
Relieving Hot Spots on the World Wide Web

by

Rina Panigrahy

B.Tech, Computer Science

IIT, 1995

Submitted to the Department of Electrical Engineering and Computer Science

in partial ful�llment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1997

c
 Massachusetts Institute of Technology 1997. All rights reserved.

Author :

Department of Electrical Engineering and Computer Science

May 9, 1997

Certi�ed by :

David R. Karger

Professor at Laboratory for Computer Science

Thesis Supervisor

Accepted by :

Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Relieving Hot Spots on the World Wide Web

by

Rina Panigrahy

Submitted to the Department of Electrical Engineering and Computer Science

on May 9, 1997, in partial ful�llment of the

requirements for the degree of

Master of Science

Abstract

We describe a family of caching protocols for distributed networks that can be used to decrease or

eliminate the occurrence of hot spots in the network. Hot spots are web sites that swamped by a

large number of requests for their pages. Our protocols are particularly designed for use with very

large networks such as the Internet, where delays caused by hot spots can be severe, and where it

is not feasible for every server to have complete information about the current state of the entire

network. The protocols are easy to implement using existing network protocols such as TCP/IP,

and require very little overhead. The protocols work with local control, make e�cient use of existing

resources, and scale gracefully as the network grows.

Our caching protocols are based on a special kind of hashing that we call consistent hashing.

Roughly speaking, a consistent hash function is one which changes minimally as the range of the

function changes. Through the development of good consistent hash functions, we are able to

develop caching protocols which do not require users to have a current or even consistent view of

the network. We believe that consistent hash functions may eventually prove to be useful in other

applications such as distributed name servers and/or quorum systems.

Thesis Supervisor: David R. Karger

Title: Professor at Laboratory for Computer Science

3

4

Acknowledgements

I would like to thank Tom Leighton, David Karger, Eric Lehman, Matthew Levine, and Daniel

Lewin for their help and cooperation.

5

6

Contents

1 Introduction 9

1.1 The Problem : 9

1.2 Related Practical Work : 10

1.2.1 World Wide Web proxies : 11

1.2.2 Co-operative Caching : 11

1.2.3 Harvest : 11

1.2.4 Push Caching : 12

1.2.5 Prefetching : 12

1.2.6 Cache Consistency : 13

1.3 Related Theoretical Work : 14

1.3.1 Randomization and Hashing : 15

1.3.2 Finding minimum time broadcast trees : 15

1.3.3 Prefetching Algorithms : 16

1.4 Our Contribution : 16

1.5 Presentation : 17

2 Model 19

3 Random Trees 21

3.1 Protocol : 23

3.2 Analysis : 24

3.2.1 Latency : 24

3.2.2 Swamping : 25

3.2.3 An Improvement in the protocol for better bounds : : : : : : : : : : : : : : 33

7

3.2.4 Storage : 34

4 Consistent Hashing 39

4.1 De�nitions : 40

4.2 Construction : 42

4.3 Implementation : 42

4.4 Analysis : 43

5 Basic Solution in an Inconsistent World 51

5.0.1 Swamping : 51

5.0.2 Storage : 53

6 Ultrametric Distances 55

6.1 Protocol : 56

6.2 Analysis : 57

6.2.1 Swamping : 57

6.2.2 Storage : 59

7 Fault Tolerance 61

8 Conclusion 63

8

Chapter 1

Introduction

1.1 The Problem

In this thesis, we study the problem of \hot spots" on the World Wide Web. Hot spots occur any

time a large number of clients wish to simultaneously access data from a single server. If the site is

not provisioned to deal with all of these clients simultaneously, service may be degraded or lost.

Many of us have experienced the hot spot phenomenon in the context of the Web. A Web site

can suddenly become extremely popular and receive far more requests in a relatively short time than

it was originally con�gured to handle. In fact, a site may receive so many requests that it becomes

\swamped," which typically renders it unusable. It is often hard to predict such sudden changes

in popularity. Besides making the one site inaccessible, heavy tra�c destined to one location can

congest the network near it, interfering with tra�c at nearby sites.

As use of the Web has increased, so has the occurrence and impact of hot spots. Recent famous

examples of hot spots on the Web include the JPL site after the Shoemaker-Levy 9 comet struck

Jupiter, an IBM site during the Deep Blue-Kasparov chess tournament, and several political sites

on the night of the election. In some of these cases, users were denied access to a site for hours or

even days. Other examples include sites identi�ed as \Web-site-of-the-day" and sites that release

new versions of popular software.

In this work we describe a family of distributed caching protocol that can be used to decrease

or eliminate the occurence of hot spots on the Web. Our protocols make use of randomization

to ensure that the load of serving requests is balanced among the caches. The number of cached

9

copies of a page adapts dynamically to its changing popularity. These protocols work with local

control, makes e�cient use of existing resources, and scale gracefully as the network grows. Our

caching protocols are based on a special kind of hashing that we call consistent hashing. Roughly

speaking, a consistent hash function is one which changes minimally as the range of the function

changes. Through the development of good consistent hash functions, we are able to develop caching

protocols which do not require users to have a current or even consistent view of the network. This

allows new caches to be added to the network without every one having to know the latest set of

caches. Before giving our tools, we discuss past work both practical and theoretical. Section 1.2

gives a detailed discussion of the practical work. In this thesis we ignore the issue of updates to

pages, i.e., all our protocols are developed for static web pages. Dynamic pages give rise to issues

of maintaining cache consistency which we have totally ignored. However, we believe that previous

work done on cache consistency can be used directly in our protocols. In section 1.2 we also discuss

existing methods used for maintaining cache consistency. Section 1.3 discusses the theoretical work.

1.2 Related Practical Work

Several approaches to overcoming the problem of hot spots have been proposed. Most use some

kind of replication strategy to store copies of hot pages throughout the Internet; this spreads the

work of serving a hot page across several servers. In one approach, already in wide use, several

clients share a proxy cache. Proxy caches [14] have long been in use to reduce web tra�c in a

network. It tries to satisfy requests with a cached copy; failing this, it forwards the request to

the home server. The dilemma in this scheme is that there is more bene�t if more users share the

same cache, but then the cache itself is liable to get swamped. Malpani et al. [7] work around this

problem by making a group of caches function as one. A page request is served locally if it is cached

in any of the caches. The disadvantage of this approach is that it leads to a lot of communication

between the caches thus making it unsuitable for large networks. Chankhunthod et al. [1] developed

the Harvest Cache, a more scalable approach using a tree of caches. The advantage of a cache tree

is that a cache receives page requests only from its children (and siblings), ensuring that not too

many requests arrive simultaneously. An independent approach called prefetching could be useful

for reducing web latency. The idea is to send to the client along with the requested page a set of

pages it is likely to request in future.

10

1.2.1 World Wide Web proxies

A proxy is a special server that does caching for a medium sized network. [14]. Instead of going

directly to the home server for a page, the clients in the network �rst query the proxy. If the

proxy has the page cached, it gives it to the clients; otherwise it gets a copy of the page from the

home server, caches it in its cache and forwards it to the clients. So instead of receiving individual

requests from each client, a popular server now receives only one request from the proxy, thus

reducing network tra�c. Also, once the �rst request for a popular document has been made, clients

are able to obtain that document much faster since their requests can be served locally by the proxy.

Setting up a proxy server is easy, and the most popular Web client programs already have proxy

support built in.

However, the size of the network containing the proxy should not be too large; otherwise the

proxy itself could get swamped with requests. This limits the bene�t a popular server can derive

from the use of proxy caches.

1.2.2 Co-operative Caching

Malpani et al. [7] tried to make a group of caches function as one. A user's request for a page is

directed to an arbitrary cache. If the page is stored there, it is returned to the user. Otherwise,

the cache forwards the request to all other caches via a special protocol called \IP Multicast" [5] .

Multicast is a protocol for the transmission of a packets to a subset of the hosts in a network. If the

page is cached nowhere, the request is forwarded to the home site of the page. The disadvantage of

this technique is that as the number of participating caches grows, even with the use of multicast,

the number of messages between caches can become unmanageable. A tool that we develop in this

paper, consistent hashing, gives a way to implement such a distributed cache without requiring that

the caches communicate all the time. We discuss this in chapter 4.

1.2.3 Harvest

The Harvest system [1] was the �rst to implement hierarchical caching on a large scale. It consists

of a number of caches arranged in a hierarchy, spread over the internet. A Harvest cache can be

con�gured with an arbitrary number of parents and siblings. When a Harvest cache needs a page

it queries each of its siblings and parents to check if any of them have the page. The page is then

11

immediately fetched from the source which responds earliest with a positive reply. This ensures

that the page is obtained from the source with low latency.

From a theoretical standpoint however the Harvest approach lacks scalability as it uses the same

hierarchy of caches for all pages. Since each request for a new page must pass through the top level

of the hierarchy, there could be a large load on the caches near the top of the hierarchy if many

distinct pages are requested simultaneously. However, the developers of the Harvest cache claim

that this will not pose a problem in practice. They argue that the root level caches, located on the

internet back-bone, are capable of handling the maximum request rate allowed by the bandwidth

of the back-bone.

1.2.4 Push Caching

Push Caching was introduced by Gwertzman and Seltzer [17] at Harvard. The essential idea is to

replicate a popular document so that the number of replicas is proportional to the popularity of

the document. They envision a network infrastructure with thousands of push-cache servers onto

which �les may be pushed. A central registry service tracks available push-cache servers, helping

servers decide where to replicate their objects by providing a list of available push-cache servers

on demand. Network topology is also taken into account in deciding where to push a page. Since

network topology is hard to obtain, Gwertzman and Seltzer use the Geographical distances as an

approximation to the network latencies between machines.

Azer Bestavros [2] uses the same approach as push caching, and in addition uses a second

technique that they call \speculative service". The idea is that a server responds to a client's

request by sending, in addition to the document requested, a number of other documents that it

speculates will be requested by that client in the near future. This is very similar to the technique

of prefetching which we will discuss later.

1.2.5 Prefetching

Prefetching tries to make use of the locality of reference in the requests made by a client for the

pages on a web site. Users usually browse the Web by following hyperlinks from one Web page to

another. Hyperlinks on a page often refer to pages stored on the same server. Typically, there is

a pause after each page is loaded while the user reads the displayed material. This time could be

12

used by the client to prefetch �les that are likely to be accessed soon (e.g. those pointed to by the

current page), thereby avoiding retrieval latency if and when those �les are actually requested. The

retrieval latency has not actually been reduced; it has just been overlapped with the time the user

spends reading, thereby decreasing the access time.

Padmanabhan and Mogul [13] propose a predictive prefetching scheme for the World Wide Web

in which the servers tell the clients which �les are likely to be requested next by the user, and

the clients decide whether or not to prefetch the �les based on local consideratons (such as the

contents of the local cache). Each server maintains a dependency graph that depicts the pattern

of accesses to di�erent �les stored a the server. This graph has a node for each �le and a weight

associated with an arc between two nodes. This weight on the arc between A and B indicates how

often B is requested after A as has been accessed. This dependency graph is updated dynamically

as the server receives new requests. If A is currently being requested and if the weight on the arc

between A and B is higher than a prefetch threshold then the �le B is considered as a candidate for

prefetching.

1.2.6 Cache Consistency

Any caching strategy using several caches for caching a page needs to worry about dynmaic pages,

i.e., pages that are modi�ed frequently. Dynamic pages could lead to inconsistencies in the cached

copies. In our work we do not study the issue of cache consistency. However existing methods

used to deal with this issue apply to our protocol as well. The value of caching is greatly reduced

if cached copies are not updated when the original data change. Cache consistency mechanisms

ensure that cached copies of data are eventually updated to re
ect changes to the original data.

Gwertzman and Seltzer [22] studied di�erent techniques for maintaining cache consistency in the

context of the World Wide Web. There are several cache consistency mechanisms currently in use

on the Internet: time-to-live �elds, client polling, and invalidation protocols.

A time-to-live �eld is essentially an estimate of the time when an object expires. This is typicially

implemented as the \expires" header �eld in the HTTP protocol. If a requested document has a

TTL that has already elapsed, it is considered to have expired and a fresh copy of the document is

obtained from the original server.

Client polling is a technique where cachess periodically check back with the server to determine if

13

cached objects are still valid. The basic assumption is that young �les are modi�ed more frequently

than old �les and that the older the �le is the less likely it is to be modi�ed. For example, a page

that is only a day old when fetched is probably modi�ed on a daily basis and hence should'nt be

kept for more than a few hours. However, a page that is a month old when fetched is probably

modi�ed less frequently and could probably be kept for for a few days without becoming stale. The

update threshold is expressed as a percentage of the object's age. An object is invalidated when

the time since last validation exceeds the update threshold times the object's age.

Invalidation protocols are required when weak consistency is not su�cient; many distributed �le

systems rely on invalidation protocols to ensure that cached copies never become stale. Invalidation

protocols depend on the server keeping track of cached data; each time an item changes the server

noti�es caches that their copies are no longer vaid. One problem with invalidation protocols is that

they are often expensive. Servers must keep track of where their objects are currently cached. If a

machine with data cached cannot be noti�ed, the server must continue trying to reach it, since the

cache will not know to invalidate the object unless it is noti�ed by the server.

Gwertzman and Seltzer perfomed trace driven simulations to compare the di�erent mechanisms

for cache consistency on the Web. They conclude that a weak cache consistency protocol reduces

network bandwidth consumption and server load more than either TTL or an invalidation protocol

and can be tuned to return stale data less than 5% of the time.

1.3 Related Theoretical Work

On the theoretical side, Plaxton and Rajaraman [10] introduced the idea of using randomization and

hashing to balance load on a network. Their work however was done in the context of a synchronous

network of nodes in a parallel machine. They assume the existence of special priority messages that

reach a node even though it may be swamped with other low priority messages which is clearly

not the case in the Web. R. Ravi [15] studies the problem of �nding optimal broadcast trees in a

graph, which could be useful for building multicast trees. A theoretical study of prefetching was

done in [20].

14

1.3.1 Randomization and Hashing

Plaxton and Rajaraman [10] were the �rst to conduct a theoretical study of the problem of providing

fast concurrent access to shared objects in a synchronous network of distributed computation. Their

basic idea is to construct for each object a random tree of caches which can be computed using

a global hash function. The use of random trees ensures good load balancing among the caches

and the global hash function makes it easy to compute the structure of each tree without having

to store the arrangement of the caches for each of the trees. Whenever a node needs an object it

sends a request to a random node in each level of the tree. Whenever a caching node senses a large

number of request for a cached object it pushes this object to its children. It is assumed that even

if a node is swamped with a large number of requests, it will still be able to push an object to its

children. This ensures that if the popularity of a given object exceeds the number of cached copies,

the number of cached copies increases geometrically until it matches the demand for the object.

Plaxton and Rajaraman do a theoretical analysis of their protocol in a model containing n nodes

where each node can process at most O(log n) requests per time step, and prove that all requests

are satis�ed with high probability in O(log n) time steps.

Several of their ideas also apply to the problem of relieving hot spots on the Web. However, they

assume that messages between machines can be prioritized and even though a node may be swamped

with messages of low priority, it can still be reached by a high priority message. Such assumptions

are not true in the case of the Internet. Their method also does not take into consideration the

varying distances between the di�erent machines on the Web. They assume a uniform distance

metric between the nodes in a parallel machine.

1.3.2 Finding minimum time broadcast trees

If we model the Web as a weighted graph with nodes representing machines and weights denoting the

latencies between the machine, then we can ask what is the minimum time required to broadcast a

popular document residing at a node to all the other nodes in the graph. Such an optimal broadcast

would correspond to sending the page along a spanning tree. Such a tree would be very suitable

for use in a Multicast protocol [5]. R. Ravi [15] has studied a special case of this problem in a

synchronous framework where at each time step, any processor that has received the document

is allowed to communicate it to at most one of its neighbors in the network. This special case

15

of the problem is known to be NP-complete [16], even in 3-regular planar graphs. R. Ravi gives

an O(log2 n= log log n)-approximation algorithm for the minumum broadcast time problem on an

n-node graph.

1.3.3 Prefetching Algorithms

Prefetching can be studied as a learning problem that involves predicting the page accesses of

the user. In [20] Vitter and Krishnan give the �rst provable theoretical bounds on prefetching

performance. Their approach is to use optimal data compression methods to do optimal prefetching.

They model the request trace as an mth order Markov source (i.e., states correspond to the previous

m requests) , and evaluate their prefetching algorithm relative to the best online algorithm that

has complete knowledge of the structure and transition probabilities of the Markov source.

1.4 Our Contribution

Here, we describe two tools for data replication and use them to give a caching algorithm that over-

comes the drawbacks of the preceding approaches and has several additional, desirable properties.

Our �rst tool, random cache trees, combines aspects of the structures used by Chankhunthod

et al. and Plaxton/Rajaraman. Like Chankhunthod et al., we use a tree of caches to coalesce

requests. Like Plaxton and Rajaraman, we balance load by using a di�erent tree for each page

and assigning tree nodes to caches via a random hash function. By combining the best features

of Chankhunthod et al. and Plaxton/Rajaraman with our own methods, we prevent any server

from becoming swamped with high probability, a property not possessed by either Chankhunthod

et al. or Plaxton/Rajaraman. In addition, our protocol shows how to reduce memory requirements

(without signi�cantly increasing cache miss rates) by only caching pages that have been requested

a su�cient number of times.

Our second tool is a new hashing scheme we call consistent hashing. This hashing scheme

di�ers substantially from that used in Plaxton/Rajaraman and other practical systems. Typical

hashing schemes do a good job of spreading load through a known, �xed collection of servers. The

Internet, however, does not have a �xed collection of machines. Instead, machines come and go as

they are brought into the network or crash. Even worse, the information about what machines are

16

functional propagates slowly through the network, so that clients may have incompatible \views"

of which machines are available to replicate data. This makes standard hashing useless since it

relies on clients agreeing on which caches are responsible for serving a particular page. Consistent

hashing may help solve such problems. Like most hashing schemes, consistent hashing assigns a set

of items to buckets so that each bin receives roughly the same number of items. Unlike standard

hashing schemes, a small change in the bucket set does not induce a total remapping of items to

buckets. In addition, hashing items into slightly di�erent sets of buckets gives only slightly di�erent

assignments of items to buckets. We apply consistent hashing to our tree-of-caches scheme, and

show how this makes the scheme work well even if each client is aware of only a constant fraction

of all the caching machines. In addition, we believe that consistent hashing will be useful in other

applications where multiple machines with di�erent views of the network must agree on a common

storage location for an object without communication.

1.5 Presentation

In Chapter 2 we describe our model of the Web and the hot spot problem. Our model is necessarily

simplistic, but is rich enough to develop and analyze protocols that we believe may be useful in

practice. In Chapter 3, we describe our random tree method and use it in a caching protocol that

e�ectively eliminates hot spots under a simpli�ed model. This simpli�ed model assumes that the

latencies between all pairs of machines are the same and that each browser knows about all the

caches present in the system. Independent of Chapter 3, in Chapter 4 we present our consistent

hashing method and use it to solve hot spots under a model involving inconsistent views.

In Chapter 5 we combine our two techniques and show that our protocol works even if browsers

have inconsistent views of the set of caches. In Chapter 6 we propose a simple delay model that

captures the varying distances between machines on the Internet. We show that our protocol can

be easily extended to work in this more realistic delay model. In Chapters 7 we consider fault

tolerance of our protocol. In Chapter 8 we discuss some extensions and open problems.

17

18

Chapter 2

Model

This chapter presents our model of the Web and the hotspot problem.

We classify computers on the Web into three categories. All requests for Web pages are initiated

by browsers. The permanent homes of Web pages are servers. Caches are extra machines that we

use to protect servers from the barrage of browser requests. Throughout the paper, the set of caches

is C and the number of caches is C. Note that these categories may not be disjoint. A machine

could simultaneously be a cache, a server, and a browser.

Each server is home to a �xed set of pages. Caches are also able to store a number of pages,

but this set may change over time as dictated by a caching protocol. We assume that the content

of each page is unchanging. (However, we believe that past work done on handling dynamic pages

in caching protocols, which was discussed in section 1.2.6, can be directly applied to our protocols.)

The set of all pages is denoted by P.

A machine may send a request to any other machine it is aware of. The two typical types of

messages are requests for pages and the pages themselves. A machine which receives too many

messages too quickly ceases to function properly and is said to be \swamped".

An adversary decides which pages are requested by browsers. However, the adversary cannot see

random values generated in our protocol and cannot adapt his requests based on observed delays

in obtaining pages. We consider two models. We consider a static model in which a single \batch"

of requests is processed, and require that the number of page requests be at most R = �C where C

is the number of caches.

Latency measures the time for a message from machine m1 to arrive at machine m2. We

19

denote this quantity �(m1;m2). In practice, of course, delays on the Internet are not so simply

characterized. The value of � should be regarded as a \best guess" that we optimize on for lack

of better information; the correctness of a protocol should not depend on values of � (which could

actually measure anything such as throughput, price of connection or congestion) being exactly

accurate. Note that we do not make latency a function of message size; this issue is discussed in

Section 3.2.1.

Objective

The \hot spot problem" is to satisfy all browser page requests while ensuring that with high proba-

bility no cache or server is swamped. While our basic requirement is to prevent swamping, we also

have two additional objectives. The �rst is to minimize cache memory requirements. A protocol

should work well without requiring any cache to store a large number of pages. A second objective

is, naturally, to minimize the delay a browser experiences in obtaining a page.

20

Chapter 3

Random Trees

In this chapter we introduce our �rst tool, random trees. A standard solution to handle a large

number of requests for a page p to a server s is to have a set of proxy caches to protect the server s.

To obtain the page p, a browser requests the page from one of the proxy caches which might in turn

make a request to the server if it does not already have the page. The problem with this scheme

is choosing the size of the set of caches assigned to protect the server. If this set is small, then the

caches themselves could be overwhelmed by page requests. If the set is large, then the server could

be swamped by page requests from the very caches assigned to protect it.

A natural extension [1] is to introduce several layers of proxy caches where a cache in one layer

makes requests only to caches in the layer above it. We must ensure that the ratio between the

number of caches in a given layer to the number in the layer above it is not too large. This suggests

that we arrange the caches into a balanced tree with a bounded degree d and with the server at

the root of the tree. When a browser needs page p it makes a request to a cache at a random leaf

node that serves the request if the page is present in its cache and otherwise delegates the request

to its parent. Now if we focus our attention on a su�ciently brief interval of time (so as to ignore

eviction of pages) then each cache sends out at most one request for the page p to its parent and

so no internal node gets more than d requests for the page p.

If there are C caches in the tree then there are about C leaves and so the maximum demand

for page p that this tree can satisfy without swamping is about C times the demand that a single

machine can satisfy. As the popularity of a page increases, more copies of the page get cached down

the tree. In fact, for each page's tree there will be a threshold level where the number of caches is

21

roughly equal to the number of requests for the page. The caches above the threshold level are likely

to see requests for the page and will tend to have cached copies and those below the threshold level

are less likely to see requests and hence will tend not to have copies of the page. As the popularity

of a page increases the threshold level moves down, thus increasing the number of copies of the

page. In this way the number of cached copies automatically adapts to changes in the popularity

of the page.

So far we have talked about handling large number of requests for one page. We need to extend

our protocol to handle several potential hotspots on the web. We could try using the same tree to

cache all pages. However, observe that the root machine will receive at least the �rst request for

each page. So if many distinct pages are requested, the caches close to the root will receive too many

requests and load will not be balanced evenly among all the caches. A solution is to create a distinct

tree of caches for each page. In fact a good way to achieve load balancing is to have for each page a

tree of caches arranged in random order, which is the technique used by Plaxton/Rajaraman [10].

This ensures that no machine is near the root for many pages, thus providing good load balancing.

We now describe our protocol. To simplify the presentation, we start with a simple caching

protocol that would work well in a simpler world. In particular, we make the following simpli�cations

to the model:

1. All machines know about all caches.

2. Distances between machines are uniform, i.e., �(mi;mj) = 1 for all i 6= j.

Under these restrictions we show a protocol that has good behavior. That is, with high proba-

bility no machine is swamped. For each request a browser may need to go through �(logdC) proxy

caches and we prove that it is necessary to prevent swamping. We use total cache space which is

a small fraction of the number of requests, and is evenly divided among the caches. In chapter 5

we will analyze our protocol without the assumption that all machines have full knowledge of the

caches. In chapter 6 we extend our protocol to a scenario where all the latencies between pairs of

machines are not uniform.

In Section 3.1 below, we de�ne our protocol precisely. In Section 3.2, we analyze the protocol,

bounding the load on any cache, the storage each cache uses, and the delay a browser experiences

before getting the page.

22

3.1 Protocol

Just like in Harvest [1] we will use a hierarchy of caches. However, instead of using the same

hierarchy for all pages we will use a di�erent one for each page. In each hierarchy the caches are

arranged in random order, similar to the approach taken by Plaxton and Rajaraman [10]. We

associate with each page a rooted d-ary tree, called an abstract tree that will represent the tree of

caches for that page. We use the term nodes only in reference to the nodes of these abstract trees.

The number of nodes in each tree is equal to the number of caches, and the tree is as balanced as

possible (so all levels but the bottom are full). We number the nodes of the tree by their rank in

breadth-�rst search order. The protocol is described as running on these abstract trees; to support

this, all requests for pages take the form of a 4-tuple consisting of the identity of the requester,

the name of the desired page, a sequence of abstract nodes through which the request should be

directed, and a sequence of caches that should act as those abstract nodes. To determine the latter

sequence, that is, which cache actually does the work for a given node, the nodes are mapped to

machines. The root of a tree is always mapped to the server for the page. All the other nodes are

mapped to the caches by a hash function h : P � [1 : : : C] ! C, which must be distributed to all

browsers and caches. In order not to create copies of pages for which there are few requests, we

have another parameter, q, for how many requests a cache must see (acting as a particular abstract

node) before it bothers to store a copy of the page.

Now, given a hash function h, and parameters d and q, our protocol is as follows:

Browser When a browser wants a page, it picks a random leaf to root path in the abstract tree,

maps the nodes to machines with h, and asks the leaf node for the page. The request includes

the name of the browser, the name of the page, the path, and the result of the mapping.

Cache When a cache receives a request, it �rst checks to see if it is caching a copy of the page or is

in the process of getting one to cache. If so, it returns the page to the requester (after it gets

its copy, if necessary). Otherwise it increments a counter for the page and the abstract node

it is acting as, and asks the next machine on the path for the page. If the counter reaches

q, it caches a copy of the page. In either case the cache passes the page on to the requester

when it is obtained.

Server When a server receives a request, it sends the requester a copy of the page.

23

3.2 Analysis

In this section we will analyze the performance of our protocol. To simplify the analysis we will

assume that a certain number of requests arrive simultaneously. This restricted model is \static" in

the sense that there is no notion of requests arriving over time. Let the number of static requests

be �C so that � is the average number of requests per cache. For a static analysis we simply look

at the paths taken by these �C requests up their respective trees. Any abstract node that receives

more than q requests from its children will cache the page. Each abstract node sends out at most

q requests to its parent.

The analysis is broken into three parts. We begin by showing that the latency in processing a

request is likely to be small, under the assumption that no machine is swamped. We then show

that no machine is likely to be swamped. We conclude by showing that no cache need store too

many pages for the protocol to work properly.

3.2.1 Latency

Under our protocol, the delay a browser experiences in obtaining a page is determined by the height

of the tree. If a request is forwarded from a leaf to the root, the latency is twice the length of the

path, 2 logd C. If the request is satis�ed with a cached copy, the latency is only less. If a request

stops at a cache that is waiting for a cache copy, the latency is still less since a request has already

started up the tree. Note that d can probably be made large in practice, so this latency will be quite

small. Although our protocol increases the delay in getting pages, the existence of tree schemes,

like the Harvest Cache, suggests that is acceptable in practice.

Note that in practice, the time required to obtain a large page is not multiplied by the number

of steps in a path over which it travels. The reason is that the page can be transmitted along the

path in a pipelined fashion. A cache in the middle of the path can start sending data to the next

cache as soon as it receives some; it need not wait to receive the whole page. This means that

although this protocol will increase the delay in getting small pages, the overhead for large pages

is negligible.

Our bound is optimal (up to constant factors) for any protocol that forbids swamping, as shown

by the following lemma.

Lemma 3.2.1 Any protocol that can handle �C requests for a page simultaneously, with no machine

24

serving more than d requests, must have an average latency of
(logd(�C)) hops per request.

Proof: Consider making �C requests for a single page. Look at the directed graph with nodes

corresponding to machines and directed edges corresponding to links over which the page is sent.

This graph has an out-degree of at most d at each node. So the number of nodes reachable from

the home server of the page in x steps is at most dx. So a constant fraction of the nodes will be

(logd(�C)) steps away from the home server. This means that the average distance from the home

server to the C requesting machines is
(logd(�C)).

3.2.2 Swamping

We now analyze the number of requests a machine gets in our protocol under the simpli�ed model.

Note that a server can receive at most d requests per page. We will assume that a server can handle

d requests for each of its page. What remains is the analysis of the number of requests received

by caches. The intuition behind our analysis is the following. First we analyze the number of

requests directed to the abstract tree nodes of various pages. These give \weights" to the abstract

tree nodes. We then analyze the outcome when the tree nodes are mapped by a hash function

onto the actual caching machines: a machine gets as many requests as the total weight of nodes

mapped to it. To bound this mapped weight, we �rst give a bound for the case where each node

is assigned to a random machine. This is a weighted version of the familiar balls-in-bins type of

analysis. Our analysis gives a bound with an exponential tail. In lemma 3.2.6 we develop tools

to ensure that these bounds hold even when the balls are assigned to bins only k = O(logN)-way

independently. This can be achieved by using a k-universal hash function to map the abstract tree

nodes to machines.

Analysis for Random h

Theorem 3.2.2 If h is chosen uniformly and at random from the space of functions P�[1 : : :C] 7!

C then with probability at least 1 � 1=N , where N is a parameter, the number of requests a given

cache gets is no more than

�

2 logdC +O

logN

log logN

!!
+O

0
@ dq logN

log

�
dq
�
logN

� + logN

1
A

25

requests

Note that � logd C is the average number of requests per cache since each browser request will

give rise to logd C requests up the trees. The
� logN
log logN

term arises because at the abstract leaf nodes

of a tree's page some cache could occur
logN

log logN
times (balls-in-bins) and if adversary chooses to

devote all R requests to that page then each leaf is expected to receive � requests.

Corollary 3.2.3 If h is chosen uniformly and at random from the space of functions P�[1 : : :C] 7!

C then with probability at least 1� 1=N , where N is a parameter, no no cache gets more than

�

2 logdC +O

log(NC)

log log(NC)

!!
+O

0
@ dq log(NC)

log

�
dq

�
log(NC)

� + log(NC)

1
A

requests

Proof: The bound given in theorem 3.2.2 holds for a given cache with probability at least 1�1=N .

Since there are C caches, the probability that the bound holds for all caches is 1 � C=N . Since N

is simply a parameter, we can replace N by NC to get the corollary.

We prove theorem 3.2.2 in the rest of the section. We split the analysis into two parts. First we

analyze the requests to a cache due to its presence in the leaf nodes of the abstract trees and then

analyze the requests due to its presence at the internal nodes and then add them up.

Requests to Leaf Nodes

Each request for a page p goes to a random leaf node in that page's abstract tree. If L denotes the

number of leaf nodes in each abstract tree, then L is about C(1 � 1=d). We associate a weight of

rp
L
with each abstract leaf node of p's tree, which is the number of requests for p each of them is

expected to receive. Then we map these weighted abstract leaf nodes over all pages onto the set of

caches and bound the total weight assigned to a cache. Finally we argue that the total number of

requests received by a cache is with high probability close to the total weight assigned to it. Note

that we cannot simply say that the requests are mapped randomly onto the set of caches, which is

di�erent from mapping the requests to abstract nodes �rst and then mapping the abstract nodes

to the caches.

With each abstract leaf node of page p's tree we associate a weight wp = rp=L. A machine m

has 1=C chance of being at an arbitrary leaf node of a given page. Let Vpj denote the event the j
th

26

leaf node of p's tree is assigned to m. So Vpj is 1 with probability 1=C and 0 otherwise. Let us try

to bound to the total weight W =

P
wpVpj assigned to m. We would like to use Cherno� bounds;

however, W is a weighted sum of poisson variables with weights possibly greater than 1. But note

that each weight wp = rp=L � R=L � �=d(d � 1). So we can apply Cherno� bounds to
W

�=d(d�1)
,

which is a weighted sum of poisson variables, where all weights are at most 1. This gives a bound

of O(� logN= log logN) on W which holds with probability at least 1� 1=N .

Next we will argue that with high probability the number of leaf node requests machine m gets

is close to the random variableW . For any assignment of tree nodes to machines let A denote set of

leaf nodes that get assigned to m. Now observe that the random variable W is a function of A. Let

f denote this function. Let the random variable Hl denote the total number of requests received by

machine m due to its presence at leaf nodes. We need to provide a high probability bound for Hl.

Let � denote the high probability bound on W that we just proved. Now Pr[Hl > �]

= Pr[W > �] � Pr[Hl > �jW > �]

+Pr[W � �] � Pr[Hl > �jW � �]

� Pr[W > �] + Pr[Hl > �jf(A) � �]

We know that �rst probability in the sum is at most 1=N . We will choose � appropriately so

that the second part of the sum is also < 1=N . Given the set of leaf nodes where m is present we

claim that the total number of requests R can be written as a sum of independent poisson random

variables. We have one poisson variable for each request of each page which is set of 1 if m gets

that request and 0 otherwise. Now let � denote the expected value of their sum Then � = W � �.

By Cherno� bounds we know that the probability that the sum > 4 � � + lnN is < 1=N . So if we

set � to 4� + lnN then the second probability is < 1=N . So we can claim that with probability

> 1� 2=N the random variable Hl is O(� + lnN)

Requests to Internal Nodes

We will now bound the number of requests m gets due to its presence at internal nodes. Again

we think of the protocol as �rst running on the abstract trees. With each abstract node we will

associate a weight equal to the number of requests it receives. These weighted nodes (balls) are

then randomly assigned to the set of caches (bins). Using standard balls-in-bins type analysis we

27

will then bound the total weight falling into a bin.

Now no abstract internal node gets more than dq requests because each child node gives out at

most q requests for a page. Consider any arbitrary arrangement of paths for all the R requests up

their respective trees. Since there are only R requests in all we can bound the number of abstract

nodes that get dq requests. In fact we will bound the number of abstract nodes over all trees that

receive between 2
j
and 2

j+1
requests where 0 � qj � log dq � 1. Let nj denote the number of

abstract nodes that receive between 2
j
and 2

j+1
requests. Let rp be the number of requests for page

p. Then
P
rp � R. Since each of the R requests gives rise to at most logdC requests up the trees,

the total number of requests is no more than R logdC. So,

log(dq)�1X
j=0

2
jnj � R logd C (3.1)

The following lemma gives us a bound on nj .

Lemma 3.2.4 The total number of internal nodes that receive at least qx requests is at most 2R=x

if x > 1

Proof: Look at the rp requests for page p and the paths produced by these requests up the tree.

Consider the tree on the internal nodes induced by these paths. Since any node can get at most q

requests from each child, a node that gets at least qx requests must have downward degree of at

least x > 1. Look at all nodes u with downward degree one. Let v and w be the parent and the child

of u respectively. Replace all such downward degree one nodes u by a single edge connecting v and

w. This will eliminate all nodes with downward degree equal to one but will preserve the degrees

of the other nodes. Since x > 1, we are now left with a tree where each node has a downward

degree of at least 2. In such a tree the number of leaves is at least half the total number of nodes.

Also the sum of the downward degrees is equal to the total number of edges, which is the same as

the number of vertices minus 1. The number of leaves in the tree is no more than the number of

requests, which is rp. So if there are y nodes with downward degree of at least x then xy � 2rp and

so y � 2rp=x. Thus the total number of nodes over all trees which receive at least qx requests is no

more than

P
2rp=x = 2R=x.

For x = 1 there can clearly be no more than R logd C requests. The preceding lemma tells us

that nj , the number of abstract nodes that receive between 2
j
and 2

j+1
requests, is at most

2R
2j

except

28

for j = 0. For j = 0, nj will be at most R logd C. Now the probability that machine m assumes

a given one of these nj nodes is 1=C. Since assignments of nodes to machines are independent the

probability that a machinem receivesmore than z of these nodes is at most

�
nj
z

�
(1=C)z � (enj=Cz)

z
.

In order for the right hand side to be as small as 1=N we can set z =
(
nj
C
+

logN

log(C
nj

logN)
). Note that

the latter term will be present only if
C
nj
logN > 2. So z is O(

nj
C
+

logN

log(C
nj

logN)
) with probability at

least 1 � 1=N .

So with probability at least 1 � log(dq)=N the total number of requests received by m due to

internal nodes will be of the order of

log(dq)�1X
j=0

2
j+1

0
@nj
C

+

logN

log(
C
nj
logN)

1
A

=

log(dq)�1X
j=0

2
j+1nj

C
+

log(dq)�1X
j=0

2
j+1 logN

log(
C
nj
logN)

�2� logdC +

log(dq)�1X
j=1

2
j+1 logN

log(
2j

2�
logN)

+ 2

logN

log(
C
n0
logN)

�2� logdC +

log(dq)�1X
j=1

2
j+1 logN

log(
1
�
logN) + j � 1

+ 2 logN

=2� logdC +O

0
@ dq logN

log(
dq

�
logN)

+ logN

1
A

By combining the high probability bounds for internal and leaf nodes, we can say that a machine

gets

�

2 logdC +O

logN

log logN

!!
+O

0
@ dq logN

log

�
dq
�
logN

� + logN

1
A

requests with probability at least 1 �O(log dq
N

). Replacing N by N log(dq) in the above expression

and simplifying we get Theorem 3.2.2.

Tightness of the high probability bound In this section we show that the high probability

bound we have proven for the number of requests received by a machine m is tight.

29

Lemma 3.2.5 There exists a distribution of R requests to pages so that a given machine m gets

(� logdC + � logN
log logN

+
dq logN

log(
dq

�
logN)

) requests with probability at least 1=N .

Proof: To show that the bounds are tight up to constant factors, we need only show distributions

that give rise to each of the terms.

If each of theR requests is made for a di�erent page, then each one gives rise to logd C requests up

their respective trees. So the total number of requests generated will be R logdC and the expected

number of requests received by m is � logdC. This justi�es the presence of the � logdC term in the

bound.

To justify the
dq logN

log(dq
�
logN)

term, we let the adversary divide the R requests equally among R=(d2q)

pages so that each page gets d2q requests. By Cherno� bounds, with probability
(1) all the second

level nodes in a particular one of these pages' trees receive
(dq) requests. The probability that

machine m is present at a given second level node of a particular abstract tree is 1=C. The total

number of second level abstract nodes over all these trees is d �R=(d2q) = R=(dq) So the probability

that m is present at x of these
R
dq

second level nodes is at least

�
R=(dq)

x

�
(1=C)x(1 � 1=C)R=dq�x. To

reduce this probabilility to 1=N , x must be
(
logN

log(dq
�
logN)

). A given second level node of these pages

is expected to receive dq requests. So with probability
(1=N) machine m receives
(
dq logN

log(dq
�
logN)

)

requests.

Finally, for the
� logN
log logN

term, we let the adversary devote all the R requests to one hot page.

Then since there are about C leaf positions, each leaf node gets � requests in expectation. Also,

with probability 1=N , at least one machine will occupy
logN

log logN
of these leaf positions and will receive

O(� logN
log logN

) requests in expectation.

Analysis for k-way Independent h

So far we have assumed that our hash function h is perfectly random. However, in practice, hash

families are k-universal for some small k. We now extend our high probability analysis to functions

h that are chosen at random from a k-universal hash family. We �rst prove the following general

lemma which allows high probability results on a sum of fully independent random variables to be

extended to the case when these random variables are k-way independent.

30

Lemma 3.2.6 Let H =

Pn
i=1Hi, where Hi are random varibles. Let us assume that the following

high probability bound holds on H when these H 0
is are fully independent

H � f(N) with probability at least 1� 1=N

where N is a parameter. Further, f is an increasing function of N , and satis�es the following

property: For any positive integer i,

f(N i
) � i � f(N)

Now let J be the sum of the same random variables, Hi, which are now instead k-way indepen-

dent. Then for k = logN , the following high probability hound holds on J :

J is O(f(N)) with probability at least 1� 1=N

Proof:

For a sum of k-way independent random variables we can apply the Markov inequality to the

kth power of the sum.

Pr[J > t] <
E[Jk

]

tk

t is the high probability bound we wish to prove on J . We will choose t such that the probability

of J exceeding t is at most 1=N .

t > (E[Jk
])
1=k �N1=k

(3.2)

We need a bound for E[Jk
].

Now, Jk
can be expanded into a sum of products where each product term will consist of at

most k of the Hi. But since the Hi are k-way independent we have E[Jk
] = E[Hk

]. To bound

E[Hk
] we will make use of the fact that H exceeds f(N) with probability at most 1=N . This tells

us that H lies between f(N i
) and f(N i+1

) with probability at most 1=N i
. So

31

E[Hk
] � (f(N))

k
+

1X
i=1

(f(N i+1
))
k

N i

Recall that f(N i
) � i � f(N) and k = logN . So,

E[Hk
] � (f(N))

k
+

1X
i=1

((i+ 1) � f(N))
k

N i

� (f(N))
k
(1 +

1X
i=1

(i+ 1)
logN

N i
)

� (f(N))
k
(1 +

1X
i=1

N log(i+1)

N i
)

� (f(N))
k
(1 +

1X
i=1

N log(i+1)�i
)

The sum of the terms N log(i+1)�i
decreases by a factor of at least N1=2

after i � 4. So after i = 4

the sum starts behaving like a geometric sum. Also the largest term in the sum is no more than N .

So the sum is O(N).

Thus we have, (E[Hk
])
1=k

is f(N)(O(N))
1=k

) = O(f(N)). Substituting in equation 3.2 we get

t � O(f(N))

So we have shown that J is O(f(N)) with probability at least 1 � 1=N .

The above lemma can be used to extend the high probability bound proved in Theorem 3.2.2

to the case when logN -way independent hash functions are used.

Corollary 3.2.7 The high probability bound proved in theorem 3.2.2 for the number of requests a

cache gets holds up to constant factors if h is selected from a logN-universal hash family.

Proof: The number of requests received by machine m can be expressed as a weighted sum of

Bernoulli random variables. We associate a bernoulli random variable Ui;p with the event that the

ith abstract node in the tree for page p is mapped to m. We attach a weight wi;p with Ui;p that is

the number of requests received by this node. If h is fully independent then these Ui;p's also are

fully independent. However, if h is k-way independent then so are the Ui;p's. We will now apply

32

lemma 3.2.6. Let f(N) denote the bound proved in theorem 3.2.2. Since f(N) grows logarithmically

in N , it satis�es the condition f(N i
) � i � f(N). So we deduce that the same bound holds up to

constant factors if we h is chosen from a logN -universal hash family.

We will use this idea on all the bounds that we will prove hence forth.

3.2.3 An Improvement in the protocol for better bounds

Observe that the
� logN
log logN

term in the bound proved in Theorem 3.2.2 occurs due to the requests

arising at leaf nodes. Since there are about C leaves, some machine m occurs O(logN
log logN

) times in

the leaf nodes of a tree, with probability at least 1=N . What if we modify the protocol slightly so

that instead of having about C leaf nodes there are about C log(MC) leaf nodes, where M is a

parameter to be set later? It turns out that instead of having C abstract nodes in each tree, if we

have A = C log(MC) abstract nodes we can get rid of the
� logN
log logN

term in the bound by choosing

M = �N . This de�nitely has an impact on the latency of getting a page, but this impact is not

signi�cant because the latency will now be logd(C log(�NC)), which is O(logdC) if N is CO(1)

Theorem 3.2.8 If each abstract tree has A = C log(MC) abstract nodes and if h is chosen uni-

formly at random from the space of function P � [1 : : : A] 7! C then for M = �N with probability at

least 1� 1=N , where N is a parameter, the number of requests a given cache gets is less than

� � 2 logdA+ O

0
@ dq logN

log

�
dq

�
logN

� + logN

1
A

Proof: The proof is similar to that of Theorem 3.2.2. Again we can divide the analysis into two

parts. First let us analyse the number of requests a cache gets due to its presence at at leaf nodes.

Requests to Leaf Nodes

Each page's tree has about A(1�1=d) leaf nodes. Since a machinem has a 1=C chance of occurring at

a particular leaf node, it will occur at O(log(MC)) leaf nodes on an expectation. and by Cherno�

bounds, it will occur at O(log(MC) + logN) leaf positions with a high probability of 1 � 1=N .

Further, since there are at most R requests, m will occur in O(log(MC)) + logN) leaf nodes in all

those requested pages' trees with probability 1�R=N .

33

Given an assignment of machines to leaf nodes so thatm occursO(log(MC)+logN) times in each

tree, the expected number of requestsm gets is R� 1
A
�O(log(MC)+logN) which is O(�(1+ logN

log(MC)
)).

Also, once the assignment of machine to leaf nodes is �xed, the number of requestsm gets is a sum of

independent Bernoulli variables. So by Cherno� bounds m gets O(�(1 + logN
log(MC)

) + logN) requests

with probability 1 � 1=N . So we conclude that m gets O(�(1 + logN
log(MC)

) + logN) requests with

probability at least 1� (R+1)=N . Replacing N by N(R+1), we get a bound of O(�(1+
log(NR)
log(MC)

)+

logN) which holds with probability 1 � 1=N .

As for the number of m gets due to its presence at internal nodes, by doing exactly the same

analysis as in proof of Theorem 3.2.2 we get a bound of 2� logdA+O((dq logN

log(
dq

�
logN)

) + logN) which

holds with probability at least 1� 1=N .

Combining the bounds on requests due to leaf and internal nodes we get a bound of 2� logdA+

O((dq logN

log(dq
�
logN)

) + logN) + O(�(1 + log(NR)

log(MC)
) + logN). By setting M = �N we get the desired

result.

3.2.4 Storage

In this section, we discuss the amount of storage each cache must have in order to make our protocol

work. The amount of storage required at a cache is simply the number of pages for which it receives

more than q requests acting as a particular abstract node. Besides, m needs to keep a counter for

each page that is requested at each abstract node that gets mapped to m. The total number of

counters that will be maintained over all caches is at most the number of requests R. Since the

space required to maintain a counter is negligible in comparison to the space required for a typical

page, we expect the latter to dominate the storage requirements of a cache. The following lemma

bounds the total number of cached pages in the system and per cache.

Lemma 3.2.9 The total number of cached pages, over all machines, is O(logN+
R
q
) with probability

at least 1� 1=N . A given cache m has O(�
q
+ logN) cached pages with probability at least 1� 1=N .

Thus the number of cached copies is proportional to the number of requests R and the constant

of proportionality can be made small by choosing q large. Also � = R=C is the \average" number of

requests per cache. So the �=q term in the expression for the number of cached pages makes sense.

The rest of the section is devoted to proving this lemma. As before, we perform the analysis by

assuming that abstract tree nodes are randomly mapped to caches, and deduce from lemma 3.2.6

34

that the same bound holds when the mapping is done via a k-wise independent hash function, for

k = logN . We show that the total number of cached pages, over all abstract nodes, is O(lnN +
R
q
)

with a high probability of 1 � 1=N . It follows from a standard balls-in-bins argument that with

probability 1�1=N , the number of cached pages at a machine isO(R=(qC)+logN) = O(�=q+logN).

We begin by studying the distribution of weights (storage counts) at the nodes of a particular

abstract tree. Consider a certain abstract tree Tp for a given page p. Suppose there are rp requests

for page p. For an abstract node at level `, the expected number of requests the node receives is

rp=d
`
. This quantity drops by d at every level. Thus, there is a certain level at which the expectation

is at most q=e and at least q=(ed). We call this the threshold level of the given page. We bound the

number of cache copies in two parts: the number above the threshold level, and the number below.

Above the threshold level, we make the pessimistic assumption that every abstract node receives

q requests and therefore caches the page. Since the number of nodes per level is decreasing geomet-

rically, the total number of nodes anywhere above the threshold level is at most d=(d � 1) times

the number of nodes at the level above the threshold. By de�nition, the number of nodes at the

threshold level for page p is at most rpe=q. Thus, the number of nodes above the threshold level is

at most rpe=(qd) and the total in all levels above is at most rpe=(q(d� 1)). Thus, the total number

of copies of all pages cached above their own thresholds is only

X
p

rpe

q(d� 1)

=

Re

q(d� 1)

Our remaining task is to bound the number of cache copies at and below the threshold level. To

do so we use a generating function argument for each level separately. We begin with the threshold

level. Note that we are throwing r = rp balls (requests) at b = d` bins (abstract nodes). A bin

\counts" (causes a cache copy) if it receives at least q requests. Now the probability that j bins

receives at least q balls is at most the probability that some set of j bins receives a total of qj balls,

35

which is at most

b

j

!
r

qj

!
(j=b)

qj
�

bj

j!
(

er

qb
)
qj

�
bj

j!
(

e

q

r

b
)
qj

�
bj

j!
(

e

q

q

e
)
qj

=

bj

j!

Let us consider the generating function

P
�jx

j
, where �j is the probability that exactly j bins get

more than q balls. We upper bounded �j above, so we deduce that this generating function is upper

bounded (term by term) by the generating function for the above sequence, namely exp(bx). From

the fact that at the threshold level, r=b � q=e, we deduce that this function is upper bounded term-

by-term by exp((re=q)x). Now let us consider the probability generating function for the number of

threshold nodes over all pages that receive more than q requests. This is simply the product of the

PGFs for all the pages, and is therefore upper bounded by the product of the generating functions

given above, namely

Y
p

exp((re=q)x) = exp(

P
r(re=q)x)

= exp((Re=q)x)

Next let's consider the level below threshold. This has d times as many nodes, so the expected

number of requests per machine divides by a factor of d. What impact does this have on the above

analysis? Well, we used the expectation in only one place, where we replaced r=b by q=e. At one level

below the threshold, we can replace r=b by q=(ed). We then continue the same analysis as before and

get a bound of exp((Re=(qd))x) on the probability generating function provided q � 2. Similarly,

at two levels below threshold the probability generating function is bounded by exp((Re=(qd2))x),

and so on. So the probability generating function for the total number of abstract nodes over all

pages, below threshold levels, that receive more than q requests is bounded by

36

Y
i�0

exp((Re=(diq))x) = exp(

X
i�0

(Re=(diq))x)

� exp(

Red

((d� 1)q)
x)

It follows that the probability there are more than j cache copies at threshold levels is at most

(Red=((d � 1)q))j

j!

This quantity is 1=N when

j = O(lnN +R=q)

So we have shown that with probability 1�1=N number of cached pages at threshold levels and

below is O(lnN +
R
q
).

37

38

Chapter 4

Consistent Hashing

In this chapter we de�ne a new hashing technique called consistent hashing. We motivate this

technique by reference to a simple scheme for data replication on the Internet. Consider a single

server that has a large number of objects that other clients might want to access. It is natural

to introduce a layer of caches between the clients and the server in order to reduce the load on

the server. In such a scheme, the objects should be distributed across the caches, so that each is

responsible for a roughly equal share. In addition, clients need to know which cache to query for a

speci�c object. The obvious approach is hashing. The server can use a hash function that evenly

distributes the objects across the caches. Clients can use the hash function to discover which cache

stores a object. Consider now what happens when the set of active caching machines changes,

or when each client is aware of a di�erent set of caches. (Such situations are very plausible on

the Internet.) If the distribution was done with a classical hash function (for example, the linear

congruential function x! ax+ b (mod p)), such inconsistencies would be catastrophic. When the

range of the hash function (p in the example) changed, almost every item would be hashed to a

new location. Suddenly, all previously cached data is useless because clients are looking for it in a

di�erent location.

Consistent hashing solves this problem of di�erent \views." We de�ne a view to be the set of

caches of which a particular client is aware. We assume that while views can be inconsistent, they are

substantial: each machine is aware of a constant fraction of the currently operating caches. A client

uses a consistent hash function to map a object to one of the caches in its view. We analyze and

construct hash functions with the following consistency properties. First, there is a \smoothness"

39

property. When a machine is added to or removed from the set of caches, the expected fraction of

objects that must be moved to a new cache is the minimum needed to maintain a balanced load

across the caches. Second, over all the client views, the total number of di�erent caches to which an

object is assigned, which we call \spread", is small. Similarly, over all the client views, the number

of distinct objects assigned to a particular cache, which we call \load", is small.

Consistent hashing therefore solves the problems discussed above. The \spread" property implies

that even in the presence of inconsistent views of the world, references for a given object are directed

only to a small number of caching machines. Distributing a object to this small set of caches will

insure access for all clients, without using a lot of storage. The \load" property implies that no

one cache is assigned an unreasonable number of objects. The \smoothness" property implies that

smooth changes in the set of caching machines are matched by a smooth evolution in the location

of cached objects.

In section 4.1 we de�ne a \ranged hash function" and then precisely de�ne several quantities

that capture di�erent aspects of \consistency". In section 4.2 we construct practical hash functions

which exhibit all four to some extent.

4.1 De�nitions

In this section, we formalize and relate four notions of consistency.

Let D be a domain of items and B be a set of buckets. A view is any subset of the buckets B.

A ranged hash function is a function of the form f : 2
B �D ! B. Such a function speci�es an

assignment of items to buckets for every possible view. That is, f(V; i) is the bucket to which item

i is assigned in view V. (We will use the notation fV(i) in place f(V; i) from now on.) Since items

should only be assigned to usable buckets, we require fV(D) � V for every view V.

A ranged hash family is a family of ranged hash functions. A random ranged hash function is a

function drawn at random from a particular implicitly speci�ed ranged hash family.

In the remainder of this section, we state and relate some reasonable notions of consistency

regarding ranged hash families. Throughout, we use the following notational conventions: F is a

ranged hash family, f is a ranged hash function, V is a view, i is an item, and b is a bucket. In the

following discussion we will focus on a particular subset of items I � D. Let I = jIj be the number

of items in the subset. In this chapter we will assume that C denotes the total number of buckets

40

in B. This is because in chapter 5 the set of caches will be the set of buckets.

Load: De�ne a set of V views as before. For a ranged hash function f and bucket b, the load

�(b) is the quantity
���SV f

�1
V (b)

���, that is, the number of distinct items that get mapped to b, over

the di�erent views.(Note that f�1V (b) is the set of items from I assigned to bucket b in view V.)

The load of a hash function �(f) is the maximum load of a bucket. The load of a hash family,

�(F), is a random variable that is the load of a randomly chosen hash function from the family.

The property says that there are at most �(b) distinct items that at least one person thinks

belongs in the bucket b. Since we would like the mapping of items to buckets to be uniform, a good

consistent hash function should also have low load.

Spread: Let V1 : : :VV be a set of views, altogether containing C distinct buckets and each

individually containing at least C=t buckets. For a ranged hash function and a particular item

i, the spread of i, �(i) is the quantity
���ffVj(i)gVj=1

���, that is the number of distinct buckets i gets
mapped to, over the di�erent views.The spread of a ranged hash function �(f) is the maximum

spread of an item. The spread of a hash family, �(F), is a random variable that is the spread of a

randomly chosen hash function from the family.

The idea behind spread is that there are V people, with di�erent views of a set of buckets. Each

person tries to assign an item i to a bucket using a consistent hash function. The property says

that across the entire group, there are at most �(i) di�erent opinions about which bucket should

contain the item. Clearly, a good consistent hash function should have low spread over all items.

Balance: A ranged hash family is balanced if, given a view containing all the C buckets and a

given item i, and a randomly chosen function selected from the hash family, the probability that i

is mapped to a given bucket in the view is O(1=C).

Monotonicity: A ranged hash function f is monotone if for all views V1 � V2 � B, fV2(i) 2 V1

implies fV1(i) = fV2(i). A ranged hash family is monotone if every ranged hash function in it is.

This property says that if items are initially assigned to a set of buckets V1 and then some new

buckets are added to form V2, then an item may move from an old bucket to a new bucket, but not

from one old bucket to another.

Our main result for consistent hashing is Theorem 4.4.1 which shows the existence of an e�ciently

computable balanced monotonic ranged hash family with logarithmic spread and load.

41

4.2 Construction

We give a construction of a ranged hash family with good properties. We will use two random

functions rB and rI that map items and buckets to real numbers in the range [0; 1] respectively.

Since it is hard to implement completely random functions in practice, we only demand that the

functions rB and rI map points
(log(NCV))-way independently where N is the high probability

parameter. The function rB maps buckets randomly to the unit interval, and rI does the same

for items. fV(i) is de�ned to be the bucket b 2 V that minimizes jrB(b) � rI(i)j. In other words,

i is mapped to the bucket \closest" to i. This will create an interval around each bucket so that

it is responsible for all the items falling in that interval. Since the items and buckets are mapped

randomly, the items will tend to be uniformly distributed among the buckets. Let us consider what

happens when a new bucket is added. Some of the items around this new buckets that were earlier

assigned to other buckets will now move to this new bucket. For reasons that will become apparent,

we actually need to have more than one point in the unit interval associated with each bucket.

Assuming that the number of buckets in the range is always less than C, we will need � log(C)

points for each bucket for some constant �. The easiest way to view this is that each bucket is

replicated � log(C) times, and then rB maps each replicated bucket randomly. Denote the above

described hash family as F . Clearly if there is no lower bound on the size of each view then the

spread and load can be made as large as I by making view sizes equal to one. So we will also assume

that each view consists of at least a certain fraction of the buckets.

4.3 Implementation

In this section we show how the hash family just described can be implemented e�ciently. Specif-

ically, the expected running time for a single hash computation will be O(1). The expectation is

over the choice of hash function. The expected running time for adding or deleting a bucket will

be O(logC) where C is the total number of buckets in all views.

A simple implementation uses a balanced binary search tree to store the points on the unit

interval corresponding to the buckets. To �nd the bucket to which item i is mapped, one simply

needs search for rI(i) in this search tree. This will give the desired bucket that is closest to i on

the real interval. If there are C buckets, then there will be �C log(C) intervals, so the search tree

42

will have depth O(log(C)). Thus, a single hash computation takes O(log(C)) time. The time for

an addition or removal of a bucket is O(log2(C)) since we insert or delete � log(C) points for each

bucket.

The following trick reduces the expected running time of a hash computation to O(1). The idea

is to divide the interval into roughly �C log(C) equal length segments, and to keep a separate search

tree for each segment. Thus, the time to compute the hash function is the time to determine which

interval rI(i) is in, plus the time to lookup the bucket in the corresponding search tree and its two

neighbors. The �rst time is always O(1). Since the expected number of points in each segment is

O(1), the second time is O(1) in expectation.

Another practical limitation is that hash functions do not hash to real numbers, which we have

assumed of rI and rB. However we can think of these random real numbers as a sequence of random

bits and only pick enough random bits to distinguish the point from all other points. It turns out

that with high probability it su�ces to compute only the �rst O(log(I+B) bits of each real number

to distinguish them.

4.4 Analysis

The following theorem proves that the hash family described above has the desired properties of a

consistent hash family.

Theorem 4.4.1 If the functions rB and rI are
(log(NV C))-way independent and if each view

contains at least a 1=t fraction of the buckets then a random function f chosen from the the ranged

hash family F described above has the following properties:

1. F is monotone.

2. Spread: For any item i 2 I, �(i) is O(t log(NV)) with probability greater than 1� 1=N .

3. Load: For any bucket b 2 B, �(b) is O((1 + I=C)t log(NV)) with probability greater than

1� 1=N .

4. Balance: With probability at least 1 � 1=C
(1), for a �xed view V containing C buckets,

Pr[fV(i) = b] � O(1
C
) for i 2 I and b 2 V

43

We will prove the above theorem in the rest of this section. Note that the monotonicity is immediate.

When a new bucket is added, the only items that move are those that are now closest to that bucket's

associated points. No items move between old buckets

The proof of theorem 4.4.1 requires the following technical lemma from [12] that gives upper

bounds on a sum of Bernoulli variables when these variables are only k-way independent.

Lemma 4.4.2 If X is the sum of k-wise independent binary random variables, with � = E[X],

then

(I) for � � 1 and k � b�2�e�1=3c, Pr(j X � � j� ��) � e�bk=2c

(II) for � � 1 and k = b��e�1=3c, Pr(j X � � j� ��) � e�b��=3c

We now proceed to prove the claims of theorem 4.4.1 as a series of Lemmas. We �rst show

the spread and load properties. We begin by looking at a large enough interval on the unit real

interval so that with high probability every view has at least one bucket point in that interval. The

following lemma speci�es the length of such an interval.

Lemma 4.4.3 If we consider at an interval of length 3t log(NV)

C� log(C)
on the unit real interval then with

probability at least 1 � 1=N every view has at least one bucket point in that interval.

Proof: Let Xi be the random variable denoting the number of points from buckets in view Vi in an

interval of length l. There are at least M = C� log(C)=t bucket points associated with each view.

We can assume that there are exactly M points for each view since this is the worst case, so we

have E[Xi] = Ml. We will choose the value of l such that the probability of Xi being 0 is at most

1=NV . If the points are k = 2 log(NV)-way independent and if Ml = 3t log(NV), then there exists

a � < 1 such that conditions of lemma 4.4.2 apply. So we have

Pr[Xi = 0] � Pr[jXi �Mlj > �Ml]

� e�k=2

=

1

NV

So we choose

l =
3t log(NV)

C� log(C)

44

From the union bound we get:

Pr[Some Xi = 0] �
VX
i=1

Pr[Xi = 0] = V
1

NV
=

1

N

So we have shown that in every view, some bucket falls within an interval of length l.

Lemma 4.4.4 Spread: For any item i 2 I, �(i) is O(t log(NV)) with probability 1 � 1=N .

Proof:

Fix an i 2 I. We know from lemma 4.4.3 that if we consider an interval of length l =
3t log(NV)
C� log(C)

centered at itm then with probability at least 1�1=N every view will have at least one bucket point in

that interval. So in any view i gets mapped only to a bucket in that interval. We can get a bound on

�(i) by bounding the number of bucket points that fall in that interval.Let X be a random variable

denoting the number of points in this interval of length l around rI(i) coming from the union of

all the views. Since there are C� log(C) points in total, we have E[X] = Cl� log(C) = 3t log(NV).

Also if the mapping is 2 log(NV)-way independent, we can �nd a � � 1 so that lemma 4.4.2 applies.

It follows that.

Pr[j�(i)� 3t log(NV)j > 3t log(NV)]

� e�k=2

=

1

NV

So we have proved that �(i) is O(t log(NV)) with probability at least 1 � 1=N � 1=NV . Since

this bound holds for all N , we can replace N by N(1+1=V), which gives us the desired result.

Lemma 4.4.5 Load: For a bucket b 2 B, �(b) is O((1 + I=C)t log(NV)) with probability 1� 1=N .

Proof: For each bucket b there are � log(C) points on the unit interval. An item is assigned to b

only if it is closest to one of these points among all the bucket points. Around each of the � log(C)

points associated with b we will consider an interval containing at least one other point associated

with some other bucket, on either side. This gives as a collection of � log(C) intervals and any item

that maps to b must fall in this collection of intervals. We will �rst bound the total length of this

collection of intervals and then bound the number of items that fall in any of them. Thus we get a

45

bound on the load of b.

Fix one of the � log(C) points associated with b, call this point y. We know from lemma 4.4.3

that if we look at an interval of length l =
3t log(NV)

C� log(C)
, with its left end on y, we have with probability

at least 1 � 1=N that in every view there is a bucket in that interval. Similarly, if we look at an

interval of the same length with its right end on y, we have with probability at least 1� 1=N that

in every view there is a bucket in that interval. Thus, with probability at least 1 � 2=N we have

a bucket within distance l on the right of y, and to the left of y. Assuming this event occurs, y is

\responsible" for no more than a segment of length l of the interval. That is, items mapped into

the interval of length l centered at y will be closest to the point y and therefore will be placed in

the bucket b. If y is closer than l to one of the endpoints of the unit interval, then y can only be

responsible for less than length l of the interval. It follows from the union bound that in all views

the � log(C) points associated with b are responsible together for an interval of length no more than

� log(C)l = 3t log(NV)=C with probability at least 1� 2� logC=N . Call this event A.

Assuming the event A has occurred, then the load of b can be bounded by the number of items

that are mapped into a set of measure 3t log(NV)=C in the interval. As in the proof of spread, we

de�ne X to be a random variable equal to the number of items in the interval. Since there are I

items we have E[X] = I 3t log(NV)

C
. We will now apply lemma 4.4.2. We will consider two two cases,

I � C and, I � C, applying part (I) of lemma 4.4.2 in the former and part (II) in the latter case.

In either case it follows that if k =
(log(NV)) then X is O((1 + I=C)t log(NV)) with probability

at least 1� 1=(NV).

So with probability at least 1�2� logC=N�1=NV , the load of b is O((1+I=C)t log(NV). Since

this bound holds for all N we can replace N by O(N� logC), thus giving the desired result.

The proof of the above lemma implies the following corrollory which is useful in the rest of the

paper.

Corollary 4.4.6 With probability at least 1�1=N the mapping of buckets will be such that Pr[fV(i) =

b in any view V] = O(t log(NV))

C
for i 2 I and b 2 B.

Proof: We saw in the proof of lemma 4.4.5 that the total length of intervals for which a bucket

b is responsible is 3t log(NV)=C with probability at least 1 � 2� logC=N . Since a given item i is

mapped to a random point on the unit interval, it has a 3t log(NV)=C chance of being assigned to

bucket b. Replacing N by N2� logC proves the corrollary.

46

It remains to show the balance property of the hash family. Note that the probability of an item

getting assigned to a particular bucket is exactly the total length of the parts of the unit interval

that bucket is responsible for. The following lemma bounds the section of the unit interval that

each bucket is assigned responsibility for.

Lemma 4.4.7 Assume � log(C) points are mapped to the unit interval
(log(NV C))-way indepen-

dently for each of C buckets. For a bucket b denote by length(b) the measure of the set of points

that are closer to one of the y points than any other bucket point. Then with probability at least

1� 1=N , length(b) is O(1
C

log(NC)

logC
).

Proof:

Let b be a bucket and x be a point on the unit interval. If x lies to the right of a point

associated with b and is closer to that point than to any point of any other bucket, then say that b

is right-responsible for x.

The main result is that the probability a single bucket b is right-responsible for more than a

O(1
C

log(NC)

logC
) fraction of the unit interval is at most 1=(NC). A union bound then implies that none

of the C buckets is right-responsible for more than O(1
C

log(NC)

logC
) fraction of the unit interval, with

a high probability of 1 � 1=N . By symmetry, no bucket is \two-sided responsible" for more than

twice of what it is right-responsible, which is still O(1
C

log(NC)

logC
).

To show the main result, begin by �xing a bucket b. The portion of the unit interval for which

b is right-responsible must consist of �logC non-overlapping intervals in [0; 1], each bounded on the

left by one of b's points. Suppose we shrink all intervals by moving the right endpoints leftward,

until the length of every interval is a multiple of � = 4=(C logC). Since there are � logC of these

intervals and each shrinks by at most �, the decrease in the total length of all intervals is at most
4�
C
.

So if the total length of these intervals after shrinking is a logC � 1
�C logC

(a will be set later), then the

total length before shrinking is at most
4(a+�)

C
. This implies that if bucket b is right-responsible for

a
4(a+�)

C
fraction of the unit interval, then b must be right-responsible for every point in a collection

of non-overlapping intervals, each bounded on the left with one of b's points, each a multiple of � in

length, and with total length
4a
C
. Now given a collection of intervals of total length

4a
C
we will bound

the probability that these intervals do not get any point associated with some other bucket. The

expected number of the �C logC points falling in this collection of intervals is 4a� logC. So, if rB

is k = 4a� logC-way independent, and if X denotes the number of points falling in this collection

47

of intervals, then from Lemma 4.4.2

Pr[X = 0] � Pr[jX � 4a� logCj � 4a� logC]

� e�k=2

� e�4a� logC

The number of collections of � logC intervals with total length
4a
C
and with all lengths multiples

of � is exactly the number of ways to partition a logC into � logC integral parts, which is:

a logC + � logC

� logC

!
�

e(a+ �) logC

� logC

!� logC

� (e(1 + �=a))
� logC

� e(�+a) logC

By the union bound, the probability that any of the above collections of intervals contains no

point associated with other buckets is at most e�2a� logCe(�+a) logC = e�(2a����a) logC . We will choose

a so that it is at most 1=(NC). which gives

2a�� �� a =
log(NC)

logC

Also we had assumed that k = 4a� logC and we wish this to be O(log(NC)). This gives

4a� = O(
log(NC)

logC
)

Since � is a constant, we can set b so that both the above condition are satis�ed. Simply set

a = O(log(NC)

logC
). This proves that with probability at least 1� 1=(NC) the total length assigned to

a bucket is at most
4(a+�)

C
= O(1

C

log(NC)

logC
) if rB is
(log(NC))-way independent. Now since there

are C buckets the same bound holds for all buckets with probability 1� 1=N .

48

Lemma 4.4.8 For a �xed set of buckets V, with probability at least 1 � 1=N , Pr[fV(i) = b] �

O(1
C

log(NC)

logC
) for i 2 I and b 2 V, and, conditioned on the choice of rB, the assignments of items to

buckets are
(log(NC))-way independent.

Proof: Fix i 2 I and b 2 V. Lemma 4.4.7 says that with probability 1� 1=N , the � log(C) points

associated with b are responsible for no more than O
�
1
C

log(NC)
logC

�
of the interval. The probability

that i is mapped to b is equal to this interval length. The �rst statement of the lemma follows.

Since the function rI is assumed to map items to points log(NC)-way independently, once we

have chosen rB, the items are assigned log(C)-way independently to intervals, and thus to buckets.

Setting N = CO(1)
in the previous lemma gives us the following desired balance property.

Corollary 4.4.9 For a �xed set of buckets V, with probability at least 1� 1=CO(1), Pr[fV(i) = b] �

O(1
C
) for i 2 I and b 2 V, and, conditioned on the choice of rB, the assignments of items to buckets

are
(log(NC))-way independent.

49

50

Chapter 5

Basic Solution in an Inconsistent World

In this chapter we apply the techniques developed in the last section to the simple hot spot protocol

developed in Chapter 3. We now relax the assumption that clients know about all of the caches.

We assume only that each machine knows about a 1=t fraction of the caches chosen by an adversary.

There is no di�erence in the protocol, except that the mapping h is a consistent hash function. This

change will not a�ect latency. Therefore, we only analyze the e�ects on swamping and storage. The

basic properties of consistent hashing are crucial in showing that the protocol still works well. In

particular, the blowup in the number of requests and storage is proportional to the spread and load

of the hash function.

5.0.1 Swamping

Theorem 5.0.10 If h is implemented using the
(log(NRC))-way independent consistent hash

function of Theorem 4.4.1 and if each view consists of C 0
= C=t caches then with probability at

least 1� 1=N a given cache gets no more than O((2�t2 logdC
0
log(NR))+ (dqt log(NR)+ �t) logN)

requests.

Proof: We look at the di�erent trees of caches for di�erent views for one page, p. The number of

di�erent views is at most the total number of requests R. Let C 0
= C=t denote the number of caches

in each tree. Under each view the nodes of the abstract tree get mapped to caches di�erently. We

overlay these di�erent trees, obtained by mapping abstract nodes to caches in each view, on one

another to get a new tree where in each node, there is a set of caches. Due to the spread property of

the consistent hash function at most � = O(t log(NR)) caches appear at any node in this combined

51

tree with high probability. In fact since there are only R requests, this will be true for the nodes of

all the R trees for the requested pages. If Ep;j denotes the event that m appears in the jth node of

the combined tree for page p then we know from Corollary 4.4.6 that the probability of this event

is O(�=C), where � is the load which is O(t log(NR)) with high probability. We condition on the

event that � and � are O(t log(NR)) which happens with high probability.

Since a cache in a node sends out at most q requests, each node in the combined tree sends out

at most q0 = q� requests. We now adapt the proof of Theorem 3.2.2 to this case. In Theorem 3.2.2

where every machine was aware of all the C caches, an abstract node was assigned to any given

machine with probability 1=C. We now assign an abstract node to a given machine with probability

O(�=C). So we have a scenario with C 0
= C=t caches where each abstract node sends out up to

q0 requests to its parent and m occurs at each abstract node independently and with probability

O(�=C). The rest of the proof is very similar to that of Theorem 3.2.2.

We analyze the number of requests m gets in the new scenario. As before we split this analysis

into two parts. First we analyze the hits on a cache due to its presence in the leaf nodes of the trees

and then analyze the hits due to its presence at the internal nodes and then add them up.

Hits at Leaf Nodes

Each tree has C 0
(1 � 1=d) leaves. Since m is assigned to a leaf with probability O(�=C), it is

expected to occur in O(t�) = O(logC) leaf nodes per tree. In fact by Cherno� bounds it occurs

in O(logC + logN) leaf nodes in all trees with probability at least 1 � 1=N . Now given such an

assignment of m to leaf nodes, m will get O(�t(logC+logN) requests out of the total of R requests,

on an expectation and in fact with a high probability of 1� 1=N . So we can conclude that m gets

O(�� + �t logN) requests with a probability of at least 1 � 1=N .

Hits at Internal Nodes

Again as proof of Theorem 3.2.2 we think of the protocol as �rst running on the abstract trees.

Now no abstract internal node gets more than dq0 requests because each child node gives out at

most q0 requests for a page. Consider any arbitrary arrangement of paths for all the R requests

up their respective trees. An abstract node can receive at most dq0 requests. Let nj denote the

number of abstract nodes that receive between 2
j
and 2

j+1
requests where 0 � j � log(dq0)�1. Let

52

�0 = �t denote the ratio of number of browsers to the number of caches per view. Since each of the

R = �0C 0
requests gives rise to at most logd C

0
requests up the trees the total number of requests is

no more than �0C 0
logdC

0
. So,

log(dq0)�1X
j=0

2
jnj � �0C 0

logdC
0

(5.1)

As in lemma 3.2.4 we prove that nj �
2�0C0

2j
for j > 0 and for j = 0, nj is at most �0C 0

logdC
0
.

Now each of these nj abstract nodes is assigned to m with probability of �(�=C). So as before we

show that with probability at least 1�1=N , m is assigned O(
nj�

C0
+

logN

log(C0

nj�
logN)

) of these nj abstract

nodes.

So with probability at least 1� (log(dq0))=N the total number of requests received by m due to

internal nodes will be of the order of

log(dq0)�1X
j=0

2
j+1

(

nj�

C 0
+

logN

log(
C0

nj�
logN)

)

Using Equation 5.1 and the bound for nj , the above expression simpli�es to be at mostO(�(2�0 logd C
0
)+

dq0 logN). So we have proved that with probability at least 1� (log(dq0))=N the number of requests

m gets acting as internal nodes is no more than O(�(2�0 logdC
0
) + dq0 logN)) requests. Replacing

N by N log(dq0) we get that the same bound holds with probability 1� 1=N .

Combining the high probability bounds for internal and leaf nodes tells us that with probability

1� 1=N , m gets O(�(2�0 logd C
0
) + (dq0 + �0) logN)) requests.

However so far we had assumed that the Ep;j's are fully independent whereas actually they are

(logNR)-way independent. To take this into account we will use lemma 4.4.2, which tells that

the same bound holds even if the Ep;j's are
(logNR)-way independent. Now since � and � are

also O(t logNR) with probability 1 � 1=N theorem 5.0.10 follows.

5.0.2 Storage

Using techniques similar to those in proof of theorem 5.0.10 we get the following lemma.

53

Lemma 5.0.11 The total number of cached pages, over all machines is O(�(logR logdC+
R
q
)) with

probability of 1�1=N . A given cache m has O(�(�=q+logN)) cached copies with a high probability

of 1 � 1=N .

Proof:

Again as in the proof of Theorem 5.0.10 we overlay the trees of caches for di�erent views of one

page p. Due to the spread property of the consistent hash function at most � = O(t log(NR)) caches

appear at any node in this combined tree with high probability. Again if Ep;j denotes the event that

m appears in the jth node of the combined tree for page p then we know from Corollary 4.4.6 that

the probability of this event is O(�=C), where � is the load. So we have a scenario with C 0
= C=t

caches and where m occurs at each abstract node independently and with probability �(�=C). The

rest of the proof is very similar to that of Theorem 3.2.9.

As before we de�ne the threshold level of a page as the level in the combined tree where each

abstract node is expected to receive between q=e and q=(ed). We bound the number of cached copies

over all pages above the threshold level and use the generating function argument to bound number

of copies at and below the threshold level. Using exactly the same analysis as before we get that the

total number of abstract nodes over all pages receiving more than q requests is O(logN logd C +
R
q

with a probability at least 1 � 1=N . However, since in in this combined tree each abstract node

contains � machines, the total number of cached copies of pages will get multiplied by a factor of

�, giving a bound of O(�(logN logdC +
R
q
)).

Now let us bound the number of cached copies in a machine m. These O(logN logd C +
R
q
)

abstract nodes are assigned to m with a probability of O(�=C). So by Cherno� bounds, with

high probability of 1 � 1=N , m gets O(�(logN +
�

q
)) of these abstract nodes. Again we can use

lemma 4.4.2 to get the same bound when h is logN -way independent.

54

Chapter 6

Ultrametric Distances

The assumption that every pair of machines can communicate with equal ease is obviously unreal-

istic; we adapt our protocol to a more realistic model in this section.

Recall that a request by machine m1 for page p from machine m2 has three stages: m1 asks for

the page from m2, m2 obtains the page, and m2 returns the page to m1. The latency of the page

request is de�ned to be the duration of all three stages. The duration of the �rst and third stages

is a function of the ease of communication between m1 and m2.

Modeling the ease of communication between machines on the Internet is tricky. The Internet

communications protocol, TCP/IP, gives no formal guarantee on the time to pass a message between

two machines. Empirically, this time can vary considerably due to network congestion and changes

in routing hardware. However, by compiling statistics on past communications, one may obtain a

reasonably accurate \typical" time to pass a packet between machines.

We assume that such typical communication times are available. In particular, if machine m1

requests a page from machine m2, then let the duration of the �rst and third stages of the page

request be given by �(m1;m2). Furthermore, we assume that machine m1 knows �(m1;m2) for any

machinem2. But it may not know the distance �(m2;m3) between two other machines, say m2 and

m3. Thus the storage required for this information is linear in the number of machines.

The latency of a page request can now be expressed in terms of �. For example, if a browser b

requests a page from a cache c and the cache forwards the request to the server s, then the latency

of the page request is �(b; c) + �(c; s).

We extend our protocol to a restricted class of functions �. In particular, we assume that � is

55

an ultrametric. Formally, an ultrametric is a metric which obeys a more strict form of the triangle

inequality: �(a; c) � max(�(a; b); �(b; c)).

The ultrametric is a natural model of internet distances, since it essentially captures the hierar-

chical nature of the internet topology, under which, for example, all machines in a given university

are equidistant, but all of them are farther away from another university, and stil farther from

another continent. The logical point-to-point connectivity is established atop a physical network,

and it is generally the case that the latency between two sites is determined by the \highest level"

physical communication link that must be traversed on the path between them. Indeed, another

de�nition of an ultrametric is as a hierarchical clustering of the points. The distance between two

points depends only on which is the smallest cluster containing both. Thus, for example, the dis-

tance between any two machines at the same university is less than the distance between any two

machines at di�erent universities in the same country.

In addition to modeling communication latency, ultrametrics are also good models of the through-

put between two machines. For large pages, maximizing throughput is more important than mini-

mizing latency. Throughput is typically determined by the maximum-congestion (physical) commu-

nication link on the path implementing the virtual point-to-point connection between two machines

and is therefore an ultrametric.

6.1 Protocol

The only modi�cation we make to the protocol is the following: When a browser needs a page p it

only uses the caches that are no further away than the server for the page. The size of the abstract

tree is now equal the the number of caches within the distance to the server. By doing this, we

insure that our path to the server does not contain any caches that are unnecessarily far away in

the metric. The mapping is done using a consistent hash function, which is the vital element of the

solution.

Clearly, requiring that browsers use \nearby" caches can cause swamping if there is only one

cache and server near many browsers. Thus, in order to avoid cases of degenerate ultrametrics where

there are browsers that are not close to any cache, and where there are clusters in the ultrametric

without any caches in them, we restrict the set of ultrametrics that may be presented to the protocol.

The restriction is that in any cluster the ratio of the number of caches to the number of browsers

56

may not fall below 1=� (recall that R = �C).For the sake of analysis this restriction is equivalent to

imagining that the requests originate at the caches where each cache is allowed to make at most �

requests. This restriction makes sense in the real world where caches are likely to be evenly spread

out over the Internet. It is also necessary, as it is clear that a large number of browsers clustered

around one cache can be forced to swamp that cache if we use our modi�ed protocol.

6.2 Analysis

It is clear from the protocol and the de�nition of an ultrametric that the latency will be no more

than the depth of the tree, logdC, times the latency between the browser and the server. So once

again we need only look at swamping and storage. The intuition is that inside each cluster the

bounds we proved for the unit distance model apply. The monotone property on consistent hashing

will allow us to restrict our analysis to log(C) clusters. Thus, summing over these clusters we have

only a log(C) blowup in the bound.

6.2.1 Swamping

Theorem 6.2.1 Let � be an ultrametric. Suppose that each browser makes at most one request.

Then in the protocol above, an arbitrary cache gets no more than logC(�(8 logd C +O(logN
log logN

)) +

O(dq logN

log(dq
�
logN)

)) requests with probability at least 1 � 1=N where N is a parameter.

Proof: We �x an arbitrary cache m and prove the theorem for m. We consider the clustering of

machines according to their distance from m. Denote the resulting clusters by C1 � C2 � : : : � CS.

Consider a request machinem receives. Sincem is on the request path, it must be in the smallest

cluster, Ci, containing both the browser that made the request and the server of the requested page.

Thus for every request that m receives there is an associated cluster on which the caching protocol

was run. Let ri denote the number of requests that m receives that are associated with Ci. Let us

now �nd the maximum number of browsers that could contribute to ri. A browser that is outside

Ci cannot possibly contribute to because it would use a cluster bigger than Ci. So by de�nition of

ri any request made by such a browser cannot contribute to ri.

Let us now try to bound ri. Let Ci denote the number of caches in the cluster Ci. Since we lower

bounded the density of the caches, Ci is at least jCij=�. We note that ri is simply the number of

57

requests m receives due to at most Ci browsers playing the caching protocol on at least Ci caches.

Therefore from theorem 3.2.2 we deduce that ri is less than �(2 logd C+O(
logN

log logN
))+O(dq logN

log(
dq

�
logN)

) =

� requests with probability at least 1=N
(1)
.

Thus, we conclude that the probability that m receives more than S� requests (where S is the

number of clusters around m) is less than 1=N
(1)
since

Pr[m receives more than S� requests from

[
Ci]

�
SX
i=1

Pr[x receives more than � requests from Ci]

� S=N
(1) � 1=N
(1):

Unfortunately, the number of clusters around m could be as large as as the number of caches, C, so

the above bound is not very good. The following Lemma will improve the bound by showing that

consecutive clusters that do not grow too fast can be counted as a single cluster.

Lemma 6.2.2 If there are a set of consecutive clusters Ci; Ci+1; : : : ; Ci+j such that
Ci+j
Ci

� 2, thenPi+j
j=i ri is less than 4� with probability at least 1� 1=N
(1).

Proof: Let rj be the requests received by m as part of cluster Cj in the protocol with Cj nodes.

Since
Ci+j
Ci

� 2, observe that for a given page the di�erence between the structure of the smallest

tree (built using caches in Ci) and the largest tree (built using caches in Ci+j) is only in adding leaf

positions to the tree that do not overlap. The basic idea of the proof is to modify the protocol

for the given clusters to obtain a protocol that is worse for m than the real protocol, and to apply

Theorem 3.2.2 to the modi�ed protocol. Speci�cally we show that if we use the smallest set of

caches (those in Ci for all of the page requests using any of the clusters Ci through Ci+j for the

caching protocol then m will only get more requests than in the real protocol.

Observe that due to the monotone property of the consistent hashing scheme described earlier,

when we decrease the number of caches �lling a tree, only the positions previously �lled by deleted

caches change, and they are �lled by one of the remaining caches. Since m is not removed from the

set of caches, the number of times that m appears as an internal node of the tree can only go up.

The original places that m appeared remain unchanged. Thus by reducing the number of caches

m can only receive more requests. Let us now look at the number of requests a cache gets due to

its presence in internal nodes and due to its presence in the leaf nodes. Due to its presence in the

58

internal nodes a cache can get at most the number of requests it would have got if everyone had

used trees of size Ci, which is at most 2� by Theorem 3.2.2. Due to its presence in leaf nodes a

cache could get at most the number of requests it would have got if everyone had used trees of size

Ci+j which is at most 2� again. So the total number of requests a cache gets is at most 4�.

The previous lemma implies that when summing over clusters to compute the bound on the

number of requests made to m we need only sum over clusters that are at least twice the size of the

previous one. Thus the sum is only made over logC terms and the bound that we achieve is logC

times the previous bound.

6.2.2 Storage

Using techniques similar to those in proof of Theorem 6.2.1 we get the following lemma.

Lemma 6.2.3 The total number of cached pages, over all machines is R logd C
q

. A given cache m

has O(logC(�
q
logdC + d logN)) cached pages with probability 1 � 1=N .

Proof: It is easy to prove the bound of
R logd C

q
on the total number of cached pages over all

machines. Since each request gives rise to at most logdC up its tree, the total number of requests

received by the caches is at most R logd C. Now an abstract nodes caches a page only if it receives

at least q requests for it. So clearly there can be no more than
R logd C

q
cached copies over all caches.

To bound the number of cached pages in single machine we use the bound on number of requests

proved in theorem 6.2.1. The bound stated in theorem 6.2.1 is less than O(logC(� logdC+dq logN)).

Since m must receive at least q requests for a page before it is cached, the number of cached pages

is at most the number of requests divided by q, which gives us the desired result.

59

60

Chapter 7

Fault Tolerance

Basically, as in Plaxton/Rajaraman, the fact that our protocol uses random short paths to the

server makes it fault tolerant. We consider a model in which an adversary designates that some of

the caching machines may be down, that is, ignore all attempts at communication. Remember that

our adversary does not get to see our random bits, and thus cannot simply designate all machines

at the top of a tree to be down. The only restriction is that a speci�ed fraction s of the machines

in every view must be up. Under our protocol, no preemptive caching of pages is done. Thus,

if a server goes down, all pages that it has not distributed become inaccessible to any algorithm.

This problem can be eliminated using standard techniques, such as Rabin's Information Dispersal

Algorithm [11]. So we ignore server faults.

In this chapter, we analyze a minor modi�cation of the protocol and show that it ensures that

any page request is satis�ed with high probability.

Observe that the analysis of whether a request is satis�ed is quite simple to make: we look at

that path of machines that the request travels through, and check if any of them is down. If none

are, then the request gets through.

We say that a path up the tree is clean if it does not encounter any dead caches. The following

lemma ensures that a random request path has a good chance of being clean.

Lemma 7.0.4 If d � 2 logC and s � 1 � 1= logdC then with probability at least 1 �O(logdC=C)

more than a 1=2e2 fraction of the paths up the tree are clean.

Proof: We will start from the server and count the fraction of paths that remain clean all the way

up to the leaves. Let f = 1 � s denote the fraction of dead machines. We will say that a node

61

is clean if the path from the node to the root is clean. The level just below the server contains

d � 2 logC caches. Also the probability of an arbitrary node being dead is f � 1= logdC. The

expected number of dead caches in the second level is df . So 1=2 the nodes at depth 1 are clean.

Also by Cherno� bounds the probability that more than d=2 caches are dead is less than 1=C. Next

we inductively argue that with probability at least 1 � i=C more than
1
2
(1 � 2f)i�1 fraction of the

nodes at depth i are clean. We have already proved it for i = 1. Now at depth i + 1 the number

of clean paths up to depth i extend to give at least
1
2
di+1(1� 2f)i�1 paths. Since i is less than the

depth of the tree, which is less than 1=f , the fraction of nodes at depth i+1 that have clean paths

up to depth i is at least di+1=2e2. Of these an f fraction is expected to have dead caches at depth

i. For i > 1 by Cherno� bounds the probability that more than 2f fraction encounter dead caches

at depth i is at most 1=C. This completes the inductive step. Now by setting i = logdC we get

that with probability at least (logdC)=C more than 1=2e2 fraction of the paths are clean.

The modi�cation to the protocol is therefore quite simple. Choose a parameter t, and simulta-

neously send t requests for the page. A logarithmic number of requests is su�cient to give a high

probability that one of the requests goes through. This will clearly increase the total load on the

network by only an O(log n) factor. In practice, instead of sending all these requests simultaneously

a browser could wait for a certain time interval before sending the next request.

Note that since communication is a chancy thing on the Internet, failure to get a quick response

from a machine is not a particularly good indication that it is down. Thus, we focused on the

tolerance of faults, and not on their detection. However, given some way to decide that a machine

is down, our consistent hash functions make it trivial to reassign the work to other machines. If a

you decide a machine is down, remove it from your view.

62

Chapter 8

Conclusion

This work has focused on one particular caching problem|that of handling read requests on the

Web. We believe the ideas have broader applicability. In particular, consistent hashing may be a

useful tool in a network where di�erent users have di�erent views of the network and need to agree

on the location of a resource without having to communicate with each other.

It remains open how to deal with time when modeling the Internet, because the communication

protocols have no guarantees regarding time of delivery. Indeed, at the packet level, there are not

even guarantees regarding eventual delivery. This suggests modeling the Internet as some kind of

distributed system. Clearly, in a model in which there are no guarantees regarding delivery times,

the best one can hope to prove is some of the classical liveness and safety properties underlying

distributed algorithms. It is not clear what one can prove about caching and swamping in such

a model. We think that there is signi�cant research to be done on the proper way to model this

aspect of the Internet.

We also believe that interesting open questions remain regarding the method of consistent hash-

ing that we present in this paper. Among them are the following. Is there a k-universal consistent

hash function that can be evaluated e�ciently?? What tradeo�s can be achieved between spread

and load? Are there some kind of \perfect" consistent hash functions that can be constructed de-

terministically with the same spread and load bounds we give? On what other theoretical problems

can consistent hashing give us a handle?

63

64

Bibliography

[1] Anawat Chankhunthod, Peter Danzig, Chuck Neerdaels, Michael Schwartz and Kurt Worrell. A Hier-

archical Internet Object Cache. In USENIX Proceedings, 1996.

[2] Azer Bestavros. Speculative Data Dissemination and Service.

[3] Robert Devine. Design and Implementation of DDH: A Distributed Dynamic Hashing Algorithm. In

Proceedings of 4th International Conference on Foundations of Data Organizations and Algorithms,

1993.

[4] M. J. Feeley, W. E. Morgan, F. P. Pighin, A. R. Karlin, H. M. Levy and C. A. Thekkath. Implementing

Global Memory Management in a Workstation Cluster. In Proceedings of the 15th ACM Symposium

on Operating Systems Principles, 1995.

[5] Sally Floyd, Van Jacobson, Steen McCanne, Ching-Gung Liu and Lixia Zhang. A Reliable Multicast

Framework for Light-weight Sessions and Application Level Framing, SIGCOMM' 95

[6] Witold Litwin, Marie-Anne Neimat and Donovan A. Schneider. LH�-A Scalable, Distributed Data

Structure. ACM Transactions on Database Systems, Dec. 1996

[7] Radhika Malpani, Jacob Lorch and David Berger. MakingWorld Wide Web Caching Servers Cooperate.

In Proceedings of World Wide Web Conference, 1996.

[8] M. Naor and A. Wool. The load, capacity, and availability of quorum systems. In Proceedings of the

35th IEEE Symposium on Foundations of Computer Science, pages 214-225, November 1994.

[9] D. Peleg and A. Wool. The availability of quorum systems. Information and Computation 123(2):210-

233, 1995.

[10] Greg Plaxton and Rajmohan Rajaraman. Fast Fault-Tolerant Concurrent Access to Shared Objects.

In Proceedings of 37th IEEE Symposium on Foundations of Computer Science, 1996.

65

[11] M. O. Rabin. E�cient dispersal of Information for Security, Load Balancing, and Fault Tolerance.

Journal of the ACM 36:335{348, 1989.

[12] Jeanette Schmidt, Alan Siegel and Aravind Srinivasan. Cherno�-Hoe�ding Bounds for Applications

with Limited Independence. In Proc. 4th ACS-SIAM Symposium on Discrete Algorithms, 1993.

[13] Venkata N. Padmanabhan and Je�rey C. Mogul. Using Predictive Prefetching to Improve World Wide

Web Latency. In ACM SIGCOMM'95.

[14] Ari Luitonen and Kevin Altis. World-wide web proxies. In Computer Networks and ISDN systems.

First International Conference on the World-Wide Web, Elsevier Science BV, 1994. available from

`http://www.cern.ch/PapersWWW94/luotonen.ps'

[15] R. Ravi. Approximating the minimum broadcast time. In FOCS'94.

[16] M. Grigni and D. Peleg. Tight bounds on minimun broadcast networks. In SIAM Journal on Discrete

Math., May 1991, pp. 207-222.

[17] James S. Gwetzman and Margo Seltzer. The Case for Geographical Push-Caching. Personal Commu-

nication.

[18] M. Palmer and S. Zdonik, Fido: A Cache that Learns to Fetch. InProceedings of the 1991 International

Conference on Very Large Databases, September 1991.

[19] K. Salem. Adaptive Prefetching for Disk Bu�ers. CESDIS, Goddard Space Flight Center, TR-91-64,

January 1991.

[20] Je�rey Scott Vitter and P. Krishnan. Optimal Prefetching via Data Compression. FOCS 91.

[21] Stephen E. Deering and David R. Cheriton. Multicast Routing in Datagram Internetworks and Ex-

tended LANs. In ACM Transactions on Computer Systems, May 1990.

[22] James Gwetzman and Margo Seltzer. World-Wide Web Cache Consistency. Personal Communication.

66

