
Multigrain Shared Memory

by

Donald Yeung

B.S., Computer Systems Engineering

Stanford University, 1990

S.M., Electrical Engineering and Computer Science

Massachusetts Institute of Technology, 1993

Submitted to the Department of Electrical Engineering and Computer Science

in partial ful�llment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1998

c
 1998 Massachusetts Institute of Technology. All rights reserved.

Signature of Author:

Department of Electrical Engineering and Computer Science

December 17, 1997

Certi�ed by:

Anant Agarwal

Associate Professor of Computer Science and Engineering

Thesis Supervisor

Accepted by:

Arthur C. Smith

Chairman, Departmental Graduate Committee

2

Multigrain Shared Memory

by

Donald Yeung

Submitted to the Department of Electrical Engineering and Computer Science

on December 17, 1997 in partial ful�llment of the

requirements for the Degree of

Doctor of Philosophy

in Electrical Engineering and Computer Science

ABSTRACT

Parallel workstations, each comprising a 10-100 processor shared memory machine,

promise cost-e�ective general-purpose multiprocessing. This thesis explores the coupling

of such small- to medium-scale shared memory multiprocessors through software over a

local area network to synthesize larger shared memory systems. Multiprocessors built in

this fashion are called Distributed Scalable Shared memory Multiprocessors (DSSMPs).

The challenge of building DSSMPs lies in seamlessly extending hardware-supported

shared memory of each parallel workstation to span a cluster of parallel workstations

using software only. Such a shared memory system is called Multigrain Shared Memory

because it naturally supports two grains of sharing: �ne-grain cache-line sharing within

each parallel workstation, and coarse-grain page sharing across parallel workstations.

Applications that can leverage the e�cient �ne-grain support for shared memory provided

by each parallel workstation have the potential for high performance.

This thesis makes three contributions in the context of Multigrain Shared Memory.

First, it provides the design of a multigrain shared memory system, called MGS, and

demonstrates its feasibility and correctness via an implementation on a 32-processor

Alewife machine. Second, this thesis undertakes an in-depth application study that

quanti�es the extent to which shared memory applications can leverage e�cient shared

memory mechanisms provided by DSSMPs. The thesis begins by looking at the perfor-

mance of unmodi�ed shared memory programs, and then investigates application trans-

formations that improve performance. Finally, this thesis presents an approach called

Synchronization Analysis for analyzing the performance of multigrain shared memory

systems. The thesis develops a performance model based on Synchronization Analysis,

and uses the model to study DSSMPs with up to 512 processors. The experiments and

analysis demonstrate that scalable DSSMPs can be constructed from small-scale work-

station nodes to achieve competitive performance with large-scale all-hardware shared

memory systems. For instance, the model predicts that a 256-processor DSSMP built

from 16-processor parallel workstation nodes achieves equivalent performance to a 128-

processor all-hardware multiprocessor on a communication-intensive workload.

Thesis Advisor: A. Agarwal

Title: Associate Professor of Computer Science and Engineering

4

5

Acknowledgments

Pursuing my doctorate at MIT has been the most challenging endeavor I have ever

undertaken. In retrospect, I de�nitely appreciate the opportunity I've been given to face

such a challenge because of the enrichment I have received both in my professional and

personal life in ways I could never have imagined prior to arriving in Cambridge seven

and a half years ago. For these life-changing experiences, I owe many thanks to a number

of people.

I would like to begin by acknowledging my advisor, Anant, for his invaluable guidance

which has kept me going all these years, and for his never-ending moral support, without

which I would never have had the con�dence to overcome the hurdles of my degree. I

will forever be in awe of his ability to think on his feet (a.k.a. \shoot from the hip"),

his in�nite energy, and his ability to get others excited about almost anything. Most

importantly, I will always hold the greatest respect for Anant because of his commitment

to promoting his students before himself so that they may succeed.

I would also like to acknowledge the members of the Alewife team, without whom none

of my thesis would have been possible. Thanks go to Beng, Dan, David (Chaiken), David

(Kranz), and Rajeev, to whom I owe all the simulation, compilation, debugging, and

runtime software infrastructure in the Alewife machine. To Kirk, I owe many inspiring

technical conversations, particularly early on in my career at MIT. Thanks go to Fred

for all his advice on interviews that allowed me to survive my job search. To Anne, I

(as well as everyone else in the Alewife group) owe all the support that kept the group

from an administrative train wreck. To Ken, perhaps the most compatible o�ce mate

I will ever have, I owe many lessons on hardware hacking, as well as many stimulating

research discussions, some that lead to important ideas for my thesis. Of course, I will be

eternally grateful to Kubi, who managed to be a colleague, mentor, and friend all at the

same time, and whose tremendous knowledge and wisdom make him one of the greatest

teachers I will ever have. And together, to Kubi and Ken, I owe the endless hours of

comradary that have de�ned the \Alewife experience" for me, and that I will remember

for the rest of my life.

Finally, my greatest thanks go to Mom, Dad, Marina, and Melany, whose love and

support has allowed me to leave MIT with my sanity intact.

6

Contents

1 Introduction 17

1.1 Contributions . 19

1.2 Outline . 21

2 Background 23

2.1 Distributed Shared Memory . 23

2.1.1 Addressing Resource Contention 24

2.1.2 Cache Coherence . 25

2.2 DSM Implementation . 26

2.2.1 Hardware Cache Coherence . 27

2.2.2 Page-Based DSMs . 29

3 The Multigrain Approach 33

3.1 A De�nition of Grain . 34

3.2 Granularity in Conventional Architectures 36

3.2.1 Supporting Fine-Grain Sharing 36

3.2.2 Supporting Coarse-Grain Sharing 38

3.3 Multigrain Systems . 39

3.3.1 A Hybrid Approach for Both Cost and Performance 40

3.3.2 DSSMPs . 41

3.3.3 DSSMP Families . 44

4 MGS System Architecture 47

4.1 Enabling Mechanisms . 47

4.1.1 Conventional Shared Memory Mechanisms 48

4.1.2 Additional Mechanisms for Multigrain Shared Memory 50

4.2 Architectural Structure . 57

4.2.1 Three-Machine Discipline . 57

4.2.2 Simultaneous Transactions . 64

4.2.3 Low-Level Components . 67

4.3 User-Level Multigrain Synchronization 71

4.3.1 Barriers . 72

4.3.2 Locks . 73

7

8 CONTENTS

4.4 MGS Library Interface . 75

5 Implementation 77

5.1 A Platform for Studying DSSMPs . 77

5.2 The Alewife Multiprocessor . 80

5.2.1 Hardware Cache-Coherent Shared Memory 81

5.2.2 Fast Inter-Processor Messages . 82

5.3 Implementation Issues on Alewife . 84

5.3.1 Software Virtual Memory . 84

5.3.2 Simulating Inter-SSMP Communication 92

5.3.3 Page Cleaning . 96

5.3.4 Mapping Consistency . 99

5.3.5 Statistics . 100

5.3.6 User-Kernel Decomposition . 102

6 Experimental Results 105

6.1 Micro-Measurements . 105

6.2 Performance Framework . 109

6.3 Applications . 112

6.3.1 Application Suite . 113

6.3.2 Application Results . 117

6.4 Application Transformations . 129

6.4.1 Transformation Descriptions . 130

6.4.2 Transformation Results . 132

6.4.3 Discussion . 137

6.5 Sensitivity Study . 138

6.5.1 Inter-SSMP Latency . 139

6.5.2 Page Size . 141

7 Analysis 145

7.1 Analytical Framework . 146

7.1.1 Analyzing performance on DSMs 147

7.1.2 Communication in Software DSMs 148

7.1.3 Performance Model . 154

7.2 Scalability Study . 163

7.2.1 Application Description for Water 163

7.2.2 Model Validation . 168

7.2.3 Scaling Results . 169

8 Related Work 181

8.1 Page-Based Shared Memory . 181

8.2 Multigrain Systems . 182

8.3 Fine-Grained SMP Clusters . 186

CONTENTS 9

9 Conclusion 189

A MGS Protocol Speci�cation 205

10 CONTENTS

List of Figures

2.1 Shared memory multiprocessors. 24

2.2 Distributed shared memory. 25

3.1 De�ning sharing granularity using the grain vector. 35

3.2 Classi�cation of sharing granularity in terms of spatial and temporal dis-

tances. 36

3.3 A Distributed Scalable Shared Memory Multiprocessor. 41

3.4 Distribution of a single page of data across three SSMPs. 43

3.5 DSSMP families. 44

4.1 Schematic of the MGS system. 48

4.2 Unnecessary communication and protocol processing overhead for sharing

under the Single-Writer condition. 54

4.3 Overhead of Di� Creation and Di� Bypass as a function of the number of

modi�ed words in the page. 56

4.4 The 2-machine decomposition in conventional software DSM systems. . . 58

4.5 The 3-machine decomposition in multigrain shared memory systems. . . 58

4.6 TLB fault transactions in MGS. 60

4.7 Page fault transactions in MGS. 60

4.8 Page upgrade transactions in MGS. 60

4.9 Release transactions in MGS. 61

4.10 Single-Writer reversion as the compound of the Page Fault and Release

transactions. 63

4.11 MGS Client architecture. 67

4.12 MGS Server architecture. 68

4.13 MGS Barrier. 72

4.14 MGS Lock. 74

5.1 The Alewife Machine. 81

5.2 Memory map for the MGS system. 87

5.3 Pseudo-assembly code for detecting virtual addresses in software virtual

memory. 88

5.4 Pseudo-assembly code for performing a mapped access. 89

11

12 LIST OF FIGURES

5.5 Pseudo-assembly code for performing a mapped access, with code to cor-

rect for the atomicity problem. 91

5.6 Pseudo-C code for performing page cleaning. 96

5.7 Pseudo-C code for performing page cleaning with prefetching optimizations. 97

5.8 Instrumenting timers in interruptible handlers. 101

5.9 Decomposition of the MGS system into user-space and kernel-space mod-

ules. 103

6.1 A hypothetical application analyzed using the performance framework.

This application is not well-suited for DSSMPs. 110

6.2 A hypothetical application analyzed using the performance framework.

This application is well-suited for DSSMPs. 111

6.3 Results for Jacobi. 120

6.4 Results for Matrix Multiply. 120

6.5 Results for FFT. 121

6.6 Results for Gauss. 121

6.7 Results for Water. 123

6.8 Results for Barnes-Hut. 123

6.9 Pseudo-C code for the force interaction computation in Water. 124

6.10 Breakdown of runtime in Barnes-Hut into major phases of computation. . 125

6.11 Results for TSP. 127

6.12 Results for Unstructured. 127

6.13 Transformation results for Water. 134

6.14 Transformation results for Barnes-Hut. 135

6.15 Transformation results for TSP. 136

6.16 Transformation results for Unstructured. 137

6.17 Latency sensitivity results for Jacobi. 140

6.18 Latency sensitivity results for Water. 140

6.19 Latency sensitivity results for Water-Kernel with tiling. 141

6.20 Page size sensitivity results for Water-Kernel. 144

6.21 Page size sensitivity results for Water-Kernel with tiling. 144

7.1 The local memory hierarchy in a DSM sits between the processor and the

network. 147

7.2 Data and synchronization dependences in RC programs. 150

7.3 Analyzing clustering involves identifying synchronization dependences that

cross SSMP node boundaries. 153

7.4 The performance analysis framework for multigrain systems. 155

7.5 Closed queuing system used to model lock contention due to critical section

dilation. 160

7.6 Partitioning of the iteration space of the force interaction computation in

Water-Kernel-NS. 165

7.7 Validation for Water-Kernel-NS model ignoring interleaving e�ects. . . . 168

LIST OF FIGURES 13

7.8 Validation for Water-Kernel-NS model accounting for interleaving e�ects. 169

7.9 Validation for tiled Water-Kernel-NS model. 170

7.10 Scaling Water-Kernel-NS. 32 Processors. 172

7.11 Scaling Water-Kernel-NS. 128 Processors. 174

7.12 Scaling Water-Kernel-NS. 512 Processors. 174

7.13 Scaling tiled Water-Kernel-NS. 32 Processors. 175

7.14 Scaling tiled Water-Kernel-NS. 128 Processors. 176

7.15 Scaling tiled Water-Kernel-NS. 512 Processors. 177

7.16 Performance-equivalent machines for the original version of Water-Kernel-

NS. 178

7.17 Performance-equivalent machines for the tiled version of Water-Kernel-NS. 179

A.1 MGS Protocol state transition diagram: Local-Client Machine 207

A.2 MGS Protocol state transition diagram: Remote-Client Machine 207

A.3 MGS Protocol state transition diagram: Server Machine 207

14 LIST OF FIGURES

List of Tables

4.1 A comparison of possible fault events encountered by the software DSM

layer in a conventional software DSM system and in the MGS system. . 51

4.2 Programmer's interface to the MGS system. 75

5.1 Memory objects in MGS. 86

5.2 MGS messages that send data. 94

6.1 Cache-miss penalties on Alewife. 106

6.2 Software Virtual Memory costs on MGS. 107

6.3 Software shared memory costs on MGS. 107

6.4 List of applications, their problem sizes, and their size in number of lines

of C code. 113

6.5 Baseline application performance. 114

6.6 Summary of application performance on DSSMPs. 118

6.7 Summary of performance bottlenecks and transformations. 130

6.8 Summary of application transformations performance on DSSMPs. 133

6.9 Relative grain on MGS and other systems. 142

7.1 Application transaction pro�le parameters. 156

7.2 Lock pro�le parameters. 157

7.3 Machine description parameters. 157

7.4 Scaling results summary{execution times. 171

7.5 Scaling results summary{speedups . 172

A.1 MGS Protocol state transition table: Local-Client Machine. 208

A.2 MGS Protocol state transition table: Remote-Client Machine. 208

A.3 MGS Protocol state transition table: Server Machine. 209

A.4 Message types used to communicate between the Local-Client, Remote-

Client, and Server machines in the MGS Protocol. 210

15

16 LIST OF TABLES

Chapter 1

Introduction

Large-scale shared memory multiprocessors have received signi�cant attention within

the computer architecture community over the past decade. The high interest that these

architectures have generated is due in large part to their cost-performance characteristics:

large-scale shared memory multiprocessors have the potential to deliver supercomputer

performance at commodity server costs.

Large-scale shared memory machines o�er the promise of remarkable levels of cost-

performance because they are constructed from computational building blocks, or com-

pute nodes, that require only modest technology. Fueled by the microprocessor, such

compute nodes individually deliver reasonable performance while using commodity com-

putational technology. Supercomputer performance is achieved on these systems by cou-

pling multiple compute nodes together to take advantage of medium- to coarse-grain

parallelism. While the architecture does not assist in the discovery of parallelism, pro-

vided enough parallelism can be identi�ed by a compiler or a programmer to keep all

compute nodes busy, high performance can be sustained.

While the promise of remarkable cost-performance has made large-scale shared mem-

ory architectures attractive, thus far, this promise has gone unful�lled. In practice, the

potential cost-performance bene�ts promised by large-scale shared memory architectures

are di�cult to realize because of the tension between providing e�cient communication

mechanisms and maintaining cost-e�ciency at large scales. Because large-scale shared

memory architectures rely on parallelism to achieve performance, they must be equipped

to support the communication that arises when the computational load represented by

a single application is distributed across multiple computational elements. Therefore,

in addition to providing per-node computational throughput, an equally (if not more)

important architectural requirement is to provide e�cient communication mechanisms.

Without e�cient communication, parallel applications with demanding communications

requirements cannot be supported on these architectures, thus limiting the scope of prob-

lems for which these architectures can be e�ectively applied.

Traditionally, large-scale shared memory multiprocessors provide e�cient communi-

cation mechanisms through aggressive architectural support. An example is the hard-

ware cache-coherent distributed shared memory (DSM) architecture. Hardware DSMs

17

18 CHAPTER 1. INTRODUCTION

are built using custom communication interfaces, high performance VLSI interconnect,

and special-purpose hardware support for shared memory. These aggressive architec-

tural features provide extremely e�cient communication support between nodes through

tightly coupled hardware interfaces. The architectural support for e�cient shared mem-

ory communication allows hardware DSMs to provide scalable performance even on

communication-intensive applications.

While aggressive architectural support leads to high performance, the investment in

hardware mechanisms comes at a cost. In particular, tight coupling between nodes is

di�cult to maintain in a cost-e�ective manner as the number of nodes becomes large.

Fundamental obstacles prevent large tightly-coupled systems from being cost e�ective.

The cost of power distribution, clock distribution, cooling, and special packaging con-

siderations in tightly coupled systems do not scale linearly with size. As system size

is scaled, cost grows disproportionately due to the physical limitations imposed by the

necessity to maintain tight coupling across all the nodes in the system. Perhaps most

important, the large-scale nature of these machines prevents them from capitalizing on

the economy of cost that high volume smaller-scale machines enjoy.

In response to the high design cost of large-scale hardware DSMs, many researchers

have proposed building large-scale shared memory systems using commodity uniprocessor

workstations as the compute node building block. In these lower cost systems, the tightly

coupled communications interfaces found in hardware DSMs are replaced by commodity

interfaces that do not require any special-purpose hardware. Furthermore, commodity

networks such as those found in the local area environment are used to connect the work-

station nodes, and the shared memory communication abstraction is supported purely in

software. Such software DSM architectures are cost e�ective because all the components

are high volume commodity items and because specialized tightly-coupled packaging is

not required.

Unfortunately, software DSMs are unable to provide high performance across a wide

range of applications. While communication interfaces for commodity workstations have

made impressive improvements, the best reported inter-workstation latency numbers are

still an order of magnitude higher than for machines that have tightly-coupled special-

purpose interfaces [66]. Furthermore, the best latencies come from special networks that

do not have the large volume required for low cost commoditization. The higher cost of

communication on commodity systems prevents them from supporting applications with

intensive communication requirements.

Existing architectures for large-scale shared memory machines have not satisfacto-

rily addressed the tension between providing e�cient communication mechanisms for

high performance and designing for cost e�ectiveness. In this thesis, we propose a

novel approach to building large-scale shared memory machines that o�ers higher cost-

performance properties than existing architectures. Our approach leverages the scalable

shared memory multiprocessor (SSMP) as the building block for larger systems.

SSMP is a general name for any small- (2{16 processors) to medium-scale (17{128 pro-

cessors) shared memory machine. A familiar example is the bus-based Symmetric Multi-

processor (SMP). Another example is the small- to medium-scale distributed-memory

1.1. CONTRIBUTIONS 19

multiprocessor. The latter architecturally resembles large-scale (greater than 128 proces-

sors) tightly-coupled machines, but is targeted for smaller systems. The general nature of

the SSMP terminology suggests that both SMPs and distributed-memory architectures

are suitable building blocks for larger shared memory systems.

The SSMP is an attractive building block for large-scale multiprocessors for two rea-

sons. First, SSMPs provide e�cient hardware support for shared memory. A larger

system that can leverage this e�cient hardware support has the potential for higher

performance than a network of conventional uniprocessor workstations in which shared

memory is implemented purely in software. And second, the e�cient shared memory

mechanisms provided by SSMPs do not incur exorbitant costs because the tight coupling

required is only provided across a small number of processors. Unlike large-scale hard-

ware DSMs, small-scale tightly-coupled systems can be cost-e�ective, as evidenced by

the commodity nature of the SMP architecture.

We call a large-scale system built from a collection of SSMPs a Distributed Scal-

able Shared memory Multiprocessor (DSSMP). DSSMPs are constructed by extending

the hardware-supported shared memory in each SSMP using software distributed shared

memory (DSM) techniques to form a single shared memory layer across multiple SSMP

nodes. Such hybrid hardware-software systems support shared memory using two gran-

ularities, hence the name Multigrain Shared Memory. Cache-coherent shared memory

hardware provides a small cache-line sharing grain between processors colocated on the

same SSMP. Page-based software DSM provides a larger page sharing grain between

processors in separate SSMPs.

1.1 Contributions

This thesis presents a thorough investigation of multigrain shared memory architectures.

The fundamental idea researched by this thesis is the coupling of small- to medium-scale

shared memory multiprocessors using software shared memory techniques to build a large-

scale system. The challenge lies in synthesizing a single transparent and seamless shared

memory layer through the cooperation of both �ne-grain hardware cache-coherent and

coarse-grain page-based shared memory mechanisms. The thesis reports on an extensive

systems building experience that has taken the basic notion of multigrain shared memory

and carried it through an exhaustive systems investigation project.

The aggregate contributions from our investigation of multigrain shared memory cover

every phase of a complete systems building and evaluation process. Contributions are

made in system design, which include a complete set of mechanisms that enable the con-

struction of multigrain shared memory. From the design, our investigation has built a

prototype implementation that demonstrates the feasibility and correctness of our design.

Using the prototype implementation, we conduct an in-depth evaluation that experimen-

tally characterizes the behavior of the system. Finally, our investigation also includes an

analysis phase that tries to provide insight into why the system behaves the way it does.

The speci�c contributions of this thesis are summarized below, organized into three

20 CHAPTER 1. INTRODUCTION

categories: design and implementation, evaluation, and analysis.

Design and Implementation

� This thesis investigates the design of multigrain shared memory systems. Fun-

damental to the design are a set of mechanisms that enable the cooperation of

hardware cache-coherent and software page-based shared memory layers. Three

key mechanisms are identi�ed that enable such cooperation: multiprocessor VM

faults, TLB coherence, and page cleaning.

� In addition to fundamental design issues, this thesis also investigates how to build

fast multigrain shared memory systems. For performance, multigrain architectures

must export the e�ciency of the hardware cache-coherent mechanisms as often as

possible. When application sharing patterns permit, the system should remove

any intervention from the software layers until software services are absolutely

necessary. The thesis proposes the Single-Writer mechanism that achieves this

design requirement.

� A complete multigrain shared memory system design is proposed, called MGS.

MGS integrates the multigrain-speci�c mechanisms described above along with

conventional software shared memory mechanisms to construct a fully functional

multigrain architecture. To our knowledge, MGS is the �rst system to facilitate a

comprehensive study of multigrain shared memory.

� A prototype of the MGS design is implemented on a 32-processor Alewife ma-

chine. The prototype demonstrates the correctness of the design, and provides a

platform for experimentation. A key feature of the prototype is virtual clustering,

which allows the clustering con�guration of the DSSMP to be changed at runtime.

This
exibility enables the evaluation of di�erent DSSMP con�gurations, a crucial

capability leveraged by the experimental methodology of this thesis.

Evaluation

� The thesis presents a performance framework that characterizes application be-

havior on multigrain systems. The framework measures the sensitivity of applica-

tion performance to varying cluster con�gurations using two performance metrics:

Multigrain Potential, and Breakup Penalty. Together, these metrics report how an

application responds to di�erent mixes of �ne-grain and coarse-grain shared mem-

ory support, and provides calibration of an application's performance on multigrain

systems against its performance on all-software and all-hardware systems.

� An in-depth experimental evaluation is conducted on the MGS prototype. Several

micro-benchmarks along with 9 shared memory applications representing a wide

range of scienti�c workloads are studied.

1.2. OUTLINE 21

� An extension to the application study performed above is undertaken to under-

stand the performance bottlenecks encountered by the applications. Transforma-

tions to relieve these bottlenecks are applied manually, and the improvements in

performance are measured. The extended application study shows the potential

performance that multigrain systems can deliver when additional compiler and/or

programmer e�ort is applied to o�-the-shelf applications. The study includes a

qualitative evaluation of each transformation's sophistication. In the process, those

transformations that can be performed automatically by existing compilers are iden-

ti�ed.

� The sensitivity of application performance on MGS to inter-SSMP communication

latency and page size (the granularity of coherence between SSMPs) is studied.

Analysis

� A novel approach to analyzing performance on software shared memory systems

is proposed, called Synchronization Analysis. Synchronization analysis enables the

prediction of shared memory communication volume through analysis of a pro-

gram's synchronization dependence graph. This synchronization-centric technique

relies on the insight that communication patterns are highly correlated with syn-

chronization patterns in software shared memory systems. Synchronization analysis

represents a shift from traditional program analysis techniques used by parallel op-

timizing compilers that are data-centric in nature.

� The thesis presents a performance model based on synchronization analysis that

predicts execution time on multigrain shared memory systems. Model parameters

for the MGS prototype are determined to enable prediction of application per-

formance on MGS. The accuracy of the model is validated by comparing model

predictions using the MGS model parameters against experimental measurements

taken on the MGS prototype.

� Using the performance model developed for MGS, an analytic study is conducted

to evaluate the scalability of the MGS system. Both problem size and machine

size are scaled beyond what can be studied experimentally. Machines of up to 512

processors are evaluated.

1.2 Outline

This section brie
y outlines the contents of the thesis. Chapters 2 and 3 provide intro-

ductory discussion for the rest of the thesis. Chapter 2 provides background material that

forms the foundation for the work reported in this thesis. Concepts from conventional

hardware and software distributed shared memory systems are reviewed. Chapter 3 dis-

cusses the impact of sharing granularity supported by a shared memory architecture on

both application performance and on system cost. The chapter argues that there exists

22 CHAPTER 1. INTRODUCTION

a tension between supporting �ne-grain applications e�ciently on large-scale machines,

and designing large-scale machines in a cost-e�ective manner. This tension is the mo-

tivation for what we call the multigrain approach to designing shared memory systems,

which is the foundation for all the ideas presented in this thesis.

Following the introductory chapters, Chapters 4 and 5 present the meat of the sys-

tem proposed in this thesis, called MGS. Chapter 4 presents the architecture of the MGS

system. It �rst describes the mechanisms necessary to build multigrain shared memory

and to make it e�cient. The chapter includes fairly detailed discussion on the exact

mechanics that support the architecture. While Chapter 4 describes the MGS design,

Chapter 5 describes an actual prototype we have built on the Alewife multiprocessor

platform. Chapter 5 begins by explaining the virtual clustering approach that is cen-

tral to our implementation (and to the evaluation later on). The chapter covers many

implementation issues that arise when implementing MGS on Alewife.

The next two Chapters, 6 and 7, evaluate the performance of the MGS system.

Chapter 6 presents the experimental portion of our evaluation that uses both micro-

benchmarks and a full range of shared memory applications. The behavior of applications

is studied both using the original applications in their \o�-the-shelf" form, and when

transformations are applied to improve their locality properties. Chapter 7 presents the

analytic portion of our evaluation. Much of the chapter is devoted to the presentation

of a novel approach for performance analysis called Synchronization Analysis. Then, a

performance model based on synchronization analysis is presented and validated against

our MGS prototype. Using the performance model, we study the scalability of the MGS

system on one of the applications from the experimental study, scaling machine size up

to 512 processors.

Finally, Chapter 8 discusses related work, and Chapter 9 closes the thesis with con-

clusions.

Chapter 2

Background

This chapter describes the concept of distributed shared memory, along with various

issues concerning the implementation of distributed shared memory systems. Section 2.1

introduces the notion of distributed shared memory, including a discussion on the cache

coherence problem and how it is solved on distributed shared memory machines. And

Section 2.2 presents several issues that concern hardware and software implementations

of distributed shared memory. The information provided in this chapter forms the basis

for the work presented in the rest of this thesis. Those readers familiar with distributed

shared memory are encouraged to continue reading in Chapter 3.

2.1 Distributed Shared Memory

Shared memory is a programming model in which multiple threads of control commu-

nicate with one another through a single transparent layer of logically shared memory,

as illustrated by Figure 2.1. It has been argued that shared memory is a desirable pro-

gramming model since communication happens implicitly each time two threads access

the same memory location. This is in contrast to a message passing programming model

where the responsibility of managing communication is placed explicitly on the program-

mer [41].

Shared memory multiprocessors implement the shared memory programming model

by supporting the shared memory abstraction directly in the system architecture. An

example shared memory architecture for which the design faithfully resembles the pro-

gramming model is the Symmetric Multiprocessor (SMP). SMPs implement the shared

memory programming model by connecting multiple processors directly to physical mem-

ory through a single memory controller. The connection fabric that allows processors to

communicate with the memory controller is a shared bus. Shared memory is supported

by the fact that processors share the same image of physical memory.

While the architecture of an SMP directly implements the shared memory program-

ming model, it is not suitable for large-scale shared memory systems because it is not

scalable. The bus interconnect and single physical memory image become performance

bottlenecks as the number of processors inside the SMP is increased. At some scaling

23

24 CHAPTER 2. BACKGROUND

P P P

Shared Memory

Figure 2.1: Shared memory multiprocessors provide a single transparent view of memory

across all processors.

point, the communication bandwidth between processors and memory saturates resulting

in the serialization of concurrently issued shared memory transactions, and performance

degradation. To address the resource contention problems that limit scalability in the

SMP architecture, it is necessary to replace the serial communication and memory in-

terfaces with parallel interfaces. This is the goal of the distributed shared memory

multiprocessor.

2.1.1 Addressing Resource Contention

Distributed shared memory (DSM) architectures solve the resource contention problem

by distributing physical memory. In a DSM, the single logical shared memory address

space is partitioned across multiple physical memory modules, and each memory mod-

ule is given its own dedicated memory controller that services shared memory requests

destined to that module. A shared memory abstraction is synthesized across the phys-

ically distributed memories via shared memory modules, one per physical memory and

controller, that communicate using point-to-point messages across a switched intercon-

nection network, such as those discussed in [18]. Figure 2.2 illustrates these components

that make up the DSM architecture. In the �gure, each processor, its local memory, and

its local shared memory module together form a DSM node.

Synthesis of a shared memory abstraction in a DSM occurs in the following manner.

When a shared memory module receives a shared memory request from a local proces-

sor, it determines the physical memory module for which the request is destined using

a mapping that re
ects the partitioning of logical shared memory across the physical

memory modules. If the request maps to the local physical memory module, the request

is satis�ed immediately through local memory. If the request maps to a remote physical

memory module, the shared memory module initiates a remote transaction by sending

a message that contains the desired shared memory address across the interconnection

network to the appropriate remote shared memory module. The remote shared memory

module responds to the transaction by accessing the shared memory location in its local

physical memory module, and then sending the data back to the requesting shared mem-

ory module in another message. The transaction completes when this data is supplied

to the requesting processor.

The distribution of physical memory and memory interfaces in a DSM allow the aggre-

2.1. DISTRIBUTED SHARED MEMORY 25

P

SMMM

Interconnection Network

C

P

SMMM

C

P

SMMM

C

Figure 2.2: DSMs partition the logical shared address space across multiple physical

memory modules (M), and synthesize a shared memory abstraction via shared mem-

ory modules (SMM) that communicate across an interconnection network. Each shared

memory module services memory requests from a processor (P); shown with each pro-

cessor is a hardware cache (C). Together, a processor (and its hardware cache), its local

memory, and its local shared memory module form a DSM node.

gate memory bandwidth to scale along with the number of processing elements. When

the size of a DSM is increased, not only are processing elements added, but with the

additional processors, physical memory modules and memory controllers are added as

well. Furthermore, the amount of communication bandwidth supplied between memory

modules can be increased by adding switches to grow the size of the interconnection net-

work. Because of the ability to scale processing, memory, and communication resources

together (as opposed to scaling processing resources alone as was the case in the SMP

architecture), the DSM provides scalability.

2.1.2 Cache Coherence

Caching replicates data across a memory hierarchy from slower storage into faster storage.

The goal is to keep the most frequently accessed data in the highest level of the memory

hierarchy (fastest storage) so that it can be accessed e�ciently by the processor. For

those applications that demonstrate memory access locality, caching can very e�ectively

reduce the overheads associated with memory operations performed by the processor.

The implementation of caching in shared memory multiprocessors leads to the well-

known cache-coherence problem. In a multiprocessor that permits the caching of shared

data, it is possible for the data associated with a single shared memory address to become

replicated in multiple processor caches. If a processor tries to write a new value into one

cached copy, the other cached copies will become incoherent or stale with respect to the

written copy.

The cache coherence problem in shared memory multiprocessors is addressed by main-

taining coherence on cached data using a cache-coherence protocol. DSMs typically em-

ploy cache-coherence protocols that are directory based [15, 32, 3, 14, 63]. Directory-

based cache-coherence protocols maintain a directory entry for each cache block of data

26 CHAPTER 2. BACKGROUND

in shared memory. Each time a request for a cache block is ful�lled by the shared memory

module, the ID of the DSM node from which the request originated is recorded in the

associated directory entry. Therefore, the directory entry for a cache block records the

set of nodes which have a copy of the cache block at any given moment in time.

Coherence can be maintained on a particular cache block by using the directories

to perform invalidation. The process of invalidation is initiated by the shared memory

module where the directory entry resides, typically called the cache block's home node. At

the home node, the directory entry for the cache block is consulted by the shared memory

module, and an invalidation message is sent to every DSM node speci�ed in the directory

entry. At each node, the invalidation message causes the copy of the cache block to be

purged from the cache. The cache then sends an acknowledgment message back to the

home node. If the purged cache block is dirty, the acknowledgment message also includes

data that re
ects the updates performed on the cache block. At the home, the shared

memory module processes the acknowledgments, and any data in acknowledgments with

updates are merged into the location in the memory module that provides the backing

for the cache block (see Sections 2.2.1 and 2.2.2 for more details on updates and how

they are merged). After merging the update(s), the data in the memory module re
ects

the most recent version of the data as a result of the writes performed on the cache block

up to the point when invalidation was initiated.

Invalidation maintains coherence for two reasons. First, it provides a means for

updates performed at the caches to propagate back to the home. This allows subsequent

requests after an invalidation to receive data that re
ects the updates. Second, it is the

mechanism by which stale data is reclaimed. Each invalidation removes data that has

become stale in a processor's cache. Subsequent accesses performed to an invalidated

cache block will therefore not access the stale value, but instead will re-request the cache

block from the home and receive an updated value.

2.2 DSM Implementation

Section 2.1 above discussed distributed shared memory and caching in DSMs as general

concepts. In this section, we take a closer look at two speci�c DSM implementations,

the hardware cache-coherent DSM (examples include [46, 44, 23, 38, 47]), and the soft-

ware page-based DSM (examples include [48, 6, 13, 36, 37]). We will focus on how the

implementation of distributed shared memory and cache coherence di�er on these two

architectures.

The primary di�erence between hardware and software DSMs is the level in the

memory hierarchy on each DSM node where caching is performed. In the hardware DSM,

caching is performed in the hardware processor caches, and in the software DSM, caching

is performed in main memory (the \C" and \M" modules, respectively, in Figure 2.2).

Where caching occurs determines the coherence unit, a block of memory which the DSM

treats as an indivisible unit of data during replication and invalidation. Because hardware

DSMs perform caching in processor caches, its coherence unit is the processor cache line.

2.2. DSM IMPLEMENTATION 27

Similarly, because the software DSM performs caching in main memory, its coherence unit

is the page. The size or granularity of the coherence unit is a crucial system parameter,

and is the topic of Sections 3.2 and 3.3 in Chapter 3.

In the next two sections, we discuss the implications for performing caching in either

hardware caches or main memory.

2.2.1 Hardware Cache Coherence

Hardware DSMs provide special-purpose hardware support for shared memory (i.e. the

shared memory modules in Figure 2.2 are implemented in hardware). This shared mem-

ory hardware synthesizes a physical shared memory address space, and maintains co-

herence on the shared data cached in the processor caches, as described in Section 2.1

above.

The shared memory hardware is integrated with the mechanisms that manage the

processor caches through cache miss events. When the processor on a DSM node suf-

fers a cache miss, the cache miss is intercepted by the shared memory hardware on the

processor's local node. Based on the address of the cache miss, the shared memory hard-

ware either ful�lls the cache miss directly from local memory, or from remote memory

via communication with a remote shared memory module. In the latter case, the cre-

ation and transmission of messages across the interconnection network, as described in

Section 2.1.1, is performed purely in hardware.

The shared memory hardware not only supports the shared memory abstraction,

but it also supports cache coherence. For simplicity, hardware DSMs typically imple-

ment a single-writer protocol using an invalidate-on-write policy (simplicity of the cache-

coherence protocol is important due to the complexities of hardware implementation). In

a single-writer protocol, multiple outstanding cache copies are allowed so long as accesses

to the copies are con�ned to reads. Once a processor tries to perform a write, the pro-

tocol invalidates all outstanding copies. Single-writer protocols are simple because there

can be at most one outstanding cache block that is dirty at any given time. Therefore,

when a dirty cache block is invalidated, the entire cache block can be written into the

memory module at the home node thus propagating any updates performed on the cache

block. Supporting multiple writers is more complex because it requires multiple dirty

cache blocks to be merged during invalidation. In Section 2.2.2, we discuss the protocol

additions necessary to support multiple writers.

While single-writer protocols are simple and therefore desirable from a hardware

implementation standpoint, they can introduce performance penalties. In particular,

each shared memory write could potentially cause the invalidation of one or more cache

copies1. If the processor performing such a write is stalled for the duration of the inval-

idation(s), signi�cant cache miss stall can be introduced, thus degrading performance.

Many techniques have been proposed to address such cache miss stall overhead, such as

software-controlled prefetching [51], block multithreading [43, 68], and relaxed memory

1In the worst case, there could be P � 1 outstanding copies, where P is the number of DSM nodes.

28 CHAPTER 2. BACKGROUND

consistency models [1, 25, 19]. We discuss relaxed memory consistency models below; a

discussion and evaluation of all three techniques appears in [27].

Relaxed Memory Consistency

The memory consistency model supported by a shared memory multiprocessor determines

the ordering in which individual processors view the memory operations performed by

other processors in the system. The strongest form of memory consistency is sequential

consistency [45]. Sequential consistency states that a total order can be de�ned across

all shared memory operations, and furthermore, all processors see the same total order.

Multiprocessors that stall a processor on each shared memory write until all outstanding

cache copies are invalidated support sequential consistency. Stalling writes during inval-

idation ensures that when a write is performed, no other copies of the cache line exist in

the system. Therefore, there is a well-de�ned moment in time relative to all processors

that the write commits, a condition necessary for sequential consistency.

Higher performance can be attained if the system is not required to support such a

singular commit point for writes. Memory consistency models that are less strict than

sequential consistency in their guarantees on event ordering, known as relaxed memory

consistency models, allow systems to overlap the overhead of maintaining consistency

on shared data with useful computation. Instead of guaranteeing that the updates per-

formed by a processor are visible to all other processors after every shared memory write

(as is provided by sequential consistency), relaxed memory consistency only guarantees

that updates are visible at special points in a program. An example of such a relaxed

memory model is release consistency (RC) [25]. Programs written assuming an RC mem-

ory consistency model must include special annotations, known as releases and acquires,

that specify to the memory system when coherence is necessary. The memory system

guarantees strict ordering between release and acquire operations (i.e. releases and ac-

quires are sequentially consistent), but individual shared memory operations between

releases and acquires can reorder.

Relaxing the order in which individual processors view the updates performed across

all processors enables the complete elimination of memory stall due to cache misses on

writes. Because a singular commit point is not needed under RC, a processor performing

a write can issue the write immediately without being stalled even if the location being

written has been cached by other processors. Each write performed by a processor is

bu�ered, usually in a hardware bu�er provided by the processor2. The shared memory

hardware propagates the updates in the write bu�er at the pace of the memory system

which can be slow if invalidations are required. Meanwhile, the overhead of maintaining

coherence on the bu�ered updates is hidden from the processor because the processor

is allowed to continue performing useful computation. Notice this breaks sequential

consistency. For example, if two writes are performed simultaneously to the same location

in shared memory, each processor will think its write happened �rst.

2Most modern processors provide on-chip write bu�ers.

2.2. DSM IMPLEMENTATION 29

2.2.2 Page-Based DSMs

Software DSMs rely purely on software to support shared memory (i.e. the shared mem-

ory modules in Figure 2.2 are implemented in software). Therefore, there is no sharing

across physical addresses as there is in hardware DSMs. The memory modules on dif-

ferent DSM nodes have separate physical address spaces. Instead, the shared memory

abstraction is constructed by enforcing a single shared virtual address space across DSM

nodes.

A shared virtual address space is constructed by leveraging the address translation and

protection checking mechanisms as is commonly provided by hardware TLBs (Translation

Lookaside Bu�ers). The address translation mechanism provides the level of indirection

needed between shared virtual memory and physical memory so that each DSM node's

physical memory can be used as a cache for replicated pages. The protection checking

mechanism provides access control on processor accesses so that software shared memory

can be invoked for those processor accesses which require distributed shared memory

service. The software shared memory module is integrated with the TLB fault handler.

TLB faults to pages under software distributed shared memory management are passed

to the shared memory module for processing. Therefore, protection checking as provided

by TLBs serves the same purpose that cache misses do for hardware DSMs{it is the

conduit through which shared memory requests get forwarded from the processor to the

shared memory module.

Compared to hardware DSMs, software DSMs are more sensitive to frequent inter-

node communication for two reasons. First, anytime communication occurs, the shared

memory module must intervene, and software implementation of the shared memory

module is less e�cient than hardware implementation. Second, messaging across the

inter-node network in Figure 2.2 is expensive for page-based systems because software

DSMs usually employ commodity local area networks (LANs) and commodity network

interfaces as compared to the VLSI networks and specialized interfaces used in hardware

DSMs. Consequently, it is especially important to minimize the amount of inter-node

communication for software DSMs. Below, we discuss two techniques that together reduce

communication in software DSMs: delayed updates and multiple-writer protocols.

Delayed Updates

As described in Section 2.2.1 above, the RC memory consistency model allows coherence

overhead to be overlapped with useful computation by relaxing the guarantees on event

ordering. This permits the updates performed by a processor to be decoupled from the

overhead of maintaining coherence on those updates, thereby eliminating stalls due to

writes. While this relieves the processor from coherence overheads, it does not relieve

the shared memory system and the interconnection network between DSM nodes from

such overheads since the coherence of the updates must be enforced eventually.

The relaxation of event ordering guarantees permitted by RC can be further leveraged

to reduce the volume of coherence tra�c, and thus the coherence load on the shared

memory modules and the interconnection network. If coherence on a dirty cache block

30 CHAPTER 2. BACKGROUND

is delayed, fewer coherence operations are necessary because multiple updates to the

same cache block can be merged and made coherent in one coherence operation. The

coherence volume reductions due to delaying coherence can be signi�cant for software

DSMs because they employ a large coherence unit, a page. The larger the coherence

unit, the greater the likelihood that multiple shared memory writes will fall on the same

cache block and thus become merged.

Software DSMs that support an RC memory consistency model can maximize the

number of updates that are merged by delaying the coherence on a dirty page for as long

as possible{until a release operation is encountered. In such delayed update systems,

no coherence operations are invoked on normal shared memory accesses. All updates

occur locally and are bu�ered in the page cache in each node's physical memory. A

data structure, known as the Delayed Update Queue [13], records all the pages in the

page cache that are dirty. At a release operation, the processor performing the release is

stalled and coherence is initiated on all the pages listed in the Delayed Update Queue.

The stalled processor resumes computation only after its updates have been consolidated.

Multiple-Writer Protocols

The delayed update technique described above can be e�ective only if multiple writers

are permitted simultaneously on the same page. Otherwise, delayed updates can only

be applied to pages with a single writer and zero or more readers. The multiple-writer

case is important because of false sharing. False sharing occurs when two shared memory

accesses with distinct addresses fall on the same cache block [21]. The coherence protocol

is fooled into believing that the accesses con
ict because it treats each cache block as an

indivisible unit of data. Therefore, communication results to maintain coherence even

though the coherence is unnecessary. False sharing becomes more severe as the size of

the cache block increases. Since the coherence unit in software DSMs is a page, false

sharing can be quite severe.

Handling multiple writers requires the ability to merge the updates performed on

two or more cache blocks into a single coherent copy of the cache block at the home

node. With multiple writers, it is not su�cient to simply store the entire contents of a

dirty cache block at the home node as is done in hardware DSMs since all but the last

store would overwrite the updates of the other cache blocks. Instead, it is necessary to

determine what locations in each cache block have changed and to only update those

locations at the home node.

Protocols that support multiple writers perform twinning and di�ng to enable the

merge of multiple dirty cache blocks [13]. Any processor that wishes to write a page

in its page cache must �rst make a copy of the page, known as a twin. All writes are

performed on the original, leaving the twin unmodi�ed. When it becomes necessary to

enforce coherence on the page, a comparison is performed between the dirty page and

its twin, producing an update list, or di�, that represents all changes made to the page

since the creation of the twin. The di� is sent to the home node so that the updates can

be merged into the home node's copy of the page. Di�s have the property that multiple

2.2. DSM IMPLEMENTATION 31

di�s can be merged by simply appending them to form a single di� representing all the

changes made collectively by the processors that modi�ed the page.

32 CHAPTER 2. BACKGROUND

Chapter 3

The Multigrain Approach

This chapter presents a novel approach to building large-scale distributed shared memory

machines that couples several small- to medium-scale multiprocessors using page-based

software DSM techniques. We call this the \multigrain approach" because a single trans-

parent shared memory layer is synthesized through the cooperation of both �ne-grain

and coarse-grain shared memory mechanisms.

The multigrain approach stems from the tension between supporting e�cient shared

memory mechanisms for high performance and supporting low-cost design for cost-

e�ectiveness in the construction of large-scale shared memory machines. Fine-grain

shared memory mechanisms provide high performance on a broad range of applications.

While recent research e�orts have enabled such mechanisms to scale in terms of perfor-

mance, large-scale �ne-grain architectures have failed to exhibit cost e�ciency because of

the engineering challenges presented by maintaining tight coupling across a large num-

ber of processors. Conversely, loosely-coupled software DSMs that support coarse-grain

shared memory mechanisms are cost-e�ective because they leverage commodity technol-

ogy. However, because loose coupling comes at the expense of highly e�cient shared

memory mechanisms, coarse-grain architectures cannot provide scalable performance,

particularly on applications that exhibit �ne-grain sharing.

The multigrain approach mediates the tension between performance and cost by build-

ing shared memory machines hierarchically and leveraging both �ne-grain and coarse-

grain shared memory mechanisms at di�erent levels in the hierarchy. Multigrain ar-

chitectures support �ne-grain mechanisms within small- to medium-scale multiprocessor

nodes. The size of each node is scaled as much as possible for performance, but only to

the extent that the cost incurred by scaling �ne-grain mechanisms remains reasonable.

As soon as nodes become prohibitive from a cost standpoint, further scaling is facilitated

by coupling multiple nodes using coarse-grain mechanisms.

The rest of this chapter motivates and presents the multigrain approach in greater

detail, providing the foundation for the work presented in the rest of the thesis. Since

granularity plays an important role in determining both performance and cost in shared

memory machines, we begin by de�ning shared memory granularity in Section 3.1. In

Section 3.2, we examine how existing conventional shared memory architectures support

33

34 CHAPTER 3. THE MULTIGRAIN APPROACH

granularity, and expose the tension between performance and cost. Finally, in Section 3.3,

we introduce the multigrain approach.

3.1 A De�nition of Grain

Granularity is a familiar term in computer systems research used to describe many dif-

ferent aspects of computation. For instance, granularity of parallelism refers to the size

of threads in a parallel computation. Threads that run for only a small number of

cycles before exiting are \�ne-grained," while threads that run for a large number of

cycles are \coarse-grained." Granularity has also been used to describe synchronization.

An application can exhibit either �ne-grained or coarse-grained synchronization behav-

ior depending on whether processors within the application synchronize frequently or

infrequently, respectively.

The sharing patterns exhibited by a shared memory application have been character-

ized using the notion of granularity as well. Qualitatively, �ne-grained sharing implies

frequent communication between processors of small units of data, while coarse-grained

sharing implies infrequent inter-processor communication of large units of data. However,

compared to other uses of granularity, the use of granularity to describe application-level

sharing patterns is imprecise because it lacks a quantitative de�nition. To help illustrate

this point, consider our two previous examples, granularity of parallelism and granularity

of synchronization. The granularity of parallelism can be quanti�ed in terms of the num-

ber of cycles a thread executes before terminating. The granularity of synchronization

can be quanti�ed in terms of the frequency with which processors synchronize. Even

though sharing granularity is common terminology within the domain of shared memory

machines, surprisingly, no precise de�nition exists. Furthermore, because grain has been

used in the context of both space and time, we need a de�nition that integrates both

space and time. In this section, we develop a de�nition for sharing granularity that has

a quantitative foundation to provide precise terminology for the remainder of the thesis.

We de�ne the sharing granularity exhibited by two shared memory accesses as �ne-

grain if they occur close in time and reference memory locations separated by a small

distance. Otherwise, the two shared memory accesses are de�ned to exhibit coarse-grain

sharing. To illustrate this de�nition, let us plot the shared memory accesses made by

all processors on a two-dimensional plot with time on one axis and memory address on

the other, as shown in Figure 3.1. A grain vector can be de�ned in this 2-space for

any pairing of shared memory accesses performed by di�erent processors whose direction

and magnitude are determined by two components, one for space and one for time.

Spatial distance is simply the number of distinct memory locations that separate the two

shared memory accesses. A smaller spatial distance arises if the two memory accesses

are destined to locations that are close together in physical memory. Conversely, a larger

spatial distance arises if the two memory accesses are destined to locations that are far

apart in memory. Temporal distance can be de�ned by the number of clock cycles between

the issue of the two memory accesses by their respective processors. A small number of

3
.1
.
A
D
E
F
I
N
IT
IO
N
O
F
G
R
A
IN

3
5

T
im

e

Address
te

m
p

o
ra

l
d

ista
n

ce

spatial
distance

F
ig

u
re

3
.1

:
D

e�
n
in

g
sh

a
rin

g
g
ra

n
u

la
rity

u
sin

g
th

e
gra

in
vecto

r.
T

w
o

sh
a
red

m
em

o
ry

a
ccesses,

o
n
e

m
a
d
e

b
y

a
p
ro

cesso
r

la
b

eled
\
X

"
a
n

d
a
n

o
th

er
m

a
d

e
b
y

a
d

i�
eren

t
p

ro
cesso

r

la
b

eled
\
O

,"
a
re

p
lo

tted
in

sp
a
ce

a
n

d
tim

e.
S

p
a
tia

l
a
n

d
tem

p
o
ra

l
d

ista
n

ce
co

m
p

o
n
en

ts

o
f

th
e

g
ra

in
v
ecto

r
a
re

la
b

eled
.

clo
ck

cy
cles

in
d
ica

tes
th

a
t

th
e

m
em

o
ry

a
ccesses

a
re

p
erfo

rm
ed

clo
se

in
tim

e,
w

h
ile

a
la

rg
e

n
u

m
b

er
o
f

clo
ck

cy
cles

in
d
ica

tes
th

a
t

th
e

m
em

o
ry

a
ccesses

a
re

p
erfo

rm
ed

fa
r

a
p

a
rt

in

tim
e.T

h
e

tw
o

sh
a
red

m
em

o
ry

a
ccesses

in
F

ig
u

re
3
.1

co
n

stitu
te

sh
a
rin

g
b

etw
een

tw
o

p
ro

-

cesso
rs.

T
h
e

g
ra

n
u
la

rity
o
f

th
is

sh
a
rin

g
ca

n
b

e
d

e�
n

ed
b
y

co
n

sid
erin

g
b

o
th

sp
a
tia

l
a
n
d

tem
p

o
ra

l
d
ista

n
ce

co
m

p
o
n
en

ts
o
f

th
e

g
ra

in
v
ecto

r.
F

in
e-g

ra
in

sh
a
rin

g
o
ccu

rs
w

h
en

bo
th

sp
a
tia

l
a
n
d

tem
p

o
ra

l
d
ista

n
ce

a
re

sm
a
ll.

C
o
a
rse-g

ra
in

sh
a
rin

g
o
ccu

rs
w

h
en

a
t
lea

st
o
n
e

o
f

th
e

tw
o

co
m

p
o
n
en

ts
o
f

d
ista

n
ce

is
la

rg
e.

T
h

e
req

u
irem

en
t

th
a
t

b
o
th

sp
a
tia

l
a
n

d
tem

p
o
-

ra
l

d
ista

n
ce

a
re

sm
a
ll

fo
r

�
n
e-g

ra
in

sh
a
rin

g
to

o
ccu

r
is

so
m

ew
h

a
t

n
o
n

-in
tu

itiv
e.

S
h

a
rin

g

g
ra

n
u

la
rity

m
ea

su
res

th
e

d
eg

ree
to

w
h

ich
sh

a
red

m
em

o
ry

a
ccesses

p
erfo

rm
ed

b
y

d
i�

eren
t

p
ro

cesso
rs

co
n

ict.

T
h
e

d
e�

n
itio

n
a
b

ov
e

sta
tes

th
a
t

m
em

o
ry

a
ccesses

co
n

ict

o
n

ly
if

th
ey

o
ccu

r
clo

se
to

g
eth

er
in

sp
a
ce

a
n
d

tim
e.

A
rea

l-w
o
rld

a
n

a
lo

g
y

is
tw

o
frien

d
s

w
h

o
w

o
u
ld

lik
e

to
m

eet
fa

ce-to
-fa

ce.
F

o
r

th
e

m
eetin

g
to

o
ccu

r,
th

ey
m

u
st

ch
o
o
se

b
o
th

a
tim

e
a
n
d

a

p
la

ce
to

m
eet.

If
eith

er
o
f

th
ese

criteria
a
re

n
o
t

m
et,

th
e

m
eetin

g
w

ill
n

o
t

o
ccu

r.

O
u

r
d

e�
n
itio

n
o
f

sh
a
rin

g
g
ra

n
u
la

rity
is

illu
stra

ted
v
isu

a
lly

in
F

ig
u

re
3
.2

.
In

th
e

�
g
u
re,

sp
a
tia

l
a
n
d

tem
p

o
ra

l
d
ista

n
ce

a
re

sp
eci�

ed
a
lo

n
g

th
e

X
-

a
n

d
Y

-a
x
es,

resp
ectiv

ely,
d

e�
n
in

g

a
p

la
n

e.
E

a
ch

p
o
in

t
in

sid
e

th
e

p
la

n
e

co
rresp

o
n

d
s

to
a

p
a
rticu

la
r

m
a
g
n

itu
d

e
fo

r
a

g
ra

in

v
ecto

r.
T

h
e

sp
a
ce

o
f

g
ra

in
v
ecto

r
m

a
g
n

itu
d

es
is

p
a
rtitio

n
ed

in
to

th
o
se

th
a
t

rep
resen

t

�
n

e-g
ra

in
sh

a
rin

g
,

a
n
d

th
o
se

th
a
t

rep
resen

t
co

a
rse-g

ra
in

sh
a
rin

g
.

F
ig

u
re

3
.2

rep
resen

ts
a

sim
p
le

d
e�

n
itio

n
o
f

sh
a
rin

g
g
ra

n
u

la
rity

w
h

ich
is

su
�

cien
t

fo
r

th
e

p
u
rp

o
ses

o
f

th
is

th
esis.

S
ev

era
l

issu
es

m
u

st
b

e
fu

rth
er

a
d

d
ressed

in
o
rd

er
to

p
rov

id
e

a
m

o
re

rig
o
ro

u
s

d
e�

n
itio

n
.

W
e

w
ill

d
iscu

ss
th

ese
issu

es
o
n

ly
b

rie

y

h
ere.

F
irst,

w
e

h
av

e
d
raw

n
th

e
p
a
rtitio

n
b

etw
een

�
n

e-g
ra

in
a
n

d
co

a
rse-g

ra
in

reg
io

n
s

in
F

ig
u

re
3
.2

in
a

circu
la

r
fa

sh
io

n
fo

r
sim

p
licity,

im
p

ly
in

g
th

a
t

sh
a
rin

g
g
ra

n
u

la
rity

is
a

fu
n

ctio
n

o
f

36 CHAPTER 3. THE MULTIGRAIN APPROACH

Spatial Distance

Te
m

po
ra

l D
is

ta
nc

e

Fine-Grain

Coarse-Grain

Figure 3.2: Classi�cation of sharing granularity in terms of spatial and temporal dis-

tances. Fine-grain sharing occurs only if both temporal and spatial distance is small. All

other sharing is coarse-grained.

only one variable, the grain vector magnitude. It may be desirable to formulate sharing

granularity as a function of both spatial and temporal distance independently (leading

to a partition boundary that is rectangular), or to adopt more complex formulations that

take into account the direction as well as the magnitude of the grain vector. Second,

Figure 3.2 shows a discontinuous transition between �ne-grain and coarse-grain regions,

implying that there is an abrupt delineation. In actuality, the transition should be

continuous; therefore, rather than being simply �ne-grained or coarse-grained, sharing

would be characterized by some continuous quantity, for example, the magnitude of the

grain vector. Finally, the development of our de�nition centers on two shared memory

accesses performed by two processors. For the de�nition to be useful in describing the

sharing behavior of an entire application, it is necessary to extend this de�nition to

account for multiple accesses performed by multiple processors.

3.2 Granularity in Conventional Architectures

The presence of either �ne-grain or coarse-grain sharing, as de�ned in the previous sec-

tion, dictates the support needed by an application from a shared memory architecture in

order to achieve high performance. In this section, we examine how conventional archi-

tectures support the demands of �ne-grain and coarse-grain applications, and we discuss

the implications of providing such support on system scalability and cost.

3.2.1 Supporting Fine-Grain Sharing

Applications that exhibit �ne-grain sharing require aggressive architectural support in

order to achieve high performance. As indicated by the de�nition of sharing granularity

3.2. GRANULARITY IN CONVENTIONAL ARCHITECTURES 37

in Section 3.1, �ne-grain sharing involves frequent con
icts between the shared mem-

ory accesses performed on di�erent processors. Such con
icts invoke service from the

shared memory layer in order to provide coherence on the shared data1. Because of the

high frequency of con
icts (due to the small temporal distances separating con
icting ac-

cesses), signi�cant shared memory overhead can be su�ered leading to poor application

performance unless the underlying architecture provides support for �ne-grain sharing.

Hardware cache-coherent multiprocessors provide the architectural support necessary

to e�ciently support �ne-grain sharing. Two architectural features are particularly im-

portant. First, these architectures support shared memory using special-purpose hard-

ware. Consequently, the shared memory mechanisms are cheap, o�ering low-latency

communication to applications. Low-latency shared memory mechanisms are crucial for

�ne-grain applications due to the high frequency with which the shared memory mech-

anisms are used in �ne-grain sharing scenarios. Second, hardware cache-coherent archi-

tectures support sharing at the granularity of a cache line. Because the cache line is a

relatively small unit of data, cache-coherent machines minimize the e�ects of false sharing

con
icts2. False sharing is an important consideration for �ne-grain applications since

the small spatial separation between shared memory accesses characteristic of �ne-grain

sharing tend to induce false sharing con
icts.

While cache-coherent machines provide high performance on di�cult �ne-grain ap-

plications, the aggressive nature of the architectural support needed to e�ciently handle

�ne-grain sharing poses several design challenges. In particular, it has proven di�cult

for cache-coherent architectures to simultaneously address two important design goals in

the context of large-scale multiprocessors: scalability and cost-e�ectiveness. To date, the

two cache-coherent architectures that have survived the test of time, Symmetric Multi-

processors (SMPs) and Distributed Shared memory Multiprocessors (DSMs), have only

managed to each address these design goals separately.

The SMP is a popular cache-coherent architecture in which physical memory is cen-

tralized. Tight coupling is achieved by connecting processors via a bus. Each processor

is responsible for maintaining coherence on data in its own hardware cache by snooping

shared memory transactions that are broadcasted across the bus interconnect [20]. As a

�ne-grain architecture, the SMP o�ers the advantage of simplicity, due in large part to the

existence of a broadcast primitive made possible by the bus interconnect. Its simplicity

has contributed to its success as a cost-e�ective architecture. However, the very architec-

tural feature that contributes to its economic success, the bus, renders SMPs unscalable

in performance. Because communication and physical memory resources are centralized,

the number of processors can increase only as long as adequate bandwidth exists to sup-

port communication between processors and memory. Beyond a certain point of scaling,

the bus and single memory interface becomes a bottleneck through which shared memory

1In this section, we deliberately avoid discussing the speci�c sources of overhead in shared memory
systems because it is peripheral to the main point of the section. Sections 7.1.1 and 7.1.2 of Chapter 7
address this topic in much greater detail.

2False sharing can still be a problem at the cache-line level. The trend in modern processors is
increasing cache-line size, so the problem will get worse in future generations of cache-coherent machines.

38 CHAPTER 3. THE MULTIGRAIN APPROACH

transactions serialize resulting in signi�cant performance degradation.

Hardware DSMs address the scalability problems encountered in SMPs. In the hard-

ware DSM, physical memory is distributed across separate processing nodes such that

each node owns a portion of globally shared memory. Nodes are connected via an in-

terconnection network, and communicate across the network via point-to-point message

passing. Special-purpose shared memory hardware on each node services shared memory

requests made by the local processor, either by satisfying requests locally, or through

communication with a memory module on a remote node via messages. Cache coherence

is maintained using directory-based cache-coherence protocols, such as the one in [3].

Because communication and memory resources are distributed, the available communi-

cations bandwidth provided between processors and physical memory scales with the

number of nodes in the system since each node has its own dedicated communications

and memory interfaces. The ability to scale communication and memory bandwidth

alongside processor count allows hardware DSMs to provide scalable performance.

While DSMs provide scalable performance on �ne-grain applications, they enjoy far

less success as cost-e�ective scalable architectures. Several factors prevent DSM archi-

tectures from being cost e�ective. Power distribution, clock distribution, and cooling do

not scale linearly in cost at large machine sizes. Furthermore, physical constraints due

to the need to maintain tight coupling often demand special packaging which further

increase cost. From an engineering standpoint, it is di�cult to provide tight coupling

across a large number of processors in a cost-e�cient manner. In addition to these engi-

neering constraints, and perhaps most importantly, economic forces also limit the cost-

e�ectiveness of hardware DSM architectures because high volumes are hard to achieve on

large machines. Since the mechanisms that make hardware DSMs scalable are provided

in hardware, these architectures are \over-designed" for applications in which smaller-

scale commodity systems are adequate. By their very nature, hardware DSMs target

large-scale problems. Unfortunately, large-scale problems, while they are important, do

not drive the market for multiprocessors; most of the volume belongs to commodity ap-

plications. The lack of high volume demand prevents hardware DSMs from enjoying the

economy of high volume production3.

3.2.2 Supporting Coarse-Grain Sharing

Coarse-grain applications impose far fewer demands on architectural support for high

performance as compared with �ne-grain applications. As indicated by the de�nition of

sharing granularity in Section 3.1, coarse-grain sharing is characterized by large temporal

and spatial distances, implying that shared memory accesses performed by di�erent pro-

cessors seldomly con
ict. This signi�cantly relaxes the need for highly e�cient shared

3It is conceivable (though it has not been demonstrated to date) that DSM technology could be
applied to medium-scale systems. Such systems could have wider applicability and thus achieve higher
levels of production, possibly making them commodity items. Existing DSMs, however, do not possess
this economic advantage.

3.3. MULTIGRAIN SYSTEMS 39

memory mechanisms. In fact, for coarse-grain sharing, it is often feasible to support

shared memory purely in software without impacting performance. Furthermore, be-

cause of the larger spatial distances separating shared memory accesses, a coarser unit

of sharing can be used without introducing signi�cant false sharing con
icts. For some

applications, it is even more bene�cial to support a larger unit of sharing due to the

amortization of protocol processing overhead per transaction across more data.

Page-based software distributed shared memory architectures are designed to capital-

ize on the less stringent architectural demands of coarse-grain applications. Like hardware

DSMs, software DSMs have distributed communications and memory resources. How-

ever, software DSMs do not rely on any special-purpose hardware; instead, they leverage

commodity technology throughout their implementation. Software DSMs use commodity

uniprocessor workstations as processing nodes, commodity networks and network inter-

faces as the communications fabric, and they support shared memory mechanisms purely

in software. Caching is performed in main memory using the page as the unit of sharing,

while coherence on cached data is maintained using the same directory-based techniques

employed in hardware DSMs implemented purely in software.

Because they leverage commodity technology, software DSMs are extremely cost-

e�ective architectures. The key to their cost-e�ectiveness is two-fold. First, the com-

ponents from which they are constructed are high volume components, and therefore,

are themselves cost-e�cient. Second, building large systems do not require any special

costs, as was the case in hardware DSMs that require tight coupling. In fact, the original

motivation for the software DSM architecture was to use the workstations and networks

that already exist in a local area environment as the target machine. In this case, scaling

up to large con�gurations incurs zero cost since the hardware already exists.

Unfortunately, the lack of architectural support for e�cient shared memory mecha-

nisms precludes software DSMs from delivering high performance on �ne-grained appli-

cations. Remote memory accesses that use software to page across a commodity network

are simply too costly to support the high frequency use of shared memory mechanisms

characteristic of �ne-grain sharing. Furthermore, the large coherence unit, a page, re-

sults in signi�cant false sharing con
icts adding to the high frequency of shared memory

activity. While much research has been devoted to minimizing the frequency of com-

munication through protocol optimizations, it remains impossible for software DSMs to

handle �ne-grain sharing e�ciently.

3.3 Multigrain Systems

Section 3.2 uncovered several design challenges that architects of large-scale shared mem-

ory machines face. These challenges can be summarized as follows.

1. Supporting �ne-grain applications requires aggressive architectural support to pro-

vide tightly-coupled highly-e�cient shared memory mechanisms.

2. Conventional architectures that support �ne-grain applications e�ciently have been

40 CHAPTER 3. THE MULTIGRAIN APPROACH

unable to achieve both scalable performance and cost-e�ective design. While hard-

ware DSMs support �ne-grain sharing in a scalable fashion, they are not cost-

e�ective architectures due to the di�culty in supporting tight coupling for large-

scale systems in a cost-e�cient manner, and specialization to high-performance

low-volume applications.

3. Architectures that leverage commodity technology are highly cost-e�ective. By

implementing shared memory mechanisms in software, large-scale machines can

be constructed from commodity components. However, these architectures cannot

support �ne-grain applications because software shared memory mechanisms lack

necessary e�ciency.

Our survey of conventional architectures exposes a tension between two seemingly

con
icting goals: supporting �ne-grain sharing in a fashion that provides scalable per-

formance, and leveraging commodity technology for cost-e�ective designs. Furthermore,

existing architectures are positioned at two extremes across the spectrum of cost and

performance. Hardware DSMs are positioned at the high-performance extreme, and soft-

ware DSMs are positioned at the low-cost extreme. The ability to trade o� both cost

and performance to explore intermediate points along the cost-performance spectrum do

not currently exist.

The lack of \intermediate architectures" between hardware DSMs and software DSMs

is one of the motivations for the multigrain approach. In this section, we describe multi-

grain architectures at an introductory level. Chapter 4 continues the discussion in greater

depth where the design of a multigrain shared memory system, called MGS, is presented.

3.3.1 A Hybrid Approach for Both Cost and Performance

One of the reasons for the poor cost-e�ectiveness of large-scale hardware DSMs is the

insistence on providing support for �ne-grain sharing across the entire machine. The

global nature of the �ne-grain mechanisms in large-scale hardware DSMs necessitates

tight coupling between all nodes in the system. As system size increases, tight coupling

on a machine-wide scale becomes costly. However, eliminating tight coupling altogether

is prohibitive since it would sacri�ce the ability to support �ne-grain applications.

The solution we propose in this thesis is to provide some tight coupling, but not across

the entire machine. \Neighborhoods" of tight coupling can be formed by using special-

purpose hardware to support cache-coherent shared memory within small- to medium-

scale multiprocessor nodes. Tight coupling is necessary for performance, but the amount

provided should only be to an extent that remains cost e�ective. Shared memory between

cache-coherent nodes is supported via page-based software DSM techniques. Therefore,

a single transparent shared memory layer is synthesized through the cooperation of both

�ne-grain and coarse-grain shared memory mechanisms, hence the name multigrain shared

memory. The multigrain approach, as this is called, represents an intermediate solution

compared against hardware DSMs which provide tight coupling across the entire machine

and software DSMs which provide no tight coupling at all.

3.3. MULTIGRAIN SYSTEMS 41

P

C

P

C

P

C

Internal Network

SSMP

P

C

P

C

P

C

Internal Network

SSMP

External Network

Figure 3.3: A Distributed Scalable Shared Memory Multiprocessor (DSSMP).

Multigrain systems have the potential to achieve both high performance and low cost.

The existence of hardware support allows �ne-grain sharing to be supported e�ciently

inside a multiprocessor node. Although only coarse-grain sharing can be supported by

the software shared memory between nodes, multigrain systems still o�er higher perfor-

mance on �ne-grain applications than software DSMs since some �ne-grain mechanisms

are provided. The extent to which multigrain systems can e�ectively support arbitrary

�ne-grain applications is a central topic of the evaluation of multigrain shared memory

systems presented in Chapter 6. Multigrain systems are also much more cost-e�ective

than hardware DSMs. Even though they require hardware support for shared memory,

multigrain systems incorporate hardware support only on a small- or medium-scale. The

amount of hardware support needed for good performance will also be a primary topic

of Chapter 6.

3.3.2 DSSMPs

In this thesis, we refer to multigrain shared memory architectures as Distributed Scalable

Shared memory MultiProcessors (DSSMPs). Figure 3.3 shows the major components

in a DSSMP. A DSSMP is a distributed shared memory machine in which each DSM

node is itself a multiprocessor. In keeping with the terminology, these nodes are called

Scalable Shared memoryMultiProcessors (SSMPs), as illustrated in Figure 3.3. SSMP is

an architecture-independent name for any small- to medium-scale cache-coherent shared

memory machine. We envision two candidate architectures for the SSMP: the bus-based

Symmetric Multiprocessor (SMP), or the small- to medium-scale NUMA multiprocessor4.

4Architecturally, a small- to medium-scale NUMA multiprocessor resembles the large-scale hardware
DSM, but is targeted for smaller systems. An example of such a system might be the SGI Origin [46] in
a small-scale con�guration.

42 CHAPTER 3. THE MULTIGRAIN APPROACH

As Figure 3.3 shows, DSSMPs have two types of networks that form the communi-

cation substrate: an internal network and an external network. The internal network

provides interconnection between processors within each SSMP. In the case that the

SSMP is a symmetric multiprocessor, this network is a bus5. In the case that the SSMP

is a NUMA multiprocessor, it may be a switched point-to-point network. The external

network connects the individual SSMPs and consists of a high-performance local area

network (LAN), such as ATM or switched Ethernet.

In addition to a hierarchy of networks, DSSMPs also provide shared memory sup-

port in a hierarchical fashion. Each SSMP provides special-purpose hardware for cache-

coherent shared memory. This may take the form of snoopy-based cache coherence in the

case of SMPs, or directory-based cache coherence in the case of NUMA multiprocessors.

Between SSMPs, shared memory is supported using page-based software shared memory.

Chapter 4 discusses the design of multigrain shared memory in detail. In the rest of

this section, we provide an introductory explanation of some important design principles

to give a \
avor" for how multigrain systems are constructed. Figure 3.4 shows an

example of how data is distributed across processors in a DSSMP to illustrate the key

computation structures required in any multigrain shared memory system. The example

shows four di�erent processors on three separate SSMPs that access data in the same

page. In order for the processors to access the data, the page containing the data must

�rst be replicated in the physical memory of their respective SSMPs. Figure 3.4 shows

three replicated pages, on SSMP0, SSMP1, and SSMP2, respectively. Notice that each

page can have either read-only or read-write privilege depending on the type of accesses

made by the processor(s) on the SSMP.

Once a copy of the desired page resides in the SSMP's physical memory, any processor

on the SSMP can access the data in the page. A mapping entry in the processor's TLB

provides the address translation that allows the processor to name locations in the page.

Like the access privilege on the page itself, this mapping entry can allow either reads or

reads and writes on the page. Finally, hardware cache-coherent shared memory further

replicates the data into the hardware caches that deliver the data to the processors. In

Figure 3.4, one processor on SSMP0, a second processor on SSMP1, and a third processor

on SSMP2 are reading data from the page; therefore, all three processors have a read

mapping of the page in their TLBs, and read copies of the data in their hardware caches.

At the same time, one processor on SSMP2 is performing reads and writes on the page.

This processor has a read-write mapping in its TLB and read-write copies of the data in

its hardware cache.

The key point in Figure 3.4 is that data distribution in a DSSMP happens hierar-

chically. First, data is replicated across SSMPs in units of pages via software shared

memory, resulting in a copy of the page being placed in the physical memory of the

SSMP. Once a copy of the page resides in the SSMP, the data is further replicated to

individual (and potentially multiple) processors in the SSMP in units of cache lines via

5To enhance scalability, some SMPs are moving away from buses and are using switched interconnect.
An example of this is the SUN Enterprise Server [65].

3.3. MULTIGRAIN SYSTEMS 43

P T

C

SSMP0

P T

C

SSMP1

P T

C

SSMP2

P T

C

P Processor
T TLB
C Cache

Read-Write Cache Data

Read-Only Cache Data

Read-Write Mapping

Read-Only Mapping

Read-Write Page Data

Read-Only Page Data

Figure 3.4: Distribution of a single page of data across three SSMPs. Only the processors

involved in sharing are shown; there are other processors in each SSMP that are not

shown.

hardware cache-coherent shared memory.

The hierarchical data distribution scheme illustrated in Figure 3.4 re
ects a variation,

both in spatial grain and temporal grain, as shared memory accesses traverse di�erent

levels in the memory hierarchy.

Spatial grain. The coherence unit size changes as shared memory accesses cross SSMP

boundaries. Within an SSMP, the coherence unit size is a cache line since data

distribution and replication is supported by cache-coherence hardware. Between

SSMPs, the coherence unit size is a page since shared memory is supported by

page-based software shared memory.

Temporal grain. Latency of shared memory accesses increases signi�cantly as SSMP

boundaries are crossed for two reasons. First, shared memory transactions experi-

ence drastically di�erent latencies depending upon whether they are supported in

hardware or software. Second, communication across the internal network is much

cheaper as compared to the external network. The internal network provides raw

hardware interfaces directly to the hardware shared memory mechanisms. Typ-

ically, the external network is unreliable and untrusted. Building reliability and

security over the external network requires running expensive protocol stacks in

software.

44 CHAPTER 3. THE MULTIGRAIN APPROACH

P , 2

P , 4

P , 8

1 P

Figure 3.5: A family of DSSMPs is de�ned by �xing the total processing and memory

resources, and varying the SSMP node size. The notation P;C denotes a DSSMP with

P total processors, and C processors per SSMP node.

The variation of spatial and temporal grain at SSMP boundaries impacts the granular-

ity of sharing experienced by di�erent processors in the DSSMP. Shared memory accesses

performed by processors colocated on the same SSMP experience �ne-grain sharing due

to the small spatial and temporal grain supported by cache-coherence hardware. Shared

memory accesses performed by processors on separate SSMPs experience coarse-grain

sharing due to less e�cient page-based software shared memory.

3.3.3 DSSMP Families

As mentioned earlier in the section, DSSMPs represent the \intermediate architecture"

along a cost-performance spectrum whose endpoints are the hardware DSM and the

software DSM. Like any other spectrum in nature, the spectrum of shared memory ar-

chitectures that we have de�ned based on sharing granularity is somewhat continuous.

Before we embark on the study of machines along this spectrum which is the objective

of this thesis, it is bene�cial to more precisely characterize the spectrum.

While there are many system parameters that characterize the con�guration of a

parallel machine, a key parameter is the system size, or the number of processing elements

in the system, P . DSSMPs can also be characterized in this fashion; however, another

key parameter in the case of DSSMPs is the SSMP node size, C. Therefore, we can

introduce the notation P;C to crisply identify speci�c con�gurations of DSSMPs.

Many DSSMP con�gurations are similar; in particular, we say that all con�gurations

with the same P parameter belong to the same DSSMP family. As illustrated in Fig-

3.3. MULTIGRAIN SYSTEMS 45

ure 3.5, a family of DSSMPs is de�ned by �xing the total number of processing elements,

P , and varying SSMP node size6. DSSMPs in the same family di�er only in the way

processors are clustered.

This taxonomy of DSSMPs turns out to be useful for characterizing the spectrum

of machines discussed above for the following reason. The clustering boundary, i.e.

the boundary that divides processors on the same SSMP from those that are on re-

mote SSMPS, determines where hardware-supported shared memory meets software-

supported shared memory. Therefore, by varying SSMP node size, we in e�ect vary

the mix of �ne-grain and coarse-grain support for sharing between processors. DSSMPs

with smaller SSMP nodes rely more on software-supported shared memory and provide

more coarse-grain sharing support. Conversely, DSSMPs with larger SSMP nodes rely

more on hardware-supported shared memory and provide more �ne-grain sharing sup-

port. Furthermore, the conventional shared memory machines described in Section 3.2

are captured by our taxonomy as degenerate con�gurations at the endpoints of the spec-

trum. All-software DSMs are the P; 1 con�gurations, while all-hardware DSMs are the

P; P con�gurations.

The most important aspect of our taxonomy is that it points to the existence of

a \knob," as depicted in Figure 3.5. This knob is not only a SSMP node size knob

and a sharing granularity knob, but it also serves as a knob for tuning cost against

performance. The knob illustrates how multigrain systems are in fact an answer to the

plea for an intermediate architecture that was posed at the beginning of this section.

The importance of Figure 3.5 is a theme that will reappear in future parts of the thesis.

6In this thesis, we only consider SSMP node sizes, C, that divide P evenly. Otherwise, the DSSMP
will contain SSMPs of varying sizes, in which case a single SSMP node size parameter cannot specify
the sizes of all SSMPs in the system.

46 CHAPTER 3. THE MULTIGRAIN APPROACH

Chapter 4

MGS System Architecture

This chapter proposes a system architecture for multigrain shared memory, called MGS1.

The discussion of the architecture proceeds in four parts. The �rst two parts, Sections 4.1

and 4.2, present our design of multigrain shared memory. Section 4.1 describes the

MGS mechanisms|these include mechanisms found in existing hardware and software

DSM systems, as well as novel mechanisms that are needed speci�cally for multigrain

systems. Section 4.2 describes the structure of the MGS architecture, focusing on the

major architectural pieces, and how the pieces interact. Our intention for these two

design sections is to provide a clean and lucid exposition of the most important aspects

of the design. We do not intend to provide exhaustive blueprints for the entire system.

The interested reader is encouraged to study Appendix A where a complete and detailed

speci�cation of MGS is given.

The third part, Section 4.3, presents a user-level synchronization library that accel-

erates synchronization operations on clustered systems by leveraging the fast communi-

cation mechanisms within SSMPs whenever possible. Finally, Section 4.4 presents the

programmer's interface exported by MGS.

4.1 Enabling Mechanisms

MGS couples hardware cache-coherent shared memory with software page-based shared

memory. The hardware layer provides shared memory within SSMPs, while the software

layer extends hardware-supported shared memory across SSMPs in as seamless a fashion

as possible. Figure 4.1 presents a schematic of the MGS system, illustrating the layered

construction of the system by representing each major system layer with a box. Boxes

drawn with solid lines represent layers of the system that are implemented in hardware,

and boxes drawn with dotted lines represent layers of the system that are implemented

in software. As Figure 4.1 shows, there are three major system layers in the construction

of multigrain shared memory. Two major pieces are the hardware cache-coherent and

1The nameMGS derives from the acronym forMultiGrain Shared memory. It refers to the particular
multigrain shared memory system proposed in this thesis.

47

48 CHAPTER 4. MGS SYSTEM ARCHITECTURE

Hardware Cache-Coherent

Software Page-Based

TLB Consistency

Page Cleaning

Multiple Writers

Hardware/Software Glue

Single-Writer

Snoopy-Based
or

Directory-Based
Coherence

VM-Based

Eager Release

Shared Memory

Shared Memory

Access Check

Consistency

(Twinning and Diffing) Diff-Bypass

Multiprocessor
VM Faults

Figure 4.1: Schematic of the MGS system. Italicized text re
ect new mechanisms needed

for multigrain shared memory.

software page-based shared memory layers already mentioned. In addition, an interme-

diate software layer provides the glue or interface between the traditional hardware and

software shared memory layers.

Each of the three layers in MGS implements several key mechanisms that together

support multigrain shared memory. Figure 4.1 shows these mechanisms inside the layers

to which they belong. Because multigrain shared memory is fundamentally the combina-

tion of cache-coherent and page-based shared memory, many of the mechanisms proposed

for conventional distributed shared memory discussed in Chapter 2 are also needed in

multigrain systems. These mechanisms are printed in normal text in Figure 4.1. However,

there are also several additional mechanisms that are needed speci�cally for multigrain

shared memory. These mechanisms are printed in italicized text in the �gure.

The goal of this section is to describe all the mechanisms in Figure 4.1. We begin by

brie
y describing the mechanisms borrowed from conventional shared memory systems.

Then we describe the new mechanisms needed speci�cally for multigrain shared memory.

4.1.1 Conventional Shared Memory Mechanisms

MGS relies on two hardware mechanisms. The �rst is hardware cache-coherent shared

memory to provide the shared memory abstraction within SSMPs2. We envision two pos-

2What we have lumped into a single mechanism here in fact is a potentially very complex system
involving many hardware mechanisms. More details of hardware cache-coherent shared memory can be

4.1. ENABLING MECHANISMS 49

sible hardware cache-coherent shared memory architectures for the SSMP: the bus-based

symmetric multiprocessor, and the small- to medium-scale distributed shared memory

multiprocessor. In this thesis, MGS has been designed assuming the DSM architec-

ture; however, our approach can be applied to the symmetric multiprocessor architecture

as well with some modi�cations. The speci�c implementation of cache-coherent shared

memory within SSMPs is not crucial; what is important is that the hardware supports

a shared memory address space, and that it provides the mechanisms for maintaining

coherence on cached shared data.

Second, MGS relies on hardware support for virtual memory, namely support for ad-

dress translation and protection checking as is commonly provided by hardware TLBs3.

Virtual memory is a requirement because software shared memory provides a shared

virtual address space in the absence of shared physical memory. Address translation pro-

vides the level of indirection between shared virtual memory and local physical memory.

Protection checking is the mechanism by which accesses to shared virtual memory get

trapped if they have no backing in physical memory. Once trapped, an access is for-

warded to the software layers that provide shared memory mechanisms between SSMPs.

(See Chapter 2 for more details).

While the mechanisms provided by the hardware layer are an integral part of the

overall MGS system, we are less concerned with their design as compared to the design

of the software layers for two reasons. First, one goal of the thesis is to target commodity

hardware technology. We are interested in leveraging hardware platforms that can be

found commercially. This limits our ability to dictate the design of the hardware mech-

anisms. Second, and in some ways a more compelling consideration, the speci�c design

of the hardware layer is less crucial to the behavior of the overall system because the

software is usually the bottleneck. To �rst order, it doesn't matter how we design the

hardware mechanisms (as long as they support the conventional mechanisms described

above) because the hardware will be fast compared to the software. For these reasons,

we will not discuss the hardware mechanisms further in this section.

The software layer in MGS that supports page-based shared memory borrows many

mechanisms from conventional software DSM systems that run on clusters of unipro-

cessor workstations. Our design of software page-based shared memory is closest to

the Munin system [13]. In particular, we support a release consistent (RC) memory

consistency model using the Delayed Update Queue structure proposed by Munin (see

Section 4.2.3). In addition, we support multiple writers via twinning and di�ng, another

technique �rst proposed by Munin. Together, these software shared memory mechanisms

signi�cantly alleviate coherence overhead introduced by false sharing. (See Chapter 2 for

more discussion on these mechanisms).

found in Chapter 2.
3As we will discuss in Section 5.3.1 of Chapter 5, our implementation of MGS uses a hardware platform

that does not provide hardware support for virtual memory; instead, we support virtual memory in
software. However, VM has traditionally been supported in hardware on most platforms; therefore, we
consider this mechanism belongs to the hardware layer.

50 CHAPTER 4. MGS SYSTEM ARCHITECTURE

4.1.2 Additional Mechanisms for Multigrain Shared Memory

In addition to the mechanisms borrowed from conventional shared memory, there are

novel mechanisms in Figure 4.1 that are needed speci�cally for multigrain shared memory

(those in italics). We �rst describe the novel mechanisms in the glue layer, then we

describe the novel mechanisms in the software DSM layer.

MGS provides three mechanisms that form the glue or interface between the hardware

and software shared memory layers. The three glue mechanisms are multiprocessor VM

fault handlers, page cleaning and mapping consistency4. Multiprocessor VM fault han-

dlers allow the vectoring of VM faults from multiple sources within an SSMP node which

is necessary since each node is a multiprocessor instead of a uniprocessor. The page

cleaning mechanism bridges the gap in coherence between the hardware and software

shared memory layers. And the mapping consistency mechanism provides coherence on

mapping state within an SSMP.

Multiprocessor VM Faults

As we described above, the software layer in multigrain shared memory closely resembles

software DSM in conventional systems. The di�erences, however, stem from the fact that

each DSM node in MGS is a multiprocessor, not a uniprocessor. Consequently, MGS will

encounter VM protection faults from multiple sources within each software DSM node.

Furthermore, the action taken in response to a particular fault may be very di�erent

under MGS.

To illustrate these di�erences, Table 4.1 lists the basic fault types and the action

taken on each fault in both conventional DSMs on uniprocessor workstations, and DSM

in MGS. The table shows what happens when a processor on the DSM node makes either

a read or write access, speci�ed in the \Access" column, to a shared page. The page can

either be mapped read-only or read-write in the processor's TLB, or not mapped at all

(\Invalid" state), speci�ed in the \TLB State" column. The page data can reside in the

node's local memory with either read-only or read-write access privileges, speci�ed in the

\Page State" column. Pages that have not been paged into local memory are speci�ed

as \Invalid." The last two columns in Table 4.1 specify the fault that occurs given the

access type and state of the TLB and page data, and the action taken by the software

shared memory layer, respectively.

In conventional systems, the state of the TLB and the state of the page data, i.e.

mapping and data, are synchronized, as illustrated by the \TLB State" and \Page State"

columns in Table 4.1. Furthermore, every VM protection fault requires an action that

4Mapping consistency is similar to TLB consistency, a term more widely recognized. The reason we
do not use the popular terminology is because our implementation of MGS on Alewife supports address
translation in software, and thus does not have TLBs. Consistency on mapping state is still necessary,
but software structures are involved instead of hardware TLBs. The problem is the same, but because
our system does not have hardware TLBs, we choose the more generic term \mapping consistency." In
this section, we will treat mapping consistency as a solution for a system with hardware TLBs, and defer
discussion speci�c to our implementation until Chapter 5.

4.1. ENABLING MECHANISMS 51

Access TLB State Page State Fault Type Action

Conventional

Read Invalid Invalid Page Fault Page In

Write Invalid Invalid Page Fault Page In

Write Read-Only Read-Only Page Fault Page Upgrade

MGS

Read Invalid Invalid Page Fault Page In

Write Invalid Invalid Page Fault Page In

Write Read-Only Read-Only Page Fault Page Upgrade

Read Invalid Read-Only TLB Fault TLB Fill

Write Invalid Read-Write TLB Fault TLB Fill

Table 4.1: A comparison of possible fault events encountered by the software DSM layer

in a conventional software DSM system and in the MGS system.

touches page data, such as paging between DSM nodes (\Page In" action) or upgrading

the access privilege on an existing page (\Page Upgrade" action)5. As we will discuss

in Section 4.2, these actions are expensive because they require communication between

DSM nodes.

In MGS, mapping and data state are not necessarily synchronized. Initially, when

a processor faults on a page that is not resident in the local node's memory (�rst two

rows under \MGS" in Table 4.1), or when a processor makes the �rst write access to a

read-only page (3rd row under \MGS"), actions occur on the page data. These actions

can bene�t the other processors in the same SSMP since subsequent faults do not need

to repeat the actions on the page data. Instead, they only need to manipulate mapping

state, as indicated by the last two rows in Table 4.1 which show that some faults can be

satis�ed with a TLB �ll operation. These faults are much less expensive than faults that

touch page data since they can be completed locally on the SSMP.

Page Cleaning

The page cleaning mechanism maintains a single view of coherent data as seen by the

hardware and software shared memory layers. Because of replication in hardware shared

memory, the contents of a page in physical memory may not represent a coherent version

of the page. For instance, there may be one or more cache lines in the page that are dirty

in a processor's cache somewhere in the SSMP. If the software DSM protocol tries to

move such a page (for instance, during an invalidation operation), it may see incoherent

data.

The problem arises because movement of a page out of an SSMP occurs through a

network interface. Such interfaces typically perform data transfer by using DMA that is

5In this discussion, we ignore the e�ects of TLB capacity. Because of replacements in the TLB, it is
possible for a page to reside in a node's local memory, but no mapping to exist in the TLB. This can
result in a TLB Fault in which a TLB �ll occurs without any page data operations.

52 CHAPTER 4. MGS SYSTEM ARCHITECTURE

not coherent with respect to the processor caches. For the data transfer to see coherent

data, all hardware-distributed copies need to be localized6.

There are several di�erent ways of localizing page data. MGS employs an all-software

approach, called page cleaning. In page cleaning, the processor that initiates the local-

ization operation walks the entire page. For each cache line in the page, the processor

forces the cache-coherence hardware to issue an invalidation for the cache line. After this

is completed for all cache lines in the page, we are guaranteed that the data from the

page is purged from all the processor caches. Section 5.3.3 of Chapter 5 discusses page

cleaning in more detail, including how to make it go fast.

Mapping Consistency

The last glue mechanism is mapping consistency. Since the software DSM protocol

distributes pages across SSMPs and then reclaims them via invalidation, it must be

able to access and modify the address mapping state within the individual SSMPs. A

consistency problem arises because the mapping state, located in page tables, can be

cached in the TLBs of potentially multiple processors. The system must ensure that any

changes made to the mapping state in the page tables do not leave a stale copy of a

mapping entry in any processor's TLB.

Many approaches for providing mapping consistency (also known as TLB consistency)

have been proposed [17, 64, 54, 9]. The solution used in MGS is closest to the one

proposed in the PLATINUM system [17]. Each SSMP has a TLB directory that tracks

the cached page table entries for all the pages resident in the SSMP's physical memory.

The TLB directory is updated whenever a TLB �ll is performed by marking the ID of

the processor caching the mapping entry. When a page table entry is modi�ed, the TLB

directory is consulted and an invalidation request for that entry is posted to all processors

which have cached the entry in their TLB via inter-processor interrupts. Processors can

be interrupted selectively because the TLB directory speci�es the exact set of processors

with the mapping cached in their TLBs. Without the directory, all processors would

have to be interrupted thus resulting in much higher synchronization overhead.

Since it is possible for concurrent accesses to occur on page table state, MGS provides

a lock for every page table entry to ensure atomic access. Processors that wish to read

a page table entry during TLB �ll or modify an entry during TLB invalidation must

acquire the lock before performing the access. No attempt is made to distinguish between

read accesses and write accesses (using readers and writers locks, for instance) since the

frequency of accesses to the page table is low enough that serialization is not a signi�cant

problem. Section 4.2.2 gives further discussion on the locking scheme used for mapping

6There is another coherence problem that is symmetric to the invalidation case. Suppose a page is
returned to the operating system's pool of free pages before all the data inside the page is localized. At
a future point in time, the SSMP reallocates the page to receive data from a remote SSMP via DMA
that is not coherent with processor caches. When this page is remapped, it is possible for processors to
access stale data due to residual copies of the data in the hardware caches from the earlier mapping of
the page.

4.1. ENABLING MECHANISMS 53

consistency. Also, see Appendix A for speci�c details on how mapping consistency is

implemented.

We now describe the two mechanisms in MGS implemented in the software shared

memory layer. The �rst mechanism is called the Single-Writer Mechanism and is crucial

for obtaining good performance on multigrain shared memory systems. The second mech-

anism is called the Di�-Bypass Mechanism and can be helpful for any shared memory

protocol that supports multiple writers via di�ng. Both mechanisms address perfor-

mance. The correctness of MGS does not rely on these mechanisms, but the mechanisms

signi�cantly improve MGS performance (especially the Single-Writer mechanism).

Single-Writer

From the standpoint of performance, the goal of MGS is to maintain the illusion that

the DSSMP performs as if it were a hardware cache-coherent shared memory machine

in spite of the fact that software is used to support shared memory between SSMPs.

To maintain this illusion as often as possible, MGS must leverage hardware-supported

shared memory aggressively, particularly when sharing patterns permit the system to

bypass software layers.

In general, it is di�cult to avoid software intervention. Any shared memory operation

that requires communication across SSMPs or that needs to modify mapping state within

the same SSMP necessarily invokes software layers to provide the desired services. For

instance, if a page is shared by processors on two or more SSMPs, then maintaining

coherence on the page will require inter-SSMP communication and software protocol

processing on each of the SSMPs7.

One important sharing pattern that a DSSMP should handle e�ciently, however,

is when a page is shared only between processors colocated on the same SSMP. We call

such a scenario a Single-Writer condition. The name \Single-Writer" re
ects the fact that

there is exactly one outstanding write copy of the page in the entire system, even though

potentially multiple processors (in the same SSMP) are accessing the page. Sharing

patterns that meet the Single-Writer condition should incur the minimum amount of

software overhead: one page fault to bring the page into the SSMP by the �rst processor to

access the page, and one TLB fault for every additional processor in the SSMP accessing

the page to provide a mapping in that processor's TLB8. After this minimum software

overhead is incurred, all shared memory accesses should be satis�ed using hardware

cache-coherent shared memory. Furthermore, no additional software overhead should be

su�ered until a processor on a remote SSMP wishes to access the page, thus violating

the Single-Writer condition.

7Note that read sharing across SSMPs can be supported with no software intervention (aside from
cold misses), but this is a trivial case because of the lack of a coherence problem. In this section, by
sharing we mean that two or more processors perform accesses to the same page in which at least one
processor is performing writes.

8There may be an additional fault to upgrade the page from read privilege to write privilege if the
very �rst access made to the page was a read access, and subsequent accesses perform writes.

54 CHAPTER 4. MGS SYSTEM ARCHITECTURE

P P P

Client SSMP

Release
Rele

as
e

Release Release
Rele

as
e

ReleaseRelease
Rele

as
e

Release

Single-
Writer
Copy

Unnecessary
Coherence

Home SSMP

Home
Copy

Figure 4.2: Unnecessary communication and protocol processing overhead for sharing

under the Single-Writer condition.

The minimum software overhead for a page that meets the Single-Writer condition

may not be achieved because of the explicit nature of coherence management in im-

plementations of release consistency on software shared memory systems. For instance,

software shared memory systems such as MGS that implement RC using delayed updates

maintain coherence at every release (see Section 2.2.2 of Chapter 2 for a discussion on

delayed updates). This coherence management policy prevents the e�cient handling of

sharing patterns that meet the Single-Writer condition. Figure 4.2 illustrates that each

release under delayed updates requires communication to maintain coherence between at

least two copies of a page, one at the client SSMP, and one at the page's home SSMP.

For sharing patterns that obey the Single-Writer condition, this communication is unnec-

essary since the client is the sole SSMP accessing the data (i.e. under the Single-Writer

condition, the home SSMP does not require updating at every release). Therefore, while

the Single-Writer sharing pattern permits the copy at the home SSMP to remain inco-

herent past multiple client release operations, the strict adherence to release consistency

prevents the elimination of this unnecessary communication.

One possible solution is to identify Single-Writer conditions statically in the source

code, and then to transform the source code such that release operations are not emitted

to the shared memory system. There are two problems with this approach. First, extra

e�ort on the part of the programmer or compiler to identify shared memory accesses that

obey the Single-Writer condition is needed. And second, in cases that exhibit dynamic

behavior, it may not be possible to perform the transformation because meeting the

Single-Writer condition cannot be guaranteed all the time. Under these circumstances,

the programmer or compiler must be conservative and omit the transformation even if

the Single-Writer condition can be met most of the time.

A better solution is to allow the shared memory protocol to identify the Single-Writer

condition at runtime and for these cases, allow the protocol to relax coherence beyond

the release point. This is what we call the Single-Writer mechanism. The mechanism

4.1. ENABLING MECHANISMS 55

has three parts: Single-Writer detection, relaxing coherence, and reverting to a normal

level of coherence.

Single-Writer Detection. The Single-Writer condition is met when there is exactly

one outstanding write copy of a page in the entire system. This condition can only

be detected at a page's home SSMP where the page directory can be consulted (see

Section 4.2.3). Each time a client SSMP performs a release and sends a request to

the home SSMP for coherence, the home looks at the page's directory entry and

determines whether the Single-Writer condition is met.

Relaxing Coherence. Normally, when the home SSMP receives a request for coher-

ence from a client SSMP, it initiates invalidation on the page. For those pages

that meet the Single-Writer condition as described under Single-Writer detection,

the home SSMP instead sends a special message back to the client SSMP noti-

fying the client that it should relax the coherence policy on this page. The client

SSMP transitions its local copy of the page to a special Single-Writer mode. In this

mode, all subsequent release operations performed by any processor in the SSMP

are ignored by the software shared memory layer (the exact details concerning how

this is accomplished are discussed in Section 4.2 and Appendix A). In essence,

the system breaks the RC memory consistency model for that page because the

system has detected that sharing patterns on the page do not require coherence.

The home SSMP also marks the page's directory entry to indicate that the page

has transitioned to the single-Writer mode.

Reverting to Normal Coherence. The system must revert to a normal coherence

policy as soon as the Single-Writer condition is violated, which occurs when any

processor on an SSMP other than the client with the Single-Writer copy tries to

access the page (we will call this SSMP the \3rd-party SSMP"). When this happens,

a page fault is guaranteed to occur on the 3rd-party SSMP since in the Single-Writer

mode, there is only a single SSMP in the entire system with an outstanding copy.

The page fault request from the 3rd-party SSMP will be received by the home

SSMP which consults the page directory as usual. The home SSMP will then

recognize the page is in the special Single-Writer mode. Before the home SSMP

can service the page fault from the 3rd-party SSMP, it must �rst invalidate the

Single-Writer copy. It initiates an invalidation and waits for an acknowledgment.

When the invalidation completes, the contents of the Single-Writer copy will be

returned to the home SSMP which is used to restore coherence on the home copy.

At this point, normal coherence is restored and the 3rd-party SSMP page fault can

be serviced.

Di�-Bypass

In a shared memory protocol that supports multiple writers, di�s are used to merge

multiple dirty pages after an invalidation into a single coherent version of the page.

56 CHAPTER 4. MGS SYSTEM ARCHITECTURE

 Diff Creation
� Diff Bypass

|

0
|

64
|

128
|

192
|

256

|0

|2000

|4000

|6000

|8000

|10000

 Number of Modified Words

 E
xe

cu
tio

n
T

im
e

(c
yc

le
s)

� �

Figure 4.3: Overhead of Di� Creation and Di� Bypass as a function of the number of

modi�ed words in the page. Page size is 1K-bytes.

There are instances, however, where di�s are not necessary even when there are dirty

pages outstanding during invalidation. For instance, if there is only a single dirty page

outstanding, then the di� is not necessary. In fact, the dirty page itself represents the

coherent copy of the page. Even when there are multiple dirty pages outstanding, it is

still possible to avoid di� creation. One of the dirty pages can be selected to bypass di�

creation. As long as di�s are created for all other dirty pages, the di�s can be merged

into the selected page. Therefore, under these circumstances, the system has a choice

between creating a di� or bypassing the di�.

From the standpoint of e�ciency, choosing between di� creation or bypassing is a

trade o� between message size and computational overhead. Often, the size of the di� is

smaller than the size of a page. For instance, in MGS, a di� contains two words for every

modi�ed word in the page (one word for the address, and one word for the new value).

Therefore, if fewer than half the words in a page have been modi�ed, then the di� will

be smaller than the page. In this case, the cost of sending the di� will be smaller than

the cost of sending the entire bypassed page. However, the reduction in data movement

overhead must be traded o� against the cost of computing the di� in the �rst place. The

right choice depends on the number of modi�ed words in the dirty page, and the speci�c

architectural parameters of the target system.

Figure 4.3 shows a simple experiment performed on the Alewife multiprocessor in

which the number of cycles required to compute a di� and send it to a neighboring pro-

cessor is plotted against the number of modi�ed words in the page, which is increased

4.2. ARCHITECTURAL STRUCTURE 57

from 0 to the size of the page (in this example, the page size is 1 K-byte or 256 words).

This curve is compared to the cost of sending a 1K-byte message directly without any

computational overhead, which is the cost incurred by the Di� Bypass mechanism. Fig-

ure 4.3 shows that on Alewife, creation of a di� is always more costly than bypassing,

even when there are no modi�ed words in the page. The minimum cost of the \Di� Cre-

ation" curve is equal to the computational cost of performing 256 comparisons followed

by sending a null message. This overhead is approximately 3500 cycles, which is more

costly than sending a 1K-byte message on Alewife, an overhead of approximately 2600

cycles.

Figure 4.3 demonstrates that the right choice is to always bypass di� creation when-

ever possible. On Alewife, the network has su�cient bandwidth such that the computa-

tional overhead always dominates the data movement overhead. Of course, this may not

be true for other systems; however, in this thesis, we assume that the networks used in

a DSSMP will have high bandwidth. Therefore, in MGS, we always choose Di� Bypass

when it is allowed.

MGS employs the Di� Bypass mechanism in the following manner. When an invali-

dation is initiated, the home SSMP decides whether di� creation is needed for each dirty

page being invalidated. MGS provides di�erent invalidation messages to signify whether

a di� should be created on the client SSMP, or whether di� creation should be bypassed

and the entire page should be sent back to the home SSMP. Di�-Bypass requires the

home SSMP to wait for the bypassed dirty page to arrive before initiating the merge of

any other di�s into the home copy of the page; otherwise, any premature merges would

be lost9.

4.2 Architectural Structure

This section discusses the structure of the MGS architecture. It highlights major architec-

tural components, and explains how these components interact. We begin by identifying

classes of shared memory operations, or transaction types, and describe the major struc-

tures involved in supporting these transactions (Section 4.2.1). Then, we look at how the

correctness of the architecture can be compromised by simultaneous transactions, and we

present several solutions that maintain correctness between transactions (Section 4.2.2).

Finally, we discuss low-level components that are necessary to implement the architecture

(Section 4.2.3).

4.2.1 Three-Machine Discipline

Distributed shared memory computers are constructed by implementing a number of

distributed state machines which run a shared memory protocol. The protocol relies

9In fact, in MGS, the memory-side processor waits for all outstanding acknowledgments, including
both di�s and bypassed dirty pages, to arrive before initiating merging of the di�s.

58 CHAPTER 4. MGS SYSTEM ARCHITECTURE

Processor Memory

Figure 4.4: The 2-machine decomposition in conventional software DSM systems. The

dotted line indicates a node boundary.

Server
Local

Remote
Client

Client

Figure 4.5: The 3-machine decomposition in multigrain shared memory systems. The

dotted line indicates a node boundary.

on messages for communication between the di�erent state machines. Together, these

state machines and the messages they send and receive synthesize a uniform shared

memory address space on top of a distributed memory architecture, support replication

and caching of data, and maintain coherence on replicated data.

In conventional shared memory systems, there are two distinct types of shared mem-

ory state machines, a machine on the processor side and a machine on the memory

side, as illustrated in Figure 4.4. The processor-side machine is responsible for handling

events posted by the local processor and its primary cache, namely cache miss events, and

for handling messages received from the memory-side machine for enforcing coherence,

namely invalidation messages. The memory-side machine is responsible for distributing

copies of shared data in response to data request messages from the processor-side ma-

chine, and for initiating coherence on replicated data when needed. One characteristic of

this conventional 2-machine construction is that all shared memory transactions require

the participation of both processor- and memory-side machines, and each transaction

results in inter-node communication, as indicated by the node boundary dashed line in

Figure 4.4. The non-local nature of all transactions in a 2-machine architecture was

discussed in Section 4.1.2 and indicated in Table 4.1.

Contrary to conventional DSMs, multigrain shared memory systems are constructed

using three distinct state machines. These machines are called the Local-Client machine,

4.2. ARCHITECTURAL STRUCTURE 59

the Remote-Client machine, and the Server machine, as shown in Figure 4.5. Together,

the Local-Client and Remote-Client machines are responsible for both maintaining co-

herence on mapping state and implementing the processor-side portion of the page-level

DSM protocol. The Server machine implements the memory-side portion of the page-level

DSM protocol (same as the memory-side machine in conventional DSMs).

A 3-machine construction arises in multigrain systems because of the three-way phys-

ical distribution of the following shared memory resources: the directory and home copy

of a page on the memory-side SSMP, the cache copy of a page on the processor-side

SSMP, and the page mapping cached in individual processor TLBs (physical distribution

of the last two resources can only occur if the DSM node is a multiprocessor; hence, con-

ventional DSMs built using uniprocessor nodes only require two state machines). The

number of copies of each resource dictates the number of images of each type of state

machine. For instance, a page has only one home copy; therefore, there is only one

Server machine per page. Each SSMP can have a cache copy of a page, so there is a

Remote-Client machine for each SSMP per page. And since any processor in an SSMP

can map a page, each page has as many Local-Client machines as there are processors in

the entire DSSMP.

All three state machines shown in Figure 4.5 communicate with one another, but only

communication with the Server machine requires inter-SSMP messages since the Local-

Client and Remote-Client machines are colocated on the same SSMP. Communication

between Local-Client and Remote-Client can use e�cient intra-node messaging interfaces

provided within SSMPs, or hardware cache-coherent shared memory.

For expository purposes, we identify four basic transaction types supported by the

three state machines illustrated in Figure 4.5. Each transaction type represents one or

more possible shared memory transactions, but all transactions of the same type exercise

the state machines in the same manner. Below, we describe the characteristics of these

basic transaction types under unloaded conditions. The interaction between simultaneous

transactions is more complex, and is the topic of Section 4.2.2.

The four basic transaction types are TLB Fault, Page Fault, Page Upgrade, and Re-

lease. Figures 4.6, 4.7, 4.8, and 4.9 show how each transaction type exercises the three

state machines, respectively. The �gures are organized in three columns, one for each

state machine. Each column speci�es actions performed by the corresponding state ma-

chine. An arrow between two actions indicates that the source action sends a message

to a destination machine, invoking an action on the destination. Arrows that fan out (in

Figure 4.9 only) indicate that an action sends one or more outgoing messages; arrows

that fan in indicate that an action receives one or more incoming messages. Finally,

annotations in italics refer to the state transition diagrams and tables provided in Ap-

pendix A. The italicized numbers (below actions) refer to state transition arcs, and the

italicized text (above arrows) refer to MGS message names. A complete list of MGS

message names along with a brief description of each message appears in Table A.4 of

Appendix A. We describe each transaction type in detail below.

60 CHAPTER 4. MGS SYSTEM ARCHITECTURE

Local Client Remote Client Server

Fill TLB
1,3,4

Figure 4.6: TLB fault transactions in MGS. Each column represents a state machine. All

italicized text, e.g. the state transition numbers, refer to the state diagrams and state

transition tables in Appendix A.

Local Client Remote Client Server

Find Server
RREQ / WREQ

Send Page

RDAT / WDATMap Page

Fill TLB

5

28,29,30

6,7

Figure 4.7: Page fault transactions in MGS. Each column represents a state machine. All

italicized text, e.g. the message names and state transition numbers, refer to the state

diagrams and state transition tables in Appendix A.

Local Client Remote Client Server

Find Remote
Client

Twin Page Modify
Directory

UPGRADE

WNOTIFY

UP_ACKReturn

2,5
15

29
7

Figure 4.8: Page upgrade transactions in MGS. Each column represents a state machine.

All italicized text, e.g. the message names and state transition numbers, refer to the state

diagrams and state transition tables in Appendix A.

4.2. ARCHITECTURAL STRUCTURE 61

Local Client Remote Client Server

Find Server
REL

Check Sharing
Pattern

INV / 1INV / 1WGRTLB Dir
Lookup

PINV / PINV2

Invalidate TLB
or dequeue DUQ PINV_ACK /

Clean Page
Free Page

ACK / DIFF /
1WDATA / ACK1W

Modify
Directory

Return RACK

8

31
16,19,23

11,12

17, 18, 20, 21, 23, 24

33,34

9,10

P2INV_ACK

Figure 4.9: Release transactions in MGS. Each column represents a state machine. All

italicized text, e.g. the message names and state transition numbers, refer to the state

diagrams and state transition tables in Appendix A.

TLB Fault Transactions

The �rst type of transactions services TLB faults. These are the simplest of the four

transaction types. All state accessed by the actions performed in these transactions are

available to the Local-Client machine; therefore, assistance from the Remote-Client and

Server machines is not necessary. The Local-Client simply accesses the page table in the

local SSMP (see Section 4.2.3) and �lls the TLB with the desired mapping entry.

Page Fault Transactions

Page Fault transactions require interactions between two state machines, the Local Client

and the Server. These transactions service page faults, or accesses to pages for which the

local SSMP has no copy. The Local-Client machine is responsible for locating the Server

machine for the desired page, and sending a request for data to the page's Server. The

Server machine is responsible for sending a copy of the page back to the Local Client.

Page faults incur a round trip inter-SSMP messaging cost between the Local Client and

Server, during which the Local Client is blocked.

Page Upgrade Transactions

Page Upgrade transactions arise when a processor attempts to write into a page for which

the local SSMP only has read privileges. The Local Client initiates the transaction by

sending a message to the Remote-Client machine responsible for the page on the local

SSMP. The Remote Client performs a twinning operation on the read copy to make it

62 CHAPTER 4. MGS SYSTEM ARCHITECTURE

writable. When this operation is complete, it acknowledges the Local Client (which is

stalled during this time since it can't write the page until a twin has been made), and

it sends a WNOTIFY message to the page's Server to notify it that an upgrade has

occurred. Notice that the noti�cation to the Server is unacknowledged. This provides a

performance bene�t because the Remote Client does not have to wait for a round trip

to the Server; however, this bene�t comes at some expense because it complicates the

handling of simultaneous transactions. We will discuss this tradeo� in greater detail

in 4.2.2.

Release transactions

Finally, Release transactions service requests for coherence initiated by the application.

These transactions are the most complex, by far. The Local Client begins the transaction

by sending a message to the page's Server. The Server consults the page directory and

checks the sharing on the page. If the page has only one outstanding copy, indicating

that sharing has been contained inside an SSMP, then the Server initiates the Single-

Writer mechanism described in Section 4.1.2 by sending a 1WGR (single-writer grant)

message to the Remote Client. Otherwise, the Server initiates invalidation by sending

an invalidation message to each Remote Client that has a copy of the page.

Each Remote-Client machine that receives a message from the Server consults a TLB

directory and sends a message to each Local Client machine which has mapped the

page. The type of message sent by the Remote Client depends on whether the Single-

Writer mechanism or whether invalidation should be carried out. Under the Single-

Writer mechanism, the Remote Client sends PINV2 messages which cause the recipient

Local Clients to perform a dequeue operation on their DUQs. The dequeue operation

removes the DUQ element associated with the page, thus preventing any subsequent

release operations from occurring. Under invalidation, the Remote Client sends PINV

messages which cause the recipient Local Clients to invalidate the mapping for the current

page from their TLBs. When each Local Client has completed its action, it acknowledges

the Remote Client.

After the Remote Client receives acknowledgments from all the Local Clients, it in

turn acknowledges the Server. For Release transactions that perform invalidation, each

Remote Client cleans its copy of the page, sends an acknowledgment to the Server, and

then frees the page from physical memory. Remote Clients with read copies simply

send ACK messages. Remote Clients with write copies piggy-back updates onto their

acknowledgments. The update either contains a di� (DIFF message), or the entire page

(1WDATA message) when di� bypassing is used. For Release transactions that invoke

the Single-Writer mechanism, the Remote Client does nothing to its copy of the page,

and simply sends an ACK1W message to the Server. After the Server has received all

acknowledgments from the Remote Clients, it merges all updates, if any, into its home

copy of the page. When the merge is complete, it sends a RACK message to the Local

Client that initiated the release, thus completing the transaction.

In Release transactions, the Local Client performing the release is blocked for the

4.2. ARCHITECTURAL STRUCTURE 63

Local Client Remote Client Server

Page Fault Phase

Release Phase

Find Server
RREQ / WREQ

Send PageRDAT / WDATMap Page

Fill TLB

Check Sharing
Pattern

1INVTLB Dir
Lookup

PINV

Invalidate TLB

PINV_ACK Clean Page
Free Page

1WDATA Modify
Directory

5

28,29,30

6,7

3116,19,23

11,12

17, 18, 20, 21, 23, 24 33,34

Page Fault Phase

Check
Directory

36

Figure 4.10: Single-Writer reversion as the compound of the Page Fault and Release

transactions.

entire transaction. On the other hand, the Server exits after it sends messages to all

Remote Clients; it is reinvoked only when acknowledgment messages arrive, once for

each message. This split-phase approach minimizes the occupancy overhead associated

with the Server machine. While we could also implement the Remote Client using split-

phase transactions, in our design, the Remote Client waits for acknowledgments. We

choose waiting because the small amount of work performed by Local Clients and the

e�cient communication mechanisms within SSMPs do not justify the overhead of exiting

and re-invoking the Remote-Client machine for each acknowledgment message.

Other transactions

Aside from the four basic transaction types described above, there is one other transaction

in MGS that handles reverting a page in the Single-Writer state back to the normal mode

of coherence. Single-Writer reversion occurs when a page fault happens on a page that

has transitioned to the Single-Writer state on a remote SSMP (see Section 4.1.2 for details

of the Single-Writer mechanism). This transaction can be viewed as the compound of two

existing transactions, the Page Fault transaction and the Release transaction; therefore,

we do not consider this transaction as a separate transaction type.

64 CHAPTER 4. MGS SYSTEM ARCHITECTURE

Figure 4.10 illustrates how Single-Writer reversion can be constructed using a com-

bination of the Page Fault and Release transactions. The page fault is intercepted by

the Local Client and a message is sent to the Server, just as in a normal Page Fault

transaction. the Server detects that the page is in the Single-Writer state. At that point,

the Server defers completion of the Page Fault transaction and initiates the invalidation

of the page, just like it would in a Release transaction. The invalidation proceeds nor-

mally. When all acknowledgments have been received (in this case, there is only a single

1WDATA message), instead of completing the Release transaction, the Server picks up

the Page Fault transaction exactly where it left o� and returns a copy of the home, which

is now coherent, to the faulting Local Client.

4.2.2 Simultaneous Transactions

Section 4.2.1 described in detail the operations performed during each shared memory

transaction in the MGS system. This provides an understanding of how shared memory

functionality is supported; however, it does not address the issue of correctness that

arises when multiple transactions occur simultaneously. There are four issues related to

simultaneous transactions that we will address in this section: synchronization within

SSMPs, transient o�-line states, single-writer condition violation, and unacknowledged

upgrades.

Synchronization within SSMPs

Many simultaneous transactions involve con
icts within the same client. Speci�c exam-

ples include simultaneous TLB faults on multiple processors in the same SSMP, or a

TLB fault simultaneously happening alongside an invalidation of the page data. Such

simultaneous transactions are particularly frequent because of the number of competitors

inside a client: the Remote-Client machine and one Local-Client machine per processor.

In MGS, we synchronize simultaneous transactions within clients by using shared

memory locks. Each page has a single lock, called a page lock, in every client. When-

ever a client-side action occurs, speci�cally TLB fault, page fault, page upgrade, page

invalidation, and transition into Single-Writer mode, the machine performing the action

(either the Local Client or Remote Client) must acquire the requisite page lock. Details

concerning exactly when locks are acquired and for how long they are held are provided

by the state transition table that appears in Appendix A

Transient O�-Line States

During a Release transaction that results in the invalidation of a page and all mapping

state associated with that page, the data for the page is unavailable. This period begins

when the Server machine receives a REL message, and does not end until all acknowl-

edgments have been received from Remote Clients and all updates have been merged

into the Server's home copy of the page. We call this transient period the \Release in

Progress" state, labeled REL IN PROG in the state transition diagram of Appendix A.

4.2. ARCHITECTURAL STRUCTURE 65

When the Server machine enters the REL IN PROG state, it goes o�-line with respect

to all other requests for the page. This includes requests for data from page faults that

happen simultaneously with the Release transaction, as well as other attempts to initiate

coherence on the page.

In our design of MGS, transactions that occur while a Release transaction is in

progress are deferred until the Release transaction completes10. Once the Server ma-

chine receives a REL message, it creates a Deferred Transaction Queue structure (see

Section 4.2.3) and transitions into the REL IN PROG state. These actions happen

atomically with respect to transactions coming into the Server machine. Any incom-

ing transaction that �nds the page in REL IN PROG state enqueues itself onto the

Deferred Transaction Queue structure, providing enough information to allow the trans-

action to be completed at a later time. When the Server machine completes the Release

transaction, it processes all transactions queued in the Deferred Transaction Queue.

Single-Writer Condition Violation

The previous section looks at problems with transactions that happen simultaneously

with Release transactions resulting in invalidation. A similar problem arises when the

release invokes the Single-Writer mechanism. When the Single-Writer mechanism is

invoked, the Server machine transitions into the REL IN PROG state, and the page

goes o�-line for the duration of the transaction, just as it would if invalidation had been

initiated; therefore, if simultaneously a request for data is received by the Server, the

Server cannot process the request until the page leaves the transient REL IN PROG state.

However, the Single-Writer case is more insidious than the invalidation case because the

request for data violates the condition which initiated the Single-Writer mechanism in

the �rst place (i.e. that there is only one sharer on the page).

The violation of the Single-Writer condition means that the system must revert the

page out of the Single-Writer state and back to the normal mode of coherence. But

before this can be done, the transaction that invokes the Single-Writer mechanism must

be allowed to complete. And all of this must happen before the data request can be

processed.

In MGS, we handle this simultaneous transaction in a fashion similar to what was

explained for transient o�-line states above. A Deferred Transaction Queue structure is

created to defer the data request. When the Server receives the ACK1W message which

completes the transition of the client's page into the Single-Writer state (see Figure 4.9),

the Server will notice the deferred data request. Instead of acknowledging the Local Client

which is blocked on a release operation (the release is what invokes the Single-Writer

mechanism), the Server adds the release acknowledgment to the Deferred Transaction

10An alternative to deferring transactions is to respond with a busy message. Clients that are busied
would be responsible for retrying the transaction at a later time. This, in fact, is the approach used in
Alewife when a hardware directory receives a request for a cache line that is in the processor invalidation.
In software shared memory, the cost of messaging required to busy the client outweighs the cost of
tracking transactions that are received during transient states.

66 CHAPTER 4. MGS SYSTEM ARCHITECTURE

Queue, and initiates an invalidation on the page. The invalidation happens just as it

would normally (see Figure 4.10), except that when it completes, it responds to both the

deferred data request (with an RDATA or WDATA message) and the deferred release

acknowledgment (with a RACK message).

Unacknowledged Upgrades

As we discussed in Section 4.2.1 above, WNOTIFY messages used to inform the Server

machine of an upgrade action by the Remote-Client machine are not acknowledged by

the Server. The consequence of this design decision is that for all outstanding read copies

of a page, the Server machine cannot be certain whether the client really has a read copy

or whether that read copy has been upgraded to a write copy and the Server has just

not yet been noti�ed. The incomplete information on outstanding read copies at the

Server due to unacknowledged page upgrades slightly complicates invalidation when it

occurs simultaneously with a page upgrade because of the di�erence in invalidation of

read pages versus write pages|invalidated read pages return ACK messages which do not

carry data, and invalidated write pages return DIFF or 1WDATA messages (depending

on whether di� bypassing is used) which do carry data.

To handle simultaneous invalidation and page upgrade transactions correctly, the

Server machine must be prepared to receive a variable mix of read page and write page

acknowledgments after it initiates invalidation. Let j read dir j equal the size of the

read copy set and j write dir j equal the size of the write copy set at the time the Server

initiates invalidation for some Release transaction. The total number of acknowledgments

the Server can expect is �xed at j read dir j + j write dir j; however, the number of

read acknowledgments can vary between 0 and j read dir j, and the number of write

acknowledgments can vary between j write dir j and j read dir j + j write dir j. Due

to this variable mix of acknowledgment types, the Server machine must be careful in

the allocation of Di� Bu�ers, structures used to store the data portions of incoming

DIFF messages (see Section 4.2.3). In particular, it must ensure at invalidation time

that enough Di� Bu�er resources are available to handle the maximum number of write

acknowledgments.

The design of the Page Upgrade transaction represents a tradeo� of slightly higher

protocol processing overhead and complexity with communication overhead. The alter-

native to our design is to force the Remote-Client machine to wait for an acknowledgment

before allowing its copy of the page to become upgraded. This implies the Local-Client

must be blocked for an additional time equal to at least a round trip between the Remote-

Client and the Server machines, which is fairly expensive since this communication occurs

between SSMPs. We believe our design, which removes the need to block the Local-Client

machine for a round trip at the expense of increasing protocol processing overhead on

the Server machine, is favorable given the trend of increasing processor performance and

the di�culty of decreasing communication latency.

4.2. ARCHITECTURAL STRUCTURE 67

Local Client Machine

Cache TLB

Delayed
Update
Queue

Remote Client
Machine

Cache Directory

H
ar

dw
ar

e
S

of
tw

ar
e

Page
Table

Page Cache

Page
Locks

TLB
Directory

Cache Coherence Machine

Read/Write Data Request

Coherence Request

Read/Write Data

TLB/DUQ
Invalidation

Upgrade
Page

Page Invalidation

Single-Writer Grant

Acknowledge
Invalidation

Upgrade Notify

To
/F

ro
m

 S
er

ve
r

M
ac

hi
ne

Figure 4.11: MGS Client architecture. Both hardware and software modules are shown.

Arrows indicate di�erent types of communication between the software modules.

4.2.3 Low-Level Components

In this section, we extend the discussion on the three state machines introduced in Sec-

tion 4.2.1. While Section 4.2.1 described the interactions between the state machines,

and how these interactions are composed to implement shared memory transactions, this

section will focus on the data structures needed by the state machines to carry out their

functionality.

Figures 4.11 and 4.12 show the components that form the Local-Client, Remote-

Client, and Server machines, as well as those components that are accessed outside of the

state machines. Arrows connecting the machines indicate di�erent types of communica-

tion that occur between the machines, as described in Section 4.2.1. Where appropriate,

we also indicate the division between hardware and software components using a dotted

line.

We begin by describing the client, shown in Figure 4.11, which includes the Local-

Client machines, the Remote-Client machine, and the components that are found on the

client side of each SSMP.

68 CHAPTER 4. MGS SYSTEM ARCHITECTURE

Read/Write Data Request

Coherence Request

Read/Write Data

Page Invalidation

Single-Writer Grant

Acknowledge
Invalidation

Upgrade Notify

To/From

To/From

Local Client

Remote Client

Server Machine

Diff
Buffers

Physical Home Pages

Server

Server

Page Directory

Deferred
Transaction

Queue

Figure 4.12: MGS Server architecture. All modules shown are software modules. Arrows

indicate di�erent types of communication between the software modules.

Hardware Components. There are four main hardware components, all of which

reside in the Client. They are the hardware cache and TLB (one each per processor

in the SSMP), and the Cache Coherence Machine and Cache Directory. These are

the normal hardware structures one would �nd in a cache-coherent shared memory

multiprocessor.

Local-Client Machine. There is a Local-Client machine for each processor in the

SSMP. Whenever the Local Client is invoked, it executes on the processor to which

it is assigned. This is clearly necessary for TLB invalidation since on most multi-

processor architectures, a processor's TLB is only accessible by the processor that

owns the TLB. For page faults, handler code is executed by the faulting processor.

This policy is reasonable since the faulting processor cannot make forward progress

until the page fault has been processed; therefore, it may as well do the page fault

processing. Furthermore, by making the faulting processor run the page fault han-

dler, the placement of the faulted page will be in the faulting processor's memory

module, i.e. a �rst touch page placement policy. Subsequent accesses made by

other processors in the SSMP will occur remotely across hardware DSM nodes11.

Remote-Client Machine. Unlike the Local-Client Machine, which is statically as-

signed one to each processor, the ownership of the Remote-Client machine, and

thus the responsibility for processing, migrates from processor to processor within

the SSMP. At any given time, the ownership of the Remote-Client machine belongs

11This is only an issue for SSMPs that assume a hardware DSM architecture, which is the case for our
implementation of MGS. SSMP nodes that are symmetric multiprocessors all share the same memory
modules, and therefore, there is no page placement issue.

4.2. ARCHITECTURAL STRUCTURE 69

to the processor that also owns the page for which processing is required12

Delayed Update Queue. There is one Delayed Update Queue (DUQ) structure for

every Local-Client machine, and thus every processor in the SSMP. The DUQ is

a list of pages that have been modi�ed by the local processor. This list speci�es

exactly the set of pages that must be made coherent when the processor performs a

release operation, as required by Release Consistency (in other words, on a release,

the Local Client issues a coherence request for every page in the DUQ). The DUQ

is the same structure that appears in the Munin system [13].

The Local Client adds an entry to its DUQ each time a page fault for a write

access, or a TLB fault that results in an upgrade occurs. There are two instances

in which entries are removed from the DUQ. First, if a page with read-write priv-

ilege is invalidated, the DUQ entry for the page is removed from all DUQs in the

SSMP (along with address mappings for the page cached in the TLBs). Second,

when a release operation on a page invokes the Single-Writer mechanism, a similar

invalidation of DUQ entries occurs. Like TLB invalidation, DUQ invalidation is

performed selectively by referring to the TLB Directory (see below).

Page Table. This software structure contains translation entries from virtual to phys-

ical frame numbers for all the pages that are resident on the SSMP. Each entry

also contains the access privilege allowed on the page. Either read-only or read-

write privileges are possible. This allows the software DSM protocol to treat read

requests and write requests di�erently which is useful because the overhead for

managing read-write pages is somewhat higher than for read-only pages.

Both the Local-Client and Remote-Client machines access the page table. The

Local Client reads the table during TLB faults, and modi�es the table during page

faults. The Remote Client modi�es the table during invalidation requests.

Many di�erent page table organizations are possible [29]. The organization we

choose for MGS is a bit unconventional because of particular constraints imposed

by our hardware platform (see Section 5.2 for more details). However, in general,

the page table used here is no di�erent from any page table one would �nd in a

normal operating system.

Page Locks. This is a pool of locks used by the Local and Remote Client machines

to synchronize simultaneous transactions within an SSMP, as described in Sec-

tion 4.2.2. Logically, there is a single lock for every possible entry in the page

table. Because the total number of possible page table entries is large, the number

of logical locks may become prohibitively high to implement physically. A simple

12Ownership of a page is clear in a hardware DSM{the owner of a page is the processor that owns
the memory module in which the page resides. If the SSMP node is a symmetric multiprocessor, this
de�nition does not apply since all processors physically share the same memory. In this case, we can
de�ne the owner of a page as the processor which performs the �rst touch on the page.

70 CHAPTER 4. MGS SYSTEM ARCHITECTURE

solution is to alias multiple logical locks onto the same physical lock. The degree

of aliasing can be adjusted to trade o� a smaller physical synchronization space for

reduced concurrency.

TLB Directory. This software structure tracks page table entries that are cached in the

TLBs of individual processors. It is an important structure in the implementation

of TLB consistency. During page invalidation, the TLB directory is consulted to

selectively interrupt only those processors that have the corresponding mapping

cached in its TLB, thus avoiding unnecessary synchronization with processors that

have not accessed the page.

Whenever the Local Client probes a page table entry into its TLB (during a TLB

fault or after servicing a page fault), the corresponding TLB directory entry for the

page involved is updated. Similarly, whenever the Remote Client performs a page

invalidation, the corresponding TLB directory entry is cleared. Atomic access to

this data structure is \piggy backed" onto the atomicity provided for page table

access by the page locks. Each time the TLB directory is accessed, an access to the

page table is made as well. By holding onto the page lock used for the page table

entry while accessing the TLB directory, TLB directory accesses are guaranteed to

be atomic.

Like the page table, this structure can become quite large. Yet, it is important that

access to the structure remain e�cient since all such accesses are performed inside

a critical section. In MGS, the TLB Directory is implemented as a hash table.

The architecture of the Server is shown in Figure 4.12. The Server is implemented

purely in software and therefore has no hardware components. Below, we describe each

component in the Server in greater detail.

Server Machine. The Server is a state machine that executes the memory-side portion

of the software DSM protocol. There is a single Server machine for each page in the

system. Servers are statically assigned to SSMPs, and to an individual processor in

the SSMP, based on the virtual address of the page associated with the Server. This

static assignment is called the home location of the page, and is computed from page

placement information supplied by the programmer through the mgs init pagemap

interface (see Section 4.4 for details).

Physical Home Pages. The home location for a page is also the location where a per-

manent copy of the page resides. This copy, known as the home copy, represents the

state of the page since the most recent coherence operation, or release, performed

on the page (except when coherence is relaxed past release points as is allowed by

the Single-Writer mechanism). The home copy is used to satisfy requests for data

made to the Server machine by clients that wish to access the page.

Page Directory. This structure tracks replicated pages in the system. The Page

Directory on a particular Server contains a single entry for every page whose home

4.3. USER-LEVEL MULTIGRAIN SYNCHRONIZATION 71

is on that Server. Each directory entry records all SSMPs that have a copy of

the page, including whether the copy is in read-only or read-write state, and the

PID of the processor that has current responsibility for the Remote Client machine

(the latter is necessary so that the Server can invoke an invalidation request on the

proper processor in the client). The directory also indicates whether the page is in

normal coherence or Single-Writer mode.

Deferred Transaction Queue. As described in Section 4.2.2, there are transient

o�-line states during which the Server cannot respond to incoming transaction

requests. Any requests received by the Server during these transient states must be

deferred. The Deferred Transaction Queue is a data structure that tracks deferred

transactions. For each incoming request received during a transient state, the

Server records the client making the request, and the type of request (whether it

is a request for read or write data, or whether it is a release operation). When

the Server leaves the transient o�-line state, it consults the Deferred Transaction

Queue and processes all the recorded deferred transactions.

Di� Bu�ers. This is a pool of bu�ers that are used to hold di�s as they return

from Remote Clients after an invalidation has been initiated but before the di�s

have been processed. The Server machine processes di�s by merging the changes

speci�ed in each di� into the corresponding home page. Once all the changes in a

di� have been merged into the home, the Di� Bu�er can be returned to the pool

for reallocation.

Because of the Di�-Bypass mechanism described in Section 4.1.2, the Server ma-

chine must wait for all outstanding di�s to return from the Remote Clients before

di� merging can commence. The Di� Bu�ers are needed for storage of di�s wait-

ing for processing by the Server. In our implementation of MGS, there is a �xed

number of Di� Bu�ers that are available to each Server machine. The number of

bu�ers is chosen to meet experimentally observed bu�ering requirements.

4.3 User-Level Multigrain Synchronization

MGS provides a user-level library that contains common synchronization primitives that

can be called by application code. The library is separate from the main part of the

system since it lives in the application layer instead of the communication layer. It is not

a necessary component of the overall MGS system for multigrain shared memory func-

tionality; however, it is an important complement to the MGS system since it delivers

higher synchronization performance to applications that use the library. The synchro-

nization primitives in the library achieve the highest possible throughput by leveraging

information about the DSSMP architecture. Being cognizant of physical details in the

system allow these primitives to signi�cantly outperform a naive implementation.

While each synchronization primitive in the library works di�erently, the common

theme in all the primitives is to limit the amount of communication during each syn-

72 CHAPTER 4. MGS SYSTEM ARCHITECTURE

Processors

SSMPs

DSSMP

Figure 4.13: MGS Barrier.

chronization operation so that whenever possible, communication only occurs between

processors within an SSMP, and communication between SSMPs is avoided. This is ac-

complished by creating a two-level hierarchy for each primitive such that there is a local

primitive on each SSMP, and a single global primitive for the entire machine. If the

primitive is designed properly, most synchronization operations will interact only with

the local primitive, and only rarely will operations interact with the global primitive,

thus minimizing inter-SSMP communication.

This general strategy has two bene�ts. First, it supports the communication require-

ments of synchronization operations using intra-SSMP communication mechanisms as

much as possible rather than inter-SSMP communication mechanisms. This is bene�cial

because processors within an SSMP are more tightly coupled than processors between

SSMPs and thus communicate more e�ciently. Second, the hierarchical design of these

synchronization primitives allow the system to leverage locality. If synchronization oc-

curs repeatedly between processors within an SSMP, then communication across SSMPs

can be avoided altogether. As we will see later in the thesis, locality of synchronization

operations is a crucial attribute for applications to achieve high performance on DSSMPs

because it directly minimizes software shared memory overhead (see Chapter 7). Build-

ing synchronization primitives that are more e�cient in the presence of locality further

improves performance.

The initial multigrain synchronization library built for this thesis includes two syn-

chronization primitives, barriers and locks. We describe the details of these primitives

in the following sections. Other primitives can be constructed using the hierarchical

approach discussed above.

4.3.1 Barriers

The MGS Barrier is a message-passing tree barrier of depth three, as shown in Figure 4.13.

Each level of the tree maps onto a portion of the DSSMP hierarchy: processor level (leaf

nodes), SSMP level (intermediate nodes), and machine level (root node). The barrier

works in the following manner. When a processor arrives at the barrier, it sends a message

4.3. USER-LEVEL MULTIGRAIN SYNCHRONIZATION 73

to the owner of the SSMP-level node in its local SSMP and waits. When the SSMP-level

node receives a message from all processors in the SSMP, it sends a single message to

the owner of the machine-level node and waits. When the machine-level node receives

a message from all SSMPs, it initiates a release of the processors in reverse order (the

machine-level node sends a message to each SSMP-level node, and in turn, each SSMP-

level node sends a message to each processor-level node). Once a processor is released,

it leaves the barrier and continues execution.

A tree barrier is e�cient because it minimizes the number of messages sent between

SSMPs. In the tree barrier, there are 2(P
C
� 1) inter-SSMP messages, where P is the

total number of processors in the DSSMP, and C is the size of an SSMP node. The

multiplier 2 accounts for both the arrival message and the release message, and there are
P
C
� 1 messages on arrival and release because the root node is local to one of the SSMPs

(the one to which it's assigned). Alternatively, a
at barrier would result in 2(P � C)

messages (in this case, the root node is local to C processors, the number of processors

inside an SSMP).

4.3.2 Locks

The MGS Lock is a hierarchical two-level lock consisting of a local shared memory lock,

one for each SSMP, and a single global token-based lock implemented using message

passing. Acquisition of the lock requires both acquisition of the local lock and ownership

of a single token that is passed amongst the local locks. Figure 4.14 shows the design of

the MGS Lock.

A processor �rst tries to acquire its local lock by performing an acquire operation on

the mutex variable in its Client Lock structure. This acquire operation only competes

with other processors from the same SSMP since the Client Lock is a per-SSMP structure.

When the processor has successfully acquired the local mutex, it checks to see whether

the token is \present" in the Client Lock. If so, the lock acquire operation completes. If

not, the processor must steal the token away from the current owner of the token.

A steal request is initiated by sending a message to the owner of the Global Lock

structure, indicated by the home �eld in the Client Lock structure. At the Global Lock,

the mutex variable is acquired and the ID of the processor initiating the steal is inserted

into the Global Lock queue13. Before the Global Lock mutex is released, the Global Lock

status is checked. If the status is \BUSY," then a steal operation is already in progress

and the Global Lock mutex is simply released. If the status is \FREE," then the status

is changed to \BUSY" and a steal operation is initiated (the Global Lock mutex is also

released to allow other steal requests to enqueue).

A steal operation is initiated by sending a message to the current owner of the token,

indicated by the owner �eld of the Global Lock structure. At the Client Lock that owns

13Notice that there can only be one steal request initiated per SSMP because only one processor on
each SSMP can successfully acquire the Client Lock mutex. Therefore, the processor ID inserted into
the Global Lock queue in fact represents the SSMP that the processor belongs to.

74 CHAPTER 4. MGS SYSTEM ARCHITECTURE

Client Lock

Global Lock

owner

head

tail

status

queue

mutex

mutex

home token?

queue

Client Lock

mutex

home token?

queue

Figure 4.14: MGS Lock.

the token, the Client Lock mutex is acquired and the token is marked \not present."

Then, a message is sent back to the Global Lock and the Global Lock mutex is re-

acquired. The head of the Global Lock queue is dequeued. If the Global Lock queue

is empty after the dequeue operation, the Global Lock status is changed to \FREE;"

otherwise, the status remains \BUSY." Finally, the Global Lock mutex is released and a

message is sent back to the processor to which the token is being passed, which is indicated

by the value returned by the dequeue of the Global Lock queue. That processor marks

the token \present" at its Client Lock, thus completing the lock acquire operation.

Notice there is one last case to handle. There must be a way to signal to the Client

Lock when there are waiters still enqueued on the Global Lock queue immediately af-

ter a steal operation completes; otherwise, those waiters will be stranded forever. The

mechanism for this is to mark the queue �eld in the Local Client after a token has been

successfully stolen if there are other waiters left at the Global Lock. When a processor

releases the MGS Lock, it checks the Client Lock queue �eld. If this �eld is marked, it

forfeits its ownership of the token before releasing the Client Lock mutex thus waking up

the processor that is enqueued at the head of the Global Lock queue.

The MGS Lock is very e�cient if there is locality in the way synchronization op-

erations are performed. Once a Client Lock owns a token, processors in the SSMP can

repeatedly acquire and release the MGS Lock without communication with other SSMPs.

Inter-SSMP communication occurs only if the token is subsequently stolen.

4.4. MGS LIBRARY INTERFACE 75

Function Arguments Returns

Memory

mgs init pagemap() int nprocs, int SSMP size, void

int npages, int block size

mgs alloc() int size *char

mgs release() void void

mgs distribute data() void void

Synchronization

mgs make barrier() **mgs bar t barrier object void

mgs barrier() *mgs bar t barrier object void

mgs make lock() **mgs lock t lock object void

mgs lock() *mgs lock t lock object void

mgs unlock() *mgs lock t lock object void

Statistics

mgs stats on() void void

mgs stats o�() void void

mgs clear stats() void void

mgs dump stats() void void

Table 4.2: Programmer's interface to the MGS system.

4.4 MGS Library Interface

MGS exports a uniform shared memory programming model to the programmer that

spans multiple multiprocessors. Therefore, the software layers that implement the MGS

system are transparent to the programmer since programming for an MGS system is

no di�erent than programming for any other shared memory machine. There exists,

however, a low-level interface to the MGS library routines that control many aspects of

MGS functionality, such as DSSMP virtual clustering con�guration, memory allocation,

synchronization primitives, and statistics. Some of the library interface calls would not

exist in a production system, such as the call for controlling virtual clustering. The rest of

the calls are common system support calls that exist in most programming environments,

and therefore can be hidden from the programmer by developing a set of macros that

would target a speci�c programming environment. For completeness, we describe the

MGS library interface in this section.

Table 4.2 completely speci�es the MGS library interface routines. Each row in Ta-

ble 4.2 lists a di�erent routine, providing the routine's name, the parameters passed into

the routine, and the value returned by the routine. In addition, the list of routines has

been organized into three sections according to the three types of functionality provided:

memory, synchronization, and statistics.

The memory routines allow the program to parameterize and interface with the shared

memory layer. mgs init pagemap is used to con�gure parameters in the machine and

shared memory layer, and is invoked at the beginning of program execution before any

shared memory objects are created or accessed. The routine takes four parameters. The

76 CHAPTER 4. MGS SYSTEM ARCHITECTURE

nprocs and SSMP size parameters �x the DSSMP con�guration by specifying the number

of total processors and the number of processors per SSMP node, respectively. As we

will discuss in Section 5.1 of Chapter 5, our implementation of MGS supports
exible

machine con�guration via a technique we call virtual clustering; therefore, it is necessary

to provide a mechanism for specifying the nprocs and SSMP size machine parameters.

Normally, the system would bind these parameters at boot time; we choose to expose

the parameters to the program and bind them at runtime. Our approach makes it easy

to recon�gure the machine between program executions (i.e. we don't require rebooting

the machine). The next argument, npages, speci�es the total size of virtual memory

in pages. Our implementation of MGS requires the programmer to inform the system

of the maximum working set for the application. This is a restriction imposed by our

implementation of virtual memory (see discussion in Section 5.3.1 in Chapter 5). The

last argument to the mgs init pagemap routine, blocksize, speci�es the interleaving

pattern for mapping virtual pages onto physical nodes.

In addition to mgs init pagemap, there are three other memory routines|mgs alloc,

mgs release, and mgs distribute data. mgs alloc allocates size bytes of memory

from the shared memory address space, and returns the address of the �rst byte. It

is identical to the malloc call in the C programming language. mgs release initiates a

release operation in the shared memory layer. A processor issuing a release is blocked until

all modi�cations made by the processor have been made visible to all other processors

in the system. mgs distribute data distributes static global variables on the calling

processor to all other processors in the system.

The synchronization routines access the primitives provided in the multigrain syn-

chronization library, discussed in Section 4.3. mgs make barrier and mgs make lock

create new barrier and lock objects, respectively. mgs barrier executes a barrier, and

mgs lock and mgs unlock are used to acquire and relinquish a lock, respectively.

Finally, the statistics routines control and access the statistics facility in MGS used

to pro�le the MGS layer. mgs stats on and mgs stats off turn statistics on and o�,

respectively. These routines are used to exclude the statistics gathering on code for which

pro�ling information is not desired (e.g. initialization code). mgs clear stats resets all

statistics counters. Lastly, mgs dump stats prints the current value for all statistics to

the standard output stream. Section 5.3.5 of Chapter 5 discusses the statistics facility in

our MGS prototype in greater detail.

Chapter 5

Implementation

In this chapter, we present a prototype implementation of the MGS system introduced

in Chapter 4. There are three major sections in this chapter. The �rst section argues

for using hardware DSMs as e�ective platforms for studying DSSMPs. The second sec-

tion describes the particular hardware platform used for our implementation, the Alewife

multiprocessor. And the third section addresses the speci�c implementation issues in-

volved when implementing MGS on Alewife.

5.1 A Platform for Studying DSSMPs

In Section 3.3.3 of Chapter 3, we presented a taxonomy for identifying DSSMP con�g-

urations that consists of two system con�guration parameters: the overall system size,

P , and the SSMP node size, C. For a given system size, P , varying the SSMP node

size explores several di�erent DSSMP con�gurations, all of which belong to the same

family. What is important about such an exploration is that it looks at a spectrum of

machines that trade o� cost and performance by providing more or less hardware support

for shared memory. Having the ability to study the entire spectrum is a powerful tool in

understanding the behavior of DSSMPs1. However, being able to study the entire spec-

trum assumes that SSMP node size can be changed in a
exible manner. Accommodating

such
exibility impacts the implementation. This section discusses the implementation

issues for a prototype of the MGS system that arise due to
exible clustering.

One way to prototype the MGS system is to take a direct approach: procure a cluster

of multiprocessors and build into their operating systems a communication layer that

provides multiprocessor VM faults, TLB consistency, page cleaning, and software DSM

with the appropriate multigrain mechanisms, as described in Chapter 4. We call this

approach physical clustering because the cluster boundaries that partition the DSSMP

are �xed in hardware. All the systems currently proposed in the literature that resemble

MGS [22, 50] (and that we are aware of) use physical clustering.

1More justi�cation will be given for this claim when we discuss our performance framework in Sec-
tion 6.2 of Chapter 6.

77

78 CHAPTER 5. IMPLEMENTATION

The main advantage of physical clustering is that the resulting prototype resembles

very closely a production system. There is no mismatch between the prototype and the

target system being studied. The only mismatch that occurs is in the di�erence between

the generation of hardware used to build the prototype and that which is postulated

for the target, a problem encountered by any research endeavor that involves systems

building. Measurements taken on a physically clustered prototype are fairly faithful to

what one may expect to observe on the target system.

Physical clustering, however, makes it di�cult to accommodate
exibility in varying

system con�guration parameters such as SSMP node size because the system con�gura-

tion is �xed in hardware. There are two alternatives for varying SSMP node size in a

physically clustered prototype. The �rst alternative is to have enough physical resources,

both in the number of processors per SSMP and in the total number of SSMPs, to cover

all possible con�gurations. Then, at con�guration time (perhaps when the cluster is

booted), only those SSMPs and those processors on each SSMP that are needed are

\turned on." The second alternative is to physically recon�gure the cluster to match the

con�guration that is desired. This involves swapping processor modules between SSMPs

each time a new con�guration is created.

Signi�cant problems exist in practice for both of these alternatives. The �rst alterna-

tive requires a tremendous amount of physical resources. As illustrated by Figure 3.5 in

Chapter 3, the methodology for studying DSSMPs proposed in this thesis requires the

SSMP node size to be varied from 1 to P , where P is the total number of processors in

the DSSMP. At an SSMP node size of 1, there are P SSMPs, each with a single processor.

At an SSMP node size of P , there is a single SSMP populated with P processors. To ac-

commodate all of these con�gurations, we would need a multiprocessor cluster consisting

of P SSMPs, each equipped with P processors. In other words, to study a DSSMP of

size P would require P 2 physical resources2. Realistically, the quadratic scaling renders

this approach prohibitive from a cost standpoint for even moderate values of P .

Unlike the �rst alternative, the second alternative does not require an exorbitant

amount of physical resources. By swapping processor modules to re-populate SSMPs,

a total of only P processors and P SSMPs are needed to study all con�gurations of a

DSSMP of size P . However, there is the practical problem that each time the prototype is

recon�gured, the system must be powered down and someone must physically rearrange

the hardware. This can become onerous when many measurements are taken using many

di�erent con�gurations. It is also easy for the integrity of the hardware to be compromised

when changes are made frequently.

The impracticalities of the solutions presented thus far all stem from the fact that the

clustering con�guration is implemented physically in hardware. In this thesis, we propose

an implementation strategy that permits the highest degree of
exibility in varying SSMP

2This approach is viable if we constrain our methodology such that only certain DSSMP con�gurations
are studied. For instance, if we constrain the maximum SSMP node size to some value smaller than P ,
then the required resources would be linear in P , where the constant of proportionality would be equal
to the maximum SSMP node size allowed. This constraint, however, would limit the degree to which
applications can be characterized.

5.1. A PLATFORM FOR STUDYING DSSMPS 79

node size, yet only requires a minimum amount of physical resources. The strategy we

propose is called virtual clustering. In virtual clustering, the clustering con�guration is

not �xed in hardware. Instead, the desired clustering con�guration is emulated by an

all-hardware multiprocessor in which cluster boundaries are enforced in software.

Virtual clustering requires that the hardware platform is itself a distributed shared

memory architecture. The distributed nature of hardware DSMs permit them to be

partitioned in such a way that each partition has dedicated processor, communication,

and memory resources. Other shared memory architectures, such as symmetric multi-

processors, do not have this property because communication (based on a bus) and

memory resources are physically shared. The ability to partition hardware resources

prevents di�erent virtual SSMP nodes from competing for the same hardware resources.

This is important if the prototype is to faithfully emulate the behavior of a DSSMP.

Clustering can be enforced on the hardware DSM by disallowing the use of hard-

ware shared memory at virtual SSMP node boundaries. Such clustering can be achieved

through intelligent management of the virtual memory system. Virtual memory provides

a level of indirection into physical memory which, on a distributed shared memory ma-

chine, can be used to control which processors access which memory modules. Since a

processor cannot access what it cannot name, isolation of shared memory tra�c between

virtual SSMP nodes can be achieved by allowing a processor to only map pages which

reside in memory modules located within its virtual SSMP node. An attempt to access

a page which does not exist within the virtual SSMP node should cause a page fault

exception that is passed to the software DSM layer.

Our approach for emulating DSSMPs by building virtual clusters in software on top

of hardware DSMs provides high
exibility in changing SSMP node size. Since clusters

are de�ned in software, the clustering con�guration can be changed trivially by setting

a runtime parameter. Furthermore, our approach only requires the minimum amount of

hardware resources. To emulate a P processor DSSMP, a P processor hardware DSM is

needed. All possible con�gurations of the DSSMP can be studied by virtual clustering.

There are, however, some limitations associated with our approach. A prototype that

emulates a DSSMP on a hardware DSM has some discrepancies as compared against a

physical implementation of a DSSMP. For instance, support for communication between

emulated SSMPs uses the same communication interfaces provided between hardware

DSM nodes. Such communication interfaces will typically have higher bandwidth and

much lower latency than the LAN networks used to connect SSMPs in a physical DSSMP.

In Section 5.3.2, we will discuss a delayed message technique that makes the emulation

of inter-SSMP communication more realistic. The delayed message technique arti�cially

inserts delay into each inter-SSMP message using a hardware timer thus simulating a

�xed delay for communication between SSMPs. Furthermore, the emulation approach

requires a hardware DSM platform; therefore, each emulated SSMP will have a hardware

DSM architecture. Again, there will be a discrepancy issue if the target system of interest

is a DSSMP constructed from a cluster of bus-based symmetric multiprocessors.

80 CHAPTER 5. IMPLEMENTATION

5.2 The Alewife Multiprocessor

In this section, we discuss the hardware platform for our prototype of the MGS system,

the Alewife multiprocessor [23]. The focus will be on aspects of the Alewife architec-

ture, particularly those that impact the implementation of MGS. Details of how the

implementation of MGS is carried out are deferred to Section 5.3.

Figure 5.1 shows a schematic diagram of the Alewife Machine. Alewife is a distributed

memory multiprocessor that supports the shared memory abstraction and cache coher-

ence in hardware. An Alewife core consists of a number of processing nodes connected

in a 2-D mesh topology. The core consists of two parts: a compute partition and an I/O

partition. The compute partition, denoted by circle-shaped nodes in Figure 5.1, is where

user application code executes. The I/O partition, denoted by square-shaped nodes in

Figure 5.1, provides access to external devices such as disks (not shown in the �gure).

The I/O partition occupies a small number of columns on one edge of the core mesh.

Our prototype of the MGS system does not use the I/O partition, so we will not discuss

it further. At one corner of the mesh, an interface to the VME standard I/O bus allows

the Alewife core to communicate with a host workstation.

Each node in the Alewife compute partition consists of a SPARC integer core, called

Sparcle [2], an o�-the-shelf SPARC family
oating point unit, 64K-bytes of static RAM

that forms an o�-chip �rst-level processor cache, 8M-bytes of dynamic RAM, the Elko

series 2-D mesh router chip from Caltech (EMRC) [24], and the CMMU, Communications

and Memory Management Unit, which synthesizes a shared memory address space across

all the distributed memories, and implements a cache-coherence protocol. All chips on

the Alewife nodes are clocked at 20 MHz3.

As indicated in Figure 5.1, the 8M-bytes of dynamic memory are divided into three

parts. The lowest portion of a node's memory is private to the node. This private area,

which is 2M-bytes in size, contains the text segments for the operating system and user

application. The middle portion of memory, also 2M-bytes in size, is managed by the

CMMU hardware and stores the cache-coherence directories for all the shared memory

locations home on the node. Finally, the last portion of memory forms the actual store

for that portion of shared memory home on the node. This shared memory portion is

4M-bytes in size.

Two aspects of the Alewife architecture signi�cantly impact the implementation of

the MGS system: support for hardware cache-coherent shared memory, and support for

fast inter-processor messaging. We discuss with these architectural features in greater

detail below.

3The target clock speed of the Alewife machine is 33 MHz; however, due to a hardware bug in the
�rst-step silicon, the machine is run at the slower 20 MHz speed.

5.2. THE ALEWIFE MULTIPROCESSOR 81

Cache CMMU

FPU Sparcle

Network
Router

Private
Memory

Directory
Memory

Distributed
Shared

Memory

Alewife Node

VME
Interface

Host

Figure 5.1: The Alewife Machine.

5.2.1 Hardware Cache-Coherent Shared Memory

The cache-coherence protocol in Alewife is a single-writer write-invalidate protocol that

supports a sequentially consistent memory model [45]. The protocol uses a directory

scheme [3] to track outstanding cache block copies in the system. This directory scheme,

called LimitLESS [15], is based on a �xed hardware-managed directory structure that

supports 5 pointers, but extends the hardware-managed directory to accommodate more

pointers by trapping the home node processor to handle directory over
ow in software.

This software-extended approach is designed to handle the common case, small-degree

sharing, e�ciently in hardware, and to relegate the uncommon case, wide-degree sharing,

to less e�cient software.

LimitLESS directories impacts the MGS system by giving a performance advantage

to DSSMP con�gurations with smaller SSMP nodes. In particular, con�gurations with

virtual SSMP nodes of 5 processors or less are guaranteed to never pay the penalty of

software directory extension since it is impossible in such an SSMP node for a cache line

to be shared by more than 5 processors. However, if a virtual SSMP node contains more

82 CHAPTER 5. IMPLEMENTATION

than 5 processors, then it is possible, particularly for those applications that exhibit wide-

degree read sharing, for signi�cant LimitLESS software overhead to negatively impact

performance4. While intuitively larger SSMP nodes should lead to better performance, it

is possible for DSSMPs with small SSMP nodes to outperform DSSMPs with large SSMP

nodes because of the discontinuity in shared memory performance caused by LimitLESS.

In addition to lending a bias towards smaller SSMP nodes, LimitLESS can also reward

a decrease in locality for applications running on a system with large SSMP nodes.

Normally, if sharing on a memory object occurs solely between processors colocated in the

same virtual SSMP node, higher performance is attained as compared to the same sharing

pattern between processors on separate virtual SSMP nodes. This is because localized

sharing patterns will bene�t from the use of hardware shared memory, whereas sharing

that crosses SSMP boundaries will incur software shared memory overheads. However,

if the SSMP node size is large, then wide-degree sharing within an SSMP can invoke

LimitLESS software. In this case, sharing patterns exhibiting less locality with respect

to SSMP node boundaries may actually have a performance advantage. This is because

when software shared memory replicates a page, in e�ect, the hardware directories are

being replicated as well. Therefore, a wider degree of sharing can be handled after page-

level replication leading to potentially less LimitLESS software overhead.

Finally, a comment should be made about the consistency model. As mentioned,

Alewife supports sequential consistency. The software DSM layer, however, supports

release consistency. The overall consistency model of the DSSMP is release consistency

because RC is a weaker model than SC, and thus is the \limiting" consistency model. In

general, as long as the consistency model supported by hardware shared memory inside

each SSMP is as strong or stronger than release consistency, the memory model of the

overall DSSMP remains RC.

5.2.2 Fast Inter-Processor Messages

Alewife provides architectural support for fast inter-processor messaging. Three hard-

ware mechanisms, fast interrupts, multiple hardware contexts, and direct-memory access

(DMA), and two software mechanisms, an active message model, and cached meta-process

state, contribute to fast messaging support.

Sparcle, the Alewife integer unit, provides support for fast interrupts5, a crucial mech-

anism for e�cient message passing. In particular, Sparcle has a large interrupt vector

space, and hardware support for dispatching di�erent events to di�erent vectors. The

CMMU takes advantage of this large interrupt vector space. The message arrival inter-

rupt on Alewife has a dedicated vector; it is one of the 16 asynchronous interrupt vectors

that are supported by Sparcle. Whenever a message arrives and Sparcle is interrupted,

4In MGS, SSMP node size must be a power-of-two quantity. Therefore in practice, the breakpoint
occurs while going from an SSMP node size of 4 to an SSMP node size of 8.

5In fact, the mechanisms we describe here are found on the SPARC processor architecture. Since
Sparcle is derived from SPARC, it inherits the fast interrupt mechanism.

5.2. THE ALEWIFE MULTIPROCESSOR 83

the processor begins execution of message handling code immediately. The latency of

message handling is reduced since software dispatch code to �gure out what interrupt

has occurred is avoided.

In addition to fast interrupts, Sparcle provides another mechanism that helps reduce

the latency of message handling, multiple hardware contexts. Multiple hardware contexts

allow Sparcle to cache up to 4 threads of execution inside the processor. One use of

multiple hardware contexts is fast context switching for latency tolerance [27]. In fast

context switching, the processor switches between cached threads each time a thread

su�ers a cache miss to a remote memory module to hide the long latency of remote

cache misses (the Sparcle processor can perform such a context switch in 14 cycles [2]).

Another use of multiple hardware contexts is fast message handling. When a message

arrives at a processor, it can process the handler associated with the message in a free

hardware context, as long as one exists. This allows the processor to avoid save and

restore overhead for the interrupted thread that would be necessary if only one context

were available inside the processor.

Other mechanisms, supported in software, help reduce the latency of message han-

dling on Alewife. Complimentary to multiple hardware contexts, the software messaging

layer provides cached meta-process state for fast message invocation. For each hardware

context in the Sparcle processor, a process block structure and a stack is allocated at boot

time. When a message arrives at the processor, these cached software structures allow

the message handler to execute immediately without su�ering the overhead of allocation,

as is necessary for general thread invocation. In addition, the message layer also supports

the Active Message model [67]. Active Messages further reduce the latency of message

invocation by providing the message handler address in the message itself. Because the

message provides the handler address, the processor receiving the message can dispatch

the message handler immediately without expending e�ort to �gure out which message

handler to execute.

Finally, the messaging interface on Alewife supports DMA transfers in hardware [42].

DMA allows the movement of bulk data through the messaging interface without bur-

dening the processor with data movement overhead. This allows Alewife to support large

messages very e�ciently. DMA data in messages are locally coherent. Local coherence

implies that data moved via DMA is coherent only with respect to the local memory

module and local cache of the processor performing the DMA transfer. Coherence is not

maintained with respect to the hardware caches of any other processor in the system.

Such global coherence must be built on top of Alewife's DMA facility in software. This

is the role of the page cleaning mechanism discussed in Section 4.1.2 of Chapter 4.

The Alewife mechanisms for message passing described in this section enable low over-

head messaging, both in terms of low latency dispatching of messages when they arrive

and transferring bulk data e�ciently. These mechanisms have a signi�cant impact on

the MGS implementation. As Figures 4.11 and 4.12 from Chapter 4 indicate, signi�cant

communication occurs between the di�erent MGS modules. All of these communica-

84 CHAPTER 5. IMPLEMENTATION

tions bene�t from the support for low latency messaging6. Furthermore, those messages

that carry bulk data, such as messages that provide read/write data and messages that

respond to invalidation requests with updates, bene�t from the support for DMA bulk

transfer.

5.3 Implementation Issues on Alewife

In this section, we discuss several implementation issues that arise on Alewife. First,

we address two problems facing the implementation of MGS: Alewife's lack of hardware

support for address translation, and emulation of inter-SSMP messaging in a virtually

clustered MGS prototype (see Section 5.1 for details on virtual clustering). Sections 5.3.1

and 5.3.2 deal with these issues, respectively. Then, we discuss how page cleaning,

mapping consistency, and statistics gathering are implemented in MGS, in Sections 5.3.3,

5.3.4, and 5.3.5, respectively. Finally, Section 5.3.6 presents how our implementation of

MGS is decomposed into user-level and kernel-level modules.

5.3.1 Software Virtual Memory

Alewife is a single-user single-program machine. Therefore, it does not provide traditional

support for virtual memory (i.e. operating system support for page table structures and

their management, and hardware TLBs for address translation and protection against

unprivileged accesses). Since the software shared memory layer in MGS relies heavily

on virtual memory support, MGS must build virtual memory on top of existing Alewife

shared memory mechanisms in software.

There have been several schemes proposed in the literature for supporting virtual

memory in software [57, 31, 5]. The general idea in software virtual memory (SVM) is

that the compiler or the software system assumes responsibility for address translation

and protection against unprivileged accesses in the absence of hardware TLBs. The

compiler inlines translation and checking code before each access to mapped memory

performed by an application. During a mapped access, the compiler-inserted inline code

examines the virtual address of the access, reads the page table entry (PTE) associated

with the address, and checks the access privilege speci�ed by the PTE against the type

of access being performed. If the check fails, the inline code signals an access fault to

the operating system, and control is passed to the software shared memory layer which

services the access fault. Otherwise, the check succeeds and the access is allowed to

6In fact, the support for messaging in Alewife is too good for those messages that cross virtual SSMP
node boundaries (in Figures 4.11 and 4.12, those messages that provide communication between the
MGS Client and the MGS Server). As discussed in Section 5.1, this mismatch can lead to optimistic
performance results for the emulated DSSMP. In MGS, it is necessary to arti�cially slow down messages
that cross virtual SSMP node boundaries to achieve higher emulation accuracy. This is the topic of
Section 5.3.2.

5.3. IMPLEMENTATION ISSUES ON ALEWIFE 85

perform. In this case, the inline code forms a physical address from the virtual address

and its PTE, and the access is issued to the memory system.

While the general idea in SVM is simple, its implementation brings up some interest-

ing issues. In this section, we will discuss three such issues: memory object management,

e�ciency, and the atomicity problem.

Memory Object Management

In an SVM system, the compiler must do two things. First, it must decide at compile-

time which memory objects to place in virtual memory, and which memory objects

to place in physical memory (for e�ciency reasons described later, it is undesirable to

place all memory objects in virtual memory). Second, for all memory references, the

compiler must decide whether to inline translation and protection code before the memory

reference code. The �rst responsibility is straight-forward. Any memory object which

is guaranteed to be private to a single processor is managed in physical (unmapped)

memory. All other objects, i.e. those objects that are shared by multiple processors and

those objects for which sharing cannot be determined at compile-time, require coherence

from multigrain shared memory and are thus managed in virtual (mapped) memory.

The second responsibility is somewhat more challenging for the compiler. Because

there are two types of memory objects in the system, some memory references will use

virtual addresses while others will use physical addresses. If the compiler can determine

statically that the reference will always use a virtual address, then the compiler can

inline translation and protection code before the reference. Similarly, if it is statically

known that a reference will always use a physical address, the compiler can omit the

inline code. However, a problem occurs if the compiler cannot determine statically what

kind of address a reference will use. The primary example of this is pointers. For these

references, it is not possible for the compiler to decide whether to inline or to omit inline

code.

In MGS, we solve this problem by emitting the inline code for pointer references, but

to include some checking code that determines at runtime whether a pointer contains a

virtual address or a physical address. If the address is virtual, the checking code branches

to the inline code, and translation and protection occurs on the address. If the address

is physical, we branch around the inline code and issue the memory reference using the

physical address immediately. This strategy assumes that virtual and physical addresses

are easily distinguishable, a property that we will discuss further below.

Table 5.1 lists all the memory objects found in the MGS system. The column labeled

\Management" indicates whether the compiler places the object in virtual or physical

memory. The next column labeled \Static?" indicates whether static information allows

the compiler to determine whether normal references to the object use virtual or physical

addresses. And the last column labeled \Inlining" indicates the inlining strategy: \None"

indicates no inlining code, \Trans" indicates inlining code for translation and protection,

and \Check and Trans" indicates not only inlining code, but also checking code to see

whether the reference uses virtual or physical addresses. In our implementation of MGS,

86 CHAPTER 5. IMPLEMENTATION

Object Management Static? Inlining

Code Physical Yes None

Static Variables Physical Yes None

Stack Variables Physical Yes None

Local Heap Variables Physical No Check and Trans

Global Heap Variables Virtual No Check and Trans

Distributed Arrays Virtual Yes Trans

Table 5.1: Memory objects in MGS. The \Management" column indicates whether the

object is managed in virtual or physical memory. The \Static?" column indicates whether

the compiler can determine statically whether references to the object require inlining or

not. The last column shows what inlining strategy is used.

only global heap and distributed arrays are shared across processors; these are the only

objects in MGS that are placed in virtual memory. Heap variables, whether they are

on the local heap or global heap, are referenced using pointers, and thus cannot be

statically analyzed. While distributed arrays are referenced using pointers as well, these

pointers are declared specially and are only allowed to point at distributed array objects.

Therefore, the compiler has static information about them. Finally, code, static variables,

and stack variables do not require inline code because they reside in physical memory, and

the compiler can determine this statically. Local and global heap variables use pointers,

thus checking code and inline code is necessary. Distributed arrays require inline code

because they reside in virtual memory, but no checking code is necessary because the

compiler can identify all references to these objects statically.

As mentioned earlier, one necessary property for our SVM strategy is that virtual

and physical addresses are easily distinguishable. We achieve this through careful place-

ment of the physical and virtual spaces used by MGS onto the Alewife physical address

space. Figure 5.2 shows the memory map for the Alewife machine, and illustrates how

MGS partitions the address space. Alewife has a 32-bit physical address space, where the

high bit is used to di�erentiate between shared memory addresses and private memory

addresses. All addresses with the high bit set are shared memory addresses; therefore,

shared memory spans the addresses between 0x80000000 through 0xFFFFFFFF. In our im-

plementation of MGS, we partition this shared memory region such that the �rst 512 M-

bytes (addresses 0x80000000 through 0xBFFFFFFF) are allocated to physical (unmapped)

memory, and the remaining 1.5 G-bytes (addresses 0xC0000000 through 0xFFFFFFFF) are

allocated to virtual (mapped) memory. The impact of this partitioning is that our im-

plementation of MGS cannot run on an Alewife machine with more than 512 M-bytes of

physical shared memory, otherwise the physical and virtual spaces will alias. 512 M-bytes

of physical shared memory corresponds to an Alewife machine with 128 nodes (4 M-bytes

of physical shared memory per node). We believe this is a reasonable limitation.

Placing the virtual space at the high end of shared memory makes it easy to identify

virtual addresses: any address with the top two bits set is a virtual address. Figure 5.3

shows the pseudo-assembly code for detecting virtual addresses in the MGS system. Two

5.3. IMPLEMENTATION ISSUES ON ALEWIFE 87

Private Unmapped

0x00000000

0x7FFFFFFF

0x80000000

0xC0000000

0xFFFFFFFF

Shared Unmapped

Shared Mapped

(128 Nodes)

A
le

w
ife

 S
ha

re
d

P
hy

si
ca

l M
em

or
y

A
le

w
ife

 P
riv

at
e

P
hy

si
ca

l M
em

or
y

0xBFFFFFFF

Figure 5.2: Memory map for the MGS system.

temporary registers, rv1 and rv2, are used in the computation7. Register rv0 is loaded

with the address to be checked, <addr>, either from a register that already contains the

address, or by calculating the address explicitly (i1). Register rv1 is loaded with the

constant 0xC0000000 (i2 and i3). The two registers are compared (i4), and if rv0 is

greater than or equal to rv1, then inline code is executed to perform a mapped access,

otherwise an unmapped access is performed.

E�ciency

One of the main concerns in SVM is e�ciency. SVM adds software overhead by inlining

code before each mapped memory access which would otherwise be unnecessary if the

system had a hardware TLB. The inlined code contributes to software overhead in two

ways. First, extra processor cycles are expended in order to execute the inlined code.

And second, inlining causes code expansion which negatively impacts cache performance

and adds to register pressure. Because of the high frequency of memory accesses, these

sources of overhead in SVM can become prohibitive if they are not addressed.

There are essentially two ways to reduce software overhead in SVM: reduce the fre-

quency of accesses that require software inlining, or reduce the cost of the code itself

inserted at each inline site. In our implementation of MGS, both of these overhead re-

duction techniques are applied. First, we reduce the frequency of inlining by using SVM

only on memory references that have the potential for being shared, and therefore must

be kept coherent through multigrain shared memory. As was shown in Table 5.1, many

7The Alewife Parallel C compiler [49] reserves two registers at every memory reference site for com-
putation related to software virtual memory.

88 CHAPTER 5. IMPLEMENTATION

i1: move <addr> --> rv0
i2: move zero --> rv1
i3: set-two-MSB rv1
i4: compare rv0 rv1
i5: br >= trans-label

exit-label: i7: next instruction

trans-label:

** perform unmapped access **
i6: jmp exit-label

** perform mapped access **

Figure 5.3: Pseudo-assembly code for detecting virtual addresses in software virtual

memory.

of the memory objects in MGS are placed in physical memory. If the compiler can de-

termine statically that a memory reference will always reference an object managed in

physical memory, then it can avoid inline code completely for that reference. Even if in-

lining is necessary, if the compiler can statically determine that the reference will always

reference an object managed in virtual memory, then it can at least avoid the checking

code (for instance, distributed arrays in Table 5.1).

Our implementation of SVM also tries to reduce the cost of the code at each inline site

by using a simple page table structure. A signi�cant portion of the cost associated with

inline code for SVM is memory references to the page table. The page table structure is

referenced to �nd the page table entry needed for address translation and access privilege

checking. Depending on the type of page table structure used, several memory reads may

be necessary before the PTE is found. For instance, in a forward-mapped page table

structure with three levels of mapping, four memory loads are required before the PTE

is obtained. If some of these memory accesses su�er cache misses, the cost of the inline

code can be expensive.

To minimize the cost of accessing the page table, we implement a
at page table

structure. In a
at structure, the page table is a one-dimensional array of PTEs, one

PTE for every page in the virtual address space. Obtaining the desired PTE is simple

because the structure is simple: index into the PTE array using the virtual page number.

Therefore, with a
at page table structure, we can obtain the PTE with a single load

instruction, since the location of the PTE is known once the virtual page number is

known. Figure 5.4 shows the pseudo-assembly code for performing a mapped access (this

is the code that would appear in place of the ** perform mapped access **" label in

the checking code in Figure 5.3). As in the checking code in Figure 5.3, we again use two

temporary registers, named rv1 and rv2, to perform the computation. Also, we assume

that at the entry into the mapped access code, the virtual address of the mapped access

5.3. IMPLEMENTATION ISSUES ON ALEWIFE 89

i3: load <page-table base>+rv0 --> rv0
i4: mask protection rv0 --> rv1
i5: compare rv1 <access-permission>
i6: move <addr> --> rv1
i7: trap-if-less-than <page-fault trap>

i8: mask page number rv0 --> rv0
i9: move <addr> --> rv1
i10: mask page offset rv1 --> rv1
i11: vm-access rv0+rv1

Check access permission

Calculate virtual address
and perform access

i1: shift-right rv0 log(pagesize)
i2: shift-left rv0 2

trans-label:
Compute virtual page number

Figure 5.4: Pseudo-assembly code for performing a mapped access.

resides in register rv0 (which it does from the checking code in Figure 5.3).

As Figure 5.4 shows, we �rst prepare the virtual page number by right shifting the

virtual address to eliminate the page o�set �eld (i1). After the right shift, the virtual

page number is obtained in rv0; we left shift this value by the size of the PTE (in our

implementation, each PTE is 4 bytes, a single word in Alewife, so we shift by 2 bits) so

that we can use the resulting value as an index into the
at page table structure (i2).

The second block of pseudo code in Figure 5.4 performs the access privilege check. First,

the PTE is loaded into rv0 by using the virtual page number previously computed to

index o� of the base of the page table structure8 (i3). The access privilege information is

extracted (i4), and compared against the type of access being performed (i5). The result

of this comparison is used to decide whether to signal an access fault condition (i7). The

virtual address is placed in register rv1 (i6) to tell the fault handler what address faulted

in case the fault is signaled. The last block of pseudo code in Figure 5.4 performs the

address translation and the actual access of data. First, the physical page number is

extracted from the PTE (i8). Then, the virtual address is moved into register rv1 (i9),

and the page o�set is extracted (i10). Finally, the access is issued whose e�ective address

is the combination of the physical page number and the page o�set (i11).

While using a simple
at page table structure allows for very e�cient PTE lookups,

the technique comes at a signi�cant cost in space. A
at page table requires physical

allocation of mapping state for the entire virtual address space, even if most of the address

space is not mapped. This strategy does not allow for the dynamic allocation of page

table state, such as allowed in a forward-mapped page table structure. To minimize the

space cost of a
at page table structure, we only allow a portion of the addressable virtual

space illustrated in Figure 5.2 to be mappable, and we allocate a
at page table structure

only for that portion. This is accomplished by requiring the application to inform the

8The base address of the page table structure is always available in a special register on Sparcle.

90 CHAPTER 5. IMPLEMENTATION

MGS system the size of the virtual address space needed through the mgs init pagemap

interface, as described in Section 4.4 of Chapter 4.

In Sections 6.1 and 6.3 of Chapter 6, we revisit the issue of e�ciency in software

virtual memory by quantifying the cost of software address translation.

Atomicity Problem

In conventional systems that support virtual memory, address translation and access

privilege checking are performed by TLB hardware. In our implementation of MGS that

supports virtual memory in software, address translation and access privilege checking are

supported by expanding each mapped access into multiple instructions. One consequence

of this code expansion is that the address translation, access privilege checking, and data

access operations are not atomic as they are in conventional systems that support virtual

memory in hardware.

The loss of atomicity due to inline code opens up the opportunity for mapping state

(i.e. a page table entry) to become stale while it is being used by SVM code. This can be

seen easily by looking at Figure 5.4 once again. Notice that there are several instructions

that intervene between when a PTE is loaded (i3), and when the data access happens

(i11) in the inline code that performs address translation and access privilege checking.

We will call this sequence of instructions the inline critical section. If an invalidation of

the PTE occurs while a processor is executing in the inline critical section, the PTE used

by the inline code will become stale by the time the data access occurs. This can result

in incorrect data being read, in the case the data access is a load, or a write to a bad

location, in the case the data access is a store.

While the window of opportunity for an atomicity violation is very small (8 instruc-

tions as shown in Figure 5.4), the violation can nevertheless happen. The problem arises

when a page invalidation request arrives exactly when a processor is simultaneously in

its inline critical section for an address destined to the same page being invalidated. The

handler that processes the invalidation request is invoked on the processor that is in-

terrupted, and occupies the processor for the entire duration of the handler's execution.

While the handler executes, the interrupted code does not make any forward progress and

is not rescheduled to run until the handler completes. When the handler does complete,

the PTE read at the beginning of the inline critical section will have been invalidated,

and thus the inline code's copy will have become stale. When control is passed back to

the inline code, the stale PTE will cause the incorrect data access behavior described

above.

For correctness, it is imperative that the inline critical section be atomic with respect

to page invalidation handlers9. However, any viable solution to this atomicity problem

must pay close attention to the cost of the inline code. Because of its execution frequency,

it would be unacceptable to add signi�cant overhead to the inline code just for the sake

9Notice that atomicity is not required in the virtual address checking code shown in Figure 5.3 since
this code only examines the virtual address of the current access and does not touch mapping state.

5.3. IMPLEMENTATION ISSUES ON ALEWIFE 91

i4: load <page-table base>+rv0 --> rv0
i5: mask protection rv0 --> rv1
i6: compare rv1 <access-permission>
i7: move <addr> --> rv1
i8: trap-if-less-than <page-fault trap>

i9: mask page number rv0 --> rv0
i10: move <addr> --> rv1
i11: mask page offset rv1 --> rv1
i12: vm-access rv0+rv1

Check access permission

Calculate virtual address
and perform access

i1: shift-right rv0 log(pagesize)
i2: shift-left rv0 2

trans-label:
Compute virtual page number

i3: store <enter-critical> -->marker

i13: store <exit-critical> --> marker

Inline C
ritical S

ection

Figure 5.5: Pseudo-assembly code for performing a mapped access, with code to correct

for the atomicity problem.

of providing atomicity. For instance, a solution that requires the inline code to acquire a

lock before entering the inline critical section would be prohibitively expensive.

The solution we propose for the atomicity problem tries to be somewhat intelligent.

We recognize that since the inline critical section is small, the frequency of invalidation

requests landing inside this critical section must also be correspondingly small. There-

fore, we will allow atomicity violations to occur instead of trying to prevent them from

occurring. In the event that an atomicity violation does occur, we will place the burden

of responsibility on the invalidation handler code to detect that an atomicity violation

has occurred. Upon detection of an atomicity violation, the interrupt handler will roll-

back the program counter (PC) of the interrupted background thread such that it points

to the beginning of the inline critical section. Consequently, when the interrupt handler

completes and the PTE has been invalidated, the interrupted thread restarts at the be-

ginning of the inline critical section. It will then reread the PTE entry instead of using

the stale copy that it read before the handler interrupt occurred. One requirement for

this solution to work is that the inline critical section is restartable.

Our solution to the atomicity problem is attractive because it keeps most of the

overhead out of the common case of inline code, and places it in the very infrequent

case that a page invalidation interrupt occurs inside the window of opportunity for an

atomicity violation. Of course, there is some impact on the inline code. Speci�cally, our

solution requires that the invalidation handler can detect when an atomicity violation

occurs. We require all inline code to set a marker in a prede�ned location in local

memory whenever the processor enters an inline critical section. Then, it is possible for

92 CHAPTER 5. IMPLEMENTATION

an invalidation handler to detect an atomicity violation{it simply checks the location to

see whether the marker has been set10. Figure 5.5 shows the translation code example

from Figure 5.4 with the marker code added. Two store instructions (i3 and i13) have

been inserted to set and clear a marker location around the inline critical section. On

Alewife, this adds a 6-cycle overhead (3 cycles per store instruction) to the inline code11.

The �gure also indicates those instructions that are inside the inline critical section.

5.3.2 Simulating Inter-SSMP Communication

As was discussed in Section 5.1, our implementation of MGS uses virtual clustering for

exibility in con�guring the SSMP node size system parameter. The ability to change

SSMP node size easily allows us to explore the entire spectrum of machines in any given

DSSMP family, as discussed in Section 3.3.3 of Chapter 3. However, virtual cluster-

ing only emulates DSSMP behavior, and is less faithful to a target DSSMP system as

compared against a physically clustered system. In this section, we discuss some of

these discrepancies, and we describe techniques used in our implementation to make the

emulation more accurate.

The problem with virtual clustering is the mismatch between the inter-SSMP com-

munication interfaces used on the virtually clustered system and those used on an actual

DSSMP. On a virtually clustered system, the communication interfaces used between

SSMPs and within SSMPs are the same: they are the interfaces that are supported by

the hardware DSM. These interfaces typically have much higher performance than those

found on a DSSMP. Hardware DSMs typically employ special-purpose VLSI networks

that tightly couple nodes. These networks are reliable and trusted; therefore, they do

not require costly software protocol stacks to orchestrate end-to-end communication. For

instance, in Alewife, after a processor constructs a message and injects it into the commu-

nication layer, the path the message takes from the sender's network interface, through

the various routers in the network, and �nally at the receiver's network interface is en-

tirely in hardware. The lack of any system software in the communication layer allows

messaging on hardware DSMs to be extremely e�cient, both in terms of latency and

bandwidth.

In contrast, the inter-SSMP communication layer in actual DSSMPs use commodity

interfaces. The networks that connect SSMPs are commodity local area networks (LANs)

such as ethernet or ATM. The communication interfaces at the sender and receiver are

standard interfaces supported by the operating system, such as those from the IP family

(e.g. UDP/IP or TCP/IP). The use of commodity interfaces signi�cantly impact the

communication performance between SSMPs that can be expected on a DSSMP.

10Notice that the invalidation handler only checks to see if it has interrupted an inline critical section.
It is possible that an interrupted inline critical section is dealing with an address that has no relation to
the page being invalidated. In this case, we still rollback the inline code to the beginning of the critical
section. This is not detrimental to performance since rollback happens very infrequently.

11The 6-cycle overhead assumes the stores will hit in the cache. This is a good assumption since the
same marker location is accessed each time inline code executes.

5.3. IMPLEMENTATION ISSUES ON ALEWIFE 93

Delayed Messages

The �rst-order impact on performance due to the use of better communication interfaces

on the virtually clustered system is simply that messages sent between SSMPs are de-

livered too fast. A very simple solution to address this problem, and the solution we

adopt in our implementation, is to arti�cially delay the delivery of those messages that

are sent between virtual SSMP nodes. This delayed messages approach simulates a �xed

communication delay for all inter-SSMP messages.

Our implementation of MGS on Alewife provides a special message send primitive

for inter-SSMP messages. It is the responsibility of MGS to decide which messages are

sent across virtual SSMP node boundaries, and which messages remain within a virtual

SSMP node. For inter-SSMP messages, the special message send primitive creates a

bookkeeping data structure for the message that records everything needed to inject the

message into the Alewife communication layer: the destination processor ID, the name of

the message handler to be invoked on the destination processor, the number of arguments

in the message, and the number of DMA regions to be sent with the message along with

the DMA descriptors for each DMA region (starting address and length) necessary to

perform the DMA. Once created, this bookkeeping structure is inserted into a pending

message queue, and a timer is set for some �xed delay; the delay is speci�ed as a runtime

parameter to the MGS system. The timer counts down decrementing once every cycle

starting from the �xed delay value, and when it reaches zero, it causes an interrupt.

The timer interrupt dispatches to a routine that dequeues a message bookkeeping data

structure from the pending message queue12. Using the bookkeeping data structure, the

timer interrupt handler describes a message to the Alewife network interface and launches

the message.

Two issues arise in the implementation of delayed messages. First, it is possible

that when a timer interrupt occurs, it interrupts code that is in the process of sending

a message itself. In this case, the Alewife network interface may contain a partially

described message. The interrupt handler must unload the partial contents of the network

interface into temporary storage, describe the message associated with the timer interrupt

and launch it, and then restore the partially described message. However, the network

output queue may be so full due to heavy messaging activity that there is not enough

space in the queue to hold the message descriptors for both the message being sent by the

timer interrupt and any partially described message left by the interrupted thread. In this

case, the timer interrupt will postpone sending the message at the head of the pending

message queue by resetting the timer13 and exiting from the interrupt handler. The

12The bookkeeping data structure that is dequeued is the one at the head of the queue. The queue
is managed in a FIFO order, so if there are multiple pending messages, the message at the head of the
queue is the one that should be sent �rst. After a timer interrupt has been processed, if the pending
message queue is not empty, the timer is reset for the new message at the head of the queue. The
timer value used is the �xed delay value minus the time the new message has spent in the queue before
reaching the head of the queue.

13The timer value we use to reset the timer is the same �xed delay value. It is possible to use a smaller

94 CHAPTER 5. IMPLEMENTATION

Message Type Description Consistency

1WDATA Returns an entire dirty page from Reallocation of the page

the client side to the server side. can cause data to be over-

Responds to an invalidation request written before data is sent.

with the Di�-Bypass mechanism.

DIFF Returns a di� from the client to the Reallocation of the di� buf-

server side. Responds to a normal fer can cause data to be over-

invalidation request. written before data is sent.

RDAT Sends page data from the memory Data may change due to

WDAT side to the client side. Responds to modi�cations by the home

a request for read or write data. SSMP or by releases that

happen before the data is sent.

Table 5.2: MGS messages that send data. The �rst column speci�es the message type,

the second column describes the function of the message, and the last column indicates

the potential consistency problems associated with sending the data in a delayed fashion.

alternative would be for the timer interrupt handler to wait until the network output

queue drains to provide enough queue resources. However, this is dangerous because

timer interrupts on Alewife are served at a very high priority in the kernel; spin-waiting

on the network at such a high priority can lead to deadlock. We have found in practice

that the need to postpone messages due to a lack of network resources is extremely rare.

Another issue associated with the implementation of delayed messages is the consis-

tency of data in those messages that carry application data (sent via DMA). By delaying

the transmission of a message that contains application data, the data may change be-

tween when the message send is initiated and when the message is actually sent. We

must ensure that such modi�cations to the data being sent will not cause the system

to propagate errors. To examine the potential for data consistency problems, Table 5.2

lists all the messages in the MGS system that contain application data. The �rst column

lists the messages (the message names correspond to those names used in Table A.4), the

second column describes the function of the message, and the last column indicates the

consistency problem that can occur if the message is sent in a delayed fashion.

The �rst two messages in Table 5.2, 1WDATA and DIFF, are both messages that

send modi�cations from the MGS client to the MGS server in response to an invalidation

request for a dirty page. After these messages are sent, the client deallocates the memory

resource associated with the data. A problem can occur if this memory is reallocated

before the message is actually sent. The processor to which the memory is reallocated

can overwrite the contents of the data during the delay. We solve the consistency problem

for 1WDATA and DIFF messages by delaying the deallocation of the memory resources

associated with the data until after the message has been actually sent14.

value, but we have not attempted to do so.
14Our special message send primitive provides a cleanup facility. The sender can specify a callout

5.3. IMPLEMENTATION ISSUES ON ALEWIFE 95

The last two messages in Table 5.2, RDAT and WDAT, send page data from the

MGS server to the MGS client in response to read and write requests, respectively. Home

copies continually undergo modi�cations from two separate sources. Modi�cations can

come from writes performed by processors in the same SSMP as the home copy. Also,

modi�cations occur during release operations as updates from dirty pages are merged

into the home copy after invalidation. Because of these modi�cations, the page data in

an RDAT or WDAT message can be di�erent from the contents of the page when the

message send was originally initiated. Fortunately, this does not cause any data consis-

tency problems due to the relaxed access ordering guarantees provided in the Release

Consistency memory model. In RC, shared memory access ordering needs to be guar-

anteed only for special accesses [25] (acquires and releases). The ordering on acquires

and releases are ensured explicitly by proper synchronization at the application level.

The ordering of all other shared memory accesses can be arbitrary without violating the

semantics of Release Consistency. Therefore, even if a modi�cation occurs to a location

inside a page that has been delayed for transmission in an RDAT or WDAT message, no

consistency problem arises because RC allows the sending of the page data to happen in

any order with respect to the modi�cation.

Other Simulation Issues

Our delayed message approach partially addresses the mismatch in the inter-SSMP com-

munications interfaces between a virtually clustered system and an actual DSSMP. If all

inter-SSMP messages in an actual DSSMP implementation experience �xed delay, our

approach would emulate the target system perfectly. Unfortunately, the �xed messaging

delay assumption is only true for ideal systems. Actual DSSMPs exhibit much more

complex behavior.

Variability in latency for the delivery of messages can come from many sources. First,

message length e�ects the latency experienced by a message. Longer messages generally

require more processing in various software protocol stacks associated with the standard

communications interfaces provided between SSMPs in a DSSMP. Common protocol

stack operations, such as data copying and checksum computation, increase linearly in

cost as message length grows. In addition, longer messages have higher associated data

transfer costs through network interface hardware and the physical layer of the network.

Furthermore, most commodity communications interfaces place an upper limit on the

maximum length of a network packet; therefore, transmission of a message through the

network that exceeds this upper limit requires that the message be fragmented at the

sender into smaller units that are each within the maximum packet length. A fragmented

packet also requires reassembly of the fragments at the receiver to recover the original

message. Both fragmentation and reassembly add protocol processing overhead along

the critical path of message latency. In our implementation of MGS, we do not account

procedure to the timer interrupt handler that actually sends the message. The callout procedure is
invoked by the timer interrupt immediately after the system sends a delayed message.

96 CHAPTER 5. IMPLEMENTATION

for (i = 0; i < page_size; i+= cache_line_size) {
value = load(start_addr, i);
store(value, start_addr, i);
flush(start_addr, i);

}

Figure 5.6: Pseudo-C code for performing page cleaning. \start addr" is the base ad-

dress of the page being cleaned, \page size" is the number of bytes in a page, and

\cache line size" is the number of bytes in a cache line.

for variable message latency due to message length.

Perhaps an even more signi�cant source of message latency than message length is

contention. Given an application workload, the amount of contention that inter-SSMP

messages experience will depend on the type of commodity communications interfaces

used between SSMPs. In general, there can be several points along the path of an inter-

SSMP message involving physical resources that can become points of contention. If

the commodity communications interface requires software at (both sender and receiver)

endpoints of communication for processing protocol stacks, then there may be contention

at the protocol processors. Another place where contention can occur is at the hardware

interface between the SSMP and the inter-SSMP network. Finally, contention can also

occur at the routers within the inter-SSMP network itself.

Contention through the hardware network interface between processors on an SSMP

and the inter-SSMP network can be a problem especially on SSMPs where the amount of

bandwidth available through the network interface is �xed, regardless of the SSMP node

size [22] (see Section 8.2 of Chapter 8). In such SSMP architectures, the �xed network

interface bandwidth resource becomes a bottleneck as the SSMP node size is scaled

since larger SSMP nodes generally place a greater demand on messaging into and out

of the node. In our prototype implementation of MGS, the bandwidth between virtual

SSMP nodes increases with SSMP node size. Due to the mesh topology of the Alewife

multiprocessor, the number of network links available to a virtual SSMP node goes as

the perimeter surrounding the node. This perimeter increases as the square root of the

number of processors in the virtual SSMP node because of the two-dimensional nature

of Alewife's mesh network. Being able to scale inter-SSMP bandwidth with SSMP node

size requires scalable communications interfaces for SSMPs. In [34], the design of such

a scalable communications interface, based on standard Internet protocols, is proposed

and implemented with the MGS system. Experiments are conducted to investigate the

e�ects of contention between inter-SSMP messages on application performance.

5.3.3 Page Cleaning

In Chapter 4, Section 4.1.2, we discussed the purpose of the page cleaning mechanism.

In this section, we discuss how page cleaning is implemented as e�ciently as possible on

Alewife.

The purpose of page cleaning is to localize all data inside a page that has been

5.3. IMPLEMENTATION ISSUES ON ALEWIFE 97

for (i = 0; i < 4*cache_line_size; i += cache_line_size) {
write_prefetch(start_addr, i);

}

/* prologue loop */

/* main loop */
for (i = 0; i < page_size - 4*cache_line_size; i+= cache_line_size) {

value = load(start_addr, i);
store(value, start_addr, i);
flush(start_addr, i);
write_prefetch(start_addr, i + 4*cache_line_size);

}

/* epilogue loop */
for (i = page_size - 4*cache_line_size; i < page_size; i += cache_line_size) {

value = load(start_addr, i);
store(value, start_addr, i);
flush(start_addr, i);

}

Figure 5.7: Pseudo-C code for performing page cleaning with prefetching optimizations.

\start addr" is the base address of the page being cleaned, \page size" is the number of

bytes in a page, and \cache line size" is the number of bytes in a cache line.

distributed to processors within an SSMP via hardware cache coherence. In our im-

plementation of MGS, we perform page cleaning purely in software. A processor that

wishes to clean a page explicitly walks down the page. For each cache line in the page,

the processor performs a store operation to the cache line. Because Alewife supports a

single-writer write-invalidate protocol, the store issues an invalidation for that cache line

if there are outstanding copies in the SSMP. Once the store completes, we are guaranteed

that there is an exclusive copy of the cache line in the system belonging to the processor

performing the store. By
ushing this copy after the store completes, we are guaranteed

that there are no outstanding cached copies in the system. Figure 5.6 shows the pseudo-C

code for this operation. An additional load at the beginning of each iteration of the loop

is necessary because the store operation must store the same value that was originally in

the page, otherwise data would be destroyed.

The approach shown in Figure 5.6 can su�er from large amounts of memory stall, thus

decreasing performance. Most of the time in each loop iteration is spent waiting for the

memory system to perform the necessary invalidations in order to provide an exclusive

copy of the cache line to the processor performing the page cleaning. To address this

performance bottleneck, we employ prefetching in order to hide the memory latency

associated with invalidation. Figure 5.7 shows the same page cleaning code in Figure 5.6

augmented with prefetching.

Each iteration of the \main loop" in Figure 5.7 has the same load-store-
ush sequence

98 CHAPTER 5. IMPLEMENTATION

as before. In addition, a prefetch instruction is added at the end of the loop body to

initiate the fetch of data that will be needed by the load-store-
ush sequence several

iterations ahead. In the example in Figure 5.7, the prefetch distance is 4 iterations. The

prefetch instruction requests an exclusive copy (i.e. write prefetch), so the prefetch not

only brings a copy into the requesting processor's cache, but it also forces any necessary

invalidations as well. If the prefetch is successful, both the load and store operations

that access the cache line 4 iterations later will �nd an exclusive copy of the cache line

in the local processor's cache thereby completely masking the latency of the memory

system. Figure 5.7 also contains a \prologue loop" and an \epilogue loop." The prologue

starts up the prefetches before any stores are issued, and the epilogue performs the last

load-store-
ush sequences after the last prefetch is issued.

Notice that the prefetch does not eliminate the need for the load and store instructions

in the loop body. These instructions are still necessary to guarantee that the prefetch

completes. In most all shared memory systems (including Alewife), prefetches are only

hints to improve performance; they can be ignored by the memory system without violat-

ing the cache-coherence protocol. Alewife drops prefetches under certain circumstances,

such as when the prefetch request �nds the cache directory busy (i.e. another transaction

is in progress for the same cache line). The load and store instruction ensure that any

necessary invalidations occur even if the memory system drops the prefetch request.

Other Page Cleaning Optimizations

The pseudo-C code in Figure 5.7 is the strategy used by our implementation of MGS for

page cleaning. There are some other possible optimizations that we do not employ in

our implementation that we will discuss brie
y in this section.

As mentioned in Section 4.1.2 of Chapter 4, page cleaning provides a coherent copy of

a page in the physical memory of the SSMP by localizing data that has been distributed

via hardware cache coherence. This is necessary particularly for DMA devices that

cannot move data coherently with respect to processor caches. Page cleaning, however,

is unnecessary when there is no coherence issue, i.e. when there is no dirty cache line from

a page outstanding in any processor cache. While this condition is di�cult to detect in

general, it is guaranteed if the page is only read mapped by the processors in the SSMP.

Therefore, invalidations of read mapped pages can avoid page cleaning altogether.

While this optimization removes the overhead of page cleaning from the critical path

for invalidation of read-only pages, it does not eliminate the need for page cleaning. In

particular, such read-only pages cannot be reallocated before they are cleaned. As was

pointed out in Section 4.1.2 of Chapter 4, reallocation of a page that has outstanding

copies in processor caches can lead to the access of stale data. The bene�t of this

optimization, however, is that the page cleaning can be delayed and performed at a

less critical time. For instance, read-only pages that have been invalidated by the MGS

system can be placed on a pending queue. The operating system can then clean the page

in the background when it �nds there are spare cycles, and return the page to the free

queue.

5.3. IMPLEMENTATION ISSUES ON ALEWIFE 99

Pages that are mapped read-write cannot avoid page cleaning at the time of invalida-

tion because it is possible for one or more processor caches to contain a dirty cache copy.

However, one possible optimization for read-write pages is to clean the page selectively

on a cache-line by cache-line basis. In our implementation of MGS, the processor per-

forming the page cleaning is the home for the page being cleaned; therefore, it has access

to the hardware cache directories for all cache lines in the page. During page cleaning, it

is possible to �rst read the directory for each cache line being cleaned, determine whether

the cache line is in read or write mode, and only clean those cache lines that are in write

mode. Just as was the case for read-only pages, such partially cleaned pages cannot be

reallocated to MGS until they are fully cleaned.

Partial page cleaning has the potential to save processor cycles, though evaluation

on an actual implementation is necessary before drawing any conclusions. Not only is

it necessary to clean fewer cache lines, but only those cache lines in write mode are

cleaned. This is bene�cial because cache lines in write mode, on average, can be cleaned

with less latency than cache lines in read mode. A write mode cache line is guaranteed

to have only one outstanding copy. Read mode cache lines have multiple-degree sharing,

thus requiring more invalidation messages. And on Alewife, as stated in Section 5.2.1,

when the degree of sharing exceeds 5, the cache line is managed under software which

can increase the invalidation time by an order of magnitude. These savings provided

by partial page cleaning must be balanced against the added overhead of consulting the

directory for every cache line in the page.

5.3.4 Mapping Consistency

Figure 4.9 of Chapter 4 shows the actions performed by the MGS state machines on a

release transaction. Part of the release transaction requires invalidation of mapping state

for all the processors on a client SSMP. In Figure 4.9, this is indicated by the PINV

messages that are sent from the Remote Client machine to the Local Client machines.

The implication of these messages is that invalidation of mapping state is performed by

the Local Client machine on each processor that has mapped the page being invalidated.

In general, mapping state invalidation must be performed by the Local Client because

it requires probing a processor's hardware TLB for the address mapping in question, an

operation that can be performed only by the processor with the TLB.

In our prototype implementation of MGS, the invalidation of mapping state is per-

formed by the Remote Client instead of the Local Client; therefore, our implementation

never sends PINV messages, and handler code to perform mapping consistency is never

invoked on the Local Client machines (though we do use the PINV2 message to invoke

handlers on Local Clients to perform DUQ invalidation{see Section 4.2.1 of Chapter 4).

This is possible because our implementation of MGS supports virtual memory in software.

In SVM, address mappings are cached in memory, not hardware TLBs. Furthermore,

the mappings for each processor are placed in a portion of shared memory that is local

to that processor on the Alewife machine. Consequently, address mappings are visible

to all processors on each SSMP via cache-coherent shared memory. The Remote Client

100 CHAPTER 5. IMPLEMENTATION

can invalidate an address mapping by simply performing a shared memory write to the

location in shared memory where the address mapping resides.

There are two implications of our implementation of mapping consistency. First,

maintaining mapping consistency in our system is cheaper than in a system that supports

virtual memory in hardware. While our system uses e�cient hardware shared memory

mechanisms to invalidate mapping entries, a system that caches address mappings in

processor TLBs requires a software implementation of mapping consistency that uses

inter-processor interrupts to invoke Local Client handlers. Second, the solution to the

atomicity problem described in Section 5.3.1 cannot be used to enforce atomicity of the

inline critical section against mapping invalidation on the Local Client machines. There

is no way for the Remote Client to detect that another processor on the same SSMP

is executing the inline critical section when address mappings are invalidated through

shared memory. In practice, we have never seen an atomicity violation occur on the

Local Clients during a page invalidation on the Remote Client. This is because the inline

critical section performed on each Local Client is so short (8 instructions as shown in

Figure 5.4) relative to the latency between the invalidation of mapping entries and the

actual invalidation of the page performed on the Remote Client (on the order of 1000s

of instructions). Our implementation, however, still uses the PC rollback solution to

enforce translation atomicity on the Remote Client. Atomicity violations are frequent on

the Remote Client because the page invalidation handler (which also performs address

mapping invalidation) occupies the processor executing the Remote Client for the entire

duration of the handler. Consequently, an atomicity violation is guaranteed to occur

as long as the interrupt for the page invalidation handler occurs inside an inline critical

section (see explanation in Section 5.3.1.)

5.3.5 Statistics

Many di�erent types of statistics are collected on the MGS system to produce the exper-

imental results that appear in Chapter 6. All of the statistics were gathered using the

four hardware cycle timers provided on the Alewife machine. Statistics instrumentation

code is inserted into the MGS system code to turn the Alewife timers on and o� at the

appropriate times, and to read the timers in order to acquire the cycle counts. While

such software instrumentation is intrusive, the impact on end runtime is negligible. Most

of the statistics gathered for Chapter 6 are trivial to implement; however, one statistic,

MGS runtime overhead, requires system support. We describe this statistic in greater

detail in the rest of this section.

The MGS runtime overhead statistic counts the number of cycles the system spends

running MGS code. This is challenging because a large fraction of the overall MGS time

is spent in handler code, invoked by MGS messages, that is interruptible. Figure 5.8

helps illustrate why counting cycles in interruptible handler code is di�cult.

On the left half of Figure 5.8, the activity of a single Alewife processor is shown in time,

where time progresses downward. Initially, before time t0, the processor is executing non-

MGS code, indicated by a bar �lled with a hash pattern. This code executes in context C0

5.3. IMPLEMENTATION ISSUES ON ALEWIFE 101

C0 C1 C2

t0

t1

t2

t3

handler work()
{

unsigned begin, time;

begin = get_time();
do_work();
time = get_time() - begin;

}

interrupts_off();

Figure 5.8: Instrumenting timers in interruptible handlers.

of the processor, the default context for threads (recall from Section 5.2.2 that Sparcle,

the Alewife integer core, supports four hardware contexts). At time t0, the thread is

interrupted by an incoming message which invokes the handler code shown on the right

half of Figure 5.8. As described in Section 5.2.2, Alewife runs the handler in the next

available context, in this case context C1, to reduce the latency of message invocation.

Once running, the �rst thing the handler does is turn on interrupts15. Then, it

performs some work which is timed by some statistics instrumentation code. The instru-

mentation code uses a routine called \get time()" which returns the current value from

a single hardware cycle counter.

In our example, before the handler running in context C1 �nishes, another message

arrives at time t1 and invokes a new handler that get runs in context C2 (for simplicity,

the new handler runs the same code as the original handler). The new handler runs

without interruption and completes at time t2, and execution returns to the original

handler. Finally, the original handler completes at time t3, and execution returns to the

background thread.

At the end of this sequence, the statistics code in the second handler returns t2� t1,

which is in fact the number of cycles the second handler runs on the processor. However,

the statistics code in the �rst handler will return t3 � t0, which is incorrect because it

counts the running time of both handlers. The result is that the overhead of the second

handler is counted twice.

The solution to this problem is to use multiple cycle counters. Fortunately, Alewife

provides four cycle counters in hardware; therefore, we dedicate one to each of the four

hardware contexts in the processor. We modify the Alewife kernel to maintain the in-

15In Alewife, handlers begin running with interrupts o�; this allows them to perform atomic operations.
However, long running handlers must re-enable interrupts otherwise other incoming handlers are blocked
until the running handler �nishes. Blocked handlers remain in the network and can cause network
congestion.

102 CHAPTER 5. IMPLEMENTATION

variant that only one cycle counter is ever turned on, and that counter is the one cor-

responding to the hardware context that is currently running. The other three counters

are disabled so that they do not count. The invariant is maintained by instrumenting

the message arrival and exit code in the kernel. On message arrival, the kernel disables

whatever counter was on. Once disabled, the counter stops counting and holds its value

until it is re-enabled (its value is not cleared!). The kernel then enables a new counter

corresponding to the context in which the handler for the incoming message will run16.

On message exit, the kernel disables this new counter, and re-enables the old counter

before returning to the interrupted code.

By guaranteeing that the four hardware counters are non-overlapping, each counter

will exactly track the number of cycles the processor spends running in each hardware

context. This eliminates the problem of over counting handler overhead as illustrated in

Figure 5.8.

5.3.6 User-Kernel Decomposition

In a production MGS system, all the software modules would be implemented inside the

operating system kernel. In the implementation of our prototype, we place the software

modules partly in kernel space, and partly in user space as libraries that are linked

against the user's application. Our implementation strategy attempts to push as much

of the MGS software into user space as possible. This strategy enhances testability,

which is critical for the development of the system. In this section, we describe the

decomposition of our MGS prototype into user and kernel modules, and we brie
y discuss

the implications such a decomposition has on performance.

Figure 5.9 shows the decomposition of our MGS prototype into user-space modules

and kernel-space modules. The dotted line in the �gure represents the separation be-

tween the user and kernel spaces. All shaded boxes represent software modules that

belong explicitly to the MGS system. As the �gure illustrates, most of the shared mem-

ory functionality is implemented at user level. The box labeled \MGS Library" which

contains the Local-Client, Remote-Client, and Server Machines is implemented entirely

in user space. And of course, the software address translation code is also implemented

in user space since it is inlined by the compiler into the user's application.

The modules implemented in kernel space provide very simple functionality; therefore,

it is less critical that they are not in user space from a software development standpoint.

The TLB Fault Handler module intercepts TLB faults generated by the software address

translation code in the application. This module performs an upcall into the MGS Library

to invoke the Local-Client Machine; it is the mechanism by which control is passed from

the application to MGS. The reason why this module lives in kernel space is explained

below when we discuss performance. The Delayed Message module simulates the cost of

inter-SSMP messages, as described in Section 5.3.2. The Local-Client, Remote-Client,

and Server all interact with this module via system calls whenever a message is sent to a

16The kernel also clears this new counter so that we do not run the risk of over
owing the counter.

5.3. IMPLEMENTATION ISSUES ON ALEWIFE 103

Application

Software Address

User

Kernel

MGS Library

Local-

Machine

Remote-

Machine

Server
Machine

Translation

TLB Fault
Handler

Delayed

Statistics Counter Management

ClientClient

Alewife Active
Messaging Messages

Figure 5.9: Decomposition of the MGS system into user-space and kernel-space modules.

protocol state machine on a remote SSMP. The Delayed Message module must reside in

the kernel because it uses Alewife's timer facility which can only be accessed through the

kernel. The Statistics Counter Management module manages the four Alewife hardware

counters to ensure that they count in a non-overlapping fashion, as is required by the

statistics instrumentation code described in Section 5.3.5. Since this module must be

noti�ed each time a new hardware context is active, it is simpler to implement it inside

the kernel where scheduling of hardware contexts is performed rather than upcalling

into MGS library code each time a scheduling change occurs. The Statistics Counter

Management module spans the width of Figure 5.9 to signify that the hardware counter

values are accessed by statistics instrumentation in both the application and the MGS

library code. Finally, the last kernel module in Figure 5.9 is the Alewife Active Messages

module, which is part of Alewife's fast inter-processor messaging facility described in

Section 5.2.2. It provides the raw messaging layer used by the Delayed Messaging module

to send messages between SSMPs once they have been arti�cially delayed. It also invokes

the Remote-Client and Server Machines each time an active message is received from a

remote SSMP.

Choosing an implementation that decomposes the software modules and places them

in both the user and kernel spaces as indicated in Figure 5.9 rather than a kernel-only

implementation impacts the performance of the prototype system. The impact is an

overall increase in the number of user-kernel space crossings. This is easy to see by

looking at Figure 5.9. If the box labeled \MGS Library" were placed in the kernel,

as it would in a kernel-only implementation of MGS, then all the arrows between the

Local-Client, Remote-Client, and Server Machines and the messaging interfaces provided

within the kernel would disappear. Placing the protocol state machines in user space

as we have done for the sake of debugging ease forces the system to incur a user-kernel

space crossing each time a message is sent or received.

104 CHAPTER 5. IMPLEMENTATION

Although our goal was to place as much in user space as possible for software devel-

opment purposes, we deliberately placed the TLB Fault module in the kernel to force a

user-kernel space crossing on a TLB fault. We could have easily saved this user-kernel

space crossing by directly calling the Local-Client from the inline code that detects TLB

faults. While this would have been more e�cient, it would have been overly optimistic

in comparison to a production system in which the Local-Client would be implemented

inside the kernel. In our prototype, there are two user-kernel space crossings for each

TLB fault: one to intercept the TLB fault inside the kernel, and another to upcall into

the Local-Client Machine. The return from the Local-Client Machine back to the appli-

cation does not go through the kernel. Instead, the TLB Fault module in the kernel, after

saving the processor's registers, arti�cially sets up a series of links on the user's stack

that allows the Local-Client to restore the proper registers and return directly to the

trapping code in the application. Two user-kernel space crossings for TLB fault handling

was an explicit design goal as it is what we would expect in a kernel-only implementation

of MGS (one crossing to get into the kernel where the Local-Client executes, and another

crossing to get back to the application).

Chapter 6

Experimental Results

This chapter reports on extensive experimental experience with our prototype of the MGS

architecture. Two fundamental questions are addressed that concern the e�ectiveness of

DSSMPs as high-performance parallel processing architectures. First, how e�ective are

DSSMPs relative to other parallel architectures? To address this question, we will com-

pare the behavior of multigrain systems to monolithic shared memory systems that use

all-software or all-hardware approaches. We will ascertain the bene�t of providing �ne-

grained hardware-supported shared memory within SSMP nodes. The second question

we will address is what bottlenecks prevent DSSMPs from achieving higher performance?

We will look carefully at these bottlenecks to understand how they can be addressed

through locality-enhancing program transformations. We will study the engineering ef-

fort required to implement such transformations, in addition to their impact on DSSMP

performance.

With these two fundamental questions as our goal, we will �rst provide the context

needed to address these questions. Section 6.1 presents micro-measurements that detail

the cost of shared memory operations on our MGS prototype. These numbers provide

a low-level characterization of system behavior before any applications are considered.

In Section 6.2, we introduce a performance framework for characterizing the behavior

of applications on DSSMPs. This framework facilitates a consistent and meaningful

comparison of DSSMP performance against all-software and all-hardware shared memory

performance. The framework will be used heavily throughout the rest of the chapter to

present application results. Then, the two DSSMP performance questions mentioned

above are addressed in Sections 6.3 and 6.4, respectively. Finally, Section 6.5 concludes

the experimental results by examining the sensitivity of DSSMP performance to inter-

SSMP messaging latency and system page size.

6.1 Micro-Measurements

In this section, we report measurements that characterize the cost of performing shared

memory operations on the MGS prototype. Speci�cally, we consider three classes of

overheads that relate to shared memory: overheads in cache-coherent shared memory,

105

106 CHAPTER 6. EXPERIMENTAL RESULTS

Type Home Latency

local 11

remote 38

Load remote (2-party) 42

remote (3-party) 63

remote software 425

local 12

remote 38

Store remote (2-party) 43

remote (3-party) 66

remote software 707

Table 6.1: Cache-miss penalties on Alewife. All measurements are in cycles.

overheads for software address translation, and overheads in page-based software shared

memory.

Table 6.1 reports overheads associated with cache-coherent shared memory by enu-

merating several types of cache-miss penalties. These numbers re
ect shared memory

performance provided on a single Alewife machine. These data appear in [23], and have

been reprinted here.

Cache-miss penalties are reported for the two types of shared memory accesses, loads

and stores, as indicated by the column labeled \Type" in Table 6.1. Since Alewife

is a distributed-memory architecture (see discussion in Section 5.2 of Chapter 5), the

miss penalty depends on whether the cache miss can be serviced locally or remotely.

The column labeled \Home" di�erentiates between local and remote cache misses by

specifying whether the home memory module for the cache line is \local" or \remote" to

the node su�ering the cache miss. Table 6.1 also shows the additional cost of invalidation

during a cache miss by reporting the miss penalty when one or two outstanding cache

copies must be invalidated, as indicated by the \2-party" and \3-party" remote penalties,

respectively. Finally, the cost of software extension of the cache directory beyond 5

hardware pointers in Alewife (see discussion on LimitLESS in Section 5.2.1 of Chapter 5)

is reported by the \remote software" latencies. In the case of a load, the miss penalty

reported is the time required for a remote read miss to be serviced by a software handler.

For stores, the miss penalty reported represents the latency seen by a write cache miss

to a location with 6 outstanding read copies. This overhead includes the cost of sending

6 invalidation messages in a software handler, and receiving the acknowledgments in

hardware.

All cache-miss penalties in Table 6.1 assume an unloaded machine, and therefore

represent the maximum throughput attainable in the absence of contention in both the

network and at memory modules.

Table 6.2 reports overheads associated with address translation in software virtual

memory. As discussed in Section 5.3.1 of Chapter 5, MGS compensates for the lack of

hardware support in Alewife for virtual memory by performing address translation in

6.1. MICRO-MEASUREMENTS 107

SVM Operation Latency

Mapping Check 6

Mapping Check and Translation 23

Distributed Array Translation 16

Table 6.2: Software Virtual Memory costs on MGS. All values are in cycles.

Type Description Latency Serv Occ Re-Cli Occ

TLB Fault 2302

Load Page Fault 11772 2240

Page Fault, Single-Writer 29353 3557 6407

TLB Fault 3590

Store Page Fault 21956 2400

Upgrade Fault 12441 150

Page Fault, Single-Writer 35293 3659 6373

Single-Writer Transition 9992 2803

Release 2-party Invalidation 33424 10086 11428

3-party Invalidation 33516 17596 13015

Table 6.3: Software shared memory costs on MGS. All values are in cycles.

compiler-generated translation code inlined before each access made to a mapped (or

potentially mapped) memory object.

There are two sources of software address translation overhead: checking code and

translation code. Checking code is needed for memory references that potentially ac-

cess mapped objects which could not be resolved at compile time. The checking code

determines at run time whether the reference accesses a mapped or unmapped object.

The cost of the checking code is given by the �rst row in Table 6.2. This cost is exactly

the overhead incurred for accesses to \Local Heap Variables" (see Table 5.1) in which

the checking code determines that a memory reference accesses an unmapped object,

and thus the translation code can be bypassed. Translation code actually performs the

address translation once a check determines that translation is necessary (i.e. a reference

accesses a mapped object). The combined cost of the checking code and translation code

is given by the second row. This corresponds to the cost for accesses to \Global Heap

Variables." Finally, some memory references only incur the cost of translation because

the compiler can determine statically that these references always access mapped objects.

Accesses to distributed arrays fall into this category. The cost for a distributed array

reference is given by the last row.

All the overheads reported in Table 6.2 were obtained by counting instructions and

thus optimistically assume all inline code hit in the cache. Also, the overheads only

account for inline code preceding an access and thus do not include the cost of the access

itself.

The last set of micro-measurements, presented in Table 6.3, characterize the overheads

seen in page-based software shared memory. Like Table 6.1, the overheads are grouped

108 CHAPTER 6. EXPERIMENTAL RESULTS

into di�erent types of shared memory operations. In Table 6.3, there are three di�erent

types of shared memory operations, loads, stores, and releases, as indicated in the column

marked \Type." The second column, marked \Description," speci�es the action taken

on a particular operation. For loads and stores, there are four di�erent actions: \TLB

Fault," \Page Fault," \Page Fault, Single-Writer," and \Upgrade Fault." A TLB fault

occurs when a load or store is issued for which a local copy of the page containing the

location exists in the local SSMP, but for which the processor issuing the load or store

does not have a mapping. A page fault occurs when a load or store is issued for which

no local copy of the page containing the location exists in the local SSMP. \Page Fault,

Single-Writer" is similar to a page fault, except that the desired page faulted on is in

Single-Writer mode (see Section 4.1.2 of Chapter 4) on a remote SSMP. An upgrade fault

occurs when a store is issued for which the page containing the location is resident in the

local SSMP, but the access privilege of that page is insu�cient (i.e. the page is in read

mode instead of write mode).

In addition to the four actions for loads and stores, there are three additional actions

associated with releases reported in Table 6.3: \Single-Writer Transition," \2-party In-

validation," and \3-party Invalidation." A single-writer transition occurs when a release

is performed on a page with a single outstanding write copy. In this case, the owner of

the page is allowed to relax the consistency of the page past the release point (again, see

Section 4.1.2 of Chapter 4). A 2-party (3-party) invalidation occurs when a release is

performed on a page with two (three) outstanding copies resulting in the invalidation of

both (all three) copies. In Table 6.3, all outstanding copies are in write mode, each with

modi�cations performed to half the page.

The last three columns in Table 6.3 report overheads associated with each action

described above. The �rst of the three columns, labeled \Latency," reports the latency

seen by the requesting processor. This is the number of cycles the requesting processor

is stalled as the software shared memory operation is performed. The next column,

labeled \Serv Occ," reports the server occupancy. This is the total number of cycles

spent executing the Server Machine for the page in question. These cycles are incurred

by the processor responsible for executing the Server Machine in the Server SSMP. TLB

faults do not incur server occupancy because they do not invoke the Server Machine.

Finally, the last column, labeled \Re-Cli Occ," reports the remote client occupancy.

This is the number of cycles spent executing the Remote Client Machine in order to

perform invalidation. These cycles are incurred on the processors that own outstanding

pages being invalidated. Only those actions that involve invalidation incur remote client

occupancy. Both occupancy measurements account for the cost of executing the handlers,

but do not include the cost of the interrupt, dispatch code, and return code necessary to

invoke and exit from the handler (this cost is approximately 200 cycles on Alewife).

All values in Table 6.3 are averages over several repetitions of each operation. Except

for the instrumentation code that repeatedly executes each operation and measures their

cost, the MGS prototype used for the micro-measurements is otherwise idle; therefore,

the numbers in Table 6.3 represent the highest throughput attainable in the absence

of contention both in the network and at all processors involved. Also, we assume a

6.2. PERFORMANCE FRAMEWORK 109

1000 cycle (50 �sec) latency for all inter-SSMP messages (i.e. the �xed delay parameter

discussed in Section 5.3.2 of Chapter 5 is con�gured for 1000 cycles), and a page size

of 1K-bytes. The inter-SSMP communication latency is fairly aggressive, but achievable

on existing networks. The delay impacts the latency numbers, but does not a�ect the

occupancy numbers in Table 6.3 (see Section 6.5 for a discussion on the impact of inter-

SSMP communication latency and page size on system behavior).

There are two important remarks to be made regarding Table 6.3. First, a comparison

between the latency columns of Tables 6.1 and 6.3 reveals that page-based software shared

memory is roughly 3 orders of magnitude more expensive than cache-coherent shared

memory on Alewife. This underscores the importance of optimizations that leverage

cache-coherent shared memory whenever possible. Second, the Single-Writer mechanism

has the potential to provide large savings in overhead as evidenced by the large latencies

for releases that involve invalidation. A page that meets the single-writer condition will

incur the penalties of the \Single-Writer Transition" entry on its �rst release. Not only

does this have much less associated latency as compared with the \2-party" and \3-

party" releases, but it also in
icts much less occupancy overhead. Furthermore, once a

page transitions into the single-writer mode, it incurs 0 overhead on subsequent releases

until it transitions out of single-writer mode, caused by a page fault from a remote SSMP

(corresponding to the \Page Fault, Single-Writer" entry).

It is also interesting to note that faults due to stores are more expensive than faults

due to loads. This is because a page with write access privilege requires a twin copy

to be made. Also, the latency of releases that require invalidation (in an unloaded

system) is generally insensitive to the number of outstanding copies as evidenced by

the similar latencies for 2-party and 3-party releases. This is because the invalidation

requests are sent by the Server Machine simultaneously; thus the invalidations happen

in parallel. However, the occupancy overhead increases with wider sharing since the

occupancy numbers reported in the \Re-Cli Occ" column are incurred once for each copy

invalidated.

6.2 Performance Framework

In this section, we introduce a performance framework that enables a crisp characteriza-

tion of application performance on DSSMPs. The framework is used extensively later on

in Sections 6.3 and 6.4 to present results from our application study.

Our performance framework is based on two key system parameters that describe a

DSSMP con�guration: the total number of processors, P , and the number of processors

in each SSMP, or SSMP node size, C. The performance framework characterizes the

behavior of an application in the following way. Given a DSSMP with a �xed total

machine size P , we measure an application's performance on the DSSMP as the SSMP

node size C is varied from 1 to P . We call this set of measurements the application's

performance pro�le.

The performance pro�le tells us how an application responds to a change in the mix-

110 CHAPTER 6. EXPERIMENTAL RESULTS

E
xe

cu
tio

n
 T

im
e

Cluster Size
1 2 4 PP/2

Multigrain
Potential

Breakup
Penalty

Figure 6.1: A hypothetical application analyzed using the performance framework. This

application is not well-suited for DSSMPs.

ture of hardware and software in the implementation of multigrain shared memory. A

large SSMP node size implies a greater degree of hardware shared memory support across

the DSSMP; consequently, a greater fraction of the application's shared memory accesses

will be satis�ed in hardware, and most sharing will occur at cache-line granularity. Con-

versely, a small SSMP node size implies the DSSMP relies more on software shared

memory support; consequently, a greater fraction of the application's shared memory

accesses will be satis�ed in software, and more sharing will occur at page granularity.

Both endpoints of the performance pro�le, where SSMP node size is 1 and P pro-

cessors respectively, are interesting because each represents a collapse of the DSSMP

network hierarchy. At C = 1, each SSMP is a uniprocessor, so there is no internal net-

work. This means that all shared memory accesses to remote locations use software and

share at page granularity. Conversely, at C = P , there is only one SSMP, and it is the

entire system. There is no external network. All remote accesses are handled in hardware

and share at cache-line granularity. Therefore, the endpoints of the performance pro�le

allow us to compare the performance of intermediate DSSMP con�gurations against the

degenerate all-software or all-hardware shared memory architectures1.

Figure 6.1 shows the performance pro�le of a hypothetical application. Execution time

is plotted against the SSMP node size parameter, C, in powers of 2 for a total system

1The performance at an SSMP node size of 1 and P processors does not correspond exactly to an
all-software and all-hardware shared memory system, respectively, given our MGS prototype. This is
because MGS provides functionality that is necessary in a DSSMP, but would not be necessary in either
a network of uniprocessor workstations (all-software DSM) or an MPP (all-hardware DSM). When we
present experimental data in Section 6.3, we substitute the native Alewife performance numbers (without
MGS) for the MPP con�guration, but we make no attempt to correct the all-software DSM performance
numbers.

6.2. PERFORMANCE FRAMEWORK 111

E
xe

cu
tio

n
T

im
e

Cluster Size
1 2 4 PP/2

Multigrain
Potential

Breakup
Penalty

Figure 6.2: A hypothetical application analyzed using the performance framework. This

application is well-suited for DSSMPs.

size, P . While the performance pro�le visually conveys the application's sensitivity to

SSMP node size, we de�ne two quantitative metrics that identify the most important

features on the performance pro�le, and thus can be used to characterize application

behavior. These metrics have been labeled in Figure 6.1, and are:

Breakup Penalty. The execution time increase between the P SSMP node size and

the P
2

SSMP node size is called the \breakup penalty." This is the minimum

performance penalty incurred by breaking a tightly-coupled (all-hardware shared

memory) machine into a clustered machine.

Multigrain Potential. The di�erence in execution time between an SSMP node size of

1 and an SSMP node size of P

2
is called the \multigrain potential." The multigrain

potential measures the performance bene�t derived by capturing �ne-grain sharing

within SSMP nodes.

A third feature of the performance pro�le in Figure 6.1 that is important for charac-

terizing an application's behavior on DSSMPs, but for which we do not explicitly de�ne

a metric, is the curvature of the performance pro�le across the multigrain potential. A

concave curvature indicates most of the multigrain potential is achieved at large SSMP

node sizes, while a convex curvature indicates most of the multigrain potential is achieved

at small SSMP node sizes. The curvature is important because it determines whether

DSSMPs built using small SSMP nodes can be e�ective, or whether large SSMP nodes

are required for performance. While we do not measure the curvature quantitatively,

we will refer to the performance pro�le's curvature and the impact of using small versus

large SSMP nodes throughout the rest of this thesis.

112 CHAPTER 6. EXPERIMENTAL RESULTS

Our performance framework tells us that the hypothetical application in Figure 6.1

is not well-suited for DSSMPs. First, the application's performance pro�le has a large

breakup penalty. This indicates that the application will perform poorly on the DSSMP

as compared to an all-hardware cache-coherent DSM. Second, the multigrain potential

is small indicating that very little bene�t is derived from the hardware-supported shared

memory provided within SSMP nodes; therefore, this application will not achieve much

higher performance on a DSSMP as compared to an all-software DSM. Finally, the cur-

vature of the performance pro�le across the multigrain potential is concave indicating

that what little multigrain potential there is can only be realized if the DSSMP consists

of a few very large SSMPs.

In contrast, Figure 6.2 shows the analysis of another hypothetical application, again

using our performance framework. The performance pro�le presented in Figure 6.2 dis-

plays a very small breakup penalty. This application will do almost as well on a DSSMP

as it will on an all-hardware system because there is very little loss in performance due

to introducing software in the shared memory implementation. The performance pro�le

has a large multigrain potential indicating large bene�ts derived from capturing �ne-

grain sharing in SSMP nodes. And the curvature of the performance pro�le across the

multigrain potential is convex with a steep slope at small SSMP node sizes. This indi-

cates that most of the multigrain potential can be achieved at small SSMP node sizes.

The implication for the application depicted in Figure 6.2 is that it will perform well on

DSSMPs constructed from small-scale multiprocessors.

As we will see in Section 6.3.2, many of the applications from our application suite

have challenging �ne-grain communications requirements. DSSMPs deliver decent per-

formance on some of these challenging applications; however, breakup penalties are signif-

icant because the �ne-grain communication patterns uniformly span the entire machine

resulting in a performance pro�le that resembles Figure 6.1. Section 6.4 will show that

locality-enhancing transformations can be applied in order to cluster the �ne-grain shar-

ing patterns found in these challenging applications. Most of the transformations are

simple and resemble the transformations performed by existing parallel optimizing com-

pilers. On the transformed applications with improved locality characteristics, we see

performance pro�les that resemble 6.2.

6.3 Applications

While Section 6.1 presents detailed measurements on shared memory operations, such

system-level performance numbers do not capture overall system behavior. In this sec-

tion, we study the behavior of applications on the MGS prototype so that we may char-

acterize end-to-end performance.

The primary intent of this section is to understand how the MGS system behaves

on o�-the-shelf applications, i.e. applications that have been written only with a generic

parallel shared memory machine model in mind. These applications are not aware of the

underlying multigrain support for shared memory nor the clustered nature of the DSSMP

6.3. APPLICATIONS 113

Application Problem Size Lines

Jacobi 1024 � 1024 Grid, 10 Iterations 205

Matmul 256 � 256 Matrices 239

FFT 32K Elements 322

Gauss 512 � 512 Matrix 322

Water 343 Molecules, 2 Iterations 2090

Water-Kernel 512 Molecules, 1 Iteration

Water-Kernel-NS 512 Molecules, 1 Iteration

Barnes-Hut 2K Bodies, 3 Iterations 4058

TSP 10-City Tour 665

Unstructured 2800 Nodes, 17377 Edges, 1 Iteration 9094

Unstructured-Kernel 2800 Nodes, 17377 Edges, 1 Iteration

Table 6.4: List of applications, their problem sizes, and their size in number of lines of

C code.

upon which they run2. While we are very interested in the performance improvements

that can be gained by exposing details of the shared memory layer to the application,

we defer these issues to Section 6.4. Therefore, the results presented in this section

represent the performance that DSSMPs can deliver with minimal e�ort from either the

programmer or the compiler.

First, we describe the applications used in our study in Section 6.3.1, and then we

present detailed experimental results in Section 6.3.2.

6.3.1 Application Suite

Table 6.4 lists the applications used in this thesis to study the overall system behavior of

DSSMPs. There are eight applications in total, two of which (Water and Unstructured)

have variants which facilitate more detailed study later in Section 6.4 and Chapter 7.

While all of the applications are scienti�c in nature, there is a mixture of codes that

have both regular and irregular memory access patterns, and both static and dynamic

control
ow behavior. The table includes the problem size used for our experiments, and

the number of lines of C code in the application (the number of lines of C code have

been omitted for Water-Kernel, Water-Kernel-NS, and Unstructured-Kernel as these are

variants on the main Water and Unstructured applications).

The �rst four applications, all exhibit regular memory access patterns with static

control
ow. Jacobi performs an iterative relaxation over a two-dimensional grid, while

Matmul multiplies two dense matrices. FFT computes a one-dimensional fast Fourier

transform, and Gauss performs Gaussian elimination on a matrix. Water is an appli-

cation from the SPLASH-I benchmark suite [61]. It is a molecular dynamics code that

2We do, however, allow applications to use the multigrain-aware synchronization library described in
Section 4.3 of Chapter 4. But this only requires linking the application against our library, and thus, we
do not count this as additional programmer e�ort.

114 CHAPTER 6. EXPERIMENTAL RESULTS

Application Seq Sp1 SVM-Seq Ovhd SVM-Par Sp2

Jacobi� 1020816028 28.3 1618916600 1.59 53889697 30.0

Matmul 1967397265 31.3 3080884002 1.57 114667516 26.9

FFT 495224878 13.6 491769198 0.99 41487459 11.9

Gauss 2666915900 15.9 5034851631 1.89 217332821 23.2

Water 1284906732 26.1 1960029691 1.53 72948004 26.9

Water-Kernel 1532197479 58465483 26.2

Water-Kernel-NS 2122687515 75058889 28.3

Barnes-Hut 563916197 13.4 976160390 1.73 72772466 13.4

TSP 27371714 8.0 53485523 1.95 3040273 17.6

Unstructured 371716843 17.4 1260702520 3.39 87473784 14.4

Unstructured-Kernel 204001329 13444073 15.2

Table 6.5: Baseline application performance. \Seq" and \Sp1" report sequential running

time and speedup, respectively, on an Alewife machine without SVM. \SVM-Seq" reports

sequential running time with SVM. \Ovhd" is the amount of SVM overhead. \SVM-Par"

reports running time with SVM on a 32-node Alewife machine, \Sp2" reports speedup

with SVM on 32 nodes.

simulates the motion of water molecules in three-dimensional space. Again, this appli-

cation has fairly regular memory access patterns with static control
ow. Water-Kernel

and Water-Kernel-NS are variants on the basic Water application, and are explained

in Section 6.4 and Section 7.2.1 of Chapter 7, respectively. Barnes-Hut is a hierarchi-

cal N-body simulation, also from the SPLASH-I suite. The algorithm uses an octree

data structure to sort the bodies according to their positions in space. The octree loga-

rhythmically reduces the number of body interactions by enabling each body to interact

with the summary of a progressively larger number of bodies as interaction distance

increases. Because the structure of the octree is highly data dependent, the memory

access patterns are irregular and control
ow is dynamic in Barnes-Hut. TSP is the

traveling salesman problem that uses a branch and bound algorithm and a centralized

work queue to distribute work. Because of the pruning inherent to branch and bound

algorithms, TSP has dynamic (data-dependent) control
ow. Finally, Unstructured is a

computation over an unstructured mesh from the University of Wisconsin, Madison, and

the University of Maryland, College Park [52]. The computation resembles solving Eular

equations on unstructured meshes, but does not actually produce meaningful numeric

results. The code exhibits highly irregular memory access patterns and dynamic control

ow. Unstructured-Kernel is a variant of Unstructured, and is explained in Section 6.4.

Table 6.5 provides baseline performance numbers for our applications on Alewife

without the overheads of software shared memory that would be incurred in a DSSMP.

The �rst two columns report performance numbers on Alewife without any software

address translation overhead, i.e. native Alewife performance. The \Seq" column reports

running time on a single-node Alewife machine (we do not report \Seq" numbers for the

Water and Unstructured variants because they are similar to the original versions of the

6.3. APPLICATIONS 115

applications), and the \Sp1" column reports the speedup on a 32-node Alewife machine.

In the case of Jacobi, the *" symbol signi�es that its problem size was not able to �t

in the memory of a single Alewife node; therefore, for Jacobi, we ran the problem on 4

nodes for both the \Seq" and \SVM-Seq" (explained below) columns, and extrapolated

the single node numbers by assuming linear speedup from 1 to 4 processors.

The last four columns report baseline performance for the applications with software

virtual memory, i.e. these numbers include the software address translation overheads

described in Section 5.3.1 of Chapter 5. \SVM-Seq" reports single-node performance on

Alewife with software virtual memory. The next column, labeled \Ovhd," is the ratio of

the \SVM-Seq" and \Seq" columns. This is the dilation in sequential running time due

to software address translation, and thus quanti�es the cost of software virtual memory.

Notice that SVM overhead is highly application dependent. While there is no detectable

dilation in FFT, most applications become 50% { 100% slower due to SVM overhead. In

the extreme case, Unstructured is over three times slower with SVM than without SVM.

This is because Unstructured spends all of its time in several tight loops, each accessing

mapped memory objects with very little computation between accesses. We discuss the

expected impact of software address translation overhead on our results below.

The column labeled \SVM-Par" reports the running time on a 32-node Alewife ma-

chine. These parallel performance numbers include the overhead of software address

translation, but do not include any other MGS-related overheads. In particular, the

system initializes all mappings needed by the application to write mode before the ap-

plication begins execution, so the application never su�ers TLB faults or page faults.

Furthermore, instead of using the multigrain synchronization primitives described in

Section 4.3 of Chapter 4, we use standard shared memory synchronization primitives,

as provided by the P4 macro library3 [12]. Therefore, the performance reported in the

\SVM-Par" column is the performance on a hardware cache-coherent DSM (modulo soft-

ware address translation), and is what we compare DSSMP performance against later in

Section 6.3.2.

Finally, the last column in Table 6.5, labeled \Sp2," is the speedup attained on 32

nodes with software address translation (the ratio of the \SVM-Seq" and \SVM-Par"

columns). Except for the Jacobi application, an application known for its excellent

speedup, all our applications exhibit only modest to good speedups. This indicates

that the introduction of SVM overhead, which we expect to parallelize perfectly, does

not increase the computation-to-communication ratio of our applications to the point

that they become embarrassingly parallel. Instead, even with SVM overhead, it is still

challenging to achieve high speedups on our applications.

3The P4 primitives are cheaper than the multigrain primitives because they don't include the opti-
mizations for clustering.

116 CHAPTER 6. EXPERIMENTAL RESULTS

Impact of Software Address Translation Overhead

Inlining code to perform software address translation signi�cantly slows down our appli-

cations. As indicated by the \Ovhd" column in Table 6.5, most of our applications show a

dilation in sequential running time between 50% { 100%. Notice that this added overhead

parallelizes perfectly since the inlined code does not perform communication. Therefore,

by introducing software virtual memory, we necessarily increase the computation-to-

communication ratio of the applications. In other words, software virtual memory makes

it easier to achieve good parallel performance.

How do we assess the impact of software address translation? One way to view

software address translation is that it takes a shared memory application and creates

a \new" shared memory application (call it application') with di�erent communication

and computation requirements. Therefore, the way to interpret the results presented in

the rest of this chapter is to recognize that they represent exactly the performance one

would expect on a DSSMP for application'. Our goal in this discussion is to show that

application' for all the applications we study do not become embarrassingly parallel4 due

to the increase in the computation-to-communication ratio caused by software address

translation code.

Towards this goal, we make two observations. First, except for Jacobi, all of the ap-

plications in our suite are not embarrassingly parallel even after SVM instrumentation.

As the column labeled \Sp2" in Table 6.5 indicates, Matmul, Gauss, and Water achieve

good speedups, but not linear speedups, and FFT, Barnes-Hut, TSP, and Unstructured

all have speedups that are close to or below 16, which represents only a 50% e�ciency

since the speedups are measured on a 32-node machine. We conclude that our applica-

tion suite presents challenging communication requirements despite the increase in the

computation-to-communication ratio due to SVM instrumentation.

Second, and somewhat surprisingly, we observe that SVM instrumentation does not

signi�cantly increase parallel performance for most of the applications. By compar-

ing the columns \Sp2" and \Sp1" of Table 6.5, we can observe the impact on speedup

due to SVM instrumentation. We �nd that for Jacobi, Water, and Barnes-Hut, SVM

instrumentation improves speedup by only 6% or less. For Matmul, FFT, and Unstruc-

tured, speedup actually gets worse after SVM instrumentation. While we do not have a

de�nitive explanation for this, we speculate that the bene�ts of increased computation-

to-communication ratio are compensated by a decrease in cache performance due to code

expansion caused by the inline SVM code. The only applications that exhibit signi�cant

improvements in speedup due to SVM instrumentation are Gauss and TSP. Gauss ex-

periences a 46% increase in speedup, and TSP experiences a 120% increase in speedup.

We do not expect this to signi�cantly impact our results. As we will see in Section 6.3.2,

Gauss is compute bound and achieves good performance on DSSMPs. The version of

Gauss without SVM instrumentation, which would have 46% less parallelizable overhead,

would still be compute bound; therefore, we expect the same conclusion for Gauss. As

4By embarrassingly parallel application, we mean an application that achieves close to linear speedup.

6.3. APPLICATIONS 117

Section 6.3.2 will also show, TSP is extremely �ne-grained even with SVM instrumenta-

tion. Our conclusion for TSP is that it does not run well on DSSMPs. The version of

TSP without SVM instrumentation would be even �ner-grained and thus exhibit even

worse performance on DSSMPs. This does not change our conclusion for TSP.

6.3.2 Application Results

This section presents detailed experimental results of the applications listed in Table 6.4,

excluding the kernels (Water-Kernel, Water-Kernel-NS, and Unstructured-Kernel). These

kernels are variants on the original Water and Unstructured applications and will be

studied in Section 6.4 and Chapter 7. All measurements were performed on our MGS

prototype, running on a 32-node 20 MHz Alewife machine. The inter-SSMP communica-

tion latency used is 1000 cycles (50 �sec), and the page size is 1K-bytes. Section 6.5 later

examines the impact of varying communication latency and page size on performance.

The results for the individual applications appear in Figures 6.3 through 6.12. We

present the data using the performance framework discussed in Section 6.2. For each ap-

plication, we observe the application's execution time (y-axis) on a 32-processor DSSMP

as SSMP node size is varied from 1 to 32 in powers of 2 (x-axis). It is important to

emphasize that all data points reported in Figures 6.3 through 6.12 were measured on

a 32-processor machine; the only parameter being varied is SSMP node size, and thus,

also the number of SSMP nodes comprising the DSSMP.

Each execution time data point in Figures 6.3 through 6.12 have been broken down

into four components: time spent in user code, time spent in synchronization (for both

locks and barriers), and time spent in the MGS runtime layer. The four components are

labeled \User," \Lock," \Barrier," and \MGS," respectively. The user component not

only counts useful cycles in user code, but it also counts cycles spent in software address

translation and Alewife cache-coherent shared memory stall time. The synchronization

components include both the overhead of executing synchronization code and waiting on

synchronization conditions.

The 32-processor SSMP node size data points (the rightmost bars in Figures 6.3

through 6.12) are exactly the runtimes reported in the \SVM-Par" column of Table 6.5.

For these runs, the system initializes all mappings needed by the application to write

mode before the application begins execution, so there are no cold misses associated

with the mapping state. Also, a 32-processor SSMP node size means that the DSSMP

consists of a single SSMP, so there is no inter-SSMP coherence tra�c. Therefore, the

MGS component for these runs is zero. Furthermore, instead of using the multigrain

synchronization primitives, these executions use the synchronization primitives provided

by the P4 macro library. The cost of synchronization in the P4 library has been folded

into the user component because we did not instrument cycle counting in the P4 library.

The 32-processor data points represent the performance of the applications on a tightly-

coupled MPP that has hardware-supported cache-coherent shared memory.

Table 6.6 summarizes the experimental results that will be discussed in detail in the

rest of this section. The �rst two columns of data report the Multigrain Potential and

118 CHAPTER 6. EXPERIMENTAL RESULTS

Application MP BP S1 S2 S4 S8 S16

Easy Category

Jacobi 3 -2 29.7 30.5 30.5 30.7 30.7

Matmul -6 1 28.2 26.7 26.8 26.8 26.5

FFT 10 1 10.7 11.2 11.5 11.7 11.8

Gauss -7 3 24.2 26.5 27.3 26.0 22.5

Challenging Category

Water 82 159 5.7 6.4 8.1 10.0 10.4

Barnes-Hut 61 193 2.8 3.0 3.3 3.6 4.6

Pathologic Category

TSP 80 1014 0.9 1.0 1.2 1.5 1.6

Unstructured 88 641 1.0 1.2 1.5 1.6 1.9

Table 6.6: Summary of application performance on DSSMPs. The \MP" column reports

Multigrain Potential, and the \BP" column reports Breakup Penalty6. The last �ve

columns report speedups with SSMP nodes of size 1{16, in powers of two, on a machine

with 32 total processors.

the Breakup Penalty as de�ned in our performance framework; these data also appear

alongside the graphs presented in Figures 6.3 through 6.12. In addition, the last �ve

columns of data report speedups obtained on DSSMPs with SSMP nodes of size 1 through

16, in powers of two. These speedup results will be referenced when the experimental

results are discussed.

Based on the performance of the applications re
ected in the results, we identify three

categories: easy, challenging, and pathologic. We present detailed explanations of the

results below organized using this taxonomy.

Easy Category

Jacobi, Matmul, FFT, and Gauss, presented in Figures 6.3, 6.4, 6.5, and 6.6, respectively,

belong to the \easy" category. These applications have in common a small multigrain

potential and a small breakup penalty. The small multigrain potential indicates that very

little bene�t is experienced as SSMP node size is increased and more hardware cache-

coherent shared memory is provided in each SSMP node. The small breakup penalty

indicates that DSSMPs closely match the performance of MPPs on these applications.

The combination of a small multigrain potential and a small breakup penalty implies

that the performance pro�le for applications in the easy category is
at.

A
at performance pro�le signi�es that the application is insensitive to the partic-

ular implementation of the shared memory layer provided underneath the application.

6The negative multigrain potentials are due to the preference that LimitLESS gives to smaller SSMP
node sizes, and the negative breakup penalty is due to the bene�ts of bulk data movement provided by
page-level replication. These anomalous e�ects are described in the detailed discussion of the application
results.

6.3. APPLICATIONS 119

Whether shared memory is supported in software at page granularity or in hardware at

cache-line granularity, the application will perform well regardless. Therefore, for these

applications, DSSMPs deliver good performance, but they do not provide any perfor-

mance bene�t over traditional software DSM or hardware MPP architectures.

To understand why applications in the easy category are insensitive to shared memory

implementation requires a closer look at their sharing patterns. The four applications in

this category exhibit coarse-grained sharing: each processor performs large amounts of

independent work before communicating with other processors. For instance, Jacobi is

an iterative algorithm in which new values are produced each iteration based on com-

putation over a dense 2-D matrix. However, the values produced by a processor in an

iteration are not needed by other processors until the next iteration. Moreover, only a

fraction of the produced values (which grows as the square-root of the number of pro-

duced values) need to be communicated, so the communication volume is small compared

with the amount of computation. In Matmul, the entire computation proceeds without

any communication between processors. Each processor reads speci�c rows and columns

of two input matrices, so there is some movement of data. But the values produced

by each processor are never consumed by other processors. FFT is similar to Jacobi in

that the algorithm proceeds iteratively with values communicated only across iterations.

There is, however, more communication relative to the amount of computation in FFT

(communication volume is linear with the amount of computation). Also, there is signif-

icant load imbalance in our implementation since the amount of work performed by each

processor is not equal, as evidenced by a large barrier overhead in Figure 6.5. Finally, in

Gauss, processors are responsible for computing values for a set of rows in a large matrix,

but the values are communicated only at the end of a pass over the entire matrix and only

by one processor, the processor owning the current pivot row. An array of locks is used

to signal when a new pivot row has been completed, so there is noticeable lock overhead

in Figure 6.6. In general, coarse-grained sharing exhibited by the four applications in the

easy category leads to a very high computation-to-communication ratio as evidenced by

the lack of MGS overhead in Figures 6.3 through 6.6.

Coarse-grained sharing can be supported e�ciently by any shared memory implemen-

tation because the communication happens infrequently, so the cost of each communi-

cation has little impact on end performance. Therefore, supporting communication in

either hardware or software is equally adequate. In fact, it is possible for software mech-

anisms to outperform hardware mechanisms. This is the case for Jacobi, in which the

breakup penalty is negative (i.e. the DSSMP is outperforming the MPP). The data com-

municated in Jacobi is densely packed. The MGS software shared memory layer transfers

such dense data e�ciently by using Alewife's DMA facility to move data in bulk mes-

sages. Once the data has been transferred, the processor needing the data can access

it by su�ering cache misses to local memory. In contrast, the all-hardware system uses

cache-coherent shared memory for communication. Consequently, bulk data is moved by

su�ering a remote cache miss for every cache line in the bulk region. In general, negative

breakup penalties are rare.

The negative multigrain potential exhibited by Gauss in Figure 6.6 is another anoma-

120 CHAPTER 6. EXPERIMENTAL RESULTS

||0

|8

|16

|24

|32

|40

|48

|56

|64

|

| 0

| 8

| 16

| 24

| 32

| 40

| 48

| 56

| 64

 Cluster Size

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)
User
Lock
Barrier
MGS

1 2 4 8 16 32

Multigrain Potential: 3%
Breakup Penalty: -2%

Figure 6.3: Results for Jacobi.

||0

|20

|40

|60

|80

|100

|120 |

| 0

| 20

| 40

| 60

| 80

| 100

| 120

 Cluster Size

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

User
Lock
Barrier
MGS

1 2 4 8 16 32

Multigrain Potential: -6%
Breakup Penalty: 1%

Figure 6.4: Results for Matrix Multiply.

6.3. APPLICATIONS 121

||0

|7

|14

|21

|28

|35

|42

|49

|

| 0

| 7

| 14

| 21

| 28

| 35

| 42

| 49

 Cluster Size

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

User
Lock
Barrier
MGS

1 2 4 8 16 32

Multigrain Potential: 10%
Breakup Penalty: 1%

Figure 6.5: Results for FFT.

||0

|30

|60

|90

|120

|150

|180

|210

|240 |

| 0

| 30

| 60

| 90

| 120

| 150

| 180

| 210

| 240

 Cluster Size

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

User
Lock
Barrier
MGS

1 2 4 8 16 32

Multigrain Potential: -7%
Breakup Penalty: 3%

Figure 6.6: Results for Gauss.

122 CHAPTER 6. EXPERIMENTAL RESULTS

lous condition. This is due to LimitLESS overhead as is discussed in Section 5.2.1 of

Chapter 5. In Gauss, each pivot row is read by all processors in the system. Since Alewife

only supports 5 sharers in its hardware directory, LimitLESS overhead is incurred when

SSMP node size is increased from 4 processors to 8 processors. Because the cost of Lim-

itLESS is quite high, as documented in Table 6.1, DSSMPs with smaller SSMP nodes

outperform those with larger SSMP nodes. This e�ect would not appear in an SSMP

that supports cache coherence fully in hardware (i.e. without software extension as is

provided in Alewife).

Challenging Category

Water and Barnes-Hut, presented in Figures 6.7 and 6.8, respectively, belong to the

\challenging" category. In this category, applications exhibit a performance pro�le that

is far from
at, as was the case for applications in the easy category. Applications in

the challenging category have both a large multigrain potential and a large breakup

penalty. The large multigrain potential (82% for Water and 76% for Barnes-Hut) is a

positive result for DSSMPs because it means that supplying hardware-supported cache-

coherent shared memory between more processors (i.e. building larger SSMP nodes)

improves performance. This suggests that DSSMPs o�er better scalability than systems

that only provide software support for shared memory. Unfortunately, the large breakup

penalty (159% for Water and 231% for Barnes-Hut) is a negative result because it implies

that there is a signi�cant performance gap between DSSMPs and all-hardware shared

memory systems; therefore, on these applications, MPPs hold a performance advantage

over DSSMPs. To explain these results, we take a close look at the applications below.

As Figure 6.7 shows, the primary obstacle to higher performance in Water is the

MGS component. The Water workload generates a signi�cant amount of software shared

memory tra�c due to poor data locality. The software shared memory tra�c invokes

handlers in the MGS layer that appears as MGS overhead. While the synchronization

overheads are signi�cant as well, they are caused by the same e�ects which occur in the

Barnes-Hut workload; therefore, we will address synchronization components when we

discuss Barnes-Hut, where synchronization overhead is more pronounced.

Poor data locality occurs in the force interaction computation, an O(N2) computation

where Water spends most of its execution time. The pseudo-C code for this computation

appears in Figure 6.9. In this code example, N is the total number of molecules in the

simulation, P is the total number of processors, pid is the processor ID of an individual

processor, mol is the global array of molecule records, and s is the global array of locks,

one for each molecule. The computation consists of a doubly-nested loop that iterates

over pairings of molecules; the combined iteration spaces of the P processors considers all

possible N2 pairings over the N molecules. The loop body performs some computation

based on the molecules indexed by i and j, and then atomically updates each of the two

molecules using the locks in array s. The release operation in each atomic update ensures

that the update is made visible to all other processors before the lock is relinquished.

There is signi�cant temporal and spatial reuse of data in this loop; however, write

6.3. APPLICATIONS 123

||0

|50

|100

|150

|200

|250

|300

|350

|400 |

| 0

| 50

| 100

| 150

| 200

| 250

| 300

| 350

| 400

 Cluster Size

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

User
Lock
Barrier
MGS

1 2 4 8 16 32

Multigrain Potential: 82%
Breakup Penalty: 159%

Figure 6.7: Results for Water.

||0

|40

|80

|120

|160

|200

|240

|280

|320

|360 |

| 0

| 40

| 80

| 120

| 160

| 200

| 240

| 280

| 320

| 360

 Cluster Size

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

User
Lock
Barrier
MGS

1 2 4 8 16 32

Multigrain Potential: 61%
Breakup Penalty: 193%

Figure 6.8: Results for Barnes-Hut.

124 CHAPTER 6. EXPERIMENTAL RESULTS

for (i = (N/P)*pid; i < (N/P)*(pid+1); i++) {

for (j = i+1; j < i + N/2; j++) {

}

compute(mol[i%N], mol[j%N], &ai, &aj);

lock(s[i%N]);

mol[i%N] += ai;

release();

lock(s[j%N]);

mol[j%N] += aj;

release();

unlock(s[j%N]);

unlock(s[i%N]);

}

Figure 6.9: Pseudo-C code for the force interaction computation in Water.

sharing prevents caching from fully capitalizing on such reuse. Write sharing occurs

because there is signi�cant overlap between the iteration spaces of di�erent processors.

While the outer loops on di�erent processors produce indices that are disjoint along the

i dimension, there is signi�cant overlap between an inner loop against another inner loop

and an inner loop against an outer loop on two separate processors.

The MGS overhead in Figure 6.7 is the result of invalidations due to write shar-

ing between SSMPs. Notice that the impact of write sharing decreases as SSMP node

size is increased. Larger SSMP nodes alleviate page-level invalidations by supporting

a larger fraction of the write sharing in cache-coherent shared memory. Fine-grain sup-

port handles write sharing more e�ectively since false sharing is minimized by the smaller

cache-line block size, and lower hardware latencies result in less processor stall time when

write con
icts do occur. However, write sharing between SSMPs is still a problem even

when SSMP node size is large because the memory accesses performed by the loop in

Figure 6.9 are uniformly distributed across the range of memory locations occupied by

the mol array. The global nature of the memory access patterns cause write invalidations

at the page level regardless of the clustering con�guration.

The results for Barnes-Hut appear in Figure 6.8. As the �gure shows, the most

signi�cant source of slowdown in Barnes-Hut is lock overhead. Barrier overhead and

MGS overhead are signi�cant as well, though not as severe.

Barnes-Hut is a discrete-time simulation of N-body motion in 3-dimensional space.

Instead of considering all N2 possible interactions between bodies as is done in the

Water workload, Barnes-Hut performs a signi�cantly smaller number of interactions by

6.3. APPLICATIONS 125

|

0
|

50
|

100
|

150
|

200
|

250
|

300
|

350
|

400

|

 Execution Time (Mcycles)

maketree
hackgrav
Other

Figure 6.10: Breakdown of runtime in Barnes-Hut into major phases of computation.

\maketree" is the parallel tree build phase, \hackgrav" is the force computation phase,

and \Other" is all other computation. The top bar represents a 32-node DSSMP with

an SSMP node size of 4, the bottom bar represents a 32-node Alewife machine.

interacting each body with the summary of a progressively larger number of bodies as

interaction distance increases. A global octree data structure7 enables the computation

by hierarchically partitioning space and summarizing all bodies inside each partition

using center-of-mass information (for a detailed discussion of the Barnes-Hut algorithm,

see [60]).

To provide insight into what part of the Barnes-Hut workload is responsible for the

high locking overhead in Figure 6.8, Figure 6.10 shows a breakdown of execution time

into three components: the maketree routine builds a new octree data structure at each

iteration, the hackgrav routine computes the force interactions by traversing the octree

for each body, and \Other" represents all other work. The top and bottom bars in

Figure 6.10 correspond to the 4-processor and 32-processor SSMP node sizes in Figure 6.8,

respectively. This data clearly shows that the obstacle for DSSMPs is the maketree

routine, which runs over 20 times slower on the DSSMP8.

The poor performance in maketree is due to lock overhead. In maketree, locks enforce

mutual exclusion for the simultaneous updates performed on the octree data structure.

Extremely large lock overheads occur because of an e�ect that we call critical section

dilation. For each locking operation, a processor obtains a lock, writes a value in the

octree structure, and then relinquishes the lock. On a hardware DSM, these operations

complete with very low overhead. However, on a DSSMP, a TLB fault or a page fault

(or both) can be su�ered on the updated location. Moreover, a release operation is

required before the lock can be relinquished to make the updated value visible on all other

7An octree is a tree in which each node has a degree of 8.
8It is interesting to note that the hackgrav routine actually performs better on the DSSMP than on

the all-hardware system. This is due to the ability of the software page cache in DSSMPs to capture the
large working set in hackgrav, which reads large portions of the octree structure. The page cache converts
misses in the hardware cache, which has insu�cient capacity, from remote misses to local misses.

126 CHAPTER 6. EXPERIMENTAL RESULTS

processors. Depending on sharing patterns, the release can initiate software coherence.

These sources of software overhead combine to increase the cost of the locking operation.

More importantly, they dilate the length of the critical section, or the time for which

the lock is held by the processor. This tends to increase contention for lock resources,

and when critical section length becomes large enough, processors can spend a signi�cant

amount of time serialized on locks.

A necessary condition for critical section dilation is poor data locality. If data accessed

within critical sections are not shared across SSMPs, then MGS' Single-Writer mechanism

will eliminate software-related overheads on the data and export hardware performance

to critical section code. Critical section dilation is a problem in maketree because of poor

locality on two data structures: the octree node allocation counter, and the octree nodes

themselves.

Allocation of octree nodes occurs through a centralized counter that points to the

head of a freelist of octree nodes. Processors allocate nodes o� the head of the freelist

by atomically incrementing the allocation counter. Because processors allocate nodes

randomly and because of the high frequency of node allocation operations, the allocation

counter becomes a hotspot. Once a node has been allocated, a processor inserts the node

into the octree by atomically updating a child pointer in an existing octree node. Since

processors tend to build entire subtrees of the octree, good data locality is expected for the

node insertion operations; however, communication between SSMPs occurs nevertheless

due to page-level false sharing. False sharing occurs because octree nodes are randomly

allocated o� a single freelist. Therefore, processors from separate SSMPs often receive

octree nodes that physically reside on the same page. Updates to such distinct but

contiguous nodes by di�erent SSMPs causes page-level coherence.

In addition to lock overhead, Barnes-Hut also exhibits signi�cant barrier and MGS

overhead. The barrier overhead arises from load imbalance due to both algorithmic and

MGS e�ects. Algorithmically, load imbalance occurs in Barnes-Hut because the amount

of work associated with each body highly depends on the distribution of the bodies in

space. Although Barnes-Hut attempts to dynamically load balance work (see [60] for

details), the technique is not perfect thus accounting for some of the barrier overhead.

Load imbalance can also arise due to MGS overhead. Handler occupancy for servicing a

particular shared memory transaction occurs on the processor that is the home for that

page. Therefore, processors that serve as the home for \hot" pages will carry a dispro-

portionate fraction of the software shared memory processing load thus contributing to

load imbalance. Finally, the source of MGS overhead in Barnes-Hut comes mostly from

the write sharing patterns in the maketree routine.

Pathologic Category

TSP and Unstructured, presented in Figures 6.11 and 6.12, respectively, belong to the

\Pathologic" category. Applications in the pathologic category have a similar perfor-

mance pro�le as compared with applications in the challenging category in that they

have both a large multigrain potential and a large breakup penalty. A key di�erence,

6.3. APPLICATIONS 127

||0

|8

|16

|24

|32

|40

|48

|56

|64

|

| 0

| 8

| 16

| 24

| 32

| 40

| 48

| 56

| 64

 Cluster Size

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

User
Lock
Barrier
MGS

1 2 4 8 16 32

Multigrain Potential: 80%
Breakup Penalty: 1014%

Figure 6.11: Results for TSP.

||0

|200

|400

|600

|800

|1000

|1200

|1400 |

| 0

| 200

| 400

| 600

| 800

| 1000

| 1200

| 1400

 Cluster Size

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

User
Lock
Barrier
MGS

1 2 4 8 16 32

Multigrain Potential: 88%
Breakup Penalty: 641%

Figure 6.12: Results for Unstructured.

128 CHAPTER 6. EXPERIMENTAL RESULTS

however, is that the breakup penalty in TSP and Unstructured is so large that the

DSSMPs do not achieve any e�ective speedup on these applications, even as SSMP node

size is increased. Table 6.6 shows the speedups for TSP and Unstructured are all below

2, with TSP exhibiting slowdown in the worse case.

Figure 6.11 shows that TSP su�ers from extremely high lock overhead. The source

of lock overhead in TSP is a centralized work pool data structure that dynamically

distributes work across the machine. Each processor adds partially evaluated tours to

the work pool and removes them when it runs out of work. To minimize the overhead

associated with the work pool, only those partial tours that represent large amounts

of work are added to the pool9. Still, the frequency of operations on the work pool is

very high, and for the architectures that use software in supporting shared memory, the

overhead associated with the work pool is large.

The work pool overhead shows up as lock overhead in Figure 6.11 because of crit-

ical section dilation on several locks used to provide mutually exclusive access to the

work pool structure. The critical section dilation e�ect, which we saw earlier in the

Barnes-Hut workload, signi�cantly increases the cost of each locking operation. This

leads to lock contention, which is particularly severe in TSP because there is only a

single centralized work pool for the entire machine. Notice, however, that despite the

contention on the centralized work pool data structure, the 32-node SSMP (all-hardware

DSM) system manages to achieve decent performance nonetheless. This speaks volumes

about the robustness of the DSM concept in the face of applications with poor locality

characteristics.

The other application in the pathologic category is Unstructured, whose results ap-

pear in Figure 6.12. Unstructured is by far the most di�cult application to achieve high

performance on DSSMPs because of its highly irregular data access patterns. The appli-

cation performs a computation on a static undirected graph which is read from an input

�le. Because of the graph's unstructured nature, runtime preprocessing techniques [55]

are used to schedule computation associated with the graph onto processors. After pre-

processing, much of the execution time is spent in edge loops, or loops that perform

computations associated with the edges in the unstructured graph. Each iteration of

an edge loop reads values from the two graph nodes connected by the edge, computes

a result, and updates the result into the two graph nodes. Locking in the edge loops is

used to provide mutually exclusive access to those graph nodes which are accessed by

multiple processors (i.e. graph nodes with multiple edges assigned to di�erent processors

by the runtime preprocessing phase).

Unstructured is similar to the Water workload. Both are graph problems that perform

computations on the edges of the graph. The key di�erence is in the structure of the

graph. In Water, the graph is regular and includes all N2 possible edges between graph

9The metric used to determine the amount of work represented by a partial tour is the number of
cities already visited. If this number is small, the algorithm decides that the partial tour represents lots
of work since there are many cities left to be visited. This metric is only an approximation since pruning
can signi�cantly reduce the amount of work associated with a partial tour.

6.4. APPLICATION TRANSFORMATIONS 129

nodes. In Unstructured, the graph is highly irregular, and is speci�ed outside of the

application.

The poor performance of Unstructured on DSSMPs is attributable to all three over-

heads reported in Figure 6.12|lock, barrier and MGS. The lock overhead component

arises because the locks in the edge loops su�er from the now familiar critical section

dilation e�ect. Irregularity in the input graph means that graph nodes are updated in a

fairly random fashion as a result of the computation in edge loops. Random access of the

graph nodes leads to poor data locality; therefore, a signi�cant portion of the atomic up-

dates to graph nodes invoke software coherence overhead thus resulting in critical section

dilation. Barrier overhead is due to an imbalance in the schedule of edge computations

inside the edge loops. While the runtime preprocessor tries to minimize load imbalance,

it also tries to maximize data locality which is often a con
icting requirement. Finally,

the MGS overhead component is due to poor data locality, most signi�cantly in the edge

loops that leads to critical section dilation.

6.4 Application Transformations

In this section, we further study the applications in the challenging (Water and Barnes-

Hut) and pathologic (TSP and Unstructured) categories described in Section 6.3. The

intent is to examine the bottlenecks that prevent higher performance in these di�cult

applications, and to investigate transformations that relieve these bottlenecks by lever-

aging �ne-grain cache-coherent shared memory provided within SSMP nodes as often

as possible. Once identi�ed, the transformations are applied to the applications, and

experimental results are presented to quantify the impact of the transformations. For

consistency, the performance framework introduced in Section 6.2 is used to analyze

DSSMP behavior on the transformed applications.

The applications study undertaken in this section has two primary goals. The �rst

goal is to quantify the potential performance achievable on DSSMPs when details of

the underlying implementation of shared memory are exposed to the application level,

particularly SSMP node boundaries that delineate hardware- and software-supported

shared memory. A crucial question related to this goal is whether such favorable condi-

tions can make DSSMPs more competitive with MPPs. The second goal is to evaluate

how plausible the proposed transformations are for programmers or preferably compilers

to implement. We recognize that a transformation that provides good performance is

meaningless if it takes an expert programmer several weeks to implement. We gauge the

plausibility of transformations by looking for similar transformations that are within the

capability of existing state-of-the-art compilers.

Section 6.4.1 discusses the transformations for the four applications, and Section 6.4.2

presents experimental results of the transformations. In Section 6.4.3, we discuss the

plausibility of supporting the transformations in a compiler.

130 CHAPTER 6. EXPERIMENTAL RESULTS

Application Bottleneck Transformation

Water-Kernel Data Locality Tiling

Tile Scheduling

Barnes-Hut Node Allocation Hotspotting Concurrent Allocation

False Sharing on Nodes Distribute Freelist

Other Critical Section Dilation Add Releases

TSP Contention on Work Pool Distribute Work Pool

Unstructured-Kernel Data Locality Runtime Tile Analysis

Runtime Tile Scheduling

Runtime Load Balancing

Table 6.7: Summary of performance bottlenecks and transformations.

6.4.1 Transformation Descriptions

Table 6.7 lists the four applications from the challenging and pathologic categories: Wa-

ter, Barnes-Hut, TSP, and Unstructured. For each application, bottlenecks that prevent

higher performance are speci�ed along with the transformation(s) that relieve the bot-

tlenecks.

In the case of Water and Unstructured, we only study a kernel from the original appli-

cations. These kernels contain the portions of the application that su�er the performance

bottlenecks observed in Section 6.3.2. Water-Kernel executes the force computation loop

presented in Figure 6.9 once. Unstructured-Kernel executes a single edge loop. The

baseline performance of these kernels on Alewife (with software address translation) can

be found in Table 6.5.

The rest of this section discusses the transformations in detail.

Water

We address the data locality problems in the Water workload by �rst applying loop tiling

to the force computation loop in Figure 6.9. In our loop tiling transformation, the global

molecule array is partitioned into tiles, where each tile consists of tile size contiguous

molecules. Then, the original doubly nested loop nest is transformed into four loop nests.

The two outermost loops iterate through all possible (tile size)2 pairings of tiles. Given a

pair of tiles, the two innermost loops compute the (N
tile size

)2 possible pairwise interactions

between two molecules, one from each tile. All processors in an SSMP execute the same

two outermost loop nests; therefore, each SSMP works on a single pair of tiles. The loop

body in the transformed loop nest remains unchanged from Figure 6.9.

Loop tiling improves data locality because all the interactions between a small group of

molecules (i.e. the molecules in two tiles) are computed before moving on to interactions

involving other molecules. To ensure that such improved data locality leads to less inter-

SSMP coherence overhead, it is also necessary to address write sharing con
icts.

Write sharing con
icts are eliminated if each SSMP has exclusive ownership of the two

tiles accessed during an iteration of the two outermost loops. For this to happen, we must

6.4. APPLICATION TRANSFORMATIONS 131

�rst choose the tile size parameter so that the number of tiles, N
tile size

, equals twice the

number of SSMP nodes. This makes it possible for every SSMP node to exclusively own

two tiles. Then, we perform a tile scheduling transformation that orders the iterations of

the two outermost loops in a staggered fashion across di�erent SSMPs. The staggering

pattern ensures that all the tiles are accessed in a con
ict-free manner.

Barnes-Hut

Three transformations are proposed for the Barnes-Hut workload in Table 6.7. The

�rst two transformations address poor data locality that lead to critical section dilation

in the maketree routine. First, we relieve the hotspotting problem associated with the

node allocation counter by removing the centralized counter and allowing concurrent

allocation o� the octree node freelist. In this transformation, there is still a single physical

freelist, but concurrent allocation is made possible by statically allocating freelist entries

to processors in an interleaved fashion. Next, we relieve the false sharing problems on

octree nodes by physically distributing the centralized freelist such that each processor

has its own local freelist. This guarantees that octree nodes contiguous in memory are

allocated to the same processor thus eliminating false sharing between SSMPs.

The last transformation for Barnes-Hut in Table 6.7 relieves critical section dilation

problems in computation outside of the maketree routine. These instances of critical

section dilation are di�erent from the ones that occur in maketree because they are not

a result of poor data locality. Instead, they occur because a large number of pages are

updated right before a critical section is entered. Therefore, when the release operation

associated with the critical section is issued, it initiates coherence on not only the few

pages modi�ed inside the critical section, but also on all the extra pages previously

touched. Our transformation adds a release before entering the critical section so that

the overhead for processing the extra pages is incurred outside of the critical section.

TSP

The contention problems on the work pool data structure in the TSP workload are

addressed by replacing the centralized work pool with a physically distributed work

pool. The distributed work pool places a local work pool structure on each SSMP that

is identical to the original centralized work pool. Processors add and remove partially

evaluated tours to and from their local work pools just as before, except all contention on

any single local work pool occurs only between processors in the same SSMP; therefore,

software shared memory is avoided entirely for local work pools.

A centralized work pool structure is still used to distribute work globally; however,

contention on this data structure is low because most of the work pool operations are

o�oaded to the local work pools. Only partially evaluated tours representing very large

amounts of work are added to the global work pool, and work is removed from the global

work pool only when work from a local work pool has been completely exhausted.

132 CHAPTER 6. EXPERIMENTAL RESULTS

Unstructured

The tiling transformation for Unstructured groups graph nodes into tiles of size tile size.

As in Water, tile size is chosen such that the number of tiles, N
tile size

, is equal to twice

the number of SSMP nodes. At runtime on each SSMP, the graph edges assigned to

processors on the same SSMP are sorted into a list of bins where each bin represents a

unique pairing of tiles. In a fully connected graph such as the one in the Water workload,

the size of each bin is (tile size)2. In Unstructured, each bin contains a di�erent number

of edges10 depending on the structure of the graph. The bins de�ned by our runtime

tile analysis are used to drive the order in which edges are computed in the edge loops.

Speci�cally, processors compute all the edges in a bin before computing edges in the next

bin. Furthermore, barriers are used to sequence processors through their list of bins in

lockstep fashion.

Next, runtime analysis is used to schedule tile interactions by computing an order

for the lists of bins on each SSMP. The ordering must ensure that tile con
icts do not

occur between bins at the same list position across all SSMPs. A greedy algorithm for

scheduling bins is used which considers the largest unscheduled bin from each list �rst. A

bin is scheduled if the two tiles it interacts is not needed by any currently scheduled bin

at the same list position. If a bin cannot be scheduled, then the next largest unscheduled

bin is considered, and so on. If no bin can be scheduled after considering all remaining

bins, a bubble is placed in the schedule.

Finally, an attempt is made to load balance the results of the runtime tile schedule by

spreading the edges in each bin evenly across all the processors in a single SSMP. While

near-perfect load balance between the processors within an SSMP can be achieved, load

imbalance across SSMPs due to varying bin sizes is not addressed. Our primary goal

between SSMPs is to maximize data locality, if necessary at the expense of load balance.

6.4.2 Transformation Results

This section presents the performance of the four applications, Water-Kernel, Barnes-

Hut, TSP, and Unstructured, after the transformations described in Section 6.4.1 were

applied. The goal is to quantify the impact of each transformation on application perfor-

mance. Whenever multiple transformations are involved on a single application, we apply

the transformations one at a time to assess the importance of each individual transfor-

mation. As in Section 6.3.2, inter-SSMP communication latency is set at 1000 cycles (50

�sec), and page size is set at 1K-bytes. Section 6.5 later examines the impact of varying

communication latency and page size on performance.

Overall Results

The overall results of the application transformations are summarized in Table 6.8. Ta-

ble 6.8 presents the data in a fashion similar to Table 6.6, giving the multigrain potential,

10In fact, many of the bins are empty.

6.4. APPLICATION TRANSFORMATIONS 133

Transformation MP BP SVM S1 S2 S4 S8 S16

Water-Kernel

Original 125 120 58.47 5.3 6.3 7.4 9.9 11.9

Tiling & Tile Scheduling 58 24 56.95 13.7 16.7 19.6 21.3 21.6

Barnes-Hut

Original 61 193 72.77 2.8 3.0 3.3 3.6 4.6

Concurrent Allocation 148 48 65.47 4.1 4.8 5.8 7.1 10.1

Distribute Freelist 83 50 60.40 5.9 6.8 7.6 8.1 10.8

Add Releases 81 35 60.40 6.6 7.9 8.9 9.5 11.9

TSP

Original 80 1014 3.04 0.9 1.0 1.2 1.5 1.6

Distribute Work Pool 282 66 6.80 2.8 5.2 9.1 11.7 10.6

Unstructured-Kernel

Original 100 537 13.44 1.2 1.5 1.9 2.0 2.4

R.T. Tile Analysis & Scheduling 402 25 28.30 1.1 2.4 2.5 3.9 5.8

R.T. Load Balancing 812 38 13.30 1.2 3.7 4.8 7.2 11.1

Table 6.8: Summary of application transformations performance on DSSMPs. The \MP"

column reports Multigrain Potential, the \BP" column reports Breakup Penalty, and

the \SVM" column reports running time on a 32-processor Alewife machine with SVM

overhead in millions of cycles. The last �ve columns report speedups on SSMP nodes of

size 1{16, in powers of two.

breakup penalty, and speedups achieved on di�erent SSMP node sizes. In addition, the

\SVM-Par" column reports the parallel running time on a 32-processor Alewife machine

with software address translation but without other MGS-related overhead, similar to

Table 6.5. The SVM-Par column shows the impact of each transformation on an all-

hardware DSM.

For each application in Table 6.8, the row labeled \Original" presents the performance

results before the transformations are applied. For Barnes-Hut and TSP, these results are

identical to the ones shown in Table 6.6. For Water-Kernel and Unstructured-Kernel, the

\Original" numbers are di�erent since they involve the kernel versions of the applications.

Each subsequent row following \Original" shows the incremental e�ect of applying one of

the transformations from Table 6.7. We note that all speedups are computed by using the

numbers under the \SVM-Seq" column in Table 6.5; therefore, the speedups represent

speedup over the original sequential application.

The overall results presented in Table 6.8 provide two positive conclusions. First,

the application transformations are very e�ective in reducing the breakup penalty, which

is the key feature that makes these applications di�cult. After the transformations

are applied, Water-Kernel, Barnes-Hut and Unstructured-Kernel have breakup penalties

below 40%; TSP has a slightly higher breakup penalty at 66%. The reduction in breakup

penalties allow the speedups observed on DSSMPs to approach the speedups observed

on Alewife, as reported for these applications in Table 6.5. We conclude that properly

134 CHAPTER 6. EXPERIMENTAL RESULTS

||0

|40

|80

|120

|160

|200

|240

|280

|320

|

| 0

| 40

| 80

| 120

| 160

| 200

| 240

| 280

| 320

 Cluster Size

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)
User
Lock
Barrier
MGS

1 2 4 8 16 32

Multigrain Potential: 125%, 58%
Breakup Penalty: 120%, 24%

Figure 6.13: Transformation results for Water.

structured applications can achieve comparable absolute performance on DSSMPs as

compared with all-hardware shared memory systems.

Although the breakup penalties have been reduced, Table 6.8 also shows that the

multigrain potentials are still high, even after the transformations have been applied. In

fact, in all the applications except for Water, the multigrain potential increases, and in

Water, it is still rather signi�cant at 58%. We conclude that even for optimized pro-

grams, having some �ne-grain hardware-supported shared memory within SSMP nodes

is bene�cial. Our data show that transformations can leverage this clustered hardware

support to achieve higher performance than on an all-software DSM.

Detailed Results

Figures 6.13 through 6.16 present detailed results for the application transformations

using our performance framework. The presentation format is identical to the one used

in Section 6.3.2, except that we plot the results of the original application with the

transformed versions of the application, side by side.

Figure 6.13 shows the detailed results for the Water-Kernel workload, before (left

set of bars) and after (right set of bars) the tiling and tile scheduling transformations

are performed. The e�ectiveness of these transformations to improve data locality is

demonstrated by the reduction in the MGS overhead component. The transformations

are more e�ective on larger SSMP nodes, accounting for the multigrain potential, because

6.4. APPLICATION TRANSFORMATIONS 135

||0

|50

|100

|150

|200

|250

|300

|350

|

| 0

| 50

| 100

| 150

| 200

| 250

| 300

| 350

 Cluster Size

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)
User
Lock
Barrier
MGS

1 2 4 8 16 32

Multigrain Potential: 61%, 148%, 83%, 81%
Breakup Penalty: 193%, 48%, 50%, 35%

Figure 6.14: Transformation results for Barnes-Hut.

tile size grows with SSMP node size. Larger SSMP nodes, and thus larger tiles, mean

that more computation within SSMP nodes is possible before inter-SSMP communication

must occur to communicate tiles. Such an increase in computation-to-communication

ratio gives a performance advantage to larger SSMP nodes.

Figure 6.14 shows the results for transformations on Barnes-Hut. The four bars at

each SSMP node size report the performance observed on the original application and

the three transformations. It is interesting to note the relative e�cacy of the three

transformations. The �rst transformation to remove contention on the centralized oc-

tree node allocation counter (2nd set of bars) signi�cantly improves performance. The

second transformation to eliminate false sharing on octree nodes (3rd set of bars) also

signi�cantly improves performance, though its e�ects are most pronounced at smaller

SSMP node sizes. Finally, the transformation for critical section dilation outside of the

maketree routine (rightmost set of bars) produces the least gain in performance.

TSP, shown in Figure 6.15, displays the greatest gains in performance as a result of

its transformations, largely because it was the application with the worst performance

to begin with. Figure 6.15 clearly shows that the enormous overheads associated with

the centralized work pool can be eliminated if a more scalable data structure is used

instead. There is some unexpected behavior in Figure 6.15 at SSMP node sizes 16

and 32|performance decreases with increasing SSMP node size, and the transformation

actually worsens performance on an all-hardware DSM. This anomaly is an artifact of

the distributed work pool implementation. When there is only a single SSMP node, the

136 CHAPTER 6. EXPERIMENTAL RESULTS

||0

|7

|14

|21

|28

|35

|42

|49

|56

|63 |

| 0

| 7

| 14

| 21

| 28

| 35

| 42

| 49

| 56

| 63

 Cluster Size

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)
User
Lock
Barrier
MGS

1 2 4 8 16 32

Multigrain Potential: 80%, 282%
Breakup Penalty: 1014%, 66%

Figure 6.15: Transformation results for TSP.

global work pool serves no purpose (since it is meant to distribute work between SSMP

nodes). However, it arti�cially decreases parallelism because work is not removed o� the

global work pool until all work from the local work pool has been consumed.

Finally, Figure 6.16 shows transformation results for the Unstructured-Kernel work-

load. Three bars at each SSMP node size show the performance of the original application

and the two transformations. The �rst transformation (2nd set of bars) improves data

locality by performing a runtime tiling transformation. Performance improves for most

of the cluster con�gurations. However, the improvement of data locality in this transfor-

mation comes at the expense of load imbalance. Load imbalance becomes more severe

at smaller SSMP node sizes because the smaller tiles used for smaller SSMP nodes lead

to a greater variability in the number of interactions between two tiles. Therefore, the

performance at an SSMP node size of one actually gets worse as a result of the trans-

formation. Another consequence of load imbalance is performance degrades signi�cantly

for the all-hardware case.

The second transformation (3rd set of bars) partially addresses the load imbalance

problem created by the tiling transformation. In particular, good performance is restored

to the all-hardware case, and signi�cantly better performance is observed on all SSMP

node sizes except for the SSMP node size 1. Our runtime load balancing transformation

only attempts to load balance between processors in the same SSMP, since we didn't

want to sacri�ce data locality between SSMPs. When there is only a single processor per

SSMP node, the load balancing transformation is useless.

6.4. APPLICATION TRANSFORMATIONS 137

||0

|30

|60

|90

|120

|150

|180

|

| 0

| 30

| 60

| 90

| 120

| 150

| 180

 Cluster Size

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

User
Lock
Barrier
MGS

1 2 4 8 16 32

Multigrain Potential: 100%, 402%, 812%
Breakup Penalty: 537%, 25%, 38%

Figure 6.16: Transformation results for Unstructured.

6.4.3 Discussion

Section 6.4.2 reports impressive performance gains for the application transformations

described in Section 6.4.1. In this Section, we discuss the sophistication of these trans-

formations, and consider the feasibility for compilers or programmers targeting DSSMPs

to implement them.

In the Water workload, we implemented a loop tiling and tile scheduling transforma-

tion. Similar transformations have been proposed in the compiler literature. In partic-

ular, loop tiling has been studied in [69] as a technique for improving data locality on

parallel codes. Other work [4, 70] has looked at loop tiling as well, which is sometimes

referred to as \strip-mine and interchange" and \unroll and jam" transformations. The

technique is mature enough that many parallelizing compilers already perform loop tiling

automatically. We believe the tiling transformations performed for Water in this thesis

can be automated using similar techniques already published.

The Barnes-Hut workload received three transformations. The �rst transformation

addresses the hotspotting problem on the centralized node allocation counter. To our

knowledge, there is no automatic technique for addressing such hotspotting problems in

existing compilers. However, it is arguable that such an unscalable implementation for

a data structure that is frequently accessed constitutes poor programming practice. In

fact, the authors of the original code for Barnes-Hut �xed the problem in a fashion almost

identical to our transformation in a re-release of their application suite [71]. Furthermore,

138 CHAPTER 6. EXPERIMENTAL RESULTS

the transformation we apply is trivial, and can be easily implemented once the problem

is identi�ed. We anticipate that such contention problems on shared memory objects can

be addressed by the programmer aided by performance monitoring tools.

The second transformation for Barnes-Hut addresses the false sharing problems on

the octree nodes. False sharing on shared memory systems has been studied quite exten-

sively. Most notably, the work in [33] proposes analysis techniques for a compiler that

automatically detects and eliminates several types of false sharing access patterns. The

transformation we implement for Barnes-Hut is very close to a transformation that is

handled by their analysis, known as \group and transpose."

The last transformation for Barnes-Hut deals with critical section dilation by adding

extra releases before a critical section is entered. No existing compilers address this kind

of transformation. One possible approach for this transformation is to conservatively

apply it everywhere. The only possible negative side e�ect of such a conservative approach

is the added overhead of the release operation in those cases where the transformation

is not necessary. However, the overhead is fairly small since the overhead of maintaining

coherence is su�ered regardless of whether the extra release is inserted or not. The only

added overhead is an extra kernel crossing into the MGS routine that handles releases.

In the case of Barnes-Hut, this transformation may be omitted since it did not make a

signi�cant impact on performance.

Our experience with TSP is similar to the hotspotting problem in Barnes-Hut. Once

again, an unscalable implementation of a frequently accessed data structure is the prob-

lem. While it is unlikely that the transformation we implemented could ever be performed

by a compiler, we believe this is another example of poor programming practice that can

be addressed by the programmer given proper feedback from performance tools.

Finally, we implemented runtime tile analysis, runtime tiling, and runtime load bal-

ancing for the Unstructured-Kernel workload. These transformations are highly sophis-

ticated and require deep understanding of the application. Even with signi�cant knowl-

edge of Unstructured, it took the author of this thesis several weeks to diagnose the

performance bottleneck and implement the transformation to relieve the bottleneck. For

Unstructured, high performance on DSSMPs can only be attained by signi�cant pro-

gramming e�ort.

6.5 Sensitivity Study

Sections 6.3 and 6.4 report experimental experience with applications on our prototype

of the MGS architecture assuming a �xed inter-SSMP communication latency and page

size. In this section, we examine the sensitivity of MGS performance when these sys-

tem parameters are varied. Section 6.5.1 discusses the impact of varying inter-SSMP

communication latency, and Section 6.5.2 discusses the impact of varying page size.

6.5. SENSITIVITY STUDY 139

6.5.1 Inter-SSMP Latency

The measurements obtained in Sections 6.3 and 6.4 assumed a �xed inter-SSMP com-

munication latency of approximately 1000 cycles, which on a 20MHz Alewife machine

translates to 50�sec. In this section, we investigate the sensitivity of application per-

formance when inter-SSMP communication latency (one-way) is varied between 0 and

20,000 Alewife cycles, or between 0 �sec and 1 msec. Our study considers the Jacobi

Water, and Water-Kernel (with tiling) applications. For all our experiments, we use the

same workload parameters reported in Table 6.4.

Figure 6.17 shows the impact of varying inter-SSMP communication latency for the

Jacobi application. In Figure 6.17, execution time (in millions of cycles) is plotted against

inter-SSMP communication latency (in thousands of cycles) for three di�erent SSMP

node sizes{1, 4, and 16 processors. The range of inter-SSMP latencies considered, 0

through 20,000 cycles, represents the additional latency on top of the baseline latency

using Alewife communications interfaces. Note that the added latency we plot for each

point along the X-axis is approximate because we use the average latency reported by

MGS across all inter-SSMP messages sent during the lifetime of the application. Slight

variations can occur across individual messages due to system e�ects11. The sensitivity

of application performance to communication latency can be measured by observing the

slope of the curves in Figure 6.17.

We see from Figure 6.17 that Jacobi is fairly insensitive to variations in inter-SSMP

communication latency. The slope of the curves are very small indicating very slight

impact on application runtime. The execution time changes by only 7% for both the 4

and 16-processor SSMP node sizes, and by 14% for the 1-processor SSMP node size across

the entire range of 1 msec of latency. Jacobi performs very little communication relative

to the amount of computation in the application; therefore, changes in the communication

latency has very little impact on overall application performance.

The sensitivity to communication latency is much higher in the Water application

since Water communicates much more frequently than Jacobi. Furthermore, the sensi-

tivity depends drastically on the SSMP node size; DSSMPs built with smaller SSMP

nodes are much more sensitive than DSSMPs built with larger SSMP nodes due to the

reduction in inter-SSMP communication that occurs when SSMP node size is increased.

While this e�ect can be observed on Jacobi, it is much more pronounced for Water be-

cause the larger communication volume in Water means there is a greater potential for

communication reduction through clustering. Figure 6.18 shows that execution time on

Water increases by 294%, 202%, and 95% across the 1 msec range of latency for SSMP

node sizes of 1, 4, and 16 processors, respectively. Through linear interpolation, we can

approximate the communication latency required to maintain a certain level of perfor-

mance at each SSMP node size. For the performance impact to be within 10% of the

11For instance, the timer facility used to simulate delayed messages (see Section 5.3.2) cannot generate
an interrupt if interrupts are o� the moment it expires. In this case, the interrupt will be deferred until
interrupts are turned back on. Such system e�ects can increase the variance in the latency observed
across multiple delayed messages.

140 CHAPTER 6. EXPERIMENTAL RESULTS

� C = 1
� C = 4

 C = 16

|

0
|

2
|

4
|

6
|

8
|

10
|

12
|

14
|

16
|

18
|

20

|0

|7

|14

|21

|28

|35

|42

|49

|56

|63

 Latency (Kcycles)

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

���
� �

� �

� � � �

��� � � � �
� � � �

Figure 6.17: Latency sensitivity results for Jacobi.

� C = 1
� C = 4

 C = 16

|

0
|

2
|

4
|

6
|

8
|

10
|

12
|

14
|

16
|

18
|

20

|0

|200

|400

|600

|800

|1000

 Latency (Kcycles)

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

�

�
�

�

�

�

�

�

�
�

�

�
��

�

�
�

�

� �

� �

Figure 6.18: Latency sensitivity results for Water.

6.5. SENSITIVITY STUDY 141

� C = 1
� C = 4

 C = 16

|

0
|

2
|

4
|

6
|

8
|

10
|

12
|

14
|

16
|

18
|

20

|0

|30

|60

|90

|120

|150

|180

|210

|240

 Latency (Kcycles)

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

�

�
�

�

�

�

�

�

�
�

�

�
��

�
�

�

�
�

� �
�

Figure 6.19: Latency sensitivity results for Water-Kernel with tiling.

performance experienced using Alewife communications interfaces, the inter-SSMP com-

munication latency must be no greater than 34.8, 50.8, and 108.8 �sec (695, 1015, and

2175 cycles) for SSMP node sizes of 1, 4, and 16 processors, respectively. While these

are aggressive numbers, they are achievable using existing communications interfaces.

As we saw in Section 6.4, locality-enhancing transformations can signi�cantly increase

DSSMP performance. Since these transformations reduce the use of software page-based

shared memory, the transformed applications should be less sensitive to inter-SSMP

communication latency as well. Figure 6.19 illustrates the sensitivity of the Water-

Kernel code to communication latency after tiling has been applied, as described in

Section 6.4.1. Execution time for Water-Kernel with tiling changes by 157%, 79%, and

37% across the 1 msec range of latency for SSMP node sizes of 1, 4, and 16 processors,

respectively. As expected, the sensitivity to communication latency in Water-Kernel with

tiling is less than what was observed for the original Water application in Figure 6.18.

However, sensitivity is still signi�cant, especially for small SSMP node sizes in which the

transformation is less able to reduce inter-SSMP communication.

6.5.2 Page Size

The measurements obtained in Sections 6.3 and 6.4 assumed a �xed page size of 1K-

bytes. In this section, we examine the e�ect of varying page size on MGS performance.

These experiments are made possible by the fact that MGS supports address translation

142 CHAPTER 6. EXPERIMENTAL RESULTS

System Cache Line Page Ratio

MGS 16 1K 64

Ultra SPARC (I & II) 64 8K, 64K, 512K or 4M 128{64K

MIPs R10000 64 or 128 4K{16M in powers of 4 32{256K

Alpha 21164 32 or 64 8K 128{256

Table 6.9: Relative grain on MGS and other systems.

in software. We begin by discussing the issues involved with selecting a page size, and

then present results for varying page size on the Water-Kernel code.

Selecting a Page Size

Our goal for the detailed results in Sections 6.3 and 6.4 was to make them as repre-

sentative as possible of DSSMP performance regardless of the speci�c SSMP hardware

platform used. The choice of the page size is an important factor in meeting this goal

since DSSMP performance, in general, changes depending on the speci�c page size se-

lected, as the results later in this section will show. 1K-bytes, the page size used for the

detailed results presented earlier in this chapter, is a fairly small page size, particularly

for modern machines. However, our selection of page size was not intended to match the

absolute page sizes of modern machines; instead, we were concerned with matching the

ratio of page size to cache-line size. This ratio is the number of intra-SSMP coherence

units delivered for each inter-SSMP coherence unit. To a �rst order approximation, this

ratio determines the number of page faults relative to the number of cache misses. Be-

cause Sparcle represents a processor that is 2 to 3 generations removed from the present,

it has a small cache-line size compared to modern processors. To maintain a reasonable

page size to cache-line size ratio, we selected a smaller page size.

Table 6.9 compares the cache-line and page sizes in our MGS prototype with those

found in systems based on the Ultra SPARC, MIPS R10000, and Alpha 21164 proces-

sors, three modern processors. The table shows the cache-line and page sizes on all the

systems. The cache-line sizes are those found in the second-level cache (except for MGS,

since Sparcle only has one level of caching) which is the coherence unit that would be used

between processors in a cache-coherent multiprocessor. The MIPs and Alpha processors

support multiple second-level cache-line sizes, and the SPARC and MIPs processors sup-

port multiple page sizes, as indicated in the table. The last column in Table 6.9, labeled

\Ratio," indicates the number of cache-lines in each page. In those instances where

multiple cache-line and page sizes are supported, a range of ratios is given showing the

minimum and maximum ratios.

As we will see later in this section, selecting the page size involves making a tradeo�

between more severe false sharing e�ects at large page sizes, and amortization of soft-

ware overhead over less data at small page sizes. In general, the false sharing e�ects are

more severe in those applications that are susceptible to false sharing than the software

overhead amortization e�ects, so it is desirable to have a smaller page size. Therefore,

6.5. SENSITIVITY STUDY 143

DSSMPs built on the platforms listed in Table 6.9 would use the smallest page sizes sup-

ported by each processor architecture, resulting in the minimum ratio values. Comparing

all the minimum ratio values in Table 6.9, we see that the ratio between page size and

cache-line size in MGS is within the range of what's possible on the MIPs platform, and

only slightly smaller than what's possible on the SPARC and Alpha platforms.

Page Size Sensitivity Results

We examine the impact of selecting three di�erent page sizes, 1K-bytes, 2K-bytes, and

4K-bytes, on MGS performance using the Water-Kernel code, both with and without

tiling transformations. We use the workload parameters for Water-Kernel reported in

Table 6.4.

Figure 6.20 shows the results for the original version of Water-Kernel (without tiling).

We plot the execution time of Water-Kernel as SSMP node size is varied. At each SSMP

node size, three bars are reported representing the three page sizes used (1K-bytes to 4K-

bytes from left to right). We only report the 1K-byte execution time for the 32-processor

SSMP node size con�guration since in this DSSMP con�guration, the system does not

perform any paging.

Without the tiling transformation, Water-Kernel displays signi�cant amounts of inter-

SSMP communication. This communication volume is aggravated as page size is in-

creased due to false sharing. The e�ect is relatively small going from a 1K-byte page size

to a 2K-byte page size. On average, runtime increases by 15% across the SSMP node

sizes between 1 and 16 processors. However, the impact is signi�cantly more pronounced

when going from a 2K-byte page size to a 4K-byte page size. In this case, execution time

increases by 39% on average across the di�erent SSMP node sizes.

While Figure 6.20 shows that increasing page size can negatively impact MGS perfor-

mance due to an increase in false sharing, Figure 6.21 shows that increasing pagesize can

improve MGS performance when the application exhibits good locality. Figure 6.21 shows

the impact of varying page size in the Water-Kernel code after the tiling transformation

has been applied, as described in Section 6.4.1. Tiling improves the data locality of the

force interaction computation loop. Due to the improved data locality, the code does not

exhibit false sharing. As a result, performance actually improves with increasing page

size for all the data points (except for the 4K-byte data point at an SSMP node size of 1

processor in which performance degrades slightly). Performance improves because there

are fewer page faults due to the fact that each page fault brings an increasing amount of

data as page size is increased.

144 CHAPTER 6. EXPERIMENTAL RESULTS

||0

|50

|100

|150

|200

|250

|300

|350

|400

|450 |

| 0

| 50

| 100

| 150

| 200

| 250

| 300

| 350

| 400

| 450

 Cluster Size

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)
User
Lock
Barrier
MGS

1 2 4 8 16 32

Figure 6.20: Page size sensitivity results for Water-Kernel. Total machine size is 32

processors. For each SSMP node size, the three bars show (from left to right) the perfor-

mance attained when using a page size of 1K-bytes, 2K-bytes, and 4K-bytes, respectively.

||0

|20

|40

|60

|80

|100

|120 |

| 0

| 20

| 40

| 60

| 80

| 100

| 120

 Cluster Size

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

User
Lock
Barrier
MGS

1 2 4 8 16 32

Figure 6.21: Page size sensitivity results for Water-Kernel with tiling. Total machine

size is 32 processors. For each SSMP node size, the three bars show (from left to right)

the performance attained when using a page size of 1K-bytes, 2K-bytes, and 4K-bytes,

respectively.

Chapter 7

Analysis

System evaluation is a crucial component in the life cycle of a systems project. It is

through evaluation that researchers characterize the overall behavior of a system, and

validate the initial design goals that precipitated the system in the �rst place. For

many systems projects, evaluation relies solely on experiments. Experiments can involve

whole benchmarks that represent typical workloads, or the experiments can be carefully

designed synthetic kernels that exercise speci�c aspects of the system in a controlled

fashion. In either case, the product of the evaluation is experimental measurements which

quantify system behavior. When experiments are properly performed, the measurements

they yield provide the most objective evaluation possible of system behavior1.

An alternative to experimental evaluation is analytic evaluation. Analytic evaluation

is less direct than experimental evaluation. Instead of measuring system behavior, ana-

lytic evaluation relies on mathematical models to predict system behavior. Models are

typically hypothesized and then validated against an existing system. The process of

validation involves presenting both the model and the system with similar inputs and

verifying that the output of the model matches the aspect of system behavior being

modeled. Once validated, the model can be used to predict the system's behavior in the

absence of the system.

While not as objective as experimental evaluation, analytic evaluation provides value

in two ways. First, analytic approaches are more
exible than experimental approaches.

Since analysis only involves the manipulation of mathematical expressions, it is feasible

to vary system parameters. This is not possible in experimental approaches since they

assume some kind of physical prototype (upon which to run the experiments) that is

�xed2. Flexibility allows analytic approaches to study the reaction of system behavior to

technological trends, or to study large systems that are beyond what is feasible to build in

the lab. Second, analysis leads to insight that often eludes experimental evaluation. The

hypothesis of a system model demands careful examination of all factors that contribute

1As the saying goes, \it's hard to argue with numbers."
2By physical prototype, we either mean a piece of experimental hardware, or a simulator of the target

system running on a workstation. The in
exibility of experimental evaluation is less true in the case of
simulators; however, mathematical models are still more
exible than simulators.

145

146 CHAPTER 7. ANALYSIS

to overall system behavior. Validation provides feedback that either supports or refutes

a particular hypothesis. By iterating through the hypothesis-validation cycle, all �rst-

order e�ects that govern system behavior are eventually identi�ed. This process of model

formulation provides a deep understanding of the system, and can reveal key aspects of

the system that would otherwise go undetected.

In this section, we develop and apply analytical techniques to further study the be-

havior of multigrain shared memory systems. In so doing, we hope to attain the bene�ts

described above that analysis provides on top of experimental evaluation. In particular,

this chapter makes the following contributions.

� Analytical framework. We develop a system model that predicts runtime of

applications on multigrain systems. In developing this model, we identify several

key attributes that govern performance on multigrain shared memory systems in

particular, and release consistent shared memory systems in general.

� Scalability study. We use the model described above to study the scalability of

multigrain shared memory systems. We investigate analytically the impact of scal-

ing machine size. We are particularly interested in the relationship between SSMP

node size and machine size, and the impact this relationship has on performance

on very large machines.

� Multigrain performance tools. By developing analysis techniques, this chapter

lays the groundwork for general multigrain performance tools. The techniques

presented in this chapter can be used by programmers to evaluate software designs,

or compilers to drive optimizations targeted for multigrain systems.

The rest of this chapter consists of two major parts. First, Section 7.1 describes the

analytical framework. Second, Section 7.2 describes our scalability study.

7.1 Analytical Framework

This section describes the framework that enables analysis of multigrain shared memory

behavior. We begin by looking at the problem of performance analysis in distributed

shared memory systems. Section 7.1.1 brie
y discusses why performance analysis for

DSMs is di�cult. Then, Section 7.1.2 argues that software DSMs supporting a release

consistent shared memory model present a new opportunity for analysis which is not

possible for other types of DSMs (e.g. hardware DSMs). The section identi�es several

key properties in software RC systems that make their analysis tractable. Finally, Sec-

tion 7.1.3 presents a performance model that applies the discussion in Section 7.1.2 to

predict application runtime on MGS.

7.1. ANALYTICAL FRAMEWORK 147

Processor Network
Hierarchy
Memory

Reference Stream Communication

Local

Figure 7.1: The local memory hierarchy in a DSM sits between the processor and the

network.

7.1.1 Analyzing performance on DSMs

The crux of performance analysis for distributed shared memory lies in being able to

accurately predict communication. This is important because of the di�erence in cost

between a shared memory access that can be satis�ed locally versus one that requires

communication with a remote node. In MGS, the di�erential is particularly large (roughly

3 orders of magnitude as we saw in Section 6.1 of Chapter 6) because remotely satis�ed

accesses require software intervention whereas locally satis�ed accesses leverage hardware.

Prediction of communication in DSMs involves the prediction of two aspects of system

behavior. First, we must predict the shared memory reference stream emitted by each

processor in the DSM. The shared memory reference stream is the sequence of shared

memory requests that the processor emits to the memory system. Predicting this ref-

erence stream involves analyzing a shared memory application, identifying points in the

code where shared memory references are performed, and for those references, determin-

ing the location referenced or the shared memory address. In general, this is a di�cult

task; further discussion will be provided in Sections 7.1.2 and 7.1.3.

Second, we must predict the behavior of the local memory hierarchy. As illustrated in

Figure 7.1, the local memory hierarchy, which consists of possibly multiple levels of either

hardware or software caches or both, sits between the local processor and the network.

Each shared memory request emitted by the local processor is intercepted by the local

memory hierarchy and is either satis�ed by the local cache(s), or satis�ed remotely via

communication through the network with a remote node. Therefore, knowing the shared

memory reference stream is not su�cient to predict communication; it is also necessary

to know which references will miss in the cache(s) and thus cause communication.

In hardware cache-coherent shared memory systems, a shared memory reference can

miss in a hardware cache due to one of four possible reasons corresponding to the four

di�erent types of cache misses: cold, capacity, associativity, and coherence misses3. Cold

misses are the simplest and depend solely on the reference stream of the local processor.

Capacity and associativity misses, however, result from the interaction of the locality

properties in the local processor's reference stream with the size and organization of the

local processor's hardware cache. And coherence misses, the most complex miss type

to analyze, arise due to the interleaving of references in the local processor's reference

3We assume the reader is familiar with these terms. We refer the interested reader to [28] for a
detailed explanation.

148 CHAPTER 7. ANALYSIS

stream with con
icting references performed by other processors in the system.

Cache miss behavior, and thus communication behavior, in hardware DSMs is dic-

tated by a complex interaction between di�erent processor reference streams, and the

architecture of the local memory hierarchy. Due to their complexity, these interactions

are di�cult to analyze. Consequently, even if we can e�ectively predict a local processor's

reference stream on a hardware DSM, it is unlikely that we can predict the communica-

tion behavior.

7.1.2 Communication in Software DSMs

We believe there is a greater opportunity for communication analysis in software DSM

systems. Fundamentally, the problem with analysis in hardware DSMs is that communi-

cation on each node has only an indirect relationship with the reference stream emitted

by the local processor due to the intervention of an unpredictable system layer, as illus-

trated in Figure 7.1. In the following sections, we argue that there is a much more direct

relationship between communication and processor reference streams in software DSMs.

The key is that processors have more control over the contents of their local caches thus

removing much of the unpredictability introduced by caching in hardware DSMs.

Cold, Capacity, and Associativity Misses

One of the reasons why analysis of communication in software DSMs is easier than in

hardware DSMs is because two of the cache miss types described for hardware DSMs

in Section 7.1.1, capacity misses and associativity misses, can be ignored without loss

of analysis accuracy. Capacity misses are insigni�cant in software DSMs (though they

can occur) because the amount of storage available for caching can be extremely large.

Software DSMs perform caching in main memory, so it is feasible to make cache sizes

on the order of 100s of megabytes or larger. For most applications, this is e�ectively an

in�nite cache. Hardware caches cannot be nearly as large because they are limited by

chip area and clock speed design constraints. In addition to ignoring capacity misses,

associativity misses can be ignored as well. Since virtual memory systems allow a virtual

page to be placed in any physical page frame, the page cache in a software DSM is fully

associative; therefore, software DSMs never su�er associativity misses. Most hardware

caches are not fully associative and are susceptible to associativity misses, once again

due to area and speed constraints.

We can further simplify communication analysis in software DSMs by ignoring cold

misses. The number of cold misses su�ered by a software DSM is exactly the number

of unique data pages touched by the application. For most applications, this number

is negligible compared to the total number of misses (or page faults) incurred by the

application. Our analysis presented in Section 7.1.3 does handle cold misses, but for

the applications studied in this thesis, cold misses do not impact the performance of the

overall application. We should note that this assumption is not unique to software DSMs

and can be applied to hardware DSMs as well.

7.1. ANALYTICAL FRAMEWORK 149

By ignoring the e�ects of cold, capacity, and associativity misses, the analysis of cache

miss behavior for software DSMs is greatly simpli�ed. Once a page is placed in a local

processor's page cache, we are guaranteed that it will stay there until it is invalidated by

a remote processor. Therefore, to analyze communication on software DSMs, it is only

necessary to track coherence misses.

Coherence Misses

Coherence misses are the most di�cult of the four cache miss types to analyze. To ac-

count for coherence misses, the analysis must perform two tasks. First, the analysis must

identify shared memory accesses performed on di�erent processors that con
ict. Two

accesses con
ict if the locations accessed fall on the same cache block (i.e. page for soft-

ware DSMs), and at least one of the accesses performs a write. Second, the analysis must

also determine how con
icting accesses interleave in time. The number of invalidations

and thus the amount of actual communication incurred by a group of con
icting accesses

depends on how the accesses interleave. For instance, if two processors each perform

two writes to the same location, then one of the processors will incur either one or two

cache misses depending on whether one or more of the other processor's writes intercede

between its own two writes. In this section, we show that both analyses, identifying con-

icting accesses and determining how they interleave, are simpler to perform for software

DSMs that support a release consistent shared memory model.

Analysis of coherence misses is signi�cantly simpli�ed by the delayed coherence prop-

erty exhibited by most software implementations of release consistent (RC) memory

consistency models. In RC models, maintaining coherence for individual shared memory

accesses is delayed until special points speci�ed explicitly by the application (see Sec-

tion 2.2.2 of Chapter 2 for a discussion on delayed update techniques). For example,

in MGS, which implements eager RC, coherence can only happen when the application

executes a release operation.

The delayed coherence property is crucial from the standpoint of analysis for two rea-

sons. First, individual shared memory accesses cannot generate invalidations4. Because

of delayed coherence, individual shared memory updates are locally bu�ered and made

visible to other processors only at release points. Therefore, the granularity at which

coherence operations can interleave is increased from every single shared memory write

(hardware DSMs) to release points (software DSMs). Because releases are less frequent

than shared memory writes, the number of points in a program where coherence misses

can occur is greatly reduced, thus simplifying analysis. Second, these coherence points in

a program can be exactly identi�ed by examining the program source code. RC memory

models place the onus of coherence management on the programmer. Properly written

shared memory programs for RC memory models include source-level annotations that

4This is not strictly true for MGS because of the Single-Writer mechanism. In MGS, a shared memory
access to a remote page under Single-Writer mode will invalidate the remote page. This is the mechanism
that reverts Single-Writer pages back to a normal level of coherence. This does not, however, complicate
the analysis and will be discussed later in the section.

150 CHAPTER 7. ANALYSIS

acquire X;

read A; read B; read C

compute();

write A; write B; write C

release X;

P0 P1

acquire X;

read A; read B; read C

compute();

write A; write B; write C

release X;

tim
e

acquire Y;

read D;

compute();

write D;

release Y;

P2

Figure 7.2: For most RC programs, the synchronization dependence information can be

viewed as a summary of the data dependence information. The dotted lines indicate data

dependences, and the solid line indicates a synchronization dependence.

identify release points [25]. Consequently, there is no mystery behind when coherence

happens. Analysis can identify all coherence points by simply looking at the application's

source code.

Despite the simpli�cations provided by the delayed coherence property, analysis must

still address the following problem: identify those releases that generate communication,

and for each such release, determine how much communication occurs. At �rst glance,

this problem only looks slightly easier than the analysis problem encountered for hardware

DSMs. Although there are fewer points where coherence can occur due to the coarser

interleave granularity discussed above, it is still necessary to determine which processors

share the pages that have been updated by the local processor performing the release

operation (the invalidation set) in order to compute which pages are invalidated at any

particular coherence point. Such analysis requires looking at all shared memory references

performed across processors to come up with a set of con
icting pages.

Synchronization Analysis

The analysis to determine the con
ict set for each coherence operation can be greatly

simpli�ed if we assume that applications use di�erent synchronization variables to per-

form coherence operations on unrelated data. Figure 7.2 illustrates the behavior of an

application that obeys this assumption. The �gure shows three processors making mu-

tually exclusive accesses to four shared memory locations named A, B, C, and D, using

synchronization variables named X and Y . In this example, modi�cations to locations

A, B, and C are always performed together, and use synchronization variable X. Mod-

i�cations to location D are performed separately and use synchronization variable Y .

7.1. ANALYTICAL FRAMEWORK 151

Notice that because di�erent synchronization variables are used, processor P2 can per-

form computation associated with location D simultaneously with computation on the

other three shared memory locations. In contrast, processors P0 and P1 must serialize

their computations on locations A, B, and C because by convention, they use the same

synchronization variable X. From a program correctness standpoint, the serialization is

necessary to enforce mutual exclusion on the shared locations.

Figure 7.2 shows that for applications whose coherence points are annotated, i.e.

the application includes acquire and release annotations as required by the RC mem-

ory model, each synchronization dependence between two processors represented as a

release ! acquire dependence over the same synchronization variable signi�es data shar-

ing. In our example, processors P0 and P1 share locations A, B, and C. This sharing is

marked by the release ! acquire dependence over the synchronization variable X from

P1 to P0. Conversely, because there is no data sharing between processor P2 and pro-

cessors P0 and P1, no release ! acquire dependence can be identi�ed between these

processors due to the use of separate synchronization variables. The connection between

data sharing and synchronization dependence solves part of our analysis problem. We

no longer have to examine all shared memory references performed across processors to

identify which releases generate communication. Instead, we can simply look for syn-

chronization dependences.

While release ! acquire synchronization dependences identify data sharing and thus

identify where communication occurs, they do not reveal the volume of data communi-

cated per release ! acquire dependence. For instance, the synchronization dependence

on variable X in Figure 7.2 actually represents the communication of three shared mem-

ory locations. Determining the volume of data communicated by each synchronization

dependence requires analyzing data access information5. One approach is to pessimisti-

cally assume that all the data updated by code between an acquire and a release are com-

municated across the subsequent synchronization dependence. This assumption is true

when the amount of data protected by each synchronization variable is always communi-

cated across a synchronization dependence, a condition that holds for all the applications

we studied in this thesis. Using this assumption, the volume of data communicated at the

release point can be determined by analyzing the shared memory references performed

inside the code between the acquire and the release to determine the number of unique

pages touched. Notice that while such analysis involves examining data access informa-

tion, the analysis is purely local in that it involves the references performed only by a

single processor.

Before leaving our introduction of synchronization analysis, we must mention one

limitation{synchronization analysis cannot handle false sharing (see Section 2.2.2 of

Chapter 2 for a de�nition of false sharing). Communication caused by false sharing

5The volume of data communicated at each release ! acquire synchronization dependence constitutes
only part of what is computed by our analysis. Our analysis also computes the volume of several other
events generated by the MGS protocol state machines in order to a�ect coherence on the data being
moved across the synchronization dependence. More details on this topic appear in Section 7.1.3.

152 CHAPTER 7. ANALYSIS

goes undetected in our analysis. The problem is that synchronization information only

identi�es true data sharing since synchronization is inserted into a program only when

processors are accessing the same shared memory locations. Because there are no syn-

chronization dependences associated with false data sharing, synchronization-based tech-

niques cannot identify communication that arises from false sharing.

Clustering Analysis

Synchronization analysis applies to page-based software shared memory systems in gen-

eral. The only requirement is that the shared memory supports a release consistent

memory model that exhibits the delayed coherence property. Therefore, we can apply

synchronization analysis to analyze the performance of most conventional software DSM

systems. However, we can also use synchronization analysis to reason about DSSMPs as

well if we incorporate the e�ects of clustering.

The extension for clustering in synchronization analysis is very simple. In DSSMPs,

sharing between processors inside a single SSMP is handled by hardware mechanisms

and thus bypasses software shared memory. Only sharing across SSMPs invokes soft-

ware. This implies that not all dependences identi�ed by synchronization analysis gen-

erate software-supported communication in DSSMPs. Instead, only those synchroniza-

tion dependences that cross SSMP boundaries generate communication. Therefore, the

extension for the analysis for DSSMPs involves an additional analysis phase. After syn-

chronization dependences have been identi�ed, a synchronization dependence graph is

constructed. Each node in such a graph represents the code between an instance of

an acquire and a release. The edges in a synchronization dependence graph represent

release ! acquire dependences as described above. Once constructed, the synchroniza-

tion dependence graph is partitioned such that all the nodes in the graph that are exe-

cuted by processors in the same SSMP are placed in the same partition. From the parti-

tioning, analysis can identify release ! acquire dependences that cause communication{

they are those synchronization dependences which cross partition boundaries.

Figure 7.3 shows a partitioning example. The �gure shows a synchronization depen-

dence graph from a hypothetical application. The arrows with �lled arrowheads represent

synchronization dependences, while the arrows with un�lled arrowheads represent con-

trol dependences for graph nodes executed on the same processor. In this particular

example, there are four processors, P0 through P3, organized across two SSMP nodes of

two processors each. The dotted line represents both the physical SSMP node boundary

for the four processors as well as the partition boundary for the graph nodes. Of the

seven synchronization dependence arcs in the example graph, only three of the arcs cross

SSMP node boundaries. The analysis will identify these three arcs as the communication-

generating arcs. The other four arcs are \hidden" from the software shared memory layer

and thus do not generate communication.

7.1. ANALYTICAL FRAMEWORK 153

P0 P1 P2 P3

Figure 7.3: Analyzing clustering involves identifying synchronization dependences that

cross SSMP node boundaries.

Discussion

Synchronization analysis provides a new opportunity to analyze communication in shared

memory programs written for software shared memory systems that support a release

consistent shared memory model. Our approach is based on the premise that race-free

parallel programs use explicit synchronization whenever processors share data. This

assumption allows our technique to infer data dependence information by analyzing syn-

chronization dependences. This represents a shift from more traditional data-centric

program analysis to an approach that is synchronization centric.

The primary bene�t of synchronization-centric analysis over data-centric analysis is

that synchronization dependence information is typically speci�ed at a coarser granu-

larity than data dependence information. Synchronization dependence graphs can be

viewed as summaries of data dependence information in which multiple (but related)

data dependence arcs are bundled into a single synchronization dependence arc. Because

the graphs are smaller, analysis of synchronization dependence graphs involves lower

complexity.

Notice our analysis does not completely discard information related to data objects.

Data access information is still needed to derive communication volume. However, this

information can be acquired through purely local analysis of each processor's reference

stream. Global information about dependences that couples the accesses of multiple

processors and gives rise to coherence misses is extracted from the synchronization de-

pendence graph. Therefore, our analysis never constructs a data dependence graph.

There is still one problem that needs to be addressed. Building a synchronization

dependence graph as described above for clustering analysis assumes that a particular

ordering of graph nodes exists. In actuality, there may be many orderings that are le-

gal. For example, consider a shared memory application that uses locking to perform

atomic read-modify-write operations on a set of shared data objects. If the operations are

154 CHAPTER 7. ANALYSIS

commutative, then any ordering is legal, and the actual ordering that occurs at runtime

depends on how di�erent processors' attempts to acquire a particular lock interleave in

time. Once the interleaving is �xed, the synchronization dependence graph can be con-

structed, but how a particular interleaving is chosen from a set of legal interleavings may

signi�cantly impact the communication analysis. Currently, we do not have a general

solution to this problem. In Section 7.2.1, we solve the problem for the particular ap-

plication used in our scalability study by optimistically assuming a maximally parallel

schedule of synchronization operations, and then computing an interleaving based on the

schedule. The technique proves to be accurate, but requires an analysis of the control

ow of the code which we performed by hand. We believe it is possible to generalize

the technique for some control structures (such as loops with static bounds), but that is

beyond the scope of this thesis.

7.1.3 Performance Model

In the previous section, we introduced synchronization analysis. Synchronization analy-

sis allows us to identify instances in a program where coherence communication occurs.

Coupled with data access information, we can also determine how much data is commu-

nicated per communication-generating instance. This section applies the communication

volume information provided by synchronization analysis in a performance model that

predicts the execution time of an application on MGS.

Our model determines the impact of clustering on performance in a multigrain shared

memory system. It assumes that parallel running time on an unclustered (all-hardware

DSM) system is known. By using the communication volume information provided by

synchronization analysis, the model predicts the overhead introduced by the software

shared memory layer in terms of the cost of waiting for shared memory operations (la-

tency), the cost of processing to run the protocol machines described in Section 4.2 of

Chapter 4 (occupancy), and the cost of synchronization. This aggregate overhead intro-

duced by software shared memory is then used to dilate the unclustered parallel running

time to yield a prediction of execution time on the target clustered MGS system.

Figure 7.4 illustrates the main components in our performance model. The model

consists of three major modules: the application description module, the machine de-

scription module, and the analysis engine. The rest of this section describes each of these

modules in greater detail.

Application Description

The application description module speci�es a set of application parameters to the analy-

sis engine that describes the behavior of the application on an MGS system. As indicated

by Figure 7.4, there are three types of application description parameters. Parallel Run-

time speci�es the time required to execute the application on an unclustered all-hardware

DSM whose machine size (number of processors) equals the machine size of the target

MGS system. In general, this value is di�cult to predict. We expect the value to be

7.1. ANALYTICAL FRAMEWORK 155

APPLICATION DESCRIPTION MACHINE DESCRIPTION

ANALYSIS ENGINE

Synchronization Latency Model

Transaction Latency Model

Transaction Occupancy Model

Parallel Runtime

Transaction Profiles

Lock Profiles

Transaction Latency Cost

Transaction Occupancy Cost

Predicted MGS Runtime

Figure 7.4: The performance analysis framework for multigrain systems.

provided to the model by measurement. The value can either be directly measured on

a hardware DSM with the desired number of processors, or in those cases where this

is not feasible (for instance, when the target MGS system is too large), the value can

be extrapolated to the desired machine size from speedup curves obtained on a smaller

hardware DSM.

Transaction Pro�les are a set of parameters that specify the volume of software shared

memory events incurred to support coherence misses. More speci�cally, the transaction

pro�les count the number of times the Local-Client, Remote-Client, and Server machines

are invoked during the execution of an application, broken down into the di�erent types

of software shared memory events that invoke these machines. The transaction pro�les

are derived through synchronization analysis (see discussion below).

Table 7.1 lists the transaction pro�le parameters, categorized by the four types of

shared memory transactions in MGS (see Section 4.2.1 in Chapter 4 for a description

of these transaction types). All the parameters are listed under two columns, one for

events that invoke the Local-Client machine (Local-Client Pro�les), and another column

for events that invoke the Remote-Client machine (Remote-Client Pro�les). Pro�les for

Server machine events can be derived from the Local-Client pro�les; therefore, separate

parameters are not de�ned since they would be redundant.

The Local-Client Pro�les consist of �ve parameters. tlb fault counts, fetch counts,

and upgrade counts specify the number of TLB faults, page faults (including those that

revert Single-Writer pages back to a normal level of coherence)6, and upgrade faults,

respectively. release counts speci�es the total number of releases performed, while

swrite trans counts speci�es the number of releases that result in transition to Single-

Writer mode. The Remote-Client Pro�les consist of two parameters that count events

6We do not attempt to distinguish between read and write fault types

156 CHAPTER 7. ANALYSIS

Type Local-Client Pro�les Remote-Client Pro�les

TLB Fault tlb fault counts

Page Fault fetch counts

Page Upgrade upgrade counts

Release release counts inv counts

swrite trans counts

Single-Writer swrite inv counts

Table 7.1: Application transaction pro�le parameters.

pertaining to invalidation. inv counts tracks invalidations due to release operations,

and swrite inv counts tracks invalidations due to page faults that revert Single-Writer

pages back to a normal level of coherence7.

The synchronization analysis necessary to derive the transaction pro�le parameters

involves a two-step process. First, a synchronization dependence graph is constructed

and partitioned to yield a count of release ! acquire synchronization dependences that

generate communication, as described by the discussion on clustering analysis in Sec-

tion 7.1.2. Second, volumes for all the transaction pro�le parameters in Table 7.1 are

derived for a single release ! acquire dependence. To do this, we analyze the shared

memory references performed in the code prior to a synchronization dependence. As

discussed earlier (see page 151), the goal of this analysis is to identify the number of

unique pages touched. While this yields the volume of data communicated across a sin-

gle synchronization dependence, our analysis must also determine the type and number

of shared memory events generated by the MGS protocol state machines to a�ect the

data movement. These events correspond exactly to the transaction pro�le parameters

we seek. This two-step analysis can be better understood through a concrete example.

In Section 7.2.1, we derive the transaction pro�le parameters for a speci�c application

used to study the scalability of the MGS system.

Finally, Lock Pro�les are a set of application description parameters that describe be-

havior associated with locks. These parameters only apply to applications that perform

locking. In total, there are three parameters that constitute the lock pro�le; these pa-

rameters are listed in Table 7.2. num locks is the total number of unique lock variables in

the application. lock acquire counts is the total number of acquires performed across

all the locks dynamically during execution. And critical section time speci�es the

average time spent inside a critical section. The �rst two parameters are determined

through direct examination of the application source code. The last parameter can be

derived using the transaction pro�le parameters in Table 7.1 (see Section 7.2.1 for more

discussion). All three parameters are used by the Analysis Engine, described later in this

section, to account for lock contention e�ects due to critical section dilation (see page 125

for an explanation of critical section dilation).

7Again, we do not distinguish between invalidation of read and write pages.

7.1. ANALYTICAL FRAMEWORK 157

num locks

lock acquire counts

critical section time

Table 7.2: Lock pro�le parameters.

Type Latency Mem Occ Cli Occ

TLB Fault tlb fault lat

Page Fault fetch lat fetch occ

Page Upgrade upgrade lat upgrade occ

Release release lat release occ inv occ

swrite trans lat swrite trans occ

Single-Writer fetch swrite lat swrite occ swrite inv occ

Table 7.3: Machine description parameters.

Machine Description

The machine description module speci�es the performance of the underlying MGS system

to the analysis engine. A set of machine parameters, listed in Table 7.3, describes the

cost incurred on an MGS system for each of the software shared memory events listed

in Table 7.1. Like Table 7.1, the costs have been categorized by the four types of shared

memory transactions.

Two types of cost are accounted for{latency and occupancy. Latency cost parameters

specify for how long a processor is stalled when performing a particular shared memory

transaction that invokes software. These parameters appear in the \Latency" column of

Table 7.3. Each event under the Local-Client Pro�le column in Table 7.1 has a latency

cost associated with it listed in Table 7.3. In addition, Table 7.3 also lists a latency

parameter called fetch swrite lat. fetch swrite lat is the cost of a page fault that

reverts a page in the Single-Writer mode back to normal coherence. The number of

such page faults is not a parameter in Table 7.1, but can be computed by subtracting

swrite inv counts from fetch counts.

Occupancy cost parameters specify the cost of processing handlers associated with

software shared memory transactions. These parameters are listed under two columns in

Table 7.3, \Mem Occ" and \Cli Occ," corresponding to the handler costs incurred on the

Server and Remote-Client machines, respectively. There is a Remote-Client occupancy

cost parameter corresponding to each event under the Remote-Client Pro�les column in

Table 7.1. In addition, there is a Server occupancy cost parameter for every event in the

Local-Client Pro�les column in Table 7.1 that requires service from the Server machine.

For the scalability study presented in Section 7.2, the machine description parameters

in Table 7.3 are calibrated against our MGS prototype by using the measurements of

software shared memory costs that appear in Table 6.3 on page 107. Since our analysis

does not distinguish between reads and writes, we take the average from the \Load" and

\Store" types in Table 6.3 whenever appropriate.

158 CHAPTER 7. ANALYSIS

Analysis Engine

The analysis engine module predicts the execution time of an application, described by

the parameters in the application description module, running on an MGS system, de-

scribed by the parameters in the machine description module. Three performance models

are used by the analysis engine in order to predict execution time from the application

and machine speci�cations: the transaction latency model, the synchronization latency

model, and the transaction occupancy model.

The analysis engine assumes that the runtime of an application on an MGS system

is equal to the runtime on an all-hardware DSM of the same size (in total number of

processors) dilated by three non-overlapping sources of overhead that occur in the MGS

system, but that do not occur in the all-hardware system: stall due to software shared

memory operations, stall due to contention on synchronization operations, and software

shared memory protocol processing that interrupts (occupies) useful computation. Each

of these overheads is computed by one of the three performance models in the analysis

engine shown in Figure 7.4. The total dilation of the all-hardware DSM runtime is simply

the sum of these three overheads since they are non-overlapping. Below, we describe the

three performance models in detail.

The transaction latency model predicts the total software shared memory latency,

Latssm. This is the amount of time processors spend stalled on software shared memory

transactions. Latssm is simply the sum of all the Local-Client pro�le parameters from

Table 7.1 weighted by the corresponding latency cost parameters reported in Table 7.3:

Latssm = (tlb fault counts)(tlb fault lat) +

(fetch counts)(fetch lat) +

(upgrade counts)(upgrade lat) +

(release counts)(release lat) +

(swrite trans counts)(release swrite lat) +

(fetch counts� swrite inv counts)(fetch swrite lat) (7.1)

The synchronization latency model predicts the stall time su�ered by processors due to

lock contention. As we saw in Chapter 6, lock contention is certainly severe in applications

that spend practically all of their time performing locking, such as TSP. Surprisingly, lock

contention also has a signi�cant performance impact on applications that perform only

modest amounts of locking. For instance, when we �rst developed our performance

framework, we used the Water application as a benchmark to validate our performance

model. Early versions of the model systematically under-predicted runtime by as much

as 40%. It wasn't until we took a closer look at our performance results that we realized

this discrepancy was due to lock contention. This was a surprising result because Water

is careful about how it performs locking. It uses a very large synchronization space (one

lock per molecule in the simulation) to distribute the locking load in order to reduce

contention.

7.1. ANALYTICAL FRAMEWORK 159

The reason why lock contention can be so severe even for applications that do not

use centralized locks is because systems that rely on software shared memory su�er from

the critical section dilation e�ect discussed in Section 6.3.2 of Chapter 6. Critical section

dilation introduces large software shared memory overheads during the time when a

processor has acquired a lock. This signi�cantly increases the probability that another

processor will try to acquire the lock before it has been relinquished, and thus increases

lock contention. Any performance model for software shared memory systems must

account for lock contention; otherwise, they cannot accurately predict performance for

applications that are vulnerable to critical section dilation.

To account for lock contention, we use a simple closed queuing network model. In

order to facilitate a lucid exposition of the analysis, we �rst assume a single lock, and

extend the analysis to handle multiple locks later in this section. The queuing network

used to model lock contention is shown in Figure 7.5. It consists of two queues, an

M=M=1 queue (Queue 0) and an M=M=s queue (Queue 1) where s = P , the total

number of processors in the system8 (see [39] for more details on these queues and their

analysis).

In this queuing network, customers represent processors, and the queues represent two

di�erent processor activities. A customer entering Queue 0 signi�es a processor trying to

acquire the lock. If the queue is empty, then the customer enters the server immediately,

corresponding to a successful lock acquire. If however the queue is busy, then the customer

must wait. This is the lock contention case. The customer remains in Queue 0 for as long

as the processor holds the lock (i.e. the time spent in the critical section). A customer

leaving Queue 0 signi�es a release of the lock. Notice that since Queue 0 only has one

server, the mutual exclusion property of the lock is enforced. When a customer is in Queue

1, the corresponding processor is performing parallel computation. Since Queue 1 has P

servers, there is always an available server for a customer; therefore, all processors can

be performing parallel computation at the same time. In this simple model, processors

alternate between doing work in parallel, and performing lock operations that contend

whenever two or more lock operations occur simultaneously.

� and � are the service rates for Queue 1 and Queue 0, respectively. They pa-

rameterize the distributions that govern the amount of time customers spend in each

queue. For simplicity, we assume both of these distributions are Poisson. � corresponds

to the average rate at which processors perform lock operations. This rate is equal to

the average number of lock acquires performed by each processor divided by the par-

allel runtime of the application. � corresponds to the average rate at which processors

complete critical sections once they have acquired the lock. This rate is equal to the

inverse of the average number of cycles a processor spends inside a critical section, or the

critical section time parameter from Table 7.2.

The closed queuing network in Figure 7.5 is known as a Jackson network. The

8As is explained, Queue 1 has as many servers as customers, so it is impossible for any queuing to
occur; therefore, we have omitted drawing the queue itself in Figure 7.5. This kind of queue is known
as a delay server.

160 CHAPTER 7. ANALYSIS

µ

λ

Queue 1: M/M/P

Queue 0: M/M/1

λ 1λ 0

n1

n0

λ

λ

Figure 7.5: Closed queuing system used to model lock contention due to critical section

dilation.

probability that n0 customers are in Queue 0 and n1 customers are in Queue 1, where

n0 + n1 = P , is given by:

p(n0; n1) =
1

G(P)

�0

�

!n0
�n11Qn1

i=1 �min(i; P)

!
(7.2)

where �0 and �1 are the solutions satisfying the
ow equations between Queue 0 and

Queue 1, respectively. Since the queuing network is a closed system of two queues, the

ow equations can be satis�ed trivially. Choosing the solution �0 = �1 = 1, we have:

p(n0; n1) =
1

G(P)

1

�

!n0 1Qn1
i=1 �min(i; P)

!

=
1

G(P)

1

�

!n0 �1

�

�n1 1

n1!
(7.3)

G(P) in Equation 7.3 is a normalizing constant and can be expressed as:

G(P) =
X

n0+n1=P

1

�

!n0 �1

�

�n1 1

n1!
(7.4)

The queuing network in Figure 7.5, and its solution, Equation 7.3, allows us to com-

pute synchronization latency due to lock contention. The lock acquire latency per lock

experienced by each processor is equal to the average time a customer spends waiting

in Queue 1. This wait time is the expected queue length at Queue 1 multiplied by the

average service time per customer, ��1. If we multiply by the number of lock acquires

performed by each processor, we can compute the total synchronization latency, Latsyn:

7.1. ANALYTICAL FRAMEWORK 161

Latsyn =

lock acquire counts

P

!
1

�

!
E[n1]

=

lock acquire counts

P

!
1

�

!
PX

n1=0

n1p(n1; P � n1) (7.5)

where lock acquire counts is the total number of lock acquire operations performed, from

Table 7.2.

Equation 7.5 provides the synchronization latency solution assuming a single lock.

Most applications, however, employ multiple locks. The general problem of contention

with multiple locks is di�cult to model. The naive solution would solve Equation 7.5 once

for each unique lock in the system, and then sum the individual latencies. Unfortunately,

this solution is incorrect. Consider the solution of a single lock in a multi-lock application.

In this case, Queue 1 in Figure 7.5 not only models parallel computation, but it must also

model the latency introduced by all other locks. The latencies computed for all other

locks must feed back into the rate parameter for Queue 1, �. Similarly, the solution for

the single lock in question must also feed back into all other locks. Therefore, the correct

solution in the multi-lock case requires simultaneous solutions for all locks in a self-

consistent fashion. If the number of locks in the application (num locks from Table 7.2)

is large, this computation becomes intractable.

We can greatly simplify the multi-lock case if we assume that all locks have the same

lock pro�les. In other words, processors access all locks in the application homogeneously,

and the amount of critical section dilation is equal for all locks. Under this assumption,

we expect the solution to Equation 7.5 to be identical for all the locks. This makes the

feed back very easy to model. Speci�cally, we can model the feed back by using a new

rate for Queue 1, �
0

, that is computed as:

�
0

=

�
1

�
+ (num locks)(Latsyn)

�
�1

(7.6)

The solution to Equation 7.5 is a bit harder using �
0

as the rate parameter for Queue

1 since any correct solution must satisfy Equations 7.3, 7.5, and 7.6 simultaneously.

However, this problem is tractable and can be solved using an iterative method.

The last model in the analysis engine's arsenal is the transaction occupancy model.

This model accounts for the overhead of processing software shared memory handlers

(on the Remote-Client and Server machines) that \occupy" processors, thus impeding

their progress on useful computation. Like its latency counterpart, Latssm, the amount of

raw occupancy, Occraw, can be computed by summing over all Remote-Client and Server

occupancy counts in Table 7.1 weighted by the corresponding occupancy costs reported

in Table 7.3. Notice that while Remote-Client occupancy pro�les are speci�ed explicitly

in Table 7.1 (last column), Server occupancy pro�les are not. The Server occupancy

counts are identical to the Local-Client pro�les for those transactions which incur Server

occupancy (i.e. transactions that have a non-empty entry in column 3 of Table 7.3). The

162 CHAPTER 7. ANALYSIS

raw occupancy can be expressed as:

Occraw = (fetch counts)(fetch occ) +

(upgrade counts)(upgrade occ) +

(release counts)(release occ) +

(swrite trans counts)(swrite trans occ) +

(fetch counts� swrite inv counts)(swrite occ) +

(inv counts)(inv occ) +

(swrite inv counts)(swrite inv occ) (7.7)

Using Equation 7.7 as the total occupancy overhead would be pessimistic because when

a software shared memory handler occupies a processor, it slows the processor down

only if the processor was doing useful work. If the processor was idle, for instance

waiting on a shared memory transaction or a synchronization operation, then the cost

of the occupancy would be \hidden." Therefore, we should only charge the cost of those

handlers that occupy useful computation. To model this e�ect, we assume that handlers

either occupy a processor during useful computation, or are completely hidden by shared

memory or synchronization latency. We do not account for partially hidden handler costs.

This case arises, for example, when a handler is initiated during a page fault transaction,

and part-way through the handler, the transaction completes. Furthermore, we assume

the probability that a handler occupies useful work is proportional to the fraction of

time that processors spend doing useful work. The actual occupancy cost, Occact, can be

expressed as:

Occact =

�
R + Occact

R + Occact + W

�
Occraw (7.8)

where R is the parallel running time of the application on a hardware DSM, and W =

Latssm + Latsyn. Notice that in Equation 7.8, we use R + Occact in both the numerator

and denominator instead of just R. This is because as we dilate R with occupancy

overhead, the probability that handlers will occupy useful work increases. Equation 7.8

is quadratic in Occact. Solving for Occact (taking the positive root), we have:

Occact = �
(R + W �Occraw) +

q
(R + W �Occraw)2 + 4ROccraw

2
(7.9)

Combining Equations 7.1, 7.5, and 7.9, we arrive at the prediction of runtime on the

target clustered MGS system:

PredictedMGSRuntime = R + Latssm + Latsyn + Occact (7.10)

7.2. SCALABILITY STUDY 163

7.2 Scalability Study

In this section, we apply the analytical framework presented in Section 7.1 to study the

scalability of MGS. First, in Section 7.2.1, we describe the application we use for the

scalability study, called Water-Kernel-NS, and derive the application description param-

eters for Water-Kernel-NS required by the model. Then in Section 7.2.2, we validate the

accuracy of our model by comparing model predictions of Water-Kernel-NS execution

time with experimental execution times observed on the MGS prototype. Finally, in Sec-

tion 7.2.3, we use the validated model to study MGS performance when both problem

size and machine size are scaled.

7.2.1 Application Description for Water

Our scalability study of the MGS system uses the Water-Kernel-NS application. Water-

Kernel-NS is a kernel of the Water application from SPLASH consisting of the force

interaction computation loop, as shown in Figure 6.9 on page 124. A summary of the

problem sizes we use for Water-Kernel-NS appears in Table 6.4 on page 113, and a sum-

mary of the sequential and parallel performance of Water-Kernel-NS appears in Table 6.5

on page 114.

Water-Kernel-NS is almost identical to the Water-Kernel code described in Sec-

tion 6.4.1 of Chapter 6. The only di�erence is in the choice of a compile-time constant

called \CUTOFF." The CUTOFF constant speci�es the maximum interaction separa-

tion between water molecules. Only for those pairs of molecules that are separated by

a distance smaller than the CUTOFF constant is a force interaction computed; force

interaction computation for molecules that exceed this separation are not considered.

In Water-Kernel-NS, we choose a CUTOFF constant that is equal to the diameter of

the simulation space; consequently, all possible N-Squared pairwise interactions are per-

formed (thus the su�x \NS")9. Such a choice of the CUTOFF constant removes any data

dependent behavior thus simplifying our analysis.

As described in Section 7.1.3, there are three components in the application descrip-

tion: parallel runtime, transaction pro�les, and lock pro�les. In the rest of this section, we

describe the derivation of these application description parameters for Water-Kernel-NS.

Parallel Runtime

We measure the parallel runtime of Water-Kernel-NS on the Alewife machine. The

measurement uses a problem size of 512 molecules, and a machine size of 32 processors.

The result of this measurement appears in Table 6.5 on page 114.

Since our intention is to use our model to study scalability, it will be necessary

to extrapolate the measured runtime to both larger problem sizes and machine sizes.

Because the force interaction computation loop in Figure 6.9 is doubly nested, the runtime

9In Water and Water-Kernel, the CUTOFF constant is set to one half the diameter of the simulation
space.

164 CHAPTER 7. ANALYSIS

is quadratic in the problem size, or the number of molecules. Therefore, if we increase

the problem size by scaling the number of molecules by a factor K, we must increase

parallel runtime by a factor K2. Scaling machine size is a bit more tricky because the

e�ciency of the application changes with machine size. For simplicity, we assume that

runtime decreases linearly as we scale up machine size, i.e. we assume linear speedup

from a machine size of 32 processors on up. In practice, this is a good assumption when

problem size is large compared to machine size.

Transaction Pro�les

Deriving transaction pro�les for an application requires performing two types of analysis.

First, we must determine the number of release ! acquire dependences that cross SSMP

node boundaries. Second, for each release ! acquire dependence that crosses a SSMP

node boundary, we must determine the values for all the transaction pro�le parameters

listed in Table 7.1.

The total number of release ! acquire pairs is equal to the total number of lock

acquires performed, or N2 (see discussion on Lock Pro�les below). Of this total, some

fraction will cross SSMP node boundaries. Computing this fraction exactly is di�cult

because it requires knowledge about how acquire operations interleave during an actual

execution. For simplicity, we can ignore the e�ects of interleaving to create a naive model.

In this naive model, we assume that the fraction of release ! acquire pairs that cross

SSMP node boundaries is equal to the fraction of remote acquires. A remote acquire

occurs each time an acquire is performed on a lock associated with a molecule owned

by a remote processor (a processor on a remote SSMP). The number of remote acquires

performed by a single processor ignoring interleaving can be expressed as:

FractionRemoteAcquires =

�
N
2
� N

nSSMPs

�
N
P

N2

P

(7.11)

where nSSMPs is the number of SSMPs, and P is the number of processors in the

machine. The expression inside the parentheses in the numerator of Equation 7.11 is the

number of remote acquires performed by a processor in a single iteration of the inner loop

of the force interaction computation (see Figure 6.9). This expression is multiplied by

the number of iterations of the outer loop to yield the total number of remote acquires.

Dividing by the total number of acquires performed by a single processor, N2

P
, yields

Equation 7.11.

For comparison, we consider another model that requires more analysis e�ort than

Equation 7.11, but accounts for the dynamic interleaving of acquire operations. The

analysis examines the iteration space of the force interaction computation, an example of

which is shown in Figure 7.6. In Figure 7.6, the X-axis represents iterations of the inner

loop, while the Y-axis represents iterations of the outer loop. The iteration space of the

computation is the lower triangle drawn in solid lines in Figure 7.6. Furthermore, the

�gure shows how the iteration space has been partitioned amongst processors, assuming

a machine with 8 processors.

7.2. SCALABILITY STUDY 165

0
0

N

N

O
ut

er
 L

oo
p

Inner Loop

0

1

2

3

4

5

6

7

7
6

5

4

Figure 7.6: Partitioning of the iteration space of the force interaction computation in

Water-Kernel-NS.

Each point in Figure 7.6 represents a single iteration of the force interaction com-

putation. Equivalently, a point (i; j) represents an interaction between molecules i and

j, and thus represents the acquisition and release of locks i and j. If we re
ect the tri-

angular iteration space in Figure 7.6 across the diagonal, indicated by the dotted lines

in the �gure, thus forming an NxN matrix, then all the acquires performed on lock i

occur in the interactions in row i10. Consequently, given an interaction (i; j), the acquire

of lock i will have a synchronization dependence with the release of lock i performed in

some other interaction along row i. This synchronization dependence crosses SSMP node

boundaries if the processor performing the other interaction resides on a remote SSMP.

Notice a similar line of reasoning applies to the synchronization dependence associated

with lock j.

To determine which interaction in row i is the source of the synchronization depen-

dence for interaction (i; j) requires temporal information regarding when a particular

iteration executes. We approximate temporal information in the following way. Each

point in the iteration space receives a timestamp, where an iteration that receives times-

tamp t is the tth iteration performed by its local processor. Notice that because of

symmetry, iteration (i; j) and its re
ected iteration (j; i) in Figure 7.6 will be assigned

the same timestamp. Then, we sort every row in the NxN matrix in Figure 7.6 according

to timestamps. After the sort, adjacent iterations in the same row have a synchronization

dependence, and that dependence crosses SSMP node boundaries if the two processors as-

sociated with the two iterations are on separate SSMPs. By looking at all iteration pairs

10Because of symmetry, the interactions in row i are identical to the interactions in column i, so we
can look at either rows or columns.

166 CHAPTER 7. ANALYSIS

that are row-wise adjacent, we can estimate the number of synchronization dependences

that cross SSMP node boundaries.

Once the number of release ! acquire synchronization dependences that cross SSMP

node boundaries have been computed, we need to determine the values for the transaction

pro�le parameters in Table 7.1 for each synchronization dependence. For the Water-

Kernel-NS code, this analysis is relatively straight forward. From the standpoint of the

software shared memory layer, each release ! acquire dependence represents a coherence

miss that migrates a single molecule object from one SSMP to another SSMP. Since the

size of the molecule data structure is 672 bytes, each molecule �ts inside a single page so

that the migration involves only one page11.

The migration of a molecule object is initiated by a page fault which pulls over a

copy of the page to the requesting SSMP. Because accesses to molecule objects occur in

an exclusive fashion (since the code uses locks to achieve mutual exclusion), it is likely

that at the time of the page fault, there is exactly one outstanding copy of the page in

question, and furthermore, this page is in Single-Writer mode. Hence, the page fault

must revert this Single-Writer copy back to a normal level of coherence via invalidation.

Next, our analysis must recognize that for each release ! acquire dependence, the code

is performing a read-modify-write operation. Therefore, the access that causes the initial

page fault is a read, and a page upgrade fault occurs when the �rst write is performed.

Finally, when the requesting processor completes all accesses to the object, it performs a

release operation to make its modi�cations visible to all other processors. Again, because

of the exclusive fashion in which accesses are performed, it is likely that at the time of the

release, the requesting processor has the only copy of the page; consequently, the release

transitions the page to the Single-Writer mode. The transaction pro�le parameters for

each release ! acquire synchronization dependence that crosses SSMP node boundaries

is:

1 page fault

1 invalidation of Single-Writer copy

1 page upgrade fault

1 single-writer release

Notice that when a synchronization dependence is contained within an SSMP, no

coherence actions occur. Since the last action described above transitions the page to the

Single-Writer mode, all software shared memory mechanisms are \turned o�" until the

page reverts back to a normal level of coherence. This occurs on the next synchronization

dependence that crosses SSMP node boundaries.

Lock Pro�les

The lock pro�les consist of three parameters, num locks, lock acquire counts, and

critical section time, as shown in Table 7.2. In Water-Kernel-NS, there is one lock

11While it is possible for a particular molecule to straddle two pages, for simplicity, we ignore this
e�ect.

7.2. SCALABILITY STUDY 167

for each molecule, so num locks equals N , the problem size, or the number of molecules

in the simulation. The number of lock operations or acquires that occur dynamically

during the execution is equal to twice the number of pairwise molecule interactions (each

interaction updates both molecules involved in the interaction). Since there are a total

of N2

2
pairwise interactions, the number of lock acquires equals N2.

The critical section time parameter speci�es the average time spent inside each

critical section. In Water-Kernel-NS, a critical section is very small{it consists of a

single read-modify-write operation, as shown in Figure 6.9. However, the time spent

inside the critical section becomes large because of critical section dilation. The dila-

tion occurs due to the software shared memory overheads su�ered in order to maintain

coherence on the molecule data structure. The speci�c coherence events involved are

exactly the ones derived for the transaction pro�le parameters. Therefore, the value of

the critical section time parameter is simply the costs for each of these coherence

events from Table 7.3:

critical section time = fetch lat + fetch swrite lat +

upgrade lat + swrite trans lat (7.12)

Tiled Water-Kernel-NS

As part of our scalability study, in Sections 7.2.2 and 7.2.3 below, we also apply our

analysis to a version of Water-Kernel-NS that has been tiled using the tiling transfor-

mation described in Section 6.4.1 of Chapter 6 for Water. Below, we brie
y discuss an

application description for Water-Kernel-NS under the tiling transformation.

The analysis to determine the application description parameters for the tiled version

of Water-Kernel-NS is extremely simple because tiling enhances the locality of the force

interaction computation loop shown in Figure 6.9. In particular, tiling removes all inter-

SSMP sharing during the interaction of molecules inside a pair of tiles; sharing across

SSMPs occurs only when two new tiles are selected. The enhanced locality provided by

tiling enables two simpli�cations to the application description analysis. First, because

locality signi�cantly reduces sharing across SSMPs, it is rare for processors in separate

SSMPs to acquire the same lock. Therefore, we can ignore lock contention. Second,

release ! acquire synchronization dependences cross SSMP node boundaries only when

new tiles are selected. Furthermore, when two new tiles are selected by an SSMP, all

molecules in those tiles are moved to the requesting SSMP once and remain cached until

two new tiles are selected. Therefore, the number of release ! acquire synchronization

dependences that cross SSMP node boundaries is:

�
N

tile size

�2
(2tile size) (7.13)

where tile size is the number of molecules per tile. The left multiplier in Equation 7.13

is the number of pairings of tiles, and the right multiplier is the number of molecules

moved per pairing of tiles. For each release ! acquire synchronization dependence that

168 CHAPTER 7. ANALYSIS

||0

|50

|100

|150

|200

|250

|300

|350

|400

 Cluster Size

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

1 2 4 8 16 32

Figure 7.7: Validation for Water-Kernel-NS model ignoring interleaving e�ects.

crosses SSMP node boundaries, the same coherence events occur in the tiled version of

Water-Kernel-NS as in the original version of Water-Kernel-NS.

7.2.2 Model Validation

In this section, we validate the accuracy of our runtime prediction based on the analysis

described in Section 7.2.1 above. Our validation considers both the original and tiled

versions of the Water-Kernel-NS code, and for the original code, we examine prediction

accuracy using both the naive analysis that ignores the e�ects of interleaving acquire

operations, and the more detailed analysis that accounts for interleaving.

Figure 7.7 shows the validation results for the naive analysis of the Water-Kernel-NS

code. The �gure shows the results of the model prediction (right set of bars) alongside

measured performance on our MGS prototype with 32 processors (left set of bars). There

are a set of two bars for each SSMP node size, which is varied from 1 to 32 processors

in powers of two as was done for the results presented in Chapter 6. The measured and

analytical bars for the 32 processor SSMP node size are identical because our model does

not predict hardware DSM performance.

The agreement between the experimental and analytic numbers in Figure 7.7 is decent

(average error: -12.2%). Overall, the model under-predicts runtime. This is because the

naive analysis optimistically assumes that all acquires performed on locks associated with

molecules owned by the local SSMP node do not generate synchronization dependences

7.2. SCALABILITY STUDY 169

||0

|50

|100

|150

|200

|250

|300

|350

|400

|450

 Cluster Size

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

1 2 4 8 16 32

Figure 7.8: Validation for Water-Kernel-NS model accounting for interleaving e�ects.

that cross SSMP node boundaries. In actuality, this optimistic assumption is incorrect

because these so-called \local" acquires interleave with remote acquires performed by

processors on other SSMPs. While one can argue that the impact of this incorrect

assumption is small as evidenced by the reasonable model agreement we observe, there

is a more troubling consequence of the naive analysis: the shape of the predicted curve

does not match the shape of the measured curve. The predicted curve is convex whereas

the measured curve is more concave. This shape mismatch implies the naive analysis

incorrectly predicts the sensitivity of application performance to SSMP node size.

Figure 7.8 shows the validation results for the detailed analysis of the Water-Kernel-

NS code that accounts for interleaving of acquire operations. Notice the agreement is

slightly better in Figure 7.8 (average error: -9.3%). More importantly, the shape of the

predicted curve more closely matches the shape of the measured curve. In Section 7.2.3

where we study scalability, we will use the detailed analysis rather than the naive analysis.

Finally, Figure 7.9 shows the validation results for the analysis of the tiled Water-

Kernel-NS code. The �gure shows that there is excellent agreement between our predic-

tion and the measured results (average error: -0.8%).

7.2.3 Scaling Results

This section presents the results of the scaling study using the performance model pre-

sented in Section 7.1.3. We present scaling results for the Water-Kernel-NS code, both in

170 CHAPTER 7. ANALYSIS

||0

|20

|40

|60

|80

|100

|120

|140

|160

 Cluster Size

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

1 2 4 8 16 32

Figure 7.9: Validation for tiled Water-Kernel-NS model.

its original form, and with the tiling transformation. We use the application descriptions

derived for both versions of Water-Kernel-NS in Section 7.2.1 to drive the performance

model.

In the scaling study, we address three fundamental questions. First, what is the

impact of scaling machine size on the performance framework parameters, the multigrain

potential and the breakup penalty? Addressing this question allows us to extrapolate

the experimental results observed in Chapter 6 to larger machines. Second, what is the

impact of scaling machine size on the performance of DSSMPs built using small SSMP

nodes? Can we achieve most of the multigrain potential at reasonably small SSMP nodes,

as was observed for most applications in Chapter 6, or does scaling machine size require

scaling SSMP node size at a similar rate to maintain a constant level of e�ciency? And

�nally, what is the tradeo� between machine size and SSMP node size in maintaining high

performance on large-scale machines? A speci�c performance requirement can be met

by either building smaller machines using larger SSMP nodes, or larger machines using

smaller SSMP nodes. Understanding the performance tradeo� between machine size and

SSMP node size allows the architect of large-scale systems to evaluate the optimal point

in the space of DSSMP con�gurations for a particular application.

Tables 7.4 and 7.5 summarize the results of the scaling study. Table 7.4 reports

the predicted execution times, and Table 7.5 reports the corresponding speedups for the

Water-Kernel-NS code in both its original and transformed versions. Each column of

the two tables, except for the �rst column, reports a performance number at a speci�c

7.2. SCALABILITY STUDY 171

Procs 1 2 4 8 16 32 64 128 256 512

Water-Kernel-NS

1 33963.0

32 6475.3 4239.5 3106.5 2520.7 2177.3 1434.7

64 3330.2 2194.9 1620.5 1324.3 1160.7 1047.2 717.4

128 1779.2 1223.2 943.0 799.1 720.0 666.2 610.7 358.7

256 870.1 607.4 474.6 406.0 368.0 341.8 314.2 271.2 179.3

512 472.7 359.8 302.7 273.3 256.7 244.9 231.8 211.0 171.9 89.7

Tiled Water-Kernel-NS

1 33760.0

32 1634.3 1529.4 1476.6 1450.2 1436.9 1386.4

64 921.0 817.1 764.7 738.3 725.1 718.5 693.2

128 563.0 460.5 408.6 382.4 369.2 362.5 359.2 346.6

256 382.4 281.5 230.3 204.3 191.2 184.6 181.3 179.6 173.3

512 290.9 191.2 140.7 115.1 102.1 95.6 92.3 90.6 89.8 86.

Table 7.4: Scaling results summary{execution times. Each row corresponds to a machine

size and each column corresponds to an SSMP size. All quantities are reported in millions

of cycles.

SSMP node size; each row reports all the performance numbers at a speci�c machine size

speci�ed by the �rst column. We examine the results in Tables 7.4 and 7.5 in greater

detail below. We �rst address the impact of scaling on the performance framework

parameters and SSMP node size at a given machine size, then we examine the tradeo�

between machine size and SSMP node size.

Performance Framework Results

We �rst present results for Water-Kernel-NS on 32, 128, and 512 processors using the

same performance framework used to present the experimental results in Chapter 6. We

examine performance framework results for both the original and tiled versions of the

Water-Kernel-NS code.

A 512 processor DSSMP represents a factor of 16 increase in machine size as compared

to the prototype used in our experimental study. In addition to scaling machine size, we

also scale the problem size since a larger problem size more accurately represents the kind

of workloads that will run on the larger machines. For our scalability study, we choose a

problem size that represents a 16-fold increase in the amount of work as compared to the

problem size used in our experimental study. Since, work grows quadratically with the

number of simulated molecules in Water-Kernel-NS, we increase the number of molecules

by a factor of 4, from 512 molecules to 2048 molecules.

Figures 7.10, 7.11, and 7.12 show the scaling results for 32, 128, and 512 processors,

respectively, for the original version of Water-Kernel-NS. The multigrain potential and

breakup penalty metrics in our performance framework are labeled at the bottom of each

graph.

172 CHAPTER 7. ANALYSIS

Procs 1 2 4 8 16 32 64 128 256 512

Water-Kernel-NS Speedups

32 5.3 8.0 10.9 13.5 15.6 23.7

64 10.2 15.5 21.0 25.7 29.3 32.4 47.3

128 19.1 27.8 36.0 42.5 47.2 51.0 55.6 94.7

256 39.0 55.9 71.6 83.7 92.3 99.4 108.1 125.3 189.4

512 71.9 94.4 112.2 124.3 132.3 138.7 146.5 161.0 197.6 378.8

Tiled Water-Kernel-NS Speedups

32 20.7 22.1 22.9 23.3 23.5 24.4

64 36.7 41.3 44.2 45.7 46.6 47.0 48.7

128 60.0 73.3 82.6 88.3 91.5 93.1 94.0 97.4

256 88.3 119.9 146.6 165.3 176.6 182.9 186.2 188.0 194.8

512 116.1 176.6 239.9 293.3 330.5 353.2 365.8 372.5 375.9 389.6

Table 7.5: Scaling results summary-speedups. Each row corresponds to a machine size

and each column corresponds to an SSMP size.

||0

|800

|1600

|2400

|3200

|4000

|4800

|5600

|6400

|7200

 Cluster Size

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

1 2 4 8 16 32

Multigrain Potential: 197%
Breakup Penalty: 52%

Figure 7.10: Scaling Water-Kernel-NS. 32 Processors.

7.2. SCALABILITY STUDY 173

Since the machine represented in Figure 7.10 is the same size as the machine used in

the experimental study, 32 processors, we can observe the e�ects of scaling problem size

from 512 molecules to 2048 molecules by comparing Figure 7.10 to the left set of bars

in Figure 6.13 on page 13412. Such a comparison reveals surprisingly that there is not a

signi�cant di�erence in behavior even when problem size is increased by a factor of 16. In

particular, the multigrain potential is still large (197%), and the breakup penalty is still

signi�cant (52%). Generally, increasing problem size increases the granularity of sharing.

Therefore, we expect software shared memory architectures to be more competitive with

hardware DSMs at these larger problems, and we expect the performance pro�le in

Figure 7.10 to \
atten," thus resembling the curves in the \Easy" category described

in Chapter 6. The reason this e�ect is not observed for Water-Kernel-NS (nor would it

be observed for Water) is because the application exhibits poor data locality due to the

all-to-all sharing pattern in the force interaction computation loop. Poor data locality

prevents the granularity of sharing from increasing signi�cantly as a result of an increase

in problem size.

By looking at Figures 7.11 and 7.12, we observe that breakup penalty increases with

increasing machine size. At 128 processors, the breakup penalty is 70% (up from 52%

for 32 processors), and at 512 processors, it increases to 91%. Again, this is attributable

to poor data locality. When machine size is increased, the time to perform computation

associated with the application reduces proportionally{this is an assumption in our ap-

plication description for Water-Kernel-NS (see Section 7.2.1)13. If the breakup penalty is

to remain constant, MGS overhead must also parallelize to the same degree. This implies

that the total volume of coherence actions performed by MGS must remain relatively the

same when machine size is increased. Unfortunately, poor data locality causes total MGS

tra�c to increase as machine size is increased. Therefore, the breakup penalty goes up.

A large multigrain potential is observed throughout, though it reduces slightly as

machine size is scaled. At 128 processors, the multigrain potential is 191% (down slightly

from 197% for 32 processors), and at 512 processors, it further reduces to 174%. The

implication is that providing hardware support for shared memory within SSMP nodes

is useful, even for large machines. Furthermore, we observe that most of the multigrain

potential is captured at modest SSMP node sizes in Figures 7.11 and 7.12. For a 128-

processor machine, 84% of the multigrain potential is achieved by an SSMP node size of 8

processors, and for a 512-processor machine, 72% of the multigrain potential is achieved

by an SSMP node size of 16 processors. This implies that large machines can be built

using reasonably-sized SSMPs and still capture most of the bene�t of having hardware-

supported shared memory within SSMP nodes (we will comment more on SSMP node size

in large-scale machines in the discussion on machine size and SSMP node size tradeo�s

12This comparison is rough because the data on page 134 is for Water-Kernel which uses a smaller
CUTOFF constant and thus performs less work than Water-Kernel-NS.

13While Water does achieve good speedup, the assumption that parallel runtime reduces linearly with
machine size is at best optimistic, and the parallel runtimes we use for the hardware DSM data points
are necessarily too low. Therefore, the prediction of the model may be overly pessimistic with regards
to breakup penalty.

174 CHAPTER 7. ANALYSIS

||0

|200

|400

|600

|800

|1000

|1200

|1400

|1600

|1800

 Cluster Size

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

1 2 4 8 16 32 64 128

Multigrain Potential: 191%
Breakup Penalty: 70%

Figure 7.11: Scaling Water-Kernel-NS. 128 Processors.

||0

|60

|120

|180

|240

|300

|360
|420

|480

 Cluster Size

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

1 2 4 8 16 32 64 128 256 512

Multigrain Potential: 175%
Breakup Penalty: 91%

Figure 7.12: Scaling Water-Kernel-NS. 512 Processors.

7.2. SCALABILITY STUDY 175

||0

|200

|400

|600

|800

|1000

|1200

|1400

|1600

|1800

 Cluster Size

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

1 2 4 8 16 32

Multigrain Potential: 14%
Breakup Penalty: 4%

Figure 7.13: Scaling tiled Water-Kernel-NS. 32 Processors.

below).

The combination of large multigrain potentials with large breakup penalties results

in modest overall performance. The speedup numbers for Water-Kernel-NS reported

in Table 7.5 show that the large breakup penalties prevent DSSMPs from achieving

linear speedup on the Water-Kernel-NS code. However, performance still scales such

that signi�cant speedups can be obtained on large DSSMPs. For instance, a DSSMP

con�guration with 512 total processors, built using 32 SSMPs, each with 16 processors

achieves a speedup of approximately 130. Our conclusion for Water-Kernel-NS is that

though its scalability is limited by the large breakup penalties, signi�cant performance

can nevertheless be achieved on large DSSMPs.

Figures 7.13, 7.14, and 7.15 show the scaling results for 32, 128, and 512 processors,

respectively, on the tiled version of Water-Kernel-NS. As before, we use a larger problem

size of 2048 molecules.

Again, we can see the impact of scaling problem size from 512 molecules to 2048

molecules by comparing Figure 7.13 to the right set of bars in Figure 6.13 on page 134.

The main di�erence is the multigrain potential is much smaller at the larger problem size{

it drops from 120% to only 14%. In the tiled version of Water-Kernel-NS, we do observe

sharing granularity becoming coarser when problem size is increased. While the original

version of Water-Kernel-NS does not exhibit this e�ect because of poor data locality, the

tiled version does since data locality is signi�cantly improved by the tiling transformation.

As a result, it becomes less important to support �ne-grain sharing mechanisms thus

176 CHAPTER 7. ANALYSIS

||0

|70

|140

|210

|280

|350

|420

|490

|560

|630

 Cluster Size

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

1 2 4 8 16 32 64 128

Multigrain Potential: 57%
Breakup Penalty: 3%

Figure 7.14: Scaling tiled Water-Kernel-NS. 128 Processors.

reducing the advantage of providing hardware-supported shared memory within SSMP

nodes. The breakup penalty in Figure 7.13 remains small after scaling problem size as

expected (4% as compared to 24% in Figure 6.13).

Figures 7.14 and 7.15 show scaling results on 128 and 512 processors. First, we

observe that the breakup penalty remains almost imperceptible (3% for both 128 and 512

processors). Second, the multigrain potential increases as machine size grows{57% for 128

processors (up from only 14% for 32 processors), and 223% for 512 processors. Increasing

the machine size while keeping the problem size �xed reduces sharing granularity. The

tiling transformation tries to keep sharing between SSMPs coarse by containing �ne-

grain sharing within SSMP nodes (see the description of the tiling transformation in

Section 6.4.1 of Chapter 6); however, when SSMP node size is small, the transformation

is unable to successfully contain communication within SSMP nodes resulting in frequent

inter-SSMP communication.

As in the original version of Water-Kernel-NS, most of the multigrain potential is

captured at reasonable SSMP node sizes: 88% of the multigrain potential is achieved by

an SSMP node size of 8 processors on a 128-processor DSSMP, and 94% of the multigrain

potential is achieved by an SSMP node size of 16 processors on a 512-processor DSSMP.

Again, as in the original version of Water-Kernel-NS, this result implies that DSSMPs

can be built from small-scale multiprocessors.

Overall, the scaling results on the tiled version of Water-Kernel-NS are extremely

encouraging. As the speedup numbers in Table 7.5 indicate, the tiled version of Water-

7.2. SCALABILITY STUDY 177

||0

|40

|80

|120

|160

|200

|240

|280

|320

 Cluster Size

 E
xe

cu
tio

n
T

im
e

(M
cy

cl
es

)

1 2 4 8 16 32 64 128 256 512

Multigrain Potential: 223%
Breakup Penalty: 3%

Figure 7.15: Scaling tiled Water-Kernel-NS. 512 Processors.

Kernel-NS achieves very good speedups for small and large machines. At the larger

machines, the speedups are signi�cantly better when SSMP node size is 8 processors

or higher, thus indicating that DSSMPs hold a signi�cant performance advantage over

all-software DSMs. The conclusion for the tiled version of Water-Kernel-NS is that it

exhibits excellent scalability on DSSMPs.

Machine Size and SSMP Node Size Tradeo�

The presentation of the scaling results in the above discussion demonstrates the impact

of scaling both machine size and SSMP node size, but only in an orthogonal fashion.

In this section, we examine the relationship between machine size and SSMP node size

simultaneously. The goal of our evaluation is to expose the tradeo� between machine

size and SSMP node size in building large-scale DSSMPs.

The speedup results reported in Table 7.5 indicate two performance trends: perfor-

mance increases both as machine size is increased for a given SSMP node size, and as

SSMP node size is increased for a given machine size. This suggests that DSSMP ar-

chitects can achieve a desired level of performance by scaling machine resources along

both the machine size and SSMP node size dimensions, either independently, or simul-

taneously. To provide a direct visualization of this two-dimensional scaling, and thereby

enabling the visualization of the tradeo� between machine size and SSMP node size, we

present our model results in a fashion that shows the impact of both machine size and

178 CHAPTER 7. ANALYSIS

32 64 128 256 512

Machine Size

1

2

4

8

16

32

64

128

256

512

C
l
u
s
t
e
r

S
i
z
e

Figure 7.16: Performance-equivalent machines for the original version of Water-Kernel-

NS.

SSMP node size on performance simultaneously.

Figure 7.16 shows a plot of performance-equivalent machines for the original version of

Water-Kernel-NS. The X-axis of Figure 7.16 speci�es the di�erent machine sizes analyzed

using our model, while the Y-axis speci�es the di�erent SSMP node sizes at each machine

size. The plot is bounded from above by a line which intersects all machines composed

from SSMP nodes that are equal in size to the total machine size, i.e. these are the

all-hardware shared memory machines. Machines above this line are unde�ned since it is

impossible to have an SSMP node size that is larger than the total machine size. The plot

is bounded from below by the X-axis which intersects all machines built from uniprocessor

nodes, i.e. these are the all-software shared memory machines. All the machines in the

space between the upper and lower bounds represent DSSMP architectures. In addition,

points have been placed in the plot to indicate those machines in the machine space

for which performance has been predicted by our model. Finally, contours have been

drawn through this space of machines to indicate those machines that deliver equivalent

performance on the original version of Water-Kernel-NS. The spacing between contours

has been chosen such that every 2nd contour represents a factor of two in performance,

increasing from the origin to the upper-right corner of the plot.

By tracing the machines intersected by each contour, it is possible to identify di�erent

shared memory architectures that achieve the same level of performance. For instance,

the plot shows that a 128-processor all-hardware DSM is approximately equivalent in

7.2. SCALABILITY STUDY 179

32 64 128 256 512

Machine Size

1

2

4

8

16

32

64

128

256

512

C
l
u
s
t
e
r

S
i
z
e

Figure 7.17: Performance-equivalent machines for the tiled version of Water-Kernel-NS.

performance to a 256-processor DSSMP built from SSMPs that are of size 16 processors

each. These two machines are also equivalent in performance to a 512-processor DSSMP

built from SSMPs that have an SSMP node size of 2 processors each. Similar compar-

isons can be made between architectures along other contours, i.e. at di�erent levels of

performance.

The contours in Figure 7.16 are diagonal, sloping from the upper-left corner to the

lower-right corner of the plot. The slope of the contours, which will vary from application

to application, determines the relationship between machine size and SSMP node size for

that application. A steeper slope indicates that performance at a given machine size is

less sensitive to SSMP node size. Applications with steep contours permit DSSMPs built

from small-scale SSMPs to be competitive with all-hardware shared memory systems of

the same size (in total processors). Applications with less steep contours require DSSMPs

built from small-scale SSMPs to have a larger total processor count as compared against

an all-hardware DSM of the same performance level. The slope of the contours for Water-

Kernel-NS indicate that a factor of two increase in machine size is roughly equivalent to

a factor of eight reduction in SSMP node size.

Figure 7.17 shows the performance-equivalent machines for the tiled version of Water-

Kernel-NS. The e�ect of the tiling transformation, which improves the data locality

exhibited by Water-Kernel-NS, is to steepen the slope of the contours. This re
ects the

result we have already seen: the loop tiling transformation makes DSSMPs built from

small-scale SSMPs competitive in absolute performance with all-hardware DSMs of the

180 CHAPTER 7. ANALYSIS

same size. The contours in Figure 7.17 indicate that DSSMPs with SSMP node sizes as

small as 8 or 16 processors closely match the performance of all-hardware DSMs at every

machine size studied. Note, however, that below an SSMP node size of 8, especially for

the larger machine sizes, the slope of the contours become less steep thus indicating that

the scalability of performance tapers o� at the smallest SSMP nodes. We conclude that

even for applications with good locality, the scalability of all-software shared memory

systems does not match that provided by DSSMPs built with small-scale SSMPs.

Chapter 8

Related Work

This chapter discusses related work in three parts. First, we discuss the impact of tra-

ditional software distributed shared memory systems on the MGS system in Section 8.1.

Second, we discuss in Section 8.2 systems that, like MGS, employ multiple granularities

for the coherence unit. Finally, we discuss other distributed shared memory systems that

leverage SMPs as DSM nodes.

8.1 Page-Based Shared Memory

The initial idea to implement shared memory using a shared virtual address space thus

enabling the construction of DSMs using commodity nodes originated from Kai Li's Ph.D.

work [48]. Since then, several page-based software DSM systems have been proposed,

many of which have been discussed and cited in Chapter 2.

MGS heavily leverages the body of work on software DSMs since MGS uses the same

mechanisms proposed for traditional software DSM systems to provide shared memory

across SSMPs. The system that has had the most impact on the design of MGS by far is

Munin [13]. MGS borrows directly from Munin the use of delayed coherence to minimize

communication using the Delayed Update Queue structure, and the implementation of

multiple writers to reduce false sharing via twinning and di�ng (see Section 2.2.2 of

Chapter 2 for details on these mechanisms).

MGS borrows the delayed coherence and multiple-writer mechanisms from Munin

because they provide good performance and because their implementation is relatively

straight forward. Better software DSM performance is possible using a slightly more com-

plex implementation of release consistency known as Lazy Release Consistency (LRC) [37]

which has been implemented in the Treadmarks system [36]. LRC reduces the number

of inter-node messages by further delaying when coherence happens. In Munin (and

thus MGS), coherence is enforced eagerly at every release point where data is produced.

Enforcing coherence at the producer is pessimistic and may result in unnecessary com-

munication. LRC delays coherence until the acquire point where data is consumed. By

waiting until the acquire point, the software DSM layer can provide a coherent view of

data only to those processors which have the potential to use the data.

181

182 CHAPTER 8. RELATED WORK

An implementation of MGS that uses LRC rather than the mechanisms from Munin

would achieve higher performance. However, we do not expect such an implementation to

make a qualitative change to the conclusions of this thesis. Regardless of the implemen-

tation of software DSM, it remains that software mechanisms are much more expensive

than hardware mechanisms. Therefore, the major conclusions of this thesis hold. For

instance, in an LRC-based implementation of MGS, it would still be necessary to have a

Single-Writer-like mechanism that would remove all software coherence management on

pages that exhibit single-writer sharing in order to deliver hardware levels of performance.

Also, we still expect the di�cult applications in Chapter 6 to exhibit the same qualita-

tive results on an LRC-based MGS (i.e. large multigrain potentials and large breakup

penalties), and we still expect the transformations identi�ed for those applications to

have the same order-of-magnitude performance impacts because they eliminate most of

the software DSM overheads.

8.2 Multigrain Systems

In this section, we discuss the shared memory systems that have proposed using multiple

granularities to support coherence. Of all the related work covered in this chapter, these

systems have the most in common with MGS.

Coupling hardware cache-coherent shared memory with software page-based shared

memory was �rst suggested in [16]. Their work investigates the performance of a system

with up to 64 processors built using 8-way SMPs connected across an ATM network. Soft-

ware shared memory between SMPs is provided using the LRC protocol. The evaluation

is simulation based in which a very simple machine model was employed. The simulation

treats all the processors in the same SMP as a single DSM node. Therefore, none of the

design nor performance issues associated with integrating hardware and software shared

memory were explored.

The system with the greatest similarity to MGS is SoftFLASH from Stanford [22].

SoftFLASH is a multigrain shared memory system implemented on a cluster of SGI

Challenge SMPs connected across a switched HIPPI high-speed LAN. SoftFLASH im-

plements a page-based version of the FLASH multiprocessor [44] coherence protocol; the

page-based software DSM layer is integrated into the Irix 6.2 Unix kernel.

Several di�erences distinguish the SoftFLASH work from our work. First, unlike MGS

which uses an experimental platform to evaluate multigrain shared memory, SoftFLASH

is built on a commercial system and thus explores many interesting issues associated with

the implementation of multigrain shared memory on top of an industry-grade operating

system. One �nding is that TLB consistency is expensive due to the high cost of synchro-

nizing multiple processors through the Irix kernel. For SoftFLASH, a TLB consistency

operation takes approximately 350 �sec on a 12-way SMP. On MGS, TLB consistency is

much faster because the use of software virtual memory allows invalidation of mapping

8.2. MULTIGRAIN SYSTEMS 183

state through shared memory operations1. In general, such e�cient management of map-

ping state is possible only if address translation is performed in software (see discussion

on Shasta below).

Another �nding in SoftFLASH is that limited inter-node network bandwidth can neg-

atively impact performance. In SoftFLASH, the available bandwidth between processors

in each SMP and the external network is �xed even when the number of processors in

the SMP is scaled. In MGS, as the SSMP node size is scaled, the available inter-SSMP

communication bandwidth increases as the square root of the SSMP node size, an artifact

of our virtual clustering methodology implemented on top of Alewife's two-dimensional

mesh topology. MGS also places a lower demand on inter-SSMP communication band-

width since it uses a smaller page size, 1 K-bytes compared to the 16 K-byte pages used

in SoftFLASH. The observations on inter-node bandwidth made in SoftFLASH point

to the importance of providing scalable communications interfaces for DSSMPs. [34]

proposes a scalable inter-SSMP communication interface for MGS that uses standard

Internet protocols, and studies the e�ects of contention in the communication processors

that run the communication protocol stacks.

Finally, the e�ects of false sharing are greater in SoftFLASH than in MGS for two

reasons. First, SoftFLASH implements a single-writer protocol whereas MGS supports

multiple writers via twinning and di�ng. We have found that supporting multiple writ-

ers is important to reduce inter-SSMP communication. Second, as was stated above,

SoftFLASH uses larger pages than MGS. As Section 6.5.2 of Chapter 6 showed, large

page sizes can have a negative impact on performance for those applications that are

vulnerable to false sharing.

MGS is also very similar in architecture to the system studied in [50]. In this work,

a 16-processor system con�gured using 4-way SMPs over an ATM network is simulated.

The authors study the e�ectiveness of prefetching techniques to hide the large latencies

associated with paging between SMP nodes. They propose a prefetching technique tai-

lored for software DSM systems, called \history prefetching," which uses dynamic access

and synchronization information to predict future accesses. Therefore, this approach

deals with the high cost of software page-based shared memory by trying to tolerate

latency. In contrast, MGS leverages the hardware shared memory mechanisms within

each SSMP node as much as possible to reduce latency. Successful containment of com-

munication within SSMP nodes also allows MGS to support the di�cult communication

requirements of �ne-grain applications.

In addition to the mixed hardware and software shared memory systems described

thus far, there have been all-software systems that support multiple coherence granular-

ities as well. Two examples of such software-only multigrain systems are CRL [35] and

Shasta [57]. We �rst describe CRL, then Shasta.

CRL is a software-only implementation of shared memory that exports a regions pro-

1Even if we were to implement TLB consistency using interrupts, the implementation would still be
far more e�cient due to the support for fast interrupts on Alewife.

184 CHAPTER 8. RELATED WORK

gramming interface2. A region is a programmer-de�ned block of memory that the shared

memory layer uses to enforce coherence3. Multi-granular sharing occurs since the pro-

grammer is free to de�ne di�erent region sizes on a per data structure basis. Along with

de�ning regions, the programmer also delimits accesses performed on region data. The

shared memory layer uses these application-level annotations to bundle synchronization

along with data delivery. CRL provides two advantages over conventional all-software

systems. First, because the coherence unit can be tailored to the access patterns of an

application, CRL eliminates false sharing communication. Second, the bundling of syn-

chronization along with data prevents ine�cient ping-pong sharing patterns that arise

when there is simultaneous true sharing. CRL enjoys these advantages because the pro-

grammer or compiler explicitly provides granularity and synchronization information to

the shared memory layer through program annotations. MGS is distinct from CRL in

that it works on unmodi�ed programs.

Since CRL was implemented on the same experimental platform4, Alewife, and since

many of the same benchmarks that were used in this thesis were studied on CRL, a

comparison between CRL and MGS performance is meaningful in that it represents a true

\apples-to-apples" comparison. Overall, CRL performance is impressive. For the Water

and Barnes-Hut applications, the software-only CRL system was able to come within

15% and 12%, respectively, of Alewife performance on a 32-node machine. For the same

applications on MGS (in their unmodi�ed form), performance does not compare nearly

as favorably. MGS is 159% and 191% worse on Water and Barnes-Hut, respectively, than

native Alewife performance. However, with the application transformations described in

Section 6.4 in Chapter 6, the comparison is much closer. The discrepancies between

MGS and Alewife performance drop to 24.5% and 12.6%, respectively. CRL achieves

slightly better performance in the case of Water, but performance is matched in the case

of Barnes-Hut.

While the two systems are quite similar in the performance they deliver, a comparison

of the CRL and MGS design philosophies uncover signi�cant di�erences. The primary

issue on which the two systems di�er is how to treat the programming model. In CRL,

the programming model is designed with performance in mind since the programmer

deals with both correctness and performance simultaneously when developing applica-

tions using the regions abstraction. This encourages programming disciplines that lead

to high performance. MGS decouples programming from performance since programmers

on the MGS system can choose to ignore performance when developing correct programs.

However, to achieve CRL-like performance on MGS, the programmer must observe the

locality issues that were addressed in Chapter 6. One bene�t of a decoupled approach

2In addition to CRL, another system that supports the regions abstraction is described in [56].
3The use of application-speci�c data layout information by the shared memory layer is similar to

what is supported under Entry Consistency as implemented by the Midway distributed shared memory
system [7].

4The Alewife implementation of CRL only uses the e�cient communication interfaces provided by
Alewife. Alewife's hardware support for shared memory was purposefully bypassed to measure the
discrepancy in performance when shared memory mechanisms are provided in software only.

8.2. MULTIGRAIN SYSTEMS 185

is that for applications where performance doesn't matter, it may be feasible to ignore

locality thus requiring less e�ort (unmodi�ed shared memory programmers will run cor-

rectly on MGS). For those applications where performance does matter, programmer or

compiler e�ort can be focused on portions of the application that are performance crit-

ical. Considering the relative di�culty in programming for a regions abstraction versus

performing program transformations like the ones identi�ed in Section 6.4 is interesting,

but one that is di�cult to evaluate due to its subjectivity.

Finally, while both CRL and MGS are concerned about scalability, MGS in addition

addresses commoditization. A CRL system requires tight coupling between all its nodes

since providing e�cient communications interfaces monolithically is crucial for perfor-

mance. MGS tries to tolerate loose coupling by using tight coupling in a local fashion

thus permitting commodity interfaces between groups of tightly-coupled processors.

Shasta is another software-only shared memory system that supports multi-granular

sharing; however, its approach is quite di�erent from CRL. Instead of embedding the

notion of granularity in the programming model as is done in CRL, Shasta tries to auto-

matically detect the natural sharing granularity in an application through the compiler,

and then convey this granularity information to a software shared memory layer so that

a customized coherence unit can be used on a per data structure basis. A variable coher-

ence unit is enabled by employing software address translation and protection checking

and allowing the compiler to control the size of each memory mapping5. Shasta proposes

several compiler optimizations that reduce the cost of software translation and checking

code so that �ne-grain access control can be supported e�ciently. In [57], the authors

report translation and checking overheads in the range of 5% { 35% (compare to 50% {

100% for MGS, with one application exceeding 100%).

Like Shasta, MGS supports software address translation as well, but for a di�erent

purpose{to remedy the lack of hardware support for virtual memory in Alewife. However,

Shasta suggests that software virtual memory is a feasible approach, even in a produc-

tion system. Using software instrumentation for translation and checking in a production

DSSMP is attractive, and can solve two practical problems. First, it can allow a smaller

coherence unit (even a variable-sized coherence unit as is done in Shasta) between SSMPs

on platforms that cannot support small pages. The importance of using smaller pages to

reduce false sharing was demonstrated in Section 6.5.2 of Chapter 6. Second, the soft-

ware instrumentation code can be extended to also perform TLB consistency. This can

address the high cost of TLB consistency mechanisms in production operating systems

(see SoftFLASH discussion above). For instance, Shasta performs TLB invalidation by

polling in software for TLB invalidation events, thus removing the need to synchronize

processors through the kernel each time TLB consistency is required.

5The general approach of using software address translation and checking in Shasta resembles the
Blizzard-S work [59].

186 CHAPTER 8. RELATED WORK

8.3 Fine-Grained SMP Clusters

Building scalable shared memory systems using SMPs has become an area of increas-

ing interest in the most recent years due to the commoditization of the SMP architec-

ture. SoftFLASH and MGS are examples of such systems that support both a �ne-grain

(cache-line) and coarse-grain (page) coherence unit. In contrast, several systems recently

proposed have also adopted SMPs as DSM building blocks, but support �ne-grain trans-

fers between SMP nodes. Such �ne-grained SMP clusters have the potential to o�er

higher performance than multigrain systems like SoftFLASH and MGS since they o�er

more e�cient inter-SMP communication mechanisms, but they require some additional

special-purpose hardware to support the �ne-grain transfers.

One approach to building �ne-grained SMP clusters is to build hardware support

for �ne-grain transfers in the network interface (NI) to the SMP. The DEC Memory

Channel [26] and the SHRIMP network interface [10] are examples of such \intelligent"

NIs. These network interfaces support �ne-grain communication between workstations

by providing a remote write mechanism between host memories. Special transmit and re-

ceive regions can be de�ned to the network interface in each host's address space. Writes

performed to transmit regions are sent through the network interface and appear in the

corresponding receive regions on remote workstations, all in hardware. While the NI

hardware supports transfers, it doesn't maintain coherence between the regions. There-

fore, a coherence protocol, in software, is still necessary to enforce coherence, but the

protocol can leverage the remote write mechanism as an e�cient �ne-grain messaging

facility. Examples of SMP clusters that use �ne-grain NI-based communication are [40]

and [8]. [40] describes a 32-node cluster of 4-way DEC AlphaServer SMPs connected

by the Memory Channel network. They implement two software coherence protocols,

the Cashmere [62] protocol and the Treadmarks [36] protocol, and compare their per-

formance. [8] describes a 16-node cluster of 4-way PC-based SMPs connected by the

SHRIMP network interface. Coherence is provided by the AURC [30] protocol.

A �ne-grained SMP cluster with even less hardware than the intelligent NI approach

described above is the Wisconsin COW [58]. This system is comprised of 40 dual-

processor Sun SPARCStation 20s connected across a Myrinet network [11]. The COW

uses less hardware than the NI-based approaches because transfers between SMPs (in ad-

dition to coherence) are o�-loaded onto one of the processors on the host SMP. Fine-grain

transfers are enabled by a small piece of checking hardware, called the Typhoon-0 board.

This checking hardware sits on the memory bus of each SMP, snooping for transactions

that cause access violations. Tags are maintained in the Typhoon-0 hardware to allow

access control at cache-line granularity. Once a violation is detected, the checking hard-

ware traps one of the host processors to service the violation in software. The coherence

protocol handlers are implemented at user level; therefore, applications can link against

a library of common protocols, or provide a protocol that is tailored to the application

for higher performance [53].

Fine-grained SMP clusters o�er an interesting alternative to multigrain systems. Like

multigrain systems, they represent an intermediate architecture between traditional all-

8.3. FINE-GRAINED SMP CLUSTERS 187

software and all-hardware DSMs. Because they leverage some additional special-purpose

hardware, they are slightly more costly than DSSMPs, but the use of such minimal

hardware allows them to support communication between SMP nodes more e�ciently.

However, even with hardware support, communication between processors on separate

SMPs will remain more costly than communication between colocated processors, so we

expect many of the same locality issues addressed in this thesis will apply to �ne-grained

SMP clusters.

188 CHAPTER 8. RELATED WORK

Chapter 9

Conclusion

This thesis addresses the tension between cost and performance in the design of scalable

shared memory multiprocessors. The crux of the thesis lies in the observation that tradi-

tional shared memory systems, i.e. �ne-grain hardware cache-coherent and coarse-grain

software page-based architectures, cannot e�ectively address both cost and performance

because of their monolithic construction.

Hardware cache-coherent distributed shared memory architectures are designed to

deliver scalable high performance across a wide range of applications. However, the

e�cient shared memory interfaces they provide come at the cost of tight coupling between

all processing elements. As system size is scaled for higher performance, such tight

coupling becomes di�cult to maintain in a cost-e�cient manner. On the other hand,

software page-based shared memory architectures abandon �ne-grain support in favor of

less costly coarse-grain mechanisms. Because coarse-grain mechanisms don't support the

same aggressive interfaces as �ne-grain mechanisms, they do not require special-purpose

hardware. Instead, these systems can leverage commodity communications interfaces

and support shared memory purely in software, leading to highly cost-e�ective designs.

Unfortunately, the lack of e�cient shared memory interfaces means that coarse-grain

architectures cannot support �ne-grain applications.

This thesis responds to the high cost of hardware cache-coherent architectures and

the low performance of software page-based architectures by proposing a new way to

construct large-scale shared memory multiprocessors: couple multiple small- to medium-

scale parallel workstations using page-based software shared memory techniques. Our

approach synthesizes a single transparent shared memory layer through the cooperation

of both �ne-grain and coarse-grain shared memory mechanisms.

This multigrain approach to building systems strives to meet the goals of both scalable

performance and cost-e�ective design. By leveraging the small- to medium-scale shared

memory multiprocessor, or SSMP, large-scale systems inherit the performance and cost

bene�ts o�ered by SSMPs. SSMPs are equipped with hardware shared memory interfaces

that can e�ciently support �ne-grain sharing. However, because the SSMP is designed

for smaller-scale con�gurations, the �ne-grain interfaces do not present the same engi-

neering challenges of providing tight coupling across a large-scale machine. Furthermore,

189

190 CHAPTER 9. CONCLUSION

SSMPs are commodity systems because there is a high-volume demand for smaller-scale

multiprocessors in the server market. The commodity status of SSMPs makes them

extremely cost-e�ective components.

The e�ectiveness of multigrain architectures has been thoroughly evaluated in this

thesis. An in-depth study of several applications along with a detailed mathematical

analysis of system behavior has produced a body of scienti�c evidence characterizing the

performance of these systems. In the rest of this chapter, we present several conclu-

sions regarding the e�ectiveness of multigrain architectures based on this experimental

and analytic evidence. Our conclusions can be divided into four categories: application

performance, 1.1{1.3, program optimization, 2.1{2.3, SSMP node size, 3, and analytic

techniques, 4.

Conclusion 1.1: Applications that exhibit coarse-grain sharing are insensitive

to the underlying implementation of shared memory.

Our experimental study revealed four applications that we categorize as \Easy" ap-

plications. All of these applications exhibit coarse-grain sharing patterns. We �nd that

these applications achieve good performance regardless of the underlying mechanisms for

shared memory provided by the system. In terms of our performance framework, we

observe a
at performance pro�le as SSMP node size is varied, resulting in a very small

multigrain potential and breakup penalty. While it is assuring that these applications

perform well, they are uninteresting from a systems evaluation standpoint given that

their system needs can be so easily met.

Conclusion 1.2: Applications that exhibit �ne-grain sharing bene�t from the

�ne-grain mechanisms supported by multigrain architectures. As a result,

DSSMPs provide signi�cantly higher performance on these �ne-grain applica-

tions as compared to conventional software DSM architectures.

Multigrain architectures are e�ective at supporting some of the �ne-grain sharing

exhibited by applications with more demanding communications requirements, i.e. ap-

plications in what we call the \Challenging" and \Pathologic" categories. The four

applications from our experimental study that exhibit �ne-grain sharing all demonstrate

signi�cant performance improvements on multigrain architectures as compared to all-

software architectures. The experimental evidence shows these applications perform up

to 61% to 88% faster (i.e. the multigrain potential ranges from 61% to 88%) when they

are provided some hardware-supported shared memory. This empirical evidence is cor-

roborated by our analytic evaluation which predicts for one of the �ne-grain applications

that the multigrain potential is still signi�cant, over 170%, as total machine size is scaled

to 512 processors. The strong evidence showing a performance advantage on multigrain

architectures as compared to all-software systems allows us to conclude that SSMPs are by

far better building blocks than uniprocessor workstations for large-scale multiprocessors.

Conclusion 1.3: Fine-grain sharing patterns that extend across the entire

machine cannot be supported e�ciently by the software mechanisms between

191

SSMPs in multigrain architectures. On applications that exhibit such global

�ne-grain sharing, all-hardware architectures hold a signi�cant performance

advantage over multigrain architectures.

Unfortunately, the comparison of multigrain architectures with all-hardware systems

is less favorable than with all-software systems on the �ne-grain applications in our study.

Our experimental study shows that hardware cache-coherent machines perform 159% to

1014% faster (i.e. the breakup penalty ranges from 159% to 1014%) than multigrain

architectures on these di�cult applications. Our analysis corroborates the performance

advantage for all-hardware systems at large machine sizes, predicting a 70% and 91%

breakup penalty on the one application we analyzed for 128- and 512-processor systems.

While the performance advantage of multigrain architectures over all-software architec-

tures suggests that some �ne-grain sharing is captured by e�cient mechanisms within

SSMP nodes, the performance discrepancy between multigrain architectures and all-

hardware systems indicates that these applications have signi�cant amounts of �ne-grain

sharing that span the entire machine. Since multigrain systems only provide �ne-grain

support locally within SSMPs, this global �ne-grain sharing cannot be handled e�ciently.

Besides lower performance relative to all-hardware systems, another consequence of

the large breakup penalties is that absolute speedup achieved on multigrain systems

for these di�cult applications is signi�cantly lower than what can be achieved on all-

hardware systems. We observe almost no speedup for the \Pathologic" applications, and

only modest speedups for the \Challenging" applications (up to 10.4 for Water and up to

4.6 for Barnes-Hut on a 32-processor DSSMP). The poor performance observed for the

applications in the \Pathologic" category leads us to conclude that these applications, in

their unmodi�ed form, cannot be supported on multigrain systems (see discussion below

on application transformations). For the applications in the \Challenging" category, we

conclude that multigrain architectures can deliver acceptable levels of performance.

The results of the analytic study strongly suggest that the modest levels of per-

formance achieved on \Challenging" applications allow multigrain architectures to be

competitive in cost-performance to all-hardware systems. Our analysis indicates that

large multigrain architectures can provide signi�cant speedups on the Water-Kernel-NS

workload, even though they are not linear. For instance, the model predicts that 16

16-way SSMPs achieve a speedup of approximately 92. To match this performance level,

an all-hardware system requires 128 processors. Whether the multigrain system is more

favorable than the all-hardware system of equivalent performance depends on the rela-

tive costs of the two architectures. Overall, our analysis shows that for Water-Kernel-NS,

an increase in total machine size by a factor of 2 allows a decrease in SSMP node size

by a factor of 8. Architects of large-scale shared memory machines can combine such

equivalent performance information with cost information for a target technology. Do-

ing so allows an architect to trade o� machine size and SSMP node size to position an

architecture at a desirable cost-performance point.

Conclusion 2.1: Global �ne-grain sharing can be localized through program

transformations that increase data locality. Such transformations yield signif-

192 CHAPTER 9. CONCLUSION

icant performance improvements on multigrain architectures. Most notably,

they allow multigrain systems to be competitive in absolute performance with

all-hardware systems.

As we observed above, applications that exhibit �ne-grain sharing tend to do so in a

global fashion. In these instances, we �nd that �ne-grain sharing can be con�ned within

SSMP nodes through program transformations that enhance data locality. Such trans-

formations allow applications with demanding communications requirements to better

leverage the �ne-grain shared memory mechanisms provided by multigrain systems. The

data locality transformations have a dramatic impact on performance for applications in

both the \Challenging" and \Pathologic" categories. In fact, the improvements in per-

formance are so dramatic that they allow multigrain architectures to become competitive

with all-hardware systems in terms of absolute performance. When the transformations

are applied, both of the \Challenging" applications and one of the \Pathologic" appli-

cations exhibit breakup penalties inside 40%. TSP, the other \Pathologic" application,

has a moderate breakup penalty of 66%.

Conclusion 2.2: Even with the data locality transformations, it is still impor-

tant to provide �ne-grain shared memory mechanisms.

Even after the data locality transformations have been applied, multigrain architec-

tures still hold a signi�cant performance advantage over all-software systems. Appli-

cations in the \Challenging" category maintain similar multigrain potentials as before

the transformations were applied (58% for Water, and 81% for Barnes-Hut), and applica-

tions in the \Pathologic" category exhibit enormous multigrain potentials (282% for TSP

and 812% for Unstructured). This result leads to the interesting conclusion that there

is something fundamental about the nature of �ne-grain sharing in these applications.

We �nd that while transformations can signi�cantly reduce the amount of �ne-grain

sharing, the transformations do not eliminate �ne-grain sharing; instead, they limit the

extent to which �ne-grain sharing occurs across the machine so that it can be contained

within SSMP nodes. Therefore, supporting such applications e�ciently requires �ne-

grain shared memory mechanisms even when programming or compiler e�ort is applied

to increase locality.

We recognize that it is almost always possible to improve the performance of applica-

tions by expending large amounts of programming e�ort. Any conclusions drawn based

on the transformation studies must also consider each transformation's implementation

e�ort. This leads to our next conclusion.

Conclusion 2.3: Most of the transformations encountered in our study are

simple. We believe they are within the capabilities of current-day optimizing

compilers or moderately-skilled programmers.

Of the four applications studied in Section 6.4.2 of Chapter 6, we consider three

of the applications to require transformations that have been commonly performed for

193

shared memory machines. Water-Kernel received a loop tiling transformation that is

similar to loop tiling already performed by existing optimizing compilers. Barnes-Hut

and TSP require transformations that address hot-spotting on a small number of shared

data structures. While we do not know of existing automatic techniques for these trans-

formations, the code modi�cations are simple. Arguably, they can be viewed as \�xes" to

poor parallel programming discipline in the original codes, and in fact, one of the trans-

formations we perform appears almost exactly in a later release of the Barnes-Hut code

by its authors (which in fact, we discovered retroactively). In addition to the contention-

relieving transformation, Barnes-Hut also received another transformation that addresses

false sharing. The false sharing transformation we perform resembles a transformation

that exists in a current compiler. The last application, Unstructured-Kernel, is by far

the most di�cult to tune because the sharing patterns are dynamic, irregular, and highly

data-dependent. While our transformations for Unstructured-Kernel achieve extremely

good performance, we do not consider them within the bounds of \reasonable program-

ming e�ort." Certainly, they cannot be implemented using compilation techniques.

Overall, the conclusions regarding our program optimization experiences elude to a

tradeo� between system cost and performance resilience. One view of multigrain architec-

tures is that they have an equivalent performance potential as all-hardware cache-coherent

shared memory systems on di�cult �ne-grain applications. When �ne-grain sharing in

di�cult applications is clustered, the multigrain architecture can match the all-hardware

architecture in absolute performance. The same cannot be said about all-software archi-

tectures which lack the �ne-grain mechanisms necessary to e�ciently support �ne-grain

applications even when applications exhibit locality. However, the potential for MPP-

like performance on multigrain systems is realized only with some extra programming

or compiler e�ort. All-hardware systems don't require this extra e�ort because they are

more resilient to applications that exhibit poor locality. In return for a lower resilience

to poor locality, multigrain architectures provide scalable cost, an advantage they hold

over all-hardware architectures.

Conclusion 3: Most of the multigrain potential can be achieved by small SSMP

nodes, for example 8 or 16 processors, implying that e�ective multigrain sys-

tems can be constructed from small-scale multiprocessor nodes.

The multigrain approach espouses building large-scale systems by building tightly

coupled mechanisms in hardware to the extent that cost remains reasonable, then re-

sorting to software mechanisms to provide scaling beyond that point in a cost-e�ective

manner. While this provides an upper bound on SSMP node size constrained by cost, de-

ciding on the actual SSMP node size also requires considering a lower bound, constrained

by performance.

For most of the applications in the \Challenging" and \Pathologic" categories (in

which clustering actually matters), much of the multigrain potential is achieved at SSMP

node sizes of 4 and 8. For the original versions of Water, TSP, and Unstructured, between

60% and 70% of the multigrain potential is achieved by an SSMP node size of 4, and

194 CHAPTER 9. CONCLUSION

between 80% and 90% by an SSMP node size of 8. Barnes-Hut requires larger SSMP

node sizes as only 59% of the multigrain potential is achieved by an SSMP node size of 8.

Even greater performance is observed at small SSMP nodes for the transformed versions

of the applications. Water-Kernel, TSP, and Unstructured-Kernel achieve between 80%

and 90% of the multigrain potential by an SSMP node size of 4, and between 90% and

100% by an SSMP node size of 8. Again, Barnes-Hut requires larger SSMP nodes as only

60% of the multigrain potential is achieved by an SSMP node size of 8.

The results provided by the experimental study are encouraging, however, they only

represent performance on a small machine, 32 processors. Our analytic study provides

insight into the impact of SSMP node size on larger systems. Similar results were found

for the one application we studied, Water-Kernel-NS. For the original version of Water-

Kernel-NS, 84% of the multigrain potential is achieved at an SSMP node size of 8 proces-

sors on a 128-processor DSSMP, and 72% at an SSMP node size of 16 on a 512-processor

DSSMP. The results for the tiled version of Water-Kernel-NS are even more encouraging

(88% and 94%, respectively). Since our analysis only considers one application, further

study is needed on more applications to provide conclusive results for large machines;

nevertheless, initial indications are that small SSMP nodes are adequate for building

high-performance DSSMPs.

The last conclusion relates to our experiences with analysis on multigrain architec-

tures.

Conclusion 4: Synchronization analysis can accurately predict performance

on software shared memory systems.

The analytic work presented in this thesis provides important insight into how large

DSSMPs will perform, and how SSMP node size scales with increasing total machine

size. These byproducts of the analysis work have been discussed throughout this con-

clusion chapter. An equally important contribution of the analysis work, and one with

implications that reach beyond the results of this thesis, is the general notion of using

synchronization analysis to reason about the performance of software shared memory

systems.

The agreement between our model predictions and measured results suggests that syn-

chronization analysis can accurately predict performance on multigrain systems. Granted,

our analytic study only looks at a single application; more evidence is necessary before

we can be completely con�dent that the approach is robust. Nevertheless, the experi-

ence we have with synchronization analysis in this thesis is promising. In addition to

showing agreement on more applications, the overall success of synchronization analy-

sis also depends on the ability to generalize the approach. The idea of synchronization

analysis itself is general; however, there were many instances where for expediency, we

special-cased the analysis for the application at hand. For instance, the interleave anal-

ysis presented in Section 7.2.1 of Chapter 7 is applicable only to the Water code. It is

not di�cult to imagine a more general analysis that could apply to any loop nest.

We believe that with further research, synchronization analysis can become an impor-

tant tool for both multigrain systems and software shared memory systems in general.

195

Synchronization analysis can be used as a methodology for studying scalability, as was

done in this thesis. It can also be integrated into optimizing compilers to evaluate the

e�cacy of di�erent locality transformations. Finally, it could be used by a performance

analysis tool that gives feedback to programmers of multigrain systems so that perfor-

mance bottlenecks can be identi�ed quickly.

196 CHAPTER 9. CONCLUSION

Bibliography

[1] Sarita V. Adve and Mark D. Hill. Weak Ordering - A New De�nition. In Proceedings

of the 17th Annual International Symposium on Computer Architecture, pages 2{14,

New York, June 1990.

[2] Anant Agarwal, Johnathan Babb, David Chaiken, Godfrey D'Souza, Kirk Johnson,

David Kranz, John Kubiatowicz, Beng-Hong Lim, Gino Maa, Ken Mackenzie, Dan

Nussbaum, Mike Parkin, and Donald Yeung. Sparcle: Today's Micro for Tomorrow's

Multiprocessor. In HOTCHIPS, August 1992.

[3] Anant Agarwal, Richard Simoni, John Hennessy, and Mark Horowitz. An Evaluation

of Directory Schemes for Cache Coherence. In Proceedings of the 15th International

Symposium on Computer Architecture, pages 280{289, Honolulu, HI, June 1988.

IEEE.

[4] Jennifer M. Anderson and Monica S. Lam. Global Optimizations for Parallelism and

Locality on Scalable Parallel Machines. In Proceedings of SIGPLAN '93, Conference

on Programming Languages Design and Implementation, June 1993.

[5] Rajeev Barua, David Kranz, and Anant Agarwal. Addressing Partitioned Arrays in

Distributed Memory Multiprocessors - the Software Virtual Memory Approach. In

Proceedings of the Fifth MIT Student Workshop on Scalable Computing, Wellesley,

MA, July 1995.

[6] Brian N. Bershad and Matthew J. Zekauskas. Midway: Shared Memory Paral-

lel Programming with Entry Consistency for Distributed Memory Multiprocessors.

CMU-CS 91-170, Carnegie Mellon University, September 1991.

[7] Brian N. Bershad, Matthew J. Zekauskas, and Wayne A. Sawdon. The Midway

Distributed Shared Memory System. In Proceedings of the 38th IEEE Computer

Society International Conference, pages 528{537, February 1993.

[8] Angelos Bilas, Liviu Iftode, David Martin, and Jaswinder Pal Singh. Shared Virtual

Memory Across SMP Nodes Using Automatic Update: Protocols and Performance.

Technical Report TR-517-96, Princeton University, 1996.

197

198 BIBLIOGRAPHY

[9] David Black, Richard F. Rashid, David B. Golub, Charles R. Hill, and Robert V.

Baron. Translation Lookaside Bu�er Consistency: A Software Approach. In Proceed-

ings of the 3rd International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 113{122, Boston, MA, April 1989. ACM.

[10] Matthias A. Blumrich, Kai Li, Richard Alpert, Cezary Dubnicki, Edward W. Fel-

ten, and Jonathan Sandberg. Virtual Memory Mapped Network Interface for the

SHRIMP Multicomputer. TR 437-93, Princeton University, November 1993.

[11] Nanette J. Boden, danny Cohen, Robert E. Felderman, Alan E. Kulawik, Charles L.

Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet: A Gigabit-per-Second Local

Area Network. IEEE Micro, 15(1):29{36, February 1995.

[12] Ralph Butler and Ewing Lusk. User's Guide to the p4 Programming System. Tech-

nical Report ANL-92/17, Argonne National Laboratory, October 1992.

[13] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Implementation and

Performance of Munin. In Proceedings of the 13th Annual Symposium on Operating

Systems Principles, pages 152{164, October 1991.

[14] Lucien M. Censier and Paul Feautrier. A New Solution to Coherence Problems

in Multicache Systems. IEEE Transactions on Computers, C-27(12):1112{1118,

December 1978.

[15] David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS Directories: A

Scalable Cache Coherence Scheme. In Fourth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS IV),

pages 224{234. ACM, April 1991.

[16] Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui Lu, Ramakrishnan Raja-

mony, and Willy Zwaenepoel. Software Versus Hardware Shared-Memory Implemen-

tation: A Case Study. In Proceedings of the 21st Annual International Symposium

on Computer Architecture, pages 106{117, Chicago, IL, April 1994.

[17] Alan L. Cox and Robert J. Fowler. The Implementation of a Coherent Memory

Abstraction on a NUMA Multiprocessor: Experiences with PLATINUM. Technical

Report 263, University of Rochester Computer Science Department, May 1989.

[18] William J. Dally. Performance Analysis of k-ary n-cube Interconnection Networks.

IEEE Transactions on Computers, 39(6):775{785, June 1990.

[19] M. Dubois, C. Scheurich, and F. Briggs. Memory Access Bu�ering in Multi-

processors. In Proceedings of the 13th Annual International Symposium on Computer

Architecture, pages 434{442, June 1986.

BIBLIOGRAPHY 199

[20] S. J. Eggers and R. H. Katz. Evaluating the Performance of Four Snooping Cache

Coherency Protocols. In Proceedings of the 16th International Symposium on Com-

puter Architecture, New York, June 1989. IEEE.

[21] Susan J. Eggers and Tor E. Jeremiassen. Eliminating False Sharing. In Proceedings of

the 1991 International Conference on Parallel Processing, pages I{377{I{381, 1991.

[22] Andrew Erlichson, Neal Nuckolls, Greg Chesson, and John Hennessy. SoftFLASH:

Analyzing the Performance of Clustered Distributed Virtual Shared Memory. In

Proceedings of the Seventh ACM Symposium on Architectural Support for Program-

ming Languages and Operating Systems, pages 210{221, Cambridge, Massachusetts,

October 1996. ACM.

[23] Anant Agarwal et. al. The MIT Alewife Machine: Architecture and Performance. In

Proceedings of the 22nd Annual International Symposium on Computer Architecture,

pages 2{13, June 1995.

[24] Charles M. Flaig. Vlsi mesh routing systems. Master's thesis, California Institute

of Technology, Department of Computer Science, California Institute of Technology,

256-80, Pasadena, CA 91125, May 1987.

[25] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hen-

nessy. Memory Consistency and Event Ordering in Scalable Shared-Memory Multi-

processors. In Proceedings 17th Annual International Symposium on Computer Ar-

chitecture, New York, June 1990. IEEE.

[26] R. Gillett. Memory Channel: An Optimized Cluster Interconnect. IEEE Micro,

16(2), February 1996.

[27] Anoop Gupta, John Hennessy, Kourosh Gharachorloo, Todd Mowry, and Wolf-

Dietrich Weber. Comparative Evaluation of Latency Reducing and Tolerating Tech-

niques. In Proceedings of the 18th Annual International Symposium on Computer

Architecture, pages 254{263, May 1991.

[28] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative

Approach. Morgan Kaufmann, San Mateo, California, 1989.

[29] Jerry Huck and Jim Hays. Architectural Support for Translation Table Management

in Large Address Space Machines. Computer Architecture News, pages 39{50, 1993.

[30] L. Iftode, C. Dubnicki, E. W. Felten, and Kai Li. Improving Release-Consistent

Shared Virtual Memory using Automatic Update. In Proceedings of the 2nd IEEE

Symposium on High-Performance Computer Architecture, February 1996.

[31] B. L. Jacob and T. N. Mudge. Software-Manged Address Translation. In Proceedings

of the Third International Symposium on High Performance Computer Architecture,

San Antonio, TX, February 1997. IEEE.

200 BIBLIOGRAPHY

[32] David V. James, Anthony T. Laundrie, Stein Gjessing, and Gurindar S. Sohi.

Distributed-Directory Scheme: Scalable Coherent Interface. IEEE Computer, pages

74{77, June 1990.

[33] Tor E. Jeremiassen and Susan J. Eggers. Reducing False Sharing on Shared Memory

Multiprocessors through Compile Time Data Transformations. In Proceedings of the

Sixth ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming. ACM, July 1995.

[34] Xiaohu Daniel Jiang. A scalable parallel inter-cluster communication system for

clustered multiprocessors. Master's thesis, Massachusetts Institute of Technology,

Department of Computer Science and Electrical Engineering, Massachusetts Insti-

tute of Technology, Cambridge, MA 02139, August 1997.

[35] Kirk Johnson, M. Frans Kaashoek, and Deborah A. Wallach. CRL: High-

Performance All-Software Distributed Shared Memory. In Proceedings of the 15th

ACM Symposium on Operating Systems Principles, Copper Mountain, Colorado,

December 1995.

[36] Pete Keleher, Alan Cox, Sandhya Dwarkadas, and Willy Zwaenepoel. TreadMarks:

Distributed Shared Memory on Standard Workstations and Operating Systems. Pro-

ceedings of the 1994 Usenix Conference, pages 115{131, January 1994.

[37] Pete Keleher, Alan L. Cox, and Willy Zwaenepoel. Lazy Release Consistency for

Software Distributed Shared Memory. In Proceedings of the 19th Annual Symposium

on Computer Architecture, pages 13{21, Gold Coast, Australia, May 1992.

[38] Kendall Square Research, Inc., 170 Tracer Lane, Waltham, MA 02154. Kendall

Square Research Technical Summary, 1992.

[39] Leonard Kleinrock. Queueing Systems, volume I. John Wiley & Sons, New York,

1975.

[40] Leonidas Kontothanassis, Galen Hunt, Robert Stets, Nikolaos Hardavellas,

Micha lCierniak, Srinivasan Parthasarathy, Wagner Meira, Jr., Sandhya Dwarkadas,

and Michael Scott. VM-Based Shared Memory on Low-Latency, Remote-Memory-

Access Networks. In Proceedings of the 24th Annual International Symposium on

Computer Architecture, pages 157{169, Denver, CO, June 1997.

[41] David Kranz, Kirk Johnson, Anant Agarwal, John Kubiatowicz, and Beng-Hong

Lim. Integrating Message-Passing and Shared-Memory: Early Experience. In Pro-

ceedings of the Fourth ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, pages 54{63, New York, May 1993. ACM.

[42] John Kubiatowicz and Anant Agarwal. Anatomy of a Message in the Alewife Multi-

processor. In Proceedings of the International Supercomputing Conference, Tokyo,

Japan, July 1993.

BIBLIOGRAPHY 201

[43] Kiyoshi Kurihara, David Chaiken, and Anant Agarwal. Latency Tolerance through

Multithreading in Large-Scale Multiprocessors. In Proceedings International Sym-

posium on Shared Memory Multiprocessing, Japan, April 1991. IPS Press.

[44] Je�rey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni, Kourosh

Gharachorloo, John Chapin, David Nakahira, Joel Baxter, Mark Horowitz, Anoop

Gupta, Mendel Rosenblum, and John Hennessy. The Stanford FLASH Multi-

processor. In Proceedings of the 21st Annual International Symposium on Computer

Architecture, Chicago, IL, April 1994. IEEE.

[45] Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Exe-

cutes Multiprocess Programs. IEEE Transactions on Computers, C-28(9), Septem-

ber 1979.

[46] James Laudon and Daniel Lenoski. The SGI Origin: A ccNUMA Highly Scalable

Server. In Proceedings of the 24th Annual International Symposium on Computer

Architecture, pages 241{251, June 1997.

[47] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hennessy,

M. Horowitz, and M. Lam. The Stanford DASH Multiprocessor. IEEE Computer,

25(3):63{79, March 1992.

[48] Kai Li and Paul Hudak. Memory Coherence in Shared Virtual Memory Systems.

ACM Transactions on Computer Systems, 7(4):321{359, November 1989.

[49] Beng-Hong Lim. Parallel C Functions for the Alewife System. Alewife Memo 37,

MIT Laboratory for Computer Science, August 1993.

[50] Magnus Karlsson and Per Stenstr�om. Performance Evaluation of a Cluster-Based

Multiprocessor Built from ATM Switches and Bus-Based Multiprocessor Servers. In

Proceedings of the Second IEEE Symposium on High-Performance Computer Archi-

tecture. IEEE, February 1996.

[51] Todd Mowry and Anoop Gupta. Tolerating Latency Through Software-Controlled

Prefetching in Shared-Memory Multiprocessors. Journal of Parallel and Distributed

Computing, 12(2):87{106, June 1991.

[52] Shubu Mukherjee, Shamik Sharma, Mark Hill, Jim Larus, Anne Rogers, and Joel

Saltz. E�cient Support for Irregular Applications on Distributed-Memory Machines.

In Proceedings of the 5th Annual Symposium on Principles and Practice of Parallel

Programming, pages 68{79. ACM, July 1995.

[53] Steven K. Reinhardt, James R. Larus, and David A. Wood. Tempest and Typhoon:

User-Level Shared Memory. In Proceedings of the 21st Annual International Sym-

posium on Computer Architecture, New York, April 1994. IEEE.

202 BIBLIOGRAPHY

[54] Bryan S. Rosenburg. Low-Synchronization Translation Lookaside Bu�er Consistency

in Large-Scale Shared-Memory Multiprocessors. ACM Operating Systems Review,

23(5):137{146, December 1989.

[55] Joel H. Saltz, Ravi Mirchandaney, and Kay Crowley. Run-Time Parallelization and

Scheduling of Loops. IEEE Transactions on Computers, 40(5):603{612, May 1991.

[56] Harjinder S. Sandhu, Benjamin Gamsa, and Songnian Zhou. The Shared Regions

Approach to Software Cache Coherence on Multiprocessors. In Principles and Prac-

tices of Parallel Programming, 1993, pages 229{238, San Diego, CA, May 1993.

[57] Daniel J. Scales, Kourosh Gharachorloo, and Chandramohan A. Thekkath. Shasta:

A Low Overhead, Software-Only Approach for Supporting Fine-Grain Shared Mem-

ory. In Proceedings of the Seventh International Conference on Architectural Sup-

port for Programming Languages and Operating Systems, pages 174{185, Cambridge,

MA, October 1996. ACM.

[58] Ioannis Schoinas, Babak Falsa�, Mark D. Hill, Jarmes R. Larus, Christopher E.

Lukas, Shubhendu S. Mukherjee, Steven K. Reinhardt, Eric Schnar, and David A.

Wood. Implementing Fine-Grain Distributed Shared Memory on Commodity SMP

Workstations. Technical Report TR-1307, University of Wisconsin-Madison, March

1996.

[59] Ioannis Schoinas, Babak Falsa�, Alvin R. Lebeck, Steven K. Reinhardt, James R.

Larus, and David A. Wood. Fine-grain Access Control for Distributed Shared Mem-

ory. In Sixth International Conference on Architectural Support for Programming

Languages and Operating Systems, October 1994.

[60] Jaswinder Pal Singh, Chris Holt, Takashi Totsuka, Anoop Gupta, and John L. Hen-

nessy. Load Balancing and Data Locality in Hierarchical N-body Methods. Technical

Report CSL-TR-92-505, Stanford University, 1992.

[61] J.P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford Parallel Applications

for Shared-Memory. Technical Report CSL-TR-92-526, Stanford University, June

1992.

[62] Robert Stets, Sandhya Dwarkadas, Nikolaos Hardavellas, Galen Hunt, Leonidas

Kontothanassis, Srinivasan Parthasarathy, and Michael Scott. CASHMERE-2L:

Software Coherent Shared Memory on a Clustered Remote-Write Network. In Pro-

ceedings of the 19th Annual Symposium on Operating Systems Principles, Saint

Malo, France, October 1997.

[63] C. K. Tang. Cache Design in the Tightly Coupled Multiprocessor System. In AFIPS

Conference Proceedings, National Computer Conference, NY, NY, pages 749{753,

June 1976.

BIBLIOGRAPHY 203

[64] Patricia J. Teller and Marc Snir. TLB Consistency on Highly Parallel Shared-

Memory Multiprocessors. In Proceedings of the 21st Annual Hawaii International

Conference on System Sciences, pages 184{193, 1988.

[65] The Ultra Enterprise 1 and 2 Server Architecture. SUN Microsystems. Mountain

View, CA, 1996.

[66] Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels. U-Net: A

User-Level Network Interface for Parallel and Distributed Computing. In Proceedings

of the 15th ACM Symposium on Operating Systems Principles, Copper Mountain,

Colorado, December 1995.

[67] Thorsten von Eicken, David Culler, Seth Goldstein, and Klaus Schauser. Active

Messages: A Mechanism for Integrated Communication and Computation. In 19th

International Symposium on Computer Architecture, May 1992.

[68] W.-D. Weber and A. Gupta. Exploring the Bene�ts of Multiple Hardware Contexts

in a Multiprocessor Architecture: Preliminary Results. In Proceedings of the 16th

Annual International Symposium on Computer Architecture. IEEE, June 1989.

[69] M. E. Wolf and M. S. Lam. A Data Locality Optimizing Algorithm. In Proceedings of

the SIGPLAN Conference on Programming Language Design and Implementation.

ACM, June 1991.

[70] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press, Cambridge,

MA, 1989.

[71] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and

Anoop Gupta. The SPLASH-2 Programs: Characterization and Methodological

Considerations. In Proceedings of the 22nd International Symposium on Computer

Architecture, Santa Margherita Ligure, Italy, June 1995.

[72] Donald Yeung, John Kubiatowicz, and Anant Agarwal. MGS: A Multigrain Shared

Memory System. In Proceedings of the 1996 International Symposium on Computer

Architecture, Philadelphia, May 1996.

204 BIBLIOGRAPHY

Appendix A

MGS Protocol Speci�cation

This Appendix provides a complete, while at the same time compact, speci�cation of

the MGS multigrain shared memory protocol. The original speci�cation for the protocol

appears in [72], an early paper describing the MGS work. The speci�cation provided in

this appendix represents an updated version of that original MGS system.

The speci�cation consists of three parts. First, the state transition diagrams for the

three state machines, Local Client, Remote Client, and Server, described in Section 4.2

of Chapter 4, are presented in Figures A.1, A.2, and A.3, respectively. Second, the state

transition tables for each machine, which annotate the state transition diagrams, appear

in Tables A.1, A.2, and A.3, respectively. Finally, Table A.4 lists all the message types

used in the MGS system.

The state transition tables provide the precondition and postconditions for each tran-

sition in the state transition diagrams. Each table consists of a set of rows where each

row refers to one or more transitions in the corresponding state transition diagram. Each

row is divided into six columns. The column labeled \Arc" provides the identi�cation

number which relates the table entry to a speci�c transition in one of the three state

transition diagrams. The \Event" column shows the event or incoming message type

that triggers the state transition. There are three di�erent types of triggering events:

\RTLBFault," \WTLBFault," and \Release." The �rst two events are TLB faults due

to read and write accesses, respectively. The third event is a release operation emitted

by the application. All other entries in the \Event" column are incoming messages.

Next, the \Precondition" column speci�es all conditions which must hold true in

order for the transition to occur. The column labeled \L" is part of the precondition and

indicates the action taken on the page lock corresponding to the page involved in the

state transition. A \+" signi�es that the lock must be acquired before the precondition

is satis�ed; otherwise, a \-" appears indicating that no lock acquire is necessary. A

second value speci�es the state of the lock after the state transition completes. The

lock is either relinquished or held, denoted by \R" and \H," respectively. Notice that

there are no entries in the \L" column for the Server machine since page locks are for

synchronizing clients only. Finally, the last two columns of the state transition tables

specify the consequences of each state transition. The \Side E�ects" column indicates

205

206 APPENDIX A. MGS PROTOCOL SPECIFICATION

changes to various protocol data structures, and the \Out Message" column speci�es all

the outgoing messages sent after the transition is completed as well as their destinations.

A few words should be mentioned on the notation used throughout several of the

entries in the state transition tables. Italicized identi�ers represent sets of processor IDs.

For instance, tlb dir, read dir, and write dir are all sets whos members are processors

being tracked by the respective directories. The notation < message >) < pid >

denotes that we send < message > to < pid >, while the notation < message >)

< set > denotes that we send < message > to every processor speci�ed in < set >.

j< set >j denotes the number of elements in < set >. < set >{> tail returns < set >

minus the �rst element. \l home" and \g home" denote the ID of the processor that

owns the local physical copy and the home copy of a page, respectively. \pagestate"

refers to the access privilege, and \mapping" refers to the page mapping, for the local

physical copy of the page in question. \src" refers to the processor ID of the sender of

the current incoming message.

2
0
7

IDLE

READ
INV_IN_
PROG

WRITE
INV_IN_
PROG

INV_IN_
PROG

1W

15

23

INV_IN_
PROG

1WGR

16

17

19

20

18

21
22

24

25

26

27

Figure A.2: MGS Protocol state transition

diagram: Remote-Client Machine.

READ WRITE

REL_IN_
PROG

SWRITE

28

32

33

34

35

36

30

29

31

Figure A.3: MGS Protocol state transition

diagram: Server Machine.

TLB_INV TLB_READ

BUSY TLB_WRITE

1

2
4

5

6
7

8

10

11

12

39

13

14

Figure A.1: MGS Protocol state transition

diagram: Local-Client Machine.

208 APPENDIX A. MGS PROTOCOL SPECIFICATION

A
rc

E
v
en
t

P
re
co
n
d
it
io
n

L

S
id
e
E
�
ec
ts

O
u
t
M
es
sa
g
e

1

R
T
L
B
F
a
u
lt

p
a
g
es
ta
te
!=
IN
V

+
/
R

m
a
p
p
in
g
!

T
L
B
,
tl
b
d
ir
=
tl
b
d
ir
[

f
sr
cg

2
,5

W
T
L
B
F
a
u
lt

p
a
g
es
ta
te
=
=
R
E
A
D

+
/
H

m
a
p
p
in
g
!

T
L
B
,
tl
b
d
ir
=
tl
b
d
ir
[

f
sr
cg

U
P
G
R
A
D
E
)

l
h
o
m
e

3
,4

W
T
L
B
F
a
u
lt

p
a
g
es
ta
te
=
=
W
R
IT
E

+
/
R

m
a
p
p
in
g
!

T
L
B
,
tl
b
d
ir
=
tl
b
d
ir
[

f
sr
cg

D
U
Q

=
D
U
Q

[

f
a
d
d
rg

5

R
T
L
B
F
a
u
lt

p
a
g
es
ta
te
=
=
IN
V

+
/
H

R
R
E
Q
)

g
h
o
m
e

W
T
L
B
F
a
u
lt

p
a
g
es
ta
te
=
=
IN
V

+
/
H

W
R
E
Q
)

g
h
o
m
e

6

R
D
A
T

{
/
R

m
a
p
p
a
g
e,
tl
b
d
ir
=
f
sr
cg
,
p
a
g
es
ta
te
=
R
E
A
D

7

W
D
A
T

{
/
R

m
a
p
p
a
g
e,
tl
b
d
ir
=
f
sr
cg
,
p
a
g
es
ta
te
=
W
R
IT
E

D
U
Q

=
D
U
Q

[

f
a
d
d
rg

U
P
A
C
K

{
/
R

D
U
Q

=
D
U
Q

[

f
a
d
d
rg

8

R
el
ea
se

+
/
H

a
d
d
r
=
D
U
Q
{
>
h
e
a
d
,
D
U
Q

=
D
U
Q
{
>
ta
il

R
E
L
)

g
h
o
m
e(
a
d
d
r)

9

R
A
C
K

D
U
Q

=
=
�

{
/
R

1
0

R
A
C
K

D
U
Q

!=
�

a
d
d
r
=
D
U
Q
{
>
h
e
a
d
,
D
U
Q

=
D
U
Q
{
>
ta
il

R
E
L
)

g
h
o
m
e(
a
d
d
r)

1
1

P
IN
V

in
v
a
li
d
a
te
T
L
B

P
IN
V
A
C
K
)

l
h
o
m
e

1
2

P
IN
V

in
v
a
li
d
a
te
T
L
B
,
D
U
Q

=
D
U
Q

{
f
a
d
d
rg

P
IN
V
A
C
K
)

l
h
o
m
e

1
3
,1
4

P
2
IN
V

D
U
Q
=
D
U
Q
{
f
a
d
d
rg

P
2
IN
V
A
C
K
)

l
h
o
m
e

T
a
b
le
A
.1
:
M

G
S

P
r
o
t
o
c
o
l
s
t
a
t
e
t
r
a
n
s
it
io
n
t
a
b
le
:
L
o
c
a
l-
C
li
e
n
t
M

a
c
h
in
e
.

A
rc

E
v
en
t

P
re
co
n
d
it
io
n

L

S
id
e
E
�
ec
ts

O
u
t
M
es
sa
g
e

1
5

U
P
G
R
A
D
E

m
a
k
e
tw
in
,
p
a
g
es
ta
te
=
W
R
IT
E

U
P
A
C
K
)

sr
c,
W
N
O
T
IF
Y
)

g
h
o
m
e

1
6

IN
V

p
a
g
es
ta
te
=
=
R
E
A
D

+
/
H

cl
ea
n
p
a
g
e,
fr
ee
p
a
g
e,
co
u
n
t
=
j
tl
b
d
ir
j

P
IN
V
)

tl
b
d
ir

1
9

IN
V

p
a
g
es
ta
te
=
=
W
R
IT
E

+
/
H

m
a
k
e
d
i�
,
fr
ee
p
a
g
e,
co
u
n
t
=
j
tl
b
d
ir
j

P
IN
V
)

tl
b
d
ir

2
2

1
W
IN
V

+
/
H

cl
ea
n
p
a
g
e,
co
u
n
t
=
j
tl
b
d
ir
j

P
IN
V
)

tl
b
d
ir

2
5

1
W
G
R

+
/
H

co
u
n
t
=
j
tl
b
d
ir
j

P
2
IN
V
)

tl
b
d
ir

1
7
,2
0
,2
3

P
IN
V
A
C
K

co
u
n
t
!=
0

co
u
n
t
=
co
u
n
t
{
1

2
6

P
2
IN
V
A
C
K

co
u
n
t
!=
0

co
u
n
t
=
co
u
n
t
{
1

1
8

P
IN
V
A
C
K

co
u
n
t
=
=
0

{
/
R

tl
b
d
ir
=
�
,
p
a
g
es
ta
te
=
IN
V

A
C
K
)

g
h
o
m
e

2
1

P
IN
V
A
C
K

co
u
n
t
=
=
0

{
/
R

tl
b
d
ir
=
�
,
p
a
g
es
ta
te
=
IN
V

D
IF
F
)

g
h
o
m
e

2
4

P
IN
V
A
C
K

co
u
n
t
=
=
0

{
/
R

tl
b
d
ir
=
�

1
W
D
A
T
A
)

g
h
o
m
e

2
7

P
2
IN
V
A
C
K

co
u
n
t
=
=
0

{
/
R

A
C
K
1
W

)

g
h
o
m
e

T
a
b
le
A
.2
:
M

G
S

P
r
o
t
o
c
o
l
s
t
a
t
e
t
r
a
n
s
it
io
n
t
a
b
le
:
R
e
m
o
t
e
-C
li
e
n
t
M

a
c
h
in
e
.

209

A
r
c

E
v
e
n
t

P
r
e
c
o
n
d
it
io
n

L

S
id
e
E
�
e
c
t
s

O
u
t
M

e
s
s
a
g
e

2
8
,3
0

R
R
E
Q

r
e
a
d
d
ir
=

r
e
a
d
d
ir
[

f
s
r
c
g

R
D
A
T

)

s
r
c

2
9
,3
0

W

R
E
Q

w
r
it
e
d
ir
=

w
r
it
e
d
ir
[

f
s
r
c
g

W

D
A
T

)

s
r
c

2
9

W

N
O
T
I
F
Y

r
e
a
d
d
ir
=

r
e
a
d
d
ir
{

f
s
r
c
g
,

w
r
it
e
d
ir
=

w
r
it
e
d
ir
[

f
s
r
c
g

3
1

R
E
L

j
w
r
it
e
d
ir
j
!=

1

c
o
u
n
t
=

j
r
e
a
d
d
ir
[

w
r
it
e
d
ir
j,

I
N
V

)

r
e
a
d
d
ir
[

w
r
it
e
d
ir

r
l
=

f
s
r
c
g
,
r
d
=

w
r
=

�

R
E
L

j
w
r
it
e
d
ir
j
=
=

1
,

c
o
u
n
t
=

j
r
e
a
d
d
ir
[

w
r
it
e
d
ir
j,

I
N
V

)

r
e
a
d
d
ir
,
1
W

I
N
V

)

w
r
it
e
d
ir

j
r
e
a
d
d
ir
j
!=

0

r
l
=

f
s
r
c
g
,
r
d
=

w
r
=

�

R
E
L

j
w
r
it
e
d
ir
j
=
=

1
,

c
o
u
n
t
=

1
,
r
l
=

f
s
r
c
g
,
r
d
=

w
r
=

�

1
W

G
R

)

w
r
it
e
d
ir

j
r
e
a
d
d
ir
j
=
=

0

3
2

R
E
L

c
o
u
n
t
=

j
r
e
a
d
d
ir
[

w
r
it
e
d
ir
j,

I
N
V

)

r
e
a
d
d
ir

r
l
=

f
s
r
c
g
,
r
d
=

w
r
=

�

3
3

A
C
K

c
o
u
n
t
!=

0

c
o
u
n
t
=

c
o
u
n
t
{

1

D
I
F
F

c
o
u
n
t
!=

0

c
o
u
n
t
=

c
o
u
n
t
{

1
,
b
u
�
e
r
d
i�

d
a
t
a

1
W

D
A
T
A

c
o
u
n
t
!=

0

c
o
u
n
t
=

c
o
u
n
t
{

1
,
c
o
p
y

d
a
t
a

t
o

h
o
m

e

R
R
E
Q

r
d
=

r
d
[

f
s
r
c
g

W

R
E
Q

w
r
=

w
r
[

f
s
r
c
g

R
E
L

r
l
=

r
l
[

f
s
r
c
g

W

N
O
T
I
F
Y

A
C
K
1
W

j
r
d
[
w
r
j
!=

0

c
o
u
n
t
=

1

I
N
V

)

w
r
it
e
d
ir

3
4

A
C
K

c
o
u
n
t
=
=

0

m

e
r
g
e
d
i�
s
,
r
e
a
d
d
ir
=

w
r
it
e
d
ir
=

�

R
A
C
K

)

r
l,
R
D
A
T

)

r
d
,
W

D
A
T

)

w
r

D
I
F
F

c
o
u
n
t
=
=

0

m

e
r
g
e
d
i�
s
,
r
e
a
d
d
ir
=

w
r
it
e
d
ir
=

�

R
A
C
K

)

r
l,
R
D
A
T

)

r
d
,
W

D
A
T

)

w
r

1
W

D
A
T
A

c
o
u
n
t
=
=

0

r
e
a
d
d
ir
=

w
r
it
e
d
ir
=

�

R
A
C
K

)

r
l,
R
D
A
T

)

r
d
,
W

D
A
T

)

w
r

3
5

A
C
K
1
W

j
r
d
[
w
r
j
=
=

0

R
A
C
K

)

r
l

3
6

R
R
E
Q

c
o
u
n
t
=

1
,
r
d
=

f
s
r
c
g
,
r
l
=

w
r
=

�

I
N
V

)

w
r
it
e
d
ir

W

R
E
Q

c
o
u
n
t
=

1
,
w
r
=

f
s
r
c
g
,
r
l
=

r
d
=

�

I
N
V

)

w
r
it
e
d
ir

T
a
b
le
A
.3
:
M

G
S

P
r
o
t
o
c
o
l
s
t
a
t
e
t
r
a
n
s
it
io
n
t
a
b
le
:
S
e
r
v
e
r
M

a
c
h
in
e
.

210 APPENDIX A. MGS PROTOCOL SPECIFICATION

Local Client) Remote Client Messages

UPGRADE Upgrade Local Page from Read to Write Privilege

PINV ACK Acknowledge TLB Invalidation

P2INV ACK Acknowledge DUQ Invalidation

Remote Client) Local Client Messages

UP ACK Acknowledge Upgrade

PINV Invalidate TLB Entry

P2INV Invalidate DUQ Entry

Local Client) Server Messages

RREQ Read Data Request

WREQ Write Data Request

REL Release Request

Server) Local Client Messages

RDAT Read Data

WDAT Write Data

RACK Acknowledge Release

Remote Client) Server Messages

ACK Acknowledge Read Invalidate

DIFF Acknowledge Write Invalidate and Return Di�

1WDATA Acknowledge Single Writer Invalidate and Return Data

WNOTIFY Notify Upgrade from Read to Write Privilege

ACK1W Acknowledge Single Writer Status

Server) Remote Client Messages

INV Invalidate Page

1WINV Invalidate Single-Writer Page

1WGR Grant Single-Writer Status

Table A.4: Message types used to communicate between the Local-Client, Remote-Client,

and Server machines in the MGS Protocol.

