Invited paper: 17th Conference on Foundations of Software Technology and Theoretical
Computer Science, Kharagpur, India, 1997.

Algorithmic issues in coding theory

Madhu Sudan

October 9, 1997

Abstract

The goal of this article is to provide a gentle introduction to the basic def-
initions, goals and constructions in coding theory. In particular we focus on
the algorithmic tasks tackled by the theory. We describe some of the classical
algebraic constructions of error-correcting codes including the Hamming code,
the Hadamard code and the Reed Solomon code. We describe simple proofs
of their error-correction properties. We also describe simple and efficient algo-
rithms for decoding these codes. It is our aim that a computer scientist with
just a basic knowledge of linear algebra and modern algebra should be able to
understand every proof given here. We also describe some recent developments
and some salient open problems.

1 Introduction

Error-correcting codes are combinatorial structures that allow for the transmis-
sion of information over a noisy channel and the recovery of the information
without any loss at the receiving end. Error-correcting codes come in two basic
formats. (1) The “block error-correcting code”: Here the information is broken
up into small pieces. Each piece contains a fixed finite amount of information.
The encoding method is applied to each piece individually (independently). The
resulting encoded pieces (or blocks) are sent over the noisy channel. (2) The
“convolutional codes”: Here the information is viewed as a potentially infinite
stream of bits and the encoding method is structured so as to handle an infinite
stream. This survey will be restricted to the coverage of some standard block
error-correcting codes.

Formally a block error-correcting code may be specified by an encoding func-
tion C'. The input to C' is a message m, which is a k-letter string over some al-
phabet X (typically ¥ = {0, 1} but we will cover more general codes as well). &

maps m into a longer n-letter string over the same alphabet!. The mapped string
is referred to as a codeword. The basic idea is that in order to send the message
m over to the receiver, we transmit instead the codeword C'(m). By the time this
message reaches the destination it will be corrupted, i.e., a few letters in C'(m)
would have changed. Say the received word is R. Hopefully R will still be able to
convey the original message m even if it is not identically equal to C'(m). The only
way to preserve this form of redundancy is by ensuring that no two codewords are
too “close” to each other. This brings us to the important notion of “close”ness
used, namely the Hamming distance. The Hamming distance between two strings
z,y € 2" denoted A(z,y), is the number of letters where « and y differ. No-
tice that A forms a metric, ie., A(x,y) = 0= ¢ = y, A(z,y) = A(y,x) and
Az, y) + Az, z) > A(x,z). A basic parameter associated with a code is its
distance 1.e., the maximum value d such that any two codewords are a Hamming
distance of at least d apart. Given a code of distance d and a received word R that
differs from C'(m) in at most e < d—1 places, the error in the transmission can be
detected. Specifically, we can tell that some letter(s) has been corrupted in the
transmission, even though we may not know which letters are corrupted. In order
to to actually correct errors we have to be able to recover m uniquely based on R
and a bound ¢ on the number of errors that may have occurred. To get the latter
property t has to be somewhat smaller than d — 1. Specifically if ¢ < [(d—1)/2],
then we notice that indeed there can be at most one message m such that
A(C(m), R) < t. (If my and my both satisfy A(C(my), R), A(C(ms), R) < t,
then A(C'(my),C(ma)) < A(mq, R) + A(R, ma) < 2t < d — 1, contradicting the
distance of C.) Thus in an information theoretic sense R maintains the informa-
tion contained in m. Recovering the information m efficiently from C' is another
matter and we will come back to this topic presently.

To summarize the discussion above we adopt the following terse notation that
is standard in coding theory. A code C'is an [n, k, d], code if C': Xk 5 X7 where
|X| = ¢ with min, ,e s« {A(C(x),C(y))} = d. With some abuse of notation we
will use C' to denote the image of the map C' (i.e., C' may denote the collection of
codewords rather than the map). C'is called a e-error-detecting code for e = d—1
and a t-error correcting code for t = |(d — 1)/2].

In the remaining sections of this article we will describe some common con-
structions of [n, k,d], for various choices of the parameters n, k,d and ¢. We
will also describe the algorithmic issues motivated by these combinatorial ob-
jects and try to provide some solutions (and summarize the open problems).
(We assume some familiarity with algebra of finite fields [10, 19].) Before going
on to these issues, we once again stress the importance of the theory of error-
correcting codes and its relevance to computer science. The obvious applications
of error-correcting codes are to areas where dealing with error becomes important
such as storage of information on disks, CDs, and communication over modems

! The assumption that the message is a k-letter string over ¥ is just made for no-
tational convenience. As it will become obvious, the representation of the message
space is irrelevant to the communication channel. The representation of the encoded
string is however very relevant!

etc. Additionally, and this is where they become important to the theoretical
computer scientist, error-correcting codes come into play in several ways in com-
plexity theory — for example, in fault-tolerant computing, in cryptography, in
the derandomization of randomized algorithms and in the construction of prob-
abilistically checkable proofs. In several of these cases it is not so much the final
results as the notions, methods and ingredients from coding theory that help. All
of this makes it important that a theoretical computer scientist be comfortable
with the methods of this field — and this is the goal of this article. A reader
interested in further details may try one of the more classical texts [2, 11, 17].
Also, the article of Vardy [18] is highly recommended for a more detailed account
of progress in coding theory. The article is also rich with pointers to topics of
current interest.

2 Linear Codes

While all questions relating to coding theory can be stated in general, we will
focus in our article on a subset of codes called linear codes. These codes are ob-
tained by restricting the underlying alphabet X to be a finite field of cardinality
g with binary operations “+” and “”. Thus a string in 2™ can be thought of as
a vector in n-dimensional space, with induced operations “+” (vector addition),
and “” (scalar multiplication). Thus a code C C X" is now a subset of the
vectors. If this subset of vectors forms a “subspace” then the code is linear, as
made formal below:

Definition1l. C C X" is a linear code if Va € X 2,y €C, x4+ y,a -z € C.

Many of the parameters of error-correcting codes become very clean in the
case of linear codes. For instance, how does one specify a code C € X7 For
general codes, succinct representations may not exist! However, for every linear
code a succinct representation, of size polynomial in n does exist! In particular,
we have the following two representations:

1. For every [n,k,d], linear code C there exists an n x k “generator” matrix
G = G¢ with entries from X such that C = {Gz|z € L*}.

2. For every [n,k,d], code C there exists an (n — k) x n parity check matrix
H = H¢ over X such that C = {y € X" s.t. Hy = 0}.

Conversely, the following hold: Every n x k matrix G over X defines an
[n, k', d], code, for some d > 1 and k' < k, C¢ having as codewords {Gz|z € X*}.
Similarly every (n—k) x n matrix H defines an [n, k', d] code Cl;, for some d > 1
and k' < k, having as codewords {y € X"|Hy = 0}.

Exercise:

1. Prove properties (1) and (2) above.

2. Given the generator matrix G¢ of a code C, give a polynomial time algorithm
to compute a parity check matrix H¢ for C.

3. Show that if GG is of full column rank (H is of full row rank) then the code
Ce (Cq) is an [n, k, d], code.

3 Some common constructions of codes

In this section we describe some common construction of codes. But first let us
establish the goal for this section. In general we would like to find families of
[n, k, d]4 codes for infinitely many triples (n, k, d) for some fixed ¢. The property
we would really like is that k/n and d/n are bounded away from zero as n —
co. Such a code is termed asymptotically good and the two properties k/n >
0 and d/n > 0 are termed constant message-rate and constant distance-rate
respectively. Unfortunately we will not be able to get to this goal in this article.
But we will settle for what we term weakly good codes. These are codes with
polynomial message-rate, i.e., k = £2(n€) for some € > 0 and constant distance-
rate.

3.1 Hamming code

Hamming codes are defined for every positive n such that there exists an integer
[such that n = 2/ — 1. Then the Hamming code of block size n over the alphabet
{0, 1} is given by an [x n parity check matrix H"™% whose columns are all the
distinct /-dimensional non-zero vectors. Notice that there are exactly 2! — 1 of
these.

Lemma 2. For every positive integer n such that n = 2! — 1 for some integer,
the Hamming code of block size n is an [n,n —1,3]2 code.

Proof Sketch. Notice that the rank of HH™% is [In particular the column vectors
containing exactly one 1 are linearly independent and there are [of them. Thus
we find that the Hamming code is an [n, k, d]s code for k =n — .

We now move to showing that the distance of the Hamming code is 3. Notice
that the code has no elements of weights since this would imply that two vectors
in the parity check matrix are identical. This implies the distance is at least
3. Now consider any two column vectors v; and vs in HTM®. Notice that the
vector vy + vy is also a column vector of HHMS and is distinet from v; and
v9. Now consider the n dimensional vector which is zero everywhere except in
the coordinates corresponding to the vectors v, v and vy + vs. This vector has
weight 3 and is easily seen to be an element of the Hamming code. Thus the
distance of the Hamming code is exactly 3.

The Hamming code is a simple code with a very good rate. Unfortunately
it can only correct 1 error, definitely far from our goal of constant error-rate.
Next we move on to a code with good error-correcting properties, but with very
low-rate.

3.2 Hadamard code

A Hadamard matrix 1s an n x n matrix M with entries from +1 such that
MMT = n -1, where I, is the n x n identity matrix. A Hadamard matrix

immediately leads to an error correcting code where the rows of M are the
codewords. This leads to a codeword over the alphabet X = {+1, —1}. We prove
the distance property of the code first.

Lemma3. If M is a Hadamard matriz then any two rows agree is exactly n/2
places.

Proof. Say the rows of interest are the ¢th and jth rows. Then consider the
element (M M7T);;. This element is the sum of n terms, with the kth term being
MMy . Notice that this term evaluates to +1 if m;;, = my; and —1 otherwise.
Thus if the ith and jth rows disagree in ¢ places, then (M M7T);; = (n —t) +¢.
Since (MM7T);; = 0, we have that n — 2t = 0 and hence the two rows (dis)agree
in exactly n/2 places.

Thus the task of constructing a Hadamard code reduces to the task of con-
structing Hadamard matrices. Constructions of Hadamard matrices have been
a subject of much interest in combinatorics. It is clear (from Lemma 3) that for
an n x n Hadamard matrix to exists n must be even. The converse is not known
to be true and is still an open question. What i1s known is that an n x n matrix
exists for every n of the form p — 1 where p is a prime. It 1s also known that if an
ny x n; Hadamard matrix exists and an ns X ny Hadamard matrix exists, then
an nyns X NN matrix exists. Many other such constructions are also known but
not all possibilities are covered yet. Here we give the basic construction which
applies when n is a power of 2. These constructions are described recursively as
follows:

+1 +1 + MM 4 MM
MlHDM — MlHDM —
+1 -1 +Ml}£D1M _Ml}i[iM

Lemmad4. For every [, the rows of M™ form a [2!,1,2'71]5 code.
Proof. Left as an exercise to the reader.

The Hadamard codes maintain a constant distance-rate. However their message-
rate approaches zero very quickly. Next we describe a code with constant message-
rate and distance-rate. The catch is that the code uses an alphabet of growing
size.

3.3 Reed Solomon code

The Reed Solomon codes are a family of codes defined over an alphabet of
growing size, with n < ¢. The more common definition of this code is not (we feel)
as intuitive or as useful as the “folklore” definition. We present both definitions
here, starting with the more useful one and then show the equivalence of the
two.

Definition5 (Reed Solomon codes). Let X be a field of size ¢, n < ¢ and let
Zg, ..., Zn_1 be some fixed enumeration of n of the elements of X. (It is standard
to pick n = ¢ — 1 and #; = o' for some primitive element «?. Then for every

k < n, the Reed Solomon code Cflis,n,k,q is defined as follows: A message m =

mg ... my_1 corresponds to the degree k& — 1 polynomial M (z) = Zf 01 mixt.

The encoding of m, is Cflis,n,k,q(m) =¢g...ch_1 where ¢; = M (z;).

The distance properties of the Reed Solomon codes follow immediately from
the fact that a degree £ — 1 polynomial may only have £ — 1 zeroes unless all of
its coefficients are zero.

Lemma6. For every n < q and k < n, the Reed Solomon code Ckg ,, . forms
an [n, k,n— k], linear code.

Proof. The fact that the code is linear follows from the fact that if My(x) and
M (x) are polynomials of degree at most k& — 1 then so is My(z) + My (x). The
distance follows from the fact that if Mo(x;) = Mi(z;) for k values of j then
My = My (or equivalently if My(z;) — Mi(x;) is zero for k values of j, then
My — M is the zero polynomial).

Finally for the sake of completeness we present a second definition of Reed
Solomon codes. This definition is more commonly seen in the texts, but we feel
this part may be safely skipped at first reading.

Definition7 (Reed Solomon codes). Let X be a field of size ¢ with primitive
element o, and let n = ¢ — 1, k < n. Let Py 4(=) be the polynomial (z — &) (2 —
a?). . (x — a" %), The Reed Solomon code Cig nkq 1s defined as follows: A
message m = mg ... mp_1 corresponds to the degree k — 1 polynomial M (x) =

Zf:_ol miat. The encodmg of m, is CRS,n,k,q(m) = ¢p...cp—1 where ¢; is the
coefficient of #7 in the polynomial Py 4(2)M ().

Viewed this way it 1s hard to see the correspondence between the two defini-
tions (or the distance property). We prove an equivalence next.

Lemma 8. The definitions of Reed Solomon codes giwen in Definitions § and 7
coincide for n = ¢ — 1 and the standard enumeration of the elements of GF(q).

Proof. Notice that it suffices to prove that every codeword according to the first
definition is a codeword according to the second definition. The fact that the
sets are of the same size implies that they are identical.

Consider the encoding of m = mg...mg_1. This encoding is Cfl{s nkq =
Co...Ch_1 with ¢; = Ef;ol mj(o/)j. To show that this is a codeword according

to the second definition we need to verify that the polynomial C'(z) = Z?:_Ol cpxt

? @ is a primitive element of the field GF(q) if o’ # 1 for any j < ¢ — 1.

has (z — a') as a factor for every [€ {1,...,n — k}. Equivalently it suffices to
verify that C'(a') = 0, which we do next:

C'(ozl) = Z_: ci(al)i
= 3% my(adyi (o)

i=0 7=0
k—1 n—1
_ . YPNAY)
= E M E [(a7a’)
7=0 i=0
k—1 q—2
_ . 1)
=2 M)
7=0 i=0

where v;; = ot Notice that for every j,l sit. j+1 # q—1, v # 1.
Notice further that for every such «;; the summation Z?:_oz 7;,1 = 03. Since
J€{0,...,k—1}, we find that v;; # 1 for every [€ {1,...,¢—1—k}. Thus for
every l € {1,...,n— k}, we find that C(a') = 0. This concludes the proof.

3.4 Multivariate polynomial codes

The next family of codes we describe are not very commonly used in coding
theory, but have turned out to be fairly useful in complexity theory and in
particular in the results on probabilistically checkable proofs. Surprisingly these
codes turn out to be a common generalization of Hadamard codes and Reed
Solomon codes!

Definition9 (Multivariate polynomial code). For integer parameters m, !
and ¢ with [< ¢, the multivariate polynomial code Ceory,m,i,q has as mes-
sage a string of coeflicients m = {m;,i;,...i,, } with i; > 0 and > .4 < L.
This sequence is interpreted as the m-variate polynomial M (z1,...,2m,) =

Zz’l,...,z’j mi, -xim . The encoding of m is the string of letters {M (21, ..., 2m)}

with one letter for every (z1,...,2,,) € ™.

Obviously the multivariate polynomial codes form a generalization of the
Reed Solomon codes (again using the first definition given here of Reed Solomon
codes). The distance property of the multivariate polynomial codes follow also
from the distance property of multivariate polynomials (cf. [5, 13, 21]).

Lemma10. For integers m,l and g withl < g, the code Coory m 1,4 15 an [n, k, d],
code withn = ¢™, k = (mn;"l) and d = (g —l)g™~ 1.

° This identity is obtained as follows: Recall that Fermat’s little theorem asserts that
4471 — 1 = 0 for every non-zero v in GF(q). Factoring the left hand side, we find
that either v — 1 =0 or Z;:j v = 0. Since v # 1, the latter must be the case.

Proof. The bound on n is immediate. The fact that the number of coefficients
1, ..., 0, s.b. Zj 1 <lis at (ml‘"l) is a well-known exercise in counting. Finally
the bound on the distance follows from the fact a degree [polynomial can only
be zero for [/q fraction of its inputs. (This is an easy inductive argument based
on the number of variables. The base case 1s well known and inductively one
picks a random assignment to the variables zq,...,2,_1 and argues that the
resulting polynomial in «,, is non-zero with high probability. Finally one uses
the base case again to conclude that the final polynomial in z,, is left non-zero
by a random assignment to z,.)

It is easy to see that the code Cflis,q,k,q is the same as the code Crory 1 k—1,4-
Also notice that the code Ceopy,m,1,2 forms an [Qm,m,Qm_l]z code, same as
parameters of the Hadamard code given by the rows of MIP™ It turns out that
these two codes are in fact identical. The proof is left as an exercise to the reader.

3.5 Concatenated codes

Each code in the collection of codes we have accumulated above has some flaw
or the other. The Hamming codes don’t correct too many errors, the Hadamard
codes are too low-rate, and the Reed Solomon codes depend on a very large
alphabet. Yet it turns out it is possible to put some of these codes together
and obtain a code with reasonably good behavior (“polynomially good”). This
1s made possible by a simple idea called “concatenation”, defined next.

Definition1l (Concatenation of codes). Let Cy be an [n1, k1, d1]4, code over
the alphabet X and let C; be an [ns, ko, do]g, code over the alphabet X, If
g = q§2 then the code Cy o Cy 1s defined as follows: Associate every letter in
Yy with a codeword of Cs. Encode every message first using the code C; and
then encode every letter in the encoded string using the code Ca. More for-
mally, given a message m € Efl = Zl;ll”, let Ci(m) = c1...cp, € X7*. The
encoding Cy o Ca(m) is given by ¢11 .. .C1n,021 - - Cnyn, € 25172, where for every
ied{l,...,n1}, i1 Ciny, = Cales).

Almost immediately we get the following property of concatenation.

Lemma12. IfCy is an [n1, k1, di1]g, code and if Cy is an [ng, ko, ds)q, code with
q1 = q§2, then C1 0 Cy is an [ning, kiks, d']y, code, for some d' > dids.

Proof. The block size and message size bounds follow from the definition. To
see the distance property, consider two messages m!', m? € Efl. For | € {1,2},
let ¢ .. ~C£n be the encoding of m' using C; and let ¢}, .. .cﬁllm be its encoding
using Cy 0Cs. Notice that there must exist at least dy values of i such that ¢} # ¢?
(by the distance of C1). For every such ¢, there must exist at least dy values of j

such that cllj + C?j (by the distance of C3). Thus we find that C; o C2(m?!) and
C1 o C2(m?) differ in at least dyds places.

To best see the power of concatenation, consider the following simple ap-
plication: Let C; be a Reed Solomon code with ¢ = 27 n = ¢ and k& = .4n.
Le., Cy is an [n,.4n, .6n]am code with n = 2™. Let Cs be the Hadamard code
[2™, m, 2™~ 1]5. The concatenation Cy oCs is an [n?, .4nlogn, .3n%]; code. Le., the
resulting code has constant distance-rate, polynomial rate and is over the binary
alphabet! Thus this satisfies our weaker goal of obtaining a weakly-good code.
Even the goal of obtaining an asymptotically good code is close now. In particu-
lar, the code of Justesen is obtained by an idea similar to that of concatenation.
Unfortunately we shall not be able to cover this material in this article.

4 Algorithmic tasks

We now move on to the algorithmic tasks of interests: The obvious first candidate
1s encoding.

Problem 13 (Encoding).
INPUT: n x k matrix (¢ and message m € 3%,
OuTPUT: C(m), where C = Cg is the code with GG as the generator matrix.

It is clear that the problem as specified above is easily solved in time O(nk)
and hence in time polynomial in n. For specific linear codes such as the Reed
Solomon codes it is possible to encode the codes faster, in time O(nlog® n) for
some constant ¢. However till recently no asymptotically good code was known
to be encodable in linear time. In a recent breakthrough. Spielman [15] presented
the first known code that is encodable in linear time. We will discuss this more
in a little bit.

The next obvious candidate problem is the decoding problem. Once again
it is clear that if the received word has no errors, then this problem is only as
hard as solving a linear system and thus can be easily solved in polynomial time.
So our attention moves to the case where the received word has errors. We first
define the error detection problem.

Problem 14 (Error detection).
INPUT: n x k generator matrix G for a code C = Cg; and a received word R € X",
OutpuT: Is R a codeword?

The error detection problem is also easy to solve in polynomial time. We find
the parity check matrix H for the code C and then check if HR =0. We now
move to the problem of decoding in the presence of errors. This problem comes
in several variants. We start with the simple definition first:

Problem 15 (Mazimum likelihood decoding).

INPUT: n x k generator matrix G for a code C = Cg; and a received word R € X",
OuTpPUT: Find a codeword z € C, that is nearest to R in Hamming distance.
(Ties may be broken arbitrarily.)

There are two obvious strategies for solving the maximum likelihood decoding

problem:

Brute Force 1: Enumerate all the codewords and find the one that is closest
to R.

Brute Force 2: For ¢t = 0,1,...,, do: Enumerate all possible words within a

Hamming distance of ¢ from R and check if the word is a codeword. Output the
first match.

Despite the naivete of the search strategies above, there are some simple cases
where these strategies work in polynomial time. For instance, the first strategy
above does work in polynomial time for Hadamard codes. The second strategy
above works in polynomial time for Hamming codes (why?). However, both
strategies start taking exponential time once the number of codewords becomes
large, while distance also remains large. In particular, for “asymptotically good”
or even “weakly good” codes, both strategies above run in exponential time.
One may wonder if this exponential time behavior is inherent to the decoding
problem. In perhaps the first “complexity” result in coding theory, Berlekamp,
McEliece and van Tilborg [4] present the answer to this question.

Theorem 16 [4]. The Maximum likelihood decoding problem for general linear
codes is NP-hard.

There are two potential ways to attempt to circumvent this result. One
method 1s to define and solve the maximum likelihood decoding problem for
specific linear codes. We will come to this question momentarily. The other hope
is that we attempt to correct only a limited number of errors. In order to do so,
we further parameterize the maximum likelihood decoding problem as follows:

Problem 17 (Bounded distance decoding).

INPUT: n X k generator matrix G for a code C = Cg; a received word R € X7
and a positive integer ¢.

OuTPUT: Find any/all codewords in C within a Hamming distance of ¢ from R.

The hardness result of [4] actually applies to the Bounded distance decoding
problem as well. However one could hope for a result of the form: “There exists an
€ > 0, such that for every [n, k, d], linear code C, the bounded distance decoding
problem for € with ¢ = ed is solvable in polynomial time”. One bottleneck to
such a general result 1s that we don’t know how to compute d for a generic linear
code. This motivates the following problem:

Problem 18 (Minimum distance).
INPUT: n X k generator matrix G for a code C = Cg and an integer parameter d.
OuTrUT: Is the distance of C at least d7

This problem was conjectured to be coNP-hard in [4]. The problem remained
open for nearly two decades. Recently, in a major breakthrough, this problem
was shown to be coNP-complete by Vardy [18]. While this does not directly rule

out the possibility that a good bounded distance decoding algorithm may exist,
the result should be ruled as one more reason that general positive results may
be unlikely.

Thus we move from general results, i.e.; where the code is specified as part
of the input, to specific results, 1.e., for well-known families of codes. The first
question that may be asked is: “Is there a family of asymptotically-good [n, k, d],
linear code and e > 0, for which a polynomial time bounded distance decoding
algorithm exists for ¢ > ed?” For this question the answer is “yes”. A large num-
ber of algebraic codes do have such polynomial time bounded distance decoding
algorithms. In particular the Reed Solomon codes are known to have such a
decoding algorithm for ¢ < [(d — 1)/2] (cf. [2, 11, 17]). This classical result is
very surprising given the non-trivial nature of this task. This result is also very
crucial for many of the known asymptotically good codes, since many of these
codes are constructed by concatenating Reed Solomon codes with some other
codes. In the next section we shall cover the decoding of Reed Solomon codes in
more detail.

Lastly there is another class of codes, constructed by combinatorial means,
for which bounded distance decoding for some ¢ > ed can be performed in
polynomial time. These are the expander codes, due to Sipser and Spielman [14]
and Spielman [15]. The results culminate in a code with very strong — linear
time (!11) — encoding and bounded distance decoding algorithms. In addition
to being provably fast, the algorithms for the encoding and decoding of these
codes are surprisingly simple and clean. However, the description of the codes
and analysis of the algorithm i1s somewhat out of the scope of this paper. We
refer the reader to the original articles [14, 15] for details.

5 Decoding of Reed Solomon code

As mentioned earlier a polynomial time algorithm for bounded distance decoding
is known and this algorithm corrects up to ¢ < |(d — 1)/2] errors. Notice that
this coincides exactly with the error-correction bound of the code (i.e., a Reed
Solomon code of distance d is a t-error-correcting code for ¢ = | (d —1)/2]). This
bound on the correction capability is inherent, if one wishes to determine the
codeword uniquely. However in the bounded distance decoding problem we do
allow for multiple solutions. Given this latitude it is reasonable to hope for a
polynomial-time decoding algorithm that corrects more errors - say up to ¢t <
(1—¢€)d where € is some fixed constant. However no such algorithm is known for all
possible values of (n, k,d = n — k). Recently, in [16], we presented an algorithm
which does correct up to (1 — €)d errors, provided k/n — 0. This algorithm
was inspired by an algorithm of Welch and Berlekamp [20, 3] for decoding Reed
Solomon codes. This algorithm is especially clean and elegant. Our solution uses
similar ideas to correct even more errors and we present this next.

Notice first that the decoding problem for Reed Solomon codes can be solved
by solving the following cleanly stated problem:

Problem 19 (Reed Solomon decoding).

INPUT: n pairs of points {(z;,4)}, i, yi € GF(q); and integers ¢, k.

OutpUT: All polynomials p of degree at most k& — 1 such that y; # p(x;) for at
most ¢ values of ¢.

The basic solution idea in Welch-Berlekamp and our algorithm is to find
an algebraic description of all the given points, and to then use the algebraic
description to extract p. The algebraic description we settle for is an “algebraic
curve in the plane”, i.e.; a polynomial Q(z,y) in two variables and y such
that Q(z;,y;) = 0 for every value of z and y. Given this basic strategy, the
performance of the algorithm depends on the choice of the degree of ¢ which
allows for such a curve to exist, and still be useful! (For example if we allow @ to
be 0, or if we pick the degree of () be n in and 0 in y, the such polynomials do
exist, but are of no use. On the other hand a non-zero polynomial @) of degree
n/10 in « and 0 in y may be useful, but will probably not exist for the given
data points.)

To determine what kind of polynomial @) we should search for, we pick two pa-
rameters [and m and impose the following conditions on Q(x,y) = Zi,j gty

1. @ should not be the zero polynomial. (Le., some ¢;; should be non-zero.)

2. ¢i; is non-zero implies j < m and ¢+ (k — 1)j < [. (The reason for this
restriction will become clear shortly.)

3. Q(x4,y;i) = 0 for every given pair (z;,y;).

Now consider the task of searching for such a . This amounts to finding
values for the unknown coefficients ¢;;. On the other hand the conditions in
(3) above amount to homogeneous linear equations in ¢;;. By elementary linear
algebra a solution to such a system exists and can be found in polynomial time
provided the number of equations (n) strictly exceeds the number of unknowns
(i.e., the number of (4, j) pairs such that 0 < ¢,j, j < mand i+ (k—1)j <m). Tt
1s easy to count the number of such coefficients. The existence of such coefficients
will determine our choice of m,[. Having determined such a polynomial we will
apply the following useful lemma to show that p can be extracted from @.

Lemma 20 [1]. Let Q(z,y) = Zi,j gijxty! be such that ¢;; = 0 for every i, j
with i + (k — 1)j > . Then if p(x) is polynomial of degree k — 1 such that for
strictly more than | values of i, y; = p(x;) and Q(z;,y;) = 0, then y — p(x)
divides the polynomial Q(x,y).

Proof. Consider first the polynomial g(x) obtained from @ by substituting y =
p(x). Notice that the term ¢;j2'y/ becomes a polynomial in z of degree i+(k—1);
which by property (2) above becomes a polynomial of degree at most { in . Thus
g(z) = Q(x, p(x)) becomes a polynomial in # of degree at most [. Now, for every
i such that y; = p(z;) and Q(»;,y;) = 0, we have that g(x;) = Q(z;, p(=;)) = 0.
But there are more than [such values of 7. Thus ¢ is identically zero. This
immediately implies that Q(x, y) is divisible by y — p(#). (The division theorem
for polynomials says that if a polynomial h(y) evaluates to 0 at y = { then

y — ¢ divides h(y). Applying this fact to the polynomial Q. (y) = Q(z,y) and
y = p(x), we obtain the desired result. Notice in doing so, we are switching our
perspective. We are thinking of @) as a polynomial in y with coefficients from
the ring of polynomials in .)

Going back to the choice of m and [, we have several possible choices. In one
extreme we can settle for m = 1 and then if [& (n+k)/2, then we find that the
number of coefficients is more than n. In this case the polynomial Q(z, y) found
by the algorithm is of the form A(z)y + B(x). Lemma 20 above guarantees that
ift <|(n—+k)/2] then y—p(z) divides @. Thus p(z) = —B(x)/A(x) and can be
computed easily by a simple polynomial division. Thus in this case we can decode
from [(n — k)/2] errors thus recovering the results of [20]. In fact, in this case
the algorithm essentially mimics the [20] algorithm, though the correspondence
may not be immediately obvious.

At a different extreme one may pick m &2 \/n/k and | ~ V/nk and in this case
Lemma 20 works for t & n— 2v/nk. In this case to recover p(z) from @, one first
factors the bivariate polynomial ¢). This gives a list of all polynomial p;(z) such
that y—p; (x) divides). From this list we pull out all the polynomials p; such that
p;(2;) # y; for at most ¢ values of ;. Thus in this case also we have a polynomial
time algorithm provided) can be factored in polynomial time. Fortunately, such
algorithms are known, due to Kaltofen [8] and Grigoriev [7] (see Kaltofen [9] for
a survey of polynomial factorization algorithms). For k/n — 0, the number of
errors corrected by this algorithm approaches (1 — o(1))n.

A more detailed analysis of this algorithm and the number of errors corrected
by it appear in [16]. The result shows that this given an [n, xn, (1 — x)n], Reed
Solomon code, the number of errors corrected by this algorithm approaches

1 pr 2 1 1
1-— - — h — - - —=.
”(1+ py 2“)Werep { g QJ

A plot of this curve against x appears in Figure 1. Also shown in the figure
are the distance of the code ((1 — £)n) and the classical-error correction bound

(1= x)/2n).

6 Open questions

Given that the fundamental maximum likelihood decoding problem is NP-hard
for a general linear code, the next direction to look to is a bounded distance
decoding algorithm for every [n, k,d], linear code. The bottleneck to such an
approach is that in general we can’t compute d in polynomial time, due to the
recent result of Vardy [18]. Thus the next step in this direction seems to suggest
an application of approximation algorithms:

Open Problem 1 Given an n x k matriz G, approzimate the distance d of the
code Cg to within a factor of a(n).

1 <~ T T T T
: New Correction Bound ——
Diameter Bound (1 - X) -----
Classical Correction Bound (1 - x)/2 -----
08 | i
0.6 | -
error (e/n)
04 L i
0.2 4
0 1 1 1 1 S
0 0.2 0.4 0.6 0.8 1

rate (k/n)

Fig. 1. Fraction of errors corrected by the algorithm from [16] plotted against the rate
of the code. Also plotted are the distance of the code and the classical error-correction

bound.

The goal here is to find the smallest factor a(n) for which a polynomial time
approximation algorithm exists. Currently no non-trivial (i.e., with a(n) = o(n))
approximation algorithm is known. A non-trivial «(n) approximation algorithm
would then suggest the following candidate for bounded distance decoding;:

Open Problem 2 Given an n x k matriz G, a word R € X" and an integer
t, find all codewords within a Hamming distance of t from R, or show that the
minimum distance of the code is less than tay(n).

A similar problem is posed by Vardy [18] for a; = 2. Here the hope would
be to find the smallest value of a; for which a polynomial time algorithm exists.
While there is no immediate formal reasoning to believe so it seems reasonable
to believe that ay will be larger than «.

Next we move to the questions in the area of design of efficient codes, moti-
vated by the work of Spielman [15].

Open Problem 3 For cvery k > 0, design a family of [n, kn,dnls codes C,, so
that the bounded distance problem on C,, with parameter t < yn can be solved in

linear time.

The goal above is to make v as large as possible for every fixed k. Spielman’s
result allows for the construction codes which match the best known values of §
for any [n, kn, dn]s linear code. However the value of « is still far from ¢ in these
results.

We now move towards questions directed towards decoding Reed-Solomon
codes. We direct the reader’s attention to Figure 1. Clearly every point above
the solid curve and below the distance bound of the code, represents an open
problem. In particular we feel that the following version maybe solvable in poly-
nomial time:

Open Problem 4 Find a bounded distance decoding algorithm for an [n, kn, (1—
k)n]y Reed Solomon code that decodes up tot < (1 —\/k)n errors.

The motivation for this particular version is that in order to solve the bounded
distance decoding problem, one needs to ensure that the number of outputs (i.e.,
the number codewords within the given bound ¢) is polynomial in n. Such a
bound does exist for the value of ¢ as given above [6, 12], thus raising the hope
that this problem may be solvable in polynomial time also.

Similar questions may also be raised about decoding multivariate polyno-
mials. In particular, we don’t have polynomial time algorithms matching the
bounded distance decoding algorithm from [16], even for the case of bivariate
polynomials. This we feel may be the most tractable problem here.

Open Problem 5 Find a bounded distance decoding algorithm for the bivariate
polynomial code Ceory 2 xn n that decodes up tot < (1 — \/2/@)712 errors.

References

1. S. Ar, R. LipToN, R. RUBINFELD AND M. SUDAN. Reconstructing algebraic
functions from mixed data. STAM Journal on Computing, to appear. Preliminary
version in Proceedings of the 33rd Annual IEFE Symposium on Foundations of
Computer Science, pp. 503-512, 1992.

2. E. R. BERLEKAMP. Algebraic Coding Theory. McGraw Hill, New York, 1968.

3. E. R. BERLEKAMP. Bounded Distance +1 Soft-Decision Reed-Solomon Decoding.
In IFEFE Transactions on Information Theory, pages 704-720, vol. 42, no. 3, May
1996.

4. E. R. BErLEkamP, R. J. McELIECE AND H. C. A. vaN TILBORG. On the inher-
ent intractability of certain coding problems. [EEE Transactions on Information
Theory, 24:384-386, 1978.

5. R. DEMimLLo AND R. LIPTON. A probabilistic remark on algebraic program test-
ing. Information Processing Letters, 7(4):193-195, June 1978.

6. O. GoOLDREICH, R. RUBINFELD AND M. SUDAN. Learning polynomials with
queries: The highly noisy case. Proceedings of the 36th Annual IEFE Symposium
on Foundations of Computer Science, pp. 294-303, 1995.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

D. GRrIGORIEV. Factorization of Polynomials over a Finite Field and the Solution
of Systems of Algebraic Equations. Translated from Zapiski Nauchnykh Seminarov
Lenningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN
SSSR, Vol. 137, pp. 20-79, 1984.

E. KALTOFEN. A Polynomial-Time Reduction from Bivariate to Univariate In-
tegral Polynomial Factorization. In 23rd Annual Symposium on Foundations of
Computer Science, pages 57-64, 1982.

E. KALTOFEN. Polynomial factorization 1987-1991. LATIN ’92, 1. Simon (Ed.)
Springer LNCS, v. 583:294-313, 1992.

R. Libr. AND H. NIEDERREITER. Introduction to Finite Fields and theiwr Applica-
tions. Cambridge University Press, 1986

F. J. MacWiLLiams AND N. J. A. SLOANE. The Theory of Error-Correcting
Codes. North-Holland, Amsterdam, 1981.

J. RADHAKRISHNAN. Personal communication, January, 1996.

J. T. ScHWARTZ. Fast probabilistic algorithms for verification of polynomial iden-
tities. Journal of the ACM, 27(4):701-717, 1980.

M. Sipser AND D. A. SPIELMAN. Expander codes. IEFE Transactions on Infor-
mation Theory, 42(6):1710-1722, 1996.

D. A. SPIELMAN. Linear-time encodable and decodable error-correcting codes.
IEEE Transactions on Information Theory, 42(6):1723-1731, 1996.

M. SubpaN. Decoding of Reed Solomon codes beyond the error-correction
bound. Journal of Complezity, 13(1):180-193, March 1997. See also
http://theory.lcs.mit.edu/” madhu/papers.html for a more recent version.

J. H. vAN LINT. Introduction to Coding Theory. Springer-Verlag, New York, 1982.
A. VARDY. Algorithmic complexity in coding theory and the minimum distance
problem. Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of
Computing, pp. 92-109, 1997.

B. L. vAN DER WAERDEN. Algebra, Volume 1. Frederick Ungar Publishing Co.,
Inc., page 82.

L. WELCH AND E. R. BERLEKAMP. Error correction of algebraic block codes. US
Patent Number 4,633,470, issued December 1986.

R. E. ZipPEL. Probabilistic algorithms for sparse polynomials. FUROSAM 79,
Lecture Notes in Computer Science, 72:216-226, 1979.

This article was processed using the ¥TEX macro package with LLNCS style

