
A Security Model for the Information Mesh

by

Matthew N. Condell

Submitted to the Department of Electrical Engineering and Computer Science

in partial ful�llment of the requirements for the degrees of

Bachelor of Science in Computer Science and Engineering

and

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1996

Copyright 1996 M.I.T. All rights reserved.

Author :

Department of Electrical Engineering and Computer Science

May 9, 1996

Certi�ed by :

Karen R. Sollins

Research Scientist

Thesis Supervisor

Accepted by :

F. R. Morgenthaler

Chairman, Department Committee on Graduate Theses

A Security Model for the Information Mesh

by

Matthew N. Condell

Submitted to the

Department of Electrical Engineering and Computer Science

May 9, 1996

In Partial Ful�llment of the Requirements for the degrees of

Bachelor of Science in Computer Science and Engineering

and

Master of Engineering in Electrical Engineering and Computer Science

Abstract

Many distributed systems that are currently being designed are object based. These

sytems require a model for authentication and access control which conforms to the

object model. They need a model that allows objects to control their own security. In

systems where every object in a security domain can not be trusted, there must also

be a means for enforcing domain-wide security policies. This must be done without

violating the object model.

This paper develops such a security model for the Information Mesh, an infras-

tructure for facilitating information manipulation. It discusses the goals of the Infor-

mation Mesh and previous work that has been done towards developing a server-based

security model. The paper then proposes a security model that allows objects to con-

trol their own security while still providing centralized policy enforcement. Finally,

it presents an example of the model in action.

Thesis Supervisor: Karen R. Sollins

Title: Research Scientist

Acknowledgments

I would like to thank my parents, Rand and Freya Condell, for all their love and sup-

port they have given me over the years. Without their encouragement I would never

have come to MIT. Thanks to my brother, Seth, for his support and proofreading

help. Thanks to my girlfriend, Hannah, who has helped me through the highs and

lows of my thesis writing, even when she would phase out while I would talk through

problems.

I would also like to thank my advisor, Karen Sollins. Her assistance was invaluable

throughout this thesis, from helping me decide on a topic to proofreading my drafts.

Thanks to all the other members of the Information Mesh project: Lewis Girod, Bien

Vel�ez-Rivera, Tim Chien, Je� VanDyke, Alan Bawden, and Nancy Cheung, for their

help over the years that I have worked on the project.

A special thanks to Garett Wollmann for performing black magic when the disk

with my thesis malfunctioned, allowing me to recover all my �les.

Finally, I would like to thank all my friends and siblings at Epsilon Theta for

making my �ve years at MIT a great experience.

Contents

1 Introduction 8

2 The Information Mesh Project 11

2.1 Goals : 12

2.2 Naming : 14

2.3 Object Model : 15

2.3.1 Roles : 15

2.3.2 Implementations : 16

2.4 Mesh Links : 16

3 Previous Work 17

3.1 Cascaded Authentication : 17

3.1.1 Access Certi�cates : 18

3.1.2 Pairwise Authentication : 19

3.2 Server-based Security : 22

3.2.1 Motivation : 22

3.2.2 Realization : 23

4 The Security Model 25

4.1 Requirements for Security : 26

4.1.1 Threat Model : 26

4.1.2 Weaknesses of Server-based Model : : : : : : : : : : : : : : : 28

4.2 Security Domains as Objects : 30

4.2.1 Navigating the Domains : 32

4

4.2.2 Local Message Problems : 34

4.3 Cascaded Authentication : 35

4.3.1 Modi�cations : 35

4.3.2 Authentication Server : 38

4.3.3 E�ciency : 38

4.3.4 Private vs. Public Keys : 39

4.4 The Generic Server : 40

4.5 Summary : 41

5 A Room Reservation System 43

5.1 Environment : 43

5.2 The Generic Server : 44

5.2.1 Processing a Request : 45

5.2.2 Sending a Request : 46

5.2.3 Generic Services : 47

5.2.4 Security Policies : 48

5.3 Path Server : 49

5.4 Domain Server : 52

5.5 Authentication Server : 52

5.6 Local Servers : 53

5.6.1 Signature Server : 54

5.6.2 Room Reservation Server : 54

5.6.3 Client : 55

5.7 Bootstrapping : 55

5.8 The Example : 56

5.8.1 A Miniature World : 56

5.8.2 Tests and Results : 58

5.8.3 Bottlenecks : 61

5.9 Summary : 62

6 Conclusions 64

5

6.1 Further Research : 66

6.2 Conclusion : 67

6

List of Figures

3-1 Getting a Conversation Key : 20

3-2 Pairwise Authentication : 21

4-1 A Few Con�gurations of Six Servers in the Object-based Model. En-

closed areas represent objects. Unlabeled objects are domains. (A)

Servers with no domains, equivalent to server-based model; (B) A hier-

archical nesting of domains; (C) overlapping domains; and (D) domain

that contains both other domain and servers. : : : : : : : : : : : : : : 31

4-2 Pairwise Authentication with an Authentication Server : : : : : : : : 36

5-1 The Example World. : 57

7

Chapter 1

Introduction

Modern authentication systems, such as Kerberos [7], are based on a model of a central

policy server that must be queried to obtain permission to access other servers. This

model, while e�ective, does not conform to the object model being used by many

emerging distributed infrastructures [1, 5, 6]. This work proposes a security model

for one such object-based system, The Information Mesh.

The object model advocates the doctrine that objects manage their own destiny.

Following this model, it is necessary that objects control their own security policy,

hence they can not be forced to accept tickets from a policy server. Clients must ask

each server for permission to use its services. The servers may then choose to query

a policy server for advice, but each server makes that choice on its own.

Such a server-based security model means that there is no longer a centrally-

de�ned security policy. A security domain's policy is therefore the union of the

policies of all the servers within that domain. If a single server in a domain has a

weak security policy, the domain's policy will also be weak. This observation leads

to a couple of problems with the server-based security model. First, it is necessary

to trust all servers within a security domain to enforce the desired policy. Second,

there can be a consistency problem when changing a domain's security policy. This

problem exists when the the policy change involves many servers. Since every server

needs to be updated individually (unless, of course, they all just defer their decisions

to a central server), the potential for di�erent servers to be enforcing inconsistent

8

policies is fairly high. This inconsistency could pose a fairly serious security risk.

Neither of these problems exists in a centralized model, since modifying a security

policy only involves updating a single, or small group, of servers. We would like to

have a security model that gives us the advantages of centralized control without

violating the object model. Objects must still be able to control their own destinies

without having to depend upon the decisions of other servers.

This work proposes such a security model for use in the Information Mesh. It

starts with a server-based model and expands it to include some centralized control.

This is accomplished by allowing a group of servers to behave like a single object. The

domain object then may intercept incoming requests and apply its security policy to

them. its policy therefore behaves as a centralized policy to the servers encapsulated

within the domain. The servers within the domain may still enforce their own security

polices.

The model will use a cascaded authentication protocol to allow servers to authen-

ticate requests. The protocol requires servers to provide access certi�cates for their

services. Every server that handles one of these certi�cates must add its own signa-

ture to it. This certi�cate will allow servers to authenticate all the servers that have

handled it.

A demonstration of the model has been built as part of this project. It has been

useful both to demonstrate the validity of the model and as a tool to expose the

many issues and trade-o�s that must be considered when implementing the model.

The demonstration implements the security model along with a set of servers that

control the reservation of conference rooms around MIT.

The remainder of this document will describe the model, the demonstration of it,

and the project for which it has been developed. Chapter two will describe the Infor-

mation Mesh project and the environment for which the security model is designed.

Previous work in the area of server-based security models and cascaded authentica-

tion protocols will then be described in chapter three. Chapter four will build upon

this work to describe the theoretical security model being proposed. The demonstra-

tion of the model is described in chapter �ve along with many of the trade-o�s that

9

must be considered when implementing the model. Finally, chapter six concludes

with results of this work and ideas for future work in developing and implementing

the model.

10

Chapter 2

The Information Mesh Project

Before we can develop a security model, we must understand the environment in

which it will be used. This is necessary so that the model will provide an appropriate

level of security for the environment and that it will conform to the goals and other

models of the environment.

The Information Mesh project is developing a long-lived infrastructure to facilitate

information access and manipulation. Such a project is necessary for the Internet

to adapt to the tremendous growth it has experienced over the last several years, in

tra�c related to information manipulation. Tools currently available for manipulating

information have not been able to keep up with the explosion of information. For

example, services that index the World Wide Web have not been able to index the

information as fast as it is created, nor have they been able to keep pace with changes

in information they have already indexed. The Information Mesh project believes

that the solution requires not only better tools to be developed, but it also requires

an infrastructure that is designed to better handle the vast amount of information

already available and that which will become available.

In order to accomplish this goal, the Information Mesh is developing a substrate

that will provide a uniform representation of objects and their relationships and allows

for manipulation of this information. At the same time, the Mesh should not force

the applications that it supports to all agree on the internal structure of information

and how it is manipulated. It should also provide a layer of abstraction between

11

the transport protocols and the applications. The project is working on developing

a minimal set of constraints for an infrastructure which can provide the services

necessary for information manipulation without limiting the applications that can

use the information.

Work towards a long-lived information infrastructure has resulted in a Mesh ker-

nel, a Mesh object system, and Mesh links. The Mesh kernel provides a library of

service routines that provide support for object identi�cation and information repre-

sentation and location. Using the concept of roles to describe the nature of objects,

the Mesh object system provides
exible and evolvable objects for the Information

Mesh. Mesh links provide a mechanism to express the relationships between Mesh

objects.

This chapter describes the goals and requirements necessary for achieving the

visions of the Information Mesh. It also describes the Mesh object system and links.

2.1 Goals

It is necessary to understand the goals of the Information Mesh in order to fully un-

derstand its design. Its goals can be summarized as: universality, longevity, mobility,

evolution, resiliency, homogeneity, and heterogeneity.

� Universality

The Information Mesh should provide a single model of information identi�-

cation and location for \network-based applications accessing information that

is distributed both physically throughout the net and administratively across

regions of di�ering management policies [15]."

� Longevity

The Information Mesh must be able to support long-lived information. Infor-

mation and references to the information should be able to survive over long

periods of time (greater than 100 years). It must be able to support any format

12

the information may take over that time since we can not expect all information

to be reformatted to adapt to changing technologies.

� Mobility

Information will move over time to new physical locations as well as new ad-

ministrative locations. References to the information must remain valid despite

these changes.

� Evolution

The Information Mesh must be able to adapt as layers above and below it

evolve. This means the Mesh must be able to support changing semantics,

syntax, structures, and utilization of information as well as supporting new

types of information and relationships. The Mesh must also be able to take

advantage of changes in protocols and networks.

� Resiliency

Unreliability is unavoidable in a large network. There are any number of reasons

why a piece of information may be unavailable when needed. The Information

Mesh should be designed to handle such failures gracefully.

� Homogeneity

In order for distinct applications and information to interact well, it is nec-

essary for the Information Mesh to \provide a single model for information

identi�cation, location, and access, as a substrate for distributed systems and

applications [15]." This provides a stable abstraction barrier that can allow

increased functionality only when it is desired.

� Heterogeneity

The Information Mesh should be
exible enough to provide support in a diverse

environment. It should be able to take advantage of current and future network

services as well as provide support for a highly varied set of expectations from

applications and administrative controls.

13

These goals may be expressed by two implementation requirements: minimality

and
exibility. Since the Information Mesh is designed to support such a diverse and

changing set of applications and network support, it must place as few restrictions on

its users as possible. In order to accomplish this, it should provide only the minimum

necessary to support the goals described above and only require the minimum coordi-

nation and agreement necessary to meet the goals. This is important because \we can

not depend on any universal agreement on issues like a best way to �nd information,

the internal structure of information or how information is internally manipulated by

programs [18]."

The Information Mesh must be highly
exible to adapt to a diverse and ever

changing environment. It must be able to support changing information, network

infrastructures, expectations from applications, protocols, and whatever else may

change in the future. Without such great
exibility, the Information Mesh will not

be able to achieve its goals.

2.2 Naming

Naming things is an important way that the Information Mesh achieves its goals. It

is also crucial since the security model must be able to identify objects and principals.

Naming generally is used to provide three functions: identi�cation, access, and

description. To help support longevity, mobility, and evolution, the Information Mesh

has separated these three functions. This is similar to work that's been done in the

Uniform Resource Identi�ers working group of the IETF [8, 14, 2]. Every object

is assigned an oid (object identi�er) which uniquely identi�es the object through

both space and time. This is similar to the URI working group's URN (Uniform

Resource Name). Using the IETF's terminology, Uniform Resource Locators (URL)

will provide the location functionality and Uniform Resource Characteristics (URC)

will provide the meta-information. The Information Mesh takes advantage of one

type of meta-information, called hints, to help translate oids to URLs.

14

2.3 Object Model

The Information Mesh object system [17] provides a typing model for objects that

allows for the
exibility and evolution that is necessary to achieve the Mesh's goals.

It is also designed to work in an environment where the enforcement of the typing is

not guaranteed.

Object behavior is based on the concept of a role which all objects must play. A

role describes an abstract structure and behavior. If an object behaves in the manner

described by a role, then the object plays that role. An object may play several

di�erent roles and which roles it plays may change over time. To illustrate these

concepts, imagine an individual who plays many roles over a lifetime such as a child,

teenager, student, parent, friend, etc.

All objects must play the object-role. The object-role is the root for an inheritance

hierarchy such that an object plays all of a role's super roles in addition to playing a

particular role. All objects that play the object-role (and therefore all Mesh objects)

are required to be able to answer questions about what roles they play, describe the

implementation objects for those roles, and allow the addition of new roles.

The remainder of this section will describe roles in greater detail. It will also

describe implementations which give objects the ability to play a role by providing a

concrete representation of the role.

2.3.1 Roles

Roles are composed of three aspects: actions, parts, and makers. Actions describe

the abstract functionality of the role, parts describe the abstract structures of an

object that plays the role, and makers de�ne the abstract functions used to create

objects that play the role. Each aspect may have some required components and

some optional components. All implementations of the role must provide the required

aspects, while they may only provide a subset of the optional ones.

As mentioned above, roles inherit actions, parts, and makers from their super roles.

This gives roles the ability to provide an extensible typing mechanism by inserting

15

new roles into the hierarchy. This extensibility, along with an object's ability to play

multiple and evolving roles, give roles the
exibility and evolvability necessary to

meet the goals of the Information Mesh.

Roles are �rst class objects which play the role-role. Objects that play the role-

role support the actions, parts, and makers necessary to play a role. Since roles are

objects, they must also play the object role and support the required actions of an

object.

2.3.2 Implementations

Implementations provide Mesh objects with concrete representations of a role's ac-

tions, parts, and makers. This gives the object the ability to play that role. An object

may use any implementation of the role it is trying to play.

Implementations have an inheritance mechanism that allows an implementation

to use a description of a concrete role capability from a super implementation if it

does not have its own description. Implementations are also �rst class Mesh objects

which contain concrete methods for actions, parts, and makers.

2.4 Mesh Links

Mesh links [16, 15] give us the means to express relationships between Mesh objects.

The discussion here will be brief since they do not relate to the security model.

Mesh links provide two features for expressing relationships. The �rst is a generic

link-role. The generic link is an unordered, unnamed set of endpoints which refer

to objects. Capabilities such as grouping and distinguishing endpoints, expressing

directional links, limiting the number of links, or other functionality can be expressed

by adding subroles to the link-role. This makes the linking model highly
exible and

extensible. The second feature is the ability to express composition in Mesh objects.

By adding an optional get-required-objects action to the object-role, an object can

indicate other objects that must be included to make the object complete.

16

Chapter 3

Previous Work

This section describes the two ideas that form the foundation of the Information Mesh

security model. The �rst is a cascaded authentication protocol, developed by Sollins

[13], that is used as the basic means of authentication. Cascaded authentication is

also used in the server-based model proposed by Bull, Gong, and Sollins [3] which is

the second work that forms the base for the Information Mesh's model. This model

has been incorporated into the security framework for the ANSA project [1].

3.1 Cascaded Authentication

Cascaded authentication [13] was developed for use in an environment where cooper-

ation must exist despite the absence of complete trust. A request for a service may

require the invocation to be cascaded in order to ful�ll it. That is, the server may

invoke another server which will, in turn, invoke a third server and so on as necessary.

The cascaded authentication protocol allows any server in the chain to authenticate

all the servers that have previously serviced the request and it can put constraints

upon the future progress of the request.

Examples of cascaded requests can be found throughout life. One example is

the signing of a legal document by multiple parties. When an agreement is reached

between multiple parties, one of the parties' lawyers will draft the agreement. He

must sign the document and send it to the lawyers of the other parties involved in

17

the agreement. Once all the lawyers have signed, it may then be sent to the judge,

who is presiding over the agreement, for his signature. He will not sign the agreement

until all the involved parties have signed. Once he has signed the agreement he must

then pass it back to all the parties so they know that it has been signed. There must

be a means for all the parties to con�rm that the appropriate people have signed

the agreement. In this example, the con�rmation is accomplished by signatures on

a piece of paper. Cascaded authentication gives us a means of providing this sort of

con�rmation digitally.

3.1.1 Access Certi�cates

The tool needed to enable the authentication is an access certificate1. This

certi�cate is signed by every server that handles it. The servers may also add their

own constraints to the certi�cate when they sign it. The certi�cate allows any server

to verify the servers who have handled the certi�cate and their constraints.

Constraints limit the future progress and the results of a service request. They

can limit many di�erent aspects of a request. For example, it could limit the number

of servers that may handle the request. They may also limit the amount of money,

or other resources, that servicing the request may consume. The principals allowed

to handle the request may also be controlled.

When signing a certi�cate, each server must include several pieces of information

in order to verify the certi�cate's authenticity. First, it must encrypt the ciphertext

part of the certi�cate it received along with the name of the server to which it will be

passed next and the constraints that it is adding to the certi�cate. It then adds its

own name and constraints to the cleartext portion of the certi�cate. The combination

of the cleartext and encrypted information allows the authentication server to verify

that no one has tampered with the access certi�cate.

A nonce is included in the initial access certi�cate to add randomness to the en-

crypted information. The randomness is necessary to guard against a known cleartext

1The access certi�cate is called a passport in Sollins' work [13].

18

attack. Without the randomness, such an attack is possible since all the encrypted

information is also made available in the clear.

Sollins' work assumes a secret key encryption scheme for her protocols, though

she notes that it could be easily converted to a public key scheme as demonstrated

by Needham and Schroeder [11]. The encryption should be chained2 so it is possible

to add some randomness to the encryption. The trade-o�s between secret and public

key cryptography will be discussed later in the context of the security model.

Using the following notation, we can illustrate the form of an access certi�cate:

fg
K The material within the brackets is encrypted with key, K.

A;B;D;E names of principals

IAi the i'th nonce unique to principal A

KA principle A's secret key, known only to A and the authentication server

CA the constraints included by A

In this example, A creates a certi�cate to hand o� to B who turns around and

passes it on to D. If D were to then hand it o� to E, D would have to sign it in the

same way B signed it. First, A will create an initial access certi�cate to send to B that

has the form:

fIAi ; B; CAg
KA; A; CA

If B then wants to pass the certi�cate to D, then it must sign the certi�cate and

add the appropriate cleartext information:

ffIAi; B; CAg
KA; D; CBg

KB ; A; CA; B; CB

3.1.2 Pairwise Authentication

A pairwise authentication protocol is used to transport the access certi�cate between

two servers. While it is only necessary for a server to authenticate the server from

which it receives a certi�cate, pairwise authentication has several important advan-

tages. Pairwise authentication is needed to detect collusion between two servers.

2DES's Cipher Block Chaining (CBC) mode, for example.

19

Also, the added authentication it provides can reduce the amount of veri�cation that

would be needed if the authentication were only one-sided.

Sollins suggests using a pairwise authentication scheme similar to one suggested by

Needham and Schroeder [11]. This scheme �rst requires an exchange with a trusted

authentication server3 to obtain a conversation key which will be used for the pairwise

authentication.

The following notation (in addition to the notation above) will be used to illus-

trate the protocol for getting a conversation key. A is requesting a key from the

authentication server to enable it to communicate with B. The arrows indicate the

direction the message moves, while time moves down the page.

T a time stamp

CK a conversation key

AS the authentication server

A AS

B, IAj

Aj
KB{I ,B, CK, T, {CK, T, A} }

KA

Figure 3-1: Getting a Conversation Key

The �rst message contains no secret information, so it doesn't need to be en-

crypted. It contains the name of the server with which A would like to communicate

and a nonce that is used as a challenge to the authentication server. The authen-

tication server responds by returning this information along with the conversation

key, a time stamp that indicates when the key expires, and a ticket encrypted with

B's secret key. This information is all encrypted with A's secret key. A can be sure

3This may actually require more than one authentication server. The servers must at least trust

authentications servers that either trust each other or are part of a single chain of authentication

servers that trust each other.

20

that this response is from the authentication server because KA is only known to the

authentication server and A, so only the authentication server could correctly encrypt

IAj . The ticket is used by B to get CK, the timestamp, and the identity of A. It can

verify that these came from the authentication server because KB is only known to

the authentication server and B.

The conversation key can be used as many times as necessary until it expires.

This eliminates the need to access the authentication server every time a new pairwise

authentication is about to start. If the key is compromised, though, it will expire so

the integrity of the system will be maintained. Requests to the authentication server

may be batched as another way to improve e�ciency.

Once A has acquired a ticket and a conversation key, A and B can authenticate

each other:

reply

A B

CK
A k

KB {CK, T, A} , {I }

A k
CK{I −1, I }Bi

CK
{I −1} ,dataBi

Figure 3-2: Pairwise Authentication

The pairwise authentication starts when A sends the ticket and a nonce encrypted

with the conversation key to B. B then can decrypt the ticket, revealing CK and veri-

fying the ticket should have come from A. B also learns when CK expires. B can then

use CK to decrypt the nonce. B encrypts and returns a decremented IAk and its own

nonce to A. At this point, A can be sure that B is authentic since only B could have

gotten CK from the ticket and used it to decrypt IAk . A similarly responds to B's

challenge by returning a decremented and encrypted version of IBi . A can also send

its data with message three because it is convinced of B's identity. B then replies in

the fourth message. The data and reply may also be encrypted with the conversation

21

key to assure that no one has tampered with them.

3.2 Server-based Security

The Information Mesh's security policy is based on the server-based security model

that was developed by Bull, Gong, and Sollins [3]. This model proposed that servers

control their own security policies. It uses a modi�ed version of the cascaded authen-

tication protocols discussed above. This section �rst discusses the motivation for a

server-based security model, then describes the relevent features of the model.

3.2.1 Motivation

One of the major contributions of Bull, Gong, and Sollins [3] is that they describe

the advantages of a server-based security model over an infrastructure-based model.

These arguments are important to understanding why a security model for the Infor-

mation Mesh should be built on a server-based model.

One of the major arguments for a server-based model is that it is a natural model

to use in an object-based system. A fundamental characteristic of objects is \you

don't manage objects, objects manage themselves" [3]. So naturally, objects should

control their own security policies otherwise there would be a foreign in
uence over

the management of the objects.

Reducing the granularity of the security policy (from security domains to servers)

by giving servers control of their own policies has several positive e�ects. It allows for

immediate revocation of access privileges since access is not granted until the service

is requested4. Since the servers control their own policies, they are modular so they

can migrate from system to system or be included in new systems without updating

a central policy server. It also means that server-speci�c parts of a server's security

policy can be built into its design.

A �nal advantage is the wide range of security policies that it is possible to im-

4This can be contrasted to an infrastructure-based model, like Kerberos [7], where access is

granted at the time the Kerberos server issues a ticket, not when the service is requested.

22

plement when the granularity of policy enforcement is the server. Each server can

enforce a wide range of policies from being open to everyone to being limited to just

a few trusted servers. They also have the ability to enforce their policies on every

client or server that has handled the request, not just the client that requested the

service. Such
exibility on a server-by-server basis can lead to a very complex set of

policies which can both be useful and problematic. The complexity may be di�cult

to manage on a system-wide basis, since the sum of all the servers' policies character-

izes the system's security policy. To solve this, it may be useful to have the servers'

default policies set to request help from a central policy server. This still �ts the

model because it is the server that is choosing to ask the policy server for assistance

and not the infrastructure imposing the policy on the server.

A human user would �t into an object-based model quite well. The user would

be represented as an object the same as a server. The user would then be in control

of her own security policy as she would expect.

3.2.2 Realization

The paper also discusses several design issues for a server-based security model. In

order to avoid getting bogged down in unnecessary details, this section only discusses

the issues that will be relevent for the design of the Information Mesh's security

model.

There are several features of the server-based model that will be used:

� The model assumes that the infrastructure enforces strong encapsulation of

objects so that the only access to an object is through its advertised interface.

This prevents any access to an object through a \backdoor."

� Each server in this model is an object which has control over its own security

policy, even if its policy is to defer the decision to a policy server. The decision

about whether or not a service will be granted occurs at the time the service is

requested.

23

� A server will create an access certi�cate for its service. This certi�cate must

be presented by a client for the service to be granted. These initial certi�cates

may be signed by a key known only to the server because it will only need to

be decrypted once it returns to the server.

� Access certi�cates will be passed by some method of cascaded authentication.

This will be discussed further below.

� A trusted authentication server is needed to aid in the decryption and veri�ca-

tion of access certi�cates.

� A server that advertises and distributes access certi�cates will likely be a part of

a server-based system. While it will not be part of the demonstration presented

in this work, it would be a useful server to implement.

Bull, Gong, and Sollins suggest a di�erent means of cascaded authentication than

described above. While it has many similarities, it di�ers in three fundamental ways.

First, it uses one-way hash functions to sign the certi�cates instead of encryption.

Second, it doesn't include any mechanism for including constraints. Finally, it does

not include a pairwise authentication mechanism. The lack of the constraints and

pairwise authentication mechanisms are the main reasons that this method of cas-

caded authentication was not used in the Information Mesh's security model.

24

Chapter 4

The Security Model

While a security model is not part of the core services provided by the Information

Mesh, it is necessary for an operational system. It is also needed to help identify and

design any core services necessary to support a security system. This model provides

integrity, authenticity, and access control, but does not speci�cally provide privacy.

The Mesh security model is based upon the server-based model and the cascaded

authentication protocols described in the previous chapter. The Mesh security model

generalizes the server-based model to add
exibility and allow some centralized control

without giving up the advantages of allowing servers to control their own security.

This is accomplished by allowing a collection of servers to be encapsulated as an

object in addition to each server being an object. This model allows us to impose

a centralized policy as well as having each server control its own destiny without

violating the object model that was important to the success of the server-based

model. We have essentially generalized the server-based model to an object-based

model.

The Mesh's object-based security model provides the advantages of the server-

based model, but corrects some of its weaknesses by using some of the features of

a centralized model. A cascaded authentication scheme similar to the one described

in Section 3.1 will be used to take advantage of the power of constraints and the

additional security provided by pairwise authentication.

The remainder of this chapter will provide a high-level description of the Mesh's

25

object-based security model. An implementation of the model will be discussed in

Chapter 5. This chapter will discuss a threat model for the Information Mesh envi-

ronment, weaknesses of the server-based model, the Mesh's object-based model, and

a generic server that describes all servers conforming to the model.

4.1 Requirements for Security

It is important to understand what problems the Mesh security model is attempting

to solve before we propose the model. It is necessary to look at the environment and

what threats may be attempted. It is also necessary to look at the weaknesses of the

server-based model to understand what improvements we are trying to achieve. We

must also understand the model's weaknesses and what problems it does not attempt

to solve. We will then not be tempted to apply the model to a problem which it can

not solve.

We will now look at the our threat model and the weaknesses of the server-based

model.

4.1.1 Threat Model

We must understand what kinds of attacks may be made to our system before we

can build up guards against them. In order to do this, we must look at what kinds

of attacks may be mounted against servers in the Information Mesh environment and

determine which ones we will and will not attempt to guard against. Voydock and

Kent [19] provide a good overview of possible threats and will be used as the basis of

this discussion.

The InformationMesh depends upon an environment where communication occurs

over local and wide area networks. These networks consist of hosts interconnected by

links1. For this discussion, we will assume that end hosts are secure, but the links are

not. It is possible for an intruder to tap into the link and read and send data over it.

1Note that these are hardware links such as Ethernet, phone lines, and radio and should not be

confused with Mesh links discussed earlier.

26

The intruder may also compromise a gateway or server within the network.

This environment leaves the Mesh open to both passive and active attacks. Passive

attacks can only result in releasing information to unauthorized principals, while

active attacks may change what information is sent or may prevent the information

from making it to its destination. We will now look at the particular attacks that

may be attempted in our environment and if the Information Mesh's security model

will try to prevent the attacks.

Passive Attacks:

� Release of Message Contents. It is necessary to provide a mechanism to main-

tain the privacy of data that is transmitted by the Information Mesh. This

is accomplished by using an encryption scheme that ensures privacy such as

the chain encryption scheme that is found in DES CBC-mode. While it is not

necessary to encrypt all data that is transmitted, it is important to leave such

an option available.

� Tra�c Analysis. Tra�c analysis is a transport-level threat that is not guarded

against in our model. The Information Mesh security model is only designed to

secure high-level protocols and, therefore, does not provide any mechanisms to

guard against any transport-level threats.

Active Attacks:

� Message Integrity. Message integrity refers to detecting modi�cations to trans-

mitted messages. This can be accomplished by encrypting known or redundant

information to allow a high probability of detecting any modi�cations. This

will be discussed in Section 4.3.

� Message Authenticity. Attacks on message authenticity include sending mes-

sages that are created by an intruder trying to use a false identity and replaying

messages that have previously been sent. The cascaded authentication protocols

in Section 4.3 are designed to guard against these types of attacks.

27

� Message Ordering. The Information Mesh security model does not provide any

mechanisms for detecting attacks that attempt to change the ordering of the

messages transmitted.

� Denial of Service. We do not provide any mechanisms for detecting or prevent-

ing a denial of service attack and leave it up to the user to recognize such an

attack.

Voydock and Kent provide full descriptions of these attacks and discuss methods

of guarding against them.

4.1.2 Weaknesses of Server-based Model

We must examine the weaknesses of the server-based model in order to illustrate the

problems that we are attempting to solve. Since the Mesh security model is built

upon the server-based model, we are able to use the security features that it provides

and must only correct its weaknesses. We also must be careful not to introduce any

new weaknesses in the process of expanding the model.

We have seen that the server-based model (Section 3.2) has two forms of weak-

nesses { those that can be corrected by using di�erent protocols and those that are

fundamental to the model. Weaknesses in the cascaded authentication protocols of

the server-based model will be reviewed here, along with the Mesh security model's

solution to them. The fundamental problems with the model will be discussed here,

though the solutions to them will be discussed in the next section.

As previously discussed, the server-based model did not use a pairwise authenti-

cation scheme. This left it open to attack by two or more servers working together

to fool a server later in the invocation chain. This collusion will be prevented by us-

ing a modi�ed version of the cascaded authentication scheme that will be presented

in Section 4.3. These modi�ed protocols are based on the cascaded authentication

scheme of Section 3.1. These protocols also have the advantage of using constraints

to limit progress of a request beyond speci�ed bounds.

The server-based model has other weaknesses that are more fundamental to the

28

model. They result from the �ne granularity of the security policy achieved by the

model. Since the e�ective security policy for a collection of servers is the union of the

servers' individual policies, an untrustworthy server may cause a discrepancy to form

between the desired and e�ective policies for that group. A server may be uninten-

tionally untrustworthy if it has a weak security policy or is poorly implemented or it

may be purposefully untrustworthy { actively attempting to damage the security of

the security domain. Any untrustworthy server will cause a weakness2 in the e�ec-

tive policy of the domain, though the weakness will be limited to that untrustworthy

server.

The �ne granularity of the server-based model may also have problems when a

desired policy change a�ects many servers in the security domain. As the servers are

updated, there may be inconsistencies in their policies if some have been updated and

others have not. This inconsistency could leave a weakness that leaves the domain

open to attack. Additionally, all the servers that are a�ected by the change must

have their policies updated. This could be a large and di�cult task for changes that

a�ect many servers.

These are not problems in a centralized system where all policy decisions are made

by a single server3. Since all service providers must submit to the centralized policy,

untrustworthy servers can not enforce incorrect policies. Furthermore inconsistent

policies are not a problem since the update is only made in one place.

Centralized authentication systems, such as Kerberos, may experience other in-

consistencies when modifying security policies. They often do not have a mechanism

to revoke access privileges for a service immediately. Kerberos, for example, issues a

principal a ticket for a service. This ticket is good until it expires, even if the security

policy changes to exclude that principal in the meantime. The server-based security

model, on the other hand, allows for immediate revocation of access privileges.

2Here we are considering a weakness to be a deviation from the desired security policy. If the

desired policy has weaknesses, then it is a problem with the policy and not the servers.
3The centralized system may distribute the policy over several policy servers that act as one.

These servers still impose a policy on service providers so, despite having a distributed security

policy, it should not be confused with the server-based model.

29

We would, therefore, like to impose some centralized control on the server-based

model. This must be accomplished without sacri�cing the advantages of the au-

tonomous model. The next section will describe such a solution that will be used as

the Information Mesh's security model.

4.2 Security Domains as Objects

The Information Mesh's security model overlays the server-based model with some

centralized control. The centralized control does not violate the object model that is

crucial for the success of the server-based model. This is accomplished by allowing

groups of servers to be modeled as a single domain object.

The domain object controls its own security policy, as all objects do in the server-

based model. This allows an administrator to encapsulate a set of servers with a

domain object and set the policy of the domain object. The domain object intercepts

any messages that are destined for servers which it encapsulates. It then applies its

security policy to the request and passes it on to its destination if it passes the security

check. The message may then be intercepted by successive domains until it reaches

its destination or it fails to pass one of the domain's security policies. Therefore, a

domain object's security policy represents a centralized policy imposed on the set of

servers it encapsulates.

The domain object may encapsulate a group of one or more servers, domain ob-

jects, or a combination of both. This
exibility permits many possible domain for-

mations. At one extreme, the server-based model is the special case where a set of

servers is not part of a domain object (Figure 4-1.A). Other con�gurations include

a full hierarchy of domains (Figure 4-1.B), overlapping domains (Figure 4-1.C), do-

mains that contain both other domains and servers (Figure 4-1.D), and any other

combination one would like to create.

Domains may be added or removed without the \victim" servers knowing about

the change. The servers do not know that any centralized control is being placed

on messages sent to them since all they see is an incoming message that follows the

30

Server
 4

Server
 5

Server
 6

Server
 1

Server
 3

Server
 2

Server
 4

Server
 5

Server
 6

Server
 1

Server
 3

Server
 2

Server
 4

Server
 5

Server
 6

Server
 1

Server
 3

Server
 2

Server
 4

Server
 5

Server
 6

Server
 1

Server
 3

Server
 2

(A)

(C)

(B)

(D)

Figure 4-1: A Few Con�gurations of Six Servers in the Object-based Model. En-

closed areas represent objects. Unlabeled objects are domains. (A) Servers with no

domains, equivalent to server-based model; (B) A hierarchical nesting of domains; (C)

overlapping domains; and (D) domain that contains both other domain and servers.

31

same protocols whether coming directly from the requesting server or having been

�ltered through several domains. The server will only receive messages that have

been approved by all the domains that surround it.

The activities, basically the enforcement of the security policy, of a domain is

controlled by a domain server. The domain server is simply a generic server (as

described below) that approves or rejects a request based on its domain's policy. How

it shows approval or disapproval may vary between implementations (see Section 5.3).

The domain server must be trusted to implement the desired security policy and to

perform correctly.

Two questions about domains must be explored in more detail. First, we must de-

termine how to make a group of computers, possibly located over a wide geographical

area, behave as a single object. This question can be re�ned to ask how do we redirect

messages to the appropriate domain server so it can be intercepted before it reaches

its destination. Second, even with appropriate redirection of messages, there can be

di�culties enforcing domain policies on some intradomain and possibly interdomain

messages.

4.2.1 Navigating the Domains

The description of domains above assumes that there is a mechanism that enables a

domain server to intercept messages. Such a mechanism would allow domains to be

added and removed without a�ecting the operation of servers inside or outside the

domain. Ideally, this would be accomplished by providing a secure mechanism for

the domain server to specify, at the IP routing level, that network tra�c destined

for a particular server must be routed through the domain. Unfortunately, no such

mechanism currently exists. This section o�ers some alternative mechanisms and

their weaknesses.

In order to simplify our discussion, we will introduce a new term, the path. A path

is a list of domains through which a request must travel in order to reach the particular

server that can process the request. We will impose an ordering on the domains in a

path from most general to most speci�c. A domain is more general than another if

32

it completely encapsulates the other domain. Two domains that overlap, but neither

completely encapsulates the other, are considered equal in terms of generality. This

ordering can be necessary for enforcing security policies as we will see in Section 5.3.

The solution involves a second trusted server, the path server. A path server

provides mappings between a server and its path. Adding and removing domains are

done by informing the path server of the change. The path server then must update

all its paths to re
ect the change. The server also has the responsibility of making

sure all the domain servers in a path have approved a request before it is passed on

to the destination server.

Our problem of redirection is now reduced to having to redirect the requests to

the path server so it can then direct the message through the correct path. If all the

servers in a domain, or in a set of domains, are in a single geographical area and can

all be placed behind a gateway, then the solution is simple { the gateway can redirect

the messages to the path server.

Not all domains may have the geographic locality necessary to use gateway to

redirect messages. There are several possible ways to solve this problem, though they

all have some weaknesses. The �rst would be to use the Domain Name Service (DNS)

[9, 10] to map server (host) names to the path server instead of to the actual host.

This has some
aws. First, it depends upon the security of DNS. DNS security is not

a safe assumption and has been a problem when implementing security managers for

Java [4]. Second, it can not guard against an attacker who knows the IP address and

port number of the destination server and can therefore bypass DNS.

Another way to handle this is to designate false ports on each host. These false

ports would be advertised as the well known ports for servers. Any messages sent to

these ports would be redirected to a path server who knows the real port to send the

message. This is obviously
awed if the attacker knows the actual port for the server

and sends messages directly to it.

Finally, two options involve putting trust in the servers to do the right thing. The

�rst option would be to trust all the servers within a domain to make sure all requests

have travelled the correct path. If they have not, the servers should send the requests

33

to a path server in order to assure that they have traveled the appropriate path. This

requires that we trust all the servers to behave correctly, which we were trying to

avoid, so it is a useless solution. The second solution requires us to trust all servers

outside the domain to send requests to the path server. This is obviously a problem

because it forces a domain to trust the servers against which it is trying to protect

itself.

This problem of redirecting messages is not solved here and is an issue for future

research. The solution will likely involve manipulating routing protocols, as described

at the beginning of this section. Since this work only describes a demonstration of the

security model where we can control aspects of the environment, we trust all servers

to send requests to a path server instead of the servers for which they are destined.

4.2.2 Local Message Problems

A second problem can arise when passing requests between two servers on the same

local area network (LAN) or even on the same host. If a request is passed between

the two servers it may be impossible to redirect the message before it is read by the

destination server. This may not be a problem if all the servers on the same host or

LAN are in the same domain. In this case, we can declare that the domains may only

apply their security policies to requests originating outside the domain. The servers

still control their own policies and will provide security for intradomain requests.

We can not completely pass the problem o� that easily. What if a domain needs to

apply some restrictions on intradomain messages? Or what if multiple domains exist

on a single LAN or host? We need some way of redirecting these messages to a path

server. Many of the
awed options above will also work to solve this problem. The

option of trusting all servers to send their requests to a path server will \solve" this

problem as it did above. Since we can control the environment of the demonstration,

the trust is a reasonable assumption.

34

4.3 Cascaded Authentication

Cascaded authentication is needed to provide authentication for cascaded invocations.

The Mesh security model uses a version of cascaded authentication very similar to the

one presented in Section 3.1. This section describes modi�cations to the protocols that

are necessary for the security model. This section also describes a third trusted server

that is required by the model { the authentication server. E�ciency considerations

with the protocol are also discussed. The section concludes with a discussion of the

trade-o�s between using public and private key encryption schemes for the protocol.

We also must take a very brief look at the representation of constraints. Con-

straints are information that may be added to an access certi�cate to limit future

invocations on behalf of the associated request. They can be implemented in a simi-

lar manner to the security policy described in Section 5.2.4. We will use this abstract

concept of a constraint until that discussion.

4.3.1 Modi�cations

The Information Mesh's security model makes several minor modi�cations to the cas-

caded authentication protocols described in Section 3.1. Beyond the modi�cations

described here, all other aspects of the protocol remain the same. One modi�ca-

tion results from communication with authentication servers, while the others are

modi�cations to the access certi�cate.

The �rst modi�cation occurs when a server performs a pairwise authentication

with an authentication server. It is not necessary for the server to obtain a conver-

sation key because it already shares a secret key, KA, with the authentication server.

The pairwise authentication protocol can be modi�ed to use this key:

35

reply

A

AS

A k
{I }

KA

A k

{I −1, I }ASi

KA

{I −1} ,dataASi

KA

Figure 4-2: Pairwise Authentication with an Authentication Server

These changes do not a�ect the protocol very much. The �rst message of the

protocol no longer needs the ticket since it was used to pass the conversation key to

B and assure B that the ticket came from the authentication server. For the rest of

the protocol, KA replaces CK as the conversation key. KA is known only to A and

the authentication server so it behaves the same as CK. A problem arises when the

key is compromised. A can no longer depend upon the conversation key to expire and

will have to arrange a new shared key with the authentication server.

This problem with a broken conversation key may be compounded by the concern

that a key is more likely to be broken if it is used more often. This suggests that we

may desire di�erent modi�cations to the protocol. This modi�cation would involve

leaving the ticket out of both the original pairwise authentication protocol and the

protocol for getting a new conversation key. The ticket's purpose was to prove to

a third party (B in Figures 3-1 and 3-2) that the conversation key came from the

authentication server. There is no third party when communicating with an authen-

tication server so the ticket is not needed. Therefore, a server that would like to

communicate with the authentication server would use these modi�ed protocols to

get a conversation key from the authentication server and use the key to perform a

pairwise authentication with it.

The data in the protocols contains two pieces of information. First it has the

access certi�cate that is required to access the service. Second, it contains service-

speci�c information. We will describe examples of service-speci�c information in the

36

discussion of particular servers in Chapter 5.

We should note that we often want to be assured the data and reply are also

authentic. If privacy is not an issue, we can accomplish this by encrypting the MD5

[12] of the information with the conversation key. This then can be used as proof

of the information's authenticity. If privacy is an issue, though, we can just encrypt

the information with the conversation key. This guarantees that an attacker has not

tampered with the data or reply. Without one of these protections, an attacker

could modify the unprotected data or reply and gain unauthorized access.

The remaining changes to the protocol involve minor modi�cations to the access

certi�cate. The �rst was suggested as part of the protocol for the server-based model

[3]. It was noted that access certi�cates often start and end at the same server. This

allows the initial certi�cate to be signed using a secret key that is known only to

that server for additional security. The initial access certi�cates in the Mesh security

model will be signed using secret keys that are known only to the creators of the

certi�cates.

The second modi�cation to the access certi�cate results from a need to identify

which service the access certi�cate is requesting. Every server will support several

services, so it will need to supply access certi�cates for each service. When it receives

a request, it would like to be able to identify which for service the access certi�cate

was created. This could be accomplished by having a di�erent secret key for each

service. The client would tell the server which service it was requesting and the

server could con�rm it by using the appropriate key to decrypt the certi�cate. We

have opted for another solution that involves adding the name of the service inside

the encrypted part of the initial access certi�cate and placing it at the beginning of

the cleartext part of the certi�cate. The server can immediately see which service is

being requested by looking at the cleartext portion of the certi�cate and this can be

con�rmed by checking with the service encrypted in the initial certi�cate.

We need to add the following to our established notation:

SKA a secret key known only to A

37

S the name of a service provided by A

We can now see the access certi�cate used by the Mesh:

fIAi ; B; CA; Sg
SKA; S; A; CA

Successive signing of the certi�cate remains the same as before.

4.3.2 Authentication Server

The authentication server is the third trusted server required by the Mesh security

model. An authentication server will service a de�ned group of servers. How this

division is made is very
exible. There may be an authentication server per domain

for medium-sized domains, one authentication server for many small domains, or

many authentication servers within a large domain. The job of an authentication

server may also be distributed over several servers.

Each authentication server stores keys for every server it assists. It must be able

to generate and distribute conversation keys when requested. Finally, it will decrypt

access certi�cates upon request and verify their validity. In order to support de-

crypting certi�cates that have passed through areas serviced by other authentication

servers, each authentication server must share a key with all authentication servers

that it trusts. Such a key would have to be pre-negotiated between the servers'

administrators as must be done in a Kerberos system.

4.3.3 E�ciency

There are several e�ciency issues concerning authentication. One issue, using a

private or public key cryptosystem will be discussed in the next subsection. We

would like to keep the overhead incurred by the authentication to a minimum and be

able to incur little overhead when authentication is not required.

There are several features of the protocol that are included for e�ciency reasons.

The timestamp associated with conversation keys allow them to be reused to save

communication with the authentication server. By adjusting the expiration time on

38

the conversation key, the number of messages necessary for pairwise authentication

can be brought arbitrarily close to four. The modi�cations to the pairwise authenti-

cation protocol discussed above were also made to improve e�ciency.

Batching requests to the authentication server, or any other server, will reduce

the number of network accesses. It also saves on the number of encryptions and

decryptions necessary to process the requests which saves time and computational

resources. In the example presented in Chapter 5, we will see this idea used when

requesting multiple access certi�cates at the same time.

It is also necessary to minimize the overhead for requests that do not require

any authentication. These requests still need to traverse the entire path dictated

by the path server, but they can avoid the pairwise authentication and the access

certi�cates which account for much of the overhead. These requests may be done

through a di�erent interface than requests requiring authentication. When a server

receives such a request, it must check its security policy to see if the request needs

authentication. If it does, the request must be denied, even if it is from a principal

that has access to the service, since there is no means to authenticate the request. If

it does not require authentication, then the request may be granted. This is not a

required addition to the security model, but is desired for e�ciency.

4.3.4 Private vs. Public Keys

All the protocols discussed so far have assumed the use of a private key encryption

scheme. The protocols are easily converted to use a public key encryption scheme as

demonstrated by Needham and Schroeder [11]. While the Information Mesh security

model does not, and should not, specify which encryption scheme should be used4,

it is important to look at the trade-o�s between the two schemes. This section only

discusses the trade-o�s in terms of the e�ect the schemes have on the speed of the

authentication protocols. There are other factors to consider when choosing a method

4Specifying a single encryption scheme would violate the goals of the Information Mesh. Besides,

over a hundred years, new encryption schemes may be realized and the trade-o�s discussed here may

change.

39

of encryption.

The cascaded authentication scheme requires many encryptions and decryptions,

both for the pairwise authentication and the access certi�cate. This indicates that

the speed of the encryption algorithm will have a signi�cant e�ect on the speed of the

authentication, especially when processing a request involves a cascaded invocation.

In general, private key encryption schemes have faster implementations than public

key schemes, so the speed of encryption is an advantage for private key schemes.

A close look at decrypting access certi�cates, though, exposes a potential for

parallel access to keys when using a public key encryption scheme. When decrypting

an access certi�cate to check its authenticity, each signature must be stripped o�

one at a time. If all the keys needed to decrypt the access certi�cate are stored

on the same authentication server, then the time needed to decrypt it is limited by

the encryption scheme. If the keys are located on di�erent authentication servers,

though, many network accesses will be required. This will a�ect the speed of the

authentication. Using a private key scheme, the access certi�cate must be passed to

each authentication server in turn to decrypt the layers for which it has keys. Using

a public key scheme, though, enables the authentication server to request all the keys

in parallel and can then decrypt the access certi�cate as the keys are returned.

Therefore, the overall speed of a public or private key encryption scheme depends

upon the locality of the servers signing the access certi�cate. If the common case will

be that most access certi�cates will only be signed by servers with keys on the local

authentication server, then a private key scheme will be faster, otherwise a public key

scheme may be faster.

4.4 The Generic Server

As a result of this security model, all servers will share a common interface. This

allows us to create a generic server. In terms of the Mesh object system, we can

create a generic-server-role. All servers must play the generic-server-role or one of its

subroles. This section will brie
y describe what actions a generic server must be able

40

to support, while implementation considerations will be discussed in Chapter 5.

The generic server must be able to support a cascaded authentication interface.

This means it must support pairwise authentication with other servers and an au-

thentication server, be able to get a conversation key from the authentication server,

and be able to request that the authentication server decrypt an access certi�cate.

It may also provide a fast path to avoid the cascaded interface when possible, as

described above. For our example, the generic server must also know to send requests

to a path server.

In order to provide access control, the generic server must have a security policy.

The security policy should be extensible so it can evolve over time and adapt to

di�erent applications. Possible implementations of security policies are discussed in

Section 5.2.4.

A generic server must also provide at least two services. First, it must be able to

create new access certi�cates when requested. This is required to support cascaded

authentication. Second, it must provide a means for changing the security policy so

it can provide access control that can change over time.

All servers must provide these minimum services. Chapter 5 will describe an

implementation of a generic server and show how other servers, including the domain,

path, and authentication servers may be built from it.

4.5 Summary

This chapter has described the security model that will be used for the Information

Mesh. After exploring the threat model for the Information Mesh and the weaknesses

of the server-based model, we developed the model for the Information Mesh.

The model is founded in the server-based model, but is extended to allow a group

of servers, a domain, to behave like an object. This domain object has the ability to

intercept messages destined for servers in the group it controls and can apply its own

security policy to those messages. This e�ectively applies a centralized security policy

to messages entering a domain. The model uses a modi�ed version of the cascaded

41

authentication protocols seen in the previous chapter.

The model presents three types of servers that are required and must be trusted.

A domain server controls the security policy for the domain. An authentication server

is needed to decrypt access certi�cates and provide conversation keys. As a result of

the di�culty involved in redirecting messages to the appropriate domain servers, a

path server is required to direct a message through the correct path.

Finally, we were able to develop a generic server that provided the interface and

services that all servers must provide. This includes the ability to communicate using

the cascaded authentication protocols and services to provide new access certi�cates

and modify its security policy.

42

Chapter 5

A Room Reservation System

In order to fully understand the Information Mesh security model, it is necessary to

look at an extended example of the model. The example will also expose implemen-

tation issues that were not handled as part of the model. This chapter will detail

an implementation of the model that allows principals to reserve conference rooms

around MIT.

This chapter begins with a discussion of the environment and the assumptions on

which the example is built. It then details the implementation of a generic server

which is used as a foundation for all the servers that are discussed: the path server,

domain server, authentication server, room reservation servers, and signature servers.

As each server is described, so will the issues associated with that server. Bootstrap-

ping is a common problem for the servers and will be discussed separately. Finally,

the example world will be built and run.

5.1 Environment

In order to simplify the example, it is necessary to limit the environment and the

threats associated with it. These simpli�cations will help make the example easier to

understand and implement. The simplifying assumptions will a�ect the design, but

will still indicate how the security model would behave in a full Information Mesh

environment. This section describes the assumptions about the environment and de-

43

scribes the room reservation service that has been developed within that environment.

The example is implemented on one host. This includes all the servers, domains,

and clients. All servers are trusted to send service requests to the path server. These

assumptions allow us to avoid the issue of how to redirect messages to the path server.

This would not be appropriate for a full implementation of the security model. We

chose not to address the routing problem in order to focus more clearly on the security

problems.

The example also only uses one authentication server and one path server. Since

we are implementing a fairly small world, more servers are not necessary. It also

speeds examples up by not requiring cascaded authentication requests, beyond the

request that is being processed. These simpli�cations avoid some confusion while

running examples.

Finally, we will take a moment to discuss how we would like the room reservation

service to work since it will in
uence the design of the servers that will implement it.

Every room that may be reserved has a server that controls the authoritative list of

reservations for the room. A room reservation server may be the authority for one

or more rooms. It may also know of rooms for which it is not an authority, though it

will know which servers are the authorities for those rooms. Before these authorities

may schedule a reservation, the request must be signed by someone who is considered

\in charge" of the room. This is accomplished by a signature server. It is possible

for one signature server to be in charge of multiple rooms.

5.2 The Generic Server

The generic server embodies all the functionality of a server, except for the speci�c

services it might provide. It can perform cascaded authentication, work with authen-

tication servers to verify access certi�cates, and check permissions using the server's

security policy. It implements the required services to provide new access certi�cates

and allow for modi�cation of the server's security policy.

This section describes the implementation of the generic server. It also discusses

44

issues related to implementing a security policy that expresses the generality and

exibility necessary to achieve the goals of the Information Mesh.

The generic server has two encryption keys: a key shared with the authentication

server and a secret key that only it knows (for encrypting the initial access certi�-

cates). The server keeps a policy �le that stores its security policy. It also keeps a

list of access certi�cates it holds in an ac-list.

The generic server has the ability to manage both ends of the unmodi�ed pairwise

authentication protocol, so it can both send and receive requests with other servers.

When sending a request, it �rst requests a conversation key from an authentication

server. Additionally, it can send requests to authentication servers using the pair-

wise authentication protocol that we modi�ed for communication with authentication

servers.

5.2.1 Processing a Request

When a server receives a request for a service, it must determine if the request passes

its security policy. This section will outline the steps necessary to authenticate a

request. Servers may skip some of these steps as their policy dictates. Here is an

outline for a full authentication of a request:

1. Check security policy to see if the request must be authenticated.

2. If the request must be authenticated, send the access certi�cate to an authen-

tication server and wait for the reply. This involves:

(a) Get an access certi�cate for the authentication server.

(b) Sign the access certi�cate.

(c) Send the original access certi�cate to the authentication server, along with

the access certi�cate for the authentication server, and wait for the reply.

3. If the response is positive, apply the security policy, if necessary.

4. If the request passes the security policy, invoke the service.

45

The server invokes the requested service using arguments provided in message

three of the pairwise authentication (Figure 3-2). If, at any point, the request fails

to pass any of these tests, an error message is returned to the client requesting the

service.

5.2.2 Sending a Request

The process of sending a request can be a bit more complicated than the process

of receiving one. This results from having to keep track of the number of access

certi�cates the server is holding for a service, so it can get more when it runs out.

Here are the steps required to send a request:

1. Check to see if there is an access certi�cate for the service in ac-list.

2. If there are no access certi�cates for that service, we must get some before trying

to send the request. When getting certi�cates, it is best to get many of them

to reduce the number of get-ac requests.

(a) Save the request in a request-list.

(b) Get some access certi�cates for the service.

i. Send a request using the service get-ac to get more certi�cates for

the desired service. This is accomplished by starting at Step 1 with

the service get-ac. This procedure will not recurse because there

must be access certi�cates for get-ac or else it has encountered a

bootstrapping problem.

ii. If this only leaves one remaining access certi�cate for get-ac, then use

it to get more access certi�cates for get-ac.

(c) Remove the request from the request-list and goto step 1. This will

also not recurse because now there is a guarantee that there will be access

certi�cates available for the service.

3. If the access certi�cate is in ac-list get it and remove it from the list.

46

4. If this leaves no more access certi�cates for the service, get some more (see step

4-b).

5. Sign the access certi�cate.

6. Send the request using pairwise authentication.

We should note that this process requires the server to hold some get-ac access

certi�cates initially. This bootstrapping problem will be discuss in Section 5.7.

5.2.3 Generic Services

A generic server provides two services that are required both for cascaded authenti-

cation and to allow the servers to evolve. get-ac allows clients to request new access

certi�cates and update-policy allows authorized principals to change the server's

security policy.

get-ac requires the following information in order to process the request: (number

destination service). get-ac replies with number access certi�cates for service.

destination refers to the destination server that is to be encrypted in the access

certi�cate. destination must correspond to the server that is requesting the access

certi�cates.

The information necessary for an update-policy request will vary depending

upon the implementation of the security policy. For our security policy (described

below) the necessary information is: (service attribute add? value). service

indicates which service's security policy is being modi�ed. add? indicates whether

the bit associated with attribute should be set high or low. value speci�es any

values that may be associated with the attribute in the security policy. Finally, the

attribute all allows policies for services to be added and removed. Speci�cs about

the security policy and attributes are discussed below.

47

5.2.4 Security Policies

The representation of its security policy can severely restrict the
exibility and evolv-

ability of the Mesh security model. We would like a representation that allows the

security policy to change over time. Not only should the values of the attributes be

able to change, but which attributes are checked should be allowed to change. For

example, one server may only care about which hosts are trying to access it, while

another may care how many servers have handled the request, how much the client is

willing to spend on the service, and the speed of the client's internet connection. In

the future, attributes we do not consider important now may be checked for access

control purposes.

For the example, we have developed a simple security policy representation. It

has some
exibility about which attributes it checks, but does not evolve well. We

will discuss an idea for a more sophisticated representation later.

The simple security policy has the following form:

(service (authenticate? constraint? security-policy) init-constraints)

Where security-policy and init-constraints (and other constraints) have the

form:

(bit-list value value ..)

Each server has such a policy for every service it provides. These are distinguished

by service. The bits authenticate? and constraint? indicate whether or not it

is necessary to authenticate a request for this service or necessary to check all the

constraints in the access certi�cate.

The remainder of the security policy and the constraints have a similar form. They

have a set of bits where each bit represents an attribute that can be checked. If the

bit is set high, then the attribute must be checked and any information necessary to

de�ne the policy for that attribute is included as a value. The values are listed in the

order of the bits that are set high. For example, a policy may check four attributes:

The number of servers that may handle the request, the principals that may handle

48

the request, the price the client is willing to pay for the service, and the time that has

passed since the access certi�cate was created1. A server may then have the policy:

(1010 (4) ($1))

This policy says that the request may be handled by no more than four servers and

the client must be willing to pay at least one dollar for the service.

This policy representation does not evolve well because it relies on some universal

agreement on the attribute which each bit represents. A solution to this problem may

be suggested by the Hydra [20] capability system. Hydra designed a
exible security

policy based on twenty-four bits. The �rst sixteen bits represented access control

privileges to a �xed set of general operations. The last eight bits represented type

speci�c privileges. Those bits represented access control for di�erent operations in

policies of di�erent types.

It may be possible to transfer the idea of di�erent types of policies to the Infor-

mation Mesh. This could be accomplished by making a security policy a �rst-class

object. This would allow us to de�ne a security-policy-role and di�erent types of

policies would be represented by subroles of the security-policy-role. Each attribute

could be de�ned as a di�erent action of the role, allowing each subrole to support a

di�erent set of attributes. Every security policy would have to play one of the sub-

roles of the security-policy-role. This and other representations for security policies

are subjects for future research.

5.3 Path Server

A path server is a trusted server that directs a request through the appropriate do-

mains to get to its destination. The path server must keep track of the servers and

domains that exist and must be able to direct the request to each domain for ap-

proval. A path server does not check its security policy for any requests that are not

destined for itself; its job is not to approve requests, just to distribute them to the

1This attribute is easy to verify if a timestamp is used for the nonce in the initial certi�cate.

49

servers that do approve requests. For this reason, it is not necessary to get an access

certi�cate when trying to access a di�erent server through the path server.

The service for directing a message through the domains is called enter-domain.

The service request requires three arguments, (info server service), the informa-

tion necessary to process the request at the destination server and the server and

service for which the request is destined. The access certi�cate for the destination

service is passed to the path server as normal since no access certi�cate is required

for the path server.

Once the path server receives such a request, it then contacts all the domain

servers in the path. There domain servers may be contacted sequentially or all at

once. These methods lead to di�erent solutions that can a�ect the security policies

that are possible. If the request is approved by all the domain servers, then it is

passed on to the destination server.

When contacting the domain servers sequentially, the path server �rst signs the

access certi�cate, then passes it (along with any other relevant information) to each

domain server from the most general to the most speci�c, as discussed above. The

domain server will check the certi�cate and information against its security policy.

If the request passes, the domain server signs the certi�cate and returns it to the

path server, otherwise it returns a negative response. This method results in all the

domain servers signing the access certi�cate in order.

There are several advantages to this method. It allows servers (both domain

and local) to base at least part of their security policies on the approval of a more

general server. It also leaves a distinct audit trail since the signatures on the access

certi�cate indicate all the servers that have handled it. The method has a very distinct

disadvantage, though. It will be slow, especially if there are several domains in the

path. The many encryptions necessary and the ordering of each approval will add a

long delay for the request to get to its destination.

In the interest of developing a more e�cient method to get approval from the

domains, the path server may contact all the domains in the path at the same time.

The path server sends the access certi�cate and other relevant information to the

50

domain servers. All it expects in return is an approval or disapproval of the request.

If all the domain servers return a positive response, then the path server signs the

request and passes it to the destination server. If any domain server returns a negative

response, then the request is rejected.

This method is much more e�cient than the previous one. It also leaves an audit

trail, only not as explicit as in the previous method. The audit trail can be found by

contacting the path server that signed the access certi�cate and querying it for the

path that it contacted for approval. This method is limited in that security policies

can not depend upon the response of a more general server.

We have chosen the latter method in the interest of e�ciency, but do not limit

other implementations to do the same.

Finally, we must discuss other services that a path server must support. The

server should allow domains and servers to be added and removed. Additionally,

domains need to be allowed to change over time. These services are re
ected by

modify-domain and modify-server. It is incumbent upon domains and servers to

tell the path server when they come into existence or when the go away in order to

keep the server current.

modify-domain allows an authorized principal to add, remove, and change do-

mains. The changes are indicated by three arguments: (domain modify victims).

domain indicates the name of the domain that will be a�ected, while modify indicates

what will be done to domain. modify is a number that tells whether domain is to

be added, removed, or modi�ed. victims is a list that describes which objects will

be under the in
uence of the domain. It is a list of pairs (name . type) where

name is the name of the victim and type is one of the following: server, domain, or

group. server means that the named victim is a local server, domain that the victim

is another domain, and group means that the victim is a group of servers that can

be named as one, such as: *.mit.edu, *.lcs.mit.edu, 18.26.0.*, etc.

When modify-domain is invoked, it is necessary to compare every server and

domain indexed by the path server against the victim list to see if it is a�ected. If it

is, then appropriate changes must be made to indicate the change in the domain.

51

modify-server allows an authorized principal to add or remove a server from

the path server. This requires the request to include (server add?) to name the

server and whether it should be added or removed. Adding a server means that the

path server must check all the domains that it knows about and determine the path

required to get to the new server.

5.4 Domain Server

The domain server is the second trusted server. As we saw above, its purpose is to

apply a domain-wide security policy and inform a path server of the results. A domain

server needs (destination ac info) in order to approve the access certi�cate. This

provides the name of the destination server, access certi�cate, and any additional

information needed for judging the request. The domain server uses the tools provided

by a generic server to check the access certi�cate against its security policy and returns

its approval or disapproval of the request as discussed above.

5.5 Authentication Server

The �nal trusted server is the authentication server. While it is based on the generic

server, it has some subtle variations that will be discussed here. The authentication

server must perform two services { authenticating access certi�cates and distributing

conversation keys.

The �rst variation is a result of distributing conversation keys. There is no need

for pairwise authentication when requesting a conversation key because only authentic

servers will be able to decrypt the response containing the key. This service, therefore,

by-passes the pairwise authentication interface.

The second variation from the generic server is the requirement that the authenti-

cation server must be able to communicate using both sides of the modi�ed pairwise

authentication protocol that was described in Figure 4-2. All its communications will

use this modi�ed protocol. Local and domain servers that trust the authentication

52

server will share a key with the server. Furthermore, authentication servers that trust

each other must similarly share a pre-negotiated key. Since these groups represent all

the servers that will communicate with the authentication server, only the modi�ed

protocol is needed.

Authentication servers will contact each other for authentication services when

they do not control all the keys necessary to verify an access certi�cate. They may

only contact other authentication servers that they trust and with whom they share

a key. This communication may require further invocation before the authentication

is complete. These invocations must be accomplished using the modi�ed cascaded

authentication protocol.

The only data needed to authenticate an access certi�cate is the access certi�cate

itself. authenticate decrypts one layer of encryption at a time and makes sure that

the certi�cate was formed properly. If it encounters a signature for which it does not

have a key, it will request help from a di�erent, but trusted, authentication server.

It can not decrypt the initial certi�cate since it is encrypted with a key that only

the creator knows. It returns this initial certi�cate to the requesting server to �nish

verifying the certi�cate.

Now that we have described the servers that are required for the security model,

we can now look at the local servers that are speci�c to the example.

5.6 Local Servers

Reserving conference rooms requires two types of servers: a signature server to grant

o�cial approval for the principal to use a room and a room reservation server that

keeps track of the reservations for a room. It is also necessary to have a client to

request the reservations.

The servers are modeled after the process that is necessary to reserve conference

rooms. To reserve a room, you must go to the person in charge of the room, �nd

out if the room is free when you need it, and get a signature to approve your use

of the room at that time. The servers are a slight variation on the process. First a

53

client must receive permission to use a room, then it checks with the server that has

authority over the room to see if the room is available when it is needed. This section

describes these servers and a client.

5.6.1 Signature Server

The signature server has the job of signing a request for a room. If the request

passes the security policy of the signature server, the server then signs the request.

The signature server (as well as the room reservation server) may want to know any

number of details to sign-request. This information should be listed as an extensible

list of attribute-value pairs such as the following:

((cert ac) access certi�cate for reservation service
(for value) group for which the room is being reservered
(contact value) who to contact about the request
(reply value) where to send replies
(room value) which room is being reserved
(time (day, starttime, length)) when the room is needed
(period value) periodic use of the room:

value is onetime, daily, weekly, monthly
(number value) number of people the room needs to accommodate
(cost value)) amount the group is willing to pay to

reserve the room

The signature server signs ac and replaces it in the list. It then passes the request

on to the appropriate reservation server. If the request does not pass the security

policy of the server, then an error is returned to the client.

5.6.2 Room Reservation Server

The room reservation server is responsible for scheduling the use of one or more

rooms. It must keep track of the use of each room for which it is the authority and

make sure there are no scheduling con
icts. It may know about rooms for which it

is not the authority. It will pass such requests to the appropriate signature server for

further processing.

54

In order to reserve a room, the room reservation server needs the same list of

information that was used to access the signature server. It is likely that its security

policy will require that the access certi�cate be signed by a particular signature server,

though this may not be the case for all rooms. In all cases, the room must be unused

for the entire time requested.

Additional functionality may be added to the room reservation server. If the server

is given some knowledge of characteristics of each room, it would be possible for the

reservation server to suggest rooms when a room is not speci�ed in the information

list. For example, if the server knows about the seating capacity of each room,

it could suggest a room based on the number of people that will be using it. It

could include other characteristics such as the presence of audio/visual equipment,

conference tables, whiteboard space, etc.

5.6.3 Client

A client has much of the same functionality as the generic server. While it must be

able to send cascaded requests, it does not need to be able to receive the requests.

It must also have the added functionality of being able to initiate a request for a

particular service or set of services. This involves collecting the necessary information

to initiate the request (along with an access certi�cate) and sending it via the pairwise

authentication protocols.

5.7 Bootstrapping

This model requires that a server must have an access certi�cate to get more access

certi�cates. This implies that a server must be primed with some access certi�cates

before it may function in its environment. This section details what information is

required to solve this bootstrapping problem and a way that it may be achieved.

Before a server or client can use a service, it must have an access certi�cate for

that service. To get the access certi�cate, the server needs an access certi�cate for

get-ac. This implies that a server needs access certi�cates for get-ac for every server

55

with which it ever wants to communicate.

While this may be possible to create by hand in the little world of our example,

it does not scale to a real system. In the real world, there will likely be services that

trade access certi�cates. They could provide get-ac and other access certi�cates

for large numbers of servers and services. A new server would then only need to be

primed with a few access certi�cates, including at least one trading service. It would

then have access to certi�cates for nearly any service that it wanted.

5.8 The Example

We have used the servers described above to create an example of the Mesh security

model in action. This section describes our example world and some tests and their

results that have been performed on this world. We also use the example to illustrate

where bottlenecks may occur in the system and possible solutions to them.

5.8.1 A Miniature World

Our example world uses the servers described above to implement a small room

reservation service around MIT. There is one path server and one authentication

server for the entire world to simplify the problem. Figure 5-1 shows all the servers

and domains in the example world.

The example world presents �ve hierarchical domains. The Laboratory for Com-

puter Science (LCS) and Research Laboratory for Electronics (RLE) domains fall

under the control of the Department of Electrical Engineering and Computer Sci-

ence (EECS). EECS and the Department of Mechanical Engineering (MechE) both

fall under the jurisdiction of the MIT domain. These hierarchical domains are for

demonstration purposes only and do not re
ect the actual control structure within

MIT.

56

ro
o

m
N

E
4

3
−

 5
1

8

 A
u

th
S

e
rv

e
r

si
g

n
N

E
4

3
−

 5
1

8

S
ig

n
 M

IT

 r
o

o
m

3
4

−
1

0
1

 s
ig

n
A

n
n

e
 H

.

si
g

n
R

L
E

 r
o

o
m

3
6

−
8

3
9

 R
L

E
d

o
m

a
in

 L
C

S
d

o
m

a
in

 E
E

C
S

d
o

m
a

in

ro
o

m
3

−
1

3
3

si
g

n
M

e
ch

E

M
e

ch
E

d
o

m
a

in

 M
IT

d
o

m
a

in
 P

a
th

S
e

rv
e

r

ro
o

m
s

2
6

−
1

0
0

 6
−

1
2

0

F
ig
u
re
5-
1:
T
h
e
E
x
am
p
le
W
or
ld
.

57

Within each domain are the room reservation servers and their associated signa-

ture servers (See Figure 5-1). The room reservation server for rooms 26-100 and 6-120

know about the rooms 3-133, 34-101, and NE43-518 and vice versa. Additionally, the

room reservation server for 34-101 knows about room 36-839 and NE43-518 (and vice

versa).

The room reservation servers have a policy of not accepting any reserve requests

unless they have been signed by their associated signature servers. The MIT domain

server has a policy of not accepting any domain requests that originate outside of

*.mit.edu. While the ability exists to change these policies, they should not be

modi�ed. All other policies are subject to change for demonstration and testing

purposes.

5.8.2 Tests and Results

Although this example was mainly built to expose issues surrounding the Information

Mesh's security model, we can still use it to run some informative tests. First, the

example is a proof of concept. By using it, we can prove the validity of the model.

Second, although the implementation was not designed for speed or e�ciency, we can

run some tests that will expose where the model imposes most of its overhead. This

information will aid us in determining where bottlenecks may occur.

There is not much that can be said about how these tests demonstrate the validity

of the model. All the following tests prove that the model works within the assump-

tions we made at the beginning of this chapter. All the security policies and path

information were set up by running the demonstration. Many other tests have been

made to show that the model enforces its security policies, the path server directs

requests along the appropriate paths, and that cascaded requests cascade correctly.

There are several timing tests that we would like to run. We would like to know

the overhead caused by: getting a conversation key, authenticating an access certi�-

cate (and how much overhead each signature adds to this process), getting approval

from a domain, getting approval from multiple domains, and getting new access cer-

ti�cates when making a request. Since the actual times will vary greatly with di�erent

58

implementations, we will look at relative data. All results represent the average of

at least �ve runs of each test started when the load on the host was at or near zero.

The methods used to arrive at the numbers will be described with each test. While

these numbers may also change with di�erent implementations, they are much more

informative than actual times.

Getting a conversation key

Unless the time it takes to get a conversation key is very large, this time is not very

signi�cant per-request, since it will be amortized over many requests. Where it may

be signi�cant is determining if it will contribute to the authentication server being a

bottleneck to the system. For this test, we will measure the time that it takes to get

the conversation key and compare it to the time it takes the client to send a request

to the path server.

Getting the conversation key was only responsible for approximately 20% of the

time needed to make the request. The majority of the time (approximately 80%) was

spent on signing the request and the pairwise authentication. The results of this test

were very consistent with each running of the test. These numbers should shift even

more heavily towards the signing and authentication as the access certi�cate gets

larger and the encryption takes longer. So we can see that getting the conversation

key does not contribute much overhead.

Authenticating an access certi�cate

Another action that may cause the authentication server to be a bottleneck and will

slow a request is the veri�cation of an access certi�cate. The time this process takes

will vary with the number of signatures on the certi�cate. We would like to know

what fraction of a simple request is a result of verifying the access certi�cate and how

much time additional signatures add to the veri�cation.

We will test these by timing how long it takes to verify certi�cates that have four

and �ve signatures on them. They can be represented by the following requests: a

request for the MIT domain server to update its policy and a request to reserve room

59

26-100 when the client asks the MIT signature server.

Verifying the access certi�cate with four signatures required only an additional

10% in time over the benchmark described below. Verifying a certi�cate with a �fth

signature on it took about four and a half times longer than verifying the certi�cate

with four signatures. This result is a bit suspect. Part of the discrepancy is due

to the additional load placed on the host running the servers by adding the server

necessary for the �fth encryption. There may also be an e�ciency problem with our

representation of the encrypted string, which causes its length, and hence time needed

for decryption, to grow faster than necessary. While the additional signature should

add some time in the veri�cation of the access certi�cate, it should not add as much

as our tests show.

Getting approval from domains

Another task which we expect to add time to a request is getting the approval of the

domains in a path. We would like to compare the time it takes to approve a request

through a domain with the time it takes without a domain. First, we will ask the

MIT domain server to update its policy. This request will not need the approval of

any domains and can be used as a benchmark. This test will be compared to a similar

request to the MIT signature server which only needs the approval of the MIT domain

server. Results show that the latter test takes approximately 30% longer than the

benchmark.

We can postulate that asking for the approval of multiple domains in parallel will

speed up the approval time. Unfortunately, our environment does not allow us to test

this appropriately. Since all the servers are running on one host, the parallel requests

must be processed serially. Furthermore, the numerous requests increase the load on

the machine, slowing down the results. For example, a policy update request for the

LCS signature server must get the approval of three domains: the MIT, EECS, and

LCS domains. This test takes approximately 110% longer than the benchmark.

60

Getting new access certi�cates

Our �nal test is to see how much time getting more access certi�cates adds to the

processing of a request. As with the time for getting a conversation key, this expense

will be amortized over many requests since the request asks for multiple certi�cates

at once. For this test, the client will be making requests to update the MIT domain's

security policy so no domain approval is necessary. We will compare the running

times of the request to update the policy and of that request coupled with a request

for ten additional access certi�cates for the service.

The request that was coupled with getting more access certi�cates took approxi-

mately twice the time of the request that did not require additional access certi�cates.

This is to be expected, since getting more access certi�cates during a service request

adds a second full request to the one necessary for the service request.

5.8.3 Bottlenecks

We can imagine that three types of servers might become bottlenecks in a real im-

plementation of the Mesh security model: the authentication server, the path server,

and the domain servers. This section will brie
y examine where the bottlenecks may

occur and possible means for alleviating them.

The authentication server may become a bottleneck if it serves too many servers

or if a high percentage of the requests must be authenticated. In either case, the

authentication server may have more requests for verifying access certi�cates than it

can reasonable handle. As we discovered above, getting conversation keys will not

contribute much to a bottleneck.

One solution would be to reduce the granularity of the authentication server.

There would be more authentication servers serving fewer servers, each with a re-

duced load. This would work well if there is not much communication between the

groups of servers served by each of the new authentication servers. If there is much

communication between the groups then the authentication servers would often need

help from each other to verify access certi�cates. This would probably negate the

61

value of reducing the granularity of the authentication server. A second solution

would be to replicate the authentication server.

Domain servers for large domains may also become a bottleneck since they are

the only entrance point to their domains. We may also solve this bottleneck using

either replication or distribution. Replication would allow many access points to

all servers. It has a couple of drawbacks, though. First, it is necessary to have a

means of keeping their security policies consistent. Second, we must have a means for

servers, or protocols, to choose the domain server where they will send their request.

Distribution, on the other hand, provides di�erent access points for di�erent servers.

Each domain server for a single domain would allow access to di�erent servers within

that domain. Now we only have the problem of determining to which domain server

a particular request must be directed.

The �nal possible bottleneck is a relic of our assumptions for the example, the

path server. Since the path server services all requests for a set of domains, it can be

more of a bottleneck than the domain servers. This bottleneck could also be relieved

using either replication or distribution. Since the path server should not be part of a

real implementation, the possibilities do not need to be discussed here.

These represent all the possible bottlenecks that may be imposed by the Mesh

security model. Other bottlenecks may result from particular local services, such as a

signature server that must sign requests for numerous room reservation servers, but

are not a concern for this discussion.

5.9 Summary

In this chapter, we have seen an implementation of the Mesh security model. It made

several assumptions about its environment to simplify some problems. Most notably,

it trusted all servers to send requests to a path server. We used the implementation

to develop an example room reservation service.

Within this environment, we were able to develop several servers based on a generic

server. These included the authentication server, path server, domain servers, a client,

62

and two servers needed for the room reservation service: a signature server and a

room reservation server. In order to implement these servers, we needed to develop a

representation for security policies.

Finally, we looked at a room reservation system in action. We developed a small

world of servers around MIT that could sign requests and reserve rooms. This example

was a proof of concept and allowed us to run some tests to help us determine where

bottlenecks may occur in a real implementation. Finally, we looked at possible means

of opening up these bottlenecks.

63

Chapter 6

Conclusions

We conclude this paper with a brief summary of the ideas that have been presented

and a review of further research that must be done before the Mesh security model

is feasible.

We started by discussing the Information Mesh project and its goals to give us an

understanding of the environment for which we needed a security model. Our model

needed to support the Information Mesh's goals, including
exibility and evolvability,

while providing a uniform model for all servers. The Information Mesh also uses an

object model, with which the security model had to comply.

We then discussed two previous works which we could use as a foundation for the

Mesh security model. The �rst was cascaded authentication. Cascaded authentication

provided us with the protocols needed to allow a server to authenticate the entire

chain of a cascaded request. It brought up the need for an access certi�cate which

every server that handles a request must sign. Cascaded authentication provided the

authentication for the security model.

The second work proposed a model where every server controlled its own security

policy, although its default policy may be to query a central policy server for advice.

While this model conforms to the object model, it has the problem that it requires all

the servers in a policy domain to be trusted to implement the correct security policy.

It also has the potential for inconsistencies to develop when updating a policy that

involves many servers.

64

We wanted to expand this server-based model so that it provided the option for

centralized policy control, while allowing objects to control their own policies. This

was accomplished by allowing groups of servers to behave as a single object, while

still retaining their identity as an object. This domain object would intercept all

messages destined for servers under its control, apply its own security policy, then

pass the request on to its destination if it passes the security check.

This model requires three types of trusted servers. An authentication server is

necessary to verify the access certi�cates needed for cascaded authentication. It also

must provide conversation keys so servers may perform a pairwise authentication

with each other as part of the cascaded authentication protocol. A domain server

is necessary to enforce a domain's security policy. Finally, the lack of a protocol to

allow domains to intercept incoming requests made it necessary to develop a path

server. The path server directs messages to the appropriate domain servers before

they are passed on to their destinations.

Using this model, we were able to develop a generic server that could perform

all the actions required of a server. It communicated with other servers using the

cascaded authentication protocol and with the authentication server using a modi�ed

version of the protocol. The generic server also provided two forms of generic ser-

vices: providing new access certi�cates for services and allowing authorized principals

to update its security policies. One problem that was encountered when developing

the generic server was �nding an appropriate representation for the security policy.

A solution was given, but further work must be done to �nd an appropriate repre-

sentation.

At this point, we were ready to build an example implementation of the model.

The example provided services for reserving conference rooms around MIT. In order

to simplify the implementation of the example, we assumed that all servers could be

trusted to send requests to the path server instead of to the destination of the request.

The generic server was used to implement the path and domain servers. Some

minor modi�cations to the generic server were necessary to use it to implement the

authentication server. The generic server was also used as a foundation for the signa-

65

ture and room reservation servers that were necessary to provide the room reservation

services in the example. Finally, a client to invoke all the services was implemented

using the generic server. The implementation of these servers uncovered a bootstrap-

ping problem that is inherent in cascaded authentication { the need to have some

initial access certi�cates to get the process started.

Finally, we were able to run the example and run some tests that allowed us to

recognize some potential bottlenecks in the model. They basically occurred at each

of the three required servers. Each bottleneck could potentially be solved using either

replication or distribution, though they will have di�erent consequences in di�erent

situations.

6.1 Further Research

In developing the model and the example implementation, we discussed two ideas

that require further research. First, protocols need to be developed that will allow

messages to be redirected to the appropriate domain servers. Second, a
exible,

evolvable representation for a security policy must be designed.

A protocol allowing domains to intercept requests is necessary before this security

model can truly be implemented. The protocol must be secure against attackers, such

as unauthorized domains, trying to redirect requests. It must be able to guarantee

that the messages will always be redirected appropriately. The protocol must also be

e�cient. It will not be acceptable if it adds much overhead to a request, especially

a request that does not require any authentication. Additionally, any e�ects the

protocol may have on the model presented here must be explored. This research

must be completed before the model will be valid.

An appropriate representation for security policies must also be developed. In

order to meet the Information Mesh's goals of an infrastructure that is
exible and

evolvable, it is necessary to design a policy representation that also adheres to these

goals. A possible solution, as suggested in Section 5.2.4, is to make the security policy

a �rst-class object and use the Information Mesh's object model to specify di�erent

66

types of policies. By allowing di�erent types of policies to be speci�ed, the security

policies can evolve as needed. This solution and others should be investigated to �nd

an appropriate representation for security policies.

6.2 Conclusion

The security model presented in this paper has much potential as a security model

for the Information Mesh and other systems requiring a model that conforms to an

object-based infrastructure. Its
exible mix of centralized and local policy control

give it the power to implement complex security policies. Future work on security

policy representations will allow these security policies to be modi�ed for di�erent

applications and evolve as required.

Currently, its major
aw is the lack of a protocol to redirect messages to the

domain servers. Once a solution is devised for this
aw, the model will be valid.

This will eliminate the need for both the path servers and the trust in all servers to

send their request to the path servers. The overhead incurred by contacting the path

server will also be eliminated.

In conclusion, once this protocol problem has been resolved, a full scale imple-

mentation is needed to demonstrate the model and the ideas presented in this paper.

It will have to consider the trade-o�s between using public and private keys and de-

termine the appropriate ways to relieve bottlenecks for the environment which it is

built. The answers to these questions will vary between di�erent systems and di�erent

domains.

67

Bibliography

[1] Architecture Project Management, Ltd., \ANSA Security Framework",

AR.009.00, May 1993.

[2] Berners-Lee, T., Masinter, L., McCahill, M., \Uniform Resource Locators (URL)",

Network Working Group RFC 1738, December, 1994.

[3] Bull, J. A., Gong, L., Sollins, K., \Towards Security in an Open Systems Federa-

tion", Computer Security - ESORICS 92, pp. 3-20 Springer-Verlag LNCS Series,

Nov. 1992.

[4] Dean, D., Felten, E., and Wallach, D., \Java Security: From HotJava to Netscape

and Beyond", IEEE Symp. on Security and Privacy, 1996.

[5] ISO/IEC DIS 10181-1 \Security Frameworks for Open Systems: Overview"

[6] ISO/IEC DIS 10746-1,2,3,4 \Basic Reference Model for Open Distributed Pro-

cessing"

[7] Kohl, J. and Neuman, C. \The Kerberos Network Authentication Service". RFC

1510, September 1993.

[8] Kunze, J., \Functional Recommendations for Internet Resource Locators", Net-

work Working Group RFC 1736, February 1995.

[9] Mockapetris, P., \Domain names { concepts and facilities", Network Working

Group RFC 1034, Nov. 1, 1987.

68

[10] Mockapetris, P., \Domain names { implementation and speci�cation", Network

Working Group RFC 1035, Nov. 1, 1987.

[11] Needham, R. M., and Schroeder M. D., \Using encryption for authentication

in large networks of computers". CACM, Vol. 21, No. 12, December 1978, pp.

993-998.

[12] Rivest, R. \The MD5 Message-Digest Algorithm", RFC 1321, April 1992.

[13] Sollins, K., \Cascaded Authentication", Proc. of the IEEE Symp. on Security

and Privacy, Oakland, CS, April 1988, pp. 156-163.

[14] Sollins, K., Masinter, L., \Functional Requirements for Uniform Resource

Names" Network Working Group RFC 1737, December 1994.

[15] Sollins K., Van Dyke J. R., \Linking in a Global Information Infrastructure",

WWW Journal, Conf. Proc. - 4th International WWW Conf., Boston, MA, Dec.

1995, pp. 493-508.

[16] Van Dyke, J. R., \Link Architecture for a Global Information Infrastructure",

MIT/LCS/TR-659, June 1995.

[17] Vel�ez-Rivera, B. \Information Mesh Objects", Working Document.

[18] Vel�ez-Rivera, B., and Bawden, A., \The Information Mesh Kernel", Working

Document.

[19] Voydock, V. L. and Kent, S. T. \Security Mechanisms in High-Level Network

Protocols", ACM Computing Surveys, Vol. 15, No. 2, June 1983, pp.135-171.

[20] Wulf, W. A., Levin, R., and Harbison, S. P., HYDRA/C.mmp: An Experimental

Computer System. McGraw-Hill, New York, 1981.

69

