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Abstract

A distributed object database stores objects persistently at servers. Applications run on client
machines, fetching objects into a client-side cache of objects. If fetching and cache management are
done in terms of objects, rather than �xed-size units such as pages, three problems must be solved:

1. which objects to prefetch,

2. how to translate, or swizzle, inter-object references when they are fetched from server to client,
and

3. which objects to displace from the cache.

This thesis reports the results of experiments to test various solutions to these problems. The
experiments use the runtime system of the Thor distributed object database and benchmarks adapted
from the Wisconsin OO7 benchmark suite.

The thesis establishes the following points:

1. For plausible workloads involving some amount of object fetching, the prefetching policy is
likely to have more impact on performance than swizzling policy or cache management policy.

2. A simple breadth-�rst prefetcher can have performance that is at worst roughly comparable
to an approximation of a paged system, and is sometimes much better, completing some
computations 10 times faster.

3. The client cache is managed by a combination of two simple schemes, one based on garbage
collection and one based on shrinking some objects to surrogates, where a surrogate is a small
data structure containing the object's name at the server. Garbage collection and shrinking
have complementary strengths. Experiments show that cache management using both tech-
niques performs much better than cache management using only one technique. A system with
both garbage collection and shrinking can complete a benchmark traversal using roughly an
order of magnitude less cache storage than a system using only garbage collection.

4. For minimizing elapsed time on the benchmarks used, managing the client cache with a true
LRU policy achieves close to the performance of an unattainably good minimal-fetching policy.
The other policies tested all do worse than LRU, and there is little meaningful di�erence among
them on the benchmarks used.

5. Swizzling at the granularity of individual references (so-called edge marking) has performance
that is roughly comparable to the performance of swizzling at the granularity of objects (so-
called node marking). Accordingly, a choice between these swizzling mechanisms should be
made on the basis of factors other than performance, such as implementation complexity.

Thesis Supervisor: Barbara Liskov
Title: NEC Professor of Software Science and Engineering
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Chapter 1

Introduction

Some application programs store and share persistent data that consists of small entities with com-

plex relationships. For example, computer-aided design (CAD) applications typically manipulate

large collections of data structures describing mechanical or electrical parts. These collections of

data must be made available to other applications that determine costs, order supplies, or check

feasibility of designs. An object database is useful for storing and sharing such collections of parts

and their associated relationships, such as which parts together form another part, which parts come

from the same supplier, or which parts are made of the same material.

For our purposes, an object is an entity that has two properties: it has an identity distinct from

its value, and it can contain references to other objects. Identity and references make it possible

to build complex data structures involving sharing and cycles, which can be useful for modelling

complex application domains. In contrast to typical �le systems or relational databases, an object

database can directly represent sharing of objects.

An organization may need to share an object database over a large geographic area. To build

such a distributed object database, we divide the infrastructure into servers and clients. Servers are

specialized to hold data reliably and to provide it to clients on request, while clients are specialized

to run applications and present information to people. A server needs a large amount of disk

storage. It may be implemented with multiple disks for reliability [43], or with multiple replicated

computers to provide both high availability and high reliability [47]. With the cooperation of clients,

servers implement concurrency control mechanisms [46] to ensure that groups of objects are updated

consistently. In contrast to a server, a client needs a good display, and processing power and storage

adequate to the application(s) being run by any particular user.

Dividing the system into clients and servers has a number of advantages. The clients are typically

personal machines, and each client can be sized appropriately for the tasks that each person needs

to perform. The servers are shared resources that can be carefully managed and physically isolated
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to protect the stored data from hazards. Overall, this architecture provides for the sharing of data

but does not otherwise require sharing resources for application computing. It is attractive for an

organization where shared data is used for a variety of purposes.

Caching is a frequently-used technique in systems for improving performance. This thesis consid-

ers the problems of using a particular approach to caching objects at the client in such a client/server

object database. There are two main approaches that could be used for fetching the objects and

managing the cache. The approach studied in this thesis (called object caching) simply fetches ob-

jects of various sizes from the server and manages the cache in terms of those objects. While an

object is being used by a client, a copy of the object is stored in a cache at the client. As with other

caches (such as virtual memory page caches or processor caches), the client object cache exploits

locality in the computation: an object used once may well be used again shortly thereafter, so that it

is more e�cient to retain a copy than to refetch it from the server. The other approach (called page

caching) clusters objects into �xed-size pages, then fetches and evicts pages rather than objects.

Page caching has been the most common approach for implementing distributed object databases.

With page caching, the mechanisms for fetching and cache management are simple because the units

handled are all the same size; however, a page caching system must have its objects clustered into

pages, and that clustering process is di�cult [71]. A clustering of objects into pages is a static

prediction of overall application access patterns. Because of the dependence on clustering, a page

caching system can have poor performance because an application's access pattern changes rapidly,

because an application's access pattern is di�cult to predict, or because multiple applications have

con
icting access patterns for shared objects. Recent work by McIver and King [50] recognizes these

problems and proposes on-line reclustering as a solution. This thesis proposes, implements, and

measures a more radical approach: abandoning the use of pages as the unit of transfer between

server and client.

Object caching has been studied less than page caching, and although object caching requires

more complex fetching and cache management than page caching, it has the potential to perform

better. Intuitively, one would expect object caching to be better than page caching in terms of cache

utilization and prefetching 
exibility.

� Cache utilization should be higher because only relevant objects need to be fetched into the

cache.

� Prefetching can be more e�ective because a variable-sized group of objects can be selected at

run time, taking advantage of hints from the application and recent computational history.

This 
exibility means that two applications that use some shared objects in very di�erent ways can

each get better performance from the server than they would if there were only a single clustering

of objects into pages.
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Ultimately, research studies like this one will lead to an understanding of whether object caching

or page caching is a better organization for a distributed object database. However, before such a

comparison can be made, it is necessary to understand both how to manage an object cache and what

the important parameters are for its performance. Copying objects to a client cache and managing

that cache introduce new problems. Others have addressed aspects of storage management [48] and

concurrency control [1]. The thesis addresses the following three performance-related problems:

� implementing inter-object references;

� bringing objects into the client cache; and

� evicting objects from the client cache.

The most important results are the following:

1. Varying the technique for bringing objects into the client cache has more impact on performance

than varying the technique for evicting objects from the client cache.

2. Fetching a dynamically-computed group of objects works as well as or much better than fetch-

ing a statically-computed page of objects. Simple breadth-�rst prefetching based on the con-

nectivity of objects performs well.

3. An accurate but cheap-to-implement least-recently-used (LRU) policy is close to optimal for

a workload with a shifting working set. However, a single-bit approximation of LRU (called

CLOCK) performs no better than simpler policies that keep no usage information.

4. Di�erent techniques for implementing in-memory inter-object references have similar overall

performance. This result contrasts with some previous reports.

1.1 Problems Addressed

The contributions of this thesis fall into three categories: how objects refer to one another in the

cache; which objects are brought over to the cache when there is a cache miss; and how to remove

objects from the cache so as to make room for new objects.

1.1.1 How objects refer to one another

Following common terminology, I distinguish between names and addresses. An address is a \direct"

or \primitive" reference, while a name involves some level(s) of interpretation and indirection. This

terminology is context-sensitive: an entity that is considered a primitive address in one context may

be treated as a name that is interpreted to produce a \more primitive" address in another context.
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For the systems considered in this thesis, the primitive addresses are hardware virtual memory

addresses. This thesis ignores the actual structure and implementation of such virtual addresses.

Persistent objects do not refer to one another using virtual addresses when stored at a server; one

reason is that such inter-object references can cross machine boundaries. We do not know whether

it will ever be possible (or desirable) to build a single shared address space for many thousands of

machines, but no-one presently knows how to do so. So a reference from one object to another is

implemented as a name when the objects are stored at a server.

Names can also be used for inter-object references when the objects are cached at the client.

However, using names makes it quite expensive to follow any inter-object reference. Whenever an

inter-object reference needs to be followed, the stored name must be interpreted, yielding a memory

address. An alternative approach, called swizzling, replaces a name with the corresponding memory

address, e�ectively memoizing the name-lookup computation that would otherwise be needed. This

thesis compares two di�erent swizzling techniques using detailed timing studies of high-performance

full-functionality implementations. The comparison shows that the two approaches have similar

performance, so that the choice between them should be determined by other factors, such as

simplicity of implementation.

1.1.2 Which objects are fetched into the cache

When there is a cache miss, obviously the needed object must be fetched; what else should be

fetched? One possibility is to fetch nothing except the needed object; this is called a single-object

server. Another possibility is to fetch a page containing the needed object and whatever else has

been placed on the same page; this is called a page server. An earlier study by De Witt et al. [27]

showed that a page server usually outperforms a single-object server. There is a third possibility,

not considered by that study: it is possible to send a group of objects to the client. Since the size of

an average object is on the order of 100 bytes, and a typical hardware page size is 4K bytes or 8K

bytes, a page server is e�ectively sending a group of objects on each page. Rather than sending a

group determined by the page size, it is possible to send groups determined by the connectivity of

objects (and possibly other information). This thesis shows that sending such groups works better

for varying workloads than an approximation of pages.

1.1.3 How objects are removed from the cache

To bring in new objects, the cache manager must �nd room for them. Some object(s) must be

evicted from the cache, in a correct and e�cient manner. This problem actually consists of several

related problems:

� Which objects should be discarded?
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� What happens to references to discarded objects (dangling references)?

� How can the freed storage be made available for allocation?

The thesis describes the techniques necessary for the system to perform correctly; it then goes

on to describe a number of techniques for choosing objects to be discarded, and compares their

performance on a simple benchmark. This is the �rst experimental work done on policies for dis-

carding objects from a client cache. Previous work has been based on pages, or has dealt only with

mechanisms and ignored policy.

The thesis describes two simple approaches to recovering client cache storage: garbage collection

and shrinking. In shrinking, an object is replaced by a small placeholder data structure called a

surrogate. The thesis demonstrates that neither technique is su�cient on its own, but that they do

well when combined.

An appendix of the thesis presents a new algorithm, minfetch, for deciding which objects should

be discarded from the cache for the hypothetical case when there is perfect knowledge of the future

computation. The algorithm minimizes the number of fetches required. This problem is not solved

by Belady's opt algorithm [5] for paging systems, since opt only deals with a single page at a time;

the minfetch algorithm discards multiple objects of varying sizes. Since a paged system can only

discard whole pages, minfetch can do better than Belady's opt at minimizing fetches.

Finally, the thesis presents results from another set of experiments comparing various policies for

discarding objects: minfetch and four di�erent realistic online policies. An close approximation to a

least-recently-used policy (called lru) does very well, nearly matching minfetch; however, a coarser

approximation of least-recently-used (called clock) does little better than the other policies, which

keep no usage information. An important related result is that for the experiments performed,

varying the prefetching policy has a larger e�ect on system performance than varying the cache

management policy.

1.2 Experimental Limitations

The conclusions of this thesis are based on experiments I ran with a prototype client-server object

database called Thor[46]. Those experiments had two basic limitations. First, they were run with a

particular synthetic workload. Second, they were run on a particular con�guration of hardware and

software. This section considers the e�ect of these limitations on the results.

1.2.1 Synthetic workload

The experiments use a part of the OO7 benchmark [12] for object databases. The intent is to capture

the dominant e�ects of a generic computation in an object database. Accordingly, the experiments
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involve read-only traversal of inter-object references. Fast traversal of inter-object references is a

key factor that motivates the use of object databases instead of relational databases [53]. Use of

a read-only workload separates this fundamental component of performance from the question of

concurrency control mechanisms and their performance. This separation is useful for understanding

the nature of fetching, reference traversal, and cache management; but it also means that the results

of this study must not be applied indiscriminately to environments with a large number of clients

per server, especially if those clients perform transactions that frequently con
ict. A limitation that

the experiments inherited from OO7 is that the database is synthetic and contains objects of only

a few di�erent sizes.

Would one expect signi�cantly di�erent results with di�erent kinds of computations? Consider

�rst a computation with less pointer traversal. Decreasing the importance of pointer traversal

decreases the importance of the results reported, but also decreases the value of an object database.

Decreasing the importance of pointer traversal also makes it even less likely that an application would

be able to tell the di�erence between di�erent swizzling techniques, strengthening the conclusion that

they are almost indistinguishable.

Now consider a computation that modi�es objects. Allowing the mutation of objects can a�ect

the cache management techniques described (details are in Chapter 6), but as long as the typical

pattern holds of multiple objects read for each object written, there should be relatively little change

in these results.

Finally, consider a computation with di�erently-sized objects. The number of di�erent object

sizes, and their arrangement in the database, was such that they did not �t conveniently into any

uniform storage container. I would not expect signi�cantly di�erent results from a more varied

collection of object sizes. The designers of the OO7 benchmark did not mention any concerns about

the range of object sizes or the realism of the database in a recent status report [11].

1.2.2 Particular con�guration

The experiments were run on a single machine (so there was no network delay) and in a way that

ensured that all objects of interest were in memory (so there were no disk reads). Most of the results

are applicable to other con�gurations, because neither swizzling nor shrinking policies are a�ected

signi�cantly by network delay or disk behavior.

However, the generality of one result is questionable because of the particular con�guration used:

the e�ectiveness of prefetching a dynamically-computed group. The results reported here assume

that the objects of interest are e�ectively in the server's memory, meaning either that the objects

really are in the server's memory or that it would be equally hard for object-fetching and page-

fetching systems to get them o� the disk. However, it is possible both that prefetching performance

is critically dependent on scheduling disk accesses, and that a scheme based on pages does better
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at such scheduling, in which case the results showing the advantages of dynamic prefetching would

not be correct. Regardless, the results remain valid for a server con�guration in which the objects

needed by the client are always in the server bu�ers (such as a main-memory database).

The con�guration used does not write objects back to the server as part of cache management;

writing objects back to the server may allow certain computations to proceed with smaller caches,

at the potential expense of more complex bookkeeping and higher network tra�c.

The limitations listed above actually strengthen some of the results. The omission of network

delay and disk accesses reinforces the importance of prefetching as the primary determinant of

performance.

1.3 The Rest of the Thesis

Chapters 2 and 3 describe the context of the work. Chapter 2 describes a model of a distributed

object database, identifying the essential features of the system measured so as to clarify the ap-

plicability of the information presented in later chapters. Chapter 3 describes the database, and

the traversals of that database, used for assessing performance. The database and traversals are

adapted from the OO7 benchmark suite [12], which represents the best published benchmark suite

for object-oriented databases. Chapter 3 also explains the constraints that led to using this approach

for assessing performance.

Chapter 4 describes how inter-object references are represented at the client. The description

begins with a simple system in which all objects are present at the client and inter-object refer-

ences are implemented as memory pointers, so that an object A with a reference to an object B

is implemented by having a �eld of A contain the address of B. Two di�erent elaborations of this

system yield the two di�erent swizzling systems (called node marking and edge marking) that were

implemented and measured. These swizzling systems are compared in terms of the performance of

a simple dense traversal and a simple sparse traversal. Each such traversal is considered for three

cases: when none of the objects used is present in the cache; when all of the objects are present but

the garbage collector has not run; and when all of the objects are present and the garbage collector

has run. These con�gurations represent extremes of program behavior; one would expect real pro-

grams to exhibit some combination of these behaviors. I conclude that edge marking holds a slight

advantage in speed and space used in most cases, but that the di�erence between the two schemes

is small enough that the choice can be decided based on other factors, such as simplicity of imple-

mentation. This result contrasts with some other published reports. Those reports appear to have

been based on microbenchmarks that overemphasized the di�erences between swizzling techniques.

Chapter 5 describes the e�ect of several simple prefetching mechanisms on the same dense and

sparse traversals. The prefetching mechanisms fall into �ve broad categories: breadth-�rst, depth-
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�rst, class-based, pseudopaging, and optimal. All except the optimal algorithm are online algorithms.

All except pseudopaging choose an object group dynamically, at the time a fetch request is received.

Several useful comparisons appear in the experimental results.

The �rst such comparison is between choosing object groups dynamically and computing them

statically. On the dense traversal, the dynamic breadth-�rst prefetcher does nearly as well as a

pseudopaging implementation optimized for the dense traversal; when both prefetchers are then

used for a sparse traversal, the dynamic prefetcher does much better than the static prefetcher.

A second useful comparison is between prefetching techniques that use information about the

likely uses of the objects and those that use only the structure of the objects at the server. The

class-based prefetcher performs better than the prefetchers using only structural information, as

long as its class-based information is fairly accurate. However, it performs worse than structural

techniques if the database changes so that the information used is no longer accurate. Since structural

techniques always use the current structure of the database, they do not have any similar problem

with out-of-date information.

A third useful comparison is between techniques that use a server-side model of the client cache

and those that do not use such a model. The results show that the model is important for perfor-

mance: prefetching without the model runs 14% to 100% slower than prefetching with the model.

Prefetching with the model in turn runs about 100% slower than perfect prefetching does.

Chapter 6 considers the mechanism for managing the client cache. The chapter describes a

new mechanism that combines garbage collection with the shrinking of objects into surrogates.

An experiment demonstrates that this combined mechanism allows the dense traversal (as used

in previous chapters) to continue with much smaller caches than would be possible with either

mechanism on its own.

Chapter 7 considers how to choose the objects that should be shrunk. One of the weaknesses of

the OO7 benchmarks for this work is that there is no benchmark with a gradually shifting working

set. So the chapter compares policies using a new shifting traversal, based on the dense traversal

used earlier. The details of the traversal and database modi�cations also appear in Chapter 7. The

chapter presents the minfetch algorithm (described earlier) and compares minfetch to four simple

realistic policies. Those policies are total, which shrinks all objects in the client cache; random,

which chooses objects to be shrunk at random from the collection of eligible objects; clock, which

implements a one-bit approximation of a least-recently-used policy; and lru, which implements a

true least-recently-used policy by stamping each object with a use count when it is used.

For the benchmark used, lru comes close to the performance of minfetch. There is little

di�erence in elapsed time between random and clock, suggesting that one bit may be too coarse

for eviction decisions at the granularity of a single object. There is little overall di�erence in elapsed

time between total, clock, and random, although total is less consistent in its behavior as
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the cache size changes. For applications behaving like the benchmark, the experiments suggest that

the choice between these three policies should be based on implementation simplicity rather than

arguments about performance. The experiments also show that choices about prefetching have a

larger e�ect on performance than choices about client cache management.

Chapter 8 summarizes the content of the previous chapters, draws conclusions, and describes

future work suggested by this thesis.

For each chapter where there is related work, a section near the end of the chapter discusses that

work and its relationship to the content of the chapter.
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Chapter 2

System Model

This thesis reports on experimental work done in the context of Thor [46], a distributed object

database system currently being implemented at MIT. This chapter presents a model of a distributed

object database that abstracts away many of the details of Thor.

The following features of Thor are crucial to the techniques described subsequently:

� There are functionally distinct clients and servers;

� Each server can distinguish reference �elds from non-reference �elds in its persistent objects;

� Objects at servers refer to each other using names, not memory addresses.

� Operations on objects are invoked via a runtime dispatch mechanism (this is one meaning of

the much-abused term \object-oriented"); and

� Storage reclamation is implicit; i.e., there is some form of garbage collection in the implemen-

tation;

In addition to the features described above, the following feature is required to implement the

node marking scheme that is described in Chapter 4:

� A static type system ensures that every �eld of every object has an associated type, and that

no �eld ever contains a value that is not of that �eld's type.

As noted, the hardware structure of a distributed object database consists of clients and servers

(see Figure 2-1). Persistent storage and its related functions are handled by servers, but operations

of objects are executed in a portion of the database system that runs on client machines, as indicated

by the partial inclusion of clients in the oval representing the database. Figure 2-2 shows a single

client-server pair, along with a server disk. Both clients and servers use caches to avoid expensive

accesses whenever possible. A client checks its local cache before requesting an object from a server.

Similarly, a server checks in its cache before reading objects from disk.

17
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This thesis deals only with the management of the client cache. The experiments ensure that

all objects of interest are in the server cache. The problems of managing the server cache and the

server's disk are beyond the scope of this thesis; Ghemawat [29, 30] is addressing some of those

problems.

This thesis also ignores the details of the application. Computations are described in terms

of a database viewed as an object graph. The objects in the database are treated as nodes of a

multigraph, and inter-object references are edges of that multigraph. Computational steps involving

non-reference data are ignored; computations are treated as traversals of the object graph.
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Chapter 3

Methodology

This thesis reports the results of a number of experiments with varying swizzling techniques, prefetch-

ing policies, and client cache management policies. This chapter describes the methods and data

that are common to these experiments.

For these experiments, I built di�erent versions of the Thor runtime system and drove those

di�erent versions with simple benchmark programs, described later in this chapter. At this writing,

large portions of the Thor runtime system are complete, but it is di�cult to implement new classes

of database objects; the necessary compiler will not be �nished for several months. In the absence of

that compiler, I have built sample applications by hand-compiling class de�nitions into C, a laborious

and error-prone process.

An alternate approach would be to use simulation, and indeed I used simulation for some early

work. However, many of the problems of cache management depend on aspects of the system that

do not have simple abstract models: for example, it is di�cult to simulate storage management

by garbage collection with much accuracy without building a mechanism quite similar to a real

implementation. Further, in the absence of real applications, a simulation would still have to run

the same synthetic benchmarks that I describe later; and the combination of a fake system with a

fake workload seemed unlikely to yield any data of real interest. Accordingly, after deriving some

early impressions from simulations, I have worked primarily on implementing and measuring the

real Thor runtime system. The goal is to gain understanding of the system's likely behavior, not to

exhaustively characterize the space of possible implementations. With this information in hand to

resolve some early design questions, the implementation of the system can proceed; future work can

re-examine the system's behavior with larger and more realistic applications.

The object graphs used are based on the database of the OO7 benchmarks [12] developed at the

University of Wisconsin. The OO7 benchmarks are intended to capture some aspects of CAD ap-

plications, so as to show the consequences of implementation decisions in object-oriented databases.

21



...

Assembly tree:
7 levels deep
Fanout of 3

Shared CompositeParts
...

Root

Figure 3-1: Structure of the OO7 Database

However, I am not aware of any study that has correlated performance on any part of OO7 with

performance of a real application, so although the benchmarks make an e�ort to capture the be-

havior of applications, there is no proof that they are an adequate substitute for a real application.

However, OO7 seems superior to other published synthetic benchmarks for object databases, such

as OO1 [14] and HyperModel [3]. In a recent evaluation of lessons learned so far from OO7 [11], the

authors do not indicate that they have received any complaints that their benchmark is particularly

unrealistic or unrepresentative.

3.1 Database Structure

The OO7 database is made up of a tree of Assemblies with CompositeParts at the leaves (see

Figure 3-1). Each CompositePart is in turn made up of a Document (2000 bytes of unstructured

text) and a graph of AtomicParts and Connections (see Figure 3-2). Each Connection models a

unidirectional connection from one AtomicPart to another. All of the entities shown | Assemblies,

CompositeParts, AtomicParts, and Connections | have a number of data �elds that are not shown,

and many have other reference �elds as well (for example, each Assembly also contains a reference

back to its parent).

There are three traversals used in the thesis: dense, sparse, and shifting. All three traversals are

\logically depth-�rst": when the traversal reaches an object with several children, the �rst child and

all of its descendants are traversed before any subsequent children are touched. However, because of

the extra reference �elds, a \logically depth-�rst" traversal is not necessarily \physically depth-�rst"
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root

AtomicPart
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Document

doc

Actual contents:

20 AtomicParts
60 Connections

Figure 3-2: Structure of a OO7 CompositePart

in terms of the representation of the tree of Assemblies.

The dense traversal is based on OO7 traversal T1, and visits all Assemblies, CompositeParts,

AtomicParts, and Connections. The sparse traversal is based on OO7 traversal T6 and visits all

Assemblies and CompositeParts, but visits no Connections and only one AtomicPart per Compos-

itePart. The shifting traversal (introduced in Chapter 7) is also based on OO7 traversal T1, but

arranges a sequence of T1-like traversals so as to have a shifting working set.

Figure 3-3 shows the de�nition of DesignObj in the benchmark. Most of the other entities

de�ned for the benchmark are also DesignObjs. This de�nition uses C++ syntax for the reader's

convenience, although the actual Thor implementation is in an early dialect of the language Theta

[22]. Client applications must manipulate objects entirely in terms of the operations provided by

types; they have no knowledge of the �elds of objects, nor any knowledge of the inheritance structure

of classes. In terms of the de�nition provided, this means essentially that a client application can

use only the public part of the interface, containing the methods.

Figure 3-4 shows the way in which benchmark types are related in terms of shared interfaces

(their subtyping relationship). Any entity in the diagram is a subtype of any entity higher in the

diagram to which it is connected. For example, a BaseAssembly can also behave like an Assembly

or a DesignObj.

Figure 3-5 shows the way in which instances can contain instances of other types. The multiple

levels of the tree correspond to the fact that a ComplexAssembly can contain other ComplexAssem-

blies.

Each traversal starts with getting the root object out of a Module. A Module both behaves like

a DesignObj and inherits its implementation from DesignObj, which is de�ned in Figure 3-3. The
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class DesignObj {

public:

int id();

string otype();

int buildDate();

void set_buildDate(int);

private:

int id_;

string otype_;

int buildDate_;

}

Figure 3-3: De�nition of DesignObj

DesignObj

Module Assembly CompositePart AtomicPart

Connection

BaseAssembly ComplexAssembly

Figure 3-4: Subtype relationships among benchmark types
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Module

CompositePart

AtomicPart Connection

BaseAssembly

ComplexAssembly

Figure 3-5: Containment relationships among benchmark types

�elds of a Module, in addition to the �elds de�ned by DesignObj, are called \man ", \assms", and

\root". The only �eld of interest for traversals is \root", which contains the ComplexAssembly that

is the root of the tree; the designRoot method returns the contents of this �eld.

There are two kinds of Assembly in the system: ComplexAssemblies and BaseAssemblies.

A ComplexAssembly has other Assemblies as children. In contrast, a BaseAssembly has Com-

positeParts as children.

A CompositePart consists of a number of AtomicParts, one of which is distinguished as the root

AtomicPart.

In terms of the traversals, the only aspect of an AtomicPart of interest are the Connections that

connect each AtomicPart to other AtomicParts. However, AtomicParts have a number of other �elds

intended to simulate the kind of data that might be kept for the smallest unit of a CAD application.

A Connection serves to connect one AtomicPart to another. This connection might need to have

some kind of annotation or information in a CAD application, so a Connection has some �elds of

its own rather than simply being a pointer from one AtomicPart to another.

Figure 3-6 shows the sizes of the various kinds of objects in the database. The abstract size of

each kind of object (in the second column of Figure 3-6) and the number of each kind of object (in

the fourth column) are the same regardless of the details of how objects are implemented. However,

the actual size of each object in bytes (shown in the third column) is determined by the sizes of

the various primitive components, and those sizes are shown in Figure 3-7 for the current Thor

implementation. The total database size is 41472 objects with a total size of 5569628 bytes, for an

average object size of about 134 bytes.
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part size bytes (each) number bytes (total)

ComplexAssembly h+ 4f + v3 168 243 40824

BaseAssembly h+ 5f + v3 176 729 128304

CompositePart h+ 7f + v1 + v20 500 81 40500

AtomicPart h+ 7f + 2v3 272 10000 2720000

Connection h+ 4f 88 30000 2640000

Figure 3-6: Sizes of objects in database

variable meaning size (bytes)

h Header and info overhead 56

f Field 8

v1 1-element vector 64

v3 3-element vector 80

v20 20-element vector 216

Figure 3-7: Sizes of object components

Since sets are not yet implemented in Thor, the database measured for this thesis uses vectors

wherever the OO7 schema calls for sets. Accordingly, the results for Thor are not directly comparable

to published OO7 results. The current Thor implementation of the database is probably slightly

faster and smaller than it would be if it contained sets. However, the overall structure of the

database, in terms of number of objects, relative sizes of objects, and their interrelationships, is

quite similar to what it would be with sets instead of vectors.

The dense traversal is used in Chapters 4, 5, and 6. The sparse traversal is used in Chapters 4

and 5. The shifting traversal is used in Chapter 7. I defer further details about the databases and

traversals to the chapters where they are used.

The traversals I use consist mostly of navigation from object to object. Accordingly, although

these traversals attempt to capture aspects of performance that are important to applications, they

should not be mistaken for realistic applications.

3.2 Discussion

The OO7 database is completely synthetic, and an intrinsic problem of any such benchmark is that it

may not accurately capture the most important parts of the applications of interest. However, there

are a number of positive aspects to using OO7 as a basis for these benchmarks. First and perhaps

most important, it is small enough to be implemented fairly quickly while also being complex enough

to capture some of the important aspects of performance in an object database. Using a recognized
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published benchmark as a starting point helps to keep the evaluation process honest; in particular

it reduces the danger of inventing a test to make Thor look good. The OO7 benchmark captures

some of the clustering and lumpiness of object data, and its parameters can be adjusted to construct

plausible approximations of many di�erent kinds of data.
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Chapter 4

Swizzling

Objects stored at servers typically contain references to each other. Recall from Chapter 1 that an

address is a \primitive" or \direct" reference, while a name involves some level(s) of interpretation.

For the purposes of this thesis, a virtual memory address will be considered a direct address: that is,

we will not be concerned with the levels of interpretation involved in dereferencing a virtual memory

address.

Names are used for inter-object references in almost all persistent object systems, even those

using pages. Using names instead of virtual addresses allows the data to exist independent of

particular machines or machine architectures. In general, when an object is fetched from the server

to the client, some of its references will be references to objects already present at the client, while

the others are references to objects still at the server. A reference to an object cached at the client

can be converted to use the address of the local copy of that object. Such a conversion is called

swizzling. After swizzling, subsequent uses of the reference can avoid the overhead of translating the

object reference to its current address. [39] was the �rst system to use swizzling; the technique has

since become the norm for persistent object systems.

A system like Thor transfers object groups, not pages; Chapter 5 justi�es that design choice. For

this chapter the object-group-transfer architecture is simply assumed. In a system that transfers

objects, there are two plausible granularities at which swizzling may take place: individual references

or whole objects. Following Moss's terminology [52] I use edge marking as synonymous with swizzling

at the granularity of individual references, and node marking as synonymous with swizzling whole

objects. The terms come from considering objects (resp. references) to be nodes (resp. edges) of a

directed graph, in which some entity must be \marked" to distinguish the swizzled form from the

unswizzled form.

This chapter compares the performance of edge marking and node marking in Thor. The initial

design of Thor [46] used a node-marking technique. Subsequently, I proposed an edge-marking
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technique. It was di�cult to assess the importance of the swizzling technique in the absence of data

from an implementation. There is no consensus in the literature: Moss [52] reasoned that node

marking and edge marking should have roughly similar performance, but a later paper by Hosking

and Moss [34] suggested in a footnote that edge marking is \not competitive" with node marking.

Kemper and Kossmann's study [40] concluded that there were signi�cant di�erences among swizzling

techniques on di�erent workloads. They went so far as to propose type-speci�c and context-speci�c

approaches to swizzling, so that applications could mix swizzling techniques for performance. For

example, an object might contain one infrequently-used reference implemented by edge marking

(low space cost but some time cost), and a frequently-used reference implemented by node marking

(higher space cost but lower time cost).

To settle the question, I implemented both node marking and edge marking and tested their

performance. This chapter describes the two techniques, then compares their performance as imple-

mented in Thor. That comparison shows that there is little di�erence between node marking and

edge marking. The chapter then examines the details of the implementation, determining the costs

of the elements that make up the two implementations and verifying that the result is reasonable.

The last part of the chapter reviews related work.

4.1 Node Marking and Edge Marking

To explain the node marking and edge marking techniques that were implemented, this section

considers one invocation on one object.

A Thor object in memory has the structure shown in Figure 4-1. The pointer to the object

points to the object's method pointer. An object may have more than one method pointer, but that

complication is not relevant to the issues that I describe here. The method pointer contains the

address of a dispatch vector that contains addresses of code to implement methods. The dispatch

vector is typically shared among many instances of the same class. Below the object's method

pointer are �elds that may contain either primitive data (such as integers) or references to other

objects.

I consider the steps that are taken for one small part of a dense traversal (as described in Chapter

3). One step of that traversal is to determine the AtomicPart to which a Connection c is logically

connected. The invocation \c.to()" returns this AtomicPart. In the current implementation of

Connection, the object c has a �eld (called the \to �eld" hereafter) that contains a reference to

this AtomicPart, and the code that runs in response to the invocation \c.to()" simply returns the

contents of this �eld.

In the proposed standard terminology for object systems [65], the invocation \c.to()" is a request.

It identi�es an operation on the object c, but does not determine how the operation will be performed.
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Method 0 code

Method 1 code
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Dispatch vector
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Fields
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Figure 4-1: A Thor object, its dispatch vector, and methods
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The code that actually runs in response to a request is called a method. The method to be executed

is determined by a runtime dispatch using the object's method pointer.

Executing the invocation involves the following abstract steps:

1. Method-�nding: Find the method implementing c.to.

2. Computation: Run that method, returning the result AtomicPart.

Slightly di�erent steps are taken to implement these two steps, depending on the swizzling being

used. The next subsections consider the details of those steps for a client-only system (no fetching

and swizzling involved), a system using node marking, and a system using edge marking.

4.1.1 A Client-Only System

This section describes the steps that would be required to �nd the method implementing c.to and

run the method in a simple client-only system, with no fetching from a server. In such a system, all

of the objects are present in memory, and all inter-object references are simply memory pointers. In

such a system, method-�nding for \c.to()" involves only the following steps:

1. Load c's method pointer.

2. Use an indexed load to �nd the address of the method to be run as the implementation of the

\to" request.

The computation involves only the following steps:

1. Jump to the method, passing c as \self".

2. Method returns the value of the \to" �eld.

4.1.2 An Edge-Marking System

Now consider what happens for the same invocation when using edge marking. The method-�nding

is identical to that described for the system that does not fetch objects (Section 4.1.1). However,

the computation is di�erent from what was described for that system:

1. Jump to the method, passing c as \self".

2. Method tests the pointer stored in the \to" �eld.

3. If it does not point to a resident object (i.e., it contains a name X),

(a) Use the name X to look up an address q in the Resident Object Table.
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(b) If there is no such address, the object-fetching routine is called, passing it the object

name X . The object-fetching routine carries out a number of steps (including updating

the ROT), explained later in section 4.2. It returns the address q of the local copy of the

object.

(c) Put the object's address q into the \to" �eld, replacing its name X .

4. Return the value of the \to" �eld.

The Resident Object Table mentioned above maps object names to addresses for objects that are

present in the client cache, and is used in a similar fashion for all object-fetching systems.

Before proceeding to node marking, consider the implications of and alternatives to this edge

marking technique. As presented, the \to" �eld is swizzled (converted to a pointer to the fetched

object) even though that object may not be used subsequently. Although the method call returns the

\to" �eld to the caller, the computation may actually not use that object. The technique described

is called swizzling on discovery, in contrast to swizzling on reference, which would wait until using

the reference to test it and possibly fetch it.

Swizzling on discovery assumes that any object that is accessed is highly likely to be used, in

the sense of having some request invoked on it. Swizzling on reference, in contrast, assumes that

it is advantageous to wait until the last possible point to swizzle a reference. Thus, in swizzling on

discovery, one tests the instance variable of an object to ensure that it is swizzled, before allowing

that (swizzled) value to be returned from methods. However, variables containing the results of such

method calls can be used without needing any such test. In contrast, swizzling on reference means

that the value of an instance variable can be returned without testing, but the �rst use of a variable

containing such a value requires a test to ensure that the reference has been swizzled.

Swizzling on discovery can cause unneeded objects to be fetched: as soon as an object �eld is

accessed, the corresponding object is fetched, even though subsequent computation may not actually

use that object. For example, even if two �elds could be compared for equality by comparing their

names, swizzling on discovery will cause the object(s) referenced by the �elds to be fetched. Swizzling

on discovery ensures that every reference used has been swizzled in the cached object. Swizzling on

reference avoids unnecessary fetches but often fails to gain any signi�cant bene�t from swizzling.

How, then, should one choose between these alternatives? White and DeWitt have shown [73]

that computations often fetch a reference from an object into a local variable before using that

reference. This is true even for implementations of methods. Swizzling on reference can only swizzle

the location where the reference is when it is used; if that location is a local variable, swizzling

on reference swizzles only that local variable. At that point in the computation, the swizzling

mechanism has no way of translating the �eld of the object from which the reference was fetched.

Accordingly, swizzling on reference provides little gain unless that particular local variable is used
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repeatedly before being discarded at exit from its stack frame.

4.1.3 A Node-Marking System

Now consider the steps that occur if the system uses node marking and object c is not present. The

described variant of node marking allows the system to run at full speed, without residency checks,

under certain circumstances. An object that is referenced by a swizzled object but is not present in

the cache is represented by a surrogate at the point when the request c.to() takes place. A surrogate

is a small data structure (containing only one �eld) that acts as a placeholder for a real object until it

is fetched. When a computation attempts to invoke a method of such a surrogate, the corresponding

object is fetched from the server, the surrogate is modi�ed to point to the newly-fetched object, and

the corresponding method is invoked on that object. To support this behavior, a surrogate has two

states: empty and full. If a surrogate is empty, its corresponding object has not been fetched, and

the surrogate's �eld contains the name of the object; if the surrogate is full, the corresponding object

has been fetched, and the surrogate's �eld contains the address of the object in the cache.

There are three cases to consider for the request \c.to()":

1. The object c is absent from the cache, and therefore is represented by an empty surrogate.

2. The object c is present in the cache.

3. The object c is present in the cache, but the invocation takes place on a full surrogate.

I consider each of these cases in turn.

First assume that the object is represented by an empty surrogate. Then each \method" of the

apparent object c is an instance of a special piece of code called fetch. The e�ect of fetch is to

fetch the corresponding object from the server, then invoke the method originally invoked on the

surrogate. There is a di�erent fetchi for each method index i; this is necessary so that it is possible

to determine which method should be invoked after the right object has been fetched into the cache.

When fetchi runs, the following occurs:

1. The name of the object, X , is loaded from the surrogate's �eld.

2. When there is single-object fetching, it is guaranteed that the object corresponding to the

surrogate is not present at the client. However, in general, prefetching may have occurred (as

described in Chapter 5), so the following two steps are necessary to avoid redundant fetching:

(a) The name X is looked up in the Resident Object Table (ROT).

(b) If there is an entry for X in the ROT, it contains an address q for the object.

3. If the system is doing single-object fetching, or if the check of the ROT showed no entry for

the name X ,
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(a) The object-fetching routine is called, passing it the object name X . The object-fetching

routine carries out a number of steps (including updating the ROT and creating new

surrogates as needed), explained later in section 4.2. It returns the address q of the local

copy of the object.

4. Address q is stored into the surrogate's �eld, overwriting the object name X previously stored

there

5. The surrogate's method pointer is changed to point to a dispatch vector of the same length,

containing only pointers to forwardi. (The function of forward is explained below).

6. The method pointer of q is loaded.

7. An indexed load, using i as the index, �nds the address of the method that implements the

request originally made.

Now consider the steps that occur if object c is represented by a full surrogate. The method

lookup proceeds as usual, but since the \object" used is a full surrogate, each method is an instance

of a special piece of code called forward. As with fetch, there is a di�erent forwardi for each

method index i. When forwardi runs, the following occurs:

1. The address q of the real object is loaded from the surrogate's �eld.

2. The method pointer of q is loaded.

3. An indexed load, using i as the index, �nds the address of the method that implements the

request originally made.

The execution of the method ultimately found proceeds as for a system that does not fetch objects.

Finally, it is possible that the object c is present in the cache and is actually being invoked

directly (rather than through one or more surrogates). In such a situation, the computation of a

request such as c.to() is indistinguishable from the computation as originally described for a system

that does not fetch objects. Thus, after fetching objects to the client and running the garbage

collector, a subsequent computation on the cached objects incurs no overhead that is attributable

to the object-fetching mechanism. This lack of overhead contrasts with edge marking, where every

use of an object �eld requires a test even after all of the objects used are present in the cache. The

same lack of overhead is the main motivation for considering node marking, since it is both more

complicated and more expensive in space than edge marking.

4.1.4 Discussion

A full surrogate is logically unnecessary: instead of �lling the surrogate, it would be possible to �nd

all pointers to the surrogate and change those so that they point to the real object instead. However,
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there are only two ways to �nd all of the pointers to a particular surrogate: one is to trace all of

the pointers from the roots, and the other is to keep a back-pointer to every object that refers to

a surrogate. Both techniques are expensive. The tracing of pointers from roots is already a part of

the garbage collector; rather than eliminating any surrogate on each fetch, full surrogates are left in

place until the garbage collector runs, and the garbage collector eliminates the full surrogates. On

encountering a full surrogate, the garbage collector updates the object pointing to the surrogate so

that it points directly to the object reachable through the surrogate, bypassing the full surrogate.

After the garbage collector has updated all of the pointers to the full surrogate in this way, the full

surrogate is no longer reachable and is reclaimed like any other garbage.

4.2 Fetching

This section describes the details of an object fetch, which occurs when needed for both the edge-

marking and node-marking systems.

4.2.1 Fetching with Edge Marking

In edge marking, fetching an object requires the following steps:

1. The server is asked to send the object named X

2. The server sends the object

3. The object is installed in the client cache by entering its name X and local address q in the

Resident Object Table (ROT) that maps object names to addresses

4. The address q of the newly-installed object is returned to the caller of the fetch routine.

4.2.2 Fetching with Node Marking

In node marking, the �rst three steps are identical to those described above for edge marking.

However, there is more work to be done after installing the object in the client cache, so the following

steps take place:

4. The object is swizzled: for each reference contained in the object, the object name is looked

up in the ROT.

(a) If there is an address for that name in the ROT, that address is used to overwrite the

name stored in the object's �eld.

(b) Otherwise (there is no entry for that name in the ROT), a new surrogate is created that

contains the name:
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i. The type of the surrogate is determined by the known static type of the �eld being

swizzled.

ii. The surrogate type determines how long the surrogate's dispatch vector must be.

iii. The object's name is written into the one data �eld of the surrogate.

iv. The address of the new surrogate is entered in the ROT, and used to overwrite the

name in the object being swizzled.

5. The address q of the newly-installed object is returned to the caller of the fetch routine.

The apparent type of the object is known when an empty surrogate is created. This is the one

point at which the system requires that the computations be in a strongly-typed framework. Here is

an example of how this type information is used. Assume that an object y is fetched into the cache

and swizzled, and y contains a �eld of type T referring to object z not in the cache. Type T is used

when creating a surrogate for z. Type checking ensures that even if z has an actual type S that is

a subtype of its apparent type T , the surrogate for z will not be asked to respond to a request that

is allowed by S but not allowed by T . The apparent type (T in the example) determines how many

methods the real object (apparently) has, and accordingly how many fetchi's there must be in the

empty surrogate's dispatch vector.

Creating surrogates is an expense that was not needed for edge marking. In addition, there

is more swizzling taking place, which may not be worthwhile. The �elds swizzled may not be

used by the invoked method triggering the fetch or any method subsequently invoked by the client

application, in which case the e�ort spent swizzling them is wasted.

4.3 Apparatus

I implemented both node marking (with surrogates) and edge marking in Thor. The two mechanisms

are implemented using conditional compilation, so that there is no runtime cost or code space

associated with the system's ability to swizzle in two di�erent ways. Below I describe the object

graph used, the traversals of the object graph, and the nature of the control transfer between the

test application and Thor. See Chapter 3 for an overview of the object graphs and traversals.

4.3.1 Object Graph

The object graph used for these experiments is essentially identical to the database called \small"

in OO7. The di�erence, as mentioned earlier, is that OO7 speci�es sets in numerous places; the

database used in this thesis has vectors instead, since sets are not yet implemented in Thor. This

database is small enough so that both the server and the client can keep the whole database in

memory, without needing to use virtual memory or explicit cache management at the server.
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Parameter Value Explanation

NumAtomicPerComp 20 AtomicParts per CompositePart

NumConnPerAtomic 3 Connections per AtomicPart

DocumentSize 2000 Bytes in each CompositePart's Document

NumCompPerModule 500 Total number of CompositeParts

NumAssmPerAssm 3 Fanout of Assembly tree

NumAssmLevels 7 Height of Assembly tree

NumCompPerAssm 3 Fanout at leaves of Assembly tree

Figure 4-2: OO7 Parameters for the database used

The database is generated by �rst building a library of 500 CompositeParts, then building the

Assembly tree from the root down and choosing CompositeParts at random from the the library as

needed. There are 37 or 2187 CompositeParts used in the database, so a CompositePart has 4 parents

on average. Each CompositePart contains 20 AtomicParts. Each AtomicPart has 3 Connections to

other AtomicParts. Accordingly, each CompositePart contains 60 Connections.

4.3.2 Traversals

There are two relevant traversals from OO7, one sparse and one dense. The dense traversal does

a depth-�rst search of the Assembly tree; for each CompositePart encountered, the traversal does

a depth-�rst search of the graph of AtomicParts and Connections contained in the CompositePart.

The sparse traversal is essentially a truncated form of the dense traversal. Like the dense traversal,

the sparse traversal touches all of the Assemblies and CompositeParts. However, it does not examine

the internal structure of a CompositePart.

4.3.3 Measurements

The client and server ran as separate processes on a single DEC 3000/400 workstation. Times were

measured with the processor's built-in cycle counter. The times measured were elapsed wall-clock

times for sparse and dense traversals of the database, in three di�erent cache states. A cold cache

contains none of the objects used by the traversal, so that every object used must be fetched from the

server. The other two cache states are both hot: the traversal starts with all of the objects needed

in the cache. One traversal, hot with garbage collection, runs a traversal after a garbage collection;

the other, hot without garbage collection, runs a traversal when all of the objects are present but the

garbage collector has been prevented from running. As described previously, the garbage collector

serves to remove a level of indirection when using node marking.
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4.3.4 Transfer of Control

These traversals run almost entirely inside Thor; after an initial call from the client application, the

rest of the traversal takes place inside the database. This is the structure that we might expect to see

for the portions of an application that are performance-critical. Putting the application inside Thor

ensures that the experiments measure cache management costs, rather than the cost of crossing the

protection boundary separating application from database.

4.4 Hypotheses

I propose and test three hypotheses concerning node marking and edge marking.

1. Edge marking is faster than node marking on the cold traversals.

I expected that edge marking would perform better on a cold traversal, since it avoids creating

and then �lling in the surrogates that are used by node marking.

This hypothesis is supported by my experiments, but edge marking's advantage is small, since

the cost of fetching dominates.

2. Edge marking is faster than node marking on the hot traversals without garbage collection.

I expected that the node-marking implementation would perform quite poorly on the hot

traversal if the garbage collector were not able to snap out the full surrogates. In such circum-

stances, the node-marking implementation su�ers an extra indirection whenever it accesses an

object through a full surrogate, as well as executing a small amount of extra \forwarding"

code in the full surrogate. In the same circumstances, an edge-marking implementation must

check each reference before using it, but does not encounter any other problem.

This hypothesis is supported by my experiments; edge marking is 30{40% faster than node

marking in this case.

3. Node marking is faster than edge marking on the hot traversal with garbage collection.

I expected that node marking would perform better than edge marking on a hot traversal

after a garbage collection, since the node marking code can run at full speed, as though it

were a memory-resident system with no overhead due to fetching. The node marking code

runs without checking pointers, while the edge marking code must check each pointer in an

instance variable before dereferencing it.

This hypothesis is supported by my experiments, but node marking's advantage is quite small.
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Figure 4-3: Node marking vs. edge marking, dense traversal
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Figure 4-4: Node marking vs. edge marking, sparse traversal
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4.5 Results

Figure 4-3 compares edge marking and node marking for the dense traversal in the three cache

states: cold, hot without gc, and hot with gc. Figure 4-4 similarly compares edge marking and node

marking for the sparse traversal.

As expected, edge marking does slightly better than node marking for the cold traversal, and

node marking does slightly better than edge marking for the hot traversal after full surrogates have

been eliminated. Edge marking does markedly better than node marking for a hot traversal where

surrogates have not been eliminated. The current Thor garbage collector is triggered either when

space runs low or when the rate of storage allocation is unsustainable. Since each traversal runs as

a single operation, the cold traversal appears to be a single operation that allocates an enormous

amount of storage, and so the garbage collector typically runs after the cold traversal. Accordingly,

special code is required so that Thor will stay in the \hot without gc" state for these measurements.

The garbage collector reported here is actually a special garbage collector that only snaps out

surrogates. With the real copying garbage collector, the �rst garbage collection causes a slight

decrease in performance, even for edge marking. This e�ect occurs only at the �rst garbage collection,

and appears to be related to changes in the (hardware) cache behavior when objects are rearranged

in memory. For the purpose of understanding swizzling, this e�ect is irrelevant. For the garbage

collector that only snaps out surrogates but does not rearrange or compact storage, edge marking

performs identically before and after a garbage collection.

A real application is likely to be some mixture of these three regimes, and so it seems that

edge marking is likely to be somewhat superior to node marking. However, the di�erence between

edge marking and node marking does not seem large enough to merit special attention from the

programmer.

4.5.1 Reading code

I examined the code that implements the various primitive operations described in an attempt to

determine their relative costs. For all of these measures, I am describing code generated by the DEC

cxx compiler (C++ for OSF/1 AXP systems v1.2) running with optimization -O2 on a DEC 3000.

I follow Myers's model [55], assigning a cost of L to each load that is unlikely to hit in the hardware

cache, a cost of J to each indirect or conditional jump instruction, and a cost of 1 to each other

instruction. The instructions with a cost of L or J are so marked on the left margin.

Figure 4-5 shows the code for a full surrogate (what I have been calling forwardi). The

expensive loads and jump are marked in the left margin of the code. The �rst three lines \bump"

the original pointer to self in a0; this is a step that is necessary only when a method must actually

access �elds of an object (as it must in this case). The subsequent lines fetch the address of the real
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# This is hand-written assembly code

(L) ldq t1, 0(a0) # load method pointer

ldq t2, 8(t1) # load offset

addq a0, t2, t3 # add offset

(L) ldq a0, 0(t3) # load new "self"

(L) ldq t1, 0(a0) # load new method pointer

ldq pv, 32+i*8(t1) # look up real method

(J) jmp (pv) # jump indirect to that method

Figure 4-5: The code for forwardi

object that should be used as self and make the appropriate arrangements to jump to that object's

methods. This code has a cost of 3L+J+1. This code has been written directly in assembler rather

than being generated by the compiler.

Figure 4-6 shows the code for testing a pointer in the edge marking scheme. When the referenced

object does not need to be fetched, the code requires only a single additional jump, for a cost of

J . When the object needs to be fetched, the cost is 2J + 6 since most of the loads and stores are

of entities likely to be in the cache; however, this overhead is not of much interest since the cost is

swamped by the much larger cost of a fetch from the OR.

On a processor like the DEC Alpha, it would be possible to reduce the test cost to 1 (instead

of J) for some simple methods. The Alpha predicts that forward branches are not taken, while

backward branches are taken. Figure 4-7 shows how the code of Figure 4-6 could be rearranged.

This assumes that the code following label $45 ends with a return to the method's caller, as shown.

If that code is placed immediately after the test of the loaded pointer, and the sense of the test is

inverted, the branch prediction hardware works correctly. This optimization must be done separately

for each pointer test, so it is only appealing if one has control of the compiler. Since I generated

machine code for most methods using the C++ compiler supplied by Digital, I did not implement

this further optimization. However, it is worth keeping in mind when comparing the performance

of edge marking and node marking.

4.5.2 Measured costs

I compare these instruction counts to the costs that I could determine from measuring the running

system. I used the on-chip cycle counter to measure these times on a DEC 3000/400, which has a

clock of 133 MHz for a cycle time of 7.5 ns.
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# "self" is in t0 when this code starts running

# This code is generated by the C compiler

# This load has to happen anyway

ldq a0, 72(t0) # load pointer to be tested

# This is the pointer-testing code

(J) bge a0, $45 # test

bis zero, zero, a1 # pass default hint (0)

stq t0, 16(sp) # save self

(J) jsr ra, cache_fetch_pointer

ldgp gp, 0(ra) # restore global pointer

ldq t0, 16(sp) # restore self

stq v0, 72(t0) # store back swizzled value

ldq a0, 72(t0) # use swizzled value

$45: # continue with rest of method

Figure 4-6: The code for testing a pointer in the edge marking scheme

bge a0, $45

$45: ...
     rtn

blt a0, $72

bge a0, $45

$45: ...
     rtn

$72:

Figure 4-7: Rearranging the pointer test for higher performance
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The cost of testing a pointer

The �rst measurement determines the cost of testing a pointer in the edge marking scheme, and

thereby approximately determines the value of J . I measured the times for two hot traversals with

garbage collection: one was implemented using node marking, and the other one was implemented

using edge marking. The di�erence between these times, divided by the number of pointer tests,

gives the cost of testing the pointers. The relevant results for the dense traversal are:

41 ms

450545 pointer tests

= 92 ns / test

� 12 cycles / test

This implies that J � 12.

The cost of forwardi

The next measurement is the cost of using a full surrogate (running forwardi). For a node marking

system, the di�erence between a hot traversal without garbage collection and a hot traversal with

garbage collection is exactly the cost of going through a full surrogate for each object. So the

di�erence between the two traversal times, divided by the number of object requests, gives the cost

of running forwardi. The relevant results for the dense traversal are:

215 ms

532425 surrogates used

= 400 ns / surrogate used

� 53 cycles / forwardi

Since we know that forwardi has a cost of 3L+ J + 1, this gives a value of L � 13.

So far, the measurements suggest that the values for our model are L = 13 and J = 12. These

numbers are rather too high for the processor used [54], suggesting that some of the instructions

assigned a unit cost by this model in fact had a higher cost.

The cost of fetching

I determined the cost of fetching objects by running a cold edge marking traversal and comparing

that to a hot edge marking traversal without garbage collection. (Recall that these cold traversals

also do not have garbage collection.) The di�erence between the times, divided by the number of

fetches, represents the average cost to fetch an object. The relevant results for the dense traversal

are:
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Instructions Cycles

Operation counted measured

Check pointer J 12

Use full surrogate 3L+ J + 1 53

Swizzle object 8300

Fetch and install object 117,000

Figure 4-8: Instruction counts vs. Measured times

45.8 sec

51979 fetches

= 882 �s / fetch

� 117,000 cycles / fetch

The cost of surrogate creation

Finally, I determined the overhead of creating surrogates and swizzling objects by running a \cold"

node marking traversal. I then subtracted out the costs previously computed for fetching the objects

and traversing the objects (and surrogates). The resulting time, divided by the number of surrogates

created, represents the cost of swizzling and creating a surrogate. The relevant results for the dense

traversal are

5.80 s

93394 surrogates created

169098 references swizzled

= 62 �s / surrogate created

� 8300 cycles / surrogate created

These are somewhat unsatisfactory numbers, since they mix together the costs of swizzling and

surrogate creation. In addition, there is no way within this particular experiment to distinguish the

cost of using an empty surrogate from the cost of using a full surrogate, even though we know that

they have quite di�erent costs.

4.6 Code Expansion E�ects

A performance penalty not measured by my experiments is the e�ect of code expansion on the cache

hit rate. In this section I explain this potential problem.

In the edge marking scheme, every piece of code that fetches an object reference from a �eld

must test that reference before proceeding. This test means that a method body that requires only
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a single instruction in a client-only system may require a dozen instructions in an edge-marking

system, and this is true for every method of every class. There is no comparable code size penalty

for the node-marking scheme, since the e�ect of the test is accomplished by executing the shared

fetchi code when needed. Depending on the workload, there are three possible cases for the code

size in relation to the cache size:

1. The code working set is much smaller than the hardware cache, so that the set still �ts in the

hardware cache even if the code expands.

2. The code working set is only slightly smaller than the hardware cache, so that the expansion

changes the behavior of the system from mostly hitting in the hardware cache to frequently

missing.

3. The code working set is larger than the hardware cache, so that the system is already getting

little value from the cache.

Only in the second case is the code expansion from edge marking a signi�cant performance issue.

The code expands the most, as indicated previously, for very simple methods that only access

single �elds. Any other code in the system, whether for accessing non-object �elds, updating �elds,

or computing on local variables, tends to dilute the di�erence between node marking and edge

marking. In addition, each �eld access method of a mutable object must record information about

the transaction status of the object; since this code must be present in both edge marking and node

marking systems, it also tends to dilute the code expansion e�ect.

Although edge marking performed well in the experiments I ran, there is too little code in

my benchmarks to determine the true e�ect of code expansion on instruction cache performance.

Currently, it is too hard to generate code to perform realistic experiments on code expansion and

its e�ects (if any). Useful future work would include an examination of real applications running

on Thor to determine their instruction cache miss rates. If it appears that performance could be

signi�cantly improved with smaller code, it may be worth revisiting the node marking scheme.

4.7 Related work

As previously indicated, Moss [52] �rst categorized swizzling techniques as edge marking or node

marking. Kemper and Kossmann [40] subsequently distinguished techniques based on their eagerness

(eager vs. lazy) and directness (direct vs. indirect). I start from Kemper and Kossmann's terms to

categorize related work on swizzling techniques.

There are two relatively independent dimensions of swizzling techniques. The �rst dimension is

directness (direct, indirect, or mixed) and the second dimension is eagerness (eager or lazy).
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Eager Lazy

Indirect LOOM [39], others LIS [40]

Mixed Thor node marking Thor edge marking with surrogates

Persistent Smalltalk [33]

Direct O2 resident mode [4] Thor edge marking

Exodus [73]

Figure 4-9: Swizzling in di�erent systems

Consider directness �rst. A direct swizzling technique translates an inter-object reference into

the address of the object itself. Edge marking in Thor, as described in this chapter, is an example of

direct swizzling. Similarly, Exodus [73] uses direct swizzling, as does O2 [4] in its so-called resident

mode. In contrast, an indirect swizzling technique translates such a reference into the address of a

descriptor for the object, which in turn contains the address of the object itself. Direct swizzling is

more e�cient than indirect swizzling in both space and time. However, indirect swizzling simpli�es

storage management because object descriptors make it easy to relocate or evict objects. Examples

of systems using indirect swizzling are LOOM [39], Emerald [38], Orion [41] and Jasmine [36]. Some

systems have mixed swizzling, in which an inter-object reference may be direct at some times and

indirect at others; these systems are attempting to get some of the good properties of both direct

and indirect swizzling. Node marking as described in this chapter is an example of mixed swizzling:

inter-object references via full surrogates are indirect, but those full surrogates are snapped out

by the garbage collector and replaced by direct pointers. Persistent Smalltalk [33, 34] is another

example of mixed swizzling; but instead of using the garbage collector to snap out the descriptors

(which are called indirect blocks in Persistent Smalltalk), there is a special scanning step that runs

as part of an object fault. The scanning �nds indirect references and replaces them with direct

pointers.

Now consider eagerness. An eager swizzling technique ensures that any object in the client cache

contains only swizzled pointers; there are no names left in object �elds. Node marking as described

in this chapter is an example of eager swizzling. The resident mode of O2 [4] is another example

of eager swizzling. In contrast, a lazy swizzling technique allows object �elds to contain names

or swizzled pointers, converting names to pointers only as needed. Edge marking as described in

this chapter is an example of a lazy swizzling technique; Exodus [73] is another example of a lazy

swizzling system.

We can combine these two dimensions into the table of Figure 4-9, which shows where various

systems �t in. LIS, which is shown as an example of lazy indirect swizzling, is not actually a system.

Instead, it refers to a study done by Kemper and Kossmann on the four combinations of lazy/eager

and direct/indirect. As far as I know, no actual system has used lazy indirect swizzling, since it
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requires both a test and an indirection to implement each inter-object reference. The entry for \Thor

edge marking with surrogates" refers to a system that will be used in Chapter 7. For a system that

only fetches objects, as in this chapter, it would be redundant to have surrogates as well as edge

marking. However, when objects are to be evicted from the cache, surrogates can be useful even if

fetched objects are swizzled using edge marking.

I am aware of three groups that have done swizzling studies, all using databases derived from

the OO1 benchmark [14]: White and DeWitt [73], Hosking and Moss [33, 34], and Kemper and

Kossmann [40].

White and DeWitt compared di�erent implementations of lazy direct swizzling (edge marking)

and swizzling at the granularity of pages (ObjectStore [42]). They found that swizzling on discov-

ery is superior to swizzling on reference (Section 4.1.2 explains the di�erence). They also showed

that a software swizzling scheme using edge marking is competitive with ObjectStore, even though

ObjectStore takes advantage of virtual memory hardware.

Although an early analysis by Moss [52] matched my results, my results appear to di�er from

the more recent report of Hosking and Moss, who found edge marking \clearly uncompetitive" ([34],

footnote 7). However, a personal communication [35] describing their implementation in more detail

explains that their edge marking scheme is not swizzling: instead, it is doing repeated lookups, and

accordingly is not comparable to the edge marking described here.

Kemper and Kossmann's study [40] concluded that there were signi�cant di�erences among

swizzling techniques on di�erent workloads. Kemper and Kossmann went so far as to propose

type-speci�c and context-speci�c approaches to swizzling, so that an object containing two refer-

ences might have one reference translated by lazy direct swizzling, while another reference might be

translated by eager indirect swizzling. Kemper and Kossmann's measurements focused on micro-

benchmarks, such as determining the time to traverse a single reference; I believe this emphasis may

have misled them as to the importance of swizzling compared to prefetching and other factors in the

system. While it is possible to measure large di�erences in the cost of some primitive operations,

those operations do not necessarily dominate the computation.

The experiments of this chapter show that there is only a small di�erence in performance between

node marking and edge marking techniques, as implemented in Thor. Context-speci�c or type-

speci�c swizzling appears unjusti�ed.
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Chapter 5

Prefetching

In the previous chapter, the client fetched only one object at a time from a server. This arrangement

is simple, but the performance of single-object fetching is unacceptable [27, 33, 34]. To improve

performance, the number of fetches must be reduced; some entity larger than a single object must

be transferred from server to client. This chapter investigates techniques for the server to send more

than one object at a time to the client. Although a more accurate name for these techniques would

be \presending," I refer to these techniques by their more common name of prefetching.

Thor transfers groups of objects from server to client. On receiving a fetch request, a Thor server

selects objects to send in response. The group of objects selected is called the prefetch group. Thor's

dynamic selection of the group contrasts with most distributed object databases[4, 8, 9, 10], which

cluster objects statically into pages and transfer pages in response to fetch requests. This chapter

describes and compares di�erent techniques for selecting prefetch groups.

The experiments presented in this chapter show that a good simple prefetcher is based on a

breadth-�rst exploration of the object graph, with the exploration ending after the prefetch group

reaches a designated number of objects. Performance of such a prefetcher can be improved by

allowing the prefetcher to prune its exploration when encountering an object that has already been

sent to the client. With the traversals measured, the best overall performance is attained when

each prefetch group can contain up to 30 objects. With this level of prefetching, the dense traversal

requires only about 33% of the time required for single-object fetching, and execution of the sparse

traversal requires only about 51% of the time required for single-object fetching.

This dynamic prefetcher also does well when compared with a more static scheme that approxi-

mates page fetching. With a prefetch group size of 30, the prefetcher does about as well as a system

using a static clustering of objects into 8-Kbyte pages; execution of the sparse traversal requires only

about 17% of the time required for a system using that same static clustering.

Section 5.1 describes how a Thor server is structured, and how that structure a�ects prefetching.

49



Section 5.2 describes a number of di�erent prefetching techniques and compares their performance

using the current Thor implementation. Section 5.3 compares the performance of those prefetching

techniques as the database size varies. The comparisons in Sections 5.2 and 5.3 use edge marking

as the swizzling technique (see Chapter 4 for details). Section 5.4 revisits the issue of comparing

node marking with edge marking in a system with prefetching. Section 5.5 reviews related work,

and Section 5.6 summarizes the chapter.

5.1 Server and Prefetcher Structure

Each Thor server maintains information about which of its objects are present in each client cache.

This information allows the server to invalidate objects in a client cache that have been made obsolete

by updates at the server[46]. The same information is also used for e�cient concurrency control [1]

and distributed garbage collection [48]. The server's information always represents a superset of the

objects actually in the client's cache: no object can be in the client's cache without being recorded

at the server, but the server may record an object that is not in use at the client.

Each fetch request from the client causes the server to select a prefetch group containing the

object requested and possibly some other objects. To simplify the structure of the server and the

client/server interface, a fetch request is processed to completion, determining all members of the

prefetch group, before any objects are sent to the client. The server does not split requests, prefetch

\in the background," or otherwise perform computation except in response to a client request. When

the sent objects arrive at the client, each must be entered into the Resident Object Table (ROT)

and copied into the client cache.

Most of the prefetchers measured in this chapter are dynamic prefetchers: each dynamically

computes a prefetch group at the time an object is requested. All of the dynamic techniques have

access to the following information when the server receives the fetch request:

1. the identity of the object being requested;

2. which objects are currently in the server cache, and their size;

3. which of those objects are probably in the client cache; and

4. the maximum number of objects that the client will accept in the reply.

As noted in Chapter 1, all the experiments reported are set up in a way that ensures that all

relevant server objects are in the server cache. For the experimental data presented in this and

the remaining chapters, none of the costs (or variations in cost) are attributable to disk activity.

Similarly, since the server and client are on the same machine, the network costs re
ect only the cost

of the protocols and scheduling, not transmission time. The data presented focus on the intrinsic
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computational cost of the implementation by (e�ectively) setting both the disk access time and

network propagation time to zero. In spite of this simpli�cation, the data is still dominated by the

number of fetches.

In addition to the listed sources of information, a Thor server can always distinguish references

from non-references in its stored objects. However, a Thor server does not usually associate any

meaning with its stored objects, and it does not execute the method code that is associated with

those objects. The object graph stored at a server is e�ectively a collection of variable-sized objects

containing references to each other. However, all of the non-reference data is opaque to the server.

This thesis uses the term structural prefetching to refer to prefetching that uses only the pointer

structure of objects, with no other knowledge of the meaning of object �elds.

5.2 Prefetching Techniques

Chapter 4 established that edge marking performs slightly better than node marking for cold traver-

sals in the absence of prefetching. This section compares di�erent prefetching techniques in some

detail, assuming that edge marking is the swizzling technique being used. Section 5.4 returns to

comparing node marking and edge marking in the presence of prefetching, to determine whether

edge marking remains a better choice.

5.2.1 Hypotheses

Here are the three hypotheses about the performance of prefetching that are tested in this section:

1. Simple structural prefetching signi�cantly improves performance in Thor.

The intuition for this hypothesis is that it is expensive to fetch an object from the server, but

the cost does not grow linearly with the number of objects. Bringing over a few \extra" objects

that are \near" the fetched object does not increase the fetch cost much, but can eliminate

fetches that would otherwise be needed. This hypothesis is supported by my experiments.

2. Simple dynamic prefetching works as well as or better than fetching static page-like groups.

The experiments compare dynamic prefetching techniques to a static approximation of page

fetching called pseudopaging. A static scheme must choose one clustering of objects into pages,

whereas a dynamic scheme can choose prefetch groups based on the history of the computation.

For example, consider the dense and sparse traversals described in Chapter 3. The sparse

traversal is essentially a truncated form of the dense traversal. Assume that the clustering for

the static scheme is based on the dense traversal: then one would expect a sparse traversal using

the static scheme to fetch in extraneous objects. Intuitively, it would seem that a dynamic

scheme would have more consistent performance across the dense and sparse traversals. At
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its best, the dynamic scheme might have performance comparable to the static scheme for

the dense traversal. This hypothesis is supported by my experiments: simple breadth-�rst

prefetching comes close to the performance of pseudopaging for a dense traversal, and exceeds

the performance of pseudopaging for a sparse traversal.

3. Information about object semantics improves prefetching performance in Thor.

Most of the prefetchers tested have no more information about an object than the number

and location of its references to other objects. Adding hints about which �elds to fetch should

help performance when that information is accurate. This hypothesis is supported by my

experiments, but the hints can easily degrade performance as well. Hints based on the dense

traversal improve performance on the dense traversal to be near-optimal, but those hints have

mixed results on the sparse traversal, compared to the best \uninformed" traversal.

5.2.2 Apparatus

The database and traversals used are identical to those used for the swizzling experiments of Chapter

4. In contrast to the single-object server used there, in this chapter the server has several di�erent

prefetch mechanisms. In the current implementation, the prefetch technique is selected at runtime

by the client. The current implementation allows the prefetch technique and prefetch group size to

vary on each fetch request sent from the client to the server. However, for all of the experiments

reported in this chapter, both the prefetch technique and the prefetch group size are constant for a

whole traversal.

Each new (non-duplicate) object fetched to the client must be both copied into the client cache

and entered into the resident object table, whether it is subsequently used by the computation or not.

In these experiments, client cache management never takes place; the client cache is large enough so

that no storage management is required. Chapter 7 considers the problem of combining prefetching

with storage management. A few con�gurations required a larger cache than was possible with the

platform used; I report only the data that could be collected from the system that I had.

As in Chapter 4, the client and server are running as separate processes on a single DEC 3000/400

workstation. The client application is in the same process as the client. The times reported are

elapsed (wall-clock) times, as measured by the on-chip cycle counter of the workstation.

The rest of this section describes the seven prefetching techniques implemented and measured.

Those techniques are:

� perfect

� pseudopaging

� bf-cuto�
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� bf-continue

� bf-blind

� depth-�rst

� class-hints

Perfect prefetching uses knowledge of the future computation (a recorded trace) to send the

objects that will be used next. Perfect prefetching is not a practical technique, but it serves as a

useful comparison for techniques that can be implemented.

Pseudopaging does not dynamically compute a prefetch group at run time. Instead, at database

creation time, a clustering process computes �xed size prefetch groups, bounded by a �xed number

of bytes, at database creation time.

Objects are clustered according to their creation order. All CompositeParts are created before

any Assemblies, and each CompositePart's contained AtomicParts and Connections are created

as part of the processs of creating CompositeParts. Thus AtomicParts and Connections tend to

be clustered together with their parent CompositePart, CompositeParts tend to be clustered with

other CompositeParts, and Assemblies tend to be clustered with other Assemblies. Clustering in

this creation order is a reasonable clustering for the dense traversal, as well as being simple to

implement. Pseudopaging is intended to be an approximation of the prefetching performance of a

realistic page-fetching system; accordingly, the clustering is not optimal, but it is not particularly

bad either. In particular, this creation-order clustering is better than two of the static clusterings

(breadth-�rst and depth-�rst) used by Stamos [67] in his study. It is less e�ective than what could

be achieved by the most sophisticated clustering techniques [71], but it is also much less demanding

of both computation and insight into the database. The average pseudopage has about 60 objects

in it, so we would expect dynamic prefetching of groups of 60 or more objects to beat pseudopaging.

There are three variants of breadth-�rst prefetching implemented; each has a name starting with

\bf". Bf-cuto� prefetching dynamically computes a prefetch group by exploring the object graph

breadth-�rst from the object being fetched. The prefetcher prunes the exploration on encountering

any object already present at the client; that is, it does not explore any of the references contained

in that object.

Bf-continue prefetching dynamically computes a prefetch group by exploring the object graph

breadth-�rst from the object being fetched. Like bf-cuto�, bf-continue does not send any object

already present at the client. Unlike bf-cuto�, bf-continue does continue to explore the references

contained in such an object.

Bf-blind prefetching is yet another variant of breadth-�rst prefetching. Unlike bf-cuto�, it does

not prune its exploration. It pays no attention to whether an object is likely to be present at the
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Field(s) Class Refs Total

Class prefetched prefetched prefetched refs

AtomicPart outgoing vec[Connection] 1 4

BaseAssembly privChildren vec[CompositePart] 1 5

ComplexAssembly children vec[Assembly] 1 4

CompositePart root AtomicPart 1 6

Connection to AtomicPart 1 2

vec[Assembly] �rst 3 elements Assembly 3 3

vec[CompositePart] �rst 3 elements CompositePart 3 3

vec[Connection] �rst 3 elements Connection 3 3

Figure 5-1: Details of the class-hints prefetcher

client when doing the prefetch. Accordingly, it has a lower overhead at the server, but is likely to

send redundant objects to the client.

Bf-cuto� and bf-blind represent opposite extremes in terms of �ltering out redundant objects.

Bf-cuto� �lters at the server and prunes exploration quickly, while bf-blind �lters at the client and

doesn't prune. Bf-continue represents a middle position, �ltering at the server (like bf-cuto�) but

not pruning (like bf-blind).

Depth-�rst prefetching dynamically computes a prefetch group by traversing the object graph

depth-�rst from the object being fetched. As with bf-cuto�, the depth-�rst prefetcher prunes the

traversal on encountering any object that is already present at the client.

Class-hints prefetching uses information about the class of each object to control the prefetching

process. The class of each object is readily determined at the server. The server has a small table

mapping each class to information about which �elds should be prefetched, presumably because those

are the �elds most likely to be used in the near future by the client application. Only the children

contained in those �elds are considered by the prefetcher, which then repeats the same process for

each child, based on that child's class. In the implementation for which data is presented, the class-

hints table is based on the dense traversal. A summary of the �elds of database objects appears in

Chapter 3. A summary of the hints used appears in Figure 5-1, which also indicates the number

of references that are indicated as \good to fetch" and the total number of references that could

be fetched. The prefetcher is otherwise built (logically) on the bf-cuto� prefetcher; the class-hints

prefetcher can be seen as a �lter on bf-cuto� that causes some irrelevant children to be omitted.

5.2.3 Results

I begin by comparing perfect prefetching and pseudopaging. Figure 5-2 shows the comparison

between these techniques for both dense and sparse traversals, as a function of the prefetch group
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Figure 5-2: Perfect vs. pseudopaging
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size. Recall that the prefetch group size is the maximum number of objects that may be sent to the

client in response to each fetch request.

There are two columns of graphs: the left column shows the data for the dense traversal, the

right column shows the data for the sparse traversal. In both cases the top graph represents elapsed

time for the traversal, the middle graph represents the number of fetch requests sent to the server,

and the bottom graph represents the total space occupied in the client object cache at the end of

the traversal. For the graph of elapsed time, I have plotted error bars representing a 95% con�dence

interval (that is, 2 sample standard deviations on either side of the mean). If the error bars appear

to be absent, it is because the error bars are smaller than the mark used for the mean. Generally

the variances are quite small. Neither the number of fetch requests nor the storage used vary across

trials of a single con�guration, so there are no error bars plotted for those graphs.

Since pseudopaging sends constant-sized object groups, it is not a�ected by the prefetch group

size, and appears on the graphs as a horizontal line. Pseudopaging does well on the dense traversal

and poorly on the sparse traversal, which is as expected since the clustering used for pseudopaging

was intended to support e�cient dense traversals. Although the clustering brings over about three

times as many bytes as are needed with perfect knowledge of the computation, it brings over less

than one third of the database for the dense traversal and less than 20% of the database for the

sparse traversal. On the dense traversal, perfect prefetching performs better than pseudopaging

as soon as 5 or more objects can be returned for each client request. Perfect prefetching quickly


attens out with increasing prefetch group size: there is very little improvement in performance for

group sizes larger than 15-20 objects. One may conclude that for the implementation and workload

studied, a relatively small prefetch group size su�ces if one can pick those objects perfectly.

Examining perfect prefetching and pseudopaging establishes a basis for considering dynamic

prefetchers. The perfect prefetcher is as good as any dynamic prefetcher can be, while pseudopaging

gives a sense of what can be achieved with a simple static technique. There is no point in looking for

prefetchers that do better than the perfect prefetcher, and there is no point in considering elaborate

dynamic prefetchers unless they can do signi�cantly better than the simple paged system. The

goal is to �nd simple dynamic techniques that can �ll the gap between pseudopaging and perfect

prefetching.

Figure 5-3 compares bf-cuto� with the perfect prefetcher and pseudopaging. Bf-cuto� gets good

performance for small sizes of prefetch group, but its performance degrades for large group sizes,

in a rather surprising way. As can be seen from the number of fetch requests, the dense traversal

with bf-cuto� actually requires more fetches for a prefetch group of 60 objects (17142 fetches) than

for a prefetch group of 10 objects (13123 fetches). The explanation is found in the relatively small

size of the database. Prefetch group sizes larger than 30 and less than 80 tend to prefetch all of the

internal Assemblies of the Assembly hierarchy, leaving only isolated leaves to be fetched one by one
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Figure 5-3: Bf-cuto� vs. perfect and pseudopaging
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in the later parts of the traversal. Accordingly, I call this performance degradation leaf-fetching.

The sparse traversal shows a similar degradation, but the underlying cause is di�erent. Leaf-

fetching is characterized by a sharp increase in fetches. Instead of that sharp increase, there is a

plateau in the graph of fetches (middle right). The spike in the elapsed time is not caused by a

spike in the number of fetches. Instead, as shown by the space graph for the sparse traversal (lower

right), there is a sharp increase in the number of bytes used. The performance of the sparse traversal

degrades simply because there are more irrelevant objects being sent.

Figure 5-4 shows the performance of bf-continue. The bf-continue prefetcher eliminates the peak

in fetches that occurs with bf-cuto�. Continuing to explore children even when the parent is already

at the client increases the likelihood that reachable objects will be prefetched, rather than being left

as isolated leaves. If we were to ignore elapsed time and consider only the number of fetches, we

would conclude (incorrectly) that bf-continue does very well on the dense traversal, and reasonably

well on the sparse traversal. However, each fetch itself has become signi�cantly more expensive,

since the server can continue for long periods of time trying to �nd an object that is not already at

the client. The expense is not in the table lookup, but in the repeated discovery and exploration

of objects that have already been sent to the client. As a result, the elapsed time of bf-continue

is worse than bf-cuto� for the dense traversal, except at the nadir of bf-cuto�'s bad performance.

In terms of both elapsed time and space used, bf-continue performs worse on the sparse traversal

than bf-cuto�. As with bf-cuto�, the problem is that irrelevant objects are being fetched; however,

bf-continue brings over even more of these irrelevant objects than bf-cuto� does.

Figure 5-5 shows the performance of bf-blind prefetching. As with bf-continue, bf-blind prefetch-

ing eliminates leaf-fetching, and shows better performance than bf-continue for prefetch group sizes

of 50 objects or fewer. However, it consistently performs worse than bf-cuto� in terms of elapsed

time. Interestingly, its usage of space with increasing prefetch group size is better for the sparse

traversal than that of bf-cuto�. This e�ect occurs in a situation where bf-cuto� prunes its explo-

ration and prefetches some irrelevant objects, whereas the blind breadth-�rst refetches a group of

largely redundant objects. Redundant objects impose a penalty in terms of transmission costs and

processing time, but they do not occupy space in the cache or resident object table. In contrast,

useless prefetched objects have both kinds of costs.

Figure 5-6 shows the performance of depth-�rst prefetching. As noted earlier, this depth-�rst

prefetcher uses a model of the client cache to prune its exploration of the server's objects, much as

bf-cuto� does. The performance of the depth-�rst prefetcher improves quickly with increasing group

size, up to a group size of about 10. With larger group sizes, depth-�rst prefetching shows little

improvement on the dense traversal and a marked degradation on the sparse traversal, as more and

more irrelevant objects are prefetched into the client cache.

The poor performance of a depth-�rst prefetcher may seem surprising, since the traversals being
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Figure 5-4: Bf-continue vs. bf-cuto�
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Figure 5-5: bf-blind vs. bf-cuto�
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Figure 5-6: Prefetching: depth-�rst vs. bf-cuto�
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executed at the client are described as \depth-�rst". But although the traversal performed by the

client is logically depth-�rst, it is not depth-�rst in terms of the representations of objects as stored

at the server (a distinction previously made in Chapter 3). Each object contains numerous pointers

to parent objects and containing objects, and those pointers are not touched by the traversals being

measured. For example, only one �eld of an AtomicPart is used in the traversals: a pointer to a

vector of outgoing Connections. However, each AtomicPart also has a pointer to a vector of incoming

Connections, a pointer to its parent object, and a pointer to a string (containing its \type" with

respect to the OO7 database). A structurally depth-�rst traversal of these various pointers does not

bear much resemblance to the logically depth-�rst traversal that the client is performing.

The online dynamic techniques presented so far | bf-cuto�, bf-continue, bf-blind, and depth-

�rst | have used only the structure of the representation at the server. It is interesting to consider

what sort of bene�t can be gained from having more information available at the server. Figure 5-7

compares class-hints prefetching with optimal prefetching and pseudopaging. Class-hints does well

for the dense traversal: its fetch requests and storage used are nearly optimal, and its elapsed time

is very good. However, it performs poorly on the sparse traversal: the space graph shows that it

fetches too many objects, and the fetches graph shows that even with all those objects being fetched,

the right objects are not being prefetched for many group sizes.

Figure 5-8 directly compares class-hints prefetching with the underlying bf-cuto� prefetcher.

The e�ect of the additional information is clearly bene�cial for the dense traversal. However, on

the sparse traversal, the fetches graph shows that the hints don't make much di�erence. The hints

cause too many objects to be fetched, until the prefetch group size is about 80. When the prefetch

group is that size or larger, each chunk of objects fetched is large enough that it contains most of

the objects that are needed in the near term.

The graphs in Figure 5-8 show that the number of client requests to the server is similar for class-

hints and bf-cuto� prefetching. However, the server responses are quite di�erent: both the storage

used at the client and the elapsed time di�er between the two prefetchers in otherwise-identical

con�gurations.

5.3 Larger Databases

The previous experiments have shown that the bf-cuto� prefetcher works well for these traversals,

especially when using a maximum prefetch group size of about 30 objects. This section describes

simple experiments intended to determine how the best prefetch group size changes (if it changes)

with larger databases. All the previous experiments have shown results for a database with 20

AtomicParts per CompositePart, and 3 Connections per AtomicPart. This section considers two

di�erent ways of making the database larger: �rst, by increasing the number of Connections per
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Figure 5-7: class-hints vs. perfect and pseudopaging
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Figure 5-8: class-hints vs. bf-cuto�
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AtomicPart, and second, by increasing the number of AtomicParts per CompositePart.

5.3.1 Hypotheses

The following three hypotheses are tested in this section:

1. The best prefetch group size is independent of the size of the database.

One would not expect the number of objects at the server to a�ect the granularity of fetching

that is most e�cient for the particular object structure and workload. This hypothesis is

supported by my experiments.

2. The best prefetch group size is dependent on the size and structure of objects in the database.

One would expect di�erently-arranged con�gurations of objects to behave di�erently, and for

the best prefetching approach to be di�erent. This hypothesis is supported by my experiments.

3. Bf-cuto� is the best dynamic prefetch technique that does not depend on knowledge of object

usage, regardless of changes in database size or object structure.

The intuitive explanation of bf-cuto�'s advantage is that it represents the best approximation

of the \next" objects to be referenced. This explanation suggests that it should do better

than the other techniques, with the possible exception of class-hints (which uses additional

information). Further, bf-cuto� should do better regardless of changes in the size or structure

of the database. This hypothesis is supported by my experiments.

5.3.2 Apparatus

The �rst set of experiments uses a database (called DoubleConnections) that is identical to the

previously-used database, but with double the number of Connections per AtomicPart (6 instead

of 3). The second set of experiments uses databases (called DoubleParts and TripleParts) that are

identical to the previously-used database, but with double or triple the number of AtomicParts per

CompositePart, (40 or 60 instead of 20).

How do these changes a�ect object size and database size? The following are some approximate

calculations based on the fact that AtomicParts and Connections far outnumber CompositeParts

in the database. In the DoubleConnections database, the number of objects fetched for a dense

traversal is increased by a factor of roughly 1.75, and the size of the average object is increased by a

factor of roughly 1.25. In the DoubleParts (TripleParts) database, the number of AtomicParts per

CompositePart nearly doubles (triples) the number of objects fetched for a dense traversal, while

hardly a�ecting the size of the average object.
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5.3.3 Results

Figure 5-9 shows optimal and breadth-�rst prefetching for the DoubleConnections database. Figure

5-10 compares the variants of breadth-�rst prefetching, and Figure 5-11 compares breadth-�rst to the

other realizable policies. For the dense traversals, the best prefetcher is still breadth-�rst; however,

the best elapsed time is now at a prefetch group size of about 10. The class-hints prefetcher does

very poorly. It is set up for a database that has 3 Connections per AtomicPart, and prefetches 3

Connections with each AtomicPart; so it is prefetching only half as many Connections as it should.

It is easy to �x this problem and have good class-hints performance again, but the degradation shows

that the class-hints prefetcher is quite brittle when compared to techniques that do not expect to

have any knowledge of the \right" things to fetch.

The sparse traversals are much the same as before, which is as expected since the sparse traversal

is not a�ected by the number of Connections per AtomicPart.

For the remaining experiments of this section, I present only the elapsed time of the vari-

ous prefetchers, and only on the dense traversal. Figure 5-12 compares elapsed times for various

prefetching techniques on a database with 20 AtomicParts per CompositePart (that is, the \normal"

database). There are two graphs in Figure 5-12, but both have the same axes. Rather than putting

all �ve curves on a single graph, three of the �ve prefetching techniques are presented on each graph

for clarity (breadth-�rst is repeated on both top and bottom graph to allow comparison).

Figure 5-13 compares elapsed times for the prefetching techniques on a database with 40 Atom-

icParts per CompositePart and Figure 5-14 shows the same comparison for a database of 60 Atomic-

Parts per CompositePart. The number of Connections per AtomicPart is still 3 in these databases,

so they have 60, 120 or 180 Connections per CompositePart.

For the dense traversal, as the number of AtomicParts per CompositePart grows, the breadth-�rst

prefetcher has the best performance overall. Class-hints does better for the smallest database (the

one for which it was designed), but loses its advantage as the underlying database diverges further

from the structure to which it is tuned. Around a prefetch group size of 60 objects, there is an

increase in elapsed time for the breadth-�rst traversal, due to leaf-fetching, apparent in Figure 5-12.

That increase does not appear in Figures 5-13 and 5-14, suggesting that the leaf-fetching phenomenon

at that object group size is a quirk of a particular database size. Both bf-continue and depth-�rst

perform worse relative to the performance of breadth-�rst with increasing numbers of AtomicParts

per CompositePart. A prefetch group size of 30 still seems reasonable for good performance with

the breadth-�rst prefetcher, even as the number of AtomicParts per CompositePart increases.
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Figure 5-9: Optimal vs. breadth-�rst (DoubleConnections)
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Figure 5-10: Breadth-�rst variants (DoubleConnections)
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Figure 5-11: Other prefetchers (DoubleConnections)
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Figure 5-12: Elapsed time vs. prefetch group size, normal database
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Figure 5-13: Elapsed time vs. prefetch group size, DoubleParts
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Figure 5-14: Elapsed time vs. prefetch group size, TripleParts
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5.3.4 Summary

For the original database used, a breadth-�rst prefetcher with a prefetch group size of 30 gave the

best overall performance. With the DoubleConnections database, the best prefetch group size for

the breadth-�rst prefetcher drops to 10; but for the DoubleParts database, the best prefetch group

size is approximately una�ected.

There is no simple explanation apparent for the relationship between a good prefetch group size

and object size. If the determining factor were the size of packets transmitted from server to client,

for example, one would expect the inverse relationship between object size and prefetch group size

to be more linear. When the average object size increases by 25%, we would expect the prefetch

group size to drop to 0.8 of what it was, to a prefetch group size of 24. Instead, the \good" prefetch

group size drops to 10.

Since both DoubleConnections and DoubleParts have more objects than the original database,

but only DoubleConnections signi�cantly changes the average object size, it seems reasonable to

argue that average object size is more important than the number of objects in determining a good

prefetch group size. Useful future work would include determining a model for the relationship

between object size and prefetch group size.

5.4 Node marking: delayed vs. immediate

Chapter 4 showed that edge marking usually had a small performance advantage over node mark-

ing. This section brie
y considers whether prefetching changes the relative performance of the two

schemes. Edge marking has an advantage over node marking for objects that are fetched but never

used, and one would expect to have more of this kind of object brought into the cache by any real

(imperfect) prefetcher. However, it is possible to improve the performance of the node marking

scheme by having it swizzle more lazily.

The node marking scheme described previously (hereafter called immediate node marking) swiz-

zles each object when it arrives in the cache. The immediate node marking scheme will do unnec-

essary work for objects that are fetched but not used. However, it is possible to delay the swizzling

of an object until after it has been fetched into the client cache. With this delayed node marking

scheme, the cache manager makes an entry in the Resident Object Table for a newly-fetched object,

but does not swizzle the pointers contained in the object. Instead, the object's method pointer is

set to point to a dispatch vector containing pointers to special pieces of code swizzlei.

As with fetchi and forwardi described in the previous chapter, there is an instance of swizzlei

for each of the di�erent legal indices into the method dispatch vector: attempting to execute the

ith method of an unswizzled object instead causes swizzlei to be executed. Executing method

swizzlei causes the following steps to take place:
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1. Each pointer in the object is swizzled (creating a surrogate for the referenced object if neces-

sary).

2. The object's method pointer is set to point to the appropriate dispatch vector for the class

implementing the object (overwriting the pointer to a vector of swizzlei).

3. Method i is looked up in the real dispatch vector and executed.

Delayed node marking would be of little value if the prefetched object were sure to be useful. But

as was shown in previous experiments in this chapter, real prefetching mechanisms have imperfect

knowledge of the future computation, so they typically fetch several objects into the cache for each

object that is actually used. If each object is fully swizzled as soon as it enters the cache, the system

spends unnecessary e�ort swizzling objects that are never used. A delayed node marking mechanism

ensures that relatively little e�ort is spent on prefetched but unused objects, which in turn allows

more aggressive prefetching.

5.4.1 Hypotheses

Here are the three hypotheses tested in this section:

1. Edge marking performs better in the presence of prefetching than immediate node marking

Since edge marking performs slightly better than immediate node marking in the absence

of prefetching, and prefetching gives a slight advantage to edge marking, we expect edge

marking to remain superior in the presence of prefetching. This hypothesis is supported by

my experiments.

2. Delayed node marking performs better in the presence of prefetching than immediate node

marking

Since some prefetched objects will be unused, a delayed node marking scheme should perform

better than an immediate node marking scheme.

3. The performance of delayed node marking is comparable with that of edge marking

The work done for prefetched objects at fetch time by a delayed node marking scheme is not

very di�erent from the work done by edge marking, so the two should be roughly comparable

in performance. This hypothesis is supported by my experiments.

5.4.2 Apparatus

The database used is as described in Chapter 4. The traversals used are the dense and sparse

traversals, run with a cold cache, again as described in Chapter 4.
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5.4.3 Results

Figure 5-15 shows the performance of edge marking, immediate node marking, and delayed node

marking. These are compared for the bf-cuto� prefetcher.

For this prefetcher, delayed node marking performs better than immediate node marking on a

sparse traversal, and it performs about the same as immediate node marking on a dense traversal.

This is as expected: in a dense traversal most objects that are prefetched are used, while in a sparse

traversal many prefetched objects are unused. The di�erence between the techniques is all on the

client side, as can be seen from the fetches graph (middle) and storage graph (bottom). For all three

techniques, the traversals fetch exactly the same objects, and so have identical fetching curves; but

for each di�erent technique, there is a di�erent space cost and time cost. Edge marking consistently

outperforms both forms of node marking.

For the perfect prefetcher (not shown), delayed node marking is always worse than immediate

node marking, since the perfect prefetcher brings over exactly the objects needed. As a result there

are never any unnecessary prefetches, and none of the cost associated with such an unnecessary

prefetch. However, all other prefetchers make some errors in prefetching, and show much the same

pattern as is shown for the breadth-�rst prefetcher, so I omit those graphs. For all measured

prefetchers except a perfect prefetcher, delayed node marking comes close to the performance of

edge marking; further, delayed node marking is much more e�ective than immediate node marking

on the sparse traversal.

5.5 Related Work

Related work falls into three broad areas: clustering, system structure, and prefetching. Each of

these is treated in one of the following subsections.

5.5.1 Clustering

Clustering is the problem of packing objects into pages so as to minimize page faults during the

subsequent use of those objects. The roots of the techniques used are typically found in the techniques

developed for packing records into pages [60, 75, 59, 49]. A signi�cant amount of work has also been

done on the speci�c problems of clustering objects into pages[6, 31, 67, 62, 15, 28]. Fetching a

multi-object page instead of a single object is the only prefetching done in most object systems.

Accordingly, for dynamic prefetching to be of any value, it has to do something better than can

be done by clustering objects into pages. Clustering can be seen as a particularly static, heavily-

constrained technique for computing object groups of �xed size.

There are relatively few good performance studies of di�erent approaches to clustering. One

is work by Stamos [67, 68], who compared the LOOM persistent object system to a paged virtual
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Figure 5-15: Edge marking, immediate node marking, and delayed node marking
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memory so as to understand the tradeo�s between paging and object swapping. Stamos's work di�ers

from my work on Thor in three ways. First, Stamos considers the problem of fetching from a disk,

whereas this thesis deals with fetching objects from a server's memory. Second, Stamos considered

only static grouping strategies (i.e. clustering, not prefetching). Third, Stamos considered a system

with relatively small pages: 512-byte pages on a machine with 16-bit addresses.

Stamos concluded [67] that

� simple static clustering (such as depth-�rst or breadth-�rst based on static pointers) works

better than a random arrangement of objects,

� more elaborate schemes do not work signi�cantly better than simple schemes, and

� no simple scheme is clearly superior in all cases.

In a related technical report [68], Stamos also showed that LOOM's object fetching/replacement per-

forms better for a small memory than a system using page fetching/replacement, although LOOM's

advantage varies inversely with the quality of the initial placement (clustering). Stamos comments

that the success of the paging system \depends on the existence and stability of quality initial

placements."

The current Thor implementation runs on a network of DEC 3000 machines, which have 64-

bit addresses. If every object on a 64-bit machine were simply 4 times larger than on a 16-bit

machine, then Stamos's 512-byte pages would correspond to 2K-byte pages. However, the DEC

3000 actually has a page size of 8 Kbytes; in addition, objects do not all quadruple in size when

addresses quadruple in size: character and integer �elds of an object, for example, do not change in

size. Thus, contemporary pages contain somewhere between 4 and 16 times the number of objects

that were in Stamos's pages.

What is the signi�cance of this increase in objects per page? As pages contain more objects,

there is more work to be done each time a page is fetched (recall that the cost of concern is entering

fetched objects into the Resident Object Table, and doing any necessary swizzling). If all pages

continue to be full of relevant objects, this increased cost per page is not of concern: fewer pages

will be fetched, with more work per page, for no net change in cost. However, it seems likely that

object structure and grouping is determined by the semantics of an application, independent of the

page size of the underlying implementation. It is reasonable to expect that there is a point at which

the page size exceeds the size of logical object groups. As pages grow in size, the pages that contain

some irrelevant objects become more important to performance. If the data stored has some kind of

logical coherence at the granularity of (say) 10 objects, then one would expect to get a certain level

of performance in a system where each page could hold a little more than 10 objects. If the same

data were to be stored in a system where each page could hold about 100 objects, each page fetched

could potentially involve an overhead of 90 irrelevant objects to be transmitted, copied, entered in
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tables, and/or swizzled. So as page sizes grow but logical object groups stay roughly the same size,

the overhead of a page-fetching system grows, and a page-fetching system looks less attractive.

Stamos's work is rather old, and one might think that newer work in the area would show di�erent

results. However, Tsangaris and Naughton [71] recently compared the performance of a number of

clustering techniques on a number of workloads. They clustered the data based on \training"

workloads, then measured performance for \testing" workloads that might be quite di�erent. They

conclude that their stochastic clustering algorithm has the best performance across all workloads;

unfortunately, stochastic clustering requires both estimating the parameters of a stochastic model

from a trace of application references, and also mapping the objects into pages so as to minimize the

probability that consecutive object accesses cross a page boundary. As a result, stochastic clustering

is in Tsangaris and Naughton's terms \prohibitively computationally expensive to be applied directly

in many situations." No inexpensive algorithm matches the performance of stochastic clustering

across workloads. In addition, the highest-performing clustering algorithms are very sensitive to

changes in the workload, whereas lower-performing ones are more stable. They conclude that \if

stochastic clustering cannot be used, it is important to match an appropriate inexpensive clustering

algorithm with a given application" and note that \the more precise the clustering algorithm, the

more sensitive it is to mismatches between training and testing access patterns".

In short, clustering is far from a solved problem in object-oriented databases. In contrast to

systems using clustering, prefetch group computation in Thor can happen either statically or dy-

namically, as described in this chapter. As was shown by the sparse and dense traversals, very

di�erent computations sharing the same objects can bene�t from dynamic prefetching. There has

been some work arguing for dynamic reclustering [15, 50]; however, such reclustering is expensive

compared to dynamically computing prefetch groups (since reclustering involves disk writes) and it

is challenging to decide when it is worth reclustering. A problem common to both clustering and

dynamic prefetching is that it can be di�cult to tune the system; at this point it is no easier to deter-

mine a good prefetch group size than to determine a good clustering. However, dynamic prefetching

has the advantage that the performance of di�erent applications can be tuned individually without

a�ecting each other. In contrast, there is only a single clustering at any instant, and that clustering

must be shared by all applications.

5.5.2 System Structure

Much previous work in prefetching for databases has assumed a centralized or single-site model, in

which the executing application and the persistently-stored data are on the same machine. In a client-

server system like Thor, the server's processor and memory are interposed between the application

and the persistently-stored data. Accordingly, there are new possibilities for prefetching, since a

processor using memory is much faster and more 
exible than a disk controller and its disk; units
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larger or smaller than disk blocks can be fetched, and there is no cost advantage to prefetching units

that are physically adjacent in storage, as long as the objects of interest are in the server's memory

(as is assumed for this thesis).

DeWitt et al. carried out a study of client-server architectures [27] that compared an object

server, a page server, and a �le server. The di�erent con�gurations were all derived from the WiSS

system [18], which is organized as a layered structure. The di�erent versions of the system correspond

to placing the client/server split between di�erent layers of the system.

DeWitt et al. found that no one architecture was superior in all situations. Their page server

and �le server did better for fetching than their object server, but the page server and �le server

were sensitive to whether they had a good clustering for the workload. The authors concluded that

the \naive ideal" for reading would be to read pages of objects via NFS.

However, these conclusions require more examination, because the study's de�nition of object

server seems problematic in two respects. The �rst problem with the study by DeWitt et al. is that

it only considers an object server that fetches a single object at a time. The possibility of fetching

multiple objects is dismissed on the grounds that it would make the server more complex. This is

no doubt true for the experimental setup described; however, the argument is less compelling when

considering building a system from scratch, rather than adapting an existing system like WiSS.

After all, the complexity added by fetching multiple objects can be balanced against the complexity

eliminated if the system does not use pages or page locking. I believe that DeWitt et al. have shown

the need for fetching reasonably large groups of objects, but have not presented data that supports

their conclusions about object-server architectures. More recent work [13] continues to make the

case for pages by comparing them to single-object-fetching systems.

The second, less serious problem is that the authors de�ne an \object server" to be something

that is able to execute methods. This is confused: the granularity of entity shipped between server

and client is orthogonal to whether methods can run at the server. Thor is an example of a system

with servers that deal with objects, but do not run methods.

There is some other evidence previous to this work that points toward the possible value of

dynamically computing object groups. Chang and Katz [15] argued for dynamic clustering and

bu�ering at runtime based on structural information. In the context of a client/server system, their

data and arguments can be viewed as supporting a model more like Thor's use of object groups than

a typical page server system. Cheng and Hurson [17] determined that an object bu�er pool and

prefetching improved performance compared to a page store even when the prefetching was fairly

sloppy (only 50% accurate). They describe a system with the page bu�er and object bu�er on the

same machine, but there seems to be nothing that would preclude putting the object bu�er on the

client and leaving the page bu�er on the server, as in Thor. It is worth noting that Cheng and

Hurson earlier advocated an elaborate static clustering technique [16] to address the performance
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de�ciencies of simpler clustering techniques. In their proposed clustering technique, objects were �rst

clustered into primary clusters, then reclustered into secondary clusters. Their report on prefetching

[17] partially repudiates the arguments they made in favor of their clustering scheme.

5.5.3 Prefetching

Early work on prefetching in databases, such as that by Smith [64], depends on repeated sequential

access to data pages. Smith's prefetcher uses the length of the most recent group of sequential

accesses (the current run length) to determine how many additional pages to prefetch. This use of

sequentiality for prefetching is dependent on the data being laid out appropriately in consecutive

pages. Smith's technique seems appropriate for disk transfers, where there is a strong incentive for

sequential access to data; however, it is unable to detect or assist any non-sequential access, even

if that access is repeated. Thor's prefetching is much more 
exible than Smith's and similar work,

since the units being prefetched are objects and they are being fetched from the server's memory

rather than from disk.

Both the Fido cache [57] and optimal prefetching using data compression [72] learn arbitrary

repeated access patterns, and are correspondingly more powerful than the mechanisms described in

this chapter. Fido uses a neural-net mechanism whose details are unimportant for this discussion.

The data compression prefetcher adapts the Lempel-Ziv compression algorithm [45] to prefetching,

replacing a repeated sequence of page accesses with a single prefetch in much the same way that a

data compressor replaces sequences of characters with a single code. While both these techniques

are powerful and general, they have a signi�cant start-up cost. If these techniques are used in a

client/server system like Thor, they do nothing to address the cost of fetching objects before a

pattern of use is apparent. If the objects �t into the client cache, then each is fetched only once:

so by the time the system has collected the patterns needed to do good prefetching, the data of

interest is at the client and no longer needs to be fetched. The only way to get any value from the

state the prefetcher has built up is either to have the prefetcher shared with other clients or to save

the prefetcher's state in the database in a form where it can be used subsequently (for example, in

a stored prefetch hint called a crystal [21]). The prefetching mechanism in this thesis is a simpler

approach, intended to boost the basic performance of the system without requiring the storage and

tracking of prefetcher state.

Cheng and Hurson [17] proposed a model of a \moving window" for prefetching, with the window

centered at the object currently in use and containing all of the objects reachable from that object.

The next object access is likely to fall in this window, which moves smoothly around the object graph

as di�erent objects are used. This model is very similar to the dynamic prefetchers implemented in

Thor and measured in this chapter. Cheng and Hurson use this model to motivate their approach,

but claim that an exact implementation of the model is impractical. That assessment is correct for
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their purposes, but only because they are considering the client side as the prefetcher. The client

knows the object being used, but it does not know the structure of the entire object graph, so it

cannot know which extra objects to ask for. The key di�erence between their scheme and the Thor

implementation is that, in Thor, the prefetcher is on the server side (i.e. it is a \presender"), where

the structure of the object graph is known and everything in the moving window can be sent along

with the current object. The prefetch groups sent in Thor often contain more objects than are in the

moving window as de�ned by Cheng and Hurson, e�ectively containing some or all of the children's

windows as well.

5.6 Conclusion

This chapter described the implementation and measurement of 7 prefetching techniques: pseudopag-

ing, breadth-�rst, bf-continue, blind breadth-�rst, depth-�rst, class-hints, and perfect prefetching.

The data showed that the best compromise in the absence of information about the database and

traversal was bf-cuto�: a simple breadth-�rst traversal that cuts o� its exploration upon encountering

an object already sent to the client.

It appears that with these workloads, a modest level of structural prefetching (prefetching no more

than 30 objects for each object fetched) can give signi�cant performance improvement (execution

of the dense traversal in about 33% of the time for single-object fetching; execution of the sparse

traversal in about 51% of the time for single-object fetching). The comparison to a page-fetching

system is encouraging, although it does not represent a full comparison between the best possible

object-fetching system and the best possible page-fetching system.

Experiments varying the structure of the database show that the average object size has more

e�ect on the prefetching curve than does the number of objects in the database. Increasing the

average size of objects requires that the prefetch group size be decreased to minimize elapsed time.
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Chapter 6

Recovering Storage: Mechanism

Previous chapters discussed how to represent objects in the client cache, and how to fetch objects

into that cache. This chapter and the next consider how to discard objects from the cache, recovering

storage so that other objects can be fetched. This chapter describes the mechanism for recovering

storage; the next chapter describes policies.

The client cache is managed so as to avoid writing objects back to the server except at transaction

commit. This allows for a particularly clean, simple, and robust relationship between client and

server. The client can voluntarily abort, or fail entirely, without contacting the server. The overhead

incurred at a server unsure of a client's state is only the table recording the identities of objects or

object groups sent to the client. In contrast, in a system that allows objects to be written back to

the server, the server must manage both transient and persistent objects. Managing both transient

and persistent data has the following negative e�ects:

� it adds to the complexity of the server, reducing its reliability;

� it requires the server to be more tightly coupled with the state of client transactions, again

reducing the server's reliability; and

� it adds to the burden on the server, reducing the scalability of the system.

When objects are never written back except at transaction commit, cache management can encounter

the problems described in this chapter as cache lockup. It is worth noting at the outset that cache

lockup can always be solved by allowing objects to be written back to the server, although this

solution requires accepting the problems outlined above.

There are two simple ways that one might manage the client cache. The �rst way, by analogy

with a garbage-collected heap, is to use a garbage collector to reclaim the storage occupied by

unreachable objects.
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The second way, by analogy with virtual memory, is to replace objects: when space is needed

for new objects, some \old" objects are chosen by some suitable algorithm. The chosen objects are

evicted from the cache, and their space is used for new objects. However, this simple replacement

approach does not work in Thor.

Recall from Chapter 4 that Thor uses direct swizzling. In a system using direct swizzling, an inter-

object reference may be represented by the referenced object's address in the client cache. Because

objects in such a system may point directly to each other, the simple replacement described above

does not work, because of the possibility of dangling references; this problem is explained below.

This chapter describes a mechanism called shrinking that is derived from replacement. Shrinking

requires no special hardware support, but does work in a system with direct swizzling.

This chapter shows that neither garbage collection nor shrinking is a su�cient technique on its

own. With either technique, it is straightforward to construct examples where it is impossible to

recover enough storage to �nish a computation, even though the client cache is more than large

enough to hold the objects needed by the client computation at any one time. This problem is

called cache lockup. As noted above, cache lockup can be remedied by allowing objects to be written

back to the server, but for this thesis I assume a structure in which objects cannot be written back

to the server except at transaction commit.

The �rst contribution of this chapter is identifying the problem of cache lockup and the corre-

sponding inadequacy of these two cache management techniques in isolation. The second contri-

bution is pointing out that shrinking and garbage collection are complementary: each is able to

repair the condition that causes the other to fail. Accordingly, a combined mechanism of garbage

collection and shrinking should be less likely to su�er cache lockup. The third contribution is using

the implemented Thor system to demonstrate the reality of cache lockup and to con�rm that a

combined mechanism e�ectively eliminates cache lockup.

The next section describes in more detail why simple replacement does not work in Thor, and

why shrinking is necessary instead. Section 6.2 considers the possibility of using shrinking to manage

the Thor client cache. Section 6.3 considers the possibility of using garbage collection to manage the

Thor client cache. Section 6.4 explains how garbage collection and shrinking are complementary, and

should work better together than either on its own. Section 6.5 reports results from an experiment

showing that a combined mechanism works much better than either mechanism on its own. Section

6.6 summarizes related work.

6.1 Shrinking Instead of Replacement

As mentioned above, Thor uses direct swizzling, so an object in the cache may contain a pointer

directly to another object in the cache. Figure 6.1 shows an object A that points directly to object B.
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Figure 6-1: Incorrect reuse of storage
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loop {

accept client call

perform work for client call

if (space left < gc trigger) {

run gc

if ((space recovered by gc / halfspace size) < shrink trigger) {

shrink objects up to shrink fraction

run gc

}

}

}

Figure 6-2: How shrinking is triggered

As a result, the cache manager cannot simply evict B and reuse its storage for a di�erent object C. If

such eviction were allowed, object A could subsequently dereference its pointer and incorrectly access

object C instead of object B, simply because because C happens to occupy the same storage as the

evicted object B. The comparable problem in a virtual memory system is a reference to an evicted

page, which is handled by hardware. Although it is tempting to use such page-faulting hardware

to assist object systems [42, 63] some evidence [34] suggests that such page-faulting hardware is

ill-suited to support object operations, primarily because of the mismatch between the size of a

typical object and the size of a typical page.

To avoid the dangling-reference problem using only software, objects are not simply evicted and

replaced in Thor. Instead, an object is removed from the cache by being converted to a surrogate

(surrogates were described in Chapter 4). Because a surrogate is always smaller than an object, this

mechanism is called shrinking.

6.1.1 When shrinking happens

In the current implementation of Thor, shrinking is triggered only after a garbage collection has

completed; see Figure 6-2 for a pseudocode description of triggering. If the garbage collector fails

to free a speci�ed fraction of all possible free space, then shrinking takes place, followed by another

garbage collection that compacts the remaining objects so as to recover the space freed by shrinking.
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6.1.2 What Happens During Shrinking

The shrink fraction is a parameter that determines the fraction of objects to be shrunk whenever

shrinking is triggered. For this thesis, the shrink fraction is constant for the duration of a computa-

tion. The shrink fraction only a�ects the random, clock, and lru policies.

An object can be shrunk only if it is persistent and unmodi�ed. As a simpli�cation, this thesis

deals only with read-only computations, in which all persistent objects are unmodi�ed, and there

are no volatile objects. Accordingly, all objects are shrinkable.

Shrinking an object is quite cheap. Shrinking requires only that the �rst two words of the object

be overwritten by a surrogate for the object. The �rst word of the surrogate is a pointer to surrogate

code; the second word contains the name of the object.

Shrinking would not be necessary if it were possible to �nd and �x up all of the pointers like the

one contained in object A. One way to �nd all such pointers is to keep backward pointers for each

pointer in the system. Such an approach seems to entail too much overhead to be of interest; Section

6.6 considers the virtues and limits of this approach in more detail. A more practical way to �nd

relevant pointers is to use a mechanism like a garbage collector that traces all reachable pointers

from designated roots. Section 6.4 returns to this possibility.

6.1.3 Unshrinkable objects

In a typical computation, only a small fraction of objects touched are modi�ed, so that relatively

few objects are unshrinkable. Nevertheless, it is useful to digress and sketch how the presence of

unshrinkable objects is likely to a�ect performance.

As long as the fraction of unshrinkable objects is smaller than the shrink fraction, unshrinkable

objects should have a rather small e�ect. There are two e�ects caused by unshrinkable objects.

First, it becomes more di�cult to �nd shrinkable objects; however, the cost of shrinking is relatively

small compared to the cost of fetching and garbage collection. Second, the e�ective size of the cache

is smaller because of the objects that must be retained.

If the fraction of unshrinkable objects is larger than the shrink fraction, unshrinkable objects

have an e�ect in addition to the two described above. In such a con�guration, objects are copied by

the garbage collector that would otherwise have been shrunk; this represents an additional cost for

each garbage collection.

The presence of a large number of reachable, volatile objects could change the behavior of the

system quite dramatically. If it were common for a Thor application to create large numbers of

volatile objects that survived garbage collection, it would be appropriate to build a separate cache

for those volatile objects. This would correspond roughly to the \nursery" or \�rst-generation"

space used by generational garbage collection schemes. The schemes described in this chapter would
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then be applied only to the cache of permanent objects. An object that became persistent would

have to be copied from the volatile cache to the permanent cache.

6.1.4 Garbage collection and prefetching

As described in Chapter 5, the prefetcher at the server may use information about the objects that

are present at each client when making prefetching decisions. If an object is sent by the server and

subsequently shrunk by the client, the client must inform the server of the change. If the client

does not inform the server appropriately, that object will not be prefetched in any subsequent fetch

from that server. Each time the prefetcher at the server considers sending that object, it will decide

(incorrectly) that the object is already present at the client. Thus, the server will not send that object

until it is explicitly fetched. Failing to keep the server up-to-date can cause the system's performance

to degrade to the point where it behaves as though there were no prefetching, only single-object

fetching. In addition, good performance of the system's concurrency control mechanism [1] and

distributed garbage collector [48] also depend on having information at the server that is close to

the actual state of the client.

Correctness does not require updating of the server's information about the client state; the

updating is intended to improve performance. Instead of updating the server every time an object

is shrunk, it is possible to delay updating the server until a number of shrinks have occurred,

amortizing the cost of communication with the server. In the implementation measured here, the

server is updated after each client cache garbage collection. After a garbage collection, the client

knows precisely which objects are in use in its cache. As part of the process of rebuilding the resident

object table, information is sent to the server to update its model of which objects are present at

the client.

6.2 Pure Shrinking

Can Thor's client cache management work entirely in terms of shrinking? No. Although the cache

may be more than large enough to hold all of the objects that need to be in the cache simultaneously,

there are two ways that the cache can fail to function. First, the cache can reach a state where it

is full of surrogates, none of which can be discarded because they may be reachable from elsewhere

in the cache. Second, the cache can become so fragmented that there is no longer any contiguous

piece of storage large enough for an object that has been fetched.

Here is a simple example of a computation that fails when using only shrinking: all of the objects

used are the same size, and there are too many to �t all of them in the cache at once. Shrinking

an object requires leaving a surrogate behind in case other objects refer to that object. Because of

the space occupied by the surrogate, the space recovered from shrinking the object is less than the
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space required for the object being fetched. As a result, shrinking an object does not free up enough

space to store a new object of the same size as the one shrunk. Shrinking more than one object does

not help, since each surrogate must occupy the beginning part of storage that was occupied by the

object it replaces. So although shrinking two objects recovers enough bytes to store a new object,

those bytes are split into two pieces, neither of which is large enough to contain the whole object.

There is no way to �nd enough free space using only shrinking. This state is a form of cache lockup.

6.3 Pure Garbage Collection

Can Thor's client cache management work entirely in terms of garbage collection? No. A garbage

collector recovers storage occupied by objects that are unreachable. In Thor and similar systems,

the client cache contains only a portion of a much larger persistent heap. It is quite likely that the

cache is full of reachable objects. An object is visible to the client application if it has been returned

as the value of some computation and the application has not explicitly indicated that it is willing

to forego using that object. The client application may invoke an operation of any visible object.

Since the computation might navigate to any of the objects reachable from any visible object, each

visible object must be treated as a root for garbage collection. This is a simple and safe interface,

but it means that it is easy for a client application to hold a collection of roots such that everything

in the client cache is reachable.

A straightforward implementation of garbage collection in the client cache will fail if all of the

objects in the cache are reachable. As with pure shrinking, cache lockup occurs: the computation

is unable to proceed because all of the objects in the cache must stay in the cache, meaning that

there is no room for any new objects. In a conventional program, exhausting the heap is indeed

catastrophic and there is neither a need nor a means to recover. However, in Thor it is possible to

recover from a cache lockup by shrinking the local copies of some unmodi�ed persistent objects.

6.4 Combining Shrinking and Garbage Collection

To summarize pure shrinking and pure garbage collection:

� pure shrinking can be based on tracking usage patterns, but has no reachability information;

as described, it can shrink old objects but cannot discard unreachable ones. It eventually fails

as the cache �lls with surrogates or becomes too fragmented to �nd storage for newly-fetched

objects.

� conventional garbage collection is based on reachability, but has no information about usage

patterns; as described, it can discard unreachable objects but cannot shrink old ones. It

eventually fails as the cache �lls with reachable but irrelevant objects.
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Phrased in this way, it is apparent that shrinking and garbage collection are complementary

storage management techniques; each can �x the problem that causes the other to fail.

In addition to the performance problems previously noted, reference counting systems are usually

unable to reclaim cyclic structures. However, reference counting combined with shrinking would

su�er less from that problem. All cycles containing at least one unmodi�ed persistent object would

eventually be broken, because that object would eventually be shrunk to a surrogate. A surrogate

contains no references to other objects in the cache; so replacing an object with a surrogate (shrinking

the object) breaks any cycle of which that object was a member. Figure 6-3 shows a cycle of objects,

and each object is labelled with its reference count. Shrinking one object to a surrogate breaks the

cycle, and allows the storage to be reclaimed. However, even with this improvement, a reference

counting scheme seems likely to be inferior to a copying garbage collector. A copying collector allows

allocation of storage to be very cheap, and allows storage to be compacted.

6.5 Demonstrating cache lockup

The previous section argued that a combination of garbage collection and shrinking is needed to

manage an object cache. This section tests that argument with the running Thor system, by

determining the smallest client cache in which a particular computation can run without experiencing

cache lockup. Di�erent con�gurations are compared in terms of cache lockup point. The cache lockup

point for an application and con�guration is the largest cache size for which the traversal fails to

complete due to an inability to allocate cache. Thus, a small number is desirable.

Previous chapters have already established the (very slight) superiority of edge marking to node

marking in a system without cache management, both with and without prefetching. This chapter

con�rms the superiority of edge marking when storage must be recovered. However, the performance

di�erence between node marking and edge marking is very small when compared to the di�erence

between a system using shrinking and an otherwise-identical system without shrinking.

6.5.1 Hypotheses

Here are the hypotheses to be tested:

1. When using garbage collection only, edge marking has a lower cache lockup point than node

marking. From simulations, I expected that edge marking would do slightly better than node

marking at avoiding cache lockup when using only garbage collection. This hypothesis is

supported by my experiment.

2. Shrinking combined with garbage collection has a lower cache lockup point than either shrinking

or garbage collection individually. As argued earlier in this chapter, shrinking and garbage
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Figure 6-3: How shrinking breaks cycles
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collection should have complementary strengths for recovering storage. This hypothesis is also

supported by my experiment.

6.5.2 Experimental setup

The database used is the same as the one described in Chapter 4. The traversal used is the dense

traversal, run on a cold cache, also as described in Chapter 4. However, the transfer of control is

di�erent from that described previously. 4. To explain the di�erence, this section starts by sketching

the implementation of the garbage collector in the current Thor system and the rationale for that

implementation.

Thor is intended to be portable to a wide variety of platforms. It is di�cult to identify roots at

arbitrary points in the execution of a computation if the register allocation and stack organization are

controlled by a compiler provided by some third party. Rather than making the collector dependent

on details of particular compilers, the current Thor client garbage collector may run only when a

client call ends. When control returns to the client, the stack for execution of database operations

is empty, and so there is no possibility that a frame on that stack contains a reference that should

be treated as a root for garbage collection. When storage management is an issue, as it is for this

chapter and the next, the computation must take place in operations of su�ciently small granularity

that the garbage collector has a chance to run before storage is exhausted. Accordingly, whereas the

previous chapter's experiments essentially ran the entire traversal as a single database operation,

this chapter and next traverse only one whole CompositePart (and its component AtomicParts and

Connections) as a single database operation.

Three con�gurations are compared. None of the con�gurations use prefetching. Prefetching

would tend to induce cache lockup sooner; this experiment is intended to �nd the smallest cache that

works, not the fastest completion of the traversal. Two con�gurations use only garbage collection to

manage the cache: one uses node marking and one uses edge marking. The third con�guration uses

node marking and shrinking in an arbitrarily-chosen combination; the next chapter considers how

best to combine shrinking and garbage collection. For this experiment, 50% of the objects, chosen

at random, were shrunk to surrogates whenever the garbage collector was able to recover less than

5% of the cache.

6.5.3 Results

Figure 6-4 shows cache lockup points for six con�gurations: both edge marking and node marking in

combination with shrinking only, garbage collection only, or both shrinking and garbage collection.

For each con�guration, the larger light bar (labeled \total") shows the amount of storage that is

occupied at the end of the traversal if there is enough cache available so that no storage needs to

be recovered. The \total" bar's height is the same as the amount of storage used with a prefetch
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Figure 6-4: Cache Lockup Point

group size of 1 in the previous chapter. The smaller dark bar (labeled \min") represents the cache

lockup point. Thus, the di�erence between the top of the light bar and the top of the dark bar

represents the best \compression" of the computation into a smaller cache that can be achieved by

each con�guration. Note that the vertical axis is logarithmic. For this workload, a system using

shrinking only locks up as soon as any cache storage needs to be recovered, so there is no di�erence

between the \total" bar and the \min" bar.

From the graph, it is apparent that edge marking is slightly superior to node marking. This is

to be expected, since the edge marking system does not create surrogates that consume extra space

in the cache. However, both systems lock up at roughly the same point.

For the combined mechanism, the lockup point is about an order of magnitude lower. In fact,

this lockup point is determined by the amount of storage required before the �rst opportunity to

run the garbage collector (just before the �rst operation of the benchmark is executed). For the

implementation of Thor measured, this cache lockup point represents the minimum storage required.

The combination of garbage collection and shrinking has eliminated the problem of cache lockup.

However, at this minimum cache, the traversal takes nearly 6 times as long as it does when no

cache management is required. For most applications, it is important to understand how performance

degrades before the system stops completely. The next chapter considers details of when and how

shrinking should take place for good performance.
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6.6 Related Work

6.6.1 Pure Shrinking

LOOM [39] was the �rst system with mechanisms similar to the swizzling and surrogates presented in

this thesis. Leaves in LOOM are somewhat like surrogates: a leaf is a small data structure containing

the name of an absent object, and a LOOM object can be \contracted" into a leaf, in a way that is

roughly similar to shrinking. However, LOOM uses indirect swizzling; a LOOM leaf is more like an

optional �eld of the Resident Object Table (ROT) than like an object in the cache, since its actual

address in memory is irrelevant. Because of the indirection through the ROT in LOOM, there is

always exactly one reference to an object or leaf that needs to be changed if the object is shrunk or

fetched. The indirection through the ROT also means that it is straightforward to relocate an object

within memory. Several other object-oriented databases (GemStone[8, 66], Orion[41], Jasmine[36])

use basically the same cache structure as LOOM. We chose to use direct swizzling in Thor to avoid

the time and space overheads caused by indirect swizzling. Those overheads are similar to the

overheads involved in the di�erence between node and edge marking; knowing what we now know

about the small di�erence in that case, we might choose a LOOM-style approach instead of direct

swizzling if we had an opportunity to reimplement Thor's client cache.

Figure 6-5(i) shows how every inter-object reference in LOOM goes through some entry of the

ROT. In 6-5(ii), that object has been contracted to a leaf, but the leaf can be elsewhere in memory.

Figure 6-6 shows how a Thor surrogate, by contrast, actually takes the place of an object, and must

occupy the same starting position in memory as the object it replaces.

O2 uses client virtual memory to manage memory. If there is no more swap space, space for

objects \is freed"; the exact process is unclear [26]. It appears that no attempt is made to manage

storage until swap space runs out; this means that the client can be thrashing with reads and
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Figure 6-6: Shrinking an object in Thor

writes to its local disk, in addition to whatever costs are incurred from the server's disk. Thor's

design proceeds from the idea that the database system should be controlling whatever disk accesses

take place, so that the client cache does not depend on having a virtual memory system available.

Although O2 uses indirect swizzling, so that moving an object in the address space is relatively easy,

the address of an O2 object never changes while the object is in memory; there is no copying garbage

collection.

Kemper and Kossmann [40] studied a mechanism of reverse reference lists for doing storage

management without using a garbage collector. Each object keeps a list of the objects that hold

references to it. When an object needs to be evicted from the cache, its reverse reference list makes it

simple to �nd and �x up those objects whose references might be incorrect. However, this technique

involves a considerable overhead in terms of storage required, and the maintenance of the lists is

quite expensive. Any mutation that changes the object graph requires changing one or more reverse

reference lists. The reverse reference lists must be kept up-to-date at all times in case storage

management is needed; this represents a considerable waste of resources in situations where there

is adequate storage and the cache manager does not need to evict objects. As previously noted,

reference counting garbage collectors have trouble competing with copying garbage collectors [74].

A reference counting system only requires a counter per object, and only needs to increment or

decrement a counter at each object graph mutation; in contrast, a system using reverse reference

lists must store a potentially large bag of reverse references for each object, and must insert addresses

into these bags or remove pointers from these bags at each such mutation.

6.6.2 Pure Garbage Collection

LOOM [39] built on an existing Smalltalk system, so instead of using a garbage collector it extended

the reference counting scheme used for that system. Because of the use of reference counting (which
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does not compact of storage), allocation was considerably more complex and costly in LOOM than

it is in Thor. In a system with compaction, an allocation requires only changing the freespace

pointer. Wilson's survey [74] concludes that reference counting systems have generally performed

poorly compared to copying collectors, and there is nothing in the structure of Thor that would

contradict that assessment.

Alltalk [69] uses a mechanism that integrates garbage collection with the pushing and popping

of frames as Smalltalk methods are called and return. This mechanism requires more control over

the execution stack than Thor has. For portability, Thor methods are ultimately compiled by the

local C compiler, rather than being compiled directly to native code.

Butler's work [7] is concerned with garbage collection for an object-oriented database, but is

primarily concerned with the problem of garbage collecting persistent storage. In a client/server

system like Thor, the client cache management problem is decoupled from the problem of managing

the server's persistent storage.

6.6.3 Shrinking and Garbage Collection

Cooper et al. describe how they modi�ed Standard ML of New Jersey (SML) [51] and implemented

an SML-speci�c external pager for Mach so that VM cache management could take advantage of

the knowledge of the SML garbage collector [19]. The garbage collector marked pages as discardable

or nondiscardable based on their current role in the garbage collection process. The combination of

shrinking and garbage collection in Thor has some of the same character as their system, but Thor

applies the idea to individual objects instead of pages, and to a client object cache instead of a VM

cache.

O'Toole [56] has sketched a scheme for using replication garbage collection and shrinking (which

he calls re-surrogating) to manage a cache of persistent objects. The garbage collector currently

implemented in Thor is a simple copying collector, which appears to be less 
exible than a Nettles-

O'Toole replicating collector would be in choosing when to start shrinking objects. Interesting future

work would be to implement a replicating collector for Thor and evaluate it experimentally.
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Chapter 7

Recovering Storage: Policies

The previous chapter demonstrated that freeing storage in the client cache requires both shrinking

and garbage collection. The policy used for that demonstration was arbitrarily-chosen and | as it

turns out | not especially good for completing the benchmark quickly. This chapter explores what

makes for a good shrinking policy.

The chapter explores how the Thor implementation behaves with seven di�erent shrinking poli-

cies. Four of these (random, clock, lru, and total) are realistic: they could be used for real

applications. The details of these policies are described later in the chapter. The other three poli-

cies are unlikely or impossible policies that show interesting e�ects: clearcache shows the cost

of failing to cache objects between transactions when consecutive transactions share some objects;

minfetch shows how good shrinking could ever be; and maxfetch shows how bad shrinking could

ever be.

Shrinking policy is an important choice for a system and application, but the experiments in

this chapter show that it is not the most important factor. Both the prefetching policy and the

maximum prefetch group size are more important for performance than is the shrinking policy.

The chapter starts with an overview of the experimental technique. Section 7.1 describes the

wide database and shifting traversal used. Section 7.2 describes the realistic shrinking policies being

compared, and the intuition supporting each. Section 7.3 presents hypotheses to be tested by

experiments. Section 7.4 explains the data collected for a single shrinking policy (total) in a single

con�guration. Section 7.5 shows the e�ect of varying parameters a�ecting shrinking performance

while keeping one shrinking policy (still total). This serves as context for Section 7.6, which

compares the various shrinking policies. Finally, Section 7.7 summarizes related work, and Section

7.8 o�ers a summary and conclusions for the chapter.
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Figure 7-1: A single database

7.1 Shifting Traversal and Wide Database

For the experiments reported in this chapter, I adapted one of the OO7 benchmarks to provide more

interesting and realistic cache behavior. The shifting traversal is a new traversal. It is based on

the dense traversal used in earlier tests (see Chapter 4 for details). The shifting traversal consists

of multiple partially-overlapping iterations of the dense traversal. This realizes, although in a very

simple form, the phase/transition behavior that characterizes real programs [25]. Each of the dense

traversals is henceforth called an elementary traversal. The complete shifting traversal has a shifting

working set [23]: with a large enough cache, each elementary traversal except the �rst has 2/3 of its

objects present from the previous traversal.

The shifting traversal uses a wide database that is approximately two of the previously-used

databases, joined at the roots. Figure 7-1 shows a schematic representation of a single database,

with structure similar to the database used in the previous chapters. The root of the database is at

the top.

Figure 7-2 shows a schematic representation of the wide database used in this chapter. The

root Assembly has 6 children instead of the usual 3. E�ectively, there are two similarly-structured

databases sharing a common root.

Figure 7-3 shows the structure of the traversals. Each child of the root is labelled with the

number(s) of the elementary traversal(s) in which it is used. There are four elementary traversals.

The �rst elementary traversal uses the children labelled 1, the second uses the children labelled 2,

and so on. Each elementary traversal uses the leftmost of its children �rst and proceeds rightward.

Any given elementary traversal uses exactly three of the six children of the root. Each successive

elementary traversal (except the �rst) uses two of the three children used previously, and also uses
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Figure 7-2: The wide database
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Figure 7-3: Traversals of the wide database
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part size bytes (each) number bytes (total)

ComplexAssembly h+ 4f + v3 168 13 2184

BaseAssembly h+ 5f + v3 176 27 4752

CompositePart h+ 7f + v1 + v20 392 81 31752

AtomicPart h+ 7f + 2v3 272 1620 440640

Connection h+ 4f 88 4860 427680

Figure 7-4: Sizes of objects in each subtree

variable meaning size (bytes)

h Header and info overhead 56

f Field 8

v1 1-element vector 64

v3 3-element vector 80

v20 20-element vector 216

Figure 7-5: Sizes of object components

one child that was not used before.

In contrast to the databases used in previous chapters, the wide database is generated in a way

that guarantees there is no sharing of CompositeParts among BaseAssemblies. Such sharing would

interfere with the intended shifting of the working set.

The size of the working set for most of the computation is the storage required for two subtrees

of the database. (Although each elementary traversal uses three subtrees, two successive elemen-

tary traversals share only two subtrees.) Failing to keep those two shared subtrees in memory

between traversals will cause extra fetches to occur. Each subtree contains 13 ComplexAssemblies,

27 BaseAssemblies, and 81 CompositeParts. Each CompositePart contains 20 AtomicParts and 60

Connections. Figure 7-4 shows the space taken by the various objects in the database. Figure 7-5

(which repeats Figure 3-7) explains the space costs of the various components of objects.

Each subtree occupies about 907000 bytes, or about 885 Kbytes. Two subtrees occupy about

1770 Kbytes. Since the current implementation of Thor uses a copying collector, the smallest cache

that contains the working set must be at least twice this size, or about 3500 Kbytes. It is not useful

to measure the performance of the system with a cache of 3500 Kbytes or less, since it represents

thrashing. Experiments con�rmed this calculation: performance of any con�guration decays quickly

as the cache size shrinks to a size near or below 3500 Kbytes.

For all these experiments, the swizzling used is edge marking (see Chapter 4 for details). There

are 254180 pointer tests in the dense shifting traversal. With no prefetching, 49572 of these tests

cause objects to be fetched, for a miss rate of 19.5%. Most of the con�gurations measured (with
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a maximum prefetch group size of 30 objects) have a base miss rate of about 3.5%, meaning that

roughly one in 28 attempts to use some �eld of some object causes that object to be fetched from

the server.

7.2 Overview of Policies

This section describes each of the realistic policies (total, lru, clock, and random) measured

by experiments, and provides some intuition for why each might be a useful shrinking policy.

7.2.1 total

The total policy shrinks every shrinkable object. It is simple and reliable, but we would expect

that it almost always shrinks too many objects. Since the server can send extra objects with each

object fetched (as described in Chapter 5), the e�ect of shrinking too many objects may not be too

severe. The total policy has the advantage that it guarantees that no cache space is being occupied

for objects that are no longer useful.

7.2.2 random

The random policy simply takes all of the shrinkable objects in the cache and with some probability

(computed from the shrink fraction) decides randomly whether to shrink each one. Like total,

random does not require any information about object usage to be maintained, and so avoids the

space and time costs required for that maintenance. For hardware caches, a random replacement

policy is approximately as good as more elaborate policies [32]. It is possible that the same would

be true for a client object cache; perhaps there is not enough locality in the pattern of references to

justify any policy more elaborate than picking some victim and evicting it.

7.2.3 clock and lru

Shrinking has some similarities to page replacement in virtual memory systems. Many virtual

memory systems use an approximation of a Least Recently Used (LRU) policy for page replacement.

The shrinking policies called lru and clock are both based on a least-recently-used scheme, but

di�er in how closely they approximate a true LRU system. Essentially, the lru policy is a very close

approximation, while clock is only a coarse one-bit approximation, similar to what is commonly

used for virtual memory systems (e.g. [44]). Either policy is plausible if computations on object

databases display locality of reference similar to what is observed in virtual memory systems.
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7.3 Hypotheses

These hypotheses about recovering storage in Thor are tested by experiments described in this

chapter:

� Inter-transaction caching performs better than caching only within a transaction. If there is

some overlap of objects between transactions, as there is with the elementary traversals of the

shifting traversal, one would expect better performance from a cache management technique

that allowed objects to stay in the cache between transactions, in contrast to systems that

clear the cache at the end of a transaction. This hypothesis is supported by my experiments.

� Garbage collection and shrinking provide good performance. One might expect that a combina-

tion of garbage collection and judicious shrinking when needed would allow a traversal to slow

down gracefully as the cache size is reduced. This hypothesis is supported by my experiments.

� clock shrinking is superior to random shrinking. By analogy to virtual memory page re-

placement, one might expect the clock policy to perform better than random shrinking.

This hypothesis is supported, but only weakly.

� lru shrinking is superior to clock shrinking. Since the lru shrinking technique can make

�ner distinctions as to which objects were recently used, one might expect it to perform better

than clock shrinking. This hypothesis is supported by my experiments.

� Only a small fraction of the objects in the cache should be shrunk. One might expect that

carefully shrinking a few objects when needed would maximize performance. This hypothesis

is supported by my experiments, but needs quali�cation: shrinking too few objects is more

expensive than shrinking too many. If it is di�cult to establish the best operating region, it

is better to shrink too many objects than to shrink too few.

� minfetch shrinking is superior to all other shrinking. minfetch is designed to minimize

the number of fetches (the details of the algorithm appear in Appendix A). However, it is

important to check whether minimizing fetches is enough to minimize elapsed time. This

hypothesis is supported by my experiments.

7.4 Understanding the Data for One Policy

Before comparing shrinking policies or varying the parameters of the con�guration, it is important

to understand the data being presented for a single policy in a single con�guration. Figure 7-6

shows the behavior of the total shrinking policy in its default con�guration. The details of the

default con�guration are described in the next section, which considers varying the parameters. The
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Figure 7-6: Example shrinking policy: total
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graphs are presented roughly in order of signi�cance. The top graph shows elapsed (wall-clock) time

as measured by the on-chip cycle counter of the workstation. The two graphs immediately below

the graph of elapsed time show the number of fetch requests sent to the server and the number

of words copied by the garbage collector. Fetch requests are typically the dominant cost in the

system, and garbage collection costs are secondary. The two graphs in the right hand column show

di�erent aspects of shrinking. These graphs have relatively little direct connection to the elapsed

time, but they are useful for showing the behavior of the system. The upper right graph shows the

number of objects chosen to be shrunk. The lower right graph shows the number of objects actually

discarded from the cache. For this policy in this con�guration, the graphs have the same shape;

but in general, shrinking objects may make some other objects unreachable, so that the garbage

collection after shrinking may reclaim more objects than just the ones shrunk.

In addition to measuring the number of objects reclaimed, I also measured the storage reclaimed

(measured in bytes). Because the average object size is relatively constant in di�erent parts of the

overall traversal, the curve for the number of bytes reclaimed always had the same appearance as

the curve for the number of objects reclaimed; therefore the bytes-reclaimed data is not presented

here.

The shapes of the graphs are rather complex. Before considering variations in parameters or

comparing policies, I describe some of the features of these graphs in more detail.

The shifting traversal does not create very much garbage: in the absence of shrinking, it essen-

tially has a monotonically growing heap until it ends. Note that the largest cache size for which

the garbage collector runs is actually somewhat larger than the entire database used. Since the

garbage collector can only run between operations, it must run slightly before the cache is full; the

gc trigger parameter controls how close to the edge the system runs before starting a collection. If

the cache manager somehow knew the computation in advance, it could avoid performing a garbage

collection at such a point; but in the absence of such knowledge, running out of cache is a much

more serious performance problem than excessive garbage collection, since the former means that

the system stops while the latter only slows it down.

Shrinking is triggered as a consequence of the garbage collector failing to free enough space.

In this data, shrinking is triggered after all the live objects have been copied once, and (with the

total policy) causes essentially all of those live objects to be shrunk. When there is little enough

storage that garbage collection is needed, there is roughly a one-to-one correspondence between

objects copied, objects shrunk, and objects discarded; so it is not surprising that the curves for

these quantities have identical shapes.

Two features of these graphs are somewhat puzzling. First, the four identically-shaped curves

show an odd \stair step" pattern. Second, the number of fetches actually increases with some

increases in cache size.
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Figure 7-7: Number of times shrinking is triggered

The drops in the \stair step" pattern are simple to explain: each drop in the graph corresponds

to a point at which the system does less shrinking than it did at the previous level. Figure 7-7

shows the number of objects shrunk and the number of times that shrinking is triggered. The 
at

portion of the graphs on the right represents cache sizes for which shrinking is unnecessary. The

sharp drop at about 14000 Kbytes represents the transition to a cache large enough that shrinking

is not triggered. Similarly, the sharp decrease below 10000 Kbytes comes about because the cache

is large enough to trigger shrinking once instead of twice.

The slope between the jumps is caused by the changing cache size, since garbage collection is

triggered by reaching a particular fraction of the cache size. As the cache size grows, a �xed fraction

of the cache contains more objects to shrink when shrinking is triggered.

Returning to Figure 7-6: The variation in the number of objects fetched (middle left graph) is best

understood as relatively small 
uctuations due to the complex interaction between the prefetching

mechanism and the point at which shrinking occurs. A later experiment (described in Section

7.5.3) varies the maximum size of the prefetch group. The results of that experiment show that the


uctuations in the lower left graph of Figure 7-6 are larger than the 
uctuations observed for other

prefetch group sizes, but the 
uctuations are insigni�cant compared to the large overall di�erences

in fetches for di�erent prefetch group sizes.

The graphs in Figure 7-6 show that fetching is the dominant e�ect in determining the elapsed

time: the curve for elapsed time (upper left) is quite similar in shape to the curve for fetches (lower
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left). The other factors in the system seem to have only a second-order e�ect. Intuitively, one would

expect that fetching is the dominant e�ect, garbage collection is secondary, and shrinking costs are

tertiary. The following approximate calculation supports that intuition: The fetching curve shows

about 104 fetches occurring, and we know from Chapter 4 that each fetch costs on the order of

105 cycles. So we might expect the fetching to be taking 109 cycles. The copying curve shows 106

or more words copied for small caches. We might expect the garbage collector's cost (copying and

various table updates) to work out to no more than 10-100 cycles per word. So the garbage collector

could take no more than 108 cycles. The shrinking curve shows no more than 105 objects being

shrunk. Even if the cost of each shrink were as high as 100{1000 cycles, the shrinking cost would be

no more than 107{108 cycles.

7.5 How to Compare Shrinking Policies

Shrinking policies interact with other aspects of the system, such as prefetching and garbage collec-

tion. The following parameters seem likely to a�ect the behavior of the system when we compare

shrinking policies:

� garbage collection trigger

� prefetch algorithm

� maximum prefetch group size

� shrink trigger

� shrink fraction

The garbage collection trigger determines when there is little enough free space left so that the

garbage collector should run. It was described in Chapter 6. The prefetch algorithm determines

which extra objects are sent from the server, and the prefetch group size determines how many extra

objects may be sent from the server. Both were described in Chapter 5. We determined in Chapter

5 that bf-cuto� was a good prefetcher, and that a good prefetch group size for this database was

about 30 objects. We further determined that this value was not a�ected by changing the size of

the database as long as the objects themselves stayed roughly the same. Accordingly, we use those

as the starting points for understanding how performance changes with varying parameters. The

shrink trigger determines when the garbage collector has failed to recover enough storage, so that

shrinking must occur. It was described in Chapter 6. The shrink fraction determines (for certain

shrinking policies) what fraction of the cached shrinkable objects should be discarded from the cache

when shrinking is triggered. It was also described in Chapter 6.
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GC trigger freespace � 20000 8-byte words

Prefetching algorithm bf-cuto�

Prefetch group size � 30

Shrinking trigger freespace � 50% of halfspace after gc

Fraction of objects shrunk Not applicable

Figure 7-8: Starting values for parameters for total

These �ve parameters control shrinking and storage management, and it is not obvious how

they a�ect system performance. By varying these parameters and comparing performance on the

shifting traversal, it is possible to determine which parameters have the largest e�ect and to proceed

accordingly.

7.5.1 Varying the GC trigger

Figure 7-9 shows the e�ect of varying the gc trigger point when using the total policy. In this and

subsequent Figures, the default con�guration's performance is shown as a solid line and all variations

are dotted lines. Since most of the curves are quite similar, I show only the default gc trigger point

(20000 8-byte words), a larger value (50000 words), and a smaller value (2000 words). A smaller gc

trigger leads to fewer collections; a larger gc trigger leads to more collections. One would expect a

smaller gc trigger to improve performance. However, a gc trigger point of 1000 words (not shown)

is too small: the traversal fails to complete for some cache sizes.

The performance gain for a low gc trigger point is rather small, while there is an increased

potential for the system to simply stop. Accordingly, it does not seem worthwhile to try for careful

tuning of the gc triggering mechanism. Overall, variations in the gc trigger have little e�ect on the

system's performance. There is no evidence to suggest that the gc trigger is critical to comparing

shrinking policies.

7.5.2 Varying the Prefetch Algorithm

Figure 7-10 shows the e�ect of varying the prefetch algorithm when using the total policy. These

graphs con�rm what was demonstrated in Chapter 5: the simple bf-cuto� prefetcher is better than

either depth-�rst or bf-continue prefetching, even though the bf-continue prefetcher fetches less

often. In Chapter 5, there was no storage management, but we can see that the addition of storage

management does not change the result. As in Chapter 5, the explanation is that each individual

fetch with bf-continue is taking longer on average than is the case for bf-cuto�.

There are three other interesting features of these graphs. First, on the graphs dealing with

storage management (bottom left and the two right graphs) the curves for bf-continue are shifted
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Figure 7-9: total, varying gc trigger
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Figure 7-10: total, varying prefetch algorithm
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to the right from the curves for bf-cuto�. The shift suggests that bf-continue is fetching 500{1000

Kbytes more than bf-cuto� or depth-�rst. Second, a comparison of the elapsed time curves (top)

with the fetches curves (middle left) shows that bf-continue prefetching behaves quite di�erently

from bf-cuto� or depth-�rst prefetching: the depth-�rst and bf-cuto� curves have approximately

the same shape and relative position on the two graphs, whereas bf-continue changes both its shape

and relative position. Third, the di�erent policies show a large di�erence in the graph of fetches,

but very little di�erence in the graphs related to storage management (words copied, shrinks, or

objects discarded). The prefetch algorithm, like the gc trigger, seems to have little e�ect on storage

management.

7.5.3 Varying the Maximum Prefetch Group Size

If the maximum prefetch group size gets smaller, we would expect system performance to degrade.

Figure 7-11 shows the e�ect of decreasing the maximum prefetch group size when using the total

policy.

In Figure 7-11, decreasing the maximum prefetch group size causes elapsed time (top) to increase

dramatically, especially when prefetching is eliminated (a prefetch group of 1 means single-object

fetching). The graph of fetches (middle left) shows that most of this e�ect is due to increased

fetching, as might be expected.

Figure 7-11 also shows that decreasing the size of the maximum prefetch group has a bene�t: it

decreases the cache size at which storage management is needed. A single-object fetching system can

complete the shifting traversal in a 10000 Kbyte cache without needing to do any garbage collection

or shrinking at all; the default con�guration requires more than 15000 Kbytes of cache to avoid

using garbage collection or shrinking. However, this e�ect is not critical to performance. Despite

the overhead of storage management, the default con�guration (with 30-object prefetch group) is

more than twice as fast for a 10000 Kbyte cache as the single-object fetching system.

Figure 7-12 shows the e�ect of increasing the maximum prefetch group size when using the total

policy. In contrast to the large e�ect shown in Figure 7-11 for decreasing the prefetch group size,

Figure 7-12 shows that increasing the maximum prefetch group size has little e�ect on elapsed time

(top graph). We already know from Chapter 5 that increasing the maximum prefetch group size

hurts the performance of the system on sparse traversals. The potential gain with higher prefetch

levels is much smaller than the potential losses with lower prefetch group sizes.

The number of fetches 
uctuates sharply for a maximum prefetch group size of 75. Recall from

Chapter 5 that even on a dense traversal, a higher prefetch level sometimes (paradoxically) causes

more fetching. When comparing the elapsed time graphs in Figures 7-11 and 7-12, the reader should

note the di�erence in the scales used on the respective y axes. The 
uctuations in elapsed time that

seem quite large in Figure 7-12 are actually small compared to the di�erences shown in Figure 7-11.
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Figure 7-11: total, decreasing maximum prefetch group size
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Figure 7-12: total, increasing maximum prefetch group size
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7.5.4 Varying the Shrink Trigger

The shrink trigger controls the point at which the system decides to shrink. A low shrink trigger

means that the system shrinks objects more readily. The default shrink trigger is set at 0.5, meaning

that shrinking is triggered whenever a garbage collection fails to recover at least 0.5 of the heap (since

it is a copying collector, 0.5 of the heap means 0.5 of a halfspace, or 0.25 of the whole cache). Figure

7-13 shows the e�ect of varying the shrink trigger when using the total policy. A shrink trigger of

0.05 or less has much worse performance for smaller caches than other shrink triggers. The graph

of gc copying (lower left) shows that for a shrink trigger of 0.05 there is an explosion of garbage

collection, repeatedly copying objects that should have been shrunk.

There are two broad regions in which the system's performance does not change with small

changes in the shrink trigger: one is with the shrink trigger in the range 0.2 to 0.35, and the other is

with the shrink trigger in the range 0.45 to 0.9. Since the default value of 0.5 is in the latter range,

that range is plotted with a solid line.

Figure 7-14 shows shrink triggers smaller than the lower region. Shrink triggers smaller than 0.2

show excessive garbage collection (middle left), similar to what was apparent for a shrink trigger of

0.05, although not as extreme. A shrink trigger in the range 0.2 to 0.35 shows the best performance

in terms of fetches (lower left) and elapsed time (upper left). Higher values for the shrink trigger

cause more shrinking to happen, causing less garbage collection but more fetching. Since refetching

an object is more expensive than copying it during garbage collection, the higher shrink triggers

show higher elapsed times.

Being too reluctant to shrink causes high costs due to excessive garbage collection: live but

irrelevant data is being copied and recopied, when it would be better to discard it and refetch it if

needed. The excessive cost is not an artifact of using a copying collector: a mark/sweep collector

would be similarly penalized for keeping too much live but irrelevant data, since garbage collections

would be triggered more frequently and both marking and sweeping would take longer.

7.5.5 Better con�guration for total

Figure 7-15 summarizes a better con�guration for the total policy, based on the experiments of

this section. The only signi�cant change is that shrinking is triggered when 30% or less of halfspace

is free after a garbage collection, whereas the initial con�guration used 50% as the trigger. Figure

7-16 compares this better con�guration to the original con�guration.

7.5.6 Discussion

This section has presented a detailed examination of all the parameter variations for total. A

similar collection of experiments was performed for the other policies, con�rming the overall con-
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Figure 7-13: total, varying shrink trigger
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Figure 7-14: total, very small shrink triggers
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Prefetching algorithm bf-cuto�

Prefetch group size � 30

GC trigger freespace � 20000 8-byte words

Shrinking trigger freespace � 30% of halfspace after gc (changed)

Figure 7-15: Better values for total parameters

clusions found here. The graphs for those experiments appear in Appendix B. To summarize that

data, three of these parameters | gc trigger, prefetching algorithm, and prefetch group size | are

independent of the shrinking policy chosen, and experiments showed that they have very similar

e�ects on performance with any of the shrinking policies. The shrink trigger and shrink fraction

a�ect the di�erent shrinking policies somewhat di�erently, but neither parameter has a very large

e�ect on overall performance of any policy. A reasonable rule of thumb is that the choice of prefetch

algorithm and prefetch group size dominate any other parameter choice for any single shrinking

policy.

7.5.7 total vs. clearcache

It is worth distinguishing total from another common policy with which it might be confused. In

this policy (which I call clearcache), the system clears the cache at the end of each transaction.

This cache-clearing takes place only because of the transaction boundary, which in turn is simply due

to the consistency requirements of the computation, not because of any actual storage management

need at that point in time. The clearcache policy has the advantage that it simpli�es some

aspects of cache management. However, it can have performance problems compared to a policy

like total that clears the cache only when the cache �lls.

In Figure 7-17, the traversal is treated as a series of smaller atomic transactions. Each elementary

traversal making up the traversal is considered to be a distinct transaction. These may be thought

of as atomic transactions, but in the experiment the commit at the end of each transaction takes

no time at all. For these read-only transactions at a single site, a commit would actually require

about the same amount of time as a fetch; compared to the number of fetches in each transaction,

this overhead is indeed quite small. However, if the transactions involved modi�cations or multiple

sites, the cost of each commit would be comparable to several fetches.

clearcache works well if successive transactions use disjoint sets of objects. However, there are

two ways that a policy like clearcache can perform poorly. First, when successive transactions

have a number of shared objects, as in this example, a policy like clearcache discards a number of

objects at the end of a transaction that must be refetched by the following transaction. Figure 7-17

shows that the system performs much better by using a policy (such as total) that only clears the
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Figure 7-16: total, better vs. original con�guration
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Figure 7-17: clearcache vs. total
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client cache when it has �lled up. The second way that clearcache can perform poorly is when

a transaction reads more objects than can �t into the client's cache. If the cache can be emptied

only at a transaction boundary, a transaction can �ll the cache and then be unable to proceed. In

contrast, a policy like total allows a larger number of objects to be fetched, read, and then shrunk

as needed.

Until the cache gets very small, the clearcache policy performs worse than total. This is a

substantial argument against clearcache when subsequent transactions have related data objects,

especially since total does not do particularly well compared to other more sophisticate policies

examined later in this chapter.

7.6 Comparing Shrinking Policies

Figure 7-18 shows minfetch, an unachievably good policy, and maxfetch, its unachievably bad

mirror image. Between the two, but much closer to minfetch, lies the region of policies tested in

this chapter. In this Figure, the realistic policies are plotted using the same mark so as to de�ne a

region of curves rather than speci�c curves. Note that the maxfetch curve begins at a cache size

of 9500 Kbytes; for the con�guration used, it was not possible to complete the benchmark traversal

using a maxfetch policy and smaller caches. The graph of fetches shows that the minfetch policy

had the lowest number of fetches, as expected.

7.6.1 total

Figure 7-20 compares total (which we have already considered in some detail) with minfetch.

Figure 7-19 shows the parameters used for total in this comparison. Both total and minfetch

are in con�gurations chosen to minimize the area under the curve of elapsed time. Accordingly,

minfetch has a lower elapsed time for most cache sizes, but not for all. As we have noted previ-

ously, the performance of total is relatively erratic: there are large 
uctuations in performance for

small changes in cache size. minfetch is more consistent. For minfetch, the number of fetches

actually increases with increasing cache size. This apparent anomaly simply re
ects the fact that

minfetch is better than the bf-cuto� prefetcher at determining which objects should be present in

the cache. When the cache is smaller, minfetch is called on more often. It is not surprising that

minfetch should do better than the prefetcher, since minfetch actually has access to the entire

future computation.

7.6.2 random

With the random shrinking policy, a coin is tossed for each shrinkable object. The shrink fraction

determines the bias on the coin, and accordingly the fraction of object shrunk is only probabilistically
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Figure 7-18: Best, worst, and realistic shrinking policies

Shrinking trigger freespace � 30% of halfspace after gc

Fraction of objects shrunk Not applicable

Figure 7-19: Good parameters for total
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Figure 7-20: total vs. minfetch

Shrinking trigger freespace � 30% of halfspace after gc

Fraction of objects shrunk 15%

Figure 7-21: Good parameters for random

121



0 5000 10000 15000 20000

cache size (K bytes)

0

10

20

30
E

la
ps

ed
 t

im
e 

(s
ec

on
ds

)

RANDOM
MINFETCH

0 5000 10000 15000 20000

cache size (K bytes)

0

500000

1000000

1500000

2000000

8-
by

te
 w

or
ds

 c
op

ie
d 

by
 g

ar
ba

ge
 c

ol
le

ct
or

0 5000 10000 15000 20000

cache size (K bytes)

0

5000

10000

F
et

ch
es

0 5000 10000 15000 20000

cache size (K bytes)

0

10000

20000

30000

40000

50000

Sh
ri

nk
s

0 5000 10000 15000 20000

cache size (K bytes)

0

50000

100000

150000

O
bj

ec
ts

 d
is

ca
rd

ed

Figure 7-22: random vs. minfetch
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Shrinking trigger freespace � 30% of halfspace after gc

Fraction of objects shrunk 15%

Figure 7-23: Good parameters for clock

close to the shrink fraction speci�ed. However, for the benchmarks used, this mechanism worked well

and produced shrinking comparable to what was achieved by other, more careful mechanisms, as can

be seen by comparing the curves for objects discarded for the random and clock policies (clock

appears in the next section). Figure 7-22 compares random with minfetch. The curve of shrinks

(upper right) for the random policy is quite di�erent from the curve of objects discarded (lower

right), in contrast to what is shown for total in Figure 7-20. This suggests that with a random

selection of objects to be shrunk, the relationship between objects chosen and storage recovered is

more complex than is true for total, which matches intuition. Note also that random shrinks

many fewer objects than total, since it is shrinking only 15% of the objects instead of 100%.

7.6.3 clock

With the clock pseudo-LRU shrinking policy, each object has a \use" bit that is set when the

object is used by the client computation. The system chooses an object to shrink by proceeding

sequentially through the table of objects present at the client, starting each time at the entry where

it ended the previous time. If the object's \use" bit is set, that bit is cleared. If that bit is clear,

the object is shrunk. The algorithm terminates when enough objects have been shrunk to meet the

shrink fraction, or after cycling through the entire table of objects present at the client.

The overall performance of clock is very similar to that of random. Apparently the single

bit per object is not retaining enough information about access patterns, so that the e�ect is no

di�erent from a random distribution of bits. In contrast to both random and total, there is a

runtime cost for clock even when no shrinking is needed: the system must keep setting the \use"

bits.

At the beginning of any method that reads or writes a �eld of a mutable object, a prologue is

executed that performs the housekeeping necessary to track which objects have been read by the

current transaction. After the �rst time that an object has been read, subsequent invocations of

that method incur a cost of only 4 + 2J cycles. Modifying the prologue to support the setting of a

use bit in the object requires two additional instructions, for a cost of 6+2J cycles. Using the value

J = 12 determined earlier, we can determine that the clock scheme requires 30 cycles compared

to 28 cycles with no overhead, or about a 7% maximum increase. Note that for a method that is

longer, the two-instruction overhead added by clock is proportionally smaller. For the benchmark

used, there was no measurable sign that maintaining the use bits for clock was slowing down the

system.
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Figure 7-24: clock vs. minfetch
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Shrinking trigger freespace � 30% of halfspace after gc

Fraction of objects shrunk 50%

Figure 7-25: Good parameters for lru

7.6.4 lru

Whereas the clock policy uses a single bit per object and sets or clears that bit, the lru policy

uses a 31-bit timestamp on each object. Each time an object is used, the timestamp is incremented

and stored in the object used. The policy has a parameter that estimates the frequency with which

each object is touched by the computation. The di�erence between the current timestamp and

the timestamp at the last shrink provides the total number of references since the last shrink. By

using the total number of references and the estimate of multiple references to the same object, the

policy estimates a threshold timestamp that should shrink the desired shrink fraction. All of the

objects below that threshold are shrunk. In the benchmarks used, the policy assumes that each

object is used, on average, 3 times. This parameter behaves like many of the other shrinking-related

parameters: for a fairly broad range of values, it a�ects the shrinking behavior observably but has

relatively less e�ect on the overall elapsed time. For the value of 3, the shrink fraction speci�ed is

quite close to the fraction shrunk, so that a shrink fraction of 0.5 actually shrinks roughly 50% of

the objects in the cache. The implementation of the lru policy depends on modifying the method

prologue in much the same way as was described for clock. Instead of a 2-cycle overhead, lru

imposes a 5-cycle overhead, for a total cost of 9 + 2J ; however, as with clock, this overhead is not

large enough to be measurable with this benchmark.

The performance of lru is very similar to the unattainable performance of the minfetch policy:

both a small number of fetches and a low elapsed time. This suggests that a good, cheap, accurate

LRU approximation can give very good shrinking performance. However, it is challenging to imple-

ment such an approximation for general workloads. The hard part of getting the lru policy to work

in practice is estimating the threshold timestamp for shrinking. Computing that threshold depends

on estimating the average number of uses per object, and that estimate is impossible to provide a

priori for an arbitrary workload.

A comparison of lru and clock is particularly interesting. The approximation of least-recently-

used implemented by the clock policy does not require any of the estimation needed for lru, and

is straightforward to implement for arbitrary computations. However, clock has little advantage

over mechanisms such as total and random that do not track usage information at all.
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Figure 7-26: lru vs. minfetch
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7.6.5 Comparison

The signi�cant di�erences in elapsed time occur only in the region between 4000 and 10000 Kbytes,

which is approximately the region in which storage management is taking place but thrashing has

not yet set in. That is the region that was shown in Figure 7-17, and is also the region shown in

Figure 7-27. Figure 7-27 shows that lru does consistently better than the other techniques. Among

the other techniques, there is little meaningful di�erence between clock and random. The total

policy sometimes does better than clock or random, and sometimes does worse; overall, total is

more volatile than clock or random. The total policy also shrinks the most objects, and causes

the fewest objects to be copied by the garbage collector, both as expected. The minfetch policy

causes the fewest objects to fetched, again as expected.

Since prefetching is so important to performance, it is possible that prefetching is masking some

important di�erence among policies. Figure 7-28, which shows the e�ect of turning o� prefetching,

also shows that this possibility is not true. The largest e�ect shown by the graphs is that no matter

what the cache management policy, the system is running a good deal slower: the best time is

more than 40 seconds, compared with slightly less than 20 seconds with prefetching. The other,

subtler e�ect is that total is now a fairly consistently bad policy. With prefetching, one might

have argued for the value of total in some regions; if one knew that one's application were in a

similar region, one could say that total was not only cheap to implement but o�ered reasonably

good performance. In the absence of prefetching, it is apparent that total is basically a poor cache

management policy at all cache sizes. The total policy, unlike the others, is made a good deal

better by prefetching. The total policy has the disadvantage that it throws out potentially-useful

objects, but it has the advantage that no space is consumed by useless objects; prefetching helps to

compensate for throwing out too many objects.

7.6.6 Discussion

Garbage collection and shrinking allow the computation to tolerate smaller caches than would oth-

erwise be possible, with relatively little overhead. The data in Chapter 6 showed that the dense

shifting traversal locks up between 9000 Kbytes and 10000 Kbyte when using only garbage collection;

the data presented here shows that shrinking allows the computation to use an 8000 Kbyte cache

while requiring only about 1.25 times the fastest elapsed time, or even a 4000 Kbyte cache while

requiring only about 2 times the fastest elapsed time. The experiments con�rm the value of garbage

collection and shrinking for running with a client cache that is not large enough to hold all accessed

objects simultaneously.

The minfetch implementation does well, as one would expect. Some of the comparisons with

other policies show regions in which minfetch fetches more objects than the other policy: the
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Figure 7-27: Comparing shrinking policies, detail
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Figure 7-28: Comparing shrinking policies without prefetching
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reader should keep in mind that the policies are being compared in their good con�gurations, not in

identical con�gurations. Whenever the minfetch policy is compared to another policy on the same

con�guration, minfetch does in fact have the lowest fetch rate and the shortest elapsed time. For

these traversals, the intuition seems correct that shrinking to minimize fetches is approximately the

same as shrinking to minimize elapsed time.

7.7 Related Work

Chapter 6 discussed previous work on mechanisms like shrinking in object caching systems. There

does not appear to have been any previous work on comparing shrinking policies in object caching

systems. There are two large bodies of somewhat-related work. One is the design of processor

caches, and the other is the design of virtual memory systems.

Work done on processor caches is not directly applicable to a client object cache both because

processor caches typically deal with �xed-size units of transfer (cache lines) and because processor

cache references occur much more frequently than object cache references. The \replacement policy"

of a processor cache is typically determined by the hardware cost of building a particular degree

and 
avor of associativity; for recent examples, see work on column-associative caches [2] or skewed-

associative caches [61]. The designers of processor caches are also concerned with how to write back

changes: see Jouppi's recent work [37] for an example. This sort of work is not applicable to object

caches as described in this thesis, since objects are never written back except at transaction commit.

Similarly, work done on virtual memory systems is not directly applicable to a client object cache.

Again, virtual memory systems typically deal with �xed-size units of transfer (pages). The length

of time a computation stays within a single page is likely to be much longer than the length of time

a computation stays within a single object, especially with pages that are a hundred or more times

larger than a typical object. Previous work on virtual memory policies [24] demonstrated that the

fault rate of a program is much more sensitive to memory size than to the choice of paging algorithm,

for all reasonable algorithms including Belady's unrealizable optimal algorithm [5]. This result is

rather similar to the discovery in this chapter that the minfetch policy does somewhat better than

any of the realizable policies, but that even its performance degrades rather quickly with decreasing

memory size.

Policies like clock are better than policies like random in a virtual-memory environment [24],

and there are two plausible explanations for this di�erence. First is that objects (the granularity

of eviction in Thor) are much smaller than pages (the granularity of eviction in virtual-memory

systems). For the same number of di�erent words referenced, a computation may spend longer in a

single page than in a single object, with a corresponding decrease in the number of pages marked as

used. The second explanation is that a virtual-memory system is typically used for both data and
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instruction references, whereas the client cache in Thor is used only for data references. Whatever

locality there is in the code being executed does not a�ect the behavior of the Thor client cache,

whereas it does a�ect a virtual memory system. When we consider the relatively good performance

of lru and the relatively poor performance of clock, it seems reasonable to think in terms of

the number of bits required to capture useful access patterns. One bit on a virtual memory page

is apparently enough to capture some fraction of a useful access pattern for typical computations

(data and instructions) in virtual memory; however, that bit is not enough to capture a useful access

pattern at the granularity of data references to individual objects. Using a larger number of bits, as

in the lru implementation, improves the capture of the access pattern well enough that the system

can perform quite well.

7.8 Summary

This chapter has used shifting traversals of a wide database to explore the e�ects of

� prefetch policy

� shrinking policy

� prefetch group size

� shrinking trigger point

� fraction of objects shrunk, and

� garbage collection trigger point

as the client cache size decreases.

In the current system, shrinking too few objects is more harmful to system performance than

shrinking too many. Especially with prefetching in place, the system can recover from excessive

shrinking by quickly fetching back large groups of objects. In the current Thor implementation,

there is no corresponding mechanism to mitigate the expense of keeping too many objects in the

heap, and repeatedly copying them. A generational collector may be a useful future addition to Thor:

unshrinkable objects could migrate into an older and less-frequently-scanned generation; shrinkable

objects could be shrunk at the point where they would otherwise migrate into the older generation.

The lru policy does conspicuously better than every other policy except the unattainable min-

fetch policy. Among the other policies, although there are conspicuous di�erences in the behavior

of the systems with di�erent shrinking policies, the di�erences in terms of elapsed time are much

less noticeable. A coarse approximation of LRU (clock) is no better than simpler policies with no

run-time overhead (total, random).
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For the workload considered, the system's performance is relatively insensitive to changes in

the trigger point or fraction of objects shrunk. The prefetch policy and prefetch group size are

more important to performance than shrinking policy. When the cache is too small for all of the

objects, some objects must be discarded and subsequently refetched. Because each fetch is expensive,

prefetching continues to be the dominant factor in performance, as it was in Chapter 5, even though

the cache was e�ectively in�nite in the experiments described there. This is an important point of

this chapter: prefetching matters a great deal, and the parameters dealing with shrinking policy are

less important.
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Chapter 8

Conclusion

The thesis has considered how to fetch and cache objects at clients in a distributed object database.

This chapter reviews contributions and draws conclusions, and then considers future work.

8.1 Review and Conclusions

The thesis has dealt with the issues of e�ciently managing objects fetched to a client cache. There

were three sets of experiments presented, dealing with inter-object references, fetching objects, and

evicting objects.

Chapter 4 considered the performance of two swizzling techniques (node marking and edge mark-

ing) in a single-object-fetching system. Experiments showed that edge marking is usually faster than

node marking, as implemented in Thor. However, the advantage of edge marking is not large, and

the real conclusion is a negative result: the choice between edge marking and node marking is not

very signi�cant. This contradicts previous work that has argued for application-speci�c choices of

swizzling technique; that previous work was based on microbenchmarks that may have tended to

exaggerate the importance of swizzling technique.

The next experiments (in Chapter 5) considered how to bring objects into the cache. Simple

dynamic prefetching techniques performed better than single-object fetching. In addition, those

simple dynamic techniques adapted better to a changing client workload than a technique that

prefetched statically-computed page-like groups. The bf-cuto� prefetcher, which attempted to avoid

sending objects already at the client, completed traversals faster than prefetchers that paid no

attention to which objects had already been sent. Most of the prefetchers used only the structure

of objects and the recent history of the computation in making prefetch decisions, so they would be

suitable for use even when no information is available about the semantics of objects or behavior of

applications. A prefetcher that made use of the semantics of objects achieved better performance

than one that used only the structure of objects, but performed worse when the database changed
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so that it no longer matched the prefetcher's model of the objects stored.

These experiments used a narrowly-focused synthetic workload. Accordingly, it would be un-

reasonable to claim that dynamic prefetching is superior to static prefetching in general. However,

dynamic prefetching showed important advantages with workloads where the collection of objects

in use may change with di�erent applications, with di�erent users, or over time. While there may

be databases and applications that are su�ciently static that clustering works better than dynamic

prefetching, dynamic prefetching techniques seem likely to be useful for many distributed object

databases and their users.

The remainder of the thesis considered how to evict objects from the cache. Chapter 6 presented

the problem of cache lockup. Reliable management of an object cache requires both garbage col-

lection and shrinking, since either technique on its own is likely to cause cache lockup. Chapter 7

compared policies for shrinking objects in the client cache. The lru policy did nearly as well as the

unattainably good minfetch policy, but all other policies did roughly equally poorly. Chapter 7

also put the issue of shrinking policy in context, pointing out that prefetching algorithm and prefetch

group size have a larger e�ect on performance for the benchmark used than does the shrinking policy,

shrink trigger, or shrink fraction.

For applications that do traversals of complex structures of small objects, the thesis suggests the

use of edge marking and bf-cuto� prefetching, bringing over a few tens of objects at a time. An

accurate least-recently-used cache management policy (like lru) is worth implementing; however,

the cheaper approximation of LRU (clock) showed no particular advantage over other policies

(random, total) that are easier to implement and have lower runtime overhead. Since shrinking

is only used for storage management after gc has been tried, there may be quite a long time be-

tween shrinks; for the workloads used, one bit per object was not enough to capture any signi�cant

information about access patterns.

8.2 Future Work

This work has built on the best existing synthetic benchmarks for object databases and on assump-

tions about the important set of behaviors for applications using object databases. As more such

applications are built, it is important to analyze them to determine their actual behavior, and which

components of that behavior are critical to performance.

It would also be useful to extend this work, either by using new and improved synthetic bench-

marks as they become available, or by covering aspects of the system that were omitted from this

work. To bound the scope of the problem considered, the following concerns were omitted from

this thesis: fetching objects from the server's disk, transactions that modify objects, writing objects

back to the server, multiple clients fetching objects from a single server, and concurrency control
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problems such as con
icting transactions. There are applications for which these omitted factors

limit achievable performance. It is important to understand the characteristics of such applications

and the relative importance of these other factors.

There is still room for improvement in the performance of the system when fetching. The results

of this thesis suggest that prefetching is the area most likely to yield performance gains. Possibilities

include di�erent prefetching algorithms or storing application-speci�c information with objects.

Vitter and Krishnan [72] have studied the use of data compression algorithms to achieve optimal

prefetching and Curewitz, Krishnan and Vitter [20] have applied practical prefetchers derived from

this theory to database traces. Their work would be a logical starting point for developing more

sophisticated prefetchers to replace the simple ones that I implemented.

I have proposed a mechanism called crystals as a way of controlling prefetching in a system like

Thor [21]. A crystal is an object that represents an explicitly- or implicitly-constructed group of

objects. When the computation reaches the crystal, the associated group of objects is prefetched.

The work on transparent informed prefetching [58] applies a similar approach in the context of

Unix. Tait and Duchamp [70] describe a mechanism for �le prefetching that attempts to work

automatically, matching �le access patterns to previously-seen �le access patterns. It would be

interesting to see if the same idea could be applied to object fetching.

The name of the method being invoked is a potentially useful piece of information that is not

available to the current prefetchers. In edge marking, an object is fetched before any method is

invoked upon it. (Indeed, with edge marking an object may be fetched and never used.) So the

name of the method cannot be made available to the prefetcher in an edge-marking system. The

name of the method could be made available in a node-marking implementation, although it is

not available in the node-marking version of Thor (the current Thor implementation eliminates the

original identity of the method quite early in the invocation process).

It would be useful to develop models that would allow the prediction of good prefetch group sizes.

Currently both clustering and prefetching involve a certain amount of guesswork and adjustment to

�nd a good operating point. Whatever can be done to make that more systematic will be of great

value in con�guring distributed object database systems.

Another suitable area for future work is building a paged version of Thor that would take ad-

vantage of �xed-size units of caching to simplify storage management. Chapter 5 showed that Thor

is as good as or better than an approximation of a paged system when comparing only fetching and

prefetching. A paged version of Thor could be compared to the current implementation of Thor to

determine whether fetching objects allows better performance overall than fetching pages.
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Appendix A

The minfetch algorithm

The minfetch shrinking policy uses knowledge of the future computation to minimize the number

of fetches. Since fetches are the most expensive part of a traversal, a policy that minimizes fetches

is likely to minimize elapsed time.

This appendix presents the full version of the minfetch algorithm for a cache that may contain

unshrinkable objects. First, though, Figure A-1 shows the simpler form that is possible when dealing

entirely with persistent, unmodi�ed objects; this simpler form is the one used in the experiments

reported here.

The minfetch algorithm ensures the following invariant: For all objects x in the cache at the

end of minfetch, there does not exist any object y outside the cache such that y was in the cache

before minfetch ran and the next use of y occurs before the next use of x in the continuation of

the computation.

The algorithm minimizes the number of fetches required. This problem is not solved by Belady's

opt algorithm [5] for paging systems, since opt only deals with a single page at a time; the minfetch

algorithm discards multiple objects of varying sizes. Since a paged system can only discard whole

1. Ensure that a garbage collection has run, so that all objects in the cache are reachable.

2. Use a future cache identical in size to the real cache. However, the future cache is empty.

3. Use perfect knowledge of the future computation to simulate continuing the computation: for each

object used in the future, add it to the future cache if it is not already in the future cache.

4. When the future cache is full or the computation ends, compare the existing cache and future

cache. Discard any persistent objects that are in the old cache but not in the new cache.

Figure A-1: The simple minfetch algorithm
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1. Ensure that a garbage collection has run, so that all objects in the cache are reachable.

2. Use a future cache identical in size to the real cache. However, the future cache is empty.

3. Add all non-persistent objects to the future cache. None of them can be shrunk. They will be

eliminated later if possible.

4. Use perfect knowledge of the future computation to simulate continuing the computation: for each

object used in the future, add it to the future cache if it is not already in the future cache.

5. When the future cache is full, run a garbage collection on the future cache. If some objects are

unreachable, so that the future cache is no longer full, then repeat the algorithm from that point

in the future. Treat the future cache as the existing cache and allocate a new future cache.

6. When the future cache is full and remains full after GC, or the computation ends, compare the

existing cache and future cache. Discard any persistent objects that are in the old cache but not

in the new cache.

Figure A-2: The full minfetch algorithm

pages, there are con�gurations in which minfetch does better than Belady's opt at minimizing

fetches. However, Belady's opt can never do better than minfetch given the same knowledge,

because minfetch can always discard or fetch the same objects that opt does.

For completeness, Figure A-2 shows the full minfetch algorithm to be used when some objects

may be unshrinkable.
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Appendix B

Storage Management Data

This appendix contains the full set of graphs for di�erent con�gurations of the storage managers.

B.1 minfetch shrinking policy

B.1.1 Varying GC trigger

Figure B-1 shows the e�ect of decreasing the gc trigger to 2000 when using the minfetch policy.

Decreasing the gc trigger decreases the frequency of garbage collection, which should improve per-

formance. As was true for total, a gc trigger of 2000 performs very slightly better than a gc trigger

of 20000. However, again as was true for total, a further decrease to 1000 causes the system to

run out of storage for some cache sizes.

Figure B-2 shows the e�ect of increasing the gc trigger to 50000 when using the minfetch

policy. Increasing the gc trigger increases the frequency of garbage collection, which should decrease

performance. As with total, the graphs show a very small degradation of performance.

B.1.2 Varying Prefetch Algorithm

Figure B-3 shows the e�ect of varying the prefetch algorithm when using the minfetch policy. As

with the total policy, bf-cuto� has the best performance of the three practical algorithms, even

though bf-continue sends fewer fetch requests to the server. As previously observed for total, most

of the curves for bf-continue are very similar to the corresponding curves for bf-cuto�, but the bf-

continue curves are shifted to the right. This means that with bf-continue, the e�ective cache size

is smaller than it is with bf-cuto� prefetching.
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Figure B-1: minfetch, decreasing gc trigger
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Figure B-2: minfetch, increasing gc trigger
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Figure B-3: minfetch, varying prefetch algorithm
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B.1.3 Varying Prefetch Group Size

Figure B-4 shows the e�ect of reducing the maximum prefetch group size when using the minfetch

policy. Figure B-5 shows the e�ect of increasing the maximum prefetch group size when using

the minfetch policy. Most of the curves look quite similar to data examined earlier. As with

total, reducing the maximum prefetch group size has a large e�ect on performance. Increasing

the maximum prefetch group size has comparatively little e�ect on performance, although there is

a notable volatility to the system's behavior with a maximum prefetch group size of 75.

B.1.4 Varying Shrink Trigger

Figure B-6 shows the e�ect of varying the shrink trigger when using the minfetch policy. The data

is quite similar to the corresponding data for the total policy: it is clear that a shrink trigger of

0.05 performs poorly due to not shrinking enough objects. The other two curves represent broad

ranges of shrink trigger values: one from roughly 0.25 to 0.35, the other from roughly 0.45 up. The

curves for 0.40 (not shown) are identical to those for 0.45+ except for slightly worse performance at

very small cache sizes.

The lower region (0.25 { 0.35) clearly represents better performance than the upper region

(0.45+). We thus know that reducing the shrink trigger to the range of 0.25 { 0.35 is better than

its default value of 0.5, but that reducing it to 0.05 is worse.

Figure B-7 shows the e�ect of shrink trigger values smaller than 0.25 but larger than 0.05. Again

as with total, there is no advantage to reducing the shrink trigger below 0.25.

B.2 clock shrinking policy

B.2.1 Varying GC trigger

Figure B-8 shows the e�ect of varying the gc trigger for a system using clock (with a shrink fraction

of 0.15 instead of 0.5). The conclusion is familiar from the discussion of total and minfetch in

earlier sections: Varying the gc trigger has little e�ect until it gets too small. A gc trigger of 1000

is too small to �nish the traversal.

B.2.2 Varying maximum prefetch group size

Figure B-9 shows the e�ect of reducing the maximum prefetch group size for a system using clock

(with a shrink fraction of 0.15 instead of 0.5). Figure B-10 shows the e�ect of increasing the

maximum prefetch group size. The qualitative e�ect is very similar to what has been shown before

for variations in prefetch group size:

� reducing the group size has a large e�ect, increasing it has a small e�ect;
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Figure B-4: minfetch, reducing maximum prefetch group size
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Figure B-5: minfetch, increasing maximum prefetch group size
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Figure B-6: minfetch, varying shrink trigger
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Figure B-7: minfetch, smaller shrink triggers
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Figure B-8: clock, small shrink fraction, varying gc trigger
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Figure B-9: clock, small shrink fraction, reducing maximum prefetch group
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Figure B-10: clock, small shrink fraction, increasing maximum prefetch group
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� there is a noticeable increase in the volatility of the system for a prefetch batch size of 75.

B.2.3 Varying prefetching algorithm

Figure B-11 shows the e�ect of varying the prefetching algorithm for a system using clock (with

a shrink fraction of 0.15 instead of 0.5). As has been observed for other con�gurationso and other

shrinking policies, bf-cuto� prefetching has the lowest elapsed time even though bf-continue causes

fewer fetches.

B.3 random shrinking policy

B.3.1 Varying GC trigger

Figure B-12 shows the performance of random with a small shrink fraction as the gc trigger is

varied. There is nothing surprising here: again, there is little performance di�erence until the gc

trigger gets too small, at which point the traversal cannot complete.

B.3.2 Varying maximum prefetch group size

Figure B-13 shows the e�ect of reducing the maximum prefetch group size for a system using

random (with a shrink fraction of 0.15 instead of 0.5). Figure B-14 shows the e�ect of increasing

the maximum prefetch group size. The qualitative e�ect is very similar to what has been shown

before for variations in prefetch group size:

� reducing the group size has a large e�ect, increasing it has a small e�ect;

� there is a noticeable increase in the volatility of the system for a prefetch batch size of 75.

B.3.3 Varying prefetching algorithm

Figure B-15 shows the e�ect of varying the prefetching algorithm for a system using random (with

a shrink fraction of 0.15 instead of 0.5). As has been observed for other con�gurationso and other

shrinking policies, bf-cuto� prefetching has the lowest elapsed time even though bf-continue causes

fewer fetches.

B.4 lru shrinking policy

Figure B-16 compares lru to clock for the default con�guration. It is already apparent from this

comparison that lru generally o�ers more consistent performance than clock although it seems to

thrash more at small cache sizes (as shown by its performance with a cache size of 4000 Kbytes). It
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Figure B-11: clock, small shrink fraction, varying prefetch algorithm
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Figure B-12: random, small shrink fraction, varying GC trigger
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Figure B-13: random, small shrink fraction, reducing maximum prefetch group
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Figure B-14: random, small shrink fraction, increasing maximum prefetch group
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Figure B-15: random, small shrink fraction, varying prefetch algorithm
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Figure B-16: lru compared to clock
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is also noteworthy that although lru and clock are generally shrinking roughly the same number

of objects, lru actually discards many fewer objects: this seems to indicate that the lru policy is

more successful than clock at choosing \leaf" objects that have become irrelevant, and that clock

is choosing some objects that are internal to the tree being traversed, causing child objects to be

discarded.

B.4.1 Varying the shrink fraction

Figure B-17 shows the e�ect of reducing the shrink fraction. These graphs show that reducing the

shrink fraction only a�ects the elapsed time noticeably for caches below 10000 Kbytes.

Figure B-18 shows the details of that region of the graph, omitting the data for cache sizes above

10000 Kbytes or below 5500 Kbytes. These graphs show that there is little e�ect from reducing

the shrink fraction until the cache is quite small. In addition, the graphs show that the worsening

performance for small shrink fractions is primarily due to increased garbage collection costs: there

is little change in the fetching performance for the di�erent shrink fractions.

Figure B-19 shows the e�ect of increasing the shrink fraction. Again, increasing the shrink

fraction only a�ects the elapsed time noticeably for caches below 10000 Kbytes.

Figure B-20 shows the details of that region of the graph, omitting the data for cache sizes

above 10000 Kbytes or below 5500 Kbytes. These graphs show that for shrink fractions of 0.7 and

above, performance is consistently worse than for a shrink fraction of 0.5, and the cause of the worse

performance is an increase in fetching that eliminates the gain from reduced garbage collection costs.

A shrink fraction of 0.6 has performance approximately comparable to 0.5: neither consistently does

better than the other.

Most subsequent variations of parameters give results similar to what has been described for

total.

B.4.2 Varying the GC trigger

As has been the case for all policies, varying the GC trigger had little e�ect on the performance of

the system.

Figure B-21 shows the e�ect of varying the gc trigger point when using the lru policy.

B.4.3 Varying the Prefetch Algorithm

Figure B-22 shows the e�ect of varying the prefetch algorithm when using the lru policy.
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Figure B-17: lru, reducing shrink fraction
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Figure B-18: lru, detail of reducing shrink fraction
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Figure B-19: lru, increasing shrink fraction
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Figure B-20: lru, detail of increasing shrink fraction
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Figure B-21: lru, varying gc trigger
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Figure B-22: lru, varying prefetch algorithm
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B.4.4 Varying the Maximum Prefetch Group Size

Figure B-23 shows the e�ect of decreasing the maximum prefetch group size when using the lru

policy. Figure B-24 shows the e�ect of increasing the maximum prefetch group size when using the

lru policy.

B.4.5 Varying the Shrink Trigger

Figure B-25 shows the e�ect of varying the shrink trigger when using the lru policy. As has been

true for other policies, a shrink trigger of 0.05 or less has much worse performance for smaller caches

than other shrink triggers; and again as with other policies, the graph of gc copying (middle left)

shows that for a shrink trigger of 0.05 there is too much garbage collection, repeatedly copying

objects that should have been shrunk. Figure B-25 also shows that the shrink trigger only a�ects

elapsed time signi�cantly for cache sizes smaller than 10000 Kbytes.

Figure B-26 shows increased detail in the region of interest. There is substantial variation in the

behavior of the system (how many objects are shrunk) but only small changes in the elapsed time.

No value for the shrink trigger has a clear advantage over the default value.
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Figure B-23: lru, decreasing maximum prefetch group size
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Figure B-24: lru, increasing maximum prefetch group size
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Figure B-25: lru, varying shrink trigger
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Figure B-26: lru, varying shrink trigger
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