
Synchronized MIMD Computing

by

Bradley C. Kuszmaul

S.B. (mathematics), Massachusetts Institute of Technology (1984)

S.B. (computer science and engineering), Massachusetts Institute of Technology (1984)

S.M. (electrical engineering and computer science), Massachusetts Institute of Technology (1986)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1994

c
Massachusetts Institute of Technology 1994. All rights reserved.

Author : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Department of Electrical Engineering and Computer Science
May 22, 1994

Certified by : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Charles E. Leiserson
Professor of Computer Science and Engineering

Thesis Supervisor

Accepted by : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

F. R. Morgenthaler
Chair, Department Committee on Graduate Students

1



2



Synchronized MIMD Computing
by

Bradley C. Kuszmaul

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 1994, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Fast global synchronization provides simple, efficient solutions to many of the system problems of
parallel computing. It achieves this by providing composition of both performance and correctness.
If you understand the performance and meaning of parallel computations A and B, then you
understand the performance and meaning of “A; barrier; B”.

To demonstrate this thesis, this dissertation first describes the architecture of the Connection
Machine CM-5 supercomputer, a synchronized MIMD (multiple instruction stream, multiple data
stream) computer for which I was a principal architect. The CM-5 was designed to run programs
written in the data-parallel style by providing fast global synchronization. Fast global synchro-
nization also helps solve many of the system problems for the CM-5, including clock distribution,
diagnostics, and timesharing.

Global barrier synchronization is used frequently in data-parallel programs to guarantee correct-
ness, but the barriers are often viewed as a performance overhead that should be removed if possible.
By studying specific mechanisms for using the CM-5 data network efficiently, the second part of
this dissertation shows that this view is incorrect. Interspersing barriers during message sending
can dramatically improve performance of many important message patterns. Barriers are compared
to two other mechanisms, bandwidth matching and managing injection order, for improving the
performance of sending messages.

The last part of this dissertation explores the benefits of global synchronization for MIMD-style
programs, which are less well understood than data-parallel programs. To understand the pro-
gramming issues, I engineered the StarTech parallel chess program. Computer chess is a resource-
intensive irregular MIMD-style computation, providing a challenging scheduling problem. Global
synchronization allows us to write a scheduler which runs unstructured computations efficiently
and predictably. Given such a scheduler, the run time of a dynamic MIMD-style program on a
particular machine becomes simply a function of the critical path length C and the total work W . I
empirically found that the StarTech program executes in time T � 1:02W=P +1:5C+4:3 seconds,
which, except for the constant-term of 4.3 seconds, is within a factor of 2.52 of optimal.

Thesis Supervisor: Charles E. Leiserson
Title: Professor of Computer Science and Engineering
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Chapter 1

Introduction

The Synchronized MIMD Thesis

Fast global synchronization can solve many of the system problems of parallel comput-
ing.

To demonstrate that fast global synchronization solves many of the system problems of parallel
computing, this dissertation first describes hardware and then software, both of which are organized
around fast global synchronization. Fast global synchronization is not the only way to solve
the system problems of parallel computing, but it provides simple solutions to them. This thesis
describes in detail the Connection Machine CM-5 supercomputer and the StarTech massively parallel
chess program, treating these systems as example points in the design space of parallel systems. I
explain the systems, and rather than systematically comparing various ways to solve the problems,
I show simple solutions to problems that have been difficult to solve previously.

The Connection Machine CM-5: Architectural Support for Data-Parallel
Programming.

The idea of using fast global synchronization to solve system problems grew out of the CM-5
project which started in 1987 at Thinking Machines Corporation. The primary design goal of the
CM-5 was to support the data-parallel programming model [HS86, Ble90]. Data-parallel programs
run efficiently on the Connection Machine CM-2 computers, which is a SIMD (single-instruction
stream, multiple-data stream) machine. It was of prime importance for any new machine to continue
to run such programs well. As one of the principal architects of the CM-5,1 I helped design a MIMD
(multiple-instruction stream, multiple-data stream) machine to execute data-parallel programs.2

The data-parallel style of programming is successful because it is simple and programmers can

1I was the first member of the CM-5 design team, which eventually grew to include Charles E. Leiserson, Zahi S.
Abuhamdeh, David C. Douglas, Carl R. Feynman, Mahesh N. Ganmukhi, Jeffrey V. Hill, W. Daniel Hillis, Margaret A.
St. Pierre, David S. Wells, Monica C. Wong, Shaw-Wen Yang, and Robert Zak. All told, about 500 people participated
in the implementation of the CM-5.

2The SIMD/MIMD terminology was developed by Flynn [Fly66].
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reason about it. A data-parallel program is an ordinary serial program with vector primitives.3

Vector primitives include

� elementwise operations,

� bulk data communications operations, and

� global reductions and scans.

In the following, we denote vectors by upper-case letters and scalars by lower case letters. Ele-
mentwise operations are exemplified by vector addition, which can be expressed as A  B + C

(which means that for each j, B[j] + C[j] is stored into A[j].) Bulk data communications can be
expressed, for example, as A[I] B (which means that each j, B[j] is stored into A[I[j]].) Global
reductions and scans can be expressed, for example as GLOBAL_OR(A) (which returns the logical
‘or’ of all the elements of A.) In addition, data-parallel programming languages typically provide
a conditional execution construct, the WHERE statement, that looks like this:

WHERE (expression)
body.

In the body of the WHERE, all vector operations are conditionally executed depending on the value
of the expression. For example

WHERE (B < 0)
B  B +C;

has the effect of incrementing B[j] by C[j] for each j such that B[j] < 0.
Data parallel programs have traditionally been run on SIMD machines. In fact, the SIMD ma-

chines engendered the data-parallel style of programming [Chr83, Las85, HS86, Ble90]. Examples
of SIMD machines include the Illiac-IV [BBK*68], the Goodyear MPP [Bat80], and the Connec-
tion Machine CM-1 and CM-2 [Hil85]. Such machines provide a collection of processors and their
memories that are controlled by a front-end computer (see Figure 1-1.) The front-end broadcasts
each instruction to all of the processors, which execute the instruction synchronously. The broadcast
network is embellished with an ‘or’ network that can take a bit from every processor, combine them
using logical or, and deliver the bit to the front end (and optionally to all the processors.) The data
network allows data to be moved, in parallel, between pairs of processors by sending messages from
one processor to another. The data network is also synchronously controlled by the front-end, which
can determine when all messages in the data network have been delivered. The SIMD architecture
is synchronous down to the clock cycle.

To execute a data parallel program on a SIMD machine is straightforward. The SIMD machine
has a single instruction counter, which matches the program’s single thread of control. The vectors
are distributed across the machine. The program is executed on the front-end computer with
each standard serial statement executed as for a serial program. To execute a vector elementwise
operation, the instructions encoding the operation are broadcast, and each processor manipulates
its part of the vectors. To execute bulk communications operations, instructions are broadcast to
move the data through the data network of the machine. To execute a global scan, instructions are

3Examples of of SIMD vector primitives include PARIS, the Parallel Instruction Set developed for the CM-2 [Thi86b],
and CVL, a C vector library intended to be portable across a wide variety of parallel machines [BCH*93].
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P M P M MMP MPP

Front End Computer

...

Data Network

Figure 1-1: The organization of a SIMD computer. The front-end computer controls the processor-
memory pairs, through a broadcast network, on a clock-cycle by clock-cycle basis. The ‘or’
network accepts a bit from each processor and delivers the logical ‘or’ of all the bits to the
front-end. The front-end also controls the data network.

P M P M P MP M P M...

Data Network

Control Network

Figure 1-2: The organization of a synchronized MIMD computer. The processors are intercon-
nected by two networks: a data network and a control network.

broadcast to implement a parallel-prefix reduction. The execution of a reduction is similar to a
scan, except that the reduced value is communicated to the host through the global ‘OR’ network.
To execute conditional operations, a context mask is maintained in each processor. Each processor
conditionally executes the broadcast instructions based on this mask. The WHERE statement simply
manipulates the context mask.

In the CM-5, we departed from the SIMD approach and built a synchronized MIMD machine. A
synchronized MIMD machine consists of a collection of processors, a data network, and a control
network (see Figure 1-2.) The processors’ job is to perform traditional operations on local data, e.g.,
floating point operations. The data network’s job is to move data from one processor to another via
message passing. The control network’s job is to synchronize an entire set of processors quickly,
and to implement certain multiparty communication primitives such as broadcast, reduction, and
parallel prefix.

To execute a data parallel program on a synchronized MIMD machine, we simulate the SIMD
machine. If a synchronized MIMD machine can simulate a SIMD machine efficiently enough,
then we can use the synchronized MIMD machine to execute both MIMD-style and data-parallel
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computations, instead of using different machines for different styles of computation. A SIMD
computation can be simulated on a synchronized MIMD machine by transforming the serial SIMD
program that runs on the front-end of the SIMD machine into a program that runs in parallel on
every processor of the synchronized MIMD machine. The vectors are laid out across the machine as
for a SIMD machine. Each vector primitive is implemented as a subroutine that performs the ‘local’
part of the primitive for a processor. The ‘serial’ part of the data-parallel code executes redundantly
on every processor, calling the subroutines to perform the local part of each vector primitive.4 Bulk
data transfers are accomplished using the data network. Global scans and reductions use the control
network. For conditional operations a context mask is maintained, just as for SIMD machines.
To keep the processors in step, the machine is globally synchronized between nearly every vector
primitive, which justifies the hardware for a control network.5

Without frequent global synchronization the program would execute incorrectly. Consider the
following code fragment:

(R1) A[I] B;
(R2) A A+ C;

Line R1 calls for interprocessor communication, and then Line R2 uses the result of the commu-
nication, A, as the operand to a vector multiply, and then stores the result back into A. Consider
what happens if we do not insert a synchronization between Lines R1 and R2. Processor 0 might
finish sending its local parts of B to the appropriate places in A, and then Processor 0 could race
ahead to start executing Line R2. There would be no guarantee that the local copy of A had been
completely updated, however, since some other processor might still be sending data to Processor 0,
so the values provided to the vector addition could be wrong. To add insult to injury, after doing the
vector multiply, the data being sent to Processor 0 data could then arrive and modify the local part

4The idea of distributing a single program to multiple processors has been dubbed “SPMD,” for single-program,
multiple data [DGN*86]. H. Jordan’s language, The Force, was an early SPMD programming language dating from about
1981 [JS94] and appearing a few years later in the literature [Jor85, Jor87, AJ94]. S. Lundstrom and G. Barnes describe
the idea of copying a program and executing it on every processor of the Burroughs Flow Model Processor (FMP) [LB80].
Here, however, we focus on how to execute a data-parallel program rather than how to generally program in a SPMD
style. In Chapter 4 we will consider the problem of running more general MIMD programs.

5The idea of building a MIMD machine with a synchronization network is not original with the CM-5. The Burroughs
Flow Model Processor (FMP), proposed in 1979, included a control network and a data network that connected processors
to memories [LB80]. The barrier network of the FMP was a binary tree that could synchronize subtrees using split-phase
barriers. The proposed method of programming the FMP was to broadcast a single program to all the processors, which
would then execute it, using global shared memory and barrier synchronization to communicate. The FMP was not built,
however. The DADO machine [SS82] of S. Stolfo and D. Shaw provides a control network for a SIMD/MIMD machine.
In SIMD mode, the control network broadcasts instructions, while in MIMD mode a processor is disconnected from
‘above’ in the control network so that it can act as the front-end computer for a smaller SIMD machine. The DADO
machine performs all communication in its binary-tree control network. The DATIS-P machine [PS91] of W. Paul and
D. Scheerer provides a permutation network and a synchronization network. The DATIS-P permutation network provides
no way of recovering from collisions of messages. Routing patterns must be precompiled, and synchronization between
patterns is required to ensure the correct operation of the permutation network. The CM-5 design team developed the
idea of using split-phase global synchronization hardware [TMC88], and carried it to a working implementation. In
independent work, C. Polychronopoulos proposed hardware that would support a small constant number of split-phase
barriers that each processor could enter in any order it chose [Pol88]. R. Gupta independently described global split-phase
barriers in which arbitrary subsets of processors could synchronize, using the term fuzzy barrier [Gup89]. Gupta’s
proposed implementation is much more expensive than a binary tree. The term split-phase describes the situation more
accurately than does the term fuzzy. M. O’Keefe and H. Dietz [OD90] discuss using hardware barriers that have the
additional property that all processors exit the barrier simultaneously. Such barriers allow the next several instructions on
each processor to be globally scheduled using, for example, VLIW techniques [Ell85].
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of A, overwriting the result of the vector addition. The easiest way to solve this problem is to place
a barrier synchronization between Lines R1 and R2.

In barrier synchronization, a point in the code is designated as a barrier. No processor is allowed
to cross the barrier until all processors have reached the barrier.6 One extension of this idea is the
split-phase barrier, in which the barrier is separated into two parts. A point in the code is designated
as the entry-point to the barrier, and another point is designated as the completion-point of the
barrier. No processor is allowed to cross the completion point of the barrier until all processors
have reached the entry-point. Split-phase barriers allow processors to perform useful work while
waiting for the barrier to complete.7

Barriers that synchronize only the processors are inadequate for some kinds of bulk commu-
nication. During the execution of Line R1 above, each processor may receive zero, one, or more
messages. Every processor may have sent all its messages, but no processor can proceed to execute
Line R2 until all its incoming messages, some of which may still be in the network, have arrived.
To address this problem, the CM-5 provides a router-done barrier synchronization that informs all
processors of the termination of message routing in the data network.

The router-done barrier is implemented using Kirchhoff counting at the boundary of the data
network. Each network interface keeps track of the difference between the number of messages that
have arrived and the number that have departed. Each processor notifies the network interface when
it has finished sending messages, and then the control network continuously sums up the differences
from each network interface. When the sum reaches zero, the “router-done” barrier completes.8

Kirchhoff counting has the several advantages over the other approaches to computing router-
done.9 Irrelevant messages (such as operating-system messages) can be ignored, allowing router-
done to be computed on user messages only. Kirchhoff counting can detect lost or created messages,
because the sum never converges to zero. It is independent of the topology of the data network.
Finally, Kirchhoff counting is fast, completing in the same time as it takes for a barrier, independently
of the congestion in the data network.

Even with hardware support to execute global synchronization quickly, we would like to avoid
doing more synchronization than we need. Each synchronization costs processor cycles to manip-
ulate the control network, and also costs the time it takes for all the processors to synchronize. If
one processor has more work to do than the others, that processor makes the others wait. This
inefficiency is related to the inefficiency of executing conditional instructions on a SIMD machine,
since in both cases processors sit idle so that other processors can get work done.

There are several ways to further reduce the cost of synchronization, including removing
synchronization and weakening the synchronization. To remove synchronization we can observe that
not every vector primitive requires a synchronization at the end of the operation. Synchronization
is only required when processors communicate. To weaken synchronization, we can observe that
processors could do something useful while waiting for synchronization to complete.

6B. Smith credits H. Jordan with the invention of the term “barrier synchronization” [Smi94]. According to Smith,
Jordan says that the name comes from the barrier used to start horse races. Jordan used barriers to synchronize programs
for the Finite Element Machine described in [Jor78]. Smith states that Jordan later used the idea in The Force, an early
SPMD programming language. Other descriptions of barriers can be found in [TY86, DGN*86].

7Hardware for split-phase barriers was designed for the proposed FMP [LB80]. R. Gupta proposed split-phase barriers
in which arbitrary subsets of processors could synchronize, using the term fuzzy barrier [Gup89].

8The name “Kirchhoff counting” is related to Kirchhoff’s current law (see, for example, [SW75]).
9Other approaches to computing router-done include software and hardware. In software one can acknowledge all

messages, and then use a normal processor-only barrier. Such an approach can double the message traffic, or requires
modifications to the data network. [PC90] The Connection Machine CM-1 uses a hardware global-or network to determine
when the router is empty [Hil85].
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(D1) A B � C;
(D2) D  B +E;

Figure 1-3: A fragment of data-parallel code.

(N1) for i 2 localindices()
(N2) Al[i] Bl[i] � Cl[i];
(N3) barrier();
(N4) for i 2 localindices()
(N5) Dl[i] Bl[i] +El[i];
(N6) barrier();

Figure 1-4: The naive translation, of the data-parallel code fragment, into the local code to run on
a synchronized MIMD processor. We use the notation Al to denote the part of array A that is kept
locally on the processor. The value of localindices() is the set of indices of the arrays that
are kept on a single processor (we assume here that the arrays are all aligned.) The code updates
the local part of A, performs a barrier, updates the local part of D, and performs a barrier.

(O1) for i 2 localindices()
(O2) t Bl[i];
(O3) Al[i] t � Cl[i];
(O4) Dl[i] t+El[i];
(O5) barrier();

Figure 1-5: The optimized synchronized MIMD code. We removed the barrier on Line (N3),
collapsed the loops, and performed common subexpression analysis to avoid loading Bl[i] twice
from memory.

One can remove barriers between statements that have only local effects. For example, if we
have the data parallel code shown in Figure 1-3, and if we assume that the arrays are all the same
size and are aligned so that A[i], B[i], C[i], D[i], and E[i] are all on the same processor, then the
naive per-processor code would look like Figure 1-4. We observe that the barrier on Line (N3)
is not needed because there are no dependencies between Lines (D1) and (D2) in the original
code. We can also collapse the loops so that only one pass is needed, and we can avoid loading
the value of B[i] twice, resulting in the code of Figure 1-5. By transforming the code containing
synchronizations, we have not only reduced the amount of synchronization, but we have exposed
additional opportunities for code optimization.

Removing barriers from code that has only local effects is straightforward, but the situation
is more complex when there is interprocessor communication. For example, when executing a
send, expressed as A[I] B, a synchronization is required after the operation to make sure all the
updates have taken place. When performing a get, expressed as B  A[I], a synchronization is
required before the operation to make sure that the value ofA is globally up-to-date before fetching
the data. One simple rule is to include a barrier before and after any code that communicates.

Often, simply expressing a barrier as a split-phase barrier makes an optimization obvious.
Figure 1-6 shows how a while loop controlled by a global ‘sum’ operation might be translated into
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(M1) while (global_sum(v))
(M2) � � � )

(S1) start_global_sum(v);
(S2) while (complete_global_sum())
(S3) � � �
(S4) start_global_sum(v);

Figure 1-6: By transforming the monolithic global ‘sum’ operation on the left into the split-phase
global ‘sum’ operations on the right, we can expose opportunities to hide the latency of the global
‘sum’ operation.

split-phase operations.10 First, the global sum operation is initialized, providing the value of v to
the control network. Then, the global sum is completed and the result is used to control the while
loop. Before the next iteration of the while loop, the next global sum is started. Now, we have the
opportunity to start the global ‘sum’ on Line (S4) sooner. We could move Line (S4) to just after the
last modification of v in the elided code of Line (S3). By transforming the code, we can hide the
latency of the global synchronization.

Sometimes barriers should not be removed or weakened. A split-phase barrier does not pro-
vide the performance composition property provided by a monolithic barrier. To understand the
performance of

A; enter-barrier; B; complete-barrier; C;

requires that you understand how A and B can interact and how B and C can interact.11 This is
more difficult to understand than the case

A; barrier; B;

where the the two parts of the program are completely separated by a monolithic barrier. We will
see several examples in this dissertation where barriers are not needed for the correct execution of
a program, but are needed to achieve high performance. In Chapter 3 we show that barriers can
improve the performance of interprocessor communication, and in Chapter 5 we show that barriers
are useful in a dynamic-MIMD program to keep idle processors from swamping busy processors.

Thus, fast global synchronization hardware allows straightforward and efficient execution of
data parallel programs on MIMD machines. It also turns out that by using global synchronization
as the underlying organizing strategy of the CM-5, we were also able to solve many other system
problems of parallel computing such as time-sharing, diagnostics, and clock distribution.

We also used the global synchronization mechanism to support the operating system in the
CM-5. The timesharing system globally schedules the processors so that they are all running the
same user program at the same time.12 We treat the messages in the network as part of the process
state, and at the time of a process-switch, the entire network state is saved in the process descriptor.
Because the network state is swapped out, the performance of each process is independent of the

10One can perform a split-phase scan or reduction using the CM-5 control network. Such an operation implicitly
includes a split-phase barrier, since the reduction does not complete until all processors have provided a value.

11Before the split phase barrier completes, some processors may be executing A, and some may be executing B. After
every processor has entered the barrier and the barrier has completed, some of the processors may still be executing B
while others have started to execute C.

12The CM-5 is also divided into partitions with each partition operating independently. Here we focus on the behavior
of a single partition.
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behavior of other processes. In order to be able to quickly empty the data network and to evenly
distribute the network state among the processors, we developed the all-fall-down mechanism, in
which all the messages in the network are immediately delivered to a nearby processor.

This context-switching decision also solves a problem with user-level messages. To provide
high-performance protected network access to the user, the processor-network interface includes
address-translation hardware, which allows user-mode code to be given direct access to the interface.
Thus messages can be directly sent from user-code in one processor to user-code in another, without
giving the user access to any other process. No operating-system call is required. Since the user
has direct access to the network, the user also must take care not to deadlock the network. It does
not hurt the operating system if the user deadlocks the network, since the operating system empties
the network on every context-switch. Deadlocking the network has the same effect on the user as if
the user had written an infinite loop.13

How to Get Good Performance from the CM-5 Data Network

Compiling data-parallel programs for the CM-5 introduces many opportunities for optimizing the
performance of the code. Optimizing the code sometimes turns out to be tricky, however. Steve
Heller of Thinking Machines Corporation had noticed that a sequence of cyclic shifts separated
by barriers actually runs faster than if the barriers are removed [Hel92]. I had expected such
a communications operation to run faster without the barriers, since up to that point I generally
thought of barriers as overhead that should be removed if possible. Thus, Heller’s observation
was surprising. A study was embarked on, at MIT, to to understand how best to program the data
network of a machine such as the CM-5.14

We concluded that programmers of the Connection Machine CM-5 data network can improve
the performance of their data movement code more than a factor of three by selectively using global
barriers, by limiting the rate at which messages are injected into the network, and by managing the
order in which they are injected. Barriers eliminate target-processor congestion, and provide a kind
of bulk end-to-end flow control that allows the programmer to schedule communications globally.
Injection-reordering improves the statistical independence of the various packets in the network at
any given time. Barriers and tuned injection rates provide forms of flow control. Although we only
experimented with the CM-5, we expect these techniques to apply to other parallel machines.

Why do barriers speed up a sequence of cyclic shifts? We demonstrated that, without any
barriers, some processors fall behind the others. The work from later phases of the computation
systematically interferes with uncompleted work from earlier phases. We are able to see what was
going on because the CM-5 processors have access to a clock that is globally consistent to within
a single 33 megahertz clock cycle. We recorded, for each message, the time it is injected into the
network and the time it is delivered. For cyclic shift, the receivers are the bandwidth bottleneck, so
it is important to keep all the receivers busy. We saw with our timestamping experiment, however,
for hundreds of thousands of cycles at a stretch, that some receivers had no messages waiting to be
delivered, and some receivers had over ten messages waiting to be delivered. The imbalance among
receivers systematically gets worse over time. By periodically synchronizing all the processors,

13The CM-5 makes it easy, however, to implement protocols such as remote-fetch without deadlocking and without
incurring a large bookkeeping overhead. The CM-5 accomplishes this by providing two independent networks that
comprise the data network.

14Eric A. Brewer and I performed the performance study. Brewer, with R. Blumofe, was developing a CM-5 communi-
cations library called Strata [BB94b]. Strata’s goal is to improve the programming interface and performance of message
passing as compared to Thinking Machines’ CMMD [Thi93] and Berkeley’s CMAM [vCG*92].
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the imbalance among receivers is removed, allowing the machine to operate at peak performance.
Barriers improve the performance of a sequence of cyclic shifts by a factor of 2 to 3. Thus, not only
is global synchronization useful for writing correct programs, but it can also help us to improve and
to understand the performance of a program.

We knew that the order in which messages are injected could affect the performance of the data
network. For example, a bad way to implement all-to-all communication is for every processor to
send a block of messages to Processor 0, then to have every processor send a block to Processor 1,
and then to Processor 2, and so on. That order dramatically reduces the performance of the
program, because there are always only a few processors receiving the data that all the processors
are trying to send. We had hypothesized that if on step i, processor j sent a block of messages
to processor i + j mod P , then we would achieve near-optimal performance. We found instead
that if the messages that form the blocks are sent in an interleaved or random order, that the
performance was better, sometimes by more than a factor of two as compared to the unsynchronized,
uninterleaved, cyclic-shifts that had seemed so reasonable. For a synchronized sequence of cyclic
shifts, interleaving only adds overhead without improving performance, but for message patterns
about which less is known, it may often pay to interleave the order in which messages are sent.

We also found that by artificially slowing down the rate at which messages are injected into
the network to exactly match the rate at which messages can be removed from the network, that
we were able to achieve an additional 25% performance improvement because the network remains
busy, but uncongested.

In summary, global synchronization is not only useful for correct execution of programs, it also
helps improve the performance. A programmer must be careful about removing barriers because
of the performance implications. Also, global synchronization in the form of a globally consistent
clock makes it possible to study the performance of the system.

Massively Parallel Chess

Having designed the CM-5 to support data-parallel programming, I wanted to explore how to exploit
the MIMD characteristics of the machine fully. I looked for an application that did not fit well into
the data-parallel approach, and hit upon computer chess. Surprisingly, global synchronization
solves problems of dynamic MIMD-style programming in addition to problems of data-parallel
programming.

Computer chess provides a good testbed for understanding dynamic MIMD-style computations.
The parallelism of the application derives from a dynamic expansion of a highly irregular game-tree.
Thus computer chess is difficult to express as a data-parallel program. The trees being searched
are orders of magnitude too large to fit into the memory of our machines, and yet serial programs
can run game-tree searches depth-first with very little memory, since the search tree is at most 20
to 30 ply deep. Computer chess requires interesting global and local data structures. Computer
chess is demanding enough to present engineering challenges to be solved and to provide for some
interesting results, yet it is not so difficult that one cannot hope to make any progress at all. Since
there is an absolute measure of performance (‘How well does the program play chess?’), there is
no percentage in cheating, e.g., by reporting parallel speedups as compared to a really bad serial
algorithm. In addition to those technical advantages, computer chess is also fun.

To investigate the programming issues, I engineered a parallel chess program, StarTech.
StarTech is based on H. Berliner’s serial Hitech program [BE89] and runs on a Connection Machine
CM-5 supercomputer. The program, running on the 512-node CM-5 at the National Center for

17



Supercomputing Applications at University of Illinois, tied for third place at the 1993 ACM Inter-
national Computer Chess Championship, and has an informally estimated rating of 2450 USCF.15

The StarTech chess program is conceptually divided into two parts: The parallel game tree
algorithm, which specifies what can be done in parallel; and the scheduler, which specifies when
and where the work will actually be performed.

I found that chess places great demands on a scheduler. I found, by measuring the ideal
parallelism histogram, that sometimes there is plenty of parallel work to do, and sometimes there is
very little. I typically saw average available parallelism of at least several hundred, but for about a
quarter of the run-time on an infinite processor machine, the available parallelism was less than 4.
It is crucial that the scheduler do a good job when there is very little to do, so that the program can
get back to the highly parallel parts.

To distribute work among CM-5 processors, StarTech uses a work-stealing approach, in which
idle processors request work. I noticed that sometimes during a run, when the available parallelism
is low, the idle processors swamp the busy processors with requests for work. This is a serious
problem, since it can arbitrarily stretch out the time it takes to execute the portions of the program
that have low parallelism. The swamping problem has been previously reported for work-stealing
schedulers [FM87, FM93]. I provide a queueing theory explanation of how the swamping problem
arises and offer a global-throttle mechanism to avoid the swamping problem. The global throttle
organizes the computation into a series of globally synchronous phases separated by split-phase
barriers. During each phase, each idle processor is allowed to make only one request to steal work.
Thus the expected number of incoming requests to a busy processor is less than one. Because it uses
the CM-5 control network’s split-phase barriers, the busy processors continue to do useful work
regardless of how long it takes for the global throttle to complete each phase.16 Thus, the CM-5’s
global synchronization network is useful for dynamic MIMD programs too.

Given my scheduler, I found that two numbers, the critical path length and the total parallel
work, can be used to predict the performance of StarTech. The critical path length C is the time it
would take for the program to run on an infinite processor machine with no scheduling overheads.
It is a lower bound to the runtime of the program. The total work W is the number of processor
cycles spent doing useful work. W does not include cycles spent idle when there is not enough
work to keep all the processors busy. On P processors, I defineW=P to be the linear speedup term.
The linear speedup term is also a lower bound to the runtime on P processors. Another way to
think about it is to consider the program to be a dataflow graph. The critical path length is the depth
of the graph, and the total work is the size of the graph. The values for C and W can be derived
analytically or measured empirically. I measure the effectiveness of our scheduler by comparing it
to these lower bounds. I found that the run-time on P processors of our chess program is accurately
modeled as

TP � 1:02
W

P
+ 1:5C + 4:3 seconds. (1.1)

Except for the constant term of 4.3 seconds, this is within a factor of 2.52 of the lower bound given
by the maximum of C and W=P .17

15The StarTech team has included, at various times, Hans Berliner, Mark Bromley, Roger Frye, Charles E. Leiserson,
Chris McConnell, Ryan Rifkin, James Schuyler, Kurt Thearling, Richard Title, and David Waltz.

16Another way to solve the swamping problem is to provide separate hardware to deal with incoming requests. Such
an approach could be used on the Alewife processor [ACD*91], for example. I could not add special hardware to the
machine, so I had to find a software solution. Alternatively, one can use a backoff backoff strategy, such as is found in
Ethernet [MB76], DIB [FM87], and PCM [HZJ94, Hal94]. The global throttle requires less tuning than does adaptive
backoff, and is easy to analyze.

17For comparison, Brent’s theorem [Bre74, Lemma 2] states that with no scheduling overhead, the runtime can be
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The StarTech program uses Jamboree search, a parallelization of Scout search, in which at every
node of the search tree, the program searches the first child to determine its value, and then tries
to prove, in parallel, that all of the other children of the node are worse alternatives than the first
child. This approach to parallelizing game tree search is quite natural and has been used by several
other parallel chess programs [HSN89, FMM91]. While no other parallel game program uses an
algorithm that is identical to StarTech’s Jamboree search, I do not claim that the search algorithm
is a new contribution. Instead, I view the algorithm as a testbed for testing mechanisms needed for
the design of scalable, predictable, asynchronous parallel programs.

I analyzed the computational complexity of the Jamboree search algorithm, using critical path
length and total work. For two special cases, best-ordered uniform trees and worst-ordered uniform
trees, I used analytic methods. For best-ordered trees the critical path length is short and the amount
of work performed is the same as for a good serial game-tree search. For worst-ordered trees the
critical path is long, so that even on an infinite number of processors the Jamboree search achieves
no speedup compared with a good serial implementation. For real chess trees I measured the critical
path length and work of the program as it actually ran. I found that the quality of the move-ordering
heuristics strongly affects the critical path length and the total work. I found that for tournament
time controls on large machines searching real chess trees, the critical path is important but that it
does not dominate the runtime. For small machines the critical path is not an issue at all.

A naive application of Jamboree search achieves work efficiencies of between 33% and 50%.
The work efficiency of a parallel program on a problem is the ratio of the time for one processor to
solve the problem, using the best serial code, to the total work generated by the parallel program.
I found three strategies to improve the performance of StarTech, two of which exploit StarTech’s
global transposition table. StarTech uses a global transposition table, which memoizes results from
earlier searches in order to improve move ordering for, and hence the efficiency of, later searches.18

The first strategy for improving performance is to perform recursive iterative deepening.19 When
searching a chess position to depth k, the first thing StarTech does is to lookup the position in the
global transposition table to determine if anything from a previous search has been saved. If a move
for a search of depth k� 1 or deeper is found, then StarTech uses that move as its guess for the first
child. If no such move is found, then StarTech recursively searches the position to depth k � 1 in
order to find the move. By so doing, StarTech greatly improves the probability that the best move
is searched first. The second strategy for improving performance is to perform deferred-reads on
the transposition table in order to prevent more than one position from searching the same position
redundantly. When a processing node starts searching a chess position, StarTech records in the
global transposition table that the position is being searched. If another processor starts searching
the same position, the processor waits until the first processor finishes. It is much better for the
second processor to sit idle than to work on the tree, since this prevents the second processor from
generating work which may then be stolen by other processors, causing an explosion of redundant
work. The third strategy is to serialize Jamboree search slightly. Instead of searching one child
serially and then the rest in parallel, as basic Jamboree search does, our variation sometimes searches
two children serially. The precise conditions for searching two children serially are that the node be

brought down to no more than C +W=P . The StarTech scheduler guarantees that the memory required per processor
within not much more than the memory required by the serial depth-first search. R. Blumofe and C. Leiserson studied
several scheduling strategies to simultaneously achieve good time and space bounds. Some of the scheduling tradeoffs
made in StarTech were strongly influenced by discussions with Blumofe and Leiserson. (See Section 5.8.)

18Most other programs use additional move-ordering mechanisms such as the killer table [GEC67] and the history
table [MOS86]. StarTech does not currently use these additional move-ordering heuristics.

19Recursive iterative deepening was used in T. Truscott’s unpublished checkers program in the early 1980’s [Tru92],
and was briefly explored for the Hitech program by H. Berliner and his students in the late 1980’s [Ber93].
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of Knuth-Moore type-2 [KM75], that recursive iterative search of the node had a value greater than
the � parameter of the subtree, and that the search of the first child yielded a score that is less than
or equal to the � parameter. This serialization improves the work efficiency of StarTech without
substantially increasing the critical path length.20

By separating the search algorithm and the scheduler, the problems of each could be solved
separately. By exploiting fast global synchronization, the problems of scheduling dynamic MIMD-
style computations were simplified. I neither needed to perform arcane tuning of the scheduler
nor did I need to worry about pathological search trees. Thus, I was able to focus my attention
on the application, analyzing and improving the performance of the underlying search algorithm.
Without the mechanisms provided by the CM-5, including global synchronization, and fast user-
level messages, it would have been much more difficult to implement a competitive chess program
such as StarTech.

Contributions

Global synchronization mechanisms include barriers, split-phase barriers, router-done barriers,
gang scheduling, and synchronous instruction broadcast, and globally consistent clocks. What do
all these have in common? Global synchronization asserts that something is true of every processor
p. For example it might assert that “every processor has finished the kth step of algorithm”, or “at
this moment, the local clock at every processor says that the time is t”.

Global synchronization provides powerful enough invariants to provide simple solutions to
system problems ranging from clock distribution, diagnostics, timesharing, and spacesharing, to the
correct execution of data-parallel programs, high-performance execution of dynamic MIMD-style
programs, and fast bulk data transfers.

My contributions include

� Fast global synchronization is a simple, effective, efficient, solution to many system of parallel
computing.

� The network architecture of the Connection Machine CM-5, a synchronized MIMD computer.
The CM-5 provides three networks: a control network, a data network, and a diagnostic
network. The system includes user-level network access, split-phase barriers, a router-done
primitive implemented with “Kirchhoff counting”, a split data network to allow commonly
used protocols to be implemented without deadlock or bookkeeping, an “all-fall-down”
mechanism that quickly empties the routing network for timesharing, and a parallel diagnostics
strategy. The system efficiently supports data-parallel programming and dynamic MIMD-
style programming.

� Three strategies for obtaining good performance from a data network: periodic barriers,
injection reordering, and bandwidth matching.

� StarTech, a competitive parallel chess program that runs on the CM-5. StarTech employs
a work-stealing scheduler, which uses the CM-5 control network to throttle processors that
are looking for work. The StarTech scheduler achieves good performance relative to optimal
scheduling. StarTech uses Jamboree search, a parallel game tree search algorithm. I analyze
the performance of Jamboree search on special case game trees, and measure the performance

20Charles E. Leiserson and I together designed the serialization heuristic for Jamboree search.
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on real chess trees. I systematically employ the critical path length and total work to understand
the performance of StarTech, which is a dynamic MIMD-style program. I demonstrate a
heuristic that improves the work efficiency of the Jamboree algorithm on real chess trees.
StarTech uses a global transposition table, the performance of which is improved by using
recursive iterative deepening and deferred lookups. StarTech uses several active message
protocols that may be useful in a wider context to avoid dangling references and reduce
message traffic for atomic access to global data-structures.

A Road Map

This dissertation is organized into three, mostly independent, parts.

� The first part (Chapter 2) describes the network architecture of the CM-5.

� The second part (Chapter 3) describes how to get good performance from the CM-5 data
network, especially for the kinds of message traffic that show up in data-parallel programs.

� The third part (Chapters 4–6) describes the StarTech massively parallel chess program.

While the three parts of the thesis together provide evidence that fast global synchronization is
useful for MIMD computation, the ideas described in each part stand alone, and the parts can
be read independently. Many of the mechanisms of Part I can be employed to solve system-
level problems in other kinds of parallel machines. Such problems include deadlock avoidance,
timesharing, and detecting the termination of a computation. The mechanisms of Part II can be used
to improve the performance of data transfers on almost any machine, although machines without
fast global synchronization are at a disadvantage compared to synchronized MIMD machines. The
results of Part III include an algorithm, with analysis, for parallel game tree search, and mechanisms
for scheduling work on parallel machines.

Chapter by chapter, this dissertation is organized as follows:

� Chapter 2 describes the CM-5, a specific instance of the synchronized MIMD architecture.
Beginning with an explanation of how data-parallel code can be compiled for and executed
on a synchronized MIMD machine, the chapter proceeds to explain the network architecture
of the CM-5. The CM-5 includes three networks, a data network, a control network, and a
diagnostics network. The CM-5 includes mechanisms to support time-sharing, and space-
sharing; to detect the completion of computations that use the data network; and to help the
user program the data network without deadlocking. The diagnostics network can quickly
test a large CM-5 in parallel.

� Chapter 3 continues the study of the CM-5 by examining how to get good performance
from the CM-5 data network. The chapter starts with an explanation of the problem, that
removing barriers can sometimes slow down a computation, and reviews some of the issues
that arise when measuring performance on the CM-5. The chapter then shows how and why
programmers can improve the performance of their data movement code by more than a
factor of three by selectively using global barriers; by limiting the rate at which messages are
injected into the network; and by managing the order in which they are injected.

� Chapter 4 begins the second part of this dissertation by explaining how the StarTech chess
program works. The chapter describes the Jamboree search algorithm, starting with a review
of game tree search, and explains how Jamboree search is related to the serial �-� and Scout
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search algorithms. The chapter then describes the StarTech work-stealing scheduler, which
employs global synchronization to help guarantee good performance. The Jamboree algorithm
employs speculative expansion of the tree, and sometimes the algorithm discovers that a
partially expanded subtree is no longer needed. Startech employs a simple active-message
protocol that avoids dangling references to frames that are aborted in mid-computation.

� Chapter 5 studies the performance of the StarTech program, beginning with a discussion
of Brent’s theorem. The chapter presents a study of the Jamboree algorithm, analyzing
two special cases: best-ordered uniform game trees and worst-ordered uniform game trees.
Expressions are produced for the critical path length, the parallel work, and the work efficiency
of Jamboree search on such trees. An empirical study of the Jamboree algorithm is presented,
focusing on the critical path length and parallel work of the algorithm when search real chess
trees. Having examined the Jamboree algorithm, the chapter moves on to study the StarTech
scheduler, starting with a demonstration that our parallel chess program places great demands
on the scheduler. The scheduler’s performance is then analyzed in relation to critical path
length and linear-speedup lower bounds to performance, showing that Equation 1.1 accurately
models the performance of StarTech. In particular, one can measure the performance of the
program on a small machine, and predict its performance on a large machine. A study of
the swamping problem yields justification for the global throttling strategy of the StarTech
scheduler. Using a simple experimental setup, the swamping problem is demonstrated,
and an analytic queueing model is developed that provides a good match to the empirical
measurements. The chapter concludes with an analysis of the space-time tradeoffs associated
with fixing each position of the chess tree on a particular processor rather than allowing the
work to migrate from one processor to another.

� Chapter 6 explains how I used the critical path length and parallel work measurements to
improve the performance of StarTech. Chapter 6 describes our global transposition table,
and explains how recursive iterative deepening and deferred-reads are implemented and what
are the performance implications of those mechanisms. I analyze where the extra work
is coming from that leads to StarTech’s modest work inefficiency. Using that analysis, I
construct a modification to the basic Jamboree search that sometimes serializes the search.
That modification, when used, has effect of significantly decreasing the total parallel work
while increasing the critical path length only slightly. The chapter concludes with a study of
how the processor-cycles are spent by StarTech, with an eye to understanding how to improve
the performance of the program in the future.

� Chapter 7 concludes by reviewing the relationship of this work to previous work, and dis-
cussing the merits of the mechanisms that I describe, both with respect to today’s technology
and to that of the future.
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Chapter 2

The Network Architecture of the
Connection Machine CM-51

In the design of a parallel computer, the engineering principle of economy of mechanism suggests that
the machine should employ only a single communication network to convey information among the
processors in the system. Indeed, many parallel computers contain only a single network: typically,
a hypercube or a mesh. The Connection Machine Model CM-5 Supercomputer has three networks,
however, and none is a hypercube or a mesh. This chapter describes the architecture of each of
these three networks and the rationale behind them.

The CM-5 is a synchronized MIMD machine, which combines the best aspects of SIMD (sin-
gle instruction path, multiple data path) and MIMD (multiple instruction path, multiple data path)
machines [Fly66]. Each processor in the CM-5 executes its own instructions, providing the flex-
ibility of a typical MIMD machine. And, like many MIMD machines, the CM-5 is a distributed
memory machine (as opposed to shared memory machine [DT90, GGK*83]) in which processors
communicate among themselves by sending messages [Sei85, SAD*86] through the data network
of the machine. A deficiency of typical MIMD machines, especially as compared with their SIMD
cousins, however, is that they provide little or no support for coordinating and synchronizing sets
of processors. To offset this deficiency, the CM-5 also contains a control network, which makes
synchronization and multiparty communication primitives competitive with comparable functions
on SIMD machines. These primitives include the fast broadcasting of data, barrier synchronization
[Jor78, TY86, DGN*86], and parallel prefix (scan) operations [Ble90].

Figure 2-1 shows a diagram of the the CM-5 organization. The machine contains between 32 and
16,384 processing nodes, each of which contains a 32-megahertz SPARC processor, 32 megabytes
of memory, and a 128-megaflops vector-processing unit capable of processing 64-bit floating-point
and integer numbers. System administration tasks and serial user tasks are executed by a collection
of control processors, which are Sun Microsystems workstation computers. There are from 1 to
several tens of control processors in a CM-5, each configured with memory and disk according
to the customer’s preference. Input and output is provided via high-bandwidth I/O interfaces to
graphics devices, mass secondary storage, and high-performance networks. Additional low-speed
I/O is provided by Ethernet connections to the control processors. The largest machine, configured
with up to 16,384 processing nodes, occupies a space of approximately 30 meters by 30 meters, and
is capable of over a teraflops (1012 floating-point operations per second).

1The research in this chapter represents joint work with Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas,
Carl R. Feynman, Mahesh N. Ganmukhi, Jeffrey V. Hill, W. Daniel Hillis, Margaret A. St. Pierre, David S. Wells, Monica
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Figure 2-1: The organization of the Connection Machine CM-5. The machine has three networks:
a data network, a control network, and a diagnostic network. The data and control networks are
connected to processing nodes, control processors, and I/O channels via a network interface.

The processing nodes, control processors, and I/O interfaces are interconnected by three net-
works: the data network, the control network, and a diagnostic network. The data network provides
high-performance point-to-point data communications between system components. The control
network provides cooperative operations, including broadcast, synchronization, and scans (parallel
prefix and suffix). It also provides system management operations, such as error reporting. The
diagnostic network allows “back-door” access to all system hardware to test system integrity and to
detect and isolate errors.

The system operates as one or more user partitions. Each partition consists of a control processor,
a collection of processing nodes, and dedicated portions of the data and control networks. Access
to system functions is classified as either privileged or nonprivileged. All nonprivileged system
functions, including access to the data and control networks, can be executed directly by user code
without system calls. Consequently, network communication within a user task occurs without
operating system overhead. Access to the diagnostics network, to shared system resources (such
as I/O), and to other partitions is privileged and must be accomplished via system calls. Protection
and addressing mechanisms ensure that no user can interfere with the function or performance of
another user in another partition. If the system administrator so desires, a single partition can be
timeshared among a group of users, where each user gets a fair portion of the available time and
cannot otherwise be interfered with by any other user.

This chapter describes the CM-5 synchronized MIMD hardware and how to use it to run data
parallel programs. The rest of this chapter then focuses on the details of the network architecture of
the CM-5, and is organized as follows. Section 2.1 describes the network interface which provides
the user’s view of the data and control networks. Section 2.2 then describes the data network,
Section 2.3 describes the control network, and the diagnostic network is described in Section 2.4.
Section 2.5 discusses how global synchronization helped solve many system problems in the CM-5.
The chapter closes with Section 2.6, which gives a short history of our development project.

Further details about the CM-5 system can be found in the CM-5 Technical Summary [TMC91].
The reader should be aware that the performance specifications quoted in this chapter apply only
to the initial release of the CM-5 system. Because of our ability to reengineer pieces of the system
easily, these numbers represent only a snapshot of an evolving implementation of the architecture.

C. Wong, Shaw-Wen Yang, and Robert Zak. Much of the work in this chapter was originally reported in [LAD*92].
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The machine has recently been revised to include faster processors and data networks.

2.1 The CM-5 Network Interface

Early on in the design process, we, the CM-5 development team at Thinking Machines Corporation,
decided to specify an interface between the processing nodes and the networks that isolates each
from the details of the other. This interface provides three features. First, the interface gives the
processors a simple and uniform view of the networks (and the networks get a simple and uniform
view of the processors). Second, the interface provides support for time-sharing, space-sharing, and
mapping out of failed components. Third, the interface provides a contract for the implementors
which decouples the design decisions made for the networks from those of the processors.

The processor’s view of the interface is as a collection of memory-mapped registers. By writing
to or reading from fixed physical memory addresses, data is transferred to or from the networks,
and the interface interprets the particular address as a command.

A memory mapped interface allows us to use many of the memory-oriented mechanisms found
in off-the-shelf processors to deal with network interface issues. To access the network, a user
or compiler reads from or writes to locations in memory. We regarded the prospect of executing
a system supervisor call for every communication as unacceptable, in part because we wished
to support the fine-grain communication needs of data-parallel computation. A memory-mapped
interface allows the operating system to deny users access to certain network operations by placing
the corresponding memory-mapped registers on protected pages of the processor’s address space.
The processor’s memory management unit enforces protection without any additional hardware.

The interface is broadly organized as a collection of memory-mapped FIFO’s. Each FIFO is
either an outgoing FIFO to provide data to a network, or an incoming FIFO to retrieve data from
a network. Status information can be accessed through memory-mapped registers. For example,
to send a message over a network, a processor pushes the data into an outgoing FIFO by writing
to a suitable memory address. When a message arrives at a processor, the event is signaled by
interrupting the processor, or alternatively, the processor can poll a memory-mapped status bit. The
data in the message can then be retrieved by reading from the appropriate incoming FIFO. This
paradigm is identical for both the data and control networks.

The network interface provides the mechanisms needed to allow context switching of user tasks.
Each user partition in the CM-5 system can run either batch jobs or a timesharing system. When
a user is swapped out during timesharing, the processors must save the computation state. Some
of this state information is retrieved from the network interface, and the rest is garnered from the
networks. The context-switching mechanism also supports automatic checkpointing of user tasks.

The interface provides processor-address mapping so that the user sees a 0-based contiguous
address space for the processor numbers within a partition. Each processor can be named by its
physical address or by its relative address within the partition. A physical address is the actual
network address as interpreted by the hardware inside the networks. A relative address gives the
index of a processor relative to the start of a user partition, where failed processors are mapped out.
All processor addresses in user code are relative addresses. To specify physical addresses requires
supervisor privileges. Relative addresses are bounds checked, so that user code cannot specify
addresses outside its partition.

The user’s view of the networks is independent of a network’s topology. Users cannot directly
program the wires of the networks, as they could on our previous machine, the CM-2. The reason
is simple: the wires might not be there! Because the CM-5 is designed to be resilient in the
presence of faults, we cannot allow the user to rely on a specific network topology. One might
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Part. 2 I/OPart. 1

Figure 2-2: A binary fat-tree. Processors are located at the leaves, and the internal nodes are
switches. Unlike an ordinary binary tree, the channel capacities of a fat-tree increase as we ascend
from leaves to root. The hierarchical nature of a fat-tree can be exploited to give each user partition
a dedicated subnetwork which cannot be interfered with by any other partition’s message traffic.
The CM-5 data network uses a 4-ary tree instead of a binary tree.

think topology independence would hurt network performance, but we found this presumption to
be less true than we initially imagined. Because we did not provide the user with access to the
wires of the network, we were able to apply more resources to generic network capabilities. A
further advantage of topology independence is that the network technology becomes decoupled
from processor technology. Any future network enhancements are independent of user code and
processor organization.

An important ramification of the decoupling of the processors from the networks is that the
networks must assume full responsibility for performing their functions. The data network, for
example, does not rely on the processors to guarantee end-to-end delivery. The processors assume
that delivery is reliable. Nondelivery implies a broken system, since there is no protocol for
retransmission. By guaranteeing delivery, additional error-detection circuitry must be incorporated
into the network design, which slightly reduces its performance, but since the processor does not
need to deal with possible network failures, the overall performance as seen by a user is much better.

The CM-5 network interface is implemented in large measure by a single 1-micron standard-
cell CMOS chip, with custom macro cells to provide high-performance circuits where needed. The
interface chip is clocked by both the 32-megahertz processor clock and the 40-megahertz networks
clock. Asynchronous arbiters synchronize the processor side of the interface with the network side.

Choosing to build a separate network interface allowed the processor designers to do their
jobs and the network designers to do theirs with a minimum of interference. As a measure of its
success in decoupling the networks from the processor organization, the same interface chip is used
to interface the network to I/O channels, of which there are many types, including CMIO, VME,
FDDI, and HIPPI.

2.2 The CM-5 Data Network

The basic architecture of the CM-5 data network is a fat-tree [GL89, Lei85]. Figure 2-2 shows a
binary fat-tree. Unlike a computer scientist’s traditional notion of a tree, a fat-tree is more like a
real tree in that it gets thicker further from the leaves. Processing nodes, control processors, and
I/O channels are located at the leaves of the fat-tree. (For convenience, we shall refer to all of these
network addresses simply as processors.)

A user partition corresponds to a subtree in the network. Messages local to a given partition are
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Figure 2-3: The interconnection pattern of the CM-5 data network. The network is a 4-ary fat-tree
in which each internal node is made up of several router chips. Each router chip is connected to 4
child chips and either 2 or 4 parent chips.

routed within the partition’s subtree, thereby requiring no bandwidth higher in the tree. Access to
shared system resources, such as I/O, is accomplished through the part of the fat-tree not devoted
to any partition. Thus, message traffic within a partition, between a partition and an I/O device, or
between I/O devices does not affect traffic within any other partitions. Moreover, since I/O channels
can be addressed just like processing nodes, the data network becomes a true “system bus” in which
all system components have a unique physical address in a single, uniform name-space.

Of critical importance to the performance of a fat-tree routing network is the communication
bandwidth between nodes of the fat-tree. Most networks that have been proposed for parallel
processing, such as meshes and hypercubes, are inflexible when it comes to adapting their topologies
to the arbitrary bandwidths provided by packaging technology. The bandwidths between nodes in
a fat-tree, however, are not constrained to follow a prescribed mathematical formula. A fat-tree can
be adapted to effectively utilize whatever bandwidths make engineering sense in terms of cost and
performance. No matter how the bandwidths of the fat-tree are chosen, provably effective routing
algorithms exist [GL89, LMR88] to route messages near-optimally. The underlying architecture
and mechanism for addressing is not affected by communication bandwidths: to route a message
from one processor to another, the message is sent up the tree to the least common ancestor of the
two processors, and then down to the destination.

Because of various implementation trade-offs—including the number of pins per chip, the num-
ber of wires per cable, and the maximum cable length—we designed the CM-5 data network using
a 4-ary fat-tree, rather than a binary fat-tree. Figure 2-3 shows the interconnection pattern. The
network is composed of router chips, each with 4 child connections and either 2 or 4 parent connec-
tions. Each connection provides a link to another chip with a raw bandwidth of 20 megabytes/second
in each direction. (Some of this bandwidth is devoted to addressing, tags, error checking, etc.) By
selecting at each level of the tree whether 2 or 4 parent links are used, the bandwidths between
nodes in the fat-tree can be adjusted. Flow control is provided on every link.

Based on technology, packaging, and cost considerations, the CM-5 bandwidths were chosen as
follows. Each processor has 2 connections to the data network, corresponding to a raw bandwidth
of 40 megabytes/second in and out of each processing node. In the first two levels, each router
chip uses only 2 parent connections to the next higher level, yielding an aggregate bandwidth of
160 megabytes/second out of a subtree with 16 processing nodes. All router chips higher than
the second level use all 4 parent connections, which, for example, yields an aggregate bandwidth
of 10 gigabytes/second, in each direction, from one half of a 2K-node system to the other. The
bandwidth continues to scale linearly up to 16,384 nodes, the largest machine that Thinking Ma-
chines can currently build. (The architecture itself scales to over one million nodes.) In larger
machines, transmission-line techniques are used to pipeline bits across long wires, thereby over-
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coming the bandwidth limitation that would otherwise be imposed by wire latency. The machine is
designed so that network bandwidth can be enhanced in future product revisions without affecting
the architecture.

The network design provides many comparable paths for a message to take from a source
processor to a destination processor. As it goes up the tree, a message may have several choices as
to which parent connection to take. This decision is resolved by pseudorandomly selecting from
among those links that are unobstructed by other messages. After the message has attained the
height of the least common ancestor of the source and destination processors, it takes the single
available path of links from that chip down to its destination. The pseudorandom choice at each level
balances the load on the network and avoids undue congestion caused by pathological message sets.
(Many naive algorithms for routing on mesh and hypercubic networks suffer from having specific
message patterns that do not perform well, and the user is left to program around them.) The CM-5
data network routes all message sets nearly as well as the chosen bandwidths allow.

A consequence of the automatic load balancing within the data network is that users can
program the network in a straightforward manner and obtain high performance. Moreover, an
accurate estimate of the performance of routing a set of messages through the network can be
predicted by using a relatively simple model [LM88]. One determines the load of messages passing
through each arm of the fat-tree and divides this value by the available bandwidth. The worst-case
such ratio, over all arms of the fat-tree, provides the estimate.

On random permutations, each processor can provide data into, and out of, the network at a
rate in excess of 4 megabytes/second. When the communication pattern is more local, such as
nearest neighbor within a regular or irregular two- or three-dimensional grid, bandwidths of 15
megabytes/second per processor are achievable. The network latency ranges between 3 and 7
microseconds, depending on the size of the machine. All of these empirical values include the time
required for processors to execute the instructions needed to put messages into and take messages
out of the network.

The data network is currently implemented from 1-micron standard-cell CMOS chips, with
custom macro cells to provide high-performance circuits where needed. Each chip has an 8-bit-
wide bidirectional link (4 bits of data in each direction) to each of its 4 child chips lower in the
fat-tree, and 4 8-bit-wide bidirectional links to its parent chips higher in the fat-tree. The data-
network chip can be viewed as a crossbar connecting the 8 input ports to the 8 output ports, but
certain input/output connections are impossible due to the nature of the routing algorithm. For
example, we never route a message from one parent port to another. When a message is blocked
from its desired output port, it is buffered. Flow control information is passed in the reverse direction
of message traffic to prevent buffer overflow. When multiple messages compete for the same output
port, the arbitration is fair and prevents any link from being starved. We designed only one chip
to do message routing, and we use the same chip for communication between chips on the same
circuit board as between chips that are in different cabinets.

Interchip data is sent on differential pairs of wires, which increases the pin count of the chips, but
which provides outstanding noise immunity and reduces overall power requirements.2 We rejected
using separate transceivers at the packaging boundaries, because it would have increased power
consumption, board real estate, and the number of different chips we would have needed to design,
debug, test, stock, etc. The diagnostics can independently test each conductor of each differential
signal, because differential signals are so immune to noise that they sometimes work even with
broken wires.

2Our differential drivers and receivers are relatively straightforward. A more complex design that includes self-
terminating transceivers is described by T. Knight and A. Krymm in [KK88].
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Figure 2-4: The format of messages in the data network. Each message contains routing instruc-
tions, a length field that indicates how many data words are in the message, a tag field that indexes
an interrupt vector in the processor, data words, and a cyclic redundancy check.

The first 2 levels of the data network are routed through backplanes. The wires on higher levels
are run through cables, which can be either 9 or 26 feet in length. The longer cables maintain
multiple bits in transit. The wires in cables are coated with expanded Teflon, which has a very low
dielectric constant. The cables reliably carry signals in excess of 90 percent of the speed of light.

The data network chips are clocked synchronously by a 40-megahertz clock. The clock is
distributed with very low skew—even for the biggest machines—by locally generating individual
clocks and adjusting their phases to be synchronous with a centrally broadcast clocking signal.3

The local generation of clocks also protects the machine from a catastrophic single point of failure;
without the redundancy, a single central clock could fail, causing the entire machine’s power
consumption to drop to nearly zero in under one microsecond, possibly damaging the power
distribution system.

Messages routed by the data network are formatted as shown in Figure 2-4. The beginning
of the message contains routing instructions that tell how high the message is to go in the tree
and then the path it is to follow downward after it reaches its zenith. The routing instructions are
chip-relative instructions that allow each chip to make a simple, local decision on how to route the
message. Following the routing instructions is a field that indicates the length of the data in 32-bit
words. Currently, the CM-5 network interface allows between 1 and 5 words. Longer messages
must be broken into smaller pieces. Following the length field is a 4-bit tag field that can be used to
distinguish among various kinds of messages in the system. The network interface interprets some
of these tags as system messages, and the rest are available to the user. When a message arrives at a
processor, the tag indexes a 16-bit mask register in the network interface, and if the corresponding
mask bit is 1, the processor is interrupted. After the tag comes the data itself, and then a field that
provides an integrity check of the message using a cyclic redundancy code (CRC).

Because we desired to build very large machines, we deemed it essential to monitor and verify
the data network dynamically, because the chances of a component failure increase with the size
of the system. Message integrity is checked on every link and through every switch. If a message
is found to be corrupted, an error is signaled. Messages snake their way through the switches in
a manner similar to cut-through [KK79] or worm-hole [Dal87, DS87] routing, and so by the time
that a data-network chip has detected an error, the head of the message may have traveled far away.
To avoid an avalanche of errors, the complement of a proper CRC is appended to the message. Any
chip that discovers the complement of a proper CRC signals a secondary error. Thus, a typical error
causes one chip to signal a primary error with a trail of chips reporting secondary errors, although
there is some positive probability that a primary error is reported as a secondary error. Diagnostic
programs can easily isolate the faulty chip or link based on this information, which is accessible
through the diagnostic network. Lost and replicated messages can be detected by counters on
each chip and in the network interfaces that maintain the number of messages that pass on each

3More information about our clocking technique can be found in [HAK*]. A related clocking strategy, in which skew
is compensated for by adjusting the phase of each data signal, is described by P. Bassett et al. in [BGR86].
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link. Using a variation on Kirchoff’s current law, the number of messages entering any region of
the network, including the entire network or a single chip, must eventually equal the number of
messages leaving the region. This condition is checked for the entire data network by the control
network (see Section 2.3).

Once a faulty processor node, network chip, or interconnection link has been identified, the
fault is mapped out of the system and quarantined. The network interface allows for mapping
faulty processing nodes out of the network address space. The rest of the system ignores all signals
from the mapped-out portion, thereby allowing the system to remain functional while servicing and
testing, or even powering down, the mapped-out portion.

When a chip or link in the data network fails, there are two mechanisms to map around the fault.
Either the network can be configured to route messages away from the failure, or processing nodes
that might use the chip or link can be mapped out. By picking the better of the two alternatives, the
system can guarantee either that at most 6 percent of the network is lost or that at most 1=64 of the
processing nodes are mapped out.

The network has a contract with processors that guarantees all messages are delivered:

contract:

The data network promises to eventually accept and deliver all messages injected into
the network by the processors as long as the processors promise to eventually eject all
messages from the network when they are delivered to the processors.

The data network is acyclic from inputs to outputs, which precludes deadlock from occurring if this
contract is obeyed. To send a message, a processor writes the destination processor address and
data to be sent to a memory-mapped outgoing FIFO in its network interface. The processor then
checks whether the message was accepted by the network. If not, which may occur because flow
control information indicates that the network has not removed enough of a previous message from
the outgoing FIFO, the processor can try again later. The processor may not block or spin when
attempting to put a message into the network, however, because that would violate the contract.
Instead, the processor must attempt to receive any messages that have arrived. In the current
implementation, the processor is involved in all transactions with the network.

Although the simple contract above can implement the sending of data through the network
in a deadlock-free manner, it is not strong enough to allow some communication protocols to be
implemented straightforwardly. Consider, for example, the fetch-deadlock problem: each processor
wishes to fetch a value from another processor, and the processors have finite buffer space. The
message traffic for a protocol that solves this problem corresponds to a round trip in the network:
a request from one processor to another, followed by a response from the other to the one. In this
scenario, one processor may receive requests for data from many processors, but unfortunately, be
unable to send responses because its outgoing FIFO to the data network is busy. The outgoing
FIFO will eventually free, according to the contract, but only if the processor continues to accept
delivery of messages from the network. With finite buffer space, however, there is a limit to how
many requests it can handle. When it runs out of buffer space, the processor will be forced to refuse
delivery, thereby breaking the contract, and deadlock may result.

With buffer space proportional to the number of processors in the system, it is possible to
construct a “round-trip” protocol that solves the fetch-deadlock problem. The key idea is to
program a reservation mechanism [Kle78] that ensures that at most a bounded number of messages
are outstanding between any two processors at any time. A processor X does not attempt to send
a message to another processor Y until Y informs X that it has room to handle the message. This
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protocol, which has been implemented on some parallel computing systems, including the CM-5,
requires a substantial software overhead for bookkeeping.

The CM-5, however, provides another way to solve the fetch-deadlock problem in a simple
fashion requiring no bookkeeping and only constant buffer space. Each processor has 2 outgoing
and 2 incoming FIFO’s in its interface to the data network: a left port and a right port. The
topology of the network is such that all links reachable from the left port are unreachable from the
right port and vice versa. Thus, the data network is really two independent, interleaved networks.
To implement the round-trip protocol, requests can be sent on the left side of the network, and
responses returned on the right side. If a processor cannot send a response on the right side and
his constant-size buffer is full, he stops receiving on the left side. Since any processor requesting
data has a place to put it, however, the processors can satisfy the contract on the right side, and the
responses will eventually clear out. Because the responses on the right side will eventually clear
out, a processor can always eventually accept every request that arrives on the left side, and thus the
processors satisfy the contract on the left side. Consequently, deadlock cannot occur.

In fact, deadlock cannot occur even if responses are sent on both sides of the data network,
as long as requests are sent on one side only. The data network requires no more than two sides,
even when there are many intermediate destinations, because such a communication pattern can be
broken into a collection of round trips.

The CM-5 programming systems (CM-Fortran, C*, and *Lisp) never allow a user to deadlock,
because they implement deadlock-free protocols for communication. Deadlock can occur, however,
if a programmer chooses to program the individual processing nodes directly. All he need do is
break the contract that the processing nodes have with the data network: he writes code that sends
messages but never attempts to receive them. This danger may seem quite alarming, but it is no
more alarming than the danger that a user writes an infinite loop. On the CM-5, the user can send
and receive messages without executing a system call, as is required on many other systems. By
giving the user direct access to the network, the user can in some circumstances obtain greater
efficiency than he could obtain with the communication routines available in the standard system
libraries. If he does deadlock himself, or write an infinite loop, he does not affect any other user.

Each user partition in the CM-5 system is capable of being run in either a batch or a timesharing
mode. The requirement for timesharing raises the issue of what should be done with messages
that are in transit in the routing network when a user’s timeslice has expired and another user must
be given access to the partition. The system cannot afford to wait until the user completes his
communication, since the communication may not terminate for a very long time, and, in fact, it
may never complete if the user has deadlocked himself.

We considered several solutions to the problem of swapping users. For example, we considered
entering a special routine that would pull messages out of the router and discard them. This
solution was considered too expensive, because the user would be constantly forced to checkpoint
the computation so that the discarded messages could be reconstructed. Moreover, if the user fills
the network with messages that are all addressed to the same processing node, then the time to
empty the router would be proportional to the machine size, which was deemed unacceptably long.

This problem of swapping users is solved in the CM-5 by putting the data network into all-fall-
down mode. Instead of trying to route messages to their destinations, when a data-network chip is
in all-fall-down mode, each message is routed downward according to a fixed permutation that has
been preprogrammed by the system and which ensures that all-fall-down messages are distributed
evenly among the processing nodes. In the worst case, each node receives only a small number of
misdirected messages, even if all messages were headed for the same destination processor. The
all-fall-down messages can then be saved in memory with the user’s state. When the user’s task is
resumed, the system resends them to their true destinations. Even if a timeshared user deadlocks,
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this context-switching mechanism precludes him from unduly affecting the other users who are
sharing his partition.

During our design of the all-fall-down mechanism, the problem arose of how to set all chips
of a partition into this mode. We considered engineering a mechanism in which all chips were put
into all-fall-down mode simultaneously, but even so, we considered it a lot of detailed engineering
work to guarantee that messages between chips when all-fall-down was initiated would be handled
properly. Instead, we adopted a simple protocol to allow chips in the data network to be put into
all-fall-down mode in any order. The basic idea is that all-fall-down messages are marked as such.
When a chip sees an all-fall-down message, it routes it downward according to the preprogrammed
permutation, even if the chip is not in all-fall-down mode and is routing other messages in a normal
fashion. Thus, once a message starts falling, it keeps falling and is never interpreted by any chip as
anything but an all-fall-down message.

In summary, the CM-5 data network provides fast point-to-point communication of data, but as
importantly, it provides flexible solutions to system problems.

2.3 The CM-5 Control Network

There are two general classes of operations on the control network: broadcasting and combining.
Separate FIFO’s in the network interface correspond to each type of control-network function. A
processor pushes a message into one of the outgoing FIFO’s, and shortly after all processors have
pushed messages, the result becomes available to all processors as messages in their respective
incoming FIFO’s.

Every operation on the control network potentially involves every processing node. Broadcast
messages from the control processor are replicated at nodes in the tree and distributed to the
subtrees. Other operations, such as scans (parallel prefix), require input from all processors and
provide output to all processors. The control network is pipelined, so that several messages can
be sent before any are received. To provide further flexibility, each processing node can set up the
network interface to abstain from certain control-network operations. These operations complete as
if the abstaining processors had provided “identity” data, but without making them waste processing
cycles. Overall, the control network is designed to support cooperative functions that require little
bisection bandwidth, and hence, which can be implemented efficiently on a simple tree.

Broadcasting

A processor may broadcast a message through the control network to all other processors in its
partition. The control network supports four kinds of broadcasting: user broadcast, supervisor
broadcast, interrupt broadcast, and utility broadcast. User and supervisor broadcasts are essentially
identical, except that supervisor broadcasts are privileged operations. These broadcast operations
can be used to download code and to distribute data. An interrupt broadcast is a privileged operation
that causes every processor to receive an interrupt. Interrupt broadcasts provide the ability to “grab
the attention” of all processors in the user partition, which is especially useful for implementing
operating system functions, such as swapping timeshared users. The utility broadcast is used by the
operating system to configure partitions and to perform other sorts of system operations.

Only one processor may broadcast at a time, but broadcasts are pipelined so that the broadcasting
processor can fully utilize the broadcast bandwidth of the network. If, while one processor is
broadcasting, another processor sends a broadcast message, the control network signals an error
when the competing messages collide. The number of simultaneous pipelined broadcasts supported
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by the control network depends upon the height of the network partition. The current implementation
of the CM-5 provides the user with up to 8 words in a broadcast and the supervisor with up to 4
words.

Combining

The control network supports four different types of combining operations: reduction, forward scan
(parallel prefix), backward scan (parallel suffix), and router done. Moreover, the network interface
chip is capable of masking out processors that do not wish to participate in a control-network
operation, so that operations can be performed only on a subset of the processors in a partition.
Only one combining operation can be initiated at a time, but the network is pipelined, which allows
several operations to be initiated rapidly in sequence.

A reduction operation combines values provided by all (participating) processors according to
a user-supplied operator and delivers a copy of the result to all processors. Messages are combined
with one of five operators on 32-bit words: bitwise logical OR, bitwise logical XOR, signed
maximum (which also works for IEEE floating-point numbers), signed addition, and unsigned
addition. (The two addition operators differ in how overflow is reported.) Reductions over other
commonly occurring operators (such as bitwise logical AND) can be easily synthesized from these
and local processor operations. The control network also supports reductions on values larger than
32 bits by a sequence of 32-bit reductions, each of which saves residual data, such as a carry in the
case of addition, which is input to the next reduction in the sequence. Since the control network is
pipelined, the latency for a multiple-word reduction operation is not unduly affected.

A forward scan operation delivers to the ith processor the result of applying one of the five
reduction operators to the values in the preceding i� 1 processors (in the linear order given by data
network address). For example, a forward scan of the vector h3; 2; 0; 4; 2; 6; 5; 8i with the operator
+ yields the vector h0; 3; 5; 5; 9; 11; 17; 22i. A backward scan provides similar functionality in the
reverse direction. Scans can be segmented: if a “segment start” bit in the network interface is set,
the scan starts over at that point. Backward scans are also supported. All basic scan operations
use 1-word (32-bit) inputs, but multiple-word scans are supported by a sequence of 1-word scans
in a manner similar to multiple-word reductions. An excellent discussion of scans can be found in
[Ble90].

Early on in the design of the CM-5, we decided to support scans in hardware. Our experi-
ence with the CM-2 showed that many high-performance data-parallel algorithms—including both
combinatorial and numerical algorithms—make extensive use of scans. The operations that were
selected (OR, XOR, etc.) reflect a compromise between making the hardware fast and simple
and providing sufficient building blocks out of which other operations could be constructed. For
instance, OR can be used to implement AND (DeMorgan’s law), so there is no need to implement
both. As a more sophisticated example, segmented reductions, which are not provided directly by
the hardware, can be implemented by using two segmented scans, one forward and one backward.
Since the control network is pipelined, the overhead of doing both is minimal.

The router-done operation is a specialized reduction that lets the processors know when com-
munications involving the data network are complete. In the data-parallel programming model, this
operation is often required so that processors know when it is safe to proceed to the next data-parallel
operation.

The basic idea behind the implementation of router-done is “Kirchhoff’s current law.” When
all processors have completed sending their messages and the number of messages that entered the
data network equals the number that have left, the routing cycle is complete. The network interfaces
keep track of the number of messages that enter and leave the data network. After a processor
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has completed sending all its messages, it pushes a message into the outgoing router-done FIFO.
When all processors have sent messages into their outgoing FIFO’s, the control network continually
monitors the difference between the total number of messages put into the data network and the
number removed from the data network. When this number becomes zero, each processor receives
a message in its incoming router-done FIFO informing it that the data network is done routing
messages.

There are several other software and hardware approaches to computing a router-done barrier.
A software solution involves sending an acknowledgment for every delivered message. Each
processor enters a normal, processor-only, barrier only when it has received acknowledgments for
all the messages it sent. Such a scheme is expensive, since it doubles the network traffic. The
Monsoon dataflow processor employs a network that provides a hardware acknowledgment for
every message [PC90].4 The Connection Machine CM-1 [Hil85] uses a global-or circuit wired into
all the network chips to determine when the network is empty. For the CM-5, we considered a
strategy that uses special tokens to “sweep” the network clean.

Using this “Kirchhoff” method has the additional benefit that if a hardware error causes messages
to be lost or created, the error can be detected and signaled, either by a failure of the router-done
operation to complete on the one hand or by the unexpected arrival of a message after the router-done
operation has completed on the other.

The CM-5 control network also supports one synchronous OR operation and two identical
asynchronous OR operations that can operate in parallel with other network operations, and have
separate FIFO’s in the network interface. The synchronous OR is similar to an OR reduction, except
that a processor’s input and output each consist of only a single bit. Each asynchronous OR operates
continuously without waiting for all processors to participate. Processors are free to change their
inputs at any time and sample the output. The asynchronous OR can be used for signaling conditions
and exceptions. The transition of an asynchronous OR from 0 to 1 can be used to signal an interrupt.
One of the two asynchronous OR’s is privileged, and the other is nonprivileged.

The synchronous OR or any of the various combining operations can be used to implement
split-phase barrier synchronization [TMC88]. (In independent work [Gup89], this type of synchro-
nization has been called a fuzzy barrier.) In a split-phase barrier, the barrier is a region of code with
an entry and an exit. (If the region is empty, an ordinary barrier results.) When a processor enters
the split-phase barrier, it pushes an input message into an appropriate outgoing FIFO. Shortly after
all other processors have pushed their messages, they all receive messages from the corresponding
incoming FIFO, and each can infer that all have entered the barrier. The advantage of a split-phase
barrier over an ordinary barrier is that the processor can execute code while waiting for the barrier
to complete. Thus, just as the instruction following a delayed branch in a RISC architecture can
compensate for the latency of the branch, the code between barrier entry and exit can compensate
for the latency of synchronization. The router-done operation couples barrier synchronization with
the test of whether routing on the data network has completed, so that no processor abandons its
effort to receive messages until all processors are done sending them.

The control network also detects certain kinds of communication errors and distributes them
throughout the system. For example, if two processors attempt to perform different combining
operations, an error is signaled. More importantly, hard errors detected by the data network and the
network interfaces are collected by the control network. These error signals are combined using a

4In dataflow machines, barriers must be programmed in software. A. Shaw et al. found that on the EM-4 dataflow
machine, barriers could be effectively programmed in software [SKS*92]. Software barriers suffer from unpredictable
performance, however. Depending on the other traffic in the data network, software barriers take different amounts of
time. It might be difficult to use software barriers for the kind of flow control we study in Chapter 3.
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Figure 2-5: The format of messages in the control network. Each message contains a field that
indicates the type of message, a 32-bit word of data, some synchronization bits, and various other
flags. The message is checked using a cyclic redundancy code.

logical OR and are redistributed to all the processors so that the operating system can isolate them
and recover if possible.

Organization of the control network

The architecture of the control network is that of a complete binary tree with processing nodes,
control processors, and I/O channels at the leaves. When a CM-5 system is configured, each user
partition is assigned to a subtree of the network. Processing nodes are located at the leaves of the
subtree, and a control processor is mapped into the partition as an additional leaf.

The control network is implemented using a 1-micron CMOS standard-cell chip that contains
custom macro cells to implement high-performance circuitry. Like the data network chip, it uses a
40-megahertz clock. Three binary-tree nodes are packaged on each chip. There are 4 11-bit-wide
bidirectional links (6 bits in the up direction and 5 bits in the down direction) to 4 child chips lower
in the tree and 1 11-bit-wide bidirectional link to a parent. As in the data network, interchip signals
are sent on differential pairs of wires.

Unlike data network packets, control network packets have a fixed length of 65 bits. (There
is actually, in addition, a 5-bit packet used during system initialization to align the 65-bit packet
boundaries so that a node can process the same fields in arriving messages at the same time.) The
general format is illustrated in Figure 2-5. It is broken into two parallel streams, a major stream and a
minor stream. The minor stream contains a variety of control bits, including various error and status
flags, several flow-control bits, and a bit to implement segmented scans. The major stream begins
with a packet description field, which defines the packet type—single-source, multiple-source, idle,
or abstain—as well as the specific operation—user broadcast, supervisor broadcast, interrupt, scan
(including combiner), reduce, etc. Then comes a 32-bit word of data. The major stream ends
with a field containing the global synchronization bits. The entire packet is checked using a cyclic
redundancy code (CRC), which is the last information in the packet to be transmitted.

The four packet types are processed differently by the control network. Whereas single-source
packets are used to implement broadcasting, scans and reductions employ multiple-source packets.
Idle packets are used as “filler” and are sent when a control network node has nothing better to ship.
The abstain packet allows a control network node to proceed when it would otherwise wait for a
multiple-source packet.

When a processor initiates a broadcast or interrupt through the control network, its network
interface inserts a single-source message into the tree at a leaf. This message proceeds up to the
root node of the user’s tree, where it is turned around and distributed to all the processors in the
partition. An error is signaled if two single-source packets from different sources meet at a control
network node. If it meets with other kinds of packets, a single-source packet has priority. There is
no buffering for single-source packets. Flow control for single-source packets is implemented by
the network interface on an end-to-end basis.
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Processing multiple-source packets is more involved. When a processor initiates a cooperative
operation such as a scan, the network interface inserts a multiple-source message into the tree. At
each internal node, a multiple-source message waits until its sibling’s message has arrived. While a
message is waiting, the node sends idle messages up the tree. When the sibling’s message arrives,
arithmetic or logical operations combine the two messages into one, which is sent up the tree. To
implement scans, the message or its sibling may be put aside in another buffer to combine later
with a value coming from the node’s parent. When a multiple-source message finally reaches the
root, it is sent downward. As it reencounters the internal nodes of the tree, it is replicated or further
combined with waiting messages. (A good overview of the implementation of scans can be found
in [Ble90].)

While a multiple-source packet is waiting for a sibling or a parent, other packets arriving on
the same input can be processed. If the newly arriving packet is a single-source packet, it proceeds
ahead of the waiting packet, thereby giving priority, for example, to supervisor broadcasts and
interrupts. If the new packet is another multiple-source packet, it is queued in the buffer behind the
packets already waiting. Multiple-source packets thus maintain a consistent order, which allows
two or more combining operations on the control network to be pipelined properly. Flow control in
the network precludes buffers from overflowing.

An important requirement of the control network was that it be able to connect a control processor
to each user partition. The control processor executes the scalar part of the data-parallel code, while
the processing nodes execute the parallel part. We considered having scalar code executed by one or
all of the processing nodes, but eventually decided that having a control processor associated with
each partition would simplify matters. First, since the system cost of the control processor is very
low compared with the multitude of processing nodes, we can afford to run it with large amounts of
memory and with additional architectural features to enhance its performance. Consequently, the
control processor is able to more efficiently execute scalar code than can a processing node. Second,
the data-parallel code that runs on the earlier CM-2 machine is already split into scalar and parallel
parts. Porting this code to the CM-5 was easier, since we could maintain the same split. Finally,
since the control processor has a connection to an Ethernet, the user partition can run a standard
Unix which communicates across the attached Ethernet.

At the end of a user’s timeslice during timesharing, the control network can be flushed in
a manner similar to a broadcast operation, aborting any user-level control-network operations in
progress. The network interfaces retain the values that the user has pushed into the control network
until the corresponding operation has completed, however. These values are saved as part of
the user’s state. When the user’s task is resumed, the saved values can be used to reinitiate the
control-network operations.

In case of a fault in a CM-5 processing node, network chip, or interconnection link, the control
network—like the data network—can be configured to map the fault out of the system. The
diagnostic network (see Section 2.4) can set internal switches within the control network to map out
parts of the control network. Since the computations performed by the control network depend only
on the control network being a binary tree, and not on its being a complete binary tree, computations
within the control network can safely ignore the mapped-out portions of the system.

In addition, the control network has some additional switching capability to map around faults
in the control network itself and to be able to connect any of the control processors to any partition.
This additional switching capability is implemented as follows. Conceptually, each switch of the
control network has 2 parents and 4 children and contains two binary-tree nodes which can be
statically configured so that either can connect to any pair of children. By connecting these chips
in a manner similar to the data network fat-tree, any control processor can be connected to any
partition, subject to the availability of bandwidth. For example, if there are only 4 control network
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channels into a subtree, one cannot connect 5 control processors to 5 partitions in the subtree. Short
of this bandwidth restriction, however, any connection of control processors to legal partitions can
be implemented using an off-line routing algorithm similar to that in [Lei85, Theorem 1].

As an extension to the control-network functionality, one may wish to allow the synchronization
of arbitrary subsets of processors rather than the entire set of processors. A control network that
employs Ranade’s algorithm [RBJ86] could support such an operation. According to standard VLSI
complexity arguments (see, for example Thompson [Tho83]), a network that can synchronize, in
parallel, arbitrary subsets of processors must either run slowly or have a large amount of wiring.

It is possible to design an inexpensive network that can quickly synchronize any contiguous
set of processors in the linear ordering of the processors, however. Such a feature could be used
to extend the data-parallel programming model, by allowing one to create an array of data-parallel
engines, each of which works on a subproblem, and then to reform the array into one big data-
parallel engine to proceed with the top-level problem.5 There is no clear evidence that hardware
support for such a programming model is important, and the CM-5 control network does not support
the synchronization of subsets subsequences of processors.

In the CM-5, each partition has a distinguished front-end processor. Conceivably, the partition
could do without the front-end processor. The distinguishing characteristic of the front-end processor
is that it has more memory, a better serial I/O system, and a faster processor than the rest of the
processors. It is often convenient to have this more-powerful processor take on a special role in
controlling the computation by, for example, using the control network to broadcast the state of
the computation or using the large memory of the front-end to hold large infrequently accessed
data. A front-end on the CM-5 is especially useful for running software that was written for other
machines that had front-ends. For example, the StarTech chess program (described in Chapter 4),
which is based on H. Berliner’s Hitech program, uses the CM-5 front-end to run the code that runs
on Hitech’s front-end processor.

In summary, the CM-5 control network provides the mechanisms to allow data-parallel code to
be executed efficiently, as well as allowing more general kinds of parallel models to be implemented.
Its structure as a binary tree provides an inexpensive way to provide the advantages of both traditional
SIMD and traditional MIMD architectures.

2.4 The CM-5 Diagnostic Network

During the design of the CM-5, great emphasis was placed on system availability. Despite con-
servative design techniques and the use of proven circuit and interconnect technologies, the sheer
size of the largest CM-5 systems forced us to abandon any attempt to achieve high availability by
depending solely on inherent component reliability. Instead, our strategy relies on two architectural
features of the machine: diagnosability which allows missing or broken hardware to be detected and
isolated; and configurability, which allows most of the machine to operate when portions are broken
or being serviced. This section shows how this strategy is implemented on the CM-5 through the
use of a diagnostic network, the one network in the system that the user never sees.

One strategy to diagnose a parallel computer is to create diagnostic programs running on the
processor nodes that exercise the processor nodes and various communications networks. When
some part of the system fails to function correctly—for example, the data router fails to deliver a
message or the control network produces the wrong answer for a combine operation, the diagnostic

5Sabot’s paralation programming model [Sab88] may provide a way to program virtual data-parallel machines.
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program itself may fail, because its correctness depends on the correct functioning of the system.
We call such diagnostic programs functionality dependent. Our experience with the CM-1 and CM-
2 exposed many of the limitations of functionality-dependent diagnostics. They are exceedingly
difficult to write, they have nebulous coverage, and they lack precision in reporting the root cause
of error conditions.

In contrast, diagnostics that are functionality independent rely on specific test structures, rather
than the failure of normal system operation, to detect faults in the system. Using this kind of
design-for-testability strategy, it becomes possible to view the CM-5 (or any sequential machine,
for that matter) in terms of registers connected by combinational logic and wires. This change
in perspective permits commercially available software tools to be used to generate high-coverage
tests automatically for chips, boards, and the wiring that connects them. Moreover, when these tests
fail, they provide specific information on the location and extent of the failure.

In the CM-5, design for testability starts at the chip level. All CM-5 VLSI components support
the IEEE 1149.1 testability architecture standard [IEEE90], also known as JTAG, for the Joint Test
Action Group which originated the standard.6 At the system level, the CM-5 diagnostic network
provides parallel access to all system components from a diagnostic processor. The JTAG standard
and the diagnostic network combine to form a diagnostic system which can quickly perform an
in-system check of the integrity (over 99 percent single stuck-at fault coverage) of all CM-5 chips
that support the JTAG standard and all networks.

Let us briefly review the JTAG interface standard. The JTAG standard provides a 4-pin interface
for each chip in a system. On each chip, two pins provide input and output, respectively, for a
selectable scan chain within the chip.7 The standard specifies the boundary scan register (BSR)
which connects all I/O pads in the chip into a bit-serial shift register. Two other pins serve as clock
and control inputs. By scanning data in and out of chips, the BSR can be used to apply stimulus
to the chip core for chip tests, or to monitor inputs and control outputs of the chip for connectivity
tests.

In the CM-5, we extended the JTAG standard to include full internal scan in all proprietary
chips. Details of this design are described in [ZH92]. The use of a full internal scan allows software
for automatically generating test patterns to generate a set of scan vectors with very high fault
coverage. The vectors can be applied through the JTAG interface to test individual chips when they
are manufactured and packaged. Later, when the chips are assembled into a system, the same tests
can be applied through the diagnostic network.

The JTAG interface is designed to extend to multichip systems. When more than one chip is
incorporated in a system, the scan paths are linked together in series by connecting the output from
one scan path to the input of the next in a daisy-chain fashion. The clock and control pins are
connected in parallel so that these signals can be broadcast to all chips in the chain.

Previous designs have focused on reducing the length of very long scan chains by placing
scan-controllable bypass elements in the scan chain [TI90]. Unfortunately, testing all the chips in
the system still requires serial access to each one. Even with ideally short test times on the order
of seconds per device, this method would be unacceptably slow for an entire 16,384-node CM-5
comprising many tens of thousands of devices. Moreover, this method fails to take advantage of the

6In the original implementation of the CM-5 architecture, neither the SPARC processor nodes nor the DRAM chips
supported the JTAG interface. Given the growing acceptance of JTAG standard, however, it is likely that off-the-shelf
processors and memory will support the standard in the near future. The CM-5 architecture is designed to incorporate
these JTAG-supporting chips when they become available. For example in the CM-5E, announced in February 1994, the
SuperSPARC processors do support the JTAG interface.

7This use of the term “scan” has nothing whatsoever to do with parallel prefix and suffix computations, as discussed
in Section 2.3.
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inherent parallelism that can be achieved by testing large numbers of identical system components.
For these reasons, it was evident early on in the design of the CM-5 that we needed a parallel
strategy for supporting scan-based diagnostics.

The CM-5 diagnostic network provides simple and reliable access to the system components of
the CM-5. It provides scan access to all chips supporting the JTAG standard, and programmable ad
hoc access to non-JTAG chips. The diagnostic network itself is completely testable and diagnosable.
The diagnostic network is able to map out and ignore parts of the machine that are faulty or powered
down. It can be partitioned consistently with user partitions. The network is able to select and
access groups of system chips in parallel, including:

� a single chip;

� a single type of chip;

� the chips within a user partition;

� the chips associated with a geographical portion of the system, e.g., a given board, backplane,
cabinet, etc.; and

� unions and intersections of previously specified sets of chips.

The diagnostic network is organized as a (not necessarily complete) binary tree, at the root of
which sit one or more diagnostic processors, and at the leaves of which are pods. Each pod is a
physical subsystem, such as a board, which directly supports the JTAG interface. At any given
time, a single diagnostic processor controls the diagnostic network. From the root of the tree, an
individual pod can be addressed by giving a binary number, each bit of which corresponds to a level
in the tree and specifies a path from the root to the leaf: bit i of the address specifies whether the
addressed leaf is in the left or right subtree of the node at level i. If the height of the tree is h, then
h bits are sufficient to specify any leaf.

The diagnostic network allows groups of pods to be addressed according to a “hypercube
address” scheme. For a tree of height h, a diagnostic virtual address is an h-digit number in which
each digit is a0, 1 orB. TheB (“both”) digit is a “wild-card” that matches both0 and1. For example,
in a height-6 tree, the address 00B10B addresses the set f000100;000101;001100;001101g,
or f4; 5; 12; 13g. The addressing scheme can also be used to address the internal nodes of the
diagnostic network by specifying addresses with fewer than h digits.

The decoding logic to implement the diagnostic virtual addressing scheme is based on the notion
of steering “tokens” down the tree, as is illustrated in Figure 2-6. The mechanism works as follows.
A token is inserted at the root of the tree together with a diagnostic virtual address, which is piped
digit-serially into the root of the tree, high-order digit first. The root selects its right, its left, or
both of its subtrees based on the high-order digit. If both subtrees are selected, the token splits into
two tokens. Subsequent digits then steer the tokens and subsequent digits down the selected paths.
When the end of the address is encountered, the nodes holding tokens are considered to be selected,
and nodes on paths from them to the root provide the conduit for control.

Tokens and their paths from the root stay in place until a subsequent address erases them or until
they are explicitly erased. This feature can be employed to combine two sets of selected nodes. For
conceptual simplicity, suppose each of the two sets of nodes is in a separate subtree of the root. First,
the left set is selected using a 0 as the high-order digit and pushing a token down the appropriate
paths. Next, the right set is selected using a 1 as the high-order digit and pushing a token down the
appropriate paths. The left set remains intact, but is temporarily inaccessible from the root because
the right set is being selected. Finally, we push another token with an address of B to select the root
itself and cause it to enable both its children, thereby merging the two sets. More complicated set
unions are possible using this basic mechanism.
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Figure 2-6: Steering a token down the diagnostic network. The address is decoded digit-serially,
where each digit is 0, 1, or B, representing a selection of the left subtree, right subtree, or both
subtrees, respectively. The example shows the selection made by the address 00B10B.

Most of this mechanism is hidden from the diagnostic engineer. Software extends the diag-
nostic virtual address within pods to address individual chips. Software also converts between the
diagnostic network addresses and two other kinds of addresses: geographical addresses, which
specify cabinets, backplane, slot type, slots, etc.; and network addresses, which give the locations of
components according to the data and control networks’ view of the machine. In general, important
subsets of geographical addresses can be specified with one diagnostic virtual address. Important
subsets of network addresses—for example, all data network chips at a given height in the machine,
or all boards containing processing nodes in some contiguous range—typically take a combination
of at most h diagnostic virtual addresses, where h is the number of bits in the address. The most
important aspect of the addressing scheme, however, is that the time to access the various subsets
does not grow by more than a small additive amount when the size of the machine doubles.

Having addressed a subset of the pods in the system, scan vectors can be applied in parallel
to detect errors. JTAG serial data and control inputs are broadcast to all selected pods. Each pod
provides a scan output signal that can be OR’ed or AND’ed with the corresponding signals from
the other selected pods. The choice of an OR or AND combiner depends on what the diagnostic
processor is expecting for a scan result. If the expected bit is a 1, the AND combiner is chosen. The
result of the combining is a 1 if and only if all selected pods assert a 1. Similarly, if the expected
output is a 0, the OR combiner is chosen. The result of the combining is a 0 if and only if all selected
pods assert a 0. If an error is detected in a group of selected pods, the offending pod can be isolated
either by addressing each pod in the group individually one at a time, or by a divide-and-conquer
methodology. Within a pod, standard techniques for finding errors within a serial chain of JTAG
interfaces are used to isolate the error to the chip level.

Since the diagnostic network is a tree, it is relatively easy to make it self diagnosing. Each level
beneath the root can be tested by the levels above. Moreover, since there is not much logic in the
diagnostic network, the probability that the network fails itself is much less than the probability
that other parts of the system fail. Moreover, since the network is a tree, most of its logic is near
the leaves, so that when a part of the diagnostic network does fail, only a small part of the tree is
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likely to be isolated. We did not mind relying on relatively few components near the root, since any
small set of components is quite reliable—it is only large aggregates which have a high probability
of failing.

The current implementation of the diagnostic network uses essentially two off-the-shelf chips.
The address decoding of a binary node is implemented with a P22V10 24-pin PAL, and the finite-
state control of a node is implemented with a P18V8 20-pin PAL. The chips can be clocked at any
speed up to about 1 megahertz. In some places in the system, to save chips, address decoding of
a 4-ary or 8-ary node is implemented directly as a single-chip PAL, rather than by using several
separate binary-node PAL’s.

2.5 Synchronized MIMD Goals

When we first set about designing the CM-5, we established engineering goals that went beyond
mere performance specifications. We thought hard about issues of scalability: making a machine
whose size would be limited only by the dollars a customer could spend, not by any architectural
or engineering constraint. We thought hard about system issues, including timesharing, I/O, and
user protection. We thought hard about reliability, since we were designing a machine which, in its
largest configuration, would have well over 10 times the electronics of our previous supercomputer,
the Connection Machine Model CM-2 Supercomputer. This section discusses the goals and reflects
on the success of the CM-5 at meeting those goals.

The following goals drove our network designs:

� The networks must deliver high performance to the users. We wanted the users to be easily able
to program the networks to get good performance. We did not want to force the users to worry
constantly about pathological worst cases, and we wanted the best cases to run well without the
user needing to do anything special.

� The networks must scale up to a very large size. We wanted the logical design of the networks to
scale up to a million processing nodes. We wanted to build SUPERcomputers.

� The networks should efficiently support the data-parallel programming model (see Section 2.3),
but should be flexible enough to allow us to support other parallel programming models as well.
The data-parallel programming model was used extensively on the CM-2, and we wanted to be
able to transport our existing high-level programming environments (Fortran, *Lisp, and C*) to
the CM-5. We also wanted to be able to run codes written for other machines competitively.

� The networks must be highly reliable and highly available. The system must notice whenever
part of a network fails, be able to isolate the failure quickly, and be able to quickly reconfigure
the networks around the failure. It was desired that even if part of a network has failed, the rest of
the network should be able to function correctly with only a small degradation in performance.

� The networks must work in a spaceshared environment. We wanted a user’s network traffic to be
insulated from other users and I/O in other partitions.

� The networks must work in a timeshared environment. A timeshared user must get a fair share
of network bandwidth. Users must be able to be context-swapped quickly. Privileged system
software must be able to seize control of a user’s task.

� The networks must be operational as soon as possible. Time to market was of the essence. Chips
and systems needed to work the first time. We wanted the networks to be simple enough to
engineer quickly, robust enough to respond to last-minute design changes, and easily verifiable.
Consequently, we opted for conservative technology, for example, copper wires rather than optical
fibers. We chose to use CMOS in order to minimize the risk associated with new technology.
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We chose standard-cell technology in order to be able to make extensive use of the wide variety
of available design tools (such as timing verifiers and automatic test generators). To achieve
high performance with this conservative technology, we incorporated custom macro cells for
circuits on the critical path. Our attitude was that there was more performance to be gained by
architectural improvements than by eking out extra nanoseconds in technology. Conservative
technologies, with their well-developed computer-aided design tools, would allow us to make
many more architectural improvements during the design.

� The chips used to build the networks must be organized in a way to allow technological or
architectural improvements to be easily incorporated in subsequent revisions of the CM-5 system.
On the CM-2, both processors and communication were implemented on the same chip, which
made it difficult to incorporate advanced technology in one area without impacting the other. We
wanted to be able to incorporate any advances without having to reengineer a major piece of the
system.

� The networks should embody both economy of mechanism and single-minded functionality. We
wanted the networks to be lean and mean. Whenever anyone suggested anything complicated,
we viewed it with suspicion. For example, the job of the data network is to deliver messages,
nothing else. But it delivers both user messages and messages to I/O devices using the same
mechanisms. The data network does not combine messages, duplicate messages, or acknowledge
delivery of messages. It just focuses on moving data as fast as possible.

In hindsight, those goals missed an important part of the story: the operating system. The CM-5
operating system must not only provide the functionality of UNIX, but it must interact with the
global scheduling strategy, all-fall-down, and the approach to shared I/O resources. It has been a
long and difficult passage to obtain correct functionality and performance. The other side of the
coin is that today the CM-5 operating system is the only parallel operating system that even attempts
to meet these goals.

The CM-5 not only uses global synchronization for running user code, but it also uses global
synchronization to run the operating systems. All of the processes that belong to a single user
program running on a single partition are coscheduled so that the network interface does not
need to understand about process identifiers. This synchronous coscheduling fitstogether with
the all-fall-down mechanism. The all-fall-down mechanism has been difficult for the operating-
system programmers to manage, however, chiefly because there is no corresponding ‘all-throw-up’
mechanism to put the messages back into the router. The operating system needs a strategy to deal
with the situation where not all of the messages are successfully reinjected into the data network at
the beginning of a process’s time slice. Most of the difficulties with programming the all-fall-down
mechanism have been dealt-with, but we shall see evidence in Section 3.3 that the all-fall down
mechanism is still causing some performance trouble. Perhaps there is a better way of achieving
our goals than to start with the assumptions that the network state as part of the process state and
that messages are reliably delivered.

The operating system also has difficulty understanding how to use the diagnostic network of the
CM-5. Large machines still take too long to boot. The operating system has difficulty accessing the
diagnostics network to get the machine configured in parallel. These problems with the operating
system are not fundamental to the design of the system, but they are difficult.

The cost of writing large parts of an operating system has been fairly high. The other operating
systems that one might use, however, either exist only in the future or do not address the system-
wide problems of parallel supercomputing. On most other machines, one does not even think of
measuring the system while timesharing is running. For example, at Mannheim, one application on
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the Kendall Square KSR-1 shared memory sees a factor of 40 times slowdown when timesharing is
being used as opposed to single-user [Sch93, Page 44].

When designing the CM-5, we tried to provide some performance guarantees, and the synchro-
nization facilities helped us do that. The performance a user gets from the data network should
depend only on the user’s traffic in the data network. If the machine is being timeshared, then the
behavior of one user should not affect the performance of another. Each user should receive not only
a fair fraction of the processing power, but also a corresponding fraction of the data network and
control network performance. If the machine is space-shared, so that different users are running on
different processors, the user should attain predictable performance independently of what is going
on in the other processors. The data network and the control network should not interfere with each
other. We specify this architecturally by saying that the synchronization is provided by a separate
control network. Operationally, this means that the performance of a global synchronization must
be independent of the traffic in the data network. In the CM-5 we actually provide a separate control
network, but one can imagine implementations where the logical control network is implemented
using the same wires used by the logical data networks.

We might have made some implementation decisions differently if time-to-market had not
been quite as important a goal. For example, one should be able to achieve better performance
by implementing the two logical data networks as a single physical network with two virtual
subnetworks. Similarly, the control network is not as general as it might have been. The control
network can not be segmented to allow, for example, the user to create in a single application a
collection of small synchronized-MIMD machines that operate in parallel, as was proposed for the
FMP [LB80].

2.6 CM-5 History

We conclude this chapter with a brief history of our implementation effort.

Work on the CM-5 architecture was begun in the latter part of 1987. We performed network
simulations that led us, by January 1988, to choose a fat-tree architecture for the data network. By
May 1988, most of the data network logic had been designed and verified, although several changes
were implemented during the summer of 1988. A register-transfer-level (RTL) description of the
data network chip was completed in early 1989, and the data network architecture was frozen. A
gate-level description of the data network chip was completed by the early summer of 1989. The
JTAG diagnostic interface was debugged using the data network chip design as a framework. The
data network chip also served as the guinea pig for system and chip timing software. The chip was
submitted for fabrication in May 1990.

The MIMD-plus-control-network design was proposed in early 1988, but we did not officially
decide to use it until May 1989. Until then, we maintained other potential design alternatives. Work
on the control network chip and the network interface proceeded concurrently. By the end of summer
1989, RTL models of both were simulating successfully. Gate-level models were implemented by
the end of December 1989, and the control network architecture and network interface were frozen
shortly thereafter. In May 1990, both the control network chip and the interface chip were submitted
for fabrication.

The strategy of the diagnostic network was laid out in 1988, but work did not begin on it in
earnest until the fall of 1989. Most of the work involved implementing the JTAG interface on the
various chips. The design of the diagnostic network itself took only a few months, but considerable
effort in 1990 and 1991 went into diagnostic software.
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In the latter part of 1990, our attention turned to system integration. We received and tested
the data network chips in July 1990, the control network chips in August, and the interface chips
in September. Within two days after the interface chips arrived, we had assembled the networks
for a 2-node machine and powered it up, a feat due in large measure to our functional verification
methodology [SYC92]. That same day, the operating system—which had been developed on a
simulator—functioned correctly on the machine. By year’s end, we had successfully constructed
several small machines, including a 64-node machine, some of which were dedicated to software
development.

The year 1991 began with an effort to build a 256-node machine using a completely new
mechanical design. Initially, it had been more important to make machines available to our software
engineers than to construct a large machine. To test the limits of our physical design, however,
we needed to build large machines. The 256-node machine was begun in February, and finished
in March. The time frame was dominated by the build time in manufacturing. In May, we built a
544-node machine, which was shipped in August to the Minnesota Supercomputer Center on behalf
of the Army High Performance Computer Research Center.

In October 1991, the Connection Machine Model CM-5 Supercomputer was publicly announced.
During 1992 a 1024-node CM-5 was constructed and installed at Los Alamos National Laboratory,
and the machine passed acceptance testing during February 1993. March 1994 saw the announce-
ment of the Connection Machine Model CM-5E, which provides higher data network performance
using larger, 68-byte messages; an improved processor-network interface; and faster processing
nodes that employ SuperSPARC microprocessors and faster vector units, both running on a 40
megahertz clock.

Since supercomputer manufacturers tend to keep their sales figures secret, it is difficult to gauge
the commercial success of the CM-5. J. Dongarra, H. Meuer and E. Strohmaier [DMS93] estimate
that Connection Machine computers (including both the CM-2 and the CM-5) collectively account
for about 30% of the peak LINPACK capacity of and about 40% of the peak floating-point capacity
of the fastest 500 supercomputers installed in the world in early 1993. G. Ahrendt’s list of the
world’s most powerful computing sites [Ahr94] states that there probably exist at least the following
CM-5’s: one with 1056 processing nodes, one with 896 nodes, three with 512 nodes, one with 256
nodes, one with 192 nodes, and six with 128 nodes.
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Chapter 3

Mechanisms for Data Network
Performance1

3.1 Introduction

We have now studied hardware (the Connection Machine CM-5) that provides global synchroniza-
tion, and have seen how global synchronization solves many of the system-problems in the CM-5.
In this chapter we study how to get good performance from the data network of the CM-5. Once
again, global synchronization provides a simple and effective strategies for attacking the problem.

Suppose you need to perform a sequence of parallel cyclic shifts. In parallel FORTRAN you
might see code that looks like this, where the columns of A and elements of B are distributed among
the P processors:

DIMENSION A(P,P), B(P)
A(1,:) = CSHIFT(B,1)
A(2,:) = CSHIFT(B,2)
� � �
A(P,:) = CSHIFT(B,P)

The notation “A[I,:] = CSHIFT(B,I)” means cyclic-shift B by I and store it into row I of
A.

One natural way to compile data-parallel code is to compile each statement separately with
global barriers between the statements. In this case, both the source language and the compiled
code are a serial sequence of parallel operations. A simple subscript analysis reveals that the barriers
are not required to ensure the semantic correctness of this program, since the target rows are all
independent.

Question: What happens to the performance when the barriers are removed?

Answer: Surprisingly, the computation gets slower, often by a factor of three.

To understand this problem, a few patterns were studied in a narrow environment:

� We studied the cyclic-shift pattern described above, as well as resulting all-pairs communi-
cation pattern in which every processor sends a value to every other processor. The all-pairs

1The research in this chapter represents joint work with Eric A. Brewer. Much of the work of this chapter was
originally reported in [BK94].

45



pattern appears in sorting and in some scientific codes (see, for example [Ede91].) We also
studied random communication patterns.

� We studied the communication patterns in a data-parallel or SPMD environment, in which
the real operation being performed by a collection of messages is a bulk data movement.
Given this assumption, we examined the problem of sending a large collection of messages
as quickly as possible, rather than focusing on the performance of any particular message.

� We used block transfers built on top of 20-byte active messages [vCG*92] on the CM-5 data
network. (The data CM-5 network is described in Section 2.2 of this dissertation.)

Although the scope of this study has been narrowed from the wider problem of obtaining good
performance on any interprocessor communications system, we believe that our conclusions apply
to a fairly wide range of situations.

An important limitation in any network is its bisection bandwidth. In general, given a data-
parallel communication operation, if you divide the processors of a machine into two sets, and then
measure the bandwidth B in bytes per second that the network could possibly provide across the
corresponding cut, and you measure the amount of data D in bytes that must be transferred between
the sets, then it must take at leastD=B seconds to move the data. For any given cut, B is a function
only of the network, and D is a function only of the communication pattern.

There are 2P�1 ways to cut P processors into two sets, which makes finding the worst cut a
potentially formidable operation.Leiserson [Lei85] showed that for fat-trees the problem is much
easier: one need only consider the cuts across a single major arm of the fat-tree in order to find the
tightest D=B bound (see Figure 3-1). In a P -node CM-5, which is a uniform 4-ary fat-tree, there
are less than 4=3P major arms, and the bandwidth of an arm depends only on the height of the arm.
The bandwidths for a 64-node CM-5 are shown in Figure 3-1. We found that the most important
cuts for the CM-5 are the links that connect the processors to the network: the bandwidth of these
links are determined by software overhead and form the limiting factor for most message patterns.

We found that programmers of the Connection Machine CM-5 data network can improve the
performance of their data movement code more than a factor of three by using a few relatively
simple mechanisms.

� Selectively using global barriers eliminates pathological interactions between different parts
of the computation and provides a form of flow control. Barriers improve the performance of
cyclic shifts by a factor of 2 to 3.

� Managing the order in which messages are injected into the network improves the statistical
independence of the various packets that are in the network at any given time, which avoids
worst-case performance scenarios. If a processor has many packets to send to each of several
processors, it is better to interleave the packets to several destinations rather than send large
batches of packets to one target. For cyclic shifts, such a strategy is worth a factor of 2.1
(but that factor is not independent of the factor gained by using barriers.) More generally,
injecting the messages into the network in a random order is a good idea.

� Limiting the rate at which messages are injected into the network provides another form of
flow control which helps to reduce network overloading and improve performance. For cyclic
shifts, this optimization is worth an additional 25% in performance, and it greatly reduces the
variance in bandwidth for large transfers.
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Figure 3-1: A 64-node CM-5 data-network fat-tree showing all of the major arms and their
bandwidths (in each direction). One needs to cut only a single major arm to find the worst
bisection for a given message pattern.

This chapter explores how to get good performance from the CM-5 data network. Section 3.2
reviews the CM-5 networks with an eye to performance. Section 3.3 discusses the difficulties of mea-
suring performance on the CM-5. Section 3.4 examines how barriers can improve communication
performance, and Section 3.5 explores the importance of interleaving packets to multiple destina-
tions. Section 3.6 examines the effect of matching the injection and reception rates. Section 3.7
concludes by outlines some programming rules of thumb for using these mechanisms.

3.2 CM-5 Background

This section provides some background on the CM-5 data network and examines the fundamental
limitations of the machine, including network-processor bandwidth and network capacity.

Recall from Chapter 2 that the CM-5 data network is a 4-ary fat-tree, as shown in Figure 3-1.
Each edge is actually two independent links, left and right, but for bulk data movement we always
use both simultaneously. Of the various network cuts, at least two matter in practice: the links
connecting the processors and the cuts through the root.

Processor overhead limits the bandwidth of the processor-network links, not the network hard-
ware. For these links, the hardware can support up to 40 megabytes per second in each direction.
Assuming the 33-megahertz clock found in most CM-5 implementations and 20-byte packets with
16 bytes of payload (also standard for the CM-5), the sending overhead out of the cache is at least
37 cycles, for a maximum payload bandwidth of (16� 10�6

)(33� 106
)=37 = 14:3 megabytes per

second.
The real limit is the cost of receiving packets, which currently requires about 60 cycles for

realistic packets with polling and requires hundreds of cycles with interrupts. Because of the
prohibitive cost of interrupts, all of our experiments use polling. At 60 cycles per 16-byte packet,
the payload bandwidth is limited to 8.8 megabytes per second. Kwan, Totty, and Reed [KTR93]
measured the actual one-way bandwidth at 8.3 megabytes per second using Thinking Machines’
message-passing library.

These numbers only cover the case in which a processor is sending or receiving, however. When
a processor is both sending and receiving, the bidirectional bandwidth is somewhere between the
two cases. Although the network handles both directions in parallel, the processor cannot. The
overhead to send and receive a packet is about 90 cycles, saving 7 cycles due to shared code. This
translates to an upper bound of 5.9 megabytes per second in each direction for a total of 11.8
megabytes per second. The largest value measured by Kwan et al. was 10.4 megabytes per second.

The capacity of the network, which is the number of packets that can be injected without the
receiver removing any, limits the ability of the processors to work independently. For example, if
the network can hold ten packets, then a processor can inject only ten packets before the network
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backs up, and then it must wait for the receiver to accept packets. The network capacity may be a
function of the message pattern. For the CM-5, we measured the network capacity for a variety of
partition sizes using cyclic shift by half the machine size:

Nodes Total Packets Packets/Node
8 79.0 9.88

16 158 9.89
32 342 10.7
64 691 10.8

128 1441 11.3

Thus, for any substantial data movement, the senders and receivers must be coordinated. Further-
more, since only the wire time can be hidden and the network capacity is only about eleven packets,
there is little profit in trying to overlap computation and communication on the CM-5.

Nearly all communication on the CM-5 is implemented with active messages. Active messages
were developed by von Eicken et al. [vCG*92], whose Berkeley CMAM package provided substan-
tially better performance than contemporary versions of CMMD, Thinking Machines Corporation’s
communication library. CMMD 3.0 incorporated the active-message ideas, and in fact, most of
CMMD is now implemented via active messages. Like CMAM, CMMD provides support for
barriers and block transfers.2

Before active messages were developed, most MIMD parallel computer systems provided active
libraries based on the the crystalline message passing model described by G. Fox [Fox89]. In such
a model, for two processors to communicate, one must perform a send and one must perform a
receive. In the synchronous form, the send and the receive are blocking — the send blocks until the
corresponding receive is executed and only then is data transferred. Since data is only transferred
after both its source and destination are known, no extra buffering is needed at either the source or
the destination processors. To implement the matching of the send and the receive requires a three
phase protocol, in which the sender sends a packet requesting permission to send, the receiver replies
with a packet containing the permission, and then the sender finally starts sending the data. To
hide this latency, most systems provided a non-blocking send operation, but such schemes usually
require quite a bit of buffering. For a more detailed comparison of active messages to other message
passing paradigms, see [vCG*92]. Even the early versions of CMMD on the CM-5 were based on
the crystalline model.

As part of the CM-5 design team, I helped implement all kinds of hardware mechanisms that can
be used to obtain good performance. What we designers sometimes did not adequately appreciate
was that each of those mechanisms had to be programmed by some human. Furthermore, even
though we designers tried to think of everything that would be needed, some issues that we never
imagined have turned out to be important, such as the difficulty of implementing a parallel operating
system (see the discussion of this in Section 2.5). The fact that CMMD still does not provide split
phase barriers (as of Spring 1994) is an indication that these kinds programming problems are still
present.

The Strata communications library [BB94b], developed at MIT, is an alternative to CMAM and
CMMD that provides improved performance, improved support for timing and debugging, precise
control over polling, and split-phase control-network operations.3 Strata incorporates the techniques
described in this paper.

2The CMMD performance numbers presented in this chapter were measured under CMMD 3.1-Final with CMOST
7.2-Final.

3Strata is available from ftp.lcs.mit.edu via anonymous ftp, directory /pub/supertech/strata.
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Network Status Average 95% CI
Empty 4.56 seconds �0:0020
Full 5.52 seconds �0:24

Figure 3-2: The effect of a full network on timings made with the operating-system timers: the
timers inflate timings 21% when the network is full.

3.3 Timing on the CM-5

We use two forms of timing depending on the expected length of the event. For short events, less
than a millisecond or so, we use the 32-bit cycle counter. For longer events, we use the 64-bit timers
provided by the operating system.

The cycle counter is extremely accurate. By using inline procedures the overhead can be
subtracted out to yield timings that are accurate to the cycle. The cycle counter counts everything
including interrupts and other processes, however. For example, if our process is time-sliced during
an event, then we count all of the cycles that elapse until we are switched back in and the event
completes. The probability of getting switched out during a one-millisecond event is about 1 in
100, however, since the time-slice interval is one-tenth of a second. A more common problem is
the timer interrupts, which occur every 60th of a second.4 Thus, to get reliable measurements, we
usually perform a timing at least three consecutive times and take the median. Using the median
effectively eliminates errors due to time slicing and timer interrupts.

The operating-system timers have their own advantages and disadvantages. The operating-
system timers stop running when your process stops running, so they can be used even across
time-slice interrupts. The operating-system timers are accessed using system calls, however, which
cost hundreds of cycles and thus limit the accuracy. The operating-system timers also experience a
time dilation when the data network is full of messages.

To demonstrate the time dilation of the operating-system timers, we ran the following experi-
ment. We timed a floating-point loop with the network empty, filled up the network, and timed the
same loop with the network full. The only difference between the “empty” time and the “full” time
is the presence of undelivered messages sitting in the network. The floating-point code is identical,
no messages are sent or received during the timing, there are no loads or stores, and the code is a
tight loop to minimize cache effects. Figure 3-2 shows the results for 18 samples taken across a
wide range of overall system loads. Not only does filling up the network increase the measured time
to execute the floating-point loop by an average of 21%, but it substantially increases the variation
in measured time as well, as shown by the wider 95% confidence intervals.

This study implies that timings that occur while the network is full are dilated an average of 21%.
The dilation is load dependent, but we were unable to get a reliable correlation between the dilation
and the average system load. Fortunately, the timings appear to be consistent given a particular
mix of CM-5 jobs, and the inflation appears to change slowly with time. To obtain reliable data,
we ran the set of all experiments twelve times, measuring all of the experimental configurations
once, and then measuring them all again, and so on, so that slow changes to the environment tend to
affect all of the experiments equally. Algorithms that keep the network full appear to achieve lower
performance than algorithms that keep the network empty. We address the time-dilation issue in
the context of each experiment.

4The timer interrupts take about 250 microseconds to complete, which means that a CM-5 (of any size) spends about
250=16666 = 1:5% of its cycles handling timer interrupts.
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We believe that the dilation is caused by context-switching. At each time slice, the operating
system empties the network, using the all-fall-down mechanism, so that messages in the network
that belong to one process do not affect the next process. When the process is switched back in,
its messages are reinjected before the process continues. The cost of context switching appears
to depend on the number of packets in the network, and some or all of this cost is charged to the
user and thus affects the timings. Our measurements have not been adjusted for time dilation, since
it appears that algorithms that keep the network full really do run slower. Our experiments with
bulk data movement indicate that algorithms that keep the network full suffer more from network
congestion than from time dilation.5

Even though the CM-5 operating system suffers from time dilation of 21%, we still consider
the situation to be a victory for the cause of predictable performance. The fact that we can measure
a 21% slowdown due to timesharing is in fact a victory. Some machines, such as the KSR1 see a
factor of 40 slowdown when using timesharing [Sch93, Page 44]. The CM-5 provides relatively
predictable performance under timesharing and is quite close to the goal of totally predictable
performance under timesharing.

3.4 Using Barriers Can Improve Performance

This section shows that adding barriers to a communications operation can actually increase per-
formance, and presents some evidence to explain the benefit. To our knowledge this effect was first
noticed by Steve Heller of Thinking Machines Corporation [Hel92]. Culler et al. mention the effect
in a later paper [CKP*93].

We ran the cyclic-shift experiment as follows. On a 64-node CM-5, each processor sends a
total of 1.28 megabytes using block-transfer primitives. Each processor p sends a block of data
to processor (p + 1) mod 64, then sends a block to (p + 2) mod 64, and so forth. We vary the
block size B. For example, when B = 0:02 megabytes, each processor sends exactly one block to
each processor; and whenB = 0:01 megabytes, each processor cycles around twice, on each round
sending one block to each processor. Figure 3-3 shows the performance of this cyclic-shift pattern
as we vary B for both Strata and CMMD 3.1, with and without barriers.

The versions with barriers use a barrier between cyclic shifts; i.e., each processor sends B bytes,
waits for the barrier, and switches to the next destination. The CMMD version with barriers must
use Strata’s barrier procedure. Unlike Strata’s barrier, the CMMD barrier does not poll, and hence
combining it with block transfer leads to deadlock. You could use CMMD’s barrier if the system
used interrupts instead of polling, but the loss due to interrupt overhead is prohibitively expensive.

Except for very small blocks, the versions with barriers perform much better. At 64-byte blocks
(only 4 packets) the difference is small, but by 128 bytes per block, the difference is roughly a
factor of two. For larger blocks, which are the common case, the difference is about a factor of 2.5.
The substantial drop in bandwidth without the barriers is counterintuitive. Removing the barriers
reduces the overhead and provides the data network with more opportunities to route packets. The
increased opportunity, however, translates to decreased performance.

Some sort of interference occurs when packets from different batches interact. We were able
to measure an interaction that we call target collisions. A target collision occurs when two packets
arrive at the same processor at nearly the same time. Since packet reception is the bottleneck, target
collisions can quickly back up the network. For large batches, target collisions can conceivably

5The use of dedicated mode does not eliminate the dilation, although it does provide a more stable measurement
environment.

50



10 100 1000 10000 40000
Block Size (Bytes)

0

1

2

3

4

5

E
ff

ec
ti

ve
 B

an
dw

id
th

 (
M

B
/s

ec
/n

od
e)

Strata with Optimized Barriers
Strata with Barriers
CMMD with (Strata) Barriers
Strata without Barriers
CMMD without Barriers

Figure 3-3: The effect of barriers between block transfers on the cyclic-shift pattern. The lines
mark the average bandwidth; the error bars indicate 95% confidence intervals.

slow things down quite a bit. For example, if for some reason, two processors each started sending
a batch to the same processor at the same time, then the destination processor would be overloaded,
the network would back up, and the performance would drop substantially.

To observe target collisions, we measured, at each instant in time, the number of packets in the
network that are destined for a given processor. We performed this measurement by recording the
time that each packet was injected into the network and the time that the target received the packet.
We were able to use the globally synchronous cycle counter to obtain consistent times.

Figure 3-4 shows evidence of target collisions for one typical case: cyclic shifts with no barriers
and a block size of 100 packets (1600 bytes). The plot shows for each processor, at each point in
time, the number of messages destined for that processor. There are several interesting patterns in
this data. At the far left there are some patterns that appear as a “warped checkerboard” pattern
around 200,000 cycles. These patterns reflect the propagation of delays. A single packet was
delayed, which caused the destination processor to receive packets from two different senders,
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Figure 3-4: The total number of packets in the network headed to any given processor at any given
time. Time is measured in 33-megahertz clock cycles. The diagonal line superimposed on the
drawing follows the pattern of systematic interference caused by target collisions.

which delays the injection of packets and thus exacerbates the problem. In short order, processors
alternate between being overloaded (gray) and idle (white). By 400,000 cycles, some processors
have as many as 17 packets queued up. The processors above the heavily loaded processors are
nearly always idle and thus appear white. These processors are idle because several senders are
blocked sending to their predecessor in the shift. The white regions thus change to black in about
100,000 cycles as the group of senders transition together. These black and white regions thus form
“lines” that rise at an angle of about 20 degrees from horizontal. We have explicitly marked one of
these lines.

Consecutive transfers incur collisions that do not occur when the transfers are isolated with
barriers. Hot spots start due to random variation and then persist systematically, getting worse and
worse. The barriers increase the performance by eliminating target collisions.

We have explained, at least partly, the large differences between the experiments with barriers
and the experiments without barriers. Now let us examine the other interesting features of Figure 3-3.

For the barrier-free codes, we expect the performance to drop monotonically as the block size
increases, but for the largest block sizes, the performance increases unexpectedly. This is because
for large block sizes, we end up doing very few cyclic shifts. For example, for a block size of 40,000
bytes, there are only 1280K=40K = 32 different cyclic shifts. With so few transitions from one
round to the next, the system never gets a chance to get as far out of sync, and the number of target
collisions remains low. To demonstrate that large blocks suffer as much as medium-sized blocks,
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we tried running the Strata version without barriers for 100 shifts instead of 32, transferring about
3 times as much data (see Figure 3-5.) The new data point, 1.67 megabytes per second, fits right
on the asymptote implied by the first half of the “Strata without Barriers” curve. Thus, without
barriers, as the block size increases, the performance approaches 1.67 megabytes per second for
Strata. The asymptote for CMMD is 1.43 megabytes per second.

Transfers MB/sec 95% CI
32 2.22 �0:122
100 1.67 �0:0404

Figure 3-5: Big blocks also suffer from target collisions. After enough transfers without a barrier,
the achieved bandwidth drops to match the asymptote of the “Strata without Barriers” curve.

Theperformance of Strata with barriers drops slightly for very large transfers, which is due to
cache effects. In our experiment, each sender sends the same block over and over. For all but the
largest blocks, the entire block fits in the cache. The performance of CMMD with barriers does not
appear to drop with the large blocks. In actuality, it does drop, but the effects are masked by the
high variance of CMAML_scopy. The differences in performance and variance between Strata and
CMMD are quite substantial. They are due to bandwidth matching and are discussed in Section 3.6.

The versions with barriers perform worse for small blocks simply because of the overhead of
the barrier, which is significant for very small transfers. The “Optimized Barriers” curve shows an
optimized version that uses fewer barriers for small transfers. The idea is to use a barrier every
n transfers for small blocks, where n times the block size is relatively large, so that the barrier
overhead is insignificant. The actual n used for blocks of size B is n = d512=Be. The choice
of 512, which is relatively unimportant, limits barriers to about 1 for every 512 bytes transferred.
Small limits add unneeded overhead, while large limits allow too many transitions between barriers
and risk congestion. (At n=1, there are no barriers at all.)

Another important feature of Figure 3-3 is that the barrier-free versions have a hump for 16-byte
to 400-byte block sizes. The increase from 16 to 32 bytes is due to better amortization of the fixed
startup overhead of a block transfer. The real issue is why medium-sized blocks perform better
than large blocks. Medium-sized blocks perform better because they do not transfer many packets
to the same destination. The packet count ranges from 2 to 8 for blocks of 32 to 128 bytes. With
such low packet counts, the processor switches targets before the network can back up. (Recall that
the network can hold about eleven packets per node.) Between receiving and switching targets, the
time for a transition allows the network to catch up, thus largely preventing the “sender groups” that
form with longer block transfers. The next section examines this effect in more detail.

Finally, we have seen some cases in which using barriers more frequently than just between
rounds can improve performance. This phenomenon occurs because barriers act as a form of global
flow control, limiting the injection rate of processors that get ahead. Related to this, Section 3.6
shows that artificially limiting the injection rate can improve performance. We do not yet understand
exactly what the additional benefit of extra barriers is over that of limiting the injection rate directly.

3.5 Packets Should Be Reordered

After the selective use of synchronization, the most important technique for maximizing bandwidth
is to randomize or interleave the packets. The previous section showed that large increases in
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Figure 3-6: The effect of interleaving. The two asynchronous block transfer versions use packet
interleaving to achieve about twice as much bandwidth as the corresponding normal block transfers.
The version with barriers still performs much better, but it applies only when the communication
can be structured as a sequence of permutations. The asynchronous block-transfer interface avoids
this requirement.

bandwidth could be achieved by using barriers to prevent interference between adjacent rounds.
When a round is not a permutation, however, collisions occur within the round and the benefit
of synchronization is minimal. In this section, we show that in the cases where collisions may
occur within a round but the distribution of targets is still uniform, reordering packets is the key to
performance.

Figure 3-6 shows the effective bandwidth versus the size of the block sent to each target.
The “Strata Block Transfer with Random Targets” version picks each new target randomly from
a uniform distribution. Thus, within a round we expect target collisions and barriers not to help.
The key is that for small blocks the collisions do not matter, because they are short lived. For
large blocks the hot spots persist for a long time and thus back up the network, reaching the same
asymptote as the cyclic-shift pattern without barriers, which also has a uniform distribution.

The key conclusion from this is that when the distribution is unknown, small batch sizes avoid
prolonged hot spots. For example, if a node has ten buffers that require 100 packets each, it is much
better to switch buffers on every injection (batch size of one) than to send the buffers in order (batch
size of 100).

To explore this hypothesis, we built an asynchronous block-transfer interface. Each call to the
asynchronous block-transfer procedure sends a small part of the transfer and queues up the rest
for later. After the application has initiated several transfers, it calls a second procedure that sends
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all of the queued messages. The second procedure sends two packets from each queued transfer,
and continues round-robin until all of the transfers are complete. To avoid systematic congestion,
the order of the interleaving is a pseudo random permutation of the pending transfers. Thus, each
processor sends in a fixed order, but different processors use different orders.

The performance of this technique appears in Figure 3-6 as the two “Strata Asynchronous Block
Transfer” lines. For random targets, interleaving the packets increases the bandwidth by a factor of
about 1.8 for large blocks (more than 400 bytes) and performs about the same for small transfers.
When used for the all-pairs cyclic-shift pattern, interleaving the packets increases the performance
by a factor of 2.1 for large transfers and by about 15% for small blocks. The cyclic-shift pattern
performs better, because the distribution is more uniform than random targets. The version with
barriers still performs substantially better, but global scheduling is required to ensure that each round
is a permutation. Thus, packet interleaving should be used when the exact distribution of targets is
unknown. The difference in performance between the asynchronous transfers and the version with
barriers is due to the overhead for interleaving.

The dip at 128-byte transfers occurs because there is no congestion for smaller messages and
because the substantial overhead of the interface is amortized for larger messages.

Packet interleaving allows the system to avoid “head-of-line” blocking, which occurs when
packets are unnecessarily blocked due to the packet at the head of the queue waiting for resources
that those behind it do not need. Karol et al. showed that head-of-line blocking can limit throughput
severely in ATM networks [KHM87]. Although Strata tries to send two packets from each message
at a time, if it fails, it simply moves on to the next message. This injection strategy has no effect on
the CM-5, however, because the network interface contains a FIFO queue internally, which allows
head-of-line blocking to occur regardless of the injection order. In general, all levels of the system
should avoid head-of-line blocking.

The benefit of interleaving has important consequences for message-passing libraries. In par-
ticular, any interface in which the the library sends large one buffer at a time is fundamentally
broken. Such an interface prevents interleaving. Unfortunately, the one-buffer-at-a-time interface
is standard for message-passing systems. To maximize performance, a library should allow the
application to provide many buffers simultaneously. The Strata interface seems quite robust, and it
works best with at least four transfers at a time.

3.6 Bandwidth Matching

Given that the overhead of receiving messages limits the effective bandwidth of the network, there is
no point in injecting packets any faster than the receive rate. In this section, we show that artificially
limiting the injection rate improves throughput and reduces the variance in effective bandwidth of
bulk data movement.

Suppose we have a message pattern in which every node both sends and receives. The ideal
situation for maximizing throughput occurs when every node alternates between injection and
reception. Furthermore, we would like the network to contain as few packets as possible, yet still
ensure that each node always has a packet ready to be received.

Because we use polling, we can limit reception to at most one per send, unless the send fails,
in which case we must poll to prevent deadlock. Unfortunately, this strategy achieves only about
2 megabytes per second, because the network becomes very congested. Thus, CMMD and Strata
always choose reception over injection. They poll until the network is empty.

Although this strategy performs much better than limited polling, it is fundamentally unfair.
Nodes that get a little behind may never catch up until others finish sending. The key problem is
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Figure 3-7: The effect of bandwidth matching on permutations separated by barriers. The error
bars show 95% confidence intervals. All of the versions except “Poll Once” poll the network until
it is empty. The delay value is how long the sender waits in the case that no packet arrived.

that nodes that are sending and have no pending arrivals inject packets faster than the receiver can
pull them out. Furthermore, because overloaded targets are not sending, other nodes are likely to
have no pending arrivals, which exacerbates the problem.

Our solution is to delay injection artificially in the case that there are no pending arrivals. This
ensures that receivers pull out packets at least as fast as they arrive, and eventually the network
empties. Thus, an overloaded receiver quickly catches up and resumes sending. Because we
are artificially limiting the injection rate based on the expected throughput, we call this technique
bandwidth matching.6

Figure 3-7 shows the impact of bandwidth matching on the cyclic-shift pattern with barriers.
Without any delay, Strata actually performs worse than CMMD, because Strata has lower overhead
and thus a correspondingly higher injection rate than CMAML_scopy. Increasing the delay to 28
cycles ensures that the injection rate is slightly slower than the reception rate. The sending overhead
becomes 37 + 28 = 65 cycles, while the receiving overhead remains at 62 cycles.

The added delay not only increases the performance by about 25%, it also reduces the stan-
dard deviation by about a factor of 50. The drop in variance occurs because the system is self-
synchronizing: any node that gets behind quickly catches up and resumes sending.

6Bandwidth matching was discovered by Robert D. Blumofe and Eric A. Brewer when they were trying to understand
why an early version of Strata’s bulk transfer routines ran slower than those of CMMD. Blumofe had disassembled the
CMMD code to verify that verified that Strata was programmed to perform the identical sequence of operations on the
network interface as CMMD. But the Strata code was tighter, and executed fewer instructions. Brewer made the key
observation, stating “It is faster because it is slower.” [BB94a].
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The poll-once version takes this strategy a step farther. Given that everyone is sending at nearly
the same rate, it is now sufficient to pull out only one packet, since it is unlikely that there will be
two packets pending. Polling when there is no arrival wastes 7 cycles. This improvement accounts
for about a 7% gain in throughput. The actual reduction in message routing time is closer to 10%,
however due to the fact that all nodes run in lock step, which ensures that all nodes finish at nearly
the same time. Unlike the case without bandwidth matching, the network remains uncongested even
though less polling occurs. Optimum performance requires both bandwidth matching and limited
polling. Note that Strata sustains more bandwidth for all-pairs than Kwan et al. saw for individual
messages, 10.66 versus 10.4 megabytes per second [KTR93]. The net improvement over CMMD
without barriers is about 390%.

Although limited polling can improve performance, it is not very robust. When other cuts of
the network, such as the bisection, become bottlenecks, limited polling causes congestion. We
expect that limited polling is appropriate exactly when the variance of the arrival rate is low. If the
arrival rate is bursty (due to congestion), the receiver should expect to pull out more than one packet
between sends. In practice, patterns such as 2D-stencil [MS91] that do not stress the bisection
bandwidth can exploit limited polling, while random or unknown patterns should poll until there
are no pending packets.

Introducing delay for short transfers actually hurts performance, as shown by the superior
performance of the “No Delay” version for small transfers. In this case, the startup overhead
introduces plenty of delay by itself, and any additional delay simply reduces the bandwidth. Thus,
future versions of Strata will adjust the delay depending on the length of the transfer. This form of
adaptive delay should also remove the performance dip that appeared in the asynchronous block-
transfer curves. For the limited polling case, it was beneficial to increase the delay slightly to 35
cycles to ensure that the bisection bandwidth did not affect the arrival rate.

The technique of adding delay is essentially a static form of flow control. Traditional flow
control via end-to-end acknowledgments would be more robust, but very expensive, since each
acknowledgment requires overhead at both ends. A relatively cheap solution for many situations is
to use barriers as all-pairs end-to-end flow control. In some early experiments we found that frequent
barriers improved performance. Some of this effect occurred because barriers limit the injection rate,
for which bandwidth matching is more effective. We expect that frequent barriers are a more robust
form of flow control, because they are a closed-loop system. Despite its lack of feedback, however,
bandwidth matching is quite stable due to its self-synchronizing behavior. Finally, there has also
been some theoretical evidence that introducing delays might improve performance [RU92, GL89].

3.7 Programming Rules of Thumb

The following rules-of-thumb can help programmers decide when and how to use each of these
mechanisms.

� If possible, recast the communication operation into a series of permutations. Separate the
permutations by barriers, and use a bandwidth-matched transfer routine, such as is provided by
Strata, to implement each permutation. We found that this strategy can improve performance
by up to 390%.

� If bandwidth matching is impractical, because, for example, the real bottleneck is some
internal cut of the network, then using periodic barriers inside each permutation may help.
We have seen cases where barriers within a permutation improve performance.
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� If you know nothing about the communication pattern, you should try to arrange the commu-
nication into a bulk data transfer, and then use an interleaved or randomized injection order,
as provided by Strata’s asynchronous block-transfer mechanism. Even in this case, periodic
barriers within the transfers may improve performance.

� It is important to keep the network empty. It is almost always better to make progress on
receiving than on sending. The one exception occurs when the variance of the arrival rate is
near zero (due to bandwidth matching), in which case any additional polling wastes cycles.

� If your computation operation consists of two operations, each of which has good performance
separately, then keep them separate with a barrier. It is difficult to overlap communication
and computation on the CM-5, because the processor must manipulate every packet, and
the low capacity and message latency of the CM-5 network reduce the potential gain from
such overlap. Large block transfers interact poorly with the cache, however, and we have
seen cases where limited interleaving of the communication and computation can improve
communications performance by about 5%.
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Chapter 4

The StarTech Massively Parallel Chess
Program

4.1 Introduction

After helping to design the Connection Machine CM-5, which provides hardware support for global
synchronization, I wanted to explore how to exploit the MIMD characteristics of the machine fully.
I looked for an application that did not fit well into the data-parallel approach, and I hit upon
computer chess. The parallelism in computer chess derives from a dynamic expansion of a highly
irregular game-tree, making computer chess difficult to express as a data-parallel program. To
investigate how to program this sort of dynamic MIMD-style application, I engineered a parallel
chess program, Startech. StarTech is based on H. Berliner’s serial Hitech program [BE89], and it
runs on a CM-5. This chapter explains how the StarTech program works.

A chess program searches a game tree to determine its best move. Evaluating a chess position
consists of starting at the position and following the tree of possible moves. At each vertex of the
tree, the program considers the set of possible moves of one of the players. The program must
decide when to stop searching and once stopped, it must evaluate the position at the leaf of the tree.
Both of these decisions require knowledge of chess, while the mechanism to unfold and prune the
tree in a serial or parallel implementation is largely independent of the detailed chess knowledge.

The strength of a chess program depends on many factors, which we can roughly lump into two
categories: chess knowledge and brute force. The chess knowledge of StarTech — which includes
the opening book of precomputed moves at the beginning of the game, the endgame databases,
the static position-evaluation function, and the time-control strategy — is based on H. Berliner’s
Hitech [BE89] program. The Hitech program runs on special purpose hardware built in the mid
1980’s and searches in the range of 100,000 to 200,000 positions per second. Berliner provided
us with most of an implementation of Hitech written in C that runs at 2,000 to 5,000 positions per
second.1

The brute-force part of StarTech’s chess strength derives from my parallel implementation of
game-tree search. I started with a relatively crude serial alpha-beta search routine that does not
perform many of the sophisticated search extensions (which change the shape of the tree being

1The variation in the nodes-per-second rate of our serial Hitech implementation is due to the fact that move generation
is more expensive in some situations than others, and the fact that our static evaluator takes different amounts of time
depending on how close the value of the chess position is to the �-� search window as used in Section 4.3.
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searched)2 found in Hitech and other modern chess programs. The parallel version of StarTech
searches exactly the same tree, using the exactly the same search extensions and producing the
exact same evaluations as my serial version produces when searching the same position to the same
nominal search depth.

Given that the shape of the entire unpruned chess tree is fixed by the chess knowledge, the
problem addressed in this chapter is to search the tree quickly and efficiently. My approach is to
break the problem into two parts, an algorithm and a scheduler. The algorithm specifieswhat can be
done in parallel. The scheduler specifies when and on which processor work is actually performed.

I developed a game-tree search algorithm called Jamboree search. The basic idea behind
Jamboree search is to do the following operations on a position in the game tree that has k children:

� The value of the first child of the position is determined (by a recursive call to the search
algorithm.)

� Then, in parallel, all of the remaining k � 1 children are tested to verify that they are not
better alternatives than the first child.

� Any children that turn out to be better than the first child are sequentially searched to determine
which is the best.

If the move ordering is best-first, i.e., the first move considered is always better than the other moves,
then all of the tests succeed, and the position is evaluated quickly and efficiently. We expect that
the tests will usually succeed, because the move ordering is often best-first due the the application
of several chess-specific move-ordering heuristics.

This approach to parallel search is quite natural, and variants of it have been used by several other
parallel chess programs, such as Cray Blitz [HSN89] and Zugzwang [FMM91]. Still others have
proposed or analyzed variations of this style of game tree search [ABD82, MC82, Fis84, Hsu90].
I do not claim that Jamboree search is new search algorithm, although some of the details of my
algorithm are a bit different from the details of the related algorithms that have been previously
described in the literature. Instead, I view the algorithm as a good testbed for understanding how to
design scalable, predictable, dynamic MIMD-style programs.

Other parallel algorithms based on Scout search include minimal tree search, mandatory work
first, and principal variation splitting. S. Akl, D. Barnard and R. Doran [ABD82] proposed the
minimal tree search, which performs the weak �-� search by searching the minimal tree (i.e., the
Knuth-Moore critical tree [KM75], which is further described in Section 6.5). Each position is
kept in an expanded form for potentially a long time, resulting in unrealistic storage requirements.
The Deep Thought parallel algorithm as described in Hsu’s thesis [Hsu90] is a variant of the
high-storage-requirement minimal tree search.

J. Fishburn [Fis84] proposed the mandatory work first (MWF) algorithm. Algorithm MWF is
based on the weak version of �-� search. It explicitly computes the number of critical children
of the position being searched. A child of a position is critical if the child is in the Knuth-Moore
critical tree, which means that the child would definitely be searched by the �-� algorithm. If the
position being searched has more than one critical child, then MWF searches the first child and then
searches the other children in parallel. If the first child turns out to be worse than some other child,
MWF then researches the children that might be the best, all in parallel — this is in contrast to

2StarTech’s search extensions include only quiescence search with check-extension. StarTech does not use the null-
move search, a decision, I have been told by computer chess experts, that costs us about a factor of two in performance. I
use the same search extensions in my serial and the parallel implementations.
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Jamboree which does the researches sequentially. For nodes with exactly one critical child, MWF
just searches the first child. Fishburn analyzed MWF for best-ordered and worst-ordered trees, but
not for realistic game trees. One can construct game trees that are mostly best-ordered, in which
the MWF algorithm does almost as badly as the naive parallel �-� search’s O(

p
P ) speedup.

Fishburn’s MWF algorithm can be viewed as being separate from the scheduler, but his analysis
depends on the scheduler. For example, Fishburn proves that worst-ordered game-trees achieve
speedup using mandatory-work-first on a tree-of-processors scheduler, in which the depth of the
game-tree is much greater than the depth of the processor tree. My result, in contrast, states
that the average available parallelism is less than 3, and that the speedup is less than one, for an
infinite processor perfect scheduler. Even though the MWF algorithm is tangled up with the tree-of-
processors scheduler one can interpret Fishburn’s results someone independently of the scheduler.
Fishburn’s results indicate, for example, that if one has a tree of processors that is half as deep as the
game tree, and the degree of the processor tree is greater than the degree of the game tree, then the
critical path is short and the work efficiency is good. Such a tree is as good as “infinite processors”
for an algorithm in which the shallowest h=2 plies of the game tree are searched in parallel and the
deepest h=2 plies of the game tree are searched serially. It turns out that the half-the-depth-serially
strategy, when applied to Jamboree search, reduces the average available parallelism even further,
down to about 2 for worst-ordered trees. Fishburn did not analyze what happens if the tree of
processors is as deep as the game tree. The reason that MWF achieves speedup on worst-ordered
trees is that MWF researches the children who failed their tests in parallel, while the Jamboree
algorithm sequentially researches all the failed children. Hence, for worst ordered trees, Jamboree
search finds little parallelism, while MWF finds much parallelism. Any chess program that is
searching worst-ordered trees is not competitive, however.

Several programs use principal variant splitting (PV-splitting) [MC82], which is a another
variation on MWF, but the ideas behind PV-splitting are, like MWF, somewhat obscured by the fact
that a tree-of-processors scheduler is entangled into the search algorithm. Later work has separated
the scheduler from the algorithm; For example, Cray Blitz [HSN89] apparently uses PV-splitting
with something like a work-stealing scheduler. No critical path analysis or measurement has been
performed for

The Zugzwang program, developed by R. Feldmann, P. Mysliwietz, and B. Monien [FMM91],
uses a parallel search algorithm that is very similar to Jamboree search. Zugzwang achieves high
work-efficiency, searching to within a few percent the same number of nodes in a parallel search as
in a sequential search. The efficiency of StarTech appears to be somewhat lower, probably because
the Zugzwang team has gone to substantial effort to try to ensure that they search the tree in a mostly
best-first order.

The parallel aspiration search algorithm [Bau78] divides the �-� window into segments, and
gives each processor a different segment of the window to search. Aspiration search achieves only
small parallel speedups. Surprisingly, the serial version of aspiration search often runs faster than
a infinite window search. Today most state-of-the-art chess programs, including StarTech, use a
serial aspiration search in which the game tree is searched with a small �-� window, and if the score
is outside of the window, the tree is researched.

R. Karp and Y. Zhang [KZ89] show how to search an AND/OR tree in parallel by carefully
allocating the right number of processors to each subtree. C. Stein [Ste92] employs Karp and
Zhang’s algorithm as a subroutine to do a parallel�-� search. Stein performs a binary search for the
value of the game tree, at each stage converting the game tree to an AND/OR tree with the question
“Is the value of the root greater than s?”.

There are several other approaches to game tree search that are not based on �-� search.
H. Berliner’s B* search algorithm [Ber79] tries to prove that one of the moves is better according
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to a pessimistic evaluation than any of the other moves are according to a optimistic evaluation.
D. McAllester’s Conspiracy search [McA88] expands the tree in such a way that to change the
value of the root will require changing the values of many of the leaves of the tree. The SSS*
algorithm [Sto79] applies branch and bound techniques to game tree search. These algorithms all
require space which is nearly proportional to the run time of the algorithm, but the the constant
of proportionality may be small enough to be feasible. While these algorithms all appear to be
parallelizable, they have not yet been successfully demonstrated as practical serial algorithms. I
wanted to be able to compare my work to the best serial algorithms.

To distribute work among the CM-5 processors, StarTech uses a work-stealing approach, in
which idle processors request work. Processors run code that is nearly serial. When a processor
discovers some work that could be done in parallel, it posts the work into a local data structure.
When a processor needs work, it sends a message to another processor, selected at random, and
removes work from that processor’s collection of posted work. StarTech uses a globally synchronous
throttling mechanism to prevent idle processors from swamping busy processors with requests for
work.

Many researchers have tried to build parallel chess programs, with mixed success. The StarTech
program owes its success both to good hardware and good software. On the hardware side, the
CM-5’s fast user-level message passing capability makes it possible to use a global transposition
table, and to distribute fine grained work efficiently. The CM-5 control control network makes it
easy to avoid swamping problems. Fast timing facilities allow fine-scale performance measurement.
On the software side, StarTech uses a good search algorithm, and systematically measures critical
path length and total work to understand the performance of the program.

This chapter explains how StarTech works. First Section 4.2 briefly reviews how unpruned
game tree search can used to evaluate a chess position, while Section 4.3 reviews �-� pruning,
and Section 4.4 reviews Pearl’s Scout search algorithm. Section 4.5 describes the Jamboree search
algorithm. Then Section 4.6 describes some of the general problems of scheduling dynamic tree
searches on MIMD machines. Finally, Section 4.7 explains how the StarTech scheduler works.

4.2 Negamax Search Without Pruning

Before delving into the details of the Jamboree algorithm, let us review the basic search algorithms
that are applicable to computer chess. Most chess programs use some variant of negamax tree
search to evaluate a chess position. The goal of the negamax tree search is to compute the value
of position p in a tree Tp rooted at position p. The value of p is defined according to the negamax
formula:

vp =

(
static_eval(p) if p is a leaf in Tp, and
maxf�vc : c a child of p in Tpg if p is not a leaf.

The negamax formula states that the best move for player A is the move that gives player B, who
plays the best move from B’s point of view, the worst option. If there are no moves, then we use
a static evaluation function. Of course, no chess program searches the entire game tree. Instead
some limited game tree is searched using an imperfect static evaluation function. Thus, we have
formalized the chess knowledge as Tp, which tells us what tree to search, and static_eval,
which tells us how to evaluate a leaf position.

The naive Algorithm negamax shown in Figure 4-1 computes the negamax value vp of position
p by searching the entire tree rooted at p. It is easy to make Algorithm negamax into a parallel
algorithm, because there are no dependencies between iterations of the for loop of Line (N5).
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One simply changes the for loop into a parallel loop. But negamax is not a efficient serial search
algorithm, and thus, it makes little sense to parallelize it.

(N1) Define negamax(p) as
(N2) If n is a leaf then return static_eval(n).
(N3) Let ~c the children of n, and
(N4) b �1:

(N5) For i from 0 below j~cj do:
(N6) Let s �negamax(~ci): ;; Recursive Search
(N7) if s > b then set b s: ;; New best score
(N8) enddo
(N9) return b.

Figure 4-1: Algorithm negamax.

4.3 Alpha-Beta Pruning

The most efficient serial algorithms for game-tree search all avoid searching the entire tree by
proving that certain subtrees need not be examined. In this section we review the �-� serial search
algorithm in preparation for the explanation of how the Jamboree parallel search algorithm works.

An example of how pruning can reduce the size of a game tree that is searched can be seen in
the chess position of Figure 4-2. Suppose White has determined that it can win Black’s queen with
40. K�h2. White’s other legal move 40. Kf1 fails to capture the queen. White does not need
to consider every possible way for Black’s queen to escape. Any one of a number of possibilities
suffices. Thus, white can stop thinking about the move without having exhaustively searched all of
Black’s options.

The idea of pruning subtrees that do not need to be searched is embodied in the serial �-� search
algorithm [KM75], which computes the negamax score for a node without actually looking at the
entire search tree. The algorithm is expressed as a recursive subroutine with two new parameters �
and �. If the value of any child, when negated, is as great as �, then the value of the parent is no
less than �, and we say that the parent fails high. If the values of all of the children, when negated,
are less than or equal to �, then the value of the parent is no greater than �, and we say that the
parent fails low.

Procedure absearch3 is shown in Figure 4-3. When Procedure absearch is called, the
parameters � and � are chosen so that if the value of a node is not greater than � and less than
�, then we know that the value of the node can not affect the negamax value of the root of the
entire search tree. After the score is returned from the subsearch on Line (A6), the algorithm, on
Line (A7), checks to see if the negated score is as great as �. If so, we know that the value of the
node is at least as great as � and we can skip searching the remaining children — The procedure
has failed high in this situation. Just because one of the children has a negated score less than �,

3This variant on the standard �-� algorithm is due to Fishburn [Fis83], who called it fail-soft �-� search. Fail-soft
�-� search can return a value that is less than �, in which case the value returned is an upper bound to the true value of
the node, or the search can return a value that is greater than �, in which case the value returned is a lower bound to the
true value.
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Figure 4-2: White to move and win. In this position, White need not consider all of Black’s
alternatives to 40.Kf1, since almost any move Black makes will keep the queen, a worse outcome
than just taking the queen with 40.K�h2.

however, does not mean that some other child might not be within the �-� window. The algorithm
can only fail low after considering all of the children.

(A1) Define absearch(n; �; �) as
(A2) If n is a leaf then return static_eval(n).
(A3) Let ~c the children of n, and
(A4) b �1:

(A5) For i from 0 below j~cj do:
(A6) Let s �absearch(~ci;��;��):
(A7) If s � � then return s. ;; Fail High
(A8) If s > � then set � s. ;; Raise �
(A9) If s > b then set b s.
(A10) enddo
(A11) return b.

Figure 4-3: Algorithm absearch.

The �-� algorithm can substantially reduce the size of the tree searched. The �-� algorithm
works best if the best moves are considered first, because if any move can make the position fail
high, then certainly the best move can make the position fail high. Knuth and Moore [KM75]
show that for searches of a uniform best-ordered tree of height H and degree D, the �-� algorithm
searches only O(

p
DH) leaves instead of DH leaves.

For any k � 0, before searching the (k + 1)st child, the �-� algorithm obtains the value of
the kth child and possibly uses that value to adjust � or return immediately. This dependency
between finishing the kth child and starting the (k+ 1)st child completely serializes the �-� search
algorithm.4

4R. Finkel and J. Fishburn showed that if the serialization implied by �-� pruning is ignored by a parallel program,
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4.4 Scout Search

For a parallel chess program, we need an algorithm that both effectively prunes the tree and can be
parallelized. We started with a variant on serial �-� search, called Scout search, and modified it to
be a parallel algorithm. This section explains the Scout search algorithm.

The serial Scout search algorithm, due to J. Pearl [Pea80], is shown in Figure 4-4. Procedure
scout is similar to Procedure absearch, except that when considering any child that is not the
first child, a test is first performed to determine if the child is no better a move than the best move
seen so far. If the child is no better, the test is said to succeed. If the child is determined to be
better than the best move so far, the test is said to fail, and the child is searched again (valued) to
determine its true value.

The Scout algorithm performs tests on positions to see if they are greater than or less than a
given value. A test is performed by using an empty-window search on a position. For integer scores
one uses the values (���1) and� as the parameters of the recursive search, as shown on Line (S9).
A child is tested to see if it is worse than the best move so far, and if the test fails on Line (S12)
(i.e., the move looks like it might be better than the best move seen so far), then the child is valued,
on Line (S13), using a non-empty window to determine its true value.

(S1) Define scout(n; �; �) as
(S2) If n is a leaf then return static_eval(n).
(S3) Let ~c the children of n, and
(S4) b �scout(c0;��;��):
(S5) ;; The first child’s valuation may cause this node to fail high.
(S6) If b � � then return b.
(S7) If b > � then set � b.
(S8) For i from 1 below j~cj do: ;; the rest of the children
(S9) Let s �scout(~ci;��� 1;��): ;; Test
(S10) If s > b then set b s.
(S11) If s � � then return s. ;; Fail High
(S12) If s > � then ;; Test failed
(S13) Set s �scout(~ci;��;��). ;; Research for value
(S14) If s � � then return s. ;; Fail High
(S15) If s > � then set � s.
(S16) If s > b then set b s.
(S17) enddo
(S18) return b.

Figure 4-4: Algorithm scout.

If it happens to be the case that � + 1 = �, then Line (S13) never executes because s > �

implies s � �, which causes the return on Line (S11) to execute. Consequently, the same code for
Algorithm scout can be used for the testing and for the valuing of a position.

Line S10, which raises the best score seen so far according to the value returned by a test, is
necessary to insure that if the test fails low (i.e., if the test succeeds), then the value returned is an
upper bound to the score. If a test were to return a score that is not a proper bound to its parent, then

then it will achieve only
p
P speedup on P processors [FF82].
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the parent might return immediately with the wrong answer when the parent performs the check of
the returned score against � on Line S11.

A test is typically cheaper to execute than a valuation because the �-� window is smaller, which
means that more of the tree is likely to be pruned. If the test succeeds, then algorithm scout has
saved some work, because testing a node is cheaper than finding its exact value. If the test fails,
then scout searches the node twice and has squandered some work. Algorithm scout bets that
the tests will succeed often enough to outweigh the extra cost of any nodes that must be searched
twice, and empirical evidence [Pea80] justify its dominance as the search algorithm of choice in
modern serial chess-playing programs.

4.5 Jamboree Search

The Jamboree algorithm, shown in Figure 4-5, is parallelized version of the the Scout search
algorithm. The idea is that all of the testing of the children is done in parallel, and any tests that
fail are sequentially valued. A parallel loop construct, in which all of the iterations of a loop run
concurrently, appears on Line (J7). Some synchronization between various iterations of the loop
appears on Lines J12 and J18. We sequentialize the full-window searches for values, because, while
we are willing to take a chance that an empty window search will be squandered work, we are
not willing to take the chance that a full-window search (which does not prune very much) will be
squandered work. Such a squandered full-window search could lead us to search the entire tree,
which is much larger than the pruned tree we want to search.

(J1) Define jamboree(n; �; �) as
(J2) If n is a leaf then return static_eval(n).
(J3) Let ~c the children of n, and
(J4) b �jamboree(c0;��;��):
(J5) If b � � then return b.
(J6) If b > � then set � b.
(J7) In Parallel: For i from 1 below j~cj do:
(J8) Let s �jamboree(~ci;��� 1;��):
(J9) If s > b then set b s.
(J10) If s � � then abort-and-return s.
(J11) If s > � then
(J12) Wait for the completion of all previous iterations
(J13) of the parallel loop.
(J14) Set s �jamboree(~ci;��;��). ;; Research for value
(J15) If s � � then abort-and-return s.
(J16) If s > � then set � s.
(J17) If s > b then set b s.
(J18) Note the completion of the ith iteration of the parallel loop.
(J19) enddo
(J20) return b.

Figure 4-5: Algorithm jamboree.

The abort-and-return statements that appear on Lines J10 and J15 return a value from Procedure
jamboree and abort any of the children that are still running. Such an abort is needed when the
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Figure 4-6: A search tree and the sequence of stack configurations for a serial implementation.

procedure has found a value that can be returned, in which case there is no advantage to allowing
the procedure and its children to continue to run, using up processor and memory resources. The
abort causes any children that are running in parallel to abort their children recursively, which has
the effect of deallocating the entire subtree.

I have considered several variants on Jamboree search, such as to value the first two children
before starting the parallel tests of all the remaining children. By valuing the first two children, the
algorithm is guaranteed to get a score that prunes at least one of the children. Such a variant might
have less parallelism but search fewer positions. If there is still enough parallelism, then we would
prefer the more efficient algorithm.

Parallel search of game-trees is difficult because the most efficient algorithms for game-tree
search are inherently serial. Good game-tree search algorithms use pruning to reduce the size of the
tree that needs to be searched. As an extreme example consider a position which is mate-in-one,
i.e., the player can immediately win by making the correct move. As soon as the program has found
a way to obtain mate-in-one, it does not need to consider any of the alternative moves. It does not
care that the third move leaves it three pawns ahead or even that there is more than one way to
achieve mate-in-one. Thus, as soon as a good move is made, that knowledge can be used to prune
the search tree without affecting the final answer. If the serial program examines the mate-in-one
as its first alternative, then it will only search one node. In this example, there is no available
parallelism. Trying to exploit parallelism by searching additional nodes of the tree is fruitless, since
those additional nodes would never have been searched by a serial algorithm. In order to search
a game-tree in parallel, we must take the risk that we may perform extra work that a good serial
program would avoid.

4.6 Multithreading with Active Messages

Now that we have studied the parallel search algorithm, let us direct our attention to how one can
implement a tree-searching algorithm, such as Jamboree search, on a distributed memory MIMD
machine, such as the CM-5, in which all communication between processors is done with messages.

Consider the general problem of implementing recursive tree-searching programs. In a serial
implementation of a recursive tree searching program, a stack of activation frames is used to maintain
the state of the program. Each frame holds the arguments, local variables, and the program counter
for the local computation. Consider the tree shown at the left in Figure 4-6, with vertices labeled a,
b, c, d, and e. The stack of frames goes through the configurations at the right in Figure 4-6 (our
stack grows and trees both grow downward), and at any instant only the bottommost frame is active.
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Figure 4-7: A sequence of activation trees for a parallel tree search.

In a parallel implementation, however, calls to b and c may run concurrently, and the last-in-
first-out discipline for allocating activation frames does not work. A parallel implementation must
use a tree of activation frames rather than a stack of activation frames.5

At any instant, any of the frames can be active, not just frames at the leaves of the tree. Figure 4-7
shows one way to expand the tree in parallel. In this example, child d could have been allocated in
parallel with child e, but the scheduler chose to run child d and e serially. In a chess program, the
game tree being searched is partially mirrored by the instantaneous state of the activation tree.

The system needs to deallocate frames. If frames were never deallocated, our space bounds
would rise to meet our time bounds, and we would not be able to search very large game trees.
The system cannot deallocate a frame until all of the messages destined for the frame have been
received. Otherwise, a message could arrive and be interpreted by a frame that has been reallocated,
and system would become corrupted. One must be careful that there are neither any other processors
about to send a message to nor any messages in the network destined for a frame that is about to be
deallocated.

One way to determine when all the messages have been delivered from Frame A to Frame B
is, when A has decided to stop communicating to B, to send a completion message from A to B.
If the interprocessor communications network is first-in-first-out, then this strategy suffices. When
Frame B receives completion messages from every frame with which B is communicating, then B
can safely deallocate itself. The CM-5 communications network, however, does not guarantee that
messages are delivered in the same order that they were injected into the network.

To solve the deallocation problem, the completion message needs to contain a count of the
number of messages that have been sent from A to B. When B has received all its completions and
has accounted for every message described in the completion, then B can deallocate itself.

For a tree search algorithm we can optimize this communication by piggybacking the completion
messages with the messages that would be otherwise sent anyway. In the Jamboree parallel search
algorithm, there are three kinds of communications between frames:

5In StarTech, we use a tree of activation frames, but each processor has a single call stack on which the activation
frames are kept. This implementation decision affects the space bounds of the program, which we will consider in
Chapter 5, but is independent of the issues presented in this section. R. Nikhil and Arvind expressed clearly the need for
a tree of activation frames [NA89]. Many systems have been designed to support a tree of activation frames, including
dataflow machines such as EM-4 [SYH*89] and Monsoon [PC90], combinator reduction interpreters [Tur79, DR81], and
multiprocessor LISP systems [Hal84], and threaded interpreters [Cla87, CSS*91, NPA92, Hal94].
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Figure 4-8: Three possible ways to for a frame to terminate (left to right). In the naive imple-
mentation (top), either a ‘score’ message or an ‘abort’ message can trigger the ‘done’ messages,
which contain a message-count. In the optimized implementation (bottom), the ‘done’ message is
piggybacked with the ‘score’ or the ‘abort’ message.

� When creating a new frame, messages from parent to child pass the arguments for the
subsearch.

� When the value of a frame has been computed, the child sends a result its parent.

� The parent can abort one of its children by sending an ‘abort’ message to the child. When an
abort message arrives at a frame, the frame aborts all of its children recursively.6

Figure 4-8 shows three possible ways for a frame to terminate. Figure 4-8(a) shows a ‘normal’
return, where the child returns the score to the parent, and the two frames exchange completion
messages. Figure 4-8(b) shows a ‘abort’ scenario, where the parent tells the child to abort, then
the completions are exchanged. And Figure 4-8(c) shows a situation where the parent decides to
abort the child and the child decides to return a result at the same time, and then completions are
exchanged.

We can optimize some of these messages away. Observe that the result is always immediately
followed by a completion (but completions are not always preceded by a result) to the parent, and
the abort is always immediately followed by a completion (but completions are not always preceded
by an abort) to the child. The StarTech implementation merges the completion and result messages,

6Recall that the Jamboree search algorithm aborts its children when another child returns a score causing the node to
fail-high. Thus, aborts are caused by pruning that occurs after a child has started.
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and merges the completion and abort messages, as shown in Figure 4-8(d)–(f). As a consequence
of using fewer messages, the protocol is simplified, and the performance is improved.

A variation of my method of removing acknowledgments from the abort/result protocol appears
in distributed systems. A. Tanenbaum and R. van Rennesse show how to remove acknowledgments
from remote procedure calls [Tv85]. They are not concerned about the dangling reference problem,
but rather simply with reducing the number of messages.

4.7 The StarTech Scheduler

Now that we have a search algorithm and have reviewed how to run tree searches on a MIMD
machine, we explain the details of the StarTech scheduler. The job of a scheduler is to decide when
to execute work and on which processor to execute it. The scheduler tries to run the program quickly
and without using too much memory. This section describes how work is scheduled by StarTech.

StarTech uses a work-stealing strategy, in which idle processors request work from busy pro-
cessors, to schedule work. Each busy processor maintains a collection of jobs that can be stolen
and worked on in parallel. These jobs can be thought of as ‘frame stubs’ which, in this application,
contain the information needed to perform a search of some subtree in the Jamboree algorithm.

In StarTech, all interprocessor communication is performed using active messages. I used the
Berkeley CMAM active message library [vCG*92], since when I started this project, the CMMD
library did not support active messages. Active messages allowed me to implement many of our
protocols directly and efficiently.

Each processor executes a program which is as close to the standard serial program as possible.
StarTech uses the standard C-language call stack to implement all the activation frames that are
scheduled onto a given processor at the same time. Thus, within one processor, the program runs
nearly as efficiently as the serial version of the program, and the overhead for parallelism only is
paid when work is stolen. Communication among frames on the same processor is done directly
through memory rather than through active messages.7

A processor that needs work sends a “request-to-steal” active message to another, randomly
selected processor. If the other processor has work available to steal, the requester is sent a
“request-granted” message which includes a description of the work. If the other processor has
nothing available to steal, then the requester is sent a “request-denied” message, and the requester
tries again by sending another “request-to-steal” message to another random processor. This work
stealing protocol is an example of a request-reply protocol. Section 2.2 showed how to implement
deadlock-free request-reply protocols on the CM-5.

If, when a request-to-steal message arrives at a processor, there are many jobs available to
be stolen, the StarTech scheduler prefers to steal jobs that are nearer the root of the tree. Since
the jobs nearer the root correspond to deeper subtrees, StarTech’s policy tends to steal the largest

7Both DIB [FM87] and Mul-T [MKH91] use the approach optimizing accesses within a single processor. DIB uses
two representations for its frames: and on-processor stack and an inter-processor tree. DIB dynamically converts between
the two representations. DIB was designed to run on a collection of computers operating over a local area network, and
so it includes many mechanisms to cope with failing processors. The high-cost of interprocess communication on such a
collection discourages message-sending, and DIB’s approach to global data structures is correspondingly awkward. The
Mul-T system optimizes access within a single processor by delaying the creation of closures and other run-time structures
until work is actually stolen. The single-processor performance of a Mul-T program remains substantially lower than a
program written in C, however.
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jobs possible, which improves the chances of amortizing the overhead of stealing the work. This
scheduling policy is written directly into the active message handler.8

One problem that can arise with a simple work-stealing scheduler is that all the idle processors
(the thieves) can gang up on a busy processor, swamping it with requests for work, thereby preventing
it from getting any work done. We now explain how StarTech handles the swamping problem. In
the next chapter (in Section 5.7) we study the underlying causes of the swamping problem.

StarTech uses the CM-5 global synchronization network to help solve the swamping problem.
The synchronization is used as a global throttle on the activity of the thieves. Using the split-phase
global synchronization operation, each processor can “raise its hand”, then do some more work,
and then query to find out if everyone has raised its hand. The StarTech throttling rule is simple:

� Each busy processor must do some work before raising its hand.

� Each idle processor raises its hand immediately. The idle processor can send out only one
request and, if the request is denied, must wait until everyone raises its hand before it can
send another request.

After everyone has raised its hand, the global synchronization network resets, and everyone can
raise its hand again. Meanwhile, busy processors continue to execute their work regardless of the
state of the global synchronization (see Figure 4-9.) The global throttle does not stop any other
busy processors from getting more work done, because the global throttle uses split-phase barriers.
When a busy processor enters a barrier, it keeps working until the barrier completes.

Thus, StarTech’s allocation of new activation frame proceeds in globally synchronous phases.
During each phase, the expected number of request-to-steal messages arriving at any processor is
less than one. The StarTech global-throttle requires very little tuning, since the slowest processor
to “get some work done” automatically controls the allocation rate. The only processors that are
slowed by the barrier are the idle processors. The busy processors, as shown above, are not slowed
down. Thus, by tuning the frequency at which the global throttle is completed, we leave the
performance of the busy processors unchanged, and only the time it takes for an idle processor to
find work is affected. This tuning is only important if there is not enough parallelism to make the
granularity of the work large relative to the time between globally synchronous phases. Thus, we
see that fast global barriers are useful for implementing dynamic MIMD-style computation, as well
as for implementing data-parallel programming.

8In StarTech, we use polling rather than interrupt-driven messages. With this approach atomicity can be guaranteed
for a critical section of code simply by not polling the network during the critical section.
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Chapter 5

The Performance of the StarTech
Program

5.1 Introduction

In Chapter 4 we explained how the StarTech parallel chess program works. In this chapter, we
study the performance of the StarTech program, relating the performance of the program to three
fundamental performance parameters: critical path length, work, and work efficiency. We shall
study how to use those performance parameters to tune the StarTech program in Chapter 6. Recall
that my strategy for parallel computer chess is to divide the program into two parts: the search
algorithm and the scheduler. The algorithm specifies what can be done in parallel, while the
scheduler decides when and where to do the work. Our performance study is organized along
similar lines. We first study the critical path, total work, and work efficiency of the Jamboree
game-tree search algorithm. Then, we study the StarTech scheduler, using the critical path and total
work as a benchmark with which we determine how well the StarTech scheduler does compared to
optimal scheduling.

My strategy for understanding the performance of StarTech is quite different from the strategy
used by other researchers, such as T. Marsland, M. Olafsson and J. Schaeffer [MOS86]. Marsland
et al. measure overheads to try to understand the performance of their parallel chess programs. If
the serial program runs in time Ts then ideally the performance on P processors would be Ts=P .
They define the total overhead of the program to be any additional time taken to actually run the
program. Thus, if it actually takes TP to run on P processors, the total overhead is TP � Ts=P . To
try to understand where the total overhead is coming from, Marsland et al. break the overhead into
three components:

Communication overhead: The time spent sending messages.

Search overhead: The cost attributable to extra positions searched by the parallel program as
compared to the number of positions searched by the serial program.

Synchronization overhead: The time processors are idle. (Referred to as synchronization overhead
because any idle processor must be waiting for some other processor to do something.)

There are problems with overhead measurement, however. To measure communication over-
head, Marsland et al. count the number of messages and multiply by the cost of sending a single
message. To measure the search overhead, they count the number of positions searched. To measure
the synchronization overhead, they subtract the communication overhead and the search overhead
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from the total overhead. Each of these measurements is wrong. For example, communications
overhead depends on how congested the network is.1 The number of positions searched does not
directly relate to the amount of work performed, since move generation and static evaluation takes
different amounts of time for different positions. The synchronization overhead is not measured
independently, so there is no way to quantify the errors incurred by approximating the other two
overheads.

Furthermore, overhead measurement does not provide much insight into the performance of the
program. There is no way to distinguish how much of the synchronization overhead is incurred
because the program has insufficient parallelism, and how much is incurred because the scheduler
does a poor job of distributing the parallel work among the processors. By instead measuring the
critical path length, the work, and the work efficiency, we can obtain precise explanations of how a
program achieves its performance.

To define our three measures of parallel performance, we think of a parallel algorithm as an
acyclic directed graph: dataflow graph. We define

� the critical path length C of the graph as the depth of the graph, measured in units of time;
and

� the work W of the graph as the sum of the times to execute all of the instructions in the graph.

These two values, which can be derived analytically or measured empirically, can provide useful
time bounds. The critical path length C of a dataflow graph gives a lower-bound to the time it takes
to execute the graph. Even given an infinite number of processors and a perfect scheduler, it takes
at least time C to execute the graph, because all of the instructions on any path must be executed
sequentially. The work W provides another lower-bound to the run time. On P processors, one
cannot hope to perform W units of work in time less than W=P . Thus, on P processors, the time
TP to execute a graph must satisfy

TP � W=P; (the ‘linear speedup’ lower bound), (5.1)

TP � C (the ‘critical path’ lower bound.) (5.2)

Brent showed [Bre74, Lemma 2] that for every dataflow graph there is a schedule that executes the
graph in no more than the sum of the linear speedup term and the critical path term. That is, there
are schedules such that

TP � W

P
+C: (5.3)

Blumofe and Leiserson [BL93] show that any greedy schedule that has no overheads achieves
Brent’s bounds.

The work W and the critical path length C can be combined to give the average available
parallelism of a program. If you know W and C , you can produce lower bounds on the time to run
on P processors. If C is as large as W , then even with an unbounded number of processors and a
perfect scheduler you won’t achieve much speedup. On the other hand ifC is very small compared
to W , then you can conceivably make use of many processors to achieve speedup. This relationship
between C and W can be captured by the average available parallelism

A = W=C:

1The number of messages may be a good measure of the communications overhead in a machine where sending a
message requires an operating system call taking tens of thousands of instructions to execute. On the CM-5, however,
where sending a message consumes only a few processor cycles, the actual performance of the network can dominate the
communications overhead.
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The average available parallelism tells us how many processors we can fruitfully apply to running a
program. From Brent’s theorem we can conclude that if P � A then C �W=P and therefore that
TP � 2W=P . That is if we have more average available parallelism than processors, we can, with
the right scheduler, get within a factor of two of linear speedup.

Often, more work is done by a parallel algorithm than by the best serial algorithm. We define the
work efficiency of a parallel computation to be the ratio of the parallel work of the computation to
the serial work done by the best serial implementation to solve the same problem. Brent’s theorem
uses the amount of parallel work rather than the amount of serial work, and so even with an ideal
scheduler, if the work efficiency of the algorithm is too low, then the computation will be slow.

This chapter examines the performance of the Jamboree algorithm using both analytical and
empirical techniques. We analyze two special cases: best-ordered uniform game trees and worst-
ordered uniform game trees. A best-ordered game tree is a tree in which at every position in the
tree, we consider the best move first. That is, we first search the subtree that corresponds to the
best move. In Chapter 4 we observed that �-� search and Scout search both behave optimally on
best-ordered trees. A worst-ordered tree is one in which we consider the worst move first, and then
the second worst move, and so on, finally considering the best move last. In such trees,�-� does not
perform any pruning at all, and Scout search searches the entire tree, even visiting some positions in
the tree more than once. It turns out that Jamboree search also does a very good job on best-ordered
trees, but that Jamboree search offers no opportunity for speedup on worst-ordered trees.

After studying the performance of the Jamboree algorithm, we direct our attention to the StarTech
scheduler. Given the critical path and total work performed by the Jamboree search algorithm, we
construct a performance model for the program. I found that, on real chess positions, the StarTech
scheduler achieves

TP � 1:02
W

P
+ 1:5C + 4:3 seconds. (5.4)

Except for the 4.3 second startup cost, the performance of the StarTech scheduler is within a factor
of 2.52 of optimal.

In addition to modeling the system as a whole, we study one of the problems that commonly
occur in work-stealing schedulers. In a naive work-stealing scheduler the idle processors can
sometimes gang up on the busy processors, swamping them with requests for work, and preventing
them from getting any work done. I solved this problem in the StarTech scheduler by using a globally
synchronous throttling strategy (see Section 4.7.) The swamping problem can be understood using
queueing theory.

We not only wish to achieve good time performance, but we must not use too much memory.
For example, a breadth-first greedy search of the game tree is one of the schedules that achieves
Brent’s bound, but the amount of memory needed is nearly proportional to the amount of total work.
Blumofe and Leiserson [BL93], inspired by memory exhaustion problems I had in early versions of
StarTech, showed that for certain kinds of dataflow graphs, such as the dataflow graph for Jamboree
search, there are easy-to-find schedules that not only achieve Brent’s time bounds, but also use no
more memory per processor than a serial schedule uses. A serial schedule of Jamboree search uses
memory which is linear in the depth of the game-tree. All known serial game-tree search algorithms
use at least that much memory. This chapter includes a study of the performance impact of the
decisions made to guarantee that StarTech’s space bounds are kept reasonable.

In summary, this chapter presents a performance study of the StarTech chess program.

� We start by studying the performance of the chess algorithms. Section 5.2 analyses the
performance of Jamboree search on best-ordered uniform game trees. Section 5.3 analyses
the performance Jamboree search on worst-ordered uniform game trees. Section 5.4 studies
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the performance of Jamboree search on real chess positions and discusses discusses some
of the interactions between the algorithm and the scheduler that can make it difficult to
understand the performance of Jamboree search.

� We then move on to study the StarTech scheduler. Section 5.5 shows why scheduling chess
programs is demanding. Section 5.6 studies the performance of the scheduler relative to
critical path and total work. Section 5.7 studies the swamping problem using queueing
theory. Section 5.8 concludes the scheduler study by discussing the space-time tradeoffs
implied by the decision I made to fix the processing of each position in the chess tree onto
a single processor, rather than allowing a position to migrate after its creation from one
processor to another.

In summary, to quantify the behavior of a parallel algorithm, we use three measures of parallel
computation: the critical path length, the work, and the work efficiency. Critical path length and
total work provide us with bounds on the performance of the computation, while work-efficiency
provides us with a measure of how many processors we need to employ to overcome the overhead of
running a parallel algorithm. By curve-fitting the performance of the system to the measured critical
path and work, we can determine the overheads induced by communications, load-balancing, and
scheduling. These measures are fundamental to a parallel computation and provide genuine insight
into how a program behaves.

5.2 Analysis of Best-Ordered Trees

To analyze best-ordered trees, we borrow some notation from Knuth and Moore [KM75]. Knuth
and Moore proved that for a best-ordered tree, �-� search searches exactly the critical tree. To
define the critical tree, we first define three three position types: Type 1, Type 2, and Type 3.

� The root of the game tree tree is a Type 1 position.

� The first child of a Type 1 position is a Type 1 position. The other children of a Type 1
position are Type 2 positions.

� The first child of a Type 2 position is a Type 3 position. The other children of a Type 2
position are not given types.

� All the children of a Type 3 position are Type 2 positions.

The critical tree is the set of all positions of Type 1, Type 2, or Type 3. Figure 5-1 shows a uniform
game tree of depth 3 in which each position has 3 children, with the critical tree highlighted. The
types of the positions in the critical tree are shown. It turns out that Jamboree also searches exactly
the critical tree in a best-ordered game tree, and it searches each position exactly once. Thus, if we
analyze the critical tree, we have analyzed the entire tree.

Definition 5.1 We denote the best-ordered uniform game-tree of height h with d children at each
internal position as Bd;h. The value of Bd;h must be finite.2

Definition 5.2 We denote the critical tree of Bd;h as Cd;h.

2Knuth and Moore note that if a game tree has a score that is +1 or �1, the combinatorics work out slightly
differently.
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Figure 5-1: The critical tree of a best-ordered uniform game-tree. The critical tree is shown with
solid lines, while the rest of the tree is shown with dotted lines. Also shown are the Knuth-Moore
types of the positions that are in the critical tree.

For our analysis of uniform trees, we assume that each position costs one unit of time to visit.
We also assume that all of the time is spent when the position is first visited. This lumped-cost
assumption is close to the reality of StarTech, where move generation and static evaluation take
much more time than the time taken between children. Almost the only thing to do between children
is to take the maximum of the best known score with the score of a child. Also, we can charge
any between-children costs to the children. Knuth and Moore analyzed the number of leaves in the
critical tree, which is

Leaves of Cd;h = ddh=2e
+ dbh=2c � 1:

We are interested in the number of internal positions of the tree.

Theorem 5.3 For any d � 2 and any h � 1, we have

jCd;hj =

8>>>><
>>>>:

3d+ 1
d� 1

dh=2 � d+ 3
d� 1

� h� 1 if h is even,

d2
+ 3d

d� 1
d(h�1)=2 � d+ 3

d� 1
� h� 1 if h is odd.

(5.5)

The proof follows in a few paragraphs,but first let us investigate the ramifications of Theorem 5.3.
We can use Equation 5.5 to determine the work done by Jamboree search on a best-ordered uniform
tree, as well as the critical path of the computation and the average available parallelism.

Theorem 5.4 If d > 1, Jamboree search of Bd;h
� performs work jCd;hj,
� has critical path length jC2;hj,
� has average available parallelism jCd;hj=jC2;hj.

Proof of Theorem 5.4: Knuth and Moore showed that �-� search searches exactly Cd;h. For best
ordered trees, Jamboree searches the tree that �-� would search, since every test succeeds. The

77



h jC36;hj=jC2;hj jC36;hj=jC3;hj
0 1.0 1.0
1 12.3 9.2
2 18.0 12.0
3 130.8 72.0
4 223.9 108.9
5 1792.4 722.0
6 3302.1 1162.3
7 27933.8 8067.1
8 53375.4 13309.9
9 464666.1 94101.4

10 905331.4 156793.5

Figure 5-2: Numerical values for the average available parallelism for best-ordered uniform game
tree of degree 36 for various heights. The first column is the height. The second column is the
average available parallelism for the Jamboree algorithm valuing one child before testing the rest in
parallel. The third column is the average available parallelism for the Jamboree algorithm serially
valuing two children and then testing the rest in parallel.

critical path is the size of C2;h, because the first child is searched, then all the other children are
searched in parallel. Thus, we can ignore all but the first and second child, and they are done serially.
The average available parallelism is computed by definition.

For chess mid-game positions, it is estimated [Sha50] that the average number of children of a
position is about 36. Plugging d = 36 into Equation 5.5 yields the values shown in Figure 5-2. We
hope to search to depth 10 or deeper, and there is plenty of parallelism if we can make the search
best-ordered. The average available parallelism for a version of Jamboree search that values the first
two children serially before testing the rest of the children in parallel is also shown in Figure 5-2.
Doing two children serially before testing the rest should reduce the amount of work done (since
we are less like to do a lot of work in parallel that turns out to be unnecessary) and reduces the
parallelism. If we can achieve good enough move ordering, there appears to be plenty of parallelism
even for this more serial version of Jamboree search.

The number of children valued serially can be viewed as a tuning parameter. Charles E.
Leiserson suggested a strategy in which the number of children valued serially is a function of the
depth of the search. The idea is to find more parallelism for shallow searches while improving the
work efficiency for deep searches. My experiments with this strategy were not conclusive, although
we shall see, in Section 6.5, that a related idea works quite well.
Proof of Theorem 5.3: We partition Cd;h into disjoint subtreesV0;V1; : : : ;Vh as shown in Figure 5-3
for the example C3;5. We let Vi = jVij, and the recurrence relation for Vi is

Vi =

8><
>:

1 if i = 0,
d if i = 1,
d � Vi�2 + d� 1 if i > 1.

(5.6)

This recurrence is derived by observing that for i > 1, Vi can be assembled from d copies of
Vi�2 plus d � 1 vertices. To perform this assembly, observe that the root of Vi has d(d � 1)
great-grandchildren that are each identical to each of the (d � 1) children of the root of of Vi�2.
Thus d copies of Vi�2 accounts for all of the great grandchildren of Vi, with d nodes left over. We
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V5V3 V4V0 V1 V2

Figure 5-3: To solve for the number of vertices in the critical tree of a best-ordered uniform game
tree, we partition the tree as shown, and then compute

P
h

i=0 jVij.

have not accounted for the root of Vi, its d � 1 children, or its d� 1 grandchildren. Thus we need
2d� 1 more nodes, and we already have d left over from the d copies of Vi�2. We add in the d� 1
children needed to account for all of V hi.

Linear recurrence 5.6 can be solved using generating functions. We are not really interested
in solving for Vi, but we need the generating function for Vi to solve for jCd;hj. Recall that the
generating function generating function v(x) =

P1
i=0 Vix

i is an infinite symbolic polynomial in
which the coefficient of xi is the value of Vi. Recall also that

d� 1
1� x

=

1X
i=0

(d� 1)xi;

and that

dx2v(x) =
1X
i=0

dVix
i+2;

so that with the corrections for the boundary cases thrown in, we find that v(x) satisfies

v(x) =
d� 1
1� x

+ dx2v(x) + x+ 2� d: (5.7)

Solving for v(x) gives

v(x) =
d� 1

(1� x)(1� dx2)
+

2� d+ x

1� dx2 : (5.8)

Putting v(x) into the canonical form,

v(x) =
a

1� x
+

bx+ c

1� dx2 (5.9)

yields the generating function

v(x) =
�1

1� x
+

(d+ 1)x� 2
1� dx2 : (5.10)
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Now to solve for jCd;hj we multiply by 1=(1 � x), which Liu [Liu68, Example 2-7] calls ‘the
summing operator’. The generating function for jCd;hj is

s(x) =

1X
i=0

0
@ iX
j=0

Vj

1
Axi (5.11)

=
v(x)

1� x
(5.12)

=
d� 1

(1� x)2(1� dx2)
+

2� d+ x

(1� x)(1� dx2)
(5.13)

=
(3 + d)=(1� d)

1� x
+

�1
(1� x)2

+
(�3d� d2

)=(1� d)x+ (�3d� 1)=(1� d)

1� dx2 ; (5.14)

i.e., the size of Cd;h is the sum of the sizes of the partition, jV0j+ � � �+ jVhj.
We now need to calculate the coefficient of xh in Equation 5.14 to determine jCd;hj. For the

first term the coefficient is just (3 + d)=(1� d). The second term applies the summing operator toP1
i=0(�xi) yielding

1X
i=0

(�xi)

1� x =

1X
i=0

0
@ iX
j=0

(�1)

1
Axi

=

1X
i=0

(�i� 1)xi:

and the coefficient of xh in the summed polynomial is (�h � 1). The third term can be expanded
by substituting y = dx2 into

1
1� y

=

1X
i=0

yi;

and multiplying by the top yielding

(�3d� d2
)=(1� d)x+ (�3d� 1)=(1� d)

1� dx2 =

1X
i=0

 
�3d� 1
d� 1

dix2i
+
�3d� d2

1� d
dix2i+1

!
: (5.15)

The coefficient of xh in Equation 5.15 is computed as follows:

� for even h, the only possible match is h = 2i giving (�3d� 1)dh=2=(d� 1) as the coefficient
of xh.

� for odd h, the only possible match is h = 2i+ 1 giving (�3d� d2
)d(h�1)=2=(1� d).

Summing up the coefficients contributed by each term of Equation 5.14 yields Equation 5.5, proving
Theorem 5.3.
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5.3 Analysis of Worst-Ordered Game Trees

Surprisingly, for worst-ordered uniform game trees, the speedup of Jamboree search over serial
�-� search turns out to be just under 1. That is, Jamboree search is worse than serial �-� search.
For comparison, parallelized negamax search achieves linear speedup on worst-ordered trees, and
Fishburn’s MWF algorithm achieves not-quite linear speedup on worst-ordered trees [Fis84].

Definition 5.5 We denote the worst-ordered uniform game-tree of height h with d children at each
internal position asWd;h. The value ofWd;h must be finite.

Theorem 5.6 For Jamboree search onWd;h:

� The critical path length is

C(Wd;h) =

8>>>>><
>>>>>:

d2
(1 + d)

(1� d)(2� d2)
dh +

6 + 4d
2� d2 2h=2 � 2

1� d
if h is even,

d2
(1 + d)

(1� d)(2� d2)
dh +

8 + 6d
2� d2 2(h�1)=2 � 2

1� d
if h is odd.

(5.16)

� The work performed is

W (Wd;h) =

8>>>><
>>>>:

3d
d� 1

dh � 1 + 3d
d� 1

dh=2
+

d

d� 1
if h is even,

3d
d� 1

dh � 3 + d

d� 1
d(h+1)=2

+
d

d� 1
if h is odd.

(5.17)

Corollary 5.7 Asymptotically, as d and h go to infinity, for Jamboree search onWd;h,

� the work efficiency as compared to serial �-� search is 1=3,

� the average available parallelism is 3, and

� the speedup is bounded above by 1.

In fact, as Figure 5-4 shows, the asymptotes are approached quite quickly for game trees of
degree 36.
Proof of Corollary 5.7: The work performed by serial �-� search on worst-ordered trees is exactly
Ws = dh. For any fixed h, we have

lim
d!1

Ws

Wd;h

=
1
3
:

The work is W1 = 3dh+1=(d � 1) � Ω(dh=2
), and the critical path is C = dh+2

(1 + d)=((1 �
d)(2� d2

)) +O(2h=2
). Thus, the average available parallelism is

W1=C =
3dh+1=(d� 1)�Ω(dh=2

)

dh+2(1 + d)=((d � 1)(d2 � 2)) +O(dh=2)

� 3
d(1 + d)=(d2 � 2)

=
3(d2 � 2)
d2 + d

� 3:
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h Work Average Speedup
efficiency available over

Parallelism Serial
0 1.000000 1.000000 1.000000
1 0.513889 1.894737 0.973684
2 0.342850 2.833819 0.971574
3 0.336708 2.885218 0.971477
4 0.333593 2.912146 0.971472
5 0.333426 2.913602 0.971471
6 0.333341 2.914351 0.971471
7 0.333336 2.914392 0.971471
8 0.333334 2.914413 0.971471
9 0.333333 2.914414 0.971471

10 0.333333 2.914414 0.971471

Figure 5-4: The work-efficiency, average available parallelism, and speedup over the serial code
of Jamboree search onW36;h, the worst-ordered uniform game-tree in which each internal position
has 36 children.

The time to execute the parallel code is bounded below by C = dh + O(dh � 1), so the speedup,
which is limited by Ws=C , approaches 1 from below.

Proof of Theorem 5.6: The critical path, Ch forWd;h satisfies

Ch =

(
1 if h = 0,
1 + dCh�1 +Oh�1 if h > 0;

(5.18)

where

Oh =

8><
>:

1 if h = 0,
3 if h = 1,
3 + 2 � Oh�2 if h > 1.

(5.19)

For the case of h > 0, this Equation 5.18 can be derived as follows:

� The 1 comes from searching the root ofWd;h.

� Jamboree search, on a worst-ordered tree, values the first child, contributing Ch�1.

� Then, Jamboree search tests all the other children in parallel. Since the tree is uniform, the
critical path of all the tests is the same, so just consider a single one of the tests. The critical
path of a test that fails is given in Equation 5.19. For a test that fails, the first child is searched
with a test that succeeds, then all the other children are searched with a test that succeeds.

� Finally after all the tests fail, the rest of the children are serially researched contributing
another (d� 1)Ch�1.

To solve Equation 5.18 we again use generating functions. The generating function for Oh is

O(x) =
3

1� x
+ 2x2O(x)� 2; (5.20)
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which yields

O(x) =
1 + 2x

(1� x)(1� 2x2)
: (5.21)

The generating function for Ch is

C(x) =
1

1� x
+ dxC(x) + xO(x); (5.22)

which yields

C(x) =
1� x

(1� dx)(1� x)(1� 2x2)
(5.23)

=
d2
(1 + d)=((1 � d)(2� d2

))

1� dx
+
�2=(1� d)

1� x

+
(6 + 4d)=(2� d2

) + (8 + 6d)x=(2� d2
)

1� 2x2 : (5.24)

Reading the coefficients from Equation 5.24 as we did on Page 80, gives

Ch =

8>>>>><
>>>>>:

�2
1� d

+
d2
(1 + d)

(1� d)(2� d2)
dh +

6 + 4d
2� d2 2h=2 if h is even,

�2
1� d

+
d2
(1 + d)

(1� d)(2� d2)
dh +

8 + 6d
2� d2 2(h�1)=2 if h is odd.

(5.25)

To get the formula for the work done on worst-ordered trees, we use this linear recurrence for
Wh, the work done on a tree of depth h:

Wh =

(
1 if h = 0,
1 + dWh�1 + (d� 1)Ah�1 if h > 0;

(5.26)

where

Ah =

8><
>:

1 if h = 0,
d+ 1 if h = 1,
d+ 1 + dAh�2 if h > 1.

(5.27)

We obtain these recurrence relations by observing that the Jamboree algorithm first searches the root
of the tree (1), then searches the first child (Wh�1), then tests each of the other children (dAh�1),
then researches each of the tested children (d� 1)Wh�1. The amount of work done when testing a
tree of depth h > 1, when the test fails, is 1 for the root, d for each of the children each of has the
test succeed, so they only test one grandchild each, and each grandchild’s test fails (dAh�2.)

The generating function for Ah is

A(x) =
d+ 1
1� x

+ dx2A(x)� d (5.28)

=
1 + dx

(1� x)(1� dx2)
(5.29)
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The generating function for Wh is

W (x) =
1

1� x
+ dxW (x) + (d� 1)xA(x) (5.30)

=
1� x+ dx+ 2dx2

+ d2x2

(1� x)(1� dx)(1� dx2)
(5.31)

=
d

d� 1
� 1

1� x
+

3d
d� 1

� 1
1� dx +

d(3 + d)x+ (1 + 3d)
1� d

� 1
1� dx2 (5.32)

Reading the coefficients for W (x) (as we did on Page 80) gives

Wh =

8>>>><
>>>>:

d

d� 1
+

3d
d� 1

di +
1 + 3d
1� d

di=2 if h is even,

d

d� 1
+

3d
d� 1

di +
d(3 + d)

1� d
d(i�1)=2 if h is odd;

(5.33)

thus proving the theorem.

5.4 Jamboree Search on Real Chess Positions

We now understand the Jamboree search for two special cases of search trees: best-ordered and
worst-ordered uniform trees. Real chess trees are more complex, however. They have nonuniform
depth and degree, and they are ‘mostly’ best ordered. In this section we study the critical path length,
total work, and work efficiency for real chess trees. We start with a discussion of the difficulties
with measuring Jamboree search on real chess trees. We then show that for real chess trees the
critical path is short compared to the total work, which means that there is plenty of parallelism and
that the total work produced by the algorithm compares favorably to a serial implementation.

It is difficult to analyze Jamboree search for arbitrary game trees, because it is difficult to
characterize the tree itself, and the tree that is actually searched can depend on how the work is
scheduled. Unlike many other applications, the shape of the tree traversed by Jamboree search can
be affected by the order of the execution of the work, sometimes increasing the work and sometimes
decreasing work. Thus, measurements of “critical path length” and “work” on a particular run may
be different than the measurements taken on another run, because the trees themselves are different.
It is not clear what “critical path” and “work” mean for Jamboree search on arbitrary trees.

The work, as measured on one run, might be more or less than the work on another run.
Sometimes more work is done by a fully parallel Jamboree search than by serial scheduling of
Jamboree search. For example, as shown in Figure 5-5, if the second subtree of a position fails
high, fully-parallel Jamboree search may still search the third and subsequent subtrees, whereas a
serial scheduling would allow Jamboree to stop after examining the second child. More generally,
Jamboree search might start searching the later subtrees and then abort those searches partway
through. A serial schedule would never have started searching those later subtrees.

Sometimes less work is done by fully parallel Jamboree search than would be done under a serial
schedule. Figure 5-6 shows such an example. In this case, the serial schedule finishes searching
the large subtree E before quickly finding out that subtreeF would fail high. Under a fully parallel
schedule, on the other hand, the scheduler might expand the search of D and F in parallel, obtain
the result for F , and abort the subsearch of E. If the tree had been best-ordered, both the serial
and the parallel algorithm would be guaranteed to do the same amount of work. In this case,
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� = 50

C

score = 100

A B

score = 20 score = 40

Figure 5-5: Jamboree search sometimes does more work than a serial algorithm. In this case the
value of � is 50, so as soon as a child is found with score � 50, a serial algorithm would stop
examining children. Jamboree search, like a serial algorithm, searches the first child, A, obtaining
a value of 20. Then Jamboree searches B and C in parallel, aborting the search of C only when
the value of B is determined. A serial algorithm would never search C .

the breadth-first search order used by a fully parallel schedule is buying performance. The work
done by one scheduling of Jamboree search is generally incomparable to the work done by another
scheduling.

The situation for the critical path length is a little better than for the estimate of work. Measuring
the “critical path length” using any schedule we want yields an upper bound to the true infinite-
processor critical path length.

The critical path length of a computation is generally accepted to be the time it takes for an
infinite number of processors with a perfect scheduler to execute the program. I obtain an estimate
to the infinite-processor critical-path length while running the StarTech program by using a time-
stamping scheme. We can view Jamboree search as a dataflow graph, as shown in Figure 5-7. The
arcs of the dataflow graph carry control information, so that when a token arrives at a procedure
call, the procedure may start, and when the procedure finishes, a token is delivered at the output
of the call. In general, one can determine the time that any particular instruction would execute
on perfect infinite-processor schedule by time-stamping each token. As shown in Figure 5-8, the
time-stamp of a token on the output of an instruction can be computed by taking the maximum of
the time-stamps of the tokens on the inputs of the instruction and adding the time it takes to execute
the instruction.

My measurements indicate that 85% to 95% of the positions encountered in the tree by StarTech
are best-ordered. That is, the move-ordering heuristics of StarTech guess which move is the best
move about 85% to 95% of the time. The precise rate depends on which position being searched.

For Jamboree search, the measured critical path length is an overestimate of the critical path
length for an infinite processor machine with a perfect greedy scheduler. To see why this is so,
consider the dataflow graph shown in Figure 5-9, which includes a first operator that passes
the first result that arrives to its output. When one subgraph completes, the other subgraph can be
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� = 50

E

D
F

score = 40score = 20 score = 100

Figure 5-6: Jamboree search sometimes does less work than a serial algorithm. The value of � is
50. The first child, D is searched and the score is determined to be 20. The second child, E, is
a large subtree with a score of 40. Jamboree search might search the third child, F , which has a
score of at least 100, before E has been finished, and Jamboree might abort the expensive search
of E.
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ViValue child iV0

� � �

V2

T2T1 T3 Tk�1

V1 V3 Vk�1

Test child i Ti

Merge

Fork

Join

Test

Figure 5-7: The dataflow graph for Jamboree search. First Child 0 is searched to determine its
value, then the rest of the children are tested in parallel to try to prove that they are worse choices
than Child 0, and then each of the children that fail their respective tests are serially researched.
This dataflow graph can be used to measure the critical path length of the computation by using
time-stamping. Compare this description of the Jamboree algorithm to the textual description in
Figure 4-5.

aborted, since the first operator ignores its result. The infinite processor critical path of this
dataflow graph is the minimum of the critical paths of the two subgraphs. An implementation that
aborts the second subcomputation may be throwing away the result with the shorter critical path,
and then the only critical-path length information it has will be an overestimate. Such a situation
arises in Jamboree search after the search of the first child is complete and the rest of the children are
searched in parallel. Some of those children may fail high, aborting all of the rest of the children,
and the only critical path information available is an overestimate of the critical path. Thus, the
empirical critical path length measurements overestimate the run time of the program on an infinite
processor machine with a perfect greedy scheduler. Fortunately, my empirical measurements turn
out to be good enough to allow us to tune the program.

I measured the performance3 of StarTech running on a problem set of 25 chess positions
designed by International Master L. Kaufman. Several other chess problem sets have appeared
in the literature to test the skill of a chess program. The Bratko-Kopec set [KB82], one of the
earliest test sets published for computers, was designed to show the deficiencies of a program
rather than to estimate the program’s strength. Feldmann et al. [FMM90] found that the Bratko-
Kopec test set could not differentiate between master-level chess programs, and so they picked
a collection of positions from actual games they had played to measure the performance of their
program. Kaufman’s problem set [Kau92, Kau93] was specifically designed to estimate the rating of

3I measured the run-time, the total work and, the critical path length, using the fast user-level timers described in
Section 3.3. To avoid the problems described in Section 3.3 I performed the experiments on the CM-5 in dedicated
(single-user) mode. To measure the critical path length, I used the timestamping technique described above.
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(d2; t2)(d1; t1)

(d1 � d2; �� + max(t1; t2))

��

Figure 5-8: The time at which an instruction in a dataflow graph is executed in a perfect infinite-
processor schedule can be computed by timestamping the tokens. In addition to the normal data-
value of a token (d1, d2, and d1 � d2 respectively in the figure), the token includes a timestamp
(t1, t2, and ��+ max(t1; t2) respectively.) The timestamp on the outgoing token is computed as a
function of the timestamps of the incoming tokens and the time to execute the instruction.

Subgraph B

Subgraph A

FIRST

Figure 5-9: Two subgraphs of a dataflow graph compute in parallel. One keeps only the first
result, aborting the computation in progress on the second subgraph. In this situation a reasonable
estimate of the critical path is the critical path of the completed subgraph, even though that may
be an overestimate. For example it is possible that Subgraph A finishes its computation first even
though the critical path of Subgraph B is shorter than of Subgraph A.

a program that plays master-level chess. Kaufman uses 25 chess positions (20 tactical, 5 positional),
each of which has a ‘correct’ answer. The program is timed on each position to determine how long
it takes to decide to play correct move.4

The measured work increases with the size of the CM-5 on which we the program is running.
Figure 5-10 shows how the measured work varies with the machine size for each of several executions
of each of the 25 chess positions. The work efficiency of the program running on large machines
does better on longer runs than on shorter runs. Figure 5-12 shows a scatter plot of the work

4For a precise explanation of Kaufman’s test, see [Kau92, Kau93].
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efficiency against the serial run time, for each of the machine sizes. For the larger machines, the
work efficiency never is as good as for the smaller machines, but the program does always run faster
on a big machines. The sample correlation coefficient (see for example [HL93, page 51])

r =

P
xiyi � (

P
xi) (

P
yi) =nrhP

x2
i
� (
P
xi)

2 =n
i hP

y2
i
� (
P
yi)

2 =n
i

of the work efficiency to the run time is shown for each machine size. Thus, while the efficiency
drops as the machine gets larger, if we fix the machine size, and let problems run longer, the
efficiency improves.

Surprisingly, the measured critical path length increases as the number of processors grows.
Figure 5-11 shows how the measured critical path length varies with the machine size for each of
25 different chess positions. We argued above that the critical path length is a lower bound to the
infinite processor critical path length.

I believe that the increase in measured work and measured critical path length can be largely
explained by transposition table effects. StarTech uses a global transposition table, the implemen-
tation of which is outlined in Section 6.3, to cache the results of recent searches. The transposition
table improves efficiency in two ways. The first efficiency improvement is due to the reconvergence
of the search. The same position may be encountered along two different variations, in which case
the transposition table can immediately return the result for the second search without performing
the search. The second efficiency improvement is due to the use of the transposition table as a
move ordering heuristic. A previous search of the same position to a shallower depth is not good
enough to shortcut the search, but StarTech can use the information about which move was best for
the shallower search to improve the probability that StarTech considers the best move on the deeper
search. In a larger machine, the transposition table is less effective than in a smaller, since a search
that is performed serially on a smaller machine may be performed in parallel on a larger machine.
On the other hand, the larger machine has a larger transposition table, which lowers the probability
of some useful value being removed due to hash-key collisions.5

These effects, plus the fact that my critical path measurements do not accurately reflect de-
pendencies through the transposition table, mean that for larger machines, the measured critical
path tends to increase. In contrast, we argued earlier that the measured critical path length is an
upper bound to the infinite processor critical path. The global transposition table is essential to the
performance of the program, but the nondeterminacy introduced by the table can make it difficult
to understand the program.

The scheduler and the Jamboree algorithm have positive interactions. Abstractly, the scheduler
and the algorithm are separated. But in practice, there are interactions between them. If there is
more parallelism than there are processors, then processors tend to do their work locally, effectively
creating a larger grain size, and the efficiency of the underlying serial algorithm becomes the
determining performance factor. The StarTech scheduler attempts to steals work that is near the
root of the game tree, rather than work that is near the leaves. By stealing work near the root of
the game tree, the size of stolen work is increased. On the other hand, if work is stolen that later is
determined not to have been useful, more processor cycles are wasted. I found that for a given tree
search, the average size of stolen work is larger for smaller machines.

In summary, the the critical path length and total work are stable enough to be useful for algorithm

5To make the transposition table equally effective for large and small machines, we shall explore, in Chapter 6, a
transposition table modification called deferred-reads.
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Figure 5-10: The total work of each of Kaufman’s 25 test positions, as measured on various machine
sizes. Each box represents one test position. The positions are named k01 through k25. The
horizontal axis on each graph is the machine size (‘S’ denotes my best serial implementation). The
vertical axis is the total work executed, in processor-seconds. The range of the total work for each
position is shown at the left, just above the graph for that position. The vertical axis is scaled to that
range. Each plotted point corresponds to a single measured execution. The positions are plotted in
descending order according to the time taken by the serial implementation.
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Figure 5-11: The critical path of each of Kaufman’s 25 test positions, as measured on various
machine sizes. Each box represents one test position. The positions are named k01 through k25.
The horizontal axis on each graph is the machine size. The vertical axis is the critical path length,
in seconds. The range of the critical path length for each position is shown at the left, just above
the graph for that position. The vertical axis is scaled to that range. Each plotted point corresponds
to a single measured execution. The positions are plotted in descending order according to the time
taken by the serial implementation.
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Figure 5-12: A scatter plot of the serial run time against the work efficiency. The horizontal axis of
each scatter plot is the serial run time in seconds. The vertical axis is the work efficiency (the ratio
of the serial run time to the parallel work.) The scales of both axes are the same for each scatter plot.
One scatter plot is shown for each machine size. The sample correlation coefficient (r) is shown in
the upper left hand corner of each scatter plot.
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design, even though they do vary with the machine size. The average available parallelism and work
efficiency of StarTech are both good enough to achieve significant speedup on chess problems.

5.5 Scheduling Parallel Computer Chess is Demanding

At this point, we have found that the performance of StarTech, as measured by critical path and total
work, is quite promising. Before studying the performance of the scheduler, this section presents
evidence that scheduling parallel computer chess is potentially very difficult. Other researchers
have studied the performance of schedulers on easy problems. For example, using a highly parallel,
uniform, program such as nfib6 to measure the success of a scheduler does not really present
compelling evidence that the scheduler actually addresses any difficult scheduling problems. Our
evidence that computer chess is difficult to schedule comes from an examination of the ideal-
parallelism profile of StarTech.

Consider the ideal-parallelism profile, shown in Figure 5-13. On a parallel machine with an
unbounded number of processors and no scheduling overhead, the program would take 39 seconds
to run. The total work (which is the area under the curve) is about 10000 processor-seconds. The
total work is comparable to the time taken by the serial program, which is about 9000 seconds
using my best serial implementation running on a single processor of the CM-5. While the average
available parallelism is 10000=39 = 256, for most of those 39 seconds, there is very little available
parallelism. Figure 5-14 shows the data-points of the parallelism profile sorted from least-parallel
to most-parallel, and plotted on a logarithmic scale, to make it easier to see how much of the 39
seconds is spent with how much parallelism. For a total of 18.4 seconds, the available parallelism
is less than 16, and for 8.5 seconds the parallelism is less than 4. It is important that the program do
a good job during those serial sections so that not much real wall-time is used up on the serial parts
of the computation.

In general, an ideal-parallelism profile shows how a program would run on an infinite number of
processors with perfect load balancing. The only constraint on the time-to-completion is the depth
of the data-dependency graph. The horizontal axis is the time on the ideal machine. The parallelism
curve shows how much parallelism is available at any given time, i.e., how many processors can
be used at any given time. The length of the horizontal axis (the critical path length) shows how
long the program runs (39 seconds in this case). The area under the curve (about 10000 processor-
seconds) is the total number of processor-seconds that processors actually do useful work. The
average available parallelism is the total work divided by the critical path length (in this case, 256
processors). As we shall see, for this example one may reasonably hope to use up to 256 processors
at 50% efficiency, i.e., to finish the actual execution in 39 � 2 = 78 seconds.

The concept of an “ideal-parallelism profile” does not quite apply directly to Startech, since
the work that is actually done depends on the scheduler. The program produces the same answer
every time, but it may get that answer by expanding different trees, the details of which depend on
low-level timing effects, on the number of processors, and on randomization in the search algorithm
itself. One can really only compute an approximation to the ideal-parallelism profile, but I have
found that this approximation tends to be reasonably accurate as the machine size is varied and over
multiple runs of the same program.

The scheduling of the ideal work onto processors is shown by the processor utilization profile
in Figure 5-15. The sharp spikes in the parallelism profile translate into wide horizontal regions
where the machine is working efficiently (this is the saturated-processor region of the processor

6The nfib program is a doubly recursive routine to compute Fibonacci numbers.
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Figure 5-13: The ideal-parallelism profile of a typical chess position has many nearly serial
sections. The ideal-parallelism profile is the number of threads that can be executed at any given
moment in an ideal parallel machine with an infinite number of processors. The critical path length
for this example is about 39 seconds, and the total work performed (the area under the curve) is
about 10000 seconds.
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Figure 5-15: The processor utilization profile of StarTech running on a typical chess position. The
horizontal axis is the wall time, and the height of the curve is the number of busy processors. The
shaded area under the curve represents processor-cycles spent on useful work.

utilization profile). Note that even during the saturated processor region, there is a high frequency
jitter resulting in something under a 10% inefficiency. In Section 5.8 we shall explore where this
inefficiency arises. Note also that that the unsaturated regions of the processor utilization profile
(which correspond to the regions of low parallelism in the ideal-parallelism profile) comprise a
significant fraction of the work. The scheduler most do a good job during the unsaturated region.

The most natural way to express a parallel search is as an asynchronous program in which
one logical process is associated with each position in the game tree and processes communicate
with each other. The tree is too large to keep in memory, and so the tree must be searched with a
constraint on how many positions can be expanded at any given time. While processing a position,
operations must be performed on global data structures.

Thus, the issues for implementing a parallel computer chess program include the following. The
game tree to be searched is nonuniform and too large to fit in memory. The best serial algorithms
for game tree search are difficult to parallelize without losing their efficiency. The most effective
parallel game-tree search algorithms are nondeterministic in that the precise tree searched depends
on the number of processors, the message passing time, and many other factors. The parallel
algorithms that seem to work well are sequential for large fractions of their critical paths. There are
many factors in such a mishmash of calculation and communication that contribute or detract from
the performance of the program.

The challenge is to take such a program and make it have predictable, high performance with
small memory requirements. If the program runs slowly, we want to be able to understand why, so
that we can improve it. My approach is to instrument the program to measure the total work and
to estimate the critical path length. The critical path length and the total work give us bounds on
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the time to run the program on a given size machine. Although those measures are not precisely
repeatable (because the tree itself may vary from run to run), they are consistent enough to give us a
handle on the behavior of the system. Having characterized the algorithm, I address the scheduling
issue by providing a scheduler, separate from the algorithm, which is guaranteed to use no more
memory per processor than a serial implementation uses. In other words, we can make the chess
program predictable by providing some measurement tools and some scheduling guarantees.

5.6 Performance of the StarTech Scheduler

Now that we have seen that computer chess has a demanding parallelism profile, we return to the
simple summarization of the parallelism profile provided by the total work W and the critical path
C . In this section we demonstrate that W and C can be used to predict the runtime of StarTech.
As a consequence, for example, we can measure the program on a small machine and predict the
performance on a big machine.

I measured the performance of StarTech running onP processors running on each of Kaufman’s
25 test positions on each power-of-2 machine size from 1 to 512. I then performed a curve fitting
using a weighted linear regression program7 which minimized the least square difference

X
i

(
1
�i

(T̂i � Ti))
2;

where T̂i is the value of Ti predicted by the model for the ith trial and 1=�i is a weight that allows
me to minimize the relative errors. For example, I consider a prediction of 1100 seconds on a run
of 1000 seconds to be as good as a prediction of 11 seconds on an actual run of 10 seconds. In both
cases, the relative error is 10%. I set �i = Ti to achieve this relative fit.

I found that the performance of StarTech is modeled by

T̂ = (4:303� 0:167) + (1:024� 0:019)
W

P
+ (1:521� 0:106)C (5.34)

with a 95% confidence level. The model has the following statistical properties on the training data:

R = 0:998717;

MRE = 0:03855;

MAXE = 0:6880;

where R is the sample correlation coefficient, MRE is the mean relative error (the geometric mean
of the relative errors), and MAXE is the maximum relative error. The maximum relative error tells
us how bad the model is for the worst data point.

To test the performance model, I ran the StarTech program on a different collection of chess
problems8 on various machine sizes. The model provides an excellent match to the test data. The
statistical properties for the model on the test data are

R = 0:999195;

7The weighted linear regression program was adapted by Eric A. Brewer from the singular value decomposition curve
fitting code in Numerical Recipes [PTV*92].

8In this case, a collection of 20 problems was provided by H. Berliner.
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MRE = 0:061;

MAXE = 0:880:

I also tried improving the model by including more basis functions. I tried fitting the curve to
the form

T̂ = A0 +A1W=P +A2C +A3P +A4C lgP

+A5 maxfC;W=Pg+A6 minfC;W=Pg +A7 �D +A8 �W

+

25X
i=1

A(8+i)ki; (5.35)

where

� The Ai’s are coefficients to be found via curve-fitting,

� T̂ is the run time predicted by the model.

� W is the measured total work,

� C is the measured critical path length,

� P is the number of processors,

� D is the search-depth for a position, and

� ki is a indicator variable for position i, i.e., ki = 1 for tests on position i, and ki = 0 for tests
on position j 6= i.

For each of those terms, we can make an argument that they might matter. It might be that depending
on the chess position, there is a different constant startup overhead. R. Blumofe [Blu94] made a
theoretical argument that the critical path might need to be multiplied by lgP . The lower bound
arguments suggest that the minimum or the maximum of C and W=P might be important. The
addition of all those produced a model with a sample correlation coefficient of 0:999168, a mean
relative error of 0:02493, and a maximum relative error of 0.6749, all of which are only marginally
better than the simpler model of Equation 5.34.

In order to demonstrate that none of those variables is really important, we can look at the
residuals as function of each of those variables. The residual is the difference between the actual
running time and the running time predicted by the model. The residuals should look like a random
function of any particular variable. Figure 5-16 shows the relative residuals—the residual divided
by the actual running time—plotted against all of the variables considered in the grandiose model
of Equation 5.35. All of the position indicator variables ki are shown on one graph as ‘position’,
which is sorted by the serial running time with recursive iterative deepening. A positive residual
indicates that the model understates the running time, while a negative residual indicates that the
model overstates the running time.

The residual plots show the effect of failing to include various terms.

� Every position indicator variable, except for k3, (which is shown as position 3 in the ‘resid-
uals(Position)’ plot), has some datapoints with positive residuals and some with negative
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Figure 5-16: Plots of the relative residuals of Equation 5.4 as a function of various quantities: time
T , measured critical path length C , total work W , number of processors P , position (sorted by
serial running time), and depth-of-search.
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residuals. Position k3 has negative residuals only, but even for k3 the maximum relative error
is only about 22%.

� There is some evidence that the C lgP term actually may be important. For very small values
of C lgP , the residuals tend to be positive, while for the largest values of C lgP (of which
there are not very many data points) tend to have negative residuals. The skew is small, but
statistically significant.

� The decision to remove the W term has a similar skew. For small amounts of work, the
residuals are positive and for large amounts of measured work, the residuals are negative.
The skew as a function of W is not statistically significant, however.

� The residuals as a function of the remaining terms look pretty random.

I tried fitting to a model that included k3 and C lgP , and obtained

T̂ = (3:986� 0:146) + (0:9703� 0:0179)W=P + (3:639� 0:387)C

�(0:264� 0:0465)C lgP + (15:930� 5:791)k3;

CORR = 0:999052;

MRE = 0:02999;

MAXE = 0:6621:

The values of the C and W=P coefficients change quite a bit, which is due to the fact that C lgP
is strongly correlated to both C and W=P . For the largest machine we measured (P = 512) the
C lgP term is still dominated by the C term. Further experiments on even larger machines might
help to answer the question of whether C lgP is significant. There is also fairly strong evidence
that one of the positions (Position 3) has a 10 to 20 second startup cost.

If we try to simplify the model even more, it no longer accurately models the performance.
Getting rid of the W=P term yields

T̂ = (3:682� 4:465) + (3:978� 2:647)C;

CORR = 0:960681;

MRE = 0:3570;

MAXE = 1:4696:

While the sample correlation coefficient is not terrible, the mean relative error has jumped up by an
order of magnitude, the confidence intervals for the coefficients are very wide, and the residuals as
a function of W=P are very skewed (see Figure 5-17.)

Removing the C does not look as bad as removing W=P .

T̂ = (5:566� 0:539) + (1:140� 0:0678)W=P;

CORR = 0:996043;

MRE = 0:08977;

MAXE = 0:8462:

The residuals as a function of P are increasing, however. (See Figure 5-18.) Recall that a positive
residual means that the model understates the runtime. Thus, if we do not include theW=P term, for
large numbers of processors (where the critical path length is important) the runtime is understated
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Figure 5-17: Plot of the relative residuals of 3:682+ 3:978C as a function of W=P . The residuals
are clearly an increasing function of W=P .

and for small numbers of processors the runtime is overstated. To get a good model, we really do
need both the C and W=P terms. Those two terms, as shown in Equation 5.34, provide an excellent
model of the performance of the system.

Except for the 4.3-second constant term, the StarTech scheduler is within a small factor of
optimal. If we take T̂ = 1:5C + 1:02W=P as the model, then can conclude that the scheduler is
with a factor of 2.52 of optimal, following a two case analysis.

� If W=P � C , then

1:5C + 1:02
W

P
� 1:5

W

P
+ 1:02

W

P

= 2:52
W

P
:

Since W=P is a lower bound to the run time, we are within 2.52 of optimal in this case.

� If W=P < C then, similarly

1:5C + 1:02
W

P
< 1:5C + 1:02C

= 2:52C:

Since C is a lower bound to the run time, this case is also within a factor of 2.52 of optimal.

The 4.3-second constant term is probably mostly an artifact of the measurement strategy that I
used. StarTech, like Hitech, performs several seconds of precomputation on the front-end before
starting up the game tree search. For example, during the the program fills in tables that are
used for the static evaluation function. My critical path length measurements do not include this
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Figure 5-18: Plot of the relative residuals of 5:566 + 1:14W=P as a function of P .

precomputation. My run-time measurements, however, do include the precomputation. Since the
precomputation is performed serially before the game tree search is started, the precomputation cost
should be added to the critical path length. If I had correctly measured the critical path length, the
constant term would probably be even smaller.

5.7 Swamping

We have studied the performance of the StarTech scheduler, which includes for example the global
throttling mechanism. In this section, we analyze the swamping problem, which leads us to the
conclusion that global synchronization can help schedule any dynamic MIMD-style program.

A naive work-stealing scheduler may not be able to guarantee that the computation makes
progress. In such a work-stealing scheduler, each of the idle processors sends a request for work to
another processor, and if the request is denied, then the idle processor repeats, sending a request to
yet another processor. If there is a single busy processor that has no work to spawn, that processor
can end up spending all its time dealing with incoming requests. By the time it has dealt with a
request, another request may have arrive. In this case, the processor is swamped by all the requests
for work.

The swamping problem has been reported or alluded to several times in the literature. R. Finkel
and U. Manber observed “network flooding” in DIB [FM87, p.243] when the program is near
termination. The DIB package solves the problem by introducing constant delays between requests
for work. The implementors of Zugzwang chess program observed swamping throughout the
search [FM93], resulting in unstable performance. To solve the problem, they tested two strategies
that force the stealing processor to wait before sending out another request. They found that for
Zugzwang, waiting a constant time between every request works, but it is tricky to pick the right
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constant. Too small a constant results in swamping, and too large a constant results in poor load
balancing. They tried an adaptive strategy, where, after receiving a certain number of “denials”, the
stealing processor waits for a constant delay. For Zugzwang, the adaptive strategy with constant
backoff stabilizes the performance of the program without too much tuning.

To understand under what conditions a processor can be guaranteed to make progress on its
local work even in the face of incoming messages, I explored the swamping problem in isolation. I
implemented a naive work-stealing tree search program called SWAMP. In the SWAMP program,
Processor 0 has about 0.05 seconds of work to do, but there is nothing to steal. Meanwhile all the
other processors try to steal work from random processors, but all of their requests to steal work are
denied.

The SWAMP program is parameterized by three values:

� tb is the time for a busy processor to service a request to steal work.

� ti is the time for an idle processor to service a request to steal work.

� ts is the time from when a denial message is sent back to a requester to when the requestor’s
next request message arrives at a processor.

It turns out that the leverage

z =
tb

ts + ti
(5.36)

is the critical parameter of the swamping program. Figure 5-19 shows the precise relationship
between tb, ti, and ts. When a stealing processor (shown in the middle) sends a request to steal,
the message eventually arrives at a busy or an idle processor (shown at left). The amount of time
that the other processor spends handling the message is called tb or ti, depending on whether it is a
busy or an idle processor. The response is sent back, the stealing processor receives the denial, and
then the stealing processor sends another request to some other processor (at right). We define ts
to be the time from when the first denial was sent to when the second request was received. All of
an idle processor’s time can be accounted for as being “between requests” or “waiting for a busy or
idle processor”.

I measured the time it takes for the busy processor to get 0.05 seconds of work done while being
interrupted by requests for work. Figure 5-20 shows the situation for a typical set of parameters. In
this experiment, I set ti = 5 microseconds, ts = 10 microseconds, and I varied tb and the number
of processors. As tb grows, the time to run the problem rises dramatically. I set an artificial timeout
of 30 seconds (which shows up on the graph at about 29 seconds due to startup overheads.) As
the number of processors grows, the rise in the curve comes sooner and faster. For a run on two
processors, the curve grows very slowly.

This system can be modeled as a closed Jackson network [Kle76, p. 151], as shown in Figure 5-
22. In this model, we have N processors, each modeled by an exponential server with parameter
�i. In this throttle experiment, the servers are constant-time servers, but it turns out that a model
using exponential servers accurately predicts the behavior of the system. Recall that an exponential
server with parameter � has the property that

P [service time � x] = 1� e�x;

which means that the average service time is 1=�. In this model, Processor 0, the busy processor,
has server parameter

�0 =
1
tb
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Figure 5-19: The relationship of tb, ti and ts in the SWAMP program. The time required of a busy
processor to service a request is tb. The time for an idle processor to service a request is ti. The
round trip time from when a denial is sent by a processor to back to an idle requesting processor,
to the time that the requestor’s next request arrives at a processor is ts.

and all the other processors have

�i =
1

ti + ts
:

When a customer leaves a server, the customer goes to a randomly chosen server.

Given this setup, the question is, “How long does it take until Processor 0 has not been servicing
requests for a total of 0.05 seconds?” This question tells us how long it will take for the processor
to get 0.05 seconds worth of work done, which relates understanding what fraction of the time a
processor is busy servicing requests instead of getting useful work done.

The state of this system can be represented as a vector (k0; : : : ; kN�1) of the number of customers
at each server, that is, there are are ki customers at server i. For a closed system, the probability of
being in any particular state can be solved by first solving the following set of linear equations for
xi:

�ixi =
N�1X
j=0

�jxjrji;

where rji is the probability that a customer leaving server j proceeds to server i. There are only
N � 1 independent equations, and the values of the xi’s are only determined to within a constant.
Thus, all that really matters is the ratios xi=xj . Jackson showed that for such a network of queues,
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Figure 5-20: Results for the isolated swamping experiment varying the number of processors and
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Figure 5-21: The analytic queueing model for the swamping experiment.
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�N�1 =
1

ti+ts

...

�2 =
1

ti+ts

�1 =
1

ti+ts

�0 =
1
tb

Figure 5-22: This Jackson network models the swamping problem. The critical parameter is the
leverage z = tb=(ts + ti).

each with a single exponential server, the probability of the system being in a given state is

p(k0;:::;kN�1) =
1

G(K)

N�1Y
i=0

xki
i
;

where the normalization constant is

G(K) =

X
(k0;:::;kN�1)2A

N�1Y
i=0

x
k0
i

and the set of all possible state vectors is

A =

(
(k0; : : : ; kN�1) : ki >= 0;

N�1X
i=0

= N � 1

)
:

For the system of Figure 5-22, we have rij = 1=N . Without loss of generality we set xi = 1 for
i > 0, since xi = xj for i; j > 0 and only the ratios of the xi’s matter. Thus, the remaining variable
to be solved is x0. The probability of being in a particular state is

p(k0;:::;kN�1) =
zk0

G(K)
;

where
G(K) =

X
(k0;:::;kN�1)2A

zk0 :
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If we define

(i; �) = f(k0; : : : ; kN�1) 2 A : k0 = ig; (5.37)

then we can rephrase the question as “What is the probability that we are in (0; �)?” The states

(0; �) are precisely the states in which Server 0 is not servicing any customer. Observing that for

any element ~k 2 (0; �), we have

p~k =
zk0

G(K)

=
1

G(K)
;

and thus,

p(0;�) =

X
~k2(0;�)

p~k

=

X
~k2(0;�)

1
G(K)

=
j(0; �)j
G(K)

:

The cardinality of (0; �) is the number of ways to add up (N � 1) nonnegative integers to get

(N � 1). In general the number of ways to add up N nonnegative integers to get M for M � N is

NN;M =

 
N +M � 1
M � 1

!
; (5.38)

and so

j(0; �)j =
 

2N � 3
N � 2

!
;

and

G(K) =

X
(k0;:::;kN�1)2A

zk0

=

N�1X
k0=0

0
@ X
(k0;k1;:::;kN�1)2A

zk0

1
A

=

N�1X
k0=0

0
@zk0

0
@ X
(k0;k1;:::;kN�1)2A

1

1
A
1
A

=

N�1X
k0=0

�
zk0 j(k0; �)j

�
:

The cardinality of (k0; �) is the number of ways to add up (N � 1) nonnegative integers to get
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(N � k0 � 1), so using Equation 5.38 again,

G(K) =

N�1X
i=0

 
zi

 
2N � i� 3
N � 2

!!
;

yielding

p(0;�) =

 
2N � 3
N � 2

!

N�1X
i=0

 
2N � i� 3
N � 2

!
zi

: (5.39)

The answer to our question is that the time it takes for the processor to get w seconds worth of work
done is

tw =
w

p(0;�)
: (5.40)

Figure 5-23 shows the values for p(0;�) expanded for a few small values of N . Plugging the
values from the experimental setup into the model, we get the graph shown in Figure 5-21, which
qualitatively matches the observed behavior of the experimental setup. As the number of processors
N increases, the likelihood of Processor 0 getting any work done drops dramatically as a function
of the leverage z. Considering just the zN�1 term of Equation 5.40 we have

tw = w
zN�1

+ : : : 
2N � 3
N � 2

!

>
wzN�1 
2N � 3
N � 2

!

=
wzN�1

(N � 2)!(N � 1)!
(2N � 3)!

:

Using Stirling’s approximation

n! =
p

2�n
�
n

e

�n
(5.41)

and simplifying

tw > wzN�1

s
2�(N � 1)(N � 2)

2N � 3
(N � 2)N�2

(N � 1)N�1

(2N � 3)2N�3

� w
p
�N

zN�1

22N�3

= 2w
p
�N

zN�1

4N�1

= 2w
p
�N

�
z

4

�N�1

:

Thus, for N processors the rate at which work gets done drops off at least exponentially with N .

This phenomenon has not been systematically studied before, probably because most other
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N p(0;�)
2 1=(z + 1)
3 3=(z2

+ 2z + 3)
4 10=(z3

+ 3z2
+ 6z + 10)

8 1716=(z7
+ 7z6

+ 28z5
+ 84z4

+ 210z3
+ 462z2

+ 924z + 1716)

Figure 5-23: The value of p(0;�), the probability that at a given time a given processor is making
progress on its own work, expanded for a few different machine sizes. For large numbers of
processors, the probability is exponentially decreasing with the leverage.

researchers have used relatively small machines. It takes a relatively large leverage for swamping
to become significant on small machines, and as soon as the application finds enough parallelism
to keep all the processors busy, the swamping issue goes away. Looking at only a small machine, it
would not be evident that a naive work-stealing protocol can have a severe scaling problem.

Why might the leverage be z > 1? The leverage is essentially the ratio of the time taken by
a busy processor to respond to a request to the time taken by an idle processor to a request. The
idle processor can clearly respond quickly since it has nothing else to do. The busy processor takes
longer due to the time to context switch from the busy work to the request handler.9

The model of Equation 5.40 does not exactly match the experimental results of Figure 5-20.
There are many possible reasons that the model is a little bit inaccurate, besides the exponential
server assumption and the fact that congestion in the CM-5 data network introduces additional
queueing delays. The easiest way to further validate this model of swamping would be to perform
a simulation study that more closely matches the model. For example, it might be worthwhile to
examine the swamping problem on an ethernet, which is much easier to model accurately with
queueing theory than is the CM-5 data network, and to use exponential servers instead of constant
time servers. If the model presented here does completely explain the swamping problem on the
CM-5, one should be able to get an arbitrarily close match to the actual performance of such a
simplified system. Even if there are other effects in the actual swamping problem, however, this
model serves as a convincing explanation of why swamping gets so bad so quickly. We have
learned that to avoid the swamping problem for work-stealing schedulers we can either try to keep
the leverage small, to run on only a few processors, or to use some sort of throttle to change the
underlying behavior. To solve the swamping problem for StarTech, I implemented a global throttle
that uses the global synchronization of the CM-5 (see Chapter 4).

Using a global throttle is not the only way to solve the the swamping problem. One approach to
solving this problem is to schedule the processor fairly between servicing the requests to steal and
the local work to be done. The disadvantage of such an approach is that the data network might start
clogging up with unhandled request messages. Even in a circuit switched network, which forces the
processor to retry if a message collides, the performance of the system might degrade as blocked
processors that are trying to send requests themselves fail to respond to other processors’ requests,
causing all of the processors to slow down. In Chapter 3 we saw that barrier synchronization is an
important global end-to-end flow-control mechanism for bulk data transfers as well.

9In a polled message-passing system, the request message may have to wait for about half a thread length before it is
handled. This waiting time does not directly contribute to swamping on the busy processor, since during that wait time
the processor actually gets some work done. This delay may slow down the system in other ways, however, such as by
congesting the data network.
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One way to keep the swamping problem small is to keep the leverage z small. For example,
the Alewife processor [ACD*91] can fetch data out of a single word of the processor’s memory
without disturbing the processor. A busy processor can set up a single word to hold the amount of
work that is available to steal. If there is work to steal, the processor does not mind spending some
time distributing it. If there is no work to steal, the processor is allowed to do its work undisturbed,
while the potential thieves quickly determine that there is nothing to steal. This approach argues
for providing a class of memory-access messages that are handled quickly and efficiently by the
interface between the processor and the network. The leverage can be kept small by careful hardware
or software design. Such strategies require careful tuning, My global throttling strategy, on the other
hand, is robust, needs very little tuning (see section 5.7), and costs very little (see section 6.6).

Another approach is to use an adaptive randomized backoff strategy, such as is found in
Ethernet [MB76]. Such backoff strategies are easier to tune than trying to adjust the leverage, but
they require more tuning than does my global throttling strategy. DIB uses an adaptive backoff
strategy (as opposed to a random backoff strategy) [FM87]. PCM uses a randomized backoff
strategy [HZJ94, Hal94].

All of these approaches take advantage of globally consistent time to solve the swamping
problem. The fair schedulers guarantee that a certain fraction of the real time spent at a processor is
doing work. The adaptive backoff strategy takes advantage of a real clock. StarTech’s global throttle
strategy puts a thin veneer of global real time on top of the otherwise asynchronous computation.

5.8 A Space-Time Tradeoff

Now that we understand the performance of the StarTech scheduler, we consider the ramifications
of a decision made to get a good space bound. StarTech maintains an invariant that guarantees that
it will not run out of memory. Each activation frame has a height, measured as the distance from
the frame to the root of the computation. StarTech guarantees that on any given processor there is
at most one frame of any depth.

The memory requirements per processor are thus similar to the memory requirements for a serial
game-tree searching program. StarTech’s activation frames are a little bit larger than the activation
frames used for a serial computation, since the parallel frame keeps information for each of the
children, while the serial frame only needs to keep information about one child at a time. The frames
are only a little bit larger however. Thus, the memory requirements per processor, of StarTech, are
about the same as the memory requirements for a serial computation, which also needs only one
activation frame of any depth.10

To maintain StarTech’s invariant requires some care, since StarTech does not move activation
frames from one processor to another. Consider the situation in which a processor has had a single
child stolen, but otherwise has no work to do. It is waiting for the child to return its result. If the
processor sits idle, then processor cycles are wasted. If the processor steals work, then it might
end up with more than one frame at the same depth, and eventually run out of frame memory. To
maintain the invariant, StarTech uses a simple rule. A processor may not steal work until all of
its local frames have been completed. As a consequence, in our example, the processor sits idle
waiting for the result from its child.

The price paid for StarTech’s simple rule is at worst-case a factor of H slowdown, where H is
the height of the tree. At any point during the dynamic unfolding of the tree, one always can do
work at any leaf. In any tree of height H with l leaves, there are no more thanH � l internal positions

10Robert D. Blumofe showed me this explanation of StarTech’s space bounds.
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(and that worst case happens only on very tall skinny trees). Therefore, we lose at most a factor of
H from this decision. The ratio of internal frames to leaves is less than H for the shallow bushy
trees typically searched in a chess program.

There are ways to avoid this worst-case slowdown. The Zugzwang chess program [FMM92],
tries to avoid even this small performance penalty by allowing a stalling processor to steal work
from one of its children. Feldmann refers to this as the helpful master strategy, and while such a
strategy should not hurt the performance, it does not reduce the worst-case bound. Blumofe and
Leiserson [BL93] observe that by moving frames from one processor to another, the worst case can
be substantially improved. Another approach would be to use on-processor multithreading to allow
up to K frames per processor per level in the call tree. The worst-case bound does not get much
better, but the typical case might show some improvement.

Several systems to support dynamic MIMD-style programming have been proposed and imple-
mented [DR81, Hal84, Bir89, SYH*89, PC90, NPA92]. Those systems do not provide predictable,
high-performance nor do they provide any space bounds on running programs. D. Culler provides
some ad hoc techniques for managing the space bounds of a dataflow program [Cul89]. By limiting
the number of iterations of a parallel loop that can run at the same time, Culler manages to control
the space bounds of data-parallel programs written in a dataflow language. Culler’s techniques do
not generalize to arbitrary dataflow or dynamic-MIMD programs.

How much performance could we hope to actually get back by changing StarTech’s simple
mechanism to something more complex? My measurements indicate that between 1% and 3% of
the processor cycles are used up waiting for children. Furthermore, in the performance model

T̂ � 1:02
W

P
+ 1:5C + 4:3 seconds;

there is only a 2% overhead added to the linear speedup term W=P . Since, in my performance
measurements, I did not count the time waiting on children as work, it is possible that all of the 2%
overhead is due to waiting on children.

Another way to see how much time is spent waiting on children is to consider the processor
utilization profile of Section 5.5. The profile is reproduced here as Figure 5-24(a) without shading
in the region under the curve to make it easier to see what is going on when there is plenty of
parallelism. For most of the second half of the profile, in the processor-saturation region, the
processors stay almost completely busy. But the utilization jumps around between 30, 31, and 32
processors. For example, whenever the utilization is only 30, there is a 6% inefficiency. If instead of
counting the time spent waiting on a child as idle time, we were to count it as work-time, we should
see the work increase. Figure 5-24(b) shows the utilization profile when the time waiting on child
is accounted for as work. In this case the utilization is nearly 100% during the processor-saturation
region. The difference between the two profiles shows the distribution of the time spent waiting on
children.

There are at two reasons that during the highly parallel parts of the program, the processor
utilization is not pegged at 100%.

� StarTech uses a randomized work stealing scheduler. When a processor is idle, it requests
work from another, random, processor. Cycles can be lost just looking for work that, in
principle, could be worked on immediately.

� The StarTech scheduler guarantees a space bound by waiting on a child. In principle the work
of the position that is waiting on a child could be moved to the child, and then the processor
could do something useful. It turns out that this is causing the inefficiency that we can see in
the utilization profile.
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(a) Correct accounting of child-wait time.
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(b) Treat child-wait time as busy-time.

Figure 5-24: The inefficiency during the saturation region is mostly accounted for by the time
waiting on children. Graph (a), a reproduction of Figure 5-15 without the region under the curve
shaded, shows the processor utilization when child-wait time is accounted for correctly as idle
time. Graph (b) shows how the apparent efficiency improves if we account for the time waiting for
children as time that the processors are doing useful work. Most of the inefficiency in the saturation
region goes way when we ignore the child-wait time.
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It appears that most of the inefficiency is actually due to the layout decision rather than to StarTech’s
randomized scheduling strategy. Potentially that 2% overhead could be redeemed by adopting a
different strategy for achieving the space bound.
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Chapter 6

Tuning the StarTech Program

6.1 Introduction

As we have seen, the critical path length and total work give us insight into how long our program
will run on a given size machine. This chapter explores how to use this insight to help speed up the
program. I tried several techniques for improving the program, including using recursive iterative
deepening to improve the move ordering, using I-structure-like data structures for improving the
performance of the search for reconverging subtrees, and modifying the basic Jamboree algorithm
to reduce the work.

This chapter starts with a discussion in Section 6.2 of how to measure the performance of parallel
chess programs. Section 6.3 explains the implementation of StarTech’s global transposition table.
Section 6.4 studies how the transposition table can be made more effective, especially for a parallel
chess program. Section 6.5 studies modifications to the Jamboree algorithm that improve the work
efficiency, hopefully without increasing the critical path length too much. Finally Section 6.6 shows
where the processor cycles are spent when running StarTech.

6.2 What is the Right Way to Measure Speedup of a Chess Program?

The performance of any chess player can be determined by a system due to Elo [Elo78], which rates
players according to their performance in tournament play.1 Such a scheme is time consuming and
impractical for measuring the improvement due to changes in a chess program. Instead I use a set of
benchmark problems designed by International Master L. Kaufman [Kau92, Kau93] to determine
how a change in my program affects the quality of play.

To obtain an estimated Elo rating for a program, Kaufman uses 25 chess positions (20 tactical,
5 positional), each of which has a correct answer. To obtain an estimated rating, one measures
the time it takes for the program to find Kaufman’s correct answer for each position. Then, one
throws away the worst 5 times and sums up the remaining times. Let t20 be the sum of the times, in

1In the Elo system, if two players with a 200 point ratings difference play a game of chess, the game has an expected
value of 0.75 points for the higher ranked player, where a win is worth 1 point, a draw is worth 0.5 points, and a loss is
worth 0 points. Thus, it is the difference between the ratings of two players that is important. The absolute value of the
Elo ratings of a group of players varies according to an arbitrary decision of what some particular player’s rating is. Here
we use the USCF (United States Chess Federation) rating scale, which sets the rating of the ‘average rated member’ of
the USCF at 1500 USCF.
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seconds, to solve the fastest 20 positions. Given t20, Kaufman estimates the USCF rating as

USCF Rating � 2930� 200 � log10 t20 (6.1)

I.e., a factor of 10 in performance is estimated to be worth 200 ratings points, or about one standard
deviation in the population of rated chess players. Kaufman has chosen a particular way of weighting
the different positions, and there are other ways to weight positions, such as measuring the depth of
search for a given amount of time. Kaufman’s estimator is simple and provides well-defined way
to compare different chess programs. Kaufman cautions against misuse of his ratings estimator,
which is designed only to predict accurately ratings of programs that are near the range of a chess
master or Senior Master (2200–2600 USCF).

I measured my parallel implementation against my best serial implementation of StarTech. Our
serial implementation of StarTech uses standard �-� search2, and some significant effort was put
into making the serial program run as fast as possible (partly because much of the code is shared so
such investment pays off for the parallel program too, and partly because I wanted to have the best
serial program I could get). I ran the serial program on a Sun workstation,3 which has a larger cache,
a better cache controller, more main memory, and a faster processor than each of the CM-5 node
processors. The main advantage of the Sun workstation over the CM-5 nodes that I used elsewhere
is that it can have a larger transposition table.

I wanted to measure the improved rating of StarTech as a function of the number of processors,
but first I had to isolate other factors. The biggest other factor is the effect of the transposition-table
size which varies with the number of processors.

Program StarTech, like most chess programs, uses a transposition table to cache results of recent
searches. For a search from a given position to a certain depth, the transposition table indicates the
value of the position and the best move for that position. The transposition table is indexed by a hash
key derived from the position. Whenever the search routine finishes with a position, it modifies the
transposition table by writing the value back (it may decide that the old value stored was better to
keep than the new value.) Whenever the search routine examines a position, the routine first checks
to see if the position’s value has been stored in the transposition table. If the value is present, then
the routine can simply return the value. Sometimes, the value for the position is not present, but a
best move is present for a search to a shallower depth. In this case the best move for the shallow
depth can be used to improve the move ordering. Since the Jamboree search algorithm depends on
good move ordering, the transposition table is very important to the performance of StarTech.

Hsu argues [Hsu90] that if one increases the size of the transposition table along with the
number of processors, then the results are suspect. Hsu states that increasing the transposition table
size by a factor of 256 can easily improve the performance by a factor of 2 to 5. Our strategy is
to choose a transposition table size that is sufficiently large that increasing it further doesn’t help
the performance. Figure 6-1 shows the estimated rating of the serial program as a function of the
transposition table size, and it also shows the number of positions visited by the program under each
configuration. In our serial implementation, larger transposition tables take longer to initialize, but
I did not count the cost of initializing the larger transposition table against the serial program.

Note that the number of positions visited by the search tree monotonically decreases as the table
gets larger, but that after 223 entries, the number of positions becomes constant. We can conclude

2I really ought to have used a serial Scout search, which is typically worth an additional 5–10% performance
improvement.

3The workstation is a four-processor Sun model S690-140-128-P56. The machine was unloaded except for my job
and whatever time was spent servicing the ethernet and handling operating system overheads.
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Transposition Positions Time Estimated
Table Visited (seconds) Rating

Entries top 20
0 161,625,376 23337.14 2056

216 94,409,196 13506.36 2104
217 85,753,262 12670.01 2109
218 76,498,040 10925.46 2122
219 65,568,814 9605.36 2133
220 55,910,651 8040.08 2149
221 48,256,980 7138.08 2159
222 42,627,585 5799.31 2177
223 40,805,974 6120.18 2173
224 40,805,974 6364.99 2169

Figure 6-1: Performance of my best serial implementation of StarTech as a function of transposition
table size. The number of chess positions in the search tree is shown,along with the time in seconds,
and, the estimated rating using Kaufman’s ratings estimation function, given by Equation 6.1.

that for Kaufman’s ratings test any transposition table size of more than 223 entries is quite sufficient,
and a larger transposition table will not, by itself, raise the estimated rating of the program.

I believe that the slight decrease in estimated rating (i.e., the increase in time to solve the
problems) beyond 223 entries is due to paging and cache effects, because the machine I ran these
tests on could not reliably hold the working set in main memory when the transposition table is
larger than 223 entries. Any transposition table of size 222 entries or smaller easily fit within the
main memory of the serial computer I used.

I ran Kaufman’s test on a variety of different CM-5 configurations. The transposition table size
was set at 221 entries per processor, which is the largest size that fits in the 32 Megabyte memory
of the CM-5 processors. For runs on fewer than 32 processors, we actually used a 32-processor
machine with some processors ‘disabled’. In this case, I used the entire distributed memory of the
32-processor machine to implement the global transposition table. As a result, in every parallel run,
the transposition table contains a total of at least 226 entries.

Figure 6-2 shows the estimated rating of Startech as a function of the number of processors.
According to Kaufman’s test, there is a diminishing return as the number of processors increases
when only the fastest 20 problems are considered. If we consider the time to solve all 25 problems,
however, there are still significant performance gains being made even when moving from a 256-
node CM-5 to a 512-node CM-5.

I wondered if Kaufman’s test has enough parallelism to show StarTech’s strengths to full
advantage. On the 512-processor run, for many of the situations, the program spent only a few
seconds on a position, and on average the time spent on the fastest 20 moves is only 16 seconds—less
than a tenth of the time allowed under tournament time conditions (roughly 180 seconds per move.)
Kaufman’s problem is a fixed-size problem with a fixed amount of parallelism. I had noticed in the
tournament that StarTech’s performance, measured in positions per second, is generally much better
in the second 90 seconds of a search than during the first 90 seconds of search, and I observed that
the positions in Kaufman’s test that achieved the best speedup were often discarded by Kaufman’s
evaluation scheme because they were among the slowest positions.

So I decided to try letting StarTech run under tournament time-conditions with 512 processing
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Processors Time for Top 20 Estimated Elo Rating Time for all
(seconds) (USCF) (seconds)

1 8936.95 2139 38261.91
2 5376.45 2183 22007.46
4 3152.54 2230 11614.43
8 1932.27 2272 7411.54

16 1240.72 2311 4398.32
32 844.00 2344 2803.33
64 573.19 2378 1670.29

128 444.78 2400 1129.68
256 378.72 2414 907.24
512 319.38 2429 677.11

Figure 6-2: The estimated rating of our parallel implementation of Startech as a function of the
number of processors. The time to solve the fastest 20 of Kaufman’s test problems is shown, along
with the estimated rating (computed with Equation 6.1), and the time to solve all 25 positions.

nodes, allocating about 3 minutes per position. I then determined the depth of search reached by
the program. With this information I ran the serial program to the same depth to determine how
much “serial-work” StarTech managed to do. (That is, the quality of the choice made by StarTech
is the same as the quality of the longer serial search.) Thus, for this experiment, I am not measuring
speedup, but slowdown. The biggest slowdown was 480-fold, and most slowdowns were greater
than 200-fold on the 512-node machine.

The slowdown experiment is not as well controlled as the speedup experiment. I cannot run the
serial program with as big a hash table as the parallel program uses, and my budget for machine
time would not allow me to run a serial implementation using the entire memory of a 512 node
CM-5. If we accept Hsu’s estimate, we should derate our slowdown numbers by up to a factor
of 5, especially on the longer runs. Even with this derating, the slowdown of the serial program
compared to 512-node StarTech is usually more than 50.

I found that by letting the program search deeper, the linear speedup term grew more quickly
than did the critical path, and the overall speedup is improved.

In summary, my experiments do not provide a clear measure of the performance of StarTech on
512 nodes under tournament time controls. The authors of the Zugzwang chess program [FMM93]
found that when searching ‘easy’ positions to a very deep depth, more speedup is achieved than
can realistically be expected under tournament conditions. On the other hand, searching the easy
problems to a shallow depth does not give the program an opportunity to find parallelism. An effort
needs to be made to find harder problems to test parallel programs.

6.3 The Global Transposition Table

Program StarTech uses a global transposition table, distributed across all the nodes of the machine,
as shown in Figure 6-3. To access the transposition table, which requires communicating from one
node to another, an active message protocol is used. The hash key used to index the table is divided
into two parts: a processor number and a memory offset. When a frame needs to look up a position
in the table, its processor sends an active message to the processor named by the hash key, and that
processor responds with a message containing the contents of the table entry.
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Figure 6-3: The Startech transposition table is globally distributed. The hash key for a position
is divided into a processor number, memory offset, and collision resolution bits. The processor
number and memory offset identify a unique table element in the machine. The collision resolution
bits discriminate between positions that map to the same table element. The table element contains
the depth to which the tree was searched, the best move, a lower bound to the value of the position,
and an upper bound to the value of the position.

The transposition table is a cache, not a hash table, although the computer-chess literature
usually refers to the “transposition hash table”.4 Several different positions can be mapped to the
same table entry, and some replacement policy (such as least-recently-used) is used to decide which
values to keep and which values to kick out of the table. Most programs, including StarTech, use
a direct-mapped strategy, in which each position can be mapped to exactly one table entry. Some
other programs, such as Cray-Blitz [HSN89], use a set-associative cache for their transposition
table.

We must be careful about providing atomic access to the transposition table. If one processor
were to read the first half of a transposition table entry with one message and then read the second
half of the transposition table entry with another message, and if a second processor between the
two halves of the read issues a write to the transposition table, the first processor receives corrupted

4Hash tables and caches both are used to store a collection of objects so that they can be later found. Both use a hash
key to determine where any particular object resides in the table. They differ on their replacement policies. When two
objects have the same hash key (that is, when they collide) in a hash table, some other place is found to put one of the
objects. In a cache, when two objects collide, one of the objects is simply thrown away.
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data. Similarly, nonatomic write operations can corrupt the data stored in the table. The StarTech
transposition-table update operation is, in fact, a read-modify-write. When we have a new value to
write, we perform a read and decide which value to keep (the old or new value), and then write back
the correct value. We must arrange to perform read and update operations atomically.

There are several ways to implement atomic access to a global data structure. The traditional way
is to provide a lock to prevent other processors from accessing the table element. Thus, a processor
accessing the element acquires the lock, performs the operations on the element, and then releases
the lock. This protocol is inefficient because it requires several round trips of communication
through the network.

StarTech uses an optimization that works well for transposition tables, and which gets rid of all
the messages except for those messages actually needed to communicate data. StarTech uses active
messages [vCG*92] for interprocessor communication. When a message arrives at a processor,
a message handler specified in the message is invoked. The handler is run atomically. Thus, to
perform the read, we send a “read” message, and the handler reads the value from the hash table
atomically and sends it back to the requester. To perform an update we package up all of the
information needed to do the update, and send it to the processor that owns the table entry. The
message handler does the read, decides what the data should be, and writes the new data, all in an
atomic operation. The transformation from a complex locking protocol to the simpler protocol using
atomic message handlers can be viewed as a code transformation in which the processor that does
the atomic operation is chosen to minimize the amount of locking traffic, as shown in Figure 6-4.
This type of transformation may be useful for the simplification of other protocols as well.

We must also be careful that the frame does not get deallocated between the time that the request
to the transposition table is sent, and the time that the reply is received back at the frame. Recall,
that the frame could be deallocated if, for instance, its parent sends it an “abort” message for some
reason. If the reply is received and the frame has been deallocated in the meantime, the entire
computation could become corrupted.

This dangling reference problem is handled in StarTech by counting messages. The frame
records that a message is expected from the global transposition table, and the frame’s deallocation
becomes dependent on the arrival of that message. This mechanism is essentially the same one as
the one described in Section 4.6 that counts the number of messages to arrive before the frame is
deallocated.

A similar transposition table scheme is used by the Zugzwang parallel chess program [FMM93],
but the issue is not approached from the point of view of obtaining atomic transactions, and the
literature on Zugzwang does not make it clear how dangling references are avoided.

F. Popowich and T. Marsland concluded that local transposition tables are better than global
transposition tables [PM83]. Local transposition tables do not incur any message passing overhead,
but local transposition tables have a much lower hit rate than global transposition tables. With
message passing overheads that measure in the tens of milliseconds, Popowich and Marsland were
forced to choose between bad performance due to message-passing costs, or bad performance due
to poor transposition table effectiveness. The decision is much easier for StarTech, which uses
low-overhead active messages on the CM-5.

The Orca system [BKT92] encourages programmers to use a related strategy to obtain atomic
access to a data structure. In Orca, the handlers are not run atomically, and there is no constraint
on what kind of code can run in a handler. Thus, the natural way to handle atomic access to a data
structure is to write a handler that obtains a lock, then accesses the data, and then releases the lock.
Traditionally, the overhead of a message passing system that can handle this sort of general remote
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Figure 6-4: How to transform an atomic read-modify-write written with locks into an atomic read-
modify-write written using atomic message message handlers, as provided by the active message
abstraction. To perform a read-modify-write with locks requires many messages: a round trip to
obtain the lock, a round trip to read the data, a round trip to write the data, and then a message
to release the lock. The active message implementation requires only one message: the request,
which carries any necessary data, to perform the update.

procedure call (RPC)5 would be too high to use for transposition tables.6 Recent work on optimistic
active messages promises to obtain the benefits of general RPC’s at a cost comparable to an active
message [HJK*94]. Optimistic active messages require that a message handler be abortable, which
introduces additional complexity in the design and implementation of message handlers.7 The

5For an example of remote procedure call (RPC) see [BN84].
6For example, on a DECstation using an optimized RPC with an ATM network, the message-passing overhead is about

170 microseconds [TL93].
7Recall also the discussion in Section 4.6 on how aborting entire subcomputations is accomplished in StarTech.
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StarTech scheme is simpler and faster, because it does not require abortable handlers or locks.

6.4 Improving the Transposition Table Effectiveness

The transposition table improves performance by storing ‘exact’ results that can be used to avoid a
search of an entire subtree and by storing ‘partial’ results that can be used to improve move-ordering.
The ‘exact’ results are encountered when, due to transpositions, the exact same position is searched
more than once during a tree-search. The result from the first search is stored in the transposition
table. Then, at the start of the second search, the transposition table is interrogated, the result is
found, and the entire second search is avoided. This method of avoiding reconvergant searches is
not the most important use of the transposition table, however.

The most important use of the transposition table is to store ‘partial’ results which can be used
to improve move-ordering. As an example of using partial information to improve move-ordering,
consider a search of some position p to depth k. The best move for the depth k search is very likely
to be same move as would be gotten from a depth k�1 search. If we have already searched position
p to depth k � 1 and stored the move in the transposition table, then we can use the result from the
shallower search to improve the move-ordering for the deeper search. In this case, the transposition
table contains an ‘exact’ result for depth k � 1, but only contains a ‘partial’ result for a depth k

search: a hint as to the best move. To improve the effectiveness of the transposition table, we tried
to improve both the effectiveness of ‘exact’ results and ‘partial’ results.

StarTech uses the standard transposition table hash mechanism developed by Zobrist [Zob70]
and used by most modern chess programs. Using Zobrist’s method, we think of the entire state of
a chess position p as being a collection of properties, such as whether there is a particular piece on
a particular square. Chess positions include properties such as “there is a white pawn on a1” and
“Black has queenside castling rights”. We define the hash key of position p as

h(p) =
M
P (p)

hP ;

where hP is a wide integer (64 bits in StarTech) associated with property P (the hash code of P ),
and

L
is the bitwise exclusive-or operator. That is, h(p) is the bitwise-xor of the hash codes of all

the properties that are true of chess position p. Part of the hash key is used to index the array of
transposition table entries, and part of the hash key is stored in the hash table to help detect false
hits.

The choice of values for the hash codes hP affects the performance of the chess program. If the
array index part of two hash keys are the same for two different positions, then the two positions
collide in the transposition table. We want positions that are searched near each other in time to
have different hash keys. The standard method is to choose random values for the hash codes. The
Hitech program, from which StarTech was developed, uses better values for the hash codes. The
hash keys are chosen so that the Hamming distance between any two keys is large. One can think
of choosing points that are mutually far apart in a 64-dimensional hypercube. The idea is that it
takes quite a few differences between two positions in order to get the hash keys to be the same.
According to Berliner, these better values produce a measurable performance improvement [Ber91]
for the Hitech program. The StarTech program uses the hash keys from Hitech.

In any cache, the replacement policy affects the cache hit rate. Given two values that both want
to be stored in the same entry of a direct mapped cache, such as the StarTech transposition table,
one must choose which value to keep. One may prefer to keep a value that corresponds to a deeper
search, since that value contains knowledge that would be expensive to recompute. One may also
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prefer to keep a value that is more recently used because that value is more likely to be useful in the
future than a less recently used value.

I tuned the transposition table replacement policy to try to ensure that more important data is
kept rather than less important data. I performed only crude tuning. StarTech’s replacement policy
is to keep deep positions rather than shallow positions, and if two positions are of the same depth,
StarTech keeps the more recently used position. StarTech’s policy is less sophisticated than Hitech’s
policy which, roughly, is to keep the most recently used value unless it is the result of a very deep
search. In the future, I need to spend more time to carefully tune the replacement policy.

For my experiments, the transposition table is large enough that the replacement policy is
not very important. StarTech searches about 1200 positions per second per processor, and has
221 transposition table entries per processor, and so it takes about 800 seconds to search enough
positions to fill half the transposition table. The longest search in my set of experiments is less than
400 seconds for 128-processor machine.

Recursive iterative deepening is related to the iterative deepening used by most chess programs
(see for example [SA77, Gil78]). Normal iterative deepening involves searching from the root to
depth 1, then to depth 2, then to depth 3, and so forth. Normal iterative deepening has among
its advantages the fact when a search of position p to depth k is started, the transposition table
typically has the result for a search of position p of depth k � 1. Since part of the result stored in
the transposition table is the best move, the program gets a good hint about what the best move is.
Sometimes, the table does not have the result of the search to depth k � 1 for position p, in which
case the program proceeds to do the search of depth k with almost no knowledge about the tree.
Recursive iterative deepening rectifies this situation. If the value of the search to depth k � 1 is not
in the tree, then we search (recursively) to depth k � 1 before searching to depth k.

Iterative deepening was first described by D. Slate and L. Atkin [SA77]. T. Truscott states that
he implemented recursive iterative deepening in a checkers program [Tru92] that had no move-
ordering heuristics except for the transposition table. Truscott says that he never attempted to use
recursive iterative deepening in his Duchess [Tru81] chess program. H. Berliner states [Ber93] that
in the middle to late 1980’s the Hitech team identified something they called a search catastrophe.
A search catastrophe usually happened on the last iteration of a search when the move that had
been preferred up to that point suddenly collapsed. In this situation, the transposition table only
contained enough information about the other moves at the root to find some refutation. Such
information could be quite far away from anything resembling the best line of play. So poor Hitech
would spend much time on deep and uninformed searches of bad moves. To combat the search
catastrophe Murray Campbell and Gordon Goetsch wrote a recursive iterative deepening program.
Berliner could not recall whether the recursive iterative deepening was made a permanent part of
Hitech.

Figure 6-5 shows the effect of recursive iterative deepening on our serial program. In the serial
program, recursive iterative deepening slows things down , for positions which are solved quickly.
The value of improving the move ordering for such a short program is small, and the transposition
table is likely to hold the right answer, so little can be gained. For the slower positions, recursive
iterative deepening helps more, providing more than a factor of three speedup for the slowest
position. Recursive iterative deepening helps the serial program precisely when the transposition
table suffers from collisions.

Sometimes a parallel program can search the same tree multiple times in parallel. A parallel
chess program must cope with reconvergant game trees differently than a serial chess program
does. The transposition table helps improve the efficiency of the search, because when a position
has been searched before, the transposition table remembers the value. Thus, in a serial program,
every transposed position can be caught by the transposition table, and transposed positions are only
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Position Without RID With RID Speedup
time (seconds) time (seconds)

22 0.04 0.05 0.79
21 0.82 0.85 0.97
23 1.07 1.08 0.99
16 1.97 2.11 0.93
19 32.63 55.34 0.59
13 37.68 36.27 1.04
11 44.35 39.04 1.14
20 74.45 73.50 1.01
9 76.35 69.03 1.11

12 88.00 83.90 1.05
18 104.15 80.87 1.29
5 128.02 111.80 1.15

10 226.30 189.75 1.19
17 247.26 237.41 1.04
8 341.99 243.97 1.40

14 681.66 512.67 1.33
25 774.18 872.94 0.89
6 1476.79 895.57 1.65
3 1600.24 869.57 1.84

15 2088.25 1012.29 2.06
24 2220.37 2037.59 1.09
2 6207.41 2850.86 2.18
7 14224.06 3616.37 3.93
1 14553.25 7370.59 1.97
4 16059.45 5182.52 3.10

Top 20 8026.20 5388.02 1.49
All 61290.74 26445.96 2.32

Figure 6-5: The effect of recursive iterative deepening (RID) on the serial program. Each of
Kaufman’s problems was to solution on our serial implementation. The time, in seconds, to
solution is shown with and without RID for each problem. The problems are sorted according to
the time taken without recursive iterative deepening.

missed due to the transposition table being too full. In a parallel implementation, it is possible for
two different processors to reach the same position at about the same time, for both processors to
miss on the transposition table, and then for both processors to perform the same work redundantly.
Then other processors steal work from those two processors, and many processor-seconds can be
wasted.

I designed a way to catch these parallel transpositions. The idea is that when one of the
processors does a transposition-table lookup on a position, it records the fact that the position is
being searched in the transposition table, and then when a second processor does a transposition
lookup, it notices that the search has already started, so it just waits until the search completes
and then uses the value. In such a scheme, the second processor sits idle while waiting for the
transposition-lookup. It is better to sit idle, however, than to start redundant work, some of which
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may be posted and subsequently stolen by other processors, causing them to do redundant work too.
To implement the waiting, I used a technique developed for I-structures [ANP89]. The transpo-

sition table lookup is performed as a pair of messages: A “lookup” message is sent from the frame
to the transposition table, and a “data” message is used to send the reply back to the processor from
the transposition table. We want to have the second processor wait until the first processor finishes,
indicated by sending an “update” message. All we do to implement the wait is hold onto the “data”
message until the “update” arrives. The second processor just sits in a polling loop waiting for its
data to arrive, thus implementing the wait.

Such a scheme must be careful to avoid deadlock. If a lookup on some position p to depth 3 were
to be held up by a lookup on position p of depth 7, for example, we might deadlock, because the
depth 7 search might need the value from the depth 3 search to complete. We adopt the following
rule:

If there is a search of depth k in progress, then defer the lookup of any search to depths
j if and only if j � k.

Thus there could still be multiple searches of the same position at the same time, but once a
search of a position to a given depth starts, only shallower searches of that position may be started
concurrently. When combined with recursive iterative deepening, this rule means that only one
particular search of a particular position actively spawns work at any time. The deeper search ends
up waiting for the shallower search to complete before continuing with the deeper search. I found
that if the program defers a search of the same position with an unrelated �-� window, then the
performance becomes much worse, because the unrelated windows do not actually depend on each
other.

I measured effect of recursive iterative deepening and deferred reads on the performance of
StarTech. Figures 6-6 through 6-8 shows the performance of StarTech on each of Kaufman’s
test positions with and without deferred-reads and with and without recursive iterative deepening,
for various machine sizes. As for the serial program, recursive iterative deepening dramatically
improves the performance of the program. The time to solve the top 20 problems is reduced
to 246:9 seconds using both mechanisms, which according to Kaufman’s formula (Equation 6.1)
places StarTech’s estimated rating at 2451 USCF.

Surprisingly, the deferred-read mechanism increases the variability of the performance by
�20% from one execution to the next. The average performance with the deferred-read mechanism
is slightly better than without, but the range of measured performance for the same size machine
is much wider. I determined that the variation is actually in the amount of work, rather than, for
example, because of increased waiting time due to the deferred read mechanism. I do not yet
understand why the variation is so much higher with deferred reads. It may pay to study how the
deferred read function is affected by the type of chess position being searched or by the use of a
k-way associative transposition table instead of a direct-mapped transposition table.

The deferred-read mechanism increases the total amount of time waiting for transposition table
lookups from 5% of all the processor cycles to 15% of all the processor cycles. This waiting-time
increase illustrates a tradeoff in my scheduling strategy. It would be nice to be able to execute work
from some other part of the tree while waiting for the work to complete. But I wanted to get all of
the advantage of the normal C-language call stack for the case where work is not being stolen, so
I did not use a general heap of activation-frames representation to represent the local computation.
If I used a general heap of activation frames [NA89, Hal94], or perhaps a threads package [Bir89],
the time wasted waiting for hash lookups to complete could be used for something else. Perhaps
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RID no no yes yes no no yes yes

DR no yes no yes no yes no yes

C Pos 4 10.01 5.78 10.89 5.48 Pos 5 3.11 3.21 4.09 3.10

W 68003.1 123513.4 25958.0 7540.4 1439.9 1298.0 1347.9 1422.0

T 141.1 239.9 62.7 24.7 13.7 10.9 15.2 11.2

C Pos 1 15.46 9.12 41.28 15.44 Pos 18 4.13 2.41 3.92 2.81

W 59340.5 78419.6 59484.3 38510.3 1985.1 1026.6 1078.4 540.0

T 132.2 159.0 115.2 88.4 12.6 10.9 12.7 9.9

C Pos 7 14.20 9.13 16.89 17.02 Pos 12 3.50 2.62 3.48 4.15

W 52277.3 64950.4 24192.5 65713.8 1238.5 2424.2 952.5 1602.4

T 114.7 133.7 67.3 139.8 12.9 13.2 12.5 12.2

C Pos 2 19.35 4.28 11.00 8.34 Pos 9 3.23 2.20 2.80 3.08

W 33258.6 10540.2 21506.1 22997.0 1627.0 625.4 1619.4 1114.2

T 74.4 29.4 54.1 53.7 11.7 10.5 11.3 9.9

C Pos 24 9.68 8.14 13.12 12.00 Pos 20 3.74 3.67 4.23 3.28

W 20234.7 22651.0 14562.3 21351.6 632.9 1277.3 759.2 1003.7

T 51.2 52.9 49.0 54.0 16.1 11.6 14.9 11.3

C Pos 15 4.95 6.57 5.31 3.89 Pos 11 2.83 2.61 2.57 3.27

W 10396.5 17383.4 6352.1 7148.8 511.3 492.4 213.8 446.8

T 29.9 43.8 22.5 22.4 11.1 10.1 10.9 9.6

C Pos 3 4.65 4.08 9.43 6.25 Pos 13 2.64 1.84 2.25 3.31

W 11539.5 12110.2 10335.7 8626.1 700.3 543.0 439.8 762.5

T 34.7 32.5 42.5 28.1 9.3 8.9 9.1 9.3

C Pos 6 19.07 2.35 10.91 3.25 Pos 19 2.73 2.41 3.68 3.62

W 20409.9 291.0 6347.0 1609.7 371.1 266.4 497.2 526.1

T 60.9 9.5 30.3 10.6 10.5 9.4 11.4 11.2

C Pos 25 8.50 8.12 12.02 8.40 Pos 16 1.42 1.29 1.39 1.34

W 5572.3 4770.7 4843.5 4231.0 31.5 22.5 63.1 41.2

T 24.1 22.8 27.2 22.1 6.5 8.4 8.0 7.0

C Pos 14 5.64 4.29 5.02 4.65 Pos 23 1.07 0.69 0.99 0.95

W 5967.4 7566.4 3138.7 5918.8 33.9 19.9 11.7 19.4

T 23.3 24.2 17.5 21.5 7.1 5.9 6.0 5.9

C Pos 8 3.97 2.92 4.89 4.18 Pos 21 0.96 1.22 1.06 0.87

W 3485.7 3614.0 2064.1 3391.2 11.0 14.7 13.8 8.6

T 16.7 16.1 15.4 16.0 5.5 6.0 5.9 6.2

C Pos 17 3.50 2.49 3.94 4.95 Pos 22 0.49 0.49 0.41 0.41

W 2672.1 1058.7 1642.1 5328.3 0.8 1.1 1.1 1.0

T 13.3 10.9 11.5 21.6 4.1 4.1 4.1 4.2

C Pos 10 3.55 2.66 3.60 2.98 Totals 148.82 91.94 175.55 124.05

W 1751.9 1762.9 1264.6 582.7 301740.9 354880.5 187424.2 199854.8

T 13.8 13.3 11.3 9.4 837.6 884.6 637.3 610.9

Figure 6-6: The effect of deferred reads and recursive iterative deepening on the parallel program,
running on 512 processors. Each of Kaufman’s problems was run to solution. The time is shown
in seconds for the combinations consisting of with and without deferred-read and with and without
recursive iterative deepening. The problems are sorted according to the serial time without recursive
iterative deepening.
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RID no no yes yes no no yes yes

DR no yes no yes no yes no yes

C Pos 4 7.08 3.42 8.55 4.23 Pos 5 1.94 1.53 2.43 1.96

W 27215.1 12130.9 15515.0 11462.5 491.4 616.0 728.6 679.5

T 223.6 106.5 135.4 100.3 14.6 13.0 16.9 15.0

C Pos 1 8.91 5.98 12.20 7.10 Pos 18 2.06 1.65 2.28 2.24

W 28581.2 39552.5 18548.4 20565.4 674.3 615.3 591.6 437.6

T 240.7 322.0 167.4 173.2 14.8 13.9 14.5 12.6

C Pos 7 11.39 6.76 12.30 4.59 Pos 12 2.41 1.32 1.75 1.04

W 28379.8 11547.9 13219.3 5386.9 683.9 1124.1 407.0 216.6

T 235.9 102.0 122.0 54.0 16.6 16.5 12.6 10.0

C Pos 2 5.13 2.84 6.43 4.45 Pos 9 1.33 0.92 1.55 1.13

W 15733.7 21916.9 12419.4 9856.1 731.4 180.9 644.0 292.3

T 133.6 181.4 108.5 88.5 15.6 9.4 13.4 10.7

C Pos 24 6.47 5.33 7.83 6.07 Pos 20 3.15 1.94 3.22 1.53

W 13804.6 11255.7 7030.7 6768.0 440.8 738.6 401.4 251.1

T 119.7 99.6 71.1 66.2 18.0 14.5 15.8 10.4

C Pos 15 2.89 1.95 3.06 2.67 Pos 11 1.44 1.44 1.86 1.22

W 5661.2 7725.2 3641.0 3470.4 299.9 250.1 167.2 181.2

T 54.8 70.8 39.4 37.8 11.4 9.9 11.3 9.8

C Pos 3 3.78 1.50 5.38 4.08 Pos 13 1.44 1.36 1.84 1.41

W 10376.4 6323.4 6415.9 5164.1 355.4 364.7 275.6 287.4

T 95.9 59.2 69.5 51.8 11.0 11.1 10.8 10.2

C Pos 6 7.74 1.14 7.57 1.58 Pos 19 1.96 2.17 2.67 2.39

W 10734.9 159.3 4046.5 818.2 276.5 507.4 300.6 258.4

T 107.9 9.6 48.6 14.2 12.6 13.8 13.3 12.1

C Pos 25 5.91 5.69 8.78 7.18 Pos 16 0.85 0.88 0.88 0.78

W 3480.7 3690.4 3178.7 2956.6 12.9 26.8 14.8 16.0

T 39.7 41.5 40.8 38.4 7.4 7.6 6.9 7.0

C Pos 14 3.28 2.19 3.03 2.66 Pos 23 0.60 0.45 0.43 0.42

W 3242.7 3858.4 1878.9 4168.6 12.6 7.4 5.3 4.8

T 38.3 40.6 26.0 44.0 7.3 6.2 6.0 5.8

C Pos 8 1.83 1.78 3.01 2.26 Pos 21 0.58 0.69 0.53 0.57

W 1430.5 2821.1 1119.0 1577.1 7.4 15.6 4.9 5.8

T 20.6 32.0 19.4 22.0 6.6 6.6 6.1 6.0

C Pos 17 2.46 1.25 2.53 3.82 Pos 22 0.21 0.18 0.20 0.18

W 1365.3 424.3 864.0 3013.7 0.4 0.3 0.5 0.4

T 19.6 12.6 15.1 36.1 4.1 4.1 4.1 4.1

C Pos 10 2.23 1.66 2.09 1.39 Totals 84.85 54.36 100.34 65.54

W 1416.0 654.1 650.8 400.6 153993.2 125853.0 91418.3 77838.8

T 22.1 15.1 14.0 11.6 1470.4 1204.3 995.0 840.2

Figure 6-7: The effect of deferred reads and recursive iterative deepening on the parallel program,
running on 128 processors. Each of Kaufman’s problems was run to solution. The time is shown
in seconds for the combinations consisting of with and without deferred-read and with and without
recursive iterative deepening. The problems are sorted according to the serial time without recursive
iterative deepening.
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RID no no yes yes no no yes yes

DR no yes no yes no yes no yes

C Pos 4 5.60 2.34 7.23 3.26 Pos 5 1.65 1.23 1.82 1.42

W 27754.8 2611.6 12988.2 8324.5 421.1 402.5 410.0 480.4

T 872.6 92.4 414.3 273.0 24.0 20.9 23.0 23.4

C Pos 1 9.29 5.41 13.45 9.07 Pos 18 1.65 1.38 2.25 2.93

W 21298.7 23526.0 17894.3 24677.5 496.2 364.4 418.5 695.0

T 681.4 756.0 575.7 794.2 23.9 20.2 22.4 32.8

C Pos 7 10.66 7.23 14.13 9.78 Pos 12 1.60 0.69 1.84 0.88

W 19645.6 22451.7 12446.0 42384.0 420.9 125.9 255.7 96.3

T 622.0 718.1 401.7 1350.7 23.3 11.7 17.7 11.2

C Pos 2 6.99 2.27 6.85 5.10 Pos 9 1.25 1.08 1.15 0.83

W 14350.7 6486.1 9577.7 7878.2 425.1 271.9 280.3 120.8

T 459.4 215.2 311.0 261.6 21.8 17.2 16.9 11.9

C Pos 24 5.66 4.26 8.79 6.44 Pos 20 2.84 1.84 3.01 1.69

W 9140.7 7759.3 7035.6 7685.5 286.5 713.7 310.9 340.4

T 296.3 256.5 234.7 257.7 21.7 31.8 21.3 19.0

C Pos 15 2.73 1.90 2.59 1.95 Pos 11 1.57 1.03 1.61 0.90

W 4250.6 5543.1 2955.0 2372.0 175.4 182.8 129.2 117.6

T 143.5 186.7 102.6 84.7 14.6 13.5 13.5 11.4

C Pos 3 3.11 1.27 5.03 3.09 Pos 13 1.32 0.96 1.66 1.19

W 6501.0 3533.7 4630.3 3657.7 199.9 162.6 173.9 194.9

T 216.3 122.5 162.7 127.3 14.1 13.3 13.8 13.9

C Pos 6 11.21 1.31 6.81 1.36 Pos 19 1.77 1.97 2.34 2.19

W 7019.0 1998.3 2858.5 596.4 130.0 384.8 193.0 197.2

T 232.5 71.2 102.7 26.8 13.3 21.5 15.9 15.5

C Pos 25 5.33 4.74 7.46 7.03 Pos 16 0.62 0.83 0.69 0.76

W 2878.8 2286.7 2240.8 2518.6 9.9 13.7 11.7 12.9

T 100.3 82.4 82.8 92.9 6.9 8.4 7.3 9.1

C Pos 14 2.05 2.16 2.83 2.44 Pos 23 0.54 0.22 0.40 0.35

W 1767.0 2863.0 1512.8 2758.7 12.0 3.5 4.4 4.5

T 64.6 101.4 58.1 99.0 7.0 5.9 6.2 6.0

C Pos 8 1.99 1.26 2.83 1.40 Pos 21 0.36 0.42 0.41 0.40

W 1144.3 1597.9 818.2 1097.0 3.9 5.8 4.5 4.4

T 45.5 59.9 35.6 43.1 5.8 6.0 6.8 6.6

C Pos 17 1.90 1.09 2.41 3.02 Pos 22 0.17 0.11 0.17 0.12

W 648.7 287.2 726.1 1542.9 0.4 0.4 0.5 0.4

T 28.9 18.1 31.3 58.1 4.3 4.2 4.3 4.3

C Pos 10 1.90 1.10 1.61 1.31 Totals 81.85 47.03 97.75 67.62

W 1005.0 202.3 443.3 487.1 118981.2 83576.7 77875.8 107757.7

T 41.7 14.9 22.3 23.5 3943.9 2855.0 2682.5 3634.2

Figure 6-8: The effect of deferred reads and recursive iterative deepening on the parallel program,
running on 32 processors. Each of Kaufman’s problems was run to solution. The time is shown
in seconds for the combinations consisting of with and without deferred-read and with and without
recursive iterative deepening. The problems are sorted according to the serial time without recursive
iterative deepening.
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even having as few as two main threads of control would do the job. This problem is related to the
strategy of waiting for children (discussed in Section 5.8). In both cases, the processor waits instead
of doing some useful work. It makes sense to investigate some of these alternative scheduling
strategies in the future.

6.5 Efficiency Heuristics for Jamboree Search

Another approach to improving the performance of StarTech is to reduce the total work by serializing
the search. I found a few heuristics that can improve the work efficiency of the Jamboree chess
algorithm on real chess positions. This improvement in efficiency often comes at the expense of
an increased critical path length. I did find one heuristic that actually improves the performance
without increasing the critical path significantly, however.

I first set out to identify what work is wasted. There are two cases where the Jamboree algorithm
does work that is not necessary:

failed work is work done to test a position when the test fails, and the position must be searched
for value. Some of the failed work is a cost introduced by the serial Scout algorithm, since
serial Scout also performs a research. Some additional failed work is incurred, because in the
serial search the test is possibly performed with a tighter bound than is available during the
parallel search.

cutoff work is work that is done on a child of a position that would not have been expanded in a
serial execution because an earlier child would have failed high.

In addition, for a subsearch that is neither a failed test nor cutoff work, we define the failed work of
the subsearch to be the sum of the failed work of its children, and the cutoff work of the subsearch
to be the sum of the cutoff work of its children. I arranged for StarTech to computed the amount
of failed work and cutoff work. I found that most of the inefficiency of Jamboree search is cutoff
work. Depending on the position, 10% to 30% of all the work is cutoff work, while less than 2% of
the work is failed work.

I furthermore examined the conditions under which work is stolen. I categorized the conditions
by the Knuth-Moore position type [KM75]. Rephrasing the Knuth-moore position types in terms
of Jamboree search:

� Type 1 positions are the positions searched by Jamboree search with a non-empty window.

� Type 2 positions are the positions searched with an empty window that have an even number
of ancestors between them and the nearest Type 1 position. Thus, the tested children of a
Type 1 position are Type 2 positions, as are the grandchildren of any Type 2 positions.

� Type 3 positions are the positions searched with an empty window that have an odd number
of ancestors between them and the nearest Type 1 position. Thus the children of a Type 2
position are Type 3 positions, and the children of Type 3 positions are Type 2 positions.

I also categorized the extra work by one of three conditions when a position is searched to depth k.
This categorization uses two values:

sk�1: The value of the position, searched to depth k � 1. The value sk�1 is either obtained from
the transposition table or by recursive iterative deepening.

ck�1: The value of the first child of the position, searched to depth k�1. The first child is identified
using the move-ordering heuristics. In particular, the first child is the best move for the search
of the position to depth k � 1.
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The categorization of the extra work is as follows:

Better than �: The case when ck�1 > �. That is, the first child is a reasonable move compared to
�.

Dropped below �: The case when sk�1 > � and ck�1 � �. That is, on the previous ply of search,
we thought that the first move was good, but now that we have searched deeper, we do not
like the first child.

Stayed below �: The case when sk�1 � � and ck�1 � �. That is, we never did think that this was
a good move, and we still don’t think so.

I found that depending on the position, 50% to 90% of the failed work is on Type 2 positions that
dropped below �, while 10% to 40% of the failed work is on Type 3 positions that dropped below
�.

Using that data, I decided to try serializing the search for Type 2 and Type 3 positions that drop
below �. This approach reduced the work by as much as 50%, which was even more than my
measurements indicated that it might. The critical path was increased, however, so that the average
available parallelism dropped below 100. On small machines the critical path was not a problem,
but for big machines the serialization hurt the performance of the program.

I tried a finer strategy for serializing the search. My idea was to not completely serialize the
positions that were causing failed work to appear, but simply to serialize the position a little bit.
I tried a strategy of searching exactly one additional child serially , for positions of Type 2 that
drop below �, before searching the rest of the children in parallel. This strategy worked out well,
decreasing the total work by 10% to 15% while only increasing the critical path slightly, so that the
average available parallelism was still over 500.

One recent enhancement to the Zugzwang program [FMM91] is to explicitly compute the
number of critical children of a position, and when searching a position with exactly one critical
child, and several promising moves, Zugzwang searches all the promising moves sequentially before
starting the parallel search of the other children. Since the Zugzwang literature does not analyze
critical path lengths, it is difficult to determine how Zugzwang’s serialization scales with the machine
size, however.

In summary, by measuring the critical path and total work, I was able to improve the performance
of the StarTech program over a wide variety of machine sizes. If I had only studied the runtime
on small machines, I would have been mislead into overserializing the program. By measuring the
critical path length, I was able to predict the performance on a big machine. I then verified that the
performance of the tuned code matched the prediction when run on a big machine.

6.6 How Time is Spent in StarTech

Now that we have a good understanding of the Jamboree search algorithm and the StarTech scheduler,
it is worthwhile to examine how time is spent by the StarTech program. Examining a timing profile
can provide important clues for how to improve the program in the future.

Figure 6-9 shows how the processor cycles are spent by StarTech on a typical chess position
that ran for about 100 seconds on a 512-processor machine. The program used the deferred-read
mechanism and recursive iterative deepening, although it did not use the Jamboree serialization
heuristic of Section 6.5.8 The biggest chunk of time is devoted to the chess-work, which further
broken down in Figure 6-10.

8The Jamboree serialization heuristics do not substantially change the ratios of how processor cycles are spent.
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68.8% of the cycles is ‘chess-work’ done by the parallel algorithm. Of those cycles, 21.4%
can be accounted for by the time that our best serial implementation consumes.

14.4% of the cycles are spent by processors waiting for global transposition table reads to
complete.

6.6% of the cycles are spent by idle processors waiting for the global throttle to give them
permission to steal work again.

3.6% of the cycles are spent by idle processors looking for work to do.
3.2% of the cycles are spent waiting for a child to complete, to determine if more work

needs to be done at a position.
2.2% of the cycles are spent by busy processors servicing a transposition table lookup.
0.6% of the cycles are spent by processors that have work to do responding to a request for

work.
0.5% of the cycles are spent by a child waiting for an ‘abort’ message from its parent, after

sending the result to the parent.

Figure 6-9: How processor cycles are spent by 512 processor StarTech running a typical problem
from Kaufman’s problem set, using the deferred read strategy and recursive iterative deepening.

37.7% of all the cycles are spent on control flow for the Jamboree algorithm.
15.8% of all the cycles are spent moving the pieces on the board.
8.3% of all the cycles are spent on static evaluation.
3.3% of all the cycles are spent on move generation.
2.0% of all the cycles are spent sorting the moves.
1.6% of all the cycles are spent checking for repeated positions.
0.2% of all the cycles are spent checking for illegal moves.

68.8% of all the cycles are spent on ‘chess work’.

Figure 6-10: How the time is spent on ‘chess work’ for StarTech running on 512 processors on a
typical problem.
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More than a third of all the processor cycles, and more than half the cycles spent by on ‘chess
work’ are spent by the code that implements the control flow of the Jamboree algorithm. In the serial
program, the control-flow of the�-� search algorithm consumes about a quarter of all the processor
cycles. The biggest potential improvement is to improve the code that executes the Jamboree search,
although I have not been able to find any obvious improvements to the code.

Using true multithreading could potentially get 14.4% of the cycles back from waiting on
transposition table reads, 3.2% of the cycles from the time waiting on children, and 0.5% of the
cycles spent waiting on parents. To save those 18.1% of the cycles would require implementing
more code in the scheduler to handle context switching and frame allocation. These improvements
are worth investigating.

It may be possible to tune the global throttle to get back a few percent of the runtime. In
this example, the StarTech program spends 6.6% of the cycles with processors being stalled by the
global throttle. Since the processors then spend 3.6% of the time actually sending requests for work,
and waiting for the reply, the throttle is not causing too much trouble. Only 0.6% of the cycles are
spent by processors actually responding to requests for work. If we open the global throttle a little
bit, it will increase that 0.6% which impacts on the efficiency with which work actually is executed.
On the other hand, we may be able to get back some of the time spent waiting on the throttle. In
addition, if we were using true multithreading, we could potentially hide some of the time spent
waiting on the global throttle and waiting on the requests for work. This improvement is probably
also worth investigating.

It has been widely argued that using the Hitech static evaluator is a bad match for an all-software
implementation. Since Hitech uses special purpose hardware, the Hitech static evaluator expects to
run in constant time regardless of how sophisticated the static evaluation function becomes. So the
Hitech static evaluation function is designed to be as sophisticated as possible given the constraints
of the Hitech hardware. In StarTech only the 15.8% of the cycles spent moving pieces on the
board and the 8.3% of the cycles spent on static evaluation are attributable to the Hitech emulation.
Perhaps a static evaluator designed for a software-only system would be better than Hitech’s static
evaluator, but it probably can’t be much faster.

The code for move generation and checking illegal moves, which takes a total of 3.5% of the
cycles, was optimized in assembly language by Ryan Rifkin under the direction of Mark Bromley
of Thinking Machines Corporation. Before Ryan worked on that code, the move generation and
illegal move checking accounted for about 9% of all the cycles.

To check for illegal positions correctly and efficiently required some careful design. Recall that
in chess, if a position is repeated three times, then either side can call the position a draw. Most
computer chess programs actually do claim a draw as soon as a position is repeated thrice. Most
chess programs, however, treat illegal positions improperly while performing the search. There are
three cases when looking at a position in the search tree:

� If the position has appeared twice in the game (i.e., before the root of the game-tree search),
then the position should be evaluated as a draw. Most programs do this correctly.

� If the position has not appeared at all in the game, then the position should be evaluated as
a draw if and only if the position appears as an ancestor in the search tree, because the only
rational reason to return to the same position is to try to force a draw. Most programs do this
correctly as well.

� If the position has appeared once in the game (before the root), then the rule should be the
same as if the position has appeared zero times in the game, because the program should not
assume that the other player is playing rationally. Most programs treat this case as a draw,
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and it is possible for a clever opponent to trick the computer into turning a draw into a loss
for the computer.

The summarized rule is thus:

StarTech Repeated Position Rule:

Evaluate a position as a draw if it appears once as an ancestor in the search tree, or if it
appears twice in the actual game.

As far as I know, this rule is unique to StarTech. Most programs use a simpler rule:

(Slightly) Wrong Repeated Position Rule:

Evaluate a position as a draw if it appears once as an ancestor in the search tree, or if it
appears once in the actual game.

Here is how StarTech implements its repeated move tests. The entire game is broadcast to all
the processors, so that the processors are able to examine the repeated move list. StarTech uses the
hash keys from the transposition to test if two positions are the same quickly. When a position is
stolen, the sequence of positions between the root and the stolen position is sent through the data
network to the stealing processor. This sequence of positions can be thought of as the part of the
board-state.

We can improve the performance of the repeated move check by looking towards the root from
a position only until an irreversible move is detected. An irreversible move is a move (such as a
capture, a pawn move, or a move that results in the loss of castling rights) that guarantees that no
previous position can be repeated. In fact, when sending the sequence of previous positions from
one processor to another, stealing processor, StarTech only sends the positions as far back as the
most recent irreversible move. Since in quiescent search, which accounts for more than half of all
the positions searched, almost all moves are irreversible, the StarTech program spends very little
time manipulating repeated position sequences.

One of the biggest open questions for tuning parallel chess programs is the impact of additional
search heuristics on the critical path and total work. In StarTech we only did a simple search to a
given depth and then performed quiescence search, trying out all the captures. Most state-of-the-art
chess programs employ search extensions and forward pruning to improve the quality of their tree
search. We have yet to see whether those sophisticated serial search strategies can be effectively
parallelized.

In this chapter, we have studies ways to improve the performance of StarTech. These, along
with the strategies studied in Chapter 3, should be useful for improving the performance of any
parallel program.
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Chapter 7

Conclusions

This dissertation argues that fast, predictable, global synchronization can solve many of the system-
problems of parallel computing. The dissertation first described hardware that uses global synchro-
nization, then described a dynamic MIMD-style chess program which profitably exploited global
synchronization, and finished with a study of how to use global synchronization to obtain good
performance on bulk data transfers. Here I review the contributions of my work, discuss related
work, and speculate about future application of the mechanisms that I developed.

Architectural Support for Global Synchronization

The computer architecture work of my thesis consists of the design of the Connection Machine
CM-5 supercomputer, which was originally intended for running data-parallel programs. Global
synchronization is used throughout the CM-5 to help solve low-level problems, such as clock
distribution and diagnostics support, and higher level problems of operating system support and
running data-parallel programs.

The three networks of the CM-5 (the control network, the data network, and the diagnostics
network) fit into an framework called the synchronized MIMD architecture. A method of executing
data-parallel programs on a synchronized MIMD computer was presented, along with a sketch
of how to optimize such programs. The details of a specific synchronized MIMD computer, the
CM-5, were presented to show what kinds of problems and solutions can be addressed by exploiting
global synchronization. The CM-5 and its networks can be timeshared, and can be spaceshared by
dividing the machine into independent partitions. The networks are clocked using a robust, globally
synchronous clocking system and communicate using low-swing electrical signals.

The processor-network interface allows fast user-level access to the networks without compro-
mising interprocess security. The network interface uses address translation to guarantee that the
user cannot send a message outside his own partition. The system uses a globally synchronous
operating system to guarantee that when a message arrives at a processor, the message belongs to
the process that is currently running.

The data network provides fast pairwise communication among the processors of the machine.
The data network is implemented as a 4-ary fat-tree that uses distributed switches. The data network
is actually split into two independent networks to help the user implement commonly used protocols
such as remote-fetch. The data network provides an all-fall-down primitive to empty the network
for context-switching.

The control network provides global barriers, broadcast, segmented scans, and segmented
reduction operations. The data network and the control network also cooperate using “Kirchhoff
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counting” to compute when the data network has delivered all its messages. The control network
provides split-phase global synchronization.

The CM-5 diagnostics network extends the JTAG standard to test a system in parallel. The diag-
nostics network uses bit-steering to address subsets of the machine, so that they can be manipulated
as a group. In order to make the diagnostics network robust and easy to fix, it is implemented with
PAL chips that run synchronously at low speed.

The CM-5 design team tried to think of all the problems that show up in parallel programming
and to provide mechanisms to solve those problems. It is a measure of the success of our effort that
a whole collection of new problems have arisen that we never imagined. If we had not solved the
problems we knew about, we would never see the new problems. The fact that, for the most part,
those problems appear to be solvable for the CM-5 indicates that the mechanisms we designed are
not overly specialized for data-parallel computing. The biggest problems for the CM-5 are faced
by the operating systems implementors. Today’s operating systems were not designed for parallel
computing, and they are large and difficult to modify.

The history of SIMD machines goes back to the Illiac-IV [BBK*68], which had processors with
wide datapaths. The terms ‘SIMD’ and ‘MIMD’ were coined by M. Flynn [Fly66]. The Goodyear
MPP [Bat80], implemented with VLSI chips, started the trend towards using narrow processors —
the MPP used 1-bit processors. The MPP and the Illiac-IV both provided a two-dimensional mesh for
communications, and the MPP extended the idea to support a limited set of additional permutations.
The TRAC [LT77] allowed the word width of the machine to be varied to match the problem,
and it also provided a statically configurable Banyan network. Both TRAC and PASM [SKS81]
were multiple-SIMD machines that were designed to allow a small collection of SIMD programs to
run concurrently and communicate with each other. Thinking Machine Corporation’s Connection
Machine CM-1 [Hil85] was the first SIMD machine to provide a routing network, to let users send
messages to arbitrary processors without worrying about how the messages get to their destinations.
The CM-1 router used an adaptive routing scheme based on a 12-dimensional hypercube. The
Connection Machine CM-2, also developed by Thinking Machines, started the swing back to wide
processors by including, at first, 32-bit floating-point units, and then, later, 64-bit floating-point
hardware. The CM-2 also provided indirect addressing to its local memory. The CM-2’s router
implemented combining both for send and get operations. IBM developed the GF11 [BDW85], a
SIMD machine with wide processors and a permutation network capable of supporting up to 1024
user-defined permutations. MasPar developed the MP-1 and MP-2, both of which use 4-bit wide
processors and an oblivious router based on a butterfly topology.

One of the earliest MIMD parallel computers was the Cosmic Cube [Sei85], which provided an
oblivious routing network based on the hypercube. W. Dally [Dal87] argued that low dimensional
meshes provide better performance than high dimensional hypercubes for oblivious routers. The
architecture of the cosmic cube was commercialized by Intel,which persuaded by Dally’s arguments,
eventually switched to an oblivious two-dimensional mesh network in the IPSC2 [Int88]. The CM-
5 design team was also influenced by Dally’s argument that a data network should be organized
into communications channels that are neither too wide nor too narrow. Wider channels increase
the diameter of the machine increases, increasing latency, while narrow channels increase the
time it takes for a message to cross a single channel. When designing the fat-tree based routing
network [Lei85], we chose to use 4-bit wide communications channels.

Like the Cosmic Cube and its descendants, the CM-5 uses a distributed memory organization,
and the processors communicate among themselves using message-passing techniques [Sei85,
SAD*86]. Another way to organize the memory of a MIMD computer is as a shared-memory
[LB80, GGK*83, DT90]. Some recent machines, such as Alewife [ACD*91], have tried to merge
the shared-memory and distributed memory architectures.
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Other machines with global synchronization include the SIMD machines (discussed above),
the proposed Burroughs Flow Model Processor (FMP) [LB80], the DADO machine [SS82], and
the DATIS-P machine [PS91]. Of particular note is the FMP, which although it was never built,
proposed hardware for split-phase global barriers, and described a scheme to broadcast the same
program to every processor which would then run it locally.

Split phase barriers were described for the FMP, and were also described by C. Polychronopou-
los [Pol88] and R. Gupta [Gup89]. Arvind and R. Iannucci [AI87] present general justification for
split-phase operations. B.-H. Lim [Lim91] performs a study to determine when it is better to simply
wait and when it is better to try to use split-phase transactions.

The CM-5 does not include any message combining mechanisms in the data network. G. Pfister
and V. Norton showed that combining can help avoid hot spots in a data network [PN85]. A. Chien
found that combining does not work very well for many real programs, but that it is possible to
dynamically detect hot spots [Chi86]. P.-C. Yew et al. explored how to use software combining to
avoid hot spots [YTL87]. W. Dally analyzed the hot-spot behavior of meshes [Dal87].

The data-parallel style of programming developed incrementally over time. The program-
mers of the earliest SIMD machines were using a form of data-parallel programming embodied
in FORTRAN. (For example see [Per87] for a discussion of Illiac IV CFD FORTRAN and other
subsequent parallel FORTRAN dialects.) D. Christman [Chr83] compiled a collection of data-
parallel algorithms and programming strategies. C. Lasser developed a programming language
SIMPL (SIMd Programming Language) [Las85] based on those strategies. The SIMPL language
eventually became StarLISP [Thi86a]. W. Hillis and G. Steele [HS86] identified the ‘data paral-
lel’ style of programming and argued that it was more useful than had previously been thought.
G. Steele [Ste90] provided a sophisticated rule to run asynchronous programs deterministically, in
contrast to my simple rule of placing a barrier before and after every communication operation
of a data-parallel program. G. Blelloch [Ble90] showed that the scan primitive is an essential
ingredient to the data-parallel paradigm. Meanwhile much research on how to execute data-parallel
programs on MIMD machines was being performed. L. Valiant’s bulk-synchronous parallel model
(BSP) [Val90] and Sabot’s paralation model [Sab88] both attack the problem of how to express
general parallel program using an underlying serial model of computation. F. Darema-Rogers et al.
developed the Single Program Multiple Data style of programming [DGN*86]. D. Callahan and
K. Kennedy focused [CK88] on how to compile bulk data movements written in serial FORTRAN.
Similarly A. Rogers, K. Pingali [RP89] and Zima et al. [ZBG88] follow the strategy of generating a
parallel program from a serial program augmented with data distribution primitives. Other data par-
allel languages include CM-FORTRAN [AKL*88], FORTRAN 8X (now FORTRAN 90) [MR90],
High Performance FORTRAN (HPF) [HPF93], C* [RS87] and Dataparallel C [HQL*91].

Massively Parallel Chess

The chess work consists of a parallel game tree search and a scheduling mechanism, as well as the
measurement of the performance of the program.

Chess playing ability, whether in a computer or in a human, is a multidimensional skill. Comput-
ers need a good opening book, good endgame knowledge, a good search strategy, a good evaluation
function, and enough speed. The Elo chess rating system [Elo78] maps this multidimensional skill
into a linear rating, and it is difficult to understand exactly how an improvement in one dimension
affects the overall rating. Another way to view chess playing ability is that there is a space of chess
positions, and that the box spanned by the various dimensional qualities contains those positions
that the program understands how to play. My strategy was to take an existing chess program,
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Software-Hitech (which has a less rich collection of search extensions than the standard Hitech
program, but is otherwise the same as Hitech of September 1991), and push as hard as I could in
the brute-speed direction. The promise of my approach is that as one incorporates improvements in
other dimensions, the “speed” dimension will not be a limiting factor. Improvements might include
an improved static evaluation function (or perhaps one better suited for software than Hitech’s
hardware-oriented static evaluator), improved search extensions, and possibly even completely dif-
ferent search strategies such as B* search [Ber79] or conspiracy number search [McA88]. By
“improving” the other dimensions of the chess skills, we hope to encompass many more chess
positions into our “playable” space. In the future I hope to investigate how well such techniques
can be parallelized.

StarTech uses Jamboree search, a parallelized Scout algorithm. The Scout algorithm is a variant
of the short, but tricky, �-� algorithm. D. Knuth and R. Moore [KM75] provided the first published
analysis of the �-� algorithm. The main advantage of the �-� algorithm is that, if the tree is
ordered so that a good move is considered before a bad move is considered, the algorithm prunes
away useless work and searches a tree which is much much smaller than the entire tree. Thus, the
�-� algorithm rewards programs that do a good job of ordering moves in the search tree. Knuth
and Moore contrasted �-� search with a weak version of �-� search that makes do without the �
argument and achieves somewhat fewer cutoffs. They identified the critical tree of a game-tree as
the part of the tree that must be searched by any algorithm, including�-� search, in order to identify
the best move.

The simplest approach to searching a game tree in parallel is to spawn all the children of any
given position and search them in parallel. This works wonderfully for game trees that are worst-
ordered, because serial �-� searches the entire tree in that case, and the parallel version searches
the entire tree in parallel. The problem arises when the game tree is ordered reasonably well, in
which case �-� search prunes away most of the tree, but the naive parallel algorithm still searches
the entire tree. The speedup achieved by this naive approach is generally limited to O(

p
P ) on P

processors [Fis84].
Thus, the challenge is to perform a parallel tree search while obtaining most of pruning achieved

by the serial �-� search. Most of the approaches to effective parallel �-� search are based on
J. Pearl’s Scout algorithm [Pea80]. The serial Scout search algorithm, on which Jamboree is based,
distinguishes between a search to determine the value of a position and a search to test to see if the
value of a position is greater than a particular bound. Algorithm Scout obtains the value of the first
child, and then it tries to prove that the other children are worse choices than the first child. If the
proof fails for one of the children, Scout search researches the child to determine its correct value.
Since testing is cheaper than valuing, Scout search is gambling that the tests succeed frequently
enough to offset the cost of the researches.

Related to Scout search is aspiration search. In aspiration search, the search window is broken
into several pieces which are searched independently. Because the windows are small, they often
produce a result quickly. In fact, serial aspiration search runs faster than infinite window �-�
search. The Greenblatt chess program used aspiration search [GEC67], and today most state-
of-the-art chess programs, including StarTech, use some form of aspiration search. G. Baudet
attempted to parallelize aspiration search by farming each of the search windows out to a different
processor [Bau78]. Baudet found that parallel aspiration search achieves a maximum speedup of
only about three to five.

My Jamboree search algorithm is a parallelization of Scout search. Jamboree search operates
by searching the first child of a position, and then it tests the remaining children in parallel. Any
tests that fail are sequentially researched. This approach is natural for parallel game-tree search,
and variants of it have been used by several other parallel chess playing programs, including Cray
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Blitz [HSN89] and Zugzwang [FMM91]. Other parallel algorithms based on Scout search include
minimal tree search [ABD82], mandatory work first (MWF) [Fis84], principal variation splitting
(PV-splitting) [MC82], and the Zugzwang search algorithm [FMM91].

Parallel aspiration search [Bau78] and the Karp-Zhang AND/OR tree search algorithm [KZ89,
Ste92] use other strategies to parallelize �-� search.

Other approaches to game-tree search, not based on �-� search, include B* search [Ber79],
Conspiracy search [McA88], and SSS* [Sto79]. These other approaches require much more
memory space than the algorithms based on �-� search. Programs based on these algorithms have
only recently begun to play competive chess.

Several chess programs find parallelism in the static evaluation function. The BEBE program
by T. Scherzer1 uses parallel hardware to perform static evaluation. Both Hitech [BE89] and Deep
Thought [Hsu90] use parallel hardware for the static evaluation and move generation functions.

T. Marsland and M. Campbell’s survey article on parallel search provides a more detailed ex-
planation of the various parallel search algorithms [MC82]. M. Newborn provides a comprehensive
history of computer chess through 1975, starting with the Turk [New75].

I have shown that improving the move-ordering decreases the critical path length and the amount
of parallel work done. Thus, it makes sense to spend effort to improve the move ordering. StarTech’s
strategy is to

� sort the moves by the incremental improvement in the static evaluation function, and

� pull the move stored in the transposition table to the front of the list.

Several other techniques for improving move-ordering appear in the literature, including the fol-
lowing.

Recursive Iterative Deepening: In the late 1980’s H. Berliner and his students at Carnegie-Mellon
University noticed that their chess program would sometimes encounter a ‘search catastrophe’,
in which some subsearch fails low, and then the program is making deep searches without
the transposition table having any useful data. The program would spend a lot of time
looking at moves that a shallow search would have discarded. They found that recursive
iterative deepening was helpful for avoiding the search catastrophe, but did not come to a
definitive conclusion on the value of recursive iterative deepening [Ber93]. I found that
recursive iterative deepening is a definite advantage for StarTech, because move ordering is
so important for a parallel chess program.

Deferred-Read of Transposition Table: I borrowed the techniques used in Arvind’s I-structures
[ANP89] and P. Barth’s M-structures [BNA91] to implement deferred-reads of transposition
table lookups. I used deferred-reads to keep different processors from working on the
same thing, thus making more successful the dynamic-programming approach implicit in
transposition tables.

Thompson Move Ordering: K. Thompson argues [CT82] that the moves should be initially sorted
so that moves that capture the higher-valued pieces (such as queens) are earlier in the list.
The program should prefer to capture the big piece with a small piece if we can. The current
StarTech move ordering strategy tends to prefer to capture a big piece with a big piece, since
the static evaluator often prefers to get the big pieces into the action.

1The BEBE program is mentioned in the parallel search survey article by T. Marsland and M. Campbell [MC82].
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Killer and History Tables: R. Greenblatt introduced [GEC67] the killer table, which for each
move at the root of the search tree, stores a refuting move which demonstrates that the root
move is bad. The history table [MOS86] is a small set of moves that have recently caused
a cutoff. If any “killer move” or “history move” appears in the move list, it is moved to the
front of the move list. The idea of the killer and history table is that moves that are good in
one position are likely to be good in other positions. StarTech does not currently use these
mechanisms.

Further serialization: I showed that even if two children are searched serially before searching
the rest in parallel, for best ordered trees, there is plenty of average available parallelism. For
real chess trees, that strategy did not work very well, because the critical path length grew
too much. A more limited strategy that searches two children only under certain conditions
was successful, however. Zugzwang [FMM90] combines the killer and history tables with
serialization. On type 2 positions of the search tree, Zugzwang serially searches the moves
mentioned by the killer and history table before starting the search in parallel of the remaining
children.

T. Marsland and P. Rushton characterized strongly ordered game-trees [MR74], and J. Gillogly
measured the extent to which trees are best-ordered [Gil78]. Transposition tables are a memoization
technique. For further information about how to use and implement memoization, see R. Bird’s
survey article [Bir80].

I found that I need a better collection of chess benchmarks than what I have. It is possible that
some of my results have been biased by the fact that my chess problems run so quickly. With a
more difficult set of benchmarks, I might get different results, although I would expect the overall
results to be similar.

The StarTech program uses a work-stealing scheduler to distribute and schedule the work
uncovered by the Jamboree search algorithm. In the StarTech scheduler, each busy processor posts
any work that can be spawned onto another processor. Each idle processor periodically asks another
random processor for posted work.

The work stealing scheduler uses a global throttle, implemented with the CM-5 control network,
to keep the idle processors from swamping the busy processors with requests for work. The requests
to work are organized into globally synchronous phases. During a single phase, all of the idle
processors are allowed to send out one request, and they get their reply (which consists either of
a “no work” message or a message containing some work). After all the idle processors get their
replies, and all of the busy processors have had a chance to get some work done, they indicate,
using the control network, that the next phase may begin. Thus, the work done by the computation
is divided into “spawning” and “nonspawning” work. The spawning work is regulated by the
global throttle, and the nonspawning work proceeds asynchronously. I found that the swamping
problem gets worse as the machine size gets larger. Researchers who study schedulers on only
small machines may find that their strategies do not scale to large machines.

Program Zugzwang uses a work-stealing scheduler with various deterministic strategies for
determining who to ask for work. Program Zugzwang deals with the swamping problem in an
ad hoc fashion, by disabling the requests for work at the beginning of the search. I found that
sometimes in the middle of the search, the requests need to be throttled.

The DIB package [FM87] uses a work-stealing approach for distributed backtrack search.
Package DIB provides several deterministic strategies for requesting work, some of which seem to
suffer from the swamping problem. Apparently, one way DIB copes with the swamping problem
is by forcing any processor that is denied work to wait for some fixed time before asking for work
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again. The DIB package is designed for robust operation in distributed systems with failures, while
the StarTech scheduler is designed for fairly tightly coupled systems in which the entire machine is
assumed to be robust.

The lazy task creation technique used in the Mul-T compiler of E. Mohr, D. Kranz and R. Hal-
stead [MKH91] attempts to reduce the overhead of a work-stealing scheduler by avoiding the
creation of closures and other data structures until work is actually being stolen. StarTech also
reduces the overhead of stealing work by using this technique. When StarTech posts work to be
stolen, it posts only a pointer to an existing board position, and a move to get to a new board
position to be searched. Thus, StarTech does not incur the overhead of copying the entire state of a
position until work is actually being stolen. The Mul-T compiler dramatically reduces the amount
of overhead for managing parallelism, but the study [MKH91] does not compare the performance
of their system to a best serial implementation (rather, it compares the performance to a serial
implementation of Mul-T). Thus, it is difficult to judge the effectiveness of lazy task creation in
Mul-T.

D. Nussbaum [Nus93] describes a work-stealing scheduler that tries to take advantage of locality
in the parallel machine. Nussbaum reviews other locality preserving schedulers. For the CM-5, the
difference between communicating with a nearby processor and communicating with a far processor
is negligible, so I did not worry about trying to steal work from nearby processors.

The Parallel Continuation Machine (PCM) of M. Halbherr, Y. Zhou and C. Joerg [HZJ94, Hal94]
uses a more general work migration strategy than I use in StarTech. By moving work from one
processor to another, Halbherr avoids the space-time tradeoffs discussed in Section 5.8. He has not
attempted to prove any time or space bounds for PCM with respect to critical path and parallel work,
however. All the PCM programs that Halbherr has studied have much ‘nicer’ parallelism profiles
than does StarTech. It is not yet clear how well PCM’s design would do on a truly demanding
application, such as parallel computer chess.

Several researchers have used adaptive backoff strategies to avoid swamping. The Ether-
net [MB76] uses a randomized adaptive backoff strategy to avoid the swamping problem in the
domain of local area networks. The adaptive backoff strategy has not been analyzed for work
schedulers, however. A. Agarwal and M. Cherian study how to use adaptive backoff to improve
system performance in the face of hot-spots. DIB uses an adaptive nonrandomized backoff strategy,
and is tricky to tune for performance [FM87] Halbherr’s PCM successfully uses an randomized
backoff strategy to avoid the swamping problem, but Halbherr has only experimented with unde-
manding parallel programs [HZJ94, Hal94]. No analysis of adaptive backoff has been performed.
The global throttle requires very little performance tuning, where adaptive backoff must be tuned
to obtain good performance.

A variation of my method of removing acknowledgments from the abort/result protocol appears
in distributed systems [Tv85].

The StarTech system uses active messages [vCG*92] for interprocessor communication. Al-
though active messages restrict the handler to run quickly and without using too many resources, I
was able to implement efficiently and simply the protocols I needed. Traditionally, programmers
have used remote procedure calls (RPC) to implement distributed protocols [BN84], but RPC’s are
quite expensive [TL93]. Optimistic active messages promise to provide the efficiency of active
messages with the full expressive power of RPC [HJK*94]. Optimistic active messages are slower
and more complex than what is required of the StarTech active message protocols.

I developed a scheduler for the CM-5 with the dual goals of achieving linear speedup (subject
to the critical path length of the computation) and staying within the memory bounds of the
processing nodes of the CM-5. The Startech scheduler achieves the memory bounds, but makes
fairly weak guarantees about the linear speedup. R. Blumofe and C. Leiserson [BL93], inspired
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by my early problems meeting these goals, identified a number of scheduling policies that achieve
linear speedup and good memory bounds. Graham [Gra66, Gra69] showed that any directed acyclic
dataflow graph could be scheduled to run within a factor of two of optimal on a machine with no
overhead. R. Brent [Bre74] produced the formulation that states that the graphs can be scheduled
to run in time no more than C +W=P , where C is the critical path, W is the work, and P is the
number of processors.

The difficulty of measuring the critical path length for the real chess program derives from
the fact that the program can abort subcomputations that have started. I found that aborting the
subcomputations was valuable in practice, but one might ask if there is some way to get around the
necessity of aborting subcomputations. There is some theoretical evidence that we cannot escape the
necessity of aborting subcomputations. The ability to abort computations is similar to the parallel
‘or’ construct. The parallel ‘or’ construct, por(a; b), returns true if either a or b return true,
even if one of a or b is a divergent computation. G. Plotkin showed [Plo77] that adding a parallel
‘or’ construct to a serial language not only changes the semantics of the language, but it changes
the calculus of the language, leading to a fully abstract language, which means, roughly, that one
can reason about the language exactly as mathematicians would like to. To implement a parallel
‘or’ construct efficiently requires the ability to abort the second subcomputation whenever the first
subcomputation returns a ‘true’ value.

The GITA dataflow interpreter computes the critical path and work when executing an infinite-
processor simulation [NFH88]. The GITA interpreter produced critical path lengths, but no guaran-
tees were made for speedups or space bounds, partly because the dataflow programs being simulated
were nonstrict. Traub showed that nonstrict programs can be quite difficult to compile [Tra88].
Blumofe and Leiserson [BL93] showed that some nonstrict programs have no schedule with good
time and space bounds. Other work in the chess literature has focused mostly on the work-efficiency,
rather than the critical path of the search. One exception is Fishburn [Fis84] who analyzes the critical
path for MWF by writing a recurrence relation that expresses the critical path length, starting at
end of the program and proceeding backwards to the beginning. Feldmann et al. [FMM91] take
steps to reduce the critical path length, without having analyzed or measured it. It is difficult to
determine from their papers whether their efforts are useful. Marsland et al. [MOS86] use overhead
measurement to characterize the performance of their parallel programs. Overhead measurement
is inaccurate and does not provide the performance insight that critical path and work provide. I
have systematically used critical path length to estimate the average available parallelism for a chess
program.

Program StarTech measures critical path lengths as an aid to understanding the performance
of the program. Instead of doing an infinite processor simulation, my approach is to compute
estimated critical path lengths during an actual production run on a parallel machine. In spite of the
fact that the work and critical path length is not well defined for my algorithm, I found that I could
tune the performance of the program on small machines and accurately predict the performance on
big machines. By combining the measurement of the critical path with the measurements on large
machines, I was able to validate my performance model and do most of my code-development on
more readily available small machines. While many other researchers have designed multiprocessor
systems to support dynamic MIMD-style programming [DR81, Hal84, Bir89, SYH*89, Cla87,
PC90, CSS*91, NPA92, Hal94], those systems provide no time or space bounds. D. Culler describes
some ad hoc techniques for managing space bounds of dataflow programs [Cul89].

The StarTech scheduling mechanisms may be useful for supporting a wide range of dynamic
MIMD-style computations, including backtrack search and programs written in multithreaded pro-
gramming languages.
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Data Network Performance Mechanisms

With naive message-passing software and processor-network interfaces, a parallel computer may
achieve only a fraction of the communications performance of the underlying network. Empirical
results indicate that there are several mechanisms and techniques that can be used at various levels
in the system to ensure high performance.

We found three underlying mechanisms that can improve performance. Barriers can be used to
quickly determine when all processors are finished sending or when all are finished receiving. The
order in which packets are injected into the network can be managed. The rate at which packets
are injected into the network by the sender can be tuned to match the rate at which the target can
receive messages.

There are several reasons why these mechanisms work. They can help avoid target collisions, in
which several processors send to one receiver at the same time. Over time, they can help to smooth
out the bandwidth demands across various bisecting cuts of the network. The mechanisms can help
the programmer ensure that the packets in the network at any given time have independent, evenly
distributed, destinations. These mechanisms also provide various forms of flow control, which
improves the efficiency of the network. For example, barriers act as global all-pairs flow control,
guaranteeing that no processor gets too far ahead at the expense of another processor.

Our results indicate that it may be a good idea to place some of our mechanisms into the network
and the processor-network interface. A parallel computer should provide a rich collection of global
flow-control mechanisms. Almost any form of flow control is better than none. The best way to
apply each of these flow control mechanisms is not fully understood. It may be helpful to have
hardware support to determine more about dynamic network congestion, in addition to the CM-5’s
mechanism that indicates the presence of an arrival.

A parallel computer should support fast predictable barriers. The cost of a barrier should be
competitive with the cost of sending a message. The behavior of barriers should be independent
of the primary traffic injected into the data network. The CM-5 provides such barriers by using
a hardware global-synchronization network. Multiple priorities or logical networks could also
be used. It may be beneficial for the system to perform a periodic barrier automatically to keep
processors synchronized during communications operations.

The receiver must be at least as fast at the sender. Allowing user-level access to the network
interface is the most important step in this direction. Hardware support to speed up the receiving of
messages even by a few cycles would help improve the programmability of the CM-5, however.

The network, the processor-network interface, and its software should provide mechanisms
to manage the order in which packets are injected into the network. A direct-memory-access
(DMA) engine for sending and receiving packets, such as those proposed for MIT’s *T [PBG*93]
and Stanford’s FLASH [KOH*94] machines, can make it easier to overlap communication and
computation, but our experiments indicate that such engines may require fairly sophisticated packet-
ordering and flow-control policies to achieve good performance. Similarly, very large packets are
probably a bad choice because they have the effect of preventing packet reordering. The entire
system must avoid head-of-line blocking.

I believe that these results apply to a wide range of parallel computers, because the observed ef-
fects are fundamental. Bandwidth considerations, scheduling issues, flow control, and composition
properties will appear in any high-performance communications network. In particular, the rate at
which a receiver can remove messages from the network may be the fundamental limiting issue
in any network that has sufficient bandwidth to ensure that internal congestion is not the dominant
issue.
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Our experiments provide empirical evidence that some of the strategies used by theorists to
prove theorems also make sense in real parallel systems. Theorists have argued that slowing things
down can speed things up or provide predictable behavior [GL89]. Both barriers and bandwidth
matching, which at some level slow down the system, actually speed things up. The use of barriers
prevents processors that have gotten a little bit ahead from widening their lead. Parallel computing
is not a marathon in which the first processor that finishes wins. It is a race against the clock in
which we care about the finishing time of the slowest processor. Bandwidth matching is analogous
to freeway on-ramp meters, which reduce the variance of the arrival rate to keep traffic flowing
smoothly. Other examples of slowing things down to keep them working well include Ethernet’s
adaptive backoff [MB76], and the telephone system’s approach to dealing with busy calls by forcing
the caller to redial rather than wait in a queue [Kle76, p.103].

Not only are there sound theoretical arguments for randomized injection order [GL89, LAB93],
but there is significant practical application of reordering, even when starting with what seems like
a reasonable injection order.

Theorists have argued that measuring the load across cuts of a network is a good way to model
performance and to design algorithms [LM88]. We have seen a few situations where we could apply
such reasoning to make common patterns such as all-pairs run faster.

The MIT Strata library already incorporates these techniques for the CM-5. In the future,
this research may lead to the development of mechanisms that routinely provide predictable, high-
performance communication.

Synchronized MIMD Computing

The evidence in this dissertation is that synchronized MIMD hardware is a good idea. The control
network, the new feature added to MIMD hardware to get synchronized MIMD hardware, allows
the programmer to take advantage of frequent barriers. The control network functionality could
potentially be implemented without special purpose hardware, but one requirement is that the high
performance is unaffected by other users or even by the programmer’s own data messages. The
processors of today and of the near-future will probably not be able to handle messages quickly
enough to implement a low-latency synchronization using only data messages. On machines in
which when the processor-network interface requires only one instruction to handle a message,
perhaps data networks will be a viable alternative to a hardware control network. Currently, the
only machines that have fast enough network interfaces to support effective global synchronization
directly in the data network are dataflow machines such as Monsoon [PC90] and the EM-4 [SYH*89,
SKS*92], but those dataflow machines do not offer performance that is independent of the load
in the data network. One of the major contributors to the latency of the control network on the
CM-5 is the fact that the processor takes several microseconds to interact with the control network.
The mechanisms used to make data network interfaces go faster may also be applicable to making
control network interfaces go faster. It is difficult to predict what the implementation will look like,
but programmers will need access to fast global synchronization.

Barriers provide a composition property. If you understand the performance and meaning of A
and of B, then you can easily understand the performance and meaning of

A; barrier;B:

We saw that when programming with the data parallel model, some barriers that are not needed for
correctness are still desirable for performance. Barriers are also useful for implementing schedulers
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that have a global-correctness property, such as not running out of memory, or not swamping the
data network with requests for work.

The synchronized MIMD architecture effectively supports the data parallel programming model,
and it can also be used to support a more general dynamic MIMD style of programming. In order to
make it easier for programmers to use a dynamic MIMD style of programming, linguistic support is
needed. Dataflow languages such as ID [Nik87] make it easy to write a dataflow program, but do not
provide any time or space bounds for the program. In fact, Blumofe and Leiserson [BL93] showed
that there are ID programs that cannot be scheduled to run quickly without using an unreasonable
amount of memory. To solve these problems calls for the development of an algorithmic dataflow
language that can guarantee time and space bounds.

Synchronized MIMD computers have the potential to relegate workstations to the status of mere
terminals. Fundamentally, there is no reason to put a computer on every desk, if the user could
get a fair-share of a much larger computing power. Eventually, the additional cost of having a
parallel computer instead of a collection of workstations will become negligible. Users will want
operating systems that guarantee that they can always access their fair share of computing power.
Fair scheduling is not a major goal of today’s operating system development. Perhaps some of the
techniques described here will be applicable to the design of fair operating systems.

My scheduling mechanisms work well for medium-to-course grained dynamic MIMD programs.
To obtain good performance from fine-grained dynamic MIMD programs may require additional
work. It is not clear just how much fine-grained parallelism is going to be able to buy us, but
M. Lam and R. Wilson provide one hint in their work that indicates that there is potentially more
than 50-fold parallelism in ordinary C programs [LW92]. One direction to pursue this research is
to try to apply my scheduling strategies to standard C programs. It has been widely argued that one
cannot afford to put any new ‘academic’ mechanisms into state-of-the-art RISC microprocessors
because of the billion-dollar investment that is put into such microprocessors. That billion-dollar
investment, however, is indicative of the fact that the ‘Reduced Instruction Set Complexity’ designs
have become very complex indeed. Any approach that simplifies the design of a microprocessor
may have an overall advantage. Perhaps there is, once again, more opportunity to make gains based
on architectural improvements rather than from shaving of nanoseconds.

In the future, not only parallel programs, but ordinary programs such as editors and compilers,
may be able to exploit the power of large shared parallel computers. Such a goal is far from being
realized, but the mechanisms described in this work may help pave the way towards that kind of
truly practical parallel computing.
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Li, and Shabnam Zarrinkhameh of LSI Logic; and Jerry Frenkil, Frank Kelly, Marc Corbacho, Paul
Pinelle, and George Wall, of VLSI Technology, Inc.—for their help in producing the network chips.

Professor Steve Ward supported my early research on the Synchronized MIMD architecture,
which was presented at my oral qualifying examination.
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Dick Clayton at Thinking Machines made the decision to give me a chance to be a computer
architect.

The massively parallel chess work reported in this dissertation spans three universities and one
corporation, with contributions from people at Carnegie-Mellon University, the National Center for
Supercomputing Applications at the University of Illinois at Urbana-Champagne (NCSA), MIT,
and Thinking Machines Corporation.

My research into massively parallel chess would not have been possible without the help
provided by Hans Berliner and Chris McConnell of Carnegie-Mellon University. Hans and Chris
provided me with a C-language version of Hitech, and provided much helpful advice over a long
period of time. I depended heavily on their judgment and chess knowledge.

At the National Center for Supercomputing Applications at the University of Illinois at Urbana-
Champagne (NCSA): Larry Smarr and Michael Welge decided with only a few hours notice to
dedicate the entire 512 node CM-5 for almost a week to running chess at the 1993 ACM International
Computer Chess Championship. The CM-5 support staff at NCSA was extremely helpful. Curt
Canada worked heroically during the three days before the tournament to install a new version of
the operating system, get everything working, and fix an intermittent hardware problem. One of the
operators at NCSA spent over an hour working with me to resolve a modem problem. The NCSA
runs a first-rate facility.

At MIT: Prof. Charles E. Leiserson continually thought of ways to make the chess program
better. Ryan Rifkin optimized many parts of StarTech and cleaned up the the parallel work-stealing
code. James Schuyler operated StarTech at the 1993 ACM Computer Chess Championship in
Indianapolis. James also performed extensive testing of StarTech during the last two weeks prior to
the 1993 ACM tournament. It was a real pleasure for me not to be responsible for moving the pieces
and hitting the clock. James’s chess skill came especially helpful during the tournament. Hans
had decided that the StarTech team should not consult with him during the tournament because it
would be unfair to the other participants for him to have two horses in the race. Consequently,
when StarTech got into trouble with its opening book, which had been partially garbled in transit
from CMU to MIT, James ungarbled the opening. Robert D. Blumofe kept coming up with new
scheduling strategies to solve the problem of obtaining linear speedup without running out of
memory; Daniel Nussbaum explained to me how Alewife could handle the swamping problem.
Al Vezza knew who to call at NCSA when I desperately needed machine time for the 1993 chess
championship. Eric A. Brewer implemented the weighted linear regression curve-fitting program
that I used.

At Thinking Machines Corporation: Mark Bromley, Roger Frye, and Kurt Thearling provided
important design and programming help in getting StarTech running on the CM-5. Roger almost
singlehandedly built the interface between the Hitech code and the parallel computer, while Kurt
wrote the first message passing software (back in the days before active messages had been invented
by Thorsten von Eicken), and Mark continually amazes me with tricks to get the last bit of
performance out of the CM-5 processing node. John Mucci and David Waltz provided the managerial
backing to allow Mark, Roger, and Kurt to spend some time on the project. Richard Title lent me
his chess equipment (some of which I broke!) and helped to test StarTech. The staff at Thinking
Machines kept the machines up and ‘found’ for me much machine time on the factory floor that I
could use to test StarTech. The support staff was also good-natured whenever I overstressed the file
servers, the CM-5 operating system, or the inhouse local area network. They never deleted my files.

Hans Berliner, Richard Karp, David Slate, and Lewis Stiller all contributed to a mini-seminar
on chess held at Thinking Machines Corporation on August 12, 1991. In particular, Richard Karp
suggested that I base my program on Hans Berliner’s Hitech rather than GNU Chess [Cra90].
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Chapter 3 of this dissertation owes much to Eric A. Brewer, who coauthored with me “How
to Get Good Performance from the CM-5 Data Network” [BK94]. Eric was supported by the
National Science Foundation, Grant CCR-8716884; by ARPA, Contract N00014-91-J-1698; by an
equipment grant from Digital Equipment Corporation; and by grants from AT&T and IBM.

Robert Blumofe implemented most of Strata’s active-message layer and block-transfer engine,
and is involved in the ongoing work on bandwidth matching. Charles Leiserson and Bill Weihl
suggested directions to pursue, and Charles provided the marathon analogy.

Harry F. Jordan and Burton Smith helped me find references to The Force.
Maria Sensale, the LCS/AI reading-room librarian, more than once obtained a copy of a paper

originally published a long time ago in a far away place. Paula Mickevich and Newton Loui
cheerfully, by email, renewed (again and again and again) the due date of the dozens of books and
technical reports that I borrowed from the reading room.
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This work was partially supported through the use of the Connection Machine CM-5 super-
computer at the National Center for Supercomputing Applications (NCSA), University of Illinois
at Urbana-Champaign under NCSA grant number TRA930289N; and through the use of the CM-5
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Corporation. SPARC is a trademark of Sun Microsystems, Incorporated. Unix is a trademark of
AT&T. Ethernet is a trademark of Xerox Corporation.

The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of the U.S. government.
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