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Abstract

We consider the problem of clock synchronization in a system with uncertain message delays
and clocks with bounded drift. To analyze this classical problem, we introduce the con-
cept of synchronization graphs, and show that the tightest achievable synchronization at
any given execution is characterized by the distances in the synchronization graph for that
execution. Synchronization graphs are derived from information which is locally available
for computation at the processors (local time of events and system speci�cation), and can
therefore be used by distributed algorithms. Using synchronization graphs, we obtain the
�rst optimal on-line distributed algorithms for external clock synchronization, where the
task of all processors is to estimate the reading of the local clock of a distinguished proces-
sor. The algorithms are optimal for all executions, rather than only for worst cases. The
algorithm for systems with arbitrarily drifting clocks has high overhead; we prove that this
phenomenon is unavoidable, namely any optimal general algorithm for external synchro-
nization has unbounded space complexity. For systems with drift-free clocks (i.e., clocks
that run at the rate of real time), we present a particularly simple and e�cient algorithm.
We also present results for internal synchronization, where the task of the processors in the
system is to generate a synchronized \tick." Our approach is robust in the sense it encom-
passes various system models, such as point-to-point or broadcast channels, communication
links that may lose, duplicate and re-order messages, and crashing processors. In addition,
synchronization graphs can be used to detect corrupted information.
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Chapter 1

Introduction

1.1 Background

Clock synchronization is one of the most fundamental problems of distributed computing.

Roughly speaking, the goal of clock synchronization is to ensure that physically dispersed

processors will acquire a common notion of time, using local physical clocks (whose rates

may vary), and message exchange over a communication network (with uncertain trans-

mission times). The discrepancy between clock readings is called the tightness of synchro-

nization. There are numerous applications for synchronized clocks in computer networks.

For example, in database systems, version management and concurrency control usually

depend on the ability to consistently assign timestamps to objects. Many distributed ap-

plications use timeouts (e.g., communication protocols, resource allocation protocols), and

their performance depends to a large extent on the quality of synchronization between re-

mote processors. From the theoretical perspective, having synchronized clocks enables one

to use distributed algorithms that proceed in rounds, thus considerably simplifying their

design and analysis. For an excellent discussion of the importance of clock synchronization,

see Liskov's keynote address at the 9th PODC [18].

The basic di�culty in clock synchronization is that timing information tends to deteri-

orate over the temporal and spatial axes. More speci�cally, when the rate of local clocks

is not known precisely in advance, the tightness of synchronization loosens as time passes;

and when a processor is communicating timing information to remote processors, there is

some inherent cumulative timing uncertainty, unless message transmission times are known

precisely. Practically, ideal clocks and communication links do not exist. However, there
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local time = T
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Figure 1-1: Processor v send a message m to processor s, s sends a message m0 back to v.
A distinguished event, marked by a cross, occurs at s after m is received and before m0 is
sent.

are always some a priori guarantees about the timed behavior of the system: usually it is

assumed that local clocks have known lower and upper bounds on their rate of progress with

respect to real time. We call these bounds drift bounds. In addition, it is assumed that there

are known lower and upper bounds on the time required to transmit a message. We call

these bounds message latency bounds. The essence of all clock synchronization problems is

how to use these bounds to obtain tight synchronization.

In this thesis we present a theoretical study of clock synchronization problems. Our

starting point is an elementary variant of the problem, described informally as follows.

Obtain bounds on the reading of the local clock when some distinguished remote

event occurs in the execution.

Example. Consider a system that consists of two processors s and v, connected by a

bidirectional communication link. Suppose that processor v sends a message m to s when

the local clock at v shows T ; processor s then responds by sending a message m0 to v,

which is received at v when its local clock shows T 0. See the time-space diagram in Figure

1-1. (A brief explanation of time-space diagrams is given in Appendix A.) Suppose further

that some distinguished event occurs at processor s after m is received and before m0 is

sent. Clearly, when m0 is received, processor v can deduce that the distinguished event

occurs within its local time interval [T; T 0]. The di�erence (T 0 � T ) is the tightness of

synchronization.

10



To study synchronization problems, we de�ne a system model, and analyze it at an

abstract graph-theoretic level. Using the results we obtain for graphs, we analyze clock

synchronization problems that are more practical than the elementary variant above. Specif-

ically, we give results for two kinds of clock synchronization tasks, motivated by the following

settings.

External Synchronization: There exists a distinguished processor called source in the

system. The task for each other processor is to obtain, at each time, the smallest

interval [a; b] such that the current reading of the source clock is in [a; b].1

Internal Synchronization: Keep all clocks in the system as close to each other as possi-

ble, running at the rate of their physical hardware clocks, except for isolated points

where clock values are reset.

Before we describe our results, we �rst describe what was known prior to this work. We

remark that much previous work was done for fault-tolerant clock synchronization, which

is beyond the scope of this thesis.

1.2 Previous Work

Di�erent variants of the clock synchronization problem have been the target of a vast

amount of research from both practical viewpoint (e.g., [26, 6, 24, 28, 1, 15]) and theoretical

viewpoint (e.g., [16, 19, 7, 13, 33, 3], surveys [31, 30] and references therein); the exact

de�nition of the problem depends both on the intended use of the clocks and on the speci�c

underlying system. The large number of variants is justi�ed by the wide spectrum of

applications.

One of the popular variants studied theoretically is internal synchronization in the case

where all clocks in the system are assumed to run exactly at the rate of real time (we call

such clocks drift-free hereafter). Lundelius and Lynch [19] consider the case in which there

is a communication link between each pair of processors, and message latency bounds are

identical for all links in the system. For this case, they present a synchronization algorithm

1In this thesis, numbers range over R [ f1;�1g unless explicitly indicated otherwise. Square brackets
are used to denote intervals, including the case of in�nite intervals.
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that gives optimal tightness in the worst possible scenario allowable by the system speci-

�cations. Halpern et al. [13] generalized the results of [19] to networks whose underlying

topology is arbitrary, and whose message latency bounds may be di�erent for each link.

The main idea in the analysis of [13] is to formulate the problem as a linear program; solv-

ing this program, they �nd the worst case scenario, and an algorithm is presented so that

optimal tightness is guaranteed in this case. In [3], Attiya et al. observe that the algorithm

of [13] always gives the best worst-case tightness, even if the actual execution happens to

be more favorable for synchronization than the worst possible. This observation motivates

them to generalize the results of [13]; speci�cally, in [3] they present an algorithm which

gives optimal tightness for each speci�c execution of their system.

The focus in all the above papers [19, 13, 3] is on obtaining bounds in a centralized

o�-line fashion. Typically, the algorithms can be viewed as consisting of two stages. In the

�rst stage, timing information is gathered at the processors by sending messages over the

links. Then a second stage begins, where all the information is sent to one processor; that

processor makes the necessary computation, and distributes the results back to the other

processors. Only then can each processor adjust its clock.

Practical work is typically more focused on on-line distributed algorithms. Usually,

loosely coupled systems use external synchronization algorithms, and tightly coupled sys-

tems use internal synchronization. One important protocol for external synchronization is

NTP [25, 26], used over the Internet. Another prominent technique in practice is \proba-

bilistic clock synchronization" proposed by Cristian [6]. In this approach, the transmission

time of messages is assumed to adhere to some probability distribution, and the transmis-

sion times of di�erent messages are assumed to be independent. Under these assumptions,

some stochastic guarantees can be made by the synchronization protocol.

1.3 Contents of This Thesis

Our chief objective in this thesis is to acquire better theoretical understanding of clock

synchronization. Our �rst step towards this goal is to de�ne a mathematical model, in

which we state our system assumptions precisely, and de�ne the performance criterion by

which we measure the quality of the synchronization algorithm. We then abstract executions

of systems using a graph theoretic formulation. Using graphs, we state and prove our main

12



characterization of tightness of clock synchronization. From these results, we derive new

optimal external synchronization algorithms and a new lower bound on the tightness of

internal synchronization. Moreover, we give evidence that indicates that there is no e�cient

optimal synchronization algorithm that works for arbitrary clock drift bounds and message

latency bounds.

In the remainder of this section, we give a more detailed overview of the thesis.

1.3.1 The Setting

Based on the model of timed input/output automata of Lynch and Vaandrager [20], we

de�ne in Chapter 2 a new formal model, called mixed automata. This model enables us

to describe systems with local clocks. Using the formalism of mixed automata, we de�ne

in Chapter 3 the environment we consider. Intuitively, the main assumptions expressed by

our de�nitions are the following. First, each message, when received (if at all), has a known

latency lower bound which is a �nite non-negative real number, and a known latency upper

bound which is at least the lower latency bound, but it may be in�nite. Secondly, each

local clock has known �nite non-negative lower and upper drift bounds. And thirdly, each

execution that satis�es these bounds is possible. We remark that our assumptions include

many cases, such as communication links that may lose, re-order, or duplicate messages

arbitrarily; systems with broadcast channels; and the case of processor and link crashes.

To facilitate these properties, we assign to the clock synchronization modules a somewhat

\passive" part in the system. Our formulation is such that clock synchronization algorithms

do not initiate nor delay message transmission and delivery; rather, in our model, message

sending is initiated solely by abstract send modules, and the clock synchronization algorithm

is allowed to pass information only by \piggybacking" on existing message tra�c, where

we assume that piggybacking is done instantaneously. Thus, the role of a synchronization

algorithm can be viewed as limited to the interpretation of executions of the environment

as they unfold. (Technically, since our de�nition of executions contains also the real time

of occurrence of events, only a local view of the execution, which contains just local times

of occurrence, is available for computation.) We remark that our model can be viewed as a

distributed version of the model considered in [3].

To evaluate the quality of a synchronization algorithm, we de�ne in Chapter 4 a new

measure, which may be of independent interest in its own right. Intuitively, our approach is

13



a combination of the execution-speci�c approach of [3], the competitive analysis approach

[32, 23], and the causality partial order of Lamport [16]. Loosely speaking, we call a

clock synchronization algorithm locally K-competitive if the tightness of its output at any

point at any execution is at most K times the best possible tightness among all correct

algorithms, given the local view at that point. An algorithm is called optimal if it is locally

1-competitive.

1.3.2 A General Theory

The heart of this thesis is a new analysis of clock synchronization problems. Intuitively, we

show that even though clock synchronization problems can be formulated as linear programs

[13], fortunately they have a much simpler structure, namely distances in a certain graph.

More speci�cally, in Chapter 5 we introduce a new concept, which we call synchroniza-

tion graphs. Synchronization graphs are weighted, directed graphs derived from system

speci�cations and local views of executions. Since these quantities are locally available for

processing, synchronization graphs can be computed by distributed algorithms. The main

result of the theory is a characterization of the achievable tightness of synchronization at

any execution in terms of distances in the corresponding synchronization graph. An impor-

tant property of this result is that these distances can be computed on-line in a distributed

fashion, thereby giving rise to new algorithmic techniques for optimal synchronization.

Synchronization graphs provide us with a simple and robust concept that deals in a

uniform manner with both the uncertainty of transmission times and the uncertainty due

to clock drifts. In Chapter 9 we show how to incorporate additional timing information of

certain simple types in synchronization graphs. Moreover, we show a simple property of

synchronization graphs which is equivalent to the consistency of views with system speci�-

cations. This idea can be used to detect faults.

1.3.3 Applications

After proving the general results in Chapter 5, we turn to derive results for speci�c synchro-

nization tasks. In Chapter 6 we de�ne and analyze the external synchronization problem.

In external synchronization, there is a distinguished source processor whose clock is drift-

free; each other processor in the system is required to provide, at all times, bounds on the

current reading of the source processor. The di�erence between the bounds is called the

14



external tightness of the synchronization at that point. In Chapter 6, we prove a lower

bound on the tightness of synchronization at any point, and present a distributed on-line

algorithm that meets this bound at all points. This characterization is done for the general

setting, where clock drift bounds and message latency bounds are arbitrary. The algorithm

for the general case is ine�cient. By contrast, we present an e�cient algorithm for optimal

external synchronization, under the assumption that all clocks in the system are drift-free.

We compare our approach with the popular technique of round-trip probes, and explain

why our approach is superior.

In Chapter 7, we consider the internal clock synchronization problem, where each pro-

cessor is required to generate a single \tick," and the internal tightness of synchronization

in an execution is a bound on the length of real time interval that contains all ticks. Us-

ing synchronization graphs, we obtain a lower bound on the achievable internal tightness

of synchronization. Our lower bound generalizes known lower bounds for drift-free clocks

[19, 13, 3] to the case of drifting clocks. Moreover, our derivation is relatively simple and

intuitive.

In Chapter 8, we show a somewhat surprising result regarding the space complexity of

optimal synchronization algorithms. We de�ne a certain computational model, in which

output values are restricted to be expressed as linear combination of the inputs with integer

coe�cients (all known algorithms can be expressed this way). In that model, we show that

for any external synchronization algorithm there are scenarios that require unbounded space

complexity in order to produce optimal output.

The latter result provides strong evidence to the e�ect that no single algorithm can be

e�cient, general and optimal at the same time. Practical algorithms must be e�cient; the

new algorithms we suggest are optimal.

1.4 Signi�cance of the Results

We believe that this thesis contributes to the understanding of clock synchronization in a

number of ways.

First, it suggests a new way of looking at the problem, and presents a constructive

characterization of achievable tightness. Even though our results indicate that there is no

\ultimate solution" for clock synchronization, i.e., an algorithm that is general, e�cient
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and optimal, we believe that using the techniques presented in this thesis, better practical

algorithms can be developed, by compromising generality or optimality.

We also believe that the discovery of synchronization graphs is an important contribution

to the research of timing-based systems. In some sense, synchronization graphs can be

viewed as the extension of Lamport's graphs [16], used to describe executions of completely

asynchronous systems, to the case where processors have clocks.

In addition, we think that our approach of local competitiveness can be used for problems

in di�erent settings, as it captures an intuitive notion of 
exible algorithms that guarantee

output close to the best possible for each possible scenario.

1.5 Critique of the Results

Informally, the usefulness of synchronization graphs relies on a few strong assumptions.

(1) The system speci�cation is such that if an event may occur at either of two points,

then this event may occur at any point between them.

(2) Processors and communication links follow the system speci�cation.

(3) All executions that satisfy the system speci�cations are possible.

These assumptions are restrictive. Assumption (1), for example, rules out the case that

local clocks run at a �xed but unknown rate. It also rules out systems where message

transmission time can be a point in either of two disjoint intervals (this may be the case, for

example, when using links that divide the communication into discrete frames). Assump-

tion (2) seems even more problematic: even if the speci�cation allows for some limited kind

of faults, it is hardly ever the case that one can guarantee operation of distributed systems

without unpredictable faults. Clocks are particularly volatile, as the many papers about

fault-tolerant clock synchronization can testify. Assumption (3) seems unrealistic as well:

intuitively, it means that all possible timing information is given in the system speci�ca-

tion. In many cases, however, additional information can be obtained, e.g., from a human

operator.

Let us defend our thesis. The �rst assumption is absolutely essential for our analysis;

the whole theory breaks down if the timing speci�cation is such that there are events that

may not occur between points in which they are allowed to occur. We claim, however,

that our formulation is appropriate in many cases. For example, when the uncertainty of
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message transmission times is relatively high, the e�ect of discrete communication frames

is negligible. Also, while conventional quartz clocks (such as the ones used in most CPUs)

usually maintain a �xed rate, this rate may change abruptly, thus making the rate look as

if it takes values from a continuous range. Hence we argue that assumption (1) seems to be

a reasonable abstraction.

Consider assumption (2). For systems with faults, our analysis provides a partial solution

in the form of fault detection. Even though we do not know how to use synchronization

graphs directly to correct errors, we know how to use synchronization graphs to detect

them. Moreover, when computing distances over synchronization graphs (as our techniques

suggest), the detection comes \for free." It is also conceivable that synchronization graphs

can be used in conjunction with some fault tolerance scheme that uses redundancy to

eliminate erroneous information.

Assumption (3) is required only for the optimality claims, that is, we use it to obtain

lower bounds on the achievable tightness of synchronization. Our algorithms work just as

�ne if this assumption is removed: it might be the case, however, that additional information

can be used to improve performance. Some cases of additional timing information can be

modeled by clock synchronization graphs: we give a few simple examples in Chapter 9.

Finally, let us address the validity of our assumption that clock synchronization algo-

rithms are \passive," i.e., that they do not initiate message sending by themselves. We

argue that this assumption is not really restrictive; it is used as a convenient theoretical

abstraction that enables us to compare di�erent algorithms. Using this model, we view

clock synchronization algorithms as if their role is merely to interpret the execution; if an

algorithm is optimal in our sense, then it gives the tightest results for any execution, and

can be used under any pattern of message tra�c.

1.6 Structure of this Thesis

The organization of this thesis is as follows. Each chapter begins with a short description of

its contents, and ends with an intuitive summary of the main ideas. In Chapter 2 we de�ne

the mixed automaton model, which provides us with the formalism we use in describing

the systems considered in this thesis. In Chapter 3 we describe the architecture of the

clock synchronization systems studied in this thesis, and de�ne the basic notions of views
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and patterns. In Chapter 4 we de�ne the synchronization tasks we consider, and the way

we evaluate their quality, namely the concepts local competitiveness and optimality for

synchronization algorithms. In Chapter 5 we de�ne the concept of synchronization graphs,

and present our main results. In Chapter 6 we consider the external clock synchronization

problem. We give matching bounds on the tightness for general systems, and an e�cient

optimal algorithm for systems with drift-free clocks. In Chapter 7 we give a lower bound on

the achievable tightness for internal synchronization. In Chapter 8 we prove a space lower

bound for optimal external synchronization algorithms for general systems. In Chapter 9 we

present a few extensions to the concept of synchronization graphs. We conclude in Chapter

10 with a few critical remarks about the results, subsequent work, and open problems.

In Appendix A, we describe the standard method of time-space diagrams. An index is

given at the end of the thesis, to aid the reader in tracing de�nitions of concepts.
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Chapter 2

The Mixed Automaton Model

In this chapter we de�ne the mixed automatonmodel, which is the underlying computational

model we consider in this work. Our goal is to formalize the notion of a distributed system

with clocks. The development in this chapter is elementary: some readers may wish to skip

directly to the more speci�c de�nitions of clock synchronization systems in Chapter 3, and

refer to the general de�nitions of this chapter when appropriate.

The mixed automaton model is based on the timed I/O automata model of Lynch and

Vaandrager [22, 20], abbreviated TIOA henceforth. An important feature of the model is

that simple modules, under certain compatibility conditions, can be combined to obtain a

more complex module.1 The main idea in our model, as described in this chapter, is that

states of the system contain a component called now , which describes the (formal) real time

in which the state exists, and components called local time, which describe the readings of

the local clocks in that state. (In TIOA, there are no special components for local times.)

Time passage is formalized using a special action denoted �. The now and the local time

components are changed only by the time-passage action, which means that the local times

represent local clocks that cannot be reset.

We open this chapter in Section 2.1 with the de�nition of mixed automata, and also

de�ne a few particular properties of mixed automata that we shall use later. In Section

2.2 we de�ne the notions used to describe how an automaton \runs," namely executions

and timed traces. We conclude this chapter by describing composition of mixed automata,

which tells us how distinct submodules communicate within a larger module.

1We shall use the terms \automaton" and \module" interchangeably throughout this thesis.
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Figure 2-1: Illustration of De�nition 2.1. The N function maps elements of S to real
numbers. The trajectory ! is an inverse of N , and maps the \<" relation to a \!" relation.

2.1 De�nition of Mixed Automata

Our �rst step is to give a de�nition of trajectories (adapted from [20]), which have turned

out to be a key concept in the formal analysis of real-time systems (see, e.g., [10, 21]).

Intuitively, a trajectory for a given interval will be used to describe an \evolution" of a non-

deterministic system when only time passes through that interval of time. The de�nition

below is stated in general terms; the specialization for our purposes is done later. Figure

2-1 gives an illustration of the following de�nition.

De�nition 2.1 Let S be a set, let N be a function N : S 7! R, and let \!" be a binary

relation over S.2 Given a (possibly in�nite) interval I of R, a trajectory for I; S;N and !

is a function ! : I 7! S, such that N(!(t)) = t for all t 2 I, and such that for all t1; t2 2 I

with t1 < t2, we have !(t1)! !(t2).

The interpretation of the abstract notion of trajectory becomes clearer when we de�ne

automata. Intuitively, a mixed automaton is a formal representation of a non-deterministic

system in a framework of real time, which is represented by non-negative real numbers. In

this context, S in Def. 2.1 is used to represent the set of system states; each state s contains

the single time point of its existence, which given by a now(s) mapping (corresponding to N

in Def. 2.1); a trajectory of an interval is the way the states change while time values range

over that interval. Assuming that ! is a relation (rather than a function) corresponds to

the non-deterministic nature of the system.

2 Throughout this thesis we denote the set of real numbers by R, and the non-negative reals by R+.
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We now proceed with the de�nition of mixed automata. In addition to the now at-

tribute of states which represents real time (as in the TIOA model [20]), a state of a mixed

automaton may also have local times attributes, for each local clock. The locations of clocks

are represented by special objects called sites. Formally, we have the following de�nition.

De�nition 2.2 (Mixed I/O Automata) A mixed I/O automaton A is de�ned by the fol-

lowing components.

� A �nite, possibly empty set of sites sites(A).

� A set of states states(A) with the following mappings:

now : states(A) 7! R+

T : sites(A)� states(A) 7! Rjsites(A)j

The value now(s) is called the real time of s. For a site v 2 sites(A), we use the

notation local timev(s) = T (v; s). T (s) is used as a function from sites to R.

� A nonempty set of start states start(A) � states(A).

� A set acts(A) of actions. One of the actions is a special time-passage action, denoted

�; the other actions are called discrete. The actions are partitioned into external and

internal actions, where time passage is considered to be external. The visible actions

are the discrete external actions. Visible actions are partitioned into input and output

actions.

� A transition relation trans(A) � states(A) � acts(A) � states(A). We also use the

shorthand s
�
!As

0 for (s; �; s0) 2 trans(A); when the context is clear, we sometimes

write s
�
!s0. For an action � and a state s, if there exists a state s0 such that s

�
!s0,

then we say that � is enabled in s.

We require that A satisfy the following axioms.

C1 For all s 2 start(A), now(s) = 0.

C2 For all s
�
!s0 with � 6= �, now(s) = now(s0) and T (s) = T (s0).

C3 For all s
�
! s0, now(s0) > now(s).

C4 If s
�
! s0 and s0

�
! s00, then s

�
! s00.
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C5 For all s
�
! s0, there exists a trajectory ! for [now(s); now(s0)], the state set,

the now mapping and the time passage subrelation f(s; �; s0) 2 trans(A)g, such that

!(now(s)) = s and !(now(s0)) = s0.

When we talk about more than a single automaton, we use subscripts to denote the context.

For example, local timeA;v denotes the local time function of automaton A at site v.

We remark that timed I/O automata, as de�ned in [20], are a special case of mixed

automata, where the site set is empty.3

Example: the sender automaton. Let us illustrate the concept of a mixed automaton

with a toy example, which we shall return to later. We de�ne an automaton, called sender,

that has a single input action called Receive Message, and a single output action called

Send Message. The sender automaton is equipped with a local clock that runs at the rate

of real time; the behavior of sender is very simple: it may output Send Message only if

there was at least one Receive Message input since the previous Send Message output. The

following is a formal description of sender.

� There is a single site, which we choose to call v (any other name can do as well).

� The state set is

�
(t; T; pend) : t 2 R+; T 2 R; pend 2 ftrue; falseg

�
. For a state

s = (t; T; pend), we have now(s) = t, T (s) = (T ), and local timev(s) = T . In words,

the real time of (t; T; pend) is t, and the local time of (t; T; pend) at site v is T . The

Boolean 
ag pend will be used to indicate whether there is a \pending output" (see

below).

� The set of start states is f(0; T;true) : T 2 Rg, i.e., all states with real time 0 and

pend = true. This de�nition means that the initial local time at v is arbitrary, and

that Send Message may be the �rst action of sender.

� The set of actions is f�;Receive Message; Send Messageg, where � is the time passage

action, Receive Message is a discrete input action, and Send Message is a discrete

output action. Hence both Receive Message and Send Message are external and

visible.

3The converse is also true: given a mixed automaton, one can model it as a particular kind of TIOA.
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Sites: a single site v

State:

now: a non-negative real number, initially 0
local time: a real number, initially arbitrary
pend: a Boolean 
ag, initially true

Actions:

Receive Message (input)
Pre: none
E�: pend  true

Send Message (output)
Pre: pend = true

E�: pend  false

� : (time passage)
Pre: b > 0
E�: now  now + b

local time  local time + b

Figure 2-2: sender: an example of a mixed automaton.

� The transition relation is as follows.

First, for all t � 0, T 2 R, pend 2 ftrue; falseg and b > 0, we have (t; T; pend)
�
!

(t + b; T + b; pend). This means that time passage is always enabled, and that the

local time is increased exactly by the amount of real time that passes.

Secondly, for pend 2 ftrue; falseg, ((t; T; pend);Receive Message; (t; T;true)) is a

transition. This means that the Receive Message action is always enabled, and its

e�ect is to set pend to true.

Finally, we have that ((t; T;true); Send Message; (t; T; false)) is a transition, which

means that the Send Message action is enabled exactly at all states where pend =

true, and its e�ect is to set pend = false.

Formal description of automatawill usually be done in this thesis using the \precondition-

e�ect" notation given in Figure 2-2. This more structured representation will be su�cient

to describe the algorithms we study. When the \Pre" clause is omitted from the description

of a transition, the interpretation is that the action is always enabled.
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2.1.1 Projections, Equivalent Automata

In this section we de�ne the technical notions of projection and equivalent automata.

Intuitively, a projection of an automaton on one of its sites is the restriction of the

automaton to describe only the clock of that site.

De�nition 2.3 The projection of a mixed automaton A on a site v 2 sites(A), or the clock

of A at v, denoted by Ajv, is the mixed automaton de�ned as follows.

� sites(Ajv) = fvg.

� acts(Ajv) = f�g.

� For a state s 2 states(A), let sjv be the pair (nowA(s);TA(v; s)). With this notation,

we have

{ states(Ajv) = fsjv : s 2 states(A)g, and we set

nowAjv(sjv) = nowA(s)

TAjv(v; sjv) = TA(v; s)

{ start(Ajv) = fsjv : s 2 start(A)g.

{ trans(Ajv) = f(sjv; �; s
0jv) : (s; �; s

0) 2 trans(A)g.

We have the following lemma.

Lemma 2.1 For any mixed automaton A, for all v 2 sites(A),Ajv is a mixed automaton.

Proof: By inspection of the axioms.

We conclude this section with a de�nition of equivalent automata. Intuitively, two

automata are equivalent if they are the same, up to renaming and multiplicity of equivalent

states. Formally, we have the following de�nition.

De�nition 2.4 A mixed automaton B is said to extend a mixed automaton A if sites(A) �

sites(B), acts(A) � acts(B), and there exists a mapping f : states(B) 7! states(A) such

that the following conditions hold for all s 2 states(B).

� nowA(f(s)) = nowB(s).
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� For all v 2 sites(A), local timeA;v(f(s)) = local timeB;v(s).

� f(s) 2 start(A) i� s 2 start(B).

� For all � 2 acts(A), we have (f(s); �; f(s0)) 2 trans(A) i� (s; �; s0) 2 trans(B).

A and B are said to be equivalent, denoted A � B, if A extends B and B extends A.

2.1.2 Clock Types

In this work, we shall study automata where local clocks have bounded drifts, as de�ned

below.

De�nition 2.5 Let v be a site of a given mixed automaton A. If there exist 0 < % � % <1

such that for all all s
�
! s0,

%(now(s0)� now(s)) � local timev(s
0)� local timev(s) � %(now(s0)� now(s)) ;

then Ajv is called a (%; %)-clock. A clock Ajv is called a bounded-drift clock if it is a (%; %)-

clock for some 0 < % � % <1. A (1; 1)-clock is also said to be drift-free.

Alternatively, one can think of a clock as a collection of real-valued \clock functions"

fT (t)g, where t denotes real time. In this representation, a (%; %)-clock consists of functions

T (t) such that %(t� t0) � T (t)�T (t0) � %(t� t0) for all t � t0 � 0 (which also means that all

clock functions of a bounded drift clock are continuous), and a drift-free clock is a function

of the type T (t) = t+ a for some constant a. We formalize this interpretation in De�nition

2.12, after we de�ne executions.

2.1.3 Real Time Blindness

In our model, real time is a part of the state of the system. In many systems, access to real

time is restricted to occur only via special physical devices, such as clocks. To model this

property, we introduce the notion of real-time blindness in the following de�nition. The

de�nition is specialized for bounded-drift clocks.

De�nition 2.6 Let A be a mixed automaton such that each v 2 sites(A) is a (%
v
; %v)-clock.

A is said to be real-time blind for (%
v
; %v) if there exists an equivalent automaton A0 � A, with
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a set B(A0) and a mapping basic : states(A0) 7! B(A0) such that the following conditions

are satis�ed.

� For all b 2 B(A0), all mappings T : sites(A0) 7! R and all t 2 R+, there exists s 2

states(A0) such that basic(s) = b, now(s) = t and T (v; s) = T (v) for all v 2 sites(A0).

� For all s1
�
! s2, basic(s1) = basic(s2).

� For all s1; s2; s
0
1; s

0
2 2 states(A0): if (s1; �; s2) 2 trans(A0) for � 6= �, and

T (s1) = T (s01)

basic(s01) = basic(s1)

basic(s02) = basic(s2)

then (s01; �; s
0
2) 2 trans(A0).

� For all s1; s2; s
0
1; s

0
2 2 states(A0): suppose (s1; �; s2) 2 trans(A0), and let � = now(s0)�

now(s). If for all v 2 sites(A0) we have

basic(s01) = basic(s1)

T (s01) = T (s1)

T (s02) = T (s2)

T (v; s02)� T (v; s
0
1) 2

h
%
v
�� ; %v ��

i

then (s01; �; s
0
2) 2 trans(A0).

Intuitively, an automaton is real-time blind if each of its states can be decomposed into

three components, called the real time, the local times, and the basic component. We

require that this decomposition is such that time passage action has no e�ect on the basic

component, and that the enabledness of actions is independent of the real time component.

The time passage action is special, since the clock drift bounds imply that the local times

component and the real time component are related. In this case we therefore require that

all amounts of real time passage allowed by the drift bounds are possible by a real-time

blind automaton.
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Example. It is easy to verify that sender is real time blind for (1; 1): the decomposition

of its states is readily given. Speci�cally, a state (t; T; pend) has real time component t,

local time component T , and basic component pend . Let us verify the properties of this

decomposition:

� The state set is R+ �R � ftrue; falseg.

� The value of pend is never changed by time passage.

� Changes in the value of pend depend only its value and the type of action taken.

� Time passage does not depend on the value of the now component neither in being

enabled nor in the amount of time that passes, except for that the real time may be

increased exactly by the amount local time is increased by.

2.1.4 Quiescent States

The following de�nition formalizes the notion of \idle state," in which nothing happens,

and nothing will happen, unless some input occurs.

De�nition 2.7 A state s 2 states(A) for some mixed automaton A is called quiet if the

only actions enabled in s are input actions and time-passage actions. A quiet state s0 is

said to be quiescent if the following conditions hold.

(1) For all t > 0 there exists a transition s0
�
! s such that now(s0) = now(s) + t.

(2) For all states s such that s0
�
! s, s is quiet.

Intuitively, a state is quiet if the automaton is not poised at doing something at present,

and a state is quiescent if the automaton is not intending to do something at the future.

An important consequence of quiescence will be proved in Lemma 3.1, in the next chapter.

Example. Examining sender once again, we see that all the states of the form (t; T; false)

are quiescent: only input and time-passage actions are enabled in them, and only other

states of the same form are reachable from them by time passage.
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2.2 Executions and Timed Traces

In this section we formalize the concept of system execution and its derivative notions. We

remark that the de�nition of executions of mixed automata we give here is a straightforward

extension of the de�nition of timed executions in [20]. We shall use the following notations

(cf. De�nition 2.1 and Figure 2-1).

Notation 2.8 Let I be a (possibly in�nite) interval of R+, and let A be a mixed automaton.

A trajectory on I of A is a trajectory for I, states(A), the now mapping, and the time-

passage relation f(s; �; s0) 2 trans(A)g. Let ! be a trajectory on I of A. Denote f now(!) =

inf(I), and l now(!) = sup(I). If I is left-closed, let f state(!) denote !(f now(!)), and if

I is right-closed, let l state(!) denote !(l now(!)).

We start with the de�nition of execution fragments.

De�nition 2.9 Let A be a mixed automaton. An execution fragment of A is an alternating

(�nite or in�nite) sequence h!0�1!1�2!2 : : :i such that

(1) Each !j is a trajectory, and each �j is a discrete action.

(2) If the sequence is �nite, then it ends with a trajectory.

(3) If !j is not the last trajectory in the sequence, then its domain is a closed interval.

If there is a last trajectory, then its domain is left-closed.

(4) If !j is not the last trajectory, then l state(!j)
�j+1
�! f state(!j+1).

The duration of a �nite execution fragment h!0�1!1�2!2 : : :!Ni is the (possibly in�nite) in-

terval [f now(!0); l now(!N )]. The duration of an in�nite execution fragment h!0�1!1�2!2 : : :i

is the interval [f now(!0); supi l now(!i)].

De�nition 2.10 An execution of a mixed automaton A is an execution fragment h!0�1!1�2!2 : : :i

of A such that f state(!0) 2 start(A).

Call an execution admissible if its duration is in�nite. In this work we consider only

feasible automata, de�ned by the condition that each �nite execution of a feasible automaton

can be extended to an admissible execution.

Given an execution fragment h!0�1!1 : : :i, we de�ne for each event �i its times of occur-

rence, T (�i) = T (l state(!i�1)) (thus T (�i) is a mapping that assigns to each site a local
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time). Sometimes actions will be associated with a single site. If a step � is associated with

a site v, we refer to the local time of occurrence of �, de�ned by local time(�) = T (�)(v).

The real time of occurrence is de�ned to be now(�i) = now(l state(!i�1)).

Next, we de�ne the notion of timed traces.

De�nition 2.11 Given a �nite execution fragment e = h!0�1!1 : : :!N i, the timed trace

of e is a triple ((ts;T s); �; (tf ;T f )), where the start time is T s = T (f state(!0)) and ts =

now(f state(!0)); the �nish time is T f = T (l state(!N)) and tf = now(l state(!N));
4 and

� is a sequence of triples (�i; ti; T i), where �1; �2 : : : is the sequence of all visible events

in the execution, and for each i, ti is the real time of occurrence of �i, and T i is the

times of occurrence of �i. For an in�nite execution fragment, �nish time is given by tf =

sup!i;t(now(!i(t))), and T f (v) = sup!i;t(local timev(!i(t))) for each site v.

We close this section with a de�nition of the natural concept of clock function.

De�nition 2.12 (Clock Functions) Let e = h!0�1 : : :i be an execution of an automaton

A, and let v 2 sites(A). The clock function of v in e is a mapping local timev : R
+ 7! R

such that for all t � 0, if t 2 [f now(!i); l now(!i)], then local timev(t) = T (!i(t); v).

Recall that the notation local time is also de�ned as a function from states to the reals; the

interpretation being used should be clear from the context.

Finally, given an automatonA and a site v 2 sites(A), we de�ne the set of clock functions

of v to consists of all clock functions of the projected automaton Ajv.

2.3 Composition of Mixed Automata

We now proceed to de�ne the composition of mixed automata. First, we de�ne composition

of states.

De�nition 2.13 Let A and B be mixed automata. Two states sA 2 states(A) and sB 2

states(B) are compatible if now(sA) = now(sB) and local timev(sA) = local timev(sB) for

all v 2 sites(A)\ sites(B). The composition of two compatible states sA and sB, is the pair

(sA; sB), which has the following attributes.

4Again, note that T s and T f are mappings that assign a local time to each site.
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� now(sA; sB) = now(sA).

� For each site v 2 sites(A)[ sites(B),

T (v; (sA; sB)) = local timev(sA; sB) =

8><
>:

local timev(sA); if v 2 sites(A) ;

local timev(sB); if v 2 sites(B) :

For a composed state (sA; sB), we denote (sA; sB)jA = sA, and (sA; sB)jB = sB.

Note that by the compatibility condition, local timev(sA � sB) is well de�ned for v 2

sites(A)\ sites(B).

We now de�ne a necessary condition for composing mixed automata. We use the notion

of projection here (cf. De�nition 2.3).

De�nition 2.14 Let A;B be two mixed I/O automata. A and B are said to be compatible

if their output actions are disjoint, the set of internal actions of A is disjoint from the set

of all actions of B, and the set of internal actions of B is disjoint from the set of all actions

of A. In addition, we require that for all v 2 sites(A) \ sites(B), we have that Ajv � Bjv.

We are now ready to de�ne composition of automata.

De�nition 2.15 (Mixed Automata Composition) Let A and B be two compatible mixed

I/O automata. The composition A � B of A and B is a mixed I/O automaton de�ned as

follows.

� The sites of A�B are sites(A� B) = sites(A)[ sites(B).

� The states of A � B is the set of all compatible pairs of states from states(A) and

states(B).

� The start set of A �B is the set obtained by composing all compatible pairs of states

from start(A) and start(B).

� The set of actions of A�B is the union of acts(A) and acts(B). A discrete action is

external in A � B exactly if it is external at either A or B, and likewise for internal

actions of A�B. A visible action of A�B is an output action if it is an output action

of exactly one of either A or B, and it is input otherwise.
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� For any action � 2 acts(A� B) and states s; s0 2 states(A� B), we have (s; �; s0) 2

trans(A�B) i� both the following hold.

(1) If � 2 acts(A) then (sjA; �; s
0jA) 2 trans(A), otherwise sjA = s0jA.

(2) If � 2 acts(B) then (sjB ; �; s
0jB) 2 trans(B), otherwise sjB = s0jB.

Composition de�nes the way two automata interact: this is done by shared actions. The

compatibility condition prohibits shared output actions, or interfering with internal actions

of each other, and requires that shared portions of the state have the same underlying

structure.

Below we state the basic property of composition.

Lemma 2.2 If A and B are compatible mixed I/O automata, then A � B is a mixed I/O

automaton.

Proof: Straightforward.

Notice that we can compose any �nite number of compatible automata, by applying the

binary composition operator de�ned above iteratively. The set of executions of the resulting

automaton is essentially the same (up to a natural isomorphism), regardless of the order of

composition.

We now turn to look at executions of composed automata. The following two lemmas

establish connections between executions of a composed automaton and the execution of

its constituent automata. First, for an execution e of a composed automaton A � B, let

ejA denote the sequence obtained from e by mapping each state s of e into sjA, omitting all

actions of B from e, and for each action �i of B in e, we merge the resulting trajectories !i

and !i+1. Analogously we de�ne ejB. The sequences ejA and ejB are called the projection

of e to A and B, respectively. We have the following simple property for projection of

execution of a composed automaton.

Lemma 2.3 Let e be an execution of a composed automaton A�B. Then ejA and ejB are

executions of A and B, respectively.

Proof: Immediate from the de�nitions.

We now prove a converse for Lemma 2.3. To be able to state it, we have to make

a few technical de�nitions. Fix a mixed automaton A. A times form for a set of sites
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V � sites(A) is a mapping F : V 7! R. A timed sequence for A is a sequence � =

h(�1; now(�1);F �1); (�2; now(�2);F �2i, where each �i is a visible action of A, now(�i) is a

non-negative number, and F �i is a times form. We require that the sequence hnow(�i)ii�1 is

non-decreasing. A form for A is a triple ((ts;F s); �; (tf ;F f)), where � is a timed sequence of

A; ts and tf are non-negative real numbers called the start and �nish real time, respectively;

and F s and F f are times forms, called the start and �nish times forms, respectively. Notice

that for a given automaton, every timed trace is a form; the converse, however, is not true

in general, since a form for A need not be obtained from an execution of A.

Let F be a times form for a site set V . The projection F jV 0 of F for V 0 � V is obtained

by restricting the domain of F to sites in V 0 only. Given a timed sequence for a composed

automaton A � B, its projection �jA is de�ned as the subsequence of actions of A, where

the times form for each action is projected on sites(A). Finally, the projection of a form for

a composed automaton is obtained by projecting the start times form, the timed sequence,

and the �nish times form, i.e, ((ts;F s); �; (tfF f ))jA =
�
(ts;F sjsites(A)); �jA; (tf ;F f jsites(A))

�
.

In the following lemma we prove that a converse to Lemma 2.3 is also true, i.e., if we

have executions of A and of B that are compatible in a certain sense, then there exists an

execution of A � B that, after projections, looks like either of the given executions (of A

and of B).

Lemma 2.4 Let A � B be the composition of compatible mixed automata A and B, and

let ((ts;T s); �; (tf ;T f )) be a form for A� B. Suppose that there exist execution fragments

of A and B whose timed traces are the projection of ((ts;F s); �; (tf ;F f )) on A and on

B, respectively, and such that for all v 2 sites(A) \ sites(B) we have local timeA;v(t) =

local timeB;v(t) for all t 2 [ts; tf ]. Then there exists an execution fragment of A�B whose

timed trace is ((ts;F s); �; (tf ;F f)).

Proof: Suppose � = h�1; �2; : : :i, �jA = h�i1; �i2; : : :i, and �jB = h�j1 ; �j2; : : :i. By the

assumption, we can \�ll in" trajectories !il and !jm such that the following properties hold

(see Figure 2-3 for an example).

(1) The alternating sequence eA = h!i0�i1!i1�i2 : : :i is an execution fragment of A, and

the alternating sequence eB = h!j0�j1!j1�j2 : : :i is an execution fragment of B.

(2) The timed trace of eA is ((ts;F s); �; (tf ;F f))jA, and the timed trace of eB is ((ts;F s); �; (tf ;F f))jB.

(3) For all sites v 2 sites(A)\ sites(B) and t 2 [ts; tf ], local timeA;v(t) = local timeB;v(t).

32



πi1 πi2 πi4

πj1 πj2

π1 π2 π3 π4 π5
σ = 

ts
_

tf
_

ωj0 ωj1 ωj2

ωi1ωi0 ωi4

e   =A

e   =
B

ωi4ωi2
πi3

t1
_

t2
_

t3
_

t4
_

t5
_

Figure 2-3: An example for the scenario considered in the proof of Theorem 2.4. While
� is a form for A � B, eA and eB are executions of A and B whose timed traces are
((ts;F s); �; (tf ;F f))jA and ((ts;F s); �; (tf;F f ))jB, respectively.

Using these trajectories, we construct an execution of A�B in a piecewise fashion. For

ease of notation, let us de�ne rk = now(�k), and r0 = ts. We now show how to construct a

trajectory !k for the time interval [rk; rk+1], where k � 0. Let il; jm be the greatest indices

such that �il and �jm occur before �k+1 in �, or 0 if no such events exist. De�ne ril to be

the now value of �il , or ts if il = 0; de�ne rjm analogously. (Notice that rk is the maximum

of ril and rjm .) For example, in Figure 2-3 and with k = 3, we have il = i2 and jm = j1.

We de�ne !k using !il and !jm using state composition, namely !k(t) = !il(t)�!jm (t).

We claim that !k is a trajectory on [rk; rk+1] forA�B. We prove this as follows. First, for all

t 2 [rk; rk+1], nowA(!il(t)) = nowB(!jm(t)) = t, and for all v 2 sites(A)\ sites(B) we have

by assumption that local timeA;v(t) = local timeB;v(t). It follows that !il(t) � !jm(t)) 2

states(A � B) for all t in the interval. Secondly, let rk � t1 < t2 � rk+1. By the

properties of A and B, respectively, we have that (!il(t1); �; !il(t2)) 2 trans(A), and

(!jm(t1); �; !jm(t2)) 2 trans(B). Also, for all v 2 sites(A) \ sites(B) we have by assump-

tion that local timeA;v(t1) = local timeB;v(t1) and local timeA;v(t2) = local timeB;v(t2). It

therefore follows that (!il(t1)� !jm(t1) ; �; !il(t2)� !jm(t2)) 2 trans(A�B), showing that

!k is a trajectory for A �B.

To complete the construction, we need to combine the trajectories by the visible ac-

tions of �. But this immediately follows since for k > 0, (l state(!k�1); �k; f state(!k)) 2

trans(A�B) by de�nitions. We conclude by noting that the execution fragment constructed

above agrees with the time forms (ts;F s) and (tf ;F f ).
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Corollary 2.4.1 Let A1 � A2 � � � �An be the composition of compatible mixed automata

A1; : : : ; An, and let ((ts;T s); �; (tf ;T f)) be a form for A1 � A2 � � � �An. Suppose that for

i = 1; : : : ; n there exist execution fragments of Ai whose timed traces are the projection of

((ts;F s); �; (tf ;F f)) on Ai. Suppose further that if v 2 sites(Ai) \ sites(Aj) for some i; j,

then we have local timeAi;v(t) = local timeAj;v(t) for all t 2 [ts; tf ]. Then there exists an

execution fragment of A1 � A2 � � � �An whose timed trace is ((ts;F s); �; (tf ;F f )).

Proof: By applying Theorem 2.4 to A1 and A2, and then to A1 �A2 and A3 etc.
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Summary

In this chapter we de�ned the mixed automaton model, which is the underlying computa-

tional model we shall consider in the remainder of this work. The mixed automaton model

is based on the timed I/O automata model of Lynch and Vaandrager [22, 20]. Our model

formalizes the notion of a system with local clocks. We de�ned the basic notions of execu-

tions and their timed traces, which roughly are the sequences of input and output events in

executions. We made a few notational conventions, described intuitively as follows.

� Clock locations are called sites.

� The real time of occurrence of an event � is denoted by now(�).

� For a site v and an event �, local timev(�), is the local time of occurrence of �, de�ned

by the value of the clock of v when � occurs.

� A bounded-drift clock is a clock whose rate of progress with respect to real time is

bounded by a drift lower bound and a drift upper bound. A (%; %)-clock is a bounded

drift clock with drift bounds 0 � % � %. A (1; 1)-clock is called a drift-free clock.

� An automaton is real-time blind if it cannot access the real time component of the

state. (It may access the local time component.)

� A state is quiescent if no locally-controlled action is enabled in it, and no such action

will become enabled by time passage alone.

An important feature of the model is that simple modules, under certain compatibility

conditions, can be combined to obtain a more complex module.
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Chapter 3

Clock Synchronization Systems

In this chapter we use the formalism developed in Chapter 2 to describe the clock syn-

chronization systems we shall be studying. The main idea in the system de�nition in this

chapter (�rst introduced by Attiya et al. [3]) is to partition the system into two: an active

part (called environment) that generates messages and delivers them, and a passive part,

played by the clock synchronization algorithm, whose role is to interpret the resulting com-

munication patterns. This is in contrast to conventional viewpoints, where synchronization

algorithms may initiate the sending of a message. Intuitively, in our framework algorithms

have to work with any possible message tra�c generated by the environment.

This chapter in organized as follows. In Section 3.1 we carefully de�ne the system, by

describing each of its basic components and the way they interact. This modeling is intended

to be reasonably close to the way systems are constructed, e.g., it includes de�nitions of

processors and communication links.

In Section 3.2 we shift our standpoint to a more conceptual one: we isolate the role of

the synchronization algorithm versus an adversarial environment, which controls the local

clocks, and message send and receive events. We de�ne the key notions of the view and the

pattern of an execution of a clock synchronization system, which describe the information

in the execution which is relevant for clock synchronization tasks. These notions are de�ned

with respect to an execution of the system. To capture the properties of distributed on-line

system (discussed in Chapter 4), we also de�ne the notion of local view of an execution,

which is the part of the view which can be known at a processor at a time point.

We conclude the system model chapter in Section 3.3, where we prove the basic property
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Clock Synchronization
 Algorithm (CSA)

controls synchronization output and
             message contents

Communication Links

control message delivery

Send Automaton

controls message emission

LocalClockSend_Message(m)
Recieve_message(m)

Send_Aug_Message(m,m’)
Recieve_Aug_message(m,m’)

Processor

(bounded drift)

Figure 3-1: The automata and interfaces at one node of a clock synchronization system.
Each processor has a local clock; only the send modules initiate message sending. The clock
synchronization modules must work using piggybacking on existing tra�c.

used in lower-bound arguments in this thesis. Intuitively, this property is that (1) all

executions that satisfy the timing speci�cation of the system are possible, and (2) the

output of a synchronization algorithm depends only on the view of the execution, which

contains local times of events, but no real times.

3.1 Speci�cations of System Components

The system has an underlying graph, which is a directed graph whose nodes represent

processors and whose edges represent unidirectional communication links. We call the

nodes of the underlying graph processors, to avoid confusion with nodes of other kinds of

graphs de�ned later.

Roughly speaking, the system we describe is as follows (see Figure 3-1). Each processor

has a bounded-drift clock (cf. De�nition 2.5). Processors communicate by sending messages

over the links. Message sends are initiated only by the send modules, in an arbitrary

fashion (i.e., a send action can be taken at any time). The clock synchronization algorithm

(abbreviated CSA henceforth) can only piggyback messages on the existing tra�c in order
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to carry out the speci�c synchronization task at hand.

In our notation, send modules output Send Message(m) actions. For each Send Message(m)

action at a processor v, the CSA at v must immediately output a Send Aug Message(m;m0)

action, where m0 is a message added by the CSA for communication with other CSAs. The

network may duplicate, lose, and reorder messages arbitrarily (but not corrupt their con-

tents). A message is received in a Receive Aug Message(m;m0) action, which is taken by

the network. For each Receive Aug Message(m;m0) action, the CSA at the receiving pro-

cessor \strips" m0 o�, and outputs Receive Message(m) to the send module. The contents

of the m0 �eld of messages is the sole way communication between di�erent CSA is realized.

We assume that when a message is received, lower and upper bounds on its time of

transit (which may be 0 and 1, respectively) are available to the CSA, as functions of the

message contents (e.g., its length) and the system speci�cation. The system is de�ned so

that all events are local, i.e., each event is an action of exactly one processor.

In the remainder of this section we de�ne formally speci�c automata for links and send

modules, and give certain conditions that any clock synchronization algorithm must meet.

3.1.1 Send Automaton

Intuitively, the role of a send automaton Av at processor v is to determine when to send

messages and to which neighbor. In general, these decisions may be based (perhaps non-

deterministically) on the local history and/or the local time (e.g., timeouts). In this thesis,

we concentrate on the highly unstructured automaton, in which messages may be sent at

any time to any neighbor.

We assume that send modules have bounded-drift clocks (cf. Def. 2.5). In Figure 3-2

we give a formal speci�cation of a send module. The de�nition uses the following notation.

For each processor v, N (v) denotes the set of neighbors of v in the underlying graph; �

denotes a (possibly in�nite) message alphabet. In Figure 3-2, as we do in the rest of this

thesis, we follow the convention that the actions are subscripted by processor names. As

we shall see, this is possible since every action in the system is associated with exactly one

processor. We usually omit subscripts when the context is clear.

Remark. The basic action of a send module is a point-to-point send. Our de�nition of

send modules includes all possible behaviors of message sends. In particular, a broadcast

or a multicast of a message to many processors can be modeled by many send actions taken
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Sites: a single site v

State:

now: a non-negative real number, initially 0
local time: a real number, initially arbitrary

Actions:

Receive Messageuv (m), for m 2 � and u 2 N (v) (input)
Pre: none
E�: none

Send Messageuv (m), for m 2 � and u 2 N (v) (output)
Pre: none
E�: none

�: (time passage)
Pre: b > 0

% � r � %

E�: now  now + b

local time  local time + r � b

Figure 3-2: Speci�cation of a send module Av at site v with a (%; %)-clock
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Sites: none

State

now: non-negative real number, initially 0
Q: a multiset of triples (m1;m2; t) 2 � ��0 �R+, initially ;

Transitions

Send Aug Messagevu(m1;m2), where m1 2 �, m2 2 �0 (input)
E�: choose an arbitrary integer i � 0

do i times
put (m1;m2; t) in Q, where t is an arbitrary number in [L(m1);H(m1)]

Receive Aug Messagevu(m1;m2), where m1 2 �, m2 2 �0 (output)
Pre: (m1;m2; 0) 2 Q
E�: remove a triple (m1;m2; 0) from Q

� : (time passage)
Pre: 0 � b � t for all (m1;m2; t) 2 Q
E�: Q f(m1;m2; t� b) j (m1;m2; t) 2 Qg

now  now + b

Figure 3-3: Speci�cation of a link automaton Lvu.

at the same real time. Notice also that a send automaton may stop sending messages at

some point, thus behaving like a process that crashed.

Example. Consider once again the sender automaton de�ned in Figure 2-2. It has the

same action signature as the general send module of Figure 3-2, but it is slightly more

structured: the Send Message action is not always enabled in sender. It is therefore clear

that the set of timed traces of sender is a strict subset of the set of timed traces of the

general send automaton of Figure 3-2.

3.1.2 Network

The network is modeled as a collection of links which facilitate communication among

the processors. Each link from a processor v to a processor u has Send Aug Messageuv input

action (generated by processor v), and Receive Aug Messagevu output action, (generated at

processor u).1 We assume very little about the faithfulness of the links: messages may be

1The interface between links and processors is sketched in Figure 3-1; a formal description is given in
Section 3.1.4, after we de�ne the CSA modules in Section 3.1.3.
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lost, duplicated, or re-ordered. We only require that any message received was indeed sent

(i.e., no corruption of message contents). We also require that the transmission time of each

message received is within some (possibly in�nite) interval which is known at the receive

point.

More precisely, we associate with each directed link (v; u) a link automaton Lvu which

is responsible for the delivery of messages from v to u. The messages have the form

(m1; m2), where m1 2 � and m2 2 �0, for some message alphabeta � and �0. Lvu has

no sites (i.e., no local clocks), but it satis�es the following timing speci�cation. For any

Receive Aug Message(m1; m2) step of the system we assume the existence of two num-

bers 0 � L(m1) � H(m1) � 1, such that if the receive event occurs at real time t,

then the (unique) send event of this message must have occurred within the time interval

[t � H(m1); t � L(m1)]. The number L(m1) is called the latency lower bound of m1, and

H(m1) is called the latency upper bound ofm1. Note that the latency bounds for a message

(m1; m2) may depend only on m1.

A complete description of a Lvu-automaton is is given in Figure 3-3.

Remarks.

1. In the formal description of Figure 3-3, latency bounds are determined when amessage

is input into the link. This is done for convenience only. In an equivalent formalization,

the latency bounds are determined only when a message is output. (The latter formulation

may seem more realistic in the sense that transmission time can be better estimated upon

delivery than upon sending.) The fact that we shall use in the sequel is that when a

message is received, one can determine, from the system speci�cations and the contents of

the message, what are the latency time bounds for that message.

2. Note that the speci�cation of the link is very general. In particular, a link may stop

delivering messages starting from some point, thus behaving like a crashed link. However,

the link speci�cation guarantees that if a message is received, then it was sent, i.e., there is

no corruption of messages.

Example. Let us de�ne a particular kind of links we call perfect asynchronous links. For

these links, the sequence of messages received is exactly the sequence of messages sent,

i.e., message are never lost, created, duplicated, nor re-ordered. The timing speci�cation

of these links, however, is the loosest possible: the latency bounds are 0 (lower bound)
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Sites: none

State

now: non-negative real number, initially 0
Q: a queue of triples (m1;m2) 2 ���0, initially empty

Transitions

Send Aug Messagevu(m1;m2), where m1 2 �, m2 2 �0 (input)
E�: enqueue (m1;m2) in Q

Receive Aug Messagevu(m1;m2), where m1 2 �, m2 2 �0 (output)
Pre: (m1;m2) is in the head of Q
E�: remove head of Q

� : (time passage)
Pre: b � 0
E�: now  now + b

Figure 3-4: Speci�cation of a perfect asynchronous link from v to u.

and 1 (upper bound) for all messages (see formal description in Figure 3-4). A perfect

asynchronous link is just a special case of the general link of Figure 3-3, in the sense that

the set of timed traces of a perfect asynchronous link is a subset of the set of timed traces

of general links.

3.1.3 Clock Synchronization Algorithm (CSA)

The CSA uses the readings of the local clock, and the messages sent and received, in order

to carry out some synchronization task (the de�nition of particular tasks is deferred to later

chapters). In this subsection we specify requirements that must be met by any CSA, and

point out what remains unspeci�ed.

Interface

CSA modules use two message alphabets for communication, � and �0, where � is used by

the send automaton, and �� �0 is used by the links. The CSA module at processor v has

the action signature described in Figure 3-5.

For output, CSA modules may have additional variables or actions. The de�nitions de-

pend on the speci�c synchronization task considered, which in turn depend the on de�nition
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Input actions

Send Messageuv (m), for m 2 � and u 2 N (v).
Receive Aug Messageuv (m1;m2) for (m1;m2) 2 ���0 and u 2 N (v).

Output actions

Send Aug Messageuv (m1;m2) for (m1;m2) 2 �� �0 and u 2 N (v).
Receive Messageuv (m), for m 2 � and u 2 N (v).

Figure 3-5: Interface of a CSA at processor v

of the full clock synchronization systems. We therefore defer them to Section 4.1.

Non-Interfering Filtering

The CSA modules use piggybacking on the messages generated by the send modules in

order to communicate among themselves. A CSA is not allowed to interfere with message

tra�c by delaying messages or by deleting parts of their contents. Informally, we think of

the CSA as a �lter that relays incoming and outgoing messages instantaneously between

the send and the link modules (see Figure 3-1), while \sticking" a few extra bytes on each

outgoing message, and \stripping" the corresponding bytes from incoming messages. We

call this property non-interfering �ltering.

To capture this property formally, we de�ne an auxiliary notion of a generic CSA in

Figure 3-6. There, time passage is blocked when there is some message to be processed by

the CSA. Using the speci�cation of the generic CSA, we de�ne non-interfering �ltering.

De�nition 3.1 A CSA is said to have the non-interfering �ltering property if its set of timed

traces is a subset of the set of timed traces of the generic CSA of Figure 3-6.

Remark. Notice that in an execution of an automaton with the non-interfering �l-

tering property, there is a natural correspondence between the Receive Message and the

Receive Aug Message events, and between the Send Message and the Send Aug Message

events.
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Sites: a single site v

State

now: non-negative real number, initially 0
local timev: real number, initially arbitrary
Qi: queue for symbols of �, initially ;
Qo: queue for symbols of ���0, initially ;
active: Boolean 
ag, initially false

Actions

Send Messageuv (m) (input)
E�: enqueue m in Qo

active  true

Send Aug Messageuv (m1;m2) (output)
Pre: m1 is at the head of Qo

E�: remove head of Qo

if Qo = Qi = ; then active  false

Receive Aug Messageuv (m1;m2) (input)
E�: enqueue m1 in Qi

active  true

Receive Messageuv (m1) (output)
Pre: m1 is at the head of Qi

E�: remove head of Qi

if Qo = Qi = ; then active  false

� : (time passage)
Pre: active = false

b > 0
% � r � %

E�: now  now + b

local time  local time + r � b

Figure 3-6: Code for a generic CSA with (%; %)-clock.
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Admissible CSAs

We now de�ne formally the requirements of clock synchronization algorithms. In addition

to formalizing our requirement that CSAs are allowed to use only piggybacking for commu-

nications, we impose a couple of additional technical requirements; these rule out algorithms

which are possible in our formal model, but are usually infeasible in practice.

First, we rule out the possibility that a CSA senses time passage directly: time passage

is con�ned to a�ect directly only the local clocks, and the CSAs are a�ected only by changes

in the local clocks. This requirement is formalized by the concept of real-time blindness (cf.

De�nition 2.6). Recall that the state of a real-time blind automaton can be decomposed to

real time, local times, and basic components. We remark that unless a CSA is trivial, its

output is de�ned in terms of its basic state.

Secondly, notice that in our model, the initial state provides an arti�cial synchronization

point for all processors in the system. Speci�cally, it is possible that upon initialization,

all CSA modules will record the initial value of their local time, thereby getting an accu-

rate snapshot of the local clocks in a perfectly synchronized manner. We rule out such

algorithms since the synchronous initialization point is only a convenient abstraction, and

cannot usually be implemented in practice. Formally, we require all start states of a CSA

automaton to be quiescent (see De�nition 2.7 for details). Intuitively, the implication of

having a quiescent initial state is that the automaton cannot \tell" how much time has

elapsed since the (abstract) initialization until the �rst local input action. Technically, no

locally-controlled actions are enabled at a quiescent state: only time passage and input

actions are enabled. Formally, we have the following lemma.

Lemma 3.1 Let e = h!0�1!1 : : :i be an execution fragment of an automaton A. If for some

i and t we have that the state !i(t) is quiescent, then the action �i+1 (if it exists) is an input

action.

Proof: If �i+1 does not exist, there is nothing to prove. Otherwise, we have that either

!i(t) = l state(!i) or else !i(t)
�
! l state(!i). In both cases, by De�nition 2.7, it must be

the case that l state(!i) is quiet, i.e., only time passage and input actions are enabled in

l state(!i). Since e is an execution fragment, �i+1 is enabled in l state(!i) and �i 6= �, and

the lemma follows.
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We summarize formally all the requirements a CSA has to satisfy in the following de�-

nition.

De�nition 3.2 A mixed automaton is called an admissible CSA if it has the external in-

terface speci�ed in Figure 3-5, it has the non-interfering �ltering property as speci�ed by

De�nition 3.1, it is real-time blind as speci�ed in De�nition 2.6, and all its initial states

are quiescent as in De�nition 2.7.

Henceforth, we restrict our attention to admissible CSAs only.

Latitude in CSA Speci�cation

De�nition 3.2 imposes a few severe limitations on CSAs. Let us explain roughly what

remains to be de�ned in a particular implementation of a CSA. First, the de�nition of

an admissible CSA does not specify how to compute the output. Secondly, by the non-

interfering �ltering property, whenever a Send Message(m1) occurs, a CSA must output a

Send Aug Message(m1; m2) action, but m2 is not speci�ed.

The intuition is that CSA modules have to produce some output (which may be either

some values, or some special action). To this end, CSA modules may have additional basic

state components, and they can communicate among themselves by using the \m2" �eld of

the messages.

3.1.4 Clock Synchronization Systems

Having de�ned the individual components, we are now in a position to de�ne the concept of

clock synchronization system. A clock synchronization system is de�ned by the composition

of a collection of send automata, link automata, and CSA automata. Formally, we �rst

compose pairs of send automata and CSAs that share a site. As mentioned before, we call

the resulting single-site mixed automaton a processor. We require that for each site there is

exactly one send module and one CSA (see Figure 3-1). To create the system automaton,

we compose the processors with the link automata.

In our de�nition of systems, each non time-passage action has a naturally associated site

of occurrence (there are no internal actions of the link automata). We use this association to

de�ne the local time of occurrence for each step in an execution. E.g., the local time of occur-

rence of a Send Messageuv(m) step in a given execution is local timev(Send Messageuv(m)).
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A clock synchronization system (excluding the CSAs) is thus speci�ed up to clock drift

bounds and message latency bounds. We shall refer to these as the real-time speci�cation

of the system (a formal de�nition is given later). We assume that the real-time speci�cation

of the system can be used by the CSA modules. In other words, the code for a CSA can

refer to clock drift bounds and message latency bounds. We argue that this assumption

is reasonable. For clocks, one usually has some bounds provided by the manufacturer.

For messages, some universal latency bounds are always valid: in all physical systems, the

transmission time of any message is at least 0 and at most 1. In many cases sharper

bounds are known. As we shall see, even using the universal bounds some non-trivial

synchronization can be attained by the CSAs. Sharpening the bounds may only result in

tighter synchronization.

3.1.5 Example: the Simpli�ed Network Time Protocol (SNTP)

In this section we give a concrete example of a clock synchronization system. Our example

is based on NTP (Network Time Protocol), the clock synchronization algorithm used over

the Internet [26]). We present a simpli�ed version of an NTP system, which we call below

SNTP.

In SNTP, we have only two processors, s and v, connected by a bidirectional communi-

cation link. Both processors have drift-free clocks. The particular synchronization task we

consider is that v needs to bound, at all times, the current reading of the clock of s. (This

is a special case of the \external synchronization" task, studied in Chapter 6.) Formally,

we require that the CSA module at v maintains two output variables, denoted ext L and

ext U , such that at any state x, local times(x) 2 [ext L; ext U ].

The send and the link automata of SNTP are more structured than the general modules

de�ned in Section 3.1. Speci�cally, the system architecture is as follows.

The send modules in SNTP are such that periodically, v sends a message to s, which

in turn responds by sending a message back to v.2 The link automata in an SNTP system

(Lsv and Lvs) are perfect asynchronous links (cf. Figure 3-4), i.e., all messages are delivered

in order, exactly once with latency bounds 0 (lower bound) and 1 (upper bound).

Before we describe the way the CSAs work in SNTP, notice that since the clocks of v and

2The sender automaton of Figure 2-2 can serve as a speci�cation for the send module of v; the send
module of s can be speci�ed as a slight variant of sender, where the pend 
ag is initially false.
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Figure 3-7: The total transit time of m and m0, TT , is the length of the shaded interval on
v's axis in (a). In (b), m is in transit TT time units, and in (c) m0 is in transit TT time
units.

s are drift-free, the di�erence between them is the same at all states of a given execution.

Therefore, in order to obtain bounds on the local time of s, it is su�cient to have the local

time at v, and bounds on the di�erence between the local time of v and of s at any state.

We now describe the CSA modules of SNTP with the aid of a concrete example (a formal

description is given in Figures 3-8 and 3-9). Consider the scenario depicted in Figure 3-7(a),

where v sends a message m to s, and s responds by sending m0 to v. The CSA modules

work as follows. When m is sent by v (point q), the CSA at v records the local time of the

send event in the variable LT1, i.e., it sets LT1 = local time(q). When m is received by the

source processor (point p), it records the local time of that event in the variable LT2, i.e.,

LT2 = local time(p). When the source sends m0 (point q0), m0 contains the values of LT2

and of the local time of the send event, denoted LT3 = local time(q0).

When m0 is received at v (point p0), v calculates TT , the total transit time of both

messages: denoting LT4 = local time(p0), this can easily seen to be TT = (LT4 � LT1) �

(LT3 � LT2) (see Figure 3-7 (a)).

Finally, bounds on the di�erence between v's clock and s's clock are obtained by bound-

ing the local time at the source, at the point at which m0 is received at v. The idea is as

follows. Let x denote the state of the system immediately after m0 is received. Since m0 is

in transit at least 0 time units (Figure 3-7 (b)), it must be the case that the local time at

the source when m0 is received at v is at least LT3, i.e., local times(x) � LT3. On the other

hand, since m0 was in transit at most TT time units (Figure 3-7 (c)), it must also be the
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case that the local time at the source when m0 is received at v is at most LT3 + TT , i.e.,

local times(x) � LT3 + TT . Since the local time of v at x is LT4, and since the di�erence

in local times between v and s is �xed throughout the execution, we have, for any state y

in the execution

local times(y)� local timev(y) = local times(x)� local timev(x)

2 [LT3 � LT4 ; LT3 + TT � LT4] ;

and hence,

local times(y) 2 [local timev(y) + LT3 � LT4 ; local timev(y) + LT3 + TT � LT4] :

When m0 is received the local time at v is LT4, and hence, at that time v sets ext L = LT3

and ext U = LT3 + TT . Whenever the local time increases at v, the variables ext L and

ext U are increased by the same amount.

It is easy to verify that the CSAs in SNTP are admissible in the sense of Def. 3.2. First,

the CSA modules have the interface of Figure 3-5. Secondly, the CSA modules satisfy the

non-interfering �ltering property: in fact, their code is based on the code of the generic

CSA in Figure 3-6. Thirdly, the CSA modules are easily seen to be real-time blind: their

state readily has now and local time components, and the rest is the basic component.

(Notice that the output variables are part of the basic component.) It is simple to verify

that the transitions depend only on the basic and the local time components of the clock

speci�cation. Finally, the initial state of the CSA modules are quiescent, as the only actions

enabled at any state reachable from the initial states by time passage are inputs and time

passage.

3.2 Environments and Bounds Mapping

In this section we take the �nal step in modeling clock synchronization systems. We divide

the system into two parts, one consists of the CSA modules, and the remainder is called the

environment. Intuitively, the idea is to view the aggregate of all send and link automata as

a single environment automaton (see Figure 3-10), where the goal of the CSA modules is to

try to get the tightest possible logical time for each observable behavior of the environment.
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Sites: a single site v

State

now: non-negative real number, initially 0
local time: real number, initially arbitrary
ext L: real number, initially �1
ext U : real number, initially 1
Qi: queue for symbols of �, initially ;
Qo: queue for symbols of ��R2, initially ;
active: Boolean 
ag, initially false
LT1: a real number, initially unde�ned

Actions

Send Messagev(m) (input)
E�: enqueue m in Qo

active  true

LT1  local time

Send Aug Messagev(m1; 0; 0) (output)
Pre: m1 is at the head of Qo

E�: remove head of Qo

if Qo = Qi = ; then active  false

Receive Aug Messagev(m1; hLT2; LT3i) (input)
E�: enqueue m1 in Qi

active  true

LT4  local time
TT  (LT4 � LT1)� (LT3 � LT2)
ext L LT3
ext U  LT3 + TT

Receive Messagev(m1) (output)
Pre: m1 is at the head of Qi

E�: remove head of Qi

if Qo = Qi = ; then active  false

� : (time passage)
Pre: active = false

b > 0
E�: now  now + b

local time  local time + b

ext L ext L+ b

ext U  ext U + b

Figure 3-8: Code of the CSA module in SNTP for processor v (single round-trip).
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Sites: the source site s

State

now: non-negative real number, initially 0
local time: real number, initially arbitrary
Qi: queue for symbols of �, initially ;
Qo: queue for symbols of ��R2, initially ;
active: Boolean 
ag, initially false
LT2: a real number, initially unde�ned

Actions

Receive Aug Messages(m1; 0; 0) (input)
E�: enqueue m1 in Qi

active  true

LT2  local time

Receive Messages(m1) (output)
Pre: m1 is at the head of Qi

E�: remove head of Qi

if Qo = Qi = ; then active  false

Send Messages(m) (input)
E�: enqueue m in Qo

active  true

Send Aug Messages(m1; LT2; LT3) (output)
Pre: m1 is at the head of Qo

LT3 = local time
E�: remove head of Qo

if Qo = Qi = ; then active  false

� : (time passage)
Pre: active = false

b > 0
E�: now  now + b

local time  local time + b

Figure 3-9: Code of the CSA module in SNTP for processor s.
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        Algorithm

Clock Synchronization
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Figure 3-10: The conceptual arrangement of the automata at a clock synchronization system
for the local competitiveness model.

In Section 3.2.1 we isolate the relevant information in executions of environments in the

notions of pattern and views. A pattern contains all the events with their real and local time

of occurrence, while a view does not contain the real time of occurrence. In Section 3.2.2 we

de�ne the concept of local view at a point in the execution, which is the portion of the view

that can be known at that point. In Section 3.2.3 we formalize the real-time speci�cation

of a system in the de�nition of bounds mapping. This de�nition allows us to treat message

latency bounds and clock drift bounds in a uniform way. The bounds mapping derived from

the real-time speci�cation of the system is called the standard bounds mapping.

3.2.1 Environments, Patterns, Views

We start with a formal de�nition of the notion of environment. Recall that the de�nition of a

send automaton includes the de�nition of the clock at its site. The environment automaton

de�ned below, therefore, controls the local clocks, message generation, and message delivery

in a clock synchronization system.

De�nition 3.3 (Environments) Given a clock synchronization system, the environment

is the mixed automaton de�ned by the composition of all send and link automata.

Our main interest is in executions of environments. The notion of execution contains

a great deal of information: for example, at any given time, the state of a link describes

precisely, how many copies of each message are in transit and when will they be delivered.

For synchronization purposes, however, it seems su�cient to match receive events with

send events, ignoring the interim. The concepts of patterns and views de�ned below get

rid of information in executions which is irrelevant for synchronization. Intuitively, a view

contains a set of points (which may be actions or just \placeholders" called null points),

with a graph structure which describes their order of occurrence, and a local time attribute
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for each point; a pattern contains also a real-time attribute for each point. The graph

structure is essentially the one described by Lamport [16]. Let us recall the following

standard graph-theoretic de�nitions.

De�nition 3.4 Let G = (V;E) be a directed graph. A sequence p0; p1 : : : ; pk is a path from

p0 to pk in G if pi 2 V for i = 0; 1; : : : ; k, and (pi�1; pi) 2 E for i = 1; 2; : : : ; k. A path from

p0 to p0 is a cycle. A point p is said to be reachable from a point q if there is a path from q

to p.

Before we make the de�nition, recall that in an execution, each event has its real time

of occurrence; since in clock synchronization systems each event has a unique processor in

which it occurs, we also have a unique local time of occurrence for each event.

De�nition 3.5 (Patterns and Views) Given an environment automaton A, a view is a

pair (G; local time), where:

� G = (V;E) is a directed graph. Each point p 2 V is either an action of a send

automaton in A, or a null point that is said to occur at some processor. The arc set

E is such that for each processor v, the subgraph induced by the set of all points that

occur at v is a directed path; in addition, for each Receive Messageuv(m) point in V

there is an arc
�
Send Messagevu(m);Receive Messageuv(m)

�
2 E.

� local time is a mapping from the point set V to R. For a point p 2 V , local time(p)

is called the local time of p.

A pattern is a triple (G; local time ; now), where (G = (V;E); local time) is a view, and now

maps the points of V to R+. For a point p 2 V , now(p) is called the real time of p.

Note that views and patterns contain only actions of the send automata. This information

is su�cient, since by the non-interfering �ltering property, CSAs must relay messages in-

stantaneously between the send automata and the links. In addition, recall that actions

of the links contain the messages \piggybacked" by the CSA modules, and therefore the

message contents depend on the speci�c CSAs in the system. In our de�nition, the view or

the pattern of an execution of an environment automaton is independent of the CSAs.
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Figure 3-11: An example of a scenario (a) with its pattern (b). Without the now attributes
of the points, the pattern is a view.

Example. Let us exemplify the concepts of views and patterns using a scenario that was

mentioned in the Introduction. We have a system that consists of two processors s and v,

connected by a bidirectional communication link. In Figure 3-11 (a) we give a time-space

diagram of the following scenario. At real time 0, processor v, whose local clock shows �1,

sends a message m to s; processor s receives m at real time 2, when its local clock shows 1.

Some distinguished event occurs at s at real time 2:5, when its local clock shows 2. (This

event may be an internal event such as 
ipping a bit, or just the fact that the local clock

shows 2.) At real time 3:5, when the local clock of s shows 3, s sends a message m0 to v;

m0 is received at v at real time 9, when its local clock reads 8.

In Figure 3-11 (b) we give an illustration of the pattern based on this scenario, with a

null point for the distinguished event. If we remove the now attributes of the points in the

pattern, the result is a view.

Remarks.

1. Null points in views have only two attributes, namely site of occurrence and local

time of occurrence. (In patterns, they also have real time of occurrence.) Null points will

be used to enable us to refer to points in which there is no action of the environment.

2. Notice that given an execution of the environment automaton (or a clock synchro-

nization system), its pattern and its view (without null points) are naturally de�ned, where

for each event there is a point, and for each point there is an outgoing arc connecting it

to the point that corresponds to the next event that occurs at the same processor (if such

a point exists), and each receive point has an incoming arc from the the send point of the

corresponding message. Similarly, we can speak about the view of a pattern.
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3. The reachability relation in views and patterns of executions is essentially the \hap-

pened before" relation described by Lamport [16]: a point p is reachable from a point q in

the graph of a view of an executions if and only if q \happened before" p.

Introducing null points into views and patterns. We shall introduce null points into

views (and patterns) by stating their processor of occurrence and local time (for patterns,

we shall also state their real time). We use the following convention: when introducing into

a view V a null point pv that occurs at a processor v at local time Tv, the resulting view

contains a new point only if there is no other point in V that occurs at v at local time Tv.

In case V is extended, the modi�cation of the arc set is naturally given: let p0 be the point

that occurs at v with highest local time such that local time(p0) < Tv, and let p1 be the

point that occurs at v with smallest local time such that local time(p0) > Tv. In the view

that contains the null point pv, we have the additional edges (p0; pv) if p0 exists, and (pv; p1)

if p1 exists, and we delete the arc (p0; p1) if both p0 and p1 exist.

We follow the same procedure when introducing null points into patterns.

3.2.2 Local Views

The motivation for the de�nition of a view is algorithmic: CSA modules have access only

to the information contained in views, as opposed to patterns. (A precise statement of

this intuition is formalized in Theorem 3.4.) However, views are de�ned with respect to a

complete execution, while we shall usually require CSA modules to produce output before

an (in�nite) execution is over... To capture this idea, we de�ne the concept of local view at

a point.

De�nition 3.6 (Local View) Given a view V = (G; local time) and a point p0 2 V, the

local view of V at p0, denoted prune(V ; p0), is the restriction of V to the points p0 such that

p0 is reachable from p0 in G. The local view of V at processor v at time T is de�ned to be

prune(V ; pv), where pv is a null point that occurs at v at local time T .

For clock synchronization systems, as de�ned in this chapter, we have the important

property that any local view of an execution may actually be the view of the full execution.

We prove this formally in Theorem 3.2 below.

First, we de�ne a notion of pruned execution. Informally, the pruned execution of an

automaton A in a clock synchronization system with respect to some point p is the portion
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of the execution of A that \happened before" p. An additional complication in the de�nition

is due to the fact that in a view, only actions of the send automata are present; the actions

of the link and CSA modules are inferred by the the non-interfering �ltering property of

the CSAs, which matches Receive Message and Send Message events (of send modules and

CSAs) with Receive Aug Message and Send Aug Message events (of links and CSAs).

De�nition 3.7 Let e be an execution of a clock synchronization system S, and let p be any

point in e. The pruned execution of an automaton A with respect to p, denoted prune(ejA; p),

is de�ned as follows.

� If A is a send automaton, then prune(ejA; p) is the pre�x of ejA up to the last event

q such that p is reachable from q in V.

� If A is a CSA automaton at a processor v, then prune(ejA; p) is the pre�x of ejA up to

the event which corresponds to the last event in prune(ejBv ; p), where Bv is the send

module at v.

� If A is a link automaton connecting processors u and v, then prune(ejA; p) is the pre�x

of ejA up to the last event in either prune(ejCv ; p) or prune(ejCu; p), where Cv and Cu

are the CSA modules at v and u, respectively.

Note that if p is an event of A, then the last action in prune(ejA; p) is p.

We can now state and prove the property of local views.

Theorem 3.2 Let V be a view of an execution e of a clock synchronization system, and let

p be any point (possibly a null point) in V. Then there exists an execution e0 of the system

whose complete view is prune(V ; p), and such that for each CSAmodule Cv, prune(ejCv ; p) =

prune(e0jCv ; p).

Proof: We start by de�ning executions for each component of the system separately.

Consider an arbitrary send module Av. By the speci�cation of send modules, it is clear

that prune(ejCv ; p) can be extended to a full execution e0Av of Av with no events other than

the ones in prune(ejCv ; p). Furthermore, this can be done in a way such that ejAv and e0Av

have the same clock functions (cf. Def. 2.12).

Next, consider a link automaton Lvu. Since link automata can drop messages arbitrarily,

we have that for any execution eLvu of Lvu and for any point qv, there exists an execution
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e0Lvu, such that e0Lvu and eLvu have the same view up to point qv, and such that in e
0
Lvu

there

are no Receive Aug Message events after qw. We thus get executions of e0Lvu for all links

Lvu whose views agree with V for all points up to the last point in prune(ejLvu; p).

Using Corollary 2.4.1, we can obtain from the executions e0Av of all send modules Av,

and from the executions e0Lvu of all links Lvu, an execution e0E of the environment, that has

view prune(V ; p), and such that e0E and e have the same clock functions.

Consider now a CSA module Cv at a processor v. We can extend prune(ejCv ; p) to a full

execution e0Cv of Cv that has the same clock function as in ejCv , and in which no further input

actions are taken. Since all the output actions Cv may take, by the non-interfering �ltering

property, are in e0Cv , it must be the case that e
0
Cv

has the same view as prune(ejCv ; p).

By construction, the execution e0A of the environment and the executions e0Cv of the CSA

modules Cv agree on the actions and the clock functions of the sites they share. Hence,

using Corollary 2.4.1 once again, we can obtain an execution e0 of the system, whose view

is prune(V ; p).

3.2.3 Representation of Real-Time Speci�cation

Our next step is to give a more convenient representation for the real-time speci�cation of an

environment automaton. Recall that we have modeled real-time speci�cations using clock

drift bounds (denoted % and %) and message latency bounds (denoted L(m) and H(m)). In

this section we state these speci�cations as bounds on the di�erence between the real time

of occurrence of pairs of points.

We shall make frequent use of the following concepts.

De�nition 3.8 (Actual and Virtual Delays) Let p and q be two points of a given pat-

tern P. The actual delay of p relative to q in P, and the virtual delay of p relative to q in

P, are de�ned by3

act delP(p; q) = nowP(p)� nowP(q) ;

virt delP(p; q) = local timeP(p)� local timeP(q) :

3Throughout this work, we use the following rule when de�ning a di�erence of two quantities: F (x;y) =
f(x)� f(y), i.e., subtract the second quantity from the �rst.

57



The de�nition of virtual delays extends naturally when we are given only a view.

We also use the following notion.

De�nition 3.9 (Adjacent Points) Two points p; q in a given view V = (G; local time)

are called adjacent points if there is a directed arc between them in G.

More intuitively, the above de�nition (in conjunction with Def. 3.5) says that two points

are called adjacent if they occur one after the other in the same processor, or if one is a

send event and the other is the corresponding receive event.

Using the above de�nitions, we de�ne the key concept of bounds mapping.

De�nition 3.10 (Bounds Mapping) A bounds mapping for a view V is a function B

that maps every pair p; q of adjacent points in V to a number such that �1 < B(p; q) � 1.

A pattern with view V is said to satisfy B if for all pairs of adjacent points p; q we have

act del(p; q) � B(p; q).

The general notion of bounds mapping as de�ned above is not necessarily related to

the real-time speci�cation of the environment. The connection is made in the notion of

standard bounds mapping, de�ned as follows.

De�nition 3.11 Let B be a bounds mapping for a view V of an execution of a clock syn-

chronization system. B is said to be the standard bounds mapping for V if the following

holds.

� For a message m with send point p, receive point q, and latency bounds L(m) and

H(m), we have B(q; p) = H(m) and B(p; q) = �L(m).

� Let p be the immediate predecessor of q at a processor with (%; %)-clock. Then B(q; p) =

virt del(q; p)=%, and B(p; q) = virt del(p; q)=%.

The following lemma can be thought of as the \soundness" of the standard bounds

mapping.

Lemma 3.3 All patterns of executions of an environment satisfy their standard bounds

mapping.
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Proof: By de�nitions.

Remarks.

1. It is clear from De�nition 3.10 that the notion of bounds mapping is in fact more

general than the notion of real time speci�cation used so far: using bounds mapping, we

can model clocks with drift bounds that are not �xed.

2. The standard bounds mapping has the property of being stated in terms of quantities

that are available to the CSA, either as system speci�cation (i.e., L(m); H(m); %; %), or as

the local times. Consequently, we may assume without loss of generality that given an

environment, the standard bounds mapping can be used in specifying CSA modules.

3.3 The Completeness of the Standard Bounds Mapping

In this section we state and prove the main property of the system we shall use for proving

lower bound results. First, we show that if a given pattern has a view of some execution

of the system, and if it satis�es the timing speci�cation of the system, then in fact there

exists an execution with that pattern. This can thought of as a richness property of the

set of executions of the system. In addition, the theorem below says that regardless of

the underlying execution, the basic state of CSA modules (which determines the output)

depends only on the view of the execution. To this end, we introduce the following de�nition.

De�nition 3.12 Two executions e = !0�1!1 : : : and e
0 = !00�

0
1!

0
1 : : : of a CSA are said to

be equivalent if the following conditions hold.

(1) For all i, we have �i = �0i and local time(�i) = local time(�0i).

(2) For all i, for any state s in the range of !i and any state s0 in the range of !0i, we

have basic(s) = basic(s0).

Condition (1) says that for all i, the ranges of local times in the corresponding trajectories

!i and !0i are the same. Also, recall that by the real time blindness of CSAs, the basic

component of the state is constant over a trajectory, and hence Condition (2) above says

that for all i, the basic components of the state in the corresponding trajectories !i and !
0
i

are the same.

The following theorem can also be viewed as a converse to Lemma 3.3. In a sense, we

show that the standard bounds mapping is complete with respect to a view.
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Theorem 3.4 Let V be a view of an execution e of a clock synchronization system S, and

let B be the standard bounds mapping for V. Let P be any pattern of the environment

automaton with view V. If P satis�es B, then there exists an execution e0 of S with pattern

P. Moreover, for each CSA module Cv, the executions of Cv in e and e0 are equivalent.

Proof: The proof is straightforward, but somewhat tedious. Our strategy to construct e0 is

as follows. We �rst construct individual executions for the send modules, the link automata

and the CSA modules of S, based on P 0 and on e. Then we apply Corollary 2.4.1 and get

an execution e0 of S with the required properties. The idea is that pairs of real and local

times given in P can be used { by interpolation { to de�ne complete clock functions for the

desired execution e0. With these clock functions, we get executions of the send automata

and the CSA module quite easily, since they are real-time blind. For the link automata,

some extra work is needed, because their state is a�ected directly by time passage.

De�ning clock functions. We de�ne a function local time0v : R+ 7! R for each site v 2

sites(S). These functions describe the local times at the sites as a function of real time.

(Whereas a clock function is usually de�ned in terms of an execution, here we �rst de�ne

the clock function and then proceed to construct the execution.) Some values of the clock

function are already speci�ed by the pattern; intuitively, our construction simply connects

these values by linear interpolation, with (possibly) some special treatment of the �rst and

last segments. Formally, for each site v, we de�ne a local clock function local time 0v(t) for

all t � 0 using the given pattern P and the following rule.

1. If there exists in P some point pi that occurs at v with now(pi) = t, we set local time0v(t)

to be local timeP(pi).

2. Otherwise, let p0 be the point in P with maximal real time such that p0 occurs at v

and now(p0) < t. Let t0 = now(p0) and T0 = local time(p0). If there is no such point,

t0 and T0 are unde�ned. Similarly, let p1 be the pont in P with minimal real time

such that p1 occurs at v and now(p1) > t. Let t1 = now(p1) and T1 = local time(p1).

If there is no such point, t1 and T1 are unde�ned. We distinguish among the following

cases.
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(a) If both p0 and p1 are unde�ned (i.e., no point occurs at v), we de�ne for all t � 0,

local time0v(t) = c � t ;

where c is any constant in the range [%
v
; %v].

(b) If only p0 is unde�ned (i.e., t is smaller than the real time of the �rst point that

occurs at v), we de�ne

local time 0v(t) = T1 � c
0 � (t1 � t) ;

where c0 is any constant in the range [%
v
; %v].

(c) If only p1 is unde�ned (i.e., t is larger than the real time of the last point that

occurs at v), we de�ne

local time0v(t) = T0 + c00 � (t� t0) ;

where c00 is any constant in the range [%
v
; %v].

(d) If both p0 and p1 are de�ned (i.e., there are points that occur at v with real time

strictly less and strictly more than t), we de�ne

local time 0v(t) = T0 + (t� t0) �
T1 � T0
t1 � t0

:

Notice that local time0v is well de�ned in case (2d) since t0 < t < t1. It is straightforward

to verify that the local clock functions thus de�ned are continuous. Also, since % > 0 and

since P satis�es the standard bounds mapping, we get that the local clock functions are and

monotonically increasing. Therefore, local time0v is invertible (at least) on [T s
v ;1], where

T s
v is the local time of the �rst point in P that occurs at v (if it exists). We denote the

inverse function by by local time�1v .

This concludes the de�nition of the local clock functions. Using these functions, we next

de�ne executions of the individual components of the system. The idea is to use the original

execution e, keep the local times of the points, but \shift" and \stretch" the real times so

that they agree with P .
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Send modules. We now construct an execution e0Av of a send module Av that agrees with

P . Most of the work was already done in the de�nition of the local clocks, since the state of

a send module consists merely of local and real times. More speci�cally, let the subsequence

of actions of Av in P be PAv = h�
S
1 ; �

S
2 : : :i. Since Av has no internal actions, all its steps are

speci�ed by PAv . To get a complete description of the desired execution e0Av = h!
S
0 �

S
1 !

S
1 : : :i

of Av, we need only to specify the trajectories !Si . Recall that the state of a send module is

a pair (now ; local time) of real and local time. Let i � 0, and let now(�i) � t � now(�i+1),

where we de�ne now(�S0 ) = 0, and if there is no �i+1, we de�ne now(�i+1) = 1. Then we

de�ne the trajectory !Si by !Si (t) = (t; local time 0v(t)).

It is straightforward to see that e0Av thus constructed is an execution of Av: we �rst

need to check that !Si is a trajectory for all i � 0. This is easy, since the only restriction

on time passage steps is that they observe the drift bounds, and this is guaranteed by the

construction. Since the discrete actions have no e�ect on the state, all that remains to be

veri�ed is that !S0 (0) is a start state, which is true because now(!
S
0 (0)) = 0 by construction.

CSA modules. Consider a CSA module at site v, and let ejCSA = hw0�
C
1 w : : :i be the

projection of e on that module. By Lemma 2.3, ejCSA is an execution of the CSA. We now

construct another execution e0CSA = h!C0 �
C
1 !

C
1 : : :i of the CSA, which agrees with P on the

visible actions. The �rst step in the construction is to �x the sequence of actions in e0CSA

to be the same as in ejCSA. To complete the speci�cation of e0CSA, we need to de�ne the

trajectories.

It is convenient to �rst de�ne local and real times for the steps. For the visible steps in

e0CSA, we have local and real times already speci�ed by P . For internal steps, the idea is

to keep the local times as in e, and to set the real time to be in accordance with the local

clock functions de�ned above. Speci�cally, let �Ci be an internal step of the CSA. We abuse

notation slightly and denote by local timeejCSA local clock function in e at site v. We de�ne

local timee0
CSA

(�Ci ) = local timeejCSA(�
C
i ) :

To set the now component, we use the inverse of the local clock function as follows:

now e0
CSA

(�Ci ) = local time�1v (local timeejCSA(�
C
i )) ; (3.1)
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i.e., the real time of occurrence of an action �C is given by the unique t such that local time0v(t)

is the local time of occurrence of �C in ejCSA (we shall see later that this number is well

de�ned).

We now de�ne the trajectories !Ci in e0CSA for all i � 0. Again, we use ejCSA. More

speci�cally, to de�ne a trajectory !Ci in e0CSA, we use the parallel trajectory wi in ejCSA as

follows. Let t 2 [now(�Ci ); now(�
C
i+1)] for any i � 0 (where we de�ne now(�C0 ) = 0 and if

�Ci+1 does not exist, we de�ne now(�Ci+1) =1). The trajectory !Ci is de�ned by

now e0
CSA

(!Ci (t)) = t

local timee0
CSA

(!Ci (t)) = local time0v(t)

basice0
CSA

(!Ci (t)) = basicejCSA(wi(t
0)) ; (3.2)

where t0 is any number in the domain of wi.

Let us show that our construction is well de�ned. First, note that since ejCSA is an execu-

tion of a CSA, its initial state must be quiescent, and hence, by Lemma 3.1, �C1 is not an in-

ternal action of the CSA. Therefore, there is a step of the send module in P whose local time

is local time(�C1 ), which implies that local time�1v is de�ned over [local timeejCSA(�
C
1 );1].

This, in turn, implies that Eq. (3.1) is well de�ned. Finally, note that by real-time blindness,

the basic component of the state of a CSA is �xed throughout a trajectory, and therefore

Eq. (3.2) is not ambiguous.

Next, notice that conditions (1) and (2) in the statement of the theorem are satis�ed by

the construction. This is true since for all i � 0, all the states in the range of !Ci have the

same basic component, which is the same as the basic component of all states in the range

of wi; in addition, for i � 1, the intervals of local times in !Ci and wi are the same.

We now show that e0CSA is an execution of the given CSA. To show that we use heavily

the real-time blindness property. First, we prove that !Ci is a trajectory of the CSA for

all i � 0. Let s1 = !Ci (t) and be s2 = !Ci (t
0) be two states, where t < t0. Let s�1 and s�2

be the states in the corresponding trajectory wi that satisfy local time(s�1) = local time(s1)

and local time(s�2) = local time(s2). This is possible since by construction, wi and !Li agree

on the local time in their endpoints, and since the local clock function is continuous. Also

by construction, basic(s1) = basic(s�1) and basic(s2) = basic(s�2); moreover, it is easy to see

that local time(s2)� local time(s1) 2 [%(t0� t); %(t0� t)] by the assumption that P satis�es
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the standard bounds mapping. Since s�1
�
! s�2, we get from the real-time blindness of the

CSA and that s1
�
! s2, as required in this case.

Consider now a discrete action �Ci . Let s1 = l state(!Ci�1), s2 = f state(!Ci ), s
�
1 =

l state(wi�1), and s�2 = f state(wC
i ). By construction we have that s1 and s�1 may di�er

only in their now component, and similarly s2 and s�2. From the construction we also have

that now(s1) = now(s2) and local time(s1) = local time(s2). Since we know that s�1
�Ci! s�2,

we get from real-time blindness that s1
�Ci! s2, as required for this case. This completes the

proof that e0CSA is an execution of the CSA.

Link automata. Consider now a link automaton Luv. By the non-interfering �ltering prop-

erty, in e there exist natural bijections between the Send Aug Messagevu actions of Luv and

the Send Messagevu actions of Au, and between the Receive Aug Messageuv actions of Luv

and the Receive Messageuv actions of Av. Since all the actions of Au and Av appear also in

P , using these bijections we can de�ne a sequence PLuv = h�
L
1 ; �

L
2 : : :i which contains all

the actions of Luv that correspond to actions of Av in P . Notice also that using these bijec-

tions, each event in PLuv inherits a now component, and that the causality mapping 
 can

be extended so that for each Receive Aug Message event p there is a Send Aug Message

event q satisfying q = 
(p). We use these extended notions in the construction below.

Our goal is to construct an execution e0Luv = h!
L
0 �

L
1 !

L
1 : : :i of Luv that agrees with PLuv.

Similarly to the case of send modules, Luv has no internal steps, and hence all the steps �Li

are already speci�ed by PLuv . It remains to specify the trajectories of e0Luv . We shall use

the following notation.

Notation 3.13 The contents of the multiset Quv at state s is denoted Q(s).

We de�ne Q((!L0 (0)) = ;, and now(!L0 (0)) = 0. The rest of the construction is done

inductively. Suppose that f state(!Li ) is de�ned. For t in the domain of !Li , we de�ne

now(!Li (t)) = t, and Q(!Li (t)) is de�ned by a bijection from Q(f state(!Li )) using the

following rule:

Q(f state(!Li )) 3 (m1; m2; t
0)  ! (m1; m2; t

0 � t+ f now(!Li )) 2 Q(!
L
i (t)) : (3.3)

In other words, the third component t0 in each triple (m1; m2; t
0) stored in Quv at the start

of !Li is reduced by the amount of time that has elapsed since the start of !Li . To de�ne
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the start state of trajectories !Li with i > 0, we de�ne Q(f state(!Li )) as a modi�cation of

Q(l state(!i�1)), with the help of the (extended) causality function 
. Speci�cally, suppose

�rst that �Li = Send Aug Message(m1; m2). Then we de�ne

Q(f state(!Li )) = Q(l state(!i�1)) [
n
(m1; m2; act del(�

L
j ; �

L
i )) : 
(�Lj ) = �Li

o
: (3.4)

In words, Quv is augmented by one triple for each copy of (m1; m2) that will be received in

the future, as speci�ed by 
.

If �Li = Receive Aug Message(m1; m2), we de�ne

Q(!Li (t)) = Q(l state(!i�1)) n f(m1; m2; 0)g : (3.5)

In words, one copy of (m1; m2; 0) is removed from Quv. We show below that (m1; m2; 0) 2

Q(l state(!i�1)) in this case. This concludes the con of e0Luv .

We now have to show that e0Luv is an execution of Luv. The key to the proof is a certain

invariant; to state it, we introduce another piece of notation.

Notation 3.14 For a state s in e0Luv, R(s) is the set of all Receive Aug Message events

that occur after state s and such that for all p 2 R(s), 
(p) occurs before s.

With this notation, we state the following invariant, parameterized by a state s of e0Luv :

Invariant I(s): There exists a bijection R(s)$ Q(s) that maps each (m1; m2; t) 2

Q(s) to a step �Lk 2 R(s) such that �Lk = Receive Aug Message(m1; m2) and

now(�Lk )� now(s) = t.

As a preliminary observation, notice that I(s) implies that for all (m1; m2; t) 2 Q(s) we

have t � 0, which implies that s 2 states(Luv).

Our �rst step is to prove that if I(f state(!Li )) holds for some i � 0, then !Li is a

trajectory for Luv. Consider two states s = !Li (t) and s
0 = !Li (t

0) where t < t0, and suppose

I(s) holds. We argue that for all (m1; m2; t) 2 Q(s), we have that t � now(s0) � now(s):

for suppose not, i.e., there exists a triple M = (m1; m2; t) with t < now(s0)�now(s). Then

by I(s), the corresponding Receive Aug Message(m1; m2) event �
L
j occurs after s, and for

that event we have now(�Lj ) = now(s) + t < now(s0). It follows that now(s) � now(�Lj ) <

now(s0), contradicting the assumption that s and s0 are states on the same trajectory, i.e.,
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that there is no discrete action that occurs between them. Using this fact, it is easy to

verify that (s; �; s0) 2 trans(Luv) according to the construction above.

Next, we show that if I(s) holds, and s
�
! s0, then I(s0) holds. Let h be the bijection

between R(s) and Q(s) that satis�es the requirement of I(s). Let g be the bijection induced

by the construction between the elements of Q(s) and Q(s0). More speci�cally, g is the

bijection de�ned in Eq. (3.3). We thus de�ne h0 to be the composition of h and g. It is

straightforward to verify that h0 satis�es the requirements of I(s0).

We have proven that if I(f state(!Li )) holds, then I(!
L
i (t)) holds for all t for which

!Li (t) is de�ned, and in particular, I(l state(!Li )) holds, if it exists. We now show, by

induction on i, that I(f state(!Li )) holds for all i � 0. Trivially, I(f state(!L0 )) holds

because Q(!L0 (0)) = ;. For the inductive step, let i > 0. By the previous claim and the

induction hypothesis, I(s) holds for s = l state(!Li�1). Let h denote the bijection that

satis�es I(s). Let s0 = f state(!Li ). To show that I(s0) holds, we de�ne a bijection h0 for s0.

Suppose �rst that �Li = Send Aug Messagevu(m1; m2). Then by construction Q(s0) �

Q(s). Furthermore, by Eq. (3.4), there exists a bijection f between Q(s0) n Q(s) and

R(s0) n R(s). We can therefore de�ne h0 to be the extension of h by f , and I(s0) in this

case.

Suppose now that �Li = Receive Aug Messageuv(m1; m2). Notice that by the de�nition

of R(s), we have �Li 2 R(s). Also, by I(s), we have M = (m1; m2; 0) 2 Q(s). Moreover,

it must be the case that h(M) = �Li . By Eq. (3.5), we have that Q(s0) = Q(s) n fMg,

and by de�nition, we have that R(s0) = R(s) n f�Li g. We can therefore de�ne h0 to be the

restriction of h on Q(s0) and R(s0), and h0 satis�es the requirements of I(s0). This completes

the inductive step.

Finally, note that the fact that I(l state(!Li )) holds for all i � 0 implies that by con-

struction,
�
l state(!Li ); �

L
i+1; f state(!

L
i+1)

�
2 trans(Luv) :

We conclude the argument that e0Luv is an execution of Luv by observing the trivial fact

that !L0 (0) is a start state of Luv.

Concluding argument. To conclude the proof of the theorem, we argue that there exists an

execution e0 of S such that its projections on the send automata, link automata, and CSA

automata are the executions constructed above. To do that, we �rst extend P to be a form
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for S. This is straightforward: we insert into P all visible actions of the sub-executions we

constructed, and for each point, we extend the local time to be a times form using the local

clock functions. Also, we de�ne a form for S with start real time ts = 0 and �nish real time

tf = 1; for all v 2 sites(S) we de�ne local start times T s(v) = local time 0v(0), and local

�nish times T f(v) = 1. Now, to apply Corollary 2.4.1 all that remains is to verify that

the local times in the sub-executions constructed above agree on shared sites; but this is

immediate, since for each site we used the same local clock function. Therefore, there exists

the desired execution e0.
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Summary

In this chapter we de�ned clock synchronization systems, using the mixed I/O automata

formalism. Our model is geared towards the local competitiveness analysis presented in

Chapter 4. Intuitively, the basic assumptions of the model are as follows.

� The system has an underlying communication graph over which messages are com-

municated.

� Each processor has a local clock with known bounds on the rate of progress, called

clock drift bounds.

� When a message is received, there are known bounds on its time of transit, called

message latency bounds. However, messages may be lost, duplicated, and delivered

arbitrarily out of order.

� Send events are generated arbitrarily by a send module at each processor.

� The clock synchronization algorithm at each processor, abbreviated CSA, may only

append information to outgoing messages, and strip the corresponding information

that arrives on incoming messages. CSAs may not interfere with message tra�c

otherwise, and their only access to time is via the local clocks.

We also de�ned the following concepts.

� An environment is the composition of all send modules and communication links.

Thus an environment controls send and receive events.

� A pattern of an execution of an environment is a directed graph that describes the

execution, where each event is a point, and for each point we have local and real time

of occurrence.

� A view is a pattern without the real time attribute for points. Views of executions of

environments contain information that can be used by CSAs for computation, while

the real time information in patterns is available only for analysis.

� a local view at a point p is the restriction of the view to all the points that \happened

before" p (as de�ned by Lamport [16]). We proved that any local view of an execution

may be the view of a full execution of the system.
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� The virtual delay of a pair of points, denoted virt del , is the local time of occurrence

of the �rst point minus the local time of occurrence of the second point.

� The actual delay of a pair of points, denoted act del , is the real time of occurrence of

the �rst point minus the real time of occurrence of the second point.

� Two points are called adjacent if either they occur at the same processor one after the

other, or they correspond to the send and receive event of the same message.

� A bounds mapping for a view speci�es time upper bounds for the actual delays of

adjacent points. Bounds mapping describes lower bounds as well, by reversing the

order of the points.

� The standard bounds mapping is the \o�cial" bounds mapping, derived from message

latency bounds, clock drift bounds, and local times.

We also proved the fundamental theorem of our model, which says that all the patterns

with a given view which satisfy the standard bounds mapping, are possible patterns of

executions of the system. The theorem also implies that the output of CSAs depends only

on the view of the execution.
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Chapter 4

Problem Statements and Quality

Evaluation

In this chapter we de�ne the synchronization tasks considered in this thesis, and the way

we evaluate the performance of synchronization algorithms. As we shall see, there is a

natural concept of tightness of synchronization for the clock synchronization problems we

de�ne; the tightness is measured in non-negative real numbers, and an output will be

considered \good" if its tightness is small. However, it is not clear a priori what is the

input for synchronization algorithms. One classical answer for this question is that the

input is the system speci�cation. A typical example for this approach is the paper by

Halpern et al. [13], where designing a synchronization algorithm is viewed as a \game

against nature:" an algorithm is called optimal if it produces the best output under the

worst-case scenario allowable by the system speci�cation. This approach has the appealing

property of robustness, but it may give rise to algorithms that produce the best worst-case

result always, even if the actual execution does not happen to be the worst possible (the

algorithm given in [13] has this property). This is a disadvantage if the environment is not

necessarily adversarial, as may be the case for clock synchronization systems.

Another approach, developed by Attiya et al. [3], is that the input for a synchroniza-

tion algorithm is not only the system speci�cation, but also the actual execution, or more

precisely, the view of the execution.1 In this approach, an algorithm is called optimal if it

1Recall that views consist of the events and their local times of occurrence, while executions contain also
the real times of occurrence, which is not available for computation (see Def. 3.5). We remark that Attiya
et al. used the term execution to denote the concept we call view.
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produces the best possible output for each given input, i.e., for each possible view of an ex-

ecution (and the system speci�cation for that view). The latter approach is more attractive

since an optimal algorithm in this sense has a stronger guarantee of output quality than

the guarantee made by an optimal algorithm in the former sense.

Both approaches of [3] and [13], however, su�er from an important disadvantage, which

is that the algorithms they consider are centralized and o�-line. More speci�cally, the

algorithms are based on the implicit assumption that all input has been gathered and it is

available at a single processor for computation. This is clearly a drawback, since the output

of clock synchronization algorithms typically needs to be available all the time, i.e., on-line.

For example, in the approach of [3], the input is a view of the execution, which contain

certain messages. Notice that this view can be made available at a single processor only

if more messages are sent, in which case the view is necessarily extended. Thus an output

considered optimal for a view may not be optimal when that view is extended to enable

computation.

The approach we present in this chapter can be viewed as a combination of the optimality

notion of [3] with the well-known concept of competitive analysis of on-line algorithms

[32, 23], using Lamport's causality relation [16]. More speci�cally, in competitive analysis

the quality of the output produced by an on-line algorithm is evaluated at each point with

respect to the input known at that point. In the centralized on-line setting, all past input

is known, and the future input is unknown. In the distributed setting, even past input is

unknown if it is remote and has not been communicated. We therefore de�ne the input

at a point to consist of what can be known locally (called local view in Def. 3.6). We

measure the quality of the output of an algorithm A with respect to the quality of the best

possible output for the given local view. We call the ratio between these quantities the local

competitiveness of algorithm A.

The remainder of this chapter is organized as follows. In Section 4.1 we give formal

de�nitions for the synchronization tasks considered in this thesis. The de�nition of locally

competitive algorithms is given in Section 4.2. In Section 4.3 we discuss the concept of local

competitiveness in a more general setting.
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4.1 Synchronization Tasks

In this section we de�ne the speci�c synchronization tasks we consider in this thesis, namely

external and internal synchronization. For each problem we give a re�ned speci�cation of

the system architecture, a correctness requirement, and a de�nition of tightness.

4.1.1 De�nition of External Synchronization

The motivation for external clock synchronization is systems where one of the clocks is

assumed to show the standard time, and the goal is that all clocks in the system will show

this standard time as accurately as possible. The name \external synchronization" stems

from the assumption that the designated clock serves as a source of the external standard

time into the system. Formally, we shall use the following de�nition.

An external synchronization system is a clock synchronization system with the following

properties. There exists a distinguished processor s, called the source processor, whose local

clock is drift-free. A CSA module at each processor v has two output variables, denoted

ext Lv and ext U v.

For any given state x, let source time(x) denote the local time at the source in x. The

correctness requirement of an external CSA at any processor v is that at every reachable

state x, the output variables at v satisfy source time(x) 2 [ext Lv; ext U v].

The external tightness of synchronization at processor v at some state is the di�erence

(ext U v � ext Lv) at that state.

Remark. An alternative formulation of the problem would be to require the CSAs to

produce one number T as an estimate of the current source time, and another number "

that bounds the current di�erence between the estimate and the source time. While the two

speci�cations are equivalent if ext L and ext U are both �nite or both in�nite, we prefer

the (ext L; ext U ) formulation, since it is slightly more re�ned: in the case where exactly

one of the numbers ext L or ext U is �nite, the output according to the (T; ") formulation

is the same as for the case where both ext L and ext U are in�nite.

4.1.2 De�nition of Internal Synchronization

We use a variant of the elegant de�nition of Dolev et al. [7] and Halpern et al. [13], which

we formulate as follows. (A discussion of the de�nition is given in Chapter 7.)
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An internal synchronization system is a clock synchronization system, such that each

CSA module has a special internal action called �rev, where v is the site of the module.

The correctness requirement of the internal synchronization task is that �rst, each pro-

cessor v takes a �rev action exactly once during an execution of the system. And secondly,

the CSA at each processor maintains output variables called int Lv and int U v, such that

at all states, the real time interval [now(�rev) + int Lv; now(�rev) + int U v] contains all

the �re events in the execution. Intuitively, the output variables provide local guarantees

for the tightness in which all �re actions are produced in the system. Initially, we will have

int L = �1 and int U = 1, and during the execution, int L may get larger and int U

may get smaller.

The internal tightness at processor v in some state is the di�erence (int U v � int Lv)

at that state. The internal tightness of an execution at a processor v is the in�mum of the

internal tightness at v, over all states of the execution. The internal tightness of v in an

execution e is denoted tightnessv(e).

4.2 Local Competitiveness

Local competitiveness is our measure of quality of synchronization algorithms. Intuitively,

an algorithm is said to be locally K-competitive if its output at any point is at mostK times

worse than the best possible for the local view at that point. We formalize this intuition

for CSAs as follows.

Fix a synchronization problem. As described in Section 4.1, each problem has a predicate

that classi�es CSAs as \correct" and \incorrect." More speci�cally, the correctness predicate

classi�es executions as correct and incorrect; a CSA is correct if all its executions are correct.

In Section 4.1 we also de�ned, for each synchronization problem, a function called tight-

ness, that maps states of CSAs to R+ [ f1g. By real-time blindness, the tightness is a

function only of the basic component of the state. Recall that by Theorem 3.4, the ba-

sic component of a state of a CSA module in an execution depends only on the view of

the execution. Hence, given a CSA module (in either an internal or an external synchro-

nization system), the tightness of the view at a given point is well de�ned. (If the CSA

is not deterministic, then the tightness is a non-deterministic function of the local view.)

Using the notions of correct CSAs and tightness of views, we de�ne the key concept of local
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competitiveness as follows.

De�nition 4.1 Let A be the set of all correct CSAs for a given environment. Let �A;v(V ; T )

be the tightness of synchronization in executions with local view V of a processor v at local

time T , for a system with a CSA module A 2 A. An algorithm A is said to be locally

K-competitive if for all views V, processors v and local times T ,

�A;v(V ; T )� K � inf f�A0;v(V ; T ) : A0 2 Ag :

The least number K such that A is K-competitive is the local competitive factor of A. A

locally 1-competitive algorithm is also called optimal.

Remarks.

1. Recall that our model de�nitions allow for nondeterministic CSAs, i.e., CSAs whose

output is not a deterministic function of the view. In this case, the correctness requirement

is that all possible executions are correct. On the other hand, we can de�ne the tightness of

a view to be the least tightness over all executions with the given view, which means that

we consider the best possible choices made at the non-deterministic choice points, so long

as they produce correct results.

2. It is important to notice that in principle, there always exists a full information

protocol which is optimal: in this algorithm, the processors send their complete view in

every message; how to determine the output depends on the speci�c problem being solved,

but clearly optimal output can be computed since all the relevant information is available

locally at each processor, simply because all possible information is there! It is also clear,

however, that the full information protocol is usually not practical. From the communication

perspective, the message size blows up rapidly to fantastic lengths; and from the processing

perspective, it may well be the case that extracting the output from the \full information"

is computationally infeasible. The goal of the designer of a locally competitive algorithm,

therefore, is to �nd what is the relevant information that must be communicated, and how

to process it e�ciently to obtain the desired output.
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4.3 Discussion

The local competitiveness setting described above is specialized for the two clock syn-

chronization problems given. It is straightforward to generalize it for other optimization

problems along the following lines. The analog for local clock would be some source that

generates inputs; local time at a point would be replaced by the cumulative input up to

that point. The non-interfering �ltering property remains unchanged, which means on one

hand that a locally competitive algorithm works for any given view, and on the other hand

that it does not generate messages on its own. The local competitiveness de�nition can

be generalized using any positive valued target function that measures the quality of the

output.

Approaches similar to local competitiveness were used in the past. For example, see the

\best e�ort" algorithm of Fischer and Michael [9] for database management. (It may be

interesting to note that the algorithm in [9] uses synchronized clocks.) Some other work was

done by Ajtai et al. [2], after our preliminary paper was published [29]. Loosely speaking,

in [2] they consider a shared memory system, where an execution is a sequence of processor

accesses to the shared memory. The order by which processors take steps is given by an

arbitrary schedule. A task is de�ned as a predicate over the output values, and a task is said

to be completed when this predicate is satis�ed. In the formulation of [2], the competitive

factor of an algorithm is the maximum, over all schedules, of the total number of steps

taken by the algorithm until the task is completed, divided by the minimal number of steps

required by any correct algorithm to complete the task, under the same schedule. Our

approach di�ers in a few technical aspects. First, our model is message passing and not

shared memory; hence the analog of their \schedule" is our \view." Secondly, we consider

an optimization problem, where output must be produced at all times. Hence the quantity

of interest for us is a target function de�ned over the output values, whereas in [2], the

output values are of no interest (provided they are correct), and the implicit target function

is the number of steps required to produce the output.

Nevertheless, the local competitiveness approach is not widely accepted. One possible

reason to reject it is that a locally competitive algorithm does not give an absolute guaran-

tee but only a relative one. For example, in our formulation a locally competitive algorithm

never initiates transmission of a message by itself. If no message is sent by the send module,
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then the optimal algorithm may be trivial since the best possible output is trivial. This

example points to a deeper problem in system design (shared also by the classical competi-

tiveness model of [32, 23]): the question is to determine what is the input for the algorithm,

and what is under the control of the algorithm.

The reader should note, however, that a locally competitive algorithm must do well

on all cases. In addition, the local competitiveness approach enables us to compare the

performance of algorithms on equal grounds. For example, consider a system which is a

ring of processors, and one algorithm that sends messages only clockwise, and another that

sends messages only counterclockwise. It seems that the two algorithms are incomparable on

a per-view basis, since e�ectively they run on di�erent systems. However, if the algorithms

are locally competitive, they must give good results on both cases.

Another possible objection to the concept of local competitiveness is the validity of the

\non-interfering �ltering" assumption. This assumption says, among other things, that

the transmission time of a message is independent of the message added by the CSA, and

that CSAs relay messages between the send module and the network links instantaneously.

Strictly speaking, this assumption is false in any physical system. Nevertheless, we argue

that the non-interfering �ltering assumption can serve as a reasonable approximation of

reality so long as the blowup in message size, and the computation resources required by

the CSA are negligible.

We believe that the philosophy behind the concept of local competitiveness best suits

network-maintenance protocols, e.g., topology update, or other routing protocols, where

there is always something to be done. It is interesting to observe that in real networks, the

message delivery system appends \headers" to messages to facilitate delivery. Ideal locally

competitive algorithms would use such headers, extending them only slightly.
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Summary

In this chapter we de�ned the synchronization tasks we consider in this thesis and the way

we evaluate the performance of algorithms that solve them.

We de�ned the problem of external synchronization, in which all processors are trying to

acquire tight bounds on the reading of one designated processor whose clock is drift-free. In

the problem of internal synchronization, all processors need to make a distinguished action

in the smallest possible interval of real time. For each problem we de�ned the system

architecture, correctness requirement, and the measure of tightness.

The quality of a synchronization algorithm is measured by its local competitiveness.

The local competitiveness of an algorithm is the maximal ratio between the tightness it

produces at any point, and the best possible tightness for the given local view at that point.

The concept of local competitiveness can be viewed as a combination of the per-execution

evaluation approach of [3], competitive analysis [32, 23], and the causality partial order [16].

We argued that this approach can be of independent interest as a method for evaluating

distributed optimization tasks. We compared the concept of local competitiveness with the

approach of [2], and we discussed some of its advantages and disadvantages.
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Chapter 5

The Basic Result

The starting point for this chapter is the following problem: given two points in an execution

of a clock synchronization system, �nd the tightest bounds on the real time that elapses

between their occurrence. The means by which this task is to be accomplished is the CSA

modules. The \input" available to the CSA modules consists of the events that occurred

in the system with their local time of occurrence (i.e., the view of the execution), and the

standard bounds mapping that represents the system timing speci�cation for that view.

Hence the task can be solved if we can �nd the set of executions with the given view.

Our strategy to solve this problem is to reformulate the setting in graph-theoretic lan-

guage, and solve a more general abstract problem. We �rst abstract views as labeled

directed graphs, which we call v-graphs ; the only attribute a point has in a v-graph is its

local time. We also abstract patterns as labeled directed graphs, which we call p-graphs ;

in p-graphs, a point has both local and real time. Bounds mapping is now an abstract

function that maps pairs of adjacent points in v-graphs to numbers. Using bounds mapping

and v-graphs, we obtain weighted directed graphs we call synchronization graphs. Then,

in Theorems 5.4 and 5.5, we prove a characterization of the set of p-graphs that have a

given v-graph and satisfy a given bounds mapping, in terms of distances in the derived

synchronization graph. These results are independent of the particular interpretation, but

to aid intuition, our development is accompanied with an an example of an execution of a

clock synchronization system.

Then, in the main results of this chapter, we specialize to the case of views and patterns

of clock synchronization systems. In Theorems 5.6 and 5.7, we use Theorems 5.4 and 5.5
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in conjunction with Theorem 3.4, and prove that the relation proven for p-graphs and

synchronization graphs holds for patterns of executions of synchronization systems and the

synchronization graphs derived from the views and bounds mapping. Using Theorem 3.2,

we also derive a corollary for local views (Theorem 5.8).

Philosophically, synchronization graphs can be viewed as an extension of the graphs used

by Lamport to describe executions of completely asynchronous systems [16]. Lamport's

graphs are unweighted, and the main property of interest regarding a pair of points is

whether one is reachable from the other. Reachability expresses the fact that in all possible

executions which have that graph, one point occurs before the other. By contrast, we

consider systems with clocks, and de�ne graphs which are weighted. The main property of

interest regarding two points is the distance between them: this distance expresses bounds

on the real time that elapsed between their occurrence which is satis�ed by all executions

with that synchronization graph.

This chapter is organized as follows. In Section 5.1 we present the notions of v-graphs,

p-graphs, synchronization graphs and prove a relation between these abstract concepts. In

Section 5.2 we derive the results for clock synchronization systems.

5.1 Synchronization Graphs

In this section, we de�ne the notions of v-graphs, p-graphs, and synchronization graphs.

V-graphs and p-graphs are abstractions of views and patterns, respectively. We give a

natural correspondence between the abstract graphs concepts and their counterparts in

clock synchronization systems.

We de�ne the key concept of synchronization graphs, which are weighted directed graphs,

derived from v-graphs and bounds mappings for these graphs; synchronization graphs will

be our main tool in analyzing executions of clock synchronization systems. The main results

in this section relate p-graphs to the synchronization graph. The development in this section

is self-contained; to help the reader in understanding the motivation for the concepts, we

give a running example from our intended application domain, namely clock synchronization

systems.

We start by de�ning the notion of v-graphs.

De�nition 5.1 A v-graph is a pair (G; local time), where G = (V;E) is a directed graph
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Figure 5-1: An example of a v-graph.

with (p; q) 2 E if and only if (q; p) 2 E, and local time is a function that associates a �nite

real number with each point p 2 V . For any two points p; q 2 V , we de�ne virt del(p; q) =

local time(p)� local time(q). A bounds mapping for a v-graph is a function that assigns a

number B(p; q) 2 R [ f1g to each arc (p; q) 2 E.

The natural correspondence: views and v-graphs. Before we proceed to analyze

view graphs, we describe the way v-graphs can be obtained from views of clock synchro-

nization systems. Recall that a view V , as de�ned in Def. 3.5, is a graph, where each point

is labeled by an action name and local time of occurrence. Notice that by adding for each

arc (p; q) in a view another arc (q; p), we obtain a v-graph. In the resulting v-graph there

is some additional information attached to each point (i.e., the name of the associated ac-

tion or null point), but this is irrelevant for our treatment of v-graphs. We call the above

mapping from views to v-graphs the natural correspondence. In the sequel, points will be

used to denote both points in view graphs and in views, where the interpretation is clear

by the context.

The natural correspondence enables us to use bounds mappings for views as bounds

mapping for v-graphs (recall that a bounds mapping for a view is a function that assigns

an upper bound to the di�erence in real time between the occurrence of any two adjacent

points in V , see Def. 3.10). Under the natural correspondence, a bounds mapping for a view

V applies also to pairs of adjacent points in the v-graph of V .

Example. Consider a system with two processors u and v, and suppose that u has a

drift-free clock, and v has a (0:5; 1:5)-clock. Consider the following scenario.

80



(1) u sends a messagem1 to v at local time �1, such thatm1 is guaranteed to be delivered

within no less than 2 time units, and no more than 3 time units.

(2) m1 is received at v at local time 1.

(3) v sends a message m2 to u at local time 3, such that m2 is guaranteed to be delivered

within no less than 5 time units, and there is no upper bound on its transmission

time.

(4) m2 is received at u at local time 8.

The short description above provides su�cient detail to de�ne a view, a v-graph, and

a bounds mapping. Let s1; s2 denote the send points of m1 and m2, respectively, and let

r1; r2 be their respective receive points. The corresponding v-graph is depicted in Figure

5-1. Also, we have that

virt del(s1; r1) = �2 virt del(r1; s1) = 2

virt del(s2; r2) = �5 virt del(r2; s2) = 5

virt del(s1; r2) = �9 virt del(r2; s1) = 9

virt del(s2; r1) = 2 virt del(r1; s2) = �2

Let B0 denote the standard bounds mapping for the given view. Using Def. 3.11 we calculate

the values of B0. We get

B0(s1; r1) = �2 B0(r1; s1) = 3

B0(s2; r2) = �5 B0(r2; s2) = 1

B0(s1; r2) = �9 B0(r2; s1) = 9

B0(s2; r1) = 4 B0(r1; s2) = �4=3

We shall return to this example as we develop the analysis.

For the remainder of this section, we �x a v-graph � = (G; local time) where G = (V;E),

and a bounds mapping B for �.

Our next step is to de�ne the concept of a p-graph as an extension of a v-graph, analogous

to the way a pattern is an extension of a view.

De�nition 5.2 A p-graph with view � is a triple � = (G; local time ; now�), where (G; local time) =

�, and now� is a function that associates a non-negative �nite real number with each
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point p 2 V .1 A p-graph � with view � is said to satisfy B if for all (p; q) 2 E we have

act del�(p; q)
def
= now�(p)� now�(q) � B(p; q).

For a given p-graph, we de�ne the key concepts of o�sets.

De�nition 5.3 (O�set) Let p be a point in a p-graph � = (G; local time ; now�). The

absolute o�set of p is

��(p) = now�(p)� local time(p) :

For any other point q in �, the relative o�set of p from q is

��(p; q) = ��(p)� ��(q) :

We omit subscripts when no confusion arises.

The natural correspondence: patterns and p-graphs. The natural correspondence

de�ned above for views applies also for patterns. This way, given a pattern P as de�ned

in Def. 3.5, its p-graph � is naturally de�ned. Moreover, using the natural correspondence,

the notions of absolute and relative o�sets, de�ned over the points of �, are also de�ned

over the points of P , and we have that �P(p) = ��(p) and �P(p; q) = ��(p; q) for all points

p; q. As an aside, notice that if we know local time of two points in an execution, then

bounding the real time that elapses between their occurrences is equivalent to bounding

their relative o�set.

Before we proceed, we state two properties of relative o�sets.

Lemma 5.1 Let p; q; r be any three points of a given p-graph. Then

1. �(p; q) = ��(q; p) (antisymmetry).

2. �(p; q) = �(p; r) + �(r; q) (chain rule).

Proof: Immediate from de�nitions.

1The v-graph � and the bounds mapping B are �xed in this section; since we shall be dealing with many
possible patterns, the now function is subscripted by the pattern's name.
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Figure 5-2: An p-graph with view as in Figure 5-1.

Example (continued). Figure 5-2 shows a p-graph whose view is given in Figure 5-1.

It is easy to verify that this p-graph satis�es the bounds mapping B0. Let us compute the

o�sets for this p-graph. First, we compute the absolute o�sets of the points. We get that

�(s1) = 1 �(r1) = 1

�(s2) = 0:5 �(r2) = 1

Now we compute the relative o�sets of pairs of points (reversing the order of the points

negates the sign):

�(s1; r1) = 0 �(s1; r2) = 0

�(s1; s2) = 0:5 �(r1; s2) = 0:5

�(r1; r2) = 0 �(s2; r2) = �0:5

Next, based on the v-graph � = (G; local time) and the bounds mapping B, we introduce

weights for the arcs of G. The resulting weighted graph, called the synchronization graph,

is our primary tool for analyzing executions of clock synchronization systems.

De�nition 5.4 (Synchronization Graph) The synchronization graph generated by the

v-graph � and its bounds mapping B is a weighted directed graph � = (V;E; w), where

(V;E) = G, and w(p; q) = B(p; q)� virt del(p; q) for all (p; q) 2 E.

Example (continued). The synchronization graph generated by the v-graph in Figure

5-1 and B0 is depicted in Figure 5-3.

83



r 2s2

r 1 s1
1

0

0

8

002/32

Figure 5-3: The synchronization graph generated by the v-graph in Figure 5-1 and B0.

We now arrive at the main theme of this section, which is to study the connection

between p-graphs and the synchronization graph. The following lemma states the basic

property of arc weights of the synchronization graph. (Notice that since we have �xed �

and B, we also have now � �xed for the remainder of the section.)

Lemma 5.2 If a given p-graph with v-graph � satis�es B, then �(p; q) 2 [�w(q; p) ; w(p; q)].

Proof: Since the p-graph satis�es B, we have that act del(p; q) � B(p; q) and

act del(q; p) � B(q; p), and hence act del(p; q) 2 [�B(q; p); B(p; q)]. Therefore,

�(p; q) = (now(p)� local time(p))� (now(q)� local time(q)) by de�nition

= act del(p; q)� virt del(p; q) rearranging

2 [�B(q; p)� virt del(p; q) ; B(p; q)� virt del(p; q)] by assumption

= [�B(q; p) + virt del(q; p) ; B(p; q)� virt del(p; q)] by antisymmetry

= [�w(q; p) ; w(p; q)] : by de�nition

Our next step is to look at the natural concept of distance between points in the syn-

chronization graph. Formally, we have the following (standard) de�nition.

De�nition 5.5 The weight of a path � = p0; p1 : : : ; pk in a weighted graph � = (V;E; w)

is w(�) =
Pk

i=1w(pi�1; pi). A path from p to q is a shortest path if its weight is minimum

among all paths from p to q. The distance from p to q, denoted d(p; q), is the weight of a

shortest path from p to q, or 1 if there is no path from p to q.
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Notice that the distances are not well de�ned if � has cycles with negative weights. The

next lemma gives a su�cient condition for � to have no negative-weight cycles.

Lemma 5.3 If there exists a p-graph � with v-graph � such that � satis�es B, then � has

no negative weight cycles.

Proof: Let � = hp0; p1; : : : ; pk�1; pk = p0i be any directed cycle in �. Then

w(�) =
Pk

i=1w(pi�1; pi)

�
Pk

i=1 ��(pi�1; pi) by Lemma 5.2

= ��(p0; p0) by Lemma 5.1

= 0 : by de�nition

We now arrive at the �rst result for the problem of determining the set of p-graphs that

satisfy B and have v-graph �. The following theorem characterizes these p-graphs in terms

of all distances in the synchronization graph.

Theorem 5.4 A p-graph � with v-graph � satis�es B if and only if for any two points

p; q 2 V in the synchronization graph, ��(p; q) � d(p; q).

Proof: Let � be a p-graph with v-graph �. Assume �rst that � satis�es B, i.e., for any

(p; q) 2 E we have act del�(p; q) � B(p; q). We show that ��(p; q) � d(p; q) for any

p; q 2 V . In case that there is no path connecting p and q, we have d(p; q) =1 and we are

done trivially. Otherwise, consider any shortest path p = p0; : : : ; pk = q from p to q. Then

we have that

��(p; q) =
Pk�1

i=0 ��(pi; pi+1) by Lemma 5.1

�
Pk�1

i=0 w(pi; pi+1) by Lemma 5.2

= d(p; q) by de�nition

proving the \only if" part of the theorem.

Conversely, assume that for any two points p; q 2 V , we have that ��(p; q) � d(p; q). We

prove that � satis�es B. Let (p; q) 2 E. By de�nitions of arc weights and distances, we have

that B(p; q) � virt del(p; q) = w(p; q) � d(p; q). Hence, by assumption, we get B(p; q) �
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virt del(p; q) � d(p; q) � ��(p; q) = act del�(p; q)� virt del(p; q). Adding virt del(p; q) to

both sides, we get B(p; q) � act del�(p; q), as desired.

Example (continued). The distances in the synchronization graph of Figure 5-3 are

given by

d(s1; r1) = 0 d(r1; s1) = 2=3

d(s1; s2) = 2=3 d(s2; s1) = 0

d(s1; r2) = 0 d(r2; s1) = 0

d(s2; r1) = 0 d(r1; s2) = 2=3

d(s2; r2) = 0 d(r2; s2) = 2=3

d(r2; r1) = 0 d(r1; r2) = 2=3

As the reader may verify, for the pattern of Figure 5-2 we have that �(p; q) 2 [�d(q; p); d(p; q)]

for all points p; q in the view.

Before we state the next theorem (which is the major result of this section), we de�ne the

following technical terms. The complicated-looking de�nition is due to the fact distances

may be in�nite.

De�nition 5.6 Suppose � has no negative weight cycles. Let � be a p-graph with v-graph

�, let p0 2 V , and let N > 0.

(1) � is an N -p-graph from p0 if for all q 2 V : if d(p0; q) <1 then ��(p0; q) = d(p0; q),

and otherwise ��(p0; q) > N .

(2) � is an N -p-graph to p0 if for all q 2 V : if d(q; p0) < 1 then ��(q; p0) = d(q; p0),

and otherwise ��(q; p0) > N .

The o�sets in an N -p-graph from p0 are the distances from p0, with in�nite distances

replaced by o�sets larger than N , and analogously for an N -p-graph to p0. Using these

notions, we state the following theorem.

Theorem 5.5 Suppose � has no negative-weight cycles. Then for any point p0 2 V , and

for any �nite number N > 0, there exist p-graphs �0 and �1, such that both have view �,

both satisfy B, and such that �0 is an N -p-graph to p0, and �1 is an N -p-graph from p0.

Proof: To prove the theorem, we �rst construct a related graph �� in which all distances

are �nite. Based on ��, we de�ne p-graphs �0 and �1, and then show that �0 and �1 have

the required properties.
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To construct ��, we �rst choose a number M that is su�ciently large so as to satisfy

M > N +
X

(p;q)2E
0<w(p;q)<1

w(p; q) �
X

(p;q)2E
�1<w(p;q)<0

w(p; q) :

Using M , we augment � with extra arcs as follows. For each pair of points p; q such that

d(p; q) = 1, we add an arti�cial arc (p; q) with weight M . Call the resulting augmented

graph ��, and denote its distance function by d�. The following claim shows the connection

between the distances in ��, the distances in �, and N .

Claim A. For all p; q 2 V , if d(p; q)<1, then d�(p; q) = d(p; q), and if d(p; q) =1, then

N < d�(p; q) <1.

Proof of Claim A: We start (for future reference) with an inequality that follows directly

from the choice of M . Let X and Y denote arbitrary subsets of the arcs of � with �nite

weights. Then

M +
X

(p;q)2X

w(p; q) > max

8<
:N ;

X
(p;q)2Y

w(p; q)

9=
; (5.1)

Next, we argue that the augmented graph �� has no negative weight cycles. Suppose,

for contradiction, that there exists some negative weight cycle in ��. Then one of arcs of

the cycle, say (p; q), must be an arti�cial arc, and there must be a simple directed path

Z in �� from q to p with total weight wZ such that M + wZ < 0. Let wZ be the sum of

negative weight arcs of Z. Clearly, wZ � wZ. Also, by Eq. (5.1), we have that the sum

of M and the weights of any subset of arcs of � is at least N . Since all arti�cial arcs have

positive weight, we know that wZ is the sum of weights of arcs from �. Therefore we have

that M + wZ �M + wZ > N > 0, a contradiction.

To show that the �nite distances in � remain invariant in ��, we �rst note that since

� is a subgraph of ��, it must be the case for all p; q 2 V that d�(p; q) � d(p; q). Suppose

for contradiction that for some p; q 2 V with d(p; q) <1 we have d�(p; q) < d(p; q). Since,

as we showed above, �� has no negative-weight cycles, we may assume that there exists a

simple path in �� with length d�(p; q). Clearly, one of its arcs is arti�cial. However, by Eq.

(5.1), this means that the total weight of that path is larger than the total weight of any

�nite-weight simple path in �, a contradiction.

Finally, let p; q 2 V be such that d(p; q) = 1. Clearly d�(p; q) < 1 by virtue of the
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arti�cial arc (p; q). To see that d�(p; q) > N , consider any simple path from p to q. As

before, this path contains at least one arti�cial arc, and therefore its total weight is at least

M plus all negative weights of �. Using Eq. (5.1), we get that the total weight of the path

is greater than N .

We now de�ne the p-graphs �0 and �1 explicitly. Since their view is given, the events

and their local times are already �xed; we complete the construction by specifying the now

mappings of the p-graphs. Let L be a number such that

L > min
q2V
flocal time(q) + d�(q; p0); local time(q)� d�(p0; q)g :

For all q 2 V , we set

now�0(q) = L+ local time(q) + d�(q; p0)

now�1(q) = L+ local time(q)� d�(p0; q)

(The additional term L guarantees that all now values are positive.) By the construction,

for all q 2 V we have

��0(q) = now�0(q)� local time(q)

= L+ (d�(q; p0) + local time(q))� local time(q)

= L+ d�(q; p0) : (5.2)

Since d�(p0; p0) = 0, we have that ��0(p0) = L, and therefore ��0(q; p0) = ��0(q)� ��0(p0) =

d�(q; p0). Similarly, we obtain that ��1(p0; q) = �d
�(p0; q). Therefore, by Claim A, �0 is an

N -p-graph to p0 and �1 is an N -p-graph from p0. The following claim completes the proof

of the theorem.

Claim B. The p-graphs �0 and �1 de�ned above satisfy the bounds mapping B.

Proof of Claim B: By Theorem 5.4, it is su�cient to prove that for all p; q 2 V , ��0(p; q) �

d(p; q). So let p and q be arbitrary points in the synchronization graph. In what follows, we

consider ��, the graph de�ned above. Since d�(p; q) � d(p; q), it is su�cient to prove that

��0(p; q) � d�(p; q).

Let R be any shortest path from p to q. Consider the path obtained by following the
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Figure 5-4: Scenarios considered in the proof of Claim B. R is a shortest path from p to q,
P is a shortest path from p0 to p, and Q is a shortest path from q to p0.

arcs of R from p to q, and then the arcs of a shortest path from q to p0 (see Figure 5-4(a)).

This path leads from p to p0, and hence d�(p; q) + d�(q; p0) � d�(p; p0). It follows from

Eq. (5.2) and the de�nition of relative o�sets that

d�(p; q) � d�(p; p0)� d
�(q; p0)

= ��0(p)� ��0(q)

= ��0(p; q) :

I.e., for all p; q 2 V , ��0(p; q) � d�(p; q), and therefore, by Theorem 5.4, we conclude

that �0 satis�es the given bounds mapping B, as desired.

The proof for �1 is analogous. We consider a shortest path R connecting two arbitrary

points p and q. To show that its weight d�(p; q) is at least �(p; q), we look at the path

depicted in Figure 5-4(b), consisting of a shortest path P from p0 to p, followed by R. As

before, we have that d�(p0; p) + d(p; q)� d�(p0; q), and hence we get

d�(p; q) � d�(p0; q)� d
�(p0; p)

= ���1(q) + ��1(p)

= ��1(p; q) :

Therefore, ��1(p; q) � d�(p; q) for all points p; q 2 V , and applying Theorem 5.4 shows that

�1 satis�es B, as desired.

This completes the proof of Theorem 5.5.
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Figure 5-5: Assuming now(r2) = 9, (a) is a pattern from r2, and (b) is a pattern to r2.

Example (conclusion). Using the distances calculated above for the synchronization

graph of Figure 5-3, we can compute patterns from and to the point r2. Since the de�nition

of these patterns only speci�es relative o�sets, we �x now(r2) = 9 (agreeing with the pattern

of Figure 5-2 at this point). The resulting pattern from r2 is given in Figure 5-5 (a), and

the resulting pattern to r2 is given in Figure 5-5 (b). It is a simple matter to verify that

both patterns have the view depicted in Figure 5-1, and they satisfy the bounds mapping

B0. One conclusion from these patterns is that an observer located at r2, with access only

to the view and the bounds mapping, cannot determine the time of occurrence of s1 with

tightness greater than 7=2� 8=3 = 5=6 real time units, since both patterns depicted in (a)

and (b) describe a possible scenario.

5.2 Interpretation in Clock Synchronization Systems

Theorems 5.4 and 5.5 describe a relation between p-graphs and synchronization graphs.

In this section we apply these results to executions of clock synchronization systems. In

other words, in this section we deal with views and patterns of executions of clock synchro-

nization systems (as de�ned in Section 3.2.1), instead of abstract v-graphs and p-graphs,

respectively. We apply, in a straightforward fashion, the theorems of Section 5.1, in con-

junction with Theorem 3.4, using the natural correspondence (de�ned in Section 5.1), which

maps views and patterns to v-graphs and p-graphs, respectively. Before we state and prove

the (somewhat technical, albeit straightforward) theorems, we make two comments about

the results.

1. By our de�nitions of clock synchronization systems, synchronization graphs can
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be used under a wide variety of assumptions. In particular, they can be used to model

executions where messages may be lost, delivered out of order, or duplicated by the com-

munication links; they can be used to model broadcast channels; they can be used for the

case of processor and link crashes; and by our de�nition of bounds mapping, they can also

be used to model clock drift bounds that may change over time.

2. The essential assumptions in our analysis are the following. First, if an o�set can

be a value a and a value b, then it can also be any value in between. This rules out

scenarios in which the o�set might be either a or b (as might be the case for messages

over framed communication links, or clocks with �xed but unknown rate). Removing this

assumption will result in a constraint system which is not even a linear program, and cannot

be represented as distance computation techniques. The second important assumption in

our analysis is that \patterns satisfy the bounds mapping," that is to say, the system behaves

according to its speci�cation. As indicated by Lemma 5.3 (and explained in Chapter 9),

synchronization graphs are still useful in some limited sense in the case that executions do

not satisfy the bounds mapping.

We now proceed with applying the analysis of Section 5.1 to clock synchronization

systems. We recall that under the natural correspondence, each arc (p; q) in a view is

replaced by a pair of arcs (p; q) and (q; p) in the corresponding v-graph, and that local time

attributes, bounds mapping values (and real times in p-graphs) remain unchanged. Under

the natural correspondence, the notion of o�sets that was de�ned for p-graphs (Def. 5.3)

applies to executions and patterns of clock synchronization systems. The o�set between

two points p; q in a pattern P is

�P(p; q) = �P(p)� �P(q)

= (nowP(p)� local timeP(p))� (nowP(q)� local timeP(q))

= act delP(p; q)� virt delP(p; q)

It follows that if we know the local times of occurrence of p and q, then bounding the real

time that elapses between their occurrences is equivalent to bounding �(p; q). This seems

to capture a useful quantity in any synchronization problem. The theorems in this section

provide us with a characterization of the bounds on the o�set in a pattern with a given view

and bounds mapping, and hence they are useful in analyzing synchronization problems.
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First, we state the theorem that is the key in proving correctness of clock synchronization

algorithms.

Theorem 5.6 Let V be a view of an execution of a clock synchronization system S, and

let B be the standard bounds mapping for V. Let � be the synchronization graph generated

by the v-graph of V and B, and let d� be its distance function. Let P be any pattern with

view V. Then there exists an execution e0 of S whose pattern is P if and only if for any two

points p; q in P, we have �P(p; q) � d�(p; q).

Proof: Suppose �rst that there exists an execution e0 of S with pattern P , and consider its

p-graph �. Since by assumption e0 is an execution of S, P satis�es B, and hence � satis�es

B. Therefore, by Theorem 5.4, for any two points p; q in �, ��(p; q) � d�(p; q), and since

��(p; q) = �P(p; q), we are done in this case.

Suppose now that for a pattern P with view V , we have �P(p; q) � d�(p; q) for every pair

of points p; q in P . It follows that in the p-graph � of P , ��(p; q) � d�(p; q) for every pair

of points p; q. Hence, by Theorem 5.4, � satis�es B, and therefore P satis�es B. Finally,

since P satis�es the standard bounds B, we may apply Theorem 3.4, and conclude that

there exists an execution e0 of S whose pattern is P .

Next, we present the theorem we shall use for proving lower bounds on the tightness

achievable by synchronization algorithms. We �rst de�ne the notions of N -patterns to and

from a point. The de�nition is the equivalent of Def. 5.6 under the natural correspondence.

De�nition 5.7 Let � be a synchronization graph for a view V, and let P be a pattern with

view V. Let � be the p-graph for P under the natural correspondence, and let p0 be a point

in �. For any N > 0, P is an N -pattern from p0 if � is an N -p-graph from p0, and it is an

N -pattern to p0 if � is an N -p-graph to p0.

The following theorem is the application of Theorem 5.5 to clock synchronization systems.

Intuitively, it says that there exist indistinguishable executions of clock synchronization

systems, where the o�sets between a a given point and any other point are exactly the

distances in the synchronization graph, and hence any synchronization algorithm must take

these extreme cases into account.

Theorem 5.7 Let V be a view of an execution e of a clock synchronization system S (pos-

sibly including null points), and let B be the standard bounds mapping for V. Let � be the
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synchronization graph generated by the v-graph of V and by B, and let d� be its distance

function. Let p0 be any point in V. Then for any �nite number N > 0, there exist executions

e0 and e1 of S, such that both have view V, and such that the pattern of e0 is an N -pattern

to p0, and the pattern of e1 is an N -pattern from p0. Moreover, for each CSA module Cv,

the executions of Cv in e0 and in e1 are equivalent.

Proof: First, note that since � is obtained from an execution of S, its pattern P satis�es the

standard bounds mapping B. From Theorem 5.6 we get that for any two points p; q in P ,

�P(p; q) � d�(p; q); in particular, since �P(p; p) = 0 for all points p, we conclude that there

are no negative-weight cycles in �. Hence we can apply Theorem 5.5, and get p-graphs �0

and �1 which are N -patterns to and from p0, respectively, such that both satisfy B. Using

the natural correspondence between V and its v-graph, we obtain from �0 and �1 patterns

P0 and P1. Since �0 and �1 satisfy B, P0 and P1 satisfy B too. We can therefore apply

Theorem 3.4, and the result follows.

We also state a variant of Theorem 5.7 used for locality-oriented bounds.

Theorem 5.8 Let V be a view of an execution e of a clock synchronization system S (pos-

sibly including null points), and let p0 be any point in V. Let B be the standard bounds

mapping for the local view prune(V ; p0), and let � be the synchronization graph generated

by prune(V ; p0) and B, and let d� be its distance function. Then for any �nite number

N > 0, there exist executions e0 and e1 of S, such that both have view prune(V ; p0), and

such that the pattern of e0 is an N -pattern to p0, and the pattern of e1 is an N -pattern from

p0. Moreover, for each CSA module Cv, the executions of Cv in e0 and in e1 are equivalent.

Proof: By Theorem 3.2, there exists an execution e0 whose view is prune(V ; p0) and such

that for each CSA module Cv, prune(ejCv ; p) = prune(e0jCv ; p). The theorem therefore

follows by applying Theorem 5.7 to e0.
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Summary

In this chapter we abstracted the notions of views and patterns using the notions of v-graphs

and p-graphs. We de�ned the concept of o�sets of points in patterns, which captures an

elementary synchronization problem. Using the bounds mapping, we de�ne the basic tool

of our analysis, namely the synchronization graphs. Using the o�sets, we proved a simple

characterization of the patterns which have a given view and bounds mapping, in terms

of distances in the synchronization graph derived from the view and the bounds mapping.

In particular, our main results in this chapter show that the bounds on synchronization

obtained by the distances in the synchronization graphs are the best bounds possible, in

the sense that there exist patterns that have the given view, satisfy the given bounds

mapping, and meet the distance bounds.

The concept of synchronization graphs, specialized appropriately, serves as the basis for

analyzing speci�c synchronization problems in Chapters 6, 7 and 8. A few simple variants

of synchronization graphs are described in Chapter 9.
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Chapter 6

External Synchronization

In this chapter we study a particular variant of the synchronization problem, called external

synchronization. Informally, in the external synchronization problem there is a distinguished

processor called the source processor, which is equipped with a drift-free clock. The task of

all other processors is to produce, at all states, an estimate (i.e., an interval) that contains

the current reading of the source clock. The name is motivated by an implicit assumption

that the source clock serves as a source of real time in the system. The length of the estimate

interval is called the tightness of synchronization at that point.

In this chapter, we obtain a few results for the external synchronization task, using Theo-

rems 5.6 and 5.8. First, we characterize the achievable tightness of external synchronization

for any processor at any given time, in terms of distances in the appropriate synchronization

graph. The general algorithm we present, which achieves optimal tightness always, is a full

information protocol, and hence ine�cient. By contrast, for the special case of drift-free

clocks, we present an optimal algorithm which is extremely e�cient (and simple). The

latter algorithm compares favorably to the so-called round-trip technique, used by many

practical algorithms. In the last section of this chapter, we present the main ideas in the

round-trip technique, based on NTP (Network Time Protocol, the external synchronization

protocol used over the Internet [26]).1 We also explain why our technique is superior to the

one used in NTP.

This chapter is organized as follows. In Section 6.1 we recall the de�nition of external

synchronization, and make a few preliminary observations. In Section 6.2 we give lower

1We use a simpli�ed version introduced in Section 3.1.5 under the name SNTP.
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and upper bounds on the tightness of external synchronization in a general system, where

the non-source clocks have arbitrary drift bounds and arbitrary message latency bounds.

In Section 6.3 we give an e�cient optimal algorithm for systems with drift-free clocks. We

conclude in Section 6.4 with a description of the round-trip technique, and compare it with

our algorithm.

6.1 Problem Statement and Preliminary Observations

We recall the de�nition of the external clock synchronization problem. There exists in the

system a distinguished processor s, called the source processor, whose local clock is drift-

free. Each CSA module has two output variables, denoted ext Lv and ext U v. For any given

state x in an execution of an external synchronization system, let source time(x) denote

the local time at the source in x. The correctness requirement for a processor v is that

in every reachable state x, the output variables satisfy source time(x) 2 [ext Lv; ext U v].

The tightness of synchronization at processor v in some state is the di�erence between the

output variables in that state:

�v = ext U v � ext Lv :

As a preliminary step in our analysis, we state a general property of drift-free clocks.

Lemma 6.1 Suppose that processor v has a drift-free clock, and let � = (V;E; w) be a

synchronization graph obtained from a view of some execution of the system and the standard

bounds mapping. Then the distance in � between any two points that occur at v is 0.

Proof: We �rst claim that for any two adjacent points q; q0 that occur in v, we have

w(q; q0) = 0. This follows immediately from de�nitions: by Def. 2.5, %
v
= %v = 1; by

Def. 3.11, we have B(q; q0) = virt del(q; q0)=%v = virt del(q; q0); and hence, by Def. 5.4, we

have w(q; q0) = B(q; q0)� virt del(q; q0) = 0.

This claim implies that there exists a 0-weight path between any two points occurring at

v, and hence, for any two points q1; q2 that occur at v, we have that d(q1; q2) � 0. Suppose

now, for the sake of contradiction, that there exists a path P from q1 to q2 with negative

weight. Since there exists a a path Q from q2 to q1 of weight 0, we conclude that the cycle

obtained by \gluing" P and Q together has negative weight, contradicting Lemma 5.3.
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The meaning of Lemma 6.1 is as follows. Suppose that a processor v has a drift-free

clock, and let p0 be any point in the synchronization graph. Then the distance to p0 from

any point q that occurs at v, and the distance from p0 to any point q that occurs at v

is independent of the particular choice of q, so long as q occurs at v. In other words, all

points that occur at a processor whose local clock is drift-free are equivalent for the distance

function in the synchronization graph. It is convenient to refer in this case to a superpoint

associated with a drift-free processor v, de�ned formally to be an arbitrary representative of

the points that occur at v. From the perspective of patterns, we notice that for a processor

v whose clock is drift-free, the absolute o�sets of all the points that occur at v are the same,

and hence the notion of relative o�set between any point and the superpoint of v is well

de�ned.

The source clock, by de�nition, is drift-free. Given a synchronization graph of an ex-

ternal synchronization system, we call the superpoint associated with the source the source

point, an denote it by sp throughout this chapter.

6.2 Bounds on the Tightness of External Synchronization

In this section we prove matching upper and lower bounds on the tightness of algorithms

for external synchronization. The lower bound is derived from Theorem 5.8, and the upper

bound follows from Theorem 5.6.

We start by �xing the scenario and the notation. Throughout this section we are dealing

with an execution of an external synchronization system; let v be a processor in the system,

and let x be a state in the execution. We denote Tx;v = local timev(x), and denote by px;v

the point that occurs at v at local time Tx;v. (If there is more than one such point, we take

the last one; if there is no such point, px;v is a null point we introduce.) Further, we denote

Vx;v = prune(V ; px;v) , i.e., Vx;v is the local view of the execution at v at local time Tx;v.

Let Bx;v denote the standard bounds mapping for Vx;v. We use the synchronization graph

�x;v = (V;E;w) generated by the view graph of Vx;v and Bx;v, and denote the distance

function of �x;v by dx;v. Finally, recall that sp denotes the source point of �x;v.

We start with a simple lemma that bounds the local time at the source in state x, in

terms of the local time at v, and the distances between px;v and the source point in the

corresponding synchronization graph.
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Lemma 6.2 For all states x and processors v,

source time(x) 2 [Tx;v � dx;v(sp; px;v); Tx;v + dx;v(px;v; sp)] :

Proof: Consider the synchronization graph � obtained from the full view and the standard

bounds mapping of the execution, and let d be the distance function in �. Since �x;v is a

subgraph of �, we have that for every pair of points p; q in �x;v

dx;v(p; q) � d(p; q) (6.1)

Now, let � be the o�set function of the execution, and let Tx;s = source time(x). Then we

have that

Tx;s = (Tx;s � now(x))� (Tx;v � now(x)) + Tx;v

= �(sp; px;v) + Tx;v by de�nition of �

2 [Tx;v � d(px;v; sp); Tx;v + d(sp; px;v)] by Theorem 5.6

� [Tx;v � dx;v(px;v; sp); Tx;v+ dx;v(sp; px;v)] by Eq. (6.1)

We now state the lower bound on the tightness of external synchronization.

Theorem 6.3 Let x be any state in an execution of an external clock synchronization

system, and let v be any non-source processor. Then in x,

[ext Lv; ext U v] � [Tx;v � dx;v(sp; px;v) ; Tx;v + dx;v(px;v; sp)] :

Proof: Consider �rst the case where x occurs before the �rst action in v. Then clearly in

x we have [ext Lv; ext U v] = [�1;1], and since �x;v does not contain the source point, we

also have dx;v(sp; px;v) = dx;v(px;v; sp) = 1, and we are done. Assume for the rest of the

proof that x occurs after the �rst action of v.

Suppose that dx;v(sp; px;v) < 1 and dx;v(px;v; sp) < 1. By Theorem 5.8 (applied with

p0 substituted by px;v), there exist executions e0 and e1 such that both have view Vx;v,

and such that for e0 we have �0(px;v; sp) = �dx;v(sp; px;v) and for e1 we have �1(px;v; sp) =

dx;v(px;v; sp). Let ST0 and ST1 denote the source time when the local time at v is Tx;v

in e0 and e1, respectively. By de�nition, we have that ST0 = Tx;v + �0(px;v; sp) = Tx;v �
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dx;v(sp; px;v), and similarly, ST1 = Tx;v+dx;v(px;v; sp). Moreover, Theorem 5.8 says that the

basic state of the CSA module at v at local time Tx;v is the same in the original execution,

in e0 and in e1. Since the output variables of a CSA are part of its basic state component,

it follows from the correctness requirement for external synchronization that in x,

[ext Lv; ext U v] � [Tx;v � d(sp; px;v) ; Tx;v + d(px;v; sp)] ;

and the lemma is proven in this case.

To complete the proof, consider the case that either dx;v(sp; q) =1 or dx;v(px;v; sp) =1.

Suppose, for example, that dx;v(sp; px;v) =1 (the other case is analogous). In this case we

apply Theorem 5.8 and get that for any N > 0 there exists an execution eN with view V in

which �(px;v; sp) > N . Therefore, in eN , when the local time at v is Tx;v, the source time

is greater than Tx;v + N . Since Theorem 5.7 also says that the output of the CSA at v is

identical for all eN , the correctness requirement implies that in x, ext Lv = �1.

The following theorem shows that the lower bound on tightness of Theorem 6.3 is an

upper bound too.

Theorem 6.4 There exists an external CSA such that for any state x in an execution of

the clock synchronization system, at any processor v, the output values are

ext Lv = Tx;v � dx;v(sp; px;v)

ext U v = Tx;v + dx;v(px;v; sp) :

Proof Sketch: The proof consists of the speci�cation of the algorithm. Below, we outline

a simple algorithm, based on the full information protocol. More speci�cally, the state of

the CSA at a processor v describes the complete local view of v at that state. Using the

standard bounds mapping (assumed to be built into the algorithm), the synchronization

graph can be computed, and the output values are given by

ext Lv = local timev � dx;v(sp; px;v) (6.2)

ext U v = local timev + dx;v(px;v; sp) : (6.3)

The implementation of the algorithm is straightforward: a description of the complete

current local view (where each point has a unique name) is sent in every message; whenever
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a message arrives, the view it carries is merged in the natural way with the current local

view by performing union over the two graphs. A synchronization graph is then constructed

from the new view and its standard bounds mapping, and the distances from the current

point to the source point and from the source point to the current point are computed, using

any single-source shortest paths algorithm for general graphs (see, e.g., [5]). Using these

distances, the output variables are updated according to Eqs. (6.2, 6.3). To have updated

output values at all states, the output variables are also modi�ed whenever a time-passage

action occurs: if the local time is incremented by b units, we set

ext Lv  ext Lv + b(%v � 1)=%v (6.4)

ext U v  ext Lv + b(1� %
v
)=%

v
: (6.5)

This completes the description of the algorithm. Let us now explain why is it correct.

First, we argue that the algorithm describes admissible CSA modules: it has the required

interface, it has the non-interfering �ltering property, it is real-time blind, and its initial

states are quiescent. To show correctness, we apply an easy induction on the steps of the

execution that shows that the algorithms maintains, at each point, a description of the local

view from that point, and therefore the output is correct after each receive event. Consider

now the synchronization graph at the null point px;v that occurs at v at local time Tx;v. Let

p0v be the last receive point that occurs at v before px;v. If p
0
v does not exist, we are done

trivially, since both the synchronization distances and the output values are in�nite in this

case. Otherwise, by the de�nitions we get that there is a single path from px;v to p
0
v with

weight virt del(px;v; p
0
v)(1 � %

v
)=%

v
. Similarly, there exists a single path from p0v to px;v,

with weight virt del(p0v; px;v)(%v � 1)=%v. Hence, from Eqs. (6.2{6.5) and Lemma 6.2, we

have that the algorithm is correct. Finally, note that the output values satisfy the theorem

statement, by the speci�cation of the algorithm and by the fact that its state at any point

represents the local view at that point.

Remarks.

1. The algorithm above is optimal, as de�ned in De�nition 4.1, i.e., it provides the best

possible output values at each point.

2. It is easy to make the algorithm described above more e�cient without a�ecting the

output. For example, instead of sending the complete view in each message, it su�ces to
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send only incremental changes. Notice that this modi�cation would reduce the communica-

tion overhead signi�cantly, but would not help to save space for storing state (in fact, more

space will be needed at the processors). The property of high space requirement is inherent

to optimal algorithms for general systems, as we show in Chapter 8.

6.3 An E�cient Algorithm for Drift-Free Clocks

In this section we restrict our attention to the case where all clocks are drift-free. Making

this simplifying assumption enables us to derive an extremely e�cient algorithm for external

synchronization that gives optimal tightness. The algorithm is presented in Subsection 6.3.1,

and analyzed in Subsection 6.3.2.

6.3.1 The Algorithm

The complete speci�cation of the algorithm given in Figure 6-1 (non-source processors)

and Figure 6-2 (source processors). The code lines that are not part of the generic code

for CSAs are numbered. The idea is as follows. As proved in Lemma 6.1, all the points

that occur at a processor with a drift-free clock can be thought of as a single superpoint

for distance computations. Intuitively, our algorithm computes distances in the graph of

superpoints. Since arc weights in the graph of superpoints may only decrease, we use (two

independent versions of) the distributed Bellman-Ford algorithm for single-source shortest

paths computation [4].

More speci�cally, for each link Luv, the CSA at node v maintains estimates for the weight

of the lightest arcs from the superpoint of u to v in the state variable ~w(u; v), and of weight

of the lightest arcs from v to u in state variable ~w(v; u). To this end, whenever a message

arrives, the weight of the corresponding arcs in the synchronization graph are computed,

using a temporary variable ~v which holds the virtual delay, and the message latency bounds;

only the minimum estimate is kept (lines 4-6 and 5s-7s). Using these weights, the distances

to and from the source are computed in the variables ~d(v; s) and ~d(s; v), respectively. Lines

7-8 in are the Bellman-Ford relaxations. In lines 9-10, the output variables are updated.

In addition, whenever a message is sent to a neighbor, the CSA augments it with the

current local time, the best known weights for the arcs between them, and the distances to

and from the source (lines 3 and 4s).
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The problem speci�cation also requires that the output variables be updated when time

passes (lines 11-12).

6.3.2 Correctness and Optimality

We now prove that the algorithm above is an optimal external CSA. First we state the

following easy fact.

Lemma 6.5 The algorithm in Figures 6-1 and 6-2 is an admissible CSA.

Proof: We verify the following according to De�nition 3.2.

� Clearly, the algorithm has the interface as in Figure 3-5.

� It is straightforward to see that the algorithm has the non-interfering �ltering prop-

erty: the code is based on the generic CSA of Figure 3-6.

� It is also easy to see that the algorithm is real-time blind, since the transitions never

refer to the now component of the state (lines 11-12 are based on the di�erence in

local times).

� Finally, the initial states of the algorithm above are quiescent: no internal or output

actions are enabled an in initial state, nor in any state reachable by time passage from

them.

We now turn to the less obvious part, namely proving that the algorithm above is an

optimal external CSA. Before we start, we introduce the following notion.

De�nition 6.1 Let u; v be two neighbor processors in a clock synchronization system.

Given a synchronization graph � = (V;E;w), the set Wuv(�) is de�ned to be the set of

all numbers w(p; q), where p occurs at u, q occurs at v, and (p; q) 2 E.

The key for the optimality of the algorithm is the following lemma.

Lemma 6.6 Let p be a point in an execution of the system above, and suppose that p occurs

at processor v. Let � = (V;E;w) be the synchronization graph generated by the local view

of the execution at p and its standard bounds mapping. Let ~w and ~d denote the value of the

local variables of v at in the state following p. Then the following invariant holds.

(1) For all neighbors u of v, ~w(v; u) = min(W vu(�)) and ~w(u; v) = min(Wuv(�)).
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Sites: a single non-source site v

State

now: non-negative real number, initially 0
local time: real number, initially arbitrary
ext L: real number, initially �1
ext U : real number, initially 1
Qi: queue for symbols of �, initially ;
Qo: queue for symbols of ��R5, initially ;
active: Boolean 
ag, initially false
~dv(v; s); ~dv(s; v): real numbers, initially 1 1

~w(v; u) and ~wv(u; v) for each u 2 N (v): real numbers, initially 1 2

Actions

Send Messageuv (m) (input)
E�: enqueue m in Qo

active  true

Send Aug Messageuv (m1;m2) (output)
Pre: m1 is at the head of Qo

m2 =


local time; ~w(v; u); ~w(u; v); ~d(v; s); ~du(s; v)

�
3

E�: remove head of Qo

if Qo = Qi = ; then active  false

Receive Aug Messageuv (m1;


local timeu; ~wu(v; u); ~wu(u; v); ~du(s; u); ~du(u; s)

�
) (input)

E�: enqueue m1 in Qi

active  true

~v  local time � local timeu 4

~w(v; u)  minfH(m1) � ~v ; ~wu(v; u) ; ~w(v; u)g 5

~w(u; v)  minf�L(m1) + ~v ; ~wu(u; v) ; ~w(u; v)g 6

~d(v; s)  min
�
~w(v; u) + ~du(u; s) ; ~d(v; s)

	
7

~d(s; v)  min
�
~du(s; u) + ~w(u; v) ; ~d(s; v)

	
8

ext L  local time � ~d(s; v) 9

ext U  local time + ~d(v; s) 10

Receive Messageuv (m1) (output)
Pre: m1 is at the head of Qi

E�: remove head of Qi

if Qo = Qi = ; then active  false

� : (time passage)
Pre: active = false

b > 0
E�: now  now + b

local time  local time + b 11

ext L ext L+ b 12

ext U  ext U + b

Figure 6-1: Code of optimal CSA protocol for external synchronization with drift-free clocks:
a non-source processor. The non-generic code lines are numbered.
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Sites: the source site s

State

now: non-negative real number, initially 0
local time: real number, initially arbitrary
ext L; ext U : real number, always equal to local time 1s

Qi: queue for symbols of �, initially ;
Qo: queue for symbols of ��R5, initially ;
active: Boolean 
ag, initially false
~dv(s; s); ~dv(s; s): always 0 2s

~w(s; u) and ~w(u; s) for each u 2 N (s): real numbers, initially 1 3s

Actions

Send Messageus (m) (input)
E�: enqueue m in Qo

active  true

Send Aug Messageus (m1;m2) (output)
Pre: m1 is at the head of Qo

m2 = hlocal time; ~w(s; u); ~w(u; s); 0; 0i 4s

E�: remove head of Qo

if Qo = Qi = ; then active  false

Receive Aug Messageus (m1;


local timeu; ~wu(s; u); ~wu(u; s); ~du(s; u); ~du(u; s)

�
) (input)

E�: enqueue m1 in Qi

active  true

~v  local time � local timeu 5s

~w(s; u)  minfH(m1)� ~v ; ~wu(s; u) ; ~w(s; u)g 6s

~w(u; s)  minf�L(m1) + ~v ; ~wu(u; s) ; ~w(u; s)g 7s

Receive Messageus (m1) (output)
Pre: m1 is at the head of Qi

E�: remove head of Qi

if Qo = Qi = ; then active  false

� : (time passage)
Pre: active = false

b > 0
E�: now  now + b

local time  local time + b

Figure 6-2: Code of optimal CSA protocol for external synchronization with drift-free clocks:
a source processor. The non-generic code lines are numbered.
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(2) Let sp be the source point of �. Then d�(sp; p) = ~d(s; v), and d�(p; sp) = ~d(v; s).

Proof: The lemma is proven by induction on the steps of e, with the initial state as a base

case. For the base case, we observe that the invariant holds for all processors in the initial

states of the system by lines 1-2 and 2s-3s of the code, since � is empty then.

For the inductive step, let p0 be the last event at v before p, or the initial state if no such

event exists. If p0 is a point, let �0 = (V 0; E0; w0) be the synchronization graph generated

by the local view of the execution at p0 and its standard bounds mapping, and otherwise

de�ne �0 to be the empty graph. To prove the inductive step, we consider two cases.

Case 1: p is a send event. In this case, by Def. 5.4, V = V 0[fpg, and if �0 is not empty,

then E = E0 [ f(p; p0); (p0; p)g, w(e0) = w0(e0) for all e0 2 E0, and by Def. 3.11, w(p; p0) =

w(p0; p) = 0. By the inductive hypothesis, the invariant holds at p0. Hence, W vu(�) =

W vu(�0) and Wuv(�) = Wuv(�0). Since by the code, the ~w variables are unchanged by

a send event, we have that part (1) of the invariant holds in p. For part (2), note that

there is only one arc incoming into p, and one arc outgoing from p. Since both arcs have

weight 0, and since they connect p to p0, it follows that d�(p; p0) = d�0(p; p0), and that

d�(p0; p) = d�0(p0; p). Again, since the algorithm does not change the value of the ~d variables

when a send event occurs, part (2) of the invariant holds in this case.

Case 2: p is a receive event. Speci�cally, assume that p is the following event:

Receive Aug Messageuv(m1;


local time ; ~w(v; u);~w(u; v);~d(v; s);~du(s; v)

�
)

Denote the corresponding send event at u by p00, and let �00 = (V 00; E00; w00) be the synchro-

nization graph generated by the local view at p00 and the standard bounds mapping. By

de�nitions, V = V 0 [ V 00 [ fpg, and either E = E0 [E00 [ f(p; p00); (p00; p)g if �0 is empty, or

E = E0 [E00 [ f(p; p00); (p00; p); (p; p0); (p0; p)g if �0 is not empty. The weights are de�ned by

w(e) =

8>>>>>>>>>>><
>>>>>>>>>>>:

w0(e); if e 2 E0

w00(e); if e 2 E00

H(m1)� virt del(p; p00); if e = (p; p00)

�L(m1)� virt del(p00; p); if e = (p00; p)

0; if e 2 f(p; p0); (p0; p)g
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pq

R

 sp

Figure 6-3: Scenario considered in the proof of Lemma 6.6. R is a shortest path from sp to
p with last arc (q; p).

Part (1) of the invariant in this case is proven as follows. By de�nitions, Wuv(�) = Wuv(�0)[

Wuv(�00) [ fw(p; p00)g, and W vu(�) = W vu(�0) [W vu(�00) [ fw(p00; p)g. Hence

min(W vu(�)) = min

�
W vu(�0) [W vu(�00) [ fH(m1)� virt del(p; p00)g

�
;

and

min(Wuv(�)) = min

�
Wuv(�0) [Wuv(�00) [ f�L(m1)� virt del(p00; p)g

�
;

which, according to the inductive hypothesis applied to p0 and p00, is exactly the calculation

in lines 4-6 and 5s-7s. This proves part (1) of the invariant.

For the second part of the invariant, let us prove that ~d(s; v) = d�(sp; p). The claim is

trivial for v = s, according to line 2s. So suppose v 6= s. Consider a shortest path from sp

to p that contains no cycles. This is possible since by Lemma 5.3, all cycles in � have non-

negative weight. Focus on the last arc of the path in question, i.e., the arc that leads to p

(see Figure 6-3). Denote this arc (q; p), where q 2 fp0; p00g, and let �� be the synchronization

graph at q. By the choice of q, d�(sp; p) = d�(sp; q) +w(q; p). By the induction hypothesis,

we have that at q, the ~d variables are equal to the corresponding distances in ��. Also,

we have that after line 7, ~w(v; u) = min(W vu(�)) and ~w(u; v) = min(Wuv(�)). Therefore,

by Line 9 of the code, it su�ces to prove that d�(sp; q) = d��(sp; q). We do this in two

steps. First, notice that d�(sp; q) � d��(sp; q) since �� is a subgraph of �. Next we argue

that d�(sp; q) � d��(sp; q) by contradiction: suppose that d�(sp; q) < d��(sp; q). Then

all shortest paths from sp to q in � are shorter than the shortest path from sp to q in ��.

Consider such a shortest path which is simple (this is possible since � has no negative-weight

cycles). This path must end with the arc (p; q), or otherwise it is completely contained in ��.

It follows that the shortest path from sp to p goes through p, q, and back to p (see Figure

6-3), a contradiction to the choice of the path as simple. Therefore, d�(sp; q) � d��(sp; q),

and we conclude that d�(sp; q) = d��(sp; q).
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To show that ~d(v; s) = d�(p; sp), we repeat the symmetrical argument for the �rst arc

of a simple shortest path from p to sp, and use line 8 of the code instead of line 9.

We can now prove the optimality of the algorithm.

Theorem 6.7 The CSA algorithm in Figure 6-1 and Figure 6-2 is an optimal algorithm

(in the sense of Def. 4.1) for all external synchronization environments, where all clocks

are drift-free.

Proof: Clearly, the algorithm may be composed with any environment of external

synchronization, where all clocks are drift-free. Consider any state x of an execution of the

algorithm, let v be any processor, and let Tx;v = local timev(x). Let � be the

synchronization graph generated by the local view of v at time Tx;v and the standard

bounds mapping. Denote the null point in � that occurs at v at local time Tx;v by px;v.

Let p0 be the last point that occurs at v before px;v, and let �0 be the synchronization

graph generated by the local view at p0 and the standard bounds mapping. By Lemma

6.1, d�(px;v; sp) = d�0(p0; sp), and d�(sp; px;v) = d�0(sp; p0). Hence

source time(x) 2 [Tx;v � d�(sp; px;v); Tx;v + d�(px;v; sp)] by Lemma 6.2

= [ext L; ext U ] by lines 9-12 and Lemma

6.6

This means that the algorithm is correct. The optimality of the algorithm follows imme-

diately from the lower bound of Theorem 6.3.

6.4 The Round-Trip Technique

It may be interesting at this point to compare our analysis and algorithms with the com-

mon clock synchronization technique known as \round-trip probes." For concreteness, we

take the external synchronization system NTP (Network Time Protocol, the clock synchro-

nization algorithm used over the Internet [26]) as our prime source for this technique. We

consider here a simpli�ed variant of NTP, called SNTP, that was introduced in Section

3.1.5. In the SNTP system, we have only two processors with drift-free clocks, connected

by perfect asynchronous links. We denote the source processor by s, and the non-source

processor by v. SNTP is rigorously de�ned in Section 3.1.5, with a technique for a single
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Figure 6-4: Reproduction of Fig. 3-7. (a) A typical round trip technique. (b) m is in transit
TT time units. (c) m0 is in transit TT time units.

round trip. In this section, we extend the presentation to multiple round-trips, and focus

on the way their results are combined. Let us recall brie
y the main ideas.

Periodically, v sends a message to s, which in turn responds by sending a message back

to v (hence the name \round trip"). Consider the round trip depicted in Figure 6-4(a),

where v sends a message m to s, and s responds by sending m0 to v. Let TT denote the

total transit time of m and m0. The bounds on the source time are obtained by considering

two extreme scenarios, in which on message is in transit TT time units and the other is

delivered instantaneously (Figure 6-4 (b,c)). Skipping the details (they can be found in

Section 3.1.5), we remark that the bounds generated by the CSA module at v at point q0

are

[ext L ; ext U ] = [LT3 ; LT3 + TT ] :

Clearly, the tightness of the synchronization thus computed is exactly the total transit

time. In other words, the faster the messages are delivered, the better synchronization is

achieved. This fact leads the designers of NTP to the following conclusion: when there

are many round trips, the one with the least total transit time is chosen as best, and its

corresponding bounds are output. Speci�cally, whenever a round trip is completed, its total

transit time is compared against the current tightness; if the current tightness is better (i.e.,

smaller), that round trip is discarded, and otherwise, the bounds obtained by that round-

trip replace the current values of the output variables. The formal speci�cation of the CSA

at v for multiple round-trips is given in Figure 6-5 (note the \if then" clause in the e�ect
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of the Receive Aug Message action). The code for the source processor is identical to the

case of a single round-trip (see Figure 3-9).

Let us now consider the behavior of the algorithm described in Section 6.3 for this toy

environment. Note that the patterns generated by the environment of SNTP are a subset of

the patterns generated by the general environment described in Section 3.1, and therefore

it makes sense to consider the CSAs of Section 6.3 in the context of the environment of

SNTP.

Our �rst remark regards the single round-trip scenario depicted in Figure 6-4 (a). Us-

ing De�nitions 3.11 and 5.4, we get that the synchronization graph corresponding to this

scenario is the one depicted in Figure 6-6. It is straightforward to verify that the extreme

scenarios depicted in Figure 3-7 (b,c) are, in fact, the executions whose existence is guaran-

teed by Theorem 5.8 for this view and bounds mapping. As a consequence, the output of

the algorithm of Section 6.3, and the bounds computed by SNTP are identical in this case.

However, in a scenario that consists of more than a single round-trip, the algorithm of

Section 6.3 may do much better. By computing the distances in the synchronization graph,

our algorithm in e�ect �nds the fastest message delivered over the link in each direction

independently, while SNTP �nds the best round-trip using a pre-speci�ed matching of the

messages into pairs.

Let us consider a concrete example. In Figure 6-7 (a) we have a diagram of a two-

round-trip scenario. Suppose that the total transit time of the �rst round-trip is smaller

than the one in the second, i.e., let TT1 = (LT4 � LT1) � (LT3 � LT2), let TT2 = (LT8 �

LT5)� (LT7 � LT6), and assume TT1 < TT2. In this case, the tightness of synchronization

produced by SNTP after the scenario is TT2. By contrast, the algorithm of Section 6.3

�nds the best possible round trip in the execution: in our example, the picture suggests

that TT � = (LT8 � LT1) � (LT7 � LT2) is the best choice, and in particular, TT � < TT1.

Notice that TT � may be arbitrarily smaller than TT1, and hence the local competitive factor

of SNTP cannot be bounded even in this simple case.

Intuitively, the round-trip technique used by NTP is handicapped since it potentially

pairs a \good" message in one direction with a \bad" message in the other direction. We

remark that in the case of a system of more than one link, the pairing of good and bad

messages may be even more severe: consider the set of messages used to establish the bounds

of the output variables. These messages correspond to paths (in the synchronization graph)
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Sites: a single site v

State

now: non-negative real number, initially 0
local time: real number, initially arbitrary
ext L: real number, initially �1
ext U : real number, initially 1
Qi: queue for symbols of �, initially ;
Qo: queue for symbols of ��R2, initially ;
active: Boolean 
ag, initially false
LT1: a real number, initially unde�ned

Actions

Send Messagev(m) (input)
E�: enqueue m in Qo

active  true

LT1  local time

Send Aug Messagev(m1; 0; 0) (output)
Pre: m1 is at the head of Qo

E�: remove head of Qo

if Qo = Qi = ; then active  false

Receive Aug Messagev(m1; hLT2; LT3i) (input)
E�: enqueue m1 in Qi

active  true

LT4  local time
TT  (LT4 � LT1)� (LT3 � LT2)
if TT < (ext U � ext L) then

ext L LT3
ext U  LT3 + TT

Receive Messagev(m1) (output)
Pre: m1 is at the head of Qi

E�: remove head of Qi

if Qo = Qi = ; then active  false

� : (time passage)
Pre: active = false

b > 0
E�: now  now + b

local time  local time + b

ext L ext L+ b

ext U  ext U + b

Figure 6-5: Code of the CSA module in SNTP for processor v (the best round-trip is chosen).
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Figure 6-6: The synchronization graph corresponding to the scenario in Fig. 6-4 (a), as-
suming that the clocks are drift-free and that transmission time of the messages are can be
any value between 0 and 1.
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Figure 6-7: A time space diagram of two round trips is given in (a), with local times of the
points. SNTP chooses the round trip with the smallest total transit time (enclosed in the
dashed frame in (a)). For the same scenario, the algorithm of Section 6.3 implicitly chooses
the best message in each direction independently, and in e�ect �nds the best possible round
trip (dashed arrows in (b)). The corresponding synchronization graph is given in (c), where
the lightest arcs connecting points of s and v are boldfaced.
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to and from the source. The round trip technique forces both paths to be over the same

physical links, i.e., the messages used in one direction must be transmitted over the same

links over which the messages used in the other direction were transmitted. Our algorithm,

by contrast, chooses messages independently for each direction, and it may well be the case

that the set of messages used to establish a lower bound are transmitted over di�erent links

over which the messages used for the upper bound were transmitted.
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Summary

In this chapter we de�ned and analyzed the external clock synchronization problem. In

this problem, a distinguished source processor is assumed to have a drift-free clock, and the

task of all processors is to keep updated bounds on the current value of the source clock.

Using synchronization graphs, we derived matching lower and upper bounds on external

synchronization in general systems, where the clocks of non-source processors may have

arbitrary drift bounds and messages may have arbitrary latency bounds.

The algorithm used for the upper bound is a full information protocol, and therefore

it is ine�cient. By contrast, we presented an extremely e�cient algorithm for the case of

drift-free clocks. The latter algorithm is based on the observation that all points associated

with a drift free clock in the synchronization graph can be collapsed into a single superpoint,

and thus it is su�cient to compute distances between superpoints.

We have also examined the popular technique of round trips. Using a toy system based

on NTP, we showed that for a single round trip this technique yields the same result as our

algorithm. In a multiple round-trip scenario, however, the output of our algorithm will be

usually better.
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Chapter 7

Internal Synchronization

In this chapter we prove a lower bound on the tightness of another variant of clock synchro-

nization, called internal clock synchronization [6]. The goal of internal synchronization is

that all processors generate a \tick," called �re below, such that all �re steps occur in the

smallest possible interval of real time. An algorithm for internal synchronization is required

to provide bounds on the length of this real time interval, and the smallest di�erence in an

execution is the internal tightness of that execution.

The task of internal synchronization has been the target of considerable research (see,

e.g., [19, 7, 13, 3] and the survey [31]). However, to the best of our knowledge, the only

known non-trivial lower bounds for internal tightness were for the case of drift-free clocks.

In this chapter, based on synchronization graphs, we give a lower bound for the internal

tightness in a synchronization system with bounded-drift clocks. We remark that the lower

bound presented in this chapter is based on views, rather than local views: lower bounds

that hold for a given view hold a fortiori for its local views.

This chapter is organized as follows. In Section 7.1 we de�ne internal clock synchroniza-

tion formally, and in Section 7.2 we present the lower bound.

7.1 De�nition of Internal Synchronization

In this section we recall our de�nition of internal synchronization (see Section 4.1). An

internal clock synchronization system is a clock synchronization system, where each CSA

module has a special internal action called �re.1 The correctness requirement of the internal

1The �re action is internal so as to keep the interface of CSAs standard (see Figure 3-5).
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synchronization task is that

(1) each processor v takes a �rev action exactly once during an execution of the system,

and

(2) the CSA at each processor v maintains output variables called int Lv and int U v,

such that at all states, the real time interval [now(�rev) + int Lv; now(�rev) + int U v]

contains all the �re events in the execution.

The internal tightness of an execution of an internal synchronization system at a processor

v, denoted tightnessv(e), is the in�mum over the di�erence (int U v � int Lv) in all states

of the execution.

Intuitively, the �re actions represent the event of resetting some logical clock maintained

by the CSAs; the output variables express the synchronization guarantee made by the CSA.

By the properties of CSAs (speci�cally, their real-time blindness and their quiescent initial

states), one can show that their initial values must be int L = �1 and int U =1; as the

execution progresses, the CSA modules gather information about the occurrence of remote

�re actions that may enable them to reduce the di�erence between their output values.

7.1.1 Discussion

Intuitively, the motivation for internal synchronization is to maintain some clock variables

in each processor, such that their values are as close as possible. This requirement alone

is not su�cient, since it allows for the trivial solution where all clock variables always

have the same �xed value (say, 0). Dolev et al. discuss this issue in depth [7]. In [19], this

di�culty is avoided as follows. Each processor v is assumed to have a special output variable

denoted CORRv ; the tightness is measured as the maximal di�erence between the values

of local timev + CORRv, over all processors v. To rule out the trivial solution of setting

CORRv = �local timev, in [19] the executions of synchronization algorithms are required

to be �nite, i.e., at some point the algorithm enters a terminating state, after which the

CORR variable is �xed. The tightness is de�ned to be the maximal di�erence between the

local timev +CORRv values, measured only when the algorithm is in a �nal state.

In [13], the di�culty of problem de�nition is solved di�erently: each processor is required

to 
ip a special internal bit during the execution of the algorithm; the tightness is de�ned

to be the maximal di�erence in real time between two remote bit 
ips. We adopted this

de�nition (the bit 
ip is equivalent to our �re action), and added the output variables for
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ease of exposition.

7.2 A Lower Bound on Internal Tightness

In this section we derive a lower bound on the tightness of internal synchronization in

general systems with bounded-drift clocks. To state the result, we de�ne the following

graph-theoretic concept. Recall that for a path � in a weighted graph, w(�) denotes the

sum of the weights of arcs in �, and let j�j denote the number of arcs in �.

De�nition 7.1 Let G = (V;E;w) be a weighted directed graph. The maximum cycle mean

of G, denoted mcm(G), is the maximum average weight of an edge in a directed cycle of G.

That is, mcm(G) = max fw(�)=j�j : � is a directed cycle of Gg.

We remark that the maximum cycle mean can be computed in polynomial time [14].

To analyze internal synchronization systems, the de�nition of patterns and views is

extended so that the �re steps are points with the usual attributes (i.e., processor of oc-

currence, local time of occurrence, and for patters, real time of occurrence). We extend

the standard bounds mapping too, using Def. 3.11. Synchronization graphs for internal

synchronization systems are thus also naturally de�ned. It turns out that the following

derivative of synchronization graphs is useful for the analysis of internal synchronization.

De�nition 7.2 Given a synchronization graph � = (V;E;w) of an internal clock syn-

chronization system, the internal synchronization graph is a directed, weighted graph � =

(V ;E; w), where the set of points V consists of all the �re points in V ; there is an arc

in E between every pair of points of V ; and w(�rev; �reu) = d�(�rev; �reu) for each

(�rev; �reu) 2 E.

We can now state and prove the lower bound.

Theorem 7.1 Let e be an execution of an internal clock synchronization system, and let

� be the internal synchronization graph generated by the view of e and the standard bounds

mapping. Then tightnessv(e) � mcm(�) for all processors v.

Proof: Suppose �rst that mcm(�) = 1. Then, by the de�nition of �, there are some

processors u; v with d�(�rev; �reu) = 1. Hence, by Theorem 5.7, for any N > 0 there
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exists an execution eN , in which �(�rev; �reu) > N . Moreover, since the output variables

are part of the basic component of the state of CSAs, we have from Theorem 5.7 that the

set of output values of the CSA at v are identical in all the eN . Let act delN denote the

actual delay function in eN . Since for any two points in any execution we have �(p; q) =

act del(p; q)�virt del(p; q), and since virt del(�rev; �reu) is �xed (it is a part of the view of

e), it follows that the set of numbers fact deleN (�rev; �reu) : N > 0g cannot be bounded.

Therefore, by the correctness requirement for internal CSAs, we must have tightnessv(e) =

1 for all processors v, and the theorem holds in this case.

Consider now the case where mcm(�) <1. Let � = hp0; p1; : : : ; pj�j = p0i be an arbitrary

directed cycle in �. Fix an arbitrary processor v. By Theorem 5.7, for each 1 � i � j�j,

there exists an execution ei with o�set function �i, such that

�i(pi�1; pi) = w(pi�1; pi) : (7.1)

Theorem 5.7 also says that the set of output values at v (being part of the basic state of

the CSA at v), is the same in e and all the ei. We therefore have that for each i,

tightnessv(e) = tightnessv(ei)

� nowei(pi�1)� nowei(pi) correctness requirement

= �i(pi�1; pi) + virt del(pi�1; pi) by de�nition of o�set

= w(pi�1; pi) + virt del(pi�1; pi) by Eq. (7.1)

Summing the above over all i, we get

j�j � tightness(e) �
j�jX
i=1

w(pi�1; pi) +
j�jX
i=1

virt del(pi�1; pi)

=
j�jX
i=1

w(pi�1; pi) +
j�jX
i=1

(local time(pi�1)� local time(pi))

= w(�) ;

because the second sum is cyclic. In other words, for any processor v, tightnessv(e) �

w(�)=j�j. Since � was an arbitrary cycle in �, we conclude that tightnessv(e) � mcm(�), as

desired.
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Theorem 7.1 coincides with known results for the special case of systems with drift-free

clocks. For example, Lundelius and Lynch [19] considered a system of n processors, where

the underlying communication graph is complete, and the latency bounds of all messages

are �nite and identical (say upper bound H and lower bound L). The corresponding syn-

chronization graph consists of n points (one per processor), and between each pair of points

p; q there are arcs (p; q) and (q; p) with weights satisfying w(p; q)+w(q; p) = H �L. It can

be shown that for these graphs, the maximum cycle mean is (H�L)(n� 1)=n, which is the

lower bound proved in [19].

Halpern, Megiddo and Munshi [13] extended the result of [19] to the case where the

underlying graph of the system is not complete, and the latency bounds for each link may

be di�erent (i.e., there are di�erent H and L for each link). Again, their lower bound can be

viewed as showing that the worst possible scenario under the given constraints is bounded

by the maximal cycle mean in the corresponding synchronization graph.

Attiya, Herzberg and Rajsbaum [3] re�ned the results of [13] to hold for each execution

of the system, rather than for the worst possible executions. Theorem 7.1 generalizes the

result of [3] to the case of bounded-drift clocks. Our result generalizes the previous bounds

also to the case where the latency bounds may be di�erent for each individual message.
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Summary

In this chapter we discussed the internal clock synchronization problem. Formally, based

on the de�nition of [13]. Using synchronization graphs, we presented a new lower bound

for internal synchronization for system over systems with drifting clocks. This lower bound

generalizes known lower bounds for systems with drift-free clocks to the general case of

bounded-drift clocks.
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Chapter 8

The Space Complexity of Optimal

Synchronization

Call a synchronization algorithm general if it works for all possible environments as de�ned

in Section 3.1, i.e., for all possible views, all possible message latency bounds, and all possible

clock drift bounds. (For example, the full information protocol used in the proof of Theorem

6.4 is a general algorithm for external synchronization, whereas the algorithm described in

Section 6.3 is not general, since it works only for drift-free clocks.) In this chapter we

provide strong evidence that suggest that a general CSA for external synchronization which

is optimal must be ine�cient, or more speci�cally, such an algorithm cannot have bounded

space complexity.

Recall that in external clock synchronization systems, the CSAs are required to compute

bounds on the current reading of some designated drift-free clock called the source clock

(see Section 4.1 for the full de�nition). In this chapter, we prove that for a certain reason-

able computational model, there exist scenarios in which the space complexity required to

compute optimal output cannot be bounded. The result is obtained in a small system (four

processors, two of which have drift-free clocks).

The �rst problem in formalizing a space lower bound is that our model allows for real

numbers: a real number can be used to encode an unbounded amount of information. Our

strategy to get around this di�culty is to bound from below the number of \control bits"

required to run the program, where we disallow �ddling with the input values.

The moral of the result presented in this chapter is that one cannot have a synchro-
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nization algorithm which is simultaneously optimal, general, and e�cient. An algorithm

designer must decide which of the three is to be sacri�ced. We remark that as a by-product,

this chapter indicates that the ine�ciency of the algorithm used in the proof of Theorem

6.4 was, in a certain sense, unavoidable, since that algorithm is both general and optimal.

The remainder of the chapter is organized as follows. In Section 8.1 we describe the

computational model in the context of CSAs, and in Section 8.2 we give the space lower

bound proof.

8.1 The Computational Model

The model we use for computations of CSAs is a particular kind of the computation tree

model. First, we de�ne the following algebraic concept.

De�nition 8.1 A special linear form for a set X = fx1; : : : ; xNg is a sequence of N in-

tegers f = hc1; : : : ; cNi. The value of f under the assignment x1 = a1; : : : ; xN = aN is

f(a1; : : : ; aN) =
PN

i=1 ciai, where ai 2 R[ f�1;1g.
1 If b = f(a1; : : : ; aN) for some special

linear form f , then b is said to be a special linear combination of a1; : : : ; aN .

We have the following simple lemma.

Lemma 8.1 If b is a special linear combination of a1; : : : ; aN , and for each i = 1; : : : ; N

we have that ai is a special linear combination of ai1; : : : ; aiKi
, then b is a special linear

combination of a11; : : : ; a1K1
; : : : ; aN1; : : : ; aNKN

.

Proof: Since b =
PN

i=1 ciai for some integers ci, and since for each i we have ai =
PKi

j=1 cijaij,

for some integers cij, we can write b as the special linear combination

b = c1c11a11 + � � �+ c1c1K1
a1K1

+ � � �+ cNcN1aN1 + � � �+ cNcNKN
aNKN

.

We now de�ne the computational model. For simplicity of presentation, we present

below a model for deterministic CSAs; the extension to non-deterministic CSAs is straight-

forward. A program for a CSA module is speci�ed by a directed labeled tree, where the

root of the tree is called the start node, and the edges are directed away from the start

1We use the conventions that for any �nte number r, r +1 =1, r �1 = �1, 0 � 1 = 0 � (�1) = 0,
and 1�1 is unde�ned.
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node. Intuitively, nodes represent control con�gurations of the program, and executions of

the program proceed by following a directed path in the tree, starting at the start node.

Formally, let us call the nodes at even distance from the start node even nodes, and nodes

at odd distance from the start node odd nodes. The subtree of depth two rooted at each odd

node corresponds to an input action followed by an output action of the CSA, as dictated

by the non-interfering �ltering condition. Speci�cally, we de�ne the node labels as follows

(see Figure 8-1 for an example the �rst three layers of a program tree).

� Each odd node is labeled by an input action name and input variables, where the

input variables contain the local time and bounds mapping values (speci�ed later);

we call these variables local variables. If the action is Receive Aug Message(m;m0),

there are also message variables, which correspond to values in m0. We require that

for each even node, there is exactly one child node for any possible input action.

� Each even node, except for the start node, is labeled by an output action name, a

computation predicate, and some output forms according to the following rules.

{ The output action of an odd node corresponds to the input action of its par-

ent in the tree according to the non-interfering �ltering property, i.e., if the

action of the parent is Send Message(m), then all its children nodes have an

action of the type Send Aug Message(m;m0), and if the action of the parent is

Receive Aug Message(m;m0), then the action of all its children is Receive Message(m).

{ For an even node p in the tree, let X(p) denote the set of input variables in

labels on the path from the start node to p. The computation predicate of p is

an arbitrary predicate over X(p), and the output forms associated with p are

special linear forms for X(p).

For each even node q, for any possible assignment of values to X(q), we require that

there is exactly one computation predicate among its children that evaluates to true.

An execution of the CSA in this model proceeds by moving a \token" (which represents

the current control con�guration) along the tree according the labels in the following way.

Initially, the token is placed at the start node. Whenever an input action occurs, the token

is moved down the tree to the odd node whose label matches the input action name. In

addition, the input variables associated with the odd node are instantiated. Next, an even
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start node

action name: 
   Send_Message(m)
input variables:
   {local_time}

action name:
   Receive_Aug_Message(m.<a,b,c>)
input variables:
   {local_time, B(p,q), B(q,p), a, b, c}

action name:
   Send_Aug_Message(m.<x,y>)
computation predicate:
   TRUE
output forms:
   ext_U := local_time
   ext_L := 0
   x := local_time
   y:= 0

action name:
   Receive_Message(m)
computation predicate:
   a−b < local_time
output forms: 
   ext_U := c
   ext_L := local_time−c

action_name:
   Receive_Message(m)
computation predicate:
   a−b >= local_time
output forms:
   ext_U := a
   ext_L := local_time−a

Figure 8-1: The �rst three layers of a program: an example. The odd nodes are labeled by
input action names and input variables, and the nodes at depth 2 are labeled by an output
action name, a computation predicate and output forms.

node down the tree is selected by choosing the node whose computation predicate evaluates

to true under the current assignment of the input values. The outcome of the predicates

is well de�ned, as all their variables are instantiated at this stage. The output values are

de�ned by instantiating the output forms associated with the chosen even node.

Let us now be more speci�c about the input variables and the output values of a program

for a CSA. The input variables associated with an odd node, which in turn corresponds to an

input step p, always include local time(p), and the values of the standard bounds mapping

of all the pairs (p; q) and (q; p), for all points q which are adjacent to p in the local view

from p (if there are any). In addition, if p is a receive point, then the input also contains

all the values that arrive in the incoming message. We restrict the message alphabet used

by CSAs to be strings of R [ f�1;1g. The output forms associated with an even node

which corresponds to a point p always contain forms for the mandatory output variables

(i.e., ext L and ext U ); if p happens to be a send point, then there is an output form

corresponding to each value to be sent in the outgoing message. The output values of the

CSA, at any state of the execution, are generated by instantiating the last output forms by

the input values.

When time passage occurs, the local time and bounds mapping values are updated.

Since these values may appear in the output forms for ext L and ext U , the output values

are potentially updated as well. This completes the description of the way CSAs work in
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our model.

For lower bound purposes, we de�ne the space complexity of a program in our model to

be the logarithm to base 2 of the maximal degree of a node in the tree. We argue that this

measure is certainly a lower bound on the number of bits required to distinguish among

the di�erent possible branches the program may take. We remark that in our proof, the

lower bound is derived for the odd nodes, i.e., the number of possible output responses for

an input.

Before we go into the lower bound proof, we state an important property of our model.

First, we de�ne the following concept.

De�nition 8.2 Let p be a point in a view V of an execution of a clock synchronization

system. The values in the local view of p is the set of all local times of points in the local

view prune(V ; p), and all the bound mapping values for arcs prune(V ; p).

The important property of values in a local view of a point is that they \span" all

possible outputs at that point, as stated in the following lemma.

Lemma 8.2 Any output value of a CSA at a point p in an execution of the system is a

special linear combination of the values in the local view of p.

Proof: By induction on the points in the view, sorted by their order of occurrence in the

execution. The lemma is clearly true in the �rst step of the execution in the system: the

only input value at that point is the local time of occurrence, and by de�nitions, the output

value is just a special linear combination of its input values.

Assume now that the lemma holds at all points p1; : : : ; pn of the execution, and consider

the point pn+1. By Lemma 8.1, it is su�cient to show that the input values are special

linear combination of values in the local view of pn+1. If pn+1 is not the �rst action at the

processor, let pj be the previous action at the processor, and let pj be unde�ned otherwise.

We distinguish between two cases.

Case 1: pn+1 is a send point. In this case, by our model de�nitions, the input values

at pn+1 are local time(pn+1), and if pj is de�ned, the input also contain the values of the

standard bounds mapping for (pn+1; pj) and (pj; pn+1). Trivially, all these values are special

linear combinations of values in the local view of pn+1.

Case 2: pn+1 is a receive point. Let pi denote the corresponding send point in the

execution. The input values in this case are the local time of occurrence of pn+1, the
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appropriate bounds mapping values, and the values that arrive in the incoming message.

Since a send point always occurs before the corresponding receive point, we have that

i < n+ 1, and by de�nition, we also have that the local view of pi is contained in the local

view of pn+1. By the inductive hypothesis, the values that arrive in a message are special

linear combinations of values in the local view of pi, and hence they are also special linear

combinations of values in the local view of pn+1. This completes the inductive step.

8.2 The Space Lower Bound

In this section we prove a lower bound on external synchronization in the model de�ned in

previous sections. We shall use the following simple lemma.

De�nition 8.3 A function F : D 7! R is said to be covered by a collection of functions F

if for all x 2 D there exists a function f 2 F such that F (x) = f(x).

Lemma 8.3 Let x1; : : : ; xM 2 RN be such that for any xi = (xi1; : : : ; xiN) and xj =

(xj1; : : : ; xjN) we have that if xik 6= xjk then xik � xjk is an integer. Let F be a function

such that F (xi) � F (xj) is an integer only if i = j. If F is a collection of special linear

forms covering F , then jFj �M .

Proof: By contradiction. If jFj < M and F covers F , then for some f 2 F and i 6= j, we

have that f(xi) = F (xi) and f(xj) = F (xj). Denote f = hc1; : : : ; cNi, xi = (xi1; : : : ; xiN)

and xj = (xj1; : : : ; xjN). Suppose, w.l.o.g, that xi1� xj1; : : : ; xiK� xjK are all integers, and

that xin = xjn for n = K + 1; : : : ; N . Then

F (xi)� F (xj) = f(xi)� f(xj)

=
NX
n=1

cinxin �
NX
n=1

cjnxjn

=
NX
n=1

cin(xin � xjn)

=
KX
n=1

cin(xin � xjn) ;

which is an integer, contradicting the assumption that F (xi)� F (xj) is not an integer for

i 6= j.
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We now turn to prove a lower bound on the space complexity of optimal CSAs in our

computational model. To simplify presentation, we focus below on the output variable

ext L.

Consider an execution of an external synchronization system, and let � be the syn-

chronization graph generated by the local view of the execution at some point p and the

standard bounds mapping. From Theorem 6.4, we know that the optimal value for ext L

at point p is precisely local time(p)� d(sp; p), where sp is the source point of �, and d is

the distance function of �. The lower bound is proven by showing that unbounded space is

required to compute d(sp; p) for a point p in a certain scenario.

Speci�cally, we consider a system whose underlying graph is a line of four processors

denoted s; u; v; w (see Figure 8-2 (a)). Processor s is the source processor; processors u

and v have drifting clocks, and the clock at w is drift-free. We concentrate on the CSA

at w. As mentioned above, the optimal value of ext L at a point p of the execution is

local time(p)� d(sp; p). Since local time(p) is an input variable at p, the task we consider

reduces, at each point p, to the computation of d(sp; p).

The following key lemma describes a scenario in which a single local view may have

many di�erent extensions, depending on the message that arrives next. The output for

each possible extension must be di�erent; the special properties of the input variables at

the receive point are used later to prove the space lower bound.

Lemma 8.4 For any integerM > 0 there existM executions e1; : : : ; eM with views V1; : : : ;VM

and synchronization graphs �1; : : : ;�M, respectively, and a receive point p that occurs at w,

such that

(1) p is common to all views.

(2) The local views of V1; : : : ;VM at w are identical before p occurs.

(3) All values in the message that arrive at p are integers.

(4) For each i = 1; : : : ;M , the distance between sp and p in �i is 1=(i+ 1).

Proof: We construct the views, and specify the weights of the arcs in corresponding syn-

chronization graphs as we go. In our construction, all arc weights are non-negative, and

hence there are no negative-weight cycles in all the synchronization graphs we de�ne. There-

fore, the proof is completed by observing that by Theorem 5.7, for each i there exists an
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Figure 8-2: (a) System structure for the proof of Lemma 8.4. Processor s is the source,
and processor w also has a drift-free clock. (b,c) An example for graphs constructed in the
proof of Lemma 8.4 with M = 3. In (b), the local view at w before p (shared by all Vi) is
illustrated (the messages from v are known to be sent). In (c), the local view at w after p
is illustrated: in Vi, the selector message is received at point ui.

execution ei with view Vi, such that ei satis�es the bounds mapping derived from �i and

Vi.

It remains to de�ne the views and the bounds mapping. We do it as follows (see

Figure 8-2 (c)). In all views Vi for i = 1; : : : ;M , there are M messages from processor

v to processor u, with distinct send points denoted v1; : : : ; vM , and distinct receive points

denoted u1; : : : ; uM , respectively. The bounds mapping is such that in all the �i we have

w(vk; uk) = 0, w(uk; vk) = 1 for k = 1; : : :M , and w(vk; vk+1) = w(vk+1; vk) = w(uk; uk+1) =

w(uk+1; uk) = 1 for k = 1; : : : ;M � 1. Also, in all views Vi there are M messages sent

from v to u with send points denoted v1; : : : ; vM , and receive points denoted w1; : : : ; wM,

respectively. In all the �i we have w(wk; vk) = 1 for all k. The weight of the arc (vk; wk) is

de�ned to be 1=(k+ 1).

In addition, all views Vi have a message m sent from u to v after the last uk point, and

a message m0 sent from v to w after m is received at v. The receive point of m0 is the point

p, promised in the statement of the lemma. The weight the four arcs corresponding to m

and m0 is 1 in all �i.
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Figure 8-3: A schematic summary of the distance situation for a typical view Vi. The arcs
that are not drawn have weight 1. The distance from the source point to p is w(vi; wi) =
1=(i+ 1).

Only the following feature di�ers in the di�erent views Vi: for each i 2 f1; : : : ;Mg,

we have in view Vi a message, called the selector message, sent from the source processor

at point sp and received at processor u at point ui. In �i, we have w(sp; ui) = 0 and

w(ui; sp) = 1.

Finally, we choose the local times of all points in all views to be integers. Thus, the

bounds mapping values, which are determined by the local times and the arc weights,

are also all integers, except for the pairs (vk; wk) for k = 1; : : : ;M . This completes the

description of the views Vi.

We now observe that the views thus de�ned have the required properties. Parts (1) and

(2) are immediate from the construction: p is common to all views, and the local view at

w before p is identical for all Vi (see Figure 8-2 (b)). Part (3) of the lemma follows from

Lemma 8.1 and the fact that by construction, all values in the local view at the point at

which m0 is sent are integers. Finally, Part (4) of the lemma is clear from the construction

(see Figure 8-3).

We can now prove the space lower bound.

Theorem 8.5 Let A be a general external CSA. If A is an optimal algorithm (as de�ned

in Def. 4.1), then its space complexity cannot be bounded by a function of the system size.

Proof: Suppose A is a general optimal synchronization algorithm for external synchro-

nization. Then by Theorems 6.3 and 6.4, at any point p that occurs at processor v in an
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execution, it must be the case that ext Lv = local time(p)�d(sp; p), where d and sp are the

distance function and the source point, respectively, in the corresponding synchronization

graph. By Lemma 8.4, for any M > 0 there are M scenarios with a common point p such

that at p, the local input variables are the same at all scenarios, the other input values

are all integers, and such that in scenario i the optimal output is local time(p)� 1=(i+ 1).

Letting x1; : : : ; xM denote the input values of these scenarios, and letting F denote the

optimal value of ext L, we can there apply Lemma 8.3, and deduce that there are at least

M distinct output forms associated with p. It follows that the degree of the odd node in

the program corresponding to p is arbitrarily large, and since the space complexity of a

branching program is the logarithm of the maximal degree of a node, we conclude that the

space required by the program cannot be bounded as a function of the network size.

Remark. The crucial property of the model used in the lower-bound argument is the re-

striction that output is represented by special linear combinations. We argue that this

restriction is reasonable for two reasons. First, we know that optimal output can be com-

puted this way: synchronization distances can be expressed as special linear combinations

of local times and bounds. And secondly, as already mentioned above, if we do not impose

restrictions on the computational model, there is no hope for a space lower bound, since an

unbounded amount of state information can be encoded in a single real number.
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Summary

In this chapter we looked at the space complexity required to store the state of optimal

CSAs for external synchronization. We de�ned a computational model, where output may

be represented only by linear combination of the input values with integer coe�cient. The

program is represented by a tree, and the space complexity is the logarithm of the maximal

branching factor in the tree. We then proved that there are executions of very simple

systems (we used four processors), for which the space complexity of an optimal CSA

cannot be bounded. This means that any optimal algorithm for external synchronization

that works for all environments must have unbounded space complexity. The implication

of this result is that there is no synchronization algorithm which is simultaneously e�cient,

optimal and general.
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Chapter 9

Extensions

The analysis of synchronization graphs, presented in Chapter 5, was developed for the

model of clock synchronization systems, as de�ned in Chapter 3. This model, while being

arguably a reasonable abstraction of real systems, is restrictive. In this chapter we look at a

few simple variants of the basic model, and show how using our concept of synchronization

graph, one can analyze these variants quite easily.

Our discussion is presented in three parts. In Section 9.1 we consider the case of addi-

tional timing constraints. We show how a few kinds of additional timing constraints can

be incorporated into synchronization graphs. In Section 9.2 we discuss timing faults, i.e.,

cases where an execution violates the system speci�cation. We de�ne a natural notion of

detectable faults, and show that synchronization graphs can be used to detect the existence

of such faults. In Section 9.3 we consider structured send modules, i.e., systems in which

the message sending pattern has a more regular structure. Using a simple example, we

explain how knowledge of the structure of the send modules can help in generating timing

information without explicit communication.

9.1 Additional Timing Constraints

The de�nition of clock synchronization systems in Chapter 3 allows for two sources of timing

information: the message latency bounds and the clock drift bounds. It is often the case

that we have some additional sources of timing information. For example, the presence of

a human operator at a site may su�ce to insure that the absolute o�set of the local clock

at that site is never too big. Another example is a broadcast of a message to a subset of
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the processors, where it is known that the message is delivered at all processors within a

period of known length (even though the time to deliver any individual message may be

arbitrary). Having such additional information may improve the synchronization attained

by CSAs. Below, we describe ways to incorporate a few simple types of such knowledge

into synchronization graphs. By doing this, the distances in the synchronization graph

have the additional information built into them, and can therefore be used to get better

synchronization.

9.1.1 Absolute Time Constraints

Suppose we know somehow that \an event p occurs at real time at least a," or that \an

event p occurs at real time at most b." Formally, we may have absolute time constraints,

de�ned to be statements of the form

now(p) 2 [a; b] ;

where p is a point in the view, and [a; b] is a (possibly in�nite) interval of real numbers.

Absolute time constraints can be incorporated in the synchronization graph as follows.

We introduce a new point into the graph, called the origin and denoted by s0, where

for analysis purposes we assume that local time(s0) = now(s0) = 0. (Intuitively, the

origin can be thought of as representing the initialization event of the execution.) For

each absolute time constraint now(p) 2 [a; b], we introduce two arcs (p; s0) and (s0; p) into

the synchronization graph, with weights

w(s0; p) = �a ; and w(p; s0) = b :

It is easy to see, using Lemma 5.2 and the attributes of the origin as de�ned above, that the

new arcs and weights express the given constraint. Bounds on relative o�sets of the points

in the view can now be obtained as usual, by �nding distances between the desired points

in the extended synchronization graph. In addition, bounds on the absolute o�sets can be

obtained by computing the distances to and from the origin: with the real and local time

attributes we assigned to the source point, we have that for any point p, �(p) = �(p; s0),

and hence �(p) 2 [�d(s0; p); d(p; s0)].

By adding the origin node and its incident edges, the distances in the synchroniza-
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tion graph may drop, resulting in tighter bounds on the o�set between points, i.e., better

synchronization.

9.1.2 Relative Time Constraints

Suppose that we have information of the type \at least a time units elapse between the

occurrence of an event p until the occurrence of an event q," or \at most b time units elapse

between the occurrence of an event p until the occurrence of an event q." Formally, we may

have a pairwise time constraint, given as a statement of the form

now(q)� now(p) 2 [a; b] :

Modeling pairwise time constraints is done using the tools we already have: the interpreta-

tion of such a statement is simply that the bounds mapping B of the pattern in question

should be extended to include B(q; p) = b and B(p; q) = �a. To translate this information

into the distance measure of synchronization graphs, we augment the graph with arcs (p; q)

and (q; p), and assign their weights as usual (see Def. 5.4). As before, the introduction of

additional arcs into the synchronization graph may reduce the distances between points,

thus resulting in tighter bounds on synchronization.

Another instance of relative time constraints is where a set of events is known to occur

within a time interval of known length. (Halpern and Suzuki [12] make this assumption for

the set of receive events of a broadcast message.) Formally, we have a set Q of events, such

that for any pair pi; pj 2 Q we know that

now(pi)� now(pj) � a ;

and the reduction to pairwise time constraints is obvious.

Remark. It may be interesting to push further the idea underlying the simple technique

suggested above for pairwise time constraints. The way we developed our model in Chapter

3, we had the natural notion of adjacent points (cf. Def. 3.9), and bounds mapping was

de�ned only for pairs of adjacent points. This de�nition was motivated by the assumption

that the only source for timing information are the speci�cations of local clocks and network

links. The idea in the generalization suggested above is that the basic relation is pairwise

time constraints, rather than adjacency. Put in other words, instead of de�ning bounds
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mapping in terms of the classical adjacency relation, we should de�ne the adjacency relation

in the synchronization graph in terms of the pairwise time constraints.

9.2 Fault Detection

Throughout the discussion of synchronization graphs we relied heavily on its \integrity,"

namely the fact that act del(p; q) � B(p; q) for all adjacent points p; q. Since this assump-

tion may not always hold | e.g., if some component of the system fails, or if the speci�cation

is simply wrong | it is interesting to understand what happens in that case. Fortunately,

Theorem 5.4 guarantees a strong fault-detection property. Let us �rst de�ne the a notion

of detectable fault.

De�nition 9.1 Let V be a view and let B be a bounds mapping for V. V is said to have a

detectable fault with respect to B if there is no pattern with view V that satis�es B.

Using Theorem 5.5, we derive the following result.

Lemma 9.1 Let V be a view of an execution of a clock synchronization system, and let B

be a bounds mapping for V. Then V has a detectable fault with respect to B if and only if

the synchronization graph � de�ned by V and B contains a negative weight cycle.

Proof: Suppose �rst that � contains a negative cycle. Then it follows from Theorem 5.6

that there is no pattern with view V that satis�es B, and hence V has a detectable fault

w.r.t.B. Conversely, suppose that � does not contain a negative-weight cycle. If � is empty,

then trivially V does not contain a detectable fault w.r.t. B, and we are done. Otherwise,

let p0 be any point in �. By Theorem 5.7, there exists at least one pattern P with view V

such that P satis�es B, and hence V has no detectable faults w.r.t. B.

We remark that algorithms that use our techniques, probably compute distances over

the synchronization graph anyway. Since shortest paths algorithm for general edge weights

usually discover negative weight cycles, we get fault detection \for free." However, we

remark that we do not know of a general technique for fault correction using synchronization

graphs directly.
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9.3 Structured Environments

The basic theory studies the case where send modules are completely unstructured (techni-

cally, the \send" action is always enabled), and where the link automata may lose messages

arbitrarily. Somewhat surprisingly, it turns out that one may gain timing knowledge also

from the absence of a message receive event, in the case of reliable communication.1

We now explain how can one add arcs to the synchronization graph for messages which

are guaranteed to arrive, but haven't arrived. Again, the extra arcs may result in shorter

distances and hence better synchronization.

In the following lemma, we assume that the drift upper bound of one of the clocks is at

least 1. This can be done without loss of generality since local time readings can be scaled

to satisfy this assumption.

Lemma 9.2 Suppose that the send module at processor u is such that a message m is

always sent at a point q with known local time, suppose that the link automaton Luv is

such that m is guaranteed to be always received at processor v within H(m) time units, and

suppose further that the drift upper bound of the clock at v satis�es %v � 1. Then for any

point p at v where m has not yet been received we have �(p; q) � H(m)� virt del(p; q).

Proof: Consider the point p0 in which m is received at v. By assumption, %v � 1. Since

p occurs at v before p0, we have local time(p0) � local time(p), and hence virt del(p0; q) �

virt del(p; q) and virt del(p0; p) � 0. Therefore, using Def. 3.11 and Lemmas 5.1 and 5.2,

we get

�(p; q) = �(p; p0) + �(p0; q)

� (1� 1=%) � virt del(p0; p) +H(m)� virt del(p0; q)

� H(m)� virt del(p; q) :

The consequence of Lemma 9.2 is that if communication links do not lose messages and

have �nite latency upper bounds, one can add points and arcs to the synchronization graph,

1The place where the fact that messages may be arbitrarily lost was used in the proof of Theorem 3.2,
where we proved that any local view at a point is also a complete view of some execution. This theorem
does not hold in the case where some messages are guaranteed to be delivered: a local view that contains
only the send point of such a message is not the complete view of any execution.
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even if these points are not in the local view. Using the notation of Lemma 9.2, although q

is not a part of the local view at p, the synchronization graph at p might as well include q

and an arc (q; p) whose weight is w(q; p) = H(m)� virt del(p; q) (since we have a pairwise

time constraint between p and q).
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Summary

In this chapter we discussed a few simple extensions of the basic model. We showed how to

incorporate additional assumptions, such as absolute time constraints an relative time con-

straints into the synchronization graph. Such constraints may be known due to unmodeled

parts of the system.

We also proved a strong fault detection capability for synchronization graphs. Despite

the fact that we do not know how to exploit a synchronization graph directly for error

correction, we get fault detection essentially for free.

Finally, we showed that if the send module is structured in a certain simple sense,

and if communication links are reliable, then some timing information may be derived

even from absence of messages. We showed how to incorporate such information into the

synchronization graph.

These examples demonstrate the robustness of the basic concept of synchronization

graphs. Many more variants are possible (e.g., �nite granularity clocks, and external syn-

chronization systems with multiple sources).
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Chapter 10

Conclusion

Our hope is that the main contribution of this thesis is improved understanding of the clock

synchronization problem. We believe that the insight developed in this thesis may lead to

better synchronization protocols. We have suggested a new viewpoint for the problem, and

presented new analytical tools and algorithmic techniques to deal with clock synchroniza-

tion. Our results indicate that there is no \ultimate solution" for clock synchronization, but

they leave hope that optimal e�cient algorithms can be found for particular systems, or that

better algorithms can be developed for general systems. For example, it seems reasonable

to assume that our techniques can be implemented over the Internet, thus improving on

the current version of NTP [26]. In addition, by implementing our methods with bounded

space, one can get algorithms which are optimal with respect to a part of the execution

(e.g., an algorithm that guarantees that its output is the best possible output for the last

day).

On the theoretical side, we believe that synchronization graphs may prove a useful tool in

the analysis of timing-based systems. In a sense, synchronization graphs can be viewed as a

weighted version of Lamport's graphs [16]: Lamport used his unweighted graphs to describe

executions of completely asynchronous systems; synchronization graphs are weighted, and

can be used to describe executions of systems where processors have clocks.

Let us review the main weaknesses of synchronization graphs. Informally, the usefulness

of synchronization graphs relies on a few strong assumptions.

(1) The system speci�cation is such that if an event may occur at either of two points,

then this event may occur at any time between them.
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(2) Processors follow the system speci�cation.

(3) All executions that satisfy the system speci�cations are possible.

As we mentioned in this thesis, assumption (1) cannot be compromised by our analysis.

Without it, clock synchronization problems cannot even be expresses as linear programs.

Regarding assumption (2), we gave a partial answer for the problem of systems that do

not adhere to their speci�cation by showing that synchronization graphs can be used for

fault detection. We hope the error correction can also be aided by synchronization graphs.

Assumption (3) leaves room for specializing the synchronization graphs according to the

particular system being considered. We demonstrated such adaptations with a few simple

examples.

Since clock synchronization is used throughout the spectrum of distributed systems |

starting from a single VLSI chip, and ranging up to a global network | it is conceivable

that the e�ect of even a slight improvement in the tightness of synchronization may be

sweeping. For example, tighter synchronization of the transmitting and receiving endpoints

of communication links can lead to better utilization and hence larger throughput of the

communication network; better synchronization may imply shorter processing time for large

databases. We hope that despite its weaknesses, this thesis can be used to improve syn-

chronization in many cases. This may lead to a slightly more convenient world, and it

can perhaps be translated into �nancial pro�t (for example, Merrill Lynch is using NTP to

synchronize their worldwide network [11]).

It may be interesting to note that after our preliminary paper [29] was published, a few

papers which have considerable overlap with our results have appeared. Speci�cally, Dolev

et al. [8] have de�ned the notion of observable clock synchronization which is closely related

to our notion of optimal clock synchronization. Their analysis is for the special case where

the communication is done over a broadcast channel. Moses and Bloom [27] look at the

problem of clock synchronization from the knowledge theoretic perspective. They study

the case of drift-free clocks, and their main result can be viewed as a special case of one

of our characterization theorems. Ajtai et al. [2] present an approach for the analysis of

distributed algorithms which is closely related to our notion of local competitiveness.

Let us conclude with some interesting problems that this thesis leaves unsolved.

Fault Resilience: It would be interesting to develop a technique that uses synchronization

graphs in the presence of errors, such that erroneous data can be overcome, more than
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merely detecting the existence of an error.

Internal synchronization: We do not know of a good technique for on-line distributed

internal synchronization other than the naive use of external synchronization algo-

rithms. Conceivably, synchronization graphs can be used to this end.

140



Appendix A

Time-Space Diagrams

In this appendix we present Time-Space Diagrams [17]. This representation method is

a convenient way to graphically draw and view executions of distributed systems. (See

Figure A-1 for an example.) The idea is that the x coordinate is used to denote location

in space (which is, in the context of distributed systems, simply a processor name), and

the y coordinate is used to denote real time. Since the physical location of processors is

immaterial, processors are represented by vertical lines labeled by their names. In our

diagrams we follow the convention that time grows downwards.

Given an execution of a system, its time-space diagram is drawn by the following two

rules. First, the events of the execution (such as message send and receive) are represented

by points, and hence the (x; y) coordinates of each event are determined by its location

and time of occurrence. And secondly, a message is represented by a directed arrow, that

processor u processor v processor w

time

Figure A-1: An example of a time-space diagram.
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connects the point corresponding to its send event to a point corresponding to its receive

event. We can model in this way many types of communication assumptions, including

broadcast (for example, in Figure A-1 processor v sends messages simultaneously to u and

w), message duplication (in Figure A-1 there are two receive events at v that correspond

to a single send event at u), message re-ordering (the messages sent by w in Figure A-1 are

received in reversed order at v), and message loss (the �rst event at v in Figure A-1 might

be a send event of a message which is not received).
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source time(x), 69, 93

source clock, 116

source point, 94

source processor, 69, 92, 93

sp, 94

space complexity, 119

special linear combination, 117

special linear form, 117

standard bounds mapping, 55

start(A), 18

start node, 117

start state, 18

start time, 26

state, 18

basic, 23

idle, 24

quiescent, 24, 42, 60
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quiet, 24

states(A), 18

subscripts, 35

superpoint, 94

synchronization graph, 80

target function, 72

tick, 111

tightness, 6, 67, 70, 93

tightness of a view, 70

Time-Space Diagrams, 137

timed I/O automata, 16

timed sequence, 29

timed trace, 26

timed traces, 40

times form, 28

timing speci�cation, 38

trajectory, 17, 19, 25

trans(A), 18

transition relation, 18

underlying graph, 34, 35

v-graph, 76

values in the local view of p, 120

view, 50, 65, 67

virt del , 54, 77

virtual delay, 54, 66

weight of a path, 81

worst-case scenario, 67
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