MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

L ABORATORY FOR
COMPUTER SCIENCE

4)

MIT/LCS/TR-648

A DISTRIBUTED
PROGRAMMING SYSTEM FOR
MEDIA APPLICATIONS

Brent M. Phillips

February, 1995

This document has been made available free of charge via ftp
from the MIT Laboratory for Computer Science.

. J

545 TECHNOLOGY SQUARE; CAMBRIDGE, MASSACHUSETTS 02139 (617) 253-5851

A Distributed Programming System
for Media Applications

Brent M. Phillips

Telemedia Networks and Systems Group
Laboratory for Computer Science
Massachusetts Institute of Technology

Abstract

This thesis describes the design and implementation of VuDP, a programming
system for distributed media applications. VuDP has been implemented as a set of
extensions to the VuSystem, a programming environment for media-based
applications. VuDP supports distributed media applications in which VuSystem
modules can be created and placed on any node in a network. VuDP is integrated
with the VuSystem runtime programming environment and dynamic
reconfiguration capabilities.

VuDP has been used to develop several VuSystem applications that would have
been difficult or impossible to implement without the VuDP extensions. The
VuDP remote evaluation mechanism allows for the creation and manipulation of
remote interpreters and for setting up both in-band (media flow) and out-of-band
(control and event handling) connections between local and remote interpreters.
Fuarther, VuDP RPC mechanisms complement remote evaluation by providing
tools and services that support the implementation of interactive multi-user
applications using the VuDP daemon.

(©Massachusetts Institute of Technology 1995

Contents

1 Introduction

L1 Overview oo i e
1.2 Media Programming and the VaSystem
1.3 The VuSystem Programming Environment
1.4 Related Work in Distributed Programming Systems
1.5 VuSystem Distributed Programming

2 VuDP: VuSystem Distributed Programming

2.1 Approacho

2.2 The VuSystem Lo

2.3 Distributed Programming with VuDP
3 The In-Band Partition

3.1 The VsTep Modules o o oo o

3.2 Implementation oL oL e

3.3 In-Band Communication Protocols

4 The Out-of-Band Partition
4.1 The VsNet Modules
4.2 Implementation e

5 Advanced VuDP Applications

5.1 Remote Evaluation 0o oo
5.2 The VuDP Daemon
5.3 VsPigeon
5.4 VsTalk . . . o0 0 0o
5.5 VsChat .. o oo
5.6 VsMultiCast
5.7 Perspective
6 Results
6.1 Throughput Performance,
6.2 Jitter Performance Testing

6.3 Analysis of Throughput Measurements 107

6.4 Analysis of Jitter Measurements 108
6.5 A Lossy VuDP Protocol? o o 110
Conclusion 114
7.1 VuDP Summaryo 114
7.2 Important Lessons s 114
7.3 Fuature Worko 115

List of Figures

1.1 The ViewStation o 10
1.2 The structure of a simple VuSystem application 21
2.1 VuDP Approach 23
2.2 Without VaDPo oo 23
2.3 With VuDP 0. oo 24
2.4 In-Band/Out-of-Band Partitioning in VsPuzzle 34
2.5 A VuSystem Control Panel 34
2.6 The Visual Programming Environment 35
2.7 VsEntity Input Callback 0 00 35
2.8 VuDP Hierarchy 36
2.9 A Remote Source Control Panel 37
3.1 Remote In-Band Connections, 38
3.2 In-Band Connection Initiated 41
3.3 In-Band Connection Established 41
3.4 The VuSystem Module Data Protocol 42
3.5 Components of Latency 44
3.6 B Calls “Idle” and is Starved 44
3.7 A Sends a Payload whichis Lost 45
3.8 Types of Protocols Lo 47
4.1 Connection Initiated o o o000 54
4.2 Connection Established 00 0. 55
4.3 Messages Enqueuedo L Lo 56
4.4 Message P Received, Callback Executed 57
4.5 Message Q Received, Callback Executed 57
4.6 A Makes a Call to B and Blocks 58
4.7 B Receives Message, Executes Callback 58
4.8 B Sends Back the Return Valueto A 59
4.9 Setup Remote Called, Remote Device Script Started 62
4.10 Remote Source and Connections Setup 62
4.11 Setup Remote Called and Remote Device Script Started 67

4.12

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Remote Filter and Connections Setup 67

VuDP Remote Evaluation 69
Example of Remote Evaluation 70
Remote Evaluation Connection Established 73
Example of Remote Evaluation 94
VsPigeon Messageo oo 94
VsPigeon L 95
VsTalk o 95
VsTalk Initiation 96
VsTalk Connection 97
The VsChat Boardo 98
VsChat Connections 99
VsMultiCast Master Window 99
VsMultiCast Slave Window 100
VsMultiCast Connections 100
Media Duplication Connections 101
Local VsDemo e 103
VuDP VsDemo e 104
X-Windows VsDemo 105
Local VsDemo, Trial 1 o o o000 108
Local VsDemo, Trial 2 o o Lo 109
VuDP VsDemo, Trial 1o o o 110
VuDP VsDemo, Trial 2 o o 111
X Windows VsDemo, Trial 1 0 0 L. 112
X Windows VsDemo, Trial 2 0 0 L. 113

List of Tables

6.1 Throughput in Frames/Sec 103
6.2 Throughput in Kbytes/Sec 105
6.3 Performance Statistics for Local VsDemo 106
6.4 Performance Statistics for VaDP VsDemo 106
6.5 Performance Statistics for X-Windows VsDemo 107

Chapter 1

Introduction

1.1 Overview

In the last several years there has been a rise in the use of loosely-coupled
networks of computers, where sets of workstations and/or personal computers are
hooked together via an ethernet or other local area network technology. At the
same time, the increasing power of workstations and personal computers has
allowed for the development of applications that can capture, process, transfer,
and output media in different manners. However, writing distributed programs
using only the tools provided by most programming languages and operating
systems is generally too complex and unwieldy to be worthwhile.

It seems natural, then, to develop a distributed programming system for
media-based applications that provides enough support to make distribution both
simple and powerful. This thesis discusses a system that allows programmers to
write media-based applications whose processing modules are distributed among
workstations connected by a local area network. This was done by extending the
VuSystem [14][13], a video toolkit developed in the Telemedia, Networks, and
Systems group at the MIT Laboratory for Computer Science.

Major design issues in extending the VuSystem to allow for distributed
programming were finding the correct users’ and programmers’ view of distributed
programs and supplying the proper tools for writing distributed programs.
Distributed programming can involve either explicit distribution by the
programmer and/or transparent distribution by the underlying system. Either (or
both) may be appropriate, depending on the goals of the system. Further, in an
explicitly distributed program each site must provide an execution environment for
its portion of the program. Hence, peer execution environments may either be
completely separate or have a well-defined shared state and set of interactions. For
VuSystem distributed programming, these decisions are influenced by the kind of
support VuSystem programmers want for writing distributed applications, as well
as constraints on what is possible and practical to do with the VuSystem.

Camera Display
D: Cpu |=— Memory

—
Microphone E

VuNet Interconnect

Disk

Speaker

Cpu = Memory Net Link

Figure 1.1: The ViewStation

1.2 Media Programming and the VuSystem

Video has become a practical digital media to be captured, stored, manipulated,
and played back by computers. However, existing media programming systems
only provide limited support for distributed programming. Applications typically
run in a single execution environment, and remote resources can only be accessed
via mechanisms such as NFS (for remote files) and X Windows (for remote
displays).

The VuSystem [14][13] is a toolkit for creating applications that manipulate
time-based media, typically digital video, digital audio, and captioned text. A
VuSystem application is modeled as a series of reusable modules which create,
transfer, and process the media. Example modules are modules that act as video
sources, modules that process or filter video, and modules that display video to the
user. Two features that distinguish the VuSystem from other video programming
toolkits are that the VuSystem is designed to create computer participative
applications (where the computer directly manipulates the media) and that the
VuSystem is designed to work with live video sources. The ViewStation[24] project
integrates the VuSystem with the VuNet, a high speed ATM-based local area
network developed within the TNS group. It includes several modern workstations,
high-speed links between nodes, and video capture cards known as Vidboards[2].
The research described here extends the VuSystem to allow for distributed
programming. In the traditional VuSystem, program distribution is limited to the

10

use of NI'S, X Windows, and Vidboards (which may be accessed by any machine
on the VuNet). All application-specific modules execute in a common address
space. Hence, media sources and sinks that are not directly available to the local
machine can not be used by any applications running on that machine. Further,
two applications on different hosts that require communication for collaborative
processing ' must both know when and where the communication will occur.
Explicitly setting up interactive sessions is awkward and greatly reduces the utility
of multi-user applications.

1.3 The VuSystem Programming Environment

The VuSystem programming model is based on the idea that media applications
can be divided into sections that do “in-band” processing and sections that do
“out-of-band” processing. This idea is illustrated in figure 1.2. In-band processing
refers to processing which touches the underlying media stream; for video, this
corresponds to directly manipulating video frames. In-band processing is
performed on a video or audio stream, and so the performance of the in-band
processing is critical, especially when live video is being manipulated in real time.
Out-of-band processing refers to creation and configuration of in-band modules,
event handling, and other high-level programming concerns. In-band modules are
implemented in the VuSystem as a library of C++ modules for efficiency. (Less
time-critical modules may be implemented either in C+4 or as a library of Tcl
routines.) The C++ class system allows for quick and simple creation of new
modules that subclass existing modules and, when necessary, for creation of new
modules from scratch. Because in-band and out-of-band processing have very
different characteristics, separating them allows their architectures to be optimized
independently.

VuSystem applications are written as out-of-band Tel [17] scripts which typically
create and configure a variety of modules and then dedicate themselves to control
message passing where they decode user events, initiate the appropriate actions,
and display feedback to the user. Shown in figure 1.2 is the architecture of a
simple application consisting of a video source, a video filter, and a video sink.
The out-of-band application code - a Tcl script - sets up a video source module, a
filter module, and a sink module, and connects the inputs and outputs of the
modules so that the media flows from the source through the filter and into the
sink. In-band code inside the three modules handles direct manipulation of the
video. The out-of-band code communicates with the in-band code through
commands and callbacks.

Because Tcl is an interpreted language and VuSystem applications are written as

! An example of such an application is VsTalk, a VuSystem application that allows two users to
view live video of each other. In the traditional VuSystem, a VsTalk session must be prearranged
via email, a phone call, or face to face communication.

11

Tel scripts, great flexibility is provided in reconfiguring applications at run-time.
The VuSystem has a run-time visual and textual programming environment that
allows a user to quickly and easily reconfigure an existing program either by
entering Tcl commands to be interpreted or by simply moving around graphic
representations of modules [25]. This makes the VuSystem a programming
environment well suited to the creation, debugging, and testing of media
applications.

There are several reasons why the VuSystem is an appropriate platform for this
research. First, it is a working programming system which, when coupled with its
companion, the VuNet [3], a high speed network, is well suited for the development
of media-based applications. Second, it is interesting to write distributed programs
in the VuSystem because of its interpretive textual and graphical programming
environment. And, finally, the traditional VuSystem does not allow for generic
distributed programming.

Distributed programming is a natural extension that greatly increases the power
and flexibility of VuSystem applications without requiring extensive modifications
to the VuSystem infrastructure. In short, the distributed programming extensions
to the VuSystem demonstrate the viability of a dynamically reconfigurable
distributed multi-layer media programming system.

1.4 Related Work in Distributed Programming
Systems

Writing programs that run simultaneously on different machines is a difficult and
time-consuming process because of problems with asynchronous communication,
partial failures, data marshalling, and other distributed programming concerns.
This is unfortunate, since there are opportunities to realize increased fault
tolerance, performance, power, and flexibility by leveraging the resources of several
computers connected to a local area network.

Related work on distributed programming can be categorized by both the goals of
supporting distribution and by the scope of the support for distributed
programming. There are three basic reasons for wanting to write distributed
programs: to improve fault tolerance, to increase concurrency to improve
performance, and to access special resources that are only available from certain
machines. Distributed programming facilities can be designed for one, two, or all
three of these reasons. Further, there are different types of interaction between
remote processes. One type is the traditional RPC interface implemented by
message passing, where a server exports a standard set of services that remote
clients can access. A second type is remote evaluation, where a server acts as a
sort of soft programmable abstraction to which a client can send both the program
for the server to execute and the data for it to operate on. Finally, support for
distributed programming can either be in the form of general operating system

12

facilities for distributed programming or extensions to a specific language to ease
writing distributed programs in that language. The Client-Shell Distributed
Architecture [20], the ISIS[6] project, Mach [1], and Chorus [19] provide general
operating system level support for distributed programming in any language, while
the rest of the related work focuses on either creating a new distributed
programming language or extending an existing language to facilitate distributed
programming.

At alow level, UNIX provides system calls which allow programs to send and
receive packets over a local area network using a variety of communication
protocols. Berkeley UNIX provides a socket[8] abstraction for handling this style
of point-to-point intermachine communication. However, this built-in support for
point-to-point communications is often too low-level for everyday use in
applications development. Little or no direct support is provided for data
marshalling, synchronous communication, handling partial failures, and other
concerns. Some form of additional support is needed for distributed programming
to be practical.

1.4.1 The Client-Shell Distributed System Architecture

The Client-Shell Distributed System Architecture [20](also known as PPM for
"Personal Program Manager”) adds an extra layer between the command shell and
the operating system. PPM takes the view that distributed programs typically
involve many different communicating processes running on different machines,
and provides services to facilitate location-transparent creation and control of
structures involving these distributed processes. PPM provides services for creation
and execution of jobs and processes (including creation and I/O configuration of
remote processes), bookkeeping (to allow a user to obtain information about all his
active jobs and their component processes), control (to allow a user to suspend,
resume, or terminate related jobs and processes as a unit), and information
sharing (to allow different jobs and processes to communicate through a shared
name space). This allows users to easily set up and manipulate distributed
programs, even if the component processes are running on different machines.

1.4.2 ISIS

ISIS[6] is a system for fault-tolerant distributed computing. The focus of ISIS is to
use distribution to provide fault-tolerance, since a program or data object that
exists at several sites can use its extra copies as backups that can take over in the
case of a network or machine failure. This is done through an abstraction known
as a resilient object, which is an object that is automatically replicated at several
sites to provide fault-tolerance. In ISIS, control of distributed computing is
wrapped into the resilient object abstraction. Resilient objects are created using a
special programming language which (in the current implementation) is an

13

extension of C. ISIS supports a global naming mechanism so that conventional
applications can easily find and interface with resilient objects using an RPC-like
mechanism. Important features of the implementation of resilient objects are the
multicast communication primitives built on top of the standard UNIX
point-to-point facilities and the use of transactions and locking mechanisms to
handle errors. Using ISIS, fault-tolerant software can be written by first writing
and debugging an application entirely in a conventional programming language,
reimplementing the critical sections as resilient objects, and interfacing the
resilient objects with the conventional sections of the application.

1.4.3 Mach

Mach[1] is a multiprocessing operating system kernel and environment meant to be
used as a foundation for UNIX development. Most of Mach’s main features (such
as support for both tightly-coupled and loosely-coupled multiprocessors, the
separation of the UNIX process abstraction in tasks and threads, a virtual memory
system, and kernel debugging facilities) are not directly relevant to providing
support for distributed programming. However, Mach does provide a
capability-based interprocess communication facility that transparently extends
across network boundaries. This facility can be used as an alternative to internet
domain sockets for interprocess communication in distributed programs, and has
the advantage of providing location independence, data typing, and improved
security. To provide this new form of interprocess communication, Mach supports
the port as a basic transport abstraction. Ports are objects which represent
services, and are accessed much like objects in an object-oriented system - a
command is sent to an object requesting that it perform some service. Ports are
protected by the kernel, and processes must have the proper capabilities in order
to access other processes’ ports. Note that the Mach kernel does not directly
provide any support for communication over a network. Instead, processes known
as network servers direct inter-node messages to the appropriate destination
through network ports. Network ports are ports to which processes on multiple
hosts have access rights, so that a message sent to a network port is actually sent
over the network to the host running the process that owns the network port.

1.4.4 Chorus

Similar to Mach, Chorus[19] is a nucleus upon which distributed operating systems
may be built. Chorus is not built on top of a specific sub-system; instead, it
provides generic tools designed to support various host systems that can co-exist
on top of the Chorus nucleus. Traditional operating systems can be built on top of
Chorus by creating servers built on top of the Chorus nucleus that offer
higher-level services, and then combining the servers into a sub-system that
provides a traditional operating system interface. The Chorus nucleus manages the

14

physical resources of each machine, provides support for the actor, thread, and
port abstractions, and supports location-transparent inter-process communication.
A Chorus actor is a set of resources (address space, threads, etc.) similar to a Unix
process or a Mach task. Chorus threads are units of sequential execution that run
within actors, much like Mach threads run within Mach tasks. Chorus ports are
location-transparent entities attached to actors. The most important support that
Chorus provides for distributed programming is the synchronous and asynchronous
IPC facilities of Chorus ports. All inter-thread communication is done by sending
messages to ports, and communication is location-independent, so that two
threads within the same process communicate via ports in the same way as two
threads in separate processes on separate hosts. Within a single machine, the
Chorus nucleus handles inter-actor communication; between machines, the nuclei
and a network server (built on top of the nucleus) work to route messages to the
appropriate machine so they can be delivered to the appropriate port.

1.4.5 Argus

Argus [15] is a programming language and system designed to support distributed
implementation of systems that must maintain on-line state. Argus supports both
distributed programming and transactions through mechanisms known as
guardians and actions. Argus guardians are objects that encapsulate and protect a
set of resources while providing access to the resources through a set of handlers.
Handlers are special procedures that can be used to access the resources of the
guardian in a controlled fashion. Guardians maintain internal state and keep vital
information in stable storage so that they can be rebuilt after crashes.
Conceptually, guardians and handlers are much like objects and methods in
object-oriented programming languages. Next, computations in Argus may be
encapsulated within “actions” which (like transactions) are both serializable and
total. By providing guardians and actions, Argus eases the job of writing reliable
distributed programs that deal with partial failures and concurrency.

1.4.6 Medusa

Medusa [27] is a system that uses a peer to peer architecture to create, control,
and configure networked media devices. All Medusa entities are active modules
which may represent applications as well as lower-level modules such as cameras
and displays. Medusa focuses on providing secure, reliable connections between
modules in an environment where all modules are peers. Medusa is similar to the
VuSystem in many respects, though two notable differences are the VuSystem’s
in-band and out-of-band hierarchy and interactive programming environment.
Medusa grew out of the Pandora project described in [11].

15

1.4.7 Hermes

Hermes [9] is a high level language in which it is simple to start up new processes
and connect them together to allow distribution of different parts of a program.
Hermes provides high-level communication facilities built on top of the underlying
mechanisms to allow Hermes programs to be easily portable to different kinds of
systems. To this end, the Hermes compiler hides all the details of the low-level
IPC used to implement the communication mechanisms. This facilitates breaking
programs into separate communicating pieces that may be easily distributed over a
network without getting the programmer bogged down in the details of low-level

IPC mechanisms.?

1.4.8 Concert/C

Concert/C [4] is an extension to the C language to provide improved process
management, new data types, and communication mechanisms to ease IPC among
C programs. Concert/C provides primitives for interconnecting processes, for
passing bindings between processes, and for exporting bindings to shared files so
that C programs running on different machines can be set up in a client/server
architecture using RPC for communication. Both synchronous and asynchronous
point-to-point communication mechanisms (which hide the details of the
underlying IPC mechanism) are provided. Hermes and Concert/C provide a
similar set of utilities for network programming.

1.4.9 Avalon/CH++

Avalon/C++ [26] is a set of extensions to the C++ language that provide support
for developing fault-tolerant software via the use of transactions and modules with
recoverable state. Avalon/C++ focuses on providing tools to use distributed
programming for increased fault tolerance. Primitive classes of recoverable data
are introduced which may be used to build up more complex recoverable data
types, and a transaction mechanism is provided to support fault-tolerant
programming. Avalon/C++ encourages writing applications in a client/server
fashion, and supports server classes which can export certain methods for use by
other processes via an RPC-like mechanism.

1.4.10 Avalon/LISP

Avalon/LISP [7] contrasts with Avalon/C++ in that it is a set of extensions to
LISP to provide support for general remote evaluation. In Avalon/LISP,

evaluators are first class objects, and can be passed in messages from clients to
servers. This gives fine-grain control over where evaluation is done for different

“Hermes grew out of the NIL programming language[18], and so NIL will not be discussed here.

16

parts of a program; some parts can be evaluated locally, and others remotely. No
support is provided for transactions or other locking mechanisms; the focus of
Avalon/LISP is to allow for general remote evaluation.

1.4.11 REV

REV [21] is a set of extensions to CLU to provide transactions and support general
remote evaluation. Servers are not viewed as providing a fixed set of services, but
are rather seen as programmable devices that may be sent both code to execute
and data to execute it on. This adds a great deal of flexibility to the construction
of distributed programs, but also raises security concerns. REV also provides a
transaction mechanism that is used to deal with partial failures.

1.4.12 Distributed ML

Distributed ML (DML) [12] provides distributed programming extensions to
Concurrent ML, which is itself a version of Standard ML enhanced to support
concurrent programming. DML provides a data object called a port group, which
is a fault informative asynchronous multicast channel that can be used as the basis
for writing distributed programs.

1.4.13 Marionette

Marionette [23] is a language designed for distributing computation over a network
for parallelism and increased performance. Marionette uses a master-slave model
for parallel computing, where a "master” process sends work to ”slaves” that are
transparently distributed over a network.

1.4.14 PROFIT

PROFIT [10] is a distributed object-based language designed for financial analysis
where distributed processes must share primitive objects. In PROFIT, processes
running anywhere over a network can be sharing objects. A main feature of
PROFIT is that it allows dynamic reconfiguration of the primitive objects
processes are using and sharing.

1.4.15 Durra

Durra [5] is an application-level programming language whose philosophy is similar
to the VuSystem in that Durra programs connect and configure component
modules which may be implemented in any language. Like the VuSystem, Durra
separates concerns of component development from the use of those components.
Unlike the VuSystem, Durra is meant as a general purpose application-level
language, and is not specifically designed for writing media applications.

17

1.4.16 The Multicast Backbone

The Multicast Backbone, or Mbone[16], is a virtual network on the Internet used
for multicast of audio and video. The Mbone uses IP multicast addressing and
special routers that handle multicast addressing to support the multicast of audio
and video streams over wide areas using the same physical layer as existing
point-to-point networks. A suite of Mbone video conferencing applications has
been developed, including sd (the session directory tool for active video
conferences), vat (the Mbone audio tool), vic (the Mbone video tool), and wb (the
shared white board.)?

1.4.17 Summary

To summarize, there is a significant amount of work on languages designed for or
modified to accommodate distributed programming and on systems that use
distribution for improved fault tolerance. The VuSystem distributed programming
extensions described in this thesis have several novel aspects (described in the next
section) not covered in the research described above.

1.5 VuSystem Distributed Programming

VuSystem Distributed Programming (known as VuDP) is an extension to the
VuSystem programming toolkit. The goal of VuDP is to allow for the distribution
of a VuSystem application over several hosts in a network. This allows
applications to access special resources attached to certain workstations, allows
distribution of computationally intensive work across several machines, and
facilitates collaborative processing between processes in different address spaces or
on different machines. VuDP focuses on providing practical, usable programming
tools without requiring major modifications to the VuSystem software. This means
working within the limitations of the current VuSystem, such as the constraint
that all applications are single-threaded. Finally, because VuDP applications have
access to the VuNet[3](a high-speed local area network), the high-bandwidth
communication capabilities of the VuNet influence the VuDP design and
implementation.

VuDP hides most of the details of low-level IPC, detection and handling of partial
failures, security, and integration of distributed programming with the VuSystem
run-time programming environment. The VuDP implementation is modular and
required only a few minor changes to the traditional VuSystem infrastructure.
VuDP, like the rest of the VuSystem, assumes the existence of a network file
system (such as NFS) and a network windowing system (such as X Windows).
VuDP strives to provide a flexible, powerful distributed media programming

*These tools are largely undocumented in the literature, but may be found by anonymous ftp
to ftp.ee.lbl.gov.

18

system while consciously avoiding becoming more complex or more general than it
really needs to be.

1.5.1 Novel Aspects

VuDP has several characteristics that set it apart from existing distributed
programming languages and distributed programming systems. Most related work
focuses on providing either broad system-level support for distributed
programming or on extending or creating a specific programming language that
provides tools to simplify distributed programming. VuDP, on the other hand, is a
set of extensions to a multi-layer programming system that is specifically designed
for media computation. The most important novel aspects of VuDP are that it:

o is designed for creating media-based applications that run over a gigabit
local area network

e has an interactive textual and graphical user interface to allow dynamic
program reconfiguration at runtime

e blends RPC and remote evaluation functionality to meet the needs of media

applications

1.5.2 Research Issues

Several research issues are addressed in the design and implementation of VuDP.
Some issues - such as providing the proper communication primitives and handling
partial failures and security problems - are present in any distributed programming
system. Other issues - such as the integration of distributed media programming
with the VuSystem dynamic reconfiguration capabilities - are consequences of the
novel aspects of VaDP. The most important issues in the design and
implementation of VuDP are:

e what the remote programming interface should look like
e what communications primitives should be supported

e how to integrate the remote programming interface with the VuSystem
runtime programming environment

¢ how to integrate remote modules with the VuSystem dynamic configuration
capabilities

e how to handle the security problems associated with remote evaluation

e how to handle partial failures

19

1.5.3 Organization

Chapter Two provides background material on the VuSystem and goes into more
detail on the services provided by VuDP and the ways that VuSystem
programmers can use VuDP to write distributed VuSystem applications. Chapters
Three and Four treat the design, use, and implementation of the in-band partition
and out-of-band partitions of VuDP, respectively. Chapter Five presents several
different applications of VuDP, including remote evaluation, the VuDP daemon,
and several distributed VuSystem applications. Chapter Six presents the results of
VuDP performance testing. Chapter Seven concludes the thesis.

20

Out-of-band code

Commands
Callbacks

Source Filter Sink
Data Data

In-band code

Figure 1.2: The structure of a simple VuSystem application

21

Chapter 2

VuDP: VuSystem Distributed

Programming

VuSystem applications are created by configuring and connecting modules that
operate on a media pipeline. Media data flows through the in-band modules and
can be directly manipulated by each module. In a traditional VuSystem
application, all modules must exist in the same local environment on a single host
machine. Hence, in the context of the VuSystem distributed programming means
creating, configuring, and manipulating modules at remote sites. Using VuDP,
modules may be placed in remote execution environments distributed across
several hosts.

A distributed VuSystem application must have mechanisms for both in-band
(media flow) and out-of-band (control message) communication between peer
execution environments. These remote communication mechanisms are
encapsulated within the basic tools that VuDP provides for constructing
distributed VuSystem applications: remote sources, remote filters, and remote
sinks. By using these VuDP facilities, applications can create, configure, and
connect modules and place them on any host in the network. In-band media flows
and out-of-band control messages are seamlessly routed to the appropriate module
in the appropriate address space. Hence, remote modules may be manipulated and
connected with other modules in the media stream just like local VuSystem
modules.

2.1 Approach

VuDP services are built on top of the basic VuDP transport services provided by
the VsTcp and VsNet modules. The basic architecture of VuDP is illustrated in
figure 2.1.

The VsTcp and VsNet modules provide network-based communication channels.
Given two execution environments, VsTcp modules can be used to establish a

22

VuDP Applications

Remote Sources, Filters, and Sinks

Transport Modules: VsNet, VsTcp

Figure 2.1: VuDP Approach

TCP connection for in-band data. Similarly, VsNet modules can be used to set up
a TCP connection for out-of-band data, allowing remote execution environments
to exchange control messages over the network.

2.1.1 Motivation

There are many reasons why VuSystem applications may create and configure
remote modules. One motivation for distributing program modules is to allow
placement of a computationally intensive filtering operation on an idle machine in
order to improve performance. Another reason is to allow the creation of a remote
source module that can access a special media source (such as a camera) that is
only available to a certain host. An example of this is shown in figure 2.2.
Without the VuDP remote sourcing capability, application A would not be able to
access camera 7. With VuDP, the camera is accessible, as illustrated in figure 2.3.

Host X Host Y

NES

Figure 2.2: Without VuDP

23

Host X Host Y

Remote DDE
%)

Figure 2.3: With VuDP

2.1.2 Fault Tolerance

VuDP does not need a complex transaction mechanism to provide an appropriate
level of fault-tolerance. For explicitly distributed modules, all VuDP provides (and
all it really needs to provide) is a reliable failure reporting mechanism which
informs processes with remote connections when there is any sort of failure that
breaks the connection (such as buggy software, network failures, and remote
machine failures). For transparently distributed modules, failure messages are
relayed to the local environment so that failures of transparently distributed
remote modules appear the same as failures of local modules. A complicated
automatic failure recovery system is not necessary; simple mechanisms which relay
remote failure messages to the local interpreter for display to the user are sufficient.
Transactions are not necessary because, for VuSystem applications, there is
generally no way to mask failures through replication. For example, if a video
source attached to only one host is being remotely accessed and the host crashes,
there will be no way to access that video source again until the host recovers.
Transactions would only help in these situations if it were necessary to enforce
some sort of atomicity constraints on the actions of remote objects, and such
constraints are not necessary for the present VuSystem applications.

2.1.3 Security

Security is an issue whenever distributed programming capabilities might allow an
application to have access to resources that it should otherwise be denied.
Authentication ensures that all VuDP remote processing runs with the privileges
of the user running the application. Thus, a user can do no more with VaDP than
he/she could by logging into a remote machine.

2.2 The VuSystem

Before delving into the intricacies of using VuDP, it is useful to examine
traditional VuSystem applications in more detail. VuSystem applications are

24

programmed in Tcl, an interpretive scripting language. Application scripts are the
“out-of-band” code that creates and controls “in-band” modules. A VuSystem
application script is run by creating a Tecl interpreter, initializing it to run a
VuSystem application, and then having the interpreter interpret the application
script. Each VuSystem application is run by one interpreter in one execution
environment with one name space, and all applications are single-threaded.
Because the only data type in Tcl is strings, objects which are too complex to
convert to and from strings are represented by object commands. For each such
object, a new Tcl command is registered with the interpreter. Operations on
objects are invoked by the object command, with the first argument typically
specifying the operation and the other arguments specifying the arguments for the
operation. For more details on Tcl and VuSystem programming, see [14].

2.2.1 The VsPuzzle Application

VsPuzzle is an example of a traditional VuSystem application. VsPuzzle opens a
video source and displays a scrambled image of the video in a window; the user
can then attempt to unscramble the image.

When run, the VsPuzzle script creates a video source module, a puzzle filter
module, and a screen video sink module. The output of the video source is
connected to the input of the puzzle filter, and the output of the puzzle filter is
connected to the input of the screen sink. The application then “starts” the
modules, which initializes in-band processing and starts the media flow. The
media then begins to flow from the source through the filter to the sink, and the
script dedicates itself to event processing.!

Note the separation of the application into in-band and out-of-band sections, as
illustrated in figure 2.4. The out-of-band code communicates with the in-band
sections via commands, and the in-band sections can return results and execute
callbacks to communicate with the out-of-band sections.

In the traditional VsPuzzle application all modules exist on the local machine.
The media flow runs only between modules in the same address space on the same
local host machine. X-Windows may be used to place the output display on a
screen different than the one physically attached to the host running the
application, and NFS may be used to access video file sources present on remote
machines, but in general all component modules of the application must be local.

2.2.2 Creating, Starting, Stopping, and Destroying

It is important to clarify the semantics of “create”, “destroy”, “start”, and “stop”
in the context of VuSystem modules.? To create a module means to bring it into

!Event processing mostly involves handling user input events.
?Because all VuSystem modules are represented as objects, starting and stopping an object
means invoking its “Start” and “Stop” methods.

25

existence; consequently, to destroy a module means to irrevocably remove it from
an application. Once created, VuSystem modules which do in-band processing
need to be started in order to initialize and begin in-band processing. Once
started, a module can be stopped in order to halt in-band processing without
destroying the module. A module that does media processing must normally be
stopped in order to reconfigure it, though usually this stopping and restarting is
performed transparently by the reconfiguration code.

2.2.3 VuSystem Interactive Programming

One interesting aspect of VuDP is how it smoothly integrates distributed
programming with the VuSystem dynamic configuration capabilities, consisting of
VuSystem control panel mechanism and the VuSystem interactive programming
environment.

The Control Panel

In the VuSystem, most applications have a “control panel” which can be used to
dynamically reconfigure module options. For example, any application which has a
video source module will have control panel options for configuring video source
options such as black and white or color, 24-bit color or 8 bit color, etc. VuDP
supports this control panel mechanism and allows for the control panel to
configure remote sources, filters, and sinks in the same way the traditional
VuSystem control panel is used to configure local sources, filters, and sinks. An
example of a VuSystem control panel controlling one audio source and one video
source is presented in figure 2.5.

Interactive Programming

The VuSystem provides a run-time interactive programming environment where
modules can be dynamically created and deleted. Every VuSystem application has
a “Program” button which, when selected, opens the interactive programming
environment. The interactive programming environment consists of two windows.
The top window contains a graphical representation of the application, and the
bottom window is a textual interface to the Tcl interpreter.

The upper window contains a graphical representation of the in-band modules of
the application and illustrates the flow of media through the modules. Graphical
programming tools are provided which allow users to dynamically create, delete,
disconnect, and reconnect application modules.

The bottom window allows a user to enter Tcl commands directly into the
interpreter as the application is running. Any command which can be included in
a VuSystem application script can be entered into the interpreter in the interactive
programming environment.

26

An example of the VuSystem visual programming windows is illustrated in figure
2.6.

2.2.4 The VsEntity Class and VuSystem I/O Support

The VuSystem uses the C++ class hierarchy for its modules, which allows for
classes to be organized in a hierarchy and for related classes to inherit
functionality from their ancestor classes so that duplication of code is avoided.
Most VuSystem modules are associated with a C++ class. The state associated
with a module is implemented by instance variables, and module functions are
implemented as class methods. For example, there is a VsNetClient class which
implements VsNetClient modules. The various creation, starting, and stopping
routines for the VsNetClient modules are methods for the VsNetClient class.
An especially important VuSystem class is the VsEntity. Most VuSystem modules
(including all sources, sinks, filters, and all VuDP modules) are subclasses of the
VsEntity class.

Input and Output Callbacks

One useful feature provided by the Vskntity class is the ability to export callbacks
for input and output. The VsEntity class allows objects to specify an “Input”
method and link the input method to a file descriptor such that the input routine
is automatically executed when new input is available on that file descriptor.
Hence, modules which maintain open file descriptors (or network sockets
represented by file descriptors) can be set up so that they are automatically
notified (via the execution of the “Input” method) when new input is available.
Similarly, any object which is of the VsEntity class (or some VsEntity subclass)
can provide an “Output” method. Then, when the module is ready to produce
new output, a callback will be set up to perform the “Output” routine in the
background. This allows modules to set up an output call without having to block
the application until the output operation has been completed.

Tecl Callbacks

One of the most important features of the VsEntity is the ability to specify and
execute Tcl callbacks. Recall that VuSystem applications are Tcl scripts which
create, configure, and control modules that perform the actual media
manipulation. Modules are Tcl “objects” represented as new Tcl commands, and
module procedures may be called by invoking the Tcl command for that object
(typically the object’s name) and passing as parameters the name of the module
method and any arguments. In-band VuSystem modules are written in C4++ and
can not directly execute any Tcl code or communicate with their controlling script
except when returning results of commands. To allow the C4++ modules to

27

communicate with the Tecl script, the VsEntity class allows a module to
asynchronously execute a section of Tcl code in the environment of its parent Tcl
interpreter.

To implement this, the VskEntity class has a public “callback” instance variable
which can contain any Tcl command. (Note that all Tcl commands and simple
data are simple strings.) Any VsEntity method (or friend) can execute the
callback at any time via the VsEntity EvalCallback method. Note, though, that
when a callback is performed with EvalCallback it may not be executed
immediately - callbacks are actually performed in the background. This avoids
blocking the execution of C++ code to perform a Tcl callback, but causes other
problems such as the arbitrary reordering of callbacks.

One use of the callback is to allow the low-level modules to inform their controlling
application of important events. For example, when a VsNetListener module
(where the VsNetListener class is a subclass of VsEntity) establishes a connection
and instantiates a new VsNetServer module to handle the connection, it informs
its controlling application via a callback.

Starting and Stopping

The VsEntity class also provides “start” and “stop” methods, which provide code
that needs to be executed at the beginning of and at the end of in-band
processing, respectively. As an example, imagine a VuSystem application that
wants to use a file as a source of media. Before the media can begin to flow, the
file must be opened in the appropriate fashion; this would be done in the “start”
method for the file source. When the application is finished with the file source,
the “stop” method closes the file.

When the “start” method of any subclass of VsEntity is called, the “start” method
of that class, and of any superclasses up to and including the “start” method for
the VsEntity class itself, are automatically executed. Similarly, when the “stop”
method of any subclass of Vskntity is called, the “stop” method of that class, and
of any superclasses up to and included the “stop” method for the VsEntity class
itself, are executed. As an example, recall the VsPuzzle module, which is a
subclass of VsFilter, which is a subclass of VsEntity. When a VsPuzzle module is
started, the “start” methods for VsPuzzle, VsFilter, and VsEntity are all executed.
This assures that all set-up for in-band processing at the puzzle, filter, and entity
levels is performed before the media flow actually begins.

Note that in the VuSystem starting or stopping an object also recursively starts or
stops all of its children. This is generally useful, as a single high-level “start”
command can be used to start all the modules in an application.

28

Object Commands

Module commands are normally implemented as “friend” procedures of the
appropriate class. Because objects commands are implemented as new Tcl
commands, they can’t be class methods, but instead must be friends of the class.

2.2.5 VuDP Modules

The VuDP implementation takes advantage of the multi-layered structure of the
VuSystem programming environment. The implementation of the basic VuDP
tools (remote sources, sinks, and filters and remote evaluation) consists of a few
new C++ modules and several Tecl scripts; very few changes to existing VuSystem
modules or infrastructure were necessary. The fact that nearly all of the VuDP
implementation is contained within a few new modules and scripts is evidence that
distributed programming (as provided by VuDP) is a natural extension to the
VuSystem.

The implementation of VuDP is based on seven modules: VsNetClient,
VsNetServer, VsNetListener, VsTcpClient, VsTcpServer, VsTcpListener, and
VsRemote. All of these modules are low-level VuSystem modules, implemented in
C++. The VsTcp and VsNet modules are used for creating network based in-band
and out-of-band communication channels, respectively, and are available for
general use by any VuSystem application. The VsRemote module is a special
module used to implement the transparent distribution of remote sources, remote
sinks, and remote filters.

All VuDP modules (VsNetClient, VsNetListener, VsNetServer, VsTcpClient,
VsTepListener, VsTcpServer, and VsRemote) are implemented by C++ classes
which are subclasses of the VsEntity class. The state of a module is maintained by
the instance variables of the appropriate class, and module procedures are
implemented as class methods. The way that the VuDP modules fit into the
VuSystem hierarchy is shown in figure 2.8.

The functionality and implementation of all the VaDP modules will be described
in more detail in later chapters.

2.3 Distributed Programming with VuDP

Distributed programming in the VuSystem involves writing applications that use
remote sources, remote filters, remote sinks, and/or the VsNet modules and the
VsTep modules in order to distribute the modules of a VuSystem application over
multiple execution environments on multiple hosts. The mechanisms used by a
given application are dependent on the specific needs of the application.

29

2.3.1 Remote Sources
Traditional VuSystem Sources

Before the VuDP extensions were added, VuSystem applications could only access
media sources that were directly available to the local host on which an
application was running. For example, a VsPuzzle application running on host X
could only access video sources directly available to host X.

This constraint was eased a bit by the use of NFS and the VuNet. The VuNet is
the high-speed network companion to the VuSystem with the property that all
sources on the VuNet are directly accessible by any host attached to the VuNet.
Hence, any source on the VulNet is available to any host on the VuNet. NFS can
be used to access remote files, and so VuDP is not needed to access remote file
sources. However, a general remote sourcing mechanism is still desirable so that
applications can access non-file sources that are not accessible via the VuNet.

In the context of the VuSystem, a “source” is a media source, generally an audio or
video source. A VuSystem application (such as VsPuzzle, described earlier) which
uses a media source typically specifies the name of the source it wants to use on
the command line. For example, video sources are specified by the “-videoSource”
option, and audio sources are specified by the “-audioSource” option. (Default
audio and video source values for each host are used if no source name is specified.)
The syntax for specifying a source name is a colon (*:”) followed by the name of
the source. For example, to start a VsPuzzle application and specify that it use
the source named “vidboard1”, the command “vspuzzle -videoSource :vidboard1”
would be used. (Of course, without the VuDP extensions, vidboardl must be
available to the host running the VsPuzzle application.)

Naming Remote Sources

Using VuDP, the VuSystem sources (generally video and audio sources) are able to
reach out across the network to access any source available to any host on the
network. To handle this, the naming of VuSystem sources includes an (optional)
host name before the colon preceding the source name. If no host name is specified
for a source, it defaults to the local host. Hence, it is not necessary to modify
existing VuSystem applications to use this source naming syntax. As a side
benefit, the naming syntax allows for sources on different hosts to have the same
local names.

For example, say that an application wants to use video board “vfc0” on host Y as
its video source. The video board is not directly accessible, but (using the remote
sourcing mechanism) the application can reach it by specifying “-videoSource
Y:vfc0” on the command line to say that it wants to use the source “vfc0” which is
accessible from host Y. (An application on host Y that wants to access the video
source can specify either “-videoSource Y:vfc0” or “-videoSource :vfc0”.)

30

Remote Sources and Dynamic Reconfiguration

Remote sourcing is more complicated than it first appears because of the
reconfiguration capabilities of VuSystem applications, which (via the VuSystem
control panel mechanism) allow the user of an application to dynamically
reconfigure video and audio sources. Further, the VuSystem interactive
programming environment allows users to examine, create, modify, and destroy
any and all modules within an application. Remote sources must appear to be
local for both the control panel and the interactive programming mechanisms.

For the interactive programming environment, stubs are used to relay commands
to the remote sources over the network. This works very well, and, as far as
interactive programming is concerned, remote sources appear to be local. Keeping
the control panel interface consistent is more difficult, since the traditional
VuSystem control panel implementation works by passing each primitive source an
X-Windows widget in which to draw its control panel functions. Because
X-Windows widgets can not be easily passed between address spaces, remote
control panels must necessarily involve either completely redesigning and
reimplementing the way control panels work or modifying the appearance of
control panels for remote sources.

It was decided to slightly modify the appearance of the control panels for remote
sources. Instead of having all controls for all modules appear in one control panel,
the controls for a remote source appear in a separate control panel. All other
features of the control panel mechanism are unchanged; the control panel for the
remote source can be used to change and reconfigure the source just as if it were a
local source. The only difference is that the controls for the remote source appear
in their own window.

The appearance of the control panels for remote sources is illustrated in figure 2.9.

2.3.2 Remote Sinks
Traditional VuSystem Sinks

There are generally three kinds of media sinks in the VuSystem: window sinks, file
sinks, and special device sinks. For these first two kinds of sinks, no remote sinking
mechanism is needed because the VuSystem is built on top of X-Windows and
NFS. Assuming proper access control settings, X-Windows allows a window to be
placed on any display, so remote window sinking capability existed prior to VuDP.
Similarly, NFS allows any host to access and manipulate files exported by any
other host.

On the other hand, non-file and non-window sinks - such as the DEC J300 Sound
and Motion Board, which can produce analog output from digital input - are
accessible only from the hosts they are attached to. Hence, a general remote
sinking mechanism is valuable for sinks other than files or windows.

31

Naming Remote Sinks

VuSystem applications specify the video sink to use by the “-videoSink” command

line option, followed by the name of the video sink prefixed by a colon. For
example, to specify a window video sink, an application would have “-videoSink
:window” in its command line. If no video sink is specified, the default is typically
a window sink of the display for that application.®

Using VuDP, applications can access any media sink available to any host in the
network by adding an (optional) host name preceding the colon in the name of the
sink. For example, if an application wants to use the J300 sink on host Y, it

“-videoSink Y:j300” on the command line.

specifies

Remote Sinks and Dynamic Reconfiguration

As for remote sources, remote sinks have local stubs which reroute commands from
the interactive programming environment to the location of the actual sink. This
works well, and (from the user’s point of view) local and remote sinks are
indistinguishable in the interactive programming environment.

Unfortunately, the same problems exist for both the remote sink and the remote
source control panel mechanisms. The same design decision was made for remote
sinks as for remote sources - the way control panels look for remote sinks was
changed slightly to avoid modifying the VuSystem infrastructure and substantially
complicating VuDP.

A remote sink has its own control panel in a window separate from the main
control panel. All other features and functionality are the same; the control panel
for the remote sink can be used to modify and dynamically reconfigure the remote
sink as if it were a local sink.

2.3.3 Remote Filters
Traditional VuSystem Filters

A filter is any module with one input port and one output port. Typically, filters
perform some processing operation on the media that flow through them.
Examples of VuSystem filters are the VsPuzzle module (which scrambles a video
stream), the VsContrast module (which allows for video contrast adjustment in
software), and the VsEdge module (which performs edge enhancement on a video
stream.)

*Note that since the VuSystem is built on X-Windows, the display that an application uses may
not be the display physically attached to the host on which it is running. The display may be
different if either the application is run in an X terminal running on a remote machine or if the
application is run with a “-display” command line option.

32

The VsRemoteFilter module

The VsRemoteFilter module allows an application to place a filtering module on
any host in the network. The VsRemoteFilter module can be used to create and
place a filter on any machine, as follows. At creation, the VsRemoteFilter module
takes two arguments, a host and a filter type. The filter type must be supplied,
but if no host is supplied then the local host is taken as the default. The
VsRemoteFilter then creates the appropriate type of filter module on the specified
host and sets up in-band and out-of-band connections so that media automatically
flows from the local application to the remote site, through the filter, and then
back again to the local application.

VsRemoteFilter modules can be manipulated as if they were modules of the
underlying filter type. For example, a VsRemoteFilter module that is used to
instantiate a remote VsPuzzle will have all the VsPuzzle commands and options
and can be manipulated and reconfigured as if it were a VsPuzzle module. Any
VsPuzzle method invoked on the VsRemoteFilter module will be automatically
passed on to the underlying VsPuzzle module.

Using the VsRemoteFilter module, applications can place filters in media streams
and have the filtering operations performed on any host in the network. Because
filtering operations are often compute-intensive, placing a filter on a remote
machine can help to move work to a lightly loaded or faster machine.?

Remote Filters and Dynamic Reconfiguration

The VuSystem control panel and runtime interactive programming mechanisms
can be used to dynamically reconfigure remote media filters.

Remote filters have local stubs which reroute commands from the interactive
programming environment to the remote host where the underlying filter module
exists. This allows remote filters to be reconfigured as if they existed in the local
address space. Hence, to the user, a remote VsPuzzle filter can be manipulated
exactly as if it were a local VsPuzzle filter.

For sources and sinks, it was decided that it is better to slightly modify the
appearance of the control panel for remote filters than to rewrite a substantial part
of the VuSystem infrastructure. Hence, for filters on remote machines, the controls
for the remote filter appear in a separate window.®> Except for the separate
appearance of filter controls for remote filters, the control panel works the same for
remote filters as it does for local filters.

*This is especially useful in situations where there are a few extremely fast computers attached
to a network that all users can take advantage of to perform remote filtering while still running
applications on their (slower) local machines. Of course, placing a filter on a remote machine
increases communication costs because the media must be shipped over the network to the remote
machine, filtered, and then sent back.

®However, if a VsRemoteFilter module is used to create a filter on the local machine, the controls
will be integrated with the rest of the local control panel.

33

VsPuzzle Out—of-Band code

Command
Callbacks

Source Puzzle Sink
Data Filter Data

In—-band code

Figure 2.4: In-Band/Out-of-Band Partitioning in VsPuzzle

Comnired Panad

Figure 2.5: A VuSystem Control Panel

34

Flow Graplh

|.mm|-—| |-.sz| Fuzzie |:| Fark |-—|h:-a‘5.|rr-

Creats Betroy | Jiscowsct | Lowesct | |roup || oraph | Fesal | Code
vapissls; |

Figure 2.6: The Visual Programming Environment

Application

VsEntity

"Input" Method

callback

New Input

Figure 2.7: VsEntity Input Callback

35

Ganersenver
VsNetListener

Figure 2.8: VuDP Hierarchy

36

Srwln
all | Thurd s

Lolor

Hack & enooe [HED

limiza

Figure 2.9: A Remote Source Control Panel

37

Chapter 3

The In-Band Partition

The VuSystem separates applications and their component modules into in-band
and out-of-band code. This chapter discusses the in-band partition of VuDP that
deals with the flow of media information between modules in a VaDP application.

VuSystem and VuDP applications have access to two underlying networks: a
standard ten megabit per second Ethernet and the VuNet, a gigabit ATM
network. All VuDP remote in-band communication facilities can be configured to
work over either the Ethernet or the VuNet. Because the VuNet runs much faster
than the Ethernet, applications generally prefer to use the VuNet for remote
in-band communication.

Remote Host Local Host

Remote out-of-band Local
Out-of-Band

Out-of-Band communica

on

Source — VsTcp flow VsTcp Sink

in-band

Figure 3.1: Remote In-Band Connections

38

3.1 The VsTcp Modules

VuDP applications can use the VsTcp modules to use the network to send in-band
media streams to modules in remote execution environments on remote hosts. The
VsTep family of modules consists of the VsTcpClient, the VsTepListener, and
VsTepServer modules. They are used to set up media flows between applications
running in different address spaces which are typically (but not necessarily) on
different machines.

3.1.1 Setting Up In-Band Connections

The VsTepClient module is used to initiate the creation of an in-band
communication channel between remote interpreters. Once created, a VsTcpClient
module must be configured with the host name and port that it will connect to.
When the VsTcpClient module is started, it attempts to make a connection to the
specified host and port. It is the responsibility of the applications programmer to
select appropriate port numbers for in-band connections.

The purpose of the VsTcpListener module is to wait for VsTepClient modules
trying to connect to the port at which it is listening. After creation, a
VsTepListener must be configured with the port it will listen at, and once started
it will listen at that port and wait for remote VsTcpClient modules attempting to
connect to it. When a VsTepClient module tries to connect to a port where a
VsTepListener is waiting, a connection is made, and the VsTcpListener creates
and starts a VsTcpServer module to handle the connection.

When the connection is established and the VsTcpListener creates a VsTcpServer
to handle it, the VsTcpListener executes a callback to inform the application
script that a connection has been made and to tell it the name of the new server it
has created. Hence, any application which uses a VsTcpListener must set up a
callback, or it will know neither when a connection has been established nor the
name of the VsTcpServer which is handling the connection.

The VsTepClient and the VsTepServer modules are used to send and receive data
across an in-band connection. Communications over an in-band connection are
completely symmetrical, so the VsTcpServer has the same ability to send and
receive data as the VsTcpClient. The difference between the VsTcpServer and the
VsTepClient modules stems from the setup of in-band communication channels -
the VsTcpClient initiates a connection, while the VsTcpServer is created in
response to a connection request.

Once a connection is established, the VsTcpClient module can be stopped and
then reconfigured and restarted to initiate another connection. On the other hand,
VsTepServer modules are useful only for the duration of the connection they are
created for.

Once started, VsTcpListener modules persist and listen for connections and may
handle an arbitrary number of connections and start an arbitrary number of

39

VsTcepServers. Once stopped, VsTcpListener modules can be reconfigured and/or
restarted to begin listening again. Like VsTcpClient modules, VsTcpListener
modules can be reused.

3.1.2 Handling In-Band Connections

The VsTcp modules are meant to handle in-band media flows, and so the VsTcp
modules can be viewed as special VuSystem filters. A typical VuSystem filter
module has one input port and one output port, and when the input and output
ports are connected and the filter module is started the media flowing into the
input port is filtered and sent out the output port. VsTcp modules are filters
whose processing operation is to send the media over the network. The media that
flows into the input port of a VsTcpClient module is sent over the connection and
comes out of the output port of the VsTcpServer module on the other end.
Similarly, the media that flows into the input port of a VsTcpServer module is sent
over the network and flows out of the output port of the VsTcpClient module it is
connected to. There are no “send” or “receive” commands for VsTcp modules.
Instead, the media flow between the modules is governed by the VuSystem Module
Data Protocol.[14]!

As the names suggest, VsTcp modules use the TCP communication protocol, and
so neither the modules nor the applications using the VsTcp modules need to
worry about packet loss, reordering, or other reliability problems of the underlying
network.

3.1.3 Example of an In-Band Connection

Figures 3.2 and 3.3 illustrate the creation and use of an in-band connection
between two interpreters: interpreter A, running on host X, and interpreter B,
running on host Y. (As for the out-of-band example, these interpreters may be two
separate applications or two interpreters that exist within a single distributed
application.) First, the interpreters are running in separate name spaces.
Interpreter B then creates a VsTcpListener, configures it to listen at port 9000 on
host Y, and starts the module. Next, interpreter A creates a VsTcpClient module
and configures it to connect to port 9000 on host Y.

Interpreter A then starts the client module, which establishes a connection to the
listener module in interpreter B. When the connection is made, the VsTcpListener
module starts a VsTcpServer to handle the connection, as shown in figure 3.2.
Finally, the input and output ports of the VsTepClient and VsTepServer modules
are connected appropriately, and the automatic flow of media between the
interpreters begins as shown in figure 3.3.

The connection persists until either the user of interpreter A stops or destroys the
VsTepClient (perhaps by exiting), or interpreter B exits or otherwise destroys the

!This will be discussed in further detail later in this chapter.

40

Interpreter A on host X Interpreter B on host Y

Attempt
to make
connection L—=

| connection

VsTcpListener

Creates VsTcpServer
to handle connection

VsTcpServer

Figure 3.2: In-Band Connection Initiated

Interpreter A on host X Interpreter B on host Y

two way
cannection

VsTcpClient VsTcpServer

Figure 3.3: In-Band Connection Established

VsTepServer. If a connection is terminated by the destruction of the VsTcpServer
module on interpreter B’s side, an error message is relayed back to interpreter A.

3.2 Implementation

Most of the functionality of the VsTcp module was implemented prior to VaDP as
part of the traditional VuSystem.?

The one major change VuDP made to the VsTcp modules was to add the ability to
specify either the VuNet or the ethernet as the underlying network. A new option
command, the “net” command, allows an application to specify either “ethernet”
or “vunet” as the network that the VsTcp modules use for communication.

2See [14] for more details.

41

3.3 In-Band Communication Protocols

3.3.1 The VuSystem Module Data Protocol

The VuSystem module data protocol [14] is a closed-loop protocol that governs the
transfer of in-band data between modules in a traditional VuSystem application.
(That is, between modules executed by the same thread.) The protocol provides
for tightly-coupled flow control to match the ability of the upstream module to
send “payloads” (the unit of media data transfer) to the ability of the downstream
module to receive “payloads”.?

Whenever an upstream module has data to send, it calls the “send” procedure on
its output port, which attempts to send a payload over the connection by calling
the “receive” procedure of its downstream module. If the downstream module
accepts the payload, the send is successful, and the upstream module is free to
continue to perform more sends until it is rejected. But, if the downstream module
rejects a send, it is not ready to receive new data, and so the payload is not sent
and the send is unsuccessful. By rejecting a send, the downstream module
commits itself to informing the upstream module when it is ready to receive a new
payload. When the downstream module is finally ready for the new payload, it is
obliged to call the “idle” procedure of its input procedure, which in turn calls the
“idle” procedure of the upstream module, which causes the upstream module to
try ”send” again if it has data to send. If the upstream module has no data to
send, then it “starves” the downstream module by not sending any data in
response to the “idle”.

upstream module downstream module

@ output input
port port

I—
\ Receive
JEE——

Figure 3.4: The VuSystem Module Data Protocol

Note that an upstream module may continue to try to send a payload after a send
has been rejected and before the downstream module has called idle. However,
such sends are likely to be rejected. Similarly, the downstream module may
continue to call idle when it has not received any new data, though if the upstream
module still has no data to send the extra idle calls will have no effect.

?A payload typically corresponds to a single video frame or segment of aundio data.

42

The VuSystem module data protocol provides tightly coupled closed-loop flow
control. Only one payload may be in transit at any time, and flow control is done
on a payload-by-payload basis.

3.3.2 Extending the Module Data Protocol

The VuSystem module data protocol works well in the context of the traditional
VuSystem, where all modules exist within the same address space. The latency of
inter-module communication is virtually nil, and (generally) passing a payload
involves no more than copying a pointer, so payloads can be passed quickly
between modules.

The situation becomes more complicated with VaDP because the characteristics of
inter-machine communication over a network are much different than simple
inter-module communication within an address space. When sending data across a
network both end-to-end flow control (matching the rates of the upstream and
downstream modules) and congestion control (matching the rate at which the
underlying network can deliver payloads) are important.

Because of the differences between inter-module communication within a
traditional VuSystem application and inter-module communication over a network
within a VuDP application, it is not reasonable to directly extend the VuSystem
module data protocol to work over a network. First, the latency of transferring
payloads over a network causes lock step flow control to have terrible performance.
With the traditional VuSystem module data protocol, the window size is one,
meaning that at most one payload may be in transit at any time. Once a payload
is sent, the upstream module must wait for the network to send and deliver the
payload to the appropriate machine, for the machine to deliver the payload to the
application, for the application to accept or reject the packet, for the network to
deliver the response back, and for the host machine to deliver the response back to
the application. Each of these components contributes to latency, as summarized
in figure 3.5. To make things worse, some of these components of latency are
highly variable, such as network delay. Taking all these considerations into
account, the round-trip time of intermodule communication is far too high for the
traditional VuSystem module data protocol to provide decent performance for
passing payloads between two modules in separate address spaces on separate
machines connected by a network.

A second issue is that the traditional VuSystem module data protocol is implicitly
lossless. Because all data transfers occur within an address space, there is no
chance that payloads will be lost while traveling between modules, and the
protocol depends on this implicit reliability. As shown in figures 3.6 and 3.7, loss
of a payload in the traditional VuSystem can lead to deadlock. If the upstream
module has starved the downstream module and then the next payload sent is lost,
deadlock results.

43

App App

A round trip goes 1->2->3->4->5->6->7->8->9 and encounters delays at each step.

Figure 3.5: Components of Latency

No Response -Bsis starved
Module A Module B
= "ldle"

Figure 3.6: B Calls “Idle” and is Starved

3.3.3 The VuDP Module Data Protocol
TCP

VuDP solves the problems with the traditional VuSystem Module Data Protocol
by using a TCP connection between upstream and downstream modules in
different execution environments. TCP provides for efficient, reliable transport
that provides both flow control and congestion control.

TCP addresses the latency problem by buffering data to be sent and using a
sliding window to send data in a pipelined manner so that it is possible for many
packets to be in transit at any given time, better utilizing the bandwidth of the
network. TCP also uses its sliding window and a timer to handle both end-to-end
flow control and network congestion control.[8] Finally, TCP provides reliable
stream delivery by retransmitting lost and delayed packets and reordering packets
at the receiving end so that the receiving application is presented with the data in
the same order that the sending application sent it. The details of TCP are well
documented [22] and will not be described here.

The VsTcp Modules

To see how the TCP connection works with the VuSystem Module Data protocol,
consider a upstream video source trying to send a payload to the downstream

44

Payload sent but lost j\

@e D * Mode B>

Figure 3.7: A Sends a Payload which is Lost

VsTepClient module. The VsTepClient will accept the data, buffer it for
transmission, and reply to the video source that the payload was accepted.* When
the VsTcpClient accepts more payloads than it can buffer, it is necessary to look
more closely at the socket interface presented by the BSD TCP implementation
[8]. Once a connection is established, the VsTcp modules see the connection as a
file descriptor. If a VsTcp module attempts to write more data than can be stored
in the connection buffers, the process is blocked until enough buffers are available
to accept the new data. Hence, the VsTcpClient module in the example will never
reject a payload. But, if it accepts a payload that the underlying connection does
not have enough buffer space to store, the process will be blocked until enough
buffer space is available.

Once payloads have been written to the socket by the VsTcepClient module, they
are sent via the underlying TCP service, and appear as new readable data in the
connection socket for the VsTcpServer module in environment B. TCP is a reliable
stream protocol, so the data will always be delivered to the application (in this
case a VsTcpServer module) reliably and in same order it was sent. Then, when it
has constructed a new payload by reading data from the socket, the VsTcpServer
module will attempt to send the payload to the video sink module in environment
B using the traditional VuSystem module data protocol. The underlying TCP
service makes the connection socket appear to be a file descriptor, so the VsTcp
modules can read payloads from and write payloads to a connection in exactly the
same way that payloads are written to and read from disk files.

At a high level, using the VsTcp modules allows VuDP to appear to seamlessly
extend the VuSystem module data protocol for use across execution environments.
Modules that are either upstream or downstream from VsTcp modules interact
with them via the traditional VuSystem module data protocol. To all modules

*Note that this is one way in which the VsTcp modules differ from traditional modules, since
the VuSystem module data protocol does not call for any buffering.

45

either upstream or downstream from the TCP connection it appears that all the
modules in the media flow communicate using the traditional VuSystem Module
Data Protocol. All the details of using TCP are hidden within the VsTcp modules.
The apparent seamless extension of the VuSystem module data protocol is a
powerful feature of the VuDP module data protocol.

3.3.4 Alternatives: Lossy Transport Protocols

Both the traditional VuSystem and the VuDP module data protocols are reliable
(lossless) protocols. However, for VuDP this reliability incurs an overhead. The
network may lose or delay packets and cause them to be retransmitted, and so
work needs to be done to make sure that all payloads are delivered reliably and
reordered appropriately. This work both complicates the implementation and hurts
the performance since when packets are lost or delayed new data can not be sent
beyond a certain point until all previous data has been retransmitted and received
successfully. These delays are inherent to a lossless protocol but may be costly
especially since media data such as video streams require very high bandwidth and
are often very sensitive to jitter introduced by variable delays between frames.
However, it is often not necessary to use a lossless protocol for media data,
especially video. The nature of video is such that it is sometimes acceptable to
drop frames, and that it may be better to simply drop a frame than to display
frames out of order or to delay the display of new frames because previous frames
(or portions of previous frames) have been lost or delayed.?

In order to put these concepts into a more concrete framework, take lossless/lossy
and lockstep/window-based flow control as two distinguishing characteristics for
transmission protocols. This provides for four different types of protocols, as
shown in figure 3.8.

The traditional VuSystem module data protocol is an example of lossless protocol
with lockstep flow control (i.e. window size equals one.) This is reasonable within
an application, as payloads are never lost (so reliability costs nothing), and
communication latency is low enough that there is no performance penalty for
using lock step flow control.

TCP (and hence the VuDP module data protocol) is an example of a lossless
protocol with window-based flow and congestion control. The sliding window
provides flow control, network congestion control, and reliability (via
retransmission of lost and delayed packets) while maintaining good performance
through pipelining. The reliability of the protocol is not costless, though.

The Vidboard protocol [2] is an example of a lossy protocol with windowless
closed-loop flow control. The Vidboard is a hardware device that connects to a
primitive video source (typically a camera, a VCR, or a television feed) and

®Using a simple protocol such as UDP is not acceptable, since the protocol must still provide
adequate flow control and network congestion control.

46

Lock-Step Flow Control Window Flow Control
Lossless Lossless
ex: VuSystem MDP ex: TCP, VuDP MDP
Lock-Step Flow Control Window Flow Control
Lossy Lossy
ex: Vidboard

Figure 3.8: Types of Protocols

digitizes the incoming video into frames. The input of the Vidboard is a constant
bit-rate video stream, but the output of the Vidboard must obey the VuSystem
module data protocol, meaning that it can only pass payloads downstream when
the downstream module is ready for them. To handle these conflicting demands,
the Vidboard provides minimal buffering and saves only the most recently digitized
frames in its memory. A frame which is created but never passed downstream
because a new frame was written over it before a request for new data was received
is simply lost. The Vidboard thus discards video frames as needed and so operates
according to a lossy protocol in order to match the open-loop constant bit rate of
its input to the closed-loop dynamically varying capacity of its output.

The VsLossyDup Module

In the traditional VuSystem, the VsDup module has one input port and two output
ports and copies its input stream to produce two identical output streams. It
abides by the VuSystem Module Data Protocol by waiting until both of its output
ports have sent the payload downstream before it accepts a new payload. This
forces both of its output video streams to operate at the rate of the slower of the
two. Normally, this isn’t a real problem, but in applications such as VsMultiCast®
(where there may be many VsDup modules hooked together) the media flow grinds
to a halt since the entire stream must travel at the rate of the slowest module.
The above performance consideration motivates the development of a duplicator
module that uses a different protocol for pacing its output streams. VsLossyDup is
such a module. It appears to be the same as a VsDup module - one input port,

6See chapter five for more details on VsMultiCast.

47

two output ports, with the input stream copied and produced at both output ports
- but uses a different algorithm for handling its output. The basic idea is to
duplicate the Vidboard lossy lock-step protocol for handling payloads. The
VsLossyDup module will never reject a payload just because it hasn’t sent it
downstream to both output ports. Instead, it always accepts new payloads sent to
it by upstream modules. Further, it always supplies the downstream modules with
the most recent payload it has received, while ensuring that it never sends the
same payload to the same downstream module twice.

The rules that the VsLossyDup module follows for handling payloads can be
summarized as follows:

e Always accept payloads sent from the upstream module, and attempt to send
the new payload to both downstream modules when a new payload arrives.

e If a new payload is received before the old payload has been sent to both
downstream modules, discard the old payload.

e When either downstream module calls “idle”, check to see if the current
payload has already been sent to that module. If not, send it.

3.3.5 A Lossy VuDP Module Data Protocol

One way to possibly improve performance of VuDP applications is to develop a
lossy protocol that provides the pipelining and congestion and flow control of TCP.
This would eliminate the overhead of providing reliable transport, hopefully
improving throughput and reducing jitter. The gains from such a protocol are
limited by a few factors, though.

Most of TCP’s retransmit mechanisms are closely entwined with the flow and
congestion control mechanisms. In order to provide good flow and congestion
control it would still be necessary to acknowledge every message and keep a timer
at the sender’s end in order to determine the proper rate to send data. So, a lossy
protocol would most likely be even more complex than TCP. Protocols such as
TCP typically declare a packet “lost” after a certain timeout expires. TCP uses
such a timer at the source, but a lossy protocol would require a timer at the
receiver in order for it to determine when packets are lost. So, jitter would not be
entirely eliminated, and some throughput would still be lost when packets were
lost, since it would be necessary to wait for an appropriate timeout to expire before
declaring a packet lost. Clearly, setting an appropriate timeout would be extremely
important, as too long a timeout would cause unnecessary jitter and transmission
delays, while too short a timeout would declare slightly delayed packets as being
lost. Finally, it would be necessary to have some way of informing the application
of lost packets. This is because video frames are likely to be split into several
packets for transmission over the network, and if any packet within a video frame
is lost then the entire frame must be discarded. Thus, the application receiving the

48

data needs to have an additional mechanism to know how to handle video frames
(or audio buffers or whatever the underlying media is) that have portions missing.
Despite these problems, a lossy transport protocol for media data has the potential
to improve the performance of VuDP applications that must send in-band media
flows over a network. The question of whether or not VuDP actually has any
performance deficiencies that might be improved by using a lossy protocol will be
addressed in chapter six.

49

Chapter 4

The Out-of-Band Partition

This chapter discusses the out-of-band partition of VuDP. The out-of-band code
creates, configures, and manipulates the in-band modules that manipulate media
data. The VuDP remote source, remote filter, and remote sink implementations
consist entirely of out-of-band code.

Though VuDP applications may use either the Ethernet or the VuNet for
out-of-band communication across the network, out-of-band communication is
generally very low bandwidth and hence the throughput of the underlying network
is not important.

4.1 The VsNet Modules

The VsNet modules (VsNetListener, VsNetClient, and VsNetServer) are used for
setting up out-of-band message-passing communication across the network. The
VsNet family consists of three modules: the VsNetClient, the VsNetListener, and
the VsNetServer. These modules can set up out-of-band TCP communication
channels between interpreters in separate address spaces. In other words, they are
used for the exchange of Tcl data (such as short command strings) and
configuration and control information between remote modules. The VsNet
modules are not designed for sending media over the network.

4.1.1 Setting up Out-of-Band Connections

The use of the VsNetClient, VsNetListener, and VsNetServer modules for setting
up connections almost exactly parallels that for the VsTcp modules.

In order to set up a connection, a VsNetClient must be configured with a port and
host to connect to, and an underlying network to use. When the client module is
started it attempts to make a connection to a VsNetListener module at the
specified host and port over the specified network. On the other end, a
VsNetListener module must be configured with a port number to listen at, and

50

when started will listen at that port until a remote VsNetClient attempts to make
a connection to it. When a connection is established, the VsNetListener starts a
VsNetServer module to handle the connection and informs its controlling
application via a callback.

4.1.2 Handling Out-of-Band Connections

Once an out-of-band connection is established, VsNet commands can be used to
send and receive data. The commands for sending and receiving data - “send” and
“call” - are exactly the same for the VsNetClient and VsNetServer modules, as
out-of-band connections are two-way and completely symmetrical.

The “send” and “call” commands can be used to push data across a connection.
The “send” command is non-blocking and sends data asynchronously; the sending
application continues to run after the “send” command and the data is sent in the
background. By contrast, the “call” command sends data by blocking the calling
application until either a return value is received or a time-out expires. (If the
time-out expires before any return value is received, an error is reported.)

The “send” and “call” commands take as their argument the data to be sent. The
data must be a string; this is both convenient and powerful since strings are the
only data type in Tcl. By manipulating the way the data to be sent is surrounded
by double quotes and/or curly braces, variable substitution can be forced to be
done either locally or remotely, as desired. As a general rule, substitution for any
variable name that is surrounded by curly braces is performed in the remote
environment, and all other variables are evaluated in the local environment. See
[17] for more details.

To receive data from an out-of-band connection, an application must set up a
callback routine that will be automatically called when new data is received.
When new data arrives, the callback routine will be called with the argument
“-.command” whose value contains the data received and the “-call” argument
which indicates whether or not the application that sent the data is blocking and
waiting for a return value (i.e. whether the data was sent with a “send” or “call”
command.) If a return value is expected, it is the responsibility of the receiving
application to make sure that a return value is sent.

Applications can use the VsNet family of modules to freely mix synchronous
and/or asynchronous communication as desired.

The VsNet family of modules uses the TCP protocol for the underlying
communication channel. Hence, the TCP protocol takes care of delivering the
messages in order and resending potentially lost packets. This allows applications
using the VsNet modules to focus on sending and receiving data without having to
worry about unreliability in the underlying network.

51

4.1.3 Example of an Out-of-Band Connection

Suppose that VuSystem interpreter A (running on host X) wants to set up an
out-of-band communication channel with VuSystem interpreter B, running on host
Y. (These interpreters may be either two separate VuSystem applications or two
interpreters within a distributed application.) Initially, the interpreters are
separate. Interpreter B must first create and start a VsNetListener module which
listens at a specific port - say, port 8000 - on host Y. Then, interpreter A must
create a VsNetClient module, and configure it to connect to port 8000 on host Y.
When interpreters A’s VsNetClient module is started, it attempts to connect to
port 8000 on host Y. Because interpreter B has a VsNetListener module listening
to port 8000, a connection is established. The VsNetListener creates a VsNetServer
module to handle the connection, and interpreter B is informed via a callback that
a connection has been made. Interpreters A and B can then use their VsNetClient
and VsNetServer modules to send and receive data over the connection.

The connection persists until either interpreter A stops or destroys its VsNetClient
module, or interpreter B exits or otherwise destroys the VsNetServer module. If
the connection is terminated by the destruction of the VsNetServer module on
interpreter B’s side, an error message is relayed back to interpreter A.

4.1.4 Other Features

Other VsNet module commands are the “host”, “port”, “flush”, “net”, “wait”,
“backlog”, and “timeout” commands.

For the VsNetClient module, the “host” and “port”! commands allows it to select
a host and port to connect to, and the “net” command allows it to select either
the ethernet or the VuNet as the underlying network.

The VsNetClient and VsNetServer modules can use the “flush” command to block
the application and immediately attempt to send all data enqueued by previous
“send” commands.?

Three other useful VsNetListener commands are “port”, “wait”, and “backlog”
command. “port”? sets the port number at which the module will listen.“wait”
blocks the controlling application until either a connection is made or the timeout
expires. “backlog” is used to set the maximum number of pending requests that
the VsNetListener will enqueue before the listener starts to turn away additional

requests for connections.

!The default port is the port that the VuDP daemon (described in chapter five) listens to.

?Because all VuSystem applications are single-threaded, the actual sending of data sent with
“send” is done in the background. Hence, there is no way for an application to know if the data sent
with a “send” has been sent yet. After a “flush” has been executed, the application is guaranteed
that there has been an attempt to actually send all data sent by previous “send” commands.

®As for the VsNetClient module, the default port is the port that the VuDP daemon listens to.

*The default value for the backlog is ten.

52

All VsNet modules have a “timeout” command which can be used to set the
timeout value. For the VsNetClient and VsNetServer modules, this controls the
duration that the module will wait for a response to a “call” before signaling an
error. For the VsNetListener module, the timeout controls the duration it will wait
for a connection after a “wait” is issued before returning an error.’

4.2 Implementation

4.2.1 The VsNetListener Module

The “port”, “wait”, “listen”, “backlog”, and “timeout” commands are
implemented as Tcl commands which are handled by procedures that are declared
as friends of the VsNetClient class and included with the rest of the code for the
VsNetClient implementation.

When the listener is started, it opens a socket on the desired port, sets the
appropriate socket options, binds to the socket, and executes a “listen” system call
to sit and listen to the socket. Because the socket is associated with a file
descriptor, the Vskntity input callback mechanism can be used, and so the listener
sets up its “Input” method to be called when there is input available at the socket.
Wen the “Input” method is called, there is new input at the socket, most likely a
remote VsNetClient attempting to make a connection. The listener then issues an
“accept” system call. If the connection is established, the listener creates a
VsNetServer module to handle the connection, and then notifies the Tcl script by
evaluating its callback, passing the name of the newly created server module by
adding a “-obj [name of server object]” to the end of the Tcl callback string. The
listener then resumes listening to the socket.

The “stop” method works by stopping the input callback, so that any input
coming to its socket is ignored until the listener is restarted. Changing the port of
a started listener first stops the module, then changes the port, and finally restarts
it listening at the new port.

4.2.2 The VsNetClient Module

The VsNetClient commands “send”, “call”, “flush”, “port”, and “host”, and
“timeout” are all implemented as Tcl commands that are linked to procedures
which are friends of the VsNetClient class. There is no default host; a client must
be configured with a hostname before it can initiate a connection.

When a VsNetClient module is started, it opens a socket, sets the socket options
appropriately, and uses the “connect” system call to try to connect to the desired
machine and port. (The socket is set up as non-blocking so that the timeout can

°The default value for the timeouts is 25 seconds.

53

be used.) If the connection is established, the client module also sets up its
“Input” method to be called whenever new input is available on the socket.
Stopping a VsNetClient stops the input callbacks and closes the socket. Changing
the host or port of a VsNetClient causes the module to be stopped, reconfigured,
and then restarted with the new values.

Figures 4.1 and 4.2 illustrate using a VsNetClient and a VsNetListener to set up
an out-of-band communication channel. First, the client and server exist in
separate address space in applications A and B on hosts X and Y, respectively.
Then, the listener starts listening at port N, and the client is configured to attach
to port N on host Y. When the client is started, it connects to the listener, which
creates a VsNetServer module to handle the connection. After the connection is
made the listener resumes listening to the same port and can be reused to
instantiate other connections.

Application A on host X Application B on host Y

VsNetListener
port: N

VsNetClient

host: Y
port: N

Figure 4.1: Connection Initiated

Asynchronous Send

Applications can use the VsNetClient “send” command to send data
asynchronously. When a “send” is performed, the client module first computes the
length of the message. It then prefixes the message with a five-byte header: the
first four bytes represent the length of the message (in bytes), and the last byte
signals that this message has been sent with a “send” command (as opposed to a
“call” command.) The message is then put into a dynamically expanding circular
queue maintained within the client module. Then, the VsEntity output callback
mechanism is used to signal that output to the socket is desired, so that (at some
indeterminate point in the future) the VsNetClient’s “Output” method will be
called to actually send the data over the socket. Hence, when a “send” command
returns all that is known is that the message has been queued to be sent. The

54

Application A on host X Application B on host Y

Port N

VsNetListener
port: N

VsNetClient

host: Y
port: N

Figure 4.2: Connection Established

message will not actually be sent until the “Output” method is called in the
background.

The circular queue in which unsent messages are maintained expands as needed.
Because the queue doubles its size whenever it is about to be filled up, it is not
possible to overflow it. The queue serves two purposes. First, because the VskEntity
output mechanism executes the “Output” method in the background, it may be
that multiple “send” commands are issued by an application before any of the data
is actually sent over the socket, so the data must be stored somewhere. Second,
transitory network problems may force the sending of messages to be delayed, so
the queue can store the unsent messages until it is possible to send them.

When the “Output” method is called, it goes through the enqueued messages in
order and attempts to send them over the connection using the “write” system
call. Messages are deleted after they have been successfully sent. Each call to
“Output” will continue to send enqueued messages, in order, until either the queue
is empty or a message can not be sent.

When the “flush” command is called, it forces the VsNetClient module to send all
of its enqueued messages by directly calling the “Output” method. Hence, when
“flush” returns the application is guaranteed that it has tried to physically send
the messages.

Asynchronous Receive

When a VsNetClient is started, it sets up its “Input” method to be called whenever
new input is available at the socket. When the “Input” method is executed, it first
uses the “read” system call to read five bytes from the socket to determine the
length of the message and whether it was sent using “send” or “call”. The rest of
the message is then read. Then, the message is tagged with a sequence number

55

determined by simply adding one to the sequence number of the last message
received. (The very first message received has a sequence number of one.) This is
important, because Tcl gives no guarantees for the ordering of callbacks.

Lastly, the message is sent back to the application script using the Vskntity
callback mechanism. The client module executes a callback with the arguments
“-call”, “-num”, “-eof”, and “-command”. The “-call” argument is set to 1 if the
message was sent by a “call”, and set to 0 otherwise. The “-num” argument gives
the sequence number of the message. The “-eof” is set to 1 if the connection has
been closed, and set to 0 otherwise. (When a connection is closed, the “Input”
routine will be called with zero bytes available. Hence, if the message is 0 bytes
long, the connection has been closed, and “-eof” is set to 1. This allows the
application to know when the connection has been closed.) Finally, the
“.command” argument contains the body of the message that was received.

Note that it is the responsibility of the application script to make sure that a
return value is sent for each “call” message received. When a message sent with
“call” is received, the VsNetClient will set the “-call” argument in the callback to
let the application know that the VsNetServer module on the other side of the
connection is blocking and waiting for a reply. However, it is up to the application
to send the response; if a response is not sent in a timely fashion, the timeout for
the VsNetServer module will expire.

Figures 4.3, 4.4, and 4.5 illustrate asynchronous communication and the
interaction of the “send” command, the message queue, the “Output” method, the
input method, and the callback.

Application A on host X Application B on host Y
VsNetClient = @
Queue:
message P
message Q

"send <message P>"
"send <message Q>"

Figure 4.3: Messages Enqueued

Synchronous Communication

Synchronous communication can be performed by using the “call” command.
When a “call” is executed, the module first temporarily stops all other

56

Application A on host X Application B on host Y

VsNetClient = VsNetServer

Callback
-message <message P>
—call0 —num 1 -eof O

Figure 4.4: Message P Received, Callback Executed

Application A on host X Application B on host Y
VsNetClient = VsNetServer
Callback
-message <message Q>
—call 0 —num 2 —eof 0

Figure 4.5: Message () Received, Callback Executed

asynchronous input and output. Next, the module creates the five-byte header for
the message; the first four bytes contain the length of the message, and the fifth
byte signals that the message was sent with the “call” command. The “write”
system call is then used to immediately send the message.

The module then blocks until either it receives new input over the socket or its
timeout expires. If the timeout expires, the module stops blocking and generates
an error message. If new input is received before the timeout expires, then it must
be the response to the call, and is read from the socket with the “read” system
command. Asynchronous input and output are then restarted, and the message
received is returned to the application as the result of the “call” command.

By disabling asynchronous input and output, the VsNetClient module guarantees
that the “Output” routine will not be invoked in response to the message sent in
response to the “call”. However, it is possible that some other asynchronous
message sent to the VsNetClient will be mistaken as the response to the “call”. In
order to prevent this from happening, the application using the VsNetClient must
make sure that it is not expecting any asynchronous input at the time it makes a

57

“call”. This constraint has not been found to be a problem, since applications
generally know when they are expecting asynchronous input.®

Figures 4.6, 4.7, and 4.8 illustrate an example of synchronous out-of-band
communication.

Application A on host X Application B on host Y

message
VsNetServer

"call <message>"

/

Figure 4.6: A Makes a Call to B and Blocks

Application A on host X Application B on host Y
VsNetClient = VsNetServer
Callback

—messageshtesaage3 —call 1

Figure 4.7: B Receives Message, Executes Callback

4.2.3 The VsNetServer

All out-of-band communication capabilities are two-way and entirely symmetrical.
Hence, the VsNetServer and VsNetClient have the same communication
commands (“send”, “call”, “flush”) that work in exactly the same way.

Because the VsNetServer exists only to serve a single connection, it can not be
configured for a specific host and port as a VsNetClient can. Further, when the
connection is terminated the VsNetServer becomes useless. However, it is not
automatically destroyed. Instead, the application using the VsNetServer is
informed via a callback that the connection is broken, and the VsNetServer will

6 Applications rarely (if ever) received unexpected asynchronous input since applications must
explicitly set up constructs for receiving asynchronous input.

58

Application A on host X Application B on host Y

VsNetClient = VsNetServer

"send <returnval>"

Figure 4.8: B Sends Back the Return Value to A

persist (as a useless module) until explicitly destroyed. As a general rule,
applications should destroy VsNetServer modules immediately after being
informed that the connection has been broken, unless there is a good reason for
keeping it around (such as the module having surviving children.)

4.2.4 VsRemote

The VsRemote module exists for use only as a parent object for the VsNetClient
and VsNetServer modules. VsRemote is a subclass of Vskntity, and provides most
of the same functionality. The only difference is the way that “start” and “stop”
are handled. In the traditional VuSystem, the “start” method for a VsEntity (and
all subclasses of VsEntity) will automatically start the module and all of its
children. Unfortunately, this presents complications when dealing with
VsNetClient and VsNetServer modules.

Unlike other VsEntity subclasses, the “start” and “stop” methods for VsRemote
do not call the “start” and “stop” methods for any of its children that are
VsNetClient or VsNetServer modules. Instead, it evaluates the callback for these
module with a “stop” argument. This lets its VsNetClient and
VsNetServer children know that a “start” or “stop” was issued without actually
calling their “start” or “stop” methods.

‘start” or

4.2.5 Remote Sources

Remote sources are implemented through the interaction of Tcl code in the
VsVideoSource and VsAudioSource modules, the SetupRemote procedure, and the
vsremotedevice Tcl script. The SetupRemote procedure is a Tcl procedure used by
the local side of an application to set up remote sources, remote filters, and remote
sinks. The vsremotedevice script is a Tcl script that sets up the remote
environment and underlying remote modules used to implement remote sources,
remote filters, and remote sinks.

59

For simplicity, only the implementation of remote video sources will be described.

However, remote audio sources are implemented in exactly the same fashion.”

Local Source/Sinks Stubs

Say that an application wants to access source 7 available only to host Y. In order
to create a video source module, the “create” method (consisting of Tcl code) for
the video source module is run. This procedure parses the name of the desired
video source and decides if it is local or remote. If the source is local, the create
procedure continues and creates the local source, as in a traditional VuSystem
application. If the source is remote, the video source module calls the
SetupRemote procedure, telling it the desired source. This procedure proceeds to
set up a local stub that will appear to the user to be the remote source.

The SetupRemote Procedure

The SetupRemote procedure first determines the name of the application’s display.
Next, it creates a VsRemote object, which serves as a local stub for whatever
remote device is being created. The procedure then starts one VsTcpListener and
one VsNetListener module on available ports. Then, it uses rsh® to remotely
execute the vsremotedevice script on host Y, passing as arguments the port
numbers that the listener modules are listening at, the name of the local host, the
type of remote device desired (a video source in this example), the name of the
device desired (the video sourced “Y:Z” in this example), and any arguments to
pass on to the remote device itself. The SetupRemote procedure then uses its
listener modules’ “wait” commands to block itself until either the client modules
on the remote site establish connections to the local listener module or the timeout

bANA

expires and an error message is reported.

Because Tcl allows scripts to execute UNIX commands, rsh is a powerful tool for
running processes on remote machines. Combined with a network file system, rsh
allows VuSystem applications to run VuSystem scripts on any machine in a
network. Remote scripts started in this fashion can then use VsTcpClient and
VsNetClient modules to establish in-band and out-of-band connections back to the
VsTepListener and VsTepListener modules on the local host. VuDP does not need
to do any explicit authentication for remote processing because authentication is
done within rsh.

The vsremotedevice Script

Remote devices are controlled by the vsremotedevice script that runs on the
remote machine. This script runs with its own Tcl interpreter in its own name

"Simply replace “video” with “audio” in the text below to produce a description of how remote
audio sources are implemented.
8rsh is a standard Berkeley UNIX command used to execute a command on a remote host.

60

space, and communicates with the rest of the application only through explicit
communication channels.

When the vsremotedevice script is executed, it first initializes the X toolkit,
creates an application context and a display object to work with, and initializes
the VuSystem. This creates a new VuSystem Tcl interpreter with its own name
space on the remote host. The script then creates VsTepClient and VsNetClient
modules that connect to the VsTcpListener and VsNetListener modules started by
SetupRemote. This establishes the in-band and out-of-band connections. Next, the
vsremotedevice script creates the appropriate local device module (in this case a
local video source for video source Z.) The output of the video source is connected
to the input of the Tcp client module, so that the media stream produced by the
video source is automatically sent over the network to the application.

Finally, the vsremotedevice script sets up the appropriate callbacks for the
VsNetClient module so that any commands sent to it are automatically forwarded
to the actual video source module and any results from these commands are
automatically sent back over the out-of-band connection to application A. Because
VuSystem callbacks are executed asynchronously and because there are no
guarantees on ordering, the vsremotedevice script is required to reorder the
callbacks it receives so that the commands passed on to the local video source
module are give in the same order that they were sent by application A. Once
these callbacks are set up, the vsremotedevice script loops and devotes itself to
event-processing. When the vsremotedevice script senses that either the in-band or
out-of-band connection has been broken, it destroys all of its modules and exits.

While the vsremotedevice script is getting started, the SetupRemote procedure on
the local side uses the “wait” command on its VsNetListener and VsTcpListener
modules to block until the remote VsNetClient and VsTcpClient modules establish
the out-of-band and in-band connections, respectively. Once the connections are
made, SetupRemote destroys the listener modules. It then aliases the output of
the VsTcpServer module to be the output of the VsRemote module. Then,
SetupRemote overrides the “unknown” routine of the VsRemote stub with a
routine which uses the out-of-band connection to automatically send any unknown
commands over the network to the vsremotescript on the other side. (Every
VuSystem subclass of VsEntity has an “unknown” routine which is invoked when
an invalid command is executed on it. Typically an error message is produced, but
in this case the command is simply relayed over the net to the remote device the
command was destined for.) Finally, the VsRemote module is returned as the
result of creating the remote source module.

To illustrate the setup of a remote source, first application A on host X creates a
VsSource module, and specifies “-videoSource Y:vidboardl” as the video source.
Host X does not have access to vidboard 1, but host Y does, so remote sourcing is
used. In figure 4.9, SetupRemote creates a VsRemote module, creates two
listeners, and uses rsh to start a vsremotedevice script on host Y, passing the

61

appropriate arguments. Next, in figure 4.10 the vsremotedevice script on Y creates
the appropriate local source and creates client modules that connect to the
listeners. To finish setting up the remote source the SetupRemote procedure sets
up a callback for its VsNetServer module that will relay “start” and “stop”
messages over the out-of-band connection without actually starting or stopping the
server module. SetupRemote then returns the VsRemote object as the stub
representing the video source. Media flow then begins.

Application A on host X Host Y

SetupRemote rsh vsremotedevice

VsNetListener
VsTcpListener

Figure 4.9: Setup Remote Called, Remote Device Script Started

VsRemote

Application A on host X Host Y
SetupRemote vsremotedevice
VsR . ==
sRemote VsNetListener
VsTcpListener VsTcpServer
Video Source

Figure 4.10: Remote Source and Connections Setup

Starting and Stopping

The VsRemote routine has unique start and stop behavior in that when it is
started or stopped it does not start or stop any of its children that are
VsNetClient or VsNetServer modules. Instead, it executes callbacks for those
modules to signal to them that they would have been started or stopped. This is
important because of the way that the local stub and the remote source module
are connected via the in-band and out-of-band connections.

62

The VsNetServer module should not be stopped when a “stop” is issued to the
local VsRemote stub because the out-of-band connection is necessary to transfer
any reconfiguration commands that may occur after the “stop”. Sources are
normally stopped before reconfiguration and then restarted, but if the VsRemote
stub stops its VsNetServer child module then the out-of-band connection will be
broken and no reconfiguration information can be passed to the remote source.
Instead, starting or stopping the local stub causes a “start” or “stop” message to
be relayed by the VsNetServer module to the underlying remote source module.
This starts or stops the underlying remote source without breaking the
out-of-band connection used to implement the remote source.

Note that it is not necessary to intercept the “start” and “stop” commands for the
VsTep modules, because VsTcep modules stop media flow but remain connected
after being stopped. Hence, the standard VuSystem starting and stopping
mechanisms suffice.

Transparent Distribution

Because of the way that remote sources are set up, the VsRemote object returned
to the controlling application will appear to be a local video source module. By
overriding the appropriate procedures and using the “unknown” mechanism for
relaying commands, any commands for the remote source (either commands in the
application script or commands entered in the interactive programming
environment) will be automatically forwarded by the stub to the vsremotedevice
script controlling the remote source. This script then automatically forwards the
commands to the source module itself, which handles them and returns a result,
which is then forwarded by the script back to the VsRemote stub. The stub then
returns this result as the result of the command. Hence, any commands applied to
the stub will have the same effect and return the same result as if they were
applied directly to the primitive source module. This causes the stub to appear to
the user to be a local source module.

In-band Connections

The output of the VsTcpServer module created by SetupRemote is aliased as the
output of the stub, and the input of the VsTcpClient module is connected to the
output of the actual source module in the vsremote device script, so the media
that flows out of the actual remote source module on host Y is automatically
routed over the network and appears to be flowing out of the output of the stub
module in application A on host X. The output of the stub can be reconnected
just like the output of any source, and so as far as media flow is concerned the
remote source looks just like a local source.”

®Note that piping the media over a slow network may cause remote sources to appear to be
slower than local sources.

63

The Control Panel

As described previously, the control panel for a remote source (or sink) appears in
its own window, separate from the main control panel for the application, but
otherwise identical to the control panel for a local source. To implement this,
X-Windows is exploited. When a control panel command is seen by the stub, it
relays it to the vsremotedevice script. The script has an X-Windows display
variable which names the display of the application that connected to it. When
the vsremotedevice script is relayed a control panel command, it creates a new
window on that display, and arranges for the remote source to draw its control
panel inside that window. The callbacks for controls drawn by the remote device
are directly connected to the actual remote device, so the control panel works as it
does for local devices.

For the example, say that application A on host X is using display N. Then, the
vsremotedevice script on host Y which controls source Z will also use display N.
When the user of application A clicks the control panel button, the remote source
stub in application A will forward the control panel command to the
vsremotedevice script on host Y. The script will then create a new window on
display N, and pass this widget to the control panel mechanism for source Z.
Source 7 will then draw its controls inside this window on display N. The user of
application A will thus see two control panels: one containing the controls for the
remote source 7, and one containing all other controls.

4.2.6 Remote Sinks

Remote sinks are implemented in the same way as remote sources. First, the
“create” routine of the sink module parses the name of the sink to determine if it
is local or remote. If it is remote, it calls SetupRemote with the appropriate
arguments. SetupRemote in turn creates the VsTcp and VsNet modules as for
sources and starts a vsremotedevice script on the appropriate machine. The
vsremotedevice script creates VsNetClient and VsTcpClient modules to set up the
in-band and out-of-band connections and creates the appropriate local sink
module. It then connects the VsTcpClient module appropriately, and sets up the
mechanisms to forward commands to and return results from the sink module in
the same way that it does for a remote source. SetupRemote then destroys the
listeners, does the appropriate aliasing and overriding of the “unknown” routine to
make the distribution transparent, and returns a VsRemote stub to masquerade as
the sink module.

There is no difference in the way that SetupRemote and the vsremotedevice script
handle sources and sinks. In fact, the same script code handles both sources and
sinks. In order to use exactly the same code for both sources and sinks, the
SetupRemote procedure and vsremotedevice script connect both the input and
output ports of the in-band connection. In fact, only the output port needs to be

64

connected for remote sources, and only the input port needs to be connected for
remote sinks.

4.2.7 Remote Filters
Class and Instance Procedures

Before discussing the implementation of remote filters, it is useful to briefly review
the VuSystem object system. Each module is associated with a class and is
typically implemented as a C++ class. But each class is also itself an object in the
VuSystem Tcl object system, and so there is a distinction between class methods
and instance methods.

Class methods are methods on the class itself; for example, the procedure for
creating new instances of a class is a class method. Hence, the line “VsPuzzle
vs.vpuzzle” invokes the creation method for the VsPuzzle class object to create a
new instance of the VsPuzzle class named vs.vpuzzle.

By contrast, instance methods are methods on instances of a class. VuSystem
modules are instances of classes. Examples of instance methods for the VsPuzzle
module are “solve”, “scramble”, and “dimension”. Methods that change
parameters and do other sorts of reconfiguration are generally instance methods.
This distinction between class methods and instance methods is important in the
remote filter implementation.

The VsRemoteFilter Module

Remote filters are based on the VsRemoteFilter module, which is a new class
implemented entirely in Tcl. The VsRemoteFilter module is very much like the
VsVideoSource or VsVideoSink module, in that it is a sort of “wrapper” that is
put over the lower-level modules. Most of the remote filter implementation is very
similar to the remote source and remote sink implementations.

When a new VsRemoteFilter module is created, it first checks the name of the host
on which the filter is to be placed. If it is the local host, then the filter is created
locally. To do this, a local filter of the appropriate type is created and made a child
of the VsRemoteFilter module. The VsRemotelilter module itself then advertises
all the methods of the underlying filter, so that when these methods are invoked on
the VsRemoteFilter module they will automatically be executed on the underlying
filter module. For example, say that a VsRemoteFilter module is created that will
instantiate a VsPuzzle filter on the local machine. First, a new VsPuzzle module is
created and made a child of the VsRemoteFilter module. Then, the various
VsPuzzle methods - such as the commands to change the dimension, to scramble
the puzzle, and to solve the puzzle - are advertised by the VsRemoteFilter module,
which means that any time one of these methods is invoked on the VsRemoteFilter

65

module it is automatically invoked on the underlying VsPuzzle module.1®

If the VsRemotelFilter is to be placed on a remote host, it calls the SetupRemote
routine with the appropriate arguments. SetupRemote in turns creates the VsTcp
and VsNet modules to handle the connection, and uses rsh to start a
vsremotedevice script on the appropriate remote machine. This remote device
script then creates the filter on the remote machine and sets up in-band and
out-of-band connections back to the VsTcp and VsNet modules in the
SetupRemote routine. SetupRemote then destroys the listener modules, connects
the VsTcp module appropriately, and sets up the mechanisms by which filter
methods applied to the local stub are automatically forwarded to (and results
returned from) the actual remote filter. Finally, SetupRemote performs the
appropriate aliasing to make the local stub appear to be an actual filter module,
and returns a VsRemote stub to act as a filter module.

The creation and setup of a remote filter is shown in figures 4.11 and 4.12. First,
application A on host X has a local video source and a local video sink and wants
to create a remote VsPuzzle filter. In figure 4.11, the VsRemoteFilter calls
SetupRemote, which sets up the local listeners and uses rsh to start a
vsremotedevice script on host Y. In figure 4.12, the vsremotedevice script sets up
the remote puzzle module and the in-band and out-of-band communication
channels. The application then connects the output of the source to the input of
the filter and connects the output of the the filter to the input of the sink. Media
then begins to flow from the source into the VsTcpServer module on host X, over
the network to the VsTcpClient module on host Y, through the remote VsPuzzle
module, back into the VsTcpClient, back across the network, back through the
VsTepServer, and into the sink.

Control Panel Implementation

The control panel for a remote filter appears in its own window, separate from all
the controls for local modules. The control panel mechanism is implemented
within the VsRemoteFilter “panel” instance method, which is called each time the
control panel is opened. When called, the “panel” method first checks to see if the
filter is actually local or remote. If the filter is local, it has the underlying filter
module draw its controls on the control panel, and then appends the “host”
button to these controls. If the filter is remote, the method forwards the “panel”
command to the remote filter, telling it to use X-Windows to draw its control
panel on the appropriate screen.

19There are a few methods - such as the “class” and “panel” methods - that can not or should
not be overridden by the methods of the underlying filter.

66

Application A on host X

Host Y

SetupRemote

VsRemote

rsh

VsNetListener
VsTcpListener

vsremotedevice

Figure 4.11: Setup Remote Called and Remote Device Script Started

Application A on host X

SetupRemote

VsRemote

VsTcpListener

VsNetListener

Host Y

vsremotedevice

Csnecient

VsTcpServer

Figure 4.12: Remote Filter and Connections Setup

67

Chapter 5

Advanced VuDP Applications

The core VuDP tools support the distribution of remote source, remote filter, and
remote sink modules. VuDP also provides tools for the development of advanced
applications with its general remote evaluation mechanism and the VuDP remote
services daemon. VuDP remote evaluation allows programmers to explicitly
manage and take advantage of multiple execution environments on multiple hosts,
while the VuDP daemon is a high level server that exports useful VuSystem
distributed programming services.

VuDP has been used to develop several applications that demonstrate the power
and flexibilty of VuSystem distributed programming. These applications can be
roughly divided into two groups. First, there are single applications whose
component modules are divided among several hosts. Remote sources, remote
filters, remote sinks, and remote evaluation are tools for creating these kinds of
applications. VsMultiCast is an example of such an application. Second, there are
cooperative applications involving multiple users on multiple hosts. The VuDP
daemon is designed to provide support for these multi-user applications. VsPigeon,
VsTalk, and VsChat are examples of applications in this second group.

5.1 Remote Evaluation

Since applications may wish to do more with distributed programming than create
remote sources, filters, and sinks, VuDP was used to create a general remote
evaluation facility that allows an application to set up remote execution
environments and then evaluate sections of Tcl code in these remote environments.
This is an extremely useful mechanism because VuSystem applications consist of
Tel scripts (the out-of-band code) which set up, configure, and manipulate in-band
modules (typically written in C4++.) Hence, VuDP remote evaluation allows an
application to set up remote execution environments and then execute arbitrary
sections of out-of-band code in these remote execution environments. VuDP
applications can explicitly operate in multiple environments on multiple hosts by

68

specifying in which environment out-of-band Tcl code is to be executed. (Of
course, for simplicity and backwards compatibility the default is the local
execution environment.) To allow for direct interaction between modules in
different environments, VaDP programmers can use the VsTcp and VsNet
modules to set up in-band and out-of-band communication channels between peer
execution environments.

Host A Host B
reply
Local Remote Remote
Out-of-Band Evaluation Out-of-Band
Code Connection Code
request
Local Modules Remote Modules

Figure 5.1: VuDP Remote FEvaluation

5.1.1 The Remote Evaluation Interface

VuDP applications can set up remote execution environments in which to perform
remote evaluation. Each such environment must be explicitly created (via a
VsREV module). Each remote execution environment contains its own Tcl
interpreter and name space and maintains state across remote evaluation requests.
The interpreter and corresponding environment are destroyed when the connection
is closed. All details of authentication and data marshalling are taken care of by
the implementation.

It is important to explicitly define the programmer’s view of the remote interpreter
and execution environment. In VuDP, the programmer sees a remote interpreter as
being completely separate from the local interpreter. Each remote interpreter has
its own name space and shares no state with either the local interpreter or any
other remote interpreter. This means that, in general, variables, objects, and
procedures in one interpreter are not available to peer interpreters. For example,
say that a local application uses a VsREV module to establish a “remote”
evaluation environment. The local and remote environments would contain
separate Tcl interpreters and name spaces, and the variables, objects, and
procedures that exist in the local interpreter would not exist in the remote
interpreter (and vice-versa).

69

Application A on host X Remote environment on host Y

"seta 1"

VSREV 7

Remote
Interpreter

Figure 5.2: Example of Remote Evaluation

Though this may seem somewhat constraining, there are two good reasons for
completely segregated name spaces. First, it provides the programmer with a
simple, easily understandable relationship between the local and remote sections of
the application. There is no need for the programmer to worry about subtle,
poorly understood interactions between the local and remote environments,
because the only interactions that occur are exactly those that the programmer
explicitly sets up. Second, the segregation model presents the programmer with a
model that closely resembles the underlying implementation. This avoids hiding
expressive power, provides good performance, and allows programmers flexibility
in deciding how to use the distributed programming tools.

One effect of segregating local and remote name spaces is that modules existing in
separate name spaces can interact only through explicit communication channels.
Any in-band communication between local and remote interpreters must pass
through VsTep modules, and any out-of-band communication between local and
remote interpreters must pass through VsNet modules; generally no other
interactions between remote modules are allowed.! Because all simple Tel
variables are strings, data marshalling is not an issue, and so variable values are
easily passed between interpreters.

Finally, an important issue is deciding how much state to place in remote
interpreters when they are first created. A certain amount of “boilerplate” code
exists in each VuSystem application script to initialize the X-windows interface,
etc. In order to initialize the VuSystem and allow for creation of remote modules,
a remote interpreter must initialize the X toolkit and create an X-Windows
application context, display, and top level widget. Only this bare minimum of
initialization and setup is done when a remote interpreter is created.

'One notable exception is using a network file system to allow remote interpreters to interact
through shared files.

70

Discussion

The VuDP view of remote evaluation is that remote interpreters exist in completely
segregated execution environments. Other choices are to have all peer interpreters
appear to run in the same execution environment, or to have peer interpreters run
in separate environments that implicitly share some proper subset of their state.
Having local and remote evaluation occur in the same environment makes little
sense. If remote evaluation occurs in exactly the same environment as local
evaluation, then improved performance (via parallelism or access to a remote
machine that is faster than the local machine) is the main reason for using remote
evaluation. And even this theoretical performance improvement is of dubious
value, for several reasons. Even if no asynchronous execution is allowed, there
must be a good deal of communication between the local and remote interpreters
to keep their states consistent. One could imagine either sending the entire state
with each REV request, or having the local and remote interpreters dynamically
inform each other of state changes.

If asynchronous execution is allowed and peer interpreters appear to run in the
same execution environment, then it becomes extremely difficult to maintain the
local and remote interpreters in consistent states. Doing so requires a tremendous
amount of locking, synchronization, and intermachine communication to keep the
local and remote interpreters consistent. Even if the VuSystem did allow for
multi-threaded applications (which it doesn’t), maintaining shared state between
the local and remote interpreters would complicate the system and most likely
negate some or all of the performance improvement achieved by allowing remote
evaluation.

Another approach is to specify some proper subset of interpreter state which is
shared between local and remote interpreters. However, there are many problems
with any kind of implicitly shared state.

e Shared state must somehow be marshalled and transmitted transparently.

e In the VuSystem, where applications are Tcl scripts running on UNIX
systems, it is difficult or impossible to transmit certain types of state, such

as UNIX file handles.

e Shared state is subject to the consistency problems described above, which
only become much worse when asynchronous execution is allowed.

e Application developers must be familiar with all the intricacies of partially
shared state, which makes the system more difficult to use.

Finally, any shared state between local and remote interpreters must be reflected

in the VuSystem runtime programming environment. With segregated
interpreters, the best way to handle the runtime programming environment is to

71

separate the representations of the local and remote interpreters to reflect their
independent natures. (This is described in more detail later in this section.) By
contrast, there seems to be no good intuitive runtime programming representation
for local and remote interpreters with shared state.

5.1.2 Using VuDP Remote Evaluation

VuSystem applications can set up remote execution environments by using the
VsREV module. Upon creation, a VSREV module takes its host argument and
creates a new execution environment and a new interpreter in the new
environment on the specified host. A VuSystem application can maintain an
arbitrary number of different remote evaluation connections to an arbitrary set of
hosts via multiple VsREV modules. Each VsREV module is responsible for
maintaining the connection to one remote execution environment and interpreter.

Handling Remote Evaluation

Once a connection is set up using the VsREV module, remote evaluation can be
performed by using the VSREV “rev”, “revsend”, and “flush” commands. The
“rev” command takes as an argument a Tcl command to execute. It sends this
command to the remote interpreter, evaluates it on the remote interpreter, and
returns the result of the remote evaluation as its result. The application making
the “rev” call is blocked until either the return value is received or a timeout
expires.

If no return value is desired, then the asynchronous “revsend” command can be
used to send the remote evaluation request in the background, without blocking
the local application. In order to make sure that previous remote evaluation
requests sent with “revsend” have been sent, the VSREV “flush” command can be
used to block the local application and immediately send all previous “revsend”
commands that are waiting in the background.

Note that a “rev” command does not automatically flush previously buffered
“revsend” commands. A “flush” should be used between “revsend” and “rev”
commands if the “rev” commands depend on previous “revsend” commands.

If asynchronous input from the remote interpreter is desired, a callback function
can be specified for the VsREV module which will be executed each time
asynchronous input is received from the remote interpreter. When data arrives via
the callback, the callback routine will be called with the arguments
whose value contains the data received, “-call”, which is set to 1 if the remote

‘-command”,

interpreter is blocking and waiting for a reply (and set to 0 otherwise), “-num”,
the sequence number of the message, and “-eof”, which is set to 1 if the connection
has been closed by the remote interpreter.

All remote evaluation is done with the privileges of the user of the local
application. Remote evaluation can do no more and no less than what would be

72

possible to do by simply logging into the remote machine.

A remote evaluation connection is terminated when the VsREV module is
destroyed. When the remote interpreter senses that the connection has been
broken, it destroys itself.

An Example of a Remote Evaluation Connection

An application wants to set up a remote evaluation connection to host Y. First,
the application creates a VSREV module named “vs.rev”, and configures it to
connect to host Y. Then, in figure 5.3, the application starts the module, which
creates a remote interpreter running on host Y. The application can then use the
VsREV module’s“rev” and “revsend” commands to execute Tcl code on the new
interpreter on host Y.

Application A on host X Host Y

request

/(Remote

VSREV) Interpreter

response

Figure 5.3: Remote Evaluation Connection Established

The code fragment in figure 5.4 illustrates examples of using “rev” and “revsend”.
The application sets variable “a” to be 10 in the local environment and 1 in the
remote environment, sets variable “b” to be 5 in the local environment, sets
variable “c” in the remote environment to have the value of variable “b” in the
local environment, sets “d” in the remote environment to have the value of “a” in
the remote environment, flushes the sends?, uses “rev” to execute “set ¢” and “set
a” in the remote environment to find out the values of
environment, and finally runs “set a” to find the value of a in the local
environment. In the code fragment, the lines beginning with “:” represent the

return value of the line above. Note that “revsend” does not return a value, but

“c” and “a” in the remote

“rev” does.

The connection is broken when the VsREV module is destroyed, causing the
remote interpreter and all its associated state to be destroyed.

2The use of “flush” is described below.

73

VuDP Interactive Programming

VuDP provides one interactive programming environment for each interpreter the
application has access to. In other words, two windows (one graphical
representation window and one textual interface window) are displayed for the
local section of the application, and two windows are displayed for each remote
evaluation connection. The local interactive programming window provides access
to all local modules (including any VsREV modules used to establish remote
evaluation connections), and provides a graphical and textual interface to the local
interpreter. Each remote evaluation partition has its own windows which provide
access to all the modules that have been created for that interpreter.?

Having separate interactive windows for each remote evaluation connection reflects
the separate nature of the remote execution environments.

Discussion

There are several reasons why it does not make sense to integrate the local and
remote interactive programming environments into a single set of windows. First,
consider the top interactive programming window, containing the graphical
representation of the application. Remote evaluation occurs in a separate
environment and local and remote modules can not directly interact. A second
reason not to display local and remote modules in the same set of windows is that
modules in separate execution environments can not be directly connected together
using the graphical programming tools. Hence, displaying them in the same
window may frustrate users who are not able to use the graphical programming
tools to interconnect them. Finally, if local and remote modules are presented in
the same set of windows then there must be some mechanism for marking remote
modules with the host where they exist. This labeling of modules is relatively
straightforward if an application is limited to only one remote evaluation
connection to any host, but becomes much more complicated and impractical
when (as is allowed by VuDP) applications are allowed to have multiple remote
evaluation connections to different address spaces within the same host.

If local and remote environments are accessible through the same window, then
how does a user specify which interpreter is to be used to evaluate dynamically
entered commands? This problem is even more complicated than it first appears
because VuDP allows applications to maintain an arbitrary number of remote
evaluation connections to an arbitrary set of hosts. Forcing a user to specify which
interpreter to use for each request would unnecessarily complicate both the
interactive programming implementation and the use of VuDP.

*Because directly accessible remote modules are only created via remote evaluation, the inter-
active programming interface is only an issue when remote evaluation connections are established.
This interface is not an issue for transparent distribution - such as is done with remote sources and
remote sinks - since transparently distributed modules should appear to be local.

74

VuDP’s multiple-environments approach solves all of the above problems, and has
the feature that the interactive programming windows parallel the separate remote
interpreters.

5.1.3 Implementation

The VuDP remote evaluation mechanisms are implemented entirely in Tcl; no new
low-level C4++4 code was necessary. The implementation consists of two parts: the
VsREV module and the vsremoteeval script.

The VsREV Module

If application A on host X wants to open a remote evaluation connection to host
Y, it simply creates a VsREV module configured to connect to host Y. This sets
up the remote evaluation connection to host Y. Once the connection has been
established, the VsREV module’s “rev”, “revsend”, and “flush” routines can be
used to perform remote evaluation.

Upon creation, the VsREV module sets up a VsNetListener module on some
(non-default) port and figures out which display application A is using. The
module then uses “rsh” to start up the “vsremoteeval” script on host Y, passing as
parameters the name of the local host (host X), the name of the display application
A is using, and the port number at which the VsNetListener is listening. The
VsREV module then uses the VsNetListener’s “wait” command to wait for the
vsremoteeval script on host Y to connect back to the VsNetListener module.

The vsremoteeval Script

The vsremoteeval script controls the creation and maintenance of the remote
interpreter and the remote execution environment. It is invoked via 'rsh’ by the
VsREV module and runs on the machine to which the remote evaluation
connection is being made; for the above example, the vsremoteeval script runs on
host Y.

The script first initializes the X toolkit, creates an application context, and opens
the appropriate display. Next, vsremoteeval initializes the VuSystem and creates a
VsNetClient module configured to connect to host X on the port specified by its
arguments. The VsNetClient module is then started, setting up an out-of-band
connection between the local VsREV module and the remote execution
environment of the vsremoteeval script.

The Command Callback

Finally, the vsremoteeval script sets up a command callback routine to handle
input that the script receives over the out-of-band connection. The command
callback routine extracts the parameters of incoming commands to determine the

75

sequence number of the command, whether or not the connection has been broken
(as signaled by an end-of-file message), whether or not the remote application is
blocking and waiting for a response, and the body of the command. Incoming
messages are placed in a queue tagged with their sequence number, and an
interpreter routine interprets the newly received messages in the order of their
sequence numbers.

The Remote Evaluation Interpreter Routine

The remote evaluation interpreter routine must use the sequence numbers of
incoming remote evaluation commands to reorder them so that they are evaluated
in the same order that they were sent.* When a new command arrives, the
interpreter scans the queue of incoming messages to find the message with the
proper sequence number. If it doesn’t find it, it does nothing.® If the interpreter
does find the command with the correct sequence number, it remotely evaluates
the command, returns the result (if necessary), and loops back to search for the
next command to evaluate.

Commands are evaluated by simply interpreting them in the global environment of
the vsremoteeval script’s Tcl interpreter. If a return value is expected, the result
from evaluating a command is saved and returned back to the calling interpreter.
If no return value is expected, no return value is sent.

When the vsremoteeval script receives an end-of-file message over the out-of-band
connection, it can determine the sequence number of the last command to be
evaluated by decrementing the sequence number of the end-of-file message. When
it has received the end-of-file message and knows that it has evaluated the last
command, the script quietly destroys the remote execution environment and exits.

Remote Interactive Programming

Opening an interactive programming window causes two windows (one graphical
program representation window and one textual interpreter interface window) to
appear for each interpreter that an application is using. Since there will always be
two windows for the local interpreter, the total number of interactive programming
windows will be two plus twice the number of active remote evaluation connections,
since each remote evaluation connection is associated with a separate interpreter.
In the standard VuSystem, opening the interactive programming windows involves
calling the VsVisualShell procedure on the top-level object for that application.
(In VuSystem applications, there is normally a top-level object called “vs” that is
an ancestor of all other objects.) This opens the windows, sets up the graphical

*This is because Tcl does not preserve the ordering of callbacks.

®This will happen if the callbacks are reordered and the message that just arrived has a higher
sequence number than the one the interpreter wants and so should be temporarily enqueued. Mes-
sages will not be lost during transmission because out-of-band connections use the TCP protocol.

76

programming tools and the textual interface to the interpreter, and then
recursively calls the “drawNodes” procedure on all of its children. This causes each
of its children to draw representations of themselves (typically boxes labeled with
the appropriate module type) in the graphical window and draw connections
between modules where media flows, hence producing a graphical representation of
the application.

The remote interactive programming window is implemented in a very
straight-forward fashion. When the “drawNodes” procedure for the VsREV
module is called, it draws itself as if it were a local module, but before exiting it
sends a message to its remote interpreter telling it that the program button has
been pushed. The command interpreter for the vsremote script has a special case
for receiving a program button command, and instead of passing this command on
to be evaluated (like a normal remote evaluation command) it instead calls the
VsVisualShell procedure on the top-level object for the remote interpreter. Hence,
the remote interpreter displays an interactive programming window (just as if it
were the main local interpreter) by drawing a window in its display, setting up the
textual interface and the graphical programming tools, and calling the
“drawNodes” procedure for all its modules. Because the X display for remote
interpreters is set to be the same as the display for the local application, all remote
programming windows - along with the local interactive programming window -
will appear on the user’s display.

Once started, the programming windows for remote interpreters are no different
than those for local interpreters. Remote objects can be created, reconfigured, and
destroyed using the graphical tools, and commands can be directly entered into
remote interpreters using the textual interface. Remote programming windows
persist until explicitly closed; they are not automatically destroyed when the local
programming window is closed.

Error Reporting

Note that the display for the remote script is the same as the display for the local
application that started the remote evaluation connection. Hence, if an error
occurs while performing remote evaluation, the normal VuSystem error window is
automatically popped up on the display that the application is running on. This is
powerful, convenient, and clean.

5.2 The VuDP Daemon

Though remote evaluation is a general and powerful mechanism for distributed
programming, it is also desirable for applications to have access to a higher-level
server which exports a set of useful distributed programming services. This kind of
server is especially useful for applications involving multiple users. The VuDP

7

daemon is an application that runs on every machine where at least one person is
logged in. The daemon listens at a well-known port, and client applications
running on any machine can connect to the daemon to request services. The
daemon exports a certain set of services to allow remote applications to access the
resources of the daemon’s local machine and to facilitate synchronization between
users in multi-user applications.

5.2.1 The VuSystem Daemon and Remote Services
Starting the VuDP Daemon

Because the VuDP daemon exists primarily for multi-user applications, a daemon
is typically started in a user’s startup file when he/she logs into a machine. This
has many advantages. First, the user can decide whether or not the daemon is
running; by starting a daemon a user is basically announcing that he wants to
participate in multi-user VuSystem applications. Second, it allows users to
customize their daemons to offer exactly the set of services that they want to
export to other applications connecting to their daemon. For example, a user may
decide to customize his daemon to disable the VuDP messaging system. Third, it
allows a single daemon process to handle all VuDP daemon services for a single
host. This means that the overhead of process creation and VuSystem
initialization required to start a new daemon is incurred only once, at log-in time.
Finally, if a single VuDP daemon handles all daemon service requests for a single
machine, then all those requests are handled in the same address space. This
provides the potential to use the daemon’s address space as a means of
communication between remote VuSystem applications. Because the daemon is
designed for use in multi-user applications, running the VuDP daemon as a user
process is not a problem, as there should be no need to access daemon services on
a host with no users.

Alternatives to per-user Daemons

The main alternative to having the daemon started when a user logs into a
machine is to use inetd[8] to start a new daemon on a host each time a connection
to a daemon on that host is requested. This has the advantage of always having a
daemon available on every host, even if no user is logged in. On the other hand,
VuDP remote evaluation can always be used to access any machine, whether or
not anyone is logged in, so it isn’t necessary to always have a daemon running on
every machine. And, having a daemon started by inetd also does not allow for
per-user customization of the daemon, and gives users little control over the VuDP
daemons running on their machines. Further, the overhead of process creation and
VuSystem initialization - a non-trivial amount of computation - is incurred each
time a new daemon connection is established. Having to create a new daemon for
each connection would significantly impact performance, especially for simple

78

service requests such as made by the VsPigeon messaging application. Finally,
creating a separate daemon process for each connection would disallow using the
daemon’s address space for any potential communication between remote
applications connected to the same daemon.

Security

With the VuDP daemon, security is not a problem because the daemon exports an
explicit set of services. Hence, client applications can only do on the remote
machine exactly what the daemon lets them do. As long as the daemon services
are designed with security in mind, the daemon should not introduce any security
loopholes.

The daemon services and remote evaluation mechanism complement each other
without creating any security risks. Daemons generally have access to all resources
of the machine they run on, but only allow access to those resources in an
controlled fashion. By contrast, remote evaluation allows an application access to
exactly the remote resources that the user of the application could access by
logging into the remote machine.

5.2.2 Using the VuDP Daemon

VuSystem applications can use the VsNetClient module to connect to a VuDP
daemon on a remote machine to request daemon services.

Connecting to the VuDP Daemon

For an VuSystem application to connect to a VaDP daemon on a remote machine,
it must first create a VsNetClient module and configure it to connect to the
appropriate host. The default port for the VsNetClient to connect to is the port
that the VuSystem daemon listens to, so if a VsNetClient does not explicitly
reconfigure its port then it will automatically be set up to connect to the VuDP
daemon.

Handling a VuDP Daemon Connection

Once a connection is established, an application can access the daemon resources
through the VsNetClient “send” and “call” commands. Depending on the
semantics of the daemon command, a “send” command may involve having the
daemon return a value; however, the return value will be received by the
asynchronous input callback mechanism for the VsNetClient module. By contrast,
“call” will always return a value. For both “send” and “call”, any errors
encountered by the daemon while servicing a request will be returned back to the
application.

79

5.2.3 Implementation

The VuDP daemon is implemented as a single Tcl script, much like any traditional
VuSystem application. As discussed previously, the daemon is started when a user
logs into a machine. Only one daemon will be started at any time even if there are
multiple users on a machine. Only the user that started a daemon can control and
reconfigure it.

When a daemon is started, it first creates a VsNetListener and starts it listening
on the VuDP daemon port. (This port is the default port for the VsNetListener
and VsNetClient modules.) The daemon sets up a connection callback routine to
be executed whenever a new connection is made. It then defines a command
interpreter routine that will be used by all connections to interpret commands sent
to the daemon and dispatch to a routine to provide the appropriate service.

The connection callback is executed when a new connection has been established.
Arguments to the callback inform the daemon of the name of the VsNetServer
module that the VsNetListener created to handle the connection. The callback
routine itself initializes some state for the connection, and then sets up a command
callback routine which is executed whenever new input is present for that
connection. It then sets up a configuration callback routine that is called when the
connection is broken.

The Interpreter

The daemon has a single command interpreter routine that is shared by all
connections, though each invocation of the interpreter is for a specific connection.
In response to a new message, the routine is invoked for the connection on which
the message arrived after the command callback routine for that connection is
executed.

The interpreter routine takes a single argument, the name of some VsNetServer
object. When invoked, the routine first searches the message queue for the
appropriate VsNetServer to try to find the command with a sequence number one
greater than the last command handled for that server. (For example, if the last
command serviced for some VsNetServer had sequence number 25, then the next
time the interpreter routine was invoked for that VsNetServer it would search the
server’s message queue to find the command with sequence number 26.) If the
command with the appropriate sequence number does not exist, the interpreter
does nothing and returns. If the appropriate command is in the queue, it extracts
it from the queue and dispatches to the appropriate routine to handle the
command. When the command has been handled, the interpreter increments the
sequence number of the last request serviced for the VsNetServer, and rescans that
server’s queue of received messages to find the next command to service. The
interpreter routine continues to loop in this fashion until it can no longer find the
next command in the queue.

80

Terminating a Connection

When a VsNetServer command callback receives a message with the “-eof”
parameter set, it means that the connection has been closed. However, because the
VuSystem does not preserver the ordering of callbacks, the callback routine can
not destroy the server object and forget about the connection until after it has
handled all messages with lower sequence numbers. After all the messages have
been handled, the connection is broken, though it may not be desirable to destroy
the server object immediately in case it has children that persist after the
connection is broken.

Note that VaDP daemon connections will almost always be terminated on the
client side. The only time that the daemon will terminate a connection is if the
daemon crashes or is otherwise shutdown by the user that started it (such as if the
user logs off.)

Command Routines

When a command routine is called, it is passed the arguments to the command. It
is also told whether or not the command was executed as a “send” or a “call” so
that the command routine knows whether or not it should provide a return value.
For example, the VsPigeon command routine parses its arguments to figure out
the sender’s name and the message to display. It then displays a window on the
screen of its local host containing the message, the sender’s name, and the current
date and time. Finally, it sends an acknowledgement back to let the VsPigeon
script on the other side of the connection know that it has successfully displayed
the message.

Error Reporting

If an error occurs while handling a VuDP daemon command, an error message is
returned over the connection. The error message returned is the error message
received by the daemon, prefixed by “ERROR:”. Note that only errors
encountered while attempting to interpret commands are forwarded across
connections; errors resulting from the daemon’s internal workings are reported to
the screen of the machine running the daemon.

5.3 VsPigeon

VsPigeon is an application which can be used to send messages (via pop-up
windows) to remote machines. It is a good example of an application that is
simple to write using the VuDP daemon but that would be difficult or impossible
to write in the traditional VuSystem. An example of a VsPigeon message is
illustrated in figure 5.5.

81

To send a message, a user starts VsPigeon and supplies the name of the host
machine to send the message to, an optional “from” argument, and a message. If
input is routed into VsPigeon, it is automatically sent as the body of the message.
If no input is routed into VsPigeon and there is a message specified on the
command line, that message will be sent as the message body. If no input is
routed into VsPigeon and there is no message specified on the command line, then
VsPigeon prompts the user to enter the body of the message.

Figure 5.6 illustrates the sending of a VsPigeon message from host X to host Y.

5.3.1 Implementation

VsPigeon is implemented as a Tcl script which takes as input a host to send the
message to, an optional “from” argument, and a message to send. When invoked,
the script creates a VsNetClient, connects to the VuDP daemon on the
appropriate machine, and sends a message asking the daemon to display the
message. Because the VaDP daemon has access to the display of the machine it is
running on, it can display the message.

5.4 VsTalk

VsTalk is a VuSystem application that allows for real-time visual interaction
between two users on different machines by having each user choose a video source
to display to the other user. During a VsTalk session, both users are presented
with two video windows: one window displays the video stream chosen by that
user, and the other window displays the video stream sent by the other user. This
way, both users see both the video that they are sending and the video that they
are receiving.

As an example, say that user A on host X wants to start a VsTalk session with
user B on host Y. First, user A starts the VsTalk application, specifying that a
connection to host Y is desired. Then, user B on host Y is queried via a pop-up
window whether he wants a VsTalk session with user A on host X. If B refuses, the
application terminates, and user A is informed that the VsTalk request was
refused by user B. If B accepts the VsTalk request, then both user A and user B
are presented with two live video windows, one displaying user A’s video source
and the other displaying user B’s video source.

Figures 5.8 and 5.9 illustrate user A on host X initiating the session and having
the daemon on Y query user B if a session is desired. B responds affirmatively, and
the session is established.

VsTalk existed before the VuDP extensions were added, but in order to set up a
session it was necessary to have the two users simultaneously running VsTalk in
order to start the connection. Hence, unless a VsTalk application was kept running
at all times, any time a VsTalk session was desired it was necessary to use some

82

other medium of communication (such as the telephone, email, or oral
communication) to synchronize and agree upon a starting time for a VsTalk
session. This made using VsTalk awkward and impractical. But, with the VuDP
extensions, the daemon is used so that users are notified via pop-up windows when
a VsTalk request is made, and (if the request is accepted) the VsTalk session is
automatically initiated.

5.4.1 Implementation

VsTalk is a single TCL script that can run as the “connector” or the “receiver”.
Running as the connector means that the script will attempt to initiate a VsTalk
session; running as the receiver means that another party has attempted to start a
VsTalk session, and the script is invoked as the receiver to accept the request and
start the session. Thus, VsTalk can be started in one of two modes: “connect”
mode or “receive” mode. Whenever it is started by a user, it starts in “connect”
mode. Normally only the VuSystem daemon starts VsTalk in “receive” mode.

A “connect” mode VsTalk is started when a user initiates a new VsTalk session.
When the other party has been specified, the “connect” mode VsTalk connects to
the VuDP daemon on the appropriate machine and has it query the appropriate
user whether or not a VsTalk session is desired. If so, the daemon starts a
“receive” mode VsTalk on the appropriate machine. The “receive” mode VsTalk
then proceeds to set up in-band and out-of-band communications channels to the
originating “connect” mode VsTalk, beginning the session.

5.5 VsChat

VsChat is an application that allows an arbitrary number of users to communicate
in real-time via a shared chat board. Currently it only allows for textual
communication, but the addition of video and audio is a natural extension.
VsChat is an interesting use of VuDP because it allows an arbitrary number of
users to interact in the same application.

When VsChat is invoked, it displays a chat window on the screen. The window is
divided into two sections. The larger top window displays output of text sent to
the chat board by all users. The smaller bottom window is used to input text to
send to the chat board. Upon joining a chat session, the list of users currently
involved in the chat is displayed. Messages can be sent to the chat board by simply
entering them at the prompt in the lower window. Messages will be automatically
sent to all participants and displayed in the upper window of all active VsChat
applications. So that everyone knows where messages originated, displayed
messages are prefixed with the username of the sender. Finally, the application
displays special messages in the upper window when a user either joins or leaves a
VsChat session. An example of the VsChat window is shown in figure 5.10.

83

VsChat is designed to accommodate an arbitrary number of users. However, since
the current version only supports a single chat board, the practicality of its use by
tens or hundreds of simultaneous users is limited.

A VsChat session persists until all users have exited the session. If there is no
active VsChat session when VsChat is invoked, a new session is initiated.

5.5.1 Implementation

VsChat is implemented as a single Tcl script. This script is responsible for
opening the VsChat window, connecting to a current VsChat session if one is
active, creating a new session if there is no active chat session, and handling all
VsChat interaction.

Each VsChat session consists of one or more participants. One of the participants
is designed as the “leader”. Details of the responsibilities of the leader will be
discussed below.

In an active VsChat session, every participant maintains one out-of-band VsNet
connection to every other participant; in other words, the participants are fully
connected. These connections are used to both forward messages entered by one
user to all participants and to exchange control information. Further, every
participant in a VsChat session always has an active VsNetListener module which
it uses to accept connections to new participants. Each participant maintains, at
all times, a list of four-tuples containing the usernames, hostnames, VsNetListener
port numbers, and VsNet module names for all other participants in the session.
Figure 5.11 illustrates the connections maintained during a VsChat session. User
A on host X, user B on host Y, and user C on host 7 are all participants in the
active VsChat session.

When a message is entered by any user in a VsChat session, that message is
prefixed with the username of the sender and then copied and sent to all other
participants by having the sender loop through all of its connections to other
participants to send a copy of the message to everyone in the session. When a
participant receives a new message over any of its connections, the message is
immediately displayed in the output window.

Note that VsChat sessions persist as long as there are participants. Connections
can be established to new participants and terminated when old participants exit
an arbitrary number of times. If the “leader” exits the session, then some other
participant is designated as the leader and the session continues.

Startup

VsChat is designed to be used as a chatboard for a group of users connected by a
local area network. Thus, when a new user wants to join a session, there must be
some way to determine if a session already exists, and if so where to go to join it.
To do this, a shared file is used. Because a network file system is assumed, this

84

shared file - known as the “chatleader” file - can be accessed by any user on any
host.6 If there is an active VsChat session, the chatleader file contains the
hostname and port number at which the VsNetListener module for the leader of
the session is listening for new connections. If there is not an active VsChat
session, the chatleader file contains “NONE” to indicate that no session is active
and hence there is no leader.

When a new participant starts the VsChat script, the script first starts its
VsNetListener module at some available port. It then reads the shared chatleader
file to determine if a session is active. If there is no active session, then a new
VsChat session is set up, the new participant makes himself the leader and writes
the name of the host on which it is running and the port number at which the
VsNetListener module is listening to in the chatleader file. Upon establishing the
new session, the leader is the only participant, so setup is finished and the leader
must wait for other users to join the session.

If there is an active session, the new participant reads from the file the host and
port at which the session leader’s VsNetListener module is listening. It then
creates a VsNetClient and connects it to the leader’s VsNetListener module to
establish a connection. A message is then sent over this connection announcing the
new participant’s username, hostname, and listener port number to the leader.
The leader then adds this information to its list of information about the
participants, and returns a copy of the list to the new participant. The new
participants creates a VsNetClient module, establishes a new connection to each
participant, and announces to each participant that it has joined the session. Each
of the other participant’s appends the information for the new participant to its
copy of the list. Once this has been accomplished, the new participant has joined
the session and is announced via a special message displayed on the chat board.

The Participant Information List

At the center of the VsChat implementation is the list of four-tuples containing
information about all participants in a session. For simplicity, assume that one
participant is participant X, representing user Y running on host Z with the
VsNetListener module listening at port N on host 7. Participant X maintains a list
of four-tuples containing information about other participants. The first field
contains the usernames of all active participants. The second field contains the
names of the hosts that the participants are running on. The third field holds the
port numbers that the participants’ VsNetListener modules are listening at. The
fourth field contains the names of the VsNet module (either a VsNetClient or a
VsNetServer module) that participant X uses to send messages to and receive
messages from the other participants.

5VsChat’s use of this shared file is a good example of the way that VuDP exploits the capabilities
of a network file system.

85

The 0th index in each list contains the information for the host participant; in the
example, the 0th elements of the first three lists for participant X would be “Y”
(X’s username), “Z” (X’s host), and “N” (X’s VsNetListener port). The 0th
element of the fourth list is a filler.

The list is kept current so that, at any time, each participant has a list containing
the correct information for all other participants. They are inaccurate only when
some participants have not been informed yet about a new arrival or exit from the
session. The leader does not store any more state than any other participant; the
only distinction that the leader has is that its hostname and listener port number
are stored in the chatleader file.

Adding New Participants

A new participant finds out about the existing participants by connecting to the
leader and receiving (from the leader) the list of all existing participants’
usernames, hostnames, and listener ports. The new participant then establishes
connections to each existing participant and announces that it has joined the
session.

To clarify the explanations below, as an example let participant X be a new
participant, let participant Y be the leader of the existing session, and let
participants A, B, and C be other non-leader participants. First, X creates a
VsNetClient module connects it to Y’s VsNetListener module. When Y’s listener
module senses the connection, it creates a VsNetServer to handle the connection,
and executes a callback routine. The callback routine first sets up a command
callback routine that is executed each time a new message is received over the
connection. This command callback tags messages with a sequence number, checks
for end-of-file, enqueues the message, and then calls the shared message handling
routine. Handling a message may involve informing other participants of a
participant entering or leaving a session, or may involve displaying some new text
on the chat board.

To continue the example, after initiating the connection Y has set up a command
callback routine (with the associated reordering mechanisms) to handle input from
X. Because all connections are symmetrical, X must also set up a similar command
callback routine for its VsNetClient that will be called whenever X receives input
from Y over this connection. All VsNetClient and VsNetServer modules in VsChat
have this same sort of command callback routine that is used to accept new
messages and reorder them before interpreting them.

Much as for remote evaluation, incoming messages are tagged with sequence
numbers so that messages received from any given participant are displayed in the
same order that they were sent. Note that this reordering applies only to messages
received from a single participant; messages from different participants may be
arbitrarily reordered.

The message display procedure takes as its argument the name of the module

86

controlling the connection to some participant. It then scans the queue of received
messages and looks for the one with the appropriate sequence number. If it finds
it, it handles the message (typically displaying it on the chat board) and then
loops to find the next message, continuing until the next message is not yet in the
queue. The routine contains subroutines to handle messages from new participants
to leaders requesting information on other participants, messages from new
participants to existing participants announcing the new participant, and messages
containing text to be displayed on the chat board.

After the connection and the appropriate command callback have been set up, X
sends a special message to Y to announce its entry into the session. When Y
receives and interprets this message, it adds X’s four-tuple to its list. Y then
returns a copy of this list to X.

Next, X must establish connections to the other participants. To do this, X creates
uses VsNetClient modules to establish an out-of-band connection to each
participant in the session. X uses the connections to announces itself to and
communicate with the other participants, allowing the other participants add X to
their lists. Lastly, X sends a special “X has joined the session” message to the chat

board.

Removing Participants

When a non-leader participant leaves a session, it first sends a special message to
the board announcing that it is leaving. It then breaks all of its connections and
quietly exits. When the leader leaves a session, it first chooses some other
participant to become the new leader, and modifies the shared chatleader file
accordingly.

As for remote evaluation, the command callback routines for each connection for
each participant scan each incoming message for an end-of-file flag. If the flag is
set, it means that the connection has been broken. But, since Tcl does not
preserve the ordering of callbacks, the connection can not be destroyed until all
messages with previous sequence numbers have been received and interpreted.

As an example, say that participants X, Y, and Z are involved in a VsChat session,
and X leaves the session. Upon sensing the broken connections, Y and 7 are
informed via end-of-file messages. Then, when Y and 7 have finished interpreting
the message from X with sequence number one less than the end-of-file message,
the controlling VsNetClient or VsNetServer module can be destroyed. Further,
when the last message from X has been handled, Y and 7Z must remove X’s
username, hostname, listener port, and associated module name from their lists,
since X is no longer part of the session. Once this is done, X has been removed
from the session and the session continues.

87

Sending and Receiving Messages

The VsChat script sets the keyboard focus on the input window, and executes a
special callback each time the “return” key is pressed by the user. When this
callback executes, it reads in the text entered by the user, and prefixes it with the
user’s username. Next, it sends this message to be displayed on the output section
of the local VsChat window. Finally, it loops through all other participants, and
uses the appropriate VsNetClient or VsNetServer module to send the message to
all the other participants.

Ending a VsChat session

A VsChat session ends when the last participant exits. Since there must always be
a leader, the last participant must necessarily be the leader. Hence, when the
leader exits and there are no other participants, the session ends and “NONE” is
written into the chatleader file.

5.6 VsMultiCast

VsMultiCast is an application that allows a single video stream to be sent
simultaneously to window sinks on the screens of multiple machines. Though it
really isn’t a multicast”, it does allow the sharing of a single media stream by
several users, something that can not normally be done with the traditional
VuSystem.

A VsMultiCast consists of a “master” window and an arbitrary number of “slave”
windows. The master window is the one created when the application is started.
The master window has controls for adding news hosts to and deleting old hosts
from the multicast as well as control panel and interactive programming buttons.
The slave windows contain only a screen display and a dismiss button. Examples
of VsMultiCast master and slave windows are illustrated in figures 5.12 and 5.13,
respectively.

Each time a new hostname is entered in the “Add New Host” box, the master will
create a new slave window on the specified host. A slave window is destroyed when
either the “dismiss” button on the slave window is pressed or the name of that
host is entered in the “Remote Host” box of the master window.

Note that only the master window can control the media source; the slave windows
are specifically disallowed from having control panel or remote programming
buttons so that there will be no contention for control of the media source.

An arbitrary number of slaves can be added to a VsMultiCast session. However, it
is important to note that when a video stream is shared in this manner it is

"The VuSystem VsMultiCast is implemented by multiple point-to-point connections. By con-
trast, the Mbone[16] is used to perform video conferencing over a network that supports multicast
addressing.

88

necessary to do a substantial amount of copying of the underlying media. Further,
in the original implementation, shared video source will operate at the rate of its
slowest sink. Thus, adding many slaves slows down the rate of media flow. One
solution is to use a different type of duplicator module that is not constrained to
run both output streams at the rate of the slower of the two, such as the
VsLossyDup module presented in chapter three.

5.6.1 Implementation
Initial Setup

The VsMultiCast application is implemented as a single Tcl script that uses the
VuDP remote evaluation mechanisms to send a video stream to multiple remote
sinks. Though the current implementation only allows for the remote sinks to be
windows, modifying the implementation to allow for arbitrary media sinks is a
natural extension.

A VsMultiCast session consists of a single “master” window and an arbitrary
number of “slave” windows. The master window is the window created at startup
which can control and configure the video stream and can add and delete slave
windows. Slave windows only display the video stream, and can not reconfigure
the video source.

Figure 5.14 illustrates the master/slave relationship. The master window is
controlled by user A on host X; it maintains connections to two slave windows on
hosts Y and Z. The master controls the video source, and sends copies of video
stream to the slave windows on hosts Y and Z.

When started, the application script first creates the local master window, creates
the video source, and creates a screen sink inside the master window. It then
creates a VsNullSink module and a VsDup module. (A VsNullSink is a media sink
that simply deletes the data passed to it.) A VsDup module is a duplicator used
to split a single input media stream into two identical output media streams. It
has one input port and two output ports; when data arrives at the input port it is
copied, and one copy is sent to each output port, as seen in figure 5.15.

The output of the video source is connect to the duplicator module. One VsDup
output is connected to the null sink, and one output is connected to the screen
sink.

Connection State

An arbitrary number of slaves can be added to and deleted from a VsMultiCast
session. In order to keep track of the various connections that exist at any one
time, the application maintains one variable and three lists to provide state
information - the “numrev” variable, the “allhosts” lists, the “connections” list,
and the “servers” list.

89

The “numrev” variable contains the number of connections that have been
established so far during the session. It is initially 0 when the master window has
just been created, and is incremented each time a new host is added.

The “allhosts” list contains the names of all hosts currently attached to the
VsMultiCast session. Hosts are added to this list when they join the VsMultiCast
session and are deleted from it when they leave the session.

Each connection to a remote host has associated with it both a VsREV module
and a VsTcpServer module. Hence, the “connections” list contains the names of
the VsREV modules used for existing connections, and the “servers” list contains
the names of VsTcpServer modules for existing connections. The “allhosts”,
“connections”, and “servers” lists are maintained such that the index for a certain
host in the “allhosts” list will index the VsSREV and VsTcpServer module names
for that connection in the “connections” and “servers” lists, respectively.

Adding New Hosts

The master window has two input boxes - one for adding new hosts and one for
deleting hosts. The “Add New Host” box is linked via a callback to the “newHost”
routine for adding new hosts so that the routine is called whenever the user enters
a new host name into the box.

When the newHost routine is called, it adds the specified host to the multicast
session. First, the routine reads the text contained in the new host widget to
determine the name of the host to add and increments the “numrev” variable. It
then creates a new VsREV module to handle sending data to the new host.
Because the VsREV modules for all connections are maintained in the same
address space, the connection number is used in the name of the VsREV module
to distinguish the connections. The name of the new host is then appended to the
“allhosts” list, and the name of the new VsREV module is appended to the
“connections” list.

Once the new display has been created on the remote interpreter, the VsREV
module is used to create a remote top-level widget and a video screen media sink
linked to the new display. Then, the application creates a local VsTcpListener
module listening at an unused port, and sets up a callback procedure to be
executed when the listener establishes a connection. Finally, the application uses
the VSREV module to create a remote VsTcpClient module, to connect its output
to the input of the remote video sink, to configure it to connect to the port of the
local listener it just created, and to start the remote VsTcpClient.

When the local VsTepListener’s callback is executed, the newly created remote
VsTepClient has connected to it. Thus, an in-band connection has been
established to the new host via the VsTcpServer module created by the local
listener. The name of the new VsTcpServer is then appended to the “servers” list.
Finally, a copy of the media stream must be routed to the new remote display via
the newly created in-band connection. To do this, a a new VsDup module is first

90

created. Note that, because of the way VsMultiCast is set up, there will always be
some existing VsDup module with one of its outputs connected to a VsNullSink.
Hence, the VsDup output that was connected to the VsNullSink is instead
connected to the input of the new VsDup module. (The name of the VsDup
module that is connected to the VsNullSink can be found by simply asking the
null sink what its input is bound to.) One output of the new VsDup module is
then connected to the VsNullSink, and one output is connected to the input of the
new VsTcpServer module. Thus, the new VsTcpServer module receives a copy of
the video stream to display on the screen of the new slave.

As an example, say that host X is running the master window, and is connected to
slave windows on hosts Y and 7. Three copies of the video stream are needed - one
for the master window on X, and one for each of the slave windows on Y and Z.
The way that the video source, VsDup, VsTcpServer, and VsNullSink modules are
configured is illustrated in figure 5.15.

Deleting Slaves

There are two ways of deleting slaves from a session. The first way to remove a
slave from a session is to click the “dismiss” button on a slave window. Every
in-band connection to a slave window has a VsTcpServer module associated with
it, and each such module has a input callback that is executed when an end-of-file
message is received. Because dismissing a remote slave will cause an end-of-file
message to be sent, the callback is automatically performed when the “dismiss”
button on a remote slave window is clicked. The VsTcpServer’s end-of-file callback
procedure simply calls the oldHost procedure to delete the host, supplying the
name of the host to be deleted via a “-host” argument, and passing an “-eof”
argument to let the oldHost procedure know that it was called because of an
end-of-file condition.

The other way to delete a slave is to enter the name of the host into the “Remove
Host” box in the master window. The “Remove Host” box is linked via a callback
to the oldHost procedure, so that the procedure is called whenever a new host
name is entered into the box.

When the oldHost procedure is run, it first checks to see if it received a “-eof”
argument; if so, it means that the host to delete by clicking on a remote dismiss
button, and so it can read the name of the host to delete from the “-host”
argument. If there is no “-eof” argument, it means that the procedure was called
because a host name was entered into the “Remove Host” box in the master
window. If this is the case, the procedure reads the text in the widget to determine
the name of the host to delete.

To delete a host, the procedure searches its lists of existing hosts to find the names
of the VsREV and VsTcpServer modules associated with that connection, and
stops the VsTcpServer module. Then, the procedure finds the name of the VsDup
module whose output is connected to that VsTcpServer. Because this copy of the

91

media stream is no longer needed, whatever is connected to the input of this
VsDup module is connected directly to the other output of the VsDup. The
VsREV, VsTcpServer, and VsDup modules associated with this connection are
then destroyed, their names are deleted from the “connections” and “servers” lists,
and the name of the deleted host is removed from the “allhosts” lists.

Multicast and the In-Band Feedback Loop

As can be deduced from the implementation, VsMultiCast copies the video stream
and sends it to all the slave windows via multiple point-to-point connections.
Because one of the design decisions in developing the VuNet was to only support
unicast, this copying is necessary.

VuSystem modules which handle in-band data use a feedback loop to regulate the
rate of flow of media through the in-band pipeline. A video source can be
configured to transmit video data no faster than a certain rate, but the actual rate
at which it will send data to the sink is controlled by a feedback loop. When the
source sends a new payload of video data, it must wait for the data to be accepted
by the sink before it can send any more payloads down the pipeline. This feedback
forces the source to produce data only as fast as the sink can accept it.

When a media stream is duplicated in a VsDup module, new input is not accepted
on its input port until the last data it sent out has been accepted by both output
ports. Hence, the media will flow at the highest rate acceptable to both of its
outputs. When several VsDup modules are connected together (as in
VsMultiCast), the media flow will travel only as fast as is acceptable to all outputs
connected to any VsDup module. This means that the media stream in the
VsMultiCast will travel at the rate of its slowest host.® The slowest host may not
necessarily be a slave, though - it might be the master.

5.7 Perspective

An interesting extension of VsTalk would be to include support for handling
multiple participants. This would involve integrating features of VsChat and
VsMulticast into VsTalk. VsChat functionality allows for the tracking of
participants in a session, and VsMulticast functionality allows for sending audio
and video streams to multiple destinations.

A VuDP video conferencing tool would provide an interesting alternative to
existing MBone tools. In essence, VuDP is able to provide tools that are easier to
set up and to use by leveraging the simplifications available for users on machines
in a single administrative domain. With VuDP, machines with a shared file system

8TCP is windowed, so the performance of sending data over the network used to send the data
over the network is reasonable.

92

in the same authentication domain could use VuDP video conferencing over
existing networks and routers.

93

seta 10
10
vs.rev revsend "set a 1"

sét b5
:5
vs.rev revsend "set ¢ $b"

vs.rev revsend "set d {$a}"
vs.rev flush

vs.rev rev "set c"
:5

vs.rev rev "set a"
01

seta
- 10

Figure 5.4: Example of Remote Evaluation

vspigeon

Authentic Message at 22:03:45 on Wed Sep 28 1934
From: PAMTHER <Brent Phillips> On: PAPRIKA

Thiz iz an example of a VzPigeon messzage,
It will automatically pop up on the appropriate zcreen
and may be read and then dismizsed,

Dizmizs

Figure 5.5: VsPigeon Message

94

Host X

Host 'Y

Display

VsPigeon

Message

@

Window

Lomtral
Hyrwnis Fridasy - e hn

Figure 5.6: VsPigeon

Lecad Hoxk

Figure 5.7: VsTalk

95

[]
]

Display X Display Y

Query
Window

N

— E—

User A on host X User B on host Y

~Cowren
/ Daemon

Camera

] [

Camera

Figure 5.8: VsTalk Initiation

96

Display X Display Y

VsTalk VsTalk
Camera

ﬂ D] Camera

User A on host X User B on host Y

VsTalk _ VsTalk

Figure 5.9: VsTalk Connection

97

wardal
Hulcoss o the Wobptes Chet Boardi

TRher s (wreenily oo i bosedl
parkber i helle war-ld
pankhar: thin iz an sompls of Yelhat

fenl Je e 1d
ihin gn an s e of Folhst

[immizn | Frogres

Figure 5.10: The VsChat Board

98

User A on Host X

VsChat
others:

User B on Host Y

VsChat
others:

user B on host Y
user C on host Z

user A on host X
user C on host Z

VsChat
others:

user A on host X
user B on host Y

User C on Host Z

Figure 5.11: VsChat Connections

NYSE WIDELY HELD NBR

Hmwiry

171

Lomiral Fesal | Frogres

1
+1

Figure 5.12: VsMultiCast Master Window

99

NYSE BIG MOVERS

NER

Figure 5.13: VsMultiCast Slave Window

Host X

VsMultiCast
Master

Host Y

VsMultiCast
Slave

Host Z

VsMultiCast
Slave

Figure 5.14: VsMultiCast Connections

100

VsDup

| e
L e

eﬁ

Slave
Y
To
Slave
V4

Figure 5.15: Media Duplication Connections

101

Chapter 6

Results

This chapter presents the results of VuDP performance testing. The most
important performance difference between VuDP applications and traditional
VuSystem applications is that VaDP applications must send in-band media flows
over the network!. Different configurations of a simple VuSystem application were
tested to measure the performance impact of using VuDP to send in-band media
streams over the network.

To assess VuDP performance, throughput and jitter measurements were made on
the video stream of the VsDemo application. VsDemo is a simple VuSystem
application in which the video stream originates from a VsVideoSource module
and is fed directly into a VsWindowSink module. Three different versions of
VsDemo were tested:

1. Traditional VuSystem VsDemo with a local video source sending to the local
display, as shown in figure 6.1. This configuration will be referred to as the
“Local VsDemo”.

2. VuDP VsDemo with a remote video source sending over the ethernet to the
local display, as shown in figure 6.2. This configuration will be referred to as
the “VuDP VsDemo”.

3. Traditional VuSystem VsDemo with a local video source using X-Windows
to send over the ethernet to a remote display, as shown in figure 6.3. This
configuration will be referred to as the “X Windows VsDemo”.

These three different versions allow the performance of VaDP remote sources to be
compared against both having a local source and using X-Windows to send a video
stream to a remote screen display.

All trials were run on DEC Alpha 3000 workstations running the VuSystem on top
of OSF 1.3 and connected by a ten megabit per second ethernet LAN. Video

'Out-of-band throughput performance is not critical (hence the name “out-of-band”) because
out-of-band communication is generally very low bandwidth.

102

VsDemo Video Source
| =1
I:

[/N

sVideoSource

Figure 6.1: Local VsDemo

‘ Configuration ‘ Local ‘ VuDP ‘ X ‘

640x480, color | 3.75 3.33 | 3.33
640x480, mono | 9.5 3.33 | 3.33
320x240, color 10 10 10
320x240, mono 15 13 10

Table 6.1: Throughput in Frames/Sec

sources were live television feeds captured and digitized by vidboards [2]. For the
VuDP VsDemo and the X Windows VsDemo configurations, the remote machine
was not otherwise loaded.

6.1 Throughput Performance

In order to better isolate the different components of performance, throughput was
measured for full scale (640x480) eight-bit color video, full scale eight-bit
monochrome video, half scale (320x240) eight-bit color video, and half scale
eight-bit monochrome video. Measurements were made by observing the rate
meters in the control panels for the VsVideoSource and VsWindowSink modules.
The average throughput in frames per second for each configuration is shown in
table 6.1. The average throughput in kilobytes per second for each configuration is
shown in table 6.2.

103

vsbemo

Host X Host Y

‘ VsVideoSource '

Video Source

DD
/N

Figure 6.2: VuDP VsDemo

6.2 Jitter Performance Testing

Jitter is an important component of performance for media applications because
jitter (especially in live video streams) is visible to human users. It is especially
important to measure jitter in assessing VuDP performance, since it is expected
that the main performance gain from using a lossy VuDP module data protocol
would be reduced jitter.

When a video source is configured with the desired frame rate, a timeout is set up
to expire when it is time to process a new frame.? Jitter is then measured by
recording the delay in milliseconds between the timeout and when the
corresponding video frame is passed to (and accepted by) the window sink module.
Note that this measure of delay will always be below the delay between the
timeout and the point when the video frame is actually displayed on the screen.
Thus, these delay measurements do not directly include any delay between the

21f the video source already has a frame in its buffer that has not been sent downstream yet, the
timeout is ignored. This serves to match the constant frame rate produced by the video source to
the dynamically varying rate of the video sink. In essence, the video source’s frame rate provides
an upper bound on the end-to-end frame rate.

104

Video Source |- | Vsbemo
0
| |
Host X Host Y

—=(VsVideoSource

Figure 6.3: X-Windows VsDemo

‘ Configuration ‘ Local ‘ VuDP ‘ X ‘

640x480, color | 1,125 | 1000 | 1000
640x480, mono | 2,850 | 1000 | 1000
320x240, color | 750 750 750
320x240, mono | 1,125 975 750

Table 6.2: Throughput in Kbytes/Sec

time when VsWindowSink module accepts the new video frame and the time when
X Windows actually displays the video frame on the screen.® For the local
VsDemo and the VaDP VsDemo, this delay should be small, since the X display
that the video stream is being sent to is on the screen physically attached to the
local host. This is illustrated in figures 6.1 and 6.2 where the VsWindowSink
module writes to the screen of the local host. For the X VsDemo, though, this
extra delay also includes the time it takes for X Windows to send the video stream
over the network to the host physically attached to the screen that the display is
on. This is illustrated in figure 6.3, where the VsWindowSink module writes to a
display on a remote screen. The way that this difference affects the meaning of the
jitter measurements is discussed in more detail in the next section.

Because jitter is likely to be sensitive to many effects other than the local or
remotes nature of the video source and window sink, jitter measurements were

®This delay is indirectly measured because the VsWindowSink module will not accept a new
video frame until the last frame has been displayed.

105

performed in ten separate trials for each version of VsDemo. For each trial,
VsDemo was configured to run at half-scale (320x240) in eight-bit color for
approximately five minutes to generate data for about 10,000 video frames. For
each frame, the delay was recorded as the time in milliseconds that elapsed
between the timeout and the point at which the video frame was accepted for
display by the VsWindowSink module.

Important jitter statistics are presented in the tables 6.3, 6.4, and 6.5 for the local,
VuDP, and X-Windows configurations, respectively. Each table presents the
median and range of jitter measurements over the ten trials.

‘ Delay in ms ‘ Range ‘ Median ‘
Below 1 ms | 64.8% to 92.9% | 91.0%
Below 33 ms | 88.5% to 99.8% | 99.5%
Below 100 ms | 99.5% to 99.9% | 99.8%
Below 200 ms | 99.6% to 99.9% | 99.9%
Below 500 ms | 99.8% to 100% | 99.9%
Below 1 sec | 99.9% to 100% | 100%

Table 6.3: Performance Statistics for Local VsDemo

‘ Delay in ms ‘ Range ‘ Median ‘
Below 1 ms | 57.0% to 88.0% | 87.0%
Below 33 ms | 79.7% to 99.4% | 98.4%
Below 100 ms | 98.4% to 99.8% | 99.0%
Below 200 ms | 98.9% to 99.9% | 99.5%
Below 500 ms | 99.6% to 100% | 99.8%
Below 1 sec | 99.9% to 100% | 100%

Table 6.4: Performance Statistics for VuDP VsDemo

These statistics demonstrate interesting characteristics of in-band flows. For both
local and remote sources, the majority of the delays between timeout and display
are less than one millisecond, implying that the median delay is less than one
millisecond. A large majority of delays are less than 33 ms, and very few are
greater than 100 ms.

Data for two representative trials for each of the three configurations are presented
in the graphs in figures 6.4, 6.5, 6.6, 6.7, 6.8, and 6.9. The delay in milliseconds is
plotted along the X-axis, and the percentage of video frames incurring that delay
is plotted on the Y-axis. Note that the Y-axis is a base ten logarithmic scale. All

106

Delay in ms ‘ Range ‘ Median ‘
Below 1 ms | 36.1% to 64.5% | 55.0%
Below 33 ms | 73.5% to 85.8% | 80.6%
Below 100 ms | 93.6% to 99.9% | 98.6%
Below 200 ms | 96.3% to 100% | 99.5%
Below 500 ms | 98.9% to 100% | 99.9%
Below 1 sec | 99.5% to 100% | 100%

Table 6.5: Performance Statistics for X-Windows VsDemo

delays are rounded down, so that the zero milliseconds marker corresponds to all
delays of less than one millisecond, the one millisecond marker corresponds to all
delays between one and two milliseconds, etc.

6.3 Analysis of Throughput Measurements

The throughput numbers demonstrate two throughput bottlenecks for different
configurations of VsDemo.

The first bottleneck is sending a media stream over the ethernet. Note that there
is a consistent upper bound of approximately one megabyte per second throughput
for both the VuDp VsDemo and X VsDemo. This upper bound is most likely the
result of sending the media stream over the network. This is quite reasonable,
considering that one megabyte per second throughput corresponds to 80%
utilization of the underlying ten megabit per second network?. Further, the VuDP
VsDemo and X VsDemo have nearly identical throughputs for all cases (except for
320x240 monochrome, where VuDP does slightly better), implying that network
communication is the bottleneck. The difference for 320x240 monochrome is likely
to result from the overhead X Windows incurs, meaning that VuDP is slightly
more efficient than X in transferring media flows across the network.

The second bottleneck is the processing required for dithered color video. For the
local VsDemo, note that the throughput for 640x480 in eight-bit monochrome is
much better than the throughput for 640x480 in eight-bit color. This indicates that
the color processing is the performance bottleneck. In other words, the throughput
is computation limited and not communication limited. This observation is backed
up by comparing the local VsDemo throughput to the VuDP VsDemo and X
VsDemo. For color video, the local throughput is very close (for 640x480) or
identical (for 320x240) to the throughput for the VuDP VsDemo and X VsDemo.
But, for monochrome video, the local throughput is significantly better than the

*This 80% utilization does not take into account TCP/IP, ethernet, and VuSystem payload
overheads, so the actual utilization is even higher.

107

100
10
3
€
©
T 1
G
X
0.1
m %
I WAWA
bt 1 oo
0.01
0 33 100 200 500 1000

Delay in Milliseconds

Figure 6.4: Local VsDemo, Trial 1

throughput for VuDP or X VsDemo. Thus, network communication limits the
throughput for monochrome video, while the computation required to handle the
color dithering is the throughput bottleneck for eight-bit color video.

6.4 Analysis of Jitter Measurements

The jitter measurements are quite interesting. Most delays are less than one
millisecond, whether or not the video is transferred over the network. This
indicates that latency incurred by transferring data over an unloaded network is
not an issue.

Note that the range of results across trials for a given configuration are much
greater than the variance in the measurements across configurations. This
indicates that factors other than the local or remote nature of the video source are
very important in determining jitter®.

As a result of the way jitter is measured, it is difficult to directly compare the X
version to the local and VuDP versions. As mentioned above, jitter is measured by

®Other factors might include but are not limited to network loading and other processes running

on the machines.

108

100

10

% of Frames
=

0.1

=
S

0.01
0 33 100 200 500 1000
Delay in Milliseconds

Figure 6.5: Local VsDemo, Trial 2

recording the delay between when the timeout goes off for a certain video frame
and when that video frame is accepted by the VsWindowSink for display to the
screen. Hence, the time that it takes for the frame to be transferred to the screen
is not directly included in the calculation. For the X version of VsDemo, the video
frame must be transferred across the network prior to display, and so this delay is
only indirectly included in the jitter measurements because the back pressure of
the module data protocol will not allow the VsWindowSink to accept a new
payload until the last payload has been displayed.

Comparing the jitter of the local VsDemo to the VuDP VsDemo, it appears that
the local VsDemo has slightly less jitter on average. The plots for the local
VsDemo trials have slightly higher peaks for low delays and thinner tails than the
VuDP VsDemo plots, inferring that sending the media stream over the network
does increase jitter. However, the increase is small, and it must be remembered
that the differences across trials swamp the differences across configurations.
Finally, note that while there is great variation in the jitter there is also a very
high percentage of frames with jitter below 33ms. One of the most important
characteristics of the VuSystem is that it runs in perceptual time. “Perceptual
time” means that the VuSystem runs in virtual time without the real time
constraints and overhead because it is assumed that the hardware and software are

109

100

10

% of Frames
=

0.1

0 33 100 200 500 1000
Delay in Milliseconds

Figure 6.6: VuDP VsDemo, Trial 1

fast enough to appear to the user to be running in real time. Film to video
conversions routinely used in broadcast television introduce 15 ms jitter per frame
and are considered to be acceptable quality, so the results presented here support
the perceptual time assumptions.

6.5 A Lossy VuDP Protocol?

The performance discrepancies between the local VsDemo and the VaDP VsDemo
place an upper-bound on any gains from using a lossy protocol for media transport
over the network. The performance difference is small, but not insignificant.
However, some increase in jitter is an unavoidable result of network
communication, no matter what protocol is used. Further, in informal experiments
involving viewing VsDemo using both local and remote video sources, there does
not seem to be an obvious visible difference in performance.

It is important to remember that the difference in jitter across trials is much
greater than the difference in jitter between the local VsDemo and the VuDP
VsDemo. Still, it appears that there is some room for improvement by changing
VuDP to use a lossy protocol when transferring media streams over the network.

110

100

10

% of Frames
=

0.1

§ T 5.9 f
soe oo oot od)i\
0 33 100 200 500 1000
Delay in Milliseconds

0.01

Figure 6.7: VuDP VsDemo, Trial 2

On the other hand, two important advantages of the current VuDP protocol are
that it is simple to use and understand and elegantly extends the VuSystem
module data protocol. A new lossy protocol would be most likely improve jitter a
little bit and maybe improve throughput a little bit. But a new lossy protocol
would also incur the disadvantage of complicating VuDP while still needing to deal
with end-to-end flow control, network congestion flow control, and reordering and
lost packets without retransmission. If the decrease in jitter is deemed worth the
effort put into developing a new protocol and complexity added to VuDP, then it
makes sense to use a lossy protocol. Otherwise, the current VuDP module data
protocol works well and is sufficient.

111

% of Frames

100

10

0.1

100

200

500

Delay in Milliseconds

Figure 6.8: X Windows VsDemo, Trial 1

112

1000

% of Frames

100

10

0.1

=t
!

100

200

500

Delay in Milliseconds

Figure 6.9: X Windows VsDemo, Trial 2

113

1000

Chapter 7

Conclusion

The design and implementation of VuDP has shown the feasibility of a distributed
programming system for media applications. Both the basic VuDP facilities and
the more advance remote evaluation and VuDP daemon mechanisms have proven
to be useful tools for developing distributed VuSystem applications. This chapter
concludes this thesis, explains lessons learned from VuDP, and provides ideas for
future work.

7.1 VuDP Summary

The VuDP implementation has been largely successful in meeting its design goals.
Using the VuDP extensions, it is a simple matter to build distributed VuSystem
applications to take advantage of all the resources of the machines attached to a
local area network. VuDP has also been smoothly integrated with the VuSystem
runtime programming and dynamic configuration capabilities. Further, the
performance of VuDP applications is also quite good, since throughput is nearly as
good as for local applications and jitter is within reasonable bounds. In the future,
VuDP’s performance will continue to improve as computers become faster.

The VuDP remote sourcing capability has been found to be particularly
convenient. Often only one video source is attached to a workstation, and if it is in
use (for example, if it is being used to perform a daily recording) then that
workstation can not be used to run or develop applications that require a video
source. The ability to use remote sources and sinks greatly enhances the flexibility
of running and developing applications that require the use of scarce resources.

7.2 Important Lessons

Three important lessons have been learned from the design and implementation of
VuDP. First, the interaction of rsh and a network file system simplifies distributed
programming. Second, remote evaluation is a powerful tool for building both

114

distributed applications and new distributed programming services. Finally,
debugging distributed programs is difficult and awkward.

The interaction between rsh and the network file system was found to be
extremely useful for implementing VuDP. Most of the VuDP functionality is based
on the ability to easily and simply run a script on a remote machine. The network
file system allows any application script on a disk attached to any machine to be
run from any other machine. rsh allows an application to simply and easily start a
script on a remote machine and automatically takes care of all authentication.
Because authentication is performed by rsh, the network file system’s permissions
can be used to control remote file access so that users can remotely access only the
appropriate files.

Originally, VuDP was designed to use the VuaDP daemon for all remote
programming services. However, when this was found to be too constraining, the
general remote evaluation mechanism was introduced. Once the remote evaluation
was developed, it was found that some of the VuDP services that had previously
used the daemon - such as the remote sourcing capability - were simpler and more
powerful when implemented directly on top of rsh.

Another important point that made itself abundantly clear during the
development of VuDP is that it is very difficult to debug distributed programs.
Most debugging tools are only designed to work with an application that works
within a single address space, and so are not very helpful for debugging
applications that span several address spaces on several machines. Further, even
the most rudimentary debugging tools - such as printing diagnostic output to the
screen - are more difficult to use with distributed programs. For example, standard
output from applications started with rsh is not normally displayed on the screen.
Finally, developing and debugging distributed applications is difficult because it is
necessary to have access to multiple functional workstations and a functional
network. If there are not enough available workstations, or if there are problems
with the underlying network, it becomes difficult or impossible to write distributed
applications. At any given time, the probability of having a single functional
workstation is much greater than the probability of having several functional
workstations and a functional network.

7.3 Future Work

There are several small projects which would be natural extensions to VuDP. The
first is to integrate media into the VsChat application, so that users may share
audio and video images as well as text. A second is to redesign the control panel
mechanism so that the control panels for remote devices are completely integrated
into the local control panel. A third is to redesign the Vskntity so that any
VuSystem application entity can be placed remotely at any host and dynamically
moved from host to host at run time, much as can be done for remote filters with

115

the current VuDP.

The design and implementation of a lossy protocol for video transport is another
logical extension to the VuSystem. As discussed previously, such a protocol has the
potential to provide less jitter and possibly slightly better throughput than TCP.
The traditional VuSystem supports only single-threaded applications. This was a
major concern during the design of VuDP, since it is not possible to create
separate threads to handle high-latency network communication of out-of-band
data. Thus, another interesting extension that VuDP could take advantage of
would be the addition of a multi-threading facility to the VuSystem.

Finally, an interesting project would be to modify the VuSystem so that the
in-band portion of all modules can be remotely placed on any host, but so that all
out-of-band code for any application resides in a single local address space. This
takes advantage of the way that applications are split into in-band and out-of-band
sections, and would both simplify and increase the power of distributed VuSystem
applications. This would be a major undertaking, though, since doing this would
require redesigning and reimplementing a substantial portion of the VuSystem
infrastructure.

116

Bibliography

[1]

Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid,
Avadis Tevanian, and Michael Young. Mach: A new foundation for Unix
development. In Summer Conference Proceedings. USENIX Association, 1986.

Joel F. Adam. The vidboard: A video capture and processing peripheral for a
distributed multimedia system. In Proceedings of the ACM Multimedia
Conference. ACM, Aug 1993.

Joel F. Adam, Henry H. Houh, and David L. Tennenhouse. A network
architecture for distributed multimedia systems. In Proceedings of the
International Conference on Multimedia Computing and Systems, pages
76-86, May 1994.

Joshua Auerbach, Arthur P. Goldberg, German S. Goldszmidt, Ajei Gopal,
Mark T. Kennedy, and James Russel. Concert/C manual: A programmer’s

guide to a language for distributed computing. Technical Report IBM RC
19232, IBM Research Center, Yorktown Heights, NY, Oct 1993.

Mario R. Barbacci and Jeanette M. Wing. A language for distributed
applications. In Proceedings of the International Conference on Computer
Languages, pages 59-68. IEEE, May 1990.

Kenneth P. Birman. Isis: A system for fault-tolerant distributed computing.
Technical Report TR-86-744, Cornell University Dept. of Computer Science,
July 1987.

S.M. Clamen, L.D. Leibergood, S.M. Nettles, and J.M. Wing. Reliable
distributed computing with Avalon/Common Lisp. Technical Report
CMU-CS-89-186, Carnegie-Mellow Univ. Computer Science Dept., Sep 1989.

Douglas E. Comer and David L. Stevens. Internetworking with TCP/IP,

volume III: Client-Server Programming and Applications, BSD socket version.
Prentice Hall, 1993.

117

9] Arthur Goldberg, Robert Strom, and Shaula Yemini. Hermes: A high-level
g g
process-model language for distributed computing. Technical Report IBM RC
17707, IBM Research Center, Yorktown Heights, NY, Feb 1992.

[10] Brent Hailpern and Gail E. Kaiser. An architecture for dynamic
reconfiguration in a distributed object-based programming language.
Technical Report IBM RC 18269, IBM Research Center, Yorktown Heights,
NY, Aug 1992.

[11] A. Hopper. Pandora - an experimental system for multimedia applications.
ACM Operating Systems Review, April 1990.

[12] Clifford Dale Krumvieda. Distributed ML: Abstractions for Efficient and
Fault-Tolerant Programming. PhD thesis, Cornell University, Aug 1993.

[13] C. J. Lindblad, D. Wetherall, and D. L. Tennenhouse. The VuSystem: A
programming system for visual processing of digital video. In Proceedings of
ACM Multimedia, October 1994.

[14] Christopher J. Lindblad. A System for the Dynamic Manipulation of
Temporally Sensitive Date. PhD thesis, MIT, Aug 1994. MIT/LCS/TR-637.

[15] Barbara Liskov. Distributed programming in Argus. Communications of the

ACM, 31(3):300-312, March 1988.

[16] Michael R. Macedonia and Donald P. Brutzman. Mbone provides audio and
video across the internet. IEEE Computer, 27(4):30-36, April 1994.

[17] John Outerhout. TCL: An embeddable command language. USENIX, 1990.

[18] F.N. Parr and R.E. Strom. Nil: A high level language for distributed systems
programming. Technical Report IBM RC 9750, IBM Research Center,
Yorktown Heights, NY, Dec 1982.

[19] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont,
F. Herrman, C. Kaiser, S. Langlois, P. Leonard, and W. Neuhauser. Chorus
distributed operating systems. Computing Systems, 1(4):305-370, 1988.

[20] Stuart Sechrest. A Client-Server Shell Architecture for Distributed
Programming. PhD thesis, University of California, Berkeley, Aug 1993.

[21] James W. Stamos. Remote Evaluation. PhD thesis, MIT, Jan 1986.
[22] W. Richard Stevens. T'CP/IP lllustrated, volume 1. Addison-Wesley, 1994.

[23] Mark Sullivan and David Anderson. Marionette: A system for parallel
distributed programming using a master/slave model. Technical Report
UCB/CSD-88/460, University of California, Berkeley, Computer Science
Division, Nov 1988.

118

[24]

[25]

[26]

[27]

D. L. Tennenhouse, J. Adam, D. Carver, H. Houh, M. Ismert, C. Lindblad,
W. Stasior, D. Weatherall, D. Bacher, , and T. Chang. A software-oriented
approach to the design of media processing environments. In Proceedings of

the International Conference on Multimedia Computing and Systems. IEEE,
May 1994.

David J. Wetherall. An interactive programming system for media
computation. Master’s thesis, MIT, Aug 1994. MIT/LCS/TR-640.

Jeanette M. Wing, Maurice Herlihy, Stewart Clamen, David Detlefs, Karen
Kietzke, Richard Lerner, and Su-Tuen Ling. The Avalon/C++ programming
language. Technical Report CMU-CS-88-209, Carnegie-Mellow Univ.
Computer Science Dept., Dec 1988.

Stuart Wray, Tim Glauert, and Andy Hopper. The medusa application
environment. In Proceedings of the International Conference on Multimedia
Computing and Systems, pages 265-273. IEEE, May 1994.

119

