Boolean Compilation of Relational Specifications

Daniel Jackson
MIT Lab for Computer Science
January 1998

MIT-LCS-TR-735

Abstract

A new method for analyzing relational specifications is described. A prop-
erty to be checked is cast as a relational formula, which, if the property
holds, has no finite models. The relational formula is translated into a boo-
lean formula that has a model for every model of the relational formula
within some finite scope. Errors in specifications can usually be demon-
strated with small counterexamples, so a small scope often suffices. The
boolean formula is solved by an off-the-shelf satisfier.

The satisfier requires that the boolean formula be in conjunctive normal
form (CNF). A naive translation to CNF fails (by exhausting memory) for
realistic specifications. This paper presents a preliminary design of a com-
piler that overcomes this problem, by exploiting typical features of the rela-
tional formulae that arise in practice. Initial experiments suggest that this
method scales more readily than existing approaches and will be able to find
more errors, in larger specifications.

Keywords: Software design analysis, formal specification, object model, Z,
relational calculus, model finding, boolean satisfaction, WalkSAT, Nitpick.

1 Introduction

Two views are central in software design. The event view is concerned with
which events may occur during execution of the system, and their ordering
patterns. The object configuration view is concerned with which objects exist
and their relationships to one another. Even though these views are not
disjoint — as events occur, configurations change — it is often useful to ex-
amine them independently.

Most formal specification languages have been developed with primarily
one of these views in mind: the event view for CSP, Statecharts and Lotos;
the object configuration view for Z, VDM and Larch. Object oriented
methods, such as OMT, Fusion and Syntropy, typically advocate the con-
struction of a model for each view: the “dynamic model” for the event view
(typically expressed as a Statechart) and the “static model” for the object
configuration view (typically expressed as an entity-relationship diagram).

The analysis of event views is well supported by tools: in addition to simu-
lators, there are now model checkers that can exhaustively analyze huge state
spaces. Object configuration views, in contrast, are poorly supported. Ex-
isting automated tools offer only shallow syntactic checks of the description,
and rarely expose problems in the software design itself.

This disparity is particularly remarkable given the centrality of object con-
figurations. The event view is sometimes dominant (for example, in the de-
sign of protocols and process control systems), but usually plays a subsidiary
role. Take a glance at an influential book on design patterns [G+95], and
note the proportion of diagrams that describe object configurations.

Nitpick is an attempt to redress this imbalance. Given a constraint describ-
ing a set of object configurations, Nitpick can generate instances satisfying
the constraint. It can check that declared constraints have intended conse-
quences, by searching for instances that satisfy one constraint but not an-
other. Nitpick also accepts descriptions of operations that describe transi-
tions from one configuration to another, and can simulate these, and check
a variety of their properties, such as whether an operation preserves a con-
straint.

The current implementation of Nitpick works by explicit enumeration.
Using a variety of mechanisms to prune the search tree, it can analyze
enormous configuration spaces. The tool has been used successfully to find
flaws in a number of small designs, including a published draft of a mobile
internet routing protocol [Ng97, JNW97]. Even small designs, however,
tend to have huge configuration spaces. Indeed, this is perhaps why analysis
of object configurations has not attracted the same attention as the analysis
of state machines. A relation over a domain of 3 elements has 512 possible
values; adding a single such relation to a specification thus increases the
space by 3 orders of magnitude.

This paper describes a new method for analyzing descriptions of object
configurations. Section 2 presents a toy example that conveys the flavour of
the specification notation; Section 3 compares the notation to popular no-
tations. Section 4 demonstrates a Nitpick analysis of the example.

Section 5 explains how simulation and checking can both be reduced to
model finding. Section 6 articulates the hypothesis that most errors can be
illustrated with small counterexamples.

Section 7 gives the intutions behind the new method. Sections 7 to 16 are
the core of the paper; they present the structure of the compiler: the se-
quence of representations and their respective transformations.

Section 17 gives some performance results that compare the new method to
our previous explicit method. Section 18 and 19 discuss related work and
future plans.

2 Relational Notation: NP

Our notation, NP, is roughly a subset of Z [Spi92]. A reference manual
[JD96b] describes the notation in detail. Here, we explain its basic elements
with a toy example.

[Ph, Num]

Switch = [
called : Ph <—> Num
const net : Num -> Ph
conns : Ph <-> Ph
|

conns = called ; net]

Join (p : Ph; n:Num) =
Switch
|
p in dom called
n notin ran called
called’ = called U {p -> n}]

JoinOK (p : Ph; n: Num) :: [
Switch | Join (p, n) and inj conns => inj conns’ |

Figure 1: NP specification of ESS

The Extremely Simple Switch (ESS) connects telephones by maintaining
two relationships: called, which maps phones to numbers, and represents
ongoing phone calls, and net, a constant relationship that maps numbers to
the phones they name. When (p1, n) belongs to called, phone p1 has an
active connection to the number n; when (n, p2) belongs to net, p2 is the
phone specified by the number n. The composition of called and net is a
relation conns that associates phones that are connected; it would include, in
this case, the pair (p1, p2).

Part of a (faulty) specification for ESS is shown in Figure 1. The first line
declares Ph and Num to be primitive types. The schema Switch that follows
declares the three state components with an accompanying constraint that
serves to define conns — redundant and introduced only for the convenience
of later expressing certain properties — in terms of the other two.

The form of the arrow in a declaration indicates the kind of relation. Thus
called is an arbitrary relation, allowing the modelling of conference calls in
which a phone has called more than one number at a time, but net is a
function.

Switch defines a set of configurations. Entity relationship diagrams can be
used for the same purpose, but are not as expressive. The diagram of Figure
2 corresponds to the declarations of Switch, but does not express the con-
straint amongst the three relations.

Num

called net

O
conns

Figure 2: ER diagram corresponding to Switch schema of Figure 1

The schema Join specifies an operation in which a new party is added to a
call. The parameter p is the phone at which the join is performed; it is con-
strained to be already making a call. The parameter n is the new number
being called, and is constrained not to be already called. The effect of the
operation is given by the last constraint. Here, the primed instance of the
variable called denotes the value of the state component after the operation;
it thus asserts that the operation adds the pair (p, n) to the called relation.
The net relation, having been declared in the imported schema Switch to be
constant, does not change; it is as if the assertion

net’ = net

were included. Beyond this, there are no implicit frame conditions. In fact,
the change in called will generally require a corresponding change in conns.

The third schema, JoinOK, is a claim. It is not part of the specification
proper. Rather, it asserts a property of the specification: that if the relation
conns is injective prior to execution of a join, it will be injective afterwards
too. If conns is not injective, there is a call involving two phones acting as
callers; for billing reasons, we prefer to avoid this situation, and construct all
conference calls with a single caller.

3 Why Relational Specification?

This style of specification was pioneered by the developers of the Z specifi-
cation language. For readers familiar with other notations, we shall explain
briefly what features of the relational notation make it, in our opinion, a
more suitable notation for describing object configuration views.

The principal difference between our language, NP, and Z is that NP is
first-order: its data structures are simple relations, and it does not admit, for
example, relations between relations. While Z is based on set theory, NP is
based on the relational calculus. Z’s extra power makes it less tractable; NP
gains much in tractability for a relatively small reduction in expressiveness.

The formal specification languages VDM and Larch have much in common
with Z. Their data structures, however, are not based on set theory but
rather on a collection of data types each with its own axiomatization. In a
sense, NP is less abstract, since all data structures are encoded as graphs. But
for describing configurations, graphs are so natural that bias is rare, and
more abstract types are not needed.

The input languages of model checkers, such as SMV’s assignment lan-
guage, Murphi’s Unity-like language and SPIN’s Promela tend to have
weak support for data structures, and do not provide primitives for com-
posing relations and applying functions. They also tend not to support im-
plicit specification fully, in which the result of an operation is defined by an
assertion relating the variables of pre- and post-states, rather than by an ex-
plicit assignment.

Object-oriented methods, such as UML, OMT, Fusion and Syntropy, pro-
vide graphical notations for describing object models. These are extremely
weak, and allow only the most elementary constraints between relations
(such as that one is a subset of another) to be expressed. Various textual an-
notation languages have been designed, most recently UML’s Object Con-
straint Language (OCL) [IBM97], which originated in the constraints of
Syntropy. OCL is very similar to NP, although it does not have a formal
semantics and does not appear to be able to express transitive closure. Its
syntax looks very different from NP’s however; it makes heavy use of scalar
quantifiers in place of relational operators, and has no structuring mecha-
nism akin to schemas.

In practice, object models are much less powerful than relational models,
since they are usually interpreted in terms of implementation constructs. So
subset, for example, is usually construed as subclass. Since standard object-
oriented languages do not allow objects to migrate between subclasses, this
means that the members of a subset cannot change. Unlike in NP, there-
fore, one could not introduce a set Callers that is a subset of Ph, corre-
sponding to the phones making calls, since this set changes over time and
thus cannot be a subclass.

4 Nitpickin Action

Let’s see what Nitpick can do with a specification. It basically offers two
features: simulation and checking. Simulating a state schema produces in-
stances of the state that satisfy the given constraints. Instructing Nitpick to
simulate Switch in Figure 1, for example, will cause it to output the rather
uninteresting case:

called: {}
net: {}
conns: {}

Simulating an operation schema produces sample transitions. For Join, Nit-
pick will produce

p: P2

n: N2

called: {P2->N1}

net: {}

conns: {}

called": {P2->N1,P2->N2}
conns': {}

exposing a simple flaw: we have allowed active calls to numbers that are not
associated with phones.

Checking a claim also causes instances to be generated. The claim JoinOK is
about an operation, and the instances will thus be transitions. These in-
stances, however, are counterexamples: they correspond to cases that show
the property to be invalid. For JoinOK, Nitpick will attempt to find a tran-
sition of Join from a state in which conns is injective to a state in which it is
not, such as

p: P2

n: N2

called: {P1->N1,P2->N0}

net: {N1->P2,N2->P2}

conns: {P1->P2}

called": {P1->N1,P2->N0,P2->N2}
conns': {P1->P2,P2->P2}

This counterexample demonstrates (at least) two flaws with the specifica-
tion. In the pre-state, called maps a phone to a number that is not in the
domain of net; that is, there is an active call to a number not associated with
a phone. The net function is not injective — there are two numbers mapped
to the same phone; either this must be ruled out, or the definition of the
operation must take it into account.

5 Specification Analysis as Model Finding

Both simulation and checking amount to the same problem: solving a rela-
tional formula. Solving a formula means finding an assignment to its vari-
ables that makes the formula true; such an assignment is a model of the for-
mula. The formula is extracted from the specification by simply undoing
the syntactic shorthands; from JoinOK, for example, Nitpick obtains the
formula

conns = called ; net

and conns’ = called’ ; net

and p in dom called

and n notin ran called

and called’ = called U {p -> n}
and inj conns

and notinj conns’

A couple of features of this formula are worth noting. First, note that in
translating a claim, the formula is negated: for a claim, an assignment for

which the formula is false is required, namely a model of the formula’s ne-
gation. Second, since a state invariant constrains the states both before and
after an operation, the inclusion of the schema Switch brings two subfor-
mulae: one on the unprimed variables, and one on the primed variables.
Third, observe the structure of the formula as a whole: a conjunction of
(mostly positive) elementary subformulae. This is typical, and our method
exploits it.

The free variables of such a formula may denote scalars, sets or relations. A
set of type declarations, not shown above, is associated with each formula.
For example, the variable p is constrained to be a scalar of type Ph. In con-
structing an assignment, therefore, we must first choose sets of values for the
primitive types. Our types are uninterpreted, so we use symbolic names for
the elements: p1, p2, p3 for Ph, say. Given this set of 3 values for Ph, the
variable p can take on 3 possible values. The variable conns can take on 512
values: there are 9 possible connections from a phone to a phone, each of
which is present or absent.

6 The Small Scope Hypothesis

Every relational formula has infinitely many possible assignments. To make
a finite search possible, we place an artificial bound by limiting the number
of atoms in each type. A scope S is a mapping from the type names of a
specification to natural numbers; S(t) is interpreted as a bound on the num-
ber of atoms in the type t. We say than an assignment is within a scope, or
that a scope admits an assignment, when the values of the variables in the
assignment can be constructed using no more atoms than the scope allows.
In our example, to consider only assignments involving at most 3 phones
and 2 numbers, we would choose S(Ph) = 3 and S(Num) = 2. We shall say
that a search has a scope of S when it considers only assignments within S.
Sometimes we shall refer loosely to a “scope of 3”, which simply means that
S(t) = 3 for every type t.

The problem of finding models of relational formulas is highly intractable,
since the number of assignments grows so rapidly with both the scope and
the number of variables. For a scope of k, a relation can have K edges and
thus 2to the power k” values. The size of the space is the product of the
number of values of each variable, so for v relational variables, there may be
2 to the power K'v assignments. Increasing the scope from k to k+1 thus
increases the space by 22

It therefore seems very unlikely that a method based on search will be able
to handle large scopes. This, perhaps, is why research on analysis of lan-
guages such as Z and VDM has focused almost exclusively on syntactic and
not semantic methods.

The hypothesis underlying Nitpick is a controversial one. It is that, in prac-
tice, small scopes suffice. In other words, most errors can be demonstrated
by counterexamples within a small scope. This is a purely empirical hy-

pothesis, since the relevant distribution of errors cannot be described
mathematically: it is determined by the specifications people write.

Our hope is that successful use of the Nitpick tool will justify the hypothe-
sis. There is some evidence already for its plausibility. In our experience
with Nitpick to date, we have not gained further information by increasing
the scope beyond 6.

A similar notion of scope is implicit in the context of model checking of
hardware. Although the individual state machines are usually finite, the de-
sign is frequently parameterized by the number of machines executing in
parallel. This metric is analogous to scope; as the number of machines in-
creases, the state space increases exponentially, and it is rarely possible to
analyze a system involving more than a handful of machines. Fortunately,
however, it seems that only small configurations are required to find errors.
The celebrated analysis of the Futurebus+ cache protocol [C+95], which
perhaps marked the turning point in model checking’s industrial reputa-
tion, was performed for up to 8 processors and 3 buses. The reported flaws,
however, could be demonstrated with counterexamples involving at most 3
processors and 2 buses.

7 Intuitions for a Boolean Method

For a finite scope, a relational formula can be translated into an equivalent
boolean formula. The idea is simple. We represent relations as boolean ma-
trices, each bit corresponding to a possible edge in the relation. A solution
to the boolean formula is translated into a solution to the relational formula
by constructing the relations whose edges are present or absent according to
the values of the bits.

The translation can be performed compositionally. In general, a relational
term is translated into a matrix of boolean formulae. For each relational
variable, we introduce a matrix of boolean variables; each term is then
translated by composing the translations of its subterms.

Suppose, for example, that we have translated a term p into a matrix [p],
and a term into a matrix [q]. The element in the ith row and the jth col-

umn of [p], which we write [p];, is @ boolean formula that is interpreted as
being true when p maps the ith element of its domain type to the jth ele-
ment if its range type. The translation of the term p n q is given by

[p n ali = [ply Olply

since an edge is in the intersection of two relations when it is in both rela-
tions. For each of the relational operators there is such a rule.

Elementary relational formulae are translated into boolean formulae. The
rule
[pOdal= Ay [pli O [gly

for example, states that a relation p is a subset of a relation g when there is
an edge in g corresponding to every edge in p.

Sets and scalars are treated as degenerate relations. A set-valued term is
translated into a vector of boolean formulas; the rules for set intersection
and subset are just like the rules shown above, but with one index omitted.
Scalars are represented as singleton sets; when a scalar variable is translated,
a side-condition is created that asserts that exactly one of the elements of the
set is present. This side condition is conjoined with the formula obtained
from translation right at the end. Similar side conditions are generated to
express properties of relations given in their declarations: that a relation is a
function, or is total, etc.

Nitpick is thus, in essence, a compiler. Various syntax and type checks are
applied to the specification. Given the user’s selection of a schema to simu-
late or a claim to check, a relational formula is extracted. This formula is
then compiled into a boolean formula, which is then presented to a boolean
satisfier. By maintaining the appropriate associations between the relational
variables and the boolean variables, the tool can then translate boolean as-
signments back into relational assignments.

Note that the major compilation step — obtaining the boolean formula — is
scope dependent, since the dimensions of the boolean matrices are deter-
mined by the number of elements in the basic types. Each time the user
changes the scope, the formula must be recompiled into a new boolean
formula, which is then presented to the solver.

From a design point of view, it seems desirable to implement boolean for-
mulae with an abstract data type. The translator would then call operations
on the type to construct compound formulae rather than meddling directly
with their syntax. The solver itself might be encapsulated within the abstract
type, as an operation of type

BooleanFormula - BooleanAssignment.

To change the representation of formulae, or to choose a different solver,
we would then need only to replace this abstract type. Using subclassing,
and perhaps the Factory design pattern [G+95], we could even support
these selections at runtime.

Were this scheme viable, our paper would be very short. Unfortunately,
however, it turns out that the choice of solver is not a concern that can be
easily separated from the rest of the design. Few solvers will accept a boo-
lean formula with an arbitrary structure; the ones that appear to be most
efficient for our problem require the formula to be in conjunctive normal
form. A naive translation produces such huge formulae that the translator
seizes up on even tiny examples.

10

Lexing
Parsing

Case
Splitting

Introduce
temps

Solver
(GSAT)

intermediate
form

Boolean
assignment

Reduce
to IF

Convert
to CNF

Variable
Mapping

Apply
mapping

Case
Splitting

In
intermediate

form

troduce
temps

Relational
assignment

Figure 3: Architecture of Nitpick

11

Solver
(GSAT)

There are three basic tricks Nitpick uses to reduce the size of the formula.
The first is to decompose it into a disjunction of formulae, each itself in
conjunctive normal form. Rather than attempting to construct a single huge
formula, these formulae are solved independently; a solution to any one is a
solution to the formula as a whole. The second is to introduce temporary
variables; this is a tradeoff, since although it can reduce the formula size
substantially, it can also make the formula harder to solve. The third is to
find opportunities for decomposition of a formula into a disjunction in
which several of the disjuncts can be discarded.

Each of these tricks exploits the structure of the relational formula. The de-
composition into a disjunction follows natural cases in the specification it-
self. The introduction of temporaries is applied only when translating rela-
tional terms that tend to cause a blowup. Finally, the discarding of disjuncts
relies on observing certain symmetries in the structure of the relational for-
mula.

Loss of modularity is perhaps inevitable. After all, it would be foolish not to
exploit the structure of the problem at hand to the greatest extent. A naive
translation yields a boolean formula in which this structure has been lost. It
might, of course, be possible to recover it, but it makes more sense to ex-
ploit the structure where it is manifest: in the translation process itself.

8 Structure of the compiler

Nitpick is structured like a compiler (Figure 3). In the first phase, the speci-
fication is parsed and superficial syntactic checks are performed. Schema
references are expanded, and for each schema or claim a relational formula
is obtained, represented as an abstract syntax tree with symbol tables hold-
ing, for example, type information about variables. These formulas are from
now on treated independently; a series of translations is applied to each.

In the second phase, each relational formula is converted to disjunctive
normal form. This is a purely logical transformation that treats the elemen-
tary relational formulae as uninterpreted. The result of this phase is a set of
sets of elementary relational formulae. From here on, each set is treated as
an independent problem, from which a single boolean formula will be gen-
erated. These problems are translated and then solved in turn.

In the third phase, the relational subformulae themselves are compiled into
a more primitive relational calculus with fewer operators. In the fourth
phase, temporary variables are introduced and opportunities for symmetry
breaking are identified. Finally, in the fifth phase, the boolean formula is
generated, in conjunctive normal form. This formula is then presented to
the solver. Either the solver fails to find a solution (usually but not necessar-
ily because the formula is unsatisfiable), or it returns an assignment to the
boolean variables that makes the boolean formula true. From this assign-
ment, an assignment to the relational variables is easily constructed (using a
mapping generated as a byproduct of the translation), and is displayed for
the user.

12

Type checking is currently performed after the third phase, on the interme-
diate language. This has the advantage of greatly simplifying the type
checker, but it does result in more cryptic error messages than would be
obtained by analyzing the source code directly. In a production version of
the tool, it would be better not to postpone type checking.

Subsequent sections elaborate on these phases in turn.

9 Relational Disjunctive Normal Form

The motivation for translating into DNF is two-fold: to decompose the
checking problem, so that checking can be performed more efficiently, and
to provide more useful feedback to the user.

A simplified version of the input language is given in Figure 4. We ignore
the schema structuring, which affects only the design of the front end, and
assume that a claim to be checked or schema to be simulated has been ex-
panded into a relational formula. This formula language is essentially a first-
order subset of Z. In the input language, the operators are written in ascii
form; they appear in ascii here to make the distinction between the input
language and the intermediate language (discussed later) clearer.

Disjunctive normal form (DNF), which we shall refer to as relational DNF
(to avoid any confusion with the normal form we discuss later on boolean
formulae) is a subset of the formula language, in which negation can only be
applied to elementary formulae, and only formulae not containing disjunc-
tions may be conjoined. In other words, the formula is represented as a
disjunction of conjunctions of literals, where each literal is an elementary
relational formula or its negation.

Putting an arbitrary formula in normal form can cause an exponential
blowup. In practice, though, our specifications rarely generate formulae
with more than a handful of disjuncts. Disjunction arises primarily from
two idioms.

In operation specifications, disjunction arises from case splitting. Suppose
for example, our Join operation (Figure 1) is to handle the case, not previ-
ously specified, in which the number being called has already been called.
The operation might then be written:

Join2 (p:Ph; n:Num) =[
Switch
|
p in dom called
((n notin ran called => called’ = called U {p -> n})
and (n in ran called => called’ = called))

]

which says that if the number has already been called, the operation has no
effect; otherwise the behaviour is as before. When asked to simulate this
operation, Nitpick will convert the specification to DNF, obtaining two sets
of elementary relational formulae, the first corresponding to one case:

13

formula ::=

formula and formula
| formula or formula

| not formula

| formula => formula
| elemformula

elemformula ::=

expr <= expr relation or set subset
expr < expr relation or set proper subset
| exprin expr set membership
| expr = expr relation, set or scalar equality
expr ;=
expr U expr union of sets or relations
| expr & expr intersection of sets or relations
| expr \ expr difference of sets or relations
| expr (+) expr relational override
| expr ; expr relational composition
| expr ~ relational transpose
| expr . expr relational image or function application
| expr + transitive closure
| expr* reflexive and transitive closure
| dom expr domain of a relation
| ran expr range of a relation
| expr <: expr domain restriction
| expr :> expr range restriction
| expr <; expr domain subtraction
| expr ;> expr range subtraction
| Un universal relation constant
| Id identity relation constant
| {} empty set or relation constant
| { expr, ..., expr} set constructor

| { expr —> expr, ...} relation constructor

Figure 4: A syntax of the formula sublanguage of NP

conns = called ; net

p in dom called

not n in ran called

called’ = called U {p -> n}

and the second corresponding to the other case:

conns = called ; net
p in dom called

14

nin ran called
called’ = called

These are subsequently treated as separate problems; the tools will attempt
to find a model for the first, and then for the second. As we shall see later,
avoiding top-level disjunction has a dramatic effect on performance.
Moreover, the results obtained by this decomposition are exactly what the
user would expect, since the two subproblems correspond to separate cases
in the specification itself.

The second idiom from which disjunction arises occurs within a claim. The
specifier might assert that an operation satisifes two properties. For example,
we might want to say not only that Join preserves the invariant that conns is
injective, but that it also preserves the invariant that no phone is both
making and receiving a call at once. This latter invariant can be defined in
its own schema

OneRole = [Switch | dom conns & ran conns = {}]

and we can then formulate the elaborated claim as

JoinOK1 (p : Ph; n: Num) :: [
Switch | Join (p, n) and inj conns and OneRole => inj conns’ and OneRole’]

This claim is, incidentally, weaker than the combination of the old claim
(JoinOK) and a separate claim for maintenance of the new invariant, such as

JoinOK2 (p : Ph ; n: Num) :: [
Switch | Join (p, n) and OneRole => OneRole’]

since, by asserting that the conjunction of the invariants is maintained, its
hypothesis includes both invariants; one invariant may thus contribute to
the preservation of the other.

The result of DNF conversion of JoinOK1 is two cases, one for violation of
the first invariant;

conns = called ; net

p in dom called

not ninran called

called’ = called U {p -> n}
inj conns

dom conns & ran conns = {}
not inj conns’

and another for violation of the second:

conns = called ; net

p in dom called

not ninran called

called’ = called U {p -> n}

inj conns

dom conns & ran conns = {}
not dom conns & ran conns = {}

15

Again, checking these separately is a big performance win, and gives useful
information to the user: namely which invariant is broken.

Elaborating both the claim and the operation, so that the claim is now

JoinOK3 (p : Ph; n: Num) :: [
Switch | Join2 (p, n) and inj conns and OneRole => inj conns’ and OneRole’]

would yield four analysis problems. When the checker finds a counterex-
ample, it will indicate which branch of the operation violates the property
and which property is violated.

Technically, the consequent of the implication of an apparently simple
claim such as JoinOK2 is actually a conjunction, since the schema reference
OneRole is expanded into the conjunction

conns = called ; net
dom conns & ran conns = {}

A naive translation would yield a case such as

conns = called ; net

p in dom called

not n in ran called

called’ = called U {p -> n}
dom conns & ran conns = {}
not conns = called ; net

which is obviously not satisfiable. To avoid generating such spurious cases,
the tool performs some basic simplifications during conversion to DNF, so
that no conjunct contains both an elementary formula and its negation.

10 Intermediate Relational Language

The second major transformation is applied at the level of the relational
operators, within the elementary subformulae. Its motivation is to simplify
the code of the subsequent transformations. The result of this step, which
can be viewed as an intermediate language, is a formula with the same
structure, but with relational expressions expanded to compensate for a
more frugal repertoire of relational operators.

The operators of this intermediate language are listed in Figure 5. They in-
clude the three set-theoretic operators (union, intersection and difference)
that can be applied to sets and relations; the two quintessentially relational
operators (composition and transpose); and three constants (the universal,
identity, and empty relations). These, along with the equality operator for
obtaining formulae from terms, together constitute a basic relational lan-
guage equivalent to Tarski’s relational calculus [Giv88, Tar41]. This lan-
guage is as expressive as first-order predicate logic (so long as we permit
definition of projection functions so that tuples can be constructed), and is
thus undecidable [Sch79].

The language includes, additionally, the transitive closure operator, which
extends its expressiveness, and is indispensable in practice. We also add two

16

formula ::=
expr = expr
| expr O expr

expr =
Id

| Un

|0

| expr O expr

| expr n expr

| expr \ expr

| expr ; expr

| expr ~

| expr +

| expr <: expr

| dom expr

equality
subset

identity relation constant
universal relation constant
empty relation constant
union

intersection

difference

relational composition
transpose

transitive closure

domain restriction
domain

Figure 5: Intermediate Language

operators that add nothing in a formal sense, but which allow more efficient
generation of boolean formulae. They are the domain operator, which takes
a relation to the set of elements that it maps, and domain restriction, which
given a set and a relation, produces the subrelation whose pairs have first
elements in the set. We view these as the ‘bridging operators’ that connect
relations and sets.

The language’s typing rules and semantics are given in Figures 6 and 7. M
and E are the meaning functions for formulae and expressions respectively;
C maps a type to its carrier set. Each operator is given a meaning in terms of
naive set theory. A relation is viewed as a set of pairs; the union of two rela-
tions thus becomes, for example, the union of the two sets of pairs. A set is
not viewed directly as a set, but rather as a relation whose range type is the
special type Unit, consisting of exactly one atom unit. To encode a set with
this representation, we simply construct a relation that includes the pair (e,
unit) for each element e of the original set.

The constants (universal, empty and identity) are to be considered as in-
dexed sets of constants, each with a different type. So in an expression such
as (Un n p), the appropriate instance of the constant will be chosen, whose
type matches the type of the relation p.

We chose to represent sets as relations because it corresponds to the natural
boolean representation of a set as a bit vector. The result is a cleaner back-
end, in which set-theoretic operators can be treated identically for the set
and relation cases.

17

d:ToT

Un:S T

0:S-T

p:SoT,0:S T
pdq:ST

p:SoT,0:S T
pNqg:SoT

p:SoT,0:S T
p\q:S T

p:SoT,q:T o V
p;gq:S-V

p:So T
p~:T o S

p:T T
p+:T o T

p:S o Unit,q:S o T
p<:q:So-T

p:So T
domp:S o Unit

Figure 6: Typing rules for the intermediate language

A more elegant treatment of sets [SS93], which we have used to justify re-
ductions in our explicit checker [JJD97], represents the set s as the relation

18

corresponding to the cross product of s and the universal set. In this scheme,
no additional operators are required: the domain of a relation, for example,
is obtained by composing the relation with the universal relation. In prac-
tice, however, it has a major disadvantage. The source language expression

s<ir

where sisasetand risa relation, would be translated into the intermediate
language expression

Snr

where S is the relation corresponding to (s x Un). What is the type of S in
this expression? Its domain type will be the type of the elements in the
original set s. Its range type, however, must be the type of the range of r.
Since the type of s in the source expression places no constraint on the range
type of r, we must equally allow

Snq

where q has a different range type from r. The relation S must therefore be
regarded as polymorphic in its range type. This complicates the backend of
the compiler far more than the addition of a few extra operators to the in-

termediate language.

Type declarations in Nitpick, as in Z, may involve implicit constraints. A
relation may be declared to be a function, or to be total, for example. These
constraints are translated into the operators of the intermediate language.
For example, the assertion that the relation p is a function can be expressed
as

p~; pOld

Each such elementary formula extracted from a declaration is conjoined to
every clause in the DNF representation, since type constraints apply in
every case.

For example, the clause

conns = called ; net
conns’ = called’ ; net

p in dom called

n notin ran called

called’ = called U {p -> n}
inj conns

not inj conns’

with type declarations
p: Ph; n: Num; called: Ph <-> Num; net: Num -> Ph; conns, conns’: Ph <-> Ph

is translated into

conns = called ; net
conns’ = called’ ; net
p O dom called

- n 0Odom called~

19

called’ = called O (p <: (n <: Un)~)
conns ; conns~ O Id
- conns’ ; conns’~ 0O Id

with type declarations

p: Ph <-> Unit; ; n: Num <-> Unit;
called: Ph <=> Num; net: Num <-> Ph; conns, conns’: Ph <-> Ph

and additional type constraints

p;p~0Ild -p=0
n;n~0OIld -n=0
net~ ; net O Id

11 AnInterlude: Boolean Conjunctive Normal Form

To motivate the last two stages of compilation, we must take a short digres-
sion to explain the normal form in which the boolean formula is finally cast,
since its structure and properties motivate the design of these stages.

The boolean formula is represented in conjunctive normal form, that is, as a
conjunction of disjunctions. A formula is a set of clauses; a clause is a set of
literals; a literal is a boolean variable or its negation. Here are some examples
of formulae and their representation in CNF:

alb Ha}, {b}}

alb {{a, b}}

alb {{-a, b}}

ae<b {{-a, b}, {a, -b}}

In a compositional translation to conjunctive normal form, we will need to
know, given two formulae F and G in CNF, how to create the CNF for-
mula for F OG, F OG, —F, etc. Conjunction is easy; the clauses of F 0 G
are just the clauses of F and the clauses of G. Disjunction, on the other
hand, is harder. From the identity

(alb)O(c Od)y=(@OgOOdO(bOc Ok Od)

we see that the clauses of F [JG are obtained by forming the cross-product
of their individual clause sets. So although the size of F O G is at most the

sum of the sizes of F and G, the size of F [1G may be as large as the product
of their sizes.

Negation is even worse; in the worst case it produces an exponential
blowup. Applying de Morgan’s laws to our sample expression, we get

- ((@0b) O Ody)
==(alb)O-(cOd)
=(ﬂa Dﬂb)D(ﬂC Dﬂd)

In general, the CNF of composite formulae is obtained according to these
rules:

20

M[p Oq] = 0Oa,b. (a,b) OE[p] O (a,b) O E[q]
Mp = ql = Oa,b. (a,b) OE[p] = (a,b) O E[q]
Elld: T o« T ={(a,a) | aOC[T]}

E[0]={}

E[Un:S « Tl={(@b)|laOC[S]|OOb OC[T]}
ElpO4ql ={(@b)]|(ab)0Ep] O(ab) OE[q]}
Elp nal ={(@b)]| (ab) 0 Ep] O(ab) OE[q]}
Elpyal ={(@b)| (@ab)OEp] O (a,b) OEQ)
Elp;al ={(ab)| . (a,c) OE[p] O (c,b) O E[qg]}
Elp~] ={(ab) | (b,a) OE[p]}

E [p+] = the smallest x such that x ; x O x O p OXx
Els <:p] ={(a,b) OE[p] | (a,unit) OE[s]}

E [dom p] = { (a,unit) | [b. (a,b) O E[p]}

Figure 7: Semantics of intermediate language

[FOG] =[F]O[C]
[FOGI={fOg|fO[FIOgOI[G]

[-Fl={cOVars(F) | OfO[F].Ox.xOf0O -x0Of}

12 Translation to Boolean Conjunctive Normal Form

Understanding the penultimate step depends on understanding the final
step, so we explain the latter first. The penultimate step involves no change
of language: its input is a relational formula in DNF, and its output is an-
other relational formula in DNF. In the final step, each DNF clause is
translated into a boolean formula in CNF.

A relation value can be represented as a boolean matrix, with true in the ith
row and the jth column exactly when the ith element of the domain type is
related to the jth element of the range type. So a variable denoting a relation
can be represented as a matrix of boolean variables, and, in general, a rela-
tional expression can be represented as a matrix of boolean formulae. It is
easy to define a compositional translation that obtains the representation
X[e] of a relational expression e from the representations of its parts. Rela-
tional composition, for example, corresponds to matrix product:

Xlp ; ali = G XIplk O X[alk)

21

The full set of translation rules appears in Figure 8. No rule for transitive
closure appears; as we shall see, the penultimate step (described in the next
section) eliminates it.

For each elementary subformula, a single boolean formula is derived. Writ-
ing B[F] for the boolean formula derived from relational formula F, we
have, for example,

BlpOdgl=00X[ply O Xaly

which, in terms of graphs, simply says that a relation p is a subset of a rela-
tion g when the presence of any edge in p implies its presence in g. Note
how equalities and inequalities translate smoothly into CNF: each element

X[p]ij contributes a clause. The number of clauses thus rises linearly with the
number of elements (and thus quadratically with the scope), although the
clauses themselves grow more rapidly. This observation is a major motiva-
tion for the choice of CNF.

Since the relational formula has been converted to DNF, with each con-
junct being regarded as a separate problem to solve, there are only two logi-
cal operators on relational formulae: negation and conjunction. Each is
translated directly:

B[-F] = ~B[F]
BIF 1G] = BIF] DB[C]

Conjunction is well behaved: each new elementary relational formula adds a
new set of clauses, so that the number of clauses in the final formula is lin-
ear in the size of the specification. Negation, as we have seen, however, is a
major problem, and we shall explain below how its effects are minimized.
Fortunately, the DNF clauses derived from practical problems tend to in-
volve few negated formulae (rarely more than one).

We explained above (Section 10) how typing constraints are translated into
elementary relational formulae, and subsequently have no special treatment.
In our previous work [DJJ96], in which we used binary decision diagrams
to solve the satisfaction problem, we took a different approach, in which the
encoding of a variable exploits its type constraints.

Consider representing a total function to a set of 4 elements. Its value, seen
as a bit matrix, must have exactly one bit true in each row. If, in the en-
coding of the variable, the row is represented as 4 separate boolean variables

< bo, b1, bz, bz >
this constraint must be expressed as a side condition

bo Oby Obz Obs

OboO =biO=b0-bs
Obi O =boO=-b0-bs
Ob20 =boO-bi0-bs
Obs O =boO-bi0=b:

22

Blp Odal =00 Xlpls O Xali
Blp =al =G0 XIpli = Xlali
X[dly =@ =)

X [0]; = false

X [Un]j = true

Xp O ali = X[pli OXIdli

XTp n qli = X[pli OXIgli

XTp \ ali = X[pli O -=Xlgli
XTp; ali = O XIpli BXIqlk

X [p~Ti = XIplii

X[s <:plj = XIpli OXIslio

X [dom plio = Gk X[plik

Figure 8: Translation from relational to boolean form

Since each row in the matrix represents one of 4 possible values, only two

boolean variables should be necessary. Viewing the pair of variables bb, as a
binary number, we can instead represent the row like this

< =boO=by, =boObi, boO=bi, boObi1>

in which the ith entry is the assertion that the binary number b b, denotes
the integer i. This encoding reduces the number of boolean variables re-
quired from n to log n, and dispenses with side conditions. It applies
widely, since not only functions but also scalars (which are treated as sin-
gleton sets) can be encoded in this manner.

In our BDD method, which was very sensitive to the number of variables,
this gave a dramatic improvement in performance. But for the current
method, these more sophisticated encodings perform considerably worse
than simple encodings. In CNF, each entry in a row such as that shown
above will consist of two clauses rather than one. This small difference is
amplified by disjunction.

Consider, for example, translating the composition of two relational vari-

ables in a scope of k (that is, in which all domain and range types contain k
elements). Each entry in the resulting matrix is the result of a disjunction of
k terms. In the simple encoding, each term consists of two singleton clauses,

23

so the entry can have 2" clauses. In the more sophisticated encoding, each

term consists of (2 log k) singleton clauses, so the entry is a factor of (log k)k
larger.

These calculations are borne out by our experiments. We implemented both
encodings. The clever encoding not only brought no improvement, but in
many cases caused the formula to outgrow available memory so rapidly that
the formula could not be generated at all.

At a lower level, a crucial consideration is how the CNF formula is repre-
sented and whether simplifications are applied during translation. If a for-
mula contains a clause and one of its subsets, the clause can be discarded;
this is known as subsumption and follows from the fact that any model of F
is also a model of F [J G. Eliminating redundant clauses early on can have
an enormous effect on the size of intermediate formulae.

Our prototype uses a trie-based representation developed by Zhang and
Stickel [ZS94]. Using tries naturally eliminates some redundancy — since
literals in clauses are lexically ordered, and prefixes are shared, it is easy to
ensure that a clause never appears with one of its prefixes. The trie also sup-
ports a simple and efficient implementation of the Davis-Putnam satisfi-
ability algorithm [DP60].

A huge performance gain is obtained by negation caching. A direct imple-
mentation of the translation rules will sometimes cause the negation of a
formula to be negated. Consider, for example, translating

t=p;q
where p and q are relational variables. Each element of the matrix repre-
senting the composition is a disjunction

Ok Elplix OE[q]k

which, in CNF, will require 2“ clauses of 2 literals each. Representing an
equality formula causes negation of boolean formulae on both sides

Xx=F
=x 0O FHOFEDO x)
=(-x0FOGFOX)

So the negation of these elements will be required. Directly negating an
element formula causes a second blowup, so a naive translation will result in
a huge formula. But the negation of the element formula is its dual

Ok Elplix OE[q]k

and this formula has a small CNF representation: k clauses of 2 literals.
When the element formula is computed, the compiler therefore computes
its negation at the same time, and caches it; when the negation is later re-
quired, the cached formula is used, and no computation is performed. Ad-
ditionally, whenever a formula’s negation is computed, the original formula
is cached as its negation, so that no formula is negated twice.

24

13 Introduction of Temporary Variables

We now turn to the phase that precedes the final one. It involves a simple
manipulation of the intermediate language formula, designed to minimize
the insidious effects of disjunction when the boolean formula is subse-
quently generated.

This manipulation is nothing more than the introduction of fresh variables
to replace relational subexpressions. Recall that the relational formula is in
disjunctive normal form, each clause of which is treated separately. Suppose
we have a formula that contains the subexpression e. Without changing the
meaning of the clause, we can replace e by a fresh variable v, and add to the
clause the equality v = e. By maintaining a set of replaced expressions, we
avoid introducing unnecessary new variables; if e is to be replaced in another
context, the same variable v is used. This brings the standard benefit of
common subexpression elimination: each subexpression is only translated
once. But its primary motivation is that introducing new variables can have
a dramatic effect on the size of the final boolean formula.

Decisions about where to introduce variables are currently made according
to some simple heuristics that seem to work well in practice. Although they
seem plausible from a theoretical point of view, we have not shown them to
be optimal, and it is likely they could be improved considerably.

A disjunction of k boolean terms each with m clauses can result in a formula

. k
of size m". Variables are introduced when either m or k is large. We shall
consider the cases in order of increasing importance.

* The least dramatic case, but one that nevertheless merits variable intro-
duction, arises when each element of the resulting matrix is obtained by
combining, with disjunction, an element from each of two matrices. In
translating the union expression p [J g, we must therefore ensure that
elements of the matrices resulting from translating p and q do not con-
tain many clauses. Note that if p and q are relational variables, the ele-
ments of X[p O g] will still only contain a single clause. Composition
and intersection, on the other hand, always create elements with multi-
ple clauses. So our heuristic is to replace any expression that appears in
a union expression that is itself a composition or an intersection expres-
sion.

* Asimilar issue arises at the elementary formula level. Translating p U g
also involves an element-wise disjunction, so we replace either p or g
with a variable when both are expressions involving composition or in-
tersection.

» Translating relational composition gives rise to a disjunction of k terms,
where Kk is the length of a row or column (ie, the scope). Each of these
terms is itself the result of a conjunction, so composition is always ex-
pensive. All subexpressions therefore, unless trivial (a variable or the
transpose of a variable), are replaced by variables when appearing in a
composition expression.

25

The most dramatic effect of disjunction arises for negated formulae. Con-
sider, for example, the elementary formula

pz0

where p is some relational expression. This translates to a disjunction of K
terms for a scope of k. In practice, unless p is a variable, the translation is
usually infeasible. So for any negated formula, we replace the expressions on
both sides with variables. In this case, the result is a formula with just one
clause, but for other negated formulae the result is usually still large. The
translation of

-pOq

for example, has 2 to the power k” clauses when both p and q are variables.

For any scope above 3, this is infeasible, so this case is given special treat-
ment (see Section 15).

14 Transitive Closure

Translating transitive closure presents some special problems. The transitive
closure of a relation p, p+, is the smallest relation r that includes p

pOr
and is transitive
r;rgdr
and can be computed by the series

pO(p;p)O@E;p;mO..

Since p must be homogeneous, we can view it as a graph with one node for
each element of the domain type of p, and an edge from node a to node b
whenever p relates a to b. Two nodes are associated by (p ; p) if there is a
path of two edges from one to the other; by (p; p ; p) if there is a path of
three edges, and so on; and by the closure if there is a path of any length
between them.

Computing the closure of a relation can thus be viewed as constructing
paths in such a graph; in each step we compute a set of longer paths, and
stop when we reach the fixpoint in which no path can be lengthened. How
many steps might this take? If there are n nodes in the graph, a pair of nodes
can either be connected with a path of length n or less, or not at all. It fol-
lows that a simple iterative computation will require at most n steps, each
involving a union and on average n/2 compositions.

A more efficient way to translate closure is by the series:
Po=1p
pi+1 = (pi; p) U pi

Since any path of length no greater than 2k can be decomposed into two
paths each of length no greater than k, it follows by induction that the ith
approximation in this series will associate nodes that are connected by a

26

path of at most 2 edges. In this case, however, we will reach convergence in
log n steps. This technique is known in model checking [BC+92] as iterative
squaring.

One way to encode closure is to apply the translation rules for composition
and union on the fly, translating the approximations p.. For exactly the rea-
sons explained above (in Section 13), this will not generally be feasible: the
unions lead to disjunctions of increasingly large formulae. So rather than
using the series to evaluate the closure in boolean form, we use it to expand
the closure expression syntactically. By performing this unwinding just prior
to the stage in which variable introduction occurs, the effects of the dis-
junctions are mitigated as for any other complex expression.

Although this works well and is easy to implement, it does have one unde-
sirable consequence. The compilation becomes scope dependent in an ear-
lier phase. Without closure, only the final translation to a boolean formula
depends on the scope; now variable introduction becomes dependent too.
In practice this is a minor annoyance, since the bulk of the compilation
time is in the final phase.

15 Symmetry Breaking

For relational formulae involving only the set operations (union, intersec-
tion and difference), the boolean formula grows only with k* for a scope of
k. Composition, unfortunately, introduces a factor of 2. But far worse is
the effect of certain negations: the formula

P#q
is equivalent to

Oy - Elply = Elgly

which results in a disjunction of k* terms, resulting in a boolean formula of
2 to the k’clauses. Generating such a formula is infeasible for k > 4.

Such formulae arise primarily in two places. Operations often have precon-
ditions that assert that a scalar is not in a set; this becomes an inequality on
relations, but of dimension 1 x k, so the blowup is no worse than for a
composition. More seriously, it is common to assert that an operation leaves
a state component unchanged. This gives a formula like

opdp’ #p

where op is the specification of the operation. A similar situation arises for a
claim that an operation preserves an invariant that one relation is a subset of
another.

To address this problem, we apply some ideas from our previous work on
symmetry [JDJ96, JJD97]. As we have shown, the models of relational for-
mulae are permutation invariant: given a model of a formula, the assignment
that results from permuting the atoms of the underlying universe will also
be a model. Consider now a model of the formula

27

FOp#q
in which for some particular values of i and j,

- Elply = Elqly
Applying the permutation that maps i and j both to 0, we obtain a model in
which

- E[ploo = E[qloo
is true. We can therefore replace the disjunction

0y - Elpls = Elaly
by the single term

= E[ploo = E[dloo

which, if p and q are variables, reduces the boolean formula to a single
clause!

This argument has some subtleties. If p is a homogeneous relation, its indi-
ces cannot be permuted independently. Consequently, we have to include a
diagonal and an off-diagonal element. In general, as we plan to explain in a
forthcoming paper, more than one negated equality (or inequality) can be
reduced in this way, so long as each reduction exploits permutation of a
different type. The prototype tool ranks the negated subformulae according
to their severity, and then allocates symmetry breaking reductions from the
most to the least severe, making sure never to break symmetry on the same
type twice. Fortunately, there is usually only one negated subformula on full
relations, so the method works remarkably well.

Negative equalities can also be translated into disjunctions that are handled
separately, in the same manner as top-level disjunctions. The formula

pP#q
is equivalent to
pOaUG-albp
The negated inequality
-pUq
can then be rewritten as
pnUniagzi}
which can be simplified with variable introduction to

t=pnUn\aq
t#{}

thus eliminating subsequent translation steps that would involve any more
than elementwise operations on the boolean matrices. Problematic elemen-
tary formulae that cannot be handled by symmetry breaking (because all
types have been ‘consumed’) might be handled in this way.

28

16 Solving the Boolean Formula

We have experimented with two solvers. We wrote a Davis-Putnam solver
[DP60] using Zhang and Stickel’s trie-based representation of formulae
[Z2S594] in Java as part of the prototype. We also wrote code to generate in-
put files for Selman and Kautz’'s WalkSAT solver [SKC94], a descendant of
GSAT [SLM92].

The two solvers are very different. WalkSAT, unlike Davis-Putnam, is in-
complete: it may fail to find a satisfying assignment even though one exists.
Also, because it starts from a random assignment, WalkSAT cannot be
made to produce the simplest solutions first; in our Davis-Putnam imple-
mentation, by favoring false over true in the case splitting step, we are able
to bias the solver towards small relations. On the other hand, WalkSAT can
handle much larger problems. We found that Davis-Putnam often stops
working when the number of boolean variables exceeds a few hundred.
WalkSAT, on the other hand, is so fast that the time it takes to solve the
formula is invariably dominated by the time the compiler took to construct
it.

We have not found the incompleteness of WalkSAT to be a problem: we
have yet to come across a problem that we believed had a solution but
which WalkSAT failed to find.

Both methods have a desirable performance property. When there is a solu-
tion, it tends to be found very quickly; when there isn’t, the solver can run
for a very long time. The engine underlying our previous implementation of
Nitpick [JJD97] did not have this property: in many cases, successful and
unsuccessful searches took roughly the same amount of time (within a fac-
tor of 2 to 10). Of course we would like the solver to work fast whatever the
outcome, but if forced to pick, a very uneven distribution biased towards
yielding solutions is, in practice, much better.

17 Performance results

Some performance results for a variety of specfications are shown in Table
1; the specifications are reproduced, mainly in full, in the Appendix. The
first two examples are toy benchmarks; Phone is the specification of Figure 1
(but for a different claim, invB_preserved) and Finder is a specification of the
directory structure of the Macintosh Finder.

Style is a specification of the paragraph style hierarchy of Microsoft Word,
described in detail in [JD96a].

Allocate is a simplified fragment of a railway interlocking specification writ-
ten in Z by Praxis UK PLC. The performance figures are for the claim Al-
locSafe2.

Mobile IP is a specification of a draft version of a mobile internet protocol
for IPv6, written by an undergraduate at Carnegie Mellon [JNW97, Ng97].
The performance figures are for the claim loc_update_OK, which exposed a
flaw in the protocol.

29

Table 1 is to be interpreted as follows. The column marked Cases gives the
number of clauses in the DNF representation of the claim; Formulae gives
the maximum number of relational formulae in each clause. In the analysis
of Style, for which there were 12 clauses, a model was always found in the
first clause; the other columns refer to this clause alone.

The columns marked Vars and Clauses give the number of boolean variables
and clauses in the emitted formula; Translate and Solve give the times to
perform the translation and solve the boolean formula. All formulae were
solved using WalkSAT, except when DP appears in parentheses after the
solving time; for these, the built in Davis-Putnam solver was sufficient (ie,
found a solution in less than 30s). All timings were obtained using Sun-
Soft’s just-in-time compiler, running under Windows NT on a Pentium
133MHz processor with 64MB of memory. All times are wall clock times;
no attempt was made to get precise numbers for times less than 1 second.

The final column gives the time taken by the explicit version of Nitpick,
coded in C and running on a Macintosh with a 66MHz PowerPC 601
processor and 24MB of RAM. Since this machine is perhaps 3 times slower
than the Windows machine, the solving times for the new method should
be multiplied by 3. (The translation times do not need the same adjust-
ment, because of a compensating discrepancy between Java and C).

The entry ?? indicates that a model was not found in a reasonable time; we
set a bound of one hour. The explicit checker did find a model for Mobile
IP, but for a smaller scope in which different bounds were associated with
different types. This scope could not be checked with the new method, be-
cause the prototype currently allows only scope settings that give every type
the same bound.

As can be seen, the new method outperforms the old method in almost all
cases. It seems likely that it will be able to handle much larger models.
Moreover, the new method is much simpler to implement; our entire pro-
totype is only about 6000 lines of Java code, of which almost half is con-
cerned with front-end functionality (parsing and static checks).

The explicit method is barely able to handle the Mobile IP example, and
cannot handle Allocate at all. Allocate is particularly well suited to the new
method, because it involves several relations but few compositions. Finder,
on the other hand, is biased towards the explicit checker; its relations are
constrained to be functions, and transitive closure (which is no more expen-
sive for the explicit checker than any other operator) appears several times in
the formula. 1t is nevertheless surprising that WalkSAT takes so long to
solve the scope 6 instance of Finder — it required about 760 thousand flips
of boolean variables, distributed over 8 separate attempts from different,
randomly generated starting assignments.

Tables 2 and 3 show the effects of negation caching and symmetry break-
ing. In both, the italicized columns represent measurements taken without
the optimization. Negation caching has a huge effect, increasing with the
scope; in many cases, it reduces the final formula size by an order of mag-
nitude. The scope 4 instance of Style is worth noting: the translation time,

30

but not the formula size is dramatically reduced. This is probably because
negation caching saves unnecessary computation, and reduces the size of
many formulae generated in the course of the translation.

Symmetry has a negligible effect on all examples except for Style, the only
example whose formula involves negated equalities of relation-valued vari-
ables. The italicized numbers in this table were obtained with symmetry
breaking off, but negation caching on.Without symmetry, the formula for a
scope of 5 cannot even be generated.

31

Example Cases Formulae Scope Vars Clauses | Translate Solve Explicit

Phone 1 10 3 66 307 Os 0s (DP) Os

4 112 842 Os 0s (DP) 0.5s

5 170 2159 Os 0s (DP) 35s

6 240 5413 1s 2s (DP) 5m
Finder 1 47 3 273 1364 Os 15 (DP) 0.5s

4 464 3500 Os Os 1s

5 705 8483 Os 3s 11s

6 996 20779 9s 2m,33s 2m,12s
Style 12 71 3 408 1864 1s 6s (DP) 1s

4 704 4385 2s Os 11s

5 1080 9977 65 5s 11m,45s
Allocate 1 41 3 192 522 Os 1s (DP) 10s

4 316 931 Os Os ”

5 470 1473 Os Os ”

10 1690 6693 65 Os ”
Mobile IP 1 68 3 438 2436 Os Os ”

4 760 6548 3s Os ”

5 1170 16536 8s Os ”

Table 1: Performance compared to explicit method

32

Example Scope Vars Clauses | Clauses Trans Trans Solve Solve
Phone 3 66 607 313 /s Os Os (DP) 0s (DP)
4 112 2808 856 Os Os 0s (DP) | Os (DP)
5 170 12489 2189 31s Os 7s (DP) | 0s (DP)
6 240 52923 5413 6m,12s | 1s 5s (P | 25 (DP)
Finder 3 273 1793 1370 Os Os Os 15 (DP)
4 464 6935 3500+ 2s Os Os Os
5 705 27831 8483+ 27s Os 5s 3s
6 996 7172635 | 20866 9m,32s | 9s 7 2m,33s
Style 3 408 2908 2234 Os Os 6s (DP) | 65 (DP)
4 704 57377 53495 Im51s | 17s* Os Os
5 1080 72 ” 72 ” 72 ”
Mobile IP 3 438 3330 2439 /s Os Os Os
4 760 13242 6608 17s 3s Os Os
5 1170 52826 16691 2m,56s | 9s Os Os

Table 2: Effect of negation caching

33

Example Scope Vars Clauses | Clauses Trans Trans Solve Solve

Style 3 408 2234 1864 Os Os 2s(DP) | 6s(DP)
4 704 53495 4385 175 2s Os Os
5 1080 4 9977 4 6s 4 5s

Table 3: Effect of symmetry breaking

18 Related Work

Our previous method worked by explicit enumeration of relation values,
with two principal mechanisms to prune the search: short circuiting, in
which a partial assignment could be rejected by determining that any exten-
sion to a full assignment would not yield a model [DJ96], and isomorph
elimination, which exploited symmetries in the search space to avoid the
generation of a high proportion of the relation values [JDJ96, JJD97].

On most of our examples, the new boolean method performs better. In
particular, the explicit checker does badly when there are several variables
representing relations that are not constrained to be functions, and for
which there are few mutual constraints; in this case, short circuiting fares
badly, and the search is often intractable. The explicit checker always prefers
functions to relations; the boolean checker, in contrast, prefers relations
since there are then no side conditions. On the other hand, increasing the
complexity of the formula itself tends to improve the performance of the
explicit checker, but it has a detrimental effect on the boolean checker. The
explicit checker can take advantage of equalities by eliminating variables; the
boolean checker, in contrast, introduces variables to avoid complex expres-
sions and reduce translation time, and pays the price in solving time. For
this reason, the explicit checker might be better as a simulator: if operations
are expressed mostly constructively (with post-state variables equated to ex-
pressions involving pre-state variables), it can explore the execution of a se-
quence of operations with little extra cost.

In his PhD thesis, Craig Damon is investigating bounded generation, a new
pruning mechanism for the explicit checker that seems, from initial experi-
ments, to be promising. It remains to be seen how it will perform in com-

parison to the boolean checker.

We have experimented before with a boolean checker, representing boolean
formulae not in CNF but with ordered binary decision diagrams (BDDs)
[DJJ96]. Although that method performed very well on some small exam-
ples, it did not appear to scale. Unlike CNF, a BDD is canonical, so trans-
lation cannot be separated from solving; if the formula has no models, it
must be the formula false. Translation into BDDs can take vast amounts of

34

memory, and offers no discount for finding only some models, since the
final BDD represents all models. The BDD-based checker also suffered
from the well known unpredictability of BDDs; a small change in the vari-
able ordering might have a dramatic effect, and problems that looked alike
were often not equally hard to solve. The canonicity of BDDs is essential in
the context of model checking, because it allows detection of fixed points.
But for our problem, canonicity is unnecessary and its cost is not warranted.

The remarkable success of the stochastic solver GSAT [SLM92] and its de-
scendants has made boolean translation attractive in other domains too.
The closest application to ours is in planning, where the problem of finding
a plan that satisfies a set of constraints is reduced to finding a model of a
boolean formula [KS96, EMW97]. The planning problem is technically
closer to the model checking problem than to our problem: namely finding
a sequence of transitions in a state machine that leads to a state satisfying a
given property (in planning, the goal, and in model checking, the negation
of the invariant). The focus on data structures rather than on transition se-
guences makes our compilation process rather different from those em-
ployed in planning.

19 Future Work

19.1 Algorithms and Data Structures

The trie representation of CNF is reasonably compact — typically a third
smaller than a representation without sharing of subclauses — and, because
of the ordering of variables, efficiently manipulated. The trie structure
eliminates some redundancy, but not all: a clause may appear with a sub-
clause if the subclause is not a prefix. We performed some experiments to
determine what proportion of clauses held in the trie are redundant; it ap-
pears to be around 30% for large tries. It might be possible to eliminate
more redundancy without too much additional computation, perhaps by
using a different data structure such as a suffix tree.

19.2 Language Extensions

Several features would add nothing in expressive power but would make NP
an easier language to use.

Quantifiers over scalar variables would relieve the burden of encoding all
constraints with relational operators alone. One common idiom that calls
for quantifiers (or perhaps a dual of the composition operator) arises from
an assertion that would be written with quantifiers thus:

forall x,y,z.(x ->y)inpand (y ->z)ing=>(X->2z)inr

To encode this in relational operators, we rewrite with negations

notexistx,y,z.(x ->vy)inpand (y -> z)ingand not (x -> z)inr

and then translate negation using complementation:

p;a&Unin =i}
The purely relational version is often — as here — terse, elegant and obscure.

35

An abstraction mechanism for generic functions and constraints would simplify
specifications by factoring out complex idioms. Tree structure, for example,
arises frequently; rather than axiomatizing each tree structure anew, the
specifier might write Tree(p) to assert that a relation p mapping nodes to
their parents describes a tree, with the predicate Tree previously defined:

Tree (p) = (Fun(p) and Acyclic(p) and One(Roots(p)))
Acylic (p) = (p+ &Id ={})

Roots (p) = (ran p \ dom p)

One (s) = (Fun(Un :> s))

Fun (p) = (p~; p O Id)

Ternary relations are not common, but are clumsy to encode as binary rela-
tions and should be supported directly. A ternary relationron Ax B x C is
probably best treated curried, so that r.a denotes a relation on B x C.

Integers would add expressive power. Subtraction, addition and comparison
alone would allow a sequence of elements of type T to be modelled more
naturally as a function from a prefix of the naturals to T, where currently we
are forced to represent the sequence more abstractly as an ordering of buck-
ets that contain values. Indexing of sequences would simply be an instance
of function application; concatenation would be provided explicitly. How
to handle the semantics of integer addition over a finite scope is not clear.

20 Acknowledgments

This work benefited in its early stages from discussion with Somesh Jha and
Craig Damon. Aaron Greenhouse implemented the trie representation of
CNF, the Davis Putnam solver and a preliminary version of the prototype’s
parser. Thanks also to Greg Nelson, who persuaded me to ‘dust off’ the
boolean approach and give it another try. This research was funded in part
by NSF grant CCR-9523972.

21 References

[BC+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill and L.J.
Hwang. Symbolic model checking: 10” states and beyond. In-
formation and Computation, Vol. 98, No. 2, pp.142-170, June
1992.

[C+95] Edmund M. Clarke, Orna Grumberg, Hiromi Hiraishi, Somesh
Jha, David E. Long, Kenneth L. McMillan, Linda A. Ness.
Verification of the Futurebus+ cache coherence protocol. Formal
Methods in System Design, 6, 217-232, 1995.

[DJ96] C. Damon and D. Jackson. Efficient Search as a Means of Exe-
cuting Specifications. Proc. Tools for Construction and Analysis of
Software, Passau, Germany, March 1996, pp. 70-86.

[DJJ96] Craig A. Damon, Daniel Jackson and Somesh Jha. Checking
Relational Specifications with Binary Decision Diagrams. Proc.

36

[DP60]

4th ACM SIGSOFT Conf. on Foundations of Software Engineer-
ing, San Francisco, CA, October 1996, pp.70-80.

Martin Davis and Hilary Putnam. A computing procedure for
quantification theory. Journal of the ACM, Vol. 7, pp. 202-215,
1960.

[EMW97] Michael D. Ernst, Todd D. Millstein and Daniel S. Weld.

[G+95]

[Giv8s]

[1BM97]
[JD95]

[ID964]

[JD96b]

[IDI96]

[1JD97]

[INWO7]

[KS96]

[Ng97]

Automatic SAT-Compilation of Planning Problems. Proc. 15"
International Joint Conference on Artificial Intelligence (IJCAI-
97), Nagoya, Aichi, Japan, August 1997, pp. 1169-1176.

Erich Gamma, Richard Helm, Ralph Johnson and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1995.

Steven Givant. Tarski’s development of logic and mathematics
based on the calculus of relations. Colloquia Mathematica Janos
Bolyai 54, Algebraic Logic, Budapest, Hungary, 1988.

Object Constraint Language. www.software.ibm.com/ad/ocl.

Semi-executable Specifications. Daniel Jackson and Craig A. Da-
mon, CMU-CS-95-216, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, November 1995.

Elements of Style: Analyzing a Software Design Feature with a
Counterexample Detector. Daniel Jackson and Craig A. Damon.
IEEE Transactions on Software Engineering, Vol. 22, No. 7, July
1996, pp. 484-495.

Daniel Jackson and Craig A. Damon. Nitpick Reference Manual.
CMU-CS-96-109. School of Computer Science, Carnegie Mel-
lon University, Pittsburgh, PA, January 1996.

Daniel Jackson, Craig A. Damon and Somesh Jha. Faster
Checking of Software Specifications. Proc. ACM Conf. on Prin-
ciples of Programming Languages, St. Petersburg Beach, FL, Janu-
ary 1996, pp. 79-90.

Daniel Jackson, Somesh Jha and Craig A. Damon. Isomorph-
free Model Enumeration: A New Method for Checking Rela-
tional Specifications. To appear, ACM Transactions on Pro-
gramming Languages and Systems.

Daniel Jackson, Yuchung Ng and Jeannette Wing. A Nitpick
Analysis of IPv6. Submitted to Formal Aspects of Computing.

Henry Kautz and Bart Selman. Pushing the envelope: planning,
propositional logic, and stochastic search. Proc. 5" National
Conference on Artificial Intelligence, 1996, pp. 1194-1201.

Yu-Chung Ng. A Nitpick Specification of IPv6. Senior Honor’s
Thesis, Computer Science Department, Carnegie Mellon Uni-
versity, May 1997.

37

[Sch79]
[SKC94]

[SLM92]

[Spi92]

[SS93]

[Tar41]

[2594]

Wolfgang Schoenfeld. An undecidability result for relational
algebras. Journal of Symbolic Logic, 44(1), March 1979.

Bart Selman, Henry Kautz and Bram Cohen. Noise strategies for
improving local search. Proc. AAAI-94, pp. 337-343, 1994.

Bart Selman, Hector Levesque and David Mitchell. A new
method for solving hard satisfiability problems. Proc. 10" Na-
tional Conference on Artificial Intelligence.

J. Michael Spivey. The Z Notation: A Reference Manual. Second
ed, Prentice Hall, 1992.

Gunther Schmidt and Thomas Stroehlein. Relations and Graphs.
EATCS Monographs in Theoretical Computer Science,
Springer-Verlag, 1993.

Alfred Tarski. On the calculus of relations. Journal of Symbolic
Logic, 6(1941), pp. 73-89.

Hantao Zhang and Mark E. Stickel. Implementing the Davis-

Putnam Algorithm b yTries. Technical Report 94-12, Artificial
Intelligence Center, SRI International, Menlo Park, CA. De-
cember 1994.

38

Appendix: Benchmark Specifications

Phone
[Ph, Num]
Switch = [

Called: Ph <-> Num
const Net: Num -> Ph
Conns: Ph <-> Ph

Conns = Called ; Net
]

Join (p: Ph; n: Num) = [
Switch

p in dom (Called)

not (n in ran Called)

Called' = Called U {p —> n}
]

invB = [Switch | (dom Conns) & (ran Conns) = {}]
invC = [Switch | fun (Conns~)]

InvB_preserved (p: Ph; n: Num) :: [Switch | Join(p,n) and invB => invB']
InvC_preserved (p: Ph; n: Num) :: [Switch | (Join(p,n) and invC) =>invC']

Finder
[0B]]

Finder = [
const drive, trash: OBJ
const files, folders: set OBJ
dir, links: OB) -> OB]J
trashed, aliases: set OBJ
|
{drive, trash} <= folders \ dom dir
ran dir <= folders
trashed = dir~+.{trash}
not drive in trashed U {trash}
aliases <= files
aliases = dom links
links+ & Id = {}
files & folders = {}
files U folders = OB]J
]

Move (x, to: OBJ) = [
Finder

X not in dir*.{to}

39

dir' = dir (+) {x —=> ((links* ;> aliases).to)}
links' = links

]

TrashingWorks (x, to: OBJ) :: [Finder |
Move (x, to)
and to in trashed U {trash}
=> X in trashed'

Style
[style, format]

Tree =
based : style —> style
const normal : set style
|
normal & dom based = {}
ran based \ normal <= dom based
based+ & Id = {}
]

Sheet = [
Tree
delta, assoc : style -> format
|
normal <: assoc
normal <; assoc = normal <; ((based ; assoc) (+) delta)

]

normal <: delta

ChgParent (s, from, to : style) = [
Sheet
|

s in dom based and from = based.s
based' = based (+) {s -> to}

assoc' = assoc

{s} <; delta = {s} <; delta’

assoc.to = assoc.from => delta' = delta

]
Xi ()= [const Sheet]

Claim (s, from, to : style) ::
[Style | ChgParent (s, from, to) ; ChgParent (s, to, from) => Xi()]

Allocate

[USER, RESOURCE]

Bookings = [
reservedBy : RESOURCE -> USER
pending, granted, free : set RESOURCE

40

reserved : set RESOURCE
|

reserved = dom reservedBy

pending & granted & free = {}

pending & free = {}

granted & free = {}

pending U granted U free = RESOURCE
]

Resources = [
open, closed : set RESOURCE
const overlap, incons, excludes : RESOURCE <-> RESOURCE
excluded : set RESOURCE

|
overlap~ = overlap and overlap & Id = {}
incons~ = incons and incons & Id = {}
excludes = incons U overlap
incons.open <= closed
excluded = excludes.open
open & closed = {}
open U closed = RESOURCE

Users = [
usedBy : RESOURCE -> USER
used : set RESOURCE

|
used = dom usedBy

]

Allocate (r : RESOURCE; u : USER) = [
Resources Users Bookings

|
rin (pending & open) \ (excludes.reserved)
{r —> u} <= reservedBy
granted' = granted U {r}
reservedBy' = reservedBy
usedBy' = usedBy U {r -> u}

AllocSafeQ (r : RESOURCE; u : USER) :: [

Resources Users Bookings
|

Allocate (r, u) and (excludes.reserved & reserved = {})
=> excludes.reserved' & reserved' = {}

]

AllocSafel (r : RESOURCE; u : USER) :: [
Resources Users Bookings

41

Allocate (r, u) and (excluded & granted= {})
=>excluded' & granted' = {}

]

AllocSafe2 (r : RESOURCE; u : USER) :: [
Resources Users Bookings
|
Allocate (r, u) and (incons.used & used = {})
=> (incons.used' & used' ={})

]

AllocSafe3 (r : RESOURCE; u : USER) :: [

Resources Users Bookings
|

Allocate (r, u) and (incons U overlap).used & used = {}
=> (incons U overlap).used' & used' = {}

]

Mobile IP
[HOST, MSG, TS]

net = [
router: HOST
cached: set HOST
subh: set HOST
clock: TS
caches: HOST -> HOST
cache_exp_time: HOST -> TS
updates: set MSG
to, from, where: MSG -> HOST
send_time, exp_time: MSG -> TS
const precedes: TS -> TS
const before: TS <-> TS

dom to = updates

dom from = updates

dom where = updates

dom send_time = updates

dom exp_time = updates

dom cache_exp_time = dom caches

exp_time <= send_time; precedes+

caches & Id = {}

(from; from~) & (to; to~) & (send_time; send_time~) <= Id
(from~; to) & Id = {}

/* axiomatize the time ordering as a total order */
/* for now, make do with weaker constraint */
before = precedes+

before & Id = {}

42

mh_arrive (h:HOST; m:MSG; t:TS) = [net |
not router = h
router' = h
not m in updates
tin (before.{clock})
clock’ in (before.{clock})
subh <= cached
cached' = subh
cache_exp_time' = (cached' <: cache_exp_time) :> (before.{clock'})
caches' = dom(cache_exp_time') <: caches
updates' = updates U {m}
send_time' = send_time U {m -> clock}
exp_time' = exp_time U {m -> t}
to' = to U {m -> router}
from' = from U {m -> h}
where' = where U{m -> h}

update_arrival (m:MSG) = [net |

clock' in before.{clock}

subh <= cached

cached' = {to.m} U subh

cache_exp_time' = (cached' <: (cache_exp_time (+) {to.m —> exp_time.m})) :>
(before.{clock'})

caches' = dom (cache_exp_time') <: (caches (+) {to.m -> where.m})

router' = router

updates' = updates

to' =to

from' = from

where' = where

send_time' = send_time

exp_time' = exp_time

acyclic_caches = [net | caches+ & Id = {}]

host_move_OK (h:HOST; m:MSG; t:TS) ::
[net | acyclic_caches and mh_arrive (h, m, t) => acyclic_caches']

loc_update_OK (m:MSG) ::
[net | acyclic_caches and update_arrival (m) => acyclic_caches']

43

