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Abstract

How do you determine the running time of a program without actually running it? How do
you design an efficient out-of-core iterative algorithm? These are the two questions answered
in this thesis.

The first part of the thesis demonstrates that the performance of programs can be predicted
accurately, automatically, and rapidly using a method called benchmapping. The key aspects
benchmapping are: automatic creation of detailed performance models, prediction of the
performance of runtime system calls using these models, and automatic decomposition of a
data-parallel program into a sequence of runtime system calls. The feasibility and utility of
benchmapping are established using two performance-prediction systems called PERFSIM and
BENCHCVL. Empirical studies show that PERFSIM’s relative prediction errors are within 21%
and that BENCHCVL’s relative prediction errors are almost always within 33%.

The second part of the thesis presents methods for creating locality in numerical algorithms.
Designers of computers, compilers, and runtime systems strive to create designs that exploit
the temporal locality of reference found in some programs. Unfortunately, many iterative
numerical algorithms lack temporal locality. Executions of such algorithms on current high-
performance computers are characterized by saturation of some communication channel (such
as a bus or an I/O channel) whereas the CPU is idle most of the time.

The thesis demonstrates that a new method for creating locality, called the blocking covers
method, can improve the performance of iterative algorithms including multigrid, conjugate
gradient, and implicit time stepping. The thesis proves that the method reduces the amount
of input-output operations in these algorithms and demonstrates that the method reduces the
solution time on workstations by up to a factor of 5.

The thesis also describes a parallel linear equation solver which is based on a method called
local densification. The method increases the amount of dependencies that can be handled
by individual processors but not the amount of dependencies that generate interprocessor
communication. An implementation of the resulting algorithm is up to 2.5 times faster than
conventional algorithms.

Thesis Supervisor: Charles E. Leiserson
Title: Professor
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Chapter 1

Introduction

How do you determine the running time of a program without actually running it? How do
you design an efficient out-of-core iterative algorithm? These are the two questions answered
in this thesis. The first part of the thesis presents a solution to the first question. The second
part of the thesis presents techniques that create locality of reference in iterative numerical
algorithms and thus improve their performance.

1.1 Performance Prediction

There are numerous situations in which is it necessary or desirable to know the performance
of a program on a given computer system without actually running and timing it. Computer
acquisition and configuration decisions, for example, are often based on performance predic-
tions. Estimating the performance of a program on a future architecture can provide feedback
during computer design. Optimizing compilers can use estimates of the performance of several
ways of compiling a program to select the best one. Unfortunately, traditional methods for
predicting performance are inadequate for many modern computer architectures.

Performance prediction based on a description of the characteristics of the hardware fail
because of two reasons. First, most hardware descriptions describe complex computer systems
with just a few numbers: number of floating-point operations per second, memory bandwidth,
etc. Such descriptions leave important aspects of the system unspecified and therefore, accurate
performance prediction is often impossible. Second, predicting performance with hardware
descriptions is a manual process. Many application of performance prediction require or can
benefit from automatic performance prediction.

Performance prediction based on the results of standardized benchmarks suffers from the
same problems. Even large benchmark suites do not contain enough programs to capture all
the complexities of current computer systems. Predicting performance of a specific program
based on benchmark results requires comparing the program to the programs in the benchmark
suite. The comparison and subsequent performance prediction is a manual and often subjective
process. In addition, many benchmarks do not scale up the problems they solve to match
the increasing performance of computer systems. Consequently, benchmarks often fail to
exercise important components of the system. For example, the code and data of some popular
benchmarks fits within the cache of current microprocessors, and thus, these benchmarks cannot
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reliably describe the performance of the main memory system.
Simulators of computer systems overcome the accuracy and automation problems associ-

ated with hardware characteristics, but they are too slow for many applications. Predicting the
performance of a program with a simulator is often several orders of magnitude slower than
running the program. Such speed is unacceptable for applications such as program optimization.

The first part of the thesis presents a performance-prediction method, called benchmapping,
which is accurate, automated, and fast. Accuracy is achieved by modeling computer systems
with great detail. The modeling software learns most of the details automatically from ex-
periments performed on the system. Automation is achieved using software that decomposes
programs into components whose performance can be accurately predicted. The software then
composes the performance of the entire program from the performance of its components.
Speed is achieved by modeling the performance of a high-level interface, namely data-parallel
runtime systems. Modeling a high-level runtime system limits the overhead of performance
prediction, because the number of program components whose performance must be modeled
is small. In addition, it is often possible to predict the performance of programs without exe-
cuting the runtime system calls. This strategy speeds up performance prediction even further,
making performance prediction faster than program execution.

Automation and and speed render benchmaps suitable for predicting the performance of
programs in applications such as program tuning, acquisition and configuration decision mak-
ing, performance maintenance, hardware design, and compile-time and runtime optimization.

Part I of this thesis, which encompasses Chapters 2 to 6, presents the benchmapping
methodology and its applications. Chapter 2 describes the challenges of performance prediction
and how benchmapping meets these challenges. Benchmapping uses performance models that
are called benchmaps. Chapter 3 describes how benchmaps are created. Chapter 4 describes
two benchmapping tools called PERFSIM and BENCHCVL. Chapter 5 focuses on accuracy
evaluation of benchmaps and shows that the benchmaps that are used in this thesis meet
reasonable accuracy expectations. Part I of the thesis concludes with a discussion of the
applications of benchmapping and of the reasons benchmapping is superior to traditional
performance prediction methodologies.

1.2 Creating Locality in Numerical Algorithms

Designers of computers, compilers, and runtime systems strive to create designs that exploit
the temporal locality of reference found in programs. Unfortunately, many iterative numerical
algorithms lack temporal locality. Executions of such algorithms on current high-performance
computers are characterized by saturation of some communication channel (such as a bus or
I/O channel) whereas the CPU is idle most of the time.

The main contribution of Part II of the thesis, which encompasses Chapters 7 to 11, is a
collection of the first efficient out-of-core implementations for a variety of iterative algorithms.
Chapter 7 surveys the methods that are used in Part II to create temporal locality of reference.
The chapter explains the essence of each of the techniques, and shows that one well-known
method, called the covering method, cannot be applied to most of today’s sophisticated iterative
methods. Out-of-core numerical methods have a long and fascinating history, which is also
surveyed in Chapter 7.

10



Chapters 8 to 10 describe out-of-core iterative numerical algorithms. Chapter 8 presents
out-of-core linear relaxation algorithms for multigrid-type matrices. (Given a representation of
a matrix A, a vector x, and an integer T , linear relaxation algorithms compute ATx.) Linear
relaxation algorithms with multigrid-type matrices are used in implicit time-stepping simula-
tions in which a multigrid algorithm is used as the implicit solver, as well as in Krylov-subspace
solutions of integral equations where a fast-multipole-method algorithm is used as a matrix-
vector multiplication subroutine. Chapter 9 presents out-of-core linear relaxation algorithms
for matrices that arise from implicit time-stepping simulations in one spatial dimension. Chap-
ter 10 presents a method for implementing out-of-core Krylov-subspace algorithms, such as
conjugate gradient.

Part II also presents a method for increasing the locality of reference and hence the per-
formance of parallel preconditioners. Chapter 11 describes a a novel ordering scheme for
two-dimensional meshes. The ordering scheme is used in a preconditioner that accelerates the
solutions of certain important systems of linear equations on the Connection Machine CM-5
by a factor of 1.5 to 2.5.

11
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Chapter 2

Performance Modeling and Prediction

2.1 The Challenges

The first part of the thesis describes a methodology for determining the performance of a
program automatically, accurately, and quickly without actually running the program. The
feasibility and utility of this methodology, called benchmapping, are demonstrated in Chap-
ters 4 and 5 using two benchmapping systems called PERFSIM and BENCHCVL. PERFSIM is a
profiler for data-parallel Fortran programs. It runs on a workstation and produces the profile
of the execution of a program on the Connection Machine CM-5 [110] quicker than the profile
can be produced by running the program on a CM-5. BENCHCVL predicts the running time
of data-parallel programs written in the NESL language [17] on several computer systems.
Applications of benchmapping, including program profiling and tuning, making acquisition
and configuration decisions, performance maintenance, hardware design, and compile-time
and runtime optimization, are described in Section 6.1.

Performance prediction is a challenging problem. Essentially, any performance-prediction
strategy decomposes a program into components, predicts the performance of components using
a specification of the performance of the computer system, and then composes the performance
of the entire program from the predicted performance of its components. (Section 2.2 defines
precisely what we mean by performance and performance prediction.) Such strategies must
meet three challenges:

1. Choosing the level at which the program is decomposed. We call the family of operations
into which a program is decomposed a decomposition interface. Source statements
form one decomposition interface, and machine instructions form another, for example.
The goal of the decomposition is to decompose the program into a small number of
components whose performance can be predicted.

2. Generating the sequence of operations that the program performs when executed. In
other words, it is the dynamic behavior of the program that is decomposed, not the static
structure of the program.

3. Creating a performance specification of the computer system. The specification must
enable accurate and reliable prediction of the performance of program components.

15



The traditional forms of performance specification and prediction fail to meet these chal-
lenges. Traditionally, performance is specified with hardware descriptions, benchmark suites,
and simulators. Hardware descriptions specify some of the characteristics of the hardware of
the computer system. Popular characteristics include the number of floating-point operations
per second, the number of processors and registers, the bandwidth of the memory system and
the bandwidth of communication networks. Benchmark suites, typically consisting of between
one and about fifteen standard programs, specify the measured performance of the programs
in the suite. Simulators specify the performance of computer systems by implementing the
systems in software that can run on other machines. Simulators are often instrumented in a
way that allows them to accurately predict performance while they run a program.

Several factors contribute to the failure of traditional performance specification method-
ologies to meet the challenges of performance prediction. Both hardware descriptions and
benchmarks specify the performance a complex system with just a few numbers. The limited
amount of data is likely to leave important aspects of the computer system unspecified, and thus
to render accurate performance prediction impossible. There is no standard way to decompose
a program into components whose performance can be predicted by hardware descriptions or by
benchmarks. Consequently, performance prediction with both hardware descriptions and with
benchmarks is done manually, and it is difficult even for experts. Finally, simulators decom-
pose programs into a large number of components, typically individual machine instructions.
Consequently, even though performance prediction with simulators can be both automated and
accurate, it is also slow. For many applications, simulators are simply too slow. Section 6.2
describes these issues in more detail.

This thesis demonstrates that a new methodology called benchmapping can meet the chal-
lenges of performance prediction and produce systems that predict performance automatically,
accurately, and quickly. The three challenges are met in the following ways.

1. The program is decomposed into a sequence of data-parallel runtime system calls. Sec-
tion 2.3 explains why I have chosen to decompose programs into a sequence of runtime-
system calls and why runtime systems that support the data-parallel programming model
are particularly well suited for benchmapping.

2. The decomposition is generated by by executing the control structure of the program.
I have developed a mechanism, called multiplexors, that allows the control thread to
execute even if runtime-system calls are not serviced. This strategy eliminates the
need for complex static analysis of the program, while still allowing performance to be
predicted more rapidly than the program can be executed. Section 2.4 describes this
design decision.

3. Performance models of the subroutines in the runtime system enable automatic prediction
of the performance of program components. We shall call a collection of performance
models for the subroutines in a runtime system a benchmap. Benchmaps are detailed
enough to capture the complexities of current computer systems. Most of the details,
however, are gathered automatically from experiments performed on the system. Sec-
tion 2.5 explains how benchmaps specify performance and how they are created.
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2.2 Performance and Performance Prediction

This section explains what performance models predict and on what information they based their
predictions. The quantities that performance models predict are called performance measures,
and the quantities on which the predictions are based are called performance determinants.
The section begins with a discussion of the difficulties of defining and measuring performance.
We then discuss issues related to performance determinants, and in particular how to predict
performance when the value of some determinants cannot be ascertained.

Performance Measures

Performance measures are quantities associated with an execution of a program on some
computer. Performance measures include CPU time, maximum and average response time to
external events, maximum memory allocated, amount of input/output activities, etc. We distin-
guish between internal and external performance measures. An internal performance measure
quantifies the resources used by the program, such as CPU time. An external performance
measure quantifies aspects of the interaction of the program with its environment, such as the
maximum and average response time to external events. Since this thesis focuses on scientific
applications, many of which are noninteractive, we focus on internal performance measures,
and in particular, on running time.

Defining performance measures precisely is difficult, but measuring these quantities is
even harder. Let us consider an example. If a program uses large data structures that cause
the process running the program to page fault, we would like to charge the process for the
context-switch time caused by the faults, and perhaps also for the burst of cache misses that
are likely to follow the context switch. But if a process is interrupted many times because
other processes are competing for the CPU, we do not want to charge the process for the
context-switch overhead. Most systems cannot distinguish between these two cases, and the
process is or is not charged for the context-switch overhead irrespective of which process is
“responsible” for the switches. Time spent serving cache misses are always charged to the
running process, even if the misses occur because of a context switch. Many systems do not
even have cache miss counters and therefore cannot even determine how much of the CPU time
was spent waiting for cache misses to be served.

Some performance measures, such as CPU time, are rarely defined exactly or measured
directly. Instead, other related quantities are measured and reported by a variety of hardware
and software mechanisms such as hardware timers and operating-system timers. We refer the
reader to Malony [81], who explores the issue of performance observability in detail. In spite
of these difficulties, in this thesis I try to pick one of the reported measures which correlates
well with the CPU time and predict this measure using performance models. This pragmatic
approach seems to work well in practice, but it does not constitute a replacement for good
definition of performance measures and good mechanisms for measuring them.

Performance Determinants

The running time of a program or a subroutine, on a given input, depends on factors that we
shall call performance determinants. There are external performance determinants, such as

17
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Figure 2.1 A scatter plot of the time it takes to copy an array of integers on an SGI Indigo2 workstation.
Each dot represents one execution of an array copy function, which is timed using a builtin cycle counter.
Five executions are plotted per array size, which are 100 elements apart. The executions were performed
in a loop from small to large arrays, so real time advances from left to right in the graph. The distribution
is largely one sided, with concentrations along lines parallel to the smallest running times. These lines
seem to be caused by the timesharing quantum. The noisy and quiet regions represent different loads
on the machine.

the load on the system and the level of fragmentation of the swap file, and there are internal
performance determinants that describe the input, such as its size, content, and location in
memory. The goal of a performance model is to predict the performance of a program or
a subroutine given its performance determinants, or more often, a subset of its performance
determinants.

For example, we might want to predict the running time of a matrix multiplication subroutine
given the dimensions of the two input matrices. The running time might also depend on the
location of the input and output in memory, the values of the elements of the matrices, and the
load on the machine. If we ignore these factors, we cannot predict the running time exactly. In
such cases, we try to predict performance as a range of possible running times.

Missing Performance Determinants

Predicting performance with missing performance determinants means specifying a range of
possible performance measures. Different values for the missing determinants yield different
performance measures within the predicted range. But performance outside the predicted range
is a prediction error. External performance determinants are always missing from the models
described in this thesis as well as from most models described by other researchers. Internal
performance determinants are also sometimes missing from my models, especially contents of
arrays.
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Vague definitions of performance and imperfect ways of measuring performance may cause
different running times to be reported in different executions of a single program on a single
input data set, even if the system and the program have no randomized components. This effect
is of course not random noise, but rather reflects different states of the computer system when
the program is executed. In other words, the effect is caused by missing external performance
determinants. For example, running a program on a heavily loaded timesharing system might
seem to require more resources than running it on a lightly loaded system, if some of the
context switching overheads are charged to the program’s CPU time (which is almost always
the case). Figure 2.1 shows the running times of a function copying an array on a workstation.
The variability of the running time changes due to different loads on the system. Figure 2.2
verifies that light and heavy loads result in different running time distributions, even when the
operating-system timer attempts to filter out the effects of context switches.

My viewpoint is that such effects must not be treated as random. A random phenomenon
must have an underlying probability space, which is missing here. A lightly loaded system
is not more probable or less probable than a heavily loaded system. I therefore believe that
if the magnitude of such effects is large, the performance should be specified as a range of
possible outcomes rather than a “mean” and a “standard deviation” or a “confidence interval”.
Such estimates of statistical parameters should only be used to describe the performance of
randomized systems. Most computer systems exhibit large deviations in performance which
are not random, and some smaller random deviations.

Some programs may exhibit wildly different running times on slightly different arguments,
or on arguments that reside in different locations in memory, due to conflicts in memory
systems. For example, Figure 2.3 shows that the time its takes to copy an N -elements array on
an SGI Indigo2 workstation is about 193N ns, except when the size of the array is a multiple of
16 Kbytes, in which case the time rises to about 339N ns. If the size is a multiple of 1 Mbytes,
the time rises further to about 2870N ns. In all cases, the array is copied to an adjacent location
in memory, (such as the next matrix column in Fortran), which may cause conflicts in the two
levels of direct-mapped cache that this workstation uses. Similar behaviors can result from
other cache organizations and from interleaved memory banks. These effects are not random.
The description of the performance of programs with such behaviors should include lower and
upper bounds, possibly with a characterization of what performance to expect in which cases.
Statistical estimates of the distribution of the running time are again not recommended, because
of the lack of an underlying probability space. The assumption that all array sizes are equally
likely for example, seems unattractive to me, and in any case must be specified if used.

2.3 Choosing a Decomposition Interface

The first step in performance prediction is to decompose the dynamic behavior of a program
into components. The choice of a decomposition interface involves two decisions. We must
decide whether the decomposition is done before or after compilation. Most programs use a
hierarchy of interfaces. We must therefore choose one of the interfaces as the decomposition
interface. This sections explains why I decided to decompose programs after compilation
and why I decided to use a specific class of runtime system interfaces, data-parallel runtime
systems, as the decomposition interface.

19



0 1 2 3 4 5 6 7

x 10
7

0

1

2

3

4

5

6
x 10

4

Time in Nanoseconds

Unloaded System (Cycle Counter)

0 1 2 3 4 5 6 7

x 10
7

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Time in Nanoseconds

Loaded System (Cycle Counter)

0 1 2 3 4 5 6 7

x 10
7

0

1

2

3

4

5

6

7
x 10

4

Time in Nanoseconds

Unloaded System (OS Timer)

0 1 2 3 4 5 6 7

x 10
7

0

2000

4000

6000

8000

10000

12000

14000

Time in Nanoseconds

Loaded System (OS Timer)

Figure 2.2 Histograms of the running times of 100,000 executions of an array copy function on an SGI
Indigo2 workstation on arrays of size 100 K integers. The experiments were performed on an unloaded
system (right), and a loaded system (left). The top histograms present the running time reported by a
cycle counter which is oblivious to context switches, and the bottom histograms present the running
time reported by the operating system counter. The size of the bins in the histograms is 250 �s. The
distribution is not symmetric about the mean even in the unloaded system. The operating system timer
filters out some of the effects of the context switches, but not all of them: on the loaded system, the
noise has a large positive mean, and a large variance.
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Figure 2.3 The time it takes an SGI Indigo2 to copy an array to an adjacent location in memory.
The graph on the left shows that cache conflicts caused the direct mapped, physically indexed offchip
cache degrade performance by a factor of about 14. The graph on the right presents one region of array
sizes in detail, and shows that cache conflicts caused the direct mapped, virtually indexed onchip cache
degrade performance by a factor of about 1:75. The fact that conflicts in virtual memory cause misses
in a physically indexed cache seems to be due to the virtual-to-physical memory mapping policy of the
operating system.

Decomposing Source and Object Codes

I believe that it is currently impossible to base accurate performance predictions on a decom-
position of the source program, and that therefore, performance modeling must be based on a
decomposition of the compiled program. The decomposition can be performed by the compiler
or by a separate software tool. A compiled program consists of assembly language object code,
sometimes with calls to runtime libraries. Simulators decompose a program into a sequence
of machine instructions. Simulators can produce accurate performance predictions, but they
are slow due to the large number of instructions that a typical program executes. Our efforts
to rapidly predict performance lead us to search for a higher-level interface. As we shall see
in the next subsection, data-parallel runtime systems provide such an interface. This section
provides the evidence that source-based predictions cannot be accurate.

Some researchers propose to model programs in terms of the performance of source code
constructs rather than in terms of runtime systems. Modeling the program in terms of the
source is an attractive idea, because if it can be done accurately, programmers can do the same
thing more-or-less intuitively. Early experiments with this technique were successful. For
example, Bentley [14, pages 99–101] used models developed by Mary Shaw to predict the
performance of several Pascal programs. The models were based on source code constructs,
and they predicted the running time of Bentley’s programs to within a 26% relative error, which
we consider reasonably accurate. The programs were compiled with a nonoptimizing compiler
and executed on a DEC PDP-KL10 computer, a model introduced in 1975. Bentley notes,
however, that it is difficult to use such models with highly optimizing compilers.

Current literature seems to support Bentley’s comment. MacDonald [79] attempts to predict
the running time of the Lawrence Livermore Loop Kernels, a set of Fortran loops, using models

21



1 real a,b,x(n)
2 do i = 1,100
3 a = sum(x)
4 x = x/a
5 a = a*b
6 end do

Figure 2.4 A data-parallel Fortran program fragment.

similar to Bentley’s. While on some machines his models are quite accurate, they err by almost
a factor of 3 on an SGI workstation using an R3000 microprocessor and an optimizing compiler.
These results support my claim that performance models should not attempt to model source
code constructs.

I believe that optimizing compilers and architectural features such as pipelines, superscalar
execution, multiple caches, and parallel processing, render accurate source-based predictions
virtually impossible. Therefore, in this thesis programs are decomposed into sequences of
runtime-system calls. In one benchmapping system, PERFSIM, program are decomposed into
sequences of operations that include both runtime-system calls and invocations of compiler
generated loops. Both the runtime system and these loops are already compiled and their
performance can be modeled more accurately than the performance of source-code constructs.

Modeling Data-Parallel Runtime Systems

Runtime systems that support the data-parallel programming model [16] are well suited
for benchmapping. Benchmapping a runtime system requires that the performance of its
subroutines can be predicted from available performance determinants, and that the relation
between the performance of a whole program and the performance of the runtime subroutines it
calls be known. This section shows that the running time of data-parallel programs is essentially
the sum of the running time of the vector operations in the program, and that it is possible to
predict the running time of vector operations.

Data-parallel programs express most of the computation as a series of transformation of
vectors, or arrays. Data-parallel Fortran programs, for example, are composed of three classes
of operations:

� sequential control and operations on scalars,

� computations on vectors, and

� communication operations involving vectors.

Operations on vectors are specified using vector notation and are interpreted as operations that
are applied in parallel to all the vectors’ elements. In the program fragment shown in Figure 2.4,
the do loop is a sequential control structure, the summation of the vector x in line 3 is a vector
communication operation, the update of the vector x in line 4 is a vector computation operation.
and the scalar multiplication in line 5 is a scalar operation. Data-parallel NESL programs [17]
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also consists of sequential control and vector operations, but scalars are treated as vectors of
length 1 and not as distinct data structures.

The running time of many data-parallel programs is dominated by the running time of vector
operations. Many data-parallel languages, including CM Fortran [109] and NESL, do not
exploit control-flow parallelism and parallelism in scalar operations. Since most programmers
want their data-parallel programs to run well on parallel computers with a large number of
processors, they write programs in which most of the work is expressed in vector operations
that are parallelized. The sum of the running time of vector operations is therefore a good
approximation of the running time of many data-parallel programs. If this sum is not a good
approximation, then the program is not likely to run well on a larger number of processors.

The running time of most vector operations can be accurately predicted from a small number
of scalar performance determinants. The performance determinants of vector operations include
the scalar arguments of the operation and the layout of vector arguments in the memory of the
computer. The running time of some vector operations is also affected by the contents of vector
arguments. Predicting running time independently of the contents of vectors limit the accuracy
of the prediction. Nevertheless, Chapter 5 argues that the impact of ignoring the content of
vectors does not severely limit the usability of benchmaps-based tools.

One important reason the running time of vector operations can be accurately predicted is
that their memory access patterns are often regular and predictable. The number of cache misses
is therefore also regular and predictable. Some vector operations, such as matrix multiplication,
can have a very high cache hit rate. Other vector operations have very low cache hit rates when
the arguments are large vectors that do not fit within caches. For example, Chen [30] found
that it is possible to predict the performance of vector operations on a CM-5 with data caches
when the vectors were larger than the size of the cache, because the cache was too small to
exploit the temporal locality in the program.

Runtime systems that support low-level programming models, such as message passing
and active messages [122], are more difficult to model than runtime systems supporting the
data-parallel model. The number of cache misses is hard to predict in low-level runtime
systems, and the running times of individual runtime system calls are not independent. For
example, the running time of a receive operation in a message-passing program depends on
when the corresponding send operation was executed.

2.4 Decomposing a Program into Components

The performance-modeling systems described in this thesis generate the sequence of operations
in the program by executing the control structure in the program. Executing the control structure
eliminates the need for a complex static analysis of the program. In most data-parallel programs
most of the running time is spent in vector operations, and most of the memory stores vectors.
Since we are only interested in the sequence of operations the program performs and not in
the output of the program, we avoid performing vector operations whenever possible. Not
constructing vectors and not operating on vectors allow the program to execute very rapidly
even on small machines with limited memory, such as workstations. This section explains
how the program can execute when vector operations are not performed. Sections 4.5 and 4.8
describe the details of the decomposition of a program into a sequence of runtime-system calls
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in PERFSIM and in BENCHCVL.
The control structure of many scientific program can be executed correctly even when

vector operations in the program are not performed. The control structure in some scientific is
completely independent of values stored in vectors, and therefore program can execute even if
vector operations are not performed. More often a few control flow decisions in the program
depend on values stored in vectors. Convergence tests in iterative numerical algorithms are a
typical example. Section 4.3 describes a mechanism that allows a programmer to annotate the
program to remove such data dependencies in performance prediction runs. The annotations,
called multiplexors, specify how to replace a data-dependent control flow decision with a
data-independent one. For example, a while loop is annotated with a loop count that allows
the loop to execute even when vector operations are not performed. The small number of
data-dependent control flow decisions in typical scientific programs means that the extra effort
required to annotate the program is often insignificant.

Fahringer and Zima [43] have taken a similar approach, but they rely on a profiling run
to derive loop counts automatically. Although their approach eliminates the need for explicit
annotations in the program, the profiling run slows down performance prediction considerably,
especially since in their system the profiling run is performed on a sequential machine.

2.5 How Benchmaps Specify Performance

A benchmap specifies the performance of a computer system using a collection of performance
models, one for each subroutine in the runtime system. Our goal is to describe the performance
of the system with models that are accurate and therefore detailed. But we do not want to
specify all the details by hand. The performance models that are used in this thesis have two
parts. One part describes the hardware resources in the system. It is specified by hand. A
second part describes the effective performance of each resource in each subroutine in the
runtime system. This part can be generated automatically.

We describe the hardware in whatever level of detail necessary for accurate performance
predictions. The structure of the hardware models of PERFSIM and BENCHCVL is described
in Sections 4.2 and 4.7, respectively. The structure of PERFSIM’s benchmap is specific to the
architecture of the Connection Machine CM-5. The structure of BENCHCVL’s benchmap is
tailored for distributed-memory parallel computers with a hierarchy of cache memories in every
processor, but it is not specific to any particular machine. We expect that accurately modeling
new architectures will require benchmaps with new structures, because new architectures are
likely to have new resources that must be modeled.

The process of estimating the performance of each resource for each subroutine, on the
other hand, can be automated and needs little or no improvement to handle new architectures.
The estimates of the performance of resources, for example the bandwidth of the memory
system or the size of caches, are based on results of experiments performed on the system.
The process of performing the experiments and estimating the parameters of a benchmap is
described in Chapter 3.
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Chapter 3

Creating Benchmaps

Benchmaps can be generated automatically using simple techniques and available software
tools. Benchmaps are created in two phases. In the first phase, the performance of subroutines
is measured on many different inputs. We call this phase surveying. In the second phase, the
measured performance is used to create models that predict the performance of subroutines
on all inputs. We call the creation of benchmaps from the survey data cartography. Sec-
tion 3.1 describes how a software system for benchmapping can be organized. Section 3.2
describes an efficient and comprehensive strategy for surveying performance. Sections 3.3
through 3.5 describe robust techniques cartography. Section 3.6 describes a software tool
called CARTOGRAPHER that implements all the modeling techniques described in this chapter.

3.1 A Software Organization for Benchmapping

Many of the applications of benchmaps require a software organization that supports automatic
generation of benchmaps and automatic performance prediction using the benchmaps. The
automatic generation of a benchmap enables the rapid modeling of large runtime systems,
simplifies the maintenance of the benchmap over the lifetime of the runtime system, and ensures
the reliability of the benchmap. Automatic performance prediction using the benchmap allows
the modeling software to be used by users and other programs, rather than by performance
analysts alone. The performance modeling systems described in this thesis utilize such an
organization, which is described in this chapter.

The organization of my modeling systems, illustrated in Figure 3.1, consists of an in-
strumented interface to the runtime system, a program, which we shall call a surveyor, that
measures the performance of the runtime system, and a mechanism to transform performance
measurements into a benchmap. We refer to the transformation of survey data into a benchmap
by performance cartography.

The surveyor performs a set of experiments on the runtime system. The results of the
experiments serve as reference points where performance is known. Cartography uses the
reference points to construct a benchmap of the runtime system. The surveyor must generate
enough reference points to create a benchmap within a reasonable amount of time. Section 3.2
describes a surveying strategy capable of generating enough reference points to model data-
parallel runtime systems within a short amount of time.
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Figure 3.1 A software organization for benchmapping systems.

The instrumented interface to the runtime system records the results of performance ex-
periments and predicts performance of calls to the runtime system using a benchmap. Each
experiment is recorded as a set of performance determinants and a set of performance measures.
The instrumentation in the interface therefore consists of a performance measuring mechanism
and a mechanism to ascertain the value of performance determinants. The interface can use a
benchmap to map the performance determinants associated with a call to the runtime system
to the predicted performance of the call.

The cartographer uses reference points of known performance to create models that can
predict the performance of calls in other points in the performance-determinants space. The
cartography technology used by my modeling systems is described in Sections 3.3 though 3.6.

Other researchers have also found that automatic surveying, cartography, and performance
prediction enable applications of performance modeling. Brewer [22, 23] propose a system
that automates all three. Chen [28] and Chen and Patterson [29] propose a highly advanced
surveying technique for modeling I/O performance. Their surveyor automatically locates
the most important regions in the performance-determinants space and performs most of the
experiments in those regions.

3.2 Surveying Performance

Surveying establishes reference points in the performance-determinants space in which perfor-
mance is measured and recorded. The sampling strategy must establish enough reference points
so that accurate models can be created, but not so many that surveying becomes impractical. We
clearly cannot run subroutines on every possible input, for example. Since performance often
cannot be measured directly, reference points must be indirectly derived from measurements.
For example, a coarse timer requires that the running time of a subroutine be derived by timing
multiple invocations of the subroutine, rather than just one.

I propose to survey the performance of data-parallel runtime systems using a geometric
distribution of vector sizes. A geometric distribution of experiments performs a constant number

26



of experiments on vector sizes between N and 2N . The geometric distribution performs many
experiments on small vector sizes and many, but not too many, on large vector sizes. Since
input sizes can range from one to a million or even a billion, and since “interesting” behaviors
occur at different scales, it is important to perform experiments on many scales. For example,
on a Sun SPARCstation 10 the on-chip data cache size is 16 Kbytes, the off-chip cache size is
1 Mbytes, the main memory size is 32 Mbytes, and the virtual memory size is several hundred
Mbytes. To model performance accurately, we need many experiments on each of these scales.

In contrast, a uniform distribution that performs �N experiments on vector sizes between
N and 2N for some constant � performs too many experiments on large vector sizes or too
few on small sizes.

The distribution of experiments should include both vector sizes that are powers of 2 and
random vector sizes that are not powers of 2. Performing experiments on both powers of 2 and
random sizes is likely to uncover conflicts in memory systems. Some memory systems, such
as ones with direct mapped caches and interleaved memory banks, perform poorly on vector
sizes and axes sizes that are powers of 2, while other memory systems, such as ones with set
associative caches, perform better on powers of 2 than on random sizes.

A large number of reference points is more likely to uncover an incorrect model structure
than a small number. Consider for example a linear cost model x1 + x2N for the time it takes
to add two vectors of size N on a workstation. We can estimate the constants x1 and x2 very
accurately from only two groups of experiments, one on a very small N and another on a very
large N . However, we can never learn from these two input sizes that the real behavior is not
linear, because of caches for example. A larger set of experiments may enable us to refute the
conjecture that the behavior is linear. Furthermore, the refutation can be found automatically
if the parameter estimation algorithm signals the operator that it failed to find a good model.

What distributions of values should be used in the experiments? Ideally, we should use a
variety of distributions which spans the range of possible execution times. Models which are
upper or lower bounded by the experiments then describe well the range of possible running
times. For example, using both identity and random permutations in experimentation with a
permutation routing library function might cover the entire range of possible running times of
the function.

But on some systems, routing some specific permutations may take much longer than routing
a random permutation, so on these systems our upper bound may be too optimistic. A similar
example I encountered involves integer multiplication on SuperSPARC microprocessors. The
number of cycles this operation requires turned out to be highly dependent on the values being
multiplied. Since I did not expect this, I experimented with only one set of values, and the
models turned out to be inaccurate. Finding a set of distributions which spans the range of
execution times is important, but may be elusive in practice. I believe that evaluating of the
models using a large test suite before they are used in production, may serve as a partial solution
to this problem.

3.3 Linear Models and the Singular Value Decomposition

A linear model describes performance as a linear function of a set of functions of performance
determinants called basis functions. Linear models are the basic building blocks in my
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benchmapping systems. Let v = (v1; : : : ;vk) be the performance determinants of a runtime
system subroutine. For example, the performance determinants for the summation of an N -
vector distributed on P processors might be N and P . A linear models maps the performance
determinants to a set ofm basis functions a = (a1; : : : ;am) using a mapF , such that a = F (v).
In the summation example, the basis functions might be 1, N=P , and logP , which represent,
respectively, a fixed cost, the cost of summing the vector section on each processor, and the cost
of summing the partial sums. The linear models describes the execution time of the function
as a linear combination of the basis functions,

execution time = x1a1 + x2a2 + � � �+ xmxm

x1F1(v) + x2F2(v) + � � �+ xmFm(v) :

A model then, is a set of basis functions F and a choice of costs x = (x1; : : : ;xm). Consider n
experiments in which the values of the basis functions in the ith experiment are ai;1; : : : ;ai;m,
and the running time of the ith experiment is bi. We denote the ith reference point by
[ai;1; : : : ;ai;m; bi] and set of all reference points by [A;b]. The vector of predicted running times
of the experiments given a model x is Ax, and the prediction errors are (Ax� b). We normally
try to find a value for x that minimizes the error vector (Ax� b) in some norm.

The basis functions we use to model the performance of a library function correspond
to possible costs the function might incur. If some of the costs are not incurred, the matrix
A may be rank deficient. Consider, for example, a function that permutes a vector. Given
an input vector s, a destination d, and a permutation vector � (containing a permutation of
1;2; : : : ;N ), the function permutes the input so that upon return, d[�[i]] = s[i]. A linear
model describing the time it takes to permute a vector of size N on P processors might be
x1 + x2(N=P ) + x3(N(P � 1)=P ). The first term represents a fixed cost, the second the cost
to handle each one of the N=P elements on each processor, and the third the cost of sending
and receiving messages. The expected number of messages sent and received by a processor
is roughly N(P � 1)=P , when � is a random permutation. On uniprocessor architectures no
messages are required, so the matrix A containing the basis functions for the experiments has
a zero column. If we rearrange the cost model as x1 + x2(N=P ) + x3(N(P � 1)=P ) =
x1 + ~x2(N=P )+ x3N , where ~x2 = x2� x3, the matrix A has two equal columns. In general,
our models have basis functions which are inactive on some architectures, by which we mean
that they have no variation or that they linearly depend on other basis functions.

It is numerically difficult to search for a linear model x for a set of reference points [A;b]
when the matrix A is rank deficient. Many numerical optimization techniques that can find a
value for x that minimizes the error vector (Ax� b) in some norm break down when A is rank
deficient. We use the Singular Value Decomposition (SVD) to handle rank-deficient matrices
arising from inactive basis functions.

The SVD of an n-by-m matrix A is

A = U�V T

where U is an n-by-m orthonormal matrix (that is, has m orthonormal columns), � is an
m-by-m diagonal matrix with nonnegative entries �1; : : : ;�m such that �1 � �2 � �� � � �m,
and V is an m-by-m unitary matrix. When A has rank r, exactly r entries in � are nonzero.
Since V is nonsingular, the matrices A and AV = U� span the same subspace. If A has rank
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r, then A has the same span as A ~V = ~U ~�, where ~V = V (: ;1:r) (that is, the first r columns
of V ), ~U = U(: ;1:r), and ~� = �(1:r;1:r). The matricesA ~V and ~U ~� have full rank r (since
they are n-by-r) and the same span as A. A linear model ~x for these matrices can be translated
into a linear model x for A using the transformation x = ~V ~x.

3.4 Criteria for Choosing Models

What should be the criterion that determines whether one performance model is more accurate
than another? Given a model for a subroutine, the prediction error in an experiment (an
invocation of the subroutine) is the difference between the predicted performance output by the
model and the actual performance. The relative error is the prediction error divided by the
actual performance. For example, if the actual running time of an experiment is 10 seconds and
the predicted running time is 9 seconds, then the prediction error is �1 second and the relative
error is �10%. This section shows that choosing the model that minimizes the maximum
relative error over all the reference points is both feasible and desirable.

Minimizing absolute rather than relative errors often results in models with large relative
errors on experiments with short running times (or small values for other performance mea-
sures), especially if the set of reference points contain experiments with a wide range of running
times. We should therefore prefer models that minimize relative errors. Minimizing absolute
and relative errors in linear models is computationally equivalent. For a set of experiments with
basis functions A and actual performance b, the absolute errors are (Ax � b) and the relative
errors areB�1Ax�B�1b, where B is a diagonal matrix with entriesBi;i = bi. Hence, scaling
the ith row of A and b by 1=bi yields a set of reference points for which the error vector yields
the relative errors for the original experiments.

The linear model x that minimizes the maximum prediction error (or the maximum relative
error) is the solution of the linear-programming problem

minimizex;� �
subject to Ax� b � �

Ax� b � �� ;

which has dimension m + 1, variables �;x1; : : : ;xm, and 2n constraints [65]. The problem is
feasible and bounded, which can be seen by setting x = 0 and � = maxi jbij. Any solution
automatically satisfies � � 0. Linear-programming problems can be solved with simplex and
interior point algorithms, which are implemented in a variety of software packages and libraries.

Minimizing the sum of the squares of the errors is a popular optimization criterion for linear
models, sometimes known as the least-squares criterion. The popularity of least squares stems
from efficient algorithms for finding least-squares models and from theoretical advantages the
criterion has in statistical modeling [13]. The singular value decomposition U�V T of A can
be used to solve least-squares problems, even rank-deficient ones. It can be shown [37] that
the solution x of the least-squares problem is x = ~V ~��1 ~UTb, where r is the rank of A,
~V = V (: ;1:r), ~U = U(: ;1:r), and ~� = �(1:r;1:r). In practice, we round small �i’s down
to zero to determine the rank of A.

The disadvantage of the least-squares and similar averaging criteria is that they may ignore
large errors on small subsets of reference point. Suppose that the running time of a subroutine
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is N seconds on inputs of size N , except if N is a multiple of 1000, in which case the running
time is 5N seconds. If we use experiments on every N between one and one million, the
least-squares model will be very close to N , because this models errs on only 1 reference point
in a 1000. If we use N in steps of 500, however, the least-squares model will be close to 2:5N .
A minimal maximum error model eliminates this sensitivity because it will choose a 2:5N
model with both sets of reference points.

The theoretical advantages of the least-squares criterion disappear when the statistical
assumptions that underlie it are not satisfied [13]. Unfortunately, in performance modeling
these assumptions are often violated. For example, the distribution of running times is often
one-sided and not symmetric, as shown in Chapter 2.

We nonetheless use the least-squares criterion as well as the minimum maximal error
criterion, because the least-squares criterion is computationally cheaper to solve. But we
always assess the accuracy of models using the maximum error.

3.5 Bounding Performance

Since prediction errors are inevitable, the most reliable models are those that predict per-
formance as a range that is guaranteed to include the actual performance. A model cannot
normally predict performance exactly, because a few performance determinants are often un-
known. Some determinants may be completely unknown, such as certain aspects of the state of
the computer system (the identity of resident virtual pages, for example). Other determinants
may only be approximated, such as the amount of data that needs to be transferred across
a communication channel to route a permutation on a distributed-memory parallel computer.
The performance of a subroutine is therefore best described by two models, one which al-
ways slightly overestimates performance and another which always slightly underestimates
performance.

It is possible to find the linear model that minimize the maximum error or the sum of square
errors among all models that upper or lower bound the set of reference points. The upper or
lower bounded least-squares problem is a quadratic programming problem. That is, it is a
quadratic optimization problem with linear inequality constraints. The optimization problem
is convex if A has full rank. Otherwise, we use the SVD to transform A into a full rank matrix
with fewer columns. The formulation of the upper bound problem is

minimizex xTATAx� 2xTATb + bTb
subject to Ax � b :

The bounded maximum error minimization is a linear programming problem. It is almost
identical to the unconstrained problem, except that the errors are constrained to be one sided
rather than lie in the interval [��; �]. The upper bound problem becomes

minimizex;� �
subject to Ax� b � �

Ax� b � 0 :

Figure 3.2 shows an upper bounded, lower bounded, and unconstrained least-squares models
for a range of input sizes of some function.
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Figure 3.2 The execution time of a function copying a vector of integers to another location in memory
on a Sun SPARCstation 10 workstation. The source and destinations are adjacent in memory, and the
dips in the execution time are apparently due to a set associative offchip cache. The graph also shows
three least-squares models of one region of input sizes, an upper bounded, a lower bounded, and an
unconstrained models. The bounded models miss some of the experiments due to the fact that the
algorithm used to solve the quadratic programming problems is an approximation algorithm.

3.6 Performance Mapping with CARTOGRAPHER

This section describe CARTOGRAPHER, a software tool for performance cartography that imple-
ments most of the techniques described in this chapter. CARTOGRAPHER’s parameter estimation
algorithms include algorithms that find bounded and unconstrained linear models that mini-
mize the maximum error or the sum of square errors. CARTOGRAPHER experiment manipulation
facilities include algorithms to scale reference points so that linear models minimize relative
rather than absolute errors, as well as an SVD algorithm that allows parameter estimation
algorithms to handle rank-deficient problems.

CARTOGRAPHER has an open architecture that allows parameter estimation modules to be
added. The open architecture enables benchmaps system to use the best available parameter
estimation algorithms using a uniform interface, and to add special-purpose parameter estima-
tion algorithms. I have implemented two general-purpose parameter estimation modules, one
for interfacing to MATLAB [108], an interactive mathematical software package, and another
for interfacing to LOQO [121], an linear and quadratic optimization package. The BENCHCVL

system adds one special-purpose parameter estimation module for modeling data caches, which
is described in Chapter 4.

The MATLAB interface uses an interprocess communication library supplied with MATLAB,
which starts a MATLAB process, can send and receive matrices to and from this process, and
can execute MATLAB commands and programs. We use it to compute the SVD of matrices, to
scale and solve least-squares problems, and to solve convex quadratic programming problems
using an iterative algorithm, published in [90, pages 373–375]. The MATLAB module is also
used for visualizing performance and models.
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The LOQO interface provides access to a linear and convex quadratic programming package
written by Richard J. Vanderbei, which uses a state-of-the-art interior-point algorithm. The
interface communicates with LOQO by writing and reading appropriately formatted files.

I am considering adding at a later stage a LAPACK [2] interface module, which would add
portability and some independence from external packages, and a dense Simplex algorithm,
which would use either MATLAB or LAPACK to perform the required linear algebra.
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Chapter 4

Performance Modeling Systems: PERFSIM

and BENCHCVL

By describing two concrete benchmapping systems, this chapter shows how benchmaps are
constructed and used. The systems are PERFSIM1, a profiler for data-parallel Fortran programs,
and BENCHCVL, a portable performance prediction system for portable data parallel NESL
programs.

4.1 The Goals and Structure of PERFSIM

Scientists and engineers writing data-parallel Fortran applications for parallel supercomputers
exert considerable efforts tuning their programs. The tuning process involves iteratively modi-
fying the program, running it on realistic data sizes, collecting performance data, and analyzing
the data to find further improvements. Tuning a scientific program for large data sizes uses
substantial supercomputer time when the actual results of the computation are of no interest.
Moreover, it is just plain slow.

PERFSIM is a benchmapping system that accelerates the profiling process by estimating the
running time of most of the expensive operations in a program, while refraining from actually
performing them. PERFSIM analyzes CM Fortran2 [109] programs running on the Connection
Machine CM-5 [110]. By combining execution of the control structure and scalar operations in
a program with analysis of vector operations, PERFSIM can execute a program on a workstation
and in seconds and generate performance data that would take several minutes or more to
generate by running the program on an actual CM-53. Our empirical studies, described in
Table 4.1, indicate that PERFSIM’s overall estimates are accurate to within a relative error of
�13%, the estimates for vector computations are accurate to within a relative error of �21%,

1A paper describing PERFSIM was presented in the 5th Symposium on the Frontiers of Massively Parallel Compu-
tation, McLean, Virginia, February 1995.
2The current version of PERFSIM works with CM Fortran version 2.1 beta 0.1 with a runtime system dated
94/04/07.
3Due to a minor technical problem with the initialization of the CM runtime system, it is currently not possible
to execute PERFSIM on an ordinary workstation. It executes on a CM-5 partition manager, which is essentially a
Sun workstation, but it never uses the CM-5.
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program author source nodal data relative errors
name and lines code size nodal

affiliation blocks overall code shift reduce permute
SOR-I Alan Edelman, MIT 77 5 1024 � 1024 �10% �17% �0:3% �2%

2048 � 2048 �13% �18% �7% �3%

SOR-II Alan Edelman, MIT 92 4 1024 � 1024 �6% �6% +11% �2%

2048 � 2048 �6% �6% �0:4% �3%

QCD- Richard Brower, BU 132 20 32 � 4� 84 �2% �4% +5% �3%

KERNEL 32 � 4� 164 �9% �12% �9% �8%

CG3D Sivan Toledo, MIT 205 35 192 � 192 � 192 +2% �15% +12% +2%

MG3D NAS/Sivan Toledo, MIT 461 76 130 � 130 � 130 �2% �14% +13% +6%

TURB Danesh Tafti, NCSA 1003 25 128 � 128 � 128 +4% +2% +7%

QCD-I Souzhou Huang and 1174 90 3� 4� 84 �3% �1% +2% �4%

Ruben Levi, MIT 3� 4� 164 �5% �18% �1% �2%

QCD-II Taras Ivanenko, MIT 1225 90 3� 4� 84 �6% �7% +2% �6%

3� 4� 164 �3% �21% �1% �3%

Table 4.1 The programs used to assess PERFSIM’s accuracy, their authors, sizes, the number of blocks
of vector computations, called nodal code blocks, and the relative accuracy of estimates of the running
time of both computation and communication operations when executed with various data sizes on a
32-node CM-5. The table shows the overall relative error, the error on vector computations, and the
errors for shift operations, global reductions (such as summations), and permutations. Missing entries
in the table indicate that the vector operation is an insignificant cost in the program.

and the estimates for vector communication are accurate to within �13%. Moreover, in all
the test cases in which more than one version of a program was involved, PERFSIM correctly
predicted the more efficient version. Chapter 5 examines the accuracy of PERFSIM more
closely, and shows that these relative errors are comparable to deviations in the running time
of programs running on the CM-5.

4.2 PERFSIM’s Benchmap: Modeling a Runtime System and
Compiled Code

The structure of the models in PERFSIM’s benchmap are based on a detailed model of the CM-
5’s hardware, which is described in Figure 4.1. This structure enables very accurate modeling
at the expense of portability to other hardware platforms. The models fall into two categories:
models of runtime-system subroutines, and models of compiler generated subroutines. The
structure of the models of runtime-system subroutines is based on the organization of the CM-
5’s communication channels, and the models’ parameters are estimated using a performance
survey. Models of compiler generated subroutines, on the other hand, are based on a model of
the pipeline in the vector units installed on CM-5’s nodes.

Modeling Runtime Subroutines

Most of the subroutines in the CM Fortran runtime system implement vector communication
operations. Arrays can be permuted. They can be shifted along one of their axes. They can
also be reduced to scalars as in summations. Finally, scans, (parallel prefix operations), can be
computed. While scans and reductions perform computation as well as communication, I still

34



40

80

160

640

2560

VU

M

M-BUS

SPARC

VU

M M M

NIVU

M

M-BUS

SPARC

VU

M M M

VU

M

M-BUS

SPARC

VU

M M M

NINI

VU

M

M-BUS

SPARC

VU

M M M

NI

Figure 4.1 A schematic diagram of the CM-5. Each node contains a network interface (NI), a SPARC
microprocessor, two vector unit chips (VU’s), and four memory banks (M’s), two attached to each VU
chip. The SPARC microprocessor, the VU’s, and the NI, are connected by a memory bus (M-BUS).
The nodes are linked by a data network and a control network, both of which have a tree structure. The
shaded circles represent routing nodes in the data network. In this diagram only part of the data network
is shown, with the numbers near the links designating the capacities in megabytes per second in each
direction.

classify them as communication operations in PERFSIM’s benchmap.
My strategy for estimating the running time of a communication operation consists of four

phases. In the first phase we identify all the communication resources in the architecture. Each
resource corresponds to one type of communication channel in which data is transferred from
one memory location to another. In the second phase we quantify the bandwidth and latency
of each communication resource, and the degree to which different resources can be utilized
in parallel. In the third phase we determine the number of words that must be transferred on
each of the communication channels, which we call transfer sizes. Combining the transfer
sizes with the capacity of each resource and the amount of parallelism to produce a running
time estimate is the fourth and last phase. We now describe how each phase is carried out and
how we determine the parameters for PERFSIM’s performance models.

Identifying communication resources. The identification of the communication resources
in a given architecture needs to be performed only once. The CM-5 contains five separate
communication channels, one of which contains several subdivisions. Figure 4.1 illustrates the
following communication channels in the CM-5:

� Data transfer from one location to another in the same memory bank. These data
transfers are performed by loading the data to a vector unit attached to the memory bank
and storing it back to another location.
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� Data transfer from one memory bank to another memory bank attached to the same
vector unit chip (two memory banks are attached to each vector unit chip).

� Data transfer from one memory bank to another attached to another vector unit chip on
the same node.

� Data transfer from one node to another using the CM-5’s data network [73].

� Data transfer from one node to another using the CM-5’s control network [73]. The
control network supports specialized communication patterns such as reductions and
broadcasts.

The topology of the data network is a 4-ary tree, in which links at different levels of the
tree have different capacities. In particular, the capacity of links doubles at every level as we
approach the root in the first 3 levels of the tree, but quadruples from level 4 through the root,
as shown in Figure 4.1. Since the capacity of each level in the tree is different, each level of
the data network must be modeled separately.

Quantifying the bandwidth, latency, and parallelism of communication channels. The
characteristics of the communication channels are functions of the implementation of the
architecture in hardware and the software’s use of that hardware. We have found that software
has a large influence on the effective bandwidth of communication channels on the CM-5.
For example, we have found a pair of subroutines in the CM run-time system that differ by
more than a factor of 4 in the effective bandwidth that they achieve on some communication
channels, even when the communication patterns they use are essentially the same. Therefore,
we decided not to assign a fixed bandwidth to each communication channel, but rather, to
assign the bandwidth of most communication channels on a subroutine by subroutine basis.
In our experience, software affects the performance of communication channels within nodes
most, and therefore the bandwidth of the communication channels within each node, including
the NI, is assigned per channel and per subroutine. The assumed bandwidth of communication
channels in the data network, however, is the same for all subroutines (but of course different
for different channels). The estimation process for these parameters is described later in this
section.

The latency of the communication channels contributes to a constant term in the running
time of subroutines. Instead of quantifying the latency of each communication channel, we
estimate the constant term in the running time of each subroutine.

I have found that while all the channels of the same type in the CM-5 operate in parallel,
different types of channels are almost never operated in parallel. For example, all the vector
units in the machine compute in parallel, but this operation does not happen concurrently with
data transfer on the data network.

Therefore, the total time it takes to perform a communication operation is the sum of the
time it takes to transfer the required amount of data on each of the communication channels,
plus a constant overhead term representing the latency of all the channels. If, for example,
new software permitted all the communication channels to be used in parallel, the running time
estimate would be the maximum, rather than the sum, of the transfer times on the different
channels.
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Determining the resource requirements of subroutines. The number of data items that must
be transferred on each communication channel depends on the functionality of the subroutine,
on the value of scalar and array arguments, and on the layout of array arguments in the
machine. PERFSIM uses knowledge about the subroutine functionality, the scalar arguments,
and the geometry of array arguments to determine the number of data items that must be
transferred on each communication channel. A geometry is an object that describes the size
and layout of arrays in the CM run-time system. Geometries are scalar objects, and thus, they
are allocated and operated upon in PERFSIM’s executions. The value of an array however, cannot
be determined in PERFSIM’s executions. Consequently, the running time of a communication
operation whose running time depends on the value of array arguments, especially permutation
operations (sends), cannot be estimated accurately.

Most the variance in the running time of permutations on the CM-5 stems from the different
loads that different permutations place on the data network. We have chosen to assume that the
load is light, and that the data network is not a bottleneck in permutation routing. Even in cases
in which PERFSIM fails to provide accurate predictions, the predictions are still useful, since
the estimation inaccuracy often remains consistent over program modifications. For example,
PERFSIM always predicts correctly that the operation a = b(pi), where pi is a permutation
array, is much more efficient than a(pi) = b, even though the overall accuracy might not be
good.

Parameter Estimation for PERFSIM’s models. PERFSIM has a database of five model param-
eters for each subroutine. Three parameters describe the bandwidth in terms of the amortized
transfer time for one data item on each of the three communication channels other than the
control and data networks, one parameter describes the time it takes the processor to send and
receive data to and from the data network (but not including the travel time in the network), and
the fifth parameter describes the constant overhead term in the running time, which includes
the latency of the control network if it is used.

I estimated these parameters manually, starting from rough values based on the technical
literature, and refining them by measuring the running time of subroutines on specific array
layouts. I preferred this method over a automatic cartography because at the time my automatic
cartography software was not robust enough to accurately estimate the five parameters PERFSIM

uses in each model.
The bandwidth of the communication channels in the data network was given to me by

Charles E. Leiserson.

Modeling Compiler Generated Loops

The CM Fortran compiler translates computations on arrays to nodal code blocks, also known
as nodal loops, which are subroutines written in SPARC and vector-unit assembly language.
These subroutines operate on one or several arrays with the same geometry. (A program
statement specifying a computation on two arrays with different geometries translates into a
runtime communication operation that transforms the geometry of one of the arrays, and then
a nodal code block is invoked.)

PERFSIM analyzes the compiler generated code block and determines the amortized number
of cycles it takes to operate on one element in each array. During execution this number is
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multiplied by the number of array elements that need to be operated upon by each vector unit,
since all the vector units work in parallel. A fixed overhead that models the invocation and
initialization of the code block is added. The main difficulty is estimating the number of cycles
it takes to operate on one element.

Each code block contains a main loop in which array elements are processed in groups
of 8 by the vector unit. The code blocks may be quite long and involve many loads and
stores of arguments, results, and partial results. Within the main loop, a run-time library
called CMTRA may be called. CMTRA functions take their arguments in vector registers
and compute trigonometric functions, exponentials and so on. The results are also returned
in vector registers. Finally, the main loop contains SPARC code to increment the arguments’
addresses and to decrement the number of elements to be operated upon by 8.

I have written a program that analyzes the code blocks. The program finds the main loop
and analyzes each instruction within the main loop. The program estimates how many cycles
the instruction takes to execute, which depends on whether it is a SPARC instruction or a VU
instruction, which VU instruction (in particular, divisions, square roots, and stores of single
words take longer than other instructions), and whether or not “bubbles” are created in the
VU pipeline. A bubble occur when a sequence of two consecutive VU instructions cannot be
performed back to back without stalling the pipeline. The program also incorporates estimates
for the running time of CMTRA calls, which is documented in the Connection Machine
literature [107].

4.3 Handling Data Dependent Decisions

Multiplexors form the core of PERFSIM’s support for handling data dependencies. Data
dependencies pose a problem for PERFSIM’s simulation strategy, because PERFSIM does not
actually execute vector operations. Consequently, if a control flow decision depends on a
vector value, PERFSIM does not know how to make the decision. A multiplexor allows the user
to specify a data-independent decision for use during simulation, while continuing to provide
the data-dependent decision during actual runtime. This section shows how the multiplexor
mechanism in PERFSIM can be implemented in a reasonably transparent and efficient fashion.

Multiplexors are functions that return either their first argument or their second, depending
upon whether PERFSIM executes the program or a CM-5 executes the program. For example,
the expression integer mux(100,n) returns the constant 100 in PERFSIM executions and the
value of n in normal executions. To assist in modifying data dependent while loops, PERFSIM

provides a generalized multiplexor called loop mux. A data dependent loop such as do while
sum(A) � 0 in the original program is replaced by do while loop mux(500,sum(A) �
0). The transformed loop is equivalent to the original in normal CM-5 executions,but equivalent
to do i=1,500 in PERFSIM’s executions (when the loop index i is a temporary variable used
nowhere else).

All the multiplexors work by looking up a special variable which is set at the beginning of
the execution and which indicates whether this is a normal execution on a CM-5 or a PERFSIM’s
execution. The loop mux works in PERFSIM’s executions by keeping a hash table with the
addresses of loops and the number of times each loop has been executed. The table is initially
empty. When loop mux is called, it checks whether the particular loop which generated the
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call is in the table. If it is, loop mux increments the loop counter in the table. If the counter
does not exceed the argument of the loop mux, then loop mux returns true. If the counter
exceeds the argument, the entry is removed from the table, and false is returned. If the loop
is not found in the table, it is inserted with a counter of 1 and true is returned. The removal of
loops from the table ensures correct behavior for loops that are reached more than once in the
program, e.g. nested loops.

To assist the user in identifying the data-dependent control flow decisions in the program,
PERFSIM can execute in a special mode in which decisions that depend on floating-point
distributed arrays cause a trap with an appropriate error message. This feature of PERFSIM uses
NaN’s which cause a floating-point exception when used as arguments of compare instructions.
Unfortunately, there is no comparable mechanism for tagging integers and logical data, so
PERFSIM cannot provide similar support for other than floating-point data.

4.4 Using the Benchmap of the CM-5: Data Visualization and
Performance Extrapolation

PERFSIM uses the benchmap of the CM-5 to visually present profiling information and to
extrapolate performance. Like most current profilers, PERFSIM provides a data visualization
facility, which is described in this section, to enable the programmer to analyze and use the large
amount of data gathered in a typical execution. Since PERFSIM uses analytic models for the
running time of vector operations, it can provide more information than ordinary performance
monitoring tools that rely on measurements of actual vector operations. This section shows that
PERFSIM can accurately extrapolate the running time of a program from executions on small
data sizes to executions on large data sizes.

Data Visualization

The data visualization tool, which is implemented as a MATLAB application with a graphical
user interface, displays three graphs (see Figure 4.2). The most important graph in the display
shows the estimated CPU time usage for each source line. The total time is displayed by default,
but the time associated with different classes of computation and communication operations
can be displayed as well. By clicking on a bar in the display, the user can determine the source
line number associated with that bar. Another graph is a histogram showing the fraction of
the total time spent in different classes of communication and computation operations. The
data visualization tool also displays the memory allocation as a function of execution time.
Stack, heap, and total allocation can be displayed. This display helps the user locate spots in
the program where large amounts of memory are allocated and where, therefore, the program
is prone to running out of memory. It also enables the user to determine the size of compiler
generated temporary arrays, which are always allocated on the heap.

During the first iteration of an iterative tuning process for a program, the user executes
the program on an actual CM-5. PERFSIM generates for such executions both running time
estimates and measurements of the running time. The data analysis tool displays the estimates
and the actual running times in two different graphs and the relative estimation errors for each
class of operations. The user can use this information to assess the estimation accuracy of
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Figure 4.2 Performance data displayed by the data visualization tool, with its user interface controls
on the right. The upper left graph shows the total estimated CPU time per source line. The user can
determine the source line number associated with a particular bar by clicking on it. This graph can
be modified by the user to show the time associated with any class of operations instead of the total
time. The histogram on the upper right corner shows the relative amounts of time different classes of
computation and communication operations are estimated to use. The horizontal line near the bottom of
each bar designates the fraction of the time associated with various overheads. The graph at the bottom
shows the total amount of memory allocation as a function of execution time. The user can zoom in
and out to examine specific portions of the executions and can request that the allocation on the heap
and on the stack be displayed as well.

PERFSIM on that particular program. If the overall accuracy is good, the user proceeds to use
PERFSIM on a workstation to optimize the program. If the accuracy is not good, the user uses
PERFSIM to optimize the parts of the program in which the estimates were good, but he or she
must use executions on the CM-5 to optimize the part of the program that was not estimated
accurately. The main source of inaccurate estimates in PERFSIM is permuting arrays, since the
running time depends on the permutation, which is a vector that does not exist in PERFSIM’s
executions. For example, suppose that the first phase of a program involves sorting its input
(sorting involves permutation routing). Then, PERFSIM may not estimate the running time of
this phase accurately, since the actual running time depends on the input data, but PERFSIM’s
estimates do not. Since PERFSIM breaks down the running time by source line and by operation
types, the user can use PERFSIM for tuning the other parts of the program.

Performance Extrapolation

PERFSIM can accurately extrapolate the total running time and the fraction associated with each
class of vector operations from executions on small data sizes to executions on large data sizes.
For example, from two executions on small arrays of size 4096 and 8192, PERFSIM generated
the graphs, shown in Figure 5.2, describing the estimated running times of three programs.
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Let me first explain what I mean by performance extrapolation. Let us assume that the
program is scalable, that is, its data size can grow as a function of some parameters. In typical
numerical modeling, these parameters might govern the discretization of space or the size
of the domain being modeled by the program. When the data size grows, two things might
happen. First, the program may require more iterations to reach convergence or termination.
This phenomenon is problem- and algorithm-specific, and we do not attempt to model it. The
second phenomenon is that the relative costs of different operations change. An operation that
takes most of the execution time on small data sizes, say computations in nodal code blocks,
may be replaced by another, say permutation routing, which takes most of the execution time
on large data sizes. Since the running time of programs under PERFSIM is independent of the
data size, it is possible to use PERFSIM to estimate the running time and its breakdown on large
data sizes. But extrapolating performance is quicker than running PERFSIM several times.

PERFSIM extrapolates the running time and its components based on one parameter govern-
ing the data size. We chose to use only one parameter in order to enable effective presentation
of the extrapolation results. To perform extrapolation, the user executes the program under
PERFSIM on two different data sizes, which we shall denote by �1 and �2. During each of the
two experiments PERFSIM records which run-time subroutines were called on what geometries,
how many times, and most importantly, how much data was transferred on each of the commu-
nication channels. By comparing the two experiments, PERFSIM determines the rate at which
each transfer size grows and is able to correctly extrapolate each component of the running
time.

For example, let us suppose that in a particular vector communication operation, n1 words
were sent out and received in each CM-5 node in one experiment, and that in the second
experiment, the same operation required sending and receiving n2 words. PERFSIM determines
that when the data size grows by a factor of �1=�2, the number of words sent in and out of each
node in that particular operation grows by a factor of n1=n2, and this is the factor used to scale
the data transfer time. This method correctly handles situations in which different arrays in the
program grow at different rates, surface-to-volume effects in many communication operations
(i.e. different transfer sizes in a single operation grow at different rates), and nonlinear behaviors
in operations such as matrix multiplication.

To extrapolate the running time as a function of more than one parameter, say both � and
�, we need 3 different experiments: one serving as a base case, another with the same � but a
different �, and one with the same � as one of the previous ones but a different �. The pair of
executions with the same � is used to determine the dependency of transfer sizes on �, and the
two executions with the same � are used to determine the dependency on �. In general, k + 1
executions are necessary for extrapolation based on k independent parameters.

Storing the transfer sizes associated with every single vector operation in an execution
generates a tremendous amount of data. We have implemented a data compression scheme,
which is based on aggregating all the invocations of a given run-time system subroutine which
gave rise to the same transfer sizes. This approach reduces both the amount of data that
must be generated during an execution and the time required to extrapolate the running time.
This approach may introduce array size aliasing, however, in which two groups of arrays that
grow at different rates have exactly the same size in one of the two executions. Suppose,
for example, that a program allocates some arrays of fixed size 32 and others whose sizes
depend on a parameter �. In executions with � = 32, PERFSIM does not distinguish between
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operations on fixed size arrays and variable size arrays. To avoid incorrect extrapolation,
PERFSIM compares the number of subroutine calls for each combination of transfer sizes, and
performs extrapolation only if the number of calls match. When array-size aliasing occurs, the
number of calls do not match and extrapolation does not take place.

4.5 PERFSIM’s Software Organization

This section describe PERFSIM’s software organization. The CM-5, as well as all the other
Connection Machines and certain other parallel supercomputers, uses dedicated hardware to
execute the scalar part of the program. On the CM-5 this hardware, called the partition
manager or host, is a Sun workstation equipped with a network interface. As shown in
Figure 4.3, the CM Fortran compiler generates a SPARC assembly language file containing
the scalar part of the program, as well as a set of nodal loops, or nodal code blocks. Any
vector operation is translated into one or more function calls to the CM runtime system [107].
These functions invoke subroutines on the CM-5’s nodes and transfer data between the partition
manager and the nodes. The subroutine invoked on the nodes can be either a subroutine in the
CM runtime system or a nodal code block containing a nodal loop.

PERFSIM modifies the assembly language code generated by the compiler for the partition
manager . Each call to the CM run-time system is replaced by a call to a corresponding
function in PERFSIM’s run-time system, as shown in Figure 4.4. For the most part, PERFSIM’s
run-time functions use their arguments to estimate the running time of the corresponding CM
run-time function, and do not actually operate on vectors. Memory allocation and deallocation
subroutines in the CM run-time library are replaced by subroutines that do not allocate memory
on the nodes, but record the amount of allocated memory for later analysis.

The only functions in the CM run-time system that are called during PERFSIM’s executions
are those that allocate geometries. These functions do not access the CM-5’s nodes, and calling
them ensures that PERFSIM’s subroutines receive as arguments exactly the same geometries as
are passed to the CM run-time system in normal executions on the CM-5.

4.6 The Goals and Structure of BENCHCVL

BENCHCVL is a benchmapping system that advances the state of the art in performance modeling
by automatically generating models for an entire runtime system. To automatically create
benchmaps for several computer systems requires a runtime system that is implemented on
several computers. Since PERFSIM models the performance of the CM-Fortran runtime system,
which is implemented only on the Connection Machines CM-2 and CM-5, I have chosen
to implement a new system that models the performance of CVL [18], the runtime system
supporting the NESL programming language [17]. Runtime subroutines in CVL operate
on one-dimensional vectors. Implementations of CVL exist for workstations, Cray vector
computers, Connection Machines CM-2 and CM-5, Maspar computers, and for other parallel
and distributed platforms that support the Message Passing Interface (MPI).

Using BENCHCVL is simple. The user names, in a configuration file, the benchmap to be
used for performance prediction. When the user runs a program, BENCHCVL uses the benchmap
to simulate the timer of the benchmapped system. All accesses to the runtime-system timer
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Figure 4.3 The CM Fortran compiler generates two object code files, one is a host program which
contains the control structure and scalar operations in the program, and the other is a set of nodal code
blocks, or nodal loops. All the vectors operations are invoked by the host program by calling the CM
runtime system. The runtime system broadcasts a request to the nodes to perform the required operation,
which may be an invocation of a nodal code block or an invocation of a runtime system subroutine.
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Figure 4.4 PERFSIM replaces the CM runtime system with another with the same interface. PERFSIM’s
runtime system never invokes operations on the nodes, and therefore the program runs on the host alone.
PERFSIM’s runtime system estimates the time runtime system calls would have taken on a CM-5 using
performance models of the CM runtime system, and the results of an analysis of the nodal loops.
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Conjugate Gradient Spectral Separator

Sun 10/CM-5 (Actual) 14 3.2
Sun 10/CM-5 (Predicted) 14 4.4

Sun 1+/CM-5 (Actual) 54 13
Sun 1+/CM-5 (Predicted) 58 21

Table 4.2 The actual and predicted performance ratios between Sun workstations and a CM-5, on two
different programs. The ratios represent the running time on a workstation divided by the running time
on the CM-5. The table shows that BENCHCVL can accurately compare the performance of computer
systems on specific programs.

by the user’s program or by a profiler return the estimated time on the benchmapped system,
rather than the actual time on the system that executes the program. Hence, existing programs
and profilers can use BENCHCVL’s predictions transparently simply by using the builtin timing
facilities in CVL.

Two characteristics of NESL and CVL limit both the accuracy of BENCHCVL’s models and
the performance of the runtime system itself. One characteristic is the fact that NESL does not
attempt to exploit locality in distributed architectures, and therefore CVL does not provide spe-
cial classes of permutation operations such as shifts. Therefore most data movements in NESL
are implemented by a general permutation routing mechanism whose performance depends on
the contents of arrays. The second characteristic is the implementations of multidimensional
arrays using segmented vectors. The arbitrary lengths of segments cause another dependence
of performance on the contents of vectors, here the lengths of segments. Since BENCHCVL’s
models do not depend on the contents of vectors, their accuracy is somewhat limited by this
design choice in CVL.

In comparison, the CM runtime system provides optimized classes of permutation oper-
ations that are easy to model, and in multidimensional arrays all segments (i.e. columns of
matrices) have the same length. Thus, BENCHCVL demonstrates that benchmaps for multiple
platforms can be automatically created, but PERFSIM demonstrates better the potential accuracy
of benchmaps of high performance runtime systems.

4.7 BENCHCVL’s Benchmaps: Coping with Caches

BENCHCVL’s benchmap is based on a model of parallel computers in which a collection
of nodes is connected by a communication channel. Each node has a processing unit and
a local memory hierarchy, as shown in Figure 4.5. The benchmap describes the cost of
interprocessor communication across the communication network, the sizes of caches, and the
cost of random and sequential data transfers between levels in the local memory hierarchy.
Sequential access to data creates better spatial locality of reference than random access and
therefore the performance of sequential accesses is often better than that of random accesses.

BENCHCVL’s benchmaps model temporal locality in data caches using piecewise-linear
models. A piecewise-linear model decomposes the space of performance determinants into
regions and predicts performance in each region using a linear model. Consider, for example,
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Figure 4.5 A schematic diagram of the model that underlies BENCHCVL’s benchmap. The model
describes the computer as a collection of nodes connected by a communication channel, where each
node contains a processing unit and up to three levels of local memory. The benchmap describes the
cost of interprocessor communication across the communication network, the sizes of caches, and the
cost of random and sequential data transfers between levels in the local memory hierarchy.

the running time a subroutine that computes the inner product of two vectors. A piecewise-
linear model can decompose the space of vector sizes into small sizes, where the input vectors
fit within the cache, and large vector sizes, where the input vectors must be stored in main
memory.

The CVL runtime library implements operations entire and segmented one-dimensional
vectors. A segmented vector is partitioned into segments of arbitrary lengths. Vector operations
in CVL include elementwise operations, such as adding two vectors, scans, or parallel prefix
operations, reductions of vectors to scalars, such as summations, vector permutations, ranking
(sorting) vectors, and packing of sparse vectors. On parallel computers, every processor “owns”
a section of each vector and is responsible for operating upon that section.

The performance determinants that BENCHCVL uses to predict the running time of CVL
subroutines are the number of elements per processor in each argument vector and the number
of segments in argument vectors. The content of vectors is not used to predict performance.
The length of individual segments is not used either, because the number of segments can be
arbitrarily large.

BENCHCVL’s models include basis functions that represent five cost categories:

� A fixed cost that represents the subroutine call overhead.

� A cost proportional to the diameter of the interprocessor communication network. Cur-
rently, all the models use a log(P ) term to represent this cost.

� Costs for sequentially operating on the section of arrays owned by one processor.

� Costs for random accesses to sections of arrays owned by one processor.
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� Costs for interprocessor transfers of array elements.

We distinguish between sequential access and random access to vectors because when vectors
do not fit in data caches, sequential access cause a cache miss at most once every cache line
size (ignoring conflicts), whereas random accesses can generate a miss on almost every access.

The model for permuting a nonsegmented vector of size N into another vector of size N
on a computer with P processors, for example, has the following structure:

x1 + x2 log(P ) + x3
N

P
+ x4

N

P

P � 1

P
:

The first term represents the fixed cost, the second the diameter of the communication network,
the third the number of elements each processor owns, and the last the expected number of
elements each processor has to send and receive from other processors. The number of messages
used by the model is an approximation for the expected number for random permutation.

BENCHCVL models both the temporal locality and spatial locality in data accesses. The
spatial locality in vector operations is modeled by using separate terms for sequential accesses
where spatial locality is guaranteed and for random accesses. The cost of random accesses
is represented by two basis functions, one that represents the cost of a cache miss times the
probability of a miss, and another that represents the cost of a cache hit times the probability
of a cache hit. The probability of a cache hit depends on the size of the cache relative to the
size of the vector owned by a processor (assuming a cache for every processor). For example,
the model for permuting the elements of a vector of size N1 to a vector of size N2 includes the
basis functions

N1

P

1

N2=P

and

N1

P

 
1�

1

N2=P

!
:

The number of random accesses in the operation is N1=P . The probability of a cache hit in
one of those accesses, when N2=P is larger than the size � of the cache, is approximated
by �=(N2=P ), the fraction of the target vector’s elements that can reside in the cache. The
parameter� is left unspecified in the basis function,and is estimated by the parameter estimation
algorithm.

The temporal locality of data accesses is modeled using piecewise-linear models. BENCHCVL

assumes that vectors that fit within the cache are indeed in the cache. A piecewise-linear model
use separate linear models to describe the performance of a subroutine when argument vectors
fit in the cache and when they do not. BENCHCVL does not specify the size of caches. Rather,
an automatic parameter estimation algorithm estimates the size of the cache based on apparent
“knees” in the running time, which we call breakpoints. Figure 4.6 shows two models with
breakpoints generated by BENCHCVL’s parameter estimation module.

Architectures with more than one level of caches are modeled with piecewise-linear models
with more than one breakpoint and more than two regions. In such cases, the benchmapper
specifies the ratios between the sizes of caches in the system. The specification of these ratios
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Figure 4.6 The execution times of a summation function and a prefix sum function, represented by
circles, on a Sun SPARCstation 10 workstation. The lines represent the models estimated from these
data points. The running time of the two functions is clearly not linear, and the breakpoints occur on
different input sizes, because one function handles only one vector, while the other handles two.

enable BENCHCVL to search for only one breakpoint in the running time, and ensures a robust
estimation of cache sizes.

BENCHCVL’s algorithms for finding piecewise-linear models are implemented as a CAR-
TOGRAPHER module. The module can use any linear estimation algorithms that are available in
CARTOGRAPHER.

4.8 BENCHCVL’s Software Organization

Portability of NESL programs is achieved by porting the CVL runtime system [19]. Data-
parallel NESL programs are translated by the compiler into a representation called VCODE,
for vector code. The VCODE representation is interpreted by a VCODE interpreter. The
VCODE interpreter uses the CVL runtime system to perform operations on vectors, the only
data structures in NESL. Only the CVL runtime system needs to be implemented when porting
NESL to a new platform—the other components of the system are identical on all platforms.
(In addition, there exists a VCODE compiler that does not call CVL, which I did not use.)

The BENCHCVL system replaces all the CVL calls in the VCODE interpreter with calls to
an instrumented interface to CVL, as illustrated in Figure 4.7. Subroutines in BENCHCVL’s
interface are capable of timing CVL subroutines and estimating their running time using
a benchmap. The instrumented interface is portable and makes no assumptions about any
particular CVL implementation. As described in Section 4.6, BENCHCVL can replace the
interface to the native system timer provided by CVL by an identical interface to a simulated
timer. The simulated timer is advanced by the estimated running time of subroutines used by
the calling program, typically the VCODE interpreter. The instrumented interface and CVL
itself are also used by the BENCHCVL’s surveyor program that generates performance reference
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Figure 4.7 NESL programs are translated into VCODE programs. The VCODE interpreter executes
vector instructions by calling the CVL runtime system. In BENCHCVL, the VCODE interpreter calls the
BENCHCVL instrumented interface. BENCHCVL’s interface calls CVL and can measure or estimate the
running time of CVL subroutines. The estimates are based on a benchmap.

points for benchmapping.
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Chapter 5

Assessment of Performance Models

Three factors may compromise the accuracy of performance models: missing performance
determinants, models with inappropriate structure (such as missing basis functions), and in-
sufficient reference points to estimate parameters in models. The accuracy of models should
therefore be evaluated before they are used, to determine whether their accuracy meets our
expectations. Expectations from models should depend on the context. In some cases very ac-
curate models are required, and in other cases rough models suffice. This chapter demonstrates,
in context, that PERFSIM and BENCHCVL are accurate.

5.1 Accuracy in Context

How accurate does a benchmap need to be? We cannot expect performance models to predict
performance exactly. Which prediction errors are acceptable depends on the quantitative
context in which the predictions are used. Consider for example two implementations of an
algorithm, one of which runs on a given input in 1 second, whereas the other takes in 2 seconds
to run. Performance models whose predictions are within 25% of the actual running time can
correctly determine the faster subroutine for the given input, while models whose predictions
are within 50% might err. In this case, the difference in running times provides a context in
which models can be evaluated. This section describes the quantitative contexts in which the
accuracy of PERFSIM and the accuracy of BENCHCVL are evaluated.

PERFSIM is a profiler for CM Fortran programs, so the yardstick to which it is compared
is Prism, the CM-5’s native profiler [111]. Prism uses the CM-5’s timers to profile programs.
I have found that the CM-5’s timers can have large deviations when timing the same program
several times, even though they are supposed to be aware of time sharing.

Table 5.1 shows that the deviations in running times reported by the CM-5’s timer can
be larger than PERFSIM’s estimation errors. On large input sizes, where performance is most
important, PERFSIMis especially accurate because its models were tuned for large input sizes,
whereas deviations in reported timings are very large.

Finding a yardstick for for assessing BENCHCVL is more difficult, because benchmarks are
interpreted by humans. As we have seen in Chapter 2 the performance of multiple programs
in one benchmark, such as the NAS Parallel Benchmark, can differ by more than a factor of
7. (Here performance is taken as running time compared to the running time on a reference
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Elapsed Time Max Dev Est Error
Prog Size CM-5 PERFSIM CM-5 PERFSIM

CG3D 1923 338 8 44% �19%
163 17 8 �5% 0%

QCD 36� 163 596 20 1% �4%
36� 43 36 20 19% �30%

Table 5.1 A comparison of the speed and accuracy of PERFSIM versus actual performance measure-
ments on the CM-5. The table reports the maximum relative deviation from the mean running time
among 10 executions of two programs on the CM-5, and PERFSIM’s relative estimation error. The
deviation from the mean running time in timings reported by the CM-5’s elapsed timers can be larger
than PERFSIM’s estimation errors. The table also shows that profiling the programs with PERFSIM is
much faster than running them on the CM-5. Time is reported in seconds.

machine). It is not clear how accurate can a prediction derived from these benchmarks be.

5.2 The Role of Test Suites

This section presents guidelines for the use of test suites for accuracy evaluations, and explains
why it is difficult in practice to adhere to these guidelines. The accuracy of models is evaluated
using test suites. The programs in the test suite should not be used to estimate parameters in
models. Indeed, the programs in the test suites used to evaluate the accuracy of benchmaps in
this thesis were not used to estimate parameters in models. Ideally, these programs should not
be known at all to the person or team implementing the models. The size of the test suite should
be large enough to ensure a reasonable level of confidence in the evaluation. This section
examines the issue in more detail and explains why these simple objectives are often difficult
to achieve in practice.

The most important objective of accuracy evaluation is to eliminate feedback between the
test suite and the models. If test programs were plentiful, we could set aside a number of them
for the final evaluation, and use other groups for intermediate evaluations of benchmaps. After
each evaluation, we would improve the models or add reference points and use the next group
to evaluate the models. After the final evaluation, no further modifications are allowed. If the
models are inaccurate at this point, they are either not used at all, or delivered to users with an
appropriate warning.

Having one set of evaluation programs for all models on all systems is desirable, because
it allows us to compare the accuracy of models relative to one another. But if the models
must evolve when new architectures arise, then using the same evaluation programs introduces
feedback into the evaluation process, because the models are modified after the behavior (in
terms of the subroutine calls performed) of the evaluation programs is known.

Unfortunately, it is difficult to eliminate feedback in the benchmap evaluation process
because the number of programs available for testing is often small. Users are often reluctant to
give away their programs and their input data sets, even for performance evaluation purposes,
since they may encapsulate important research results or they may have considerable financial
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Authors and Reference Progs Nature and Author of Programs

Atapattu and Gannon [5] 6 Lawrence Livermore Loop Kernels.
Balasundaram et al [9] 1 2D red-black relaxation, by the authors.
Brewer [22, 23] 3 2D stencil, 2 sorting algorithms, all by the author.
Crovella and LeBlanc [34] 2 Subgraph isomorphism, 2D FFT, latter by Jaspal

Subhlok.
Fahringer and Zima [43] “many” Includes Jacobi relaxation, matrix multiplication,

Gauss-Jordan, LU, authors not specified.
Formella et al [47] 3 Dense conjugate gradient and 1D and 2D stencils,

by the authors.
MacDonald [79] 6 Lawrence Livermore Loop Kernels.

Table 5.2 The number of test programs used to evaluate performance models in various papers.
In some of the papers programs were investigated in detail and executed on many input sizes. For
comparison, I used 8 programs to assess the accuracy of PERFSIM, one of which was written by me.

value. For example, the implementations of the NAS Parallel Benchmarks could have been
good test programs, but vendors do not release them.

Many programs must run in some context which includes input data, other programs, and
user interaction. It may be difficult to duplicate a program’s environment, which leads to the
elimination of many programs from the test suite.

Limited use of a programming language may be another limiting factor. For the BENCHCVL

system, were we use the example programs distributed with the NESL language, plus two other
programs, the number of available programs is particularly small.

Table 5.2 illustrates how hard it is to get a large number of test programs by listing the
number of test programs used in a number of research papers describing performance models.

5.3 PERFSIM’s Accuracy

PERFSIM is accurate. As an illustrative example, Figure 5.2 compares the actual and estimated
running times of three implementations of a simple algorithm for various problem sizes on
a log-log scale. The figure clearly shows that the estimates are accurate enough to order
the relative performance of the three subroutines for nearly all problem sizes. The three
implementations, described in Figure 5.1, implement a one-dimensional red-black relaxation
algorithm. The implementations differ in how they represent the red (even) and black (odd)
points in the domain. The three representations are: (1) logical masks, (2) array sections, and
(3) separate arrays to store the red and black parts of the domain.

Since PERFSIM’s benchmap is based on the organization of the CM-5’s hardware, incorrect
model structure is not a major concern. Because the main objective of PERFSIM is to predict the
performance of programs accurately on large input sizes, the sufficiency of the training set is
not a major concern either. Thus, we focus on the impact of missing performance determinants
on PERFSIM’s accuracy. The empirical results in Table 4.1 in Chapter 4 indicate that that
PERFSIM’s models are accurate and that the impact of unknown performance determinants on
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Data declarations
double precision x(n),b(n)
double precision xred(n/2),xblk(n/2),bred(n/2),bblk(n/2)
logical red(n),blk(n)

Red Black Relaxation using
Logical Masks

where (red) x = 0.5 * (eoshift(x,1,1)+eoshift(x,1,-1)+b)

Red Black Relaxation us-
ing Separate Black and Red
Arrays

xred = 0.5 * (xblk+eoshift(xblk,1,-1)+bred)

Red Black Relaxation using
Array Sections

x(3:n-1:2) = 0.5 * (x(2:n-2:2)+x(4:n:2)+b(3:n-1:2))
x(1) = 0.5 * (x(2)+b(2))

Figure 5.1 The table shows the code for updating the red points of the domain in three different
implementations of a red black relaxation subroutine, and the data declarations for the subroutine.
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Figure 5.2 The the actual and estimated running times of three red-black relaxation subroutines as a
function of the domain size. PERFSIM can generate the entire graphs describing the estimated running
times from two executions on arrays of size 4096 and 8192, both well to the left of the crossover point.
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PERFSIM’s accuracy does not significantly limit its application.
Four categories of missing performance determinants, however, compromise PERFSIM’s

accuracy. We now describe these categories, and explain which of these determinants should
be used in future benchmaps and how.

Data dependencies. Some communication operations, permutations in particular, can take
different amounts of time depending on the contents of the arrays passed as arguments. Let
us take as an example two cyclic permutations of a one-dimensional array x with n = 16
million double-word elements on a 32-node CM-5. Cyclically shifting the array by 1 using a
permutation operation x = x(p) takes 0:216s, while shifting it by n=2, such that every word
is transferred through the root of the data network tree, takes 2:89s. Much of the difference
is not due to the inability of the hardware to route the second permutation quickly, but due to
software overheads. The array can be cyclically shifted by n=2 in 0:937s using the cshift
subroutine.

While PERFSIM cannot predict the exact running time of data dependent operations, we
do not believe this poses a significant problem to PERFSIM’s users. Irregular, data dependent
communication operations are used in two situations. The first case is when the program
implements an algorithm in which irregular communication is used, such as computations on
irregular meshes. In this case the communication operations cannot be removed or significantly
changed by the programmer, and most of the tuning is done on the rest of the program, which
PERFSIM estimates accurately. The second case is when the communication pattern is not data
dependent, but the compiler fails to find a way to implement it using calls to communication
subroutines for regular communication such as shifts. Here, the programmer is better off
modifying the program so that the compiler can replace the call to the irregular-communication
subroutine by a call to a regular-communication subroutine, whose performance is always
better.

Several different subroutines underlying one run-time system call. Some of the subrou-
tines in the CM run-time system are actually driver subroutines that may call several different
subroutines depending on the layout of the arrays passed. A simple remedy would be to inter-
cept run-time system calls made to actual subroutines rather than to driver subroutines. I could
not implement PERFSIM in this manner since I had no access to the sources of the run-time
system, but this approach is certainly possible when sources are available.

Uneven sequential overheads. Some calls to the CM run-time system take much longer
than other calls with identical arguments, due to sequential overheads incurred only on some
calls. In the case of driver subroutines mentioned above, the overhead is probably caused
by the decision-making process required to determine which actual subroutine to use. This
information is cached and used on subsequent calls with the same arguments. For example, out
of 50 calls with the same arguments to the cshift subroutine, the first call took 1:3ms where
as the other 49 all took between 0:15ms and 0:19ms.

Here again, intercepting run-time system calls to the subroutines that actually perform the
data movement rather than to driver subroutines which may have large sequential overheads on
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some calls would fix the problems. In other words, the sequential overheads, like the rest of
the sequential control, should be executed rather than estimated.

Performance bugs. Some subroutines consistently exhibit different performance on different
arguments even though the transfer sizes are exactly the same. For example, while executing
the program CG3D on arrays of size 323, we have found that shifting an array along the first
axis by distance of 1 takes a different amount of time depending on the direction of the shift.
Over 5 different executions, each of which consisted of 500 iterations, shifting by 1 always
took 0:184 seconds (for all 500 shifts combined), whereas shifting the same array along the
same axis by�1 took between 0:193 and 0:196 seconds, a slowdown of more than 4:8% over
the 0:184 seconds it took to shift the array by 1. The slowdown is due to a bug, because there
is no reason that two operations that are completely symmetric would run in different amounts
of time.

There is way and no reason to model performance bugs. As much as possible, they should
be eliminated. Our experience has shown that PERFSIM is valuable for finding performance
bugs, since such bugs often manifest themselves as discrepancies between estimated and actual
running times, as discussed in Chapter 2.

5.4 BENCHCVL’s Accuracy

This section exhibits, by examining BENCHCVL’s accuracy, the feasibility of automatic perfor-
mance modeling on multiple architectures. Since the same models are supposed to model on
multiple architectures, the discussion focuses on the structure of models on different architec-
tures.

BENCHCVL’s models were developed on a Sun SPARCstation 10. Subsequently, four com-
puter systems were automatically surveyed and modeled with CARTOGRAPHER: Sun SPARC-
station 10, Sun SPARCstation 1+, a 32-node Connection Machine CM-5, and a Cray C90
(CVL uses only one processor on a Cray vector computers). A test suite composed of the
larger programs in the NESL distribution plus one other large program was used to evaluate
BENCHCVL. Tables 5.3, 5.4, 5.5, and 5.6 show the actual and predicted running times in
seconds of the programs in the test suite. Reported running times are averages of at least 3
executions. Bugs in the two CM-5 implementations of CVL prevent some of the test program
from running. A bug in the CVL implementation and a bug in BENCHCVL prevented some of
the test programs from running on the C90.

The tables show that BENCHCVL is accurate. The relative errors are 33% or better, except
for one experiment in which the error is 39%. BENCHCVL’s accuracy enables meaningful
comparisons between computer systems. Table 5.7 shows that the predictions can be effectively
used to compare the performance of computer systems on specific programs. Such comparisons
are more meaningful to the users of the programs being compared than comparisons based on
benchmark programs.

The relative errors of the models on the reference points are generally small. On a Sun
SPARCstation 10, the errors in most of the elementwise vector operations are 5% and smaller,
with a few exceptions where the errors are up to 8%. The errors in reductions and scans
(including segmented operations) are 7% and smaller, except for segmented operations involv-
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Actual Predicted
Program Input Total Time CVL Time CVL Time

Geometric Separator airfoil, 12K vertices 5.49 1.67 1.42
Spectral Separator airfoil, 12K vertices 74.68 64.50 76.56
Convex Hull 100K points 9.06 6.90 8.48
Conjugate Gradient 78K nonzeros 88.07 83.41 110.81
Barnes Hut 4K points 269.48 175.65 193.59

Table 5.3 Measured and predicted running times of NESL programs on a Sun SPARCstation 10.

Actual Predicted
Program Input Total Time CVL Time CVL Time

Geometric Separator airfoil, 12K vertices 15.88 5.52 6.71
Spectral Separator airfoil, 12K vertices 268.06 270.81 361.07
Convex Hull 100K points 35.42 29.12 37.19
Conjugate Gradient 78K nonzeros 339.50 326.20 451.98
Barnes Hut 4K points 917.96 652.08 655.05

Table 5.4 Measured and predicted running times of NESL programs on a Sun SPARCstation 1+.

Actual Predicted
Program Input Total Time CVL Time CVL Time

Spectral Separator airfoil, 12K vertices 28.93 19.92 17.03
Conjugate Gradient 78K nonzeros 15.09 6.07 7.75

Table 5.5 Measured and predicted running times of NESL programs on a 32-node time-shared CM-5.
The CM-5 implementation of CVL could not run the other test programs due to bugs.

Actual Predicted
Program Input Total Time CVL Time CVL Time

Convex Hull 100K points 0.703 0.134 0.109
Conjugate Gradient 78K nonzeros 5.38 2.15 1.86

Table 5.6 Measured and predicted running times of NESL programs on a Cray C90. One test program
could not be executed because of a problem in the C90 implementation of CVL and two other because
of an apparent bug in BENCHCVL.
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Conjugate Gradient Spectral Separator

Sun 10/CM-5 (Actual) 14 3.2
Sun 10/CM-5 (Predicted) 14 4.4

Sun 1+/CM-5 (Actual) 54 13
Sun 1+/CM-5 (Predicted) 58 21

Table 5.7 The actual and predicted speedups between Sun workstations and a CM-5, on two different
programs. The ratios represent the running time on a workstation divided by the running time on the
CM-5. This is a reproduction of Table 4.2.

ing integer multiplication and bitwise and, where the errors are up to 20%. The reason for
the larger errors in these operations is that the running time of individual operations is value
dependent, and therefore cannot be accurately modeled by value independent models. This is
a good example of the importance of upper and lower bounds rather than a single model. The
errors on data movement operations, such as permutations, gathers, and scatters were below
37%, with many of the operations being modeled to within 15% or less.

Results on the CM-5 were similar, except for large relative errors in the subroutines that
transform ordinary C arrays to and from distributed vectors. This uncovered a latent “bug” in
the models’ structure: the models lacked a term to account for very large, because the models
did the sequential bottleneck in the processor which owns the C array. This problem is easily
fixed, but it may be typical of latent bugs in models, which are discovered only when a model
fails on a certain architecture.

Relative errors on the C90 were larger than on Sun workstations and the CM-5. The most
likely reason for the larger errors is that the C90 timers are oblivious to time sharing, so the
reference points probably include some outliers whose timing include other users’ time slices.
The problem can be fixed by taking the minimum of several measurements as the actual time,
rather than the average of the measurements.

Modeling the performance of CVL on a Silicon Graphics Indigo2 workstation revealed that
cache conflicts make performance virtually unpredictable. BENCHCVL revealed that conflicts in
the two levels of direct mapped caches degrade performance on certain vector sizes. Conflicts in
the onchip virtually indexed cache degrade performance of operations such as vector copy by a
factor of about 1:75, and conflicts in the offchip physically indexed cache degrade performance
by a factor of about 14. Since BENCHCVL does not model memory-system conflicts, the models
cannot predict performance on this machine with any degree of accuracy. Modeling conflicts in
the physical address space is particularly difficult, because only the virtual addresses of vectors
are known to the runtime system. (We have found however that conflicts of virtual addresses
usually translates to conflicts of physical addresses on this machine, so these conflicts cannot
be ignored.)

The BENCHCVL system performed its job: it indicated that performance on this workstation
is not predictable to within less than a factor of about 15, at least for NESL programs (we
have duplicated this behavior in simple C programs as well). This is a valid input for decision
makers who must assess the expected performance of machines before they are purchased.
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Chapter 6

Performance Prediction: Methods and
Applications

Now that we have explained what is benchmapping and demonstrated that it is a feasible
performance-prediction methodology, it is time to readdress two questions: what are the
applications of benchmapping and in what ways is it superior to other performance prediction
methodologies. We shall see that benchmapping has applications beyond those described
in Chapter 4. We shall also see that traditional performance specification and prediction
methodologies are not suitable for most of these applications.

6.1 Applications of Benchmaps

By examining my own experiences with benchmapping systems, as well as other research on
performance modeling, this section demonstrates that benchmapping is an enabling technology
for a variety of applications. We focus on six application areas: program profiling and tuning,
acquisition decisions, performance maintenance, hardware design, compiler optimization, and
runtime optimization. Benchmapping contributes to these application areas by supplying
decision-making processes with quantitative performance estimates.

Profiling and Tuning

PERFSIM is a profiler for CM Fortran programs that runs on a workstation and estimates the
profile of the execution of a program on the Connection Machine CM-5 [110] quicker than
the profile can be produced by measuring the program on a CM-5. PERFSIM is fast because
it does not actually perform vector operations, only estimates their running time. Chapter 4
describes PERFSIM and its benchmap of the CM-5’s data-parallel runtime system. PERFSIM’s
estimation errors are comparable to deviations in the measured running time of programs on
the CM-5. Hence, PERFSIM is about as reliable as the native CM-5 profiler that uses timers
to profile programs. Chapter 5 presented a detailed study of PERFSIM’s accuracy that supports
this conclusion.

Modeling rather than measuring performance can bring several benefits to a profiler. If
estimating the running time of an operation is faster than performing and timing it, then a
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profiler like PERFSIM that does not perform all the operations in a program can be significantly
faster than a timing-based profiler. When timers are noisy or have low resolution, models can
be more accurate and provide more details than timing-based approaches. Finally, models
provide insights into the cost structure of operations, insights that can enable activities such as
performance extrapolation.

Several other research groups have also proposed to use performance models in interactive
program tuning tools. Atapattu and Gannon [5] describe an interactive performance prediction
tool for a bus-based shared memory parallel computer. Performance prediction in their tool
is based on a static analysis of the assembly language code of the compiled program. In
comparison, performance prediction in PERFSIM is based mostly on a model of the runtime
system, and static analysis is avoided by executing the control structure of the program. Crovella
and LeBlanc [34] describe an interactive performance tuning tool that tries to fit the behavior
of the program to a model taken from a library of performance models. To use their tool, a
user must run the program several time on the target machine. To use PERFSIM the user does
not have to run the program on the CM-5.

System Acquisition and Configuration

Benchmaps are effective tools for comparing the performance of several computer systems
or system configurations. Benchmaps can compare the performance of several systems by
predicting the performance of programs that prospective buyers want to use. Comparisons
based on predicting the performance of users programs are more relevant for acquisition
decisions than comparisons based on standardized benchmarks.

BENCHCVL predicts the running time of data-parallel programs written in the NESL lan-
guage. The NESL language is implemented on a wide range of serial, parallel, and vector
computers, and the BENCHCVL system can automatically generate a benchmap for any NESL
platform. Given the benchmap of a NESL platform, NESL programs running on another plat-
form can predict their running time on the benchmapped platform. Users compare computer
systems with the BENCHCVLsystem by predicting the performance of their own programs on
any system on which the NESL programming language is implemented.

This approach to acquisition and configuration decision making is already used by the
industry in the area of real-time embedded computer systems. A firm called JRS Research
Laboratories Inc. from Orange, California, offers a design automation environment for em-
bedded systems, which includes performance models of hardware and software components
and allows designers to estimate the performance of system designs using various hardware
platforms and configurations. It was not possible to understand from the information supplied
about this product how it works.

Chen [28] and Chen and Patterson [29] propose a benchmarking system for I/O perfor-
mance. Their system creates simple models of I/O performance using an automatic performance
surveying technique. The models can be used by a human performance analyst to predict the
I/O performance of application programs.

Acquisition and configuration decisions concerning time-shared resources, such as CPU’s,
communication networks, and disks, often depend on external performance measures, such as
response time. External performance measures have been modeled extensively using queuing
models. Such models were developed for the early timesharing systems of the early sixties [38,
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101], and they are still in use today [60, 63, 72].

Performance Maintenance

The performance of software is often compromised by performance bugs, which are flaws that
have no effect on the correctness of the software, but have an adverse effect on performance.
Performance maintenance is the activity in which performance bugs are uncovered and fixed.
A key component in performance maintenance is a set of explicit performance expectations.
Performance bugs are uncovered when the performance of the software does not live up to our
expectations, or then the expectations are low compared to the capabilities of the hardware.
Perl [94] and Perl and Weihl [93] propose a system for checking actual performance against
expectations, but they do not propose an automated way for generating the expectations.

Benchmaps are capable of generating expectations. The predicted performance of a sub-
routine is an expectation. If benchmaps can automatically predict performance, then they can
automatically generate expectations for performance maintenance. When the cost structure of
the models in a benchmap has some physical interpretation, the models can inspected by hand
to verify that they are in line with the hardware’s capabilities. The manual inspection may
be tedious, but it is certainly less tedious than inspecting the source code and searching for
performance bugs.

Performance-testing methodologies should include generation of performance expectations
as well as an execution of a test suite of programs. During the execution of the test suit, the
performance of the software under test is compared to the expectations. If the discrepancy
is larger than some threshold, the discrepancy is reported, and a search for a bug can be
undertaken. Benchmaps can automate the testing process by generating an expectation for the
performance of every runtime-subroutine call in the test suite and comparing the expectation
with the actual performance.

The two modeling tools described in this thesis uncovered several performance bugs in
runtime systems using this methodology, even though the original intended use was not per-
formance maintenance. But no matter what the purpose of the model is, every comparison of
prediction and measurement is an opportunity to uncover performance bugs.

For example, by comparing PERFSIM’s models for the cshift and theeoshift subroutines
in one version of the CM-5 runtime system1, we discovered that even though the subroutines
are similar in functionality, the eoshift subroutine was about 4 times slower, which was
due to a performance bug. Large discrepancies between predicted and measured performance
of subroutines in the BENCHCVL system led us to discover a serious performance bug in
the operating system2 of the SGI Indigo2 workstation. This performance problem, whose
manifestation is shown in Figure 2.3, is caused by mapping contiguous blocks of virtual
memory to contiguous physical blocks. This mapping policy causes conflicts in virtual memory
to translate into cache misses in the off-chip physically indexed cache.

1The version of the CM-5 runtime system dated 8/31/93.
2IRIX Release 5.3 IP22
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Hardware Design

High performance is one of the main goals of computer design. Designing computers requires
that the performance of various alternatives be predicted. Hennessy and Patterson [57, page 70]
write that “because accurately predicting performance is so difficult, the folklore of computer
design is filled with suggested shortcuts.”

Modeling techniques described in this thesis may be able to perform such predictions,
without taking shortcuts. In particular, this thesis describes models of runtime systems which
can predict the running time of application programs. When the architect and runtime system
designer can translate the performance of the hardware to the performance of the runtime system
services, tools such as PERFSIM and BENCHCVL can predict the running time of applications.
Such tools can accelerate the design process by providing a fast alternative to simulators.
While simulators are still clearly necessary for hardware design, it is possible that some of the
performance predictions can be performed using higher-level modeling tools which are much
faster.

The main difference between benchmapping an existing system and benchmapping a com-
puter system that is being designed is that parameters in the benchmap cannot be estimated
from experiments. The benchmap’s parameters should be estimated in such cases either by
manual analysis of the design or using experiments on a simulator.

Compiler Optimizations

Most compiler optimizations are in essence choices between several ways of performing a set of
operations. the optimizer tries to choose the fastest way. A great deal of research [27, 67, 75] has
been done for example in the area of optimizing data distributions,alignment, and redistributions
in data parallel languages such as High Performance Fortran [68, 59]. While some of that
research uses fairly crude cost models, some of the research on performance modeling for
high performance computers was done specifically for guiding compiler optimizations. In
particular, Balasundaram et al. [9] describe a rather limited study of this idea, while Fahringer
and Zima [43] describe a comprehensive solution within the framework of the Vienna Fortran
Compilation System.

Runtime Optimizations

When a runtime system provides services which take a long time to complete, or services which
are likely to be called repeatedly with similar arguments, it makes sense for the runtime system
to spend some time finding the most economical way of providing the service. If the decision is
made quickly relative to the time the service is likely to take, the decision making process does
not impact the total service time. Even if the decision making is expensive, it can sometimes
be amortized over many calls with similar arguments, because the same decision is made.

Brewer [22, 23] proposes a runtime system with built-in performance models that chooses
the best implementation of a service, such as sorting, from several available implementations.
The CM-Fortran [109] runtime system uses a similar idea: the most appropriate implementation
of a subroutine such as cshift is chosen from several alternatives. The decision, which can
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EP MG CG FT IS LU SP BT

CM-5E/CM-5 .04 4.6 2.3 7.2 2.6 1.9 2.5
T3D/C90 5.3 3.1 .85 3.3 1.2 2.7 3.3 2.9

Table 6.1 The ratios between the performance of the Connection Machine CM-5 and the Connection
Machine CM-5E (both with 128 processors), and between performance of a 64-processors Cray T3D and
a single-processor Cray C90, as reported by the NAS Parallel Benchmarks, Class A [8]. (Performance
on the CM-5 is not reported for the CG benchmark.) The variation among the ratios makes it difficult
to assess the performance of another application, even if it is a fluid dynamics application.

take significantly more time to make than the execution time of the cshift subroutine itself,
is cached, and used on subsequent calls with the same arguments.

6.2 Comparison with Other Performance Specification Method-
ologies

The benchmapping methodology has three advantages over traditional performance specifica-
tion methodologies: it is automated, accurate, and fast.

Traditionally, the performance of computers has been specified by hardware characteris-
tics. Clock rate, number of functional units, cache size, and network bandwidth are some of the
favorites. Computers are complex systems with many interacting parts. If the characteristics of
even a single part are not specified by the vendor, determining performance becomes difficult.
For example, a low-bandwidth interface between processors and a communication network
may limit the effective bandwidth of that network. When the bandwidth of network is specified
but the bandwidth of the interface is not, it becomes difficult to assess performance. Even if the
performance of every component is fully specified, which is almost never the case, interaction
between components may limit performance in ways that are difficult to predict.

A computer benchmark is a program or algorithm whose execution time on various com-
puters is reported by the vendors or by third parties. In some cases, the benchmark is a fixed
program, but in other cases, only an algorithm is given and the benchmarker may implement
the algorithm in the most efficient way subject to reasonable restrictions. These two classes
of benchmarks exist because some users would like to run their programs unchanged on new
computers, whereas others are willing to tune their codes for a new platform. The hope is that
by measuring the execution times of programs which are similar to the programs the prospec-
tive user wants to run, the execution time of the user’s programs can be estimated without
programming, debugging, and tuning the entire application or application suite.

Unfortunately, the user’s program may be dissimilar to the benchmark programs. Even
when the user’s program is similar to a combination of some of the benchmark programs,
determining its running time may be difficult. Table 6.1 describes performance ratios between
pairs of computer systems (e.g., a CM-5 and a CM-5E), as reported by the NAS Parallel Bench-
marks [8], a set of algorithmic benchmarks designed specifically to assess the performance
of fluid dynamics applications. The ratios vary considerably from one problem to another.
Consequently, a user who has a CM-5 application, for example, will find it difficult to predict

61



the performance of the application on the CM-5E. The difficulty remains even for users of fluid
dynamics applications. Weicker [123] describes some of the expertise required to relate the
results of several popular benchmarks to one’s own programs.

In short, performance prediction with hardware descriptions and benchmarks is difficult
because of two reasons. Both specify the performance of a complex system with just a few
numbers. The specification is therefore often incomplete. Consequently, accurately predicting
the performance of programs using these specification methods is at best difficult. There is no
standard way to decompose a program into components whose performance can be accurately
predicted with either hardware descriptions or benchmarks. As a result, performance prediction
with benchmarks and hardware characteristics is not automated.

Benchmaps predict performance faster than simulators. Almost every new computer de-
signed is implemented in software before it is implemented in hardware (see [66] for one
popular account). The software implementation is called a simulator. It consists of a detailed
model of the hardware design. The level of detail cause most simulators to be slow, often around
10,000 times or more slower than the hardware implementation. They can potentially predict
performance accurately; the simulator of the MIT Alewife machine for example, whose main
goals were not accurate performance predictions, predicts performance to within 10% [26].

Because benchmaps model the performance of a high-level interface, the runtime system,
they can predict performance much faster than simulators. Their speed makes benchmaps
suitable for applications that simulators are too slow for, such as acquisition decision making
and profiling. Benchmaps and simulators can be used together. A simulator can be used to
survey the performance of a computer that is not yet implemented, and the benchmap generated
from the survey can predict the performance of programs.
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Part II

Creating Locality in Numerical
Algorithms
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Chapter 7

Locality in Iterative Numerical
Algorithms

7.1 Introduction

This chapter sketches three algorithmic techniques that increase the temporal locality in many
numerical algorithms and improve their performance. Chapters 8 through 10 use one of the
techniques to reduce the number of I/O operations performed by three classes of algorithms
when their data structures do not fit within main memory. Implementations of this technique
on workstations, presented in Chapters 9 and 10, outperform conventional implementations by
factors of up to 5. A second technique is used in Chapter 11 to accelerate the solution of certain
systems of linear equations on the CM-5 parallel computer by a factor of 1.5–2.5.

Many numerical algorithms are iterative, in the sense that they consist of repeated updates
to a state vector x of size n,

x(t) = F (t)(x(t�1)) : (7.1)

Two important applications of iterative algorithms are discrete time-stepping in simulations of
physical processes, where x(t) represents the state of a system at a certain time, and solution
of systems of equations by iterative improvement, where the sequence

D
x(0);x(1); : : : ;x(t); : : :

E
converges to a solution of the system. This part of my thesis is mainly concerned with numerical
algorithms whose goal is to compute, given an initial state x(0) and a number T , the final state
x(T ). In this chapter we focus on update operatorsF (t) that require relatively little computation,
say linear in the size of x.

Most computers have hierarchical memory systems, where a small portion of the data is
stored in fast and expensive memory called primary memory, and the rest is stored in a larger,
slower, and less expensive memory, called secondary memory. Data is transferred between
secondary and primary memory using a communication channel whose bandwidth is often
much smaller than the bandwidth between the processing unit and the primary memory. Many
systems have more than two levels of memory. Some parallel computers have distributed
memory, where memory is attached to individual processors, and the processors communicate
using some communication medium. In such systems, the bandwidth between a processor and
its local memory is much larger than the bandwidth between a processor and memory attached
to other processors.

65



Since we are normally interested only in the final state vector x(T ), we can reuse the
state vector storage. Besides the space required for representing F (t), the total amount of
storage required for the entire T -step computation is therefore �(n) to store the state vector.
A computer with ample primary memory can perform an iterative computation by simply
updating the state vector according to Equation (7.1).

In this thesis we ignore the costs associated with reading or computing the operators F (t),
which are often minor. Furthermore, in this chapter we assume for simplicity that the amount
of work required to apply F (t) is �(n). This assumption is relaxed in subsequent chapters.

If the computation does not fit within the primary memory of the computer, however, a so-
called “out-of-core” method must be used. An out-of-core algorithm tries to be computationally
efficient but in addition attempts to move as little data as possible between the computer’s
primary memory and secondary memories. The naive method, which is inefficient, repeatedly
applies Equation (7.1), computing the entire state vector for one time step before proceeding to
the next. This strategy causes 
(Tn) words to be transferred (I/O’s) for a T -step computation,
if n � 2M , where M is the size of primary memory. In other words, each word transferred
from secondary to primary memory is used a constant number of times before it is written back
or erased. This limits the level of utilization of the processor, since data is transferred between
primary and secondary memories at a much lower rate than the rate at which the processor
operates on data in primary memory.

The key to improving the processor’s utilization, and hence reducing the solution time, is
to increase the temporal locality in the algorithm, or the number of times a datum is used
before it is erased from primary memory. Section 7.2 presents an overview of the results in
this part of the thesis. Section 7.3 discusses the issues of numerical stability and performance
of out-of-core algorithms. Section 7.4 describes three techniques for increasing the temporal
locality in iterative numerical algorithms, and Section 7.5 presents a lower bound on the number
of I/O’s performed by one of the techniques. We end this chapter in Section 7.6 with a historical
perspective on out-of-core numerical methods.

7.2 An Overview of the Results

The thesis presents out-of-core methods for two classes of algorithms: linear relaxation al-
gorithms and Krylov-subspace algorithms. Given a matrix A, an n-vector x, and a positive
integer T , linear relaxation algorithms compute the sequence hx;Ax;A2x; : : : ;ATxi. Such
algorithms are used for solving linear systems of equations by relaxation and for simulating
time-dependent physical processes. The matrix A is typically sparse and usually has some
special structure that can be exploited by the linear relaxation algorithm. Krylov-subspace
algorithms solve systems of linear equations and eigenproblems. These algorithms use the
input matrix A in only one way: multiplying vectors by the matrix (and sometimes by its
traspose as well). They are thus suitable for instances in which the representation of A is only
a matrix-vector multiplication subroutine.

A well known technique can be used to implement out-of-core linear relaxation when the
sparcity structure of A corresponds to a low dimensional mesh (regular or irregular). The
method will be demonstrated in Section 7.4 on regular two-dimensional meshes. Chapter 8
describes out-of-core linear relaxation algorithms for multigrid matrices A. The sparsity
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structure of such matrices largely corresponds to that of a low dimensional mesh, but it
has a small number of nonlocal connections in the mesh. Matrices arising from the Fast
Multipole Method (FMM) have a similar structure and can be handled by the algorithm as
well. Relaxation algorithms with such matrices arise in implicit time-stepping simulations in
which a multigrid algorithm is used as the implicit solver (see [20]), as well as in Krylov-
subspace solutions of integral equations where an FMM algorithm is used as a matrix-vector
multiplication subroutine [98]. Chapter 9 presents an out-of-core linear relaxation algorithm
for matrices A which are a product A = T�1

1 T2 of a tridiagonal matrix T2 and the inverse of
another tridiagonal matrix T1. Relaxation algorithms with such matrices are used in implicit
time-stepping schemes for simulating time-dependent physical processes in one spatial domain
(see, for example, [91] or [104]).

Chapter 10 presents a method for implementing out-of-core Krylov-subspace algorithms.
The method assumes that an efficient out-of-core linear relaxation algorithm is available for
generating Krylov subspaces. Any of the algorithms mentioned in the previous paragraph can
be used to generate Krylov subspaces. Given an out-of-core linear relaxation subroutine, the
method implements Krylov-subspace algorithms efficiently out-of-core. This method can thus
be used to implement out-of-core Krylov-subspace algorithms for sparse matrices arising from
meshes, from multigrid and FMM methods.

The algorithm presented in Chapter 11 presents an efficient parallel preconditioner for
elliptic problems discretized on a two-dimensional mesh. It is not an out-of-core algorithm,
but it does create locality, as explained in Section 7.4.

7.3 Practical Considerations: Numerical Stability and Per-
formance

I claim that the out-of-core algorithms presented in this part of the thesis solve problems faster
than conventional algorithms. To demonstrate that they indeed solve the problems that they
were designed to solve, I show that they are equivalent to conventional algorithms in exact
arithmetic and numerically stable in floating point arithmetic. To demonstrate that they are
faster, I prove that my algorithms have better asymptotic behavior than conventional algorithms,
and I show that they run several times faster on workstations. They run faster because they
perform much less I/O and not much more work than conventional algorithms.

Some of the out-of-core algorithms described in this thesis are equivalent to the naive
algorithm in exact arithmetic, but are not equivalent in floating-point arithmetic. In time-
stepping algorithms that extrapolate a state vector over time, it is very important not to introduce
excessive noise in the form of rounding errors, because once present, there is no way to get rid
of the errors. Hence, in Chapter 9 where we describe a time-stepping algorithm, we compare
the deviation of the results returned by our algorithm from the results returned by the naive
algorithm. In iterative solvers, it is not important for the iterates produced by the out-of-core
algorithm to be very close to the iterations produced by the naive algorithm. What is important
is for the iterates to approach the solution vector at roughly the same rate. Therefore, in
Chapter 10, where we describe our-of-core Krylov-subspace solvers, we assess their stability
by examining their convergence rates.

The asymptotic performance of out-of-core algorithms is usually specified by how much
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they reduce the number of I/O’s, compared with the naive algorithm, as a function of the
primary memory size. For example, we describe in Chapter 9 an out-of-core algorithm that
performs a constant factor more work than the naive algorithm, but performs only �(1=

p
M)

I/O operations per unit of work, a factor of �(
p
M) less than the naive algorithm. But whether

an algorithm delivers good enough performance in practice depends not only on how much
faster it is than a naive algorithm executed out of core, but also on how much slower it is than
a good algorithm executed in core. Many users can choose not to use an out-of-core algorithm
at all. Some can avoid solving the problem at hand, while others can solve their problem on a
machine with a larger primary memory or buy more memory.

It is not usually necessary to increase locality in an algorithm that spends only 10% of
its running time performing I/O, since the reduction in the running time can be at most 10%.
Increasing the locality in such an algorithm may even increase its overall running time, since
many of the techniques that increase locality also increase the amount of work the algorithm
performs.

Changes in computer technology may render certain out-of-core algorithms, which today
do not seem practical, more attractive. Two such technological trends are the increasing
capacities of memories at all levels of the memory hierarchy, and the increasing disparity
between bandwidths of communication channels at different levels of the memory hierarchy.
For example, the bandwidth between the register file and the on-chip cache of microprocessors
grows faster than the bandwidth between the on-chip cache and main memory, which grows
still faster than the bandwidth of the I/O channel to which disks are connected.

A larger primary memory means larger reductions in the number of I/O’s required per
unit of work in out-of-core algorithms, as will become clear by the analysis of the algorithms.
Relatively slower secondary memories mean that the naive algorithms perform poorer when
executed out-of-core, whereas specialized algorithms that perform less I/O are impacted less.
On the other hand, larger primary memories also mean that problems that cannot be solved in
core today may fit into primary memory in the future (but people seem to want to solve ever
larger problems), and slower secondary memories mean that any algorithm which performs
I/O, even specialized and highly tuned ones, run slower with lower processor utilization.

7.4 Creating Locality

This section presents three algorithmic techniques for creating locality in iterative numerical
algorithms so that they perform better in out-of-core executions. Which of the three techniques
applies to a given problem depends on the structure of the update operator F (t). The first
technique, which dates back to at least 1963 [95], uses a cover of the graph associated with
F (t). The technique works well when F (t) is a sparse, local operator in which x(t)v depends on
only a few elements of x(t�1), which we call the “neighbors” of v. Another technique, which
we call local densification, applies to roughly the same class of update operators. It works
by replacing F (t) by another update operator G(t), which requires the same amount of I/O per
iteration asF (t), but which yields the solution to the numerical problem in fewer iterations. The
technique also has important applications on computers with distributed memory. Although
the basic tools used in this technique are well known, the insight that these tools can be used
to improve the locality in algorithms only dates back to the 1980’s [100]. In 1993 Leiserson,
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Rao, and the author introduced a third technique, based on blocking covers, which may be
applicable when the action of the update operator is sparse but global.

Creating Locality Using Covers

The covering technique for executing algorithms out-of-core is based on a simple idea. We
load a subset of the initial state vector x(0) into primary memory. If the state of some variables
in primary memory can be updated without referencing variables which are not in primary
memory, we do so. If we can now update some of them again only using references to elements
of x(1) which are in primary memory, we do so. We continue for some � steps, then write back
to secondary memory the elements of x(�) we have computed, and load another subset of x(0).
The question is, which elements of x(0) should be loaded? This section answers this question
for a simple update operator, and discusses some general aspects of this technique.

We demonstrate the covering technique using linear relaxation on a
p
n-by-

p
n mesh that

uses only �(Tn=
p
M) I/O’s, where the primary memory has size M . That is, the state vector

x represents values on the vertices of a mesh, and each iteration involves updating every mesh
point by a linear combination of its neighbors. The idea is illustrated in Figure 7.1. We load
into primary memory the initial state of a k-by-k submesh S, where k � pM is a value
to be determined. With this information in primary memory, we can compute the state after
one step of relaxation for all vertices in S except those on S’s boundary @S. We can then
compute the state after two steps of relaxation for vertices in S � @S, except for vertices in
@(S� @S). After � steps, we have a (k� 2�)-by-(k� 2�) submesh S0 at the center of S such
that every vertex i 2 S 0 has state x(�)i . We then write the state of S 0 out to secondary memory.
By tiling the

p
n-by-

p
n mesh with (k � 2�)-by-(k � 2�) submeshes, we can compute �

steps of linear relaxation using �(k2� � n=(k � 2�)2) work, since there are n=(k � 2�)2

submeshes in the tiling, each requiring �(k2�) work. By choosing k =
p
M and � =

p
M=4,

the total time required for � steps is �(4n�) = �(n�). The number of I/O’s for � steps is
�(k2 � n=(k � 2�)2) = �(4n) = �(n). By repeating this strategy, we can compute T steps
with proportional efficiency, saving a factor of �(

p
M) I/O’s over the naive method and using

only a small constant factor more work, which results from redundant calculations. Hong and
Kung [62] extend this result to save a factor of �(M 1=d=d) I/O’s for d-dimensional meshes.

We now describe a sufficient condition for the covering technique to work when all the
iterations use the same update operator F . We associate each state variable xv with a vertex
v in a directed graph G, and we connect vertex u to vertex v with an edge in the graph if x(t)

v

depends on x(t�1)u . We need to cover the graph G with a family of subgraphs hG1; : : : ;Gki
such that for each vertex v, some Gi contains all of v’s neighbors within distance � . The out-
of-core algorithm can then perform � iterations using �(Tm) work and �(m) I/O’s, where
m is the sum of the sizes of the subgraphs in the cover. In many cases, such as relaxation on
multidimensional meshes, m is not much larger than n, and this technique leads to algorithms
that perform substantially the same amount of work as the naive algorithm, but greatly reduce
the amount of I/O’s required.

The technique does not cause any numerical instabilities. It performs exactly the same
operations on the same values as the naive algorithm, except that some operations are performed
more than once, and that the order in which independent operations are executed may be
different. It therefore has no effect whatsoever on the numerical results, and its applicability
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Figure 7.1 Performing an out-of-core linear relaxation computation on a
p
n-by-

p
n mesh. The

k-by-k mesh S is loaded into primary memory, � relaxation steps are performed, and the smaller mesh
S0 is stored to secondary memory. The submeshes that are loaded into main memory are overlapping.

depends only on the sparsity pattern of the update operator, rather than on any special properties
the update operator might have, such as linearity.

Unfortunately, as we show in Section 7.5, the technique does not apply to many common
and important update operators.

Creating Locality Using Local Densification

The local densification technique tries to replace the update operator F (t) by another operator
G(t) that makes more memory references to data which are already in primary memory, and
which yields the solution vector in fewer iterations. Consider for example the point Jacobi
relaxation algorithm for solving a linear system of equations Ax = b. In iteration t, we
relax each “point” xi with respect to the other points in x(t�1) . In other words, for each
i, we make the equation1 ai;�x(t�1) = bi consistent by replacing x

(t�1)
i by x

(t)
i . In matrix

terms, we have A = D + P where D is diagonal, and each iteration consists of updating
x(t) = D�1(b � Px(t�1)). Rather than relax each variable xi separately, we can relax blocks
of equations. We split A = B + Q where B is block diagonal, and the iteration becomes
x(t) = B�1(b�Qx(t�1)). Each iteration is computationally more expensive, because we must
now factor entire diagonal blocks rather than scalars, but if we choose the blocks so that entire
diagonal blocks fit into primary memory, each iteration requires about the same number of
I/O’s as the naive point Jacobi algorithm. Since the block Jacobi is likely to converge faster,
the total number of I/O’s required to solve the linear system is smaller for block Jacobi than for

1Given a matrix A, we denote the (i;j) element of A by ai;j , the ith row by ai;�, and the jth column by a�;j .
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point Jacobi. In other words we have replaced the operator F (x) = D�1(b� Px) by a more
locally dense operator G(x) = B�1(b�Qx).

Other instances of the local densification technique include domain decomposition methods,
and polynomial preconditioners, where local densification is combined with the covering
technique.

In Chapter 11 we present an application of the local densification technique for distributed
memory parallel computers, where a block of state variables is stored in each processor’s local
memory. The algorithm is a modification of a red-black relaxation scheme, in which the update
operator contains very few dependencies between state variables. The modification adds many
more dependencies, but only within blocks. The modified algorithm converges faster, and
requires the same amount of interprocessor communication per iteration and the same amount
of time per iteration as the red-black algorithm.

Creating Locality Using Blocking Covers

In some cases, F (t) is a global operator in which every x(t)u depends on each x(t�1)v , typically
through some intermediate variables, such as the sum of all the x(t�1)v ’s. The next section shows
that in such cases, no good cover exists, and therefore the covering technique cannot be used.
Chapter 8 describes an alternative based on blocking covers. The idea is to try to identify
a small set of state or intermediate variables that carry a great deal of global information.
These variables are called blockers. We then perform � iterations in two phases. In the first
phase, we determine the state of the blockers in each of the � iterations. In the second phase,
we use the precomputed state of the blockers to perform the � iterations on the rest of the
state variables. During both phases, no information is carried through the blockers, which
enables us to find a good cover for the rest of the state vector. This cover, together with the
specification of the blockers, is called a blocking cover. Chapter 8 describes out-of-core linear
relaxation algorithms using blocking covers, and in particular, out-of-core multigrid algorithms.
Chapter 9 describes out-of-core algorithms for implicit time-stepping in one dimension, again
using blockers.

Chapter 10 describes an application of the blockers idea to Krylov-subspace methods.
Krylov-subspace methods apply three types of operations to the state vectors: they multiply
the state vectors by a matrixA, they compute inner products of state vectors, and they compute
linear combination of state vectors (Krylov-subspace methods usually manipulate a few state
vectors x(t), r(t), p(t), etc., rather than just one). We treat the inner products, which carry
global information from one iteration to the next, as blockers. This allows us to use the
covering technique for the other operations, namely the matrix multiplications and the linear
combinations. The algorithm can be easily expressed and understood as a basis change in the
Krylov-subspace method.

While some of our out-of-core algorithms based on blocking covers achieve good I/O
speedups both in theory and in practice, for others, most notably multigrid algorithms, we have
not been able to show good speedups in practice. One reason is that all the algorithms based
on blocking covers perform more work than the corresponding in-core algorithms, typically
by a factor of 2 or slightly more, because they simulate the in-core algorithms twice: once to
determine the state of blockers, and again to compute the the final state vector. The other reason
is that the asymptotic reduction in I/O’s for 2-dimensional multigrid algorithms is �(M 1=5),
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a b c

d

Figure 7.2 A dag that represents three iterations in a one-dimensional linear relaxation algorithm. In
each iteration, the state of every variable is updated by a weighted average of its own state and the state
of its two neighbors. The red-blue pebble game allows nodes to be computed more than once. The
nodes a, b, and c are the predecessors of node d and must reside in primary memory whenever node d
is computed.

so a very large primary memory sizeM is required to achieve a reduction by a factor of 30 say.
Another factor that limits our ability to reduce I/O’s in some of our out-of-core Krylov-

subspace methods is numerical instability, which is explained and studied in Chapter 10.
Numerical experiences with other methods, however, such as with the out-of-core implicit
time-stepping schemes, indicate that they are stable.

7.5 A Lower Bound

The limited applicability of the covering technique motivated most of the research reported in
the second part of the thesis. Many iterative algorithms, such as multigrid algorithms, implicit
time-stepping algorithms, and Krylov-subspace algorithms have a global update operator. This
section proves that the covering technique cannot substentially reduce the number of I/O’s,
compared to the naive method, in algorithms with a global update operator. This lower bound
is due to Leiserson, Rao and Toledo [74].

Hong and Kung [62] devised a formal model for studying the I/O requirements of out-of-core
algorithms which use the covering techniques, called the red-blue pebble game. The model
assumes that an algorithm is given as a directed acyclic graph (dag) in which nodes represent
intermediate values in the computation, as illustrated in Figure 7.2. The only constraint in
this model is that all predecessors of a node must reside in primary memory when the state of
the node is computed. Other than this constraint, the red-blue pebble game allows arbitrary
scheduling of the dag. In a linear relaxation computation, for example, each node in the dag
corresponds to a state variable, and its predecessors are the state variables of its neighbors at
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the previous time step. The arbitrary scheduling allowed in the red-blue pebble game can be
effective in reducing I/O using covers, as outlined in Section 7.4 for multidimensional meshes.
It has also been applied to various other problems (see [1] for examples.)

A large class of numerical methods, including multigrid algorithms, Krylov-subspace
methods, and implicit time-stepping schemes, have a common information flow structure. The
methods iteratively update a state vector. The dag associated with the methods contains a set
of nodes corresponding to the state vector variables for each iteration of the algorithm, plus
some intermediate variables. The state of a variable at the end of iteration t is an immediate
predecessor in the dag of the state of the variable at the end of t + 1. In addition, the states
of all variables at the end of iteration t are indirect predecessors of every variable at the end
of iteration t + 1. We now show that under the assumptions of the red-blue pebble game, the
reduction in I/O for these methods is limited to O(1). In other words, no asymptotic saving is
possible in this model.

Theorem 7.1 Let D be the dag corresponding to a T -step iterative computation with an n-
node state vector x(t) in which the state x(t+1)

v of a node v after iteration t+1 depends directly
on x(t)v and indirectly on the x(t)u for all state variables u. Then any algorithm that satisfies the
assumptions of the red-blue pebble game requires at least T (n�M) I/O’s to simulate the dag
D on a computer with M words of primary memory.

Proof: The proof is illustrated in Figure 7.3. The red-blue pebble game allows redundant
computations, and therefore the state x(t)v of a vertex v after time step t may be computed more
then once during the course of the execution of the algorithm. Let Time (t)v be the first instant
during the execution of the algorithm in which x(t)v is computed. We denote by Time (t) the
first instant in which the state of any vertex after time step t is computed; which is to say

Time(t) = min
v2V
fTime(t)v g :

The state x(t+1)
v of each vertex v after iteration t + 1 depends on the state of all vertices

after iteration t. Therefore, we deduce that Time (0) < Time(1) < � � � < Time(T ) and
that algorithm must compute the state of all vertices after iteration t between Time (t) and
Time(t+1).

Let C(t)
u be the path x(0)u ! x(1)u ! ��� ! x(t)u in the dag. In Figure 7.3, the path C (3)

2

is represented by a shaded area. If x(t)u is computed between two time points Time (t) and
Time(t+1), we know that either a vertex in C (t)

u was in memory at Time (t) or one I/O was
performed between Time(t) and Time (t+1) in order to bring some vertex in C (t)

u into primary
memory.

The vertex setsC(t)
u andC(t)

w are disjoint for u 6= w. Since primary memory at timeTime (t)

can contain at most M vertices, one vertex from at least n �M chains C (t)
u must be brought

from secondary memory between Time (t) and Time(t+1). Summing over all iterations, we
conclude that the algorithm must perform at least T (n�M) I/O’s.

For iterative algorithms in which the work per iteration is�(n), the performance of the naive
out-of-core algorithm matches the asymptotic performance of any algorithm which satisfies the
red-blue pebble game assumptions, if M < 2n.
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t=0

1 3 4 5 6

t=1

t=2

t=3

t=4

Figure 7.3 An illustration of the proof of the lower bound. The circles represent state variables
x(t)u , the arrows represent edges in the dag, and the dashed lines represent dependencies through some
intermediate variables which are not shown. The shaded area represents C(3)

2 . Between the time a
variable in x(3) is first computed, and the time a variable in x(4) is first computed, at least one variable
in C(3)

u must be in primary memory for each u = 1; : : : ;6.

Corollary 7.2 Let D be the dag corresponding to a T -step iterative computation with an n-
node state vector x(t) in which the state x(t+1)

v of a node v after iteration t+1 depends directly
on x(t)v and indirectly on the x(t)u for all state variables u. Then any algorithm that satisfies
the assumptions of the red-blue pebble game requires 
(Tn) I/O’s to simulate the dag D on a
computer with M < 2n words of primary memory.

7.6 A Historical Survey of Out-of-Core Numerical Methods

Fifty years of computing have produced many storage technologies, including vacum tubes,
transistors, and integrated circuits, electrostatic storage, delay lines, magnetic cores, magnetic
tapes, drums, and disks. But through all these generations of storage technologies one fact
remains unchanged: fast memory is more expensive than slow memory. This fact led computer
architects to design hierarchical memory systems. Hierarchical memory systems gave rise to
out-of-core algorithms that can solve problems that do not fit within the fast but small primary
memory. This sections surveys the history of out-of-core numerical algorithms.
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Ladd and Sheldon [71] of IBM described in 1952 a naive out-of-core iterative solver for the
Thomas-Fermi-Dirac equation of quantum mechanics. Their solver ran on an IBM 701, using
the primary electostatic memory to hold a small portion of the state vector, 4 magnetic tapes
to hold the entire state vector, and a magnetic drum to hold the coefficients of the equations.
Even though their solver read the entire state vector and all the coefficients in every iteration,
it was an efficient out-of-core solver, using only 30% of the running time of each iteration for
I/O operations.

A program called PDQ-5, written at the Bettis Atomic Power Laboratory, used a cover
to implement an out-of-core solver for two-dimensional few-group time-independent neutron-
diffution problems arising in nuclear reactor design [95]. The program was written in the early
1960’s by W. R. Cadwell, L. A. Hageman, and C. J. Pfeifer. It ran on a Philco-2000 using
magnetic tapes to store the state vector. The program used a line successive overrelaxation
(SOR) method, which is a block relaxation method for two-dimensional problems, in which
in each iteration every line of state variables in the domain is relaxed with respect to its two
neighboring lines. Once the first two lines in the domain are relaxed, the first line can be
relaxed again. This out-of-core method is therefore a one dimensional covering method that
treats entire lines as the elementary objects in the cover.

At about that time, more efficient iterative methods became populer. Many of these
methods do not lend themselves to simple and efficient out-of-core implementations, because
they propagate information quickly throughout the state vector. In a 1964 survey paper on
computers in nuclear reactor design [35], Cuthill remarked that alternating directions iterative
methods converge faster, but are more difficult to implement efficiently out-of-core, than line
SOR methods. The growing use of symmetric successive overrelaxation, conjugate gradient
and Chebychev acceleration, alternating directions, and later multigrid algorithms, which are
all difficult to implement out-of-core, led to declining use of out-of-core iterative solvers.

Another factor contributed to a decline in research on out-of-core iterative methods. Some
of the designers and users of iterative algorithms were buying computers with very large
primary memories that could store their entire problems, so they did not need out-of-core
algorithms. Designers of nuclear weapons and designers of nuclear reactors were probably the
most intesive users of iterative methods. Much of the research on in iterative techniques was
done in that context. Nuclear engineers had enough resources to buy expensive computers with
large primary storage. Designers of nuclear weapons in particular, had a significant impact on
the evolution of scientific supercomputers [80]. For example, the Atomic Energy Commision
(AEC) financed the development of the Univac LARC through Livermore National Laboratory
and of the IBM STRETCH through Los Alamos (delivered in 1960 and 1961, respectively). Later
the AEC supported the development of the Control Data Corporation CDC 6600, delivered in
1964. [99]. Once machines with very large memories became available, users at the National
Laboratories became reluctant to use out-of-core iterative algorithms:

Given that no one wants data moving between main memory and peripheral storage
with every iteration of a model, memory size was an issue even with the million-
word memory of the Cray 1. [80, based on a 1989 interview with George A.
Michael from Livermore]

Nevertheless, there has been some recent progress in out-of-core iterative methods. In
1993, Leiserson, Rao, and the author [74] introduced the notion of blocking covers, which
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they used to design out-of-core multigrid algorithms. Mandel [82] described an out-of-core
Krylov-subspace algorithm with a domain-decomposition preconditioner for solving finite-
elements problems. Fischer and Freund proposed out-of-core Krylov-subspace methods based
on polynomial preconditioning [45] and on an inner-product free Krylov-subspace method [44].
Both methods perform a small number of conjugate-gradient iterations to approximate the
spectrum of the matrix. This approximation is used to construct a family of polynomials which
is used in a polynomial preconditioner in one method, and in an inner-product free Krylov-
subspace algorithm in another method. Both methods compute far fewer inner products than
popular Krylov-subspace algorithms are are therefore easier to implement out-of-core if a good
out-of-core linear relaxation algorithm is available. Finally, this thesis presents out-of-core
iterative algorithms that use the blocking-covers technique.

Research on out-of-core algorithms for dense linear algbra computations yielded more
lasting results, partially because the problem is easier. Some linear algebra operations have a
high ratio of arithmetic operations to data, and many of them lend themselves to efficient out-
of-core implementations. For example, most factorization and multiplication algorithms for
n-by-nmatrices perform�(n3) arithmetic operation, whereas the size of their data structures is
only�(n2). The key idea that leads to efficient out-of-core implementationsof these algorithms
is that of block algorithms. For example, an algorithm for multiplying two n-by-n matrices
stored in secondary storage can compute the product in blocks of size

p
M -by-

p
M where

M=3 is the size of primery memory. Computing each block requires M
p
M multiply-adds,

but less thanM I/O’s. The high ratio of computation to I/O leads to good performance on most
machines.

The earliest reference I could find on out-of-core dense linear algebra is due to Barron
and Swinnerton-Dyerm [12], who implemented a factorization algorithm for the EDSAC 2
using magnetic tapes to store the matrix. McKellar and Coffman [83] were the first to propose
block-oriented storage of dense matrices and to show that this storage scheme leads to efficient
out-of-core algorithms for matrix multiplication. They also investigated row major layouts
and the performance of these layouts in matrix factorization. They did not produce working
software. Fischer and Probert [46] analyzed the out-of-core implementation of Strassen’s
matrix multiplication algorithm and showed that the number of I/O’s can be smaller than the
number of I/O’s in the convensional algorithm analyzed by McKellar and Coffman.

Moler [88] described a column-oriented factorization subroutine that works well in paging
environments when the matrix is stored in a column-major order, as in Fortran. He claims
that this approach is better than the block storage approach of McKellar and Coffman because
of difficulties in pivoting and because of software engineering issues associated with block
storage of matrices. Du Cruz, Nugent, Reid and Taylor [39] describe the block column
factorization algorithm that they developped for the NAG library and its performance on virtual
memory machines. Stabrowski [106] described an out-of-core factorization algorithms that
use disk I/O explicitely, rather than throught the use of virtual memory. Geers and Klees [49]
describe a dense out-of-core solver implemented on Siemens vector supercomputers. Their
solver is motivated by applications of the boundary-elements method in geodetics. Grimes
and Simon [55] describe an out-of-core algorithm for dense symmetric generalized eigenvalue
problems, motivated by quantum mechanical bandstructure computations. Their algorithm
works by reducing the matrix into a band matrix using block Householder transformation.
They assume that the band matrix fits within primary memory. They report on the performance
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of the algorithm on a Cray X-MP with a solid state storage device (SSD) as secondary storage.
Grimes [54] descirbe an out-of-core implementation of a dense factorization algorithm for a
Cray X-MP with an SSD.

Direct solvers for sparse linear systems of equations have also been successfully imple-
mented out-of-core, mostly in the context of finite-elements analysis. One factor leading to
this success is that the amount of work in many of these algorithms is much larger than the size
of the data structures they use. Consider, for example, the factorization of a sparse, symmetric
positive definite matrix arising from a two-dimensional discretization of a self-adjoint elliptic
partial differential equation on a

p
n-by-

p
n mesh. The most efficient algorithms factorize

the matrix, which has �(n) nonzeros, into factors with �(n logn) nonzeros, using �(n
p
n)

work [52].
Early out-of-core direct solvers for sparse linear systems were primarily implementations

of banded solvers. A very early reference on sparse elimination is due to Riesel [97] who,
in 1956, implemented a sparse elimination algorithm on the BESK computer at the SAAB
Aircraft Company in Sweden. The solver was used to solve linear systems with 214 variables,
which did not fit within the BESK’s 8192-word magnetic drum. Cantin [25] described in 1971
an out-of-core solver for banded linear systems, which used disks as secondary storage. In
1974, both Mondkar and Powell [89] and Wilson, Bathe and Doherty [124] described band
solvers using tapes for secondary storage. Wimberly [125] implemented out-of-core solvers
for finite element analysis. He implemented both direct and iterative (Gauss-Seidel) solvers,
and compared their performance using a software simulation of paging algorithms. Crotty [33]
described an out-of-core solver for matrices arising from the boundary-elements method in
linear elasticity. The solver handles zero blocks in the coefficient matrix efficiently.

Recent out-of-core sparse solvers often use variants of nested dissection and frontal meth-
ods, rather than band methods. For example, a the PROPHLEX finite-elements software package
by Computational Mechanics Company includes an out-of-core frontal solver2. George and
Rashwan [51] described an out-of-core sparse factorization algorithm based on incomplete
nested dissection. Liu [76, 77] described out-of-core implementations of the multifrontal
method for sparse factorization (see also [78]). Bjørstad [15] described the out-of-core sparse
factorization used in SESAM, a structural analysis software package. The solver is a block
Cholesky algorithm that handes nonzero blocks as dense submatrices. The key idea behind
many of these out-of-core algorithms is the switching from a sparse representation to a dense
representation on small submatrices. Liu attributes this idea to Gustavson [77, page 311].
George, Heath, and Plemmons [53] describe an out-of-core sparse QR factorization algorithm
for solving large least-squares problems. They motivate the algorithm with several applications,
including geodetic surverying, finite elements, and earthquake studies. Their factorization al-
gorithm uses Givens rotations and reordering of the variables to reduce the amount of I/O
required by conventional algorithms.

Eisenstat, Schultz and Sherman [41] describe an interesting algorithm that uses a technique
that is also used in this thesis. They noticed that the triangular Cholesky factors of a matrix
typically require much more storage than the original matrix,and hence an out-of-core algorithm
is often needed even when the matrix fits within main memory. They reduce the amount of
storage required by the solver by discarding and recomputing entries in the Cholesky factor, and

2See http://www.comco.com.
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hence eliminate the need for an out-of-core algorithm in some cases. Their algorithm performs
more work than conventional solvers, but it runs without paging on machines with a small
primary storage. One disadvantage of the algorithm is that it solves the input linear system but
it does not produce the factorization of the coeficient matrix. The out-of-core Krylov-subspace
algorithms described in Chapter 10 also discard and recompute information, which leads to
efficient out-of-core algorithms that outperform conventional algorithms on machines with
small primary memories.

Out-of-core algorithms for the Fast Fourier Transform (FFT) have been recently surveryed
by Bailey [7] and by Van Loan [119]. The ratio of computation to data in the FFT is smaller than
in the other problems surveyed in this section: computing the FFT of an n-vector requires only
�(n logn) work. Fortunately, there are some good out-of-core FFT algorithms that perform
only a few passes over the data. Soon after the introduction of the FFT algorithm by Cooley and
Tukey, Gentleman and Sande [50] presented an FFT algorithm which is suitable for out-of-core
applications. The algorithm works by arranging the input n vector in a two-dimensional array,
performing an FFT on every row, scaling the array, transposing the array and performing an FFT
on every row again (every column of the original array. Assuming that primary memory can
hold at least one row and one column of the array, the algorithm requires only two passes over
the data and an out-of-core matrix transposition. The algorithm did not gain much acceptance,
but it was rediscovered and implemented on several machines. See [7] for a survey and a
description of an implementation on a Cray X-MP with an SSD as a secondary memory. Other,
less efficient, out-of-core FFT algorithms were proposed by Singleton [103] and Brenner [21].
Eklundh [42] noticed that an efficient out-of-core matrix transposition algorithm is a key to
out-of-core two-dimensional FFT algorithms, and suggested one. Others have also proposed
algorithms for matrix transposition, for example [3, 102, 117].

Although outside the scope of this thesis, it is worth mentioning that out-of-core implemen-
tations are the standard in mathematical programming, and in linear programming in particular.
Hoffman tells about solution of linear programming problems in the National Bureau of Stan-
dards between 1951 and 1956 [61]. The SEAC computer [99] was used to run simplex code
which in every iteration read a simplex tableau from one tape and wrote the next tableau on an-
other tape. Orchard-Hays, who is credited by Dantzig as the most important early implementor
of the simplex algorithm [36], described in 1968 out-of-core considerations as being essential
to linear programming algorithms [92].
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Chapter 8

Efficient Out-of-Core Algorithms for
Linear Relaxation Using Blocking Covers

8.1 Introduction

This chapter presents a method for increasing the locality in linear relaxation algorithms, in
particular multigrid algorithms, using the blocking covers technique. The method is applied
here to algorithms in which the simpler covering technique cannot be applied. Although the
algorithmic details of this chapter differ from the details in Chapters 9 and 10 that also use
blocking covers, the essence of the technique is the same: the blocking cover uses linear
transformations to turn an algorithm for which no good cover exists into an algorithm for which
a good cover does exist. Once an algorithm is so transformed, the plain covering technique is
applied.

Many numerical problems can be solved by linear relaxation. A typical linear relaxation
computation operates on a directed graph G = (V;E) in which each vertex v 2 V contains
a numerical state variable xv which is iteratively updated. On step t of a linear relaxation
computation, each state variable is updated by a weighted linear combination of its neighbors:

x(t)v =
X

(u;v)2E

A(t)
uvx

(t�1)
u ; (8.1)

whereA(t)
uv is a predetermined relaxation weight of the edge (u;v). We can view each iteration

as a matrix-vector multiplication x(t) = A(t)x(t�1), where x(t) = hx(t)1 ;x
(t)
2 ; : : : ;x

(t)
jV jiT is the

state vector for the tth step, and A(t) = (A(t)
uv) is the relaxation matrix for the tth step. We

assume A(t)
uv = 0 if (u;v) 62 E. The goal of the linear relaxation is to compute a final state

vector x(T ) given an initial vector x(0), a scheme for computing A(t)
uv on each step t, and a

total number T of steps. Examples of linear relaxation computations include Jacobi relaxation,
Gauss-Seidel relaxation, multigrid computations, and many variants of these methods [24].
(Iterative processes of the form y(t) =M (t)y(t�1) + b can be transformed to an iteration of the
form x(t) = A(t)x(t�1) using a straightforward linear transformation.)

1A preliminary version of this chapter, which is joint work with Charles E. Leiserson and Satish Rao, was presented
in the 34th Symposium on Foundations of Computer Science, Palo Alto, California, November 1993, and accepted
for publication in the Journal of Computer and System Sciences.
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Figure 8.1 A 9-by-9 multigrid graph. The graph has levels 0, the bottommost, through 3, the topmost.

A computer with ample primary memory can perform a linear relaxation computation by
simply updating the state vector according to Equation (8.1). Since we are normally interested
only in the final state vector x(T ), we can reuse the state-vector storage. If we assume that the
scheme for generating the nonzero entries of the relaxation matricesA(t) is not a significant cost
(for example, all relaxation matrices may be identical), then the time to perform each iteration
on an ordinary, serial computer is O(E)2. (It can be less, since if a row v of the relaxation
matrix at some step t is 0 everywhere except for a 1 on the diagonal, then no computation
is required to compute x(t)v .) Besides the space required for the relaxation weights, the total
amount of storage required for the entire T -step computation is �(V ) to store the state vector.

Linear relaxation on grids naturally arises from the problem of solving sparse linear systems
of equations, arising from the discretization of partial differential equations. We have shown in
Chapter 7 that if the sparsity structure of the relaxation matrix corresponds to a low-dimensional
grid, substantial reduction in I/O’s can be achieved through the covering technique. For this
class of problems, however, it has been found that more rapid convergence can often be obtained
by performing a linear relaxation computation on a multigrid graph [24]. A multigrid graph
is a hierarchy of progressively coarser meshes, as is shown in Figure 8.1. The kth level is
a
p
n=2k-by-

p
n=2k mesh, for k = 0;1; : : : ;(lgn)=2, whose (i; j) vertex is connected to the

(2i;2j) vertex on the (k � 1)st mesh.
A typical multigrid application is that of solving a time-dependent partial differential

equation. The computation consists of many repeated cycles, in which the relaxation proceeds
level by level from the finest mesh to the coarsest and back down. A naive implementation of
T � lgn cycles of the computation takes �(Tn) time, even though there are �(lgn) levels,
since the number of vertices on each level decreases geometrically as the grids become coarser.
For a computer with M memory running T cycles of a

p
n-by-

p
n multigrid algorithm, where

n � 2M , the number of I/O’s required for T cycles is �(Tn) as well.
Can the number of I/O’s be reduced for this multigrid computation? Unfortunately, the

answer provided by Theorem 7.1 is no, even if redundant computations are allowed. The naive
algorithm is optimal. The problem is essentially that information propagates quickly in the
multigrid because of its small diameter.

Nevertheless, we shall see in Section 8.5 that we can actually save a factor of M 1=5 in

2Inside asymptotic notation (such as O-notation or �-notation), the symbol V denotes jV j and the symbol E
denotes jEj.
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I/O’s. The key idea is to artificially restrict information from passing through some vertices by
treating their state variables symbolically. Because the relaxations are linear, we can maintain
dependences among the symbolic variables efficiently as a matrix. This technique is general
and is particularly suited to graphs whose connections are locally dense and globally sparse.

The remainder of this chapter is organized as follows. In Section 8.2 we formally introduce
the notion of blocking covers and discuss the relation between state variables in a linear
relaxation computation and a blocking cover. In Section 8.3 we present our method. The details
of the method are presented in Section 8.4. The application of our basic result to multigrid
relaxation is presented in Section 8.5. In Section 8.6 we describe algorithms for finding good
blocking covers for planar and simplicial graphs, which yield I/O-efficient relaxation algorithms
for these classes of graphs.

8.2 Blocking Covers

This section introduces the definition of a blocking cover, as well as several other definitions
and notations that we shall use extensively in subsequent sections. We conclude the section
with an important identity describing how state variables depend on one another.

We can abstract the method of Hong and Kung described in Section 8.1 using the notion of
graph covers. Given a directed graph G = (V;E), a vertex v 2 V , and a constant � � 0, we
first define N (�)(v) to be the set of vertices in V such that u 2 N (�)(v) implies there is a path
of length at most � from u to v. A � -neighborhood-cover [6] of G is a sequence of subgraphs
G = hG1 = (V1;E1); : : : ;Gk = (Vk;Ek)i such that for all v 2 V , there exists a Gi 2 G for
which N (�)(v) � Vi. Hong and Kung’s method can reduce the I/O requirements by a factor
of � over the naive method if the graph has a � -neighborhood-cover with O(E=M) subgraphs,
each of which has O(M) edges, where M is the size of primary memory. Although a vertex
can belong to more than one subgraph in the cover, there is one subgraph that it considers to be
its “home,” in the sense that the subgraph contains all of its neighbors within distance � . When
performing a linear relaxation on G for � time steps, therefore, the state of v depends only on
other vertices in v’s home. Thus, in a linear relaxation computation, we can successively bring
each subgraph in the cover into primary memory and relax it for � steps without worrying about
the influence of any other subgraph for those � steps.

The problem with Hong and Kung’s method is that certain graphs, such as multigrid
graphs and other low-diameter graphs, cannot be covered efficiently with small, high-diameter
subgraphs. Our strategy to handle such a graph is to “remove” certain vertices so that the
remaining graph has a good cover. Specifically, we select a subsetB � V of vertices to form a
blocking set. We call the vertices in the blocking set blocking vertices or blockers. We define
the � -neighborhood of v with respect to a blocking set B � V to be N (�)

B (v) = fu 2 V : 9
a path u ! u1 ! ��� ! ut ! v, where ui 2 V � B for i = 1;2; : : : ; t < �g. Thus, the
� -neighborhood of v with respect to B consists of vertices that can be reached with paths of
length at most � whose internal vertices do not belong to B.

We can now define the notion of a blocking cover of a graph.

Definition Let G = (V;E) be a directed graph. A (�;r;M)-blocking-cover of G is a pair
(G;B), where G = hG1 = (V1;E1); : : : ;Gk = (Vk;Ek)i is a sequence of subgraphs of G and
B = hB1; : : : ;Bki is a sequence of subsets of V such that
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BC1. for all i = 1; : : : ;k, we have M=2 � jEij �M ;

BC2. for all i = 1; : : : ;k, we have jBij � r;

BC3.
Pk

i=1 jEij = O(E);

BC4. for all v 2 V , there exists a Gi 2 G such that N (�)
Bi

(v) � Vi.

For each v 2 V , we define home(v) to be an arbitrary one of the Gi that satisfies BC4.
Our basic algorithm for linear relaxation on a graph G = (V;E) depends on having a

(�;r;M)-blocking-cover of G such that r2� 2 � M . In the description and analysis of the
basic algorithm, we shall assume for simplicity that each step of the computation uses the same
relaxation matrixA. We shall call such a computation a simple linear relaxation computation.
We shall relax this simplifying assumption in Section 8.5.

In a simple linear relaxation computation on a graph G = (V;E) with a relaxation matrix
A, the state vector x(t) at time t satisfies

x(t) = Atx(0) :

That is, the computation amounts to powering the matrix.3 We shall generally be interested in
the effect that one state variable x(s)u has on another x(t)v . Define the weight w(p) of a length-r
path p = v0 ! v1 ! ��� ! vr in G to be

w(p) =
rY

k=1

Avk�1;vk : (8.2)

For two vertices u;v 2 V , we define

w(r;u;v) =
X

p2P(r)

w(p) ;

where P(r) = fp 2 G : p is a length-r path from u to vg. (We define w(r;u;v) = 0 if no
length-r path exists between u and v.) Using this notation, we have

x(t)v =
X
u2V

w(t;u;v)x(0)u : (8.3)

If Bi � V is a blocking set, then we define

wBi
(r;u;v) =

X
p2PBi

(r)

w(p) ;

where PBi
(r) = fp 2 G : p is a length-r path from u to v whose intermediate vertices belong

to V �Big.
Consider a subgraph Gi in the cover and its corresponding blocking set Bi. The following

lemma shows that in order to know the value of a state variable x(t)v where home(v) = Gi, it
suffices to know the initial values of all state variables for vertices in Gi at time 0 and also to
know the values of the blocker variables—state variables for blockers—in Bi at all times less
than t.

3Since we do not want to destroy the sparsity of A, and we wish our technique to generalize, we do not take
advantage of techniques such as repeated squaring.
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Lemma 8.1 Let G = (V;E) be a directed graph, and let (G;B) be a (�;r;M)-blocking-cover
of G. Then, for any simple linear relaxation computation on G, we have for all v 2 V and for
any t � �

x(t)v =
X
u2Vi

wBi
(t;u;v)x(0)u

+
X
u2Bi

t�1X
s=1

wBi
(s;u;v)x(t�s)u ; (8.4)

where Gi = home(v).

Proof: We have P(r) = PBi
(r) + PBi

(r) where PBi
(r) = fp 2 G : p is a length-r path

from u to v with at least one intermediate vertex which belongs to Big. We also define

wBi
(r;u;v) =

X
p2P

Bi
(r)

w(p) ;

By Equation (8.3) and the notation above we have

x(t)v =
X
u2V

w(t;u;v)x(0)u

=
X
u2V

wBi
(t;u;v)x(0)u +

X
u2V

wBi
(t;u;v)x(0)u : (8.5)

We now prove that the first sum in Equation (8.5) equals the first sum in Equation (8.4) and
that the second sum in Equation (8.5) equals the second sum in Equation (8.4). That the first
summations are equal follows from condition BC4 in the definition of blocking covers, which
imply that if home(v) = Gi, u 62 Vi, and t � � , then wBi

(t;u;v) = 0.
We use induction on t to prove that

X
u2Bi

t�1X
s=1

wBi
(s;u;v)x(t�s)u =

X
z2V

wBi
(t;z;v)x(0)z :

For t = 0 the equation holds since both summations are empty. Assume that the equation
holds for all s > 0 and for all v 2 V such that home(v) = Gi. We split the blocking influence
wBi

(t;z;v) according to the last blocker on each path,

wBi
(t;z;v) =

X
u2Bi

wBi;u
(t;z;v)

where wBi;u
(t;z;v) is the sum of path weights over all length-t paths from z to v in which the

last vertex in Bi is u. Splitting the paths from z to v at u we get

wBi;u
(t;z;v) =

t�1X
s=1

wBi
(s;u;v)w(t� s;z;u) :

We now haveX
z2V

wBi
(t;z;v)x(0)z =

X
z2V

X
u2Bi

wBi;u
(t;z;v)x(0)z
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=
X
u2Bi

X
z2V

wBi;u
(t;z;v)x(0)z

=
X
u2Bi

X
z2V

t�1X
s=1

wBi
(t� s;u;v)w(s;z;u)x(0)z

=
X
u2Bi

t�1X
s=1

wBi
(s;u;v)

X
z2V

w(t� s;z;u)x(0)z

=
X
u2Bi

t�1X
s=1

wBi
(t� s;u;v)x(t�s)u ;

where the last equality follows by the inductive assumption.

8.3 Simple Linear Simulation

In this section, we present our I/O-efficient algorithm to perform a simple linear relaxation
computation on any graph with a (�;r;M)-blocking-cover (G;B). We call it a “simulation”
algorithm, because it has the same effect as executing a simple linear relaxation algorithm,
but it does not perform the computation in the same way. The simulation algorithm is not
a new numerical algorithm. Rather, it is a new way to implement a numerical algorithm.
Since we only present a new implementation strategy, convergence properties are maintained.
Given a numerical algorithm, if both a conventional implementation and our implementation
are executed on an ideal computer with no rounding errors, the output is exactly the same. In
this section, we give an overview of the simulation algorithm and analyze its performance.

The goal of the simulation algorithm is to compute the state vector x(T ) in Equation (8.3)
given an initial state vector x(0) and a number T of steps. The algorithm has four phases,
numbered 0 through 3. Phase 0 is executed once as a precomputation step. It computes the
coefficients wBi

(s;u;v) in the second summation of Equation (8.4) that express the influence
of one blocker variable on another. Phases 1–3 advance the state vector by � steps each time
they are executed, and these steps are then iterated until the state vector has been advanced
by a total of T steps. Phase 1 computes the first summation in Equation (8.4) for the blocker
variables, which in combination with the coefficients computed in Phase 0 yields a triangular
linear system of equations on the blockers. Phase 2 solves these equations for the blockers
using back substitution. Finally, Phase 3 extends the solution for the blocker variables to all the
state variables. If r2� 2 � M , each iteration of Phases 1–3 performs O(�E) work, performs
O(E) I/O’s, and advances the state vector by � steps, as compared with the naive algorithm,
which would perform O(�E) I/O’s for the same effect. Phase 0, the precomputation phase of
the algorithm, requires O(r �E) work and O(E) I/O’s.

We now describe each phase in more detail.
The goal of Phase 0 is to compute the coefficientswBi

(s;u;v) in the second summation of
Equation (8.4) for all s = 1;2; : : : ; ��1, for allu 2 Bi, and for all v 2 B whereB =

S
Bi2BBi

and Gi = home(v). The coefficient wBi
(s;u;v) represents the influence that the value of u at

time � �s has on the value of v at time � . The influence (coefficient) of blocker u on another in
the same time step (s = 0) is 0, unless the other vertex is in fact u, in which case the influence
is 1. Inductively, suppose that the state variable for each vertex v contains wBi

(s;u;v). To
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compute the wBi
(s + 1;u;v), we set the blocker variables to 0 and run one step of linear

relaxation on Gi. The value for wBi
(s + 1;u;v) is produced in the state variable for v. To

compute up to s = � � 1, this computation is therefore nothing more than a linear relaxation
computation in which the blockers are zeroed at every step. Intuitively, this method works
because any individual coefficient can be obtained from Equation (8.4) by setting all the state
variables in both summations to 0, except for that state variable in the second summation which
is multiplied by the desired coefficient, which we set to 1. During Phase 0, any coefficient that
represents an influence of a blocker on a blocker whose home is Gi is saved for use in Phase 2.

In Phase 1 we focus on the first summation in Equation (8.4). Phase 1 computes the sumsP
u2ViwBi

(t;u;v)x(0)u for all t � � and for all v 2 B, where Gi = home(v). These values
represent the contribution of the initial state on v without taking into account contributions of
paths that come from or pass through blockers in v’s home. For a given subgraph Gi in the
blocking cover for G, the first summation is simply a linear relaxation on the subgraph of Gi

induced by Vi � Bi. Thus, we can compute this summation for all blocker variables whose
home isGi by a linear relaxation onGi as follows. We initialize the state variables according to
x(0), and then for each subsequent step, we use the value 0 whenever the computation requires
the value of a blocker variable.

Phase 2 solves for the blocker variables. If we inspect Equation (8.4), we observe that since
we have computed the value of the first summation and the coefficients of the variables in the
second summation, the equations become a linear system in the blocker variables. Furthermore,
we observe that the system is triangular, in that each x(i)v depends only on various x(j)u where
j < i. Consequently, we can use the back substitution method [32, Section 31.4] to determine
the values for all the blocker variables.

Phase 3 computes the state variables for the nonblocker vertices by performing linear
relaxations in each subgraph as follows. For a subgraph Gi, we set the initial state according
to x(0) and perform � steps of linear relaxation, where at step i blocker variable x(i)u is set to
the value computed for it in Phase 2. We can show that the state variables for each node whose
home is in Gi assume the same values as if they were assigned according to a linear relaxation
ofGwith the initial state x(0) by using induction and the fact that each blocker variable assumes
the proper value.

In Section 8.4 we prove that given a graph G = (V;E) with a (�;r;M)-blocking-cover
such that r2� 2 � M , a computer with O(M) words of primary memory can perform T � �
steps of a simple linear relaxation on G using at most O(TE) work and O(TE=�) I/O’s. The
precomputation phase (which does not depend on the initial state) requires O(r �E) work and
O(E) I/O’s.

8.4 The Algorithm in Detail

This section contains the detail of our basic algorithm, which was outlined in Section 8.3. We
begin by describing the data structures used by our algorithm and then present the details of
each of the four phases of the algorithm. We give pseudocode for the phases and lemmas that
imply their correctness.
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Data Structures

The main data structure that the algorithm uses is a tableS which during the algorithm contains
information about vertices in one of the subgraphs Gi in the blocking cover of G with respect
to the blocking set Bi. Each row S[j] of S contains several fields of information about
one vertex. The field S[j]:Name contains the vertex index in G, the boolean field S[j]:IsInB
denotes whether the vertex belongs toB =

S
Bi2BBi, the boolean fieldS[j]:IsBlocker denotes

whether the vertex belongs toBi, and the boolean fieldS[j]:IsHome denotes whether the home
of the vertex is Gi. The field S[j]:Adj is an adjacency list of the neighbors of the vertex in Gi

(incoming edges only). Each entry in the adjacency list is the index of a neighbor in S together
with the relaxation weight of the edge that connects them. The two last fields are numeric fields
S[j]:x and S[j]:y. The field S[j]:x holds the initial state of the vertex, and after the algorithm
terminates the field S[j]:y holds the state after time step � if S[j]:IsHome is set.

A data structure Si is stored in secondary memory for each subgraph Gi in the cover. In
addition to Si we store in secondary memory a tableHi for each subgraphGi. For every vertex
v whose home is Gi, the table lists all the subgraphs Gi in the blocking cover containing v and
the index of v in Si. These tables enable us to disperse the value of x(�)v from the home of v
to all the other Gi which contain v. The size of each Si is 6jVij + 2jEij. The total amount of
secondary storage required to store the blocking cover is O(E).

We also store in secondary memory two 2-dimensional numeric tables WX and X of size
� -by-jBj, and one 3-dimensional numeric tableW of size � -by-r-by-jBj. The tableW is used
to store the coefficients wBi

(s;u;v) for all s < � , for all u 2 Bi, and for all v 2 B, where
Gi = home(v). The table WX is used to store the sum

P
u2ViwBi

(t;u;v)x(0)u for all t � � ,
and all v 2 B where Gi = home(v). The table X is used to store the values x(t)v for all t � �
and all v 2 B.

Phase 0

The pseudocode below describes the Phase 0 of the algorithm. The influence of one blocker
on all other blockers in a subgraph is computed by the procedure BLOCKERSINFLUENCE. The
procedure PHASEZERO loads one subgraph at a time into primary memory,and then calls BLOCK-
ERSINFLUENCE at most r times. Before each call exactly one vertex whose S[j]:IsBlocker
field is set is chosen, its S[j]:x field is set to 1 and all the other x fields are set to 0. The index
i of the blocker whose influence is computed is passed to BlockersInfluence.

PhaseZero()
1 for i 1 to k
2 do load Si into primary memory
3 for b 1 to M
4 do if S[b]:IsBlocker
5 then for l 1 to M do S[l]:x 0
6 S[b]:x 1
7 BlockersInfluence(b)
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BlockersInfluence(b)
1 for s 1 to � � 1
2 do for j  1 to M
3 do S[j]:y  P

(l;a)2S[j]:Adj a � S[l]:x
4 for j  1 to M
5 do if S[j]:IsBlocker
6 then S[j]:x 0
7 else S[j]:x S[j]:y
8 if S[j]:IsInB and S[j]:IsHome
9 then write S[j]:y to W [s;S[b]:Name;S[j]:Name]

Lemma 8.2 After Phase 0 ends, for each v 2 B, u 2 Bi and s < � , we have

W [s;u;v] = wBi
(s;u;v) ;

where Gi = home(v).

Proof: We denote the state vectors in phase 0 by e(t) instead of x(t) to indicate that the initial
state is a unit vector with 1 for one blocker and 0 for all the other vertices.

We prove by induction on s that lines 1–7 of BLOCKERSINFLUENCE perform linear relaxation
on G with all outgoing edges from blockers in Bi removed, on all the vertices v for which
N

(s)
Bi

(v) � Vi and on all the blockers in Bi. The claim is true for s = 0 because before the
first iteration the state S[j]:x of every vertex is the initial state set by PHASEZERO. Assume
that the claim is true for s < � � 1. In the next iteration S[j]:y is assigned the weighted linear
combination of all of its neighbors in Gi. If the vertex v is a blocker, its state is zeroed in line 6
and the claim holds. If the vertex is not a blocker but N (s+1)

Bi
(v) � Vi, then all its neighbors

are in Gi, and each neighbor u is either a blocker or N (s)
Bi

(u) � Vi. In either case, the y field
is assigned the weighted linear combination of vertex states which are correct by induction, so
its own state is correct.

The initial state is 0 for all vertices except for one blocker u = S[b]:Name whose initial
state is e(0)u = 1. By Equation (8.3) and condition BC4 in the definition of blocking-covers we
have for all s < � and v 2 V such that Gi = home(v)

e(s)v =
X
z2V

wBi
(s;z;v)e(0)z

= wBi
(s;u;v) :

The value e(s)v = wBi
(s;u;v) is written to W [s;u;v] in line 9 for all v 2 B such that

Gi = home(v).
Let us analyze the amount of work and the number of I/O’s required in Phase 0. BLOCK-

ERSINFLUENCE is called at most rk times where k is the number of subgraphs in the cover. In
each call, the amount of work done is O(�M) so the total amount of work is O(rkM�) =
O(r�E). The total number of I/O’s is O(E) to load all the Si into primary memory, and
jBjr� � kr2� = O(E) to store the table W (since W [s;�;v] is a sparse vector).
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Phase 1

Phase 1 is simpler than Phase 0. The procedure INITIALSTATEINFLUENCE is similar to pro-
cedure BLOCKERSINFLUENCE in Phase 0, but the table WX is written to secondary memory
instead of the table W . The procedure PHASEONE loads one subgraph at a time and calls
INITIALSTATEINFLUENCE once, with the initial state loaded from secondary memory.

PhaseOne()
1 for i 1 to k
2 do load Si into primary memory
3 InitialStateInfluence()

InitialStateInfluence()
1 for s 1 to �
2 do for j  1 to M
3 do S[j]:y  P

(l;a)2S[j]:Adj a � S[l]:x
4 for j  1 to M
5 do if S[j]:IsBlocker
6 then S[j]:x 0
7 else S[j]:x S[j]:y
8 if S[j]:IsInB and S[j]:IsHome
9 then write S[j]:y to WX [s;S[j]:Name]

Lemma 8.3 After Phase 1 ends, for each v 2 B and s � � , we have

WX [s;v] =
X
u2Vi

wBi
(s;u;v)x(0)u ;

where Gi = home(v).

Proof: Lines 1–7 of INITIALSTATEINFLUENCE simulate linear relaxation onGwith all outgoing
edges from blockers in Bi removed. The proof of this claim is identical to the proof of
Lemma 8.2, with the initial state being the given initial state x(0). Therefore we have for all
s � � and v 2 V such that Gi = home(v)

x(s)v =
X
z2V

wBi
(s;z;v)x(0)z : (8.6)

This value is written to WX[s;v] in line 9 for all v 2 B such that Gi = home(v).
The total amount of work in Phase 1 is O(k�M) = O(�E). The number of I/O’s is O(E)

to load all the subgraphs, and jBj� to store the table WX .

Phase 2

Phase 2 solves the lower triangular system of linear equations defined by Lemma 8.1 for every
v 2 B and all t � � . Entries in the tablesW , WX and X are written and read from secondary
memory as needed.

88



PhaseTwo()
1 for t 1 to �
2 do for v  1 to jBj
3 do Let Gi be the home of v
4 X[t;v] WX [t;v] +

P
1�s<t
u2Bi

W [s;u;v]X[t� s;u]

Lemma 8.4 After Phase 2 ends we have for each v 2 B and t � �

X[t;v] = x(t)v :

Proof: The result follows immediately from Lemma 8.1 and the previous two lemmas.
Since the number of terms in each of the T jBj sums is at most rT , the total amount of

work and I/O’s is O(rjBj�2) = O(kr2� 2) = O(E).

Phase 3

The structure of Phase 3 is similar to the structure of Phase 1. The main difference between
the two phases is that in Phase 1 a zero was substituted for the state of a blocker during the
simulation, whereas in the procedure RELAXG the correct value of the state of blockers is loaded
from the table X in secondary memory. The procedure PhaseThree loads each subgraph
and its initial state to primary memory, callsRelaG , and then stores back the subgraph with
the correct state in the y field.

PhaseThree()
1 for i 1 to k
2 do load Si into primary memory
3 RelaG ()
4 store Si back to secondary memory

RelaG ()
1 for s 1 to �
2 do for j  1 to M
3 do S[j]:y  P

(l;a)2S[j]:Adj a � S[l]:x
4 for j  1 to M
5 do if S[j]:IsBlocker
6 then read X[S[j]:name; s] into S[j]:x
7 else S[j]:x S[j]:y
8 for j  1 to M
9 do if S[j]:IsHome

10 then S[j]:y  S[j]:x

Lemma 8.5 After Phase 3 ends, for every v 2 V whose home is Gi, the y field in the entry of
v in Si is x(�)v .
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Proof: We prove by induction on s that lines 1–7 of RELAXG simulate linear relaxation on G
on all the vertices v for which N (s)

Bi
(v) � Vi and on all the blockers in Bi. The claim is true

for s = 0 because before the first iteration the state S[j]:x of every vertex is the initial state
loaded from secondary memory. Assume that the claim is true for s < � . In the next iteration
S[j]:y is assigned the weighted linear combination of all of its neighbors in Gi. If the vertex
v is a blocker, its state is loaded from the table X in line 6 and the claim holds. If the vertex
is not a blocker but N (s+1)

Bi
(v) � Vi, then all its neighbors are in Gi, and each neighbor u is

either a blocker or N (s)
Bi

(u) � Vi. In either case, the y field is assigned the weighted linear
combination of vertex states which are correct by induction, so its own state is correct.

The lemma follows from the inductive claim, since if Gi = home(v) then N (�)(v) � Vi
and therefore its y field is assigned x(�)v .

In Phase 3 each subgraph is loaded into primary memory and RELAXG is called. The total
amount of work is O(k�M) = O(�E) and the total number of I/O’s is O(E + V ) = O(E).

Summary

The following theorem summarizes the performance of our algorithm.

Theorem 8.6 (Simple Linear Simulation) Given a graph G = (V;E) with a (�;r;M)-
blocking-cover such that r2� 2 � M , a computer with O(M) words of primary memory
can perform T � � steps of a simple linear relaxation on G using at most O(TE) work and
O(TE=�) I/O’s. A precomputation phase (which does not depend on the initial state) requires
O(r �E) work and O(E) I/O’s.

Proof: The correctness of the algorithm follows from Lemma 8.5. The bounds on work and
I/O’s follow from the performance analysis following the description of each phase.

The Simple Linear Simulation Theorem applies directly in many situations, but in some
special cases which are common in practice, we can improve the performance of our method.
In Section 8.5 we will exploit two such improvements to obtain better I/O speedups.

8.5 Multigrid Computations

In this section we present the application of our method to multigrid relaxation algorithms.
We show that a two-dimensional multigrid graph (shown previously in Figure 8.1) has a
(�(M1=6);�(M1=3);M)-blocking-cover, and hence, we can implement a relaxation on the
multigrid graph using a factor of �(M 1=6) fewer I/O’s than the naive method. We improve this
result to �(M 1=5) for multigrid computations such as certain elliptic solvers that use only one
level of the multigrid graph at a time and have a regular structure of relaxation weights.

Lemma 8.7 For any � � pM , a 2-dimensional multigrid graph G has a (�;r;M)-blocking-
cover, where r = O(� 2).

Proof: Consider a cover of a multigrid graph in which everyGi = (Vi;Ei) consists of a k-by-k
submesh at the bottommost level together with all the vertices above it in the multigrid graph,
and the blocking set Bi � Vi consists of all the vertices in levels ` + 1 and above. Let each
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subgraph Gi be the home of all vertices in the inner (k � �2`+1)-by-(k � �2`+1) bottommost
submesh of Gi and all the vertices above them. The number of vertices in Bi is

r =
(lgn)=2X
i=`+1

 
k

2i

!2

<

 
k

2`+1

!2 1X
i=0

4�i

=
4

3

 
k

2`+1

!2

and the number of edges in Gi is

jEij = (2 + 1=4) jVij
<

9

4
� 4
3
k2

= 3k2 ;

since there are at most two edges for each vertex in a mesh, and in the multigrid, 1=4 of the
O((4=3)k2) vertices have edges connecting to a higher level mesh. Setting k � �2`+1 = k=2,
we obtain k = 4�2` and r < (4=3)(2�)2 = (16=3)� 2. Setting ` = 1

2
lg(M=� 2), we obtain

jEij < 48M .
Combining Theorem 8.6 and Lemma 8.7, we obtain the following result.

Corollary 8.8 A computer with �(M) words of primary memory can perform T = 
(M1=6)
steps of a simple linear relaxation on a

p
n-by-

p
n multigrid graph using O(Tn) work and

O(Tn=M1=6) I/O’s. A precomputation phase requires O(M1=2n) work and O(n) I/O’s.

Proof: Set � = M1=6 in Lemma 8.7, and apply Theorem 8.6.
As a practical matter, linear relaxation on a multigrid graph is not simple: it does not use

the same relaxation matrix at each step. Moreover, for many applications, a given step of the
relaxation is performed only on a single level of the multigrid or on two adjacent levels.

For example, one generic way to solve a discretized version of a parabolic 2-dimensional
heat equation in the square domain [0;1]2, as well as a wide variety of other time-dependent
systems of partial differential equations, such as the Navier-Stokes equations, is to use discrete
time steps, and in each time step to solve an elliptic problem on the domain. In the heat equation
example, for instance, the elliptic problem is

@2u(x;y; ti)

@x2
+
@2u(x;y; ti)

@y2
=
u(x;y; ti)� u(x;y; ti�1)

ti � ti�1
:

In a common implementation of this strategy, the elliptic solver is a multigrid algorithm,
in which case the entire solver can be described as a linear relaxation algorithm on a multigrid
graph [24]. This algorithm consists of a number of cycles, where each cycle consists of �(lgn)
steps in which the computation proceeds level-by-level up the multigrid and then back down.
Since the size of any given level of the multigrid is a constant factor smaller than the level
beneath it, the �(lgn) steps in one cycle of the algorithm execute a total of �(n) work and
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update each state variable only a constant number of times. Thus, a naive implementation of T
cycles of the elliptic solver requires O(nT ) work and O(nT ) I/O’s.

We can use the basic idea behind the simple linear simulation algorithm to provide a more
I/O-efficient algorithm. We present the algorithm in the context of a multigrid graph which
is used to solve an equation with constant coefficient, but the same algorithm works in other
special cases.

Definition We say that a multigrid graph has regular edge weights if for every level, the edge
weights in the interior of the grid are all identical, the edge weights in the interior of every face
(or edge) of the grid are all identical, and if the edge weights going from one level to another
are all identical in the interior and all identical along each face.

Theorem 8.9 A computer with �(M) words of primary memory can perform T = 
(M1=5)
multigrid cycles on a

p
n-by-

p
n multigrid graph with regular edge weights using O(nT )

work, and O(nT=M1=5) I/O’s. A precomputation step requires O(M8=5) work and O(M)
I/O’s.

Proof: The algorithm generally follows the simple linear relaxation algorithm. We outline the
differences.

The linear simulation algorithm uses a (�;r;M)-blocking-cover as described in the proof
of Lemma 8.7, but we now choose � = M1=5 and r = �(M2=5). Because the relaxation
algorithm is not simple, the paths defined by Equation (8.2) must respect the weights defined
by the various relaxation matrices. In a single cycle, however, there are only a constant
number of relevant state variables for a single vertex. Moreover, the phases can skip over steps
corresponding to updates at level 3

10
lgM + 1 and above, since only blocker variables occupy

these levels. Most of these changes are technical in nature, and whereas the bookkeeping is
more complicated, we can simulate one cycle of the elliptic solver with asymptotically the
same number of variables as the simple linear simulation algorithm uses to simulate one step
of a simple linear relaxation problem on the lowest level of the multigrid.

The real improvement in the simulation, however, comes from exploiting the regular
structure of the blocking cover of the multigrid graph. The cover has three types of subgraphs:
interior ones, boundary ones, and corner ones. All subgraphs of the same type have isomorphic
graph structure, the same relaxation weights on isomorphic edges, and an isomorphic set of
blockers. Thus, in Phase 0 of the simulation algorithm, we only need to compute the influence
on blockers in one representative subgraph of each type. We store these coefficients in primary
memory for the entire algorithm, and hence, in Phase 2, we need not perform any I/O’s to load
them in. Phases 1 and 3 are essentially the same as for simple linear simulation.

The change to Phase 2 is what allows us to weaken the constraint r2� 2 � M from
Theorem 8.6 and replace it by r2� � M , which arises since the total work (r �)2E=M in
Phase 2 must not exceedE� if we wish to do the same work as the naive algorithm. Because all
3 types of subgraphs must fit into primary memory at the same time, the constraint 3r2� �M
also arises. Maximizing � under the constraints of Lemma 8.7 yields the choice � = M 1=5.
The work in Phase 2 is O((r �)2E=M) = O(M1=5n), rather than O(n) as it would be without
exploiting the regularity of subgraphs. The number of I/O’s in Phase 2 isO(r �)E=M) = O(n)
in order to input the constants computed in Phase 1 corresponding to the first summation in
Equation (8.4). The work in Phases 1 and 3 is O(�E) = O(M1=5n), and the number of I/O’s
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is O(r �E=M) = O(n). The amount of work in Phase 0 becomes O(3r �M) = O(M8=5),
and the number of I/O’s for this precomputation phase is O(M).

We mention two extensions of this theorem. The 3-dimensional multigrid graph has
a (�;r;M)-blocking-cover, where r = O(� 3), which yields an I/O savings of a factor of
� = �(M1=7) over the naive algorithm when � is maximized subject to the constraint r2� �M .
For the 2-dimensional problem, one can exploit the similarity of the coefficients computed by
Phase 0 to save a factor of as much as �(M 1=3) in I/O’s over the naive method, but at the
expense of doing asymptotically more work.

8.6 Finding Blocking Covers

In this section, we describe how to find blocking covers for graphs that arise naturally in
finite-element computations for physical space. Consequently, I/O efficient linear relaxation
schemes exist for these classes of graphs. Specifically, we focus on planar graphs to model
computations in two dimensions and d-dimensional simplicial graphs of bounded aspect ratio
to model computations in higher dimensions. Planar graphs are those that can be drawn in the
plane so that no edges cross. Simplicial graphs arise from dividing d-dimensional space into
polyhedra whose aspect ratio is bounded and where the sizes of polyhedra are locally similar:
the volume of a polyhedron is no larger than twice (or some constant times) the volume of
any neighboring polyhedron. Linear relaxation algorithms on such graphs can be used to solve
differential equations on various d-dimensional structures [86, 87].

We begin by defining simplicial graphs formally using definitions from [86].

Definition A k-dimensional simplex, or k-simplex, is the convex hull of k + 1 affinely
independent points in <d. A simplicial complex is a collection of simplices closed under
subsimplex and intersection. A k-complex K is a simplicial complex such that for every
k0-simplex in K, we have k0 � k.

A 3-complex is a collection of cells (3-simplexes), faces (2-simplices), edges (1-simplices),
and vertices(0-simplices). A d-dimensional simplicial graph is the collection of edges (1-
simplices) and vertices (0-simplices) in a k-complex in d-dimensions. The diameter of a
k-complex is the maximum distance between any pair of points in the complex, and the aspect
ratio is the ratio of the diameter to the kth root of the volume. A simplicial graph of aspect
ratio � is a simplicial graph that comes from a k-complex with every k-simplex having aspect
ratio at most �.

We now state the main theorems of this section.

Theorem 8.10 A computer with �(M) words of primary memory can perform T � � steps of
simple linear relaxation on any n-vertex planar graph using O(nT ) work and O(nT=�) I/O’s,
where � = O(M1=4=

p
lgn). A precomputation phase requires O(�2n lgn) work and O(n)

I/O’s. Computing the blocking cover requires O(n lgn) work and I/O’s.

Theorem 8.11 A computer with �(M) words of primary memory can perform T � � steps
of simple linear relaxation on any n-vertex d-dimensional simplicial graph of constant aspect
ratio using O(nT ) work and O(nT=�) I/O’s, where � � M
(1=d)= lgn. A precomputation
step requires O(�
(d)n lg
(d)n) work and O(n) I/O’s. Computing the blocking cover requires
O(n2=� + nM) work and I/O’s.
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These theorems follow from the fact that good blocking covers can be found for planar
and simplicial graphs by extending the techniques of [64] and [96]. We proceed by stating
the definition of a cut cover from [64], and then we relate cut covers to blocking covers. We
describe recent results from [64] and [96] that describe how to find good cut covers, and thus,
how to find good blocking covers for planar and simplicial graphs.

Given a subgraph Gi = (Vi;Ei) of a graph G = (V;E) with vertex and edge weights
w : V [E ! f0;1g, we define the weight of Gi as w(Gi) =

P
v2Viw(v)+

P
e2Ei

w(e). The
following definitions are slight modifications of definitions in [64].

Definition A balanced (�;r; �)-cut-cover of a graphG = (V;E) with vertex and edge weights
w : V [E ! f0;1g is a triplet (C;G1;G2), whereC � V is called a cut set andG1 = (V1;E1)
and G2 = (V2;E2) are subgraphs of G, such that

CC1. jCj � r;

CC2. w(G1) + w(G2) � (1 + �)w(G);

CC3. max(w(G1);w(G2)) � 2w(G)=3;

CC4. 8v 2 V , either N (�)
C (v) � V1 or N (�)

C (v) � V2.

Definition A two-color (�;r; �)-cut-cover for a graph G = (V;E) with two weight functions
w1;w2 : V [E ! f0;1g is a triplet (C;G1;G2)which constitutes a balanced (�;r; �)-cut-cover
for G for both weight functions.

The following theorem relates cut covers to blocking covers.

Theorem 8.12 If every subgraph of a graph, G = (V;E), has a two-color (�;r;O(1= lgE))-
cut-cover for any two weight functions, then the graph has a (�;3r;M)-blocking-cover.

Proof: We find a blocking cover by recursively taking two-color cut-covers of subgraphs of G
with respect to two weight functions. One weight function wE assigns weight 1 to each edge
in the graph and weight 0 to each vertex. The second weight functionwB assigns 1 to any node
that was designated to be a blocker at a higher recursive level and assigns 0 to any other node or
edge. That is, we find a two-color (�;r; � = O(1= lgE))-cut-cover (B;G1;G2) on the current
subgraph, G, and then recurse on each of G1 and G2, where wB and wE for Gi is inherited
from G, except that the new wB assigns 1 to any element of B in Gi.

We now argue that the set of subgraphs generated at level log3=2 jEj=M of the recursive
decomposition is a (�;3r;M)-blocking cover ofG. The set of subgraphs forms a � -cover since
a (�;r; �) cut-cover is a � -cover and successively taking � -covers yields a � -cover of the first
graph. The number of blockers in any subgraph can be bounded by 3r as follows. Assume
that at some recursive level, the current subgraph G contains 3r blockers from higher recursive
levels. Then the number of blockers thatG1 orG2 contains is less than (2=3)(3r)+jBj � 3r by
the definition of two-color cut-cover. After log3=2 jEj=M recursive levels, the largest subgraph
has at most M edges, since the number of edges in a subgraph is reduced by at least 2=3
at each recursive level. Finally, the total number of edges in the set of subgraphs is at most

94



(1 + �)log3=2(jEj=M)jEj � e� log3=2(jEj=M)jEj = O(E), since the total number of edges does not
increase by more than (1 + �) at each recursive level.

Kaklamanis, Krizanc, and Rao [64] have shown that for every integer `, every n-vertex
planar graph has a two-color (�;O(`); �=`)-cut-cover which can be found in O(n) time.
Moreover, Plotkin, Rao, and Smith [96] have recently shown that for every `, every n-vertex d-
dimensional simplicial graph of constant aspect ratio has a two-color O(�;O(`O(d) lgn); �=`)-
cut-cover that can be found inO(n2=`) time.4 These results can be combined with Theorem 8.12
to yield the following corollaries.

Corollary 8.13 For every r > 0, every n-vertex planar graph has a (�;r;M)-blocking cover,
where � = O(r= lgn).

Corollary 8.14 For every r > 0, every n-vertex d-dimensional simplicial graph with constant
aspect ratio has a (�;r;M)-blocking cover, where � = O(r�(1=d)= lg1+�(1=d)n).

Corollary 8.13 and Corollary 8.14 can be combined with Theorem 8.6 to prove Theorem 8.10
and Theorem 8.11.

8.7 Discussion

We have presented out-of-core algorithms for linear-relaxation, in particular multigrid algo-
rithms. The asymptotic I/O speedup over a naive 2-dimensional multigrid algorithm is M 1=5,
which is smaller than the asymptotic speedup of most of the covering algorithms and of the
other out-of-core algorithms presented in this thesis. An analysis of the constants did not con-
vince me that the algorithm would outperform conventional multigrid algorithms, so I did not
implement the algorithm. I still believe that the method has practical value, and that situations
in which using it is advantageous will arise in the future.

4In fact, they can find cut-covers in any graph that excludes a shallow minor. That is, they consider graphs that
do not contain Kh as a minor, where the set of vertices in the minor that correspond to a vertex of Kh has small
diameter. Our results also hold for this class of graphs.
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Chapter 9

An Efficient Out-of-Core Algorithm for
Implicit Time-Stepping Schemes in One
Dimension

9.1 Introduction

This chapter describes an efficient out-of-core method for performing linear implicit time-
stepping computations, which uses the blocking-covers technique described in Chapter 7. The
update operator in implicit time-stepping schemes updates the state vector by solving a linear
system of equations, often by invoking a direct LU solver. In Section 9.7 we prove that the
covering technique cannot be applied to implicit operators when a direct linear equations solver
implements the update operator. This chapter shows, however, that a method based on blockers
can be applied to implicit time-stepping schemes in one dimension. The method is efficient
both in theory and in practice. Section 9.4 proves that the number of I/O’s performed by the
method is asymptotically optimal for a wide range of problems, and Section 9.5 demonstrates
that my implementation of the method can outperform the naive method by more than a factor
of 5.

Our method applies to iterative schemes of the form

Ax(t) = Bx(t�1) + b(t) ; (9.1)

where A and B are n-by-n tridiagonal matrices and b(t) is a vector whose only nonzeros are
its first and last elements. Given A, B, the initial condition x(0), and the boundary conditions
b
(t)
1 , b(t)n , for t = 1; : : : ;T , we would like to compute x(T ). We refer to n as the size of the

time-stepping scheme.
Equation (9.1) can express a wide range of implicit time-stepping schemes for time-

dependent partial differential equations in one spatial dimension, including backward-time-
center-space and Crank-Nicolson (see, for example, [91] or [104]) with both Dirichlet and
Neumann boundary conditions.

A computer with a large primary memory can implement the scheme (9.1) by invoking
a tridiagonal solver in every step. Since we are only interested in the state x(T ) after T
iterations, the total amount of memory used is �(n) words. The amount of work involved in
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the computation is �(nT ), assuming the use of an efficient variant of Gaussian Elimination as
a tridiagonal solver (this variant is sometimes known as Thomas’s algorithm [115]).

If the computation does not fit into the primary memory of the computer an out-of-core
method must be used. A naive way to implement an out-of-core algorithm is to use the in-core
algorithm, which invokes a tridiagonal solver in every iteration, and perform I/O as needed
using an automatic paging algorithm. Theorem 9.6 in Section 9.7 proves, however, that any
attempt to organize a computation in which any direct solver is applied T times to a state vector
of size n on a computer with a primary memory of size M requires at least T (n�M) I/O’s.
Even for n = 2M , the number of I/O’s is 
(Tn) I/O’s, which is the same as the amount of
work required by the algorithm. A naive implementation, in which every word used by the
CPU is transferred between memories, requires O(Tn) I/O’s.

In this chapter I propose an algorithm, which I call the blocked out-of-core algorithm,
which requires much less I/O. My algorithm can beat the lower bound since it is based on
the idea of blockers. The algorithm does not invoke a tridiagonal solver on problems of size
n, but only on much smaller problems. The main contribution of this chapter is a method
for decomposing a problem of size n into k decoupled problems of size b(n + 1)=kc � 1.
The domain decomposition scheme is described in Section 9.2, and the decoupling of the
subdomains is described in Section 9.3. Our algorithm and analysis of its performance are
presented in Section 9.4.

I have implemented the algorithm1, measured its performance on workstations, and found
its performance superior to that of the naive out-of-core algorithm. On a workstation, our
implementation of the out-of-core algorithm outperforms the naive algorithm by more than a
factor of 5 when the problem does not fit into primary memory. When the problem does fit,
the out-of-core algorithm is slower by only a factor of 2.3–3.1. The comparison is described
in detail in Section 9.5. We have also used our implementation to investigate the numerical
stability of our algorithm, and have found it to be quite stable and accurate, even on very large
problems. Our numerical experiments are described in Section 9.6.

9.2 Domain Decomposition

The fundamental operations in the blocked out-of-core algorithm are the decomposition of the
state vector into intervals and the derivation of a local update operator for each interval. The
structure of these local update operators is similar to the structure of the global update operator.

We decompose the domain into k intervals, which are separated by blocker points. That
is, every two adjacent intervals are separated by one point which belongs to neither of them.
The first k� 1 intervals have the same length, m = b(n + 1)=kc� 1, but the last interval may
be shorter if k does not divide n+ 1. The domain decomposition is illustrated in Figure 9.1.

Given an interval I = [i; : : : ; j], where i � j, we define the reduced system with respect
to I to be Equation (9.1) restricted to rows i through j, as illustrated in Figure 9.2:

AIx
(t)
I = BIx

(t�1)
I + b

(t)
I : (9.2)

1The program is available by anonymous FTP from
ftp://theory.lcs.mit.edu/pub/sivan/outofcore.c, or through the world-wide-web in
http://theory.lcs.mit.edu/~sivan/papers.html.
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Figure 9.1 A domain of size n = 14 is decomposed into k = 3 intervals of size m = 4 and two
blockers, which are represented as black circles. The shaded area surrounds the variables x(3)5 , x(3)6 ,
x
(3)
7 , x(2)5 , x(2)6 , and x(2)7 , which are related by one equation in the system Ax(3) = Bx(2) + b(3).

AI BI

x(t) x(t−1) b(t)A B

= +

x(t)
I

x(t−1)
I

Figure 9.2 The reduced system with respect to I = [6; : : : ;10] is identical to 6 through 10 in the
original system, which are lightly shaded in the figure. The matrices AI and BI and the vectors x(t)I

and x(t�1)
I are heavily shaded. The vector b(t)I is defined so that the reduced system is indeed identical

to rows 6 through 10 in the original system.

In Equation (9.2), AI and BI are the square diagonal blocks consisting of rows and columns i
through j in A and B, and x(t)I = (x

(t)
i ; : : : ;x

(t)
j )T. The vector b(t)I , which is again a vector of

zeros except for its first and last entries, is defined in a way which ensures that Equation (9.2)
is indeed identical to rows i through j of Equation (9.1). The first entry of b(t)I is defined as

(b
(t)
I )1 =

(
b
(t)
1 if i = 1,

�Ai;i�1x
(t)
i�1 +Bi;i�1x

(t�1)
i�1 otherwise,

(9.3)

and the last entry is defined as

(b
(t)
I )j�i+1 =

(
b(t)n if j = n,

�Aj;j+1x
(t)
j+1 +Bj;j+1x

(t�1)
j+1 otherwise.

(9.4)
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If i = j, the one element of b(t)I is defined as the sum of Equations (9.3) and (9.4):

(b
(t)
I )1 =

8>>>>><
>>>>>:

b
(t)
1 �A1;2x

(t)
2 +B1;2x

(t�1)
2 if i = j = 1,

�Ai;i�1x
(t)
i�1 +Bi;i�1x

(t�1)
i�1

�Aj;j+1x
(t)
j+1 +Bj;j+1x

(t�1)
j+1 if 1 < i = j < n,

b(t)n �An;n�1x
(t)
n�1 +Bn;n�1x

(t�1)
n�1 if i = j = n.

(9.5)

9.3 Blocker Equations

Our algorithm works by eliminating from the iterative scheme the variables representing points
within the intervals. This elimination results in an iterative scheme consisting of blocker points
only. We call the equations in these systems of equations the blocker equations. This section
describes the derivation of the blocker equations.

We begin by representing the state of points within an interval as a function of the state of
the blockers that delimit the interval.

Definition Given a point i, its state sequence is the vector xi = (x
(0)
i ;x

(1)
i ; : : : ;x

(t)
i )T.

We express the state sequence of a point p within an interval I = [i; : : : ; j] as a function of the
state sequences of the blockers that delimit the interval:

xp = cp + Lpxi�1 +Rpxj+1 : (9.6)

If i = 1, then xi�1 is taken to be a vector of zeros, and if j = n then xj+1 is taken to be a
vector of zeros. The vector cp = (c(0)p ; : : : ; c(T )p )T is a (T + 1)-vector, and the Lp and Rp are
(T +1)-by-(T +1) lower triangular matrices. We denote the (t;r) element ofLp (Rp) byL(t;r)

p

(R(t;r)
p ), where the indices t and r take values from 0 through T . We can define c(0)p = x(0)p ,

and we can define the first rows of the matrices as L(0;�)
p = R(0;�)

p = (0; : : : ;0).
The derivation of the expressions for the rest of the elements of cp, Lp, and Rp is based on

the following lemma.

Lemma 9.1 The state vector x(t) after t applications of Equation (9.1) satisfies

x(t) =
�
A�1B

�t
x(0) +

�
A�1B

�t�1
A�1b(1) + � � � (9.7)

+
�
A�1B

�
A�1b(t�1) + A�1b(t) :

Proof: By induction. We have

Au(1) = Bx(0) + b(1) ;

so the basis of the induction holds:

u(1) =
�
A�1B

�
x(0) + A�1b(1) :

Assume that the lemma holds for t� 1,

x(t�1) =
�
A�1B

�t�1
x(0) +

�
A�1B

�t�2
A�1b(1) + � � �

+
�
A�1B

�
A�1b(t�2) + A�1b(t�1) :
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Multiplying Equation (9.1) by A�1, we obtain

x(t) = A�1Bx(t�1) + A�1b(t)

=
�
A�1B

�t
x(0) +

�
A�1B

�t�1
A�1b(1) + � � �

+
�
A�1B

�
A�1b(t�1) + A�1b(t) :

To derive the expressions for cp,Lp, andRp, we use Lemma 9.1 applied to a reduced system
for the interval I = [i; : : : ; j],

x
(t)
I =

�
A�1
I BI

�t
x
(0)
I +

�
A�1
I BI

�t�1
A�1
I b

(1)
I + � � � (9.8)

+
�
A�1
I BI

�
A�1
I b

(t�1)
I + A�1

I b
(t)
I :

To simplify the notation, we define

C
(t)
I =

�
A�1
I BI

�t
A�1
I :

Let p be the qth point in the interval I = [i; : : : ; j], that is, p = i + q � 1. Equating the
right-hand side of row q of Equation (9.8) with the right hand side of the (t + 1)st row of
Equation (9.6), both of which are equal to x(t)p , yields

c(t)p =

8>>>>>>><
>>>>>>>:

��
A�1
I BI

�t
x
(0)
I

�
q

if i > 1,��
A�1
I BI

�t
x
(0)
I

�
q
+
Pt

r=1

h
C

(r)
I

i
q;1
b
(r)
1 if i = 1,��

A�1
I BI

�t
x
(0)
I

�
q
+
Pt

r=1

h
C

(r)
I

i
q;j�i+1

b(r)n if j = n;

(9.9)

L(t;r)
p =

8>>>>>><
>>>>>>:

0 if t < r or i = 1,h
C

(t�1)
I

i
q;1
Bi;i�1 if i > 1 and t > r = 0,h

C(t�r�1)
I

i
q;1
Bi;i�1 �

h
C(t�r)
I

i
q;1
Ai;i�1 if i > 1 and t > r > 0,

�
h
C

(0)
I

i
q;1
Ai;i�1 if i > 1 and t = r > 0;

(9.10)

R(t;r)
p =

8>>>>>>>>>><
>>>>>>>>>>:

0 if t < r or j = n,h
C

(t�1)
I

i
q;j�i+1

Bj;j+1 if j < n and t > r = 0,h
C

(t�r�1)
I

i
q;j�i+1

Bj;j+1

�
h
C

(t�r)
I

i
q;j�i+1

Aj;j+1 if j < n and t > r > 0,

�
h
C

(0)
I

i
q;j�i+1

Aj;j+1 if j < n and t = r > 0.

(9.11)

We now turn to the derivation of the blocker equations themselves, which constitute a
sequence of T tridiagonal linear systems of size (k � 1)-by-(k � 1). Consider an equation
relating a blocker b, the blocker bl to its left, and the blocker br to its right. (If b is the first or
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last blocker, we take x(t)bl = 0 or x(t)br = 0, respectively.) The reduced system for the blocker b
is

Ab;bx
(t)
b = Bb;bx

(t�1)
b + b

(t)
[b:::b]

= Bb;bx
(t�1)
b + (9.12)

(�Ab;b�1x
(t)
b�1 +Bb;b�1x

(t�1)
b�1 ) +

(�Ab;b+1x
(t)
b+1 +Bb;b�1x

(t�1)
b+1 ) :

Using Equation (9.6), the expressions for x(t)b�1 and x(t)b�1 are

x
(t)
b�1 = c

(t)
b�1 + L

(t;�)
b�1 xbl +R

(t;�)
b�1 xb

= c
(t)
b�1 +

L
(t;t)
b�1x

(t)
bl

+
t�1X
r=0

L
(t;r)
b�1 x

(r)
bl

+

R
(t;t)
b�1x

(t)
b +

t�1X
r=0

R
(t;r)
b�1 x

(r)
b

and

x
(t)
b+1 = c

(t)
b+1 + L

(t;�)
b+1 xb +R

(t;�)
b+1 xbr

= c
(t)
b+1 +

L(t;t)
b+1x

(t)
b +

t�1X
r=0

L(t;r)
b+1 x

(r)
b +

R
(t;t)
b+1x

(t)
br +

t�1X
r=0

R
(t;r)
b+1 x

(r)
br :

Substituting the expressions for x(t)b�1 and x(t)b�1 in Equation (9.12), we get

Ab;b�1L
(t;t)
b�1x

(t)
bl

+ (Ab;b + Ab;b�1R
(t;t)
b�1 + Ab;b+1L

(t;t)
b+1)x

(t)
b + Ab;b+1R

(t;t)
b+1x

(t)
br

= Bb;bx
(t�1)
b

+Bb;b�1(c
(t�1)
b�1 +

t�1X
r=0

L
(t�1;r)
b�1 x

(r)
bl

+
t�1X
r=0

R
(t�1;r)
b�1 x

(r)
b )

+Bb;b+1(c
(t�1)
b+1 +

t�1X
r=0

L
(t�1;r)
b+1 x

(r)
b +

t�1X
r=0

R
(t�1;r)
b+1 x

(r)
br )

�Ab;b�1(c
(t)
b�1 +

t�1X
r=0

L
(t;r)
b�1 x

(r)
bl

+
t�1X
r=0

R
(t;r)
b�1 x

(r)
b )

�Ab;b+1(c
(t)
b+1 +

t�1X
r=0

L
(t;r)
b+1 x

(r)
b +

t�1X
r=0

R
(t;r)
b+1 x

(r)
br ) :

The collection of these equations for all blockers forms a tridiagonal linear system whose
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variables are the state of all blockers after time step t, and whose right hand side can be
numerically evaluated if the state of all blockers at previous time steps is known.

9.4 The Algorithm

In this section we describe our out-of-core algorithm. The algorithm works in three phases. In
the first phase, the algorithm computes certain quantities which are needed for computing the
blocker equations in the second phase. In Phase 2, the blocker equations are formed and solved,
which decouples the intervals from one another. Once the state sequences for the blockers are
known, Phase 3 solves the reduced system for each interval to produce the algorithm’s output,
x(t). The three phases of the algorithm are described in detail and analyzed bellow.

Phase 1

Phase 1 computes the quantities
�
A�1
I BI

�t
x
(0)
I ;

h
C

(t�1)
I

i
1;1

;
h
C

(t�1)
I

i
1;j�i+1

;
h
C

(t�1)
I

i
j�i+1;1

and
h
C

(t�1)
I

i
j�i+1;j�i+1

for each interval I = [i; : : : ; j] and for t = 0; : : : ;T .
These quantities are computed by repeated multiplication byBI andA�1

I , using a tridiagonal

solver to multiply by A�1
I . To compute

�
A�1
I BI

�t
x
(0)
I , we start the iteration with x(0)I , and to

compute the other four quantities, we start the iteration with the first and last unit vectors in
order to compute the first and last columns of C (t�1)

I .
The amount of work involved is 3T tridiagonal solves usingAI and 3T �2 multiplications

by BI , which yields �(mT ) work per interval and �(nT ) work for the whole phase. We
assume that for each interval, the whole computation can be carried out in core, which requires
�(m) words of memory. The number of I/O’s is �(n) to load all the AI’s, BI’s and xI’s and
�(kT ) to store the output of Phase 1.

Phase 2

The goal of Phase 2 is to construct a sequence of T tridiagonal systems of blocker equations
of size (k � 1)-by-(k � 1). The solution of the tth system consists of the state of all blockers
after time step t. The systems are constructed and solved in succession for t = 1; : : : ;T .

Forming every equation in the tth time step requires computing 2t + 1 entries of Lb+1,
Lb�1, Rb+1 and Rb�1 as well as 2 entries of cb�1 and cb+1. Using the output of Phase 1, we can
compute the entries of Lb+1, Lb�1, Rb+1 and Rb�1 in constant time, according to Equations
(9.10), and (9.11). Computing the entries of cb+1 and cb+1 requires constant time except for
the first and last blockers, where it takes �(t) time using Equation (9.9).

Phase 2 uses two data structures. One is a table that holds the results of Phase 1, and the
other is a table that holds the state sequences of all blockers. The size of both data structures is
�(kT ) words, and each is accessed �(kT 2) times during Phase 2. These data structures can
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be stored either in primary memory, in which case Phase 2 requires �(kT ) words of primary
memory and performs �(kT ) I/O’s, or they can be stored in secondary memory, in which case
the phase requires �(k) words of primary memory but performs �(kT ) I/O’s.

The amount of work in Phase 2 is therefore�(kT 2) to formT systems of blocker equations,
and �(kT ) to solve the T tridiagonal systems of size (k � 1)-by-(k � 1).

Phase 3

In Phase 3 we compute the state of all points after time step T . The computation is carried out
interval by interval. In each interval, we solve the reduced system T times using a tridiagonal
solver. Since the state sequence of all blockers is now stored in secondary memory, we can
compute numerical values for b(t)I , which essentially decouples the intervals from one another.

The amount of work required in this phase is �(nT ) to perform T time steps on each
interval. The amount of I/O’s is O(n) to load the initial conditions x(0)I and store the solutions
x
(T )
I , and �(kT ) to load the state sequences of blocker which serve as boundary conditions for

the intervals.

Summary

We now analyze the total amount of work and I/O required by the algorithm. Phases 1 and 3
perform �(nT ) work and �(n+ kT ) I/O’s, and both of them require 
(m) primary memory.
Phase 2 performs �(kT + kT 2) work. The data structures used in Phase 2 can be stored in
either primary or secondary memory, and the choice results in two different tradeoffs between
primary memory size and the number of I/O’s. Storing the data structures in primary memory
requires �(kT ) primary memory and I/O’s, and storing them in secondary memory reduces
the primary memory requirement to �(k) but increasing the number of I/O’s to �(kT 2). The
following two theorems correspond to the two possibilities.

Theorem 9.2 A computer with 
(M) words of primary memory can perform T �pM steps
of the implicit time-stepping scheme (9.1) of size n = O(M 2) using �(n) I/O’s and �(nT )
work.

Proof: We set m = M so that each interval in Phases 1 and 3 can be computed upon in
core. We keep the data structures of Phase 2 in secondary memory. The primary memory
requirement of Phase 2 is satisfied, since

k = �
�
n

M

�
� �(M) :

The amount of I/O performed in Phase 2 is

O(kT 2) � O(kM)

= O(n) :

104



Theorem 9.3 A computer with
(M)words of primary memory can performT � min(M;M2=n)
steps of the implicit time-stepping scheme (9.1) of size n using �(n) I/O’s and �(nT ) work.

Proof: We set m = M so that each interval in Phases 1 and 3 can be computed upon in core.
We keep the data structures of Phase 2 in primary memory. The primary memory requirement
of Phase 2 is satisfied,

kT � �

 
n

M

M2

n

!

� �(M) :

The amount of I/O performed in Phase 2 is

O(kT 2) � O(
n

M
MT )

= O(nT ) :

Recursive Algorithms

On very large problems, insisting that m = M leads to large data structures in Phase 2 that
cause a large number of I/O’s. Since Phases 1 and 3 essentially involve performing implicit
time-stepping schemes of size m on the intervals, we can employ one of the two algorithms
discussed above to execute them. This approach leads to efficient algorithms that use intervals
of size m > M and small data structures in Phase 2.

Storing the data structures of Phase 2 in secondary memory and using the algorithm of
Theorem 9.2 to perform Phases 1 and 3, we obtain

Theorem 9.4 A computer with 
(M) words of primary memory can perform T �pM steps
of the implicit time-stepping scheme (9.1) of size n such that n = O(M 3) using �(n) I/O’s
and �(nT ) work.

Proof: We set m = M2 so that each interval in Phases 1 and 3 can be computed upon using
the algorithm of Theorem 9.2. These two phases require O(mT ) work and O(m) I/O’s per
interval, or O(n) work and O(nT ) I/O’s overall. We keep the data structures of Phase 2 in
secondary memory. The primary memory requirement of Phase 2 is satisfied,

k = �
�
n

m

�

� �

 
M3

M2

!

= �(M) :

The amount of I/O performed in Phase 2 is

O(kT 2) � O(kM)

= O(
n

m
M)
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Platform n Naive Algorithm Blocked Algorithm

SPARCstation 1+ 25K 42.1 98.1
50K 41.9 98.6
75K 266.0 108.6

100K 331.7 123.6
150K 374.3 123.0
200K 415.7 125.7

SPARCstation 10 100K 12.3 20.8
200K 12.7 20.9
300K 16.7 21.5
400K 163.1 29.5
500K 145.2 33.6

Table 9.1 The running times of the naive implementation and my out-of-core blocked algorithm. The
table reports the running times per point per iteration in microseconds for various domain sizes n, on a
Sun SPARCstation 1+ workstation and on a Fun SPARCstation 10 workstation. The numbers reported
are averages of three executions of 25 iterations. The variation between execution times of the same
experiment was typically less than 5%. The out-of-core algorithm used intervals of size 10000.

= O(
n

M
) :

One can employ k levels of recursion and hence turn the constraint n = O(M 3) in the theorem
into a more relaxed constraint n = O(M 2+k):

Corollary 9.5 For any integer k � 1, a computer with 
(M) words of primary memory
can perform T � pM steps of the implicit time-stepping scheme (9.1) of size n such that
n = O(M2+k) using �(n) I/O’s and �(nT ) work.

The constants hidden in the big-� notations grow with k, so it advisable to use this approach
only when the hypotheses of Theorems 9.2 and 9.3 cannot be satisfied.

9.5 Performance

My implementation of the blocked out-of-core algorithm outperforms the naive out-of-core
algorithm by a factor of up to 5. On small problems that fit within the primary memory of a
workstation, the naive algorithm is 2.3–3.1 times faster than the blocked algorithm. On large
problems that do not fit within primary memory, the naive algorithm is slowed down by a factor
of up to 11, whereas the blocked algorithm is slowed down very little, as shown in Table 9.1

Experiments were performed on two models of Sun workstations, and with C implementa-
tion of the two algorithm using 64-bit floating-point arithmetic. I used both a Sun SPARCsta-
tion 10 with 32M bytes of main memory and a 40Mhz SuperSPARC processor, and an older
Sun SPARCstation 1+ with 8M bytes of main memory and a Sun 4/60 processor. The program
was compiled by the GNU C compiler with a –02 optimization option. Experiments were
performed on a system with only one user remotely logged on. The naive algorithm simply
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Figure 9.3 The performance of both the naive and the out-of-core algorithms for different numbers
of iterations on a SPARCstation 10, on a problem of size 500;000. The graph on the left shows the
running time of the algorithms, which includes both the computing time and the time for performing the
I/O. The graph on the right shows the efficiency of the algorithms, which is the ratio of the computing
time to the overall running time.

invokes an efficient tridiagonal solver on the entire one-dimensional domain in every iteration.
In the blocked algorithm, Phases 1 and 3 are carried out using a tridiagonal solver, rather than
by recursion. Both rely on the automatic paging algorithm in the Unix to perform I/O to a local
disk, except of course for the input and output of the programs, which is performed explicitly.

The naive algorithm performs well when its data structures fit within primary memory, but
its performance is poor when its data structures must be stored on disk. Table 9.1 shows that
for large problems its running time per point per iteration, on both platforms, is 10–11 times
larger than its running time for small problems. On a SPARCstation 1+, the slowdown is by a
factor of more than 7. Figure 9.3 shows that the reason for the slowdown is loss of efficiency.
On large problems, the naive algorithm spends less than 10% of its running time computing,
and more than 90% performing I/O.

The blocked algorithm performs more work than the naive algorithm, but it performs much
less I/O on large problems. It is 2.3–3.1 times slower than then naive algorithm on small
problems, when neither algorithm performs any I/O. When invoked to perform 25 iterations on
large problems that must be stored on disk, however, it slows down by only a factor of less than
1.2. Figure 9.3 shows that the fraction of its running time spent performing I/O is diminishing
as the number of iterations grow. When invoked to perform 50 iterations on large problems, it
spends less than 15% of its running time performing I/O, and is more than 5 times faster than
the naive algorithm.

The out-of-core blocked algorithm can be restarted every T = 25 or T = 50 iterations
with little gain in efficiency and with potential gains in numerical stability. Figure 9.3 shows
that the efficiency of the algorithm is 83% with with T = 25 and 88% with T = 50. Invoking
the algorithm with values of T higher than 25 can only reduce its running time by 17%. The
running time can even increase, because the hypotheses of Theorems 9.2 and 9.3 may be
violated. On the other hand, as we shall see in the Section 9.6, the numerical accuracy of the
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algorithm may degrade with T . Restarting the algorithm every 25 iterations or so therefore
seems numerically more stable than invoking the algorithm with a high value of T . Finally, the
application may require or benefit from saving the state vector x(t) periodically.

9.6 Numerical Stability

The blocked out-of-core algorithm is equivalent to the naive algorithm is exact arithmetic, but
in floating-point arithmetic their outputs slowly diverge as the number of iterations grow. Still,
on two model problems the outputs agree to within 8 decimal digits even after 25 iterations.
This level of accuracy probably suffices for most applications, especially considering that even
the output of the naive algorithm typically diverges from the exact solution of the iterative
scheme, depending on the condition number of the matrices A and B.

The model problems used in the experiments were two implicit time-stepping schemes for
solving the one-dimensional heat equation. The two schemes were used to solve the equation

@2u(x;t)

@x2
=
@u(x;t)

@t

in the interval (0;1), with zero Dirichlet boundary conditions

u(0; t) = u(1; t) = 0

for all t, and with the initial condition

x(0) =

(
2x if x < 1=2,
1� 2x otherwise.

One time-stepping scheme that approximates the solution of the differential equation is the
backward-time-center-space discretization, which leads to a system of equations of the form

�t

�x2
x
(t)
i�1 +

�
�2 �t

�x2
� 1

�
x
(t)
i +

�t

�x2
x
(t)
i+1 = �x(t�1)i :

The other scheme is the Crank-Nicolson discretization, which leads to a system of equations
of the form

�t

2�x2
x
(t)
i�1 +

�
� �t

�x2
� 1

�
x
(t)
i +

�t

2�x2
x
(t)
i+1 =

�t

2�x2
x
(t�1)
i�1 +

�
�t

�x2
� 1

�
x
(t�1)
i +

�t

2�x2
x
(t�1)
i+1 :

In both cases we have used �x = �t = 1=(n+ 1).
The numerical experiments used the 64-bit floating-point arithmetic implementation of

the algorithms in C, described in Section 9.5, and were performed on Sun SPARCstation
workstations.

The experiments measured the difference between the outputs of the two algorithms in two
norms: the relativeL2 distance and the maximum pointwise distance. The relativeL2 distance
between the output u(T ) of the naive algorithm and the output v(T ) of the blocked algorithm is

jju(T ) � v(T )jj2
jju(T )jj2 :
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Figure 9.4 The distance of the outputs of the out-of-core and the naive algorithms, relative to the size
of the output of the naive algorithm, on model problems of size n = 500;000. The blocked out-of-core
algorithm used intervals of size m = 1;000. Both theL2 distance and the maximum pointwise distance
are shown for the backward-time-center-space scheme on the left and for the Crank-Nicolson scheme
on the right.

The maximum pointwise distance between the outputs is

max
i

ju(T )i � v
(T )
i j

ju(T )i j
:

The results of the experiments, reported in Figure 9.4, indicate that the output of the blocked
out-of-core algorithm diverges quite slowly from the output of the naive algorithm. Even after
25 iterations, the outputs agree to within 8 decimal digits on a problem of size n = 500;000. I
believe that the results indicate that the blocked algorithm is stable enough for most applications,
especially if restarted every 25 iterations or so.

9.7 Analysis of the Naive Algorithm

The naive algorithm must perform at least T (n � M) I/O’s in the course of T iterations
of an implicit time-stepping scheme. My implementation of the naive algorithm is therefore
asymptotically optimal, and hence, the comparison between the naive algorithm and the blocked
algorithm in Section 9.5 is valid. We define the naive algorithm as one that invokes a direct
linear solver in every iteration. In this section we prove that essentially any iterative algorithm
that satisfies the assumptions of the red-blue pebble game and invokes a direct solver in every
iteration must perform at least T (n �M) I/O’s in the course of T iterations. The proof is
similar to the proof of Theorem 7.1.

Direct solvers factor the matrix A into LU = A, where L is a lower triangular matrix and
U is an upper triangular matrix. If A is tridiagonal, then L and U are bidiagonal. The naive
method performs an implicit iterative scheme

Ax(t) = x(t�1) ;
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x(0)

y(1)

x(1)

y(2)

x(2)

1 2 3 4 5 6

Figure 9.5 A dag that represents two iterations in a one-dimensional implicit time-stepping scheme.
In every iteration the state vector x(t) is computed from the previous state vector using a direct linear
solver LUx(t) = x(t�1) using an intermediate vector y(t). The matrices L and U are lower and upper
bidiagonal, respectively. The shaded area represents the path C(1)

2 , defined in the proof of Theorem 9.6.

which is even simpler than Equation (9.1) by factoring A and performing two substitution
operations in every iteration:

1. Ly(t) = x(t�1), and

2. Ux(t) = y(t).

Figure 9.5 shows the dag associated with the naive algorithm when A is tridiagonal.
We now prove a lower bound on the number of I/O’s required by such algorithms the

assumptions of the red-blue pebble game. The red-blue pebble game is described in Chapter 7.

Theorem 9.6 Let D be the dag corresponding to a T -step iterative computation with an n-
node state vector x(t) in which the update operator is a direct LU solver. Furthermore, assume
that A�1 = U�1L�1 contains no zeros. Then any algorithm that satisfies the assumptions
of the red-blue pebble game requires at least T (n �M) I/O’s to simulate the dag D on a
computer with M words of primary memory.

Proof: The red-blue pebble game allows redundant computations, and therefore the statex(t)
i of

a vertex i after time step t may be computed more then once during the course of the execution
of the algorithm. LetTime (t)i be the first instant during the execution of the algorithm in which
x
(t)
i is computed. We denote by Time (t) the first instant in which the state of any vertex after

time step t is computed; which is to say

Time(t) = min
i2[1;:::;n]

fTime(t)i g :
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Since x(t+1) = A�1x(t) and since A�1 has no zeros, the state x(t+1)
i of each vertex i after

iteration t + 1 depends on the state of all vertices after iteration t. Therefore, we deduce
that Time (0) < Time(1) < � � � < Time(T ) and that algorithm must compute the state of all
vertices after iteration t between Time (t) and Time (t+1).

Since

y
(t)
i =

1

li;i
x
(t�1)
i �

i�1X
j=1

li;j
li;i
y
(t�1)
j

and

x
(t)
i =

1

ui;i
y
(t)
i �

nX
j=i+1

ui;j
ui;i

x
(t)
j ;

x
(t�1)
i is a direct predecessor of y(t)i in the dag, and y(t)i is a direct predecessor of x(t)i .

Let C(t)
i be the path x(0)i ! y

(1)
i ! x

(1)
i ! ���y(t)i ! x

(t)
i in the dag. In Figure 9.5, the

pathC(1)
2 is represented by a shaded area. If x(t)i is computed between two time points Time (t)

and Time (t+1), then we know that either a vertex in C (t)
i was in memory at Time(t) or one

I/O was performed between Time (t) and Time(t+1) in order to bring some vertex in C (t)
i into

primary memory.
The vertex setsC(t)

i andC(t)
j are disjoint for i 6= j. Since primary memory at timeTime (t)

can contain at most M vertices, one vertex from at least n �M chains C (t)
i must be brought

from secondary memory between Time (t) and Time(t+1). Summing over all iterations, we
conclude that the algorithm must perform at least T (n�M) I/O’s.

Theorem 9.6 applies to any iterative scheme of the form LUx(t) = xt�1 that uses substi-
tution to solve the two triangular systems, including implicit time stepping-schemes as well
as SSOR relaxation algorithms. Hong and Kung proved a slightly weaker bound for a dag
identical to the dag in Figure 9.5 [62] (they call it the snake-like graph), but they did not relate
this dag to an iterative invocation of a direct linear solver. By decomposing the problem into
decoupled problems of smaller size, our blocked out-of-core algorithm beats this lower bound
and outperforms any algorithm based on invoking a direct solver in every iteration.

9.8 Discussion

This chapter presented an efficient out-of-core algorithm for iterative, implicit time-stepping
schemes arising from the discretization of one-dimensional partial differential equations. We
have implemented the algorithm and measured its performance on a workstation. Our imple-
mentation performs about 2.3–3.1 times more work than the naive algorithm (for T = 25), but
requires much less I/O when the entire problem does not fit into primary memory, leading to
speedups of more than 5 over the naive algorithm. Our floating-point implementation proved
to be accurate and stable in numerical experiments, even on very large problems.

Our implementation relies on an automatic paging algorithm to perform I/O, rather than
perform the I/O explicitly. This design choice simplified the implementation and allows
the implementation to be used in situations where explicit I/O is not supported (e.g. cache
memories), while still providing excellent performance.
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Our algorithm can be modified to handle non constant matricesA andB, that is, a different
pair of matrices in every iteration. Apart from the I/O or computation necessary to generate
the matrices in every iteration, the asymptotic performance of the algorithm remains the same.
Such an algorithm makes sense mostly in cases in which generating the matrices does not
require much I/O. The algorithm can also be modified to handle a constant forcing term.
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Chapter 10

Efficient Out-of-Core Krylov-subspace
Methods

10.1 Introduction

This chapter uses the blocking covers technique to derive efficient out-of-core implementations
for a class of popular iterative methods, Krylov-subspace methods. This special case of the
blocking covers technique yields simple algorithms that outperform on workstations the naive
algorithms by more than a factor of 3. The implementation and performance of my algorithms
are described in Sections 10.5 and 10.6. My empirical studies, described in Section 10.4, show
that the method is numerically stable.

Krylov-subspace methods are a class of iterative numerical methods for solving linear equa-
tions. Given an n-by-n matrix A and an n-vector b, Krylov-subspace methods compute a se-
quence of approximationsfx(t)g to the solutionx of the linear system of equationsAx = b, such
that x(t) 2 spanfb;Ab;A2b; : : : ;Atbg. The subspace Kt(A;b) = spanfb;Ab;A2b; : : : ;Atbg
is called a Krylov subspace. Krylov-subspace methods exist for eigenproblems as well. For
recent surveys of Krylov-subspace methods, see [11, 48].

Most Krylov-subspace methods involve several types of operations in every iteration,
namely multiplication of a vector by the matrix A, vector operations (additions and multipli-
cation by scalars), and inner products. The iteration may also include preconditioning, which
consists of solving a linear system of equations Mz = r. This chapter does not consider
preconditioned Krylov-subspace methods. Almost all Krylov-subspace methods maintain a
number of n-vectors in addition to x(t). Many reuse the space used to store these vectors, so
the space required is only a small multiple of n words.

Computing inner products in every iteration cause Krylov-subspace algorithms to satisfy
the hypothesis of Theorem 7.1. In the most popular Krylov-subspace method, conjugate
gradient, two inner products are computed in every iteration, and their location in the iteration
necessitates reading the data twice in every iteration into primary memory. Several papers
[10, 85, 100] propose algorithms that reorganize the conjugate gradient algorithm so that the
data can be read into primary memory only once in every iteration. But since both the original
and the modified conjugate gradient algorithm satisfy the hypothesis of Theorem 7.1, they
require 
(n) I/O’s per iteration when n > 2M , where M is the size of primary memory. The
matrix-vector multiplication step may require additional I/O’s.
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Chronopoulos and Gear [31] proposed the first multistep Krylov-subspace algorithms,
which works in phases, each of which is mathematically equivalent to � conjugate gradient
iterations. In their method, called the s-step method (we use � instead of s to denote the number
of iterations in a phase), the 2� inner products required for a phase are computed together at
the beginning of the phase. Unfortunately, their method maintains two matrices of size n-by-�
which must be updated in every phase. Therefore, if these matrices do not fit into primary
memory, the s-step method requires 
(�n) I/O’s per phase, which is asymptotically the same
amount of I/O required by single-step methods. Their method has several further drawbacks.
First, their algorithms perform asymptotically more work per iteration than single-step algo-
rithms. For example, their � -step conjugate-gradient algorithm requires � + 1 multiplications
by A and �(� 2n + � 3) work, compared to � multiplications by A and �(�n) work required
by the single-step algorithm. Second, their algorithms may suffer from numeric instabilities
since the basis for the Krylov-subspace they compute is [b;Ab;A2b; : : : ;A� b]. In floating point,
this basis is not stable since as � grows, the vectorA� b tends to an eigenvector associated with
the largest eigenvalue of A. This instability further limits the value of � that can be used in
the method. In particular, Chronopoulos and Gear use � = 5. Finally, the derivation of their
algorithms follows the derivations of the corresponding single-step algorithms, and is therefore
quite involved, which is a disadvantage given the growing number of modern Krylov-subspace
methods.

We propose a new method for deriving multistep Krylov-subspace algorithms that are
simpler and more efficient, both in terms of I/O and in terms of work. We also present a way to
stabilize the method, at the expense of performing more work. Our method produces algorithms
which are more efficient than the ones proposed by Chronopoulos and Gear. For example,
our conjugate gradient algorithm requires reading the data once, 4� multiplications by A, and
�(�n+� 2 log�)work, per each � iterations. Since in our method the work per iteration is almost
independent of � (when n is much larger than � ), its performance improves monotonically with
� . Our method is based on a simple basis change in the algorithm. Consequently, the
method is easy to apply to virtually any single-step Krylov-subspace method. For Krylov-
subspace algorithms with long recurrences, such as GMRES(� ), our method provides the first
implementation that requires less than �n words of storage.

Out-of-core Krylov subspace methods require that the matrix-vector subroutines used have
special properties, which are described in Section 10.2. Section 10.3 describes our multistep
Krylov-subspace methods, and illustrates them by describing in detail our out-of-core conjugate
gradient algorithm. The numerical stability problem raised by the algorithm, along with a
remedy, are studied in Section 10.4. Sections 10.5 and 10.6 describe our implementation of
out-of-core conjugate gradient algorithms and their performance. We conclude this chapter
with a discussion of our method in Section 10.7.

10.2 Matrix Representations for Krylov-subspace Methods

This section specifies the characteristics of matrix-vector multiplication mechanisms required
by out-of-core Krylov-subspace methods. All Krylov-subspace algorithms require a mechanism
for multiplying a vector by the matrix A, which is used to construct a basis for the Krylov
subspace. Out-of-core Krylov-subspace algorithms require that the mechanism for multiplying
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a vector by A has certain special characteristics.
In particular, we need to multiply a section of a vector by A repeatedly, so we start with

two definitions that describe partitions of vectors into sections.

Definition A k-partition of f1;2; : : : ;ng is a sequence of index sets hP1;P2; : : : ;Pki such that

Pj � f1;2; : : : ;ng ;
k[

j=0

Pj = f1;2; : : : ;ng ;

and

Pi \ Pj = ; for i 6= j :

Definition Ak-cover off1;2; : : : ;ng is a sequence of index sets hP1;P2; : : : ;Pki and a sequence
hC1;C2; : : : ;Cki such that

Pj � Cj � f1;2; : : : ;ng ;
k[

j=0

Pj =
k[

j=0

Cj = f1;2; : : : ;ng ;

and

Pi \ Pj = ; for i 6= j :

We now turn to the specific characteristics of the matrix-vector multiplication mechanism.
We start with a simple mechanism which is powerful enough for many out-of-core algorithms,
and then move to a more sophisticated mechanism.

Definition A (�;M)-partitioned linear relaxation algorithm for an n-by-n matrix A is a
software moduleA that provides the following two services on a computer with O(M) words
of primary memory. Service 1 must be called before Service 2.

1. Given two integers n and � , A computes a k-partition of f1;2; : : : ;ng.
2. Given an n-vector x in secondary memory, A can be called k(� + 1) times, re-

turning in primary memory the sequence fxPi
;(Ax)Pi

;(A2x)Pi
; : : : ;(A�x)Pi

g for any
i 2 f1; : : : ;kg.

We denote the total amounts of work and I/O’s required by the algorithm by work(A;n;�) and
io(A;n;�), respectively.

For example, Chapter 8 presents a (�;M)-partitioned linear relaxation algorithm for ma-
trices whose underlying graph is a two-dimensional multigrid graph, using �(n) I/O’s and
�(�n) work, for � = 
(M1=5).

Many partitioned matrix-vector multiplication algorithms have the additional feature that if,
together with the parametersn and � , they are also given a family of polynomials�0;�1; : : : ;�� ,
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where�t is a degree-t polynomial, then they return f(�0(A)x)Pi
;(�1(A)x)Pi

; : : : ;(�� (A)x)Pi
g

instead of x multiplied by powers of A. In some cases the polynomials are not known in
advance, however, and in such cases we need a more flexible mechanism, which the next
definition describes.

Definition A (�;M)-covered linear relaxation algorithm for an n-by-nmatrixA is a software
moduleA that provides the following two services on a computer withO(M) words of primary
memory. Service 1 must be called before Service 2.

1. Given two integers n and � , A computes a k-cover hP1;P2; : : : ;Pki, hC1;C2; : : : ;Cki,
of f1;2; : : : ;ng such that maxki=0 jCij �M=(� + 1).

2. Given a vector section x(0)Ci
in primary memory,A can be called up to � times. For the tth

call, A is given a degree-t polynomial �t, and a block of memory of size maxki=0 jCij.
The tth call then returns in that block (�t(A)x)Pi

. Following the last call, the blocks can
be reclaimed.

We denote the amounts of work required by the algorithm by work(A;n;�), and define
io(A;n;�) = Pk

i=1 jCij.
The blocks of primary memory are necessary for the algorithm to store previous iterates.

The polynomial �t(A) can be given by its coefficients, or better yet, as a linear combination
of �1(A); : : : ;�t�1(A) and A�t�1(A). For example, Hong and Kung [62] analyze (�;M)-
covered matrix-vector multiplication algorithms for matrices whose underlying graphs are
two-dimensional meshes, using �(n) I/O’s and �(�n) work, for � = 
(M1=2). A graph
theoretic construction known as a � -neighborhood-cover [6] can be used to construct covered
matrix-vector multiplication algorithms.

10.3 Change of Basis in Krylov-subspace Methods

This section describes our multistep Krylov-subspace algorithms. Applying a simple linear
transformation to Krylov-subspace algorithms enables us to beat the lower bound of Theo-
rem 7.1 that normally applies to these algorithms. We describe in detail one algorithm, a
multistep conjugate gradient algorithm, which is an algorithm for finding an exact, or more typ-
ically an approximate, solution to a linear system of equations Ax = b, where A is symmetric
positive definite. Other algorithms can be derived using the same basis transformation.

The pseudocode below describes the conjugate gradient algorithm, which is due to Hestenes
and Stiefel [58]. The loop structure has been modified slightly from the original algorithm to
make the first iteration of the algorithm identical to the rest. The algorithm is called with an
initial guess x, the initial residual r = b�Ax, and an initial search direction p = r. Invoking
the algorithm once with � = T is equivalent to invoking the algorithm k times, each time using
� = T=k and the last values of x, r, p, and rTr computed (except in the first invocation where
the initial values are described above). All vectors in our codes are passed by reference.
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ConjugateGradient(A;x;r;p;rTr;�)
1 for t 1 to �
2 do Compute and store Ap
3 Compute pTAp
4 � rTr=pTAp
5 x x+ �p
6 � rTr
7 r r � �Ap
8 Compute rTr
9 �  rTr=�

10 p r + �p

In the following pseudocode due to [10, 85, 100], the inner products have been brought closer
together, to enable efficient out-of-core implementations. To overcome numerical stability
problems, this implementation of the conjugate-gradient algorithm maintains a fourth vector,
denoted by Ap, and computes an additional inner product in every iteration. This algorithm
computes an additional inner product for numerical stability reasons, and it maintains a fourth
vector Ap. A slightly different variant can be found in [31]. To begin, the algorithm is called
with an initial guess x and with p = r = b�Ax.

ClusteredDotProdsCG(A;x;r;p;Ap;pTAp;(Ap)T(Ap); rTr;�)
1 for t 1 to �
2 do � rTr=pTAp

3 �  
�
�2(Ap)T(Ap)� rTr

�
=rTr

4 x x + �p
5 r r � �Ap
6 p r + �p
7 Compute and store Ap
8 Compute pTAp, (Ap)T(Ap), rTr

The following theorem states the performance of the CLUSTEREDDOTPRODSCG algorithm.
In practice, x, r, and Ap are loaded and stored exactly once per iteration, and p is stored once
and loaded once in a way that allow it to be multiplied by A (which usually means that more
than n I/O’s are needed). The number of vector operations, both inner products and vector
updates, is 6.

Theorem 10.1 Given a (1;M)-partitioned matrix-vector multiplication algorithm A for an
n-by-n matrix A, a computer with O(M) words of primary memory can perform T iterations
of algorithm CLUSTEREDDOTPRODSCG using

�(Tn) + T � work(A;n;1)
work and

7Tn+ T � io(A;n;1)
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I/O’s.

Unfortunately, the amount of I/O required per iteration of the CLUSTEREDDOTPRODSCG
cannot be asymptotically reduced using scheduling techniques, even ifA is the identity matrix.
From Theorem 7.1 it follows that as long as the algorithm maintains a state vector of size n,
and that every element of the state vector depends directly on the same element in the previous
iteration and on all the elements in the previous iteration through a summation, the number of
I/O’s per iteration is at least n�M .

Using a more powerful technique, we do improve the asymptotic performance of CONJU-
GATEGRADIENT. In particular, we perform a linear transformation on the algorithm. Let us
denote the initial values of x, r, and p passed to the algorithm by x0, r0, and p0. One can prove
by induction that during the algorithm,

x 2 x0 + spanfr0;p0;Ar0;Ap0; : : : ;A�r0;A
�p0g ;

r 2 spanfr0;p0;Ar0;Ap0; : : : ;A�r0;A
�p0g ;

p 2 spanfr0;p0;Ar0;Ap0; : : : ;A�r0;A
�p0g :

We therefore make a basis change in the algorithm and represent r, p, and the change in x in
the Krylov basis B = [r0;p0;Ar0;Ap0; : : : ;A

�r0;A
�p0]. In particular, rather than compute

on x, r, and p, we perform equivalent computations on the vectors wx, wr, and wp, such that
x = x0 + Bwx, r = Bwr, and p = Bwp. In the new basis, multiplication by scalars and
addition of vectors remain unchanged. For two vectors y, z in the standard basis, the inner
product yTz is computed using the identity yTz = wT

yB
TBwz. Multiplication of a vector by a

A is replaced by shifting the vector down by two places and filling the two uppermost positions
with zeros. In other words, the representation of A in the basis B is

0
BBBBBBBBB@

0
0 0
1 0 0
0 1 0 0

. . . . . .
0 1 0 0

1
CCCCCCCCCA

It follows that if we precompute the (2� + 2)-by-(2� + 2) matrix BTB, which we denote by
Q, we can perform the conjugate gradient in the Krylov basis.

118



KrlovBasisConjugateGradient (A;x;r;p;rTr)
1 Compute Q = BTB, where B = [r;p;Ar;Ap; : : : ;A�r;A�p]
2 wr  [1;0;0;0; : : : ;0;0]T

3 wp  [0;1;0;0; : : : ;0;0]T

4 wx  [0;0;0;0; : : : ;0;0]T

5 for t 1 to �
6 do wAp shift-down-by-2(wp)
7 pTAp wT

pQwAp

8 � rTr=pTAp
9 wx  wx + �wp

10 wr  wr � �wAp

11 rTr  wT
r Qwr

12 �  rTr=(r(t))Tr(t)

13 wp  wr + �wp

14 r Bwr

15 p Bwp

16 x x+Bwx

The following theorem describes the characteristics of a simple implementation of the
algorithm.

Theorem 10.2 Given a (�;M)-partitioned matrix-vector multiplication algorithm A for an
n-by-n matrix A, a computer with O(M) words of primary memory, where M = 
(�), can
perform T iterations of algorithm KRYLOVBASISCONJUGATEGRADIENT using

�(Tn+ T� log�) + (2T=�)(work(A;n;2�) + work(A;n;�))
work and

(6T=�)n+ (2T=�)(io(A;n;2�) + io(A;n;�))
I/O’s.

Proof: The correctness of the algorithm follows from the discussion above. The bounds in the
theorem are achieved by calling the algorithm T=� times. The main difficulty in the algorithm
is the implementation of line 1 and lines 14–16.

To computeQ, we invoke the partitioned matrix-vector multiplication algorithm on each of
the k sets in the partition. For each set Pi, we first generate f(Ar)Pi

;(A2r)Pi
; : : : ;(A2�r)Pi

g
and f(Ap)Pi

;(A2p)Pi
; : : : ;(A2�p)Pi

g. For m = 0; : : : ;2� , we multiply rTPi
by (Amr)Pi

and
by (Amp)Pi

, as well as pTPi
by (Amp)Pi

. Once we have done so for each set in the partition,
we sum up the partial sums to form rTAmr, rTAmp, and pTAmp, for m = 0; : : : ;2� . The
symmetric matrix Q is then formed using the identity

Qi;j =

8>>><
>>>:

rTAk+l�2r i = 2k;j = 2l
rTAk+l�2p i = 2k;j = 2l + 1
pTAk+l�2r = rTAk+l�2p i = 2k + 1; j = 2l
pTAk+l�2p i = 2k + 1; j = 2l + 1 :
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Therefore, computing Q requires �(�n) work for computing the 3(2� + 2) inner products of
size n, in addition to 2 � work(A;n;2�) work, and 2 � io(A;n;2�) I/O’s.

Lines 14, 15, and 16 are performed in a similar manner by calling the matrix multiplication
algorithm on each set in the partition, to compute

rPi
 [rPi

;pPi
;(Ar)Pi

;(Ap)Pi
; : : : ;(A�r)Pi

;(A�p)Pi
]wr :

The sections xPi
and pPi

are computed in the same way. The amount of work required for each
of the three lines is �(�n) to update the vectors x, r, and p, and 2work(A;n;�) for recreating
B. The amount of I/O required is 2io(A;n;�) for creatingB, and 3n for saving the final values
of x, r, and p.

A final detail involves the multiplication of Q by wAp in line 7 and by wr in line 11. A
general dense matrix-vector multiplication algorithm costs O(� 2) work per invocation, since
Q is (2� + 2)-by-(2� + 2). The cost can be reduced by using the Fast Fourier Transform
algorithm. The matrix B can be decomposed into two matricesBeven and Bodd containing the
even and odd columns of B, respectively (that is , “p” columns and “r” columns). We denote
wy = wy;even + wy;odd, so that y = Bwy = Bevenwy;even +Boddwy;odd. Therefore

zTy = wT
z;evenB

T
evenBevenwy;even

+wT
z;oddB

T
oddBevenwy;even

+wT
z;evenB

T
evenBoddwy;odd

+wT
z;oddB

T
oddBoddwy;odd :

Since A is symmetric, the three matrices BT
evenBeven, BT

evenBodd, and BT
oddBodd represent

convolutions, and therefore multiplying any of them by a vector can be done in �(� log�) time
using the FFT algorithm (see [32] for details). Using this technique, it is never necessary to
represent Q as a dense matrix.

All the primary memory the algorithm needs is �(�) memory to store a compact repre-
sentation of Q as three (2� + 2)-vectors, and the space to store a section of the vectors x, r,
and p, which is guaranteed to exist since the partitioned matrix-vector multiplication algorithm
returns its output in primary memory.
In practice a naive �(� 2) matrix-vector multiplication algorithm may be a good choice for
lines 7 and 11.

Two small and independent changes in the implementation details can significantly improve
the performance of the algorithm. The first is a modification to the construction of Q.

Theorem 10.3 Given a (�;M=�)-partitioned matrix-vector multiplication algorithmA for an
n-by-n matrix A, a computer with O(M) words of primary memory, such that M = 
(�2)
can perform T iterations of algorithm KRYLOVBASISCONJUGATEGRADIENT using at most

O(Tn+ T� log �) + (2T=�)(work(A;n;�) + work(A;n;�))
work and

(6T=�)n+ (2T=�)(io(A;n;�) + io(A;n;�))
I/O’s.
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Proof: Although the proof of Theorem 10.2 calls for using the partitioned-matrixmultiplication
algorithm to multiply two vectors byA 2� times, it is possible to multiply the two vectors r and
p by A only � times. Instead of multiplying say rT by Amr for m = 0; : : : ;2� , we multiply
both rT by Amr for m = 0; : : : ; � , and (A�r)T by Amr for m = 1; : : : ; � . This approach
requires, however, that we store all the iterates rPi

;pPi
;(Ar)Pi

;(Ap)Pi
; : : : ;(A�r)Pi

;(A�p)Pi

in primary memory.
A second change reduces the amount of I/O required by reducing the number of calls to

the matrix-multiplication algorithm, at the expense of multiplying by A more times in each
invocation.

Theorem 10.4 Given a (�;M)-covered matrix-vector multiplication algorithm A for an n-
by-n matrix A, a computer with O(M) words of primary memory, such that M = 
(�) can
perform T iterations of algorithm KRYLOVBASISCONJUGATEGRADIENT using at most

O(Tn+ T� log �) + (2T=�)work(A;n;3�)

work and

(6T=�)n+ (2T=�)io(A;n;3�))

I/O’s.

Proof: When the algorithm is used to perform T > � iterations of conjugate gradient, it is
called repeatedly, so that line 1 of one call is executed immediately after lines 14, 15, and 16 of
the previous call. Both iterate over the sets in the partition generated by A, and therefore it is
possible to fuse the two loops so that the matrix multiplication algorithm is called only once on
each set. Each call to the matrix multiplication algorithm multiplies by A 3� times: the first �
to generate the sections of r, p, and x (corresponding to lines 14–16) and the last 2� to construct
Q for the next iteration. This modification requires that the matrix-multiplication algorithm be
able to use linear combinations of previous iterates to generate the next one. In other words, we
need a covered matrix-multiplication algorithm, or at least a partitioned algorithm that allows
us to use polynomials in A rather than powers of A, where the polynomials are known in
advance.

These two modification to the algorithm can be combined, yielding the following theorem.

Theorem 10.5 Given a (�;M=�)-covered matrix-vector multiplication algorithm for an n-by-
n matrix A, A computer with O(M) words of primary memory, such that M = 
(�2) can
perform T iterations of algorithm KRYLOVBASISCONJUGATEGRADIENT using at most

O(Tn+ T� log �) + (2T=�)work(A;n;2�)

work and

(6T=�)n+ (2T=�)io(A;n;2�)

I/O’s.
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10.4 Numerical Stability

The KRYLOVBASISCONJUGATEGRADIENT algorithm, like Chronopoulos and Gear’s algorithms,
suffers from numerical instabilities when � is large. The reason for the instability is that as �
grows, the vectorA�x tends to an eigenvector ofA associated with its largest eigenvalue, which
causes both B and Q to be ill-conditioned. This section shows that this source of instability
does not pose a significant problem when � is small, and it proposes a technique to stabilize
the algorithm.

Figures 10.1 and 10.2 show the relative distances between the 2-norms of the residuals
r = b�Ax in the CONJUGATEGRADIENT and KRYLOVBASISCONJUGATEGRADIENT algorithms.
The distances are relative to the norm of the residual in CONJUGATEGRADIENT. The experiments
used values of � between 5 and 20 (except the last phase which may be shorter), with matrices
A which represent a one- or two-dimensional Poisson problem and random right-hand sides
b. The figures show that the error in the residual of the KRYLOVBASISCONJUGATEGRADIENT

algorithm grows exponentially as a function of the phase length � . The error is quite small
however up to about � = 9. This behavior persists until about � = 10 or 11. Beyond that
point, the output KRYLOVBASISCONJUGATEGRADIENT algorithm behaves erratically. The error
is not strongly influenced by the order of the matrix.

The value � = 5 used by Chronopoulos and Gear therefore seems quite conservative, and
values up to � = 9 are certainly usable for some problems. Figure 10.3 compares the 2-norms
of the residual in the conventional conjugate gradient and the residual in the Krylov-basis
conjugate gradient with � = 9 for a large number of iterations, on a one-dimensional Poisson
problem of size 128. The results agree well up to the last few iterations, which indicates that
the Krylov-basis method is stable. When the residual gets very small towards the end of the
iterative process, however, it might be advisable to switch to a smaller value of � or to the
conventional conjugate-gradient algorithm.

In fact, the algorithm can be stabilized while using very high values of � up to � = O(
p
M).

The idea is to replace B in KRYLOVBASISCONJUGATEGRADIENT with a more stable basis
spanning the same Krylov subspace. We use

B = [�0(A)r0; 0(A)p0;�1(A)r0; 1(A)p0; : : : ;�� (A)r0; � (A)p0] ;

where f�tg�t=0 and f tg�t=0 are families of polynomials, such that �t and  t are degree t
polynomials.

In theory, such a method is susceptible to a breakdown, although We have not experienced
any breakdowns during our numerical experiments. A polynomial �t (or  t) with a root
coinciding with an eigenvalue of A causes a problem if r0 (or p0) is an eigenvector associated
with that eigenvalue, since in that case B has some zero columns and it does not span the
Krylov subspace.

Before we suggest how to chose the polynomials f�tg�t=0 and f tg�t=0, we discuss the
impact on the implementation and performance of the algorithm. In particular, the construction
ofB andQ = BTB must be modified (i.e., the details of Line 1 in the pseudocode). The cost of
computingB depends on how the polynomial families are specified. Defining the polynomials
in terms of their coefficients does not help stabilize the algorithm, because thenA�r0 andA�p0
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Figure 10.1 The distance, after 64 iterations, between the norms of the residuals in the conventional and
the Krylov-basis conjugate-gradient algorithms, relative to the norm of the residual in the conventional
algorithm. The graphs show the average distance (left) and the maximum distance (right) in groups of
100 experiments, with a one-dimensional Poisson matrix of several orders (represented by different line
styles) and random right-hand sides.

must be computed. We therefore assume that the polynomials are given using a recurrence

�t(A) = �t;�1A�i(A) +
t�1X
i=0

�t;i�i(A) ;

where the �t;i’s are given. Computing B is straightforward using a covered matrix-vector
multiplication algorithm using the recurrences on the columns ofB. The computation requires
�(� 2n) work. If the recurrences are short, which means that all but a constant number of the
�t;i’s are nonzero for each t, the work required for computing B is only �(�n) (two nonzero
terms is a common case in families of orthogonal polynomials). The same amount of work,
�(�n), is required for computing B in the case of coupled short recurrences such as

�t = �tA�t�1 + �t t�1 ;

which is the form found in the conventional conjugate gradient algorithm. Computing Q by
multiplyingBT by B requires �(� 2n) work. In Section 10.3 we reduced this cost for the case
�i(A) =  i(A) = Ai using the facts that AT = A and that �i�j is a function of i + j.

One particular choice of polynomials that stabilize the algorithm well in numerical ex-
periments is a family of polynomials in which the sections of �0(A)r0;�1(A)r0; : : : ;�� (A)r0
corresponding to the set P1 in the cover are orthogonal. To compute the polynomials, we load
the section of r0 corresponding to C1 into primary memory. We then repeatedly multiply the
last iterate by A and orthogonalize it with respect to all the previous iterates. The coefficients
�i;j for i = 2; : : : ; � and j = �1;0;1; : : : ; i � 1 are saved and later used on all the other sets
in the cover. In numerical experiments on one-dimensional Poisson problems with random
right-hand sides, stability was excellent for all values of � up to the size of P1, which can be
as large as (1=2)

p
M . This result is not surprising, since an orthogonal submatrix consisting

of jP1j rows of a matrix and all its columns ensures that the columns of the original matrix are
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Figure 10.2 Relative distances between the norms of the residuals in the conventional and krylov-basis
conjugate-gradient algorithms. The experiments reported in the graphs are identical to those reported
in Figure 10.1, except that the matrix is a two-dimensional Poisson matrix.

independent. In our case, the even columns of B are independent and the odd columns of B
are independent. Excluding the matrix-vector multiplications, the work required to compute
bothB andQ using this scheme is �(� 2n), which is a factor of � more than the work required
by the conventional conjugate gradient algorithm. The amount of work can be reduced if we
orthogonalize only once every m iterations.

10.5 Implementation

We have implemented the out-of-core conjugate gradient algorithms described in this section.
The implementation was designed and coded by the Tzu-Yi Chen and the author. This section
describes the implementations, and the next section shows that the performance of the Krylov-
basis algorithm outperforms conventional conjugate gradient algorithms when executed out-
of-core.

We have prototyped all the algorithms in MATLAB [108], an interpreted, interactive envi-
ronment for numerical computations. The prototypes served to check the correctness of the
algorithms (we have found one bug in a published algorithm), to study their numerical proper-
ties, and to verify that subsequent implementations are correct. A similar strategy was used in
the implementation described in Chapter 9.

The algorithms were then implemented in C, so that their performance could be assessed.
The main design objectives of the C implementation were high performance, and modular-
ity. Our modular design separates the matrix-vector multiplication code from the out-of-core
Krylov-subspace algorithm.

We have implemented several algorithms: the conventional conjugate gradient, the clustered
single-step conjugate gradient, and several versions of the Krylov-basis conjugate gradient
algorithm, including all the versions described in Section 10.3. We have also implemented a
covered matrix-vector multiplication algorithm for tridiagonal matrices. The implementation
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Figure 10.3 Convergence of conventional conjugate gradient (sold line) and the Krylov-basis conjugate
gradient with � = 9 (crosses) on a one-dimensional Poisson problem of size 128. The 2-norm of the
residuals is plotted in a linear scale on the left , and in a logarithmic scale on the right. The results agree
well up to the last few iterations.

relies on the automatic paging system to perform the I/O. As we shall see in the next section,
the scheme works well, it is simpler than using explicit I/O system calls, it eliminates copying
to and from I/O buffers, and it allows the code to work with hierarchical memory systems in
which no explicit I/O is possible, such as caches. The disadvantage of this scheme is that
the algorithm blocks when I/O is needed, whereas using asynchronous I/O system calls would
enable the implementation to overlap computation and I/O.

10.6 Performance

Table 10.1 shows that, On a workstation, our Krylov-basis algorithm with � = 9 outper-
forms the original conjugate-gradient algorithm by up to a factor of 3.5, when data structures
do not fit within main memory. Our algorithm outperforms the CLUSTEREDDOTPRODSCG
algorithm by a factor of up to 3. When the data fits within main memory, our algorithm is
about 2.6 times slower than the other two, because it performs more work. But by performing
more work and less I/O, our algorithm is faster on large problems. The Krylov-basis algorithm
is significantly faster then the other implementations even with � = 5.

The experiments were performed on a Sun SPARCstation 1+ workstation with a Sun 4/60
CPU, 8Mbytes of main memory, and a local disk for paging. The programs were compiled by
the GNU C compiler with a –02 optimization option. On this machine, computing an inner
product of two double-precisionn-vectors in core on this machine takes about 2:2n�s, whereas
computing the inner product out of core takes about 61:1n�s, reflecting an average bandwidth
of about 15ms per 4Kbytes page.
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CONJUGATEGRADIENT CLUSTEREDDOTPRODSCG KRYLOVBASISCG
n � = 5 � = 9 � = 15

10K 23.2 22.8 60.7 58.9 58.7
50K 22.8 23.0 59.2 56.6 56.1

100K 25.9 197.5 77.1 67.0 61.0
250K 154.1 214.3 86.5 70.4 63.2
500K 245.8 211.4 85.6 70.3 62.8

Table 10.1 The running times of the three implementations of the conjugate-gradient algorithm de-
scribed in this chapter. The table shows the running time per element per iteration in microseconds on
a Sun SPARCstation 1+ workstation. The numbers represent averages of three runs, each consisting
of 10 phases of � iterations. The running time per iteration of CONJUGATEGRADIENT and CLUSTERED-
DOTPRODSCG is independent of � , and experiments used � = 5. The matrixA is an n-by-n tridiagonal
matrix which was partitioned into sets of at most 2000 elements. The Krylov-basis algorithm used 4�

matrix-vector multiplication per phase.

10.7 Discussion

We have described the theory, implementation, and performance of new multistep, out-of-
core Krylov-subspace methods. Our algorithms are based on explicit construction of a basis
B of the Krylov subspace, on discarding and recomputing the same basis to save I/O’s,
and on transforming the algorithm into the Krylov subspace. The algorithms proposed by
Chronopoulos and Gear, in comparison, do not discard and recompute the basis, so they
perform more I/O’s, and they do not completely transform the algorithm into the Krylov basis.
As a consequence, their algorithms are less efficient than ours, and they are more difficult to
derive. But they have the advantage that they multiply vectors by A much less. Finding a way
to do the same in our framework could lead to significant speedups of our algorithms.

One technique that should increase the stable range of � is to computeB in higher precision.
The convergence rate of A�x to an eigenvector of A is linear, and so, roughly speaking, we
lose a constant number of accurate bits in every iteration. Doubling the number of bits in
the significand of the floating-point numbers used to represent A�x should enable us to more
than double � while retaining the same number of accurate bits. Since we never store B to
secondary memory, but rather recompute it, there is no need to do any I/O in higher precision.
To summarize, we should be able to trade an increase by about a factor of 2 in work per iteration
in exchange for a similar decrease in I/O.

The local densification technique, described in Chapter 7, can also be used to improve
the locality in out-of-core Krylov subspace methods. The local densification is implemented
via polynomial preconditioning. The idea is to use a preconditioning step in every iteration,
in which the residual r is multiplied by a given polynomial in A. Since the polynomial is
known, preconditioning can be performed by a covered matrix-vector multiplication algorithm
for A. In many cases preconditioning reduces the number of iterations, and since the amount
of I/O is about the same as that of a single-step algorithm, the total number of I/O’s decreases.
The amount of work however often stays the same or increases, because the total number of
matrix-vector multiplications often grows.

Several families of polynomials have been proposed for preconditioning. One traditional
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choice has been Chebychev polynomials. Constructing them requires good approximations
to the extreme eigenvalues of A, but even exact eigenvalues can result in a dramatic increase
in the amount of work required. The effect is problem dependent. Fischer and Freund [45]
propose a different family of polynomials, whose construction requires additional spectral
information, but they show how to gather in the information during the execution of the
conjugate gradient algorithm. With polynomials of degree 10-15, they report that number of
matrix multiplications remains about the same as the nonpreconditioned algorithm. They have
not measured the performance of their algorithm.

One disadvantage of polynomial preconditioning,compared to our Krylov-basis algorithms,
is that the effect on convergence is problem dependent and may lead to poor performance,
whereas in our method there is no effect on convergence.

127



128



Chapter 11

Preconditioning with a Decoupled
Rowwise Ordering on the CM-5

11.1 Introduction

This chapter describes the implementation and performance of a preconditioned conjugate
gradient solver for discretized Poisson problems in 2 dimensions, which I have implemented
on the Connection Machine CM-5 parallel supercomputer [110]. The preconditioner is an
SSOR preconditioner with a novel ordering scheme for the variables, which I call decoupled
rowwise ordering.

The solver is efficient. The implementation of a major component in the solver, the matrix-
vector multiplication subroutine, is twice as fast as a naive implementation in CM Fortran, and
one and a half times as fast as the implementation in the CM Scientific Subroutine Library.
Preconditioning with the decoupled rowwise ordering reduces the solution time of important
problems by a factor of 1.5 to 2.5, compared with no preconditioning and with red-black
preconditioning. The software, which is described in Sections 11.3 and 11.4, is used in an
ocean model being developed by John Marshall and his colleagues at the department of Earth,
Atmospheric and Planetary Sciences at MIT.

Decoupled rowwise ordering, which is illustrated in Figure 11.1 and described in detail
in Section 11.2, is tailored for block layouts of rectangular grids where every processor in a
parallel computer is assigned one rectangular subgrid. The grid points on the boundary of
every block are ordered using a red-black coloring to decouple the blocks, and interior grid
points in every block are ordered row by row. This ordering scheme admits an efficient parallel
implementation of the preconditioner on the CM-5 and other distributed memory parallel
computers. The preconditioner runs in the same amount of time per iteration as the more
conventional red-black preconditioner, but on many important problems it reduces the number
of iterations more than the red-black preconditioner.

Decoupled rowwise ordering locally densifies the dependencies in the red-black ordering
to accelerate convergence. The local densification technique, described in Chapter 7, is used
here to increase the utilization of data paths within individual processors without increasing

1A preliminary version of this chapter was presented in the 7th SIAM Conference on Parallel Processing for
Scientific Computing, San Francisco, California, February 1995.
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Figure 11.1 Orderings for an 8-by-8 grid. The rowwise ordering is depicted on the left, a red-black
ordering in the center, and a decoupled rowwise with four blocks marked A,B, C , andD, on the right.
The red points, which are lightly shaded in the figure, are ordered before the black points which are
ordered before all the interior points. The interior points in each block, are ordered in rowwise order.

the load on interprocessor communication channels.

11.2 Ordering Schemes for Parallel Preconditioners

Several popular preconditioners require the solution of two sparse triangular systems, usu-
ally by substitution. Such preconditioners include Symmetric Successive Over Relaxation
(SSOR) [120], Incomplete Cholesky preconditioners [84], and Modified Incomplete Cholesky
preconditioners [56]. We focus on preconditioning linear systems of equationsAx = b, where
A is derived from a 5-point stencil in two dimensions using a preconditioner of the form
M = ~L ~D ~LT, where ~L is a sparse lower triangular matrix, whose sparsity pattern is identical
to the sparsity pattern in the lower triangular part of A, and where ~D is a diagonal matrix.
That is, no fill-in is allowed in incomplete factorizations. Most of our experiments use SSOR
preconditioning in which

M =
1

2� !
�
1

!
D + L

��
1

!
D
�
�1� 1

!
D + L

�T
;

where D and L are the diagonal and strictly lower triangular parts of A. We determine the
optimal acceleration parameter ! experimentally. We also compare SSOR preconditioning
with preconditioning based on Incomplete and Modified Incomplete Cholesky factorizations.

The ordering of the variables in the domain affects both the convergence rate of the precondi-
tioned problem and the implementation of the sparse triangular solvers. Duff and Meurant [40]
show that the ordering of variables in incomplete Cholesky factorizations influences the spec-
trum of the preconditioned matrix and hence the convergence rate of iterative solvers. The
ordering also influences the implementation of the sparse triangular solvers. When the sparsity
pattern of the triangular factor L is identical to that of the 5-point stencil equations, the vari-
able that represents point i in the domain depends on the solution of the triangular system at
neighboring points that come before i in the ordering, or on neighbors that come after i in the
substitution for LT.
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Discretizing a partial differential equation on a regular rectangular grid allows the solver
to use a simple data structure to represent the solution. A d-dimensional rectangular mesh is
mapped to a d-dimensional array of floating-point numbers in the natural way.

The most popular ordering scheme on sequential computers is the rowwise, or natural,
ordering. In this ordering scheme the variables are ordered row-by-row, from left to right. The
triangular solver for the rowwise ordering contains a significant amount of parallelism — one
can solve a system on an n-by-n grid using n processors in 2n parallel steps, by proceeding
along so-called “wavefronts” [118]. On the CM-5 and similar machines, however, it is hard to
exploit this parallelism. In order to balance the computational load, a triangular solver for the
rowwise ordering requires a data layout with a long and thin block on every processor, with
the Fortran array rotated 45 degrees with respect to the physical domain. Long and thin blocks
result in inefficient communication in the rest of the finite-differences computation.

Red-black ordering has been proposed as a way of increasing the parallelism in the trian-
gular solver. The variables in the domain are colored red and black in a checkerboard pattern,
so that neighboring points always have different colors. All the red points come before all the
black points. The resulting triangular solver has a tremendous amount of parallelism — the
system can be solved in 2 parallel steps using n2=2 processors. The implementation in data
parallel Fortran is simple. Unfortunately, the convergence rate obtained with this ordering is
often worse than the convergence rate obtained with the natural ordering. The slower conver-
gence rate of red-black incomplete factorization preconditioners was observed experimentally
by Ashcraft and Grimes [4] and Duff and Meurant [40]. Kuo and Chan [70] proved that for
problems in square domains with Dirichlet boundary conditions naturally ordered precondition-
ers converge asymptotically faster than red-black ordered preconditioners. Their results apply
to conjugate gradient with SSOR, incomplete Cholesky, and modified incomplete Cholesky
preconditioners, as well as to SSOR without conjugate gradient acceleration.

I propose a new ordering scheme, called decoupled rowwise ordering. Figure 11.1 depicts
the decoupled rowwise ordering along with the rowwise and red-black orderings for an 8-by-8
grid. The ordering scheme is based on a decomposition of the grid into rectangular subgrids.
The boundary points of every block are colored red and black in a checkerboard pattern. The
red boundary points are placed first in the ordering, followed by the black boundary points,
followed by the interior points. The interior points in every block are ordered in a rowwise
order. The triangular solver solves first for the red points which depend on no other points,
then for the black points which depend on their red neighbors, and then for the interior points.
Solving for the boundary points, which can be done in 2 parallel steps, completely decouples
the blocks, and each processor can proceed to solve for all the interior points in its block.
The decomposition of the grid used by my software is simply the block layout of the array
representing the grid in the parallel computer.

On test problems, the decoupled rowwise SSOR preconditioner accelerates the convergence
more than the red-black SSOR preconditioner. Figure 11.2 shows the convergence rate of con-
jugate gradient without preconditioning, with red-black preconditioning, and with decoupled
rowwise preconditioning, for a Poisson equation with Neumann boundary conditions and a
random right-hand side. The preconditioners use an optimal over relaxation parameter !. The
optimal value of ! was determined experimentally for each problem and preconditioner. The
number of iterations required to reduce the norm of the residual by a given factor is propor-
tional to the length of the the grid side for the nonpreconditioned solver and for the red-black
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Figure 11.3 Convergence rates of conjugate
gradient with decoupled rowwise precondition-
ing. The number of iterationsT it took to reduce
the 2-norm of the residual by a factor of 10�5

is plotted as a function of the over relaxation
parameter ! for a number of block sizes. The
number next to each graph is the number of
blocks to which the square domain is decom-
posed. The problem is a Poisson equation with
Neumann boundary conditions in a square dis-
cretized on a 1024-by-1024 grid, with a random
right-hand side.

preconditioning. For the decoupled rowwise preconditioner, however, the number of iterations
depends sublinearly on the grid-side length, and it is always smaller than the number of itera-
tions required by the red-black preconditioner. The decoupled rowwise preconditioner reduces
the number of iterations by a factor of 3:4–5:4 over the number required by the nonprecondi-
tioned solver, whereas the red-black preconditioner reduces the number of iterations by a factor
of roughly 2. The preconditioners behave in a similar manner on other test problems, such as
problems in nonsquare domains with holes and problems with Dirichlet boundary conditions.

Figure 11.3 shows the convergence rate of the solver with the decoupled rowwise precon-
ditioner as a function of the over relaxation parameter ! for a range of block sizes. For a given
problem, orderings with few large blocks generally lead to faster convergence than orderings
with many small blocks. Although this rule does not always hold, in the experiments it always
holds for the optimal value of !. Figure 11.3 also demonstrate that the optimal value of !
decreases as the number of blocks increases. In the limit, when the length of the side of each
block is 1 or 2, decoupled rowwise degenerates into a red black ordering, in which the optimal
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do i=2,x-1
  do j=2,y-1
    forall (n=0:c-1,m=0:r-1)
      z(n*x+i,m*y+j) = ...

x=8

y=8

c=4

r=2

Figure 11.4 The skeleton of an implementation of the decoupled-rowwise ordering in CM-Fortran
or High Performance Fortran. The algorithm can be expressed in these languages, but the code the
compiler generated was unacceptably slow.

value of ! is very close to 1 in the experiments. Kuo and Chan [70] proved, for certain model
problems, that the optimal value of ! in the red-black SSOR method is indeed 1.

11.3 Implementation

My CM-5 implementation2 of the conjugate-gradient solver and of the preconditioners com-
bines high-level CM Fortran code with low-level assembly language code to simultaneously
achieve high performance and reasonable code complexity. The software includes a conjugate-
gradient solver, a matrix-vector multiplier, and preconditioners for 5-point stencils in 2 di-
mensions. The stencils use one variable coefficient and four constant coefficients. The sparse
triangular solver can be used for both SSOR preconditioning and for preconditioning that is
based on incomplete factorizations with no fill-in.

I implemented the solver on the CM-5 using a combination of CM Fortran [109] and
CDPEAC [113, 114], the assembly language of the vector units with which the CM-5’s nodes
are equipped. The overall solver is written in Fortran. The nodal part of the sparse matrix-vector
multiplier and the nodal parts of the two preconditioners are implemented in CDPEAC. The
communication in both the matrix-vector multiplier and the preconditioners is done in Fortran,
using shift operations on small “ghost” arrays into which the boundary grid points on every block

2The software is available by anonymous FTP from
ftp://theory.lcs.mit.edu/pub/sivan/rowwise-decoupled.tar.Z, or through the world-wide-web in
http://theory.lcs.mit.edu/~sivan/papers.html.
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Busy Timer Elapsed Timerp
n CM-Fortran CMSSL CDPEAC CM-Fortran CMSSL CDPEAC

256 34.9 32.4 22.5 41.0 45.1 28.0
512 24.7 20.8 13.1 28.7 23.6 15.0

1024 21.4 17.2 10.3 22.8 18.5 10.7
2048 19.9 15.8 10.0 20.2 16.1 10.1

Table 11.1 The running time of three matrix-vector multiplier subroutines: a subroutine written in
CM Fortran using shift operations, a subroutine that uses the CM Scientific Subroutine Library, and
my implementation in CDPEAC and CM Fortran. The table reports the running times per point per
iteration in nanoseconds for various

p
n-by-

p
n grids. The running time reported are averages of three

executions of 100 iterations each on a time-shared 32-node CM-5.

are copied. The copying from the grid to the ghost arrays is done in CDPEAC, however, since
the CM Fortran compiler does not vectorize these operations well. The CDPEAC subroutine
that computes the nodal part of the matrix-vector multiplier also computes the inner product
of the vector before and after the multiplication, which is required in the conjugate gradient
method. The integration of the inner product into the matrix-vector multiplier eliminates the
need to load the two vectors into registers again. The red-black preconditioner uses strided
load and store instructions to select red or black points. The CDPEAC subroutines consist of
more than 1500 lines of code.

I wrote the solver partially in assembly language for three reasons. First, I wanted to
obtain the highest quality solver I could, and I could not achieve this goal with either Fortran
or CMSSL [112], the CM-5 Scientific Subroutine Library, as demonstrated in Section 11.4.
Second, since the ordering scheme requires using DO loops within each block, or on each node,
there is no way to efficiently implement the preconditioner in Fortran. The only way to express
such a computation in CM Fortran or High Performance Fortran is using a forall loop nested
within do loops, as shown in Figure 11.4. On the CM-5, this code does not compile into a
tight loop on the nodes, but rather into a loop containing a broadcast in every iteration, whose
performance is about two orders of magnitude worse than my CDPEAC implementation. Third,
since the usefulness of a preconditioner depends on the ratio between the preconditioning time
and the conjugate gradient iteration time, the only way to evaluate the preconditioner is using
the best possible implementation for both the preconditioner and the conjugate gradient solver.

11.4 Performance

To put the performance of my solver in perspective, Table 11.1 compares the performance
of my sparse matrix-vector multiplier subroutine with the performance of a subroutine written
in CM Fortran and a subroutine from the Connection Machine Scientific Subroutine Library
(CMSSL)3 with the same functionality. (CMSSL only contains variable-coefficients stencil
matrix-vector multiplier, which is the subroutine I use in the comparison.) The table shows
that on large grids my multiplier takes half the time the CM Fortran multiplier takes, and two

3I have used CM Fortran version 2.1.1-2 Final and CMSSL version 3.1 Final.
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Figure 11.5 The running time of the solver per point per iteration as a function of the problem size, on
a 32-node CM-5. The bottom, darkest section in each graph represents the matrix-vector multiplication
time, the middle section represents the preconditioning time (if a preconditioner is used), and the top
and lightest section represents the rest of the vector operations.

thirds the time the CMSSL multiplier takes.
Figure 11.5 shows the running time of the solver per point per iteration, measured on a

32-node CM-5. The graphs show the matrix-vector multiplication time, the preconditioning
time (for both a red-black and a decoupled rowwise preconditioners), and the overall time, for
problems sizes ranging from 256-by-256 up to 2048-by-2048. Without preconditioning the
iteration time is divided roughly evenly between the matrix-vector multiplication and the rest
of the vector operations in the solver, and both preconditioners roughly double the running time
of each iteration.

11.5 Related Work

This section describes research related to the results reported in this chapter. In particular, we
describe preconditioners whose structure is similar to that of the decoupled rowwise precondi-
tioner, and preconditioners used in numerical ocean models.

Duff and Meurant [40] describe numerical experiments with an ordering scheme called
vdv1. Vdv1 does not decouple the blocks in the same way that the decoupled rowwise ordering
does, however, and is therefore less suitable for parallel implementations. I have recently
learned that Tomacruz,Sanghavi, and Sangiovanni-Vincentelli [116] describe an ordering called
block-partitioned natural ordering, which they use in an incomplete LU preconditioner for
three-dimensional drift-diffusion device simulations. Their equations are nonlinear, and are
solved using Newton’s method, which requires solving a sparse asymmetric linear system in
every iteration. These linear systems are solved using the preconditioned conjugate gradient
squared method. The Block Partitioned Natural Ordering is similar to my decoupled rowwise
ordering, except that the blocks are decoupled in a different way. Rather than color boundary
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points red and black, they eliminate some of the edges that cross processor boundary. They
eliminate different edges in the forward and backward substitution processes. They have
implemented their algorithm on the CM-5, although unlike my implementation, they do not
use the CM-5’s vector units, and thus their implementation is much slower. The simpler
programming model allowed them to experiment with different amounts of fill-in within the
blocks, which was difficult in our case.

Research groups that implement numerical ocean models often face the need to imple-
ment Poisson solvers for problems similar to the ones described in this chapter. The ocean
model developed by a group of researchers at Los Alamos National Laboratory [105] solves
two-dimensional Poisson problems discretized using a 9-point stencil (as opposed to a 5-point
stencil used by the MIT model being developed by John Marshall, Chris Hill, and others). They
chose to use sparse explicit preconditioners, in which M�1 is given explicitly, and therefore
preconditioning amounts to a sparse matrix-vector multiplication. They have considered poly-
nomial preconditioners, but have chosen to use a preconditioner M�1 which has exactly the
same sparsity pattern asA and which minimizes the trace of (I�M�1A)(I�M�1A)T. They
report good convergence acceleration using this preconditioner, even though the preconditioner
is purely local and therefore cannot asymptotically reduce the number of iterations.

I believe that in the future, large two-dimensional Poisson problems arising from ocean
models would require the use of more sophisticated preconditioners. Even with the decoupled
rowwise preconditioner, large problems (e.g. 2560-by-2560) take thousands of iterations to
converge. It seems to us that unless future ocean models use more efficient Poisson solvers, such
as multigrid solvers or multigrid-preconditioned solvers, the fraction of the total simulation
time devoted to solving elliptic equations will grow.

11.6 Conclusions

We have presented an efficient conjugate-gradient solver for 5-point difference equations in 2
dimensions, utilizing an SSOR preconditioner with a novel ordering scheme for the variables.
Thanks to careful coding and the use of assembly language, the implementation is more
efficient than CM Fortran and CMSSL implementations, and the preconditioner is about as
efficient as a high-performance red-black preconditioner. The preconditioner accelerates the
solver’s convergence more than a red-black preconditioner, leading to speedups by a factor of
1:5 to 2:5 over the nonpreconditioned solver.

I believe that the form and the amount of parallelism in an algorithm must match the
architecture of the machine which executes it. In our case, the parallelism in the rowwise
decoupled ordering is easier to exploit on the CM-5 than the wavefront parallelism in the
rowwise ordering, and the amount of parallelism is smaller than the parallelism in a red-black
ordering. The smaller amount of parallelism is probably an advantage, since it seems to improve
the convergence rate while still admitting an efficient parallel implementation on hundreds of
processors.

It is important that programming languages, especially High Performance Fortran [59, 68],
allow programmers to express algorithms in which serial execution on each node is used. This
could be accomplished either via compiler optimizations of expressions involving arrays with
serial axes, or by allowing the programmer to write nodal code, which is not currently possible
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in CM Fortran4. I prefer the second option since it is simpler for both the programmer and the
compiler writer. Writing sequential nodal code does not necessitate the use of message passing
libraries, since the communication can be done in data-parallel Fortran using ghost arrays.

4It is possible to write nodal subroutines in Fortran 77 on the CM-5, but they do not utilize its vector units.
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Chapter 12

Conclusions

12.1 Performance Modeling and Prediction

The main contribution of the first part of the thesis is the idea that the performance of computer
systems can be specified with models of entire runtime systems. Benchmaps, which are models
of runtime systems, are an enabling technology for a wide range of applications.

The thesis demonstrates that accurate benchmapping of data-parallel runtime systems is
possible. These benchmaps can be incorporated into software tools that predict the running
time of programs automatically, accurately, and rapidly.

In some cases, the performance of compiler generated code must be modeled as well as the
performance of the runtime system. PERFSIM demonstrates that predicting the performance of
compiler generated object code is possible. Atapattu and Gannon use this technique too [5].
The data-parallel programming models helps here too, because the object code consists mostly
of well structured loops.

Performance modeling must be approached as an experimental science. A chemist who
knows all the basic rules of physics still must perform experiments to understand the behavior
of complex physical systems. Even when we know exactly how a computer operates and how
an algorithm is implemented, complex interactions in the system make it virtually difficult to
predict a priori the behavior of the system.

An important goal of experimentation is to substantiate or refute assumptions. Most
models and most modeling techniques depend on certain assumptions, such as the identity of
performance determinants and the distribution of noise. The assumptions should be explicitly
stated, and an effort to validate or refute them should be undertaken.

When asked to provide performance models of their libraries, writers of libraries and
runtime systems often express two concerns. First, if they provide performance models, they
have to support and maintain them. Second, users have the right to expect from performance
models the same level of reliability the library provides. The models should either predict
performance within some known margin of error, or fail and inform the user about its failure.

Computer vendors are concerned about fairness. If they are to provide performance models
which are used to guide acquisition decisions, they want other vendors to provide models which
are accurate. The folklore and secrecy surrounding performance models suggest that it may
be hard to achieve such level of confidence among vendors. The difficulties associated with
robust test suites only complicate the issue further.
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These concerns lead me to believe that the most plausible avenue for introducing perfor-
mance models is through a third parties, which will model libraries and runtime systems, and
provide the models to users. This model is similar to the introduction of benchmarks, such as
the LINPACK benchmark. If the models prove popular, we expect vendors to get involved in
modeling their systems, in much the same way that vendors implement the programs in the
NAS benchmark suite.

12.2 Locality in Numerical Algorithms

The main contribution of the second part of the thesis is a collection of out-of-core iterative
numerical algorithms which are based on the idea of blockers. The algorithms we present are
novel implementations of well-known iterative methods. No efficient out-of-core implementa-
tion of any of these methods has been previously published. My implementations, which use
blockers, perform more arithmetic operations than naive implementations, but they perform
much less I/O’s, and are therefore faster.

A computer can be unbalanced with respect to an algorithm. The term unbalanced,
coined by Kung [69], roughly means that when the algorithm executes, some resources are
saturated and some are idle most of the time. For example, in many out-of-core algorithms,
the I/O channel is saturated whereas the CPU is idle much of the time. The Jacobi and red-
black relaxation algorithms provide another example, in which the CPU is saturated, but the
algorithms are using fewer dependencies in loops than can be handled by the computer without
putting additional load on the CPU (that is, some internal data paths are not fully utilized).

My main high-level conclusion from the research reported in this thesis is that when a
computer is unbalanced and cannot be balanced, the algorithm can almost always be changed
to take advantage of underutilized resources. Our out-of-core algorithms for example, put
additional load on an underutilized CPU, in exchange for reducing the load on the saturated
I/O channel. The net effect achieved is a reduction in the running time of the algorithm. The
reduction is not as large as one could get from increasing the bandwidth of the I/O channel to
the point where it does not limit performance, but the reduction is significant nonetheless. I
believe that in most iterative numerical algorithms idle resources can be put to use to improve
performance.
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neighborhood, 81
two-color cut, 94

covered linear relaxation algorithm, 116
Crank-Nicolson scheme, 97, 108
Cray 1, 75
Cray C90, 54
Cray X-MP, 76, 78
cut set, 94
CVL, 42
cycles, See multigrid cycles
dag, See directed acyclic graph
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data network, 36
data-parallel programming model, 22
decomposition interface, 15, 19
decoupled rowwise ordering, 129, 131
dense linear algebra algorithms, 76
directed acyclic graph (dag), 72, 110
domain decomposition, 98
domain decomposition algorithms, 71
EDSAC 2 (computer), 76
error

prediction, 29
relative, 29

fast Fourier transform, 78
fast multipole method, 66
geometry (of an array), 37
graph

directed acyclic (dag), 72, 110
multigrid, 80
simplicial, 93

hardware characteristics, 61
High Performance Fortran, 134, 136
home (of a vertex), 82
host, See partition manager
IBM 701, 74
IBM STRETCH, 75
IC, See incomplete Cholesky
incomplete Cholesky preconditioning, 130
input-output operations, 66
instrumented interfaces, 25
iterative algorithms, 65
Krylov basis, 118
Krylov subspace, 113
Krylov-subspace algorithms, 113–127
least squares, 29
linear models, 27–29
linear programming, 29–30
linear relaxation

covered, 116
line successive overrelaxation, 75
partitioned, 115
simple, 82

local densification, 68, 70, 129
locality

spatial, 46
temporal, 46, 66

lower bound, 72, 110
memory

banks, 35
primary, 65
secondary, 65

message passing, 23
MIC, See modified incomplete Cholesky
model

linear, 27–29
piecewise-linear, 44

modified incomplete Cholesky precondition-
ing, 130

multigrid
cycles, 80, 91
graph, 80

multiplexors, 16, 24, 38
natural ordering, 131
neighborhood cover, 81
NESL, 42
nodal code blocks, 37
nodal loops, 37
ocean model, 129, 136
ordering

block-partitioned natural, 135
decoupled rowwise, 129, 131
natural, 131
red-black, 131
vdv1, 135

out-of-core, See algorithm, out-of-core
partition, of an index set, 115
partitioned linear relaxation algorithm, 115
partition manager, 33, 42
PDQ-5 (computer program), 75
performance

bugs, 54, 59
determinants, 17
expectations, 59
extrapolation, 39
measures, 17
observability, 17
visualization, 39

Philco-2000, 75
piecewise linear models, 44
polynomial preconditioning, 71
preconditioning
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incomplete Cholesky, 130
modified incomplete Cholesky, 130
polynomial, 71
symmetric successive overrelaxation,130

prediction errors, 29
primary memory, 65
quadratic programming, 30
red-black ordering, 131
red-blue pebble game, 72, 110
reduced system, 98
reference points, 26
relative errors, 29
relaxation matrix, 79
relaxation weight, 79
SEAC (computer), 78
secondary memory, 65
Silicon Graphics Indigo2, 56
simple linear relaxation, 82
simplex, 93
simplex algorithm, 78
simplicial

complex, 93
graph, 93

simulators, 62
singular value decomposition, 28–29
sparse direct out-of-core solvers, 77
spatial locality, 46
SSOR, See symmetric successive overrelax-

ation
state sequence, 100
Sun SPARCstation 1+, 54
Sun SPARCstation 10, 54
Sun SPARCstation 1+, 106, 125
Sun SPARCstation 10, 106
surveying performance, 25–27
surveyor, 25
SVD, See singular value decomposition
symmetric successive overrelaxation precon-

ditioning, 130
technological trends, 68
temporal locality, 46, 66
test suites, 50
transfer sizes, 35
two-color cut cover, 94
unbalanced, 140

Univac LARC, 75
vdv1 ordering, 135
vector units, 34, 37
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