential cut h0. In the latter case, no other leaf of Th can dominate

h0, by Lemma 3.12, so h can be uniquely charged to h0. The same analysis holds for Tv, giving

us the stated bound.

Lemma 3.14 Let v be a point in P such that s cannot see v. Then there is some horizon h

in P that separates s from v, such that for any path from s to h, the point v can be seen from

some point on this path. (I.e. no matter how the robot gets to h, it will have seen v.)

Proof. By analogy with the construction for streets, consider the \view" of P from point v.

De�ne a cave, as before, to be a connected chain of the boundary of P such that v can see the

endpoints but no other points of the chain. Since s cannot see v, s must lie in some cave C.

Let u be the cavemouth of C; then there is a horizon with endpoint u such that by the time

the robot reaches this horizon, it will have crossed the ray ~vu and seen v.

Lemma 3.15 Suppose the robot is moving perpendicularly towards an extended edge e, and no

other extended edge of the same orientation lies between the robot and e. Then the robot can

see both endpoints of e.

Proof. Suppose the robot could not see the right endpoint of e; let x be the rightmost point

on e that it can see. The line of sight from the robot to x must meet a re
ex vertex of P ; it is

easily veri�ed that this is the endpoint of a parallel extended edge e0 lying between the robot

and e.

Finally, the following lemma is the key to designing the search algorithm; it is also an

interesting fact in itself. As before, let d(u; v) denote the length of an L1 shortest u-v path in

P .

Lemma 3.16 Let P be a simple polygon (not necessarily rectilinear), and consider a robot

traversing some path in P . If points u and v are both visible from this path, then the robot can

determine d(u; v) without seeing the rest of P .

Proof. In fact, it can compute a shortest path between u and v. Since we are dealing with the

L1 metric, the shortest u-v path in P will not generally be unique. However, some shortest u-v
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path is polygonal (consists of a �nite number of line segments). Consider the extended view of

P that the robot has generated. By de�nition, the line segment joining the two endpoints of

a cave in this view is completely contained in P ; let us call it a \pseudo-edge." Let P 0 denote

the truncated polygon whose boundary consists of the edges and pseudo-edges of the extended

view of P . Thus, the robot has seen all of the boundary of P 0.

We claim that there is a shortest u-v path in P that does not leave P 0. The result will

follow since the robot can obviously compute a shortest u-v path in P 0. Let T be a polygonal

shortest u-v path in P , which may enter a cave of the extended view, crossing pseudo-edge e

at the point x. Since v lies in P 0, the path must re-enter P 0; let us say that it next does so by

crossing pseudo-edge e0 at point y. Since P is a simple polygon, e = e0. Thus we can form a

new u-v path which goes directly from x to y when T enters this cave; this operation does not

increase the length. Proceeding in this way, we eliminate the (�nitely many) places at which T

enters a cave, producing a u-v path T 0 in P 0 with L(T 0) � L(T ):

Theorem 3.17 There is an algorithm for searching simple rectilinear polygons, which is O(m)-

competitive on the class of such polygons with m essential cuts.

Proof. For any � > 0, let P � denote the rectilinear polygon obtained by \truncating" P at

horizons that are more than � away from s. There is some small �0 such that all points within �0

of s are visible from s. By rescaling, we can assume that �0 = 1. For �xed values of �, the robot

will simulate the algorithm of [DKP] in P � , as follows. The [DKP] algorithm has the property

that at all times, the robot is moving along the coordinate axes, perpendicularly towards an

extended edge, and it maintains this direction until it reaches the closest such extended edge

e. By Lemma 3.15, it can see both of the endpoints of the edge e; thus, by Lemma 3.16, it can

tell whether e lies in P � or not. If e lies in P � , the robot moves towards it, as in the [DKP]

algorithm; otherwise, e is treated as a wall in the simulation. In this way, the exploration route

generated by the simulation is the same as the route that the [DKP] algorithm generates in P �.

Initially, � is set to 1. Whenever t is �rst seen, the robot moves directly to it; if the robot

explores P � without seeing t, then � is doubled and the next iteration begins.

Recall the partial orders Th and Tv on the horizontal and vertical horizons of P . In P �,

these naturally restrict to partial orders T �
h and T �

v , which are obtained simply by deleting all
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nodes corresponding to horizons more than � away from s. Both T �
h and T �

v are still directed

trees rooted at s, and by Lemma 3.13, each has at most m leaves. Since each essential cut of

P � is a leaf of one of these trees, P � has at most 2m essential cuts. Lemma 3.14 implies that

one way to explore P � would be to travel to each of its essential cuts individually; this would

require a total distance of at most 2m(2�) = 4m�. Since the robot is following a 2-competitive

algorithm, it travels at most 8m� in exploring P � .

Given this, we can complete the proof as follows. If the robot sees t when � = 1, then it

can travel to it optimally. Otherwise, assume it �rst sees t in P � , with � = 2k. Since it did not

see t when exploring P (2k�1), we have by Lemma 3.14 that d(s; t) � 2k�1:

Now, we must bound how far the robot has traveled before reaching t. Until it sees t, it has

traveled at most
kX

j=0

8m2j � 8m(2k+1) � 32md(s; t):

Since � = 2k � 2d(s; t), it is easily veri�ed that traveling to t can require no more than an

additional 3d(s; t). Thus the robot's path is O(m) times d(s; t), as required.
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Chapter 4

The Robot Localization Problem

A fundamental task for an autonomous mobile robot is that of localization | determining its

location in a known environment [Cox, TPBHSS, Wang]. This is also a problem well-known in

everyday life, where it can be surprisingly easy to become lost even with a compass and some

knowledge of the terrain | and where it is sometimes crucial whether or not the map one is

using bears a little mark with the words, \You are here."

Thus we are dealing with a robot at an unknown location in an environment for which it

does have a map. For our purposes, the environment E that we consider will generally be the

interior of a large polygon �lled with a �nite number of polygonal obstacles. We also assume E
is connected, so that there is an obstacle-avoiding path between any two points of E . A robot |

assumed throughout to possess vision, a map of E , and knowledge of its orientation | \wakes

up" at some point in E ; its goal is to determine where it is. Since we are assuming the robot

knows its orientation, we will say, using somewhat non-standard terminology, that two regions

are congruent if one can be obtained from the other by a translation (as opposed to a rigid

motion).

The set of all points the robot can see from its current position forms a star-shaped visibility

polygon P . If there is only one point in E from which the visibility polygon is congruent to

P , then the robot can immediately determine uniquely where it is. Otherwise | if it is in

a highly self-repeating environment such as a typical large building | there are a number of

di�erent places the robot could be. Guibas, Motwani, and Raghavan [GMR] considered the

question of enumerating all possible locations for the robot, given a visibility polygon P , when

42



the environment E is itself a simple polygon. They gave a \single-shot" algorithm which runs in

time O(jP jjEj), as well as more complicated data structures for answering \localization queries."
In a strong sense, though, enumerating the possible locations is only a �rst step towards

solving the localization problem. For if the environment is connected and robot begins moving

around in E , building up larger and larger partial maps P 0 � P of its \neighborhood," there

will come a time when there is only one point in all of E at which one can place a partial map

congruent to P 0; the robot has then determined exactly where it is. (We will say that it has

localized.)

One way to see that the robot will eventually localize is to note the straightforward fact that

if it explores all of E , then it can determine where it started from. But this is a crude solution;

one would like to design an algorithm which causes the robot to travel as little as possible.

From this point of view, a good localization algorithm is constantly adapting its search based

on the set of possible locations of the robot, and their position in the map. We can therefore

phrase the following question: how should the robot move in E so as to determine its location

e�ciently?

Figure 4-1: The in�nite fence problem

Although the question is quite precise | we can choose to measure e�ciency in terms of

total distance traveled | it is not immediately clear that it can have an interesting answer.

Indeed, if we consider the polygon of Figure 4-1, a robot starting from the middle has no choice

but to walk to one of the ends before it can determine where it is; and this is only a factor of

two better than the trivial approach of exploring the whole environment. So in what sense can

we say that one algorithm is signi�cantly more e�cient than another?

We argue here that this is an ideal setting in which to use the competitive ratio. Speci�cally,

in the polygon of Figure 4-1, the key point to observe is that the robot could not have done

any better. Even if we had an omniscient robot that knew where it was, it would have to travel

half the diameter of the polygon before being able to prove that it started from the middle. In
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this sense, localization becomes an on-line problem: we de�ne a localizing path to be any path

followed by a robot, at the end of which it can determine uniquely where it is, and compare

the distance an on-line robot travels before localizing to the length of the shortest possible

localizing path. The ratio of these two distances is our performance measure for a localization

algorithm; the worst-case value of this ratio, over all starting points in E , is its competitive
ratio.

We �nd the search for good localization algorithms interesting for two fundamental reasons:

1. Localization is a problem that arises in numerous practical robotics situations.

2. The use of the map in helping to guide the robot's search introduces some complica-

tions that are not generally found in on-line navigation problems. In this case, it means

that straightforward on-line techniques such as spiral search are no longer asymptotically

optimal.

Applications in Robotics

The localization problem has been considered in a wide variety of contexts in the robotics

literature. One application is in the design of robot vehicles that must perform a certain task

repeatedly in the same environment. Here, localization is used to determine the starting location

at the beginning of the task, and to maintain positioning information over time [Cox, Dr, Wang].

A similar use of localization is in analyzing aerial photographs to determine the location from

which they were taken [YD].

Another major situation in which localization is used is in the design of autonomous ex-

ploration vehicles, such as the current prototypes for Mars rovers [MAWM, SN]. For example,

[MAWM] discusses strategies by which a mobile robot can determine its location after a short

period of \reconnaissance": in the model considered there, a rough global map of the Mar-

tian terrain is known; the exploring robot relays local information back to Earth, where an

obstacle-avoiding path is then planned.

In a related vein, [TPBHSS] draws a distinction between localization algorithms for \update"

problems, in which there is some rough estimate of the robot's starting location, and \drop-o�"

problems, in which there is no initial information. In this terminology, we will be considering
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the latter type of problem. Again, [TPBHSS] describes the role of \reconnaissance" in the

localization problem, without providing any concrete algorithms.

Theoretical Background

The only previous theoretical treatment of the localization problem is the paper of Guibas,

Motwani, and Raghavan [GMR], and as mentioned above, it deals only with the \static" version

of the question. There has been no previous work on this problem from the perspective of

competitive analysis, though there is a straightforward (and non-optimal) algorithm which is

not di�cult to describe; we will discuss this shortly.

In what follows, we deal with fairly simple types of environments in order to emphasize the

combinatorial aspects of the problem rather than the geometric ones. Thus, we consider the

following two types of environments.

� Bounded-degree trees embedded in Rd. That is, the vertices are realized by points in Rd

and the edges by line segments, and the robot is constrained to move on the edges and

vertices. If T is an embedded tree, we will use n to denote the number of leaves it has.

� Rectangle packings in the plane, comprised of n rectangles [PY, BRaSc, BBFY, BRiSi].

Recall from Chapter 2 that we assume all rectangles have at least unit thickness, and that

there is always just enough room for the robot to move between neighboring rectangles.

Arguably the most natural way to design a localization algorithm for either of these environ-

ments is the spiral search technique of Baeza-Yates, Culberson, and Rawlins [BCR]. For our

purposes here, spiral search could be implemented by having the robot iteratively explore all

points of the environment within distance 1; 2; 4; : : : ; 2j; : : :, until it knows where it is; the

resulting algorithm will be O(n)-competitive.

In navigation problems for which no information about the map is known (such as those of

the previous chapters), it is frequently not di�cult to show that spiral search is optimal up to

constant factors. Indeed a great deal of work is often done to determine what these constant

factors are [BCR, KRT, KMSY]. But the fact remains that no algorithm can be better than


(n)-competitive for many of these problems. In some sense, this is not surprising; when the
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robot knows nothing at all, it is di�cult to do much besides a brute-force search out to larger

and larger radii.

What we �nd interesting about the localization problem is that knowledge of the map enables

the robot to begin focusing its search as it sees more and more of its surroundings; in particular,

this will lead to a localization algorithm that is o(n)-competitive,1 improving asymptotically

on spiral search. At a more general level, we are interested in on-line navigation problems in

which, as is common in real applications, the robot has some limited information about its

environment. Such problems tend to contain interesting structure that can be exploited when

designing algorithms, and often provide insight into the value of a map in performing navigation

tasks. Another example of this is the k-trip shortest-path problem considered by Blum and

Chalasani [BC]. Here the robot wishes to make k trips between points s and t while minimizing

the average time per trip; thus it can make use of partial maps of the scene on later trips. For

a further perspective on the value of di�erent types of information in performing navigation

tasks, see the work of Donald on \information invariants" [Don].

The localization algorithm we present is quite natural and simple to state; the di�culty lies

in analyzing the competitive ratio. The algorithm performs an initial period of spiral search on

a local area which is su�ciently restricted to keep the competitive ratio from getting too large.

At some point during this search, the robot is able to identify one or more \critical directions"

in the environment; by searching only in these directions, the number of possible locations can

be eliminated much more quickly. The algorithm then performs a �nal \clean-up" stage, in

which the remaining possibilities are eliminated in an iterative fashion. In the case of trees, this

algorithm is O(n2=3)-competitive. The analysis for rectangular obstacles appears to be quite a

bit more complicated; however, we are able to show a competitive ratio of O(n
q

log logn

logn
) = o(n):

In contrast, the strongest lower bound we can show is 
(
p
n), in both types of environments.

Closing this gap remains an interesting open question.

In independent work, Dudek, Romanik, and Whitesides [DRW] give a geometric implemen-

tation of the \shortest-distinguishing-paths" algorithm | which appears as Step 3 in the main

algorithm of this chapter | when the environment is a simple polygon. Their algorithm is

O(k)-competitive when the robot initially cannot distinguish among k possible starting points

1Recall that f(n) is o(g(n)) when limn!1 f(n)=g(n) = 0:
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(this number may be as large as 
(n), where n is the number of vertices of the polygon).

4.1 Lower Bounds and Other Examples

We give two examples of trees embedded in the plane, both of which show that no localization

algorithm can be better than 
(
p
n)-competitive on trees. In this and the following section,

we assume that a robot on a tree cannot make use of vision | all it knows is the orientation

of all edges incident to the vertex it currently occupies. Note that this can be simulated in a

simple rectilinear polygon by introducing tiny bends everywhere to limit visibility; thus, any

lower bound for trees immediately carries over to the class of simple polygons.

Figure 4-2: The �rst lower bound

By a branch-vertex, we mean a vertex with degree at least 3. The tree T in Figure 4-2

consists of p blocks, each of which has p branch-vertices and long \passages" to its neighboring

blocks. Thus the number of leaves in T is n = 2(2p � 1) + (p � 2)(2p � 2) = 2p2 � 2p + 2:

The robot cannot localize until it has found one of the long passages; by placing it in the block

whose passage corresponds to one of the branches it will search last, we can force the robot to

travel 
(p) = 
(
p
n) times too far. (In fact, there is an algorithm which is O(

p
n)-competitive

on this tree; this is not di�cult to see.)

We now turn to a second 
(
p
n) lower bound for trees, which is somewhat more subtle to

analyze and also has the advantage of extending to rectangular obstacles. The tree Th is shown

in Figure 4-3; it consists of a path � of length n, with a path growing north from each vertex.

All paths but the middle one have length h; the middle one has length h + 1 (the value of h

will be �xed later). Observe that Th indeed has n leaves; and the key observation is that the

robot cannot localize until it has reached one end of �, or traversed the middle path.
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Figure 4-3: The second lower bound

First we argue that if h = bpnc, then no algorithm on Th can be better than 
(
p
n)-

competitive. Let v1; : : : ; vh be the vertices of � that lie between h and 2h steps to the west of

the entrance to the middle path. We place the robot at one of these vertices, such that it will

traverse all the h other possible north-leading paths before �nding the middle one. Thus, it

will travel at least h2 � n� 2
p
n before �nding the end of the middle path; to reach either end

of �, it must travel at least n=2� 2
p
n. Either way this is a distance of 
(n). Meanwhile, the

o�-line adversary need walk a distance of at most 3
p
n to reach the end of the middle path.

Conversely, however, one cannot improve this lower bound by varying the value of h. Assume

the robot starts somewhere on the path �, a distance d from the entrance to the middle path.

(if it starts elsewhere, the arguments are essentially the same). If h <
p
n, then the robot can

apply the two-way spiral search algorithm, traveling all the way up each new path it encounters.

This algorithm is O(h)-competitive. And if h � p
n, then the adversary must travel at least a

distance of
p
n to localize, so the robot can ignore all the north-leading paths and simply apply

the two-way spiral search algorithm to the path � until the nearer end is reached, traveling a

distance O(n).

This latter case suggests some of the di�culty inherent in obtaining a o(n)-competitive

algorithm | when h = n, the full spiral search algorithm is 
(n)-competitive; it is necessary

to identify the path � as somehow being more important than the profusion of paths leading

north. We will see a general technique for doing this in the next section.

In closing this section, we simply note that it is easy to construct the second lower bound

out of O(n) rectangles; see Figure 4-4. We use very long rectangles growing north and south

so that it will take the robot too long to try completely leaving the middle path �. Each of

the paths growing north out of � is now simulated by two of these very long rectangles with a
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Figure 4-4: Making the second lower bound work for rectangles

shorter one in between; also � now bends slightly so that the robot cannot see all the way down

it. Thus no algorithm can have a performance guarantee better than 
(
p
n) for environments

of n rectangular obstacles.

4.2 The Algorithm for Trees

Recall that by a geometric tree T we mean a pair (V;E), where V is a �nite point set in Rd

and E is a set of line segments whose endpoints all lie in V . The segments of E intersect only

at points in V , and they do not induce any cycles.

As before, vertices with degree greater than 2 in T will be called branch-vertices. It will

turn out that the degree-2 vertices of T are largely unimportant in the algorithm; thus we

change our de�nition of T to an equivalent one without such vertices. Speci�cally, we will say

that all the vertices of a geometric tree T are either leaves or branch-vertices, and edges are

now polygonal paths between the vertices. Moreover, we assume for the sake of simplicity that

T has bounded degree; namely, for some absolute constant �, at most � segments in E are

incident to any given vertex in V . So we again change notation slightly by saying that T has n

branch-vertices, and consequently has at most (�� 2)n+ 2 � �n leaves (and at least n + 2).

If U � V , we use T (U) to denote the subtree induced by U . When U = fx; yg, this is simply
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the path from x to y; we denote its length (as a polygonal path under the Euclidean distance)

by dT (x:y). Finally, recall that the robot is constrained to move on the vertices and edges of

T , and can make no use of vision other than to know the orientation of all edges incident to its

current location.

Consider a geometric tree T with n branch-vertices. We wish to prove the following.

Theorem 4.1 There is an algorithm which is O(n2=3)-competitive for the localization problem

on geometric trees.

To prevent various pathologies, we assume that all the points in V have rational coordinates,

and that the minimum length of any edge in E is 1. (These assumptions can be avoided at the

cost of more cumbersome de�nitions below.)

T 0 T

Y�;v

D� � T

� 2 T 0

Figure 4-5: Lining up T 0 with T

We can assume without loss of generality that the robot begins at one of the vertices of

T (i.e. at a leaf or a branch-vertex), rather than in the middle of one of the edges. This

is simply because the robot can initially perform two-way spiral search to reach the closest

vertex, traveling no more than 9 times too far. Moreover, we can then assume that it in fact

begins at a branch-vertex, since its only choice at a leaf is to move along the incident edge.

At all times, the robot maintains a search region, some geometric tree T 0 which consists of

everything it has seen so far. This means that it is in a part of T which locally looks like T 0;
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thus the basic computation the robot will be performing as it explores is that of \lining up" its

current copy of T 0 with various parts of T , in the natural way. The robot maintains its current

location � on the map of T 0, and a set D� of possible locations v that this might correspond to

in T . (To keep the notation clear, we will use Greek letters to denote vertices in T 0.) If v 2 D�,

then we will use Y�;v(T
0) to denote the subtree of T induced by rigidly placing T 0 on T so that

� is mapped to v. See Figure 4-5.

Of course, the robot always does have a \genuine" location in T ; it simply does not know

what this is (until it has localized). Notationally, it is sometimes useful to refer to this unknown

location: when the robot is at � 2 T 0, we will denote its true position in T by Z(�). (Note

that Z(�) 2 D�.)

The following fact is immediate but will be used frequently.

Lemma 4.2 For all �; � in T 0, D� is equal to the set D� translated by the vector from � to �.

In particular, jD�j = jD�j.

As the robot performs its exploration, it remembers the branch-vertex in T 0 at which it �rst

woke up; we will denote this vertex 
0. In the course of the localization algorithm, the robot

maintains four principal quantities of the search region.

1. As we will see below, T 0 is initially constructed using spiral search. Thus we maintain

the current \search radius" r(T 0); this is the distance out to which depth-�rst search is

currently being performed, from the initial location 
0 in T
0.

2. The common value of jD�j (as in Lemma 4.2) will be denoted p(T 0); this is simply the

number of possible placements of T 0 in T .

3. The number of branch-vertices of T 0 will be denoted b(T 0).

4. The quantity w(T 0) is de�ned to be

max
�2T 0;v2D�

jD� \ Y�;v(T 0)j:

That is, if we pick � to be the \origin" of T 0, then we can place it on v so that it covers

w(T 0) other origins.

51



The algorithm consists of three main steps, which are controlled by the following global

structure:

Initially b(T 0) = 1, p(T 0) = O(n), w(T 0) = 1

While b(T 0) � p(T 0) and b(T 0) � n=w(T 0)

Execute Step 1

If p(T 0) < b(T 0) then

Execute Step 3

Else execute Step 2 followed by Step 3

In the remainder of this section, we will describe each of the steps individually, then analyze

the competitive ratio of the resulting algorithm.

Step 1: Restricted Spiral Search

The robot �rst wakes up at some initial location 
0 2 T 0 and begins performing spiral search

[BCR]. This can be described as follows: the robot starts at 
0 and performs successive depth-

�rst searches so as to see all points within distance 2j of Z(
0), for j = 0; 1; 2; : : :.

The fundamental fact about spiral search is the following.

Lemma 4.3 At the end of Step 1, the robot has traveled no more than 8�b(T 0) times the length

of the optimal solution.

Proof. Suppose the �nal search radius was r = 2j. So the total distance traveled by the robot

is at most
jX

i=0

2�b(T 0) � 2i � 2j+2�b(T 0):

Since Step 1 did not terminate when the search radius was equal to 2j�1, any localizing path

must travel a distance of at least 2j�1 away from 
0. The bound follows.

Step 2: Extending the Critical Path

If P is a directed polygonal path and k � 1, we use P k to denote the path formed by joining

together k copies of P in succession. We use P�1 to denote P with the edges presented in

the reverse order. Let U = fu1; : : : ; ukg be a subset of the vertices of T . We will say that U
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(a)

(b)

Figure 4-6: (a) A periodic path. (b) A comb tree.

induces a periodic path if T (U) is a simple path and there is some polygonal path P such that

T (ui; ui+1) = Pmi for natural numbers m1; : : : ; mk�1. We will say that U induces a comb tree

if T (U) consists of a periodic path on vertices fv1; : : : ; vkg distinct from U (the base), together

with disjoint paths T (ui; vi) (the teeth), all of which are mutually congruent; the vertex vi will

be called the support point of ui. (See Figure 4-6.)

Recall that at the beginning of Step 2, we have an \origin" � of T 0 and a placement Y�;v of

T 0 which covers at least w(T 0) other origins in T . We will use W to denote this set

D� \ Y�;v(T 0)

of covered origins.

Lemma 4.4 W induces either a periodic path or a comb tree in T (and hence also in T 0).

Proof. The proof is based on the following two claims, whose proofs are given in the Appendix

of this chapter.

Claim 4.5 Let T be a geometric tree, r; x; y; z 2 V . Suppose that T (r; x) is congruent to

T (y; z), and T (r; y) is congruent to T (x; z). Then T (r; x; y; z) is either a periodic path or a

comb tree.
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Claim 4.6 Let T be a geometric tree and U a subset of the vertices. Suppose that there is some

x 2 U such that for all other y; z 2 U , T (x; y; z) is either a periodic path or a comb tree. Then

T (U) is a periodic path or a comb tree.

Using these, we prove the lemma as follows. Recalling that W = D� \ Y�;v(T 0); let us suppose
thatW = fw1; : : : ; wkg, with w1 = v. Consider any other wi; wj with 1 < i < j � k. Since these

belong to D�, there is a path congruent to T (w1; wi) emanating from wj, and a path congruent

to T (w1; wj) emanating from wi. Note that these two paths have a common endpoint (at the

point w1+(wi�w1)+(wj�w1)). Let u denote this common endpoint; then w1; wi; wj; u satisfy

the hypotheses of Claim 4.5. This in turn shows that W and the distinguished point w1 satisfy

the hypotheses of Claim 4.6, and hence T (W ) is either a periodic path or a comb tree.

But suppose that T (W ) is in fact a comb tree. Then by Lemma 4.2, there is a vertex �0 2 T 0

such that D�0 contains the set W
0 of support points of T (W ) (which form a periodic path). In

fact, if we let v0 denote the support point of v, we see that W 0 � D�0 \ Y�0;v0, so

jD�0 \ Y�0;v0 j � jW j � w(T 0):

Thus, by using �0 instead of �, we obtain a set W 0 (satisfying jW 0j � w(T 0)) which induces a

periodic path. We state this as the following extension of the previous lemma.

Lemma 4.7 W can be chosen so that it induces a periodic path in T (and in T 0).

Suppose T (W ) = T 0(W ) = Pm is such a periodic path, with origin �. The robot moves

to �; it is now standing somewhere in the middle of a long periodic path, and can thus follow

successive copies of P by moving in one direction (the forward direction), and successive copies

of P�1 by moving in the other (the backward direction). The robot moves in each of these

directions until it determines the largest i and j for which it is possible to traverse P i in the

forward direction and P�j in the backward direction, starting from �.

Locating � and v, and traversing P i and P�j , constitutes Step 2. Note the following facts.

Lemma 4.8 In performing Step 2, the robot travels no more than 4 + 8n
w(T 0)�1

times the length

of the optimal solution.
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Proof. Moving to � costs at most 2r(T 0). T 0 contains Pm as a path, and m � w(T 0), so the

length of P (and hence P�1) is at most 2r(T 0)

w(T 0)�1
. Also, each copy of P uses up an additional

branch-vertex of T , so the robot will traverse at most n copies of P and P�1. Since each copy

is traversed twice (the robot returns to �), it travels at most 2r(T 0) +
4nr(T 0)

w(T 0)�1 . On the other

hand, the length of the optimal solution is at least r(T 0)=2, as argued above.

Lemma 4.9 At the end of Step 2, p(T 0) � 2n=w0(T 0).

Proof. For v 2 D� and u any other vertex of T , we will say that u is P -covered (resp. P�1-

covered) by v if by starting at v and following successive copies of P (resp. P�1), the robot can

reach u. By considering the path Pm in Y�;v, we see that the total number of vertices that are

P -covered or P�1-covered by each v 2 D� is at least w(T 0) (counting v itself). Reversing the

names of P and P�1 if necessary, we can assume that the average number of vertices P -covered

by a vertex v 2 D� is at least w(T 0)=2.

On the other hand, we claim that no vertex of D� P -covers any other. This is simply

because it is well-de�ned for each v 2 D� how far one can move along T following the edge

sequence of Pn; thus if v P -covers v0, the robot can eliminate at least one of v or v0 from its

set of possible locations.

This in turn implies that no vertex u 2 T is P -covered by more than one member of D�

(if it were covered by two, the one farther from u would cover the one closer to u). Since the

average number of vertices covered by a vertex v 2 D� is at least w(T 0)=2, and each vertex is

covered at most once,

jD�j = p(T 0) � 2n

w(T 0)
:

Step 3: Cleaning Up

Once p(T 0) has become su�ciently small, the robot can �nish its task by brute force. Speci�-

cally, assume that it is currently located at an origin � in T 0. For each pair of vertices v; v0 2 D�,

de�ne their shortest distinguishing path to be the shortest path Q such that it is possible to

traverse Q starting from v but not from v0 (or vice versa). (This is the least one has to travel

to tell v from v0.)
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In Step 3, the robot iteratively applies the following strategy. Over all v; v0 2 D�, it chooses

the pair with the distinguishing path of minimum length. By following this path, the robot will

be able to eliminate either v or v0 from D�, and perhaps both. Meanwhile, the optimal o�-line

algorithm must travel at least this far, since there is no way to eliminate even a single vertex

from D� otherwise. The robot then returns to � and begins the next iteration. As there are at

most p(T 0)� 1 such iterations, we have proved

Lemma 4.10 In Step 3, the robot travels no more than 2p(T 0) � 2 times the length of the

optimal solution.

The Global Structure

Finally, we give an absolute bound on the competitive ratio, using the lemmas above. Note �rst

of all that the tree Th of Figure 4-3, with h = n, shows that the algorithm which simply applies

Step 1 until p(T 0) � b(T 0) and then switches to Step 3 is no better than O(n)-competitive. But

introducing the option of Step 2 prevents the initial period of spiral search from going on for

too long. The crucial fact is the following.

Lemma 4.11 By the time b(T 0) exceeds n2=3, the robot will have stopped executing Step 1.

Proof. For � 2 T 0 and v 2 D�, let w�;v(T
0) denote the cardinality of D� \ Y�;v(T 0) | that is,

the number of origins in D� covered if T 0 is placed so that � corresponds to v 2 T . To prove

the lemma, it is su�cient to show that if both b(T 0) and p(T 0) are greater than n2=3, then some

w�;v(T
0) is at least n1=3.

For a given v 2 T , let
Ev = f� : v 2 D�g

and ev = jEvj. Thus, X
v2V

ev = b(T 0)p(T 0):

Now let us compute the sum S of w�;v(T
0) over all pairs (�; v) such that v 2 D�. Fix such

a pair (�; v). First, it contributes once to w�;v(T
0). Also, for every other � 2 Ev, there is

some u 2 T such that v corresponds to � in Y�;u(T
0); thus, the pair (�; v) contributes once to
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w�;u(T
0). Thus (�; v) contributes a total of ev to the sum S. Summing over all pairs, we obtain

X
�;v

w�;v(T
0) =

X
v

e2v:

Since T has n branch-vertices, this value is minimized by setting each ev equal to

1

n

X
v

ev =
1

n
b(T 0)p(T 0)

and thus X
�;v

w�;v =
X
v

e2v � n � 1
n2
b(T 0)2p(T 0)2 =

1

n
b(T 0)2p(T 0)2:

By the pigeonhole principle, applied to the b(T 0) choices of � and the p(T 0) choices for v 2 �,
there is some pair v; � for which

w�;v �
1

n
b(T 0)p(T 0) � n1=3:

as desired.

First suppose the robot goes directly from Step 1 to Step 3. When this transition happens,

b(T 0) � n2=3 and p(T 0) � n2=3, so by Lemmas 4.3 and 4.10, it travels at most O(n2=3) times the

length of the optimal solution.

Otherwise, the robot goes from Step 1 to Step 2, the transition occurrring when b(T 0) and

n=w(T 0) are at most n2=3. Thus by Lemmas 4.3 and 4.8, it travels at most O(n2=3) times too

far in Steps 1 and 2. Now, Lemma 4.9 implies that it will begin Step 3 with p(T 0) � 2n2=3, so

by Lemma 4.10, it travels only O(n2=3) times too far in Step 3 as well. As these are the only

two cases, this completes the proof of Theorem 4.1.

4.3 The Algorithm for Rectangles

Again, to keep complications related to visibility to a minimum, we work with a rectangle

packing [BRaSc, BBFY, BRiSi], as de�ned earlier. By a vertex of the environment, we will

mean a corner of some rectangle. So in the spirit of the previous section, one could picture

a planar graph embedded in the two-dimensional integer grid, all of whose bounded faces are
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rectangles.

The algorithm for the case of rectangular obstacles is very similar to the one for trees; the

main di�erence is the lack of an analogue to Lemma 4.4 to provide the robot with an obvious

critical path to explore. As a result, the transition from Step 1 to Step 2 cannot happen as

early as in the algorithm of Section 4.2; rather, the robot waits until the spiral-search branching

factor becomes too large, and then begins exploring several critical paths in succession before

beginning Step 3. We elaborate below.

Let �(n) =
q

logn

log logn
. The set of n rectangles will be denoted R, and the current search

region R0. b(R0) will now simply be a measure of the number of rectangles in R0 (including

partial rectangles). Other notation is as before. The global structure of the algorithm is as

follows.

Initially b(R0) = 1, p(R0) = �(n).

While b(R0) � n

�(n)

execute Step 1

While p(R0) > 4n
�(n)

execute Step 2

Execute Step 3

Step 1: Restricted Spiral Search

Actually, this is not nearly as straightforward as it was for trees. We would like the robot to

iteratively explore all parts of the environment within distance 1; 2; 4; : : : until b(R0) gets too

large. The problem is that the robot must be careful to keep track of the distance to each

point it encounters; that is, it must know a shortest path back to the origin 
0 for each point it

reaches. Fortunately, there is a \compact search" subroutine due to Betke, Rivest, and Singh

[BRiSi] which accomplishes just this.

Thus Step 1 will proceed as follows. For successive values of 2j (j = 0; 1; 2; : : :) the robot

explores all points within 2j of Z(
0). We implement stage j of this process using a simple

modi�cation of the compact search algorithm of [BRiSi] | the robot turns back whenever it is

about to move more than 2j from 
0.
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Lemma 4.12 At the end of Step 1, the robot has traveled O(b(R0)) times the length of the

optimal solution.

Proof. The main result of [BRiSi] is that the robot will travel at most 10 times the total

length of all edges in the region searched. In stage j, each rectangle (or partial rectangle) has

perimeter at most 4 � 2j and there are at most b(R0) rectangles; thus the robot travels at most

40b(R0) �2j. Summing over all stages, the distance traveled is at most 80r(R0)b(R0); meanwhile,
the optimal solution has length at least r(R0)=2.

Step 2: Extending Multiple Critical Paths

Let c(R0) denote the quantity

min
(�2R0)

min
(v;v02D�)

dR(v; v
0):

That is, c(R0) is the smallest distance between two vertices in R corresponding to the same

vertex in R0. Let P denote the polygonal path from v to v0. As in Section 4.2, the robot,

starting from v, tries to follow as many copies of P in succession as possible. After this, c(R0)

and the values of v; v0 are updated, and the robot iterates. Step 2 comes to an end when p(R0)

gets down to 4n
�(n)

.

To bound the distance traveled in Step 2, we �rst prove a combinatorial lemma about trees

with edge lengths. Let � be a tree with m vertices and maximum degree �, and let � be a

length function on its edges. If v is a vertex of � , Bd(v) will denote the set of all vertices within

distance d of v and rad(�) will denote, as usual, the smallest d such that there exists a v with

� � Bd(v).

Lemma 4.13 There exists a vertex v� of � for which

����B rad(�)

�(m)2
(v�)

���� � logm

�
:

Proof. Let u be a vertex of � that realizes the radius; that is, Brad(�)(u) � � . For i =

1; : : : ; �(m)2, let �i denote the set of all vertices in � whose distance from u is at most i

�(m)2
�
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rad(�), and mi = j�ij. Setting m0 = 1, we know that

�(m)2Y
i=1

mi

mi�1

= m

so by the pigeonhole principle there is some j for which
mj+1

mj
� logm.

Consider cutting o� the tree at distance j

�(m)2
�rad(�) from u, and let e1; : : : ; es be the edges

that cross this boundary. Since T has maximum degree �, and there are only mj vertices in

�j, we have s � �mj ; now, since mj+1 � mj logm, one of the subtrees below some ek has at

least logm=� vertices in �j+1� �j. Thus we can let the vertex in the subtree below ek which is

closest to u be v� in the statement of the lemma.

Lemma 4.14 In Step 2, the robot travels at most O( n

�(n)
) times the length of the optimal

solution.

Proof. Consider building a shortest-paths tree, rooted at 
0, on the vertices of the search

region R0. (Note that we can build such a tree since we used a compact search algorithm in

Step 1.) This tree has maximum degree four (since the obstacles are rectangles), so, applying

Lemma 4.13, we see that there is some vertex �� with at least 1
4
(logn� log �(n)) vertices within

a radius r(R0)

�(n)2
. Now suppose that there are not two vertices v; v0 2 D�� for which

dR(v; v
0) � 2r(R0)

�(n)2
: (4.1)

Then we could pack into R a collection of disjoint balls of radius r(R0)

�(n)2
, each of which contains

at most one member of D�� and at least 1
4
(logn� log �(n)) vertices of R. But this would imply

jD�� j = p(R0) � 4n

log n� log �(n)
� 4n

�(n)

and thus the robot would not execute Step 2 at all.

Thus we have shown that as long as b(R0) � n
�(n)

and p(R0) � 4n
�(n)

, there will be vertices

v; v0 2 D�� satisfying Equation (4.1). As before, let P denote the polygonal path from v to v0,

and suppose that the robot traverses P s beginning at Z(��) but is not able to traverse P s+1.

We will call this a short iteration if s � �(n), and a long iteration otherwise.
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Observe that a short iteration eliminates at least one of v; v0 from D��, so there are at most

n short iterations. Also, the length of P is at most 2r(R0)

�(n)2
, so the robot travels at most 4r(R0)

�(n)
in

one such iteration, for a total of 4n
�(n)

� r(R0).
Now we claim that there can be at most one long iteration in Step 2. Indeed, at the end

of such an iteration each v 2 D�� P -covers at least �(n) vertices, so by arguments strictly

analogous to those in the proof of Lemma 4.9, there can be at most n

�(n)
vertices in D�� . Thus,

Step 2 will come to an end after the �rst long iteration. Moreoever, s is always at most n, so

the robot will travel at most 4n
�(n)2

� r(R0) in this iteration.

As the length of the optimal solution is at least r(R0)=2, the bound follows.

Step 3 is implemented just as before. Thus, by Lemmas 4.12, 4.14, and the analogue of

Lemma 4.10 for rectangles, we have

Theorem 4.15 The above algorithm is O( n

�(n)
)-competitive for the localization problem in an

environment of n rectangles.

4.4 Placing Unique Landmarks

Until now, we have been considering the \drop-o�" version of the problem [TPBHSS], in which

the robot is placed in an environment with very little starting information. But another sit-

uation in which localization arises is that of a robot which must repeatedly perform tasks in

the same environment, and must begin by determining its current location. In such situations,

it is useful to place k unique landmarks in the environment, so that the robot immediately

knows where it is upon encountering one of them. It is not di�cult to make these notions

precise in our model. Let us simply say that a k-marking of the environment E is a function �

from the vertices of the environment to the set f0; 1; : : : ; kg; exactly one vertex gets each value

j = 1; : : : ; k, and the rest get the value 0. Each time the robot gets to a new vertex v, it can

determine the value �(v).

For the sake of concreteness, let us consider the geometric trees of Section 4.2. The goal here

is, for �xed k, to give a k-marking � and an accompanying localization algorithm which achieves

the lowest possible competitive ratio. Trying out this notion on the examples of Section 4.1,

one �nds that di�erent environments can have strikingly di�erent behaviors with respect to this
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measure. For example, one must place at least
p
n � o(

p
n) landmarks in the tree of Figure 4-

2 before bringing about an asymptotic improvement in the best competitive ratio attainable

(since there will have to be a landmark in all but a o(1) fraction of the
p
n \blocks"). On the

other hand, by placing a single landmark at the exact center of the long path � in Figure 4-3,

one brings the best attainable competitive down from
p
n to 9 (the robot simply uses two-way

spiral search until it hits this landmark or one end of �).

In light of this, we believe that the algorithmic question of �nding the optimal k-marking,

given a tree T or a set of rectangles R, is very interesting; we leave it as an open problem. In the

remainder of this section, we turn to statements that can be made in general for environments

of trees and rectangles.

Proposition 4.16 For each tree T , there is a k-marking and a localization algorithm which is

O(n
k
)-competitive.

Proof. This is not di�cult to prove directly; and using a lemma from [LoS], we can actually

prove the stronger statement that there is, in e�ect, a single marking which works for all k.

Speci�cally, it is proved in [LoS] that there is a numbering  of the n vertices of T (i.e. a

bijection from V to f1; : : : ; ng) so that for each k, the removal of the vertices numbered 1

through k results in a forest in which no component has more than 2n
k
vertices.

Given  , we de�ne the k-marking �k in the natural way:

�k(v) =

8><
>:
 (v) if 1 �  (v)� k

0 otherwise

Given this marking, the localization algorithm is rather unsubtle: the robot performs spiral

search until p(T 0) decreases to 1 or it reaches a landmark (at which point p(T 0) immediately

equals 1). Since it is traveling in a component with at most 2n
k
vertices, b(T 0) will never exceed

2n
k
, and the result follows.

Unfortunately, we see that no stronger statement can be made at this level of generality

for trees, since the trade-o� in Proposition 4.16 is tight up to constant factors for the tree of

Figure 4-2 when k =
p
n. For the case of rectangular obstacles, we can prove a similar trade-o�

non-constructively.
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Proposition 4.17 For each environment R of n rectangles, there is a k-marking and a local-

ization algorithm which is O(n logn
k

)-competitive.

Proof. Note that the statement is trivially true if k is not at least 
(logn), so we will assume

that it is in what follows. Also, we only consider markings in which landmarks are placed at all

four corners of k=4 rectangles. Thus, by abuse of notation, we will also speak of �(Ri), where

Ri is a rectangle. The localization algorithm will be the same as in Proposition 4.16: perform

spiral search as in Step 1 of Section 4.3 until p(R0) decreases to 1 or a landmark is reached. To

prove the stated bound, we must show that for some marking �, the robot will travel no more

than O(n logn
k

) times the length of the optimal solution, regardless of its starting position.

In fact, we claim that if � is constructed by randomly marking k=4 rectangles, it will have

this property with high probability. To prove this, we de�ne a numbering  v of the rectangles

for each of the 4n vertices in the environment:  v will tell the order in which the rectangles

are encountered when the spiral search algorithm is performed beginning at v (i.e.  v(Ri)� 1

rectangles are encountered before rectangle Ri, starting from v). Say that � has Property 	 if

8v 9Ri : �(Ri) > 0 and  v(Ri) �
8n lnn

k
:

The probability that � fails to have Property 	 for a single vertex v is at most

�
1� 8 lnn

k

�k
4

� e�2 ln n =
1

n2

and so the probability that � fails to have Property 	 for any vertex is at most 4
n
.

So consider a marking � which does have Property 	. Regardless of the robot's starting

location, it will encounter a landmark by the time b(R0) reaches 8n lnn
k

; the result now follows

from Lemma 4.12.

Appendix: Proofs of Claims 4.5 and 4.6

Recall that a subset U = fu1; : : : ; ukg of the vertices of T induces a periodic path if T (U)

is a simple path and there is some polygonal path P such that T (ui; ui+1) = Pmi for natural

numbersm1; : : : ; mk�1; and U induces a comb tree if T (U) consists of a periodic path on vertices
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fv1; : : : ; vkg distinct from U together with disjoint paths T (ui; vi), all of which are mutually

congruent.

Proof of Claim 4.5. Let S denote T (r; x; y; z),P denote the polygonal path T (r; x)' T (y; z),

and Q denote T (r; y) ' T (x; z). Let us suppose by induction that the claim holds for all

examples in which the total number of edges in P and Q together is smaller than in S (note

that the result clearly holds when P and Q each consists of a single edge). We consider three

separate cases, based on the number of leaves in S.

Case 1: S has two leaves; suppose that these are r and z (other cases are similar). Then

since C has no branch-vertices in this case, the polygonal paths PQ and QP are congruent. It

is straightforward to show that this implies PQ is a periodic path.

Case 2: S has three leaves. This is actually impossible; suppose that x, y, and z are all

leaves (other cases are symmetric). Then since x is a leaf, P�1 and Q have the same initial

direction; since z is a leaf, P�1 and Q�1 have the same initial direction; and since y is a leaf, P

and Q�1 have the same initial direction. Thus P and Q have the same initial direction, which

implies that r must be a leaf.

Case 3: S has four leaves. Then P , Q, P�1, and Q�1 all have the same initial direction.

We eliminate the shortest of these four initial edges, and shorten the other three initial edges

by the same amount. In this way, we have an example S0 with one fewer edge in P or Q, so

the claim holds for S0. This in turn implies that S is a comb tree.

Proof of Claim 4.6. If all triples form periodic paths, then clearly T (U) is a periodic path.

So suppose T (x; y; z) is a comb tree. Then since T (x; y) has the same direction at both ends,

T (x; y; z0) must be a comb tree for all z0 2 U . Now if T (x; p; q) is a periodic path, then T (x; p)

cannot have the same initial direction at both ends; thus T (x; p; q0) is a periodic path for all

q0 2 U . From this it follows that if any triple constitutes a comb tree, then all triples do. Also,

we can conclude that all vertices are leaves in T (U).

Next, observe that for all z; z0 2 U , x has the same support point in T (x; y; z) and T (x; y; z0)
(it is the maximal sequence of line segments which is the same at the beginning and end of

T (x; y)). Thus, it has the same support point in all comb trees. We now conclude that all the

vertices in U have disjoint congruent paths joining them to the rest of T (U). Deleting these

paths, we obtain jU j support points joined by periodic paths. Thus T (U) is a comb tree.
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Chapter 5

Real-Time Server Algorithms

The trade-o� between the computational resources of an on-line algorithm and the competitive

ratio it can achieve is a question that has received relatively little attention. In some sense, it

is not hard to see why this should be the case: proving lower bounds for traditional algorithms

is notoriously di�cult, and introducing the on-line/o�-line distinction only seems to add to

the complications. Thus establishing a non-trivial relationship between two measures such as

running time and competitive ratio appears to be mainly beyond the reach of current techniques.

Nevertheless, it seems worth considering the problem at least for the simplest kind of on-line

algorithms. What we have in mind is the following. Consider an on-line problem that can be

expressed in the framework set up in Chapter 2: an algorithm A is presented with a sequence of

requests � = f�1; �2; : : :g in order; when �i is presented, Amust perform some computation. We

are interested in considering algorithms A that can meet some �xed time bound in processing

each request; in particular, A should not slow down as more and more requests are presented.

Thus, we (informally) de�ne a real-time algorithm to be one which uses a constant amount of

space, and constant time per request �i. Of course, the notion \constant" will depend on the

particular problem, but the running time of A should in any case not depend on the number

of requests seen so far.

The 2-server problem appears to be a good one on which to try out these notions. First

of all, a fair amount is known about the bounds one can achieve | there are at least three

optimal 2-server algorithms in the literature [MMS, CL1, CL4] | and a number of constant-

time algorithms have been analyzed [IR, CL2, CKPV]. Also, the structure of the 2-server
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problem is in some sense quite a bit simpler than the structure of the general k-server problem.

In this setting, a real-time algorithm is one which decides which server to send to each

request using an amount of time and space independent of the cardinality of the metric space

and of the number of points requested so far. None of the known optimal 2-server algorithms

have this property; for example, in an in�nite metric space such as Rd, they slow down with

each additional request. Indeed, currently the best real-time algorithm known has a competitive

ratio of 4 [CL2] (improving on a 10-competitive algorithm [IR]); and until now, the only known

metric spaces in which a fast algorithm could achieve the optimal ratio of 2 were those which

could be embedded in a tree.

All of this leads to a very interesting open question: is there a real-time 2-server algorithm

with a competitive ratio of 2? We do not settle this question here; however, we give two

results which provide evidence in opposite directions. Note also that the question is essentially

independent of the k-server conjecture, which asks how well an on-line algorithm can perform

regardless of the amount of computation it requires.

First we present a real-time, memoryless 2-competitive algorithm for two servers in Rd, for

any dimension d, under the L1 (\Manhattan")metric. This result considerably extends the class

of metric spaces for which there is known to be a fast, optimal algorithm. Moreover, the original

real-time 2-competitive algorithm for trees was based on a very elegant memoryless strategy,

\Double-Coverage," that was �rst discovered for servers on a line [CKPV] (this algorithm

was discussed in Chapter 2). However, attempts to extend this technique to produce optimal

deterministic algorithms in spaces more general than trees had so far not been successful. Thus,

an interesting feature of our main result is that it follows the style of Double-Coverage, and

can therefore be viewed as an extension of that algorithm to the case of two servers in higher

dimensions.

In Section 5.2, we turn to the question of lower bounds. A number of papers have proposed

\balancing" algorithms for the k-server problem. The basic balancing algorithm works as

follows: for each server si, its total distance traveled is maintained in the variable Di; when

a request is made at a point r, the algorithm sends the server which minimizes Di + rsi (for

x; y 2M , let xy denote the distance between them). This rule was shown to be k-competitive

for k servers when the cardinality of the request spaceM is k+1 [MMS], and for the \weighted-
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cache" problem, which includes the paging problem as a special case [CKPV].

However, the algorithm does not achieve any constant competitive ratio, even for two servers,

in a general metric space M . Thus it was somewhat surprising that a rule minimizing the

quantity Di + 2rsi was shown to be 10-competitive for two servers [IR]. A later construction

showed that this algorithm is no better than 6-competitive [CL2].

Here, we show a new lower bound for the class of balancing algorithms in general. Let

f : R+ ! R, and Bf be the server algorithm which does nothing when the request point is

already covered, and otherwise moves the server which minimizes Di + f(rsi), where Di is the

total distance traveled by server i. We will describe Bf as a balancing algorithm with cost

function f . Observe that we make no restrictions whatsoever on the nature of the function f .

Our main result is a lower bound of (5 +
p
7)=2 (� 3:82) on the competitive ratio of any

such balancing algorithm for two servers. In view of the 2-competitive algorithms of [MMS,

CL1, CL4], this shows that no optimal on-line 2-server algorithm can be expressed as a decision

rule Bf for any f . To our knowledge, this represents one of the �rst lower bounds for on-line

algorithms based solely on computational resources.

We use the following notation. For a server algorithm A, let �(A) denote its competitive
ratio. If A is c-competitive for some c, we will say it is competitive; otherwise, we write

�(A) = 1. As before, OPT will denote the optimal o�-line server algorithm, whose cost

on a request sequence � is always the minimum possible; we sometimes refer to OPT as the

\adversary" algorithm.

5.1 Two Servers in Euclidean Space

Let xi denote the ith coordinate of x 2 Rd. For two points x; y 2 Rd, de�ne �d(x; y) to be

the closed d-dimensional box (possibly degenerate) with x and y as opposite corners. That is,

w 2 Rd lies in �d(x; y) if and only if w
i is between min(xi; yi) and max(xi; yi) for i = 1; : : : ; d. A

point z 2 Rd induces the following partial order �z on R
d: x �z y if and only if x is contained

in the box �d(y; z). It is easily veri�ed that �z satis�es the properties of a partial order.

First consider the following problem. We have two sets P and Q, each consisting of n points

in (Rd; L1), and we wish to �nd a minimum-cost perfect matching between them. The following

lemma is central to the analysis of the algorithm.
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Lemma 5.1 For each q 2 Q, there is a minimum-cost matching M in which q is matched to

one of the points of P which is minimal with respect to �q.

Proof. Consider a matching M 0 in which p0 2 P is matched to q, and p0 is not minimal with

respect to �q . In this case, there is some minimal p 2 P such that p �q p
0; suppose that p is

matched to some q0 2 Q. We can draw a shortest path from p0 to q that passes through p; thus

the matching M in which p is matched to q and p0 is matched to q0 has cost at most that of

M 0.

The Algorithm in the Plane

We �rst give the algorithm in the plane, and then show how to extend it to higher dimensions.

We number the quadrants of the plane in clockwise order, beginning with the positive quadrant.

As is standard in analyzing server algorithms, we view the request sequence as a game between

the algorithm and an omniscient adversary. In each round of the game, the adversary generates

a request and serves it optimally (using knowledge of the future requests). The algorithm then

must also serve the request, without knowing anything about the behavior of the adversary

servers or the remainder of the request sequence.

Assume that the algorithm's servers are at points s1 and s2, the adversary servers are at

points o1 and o2, and a request comes to some point in the plane. Since the L1 metric is

invariant under translations and 90-degree rotations, we can assume that the request is at the

origin and that the on-line server closer to the request, s1, lies in the �rst quadrant.

First, the algorithm computes the partial order �, with respect to the origin, on the two

servers. Clearly s1 will be a minimal element. If s2 is not also minimal, we simply move s1

along a shortest path to the origin. Otherwise, both are minimal and we have the following

cases:

1. s2 lies in the third quadrant. Here we move both servers at constant speed along shortest

paths to the origin until s1 reaches it.

2. s2 lies in the second quadrant. Here, we move both servers at constant speed to the

positive y-axis | if s2 reaches it �rst, we also move it down the y-axis | until s2 is no

longer minimal.
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3. s2 lies in the fourth quadrant. This is strictly analogous to the previous case.

4. s2 also lies in the �rst quadrant. Then consider the rectangle �2(s1; s2), and let y be the

corner of this rectangle closest to origin. We move both servers toward y until s1 reaches

it; now s2 is no longer minimal.

Theorem 5.2 The above algorithm is 2-competitive in the L1 plane.

Proof. We analyze the algorithm's performance using the cdrs potential function [CDRS]

� = s1s2 + 2Mmin(S;OPT );

where Mmin(S;OPT ) denotes the value of the minimum-cost matching between the adversary

servers and the on-line servers, and s1s2 is, as before, the distance between s1 and s2. By the

standard potential-function argument, the following two facts will imply that the algorithm is

2-competitive.

1. When the adversary moves, paying c, it can raise � by at most 2c.

2. When the algorithm moves, paying c0, it lowers � by at least c0.

The �rst of these facts holds in any metric space, and has been proved in earlier papers [CKPV,

CL3, CDRS]; the argument is simply that the value of the minimum-cost matching goes up by

at most c0 while the �rst term of � is untouched.

Now consider the second fact. We break the behavior of the algorithm into two phases.

In the �rst (possibly empty) phase, both servers are moving; in the second phase, only one

server is moving. In the second phase, in which one server moves a distance d, the value of �rst

term of � increases by at most d, while Lemma 5.1 implies that the value of the minimum-cost

matching goes down by d. Thus � goes down by at least d, as desired.

When the algorithm is moving both servers (each a distance d0) the matching component

cannot go up (whichever server is matched to the origin is decreasing its contribution to the

cost optimally). Meanwhile, examining the four cases above, we see that the �rst term of �

goes down by 2d0. Thus, � decreases by at least 2d0, and the proof is complete.
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Under the Euclidean metric, the on-line servers can follow the above algorithm and pay at

most the L1 cost. Meanwhile, the adversary only has to pay the L2 cost, which can be smaller

by at most a factor of
p
2. Thus we have

Corollary 5.3 The algorithm is 2
p
2-competitive (� 2:83) in the Euclidean plane.

The Algorithm in d Dimensions

Consider now the case of two servers in Rd, under the L1 metric. As before, by a translation

of Rd, we may assume that the request is at the origin; we also relabel the servers if necessary

so that s1 is closer to the request.

The algorithm in d dimensions works as follows. If only one server is minimal, it moves

on a shortest path to the origin while the other remains �xed. Otherwise, both servers are

minimal. Let s1 = (s11; : : : ; s
d
1) and s2 = (s12; : : : ; s

d
2) in coordinates; we proceed in the following

two stages:

1. As long there is a j for which sj1 and s
j
2 have opposite sign, we move the servers at the

same speed towards the hyperplane fx : xj = 0g so as to bring one of these values to 0.

2. The servers begin the second stage with sj1 and s
j
2 having the same sign for each j; that

is, they lie in the same closed orthant. By relabeling the axes, we may assume this is the

positive orthant. Let y be the corner of �d(s1; s2) closest to the origin; that is,

y = (min(s11; s
1
2); : : : ;min(s

d
1; s

d
2)):

As before, denote the jth coordinate of y by yj. The servers repeatedly execute the

following step: each picks a j for which sji � yj is strictly positive, and moves at constant

speed towards the hyperplane fx : xj = yjg so as to decrease sji to y
j. Each such move

reduces the number of coordinates j for which sji � yj > 0 for one of the servers si. Thus,

after at most d such steps, server s1 will be sitting on y. At this point, only s1 is minimal,

and we proceed as above.

Theorem 5.4 The algorithm is 2-competitive under the L1 metric in Rd.
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Proof. We use the same potential function �. The analysis of the adversary's move and the

case in which only one on-line server is minimal are handled as in the proof for two dimensions.

When both on-line servers move a distance d, we must show that the potential � drops by at

least 2d. This will be implied by the following property:

(�) Both servers are moved a distance d closer to the origin and 2d closer to each other

simultaneously.

The motion of the servers in the �rst stage of the algorithm clearly satis�es this property.

Observe that throughout the second stage, there is a shortest path from s1 to s2 that passes

through the corner y of �d(s1; s2). But each step in this stage brings a server simultaneously

closer to the origin and to y; thus Property (�) is maintained in the second stage as well.

Corollary 5.5 The algorithm is 2
p
d-competitive under the Euclidean metric in Rd.

5.2 A Lower Bound for Balancing Algorithms

To prove the lower bound, we begin by \classifying" the function f used in the balancing rule in

a certain way. We will say that a property P of positive real numbers holds \e.f." (everywhere

but in a �nite interval) if 9x08(x � x0)P (x). Similarly P holds \a.l." (for arbitrarily large

reals) if 8x09(x � x0)P (x). For any function f : R+ ! R, and p 2 R+, say that f 2 '(p)

if f(x) � px e.f. If for some such p, f 2 '(p), we will write �f = inffp : f 2 '(p)g; �f = 1
otherwise. Observe that f does not necessarily belong to '(�f), since the in�mum is not

necessarily attained.

Finally, the behavior of Bf is ambiguous when Di + f(rsi) = Dj + f(rsj) for i 6= j, and i; j

both minimize this expression. The standard convention here is to let the adversary break the

tie; in any event, none of our constructions rely on such degeneracies.

For the remainder of this section, all server algorithms will be 2-server algorithms.

Lemma 5.6 If Bf is competitive, then f(x) > 0 e.f.

Proof. Assume by way of contradiction that f(x) � 0 a.l. and that Bf is c-competitive for

some c. Choose x0 so that f(x0) � 0 and N0 large enough so that N0 � cx0 and N0 > �f(x0).
Since f(x) � 0 a.l., we can �nd an N � N0 such that f(N) � 0.
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W

X

Y

Z

Figure 5-1: Metric Space M1

Consider the metric space M1 in Figure 5-1, with WX = Y Z = x0, WY = WZ = XY =

XZ = N . Server s1 begins on W and server s2 on X . The �rst request is to the point Y . Since

both servers are the same distance from Y , we may assume that s1 responds. Now we request

point Z; since

N + f(x0) > 0 � f(N);

server s2 will respond. At this point, Bf has paid 2N � 2cx0, while OPT , by using one server

to cover requests toW;X and the other to cover Y; Z, need pay only x0. Moreover, the situation

is now symmetric to the beginning, so we can repeat the process inde�nitely, contradicting the

claim the Bf is c-competitive.

Armed with this lemma, we can prove a much stronger result, generalizing the observation

that the basic balancing algorithm is not competitive.

Lemma 5.7 If Bf is competitive, then �f > 1.

Proof. Assume by way of contradiction that �f � 1 and Bf is c-competitive. We have two cases

to consider: f 2 '(1) and f 62 '(1).
If f 2 '(1), then for some x0 > 0, 0 < f(x) � x for all x � x0. Consider metric space M1,

with WX = Y Z = x0, all other lengths equal to N = cx0, and the servers initially on W;X .

Suppose we request point Y and s1 responds. If we now request point Z, then since

N + f(x0) > N � f(N);

server s2 will respond. Moreover, this process can be continued inde�nitely. Thus Bf pays 2cx0

in each round of this sequence, while OPT need pay only x0, as in the above arguments.

If f 62 '(1), then we can still �nd some y > 0 such that 0 < f(x) < (1 + 1
2c
)x for all x � y.
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Moreover, since f 62 '(1), we can �nd some x0 > y such that f(x0) > x0=2. Construct metric

space M1 with WX = Y Z = x0, all other lengths equal to cx0, put s1 on W , s2 on X , and

request point Y . Suppose s1 responds; we now request point Z. Since f(x0) > x0=2,

cx0 + f(x0) > (c+
1

2
)x0 = (1 +

1

2c
)cx0 > f(cx0);

the last inequality following since cx0 � y. Thus s2 will respond. In this way, Bf pays 2cx0 on

this sequence, while OPT need only pay x0.

X Y

Z1

Z2

Z3

Zj

d0

d1

d2

d3

dj

Figure 5-2: Metric Space M2

Lemma 5.8 If �f = p > 1, then �(Bf ) � p=2 + 3=2.

Proof. We show that for each � > 0, there exist arbitrarily long request sequences � for which

Bf (�) > (p=2 + 3=2 � �)OPT (�); this will establish the lemma. We construct a countably

in�nite metric spaceM2 as follows. The \core" of the space is a short segment XY of length d0,

chosen so that pd0=2 < f(d0) < 2pd0. The sequence � is built in phases; in phase j, j = 1; 2; : : :,

all the requests are toX , Y , and a point Zj at distance dj from both X and Y . (See Figure 5-2.)

Let �j denote the sequence up through the end of phase j.
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Let Dj denote
Pj�1

i=0 di, and D
0
j denote the sum of Dj and the total distance traveled by

both on-line servers in all previous phases. We �x some very small � > 0, to be determined

below, and since �f = p, we can choose dj such that D0
j < �dj , and f(dj) > (p� �=2)dj. Phase

j begins with the two on-line servers sitting on X and Y . First the point Zj is requested; then

the points X and Y are requested repeatedly until the on-line server at Zj returns to the core

XY ; at this point the phase comes to an end.

In this phase, one adversary server moves out to Zj and immediately returns on the next

request, for a cost of 2dj. Meanwhile, the on-line server covering X and Y has built up a

distance of no more than D0
j from all previous phases, so it must move more than

dj + f(dj)� (D0
j + f(d0)) > dj + (p� �=2)dj � (�dj + 2p�dj)

= (p+ 1)dj � (2p+ 1)�dj � (�=2)dj

before the server at Zj is selected to return. Thus, the on-line servers move a distance of at

least

(p+ 3)dj � (2p+ 1)�dj � (�=2)dj

in this phase, while the adversary servers move no more than 2dj + 2�dj in all phases up to

this one. By choosing � small enough, we can ensure that

Bf (�j)

A(�j)
� (p+ 3)� (2p+ 1)�� (�=2)

2 + 2�
� p=2 + 3=2� �:

Since we can continue this construction for an arbitrary number of phases, the result follows.

It is clear that a very similar construction involving metric space M2 shows that if �f =1,

then Bf is not competitive. The �nal lemma is based on a construction in [CL2].

Lemma 5.9 If �f = p > 1, then �(Bf ) � 3p=(p� 1).

Proof. In the style of the previous proof, we show that for each � > 0,

�(Bf ) >
3p

(p� 1)
� �:
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Figure 5-3: Metric Space M3

Choose positive � < �=2 and

" <
2(p� 1)2

4p� 1
� �:

Now take N large enough so that f(x) < (p+ ")x for all x > N and, since �f > p� ", we can

�nd a > N such that f(a) > (p� ")a.

Consider the metric spaceM3 of Figure 5-3. Triangles UVW and XY Z have sides of length

a; the three edges crossing between the triangles have length

b =

�
2p+ 1

2p� 2
� �

�
a:

Put server s1 on U and s2 on V . We place the adversary servers on V and Z. Also, set

D1 = a=2 and D2 = 0 (this can be easily accomplished by starting one of the on-line servers

from a seventh point in the metric space).

We construct a request sequence as follows. First we request Z, which will be served by s2.

We then request X | as shown below, this will be served by s1. At this point, D2 exceeds D1

by a=2, and the situation is symmetric to the beginning. The optimal algorithm can use one

server to cover each triangle and hence pays a; Bf pays 2b+ a, for a ratio of

2b+ a

a
= 1+

2p+ 1

p� 1
� 2� >

3p

p� 1
� �:

Thus we need only verify that s1 will serve the request at X . This follows because

D1 + f(b) =
a

2
+ f

��
2p+ 1

2p� 2
� �

�
a

�
� a

�
2p2 + 2p� 1

2p� 2
� p� +

2p+ 1

2p� 2
� "
�
;
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which is less than or equal to

D2 + f(a) = a+ b+ f(a) � a

�
2p2 + 2p� 1

2p� 2
� � � "

�
:

Theorem 5.10 For all f , �(Bf ) � (5 +
p
7)=2.

Proof. If �f � 1 or �f = 1, then Bf is not competitive. In the case where 1 < �f < 1,

Lemmas 5.8 and 5.9 imply that

�(Bf ) � maxf 3�f

�f � 1
;
�f + 3

2
g:

This expression is minimized at �f = 2 +
p
7, with a value of (5 +

p
7)=2.

As noted above, we have the following interesting corollary.

Corollary 5.11 No optimal on-line 2-server algorithm can be expressed as Bf for any function

f .
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Chapter 6

Conclusion and Open Problems

6.1 Robot Navigation

We have considered two basic on-line navigation problems: searching for a goal in an unknown

polygon, and determining one's location in an environment for which the map is known (local-

ization). A number of questions are left open by this work; we summarize some of these below,

along with a number of other possible directions for future work.

1. To begin with, there are gaps between the upper and lower bounds that we can show for

the localization problem in both kinds of environments considered in Chapter 4. Certainly

for the case of rectangular obstacles, it seems that there should be room for improvement

on the upper bound. Indeed, it is quite possible that essentially the same algorithm given

here actually achieves a much better competitive ratio; it appears that a stronger analysis

of the geometry of the rectangle packing is needed.

Also, as suggested in Section 4.4, the problem of placing landmarks brings up some

interesting algorithmic questions. Here is one concrete decision problem: given a tree

T and an integer k, does there exist a k-marking � and an accompanying localization

algorithm with competitive ratio at most 9? (9 appears to be the right constant to use

here, as it is the best competitive ratio attainable for the search problem on a line.)

2. The results of Chapter 3 apply only to the case of simple rectilinear polygons; i.e. those

with no holes. [DKP] conjectures that a constant competitive ratio should be attainable
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for the problem of exploring a rectilinear polygon containing an arbitrary number of

rectilinear holes. (They give an algorithm which is O(k)-competitive, where k is the

number of holes.)

Since a number of variations on this problem are possible, let us make precise what we

mean: we want the robot (whether on-line or o�-line) to traverse a path from which it can

see all points in free space and on the boundaries of the obstacles. This question appears

to be rather di�cult (and the o�-line version is NP-Complete, by a simple reduction from

the Traveling Salesman problem); perhaps a good starting point would be the special case

of a large square containing an arbitrary number of unit squares as obstacles.

Of course, one could also consider the search problem in this setting; it is not clear in this

case what kind of bounds one would be trying to achieve.

3. The problem of using multiple interacting robots e�ectively is one that comes up fre-

quently in the larger robotics literature. Most of the previous theoretical work on multiple

robots is somewhat orthogonal to these concerns; it has tended to deal with computation-

ally limited robots that use one another mainly for \pebbling" purposes (see e.g. [BK]

and the references therein).

We are interested in the following sort of problem. One has k independent robots trying

to solve a search problem in some geometric environment; the quantity being minimized

in this situation is the time taken to �nd the goal, rather than the total distance traveled.1

If the best competitive ratio attainable by a single robot in this environment is c, can one

give algorithms which are O( c
f(k)

)-competitive, where f(k) is a reasonably fast-growing

function?

This question resembles some of the load-balancing problems that have been considered

from the perspective of competitive analysis; essentially we are asking how \parallelizable"

the search problem is in the on-line setting.

4. Much of the appeal of Klein's street problem (Chapter 3) is in the de�nition of a street

itself: it is a natural type of polygon in which a constant competitive ratio can be achieved

1For a single robot, time and distance tend of course to be interchangeable in most of these problems.
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for the search problem. We are interested in looking for other types of polygons in which

competitive search is possible.

One obvious possibility is the class of star-shaped polygons (P is star-shaped if there is

some point inside P that can see the entire boundary): can a robot starting at s �nd

a point t while traveling a constant factor times d(s; t)? A related and probably easier

question is that of whether a constant competitive ratio can be achieved for the problem

of �nding a member of the kernel of P (i.e. the set of \star points" of P ).

Of course, star-shaped polygons are a rather simple class, but studying them may suggest

more general algorithms. For example, suppose we de�ne the illumination number of

P to be the minimum number of point-source \light bulbs" needed to provide direct

illumination to the entire boundary of P from its interior (so P is star-shaped i� its

illumination number is one); now we can look for algorithms that achieve a constant ratio

for searching polygons with �xed illumination number.

5. What does it take to build a maze? Speci�cally, it is interesting to ask oneself what

constitutes the di�erence between the \shortest-path" problems of [PY, BRaSc, BBFY],

and the geometric search problems [K, Kl] of the type discussed in Chapter 3. Initially,

one is tempted to conclude that the di�erence is in whether the coordinates of the goal

are known; but, as any good labyrinth-designer knows, it is possible for the entrance and

exit of a maze to be physically right next to each other, and for the maze still to be very

di�cult.

In other words, when the obstacles can be su�ciently complex, there is no value in knowing

the coordinates of the goal. We can make this more precise as follows. Let F denote a

family of rectilinear polygons, which will be used as obstacles in the sense of [PY] (e.g. F
could be the set of all rectangles, or the set of all L-shaped polygons, and so on). As

usual, we will require that all members of F have at least unit thickness, and that they

cannot be \glued together." Consider now the navigation problem in which the plane is

�lled with members of F , and a robot starting at s is given the coordinates of a point t

which it must travel to. Let n denote the straight-line distance from s to t; recall that

this could be much less than d(s; t), the length of the shortest obstacle-avoiding path.
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Say that F is maze-inducing if for no function f is there an f(n)-competitive on-line

algorithm; that is, the competitive ratio for the navigation problem cannot be bounded

in terms of the straight-line distance from s to t. Thus, the results of [BRaSc] show that

the class of rectangles is not maze-inducing. On the other hand, it is not di�cult to build

mazes when F is the set of all rectilinear polygons (with at least unit thickness). So

a natural question would be to try giving some characterization of classes F which are

maze-inducing. For example, is it true that no F consisting of polygons with a uniformly

bounded number of vertices, or even a uniformly bounded illumination number, can be

maze-inducing? Along these lines one could de�ne, by analogy with the illumination

number, the segment number of P to be the minimum number of line-segment light sources

needed to provide direct illumination to the entire boundary of P from its interior. We

can show it is possible to build mazes when F is the set of polygons with segment number

at most three, but do not know whether it is possible when the segment number is at

most two.

Of course, there are many other issues one could consider. As mentioned at the beginning

of Chapter 4, most on-line navigation problems studied up to this point have maintained a

fairly binary distinction between having a map and having no map. But many naturally arising

robotics problems involve navigation when the robot has some limited information about its

relation to the environment. The localization problem is a step in this direction, as are the

papers of Donald [Don] and Blum and Chalasani [BC].

As in the case of several other on-line problems, there are numerous \design choices" one

faces when formulating a navigation problem of the variety studied here. We believe it is

important in this process to keep in mind the problems faced by designers of autonomous

mobile robots. It is not necessary that the theoretical algorithms produced in this setting be

directly implementable in contemporary robots; but they seem to be most valuable when they

provide some insight into the structure of navigation problems faced in real-world applications.
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6.2 Servers

We have addressed the notion of real-time 2-server algorithms | those that only use only

a constant amount of space, and constant time per request. It is well-known that the best

competitive ratio attainable by a 2-server algorithm is 2, and this can be achieved by several

algorithms, all of which perform a substantial amount of computation on each request. We have

shown a 2-competitive real-time algorithm in n dimensions, for every n, under the Manhattan

metric. On the other hand, we have shown that the class of balancing algorithms (a subset of

the real-time algorithms) cannot achieve a competitive ratio better than 5+
p
7

2
in general.

There are some immediate questions one could consider in light of these results, as well as

a more global one. Speci�cally, can our algorithm for the Manhattan metric be adapted to the

standard Euclidean metric while maintaining the competitive ratio of 2? Can it be extended

to the case of three or more servers? (We can show that most natural generalizations in this

direction are not 3-competitive.) It would also be interesting to try improving the upper bounds

for 2-server balancing algorithms; the lower bound we show in Chapter 5 is still below the best

known competitive ratio for a general real-time algorithm.

But at a higher level, we believe the fundamental problem here is to decide whether or

not there is a real-time 2-server algorithm with a competitive ratio of 2. We do not venture a

conjecture; the results of the previous chapter present evidence for both possible answers. Of

course, one could ask the analogous question for more than two servers, where all these problems

become much murkier : : : but the main point is this: lower bounds for on-line algorithms have

typically been based simply on information-theoretic arguments alone; that is, regardless of how

the algorithm makes its decisions, there will be input sequences on which it performs badly. The

hope is that as we begin to understand this area better, we can also begin making distinctions

based on the computational resources an algorithm has at its disposal.
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