
Integrated Shared-Memory and Message-Passing

Communication in the Alewife Multiprocessor

by

John David Kubiatowicz

S.B., Massachusetts Institute of Technology (1987)
S.M., Massachusetts Institute of Technology (1993)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1998

c
Massachusetts Institute of Technology, 1998. All rights reserved.

Signature of Author
Department of Electrical Engineering and Computer Science

December 15, 1997

Certified by
Anant Agarwal

Associate Professor of Computer Science and Electrical Engineering
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

Page 2

Integrated Shared-Memory and Message-Passing
Communication in the Alewife Multiprocessor

by
John David Kubiatowicz

Submitted to the Department of Electrical Engineering and Computer Science
on December 15, 1997, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

To date, MIMD multiprocessors have been divided into two classes based onhardware communication mod-
els: those supportingshared memoryand those supportingmessage passing. Breaking with tradition, this
thesis argues that multiprocessors should integrateboth communication mechanisms in a single hardware
framework. Such integrated multiprocessors must address several architectural challenges that arise from
integration. These challenges include theUser-Level Access problem, theService-Interleaving problem, and
theProtocol Deadlock problem. The first involveswhichcommunication models are used for communica-
tion andhow these models are accessed; the second involves avoidinglivelocksanddeadlocksintroduced
by multiple simultaneous streams of communication; and the third involves removing multi-node cycles
in communication graphs. This thesis introduces these challenges and develops solutions in the context
of Alewife, a large-scale multiprocessor. Solutions involve careful definition of communication semantics
and interfaces to permit tradeoffs across the hardware/software boundary. Among other things, we will
introduce theUser-Direct Messagingmodel for message passing, thetransaction bufferframework for pre-
venting cache-line thrashing, andtwo-case deliveryfor avoiding protocol deadlock.

The Alewife prototype implements cache-coherent shared memory and user-level message passing in a
single-chipCommunications and Memory Management Unit(CMMU). The hardware mechanisms of the
CMMU are coupled with a thin veneer of runtime software to support a uniform high-level communications
interface. The CMMU employs a scalable cache-coherence scheme, functions with single-channel, bidirec-
tional network, and directly supports up to 512 nodes. This thesis describes the design and implementation
of the CMMU, associated processor-level interfaces, and runtime software. Included in our discussion is an
implementation framework calledservice coupling, which permits efficient scheduling of highly contended
resources (such as DRAM). This framework is well suited to integrated architectures.

To evaluate the efficacy of the Alewife design, this thesis presents results from an operating 32-node
Alewife machine. These results include microbenchmarks, to focus on individual mechanisms, and mac-
robenchmarks, in the form of applications and kernels from SPLASH and NAS benchmark suits. The large
suite of working programs and resulting performance numbers lead us to one of our primary conclusions,
namely thatthe integration of shared-memory and message-passing communication models is possible at
a reasonable cost, and can be done with a level of efficiency that does not compromise either model. We
conclude by discussing the extent to which the lessons of Alewife can be applied to future multiprocessors.

Keywords: multiprocessor, shared memory, message passing, cache-coherence, Alewife machine

Thesis Supervisor: Anant Agarwal
Title: Associate Professor of Computer Science and Electrical Engineering

Page 3

Page 4

Acknowledgments

As I sit here in Harvard Square at my favorite cafe (Au Bon Pain), I think back to the long and
arduous path that I have taken. Today is unseasonably warm, even as trees are caught between
the riotous colors of autumn and the stark lines of winter. The last 10 years have seen tremendous
growth in my understanding as a general “systems” person, and I can only attribute this to the
number of people who have given me “enough rope”, as it were, to jump forward. A few stand out
in my mind, however: : :

First and foremost, my advisor, Anant Agarwal has given me more space and opportunity
than any student could ever hope to acquire during the course of many graduate degrees. Over
the years, we have clashed over philosophy, agreed vehemently over architecture, and enjoyed a
healthy mutual respect that began from the day I accidentally wandered into his office. I have yet to
encounter someone with a stronger mystical connection with the universe,i.e. the ability to make
a counterintuitive conclusion based on no data which, upon further investigation, proved to be true
beyond a measure of doubt. I can only hope to develop some small fraction of his intuition in the
years to come. To a mentor, friend, colleague, and (oh yeah) advisor, I offer my heartfelt thanks.

In the late eighties, Dan Geer offered me a position at Project Athena, based only on an in-
terview. At the time, I was a brash new graduate of MIT with absolutely no experience writing
applications under UNIX, much less delving into its depths. The resulting two years there gave me
a strong understanding of operating systems that I would never have gained otherwise.

To my colleagues in the Alewife group, I offer my heartfelt thanks. Without qualification, I can
say that I was honored to work with each and every member of the Alewife group. The original
core group, consisting of David Chaiken, Kirk Johnson, David Kranz, Beng-Hong Lim, Gino Maa,
Ken Mackenzie, Dan Nussbaum, and Donald Yeung, contributed to the Alewife machine in vast
and varied ways. They wrote and rewrote software systems, simulators, and compilers until we
possessed a first-class system; they designed everything from compiler primitives to hardware test
jigs and power systems. It is a testament to the competence of the Alewife group as a whole that
we booted the operating system and began executing code within days of receiving the first copies
of the CMMU.

I will miss all of you and can only hope that I find a similarly dynamic group of students as I
begin my career in academia.

The attribution of ideas in a project as large as Alewife is difficult at best. However, I would like
to specifically thank David Chaiken, who was a major contributer to the architecture of Alewife.

Page 5

Page 6 ACKNOWLEDGMENTS

I can only say that I miss our interactions — the two of us argued the CMMU into existence
(sometimes rather loudly), and I would not have done it any other way. In a similar vein, Dan
Nussbaum, my office-mate of many years, served as an priceless sounding board to weed out
new and occasionally misdirected concepts for the Alewife system. David Kranz, our “master
of all trades”, provided continuity and backbone to our software efforts — from compilation, to
operating systems, to device drivers, and back again. Finally, Ken Mackenzie was an important
collaborator in the development of the UDM model of Chapter 2.

Anne McCarthy provided the wonderful cartoon illustrations that grace the major section head-
ings. She also provided a level of support over the years that is without measure.

Finally, to my family who remained supportive during my long years in school: Thank you!

To the reader: The process of academic research is an exercise in revisionist-history — the act
of cutting, pasting, and reframing the goals and motivations of a research project until it appears
that participants possess supernatural levels of knowledge and insight. This document is, perhaps,
no less misleading in that regard. In the following pages, I will speak about portions of the Alewife
machine that were some of my central contributions; although I like to think that these contribu-
tions arose in orderly fashion, this belief is probably optimistic on my part. I leave it to the reader
to make his or her own judgment.

Since large systems such as Alewife are the result of complex collaborations between many
people, I will do my best to give credit where it is due. If I should fail to do so at someplace in this
document, it is entirely unintentional and I offer my sincerest apologies in advance.

In the years that I worked on Alewife, I became somewhat attached to the project as a whole
and the resulting prototype, warts and all. For good or bad, I touched upon all aspects of the project
with my opinions and suggestions — always in search of improving the final result. Somewhat like
a parent, I guess. Perhaps you can smile and nod as I tell you about Alewife.

Contents

Introduction 15
1.1 What are “Message Passing” and “Shared Memory”? 18
1.2 Why Integrate Communication Semantics? 19
1.3 Why Integrate Communication Mechanisms? 22
1.4 Challenges To Integration . 28
1.5 The Alewife Prototype . 32
1.6 Overview of Results . 33
1.7 Overview of Thesis . 34

Part 1: Design 35

Chapter 2: The User-Level Access Problem 39
2.1 Interface as an Extension to the ISA . 41
2.2 Featherweight Threads . 42

2.2.1 Block Multithreading . .. 42
2.2.2 Scheduling for Featherweight Threads. 43

2.3 Latency-Tolerant Shared Memory . 43
2.3.1 Memory Model and Synchronization. 45
2.3.2 Latency Tolerance 46
2.3.3 Memory Fairness 48
2.3.4 Shared-Memory Implementation and LimitLESS Cache Coherence . 49

2.4 User-Direct Messaging . 50
2.4.1 User-Direct Messaging Model 51
2.4.2 User-Direct Messaging Interfaces 55
2.4.3 Message Injection Interface 57
2.4.4 Message Extraction Interface 63
2.4.5 The User-Level Atomicity Mechanism. 68
2.4.6 Putting it all together: hardware support for user-level interrupts . . . 75
2.4.7 User-Direct Messaging in a Multiuser System. 75

2.5 The Interaction Between Communication Models 77
2.5.1 The DMA Coherence Problem 78
2.5.2 Message Atomicity and Shared-Memory Access 80

2.6 Postscript . 82

Page 7

Page 8 CONTENTS

Chapter 3: The Service-Interleaving Problem 83
3.1 The Refused-Service Deadlock . 84

3.1.1 Blocking Memory Operations Cause Deadlock 85
3.1.2 High-Availability Interrupts 85
3.1.3 Interrupt Promotion Heuristics 87

3.2 The Window of Vulnerability Livelock 87
3.2.1 Multi-phase Memory Transactions 88
3.2.2 Processor-Side Forward Progress 89
3.2.3 Four Window of Vulnerability Livelock Scenarios 91
3.2.4 Severity of the Window of Vulnerability 94
3.2.5 Closing the Window: Preliminaries 96
3.2.6 The Associative Locking Solution 97
3.2.7 The Thrashwait Solution. 100
3.2.8 The Associative Thrashlock Solution. 104

3.3 The Server-Interlock Problem . 106
3.3.1 Queuing Requests for an Interlocked Server 107
3.3.2 Negative Acknowledgment and the Multiple-Writer Livelock 108

3.4 Protocol Reordering Sensitivities. 109
3.4.1 Achieving Insensitivity to Network Reordering 110
3.4.2 Achieving a Clean Handoff from Hardware to Software 113

3.5 Postscript: The Transaction Buffer Framework 116

Chapter 4: The Protocol Deadlock Problem 119
4.1 Cache-Coherence Protocols and Deadlock 120

4.1.1 Breaking Cycles With Logical Channels 121
4.1.2 Reducing the Dependence Depth 123
4.1.3 Complexity of Deadlock Avoidance 124

4.2 Message Passing and Deadlock . 125
4.2.1 Elimination of Deadlock by Design 126
4.2.2 Atomicity is the Root of All Deadlock. 126

4.3 Exploiting Two-Case Delivery for Deadlock Removal. 127
4.3.1 Revisiting the Assumption of Finite Buffering. 127
4.3.2 Detecting the Need for Buffering: Atomicity Congestion Events . . . 130
4.3.3 Detecting Queue-Level Deadlock 132
4.3.4 Software Constraints Imposed by Queue-Level Deadlock Detection . 133
4.3.5 User-Level Atomicity and Two-Case Delivery. 135
4.3.6 Virtual Queueing and Second-Case Delivery. 137
4.3.7 What are the Hidden Costs of Two-Case Delivery? 138

4.4 Postscript: Two-Case Delivery as a Universal Solution 143

CONTENTS Page 9

Part 2: Consequences 145

Chapter 5: The Hardware Architecture of Alewife 149
5.1 Sparcle Architecture and Implementation 151

5.1.1 Sparcle/CMMU Interfaces 151
5.1.2 Support for Rapid Context-Switching and Featherweight Threads. . . 156

5.2 The Communications and Memory Management Unit 159
5.2.1 The Division of Labor and the Network Topology 160
5.2.2 The Sparcle/CMMU Interface Revisited 163
5.2.3 The Transaction Buffer Framework 166
5.2.4 Service Coupling and Memory Scheduling 180
5.2.5 Implementation of Local DMA Coherence 185

5.3 Mechanics of the Alewife Implementation 187
5.3.1 Implementation of the Alewife CMMU 187
5.3.2 Validation Through Multi-Level Simulation 190
5.3.3 Hardware Test Methodology 192

5.4 Postscript: Implementation is Possible and Necessary 193

Chapter 6: The Performance of the Alewife Prototype 195
6.1 Microbenchmarks and the Alewife Prototype 197

6.1.1 Performance of the Network 197
6.1.2 Performance of Shared Memory 198
6.1.3 Performance of Message Passing 200

6.2 Macrobenchmarks and the Alewife Prototype 203
6.2.1 Performance of Shared-Memory Programs 203
6.2.2 Performance of Message-Passing Programs 204
6.2.3 Integration of Message Passing and Shared Memory 205

6.3 How Frequent IS Deadlock? . 208
6.3.1 Alewife: A Brief Case Study. 208
6.3.2 The DeadSIM Simulator. 209
6.3.3 On the Character of Deadlocks 211
6.3.4 The Deadlock-Free Interval with Alewife Parameters 214
6.3.5 Deadlock Detection and the Importance of Hysteresis 215
6.3.6 Future DeadSIM work .. 217

Chapter 7: All Good Things : : : 219
7.1 High-Level Lessons of the Alewife Machine 220
7.2 How Do the Lessons of Alewife Apply Today? 223
7.3 Related Work . 226

7.3.1 Hardware Integration of Communication Models 226
7.3.2 Hardware Supported Shared-Memory. 227
7.3.3 Message-Passing Communication 228
7.3.4 Two-Case Delivery and Deadlock 230
7.3.5 Tradeoffs Between Communication Models 230

Page 10 CONTENTS

Appendix A: Active Message Scheduling 233
A.1 Featherweight Threading . 235
A.2 User-Level Atomicity Mechanism . 236

Bibliography 237

Index 247

List of Figures

1-1 Anatomy of a Memory Reference. 23
1-2 Anatomy of a User-Direct Message. 25
1-3 Integration of Communication Mechanisms in Alewife. 27
1-4 Node Diagram and Schematic for a 16-node Alewife Machine.. 32

2-1 Block Multithreading and Virtual Threads. 42
2-2 Latency-Tolerant Shared-Memory Model/Interface.. 44
2-3 Processor and network activity with fast context switching 47
2-4 The User-Direct Messaging Model. 52
2-5 Injection of a User-Direct message and later extraction via interrupts 54
2-6 Instructions for the User-Direct Messaging interface 56
2-7 A uniform packet header format. 57
2-8 Translation of a UDMsend operation into UDM interface instructions. 59
2-9 Translation of a UDMsendc operation into UDM interface instructions. 62
2-10 Translation of a UDMreceive operation into UDM interface instructions. 64
2-11 Translation of a UDMpeek operation into UDM interface instructions. 65
2-12 Translation of UDM atomicity operations into UDM interface instructions. 73
2-13 Four primary states for the user-level atomicity mechanism. 73
2-14 Exported communication models in the Alewife multiprocessor.. 82

3-1 The refused-service deadlock. 84
3-2 Multi-phase memory transactions are subject to a window of vulnerability.. 88
3-3 View of memory system as a “black box.”. 89
3-4 Successful multithreading. .. 91
3-5 An example of invalidation thrashing. 92
3-6 An example of replacement thrashing. .. 92
3-7 An example of high-availability interrupt thrashing.. 93
3-8 An example of instruction/data thrashing. 93
3-9 Window of vulnerability: 64 processors, 4 contexts.. 95
3-10 Deadlocks that result from pure locking. 98
3-11 The Thrashwait Algorithm .. 101
3-12 Elimination of instruction-data thrashing through Thrashwait.. 103
3-13 The effect of network reordering on an uncompensated protocol. 110
3-14 The Alewife coherence directory. 114

4-1 Cache-coherence protocols contain cycles in their communication graphs. 120
4-2 Schematic representation for simple request/response deadlock. 121

Page 11

Page 12 LIST OF FIGURES

4-3 Breaking the simple deadlock with multiple network channels. 121
4-4 Typical coherence-protocol dependencies. 122
4-5 Reducing the dependence depth of a cache-coherence protocol. 123
4-6 Two Phases of Network Overflow Recovery . 128
4-7 Queue topology for the Alewife CMMU.. 132
4-8 The complete user-level atomicity state diagram. 136

5-1 Node Diagram and Schematic for a 16-node Alewife Machine.. 149
5-2 Hardware Primitives supporting integration in the Alewife architecture.. 150
5-3 High-level interface between the Sparcle pipeline and the CMMU. 151
5-4 SPARC-compatible signal names for the Sparcle/CMMU interface. 153
5-5 Pipelining for arithmetic instructions. .. 155
5-6 Pipelining for a single-word load. 155
5-7 Context switch trap code for Sparcle . 158
5-8 Breakdown of a 14-cycle context-switch on data for a load or store. 158
5-9 Block diagram for the Alewife CMMU. 159
5-10 Queue topology for the Alewife CMMU.. 161
5-11 A high-level view of the Cache Management Machine 164
5-12 An exploded view of the normal “state” of the Cache Management Machine. 164
5-13 The transaction state CAM and associated transaction monitors. 167
5-14 The state of a transaction buffer. 167
5-15 Tracking vectors for implementing the thrashlock mechanism. 173
5-16 Composition of the THRASHDETECTED signal . 176
5-17 Data Access with the ThrashLock Algorithm . .. 176
5-18 Use of service coupling to maximize utilization of a contended resource.. 180
5-19 Memory-side scheduling of a remote cache-coherence request.. 183
5-20 Memory-side scheduling of a local cache-coherence request.. 183
5-21 The double-headed coherence queue that is used to implement local DMA coherence. . 185
5-22 Floorplan for the Alewife CMMU (15mm� 15mm). 187
5-23 Build tree for the Alewife CMMU . 189
5-24 The Alewife hybrid testing environment. 190
5-25 Number of bugs detected in the Alewife CMMU as a function of time. 191

6-1 16-node machine and 128-node chassis populated with a 32-node machine. 195
6-2 Performance breakdown for the five different versions ofEM3D. 206
6-3 Communication volume for the five different versions ofEM3D. 206
6-4 Variation in performance ofEM3D as function of bandwidth. 207
6-5 Variation in performance ofEM3D as function of latency. 207
6-6 Runtimes for Alewife applications (in billions of cycles). 209
6-7 Percentage of execution time spent in overflow recovery. 209
6-8 Distribution of deadlock-free intervals. .. 212
6-9 Deadlock-free interval as a function of routing freedom. 213
6-10 Deadlock-free interval as a function of network queue size. 213
6-11 Deadlock-free interval as a function of run-length.. 215
6-12 Plot of the heuristic offset as a function of heuristic timeout value. 216

A-1 Scheduler code for user-level active message interrupts on the A-1001 CMMU. 234

List of Tables

2-1 Examples of Alewife synchronizing loads and stores. 45
2-2 Interrupts and Exceptions for User-Direct Messaging interface.. 57
2-3 Control registers for User-Direct Messaging interface.. 57
2-4 Control bits for the user-level atomicity mechanism 70

3-1 Window of Vulnerability Closure Techniques . .. 96
3-2 Properties of window of vulnerability closure techniques. 97
3-3 The four meta-states of the Alewife coherence directory. 114

5-1 Valid transaction buffer states. 169
5-2 Functional block sizes (in gates) for the Alewife CMMU 187
5-3 Module sizing for the message-passing portions of the Alewife CMMU.. 188

6-1 Three critical network parameters 197
6-2 Typical nearest-neighbor cache-miss penalties at 20MHz 198
6-3 Rough breakdown of a 38-cycle clean read-miss to neighboring node. 199
6-4 Overheads for message send and receive of a null active message. 201
6-5 Performance of shared-memory applications on Alewife. 204

Page 13

Page 14 LIST OF TABLES

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Introduction

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Page 15

Page 16

Early multiprocessor research was divided into two separate camps based onhardware com-
munication primitives: those advocatingshared memoryand those advocatingmessage passing.
Supporters of shared memory pointed to the fact that a shared-address space programming model is
easy to reason about; its location-independent communication semantics frees programmers from
the burden of explicitly locating shared data and from orchestrating interprocessor communica-
tion. For performance, they argued, shared-memory should be implemented directly in hardware.
Supporters of message passing, on the other hand, maintained that shared-memory hardware was
unscalable and difficult to build; message-passing is much simpler to implement, they argued,
and provides a “minimum” communication primitive upon which other communication models
(including shared memory) can be constructed. In this early state of affairs, researchers adhered
religiously to one or the other of the research camps, often ignoring the fact that each approach has
advantages and disadvantages.

Breaking with this tradition, the following thesis argues that anintegrationof shared memory
and message passing is desirable from both architectural and implementation standpoints. Since
shared-memory and message-passingcommunication modelshave different applications domains
in which they are ideally suited, a system that integrates them can exploit the advantages of each.
Further, such an integrated system can be efficientlyimplementedby combining primitive shared-
memory and message-passing hardware mechanisms with a thin veneer of runtime software.

At another level, the architecture community has long struggled with the degree to which mul-
tiprocessor mechanisms should be integrated with memory and processor components. Proponents
of least-effort “commodity parts” design methodologies attempt to bootstrap their multiprocessor
design efforts by combining off-the-shell processor and memory components with a minimum of
network coupling hardware. However, this does not necessarily represent the best implementa-
tion strategy. Low-latency, high-throughput access to data storage is of fundamental importance
in uniprocessor systems, as demonstrated by the degree of engineering that is typically expended
on uniprocessor memory systems design.The memory system is no less important within a mul-
tiprocessor.Further, well-designed uniprocessor memory systems share many features with mul-
tiprocessor memory systems: they are split phase and highly pipelined; they effectively process
streams of requests from other levels of the memory system and respond with data. Thus, to ex-
ploit the similarity between uniprocessor and multiprocessor memory systems, this thesis argues
for a tight integration of network and memory control, where integration here refers to single-chip
integration.

In short, this thesis isaboutintegration at many levels of a multiprocessor system: communica-
tions models, operating-systems, hardware. Themes of integration will arise time and time again,
but will be moderated by concerns of practicality – avoiding capricious or excessive implemen-
tation skirmishes in favor of carefully chosen battles. The ultimate test of a system design is, of
course, a working system. In this thesis, the vehicle for exploring integration and the embodiment
of the ideas contained herein is the Alewife multiprocessor. Alewife integrates cache-coherent
shared-memory and user-level message passing, employs a scalable cache-coherence scheme, and
functions with a single, bidirectional network channel. Its implementation exhibits a constant per-
node hardware cost in the form of a handful of VLSI chips, including the Sparcle processor and the
Alewife Communications and Memory Management Unit(CMMU). The CMMU provides fast, ef-
ficient communication mechanisms and can directly support machine-sizes up to 512 nodes. From

Page 17

Page 18 INTRODUCTION

the standpoint of the rest of this thesis, however, the most important feature of the Alewife ma-
chine is that itexistsand is being used by a number of researchers. A 32-node machine has been
operational since June of 1994.

1.1 What are “Message Passing” and “Shared Memory”?

In motivating the integration of message passing and shared memory, it is first important to under-
stand what we mean by these terms. In fact, these terms may be interpreted at two different levels
of abstraction, that ofcommunications modeland that ofhardware mechanism.

Communications Models: At the highest level of abstraction, the terms “shared memory” and

Applications
Operating
System

Compiler
Library
Runtime

Hardware Primitives

Compiler
Library
Runtime

C
om

m
unnication

M
odel Level

“message passing” refer to communications models or paradigms that are directly interpreted
by applications or systems programmers. The semantics of a given communications model
can be thought of as a contract between the programmer and the underlying system, describ-

ing the behavior and guarantees that a programmer can ex-
pect, assuming that they fulfill their side of the bargain. In
this context, the collection of semantics for shared mem-
ory are often referred to as thememory model; the pros
and cons of various memory models form a large body of
literature[1, 10, 41, 38]. The semantics of message pass-
ing paradigms have also been explored to some extent, but
many of these models have deficiencies of one sort or an-
other. In fact, in searching for a set of message passing
semantics that are compatible with shared memory, we will
spend a fair amount of time defining theUser-Direct Mes-

sagingmodel in later parts of this thesis. Note that support for a complete communications model
is provided by the system as a whole: an amalgam of hardware, runtime systems, libraries, and
compiler software that synthesizes the model as presented to the programmer. The figure to the left
shows this concept and serves to highlight the fact that some layers of software, namely those that
are used toimplementcommunication models, must operate outside the guarantees and semantics
of any one model. Instead, this software makes use of raw hardware mechanisms that may present
incomplete guarantees or partial communication functionality.

For the purpose of the current discussion, we will content ourselves with a brief summary of
the predominant features of shared memory and message passing. We will elaborate on these in
later portions of the thesis.

SHARED MEMORY: One fundamental feature of shared memory that all communi-
cation isimplicit, via loads and stores to a global address space. The physical
location of data is completely unspecified by the model, except in so far as some
data may be considered more expensive to access than other data. To communi-
cate information, the processor issues load and store operations; the underlying
system is responsible for deciding whether or not data is cached and for locat-
ing data in the event that it is not cached. A second important feature of shared

1.2. Why Integrate Communication Semantics? Page 19

memory is that synchronization is distinct from communication: special synchro-
nization mechanisms must be employedin additionto load and store operations
in order to detect when data has been produced or consumed.

MESSAGEPASSING: In contrast, message passing is anexplicit communication
model; all communication consists of explicit messages from processors that
have data to those that need data. Any communication between processors must
be accomplished by such messages. Further the arrival of a message at a destina-
tion processor constitutes an asynchronous event, since software must be invoked
to handle messages. Consequently, synchronization and communication are uni-
fied with message passing; the generation of remote, asynchronous events is an
integral part of any message-passing communication model.

These two characterizations of shared memory and message passing will be sufficient for the up-
coming discussion of the advantages of integration.

Hardware Mechanisms: Having defined what the terms “shared memory” and “message pass-
ing” mean in the context of communication models, we would now like to turn to another usage
of these terms, to refer to individual hardware mechanisms. In this context, “shared memory”
and “message passing” refer to these individual hardware mechanisms that have the “look-and-
feel” of message passing or shared memory, but that may not provide all of the facilities of a
complete communications model. Thus, a shared-memory hardware mechanism would likely sup-
port a load-store interface that handles the common case aspect of global access to cached data
directly in hardware. Other aspects of global access, such as the location of data during a cache-
miss or the tracking of widely shared data items might require software intervention. Similarly,
a message-passing hardware mechanism might provide hardware facilities for launching and con-
suming messages, but might not provide guarantees of deadlock freedom or atomicity without
software support.

1.2 Why Integrate Communication Semantics?

Given the clarifications of the previous section, we can restate one of our primary goals: this
thesis will argue that an integration of message passing and shared memory is importantbothfrom
the standpoint of communications modeland hardware implementation. Before continuing this
discussion, it is important to note that shared memory and message passing communication models
are universal: each can be employed to simulate the other1. Thus the advantages to be attained via
integration are not of the variety typically extolled by theorists: they have to do with slippery
concepts such as communication overhead, implementation efficiency, and ease of programming.

Although the integration of shared memory and message passing has recently become a hot
topic in the research community, this research has not made a clear distinction between the in-
tegration of communication models and implementation mechanisms. In an attempt to correct

1However, it is much easier to simulated shared memory with message passing than the converse. The primary
difficulty involves simulating the asynchronous event semantics of message passing with the polling semantics of
shared memory.

Page 20 INTRODUCTION

this situation, we first talk about the intrinsic advantages and disadvantages of each of the com-
munication models. In a subsequent section, we will consider reasons for integrating hardware
communication mechanisms.

Advantages of the Shared Memory Model: Conventional wisdom in the multiprocessor re-
search community is that it is important to support ashared-address spaceor shared-memory
communication model. One of the primary reasons for this is that shared memory shelters pro-
grammers from the details of interprocessor communication: the location-independent semantics
of shared memory allow programmers to focus on issues of parallelism and correctness while
completely ignoring issues of where data is and how to access it. This can allow the “quick con-
struction” of algorithms that communicate implicitly through data structures. In some sense, the
shared-memory communication model offers one of the simplest extensions of the uniprocessor
programming paradigm to multiprocessors.

Further, because shared-memory semantics are independent of physical location, they are
amenable to dynamic optimization by an underlying runtime or operating system. In particular,
techniques such as caching, data migration, and data replication may be employed transparently to
enhance locality and thus reduce latency of access. This is extremely powerful, because it means
that data layout can be dynamically adjusted toward optimal, even though the programmer ignores
it. As with any online algorithm, of course, the dynamic reordering mechanisms of the underlying
system are unlikely to achieve a global optimum in data placement given an arbitrarily naive initial
placement. In this sense, the implicit nature of the shared-memory programming model is both its
principal strength and weakness: since placementis implicit, the programmer is not required to
help with the data placement process (advantageous), leaving the underlying system the onerous
task of extracting an ideal data placement given only a memory reference stream (unfortunate).

Note that this complete absence of information flow from application to underlying system is
not inherent in the shared-memory model. For instance, when sufficient parallelism is identified
by the programmer or compiler, then rapid context-switching can be employed to overlap latency.
Similarly, latency tolerance can also be achieved when the compiler identifies access patterns in
advance and inserts non-binding prefetch operations into the instruction stream. Both of these
latency tolerance techniques can dynamically adjust for poor or non-ideal data placement. Further,
as will be discussed in a moment, there is a lot of potential for the compiler to assist in choosing
a good initial data placement as well as in choosing timely points for data migration. In fact,
static analysis can occasionally eliminate the need for general cache-coherence, permitting the use
of more efficient communication mechanisms such as message-passing. All of these techniques
aid in the implementationof the shared-memory communication model, maintaining the same
location-independent semantics for the programmer.

Disadvantages of Shared Memory: One of the deficiencies of the shared-memory communica-
tion model is the fact that it is, by nature, a polling interface. While this can make for extremely
efficient communication under some circumstances, it can have a negative impact on synchro-
nization operations. This has been enough of a concern that many multiprocessor architects have
augmented the basic shared-memory communication model with additional synchronization mech-
anisms. Another disadvantage of shared memory is that every “real” communication operation (i.e.

1.2. Why Integrate Communication Semantics? Page 21

one that causes data to cross the network) requires a complete network round-trip; no one-way
communication of data is possible.

Advantages of the Message Passing Model:One of the biggest semantic advantages of the
message-passing communication model is the fact that it is, by nature, interrupt driven. Messages
combine both data and synchronization in a single unit. Furthermore, the efficiency of this com-
bination can easily be maintained by simple implementations – we shall see this in later chapters
of this thesis. In this section, we want to distinguish those applications of message passing that
are natural from a programmers perspective from those that represent the result of automatic code
generation in support of other communication models,e.g.shared memory.

Message passing provides an “interrupt-with-data”, that is desirable for a number ofoperating
systemsactivities in which communication patterns are explicitly known in advance: I/O, schedul-
ing, task and data migration, and interprocessor interrupts. Further, manipulation of large data
structures such as memory pages is ideally mediated with a messaging communications model,
both because bulk transfer (DMA) is a natural adjunct to message passing (send a well-defined
block of data from here to there) and because messaging operates “outside” of the shared-memory
mechanisms that are being handled. This latter property is important when manipulating the data
structures that shared memory depends on, such as global page mappings. Note that, although
message passing requires explicit management of data locality and communication, this is not a
disadvantage in an operating system, since most operating systems explicitly manage their own
data structures anyway.

In addition to operating systems functions, certain applications are amenable to a message-
passing communication model. Such applications have a large synchronization component and
are typically referred to as “data-driven”. Examples include event-driven simulation and solu-
tion of systems of sparse matrices by substitution. Also included in this category are programs
written with Active Messages[113, 81], to the extent that Active Messages represents a desirable
source-level communication model rather than a compilation target. In addition, message passing
communication models are natural for client-server style decomposition, especially when commu-
nication must occur across protection domains. Note that the last decade has seen the emergence
of a number of message-passing interfaces that support various polling semantics, such asCMMD,
p4, andMPI. It is this author’s belief, however, that these interfaces have arisen largely in reaction
to the lack of good compilation and runtime-systems technology; they represent systems that grant
users the ability (and corresponding need) for explicit management and tuning of communication2.

Disadvantages of Message Passing:In addition to requiring the explicit management of data
and communication, the message passing paradigm has one intrinsic disadvantage that can be
mitigated but not eliminated by good interface design: the presence of higher endpoint costs in
message passing models as compared to shared memory. The cost of assembling and disassembling
messages, often calledmarshaling cost, is intrinsic to message passing because messages are, by

2One advantage to message passing that is being explicitly rejected here is the statement that it permits the easy
porting of “dusty-deck” applications that have been written with message-passing interfaces.

Page 22 INTRODUCTION

nature, transient and unassociated with computational data structures. At the source of a message,
data is gathered together from memory based data structures and copied into the network. At the
destination, the reverse must occur, namely data must be copied from the network into memory
based data structures. This is an intrinsic cost of message passing and may be contrasted with
shared memory, for which data remains associated with memory-based data structures at all times,
even during communication.

It is important to note, however, that the marshaling cost of message passing can be less of
an issue in comparison with shared memory whenimplementationandcommunication patterns
are taken into consideration. For instance, communication patterns that exhibit poor cache locality
and multiple round-trip network latencies can strongly degrade the performance of hardware-based
shared-memory mechanisms. Further, certain classes of communication require copying anyway;
page migration is a good example of this. In such cases, the marshaling cost in message passing is
directly matched by copying costs in shared memory.

Combined Semantics: One obvious conclusion from the above discussion is that the shared-
memory and message-passing communication models each have applications domains to which
they are ideally suited. In fact, a mixture of the two may even be appropriate within different
phases of asingleapplication. A corollary to this conclusion is thatit is desirable for general
purpose multiprocessors to supportbothcommunication models, and to do so efficiently. Interest-
ingly enough, this conclusion has not been uniformly embraced by multiprocessor architects or the
research community. However, even skeptics should agree that this conclusion seems inevitable
given the fact that shared memory is universally viewed as advantageous for applications writers,
while the advantages of message passing to operating systems design is manifest and continues to
be noted by systems architects. This author, however, maintains something stronger: integration
is important at the applications level. This conclusion will become even clearer when we look at
the way in which communication models at one level (say applications source) are implemented
by mechanisms at lower levels (compilers, runtime system, and hardware).

1.3 Why Integrate Communication Mechanisms?

In the previous section we concluded that a multiprocessor system should provide both shared-

Shared-Memory
Model

Processor

Message-Passing
Network

memory and message-passing communication models. With this goal in mind, the question then
becomes one of how to best implement such a multiprocessor. An
extended answer to this question is, in fact, one of the primary top-
ics of this thesis. A more simplistic answer to this question, how-
ever, is that we should provide a mixture of both shared-memory
and message-passing communication mechanisms in hardware[58].
There are two reasons for this integration. The first, illustrated to
the left, is one of opportunity: in striving for scalable performance,
multiprocessor architects have abandoned buses in favor of gener-
alized packet-switched networks to carry information between pro-

cessors. As a consequence, the lowest level of communication (i.e. the physical transport layer)

1.3. Why Integrate Communication Mechanisms? Page 23

carries messages,even in a shared-memory multiprocessor. By itself, this observation would seem
to indicate that the most prudent course of implementation would be to provide message passing
support directly in hardware and to emulate shared memory in software. However, this proposal
leads us to the second reason for employing an integration of mechanisms: the fact that the shared-
memory and message-passing communication models have sufficiently different properties that it
is expensive to implement one entirely with the other. Let us expand on this further.

Anatomy of a Shared-Memory Reference: One of the primary virtues of the shared-memory

shared-address-space-reference(location)
if currently-cached?(location) then

// satisfy request from cache
load-from-cache(location)

elsif is-local-address?(location) then
// satisfy request from local memory
load-from-local-memory(location)

else
// must load from remote memory; send remote
// read request message and invoke any actions
// required to maintain cache coherency
load-from-remote-memory(location)

Figure 1-1:Anatomy of a Memory Reference.

communication model is its location independence. Such independence comes at a cost,
however, especially when coupled with
caching. During the execution of an appli-
cation written with a shared-memory com-
munication model, the actions indicated by
pseudo-code in Figure 1-1 must be taken
for every reference to shared data. This
pseudo-code represents the process of dis-
coveringwheredata actually resides (local
cache, local node, or remote node) andre-
trieving the data once it has been located.
We will call this processlocality resolu-
tion. The first test in this figure is only nec-
essary if local caching is allowed; however,
the second test is required for any implementation of a shared-memory communication model. Al-
though locality resolution must occur for every shared reference, it may be performed at a variety
of levels in the compiler, runtime system, or hardware3. Lets explore this a bit further.

For simplicity, assume that there are two types of shared-memory applications:staticanddy-
namic. In static applications, the control flow of the program is essentially independent of the
values of the data being manipulated. Many scientific programs fit into this category. Static ap-
plications have the virtue that some or all of the locality resolution code of Figure 1-1 can be
performed by the compiler; no runtime overhead is incurred as a result. There has been a great
deal of work in this area for scientific programs written in various dialects of FORTRAN and tar-
geted at message-passing hardware [7, 19, 57, 74, 94, 121]. In dynamic applications, on the other
hand, control flow is strongly dependent on the data being manipulated. Many symbolic applica-
tions fit into this category. Dynamic applications are not amenable to the same degree of compiler
analysis as static applications; it is usually not possible to knowa priori whether or not a partic-
ular reference will be to local or remote memory. Consequently, locality resolution must occur at
runtime. Although most real programs will lie somewhere between these two extremes (by having
some parts that are dynamic and others that are static), state-of-the-art compiler technology cannot
yet reliably disambiguate communication styles4. As a result, most shared-memory applications
end up performing locality resolution at runtime.

3Although these actions could also be coded explicitly by the programmer, we exclude that as an option here
because such coding would represent use of a message-passing communication model.

4This is a situation that the author believes will continue to improve, however.

Page 24 INTRODUCTION

Hardware support for locality resolution is the essence of the distinction between shared-
memory and message-passing hardware architectures. In the former, the instruction to reference
memory is the same whether the object referenced happens to be in local or remote memory; the
local/remote checks are facilitated by hardware support to determine whether a location has been
cached (cache tags and comparison logic) or, if not, whether it resides in local or remote memory
(local/remote address resolution logic). If the data is remote and not cached, a message will be sent
to a remote node to access the data. Because shared-memory hardware provides direct support for
detecting non-local requests and for sending a message to fetch remote data, a single instruction
can be used to accessanyshared-address space location, regardless of whether it is already cached,
resident in local memory, or resident in remote memory. Assuming that local shared data access
is handled at hardware speeds, this has the important consequence that access to shared data can
be extremely rapid (i.e. of the same speed as an access to unshared data) when data is cached or
resident on the local node. Thus, shared-memory hardware enables dynamic locality optimization
through caching and data migration.

As argued above, the handling of local cache-misses to shared data in hardware is desirable
from the standpoint of permitting transparent locality optimization through data migration. There
is another way to consider this. To the extent that “real” communication must cross node bound-
ariesand traverse the network, access of local shared data does not involve communication. As
a result, the locality resolution that accompanies such access is an artifact of the shared-memory
communication model. By placing locality resolution in hardware (including the fetching of lo-
cal shared data during a cache miss), shared-memory architectures avoid penalizing accesses that
wouldbe handled entirely in hardware for hand-optimized message-passing programs. Further, as
will be shown later in this thesis, the difference between handling local and remote shared data ac-
cess in hardware is insignificant, especially for a restricted class of sharing patterns5. This, in turn,
means that real communication through shared-memory can be extremely efficient, easily rivaling
or surpassing that of hand-tuned message-passing programs on fine-grained message-passing ar-
chitectures. The hardware handling of remote shared-memory accesses has a hidden advantage:
no need for asynchronous interrupt handling or polling to service requests from remote nodes (at
least not in the “common” case). This can be extremely important on machines that have expensive
interrupt handling.

In contrast to shared-memory architectures, message-passing hardware architectures do not
provide hardware support for either local/remote checks or caching6. Hence, they cannot use a
single instruction to access locations in the shared-address space. In the most general case, they
must implement the locality resolution code of Figure 1-1 entirely in software. This increases the
cost of accessing shared-data, even if it is present on the local node. In addition, implementation
of the general shared-memory communication model on a message-passing architecture incurs
an additional cost, that of handling asynchronous requests for data from remote nodes. This, in
turn, forces the use of frequent polling or interrupts in order to ensure that nodes make reasonable
forward progress.

A simple conclusion here is that message-passing architectures are insufficient platforms for

5e.g.handling limited read-sharing directly in hardware[23].
6The J-machine[87] provides a hardware associative memory that served as a cache on object locations. This

approach merely accelerates the local/remote check of Figure 1-1; it does not eliminate it.

1.3. Why Integrate Communication Mechanisms? Page 25

the high-performance implementation of shared-memory communication models. In the past, it
was deemed that these deficiencies were unavoidable, given the difficulty of building large-scale
shared-memory multiprocessors. However, machines such as DASH [69, 70], Alewife[3] (the
topic of this thesis), and others, have shown that the mechanisms required to build scalable shared-
memory multiprocessors are not of unreasonable complexity.

Anatomy of a Message Transaction. One advantage of the message-passing communication
model is its integration of data and synchronization. Another is the direct nature of communi-
cation: data flows directly from source processor to destination processor, without unnecessary
network crossings. One would hope that both of these properties would be directly retained by any
implementation. Figure 1-2 illustrates the anatomy of a message communication in the context
of the User-Direct Messaging model. This figure illustrates the four different phases of a mes-
sage communication. The first of these,message description, involves describing the contents of
the outgoing message to the communication layer; this is terminated by a messagelaunch op-
eration. The second,network transit, represents the time after the message is committed to the
transport layer but before has been received. On reception, an interrupt is generated and a message
handler is invoked as a result. The third phase of communication,the atomic section, is the period
during which the message handler executes atomically with respect to other message handlers,
i.e. with message interrupts disabled. Among other things, a handler must examine and free its
message from the communication layer during the atomic section. The fourth and optional phase
of message communication, termed theglobal section, allows the message handler to continue to
execute as a first-class thread with interrupts enabled.

As shown in Figure 1-2, the message-passing communication model differs from shared

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
A

Message
Description

Network
Transit

Global
Section

Source
Processor

Destination
Processor

M
es

sa
ge

Lau
nc

h

Arri
va

l N
ot

ific
ati

on

(H
an

dle
r D

isp
atc

h)

M
es

sag
e D

is
car

d

Atom
ici

ty
Rele

as
e

Atomic
Section

Han
dle

r E
xit

Message Handler

Figure 1-2:Anatomy of a User-Direct Message.

memory in two important ways. First, it consumes minimal resources from the physical trans-
port layer, requiring no more than a single
network traversal from source to destina-
tion. In contrast, typical shared-memory
cache-coherence protocols can require up
to four network traversals for the simple
transaction illustrated by Figure 1-2. This
may seem surprising until one considers
the fact that these protocols make use of
communicationheuristicswhich are op-
timized for good average behavior over a
range of shared-memory communication patterns; consequently, they are unlikely to produce an
optimum pattern of physical messages for all applications. Message-passing, on the other hand,
provides access to the lowest-level primitives of the physical transport layer, thus permitting ar-
bitrarily simple (or complex) communication patterns to be constructed, although at the cost of
additional software overhead at the endpoints7.

The second important way in which message passing differs from shared memory is that mes-

7Some researchers have attempted to acquire this same network efficiency by augmenting their cache-coherence
protocols withremote-writecapability, but this is not general and does not convey the synchronization advantages
presented by a message-passing communication model.

Page 26 INTRODUCTION

sage passing involves an explicit interrupt model that permits users to receive message notifica-
tion via interrupts. Such a user-level interrupt model requires an associated atomicity mechanism
that permits users to disable interrupts without violating the integrity of the operating system; in
Alewife, atomicity is provided by arevocable interrupt disablemechanism. Although we will
discuss this mechanism later when we present User-Direct Messaging, the important point here is
that atomicity is unnecessary for shared-memory communication models.

A third point that we advance here is the fact that typical shared-memory architectures do
not provide support for large block transfers. Such transfers are desirable for a range of opera-
tions, from block I/O to data migration. Although support for block transfer can be included in a
shared-memory architecture (in the form of hardware-accelerated memory-to-memory copy) this
operation can be more efficiently accomplished via message-passing: the large quantity of data
argues for efficiency at the transport level,i.e. direct transfer of data from source to destination (no
extra network round-trips) via large network packets (reducing network routing overhead). Conse-
quently, message-passing communication models ideally export DMA mechanisms which are not
required for shared-memory.

Thus we have provided at least three reasons that a machine which provides only shared-
memory is not entirely suitable for message-passing communication models: transport efficiency,
atomicity, and block transfer.

An Integration of Mechanisms. As a result, one answer to the question of why to integrate
shared-memory and message-passingmechanismsis that no one set of mechanisms is sufficient to
implement both share-memory and message-passingcommunication models. This answer we have
examined in the previous pages.

The integration of mechanisms can have additional benefits, however, in that communication
models can be implemented more efficiently than might otherwise be possible. For instance, the
presence of integrated mechanisms enables compiler transformations which analyze source code
written in one communication model to emit instructions in a more appropriate communication
model. The earlier discussion of compiler-based locality resolution is one example of this – static
applications written with a shared-memory communication model can be compiled to produce
binaries which utilize the message-passing communication model at runtime; for certain classes of
applications, this may actually result in the shortest possible runtime.

Another, more concrete example of the benefits of integration involves Alewife’s shared-
memory communication model, called LimitLESS. The presence of hardware message-passing
mechanisms relaxes the functionality required from the hardware shared-memory: these mecha-
nisms can implement a restricted subset of the cache-coherence protocol[23] and can ignore the
issues of protocol deadlock entirely[60]. We will explore these benefits in later portions of the
thesis.

Figure 1-3 previews the various levels of hardware and software mechanisms present in the
Alewife machine and forms a road map to the implementation portions of the thesis, since most
of these mechanisms (as well as justification for this particular partitioning) will be described
in detail later. For now, note that this figure shows four distinct levels of implementation, from
the application level through to the hardware. Although the machine as a whole integrates both
shared-memory and message-passing communication models, this diagram also highlights several

1.3. Why Integrate Communication Mechanisms? Page 27

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Network

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Message Passing
Source

Shared Memory
Source

Libraries/Macros

Compiler
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Communication
Reschedule

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

OS Facilities:
Scheduler
File System
Malloc

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Shared-Memory Model
(LimitLESS)

Message-Passing Model
(User-Direct Messaging)

Custom
RPC

Featherweight
Threads

Network
Deadlock
Avoidance

R
evocable

In
terrup

t
D

isab
le

D
ead

lock
D

etection

Lim
ite

d D
irecto

ry
S

h
ared

 M
e

m
ory

w
ith L

im
itL

E
S

S

D
ire

ctory
A

ccess

M
ultiple

H
ardw

are
C

o
ntexts

Atomic Message-Passing Interface with DMA

A
pplication

(U
ser-Level)

C
o

m
m

unica
tion

M
o

del R
untim

e
O

S
 P

rim
itive

H
ardw

are
P

rim
itive

F
ine

-g
rain

S
ynch

Figure 1-3:Integration of Communication Mechanisms in Alewife. Shaded boxes represent points at which
Message Passing and Shared Memory are explicitly integrated.

Page 28 INTRODUCTION

point at which these models are entwined (shaded regions): special synchronizationlibraries[75]
integrate both shared memory and message passing communication to exploit the best of each;
the compiler attempts to extract an efficient mix of shared-memory and message-passing code
from shared-memory source8; the LimitLESS cache coherencemodel[23, 24] explicitly integrates
shared-memory and message-passing communication hardware mechanisms; finally, thenetwork
carries traffic for both shared-memory and message passing communication mechanisms.

1.4 Challenges To Integration

Having identified that integrated architectures are both interesting and desirable, we now consider
some of the issues that complicate the design and implementation of a such architectures. At the
level of design, we identify three major challenges to integration:

1. The User-Level Access Problem

2. The Service-Interleaving Problem

3. The Protocol Deadlock Problem

These are listed in decreasing order of architectural abstraction (or, alternatively, in decreasing
order of impact on the user). These three issues will arise during much of theDesignportion of
this thesis. We want to take a few moments at this time to define these challenges and provide a
brief outline of their solutions.

The User-Level Access Problem: Loosely stated, theUser-Level Access Probleminvolves a
desire to export hardware communication mechanisms directly to user-level while maintaining a
clear distinction between system and user. This desire is motivated by the fact that the greatest
combined performance and flexibility can often be achieved when user-code can interact directly
with hardware mechanisms, without the intervention of system-level software. It reflects a strong
belief in the integrated-systems approach that was the hallmark of the RISC revolution,i.e. a
careful blending of primitive hardware mechanisms with a thin layer of runtime software and
optimizing compiler technology. We intend to adopt this philosophy in a machine with integrated
message passing and shared memory. Thus, to be more precise, our definition the User-Level
Access Problem for an integrated architecture involves the search for a simultaneous, optimal
solution to the following three questions:

1. What are thesemanticsof the communication models?

2. How do these modelsinteractwith one another?

3. What interfacesshould the user employ to access communication mechanisms?

Our search for a simultaneous answer to these questions may be contrasted with less-optimal ap-
proaches that (1) choose a set of communication semantics without regard for implementation

8Note that this compiler is still in the early stages of exploration at this point.

1.4. Challenges To Integration Page 29

complexity, or (2) which propose a set of hardware mechanisms without a well-defined user model,
or (3) which construct hardware mechanisms without careful attention to interfaces.

One of the most desirable characteristics for a solution is that it achieves high performance
without compromising protection or incurring unreasonable implementation complexity. Thus, we
seek semantics that are just powerful enough to yield good and predictable performance – no more
so. In guiding our search, we employ two rules of thumb:

1. View the set of hardware communication mechanisms as a “bag of tricks”.

2. View communication interfaces as extending the instruction set architecture (ISA).

The first viewpoint states that communication operations that are used by the programmer are not
directly reflected by hardware operations; rather, they are constructed by the compiler, library, or
runtime system from a set of primitive hardware mechanisms (“bag of tricks”). This viewpoint is il-
lustrated by Figure 1-3. It focuses attention on the construction of a minimal set of hardware mech-
anisms that satisfy our needs for correctness and performance. The second viewpoint advocates
the direct export of hardware communication mechanisms to the user (via user-level instructions)
while maintaining a clear distinction between the system and user. Philosophically, this approach
reflects a view that communication is as fundamental as computation and should thus be reflected
in the instruction set9. This viewpoint is not new (see, for instance, [116, 34, 14, 88, 89]); however,
we seek an architecture which (1) integrates message passing and shared memory communication
while (2) attempting to balance the performance of communication mechanisms against single
thread performance and implementation complexity.

To briefly preview our result, the Alewife solution to the User-Level Access Problem embraces
the following five hardware mechanisms:

1. Sequentially consistentshared memory with extensions for prefetching, fine-grained
synchronization, and rapid context-switching.

2. A single-user modelof the network which provides direct, user-level access to hard-
ware queues while remaining virtualized for resource sharing and protection. In-
cluded as part of this mechanism is a user-level DMA mechanisms withlocally
coherentsemantics.

3. Multiple register setsfor fast thread creation, latency tolerance and rapid interrupt
handling.

4. A formalized notion ofatomicitywhich provides low-overhead, user-level control
of message interrupts without violating protection.

5. A mechanism for detecting deadlock in the network.

Each of these mechanisms appears at the bottom of Figure 1-3.

9It should be noted that the process of adding user-level operations or instructions is often confused with the mech-
anism of interface/implementation. Consider, for instance, the progression of floating-point hardware from memory-
mapped “coprocessor” interfaces to highly-integrated multi-issue floating-point pipelines.

Page 30 INTRODUCTION

Of the two communication models, message passing presents the greatest challenge for fast in-
terfaces and protection. The shared-memory interface is well-established and easily protected with
standard uniprocessor techniques. Further, shared-memory buries much of the details of commu-
nication at a level which the user is unable to influence: cache-coherence messages are of fixed
size and well-defined composition, are typically restricted in quantity, and are consumed immedi-
ately at their destinations. In contrast, message passing can involve messages of arbitrary size and
composition, may permit the network to be flooded, and may expose the system to deadlock since
the user may refuse to consume messages.

The Service Interleaving Problem: The Service Interleaving Problemin an integrated archi-
tecture arises from the presence of uncontrolled simultaneity in an multiprocessing environment.
This simultaneity arises from several sources: First, by their very nature, multiprocessors support
multiple instruction streams (at least one per node), each of which can generate shared-memory
communication traffic. Second, latency-tolerance techniques such as prefetching and rapid-context
switching serve to overlap communication by increasing the number of outstanding requests from
each node. Third, message-passing interfaces give rise to a potentially unbounded number of out-
standing requests from each node. Hence, the memory system and network must correctly support
many simultaneous requests with arbitrary ordering between them. Further, the boundaries be-
tween shared memory and message passing can be explicitly crossed when hardware events are
handled by software (such as for the LimitLESS coherence protocol); this can introduce simul-
taneity in which cache-coherence structures are access by both hardware and software.

Hence, the Service-Interleaving Problem requires order amidst this chaos. It can be stated as
requiring two guarantees:

1. All communication operations must complete eventually.

2. All communication operations must complete correctly.

The first statement asserts that the system is free of both livelock and deadlock. It requires the
solution of three problems, therefused-service deadlock, thewindow of vulnerability livelock, and
theserver-interlock problem10. The refused-service deadlock refers to a form of priority inversion
in which an asynchronous interrupt is deferred pending completion of a dependent operation or in
which one class of communication (such as messages) prevents the completion of another class of
communication (such as shared memory). The window of vulnerability livelock arises naturally
in systems with split-phase memory transactions, when requested data can return to a node and be
invalidated before it is accessed. Finally, the server-interlock problem is a memory-side dual to the
window of vulnerability livelock and arises naturally in cache-coherence protocols. Ignoring this
problem can lead to deadlock, while partial solutions can introduce livelocks, both of which can
prevent the forward-progress of memory operations.

The second statement implies the existence of a cache-coherence protocol to maintain data
consistency, and the presence of explicit mechanisms to deal with message and event reordering.
Although all cache-coherence protocols deal explicitly with internode parallelism, such protocols

10Although the problem of protocol deadlock could also be construed as falling within the domain of the Service-
Interleaving Problem, we have devoted split this off as a separate challenge – see Chapter 4.

1.4. Challenges To Integration Page 31

may be sensitive to the reordering of messages in the network or communication subsystem11. Fur-
ther, for systems such as Alewife that implement cache coherence via hybrid hardware/software
schemes (e.g.LimitLESS), correct behavior requires mechanisms for the orderly hand-off of hard-
ware events to software. We refer collectively to these issues asprotocol reordering sensitivities.

Our solution to the Service Interleaving Problem restricts parallelism in problematic situations,
as well as preventing pipeline interlocks from generating priority inversions. This solution can be
summarized as follows:

1. Guarantee that high-priority asynchronous events can be delivered.

2. Track the status of outstanding memory transactions.

3. Forcing requesters to retry requests during interlock periods and guaranteeing that
at least onewriter eventually succeeds.

4. Provide locks on contended hardware data structures.

The first of these involves a centralized data structure called aTransaction Bufferwhich contains
one entry for each outstanding memory transaction. This buffer supports sufficient associativity
to defeat several different forms of livelock, including thrashing in the cache and inter-processor
“ping-ponging” of shared data items. The second makes use ofhigh-availability interruptswhich
are asynchronous interrupts that can be delivered synchronously in circumstances in which they
would otherwise be ignored. The third avoids server-side queueing of requests in hardware while
still permitting construction of software queueing locks (such as an MCS lock[84]) to guarantee
forward progress on highly-contended memory locations. Finally, selective interlocking of hard-
ware data structures (in particular cache-coherence directories) permits the atomicity normally
exploited by hardware operations to be extended to software event handlers. Buried within this
fourth solution is the presence of appropriate “channels” for delivery of hardware events to soft-
ware, such as the notion of afaultable flush queuewhich can reflect hardware operations such as
cache replacement back to software handlers12.

The Protocol Deadlock Problem: Cache-coherence protocols introduce cycles into the physi-
cal topology of the network. The cycles arise because messages arriving in the input queue (e.g.
shared-memory requests) cause the generation of messages on the output queue (e.g. data re-
sponses). This, combined with finite queue resources, leads to the possibility that two nodes could
deadlockone another. While the communications patterns of shared memory are sufficiently con-
strained to permit deadlock to be avoided by removing cycles with virtual channels, the addition of
general message passing hopelessly complicates the issue. TheProtocol Deadlock Problemrefers
quite simply to the challenge of preventing protocol deadlock in an integrated architecture which
supports both shared memory and message passing.

Our solution to the Protocol Deadlock Problem involves techniques that fall under the general
heading oftwo-case delivery. Two-case deliver refers to on-demand software buffering of mes-
sages at their destination as a method for breaking deadlock cycles. Messages which are buffered

11In systems that implement two-case message delivery (see Chapter 4), messages may become reordered by the
software recovery layers of software.

12In point of fact, the Transaction Buffer doubles as a faultable flush queue.

Page 32 INTRODUCTION

in this way are not dropped, but later delivered to the appropriate hardware or software consumer;
hence the name “two-case delivery”.

In the case of hardware-level deadlock (such as for the cache-coherence protocol), this solution
is predicated on the position that actual protocol deadlock is rare. Rather than preventing deadlock,
we employ heuristics fordetectingandrecoveringfrom deadlock. This solution can be summarized
in three parts as follows:

1. Detect potential deadlock by monitoring output queue for periods of congestion.

2. Divert arriving messages into local memory until theoutputqueue is unclogged.

3. Relaunch diverted messages to the memory controller to permit processing.

Chapter 6 will present data to support the rarity of deadlock and the success of this methodology.
For software-induced deadlock, auser-level atomicitymechanism detects that the network is not
making forward progress and invokes buffering transparently.

1.5 The Alewife Prototype

To demonstrate the ideas presented earlier (and others), this author and his colleagues em-

Directory

Distributed

Private

Memory

Cache

FPU

Network
Router

Alewife node

CMMU

Sparcle

Shared

Distributed

Memory

HOST

VME
Host Interface

SCSI Disk Array

Figure 1-4:Node Diagram and Schematic for a
16-node Alewife Machine.

barked on a six-year implementation effort, the result of which were several Alewife multipro-
cessor prototypes. An Alewife machine is orga-
nized as shown in Figure 1-4. Such a machine
consists of multiplenodes, each of which has
the equivalent computing power of a SPARCSta-
tion 1+. Memory is physically distributed over
the processing nodes, and communication is via
a packet-switched mesh network.

Each Alewife node consists of a Sparcle[4]
processor, 64K bytes of direct-mapped cache,
4M bytes of shared data and 2M bytes of di-
rectory (to support a 4M byte portion of shared
memory), 2M bytes of private (unshared) mem-
ory, a floating-point coprocessor, and an Elko-
series mesh routing chip (EMRC) from Cal-
tech. Both the cache memories and floating-point
unit (FPU) are off-the-shelf, SPARC-compatible
components. The EMRC network routers use
wormhole routing and are connected to form
a direct network with a mesh topology. The
nodes communicate via messages through this
network. A single-chip Communications and

Memory Management Unit (CMMU) services data requests from the processor and network, as

1.6. Overview of Results Page 33

well as performing more mundane tasks such as DRAM refresh and control. I/O is provided by a
SCSI disk array attached to the edges of the mesh.

All of the chips in the system are “off-the-shelf” components with the exception of the Sparcle
processor and the CMMU. In fact, these two chips form the heart of the Alewife machine: the
Sparcle processor, a modified SPARC processor, allows user instructions to be communicated
efficiently to the CMMU, while the CMMU implements most of the experimental mechanisms,
methodologies, and solutions of Alewife. To put it another way, the uniqueness of Sparcle lies in
thetransparency andefficiencywith which it passes user-level instructions onto the CMMU, while
the uniqueness of the CMMU lies in the set ofmechanismsthat it implements. Much could be made
about this particular division of responsibility (and in fact [4] takes the implementation advantages
of this process and attempts to elevate this to a science), but an equally strong position could
be made for simply viewing the process as enhancing the instruction set — the Sparcle/CMMU
tradeoff merely represented a convenient method of implementation. In fact, we will begin the first
chapter of the Design portion of this thesis with just such an argument. The history of computer
design has revealed a tendency for computer architects to begin any foray into a new computation
niche by adding a host of new instructions —i.e. an initial pressure toward a “CISC” methodology,
which later becomes streamlined as the effectiveness of compilers and new instructions becomes
better understood. Alewife represents one such point on a foray into multiprocessing. Much
attention will be given to Sparcle and the CMMU in later chapters.

Alewife as an academic project was unique in a number of ways, not the least of which was
the work that the Alewife team put into packaging for Alewife machines13. With the assistance of
Information Sciences Institute (ISI) at the University of Southern California, Alewife was designed
with relatively compact and easily reproducible backplains and nodeboards. Two different pack-
ages were produced: a 16-node package which supported 4 I/O nodes and consumed relatively
the same form-factor as a floor-standing workstation, and a 128-node package which supported
32 I/O nodes and filled a standard 19-inch rack. In addition to yielding a relatively neatlooking
machines14, this served to greatly enhance the reliability of the Alewife asynchronous network15.
Although I will not say much more about Alewife packaging, suffice it to say that the lessons
of the Alewife project indicate that care with packaging can have as much to do with success as
everything else.

1.6 Overview of Results

The most important thing that show in this thesis is thatthe integration of message-passing and
shared-memory communication models is possible at a reasonable cost, and can be done at a level
of efficiency that does not compromise either model. In short: integration is possible. To show this
result, we will systematically tackle the three challenges of integration, then follow with an actual
implementation (the Alewife prototype). In this sense, the solutions proposed during examination

13Ken Mackenzie was the driving force behind our packaging effort.
14There was plenty of appreciation of this, much to our delight, during the DARPA PI meeting which occurred

shortly after we assembled a 16-node machine.
15The Stanford DASH multiprocessor used similiar network routing chips as Alewife, but had much more trouble

with them. Much of this can be attributed to the relatively longer wires and less shielded packaging used for DASH.

Page 34 INTRODUCTION

of the three challenges are not simply theoretical, but rather lead to an actual implementation. The
User-Direct Messagingmodel is one of the key results of the earlier chapters, providing an easily
implemented model of messaging that is, none-the-less, extremely efficient. Two ancillary con-
cepts to this messaging model are (1) the notion of a virtualizableuser-level atomicitymechanism
that is crucial to maintaining direct, user-level access to the network; and (2) the notion oftwo-
case delivery, which is a “RISC-like” philosophy that handles exceptional network scenarios (such
as deadlock) through software buffering, thereby freeing the hardware implementation to provide
fast, common-case network abstractions. In fact, one of the results that we will present in Chapter 6
is that two-case delivery is an appropriate technique under a number of circumstances.

The Alewife prototype integrates shared-memory and message-passing communication models
and achieves speedups that meet or beat those from many other multiprocessors (on both shared-
memory and message-passing applications). This efficiency is achieved through careful construc-
tion of the communication models (as described earlier), and careful implementation. One of
the key implementation methodologies that we propose is that ofservice coupling, a stream-
based technique that separates manipulation of highly contended resources into separate blocks
for scheduling, execution, androuting. The end result is that both shared-memory and message-
passing communication mechanisms coexistwithout compromising the speed of either type of
mechanism16.

1.7 Overview of Thesis

In addition to this chapter (Introduction), the following thesis is divided into two major parts:
DesignandConsequences. Each of these parts is, in turn, divided into three individual chapters.
The first, Design, explores each of the three challenges to integration introduced earlier: Chapter 2
discusses the User-Level Access problem, Chapter 3 examines the Service-Interleaving problem,
and Chapter 4 attacks the Protocol Deadlock problem. The second part, Consequences, explores
some of the implementation details of Alewife, as well as exploring performance results: Chapter 5
examines the hardware architecture of Alewife, Chapter 6 evaluates the performance of a 32-node
prototype, and Chapter 7 discusses a number of the lessons of the Alewife project as well as touches
upon related work.

To the extent possible, the Design portion of this thesis is intended to discuss “high-level” or,
perhaps, “protocol-level” issues, while the Consequence portion is intended to discuss implemen-
tation details and performance consequences. In the tradition of politicians everywhere, I take full
credit for the extent to which this division is successful and deny all responsibility for infractions
and failures in organization. The Consequences section is, hopefully, appropriately named. How-
ever, one of the most important consequences, the unexpected length of time consumed by the
Alewife project (and the resulting loss of hair by this author), will not receive too much mention.

Without further ado, let the games begin!

16In fact, service coupling permits local and remote memory access to differ by only the pipelined cost of accessing
the network.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Design

Part 1:

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Page 35

Page 36

This section of the thesis is titledDesign, because it discusses several of the design issues
behind the Alewife multiprocessor. In fact, it could equally be calledChallenges to Integration,
since there is one chapter for each of the three different integration challenges as outlined in the
introduction. In this part of the thesis, we confront several of the high-level design issues that are
confronted by system architects when building a system that integrates both shared-memory and
message-passing communication models.

Chapter 2 talks about the User-Level Access Problem, which asks the question: how should
communication mechanisms be exported to the user? In this chapter, we introduce our two primary
communication models, namelyLatency-Tolerant Shared-Memoryand User-Direct Messaging,
and the user-visible interactions between them. We also introduce an important threading model,
calledfeatherweight threads.

Next, Chapter 3 tackles several different interleaving issues which arise in the presence of
multiple simultaneous communication streams and which can lead to livelock or deadlock. The
transaction bufferarises in this chapter as an important centralized resource for tracking processor
requests.

Finally, Chapter 4 addresses the problem of protocol deadlock arising from cyclic dependencies
in the network. Several different solutions are explored, culminating in the Alewife solution of
two-case delivery. The advantages and costs of two-case delivery are discussed in depth in this
chapter.

All of these issues are approached from a high-level systems standpoint. It is important, how-
ever, to keep in mind that all of the high-level interfaces presented in the next three chapters are
implemented in a real architecture, namely Alewife. To emphasize this, Part 2 of the thesis (Con-
sequences), will examine the way in which our design choices impact the complexity and perfor-
mance of the Alewife prototype.

Page 37

Page 38

Chapter 2

The User-Level Access Problem

In the introduction, we motivated the overriding goal of this thesis, namely the integration of
message-passing and shared-memory communication. In this chapter, we begin this process by
developing detailedsemanticsfor the two communication models supported by Alewife, namely
Latency-Tolerant Shared MemoryandUser-Direct Messaging. The importance of selecting ap-
propriate semantics can not be understated. Among other things, the set of semantics that we
choose to support has an important effect on both performance and complexity; ill-defined seman-
tics may lead to fast but unusable communication mechanisms, whereas overly-defined semantics
may require inefficient, restrictive, and expensive implementations. We will seek a happy medium.
Closely entwined with the choice of semantics is the construction of a concrete set ofinterfaces
through which the user interacts with the underlying system. The importance of interfaces lies in
the ease with which they are used and implemented, both of which can directly affect performance.

Our current goal, then, is to define a consistent set of semantics and interfaces for the two com-
munication models as well as specifications of the way in which these interact with one another.
This complete specification will constitute our solution to the User-Level Access Problem. This
task is complicated by the fact that the ultimate choice of semantics and interfaces is driven by a
number of interwoven and competing concerns such asfunctionality, protection, performance, and
implementation complexity. As a high-level view of this chapter, we will see that our solution to
the User-Level Access problem consists of three major facets:

1. A threading model, calledfeatherweight threads, whereby threads are inexpensive
enough to use for latency tolerance and interrupt handlers.

2. Two communication models, calledLatency-Tolerant Shared Memoryand User-
Direct Messagingthat are compatible with one another, provide reasonable func-
tionality, and whose interactions may be easily characterized.

3. A set of interfaces for these communication models.

With respect to the last of these, we will take the approach thatinterfaces are extensions to the
ISA. This approach reflects view that communication is as important as computation and leads us
to develop interfaces that can be represented in a small number of actual instructions.

Page 39

Page 40 CHAPTER 2. THE USER-LEVEL ACCESS PROBLEM

Of the two communication models, it is message passing that presents the greatest challenges
for fast interfaces and protection. The shared-memory interface is well-established and easily pro-
tected with standard uniprocessor techniques. In fact, our primary additions to “standard” shared-
memory semantics have to do with latency tolerance and synchronization,i.e. the presence of
atomicity operations for rapid context-switching, the presence of non-binding prefetch operations,
and the presence of fine-grained synchronization operations attached to load and store requests.
Shared memory buries much of the details of communication at a level which the user is unable to
influence: cache-coherence messages are of fixed size and well-defined composition, are typically
restricted in quantity, and are consumed immediately at their destinations. In contrast, user-level
message passing can involve messages of arbitrary size and composition, may permit the net-
work to be flooded, and may expose the system to deadlock since the user may refuse to consume
messages. On top of this, the interaction of message-level DMA with shared memory introduces
incoherence between data sent by DMA and data seen by the cache-coherence protocol. All of
these issues must be addressed in a viable system; as we shall show, these problems can all be
handled by choosing the proper messaging model. Unfortunately, previous models are insufficient
for this task; thus, our User-Direct Messaging model represents a unique combination of features
that meets our goals of flexibility, high-performance, and reasonable implementation cost. One of
our key innovations is the notion oftwo-case delivery, which we will introduce in this chapter and
explore in depth in Chapter 4.

The solutions that are discussed in this chapter consist of communication models and the inter-
faces that support them. Our resulting communication interfaces are, not surprisingly, described in
the way that they are instantiated in the Alewife machine and, in particular, in the Alewife CMMU.
We will be discussing implementation in greater detail in Chapter 5, but one aspect of implemen-
tation is important to keep in mind for now. The Alewife CMMU was actually implemented in
two different versions (so called “A-1000” and “A-1001”). The first of these (complete with bugs)
is the primary component in the machines on which most of the data of Part 3 was acquired. The
second version of the CMMU contained updated interfaces and slight bug fixes. In particular, the
full atomicity mechanism described in Section 4.3.5 was added in the A-1001 CMMU. Other slight
differences are mentioned as appropriated in the text. Unfortunately, some electrical problems with
the second version of the CMMU prevented wide-scale use of the A-1001 CMMU. None-the-less,
the enhancements (with respect to messaging) provided by this chip are important enough that we
will describe them anyway.

As a road map to this chapter, we start by discussing our design philosophy, namely that of
discovering an “instruction-set” for multiprocessing. Then, in Section 2.2 we motivate the notion
of featherweight threadswhich permit all pieces of a computation (including interrupt handlers)
to be view as threads. Next, we discuss our two communication models, namelyLatency-Tolerant
Shared Memory(Section 2.3) andUser-Direct Messaging(Section 2.4). Finally, in Section 2.5 we
describe the interactions between these models.

2.1. Interface as an Extension to the ISA Page 41

2.1 Interface as an Extension to the ISA

No design process can operate entirely in a vacuum. Thus, we begin with a motivational bias,
namely performance. The previous chapter defined the User-Level Access Problem as involving
a desire to export hardware communication mechanisms directly to user-level while maintaining
a clear distinction between system and user privileges. One of the principal motivations for iden-
tifying this problem is the observation that many systems that tout high performance hardware
communication mechanisms never actually deliver this performance to applications. Poorly de-
signed interfaces and the resulting inflation of communication-endpoint cost are two of the most
insidious reason for such a disparity.

We start by viewing communication as fundamental — in a multiprocessor, communication is
as important as computation. Thus, we will view our search for communication interfaces as a
process of discovering the proper “communications instruction set”,i.e. we start by asserting that
interfaces are extensions to the ISA. The reasoning behind this viewpoint may be stated simply as:

� The finer the grain of communication which can be supported efficiently, the greater potential
parallelism that can be exploited.

� Truly fine-grained communication requires primitives with low-endpoint costs.

� The lowest possible overhead occurs when operations can be launched at user-level via a
small number of instructions.

It is a small step to realize that the collective set of communication operations form a type of
communications instruction set. Before proceeding further, however, it is important to note that
this viewpoint is nothing more than an attitude: it doesnot imply that we must be able to add
instructions directly to the processor pipeline. However, if we view our design process as that of
constructing an instruction set, then perhaps the resulting mechanisms will be simple enough to
result in a low-overhead implementation, regardless of the methodology. Further, if the proper
instruction set is discovered in this way, then it can serve as a template for inclusion in some future
processor pipeline. It is the belief of this author that both of these goals have been met.

Our viewpoint of interfaces as extensions to the ISA is accompanied by another notion, namely
that of the “bag of tricks”. This notion states that it is not necessary for the communication op-
erations used by the programmer to be reflected directly by hardware operations; rather, they are
constructed by the compiler, library, or runtime system from a set of primitive hardware mecha-
nisms. It is these primitive hardware mechanisms which are provided through the communications
instruction set. This point of view seeks a minimal set of hardware operations that provide the
most communications performance for the least cost.

As will be discussed in Chapter 5, the Alewife implementation involved enhancements to
the processor so that user-level instructions could be passed directly to the memory controller
(CMMU) and results could be passed efficiently back. For Alewife, this process was convenient
from an implementation standpoint and contributed to the extremely low overhead of Alewife
mechanisms. It was by no meansnecessary, however. All of the Alewife operations could have
been accomplished via memory-mapped loads and stores (although at greater cost in endpoint
time).

Page 42 CHAPTER 2. THE USER-LEVEL ACCESS PROBLEM

2.2 Featherweight Threads

One of the key philosophies of Alewife is the notion of theintegrated systems approach. Simply
stated, this recommends the implementation of common cases in hardware and uncommon or com-
plicated cases in software. In Alewife, the functionality that is eligible for migration into software
includes a number of asynchronous events, such as exceptional portions of the cache-coherence
protocol (for LimitLESS cache coherence), handling of cache-misses (for latency tolerance), syn-
chronization misses (for fine-grained synchronization), handling of messages (for complicated
fetch-and-� style operations),etc.. All of these usages involve invocation of software handlers
via hardware interrupts or traps. Consequently, fast exception handling is extremely important.

One source of “pure overhead” in exception handling is the time required to save and restore
the state of the interrupted computation. Low overhead entry and exit can be achieved, under
some circumstances, through selective saving of processor registers or by choosing to save state
only when complete thread generation is desired[114]; however, this is not a general solution
and does not serve well for latency tolerance on cache-misses or for general user-level message
handling. Instead, we approach the problem from another direction. Our goal will is to viewall
instruction streams,includingexception handlers, as complete threads (with stacks and the ability
to block). The question that we ask, then, is what is required to allow low-overhead generation and
destruction of threads, as well as rapid switching between threads. The answer is a combination
of hardware and software techniques that we callfeatherweight threads. Featherweight threads
consist of the LIFO scheduling of context allocation in a block-multithreaded processor.

2.2.1 Block Multithreading

Let us elaborate on this for a moment. Although the actual implementation of featherweight

nPC

PSR

Unloaded thread

Loaded thread

PC

Global Heap

MemoryProcessor State

Global register
frame

Register
frames

PC and PSR
frames

g0

g7

0:r0

0:r31
1:r0

1:r31
2:r0

2:r31
3:r0

3:r31

Ready
Queue

Suspended
Queue

CP

Figure 2-1:Block Multithreading and Virtual Threads

threads will be discussed in more detail in the second part of the thesis, we will start with
Figure 2-1 to indicate the primary hard-
ware component of featherweight threads.
This diagram shows ablock-multithreaded
processor[5] which contains four separate
register sets with associated program coun-
ters and status registers. Each register set
is a hardware context which can hold one
active thread. All of the computational re-
sources (such as ALUs, branch logic, and
memory interfaces), are shared by the con-
texts; consequently, only one thread can be
active at any one time. The active context
is pointed to by a hardware register called
the context pointeror CP. Conceptually, a
hardware context-switch requires only that

the context pointer be altered to point to another context; although this is a fairly low-overhead

2.3. Latency-Tolerant Shared Memory Page 43

operation, we do not assume that it is instantaneous1. Thus, a block-multithreaded architecture
ideally executes threads in quantum that are larger than a single cycle (i.e. threads are executed
in “blocks” of time). This is one of the primary distinctions between a block-multithreaded pro-
cessor and more hardware-intensive methods of multithreading such as present on MASA [44],
HEP [102], or Monsoon [88]. These other architectures can switch between a large number of
active “hardware” threads on a cycle-by-cycle basis.

2.2.2 Scheduling for Featherweight Threads

Figure 2-1 also shows four threads actively loaded in the processor. These four threads are part
of a much larger set ofrunnableandsuspendedthreads which are maintained by the operating
system. Thus, these four threads can be considered an active cache on the set of runnable threads.
In fact, by pursuing this notion of a cache, we can manage these contexts in such a way that empty
contexts always contain an idle stack segment and task descriptor. Thus, if an empty context is
available, the time to switch from a running thread and generate a new thread can be as short as
10–20 cycles. By scheduling contexts for high-priority thread creation in a LIFO fashion (which
mirrors the scheduling of interrupt handlers), we can ensure that short but high-frequency excep-
tions encounter a free context with high probability (at the top of the “context” stack) and hence
encounter very low-overhead thread creation and switching overheads: although a long-running
thread may consume the last free context (thus penalizing the next short-running thread), this cost
is only seen once, because the short-running thread will leave behind an empty context. This is the
essential idea behind featherweight threads: we concentrate the advantages of fast thread creation
to shorter threads (where it is needed most), while incurring a modest hardware cost2.

Alewife implements featherweight threads. Thus, for the rest of this chapter, we will assume
that all instructions streams (whether interrupt handlers or not) run as threads. As will be dis-
cussed in the next two sections, featherweight threads form the underpinnings of Alewife’s la-
tency tolerance techniques. In addition, the blurring between interrupt handlers and non-interrupt
handlers afforded by featherweight threads will give us a lot of flexibility when we discuss the
user-direct model: we will present a model of atomicity that affords a single-cycle transformation
of a user-level interrupt-handler (running at high priority) in a background thread. For a glance
at Alewife code that implements featherweight threads for user-level message handlers, see Ap-
pendix A (much of this will not make sense until the end of the chapter).

2.3 Latency-Tolerant Shared Memory

The programming model for allhardwareshared-memory systems is a direct generalization of
the uniprocessor memory interface: shared data is placed in a monolithic bank of memory that is
accessible to all processors in the system through the load/store processor interface. Because of
its close relationship to the uniprocessor memory model, shared memory is easily protected with

1In Alewife, a context-switch that occurs during a data cache-miss requires 14-cycles. See Section 5.1.2.
2In fact, as the implementation of the UltraSPARC demonstrated, multiple register sets are not an implementation

bottleneck as had once been assumed[111].

Page 44 CHAPTER 2. THE USER-LEVEL ACCESS PROBLEM

load f�LSOg(address)) (result , full j empty) // Loadresult from address
store f�SSOg(value, address)) full j empty // Storevalue to address

rdpref(address) // Prefetch read-only data ataddress
wrpref(address) // Prefetch read-write data ataddress

enable cswitch atomicity()) disabledj enabled // Prevent context-switching
disable cswitch atomicity()) disabledj enabled // Allow context-switching

Figure 2-2:Latency-Tolerant Shared-Memory Model/Interface. Memory coherence issequentially con-
sistent. �LSO and�SSO stand forload-synchronization operationandstore-synchronization operation,
respectively. (Normal loads and stores are special cases of these more general mechanisms).

virtual memory3. Thus, when we formalize our shared-memory model, the load/store interface
will be a prominent fixture, for most communication occurs through this interface.

Unfortunately, this simplistic viewpoint of memory becomes greatly complicated when the
constraints of a realistic implementation are imposed. Large-scale systems (such as Alewife) must
deal with the fact that processor to processor communication and processor to memory communi-
cation can take a non-trivial amount of time and may happen in a non-uniform fashion. The notion
of a monolithic shared memory quickly falls before architectures which distribute memory among
nodes and which exhibit locality of communication. The behavior of such “physically reasonable”
systems is much more complicated than that of monolithic PRAM-like theoretical systems, but
is better able to exploit locality for performance. Since the shared-memory model itself is well
established, our main concern in this section will be defining a set of shared-memory semantics
that give us maximum flexibility to tolerate latency and non-uniformities in execution.

Figure 2-2 details the operations that we include in our Latency-Tolerant Shared Memory com-
munication model. Note that we are seeking a happy middle ground with our model: one that
places enough functionality in hardware to achieve good performance without undue complexity.
The set of operations supported in this model are simple enough that they may be directly imple-
mented via hardware instructions; hence the modelis the interface and vice versa4. The standard
shared-memory load and store operations are augmented with fine-grained synchronization speci-
fiers (load-synchronization operations(�LSO) andstore-synchronization operations(�SSO) respec-
tively); these specifiers will be discussed in Section 2.3.1. The shared-memory model issequen-
tially consistent, as will also be discussed in Section 2.3.1. Support for latency tolerance involves
non-binding prefetch operations and context-switching atomicity operations; see Section 2.3.2.
Although caching is a fundamental aspect of latency management, it is effectively transparent to
the user; since the mechanisms for coherent caching are partially visible to the Alewife operating
system, however, we will touch upon the implementation of caching in Section 2.3.4.

3Alewife does not provide virtual memory for a number of reasons. First, and foremost, at the time that the Alewife
project was initiated, this particular author was concentrating on a number of other research issues, and virtual memory
would have provided one two many things to deal with. Further, there were a number of tricky interactions between
virtual memory and user-level DMA that the author was not prepared to deal with at the time. Solutions to these
problems are discussed in more detail in [77].

4This is in contrast to the User-Direct Messaging communication model, discussed in Section 2.4, where model
and interface must be introduced separately.

2.3. Latency-Tolerant Shared Memory Page 45

2.3.1 Memory Model and Synchronization

The first issue that we would like to touch upon briefly is the issue of shared-memory model and
synchronization mechanisms. As multiprocessors scale in size, the grain size of parallel compu-
tations decreases to satisfy higher parallelism requirements. Computational grain size refers to
the amount of computation between synchronization operations. Given a fixed problem size, the
ability to utilize a larger number of processors to speed up a program is limited by the overhead
of parallel and synchronization operations. Systems supporting fine-grain parallelism and syn-
chronization attempt to minimize this overhead so as to allow parallel programs to achieve better
speedups.

The challenge of supporting fine-grain computation is in implementing efficient parallelism

Inst Description
ld Normal Load. Leave F/E alone.
st Normal Store. 1) F/E
ldn Load, F/E) cond
ldt Load, F/E) cond, trap if empty
lden Load, F/E) cond, 0) F/E
stn Store, F/E) cond
stt Store, F/E) cond, trap if full
stfn Store, F/E) cond, 1) F/E

Table 2-1: Examples of Alewife synchronizing
loads and stores. “F/E” is full/empty bit. “cond”
is the testable full/empty condition code.

and synchronization constructs without incurring extensive hardware cost, and without reduc-
ing coarse-grain performance. In Alewife, this
is done by incorporating synchronization con-
structs directly into the cache/memory system:
each memory word (of 32 bits) has an additional
bit (called a full/empty bit [102, 5]) that is em-
ployed for synchronization. These full/empty
bits are stored in memory and cached along with
other data. To access these bits, Alewife attaches
a synchronization operation field to each load and
store operation. In Figure 2-2, these synchro-
nization operations are shown as�LSO and�SSO;
Table 2-1 makes this more explicit by showing
examples of Alewife load/store instructions and
their corresponding effects on the full/empty bit. As shown in this table, the Alewife operations
provide a test and set functionality in which the old value of the full/empty bit is loaded into a
testable condition code before the value is set. With this functionality, any of a number of different
possible synchronization operations may be constructed.

The Role of Memory Model: Alewife supports a sequentially consistent memory model [66].
Among other things, sequential consistency provides one of the easiest memory models to reason
about. Further, by providing sequentially consistent hardware shared-memory semantics, Alewife
is able to integrate its synchronization mechanism directly into the normal access mechanism;
full/empty bits provide good primitives to build a number of synchronization operations, but only if
provided on top of a sequentially-consistent memory system. Other weaker memory models must
add separate, out-of-band synchronization operations; for example, DASH [41] and Origin [67]
provide releaseand acquire operations for synchronization; these operations act on locks in a
separate “lock space”, that is independent of the shared-memory data space.

Over the years, researchers have developed a number of ways of programming and reasoning
about machines that have consistency models that are weaker than sequential consistency[2, 42].
Further, one of the justifications for weaker memory models is that they provide better latency
tolerance (under some circumstances) than sequential consistency. As a result, the arguments in

Page 46 CHAPTER 2. THE USER-LEVEL ACCESS PROBLEM

favor of a sequentially-consistent memory model are perhaps not as compelling as they once were,
except with respect to synchronization. Any further discussion of memory models and full/empty
bits is outside the scope of this thesis.

2.3.2 Latency Tolerance

One of the single most important barriers to large-scale multiprocessing is memory latency. Since
memory in large-scale systems is distributed, cache misses to remote locations may incur long
latencies. This, in turn, reduces processor utilization, sometimes precipitously. The general class of
solutions to latency tolerance all have an important common feature: they implement mechanisms
for allowing multiple outstanding memory transactions and can be viewed as a way of pipelining
the processor and the network. The key difference between this pipeline into the network and the
processor’s execution pipeline is that the latency associated with the communication pipeline is
very unpredictable, making it difficult for a compiler to schedule operations for maximal resource
utilization. To combat this, systems implement dynamic pipelines into the network, providing
hardware to enforce correctness. As mentioned previously, much of the hardware required for
sorting out multiple pending operations is already a part of cache coherence protocols.

Alewife provides three hardware mechanisms to tolerate long latencies:coherent caching, non-
binding prefetch, andrapid context-switching. With respect to the user model, coherent caching
is a transparent optimization (although we will have to revisit issues of fairness in Section 2.3.3).
However, both non-binding prefetch and rapid context-switching introduce mechanisms into the
user model; hence we will discuss them next.

Non-binding Prefetch: Non-binding prefetch operations act as “hints” to begin fetching remote
data before it is needed. Non-binding prefetch affects the user model in a very simple way: it
introduces a class of instructions that we will callprefetch instructions; Figure 2-2 lists the two
different prefetch instructions included in Latency-Tolerant Shared Memory, namelyrdpref (for
prefetching data in a read-only state) andwrpref (for prefetching data in a read-write state).

To use one of these instructions, the compiler or programmer supplies an address, effectively
predicting that data at that address will be needed sometime in the near future. The system then
attemptsto fetch data with the appropriate access type. This is called software prefetching, and
has a body of literature behind it (see, for instance [85]). One of the unfortunate aspects of this
interface is that instruction bandwidth is consumed for prefetch instructions; in many cases, how-
ever, this is more than offset by the performance gain. Note also that over aggressive prefetching
can have detrimental effects on program performance because of cache-pollution and excessive
memory traffic. Issues with respect to proper use of prefetching are out of the scope of the current
discussion.

The real flexibility from the standpoint of both the compiler and the underlying system lies
in the fact that these operations are non-binding. For instance, the compiler has the freedom to
occasionally request data that it will never use; in fact, the system is even allowed to specify bad
addresses without fear – such prefetches will simply be ignored5. Similarly, the system is allowed

5This is particularly useful for prefetching down a linked list, for instance.

2.3. Latency-Tolerant Shared Memory Page 47

to drop prefetch requests if resources are low; this is an important aspect of guaranteeing forward
progress of the system as a whole (see Section 4.3.7).

Rapid Context-Switching: Rapid context-switching provides a good dynamic fall-back mecha-

Processor activity

Network activity

Time −>

Data arrives

Cache miss

Thread 1 Thread 2 Thread 3

Figure 2-3: Processor and network activity when multiple
threads execute on the processor and fast context switching is
used for latency tolerance.

nism for latency tolerance precisely because it is so general. Assuming that sufficient parallelism is
available, context-switching can tol-
erate many different types of latency,
from remote memory access latency
to synchronization latency. As illus-
trated in Figure 2-3, the basic idea
behind fast context switching is to
overlap the latency of a memory re-
quest from a given thread of compu-
tation with the execution of a different
thread. Alewife couples the notion of

rapid context-switching with software scheduling as discussed in the previous section on feather-
weight threads. This is an important difference from other hardware multithreading mechanisms
that encode their scheduling mechanisms directly in hardware: it is the invocation of software
which makes Alewife’s mechanism so powerful. In Alewife, when a thread issues a remote trans-
action or suffers an unsuccessful synchronization attempt, the Alewife CMMU traps the processor.
If the trap resulted from a cache miss to a remote node, the trap handler forces a context switch to
a different thread. Otherwise, if the trap resulted from a synchronization fault, the trap handling
routine can switch to a different thread of computation. For synchronization faults, the trap handler
might also choose to retry the request immediately (spin) or unload the thread immediately.

Since it is a dynamic mechanism, context-switching is relatively invisible to the programmer
and system: context switches occur automatically in response to events such as remote cache
misses. As a result, rapid context-switching does not require additions to the user’s model in order
to permit invocation. What it does require, however, is a mechanism for atomicity; otherwise,
race conditions between threads could not be avoided during periods of access to common data
structures. In Alewife, this atomicity is provided through simple context switch enable/disable
operations that report the previous state of atomicity (thereby permitting a nested stack of en-
able/disable operations). Figure 2-2 lists these operations:enable cswitch atomicity
and disable cswitch atomicity . Interestingly enough, the mere presence of context-
switching atomicity instructions complicates the design of the memory system, since it can in-
troduce the possibility that different threads on different nodes may deadlock each other; see Sec-
tion 3.2.6 for more information on this problem.

Unshared Local Memory: Unfortunately, certain types of memory operations must be disal-
lowed from causing context-switches under all circumstances. For instance, none of the instruc-
tion fetches at the beginning of trap or interrupt handlers can be allowed to cause context-switch
traps — in Sparcle this would result in a recursive trap entry (a fatal processor exception). Further,
the type of rapid context-switching described above provides a latency-event driven interleaving.
Although this is a form of preemptive scheduling, it makes no guarantees of fairness; instead, it

Page 48 CHAPTER 2. THE USER-LEVEL ACCESS PROBLEM

tends to maximize cache reuse, letting threads continue to run as long as they are not blocked on
memory or synchronization [76]. This means that uncontrolled context-switching during “critical”
short interrupt handlers would be deadly (not to mention unwise). Thus, context-switch atomicity
must be invoked at all times during handlers and many portions of the kernel.

The simple solution in Alewife is to introduce a distinction between shared and non-shared-
memory; by definition, non-shared-memory is local to the processor. (This distinction is very
important for other reasons, as will be discussed in Chapter 4.) Context-switching is then disal-
lowed on all accesses to non-shared memory6. In this way, kernel instructions and crucial data can
be placed in non-shared memory. Kernel writers can rely on the distinction shared and non-shared
memory as a way to guarantee that they will not be interrupted.

2.3.3 Memory Fairness

One way of viewing the existence of shared memory is as client-server interaction between pro-
cessor caches (clients) and memory protocol engines (servers). Given this viewpoint, we can ask
obvious questions of correctness and fairness — if multiple clients make simultaneous requests
from a given server, what is the probability that (1) a correct sequencing of operations happens
and that (2) the server eventually satisfies the requests of all clients? Both of these questions fall
into the domain of the cache-coherence protocol, but in different ways. The issue of correctness
has to do with the cache-coherence problem itself (solved through a variant of directory-based
cache coherence on Alewife and DASH and through other methods on other machines). Correct-
ness through cache-coherence is such an obvious issue of the user-level memory model that we
assumed its existence as fundamental to the Latency-Tolerant shared-memory model; we will de-
fer further discussion until Section 2.3.4, where we will mention the LimitLESS cache coherence
protocol again.

Unfortunately, fairness is not a requisite property of the shared-memory model. In fact, the
existence of a cache-coherence protocol that maintains the correctness of cached data doesnot
guard against a lack of forward progress due to livelock. There are two different types of livelock
that can occur, both of which result in a lack of forward progress by individual processor threads:
thewindow of vulnerability livelockand themultiple-writer livelock. In one sense, these livelocks
are duals of each other, since the first originates at processor side and the second originates at
memory side. However, in another sense they are very different: the first results from the premature
discarding of data, while the second results from memory-side refusal of service. We will spending
much time discussing these problems and their solutions in Chapter 3, when we discuss theservice-
interleaving problem. As we will show in Chapter 3, the window of vulnerability is not really
amenable to a software solution and, fortunately, there is a hardware solution that does not require
hardware resources. Consequently, we consider the window of vulnerability livelock as something
that is fixed in hardware and hence does not enter the programming model (see Section 3.2 for a
complete discussion of this).

In contrast, themultiple-writer livelock, which is a sub-problem of theserver-interlock prob-
lem, is amenable to a partial software solution. Although complete hardware solutions do exist

6In fact, the time to satisfy a local cache-miss in Alewife is actually shorter than the time to perform a context-
switch; thus, allowing context-switches on local cache-misses is not advantageous anyway.

2.3. Latency-Tolerant Shared Memory Page 49

for this problem (and will be discussed in Section 3.3), they are more complicated than the com-
bined hardware/software solution. In keeping with the overall Alewife philosophy of exploiting
integrated-systems solutions, Alewife makes use of the software. Although this problem and its
solution are discussed in more depth in the next chapter, we would like to touch upon them briefly
here, since they affect the shared-memory programming model (i.e. the software must be aware of
the problem and solution).

The root cause of this problem is the fact that many cache-coherence protocols exhibit periods
of time in which new requests for data cannot be satisfied immediately. A prime example is the pe-
riod between the initiation of an invalidation sequence and the its completion. While invalidations
are outstanding for a given data block, new read or write requests for this data typically cannot
be satisfied because the data itself is incoherent. The fact that something must be done with new
requests during this period is referred to as theserver-interlock problem. To avoid deadlocking the
system during these periods, the memory system must either discard or queue incoming requests.

Since queueing is often difficult to do in hardware, the former (discarding of requests by ex-
plicitly rejecting them), is the usual solution. This, in turn, forces requesting nodes to retry their
requests, leading to the possibility for livelock. To mention our solution to the memory-side live-
lock briefly, we note that typical coherence protocols (including Alewife’s) permit multiple si-
multaneous readers, but only a single writer. Thus, memory-side livelock arises primarily in the
presence of multiple writers (hence the nomenclaturemultiple-writer livelock). In solving this
problem, we start by guaranteeing thatat least one writer succeedsunder all circumstances. This
hardware property is sufficient to enable the construction of software queue locks, such as MCS
locks [84], to combat the multiple writer situation. Thus, we “guarantee” memory fairness through
a combined hardware/software solution. One justification to this approach is the observation that
the single-write guarantee is more than sufficient by itself to guarantee forward progress for many
(perhaps most) uses of shared memory. We will return to this in more detail in Section 3.3.2.

2.3.4 Shared-Memory Implementation and LimitLESS Cache Coherence

Having discussed the communication model seen by users of shared-memory, we would like to
say a few words about implementation. We have already mentioned that Alewife provides a
sequentially-consistent shared-memory space. What is interesting about Alewife’s shared memory
is that it is partially implemented in software [23]. The basic philosophy espoused by the Alewife
coherence protocol mirrors that of many other aspects of Alewife: implementation of common
cases in hardware and exceptional cases in software. Although the active set of software exception
handlers may be selected on behalf of a user to improve performance (see, for instance [24]), they
are always under control of the operating system and, ultimately, transparent to the user. As a
consequence, we do not consider the existence of LimitLESS cache-coherence to be a part of the
Latency-Tolerant Shared-Memory Model.

However, the existence of LimitLESSis a part of the operating system’s view of the machine.
That is why we have chosen to mention it here. At the lowest levels of the hardware, cache
coherence is maintained through the exchange of protocol messages. These messages are exactly
like message passing messages except for the value of an “major opcode” field in the header of the
message (see Section 2.4.2 and Figure 2-7). When the hardware detects an exceptional condition

Page 50 CHAPTER 2. THE USER-LEVEL ACCESS PROBLEM

that must be handled through software, it passes the protocol message up through the message-
passing interface (the whole topic of Section 2.4) for handling via software. Thus, cache-coherent
shared memory is actually implemented through an integrated combination of shared-memory and
message-passing hardware interfaces. This fact will return in other portions of the thesis. Among
other things, it introduces an interesting set of problems associated with the handing of events from
hardware to software; see Section 3.4.2.

2.4 User-Direct Messaging

In this section, we turn our attention to defining a message-passing interface for Alewife. This in-
terface must satisfy three goals: First, it must provide access to the network in a way that is general
enough to implement a variety of communication paradigms both atuser levelandsystem level.
Included among the necessary features for such an interface is the ability to handle bothpolling
and interrupt forms of message reception. Second, this interface must interact cleanly with the
shared-memory interface, including sufficient flexibility to assist in the implementation of Limit-
LESS cache-coherence, which is partially implemented in software (as discussed in Section 2.3.4).
Finally, the message-passing interface should lend itself to a natural hardware implementation that
can be directly exported to users within the trusted environment of a scalable workstation. This
would permit users to invoke protected messaging at raw hardware speeds. Since both transmis-
sion and reception of messages is entirely under control of the user, the resulting message model
will be calledUser-Direct Messagingor UDM.

As will be illustrated in the following section, message passing on Alewife involves direct pro-
cessor access to the input and output queues of the network via conventional loads and stores. It
also involves a user-level atomicity mechanism, a DMA mechanism, and fast message interrupts
via featherweight threads as discussed in Section 2.2. With the integrated interface in Alewife, a
message can be sent with just a few user-level instructions[60]. User threads may receive messages
either by polling the network or by executing a user-level interrupt handler. As with other aspects
of Alewife, the message-passing interface represents a careful balance between hardware and soft-
ware features. Consequently, scheduling and queueing decisions are made entirely in software.

The integration of shared memory and message passing in Alewife is kept simple through a
design discipline that provides asingle, uniform interface to the interconnection network. This
means that the shared-memory protocol packets and the packets produced by the message passing
facilities use the same format and the same network queues and hardware. However, as will be
discussed in Section 2.5 and in Chapters 3 and 4, this uniformity of resource utilization impacts
both the user’s programming model and introduces some design complexity.

The message interface itself follows a similar design discipline: it provides a single, uniform
communications interface to the processor. This is achieved by using a single packet format and
by treating all message packets destined to the processor in a uniform way. Specifically, all (non-
protocol) messages interrupt the processor. The processor looks at the packet header and initiates
an action based on the header. The actions include consuming the data into its registers directly, or
issuing DMA-like storeback commands.

The next section (Section 2.4.1) provides an overview of the requirements for Alewife’s

2.4. User-Direct Messaging Page 51

message-passing interface. Then, Section 2.4.1 formalizes theuser-direct message-passing model.
Section 2.4.2 follows with a discussion of the message-passing interface,i.e. the way in which
individual operations in the message-passing model reduce to machine operations.

2.4.1 User-Direct Messaging Model

Alewife’s message-passing interface is unique for three reasons: First, it peacefully coexists with
the shared-memory interface and even participates in the implementation of the shared-memory
communication model. Second, both message transmissionand reception occur at user level on
the computation processor. This is in marked contrast to the network interfaces of a number of
other systems that either force message reception to occur at system level [64, 45] or via a copro-
cessor [93, 97]. Third, the interface is highly efficient and uses a uniform packet structure. The
message-passing interface in the Alewife machine is designed around four primary observations:

1. In many usages of message passing, header information is derived directly from
processor registers at the source and, ideally, delivered directly to processor registers
at the destination. Thus, efficient messaging facilities should permit direct transfer
of information from registers to the network interface. Direct register-to-register
transmission has been suggested by a number of architects [14, 35, 113, 46].

2. Blocks of data which reside in memory often accompany such header informa-
tion. Thus, efficient messaging facilities should allow direct memory access (DMA)
mechanisms to be invoked inexpensively, possibly on multiple blocks of data. This
is important for a number of reasons, including rapid task dispatch (where a task-
frame or portion of the calling stack may be transmitted along with the continua-
tion) [58] and distributed block I/O (where both a buffer-header structure and data
may reside in memory).

3. Some modern processors, such as Alewife’s Sparcle processor [106], MO-
SAIC [100], the MDP [35], and the UltraSPARC [111], can respond rapidly to
interrupts. In particular, as discussed in Section 2.2, Alewife supports fast inter-
rupt delivery via featherweight threads. This couples with efficient DMA to provide
another advantage: virtual queuing. Here, the messaging overheads are low enough
that a thin layer of interrupt-driven operating-system software, can synthesize arbi-
trary network queueing structures in software.

4. Permitting compilers (or users) to generate network communications code has a
number of advantages, as discussed in [113], [14], and [47]. Compiler-generated
code, however, requires user-level access to the message interface,includingaccess
to some form of atomicity mechanism to control the arrival of message interrupts.

Given these observations, we can proceed to define a message-passing communication model for
Alewife. To simplify the explanation, we start by discussing the model from the standpoint of
protected user code, in a fashion that is independent of implementation. Since the requirements for
user-level access are more strict than those for system level access, this orientation will introduce
the complete set of messaging semantics that we would like to support. Later, when discussing

Page 52 CHAPTER 2. THE USER-LEVEL ACCESS PROBLEM

send(header, handler, [oper2], ..., [<addr0:len0 >], ...)
sendc(header, handler, [oper2], ..., [<addr0:len0 >], ...)) sentj ignored

message available()) true j false
receive()) ([dest0], [dest1], [dest2], ..., [<destaddr0:destlen0 >], ...)
peek()) ([dest0], [dest1], [dest2], ...)

enable message atomicity()) disabledj enabled
disable message atomicity()) disabledj enabled

Figure 2-4:The User-Direct Messaging Model. Arguments enclosed in square brackets (“[]”) are optional
(only theheader andhandler arguments are strictly necessary at the source). Any DMA specifiers,
such as<addr0:len0 >, must be after the explicit operands; within thereceive operation, the length
value may be specified as1, meaning “to the end of the message”.

the actual interface, we will illustrate how system-level code gets access to the network. Further,
we will assume for now that the network isdedicatedto a single application; later we will discuss
methods for maintaining the appearance of a dedicated network in a multiuser environment7.

As discussed in Chapter 1, we make the distinction between communication models and im-
plementations, because often the implementation is a hybrid mix of hardware and software. The
User-Direct Messaging model has a notion ofmessages, which are the unit of communication,
along with operations toinject messages into the network and others toextract them from the
network. It integrates both polling and interrupts fornotificationof message arrival.

Message Injection Operations: Figure 2-4 shows the operations that are supported by the UDM
communication model. A message is a variable-length sequence of words consisting of two or
morescalar operands, followed by the contents of zero or moreblocks of memory. The initial two
operands are specialized: the first is an implementation-dependent routing header which specifies
the destination of the message; the second is an optional handler address. Remaining operands
represent the data payload and are unconstrained; in addition, the contents and sizes of memory
blocks (if included) are unconstrained.

The semantics of messaging areasynchronousandunacknowledged. At the source, messages
are injected into the network at any rate up to and including the rate at which the network will
accept them. Injection operations areatomic in that messages are committed to the network in
their entirety; no “partial packets” are ever seen by the communication substrate. As described
in Section 2.4.2, injection atomicity is extremely important for sharing of the network interface
between user-level and system-level code. Further, as a result of atomicity, injection operations
may be described with a procedure-call syntax in which the complete contents of a message are
presented to the network as arguments to the injection operation.

Figure 2-4 details two flavors of injection operation that are supported in UDM: a blocking
version (send) and non-blocking version (sendc). These operations, listed in “varargs” format8,

7For all practical purposes, Alewife is a single-user machine. However, these interfaces generalize directly to
multiuser systems, as will be discussed later.

8I am borrowing this term from the C-language. It means that the total number of arguments is variable (indicated
by “. . . ” to indicate that additional arguments may be added).

2.4. User-Direct Messaging Page 53

take two or more operands (theheader andhandler are required) and zero or more blocks of
memory (specified as address/length pairs such as<addr0,len0 >). The set of arguments to an
injection operation can be thought of asdescribingthe message, which is subsequently constructed
by concatenating the operands with the contents of each of the blocks of memory (in sequence). In
this way, data isgatheredinto the message from disparate locations in memory. Note that DMA is
an integral part of the messaging model.Implicit in this injection syntax is that data is placed into
the network from registers and memory with no intermediate copy operations.

The two different injection operations differ in their response to network congestion: If the
network is unable to accept a new message, thesend operation will block until the message is
successfully injected. In contrast, thesendc operation does not block, but rather produces a
return code to indicate whether or not the message was successfully sent (i.e. sentor not sent).
Sincesendc may or may not successfully inject a message into the network, it is up to the user
to check the return code and retry the operation if it fails. Regardless of the operation used, once
a message has been successfully injected into the network, UDM guarantees that it will eventually
be delivered to the destination specified in its routing header9.

Message Extraction Operations: At the destination, messages are presented sequentially for
reception with no particular ordering. Each message is extracted from the network through an
atomic operation (calledreceive), that reads the contents of the first message in the network
interface and frees it from the network10. It is an error to attempt areceive operation when no
message is available; hence, the model provides amessage available operation which can
be invoked to see ifreceive will succeed. Themessage available operation is the primary
vehicle for polling the network.

Figure 2-4 illustrates a procedure-call syntax forreceive that takes no arguments and scatters
the message into a generalizeddispositionvector of l-values. These l-values may be either scalar
variables or memory blocks (specified with a<addr:len> syntax); memory blocks must follow the
scalar variables. The presence of memory blocks in the disposition vector implies some form of
DMA to place the contents of messages into memory. After execution of areceive operation,
the message is removed from the network and its contents are scattered into the l-values. If the
message is longer than the combined length of the l-values, the the remainder of the message is
discarded11. Implicit in this syntax is the fact that incoming message contents are placed directly
into user variables and memory without redundant copy operations.

In addition to thereceive operation, UDM includes an operation, calledpeek , that may be
used to examine the contents of the next message without freeing it from the network. Figure 2-4
shows the syntax for this operation. Likereceive , peek scatters the contents of the current
message into a disposition vector of l-values. Unlikereceive , however,peek is not allowed to
use DMA because it cannot be invoked non-destructively.

9This is in marked contrast to other messaging models that may drop messages; UDM is targeted for networks in
which the overall failure rate is extremely low (such as the internal network of a multiprocessor).

10Note that the atomicity ofreceive is not as important as for the injection operations. In fact, the presence of
thepeek operation (described presently) makes the model of reception explicitly non-atomic.

11A special length value of “1” may be used in the final DMA block to specify that the remainder of the message
should be placed in that memory block, whatever the length.

Page 54 CHAPTER 2. THE USER-LEVEL ACCESS PROBLEM

One subtle detail that we have not mentioned about the network injection and extraction op-
erations is that the number of scalar operands (send andsendc) or number of scalar l-values
(receive andpeek) may be limited by the implementation. These limits derive from the num-
ber of words of data that the network interface exports directly to the user without DMA. Expe-
rience with the CM-5 suggests that five words is far too few; Alewife provides 16 words, which
seems to be a good tradeoff between implementation expense and functionality.

User-Level Atomicity and the Execution Model: User-Direct Messaging assumes an execution
model in which one or morethreadsrun concurrently on each processor. As mentioned in Sec-
tion 2.2, our user-level computation model employs featherweight threads. This threading model
permitsbothbackground computation and interrupt handlers to run in complete threading contexts.

When a message arrives at its destination, some thread must invoke areceive operation to
extract it from the network (otherwise the network may become clogged and indirectly prevent the
forward progress of threads on other nodes). However, threads will not invokereceive opera-
tions unless they are aware that a message is pending. The process of notifying some appropriate
thread of the presence of a message is callednotification. Notification may occur either passively,
during polling, or actively, via the posting of an interrupt.

To control message notification, the UDM model includes a user-levelmessage atomic-
ity mechanism. As detailed in Figure 2-4, this mechanism is controlled by two operations:
enable message atomicity anddisable message atomicity . Although the anal-
ogy is not exact, the invocation of atomicity is similar to the disabling of message interrupts.
When atomicity is enabled, notification is entirely through themessage available operation;
in this mode notification is passive, and the currently running context must poll by periodically
executingmessage available and extracting messages as they arrive.

In contrast, when atomicity is disabled, the existence of an input message causes the cur-

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
A

Message
Description

Network
Transit

Global
Section

Source
Processor

Destination
Processor

M
es

sa
ge

Lau
nc

h

Arri
va

l N
ot

ific
ati

on

(H
an

dle
r D

isp
atc

h)

M
es

sag
e D

is
car

d

Atom
ici

ty
Rele

as
e

Atomic
Section

Han
dle

r E
xit

Message Handler

Figure 2-5:Injection of a User-Direct message and later ex-
traction of this message with a user-level interrupt handler.

rent thread to be suspended and an independenthandler threadto be initiated, much in the
style of Active Messages[113]. The
handler begins execution with atom-
icity invoked, at thehandler ad-
dress specified in the message. A
handler is assumed to extract one or
more messages from the network be-
fore exiting, blocking, or disabling
atomicity. After disabling atomicity,
the handler can continue execution;
this effectively upgrades the handler
to a full thread. When a handler exits,

atomicity is disabled (if necessary) and some runnable thread is resumed. This thread might be a
thread woken up by the handler, a thread created by the handler, or the interrupted thread; the exact
scheduling policy is defined by a user-level thread scheduler, not by the model. Figure 2-5 shows
a complete timeline for the injection and extraction of a user-direct message with notification via
interrupts.

Periods of execution in which atomicity is enabled (or message-interrupts are “disabled”) are

2.4. User-Direct Messaging Page 55

calledatomic sections. Atomic sections will assume some importance later when we discuss issues
of protection in a multi-user environment. For now, however, every interrupt handler begins with
an enforced atomic section. This section ends when interrupts are re-enabled (either directly or
when the handler exits). The main constraint on atomic sections in a handler is that the handler
code must extract one or more messages from the network before re-enabling interrupts or exiting.
In addition to atomic sections at the beginning of handlers, atomic sections may be invoked during
periods in which data structures are being modified in ways that are incompatible with the arrival
of messages and invocation of message handlers.

2.4.2 User-Direct Messaging Interfaces

In this section, we discuss the hardwareinterfacesthat support the message-passing communica-
tion model discussed in Section 2.4.1. Our task is somewhat more difficult here than for the shared-
memory communication model, in which the interface was the model (or vice-versa). There are
two reasons for this. First, each of the operations for the User-Direct Messaging model are in-
herently more complicated than those of the shared-memory model. Thus, any reasonable imple-
mentation involves a careful mix of hardware and software – hardware for the common cases and
software for the complicated or uncommon cases. In the case of Latency-Tolerant Shared-Memory,
such an integrated systems approach was employed at the level of the cache-coherence protocol
(low-level implementation), but not at the level of interface. Second, by its nature, message-passing
communication requires invocation of software at many points: the marshaling of data at source
and destination, the handling of message notification events,etc.. By design, many of the requisite
software components execute at user-level; however, graceful interaction with scheduling and sys-
tem software require that those operations that appear atomic to the user are actually composed of
a number of individual operations.

Having said that, however, we would like to remember that software overheads accumulate
rapidly. In Chapter 1, we stressed the importance of fast, user-level access to messaging facilities.
Since User-Direct Messaging is a user-level communication model, it can be exploited directly by
the compiler, suggesting that unique send and receive code might be generated for each type of
communication. However, when a message can be described in less than 10 cycles, the time to
cross protection barriers or execute emulation code may easily double or triple the cost of sending
that message. Hence, we seek hardware interfaces that may be directly manipulated by the user
without compromising protection. It is our goal in this section (and ultimately in Chapter 5 to
demonstrate that the User-Direct Messaging model section is amenable areasonableimplementa-
tion that provides fast,direct, user-levelaccess to network hardware without violating protection.

Figure 2-6 shows the explicit set of network instructions for User-Direct Messaging. In addi-
tion, Tables 2-2 and 2-3 list the set exceptional conditions and the set of network-related CMMU
registers respectively. Note that the CMMU registers are memory mapped, but attached to the first-
level cache bus. Access to these registers is accomplished via special load and store instructions
calledldio andstio 12. The interface itself may be summarized in three pieces:

12Note thatldio andstio are just like normal load and store instructions except that they map to a separate
address space. Consequently, CMMU register addresses fit entirely within the immediate field of these instructions. In
the second version of the Alewife CMMU, this address space was exported to a range of “normal” addresses, allowing

Page 56 CHAPTER 2. THE USER-LEVEL ACCESS PROBLEM

ldio Ra+Offset, Rd // Load from CMMU register space.
stio Rs, Ra+Offset // Store to CMMU register space.

ipilaunch <numops,length > // Inject packet consisting of firstnumops double-words of descrip-
tor followed by (length � numops) blocks of data via DMA.

ipilaunchi <numops,length > // Same asipilaunch , but generatestransmit completion
interrupt when finished.

ipicst <skip,length > // Discard first skip double-words of packet, then storeback
length double-words via DMA tostoreback-address . If
length or skip = “infinity”, discard packet.

ipicsti <skip,length > // Same asipicsti , but generatesstoreback completion in-
terrupt when finished.

enabatom <MASKATDE> // (uatomctrl _ MASKATDE)) uatomctrl
disatom <MASKATDE> // If dispose pending , causedispose failure trap.

elseif atomcity extend , causeatomicity extend trap.
else (uatomctrl ^ (�MASKATDE))) uatomctrl

setatom <MASKATDE> // MASKATDE) uatomctrl

Figure 2-6:Instructions for the User-Direct Messaging interface. See text for description of user-level
restrictions on these instructions. Operands enclosed within “<>” represent compile-time constants.
MASKATDE is a four-bit mask representingatomicity assert, timer force, disposepending, andatomic-
ity extendin that order. Theuatomctrl register is in the same format. Conditionsdispose pending
andatomicity extend represent corresponding bits set inuatomctrl register.

� Sending of a message is anatomic, user-level, two-phase action: describe the mes-
sage, then launch it. The sending processor describes a message by writing into
coprocessor registers over the cache bus. The descriptor contains either explicit
data from registers, or address-length pairs for DMA-style transfers. Because mul-
tiple address-length pairs can be specified, the send cangatherdata from multiple
memory regions.

� Receipt of a message is signaled with an interrupt to the receiving processor. Al-
ternatively, the processor can disable message arrival through a user-level atomicity
mechanism and poll for message arrival. The network interface provides an input
windowon each packet that exports the first few words of the packet. Processor
actions include discarding the message, transferring the message contents into pro-
cessor registers, or instructing the CMMU toscatterthe contents of the message
into one or more regions of memory via DMA.

� Mechanisms foratomicityandprotectionare provided to permit user and operating-
system functions to use the same network interface. We introduce the notion of a
revocable interrupt disablemechanism. This grants provisional access of network
hardware directly to the user, while carefully monitoring access. If the user abuses
the network, direct hardware access is revoked (and an emulation mode entered).

In the following sections, we will explore these aspects of the interface in more detail: Section 2.4.3

the network control registers to be accessed with standardld andst instructions.

2.4. User-Direct Messaging Page 57

Interrupt Event which it signals
bad launch Attempt to launch protected message.
user message User-level message arrival.
system message System-level message arrival.
storeback completion Completion of lastipicsti .
bad dispose y ipicst without pending message.
transmit completion Completion of lastipilaunchi .
space available Requested descriptor space available.
atomicity congestion Network congested
atomicity timeout User-level atomicity timeout.
atomicity extend y Invoke epilogue to atomic section.
stymied shared memoryy Shared memory used during atomicity.
dispose failure y Atomicity exited without dispose.

Register Description
output descriptor[16] Output descriptor array
space available Output descriptor space available
space request Output descriptor space requested
desc length Current descriptor length
traps pending Pending interrupts and flags
input window[16] Input packet array
window length Size of message input window
storeback address Address for next DMA storeback
uatomctrl User atomicity control (4 bits)
overflow timeout Network overflow count in cycles
overflow countdown Cycles remaining before overflow
atomicity timeout Atomicity timeout in cycles.
atomicity countdown Cycles remaining before timeout

Table 2-2: Interrupts and Exceptions for User-
Direct Messaging interface. Events marked withy
are synchronous exceptions.

Table 2-3: Control registers for User-Direct
Messaging interface. Sizes are in double-words.
uatomctrl is a four bit mask (MASKATDE).

discusses message injection, Section 2.4.4 discusses message extraction, and Section 2.4.5 presents
the user-level atomicity mechanism.

First, however, we would like to mention a starting point for the integration of message pass-

Major
Opcode Opcode

Minor Source Dest

8 bits 9 bits 9 bits6 bits

31 26 18 9 0

Figure 2-7: A uniform packet header format.
The major opcode distinguishes between proto-
col, system, and user messages.

ing and shared memory: a common packet format. All packets in the Alewife machine have a
single, uniform header as their first word. Fig-
ure 2-7 shows the format of this header. The
three packet classes –coherence-protocol pack-
ets, system-level messages, anduser-level mes-
sages– are distinguished by ranges of thema-
jor opcode, also shown in this figure. Themi-
nor opcodecontains unrestricted supplementary
information, while thesourceanddestinationfields contain, respectively, the node-numbers for
the source and destination processors. Only cache-coherence protocol packets are directly inter-
preted by hardware to provide coherent shared-memory. Further, packet headers in this format
are constructed automatically by hardware for cache-coherence operations; however, users of the
message-passing interface must construct headers of the format whenever sending messages.

2.4.3 Message Injection Interface

In designing a network output interface with which to implementsend andsendc operations,
we have one overriding goal: the interface that we choose must be compatible with simultaneous
demands of both user and system code. Ifsend or sendc are implemented via multiple instruc-
tions (which we have already intimated is the case), then this requirement introduces a problem
with atomicity since user-code must execute with interrupts enabled13. The problem is that multi-
instruction sequences can be interrupted at any point; hence, if an interrupt occurs in the middle of

13This is necessary since interrupts represent time-critical events that may adversely affect forward-progress or
correctness if not handled promptly. Hence, allowing users to disable interrupts is, in general, a bad idea, since
incorrect or malicious user-code could compromise the integrity of the machine.

Page 58 CHAPTER 2. THE USER-LEVEL ACCESS PROBLEM

a multi-instruction injection operation and the corresponding interrupt handler must send a mes-
sage, then the two messages may become intertwined or corrupted. As a case in point, this was a
problem with the J-Machine [87], in which message injection was accomplished through instruc-
tions that sent data directly into the network (one or two flits at a time). Once user-code had started
injecting a message, it could not be interrupted by anything that wanted to send a message (even
the operating system!), since this resulted in merged messages.

One solution might be to provide separate output interfaces for the user and supervisor. This
solution is undesirable for two reasons: on the one hand, it is overkill, since the chance that both
the user and supervisor will attempt to send messages simultaneously is fairly low. On the other
hand, it merely defers the problem to a different level: operating systems often have a hierarchy of
interrupt levels; as a consequence, any network interface that we choose should be able to handle
the preemption of an interrupt handler that is sending a message by another of higher priority.

Consequently, the Alewife machine adopts a more general mechanism for multiplexing the
output interface. This mechanism is predicated on the assumption that collisions between message
senders are rare, but that the higher priority interrupts should always have access to the network.
To accomplish this, we decompose message injection into two distinct phases:descriptionand
launch. During the description phase, all of the information relevant to construction of a message
is placed into anoutput descriptor arraywithin the network interface. This array consists of a
series of registers on the Alewife CMMU that may be read as well as written by the processor; the
interface to this array is memory-mapped. Consequently, the compiler can generate instructions
that perform direct register-to-register moves from the processor into this array. In the Alewife
implementation, these moves proceed at the speed of the cache bus. Once the message description
phase has completed, a single-cycle launch operation commits the corresponding operation to the
network. This launch operation isatomic: before it is executed, the network is unaffected by mod-
ifications to the descriptor array, and after it is executed, the message is committed to the network
and completely unaffected by subsequent modifications to the descriptor array. This atomicity is
the central feature of the Alewife message injection interface: during the description process, in-
terrupts are free to use the network providing that they save and restore any partially-constructed
message descriptors. Thus, our multiplexing mechanism is the familiar “callee-saves” methodol-
ogy applied to interrupts.

As we will see in Chapter 5, implementation of this mechanism is surprisingly straightforward.
However, this simple implementation does not preserve the contents of the descriptor array after
launch. Consequently, one additional mechanism is provided: the Alewife CMMU provides a
specialdesc length register. Whenever the output descriptor array is written,desc length
is set to the maximum of its current value and the array index that is being written. It is zeroed
whenever a packet is launched. Consequently, this register indicates the number of entries in the
descriptor array that must be preserved. Its value is usually zero.

Implementation of the send operation: Figure 2-8 makes this interface more explicit by illus-
trating how an abstractsend operation is decomposed into explicit UDM instructions. Alewife
packet descriptors consist of one or more 64-bit double-words (i.e. must consist of an even number
of words). Packet description is accomplished by a series ofstio instructions that transfer data
directly from processor registers to theoutput descriptor array — a 16-word (or 8 double-

2.4. User-Direct Messaging Page 59

send(header, handler, op2, op3, [addr0:len0], [addr1:len1]))

stio header, output descriptor[0] ; Placeheader in descriptor
stio handler, output descriptor[1] ; Placehandler in descriptor
stio op2, output descriptor[2] ; op2 andop3 are additional operands
stio op3, output descriptor[3] ;
stio addr0, output descriptor[4] ; addr0 andlen0 describe first DMA
stio len0, output descriptor[5] ;
stio addr1, output descriptor[6] ; addr1 andlen1 describe second DMA
stio len1, output descriptor[7] ;
ipilaunch < 2, 4 > ; Launch 2 explicit double-words and

; 2 memory blocks via DMA

Figure 2-8:Translation of a UDMsend operation into UDM interface instructions.

word) array of registers on the CMMU. The destination addresses for thesestio instructions are
small immediate addresses in the CMMU register space (i.e. output descriptor[4] rep-
resents a particular CMMU register). The resulting descriptor consists of zero or more pairs of
explicit operands, followed by zero or moreaddress-length pairs. The address-length pairs de-
scribe blocks of data which will be fetched from memory via DMA. When the resulting packet is
constructed, the first word must be a header in the format shown in Figure 2-7,i.e. either the first
operand must be in header format, or (if there are no operands), the first word of the first DMA
block must be in header format.

Once a packet has been described, it can be launched via anatomic, single-cycle, launch in-
struction, calledipilaunch . (IPI stands for interprocessor-interrupt). As shown in Table 2-6,
the opcode fields of anipilaunch specify the number of explicit operands (in double-words)
and the total descriptor length (also in double-words),as compile-time arguments. Thus, the for-
mat of the packet descriptor (in terms of number of explicit operands and DMA blocks) is fixed at
the time of compilation. The execution of a launch instruction atomically commits the message to
the network. Until the time of the launch, the description process can be aborted, or aborted and
restarted without leaving partial packets in the network. After a launch, the descriptor array may
be modified without affecting previous messages14.

Relating this interface back to the model of Figure 2-4, we can say that, in Alewife, the max-
imum number of scalar arguments tosend or sendc is 16 (i.e 8 double-words). Further, the
maximum number of DMA blocks is 8.

Since requested DMA operations occur in parallel with processor execution, data blocks which
are part of outgoing messages should not be modified until after the DMA mechanism has fin-
ished with them. Alewife provides two mechanisms to deal with this. First, there is a special
version of the launch instruction, calledipilaunchi , that requests the generation of an inter-
rupt as soon as all data has been retrieved from memory and committed to network queues. This
transmission completion interrupt can be used to free outgoing data blocks or perform
other post-transmission actions. Note that this interrupt is conservative: when it occurs, it signals
thatall previously initiated output DMA operations have completed. Second, Alewife provides a
special flag bit in thetraps pending register that indicates whether or not there are any pend-

14In fact, descriptor contents are not preserved across a launch. See Chapter 5.

Page 60 CHAPTER 2. THE USER-LEVEL ACCESS PROBLEM

ing output DMA operations. This flag may be exploited to provide a serializing “wait for launch”
operation that will wait until all previous launch operations have completed.

Protection: There is often a tension between protection mechanisms and rapid access to hard-
ware facilities. The Alewife network interface is no different. Alewife is a fully integrated archi-
tecture in thatall types of communication travels over the same network: cache-coherence protocol
packets, operating-system messages, and user-level messages. To protect the integrity of the ma-
chine, we must prevent the user from launching packets that are not user-level message-passing
messages. As shown in Figure 2-7, different classes of message are distinguished by themajor
opcodeportion of the header. Thus, while the operating system is allowed to construct and inject
anyvalid descriptor, the user is a bit more restricted.In particular, all user-level packets must have
at least two operands and must have headers that contain a restricted set of major opcodes.Note
that the first requirement ensures that the header as anexplicit part of the descriptor rather than
in memory, thus permitting theipilaunch or ipilaunchi instructions to quickly check the
type of a message before injecting it. These restrictions do not apply, since the operating system is
allowed to launch any type of message.

Although we will discuss this later, it is interesting to note that the user-level message opcode
space is further divided into two separate categories:active messagesand remote system calls.
Both of these types of messages may be launched by the user, but cause different interrupts at the
receiving side. This reflects different scheduling at the remote side: active messages are handled
via polling or user-level interrupt handlers at their destinations, while remote system-calls invoke
kernel handlers at the remote side15.

Network Congestion and Packet Injection: If the output network is blocked due to conges-
tion, then it is possible that the CMMU has insufficient resources to launch the next message.
As discussed in Section 2.4.1, thesend operation isblocking: it does not complete until suf-
ficient resources are available to inject its message into the network. Given the simple decom-
position of send shown in Figure 2-8, there are only two places in which this instruction se-
quence can block: in thestio instructions or in theipilaunch instruction. It is, in fact, the
former; as will be shown when we discuss hardware architecture in Section 5.2.1, accesses of
the output descriptor array translate directly into reads and writes of a circular hardware
queue. Thus, the impact of network congestion is that this queue becomes full, and writes to
the output descriptor array would overwrite previously queued data. In this case,stio
instructions block, waiting for the descriptor queue to drain. Consequently, by the time that
the sequence of Figure 2-8 advances to theipilaunch instruction, it is guaranteed that the
ipilaunch will succeed.

In a moment, we will discuss how non-blockingsendc operation is achieved with the basic
UDM interface, but we would like to first say a few words about philosophy. As we will see in
a moment, the UDM interface is optimized for blockingsend operations, as opposed to non-
blockingsendc operations. This is in marked contrast to most other direct network interfaces in

15Actually, this distinction is better expressed in the second version of the Alewife CMMU: a separate interrupt
vector is reserved exclusively for user-level active-message style communication.

2.4. User-Direct Messaging Page 61

which the basic interface is non-blocking and extra instructions (i.e. forming a loop) are required
to achieve blocking behavior. This particular design decision was made for several reasons:

� Most (if not all) interrupt-driven uses of a message-passing interface use blocking,
rather than non-blocking, behavior. The reason for this is that blocking behavior is
much simpler handle as as rule (no need to figure out how to retry message injections
that fail). When the network input ports are drained via interrupts (especially fast
ones such as on Alewife), the need for a non-blocking behavior is much diminished.

� Non-blocking behavior always incurs more overhead, since it involves at least one
conditional branch instructions. In particular, the Alewife message interface is used
implement portions of the LimitLESS shared-memory coherence protocol; the low-
est possible overhead is desirable here.

� The basic hardware architecture is simpler if it is, by default, blocking.

As a consequence, the basic UDM interface requires slightly more overhead to handle non-
blocking operations than it would if non-blocking message injection were the default behavior.
In fact, this is not really fundamental; at the end of the next section we will discuss how the basic
interface can be extended for faster non-blocking behavior.

As a prelude to the next section, we would like to mention thespace avail register, in the
context of blocking sends. At any one time, this register denotes the number of double-word de-
scriptor slots that are currently free. Effectively, this says, at any one time, the maximum descriptor
hat can be constructed without blocking. Thus, to avoid blocking, it would appear that a user could
simply check thespace avail register before constructing a descriptor. This is certainly true
of the operating system, which may explicitly control access to the network interface by enabling
and disabling interrupts. Unfortunately, the very fact that the operating system may interrupt user-
code and send messages in the middle of the user’s description process means that the value in
space avail is merely a hint of the amount of space that is available. As we will discuss in the
next section, we may combine examination of thespace avail register withatomic restartable
sequencesto construct thesendc operations.

One other mechanism that exists primarily to assist the operating system (for “virtual queue-
ing” and scheduling large I/O requests) is thespace request mechanism. This consists of the
space request register and thespace available interrupt. To use it, a desired number
of double-words of descriptor space are written into thespace request register. Then, the
space available interrupt occurs as soon as the space in theoutput descriptor array
equals or exceeds the requested amount of space.

Implementation of the sendc operation: We now have sufficient information to discuss one
possible implementation for thesendc operation. Figure 2-9 illustrates the translation of a non-
blockingsendc operation into UDM instructions. This code sequence is a template that is recog-
nized by the operating system as anatomic restartable sequence. The restart point is the beginning
of the code group (marked by “!”). At the beginning of the sequence, a special “NONBLOCK”
bit is set in a user register calledflags . This is a signal to the operating system that the user is in
the middle of asendc operation. Then, the sequence checks thespace avail register to see

Page 62 CHAPTER 2. THE USER-LEVEL ACCESS PROBLEM

sendc(header, handler, [addr0:len0]))

! or flags, $NONBLOCK, flags ; Set flag – user nonblocking OP
ldio space avail, temp ; Get space available
cmp temp, 8 ; We need 4 double-words
bl,a %Failure ; Not enough space – failure
and flags, $NONBLOCK, flags ; Clear flag (only on failure).
stio header, output descriptor[0] ; Placeheader in descriptor
stio handler, output descriptor[1] ; Placehandler in descriptor
stio addr0, output descriptor[2] ; addr0 andlen0 describe first DMA
stio len0, output descriptor[2] ;
ipilaunch < 1, 2 > ; Launch 1 explicit double-word and

; 1 memory block via DMA
and flags, $NONBLOCK, flags ; Clear flag (end of sequence).

Figure 2-9:Translation of a UDMsendc operation into UDM interface instructions. This is an atomic
restartable sequence that may be restarted to the beginning.

if sufficient descriptor space is available. If not, it fails immediately, jumping to the “Failure ”
label (wherever that is). If there is sufficient space, it proceeds to construct the descriptor, launch
the message, then turn off the NONBLOCK bit.

The danger in this sequence (and the reason that we may need to restart it), is that the check
for space could succeed, only to have the description phase interrupted by something that sends a
message. If the interrupt simply returns, if may be that sufficient space is nolonger available and
one of thestio instructions will block. Hence we have three possible situations for an interrupt
handler that wants to send a message:

1. The NONBLOCK bit is not set. In this case, nothing special is done.

2. The NONBLOCK bit is set and the interrupted instruction is one of theand instruc-
tions to turn off the bit. Again, nothing special is done.

3. Otherwise, reset the interrupt point by scanning back until the initial markeror
instruction is discovered.

Note that the second of these is important to guarantee that the message is not inadvertantly injected
twice. This will guarantee that the check for space is reexecuted whenever a handler has sent a
message (and hence decreased the amount of space available in the descriptor queue).

A better sendc sequence: Note that that this sequence has several inefficiencies that are not
strictly necessary. First, whenever the sequence is restarted, the operating system must scan back-
ward for the restart point. Second, it is possible for the operating system to restat the sequence
when sufficent space is, in fact, available. Third, the check for space is not usually a cost that is
incurred by non-blocking interfaces.

Alternatively, the following enhancement is possible as a way to avoid restartable sequences
entirely (this was not done on Alewife but could have been):

2.4. User-Direct Messaging Page 63

1. Provide “non-blocking” access to theoutput descriptor array: if an attempt
is made to store information to theoutput descriptor when insufficient space
is available, then the store operation is ignored, but thedesc length register is
set to an “invalid” value (say -1). Otherwise, assuming it is not already invalid,
the desc length register is set to the maximum descriptor length, as indicated
earlier. This could be accomplished via a special set of addresses or a different store
instruction.

2. When the ipilaunch or ipilaunchi instruction is executed, it injects a
message if thedesc length is positive and does nothing otherwise. The
desc length register is reset to zero and a condition code is returned to indi-
cate success or failure.

The blocking version ofsend would continue to be implemented exactly as before. Now, however
thesendc operation would be similiar, with non-blockingstio instructions instead of blocking
ones and a final check to see if theipilaunch instruction succeeded (possibly repeating the
entire sequence if necessary).

2.4.4 Message Extraction Interface

In constructing an input interface with which to implementpeek andreceive operations, we
once again need acount for the fact that this interface is used by both the user and the operating
system. Further, the design constraints for the input interface are somewhat different than for the
output interface. Although we were able to solve the multiplexing problem for message injection
by providing an atomic launch mechanism, something slightly different is needed for message
reception. The reason for this is that inaction, in the form of refusing to extract messages from
the network, can prevent reception of system-level messages on the local node, as well as imped-
ing forward progress in other nodes in the system. In contrast, inaction with respect to injecting
messages has no impact other than slowing down the user-program.

The fact that refusal (or inability) to extract messages can cause network congestion has two
major consequences. First, in extreme cases, this can cause protocol deadlock — even for bug-
free operating-systems code. The issue of protocol deadlock is addressed in Chapter 4, where we
discusstwo-case deliveryas a generic mechanism for avoiding deadlock. Second, malicious or
incorrect user code can also cause network congestion by refusing to extract messages; this is an
issue of protection that is addressed through the user-level atomicity mechanism (Section 2.4.5)
which may be coupled with two-case delivery to control errant user code (see Section 4.3.5).

Once consequence of using two-case delivery as a way to gracefully multiplex user and system
consumers of the network interface is that there is no need for the equivalent of the user-level
atomic injection operation. Hence, we seek the simplest, most efficient possible interface for
receipt of messages. An interface that achieves this goal is the primary topic of this section.

Packet Input Window: The message input queue produces a serial stream of messages from
the network. The message that is at the head of this input queue is presented to the user (or
operating system) through an array of CMMU registers called theinput window . This array

Page 64 CHAPTER 2. THE USER-LEVEL ACCESS PROBLEM

(“window”) presents the first 16 words (8 double-words) of the message directly to the user. The
basic reasoning behind this is that the first few words of a packet (up to 16) should contain enough
information to decide how to dispose of the rest of the packet. In the terminology of Section 2.4.1,
this particular interface limits the number of scalar l-values in the disposition vector to 16. If a
packet is longer that 8 double-words, then parts of it will be invisible to the processor and may
stretch into the network; these trailing parts of the message must be accessed by invoking DMA
operations to store them to memory.

One important aspect of the input interface is that it is independent of timing in the network:
it presents the illusion that all flits of the current packet have arrived, regardless of the speed with
which they enter the node. This illusion is accomplished by blocking the processor if it attempts
to access words of the packet that are still in transit. Note that blocking in this way is reasonable
because of the fact that the message injection interface is atomic; since the complete packet has
been committed to the network, any delay in arrival of words from the current packet is guaranteed
to be short lived. The fact that this is a blocking interface allows overlap between interrupt or
polling entry code and the arrival of the bulk of a message. For instance, message arrival interrupts
are posted immediately upon arrival of the first words of messages.

receive())(header, handler, op2, op3,[addr0:len0],[addr1:len1])

ldio input window[0], header ; Getheader from packet
ldio input window[1], handler ; Gethandler from packet
ldio input window[2], op2 ; op2 andop3 are additional operands
ldio input window[3], op3 ;
stio addr0, storeback address ; Set up first DMA address
ipicst < 2, len0 > ; Skip 2 double-words, store len0 double-words to memory
stio addr1, storeback address ; Set up second DMA address
ipicst < 0, -1 > ; Store rest of packet via DMA

Figure 2-10:Translation of a UDMreceive operation into UDM interface instructions. Note that a
value of “-1” is a special token meaning “1” or “until end of packet”.

Implementation of the receive operation: Figure 2-10 makes this interface more explicit by
illustrating the decomposition of an abstractreceive operation into explicit UDM instructions.
In this example, the disposition vector has four scalar l-values and two blocks for DMA storeback.
The scalar operands are loaded directly from the input window into registers. The scalar values are
accessed vialdio instructions. The source addresses for these instructions are small immediate
addresses in the CMMU register space (i.e. input window[4] represents a particular CMMU
register).

After loading the operands, the processor initiates a DMA storeback operation to extract the
message from the network. To do this, it first writes the address for the beginning of the DMA
operation to a CMMU register calledstoreback address . Then, it invokes a single-cycle
storeback instruction, calledipicst (IPI coherent storeback). As shown in Figure 2-6, this in-
struction has two opcode fields,skip and length. The skip field specifies the number of double-
words which are first discarded from the head of the packet, while the length field specifies the
number of double-words (following those discarded) which will be stored to memory via DMA.

2.4. User-Direct Messaging Page 65

Thereceive operation of Figure 2-10 scatters the packet into two memory blocks via DMA.
Hence, after executing the firstipicst operation, the processor immediately writes the second
address into thestoreback address register and executes anotheripicst operation. This
instruction has a skip value of zero, since the data for the two DMA operations is consecutive16.
Further, the length value is “-1”, which is a special token value that means “infinite” or “to the end
of the packet.” There are two important points here. First, thestoreback address register is
not a single register, but rather a FIFO of values that become associated with successiveipicst
instructions (which is why this code works). The particular implementation discussed in Chapter 5
supports up to two outstanding DMA storeback operations before it begins to block the processor.
Second,all message extraction operations must end with anipicst instruction that has an infinite
value in either the skip or length field; this is a signal to the network interface that it is ok to discard
all information about the packet. In particular, receive operations that do not involve DMA must
end with anipicst instruction that has an infinite skip field.

Since DMA storeback operations may proceed in parallel with processor execution, the pro-
cessor should not attempt to examine the results of the storeback until after confirming that it has
completed. As with output DMA, Alewife provides two mechanisms for controlling the paral-
lelism between DMA and computation. First, there is a special version of the storeback instruc-
tion, calledipicsti , that requests the generation of astoreback completion interrupt
as soon DMA has completed. Note that, similiar to thetransmit completion operation, the
transmit completion interrupt is conservative when it occurs: it signals thatall previously
initiated input DMA operations havfe completed. The second mechanism that is provided to handle
storeback DMA is a special flag bit in thetraps pending registe that indicates whether or not
there are any pending input DMA operations. This may be exploited to provide a serializing “wait
for storeback” operation that will wait until all previous storeback operations have completed.

peek())(header, handler, op2, op3)

ldio input window[0], header ; Getheader from packet
ldio input window[1], handler ; Gethandler from packet
ldio input window[2], op2 ; op2 andop3 are additional operands
ldio input window[3], op3 ;

Figure 2-11:Translation of a UDMpeek operation into UDM interface instructions.

Implementation of the peek operation: As shown above, in Figure 2-11, the peek operation is
a natural consequence of our input interface. Essentially, the head of the next message may be
examined simply by loading data from the input window. The only distinction between apeek
operation and areceive operation is the absence ofipicst instructions in the former. This
distinctions clarifies the fact thatpeek operations may not invoke DMA (i.e. the disposition
vectors forpeek opertions may not contain DMA blocks): input DMA requires execution of
ipicst instructions. Another way to look at this is thatpeek operations are intended to be
passive and alter nothing about the current message; however, DMA is “destructive” — it advances
the input window. Note that the ability to non-destructively examine the head of an input packet is

16In fact, the skip value does nothaveto be zero (although this would produce a type of message disposition that is
not represented by our model for thereceive operation).

Page 66 CHAPTER 2. THE USER-LEVEL ACCESS PROBLEM

important for dispatching code,e.g. for the thin layers of the operating system that handles setup
and execution of user-level message interrupt handlers.

Notification and the message available operation: As described in Section 2.4.1, it is
“an error” to attempt areceive or peek operation when no message is available. Thus, it is
important to know when a message is available.

If user-level atomicity is disabled, then user-level message arrivals are signified by the execu-
tion of user-level interrupt handlers. In some sense, no more notification is necessary: the user-level
handlers can rely on the fact that there are a messages available. At the system-level, notification
via interrupts occurs through one of two different interrupt vectors: one for system-level messages
and another for user-level messages. The division of message types between these two vectors
is one of the differences between the A-1000 and A-1001 CMMU. At the time that this author
designed the A-1000, the cost of scheduling and dispatch was not fully appreciated. Further, the
division of user-launchablemessages intoactive messagesandremote system callswas not fully
appreciated. The former lead to user-level interrupt handlers (complete with the scheduling issues
involved), while the latter need to be dispatched into the operating system in the same way as the
system-launched messages. Hence, the A-1001 places user-level active messages on one interrupt
vector and everything else on the other; the A-1000 more carelessly placed all user-launchable
messages on one vector and system-launchable messages on the other17.

The user controls notification via the user-level atomicity mechanism (described in Sec-
tion 2.4.5). The kernel, on the other hand, has a message interrupt disable bit in thetrap enable
register.

If interrupts are disabled, both the user and kernel can make use of thetraps pending
register to discover whether or not a message is available and, if so, whether it is a user-level
message. Two bits are of interrest — one telling whether the input window has a message available
and another indicating the type. However, another mechanism is available that provides greater
transparency to the user during two-case delivery (see below): whenever data is loaded from the
input window, the CMMU sets the full/empty condition code to indicate whether the data is valid.
Hence, by loading from the head of the input window, a user can discover whether or not a message
is available by testing the full/empty condition code. The primary advantage of this method is that
buffered messages (during two-case delivery) can have their full/empty bits set to full, making the
polling methodology completely transparent to delivery method.

Transparency and the Impact of Two-Case Delivery: Although we will defer a full discussion
of two-case delivery until Section 4.3, it is important to clarify one detail at this time. The policy
of two-case delivery selectively removes messages from the input interface and buffers them in
memory. The justification for this is that it provides a generic solution to many different types
of network deadlock and congestion; that is the topic of a later chapter. For now, however, we
would like to stress the most important interface aspect of an implementation of two-case deliv-
ery: transparency. In order for two-case delivery to be a reasonable policy, the direct (hardware)
and buffered modes of message delivery must appear identical to user software. With transpar-

17Of course, the A-1001 has a backward-compatibility mode, but this goes almost without saying.

2.4. User-Direct Messaging Page 67

ent access, the runtime system is free to switch to and from buffered mode at any time, thereby
making invocation of two-case delivery tool for resolving many different problems with resource
utilization.

This transparency is provided in one of two different ways in Alewife. The first of these was
exploited exclusively in the original version of the Alewife CMMU:message relaunch. Message
relaunch is a type of software “slight-of-hand” that returns the message at the head of the input
queue to the exact state that it was in before the buffering process. This is done by “relaunching”
messages through the local loopback path (effectively sending messages to the local node through
the message output interface). In this way, the network input queue can be completely emptied and
restored at any point in areceive or peek sequence without affecting the results. This solution
is conceptually simple and necessary for handling diverted cache-coherence packets. Unfortu-
nately, it entails a number of complexities and can exacerbate problems with network congestion
by tying up the local loopback path with long messages. Among other things, the combination of
buffering and relaunch copies message data at least twice, possibly three times (when storeback
DMA is invoked).

A second method for transparent access was included in version two of the Alewife CMMU: the
virtual input window. This method requires that the hardware input queue bememory mappedinto
the normal address space, permitting the user to access the hardware input window with standard
load instructions18. Then, assuming that a known register is shared between the user and operating
system, we can use it to point to the base of the hardware input window under normal circumstances
and redirect it to memory after buffering. With this type of redirection, two-case delivery results
in a single extra copy (over and above any DMA that would have been done anyway). Thus,
the buffered copy of the message is treated as a virtual input window (and hence the name). To
make this process entirely transparent, we must make sure thatipicst instructions are properly
emulated; this is done by causing them to trap during buffering mode.

Protection: In order to present a protected interface directly to software at userlevel, the message
extraction interface has a couple of special features. Protection in the Alewife machine is not
intended to hide information, but rather to protect the machine from errant user-code. There are
two primary features for the extraction interface, which are as follows:

� The user is not allowed to issue storeback instructions if the message at the head of the
queue is a system or coherence message. In a machine for which hiding of information was
important, the input windowcouldexport null information (zeros) whenever the message at
the head of the input queue was a system message and the processor was in user mode.

� Although we will discuss multiuser applications of the UDM interface in a moment, this
same protedction methodology could be applied in situations for which the message at the
head of the hardware input queue belonged to a different process from the one that was
currentloy scheduled.

18Note that this is no more difficult from an implementation standpoint than providingldio instructions. The
primary advantage ofldio andstio is that the addresses for CMMU registers fit completely into the offset field of
these instructions — providing single-instruction access to CMMU registers.

Page 68 CHAPTER 2. THE USER-LEVEL ACCESS PROBLEM

� The user is not allowed to store data into kernel (or other protected) space. This involves
checking the storeback address register at the time that anipicst is issued.

These protection mechanisms are transparent to both user and operating system under normal
circumstances.

2.4.5 The User-Level Atomicity Mechanism

As discussed in Section 2.4.1, atomicity is an important aspect of a message-passing interface.
Atomicity in the context of UDM means the ability to disable message arrival interrupts,i.e. the
ability to disable the automatic invocation of a message handler in response to the arrival of a
user-level message. Such control over the network enables efficient message reception by allowing
messages to be extracted from the network only when appropriatereceive operations can be
executed; this avoids expensive passes through kernel code and time-consuming copies of data.
In fact, disabling of interrupts is a time-honored method for achieving correctness and efficiency
in operating systems. However, exporting hardware interrupt disable mechanisms directly to the
user is problematic since user-code is never guaranteed to be correct. In particular, there are sev-
eral reasons not to allow the user to directly block the network interface by disabling hardware
interrupts:

� Malicious or poorly written code could block the network for long periods of time,
preventing timely processing of message destined for the operating system or other
users19.

� When the user is polling, the operating system may still need to receive messages
on the local node via interrupts to ensure forward progress. This is a statement to
the effect that we would like to be able to multiplex both user and system messages
on the same network.

� Certain combinations of message atomicity and shared-memory access can lead to
deadlock in a system that integrates shared memory and message passing. In partic-
ular, if message interrupts are disabled and a message is blocking the network input
queue, then remomte shared-memory requests may never complete.

� If queue resources are exhausted, attempts to send messages during periods of mes-
sage atomicity can lead to protocol-level deadlock.

� In a multiuser system, the operating system must demultiplex messages destined
for different users. This process should be neither visible to, nor impeded by, any
particular user.

In spite of these problems, we would like the user to enjoy similar efficiency (in the common case)
to the operating system, extracting messages directly from the network interface. This, in turn,
requires that the user be able to disable message interrupts.

19The User-Direct Messaging interfaces extend directly to multiuser systems; see Section 2.4.7.

2.4. User-Direct Messaging Page 69

We solve these problems through arevocable interrupt disablemechanism that exports virtual
operationsenable message atomicity anddisable message atomicity to the user,
while maintaining some measure of control for the operating system. The central idea behind this
mechanism is that we allow the user totemporarilydisable hardware message interrupts, as long
as the network continues to make forward progress. Should a user-level message stay blocked at
the input queue for too long, werevokepriviledges to disable network interrupts. The reflects a
philosophy of optimistically granting direct access of hardware mechanisms to the user as long
as they do not abuse them. To achieve graceful degradation of service, the process of revocation
involves switching from physical atomicity (disabling of the actual hardware network interrupt) to
virtual atomicity (buffering incoming messages in memory and using the scheduler to maintain the
user’s notion of atomicity). Thus, proper implementation of revocation is tightly entwined with
transparent buffering of messages (i.e.two-case delivery, Section 4.3).

Note that the “atomicity” provided by the user atomicity mechanism corresponds to a direct
disabling of hardware interrupts only when messages are being retrieved directly from the hard-
ware interface. On the buffered path (second case delivery), atomicity is provided to the user by
software in the way the buffered queue and thread scheduling are handled. As discussed in Sec-
tion 2.4.4, the ability for a system, to transparently switch between a non-buffered and buffered
mode is an important aspect of the UDM interface; in the context of the revocable interrupt dis-
able mechanism, this transparency affords freedom to the runtime system to switch into buffered
mode when necessary to avoid deadlock. However, we should note thatcommon casedelivery is
intended to occur through direct hardware access to the message input queues and this is what the
user-level atomicity mechanism is optimized for; in Chapter 4 we will explore in more detail the
process of ensuring that hardware deliver is truly common case.

Mechanism Requirements: Given the above discussion, we can now discuss the requirements
for the user-level atomicity mechanism. In order to achieve proper revocation, this mechanism
must be able to (1) provide a virtual interrupt disable bit that is easily manipulated by the user,
(2) distinguish between user-level and system-level messages so that system-level interrupts may
be forwarded at all times, regardless of the state of the user-level disable bit, and (3) include
monitoring hardware to detect situations in which the user-level disable bit should be revoked.
These situations are as follows:

� The user is causing network congestion by refusing to free messages in a timely
fashion. To prevent this, we need to monitor the duration of time that a message
sits a the head of the input queue,i.e. the time from the arrival of the message until
the execution of anipicst instruction with an infinite argument. This type of
monitoring implies a dedicated countdown timer.

� Attempts by the user to access shared-memory during periods in which atomicity is
enabled. In fact, it is only shared-memory accesses that require network traffic that
are problematic.

� Proper emulation of atomicity during buffering mode requires that the operating
system be invoked when the userexitsatomicity; this permits the arrival of sub-

Page 70 CHAPTER 2. THE USER-LEVEL ACCESS PROBLEM

User Controls Description
atomicity assert When set, prevents user-levelmessage available interrupts. In addi-

tion, if message is pending, enables atomicity timer;ipicst instruction
briefly disables (presets) timer iftimer force not set.

timer force When set, forces atomicity timer to count down. Otherwise, timer counts
down if atomicity set and message at head of queue.

Kernel Controls Description
dispose pending Set by OS, reset byipicst .
atomicity extend Requests anatomicity extend trap ondisatom .

Table 2-4: Control bits for the user-level atomicity mechanism. These bits form the four-bit mask
(MASKATDE) and are controled through thesetatom , enabatom , anddisatom instructions.

sequent messages to be emulated through software interrupts. We call this the
atomicity extend trap.

� Monitoring of the output queue to detect network congestion that might indicate
deadlock.

This last item is the duty of a separate mechanism, the atomicity congestion interrupt, that will be
discussed in great detail in Chapter 4.

Priority Inversion: Note that there is a subtle issue that our atomicity mechanism must address.
This is the issue ofpriority inversion. Priority inversion occurs when a low-priority interrupt is
allowed interrupt a high-priority handler. In the User-Direct Messaging implemention, this results
from the philosophy of allowing user-code to empty its own messages from the network; as a result,
portions of a user-level message handler (low priority) may need to be invoked in the middle of
high-priority section of kernel code20. The solution is to allow the atomic section of the user-level
handler to extract the message from the network, followed by a return to high-priority kernel code.
To avoid incorrect execution caused by reenabling of disabled interrupts, we will run the atomic
section of the message handler with the same set of interrupts disabled as for the high-priority
kernel code (with the atomicity mechanism disabling message interrupts as well). However, the
execution of user-code is a type of priority inversion in and of itself. To limit the damage caused by
this inversion, we need to make sure that (1) the period of time spent executing the atomic section
of a user-level handler is bounded and (2) that the kernel regains control after the atomic section has
finished. The first of these is addressed by making the countdown timer independent of the message
at the head of the input queue. Thus, given our previous discussion, this timer has two modes –
one that is tied to the presence of messages at the head of the input queue and another that is
independent of such messages. The second issue is addressed by the sameatomicity extend
trap that we mentioned above in conjunction with atomicity during buffering — it requires a trap
that is triggered by the exit from atomicity.

20The assumption here is that we are running within the kernel, with message arrival interrupts enabled, but other
interrupts disabled (and hence at an interrupt level that is higher than the “background” user-level).

2.4. User-Direct Messaging Page 71

The Actual Atomicity Mechanism: Control over user-level interrupts in Alewife is imple-
mented by four atomicity control bits, a dedicated atomicity timer, and three atomicity instructions.
Table 2-4 lists the control bits, which reside in theuatomctrl register. Two of the bits (tt dis-
posepending andatomicity extend) are modifiable only in kernel mode. The other two bits
(atomicity assert andtimer force) can be set or reset by the useras long as the kernel-
mode bits are zero(more on this in a moment). The atomicity timer is one of the central features
of the revocable interrupt disable mechanism; it is used to detect lack of forward progress in the
network. When disabled, it continuously loads a prespecified countdown value. When enabled,
it counts down toward zero — generating anatomicity timeout interrupt if it ever reaches
zero. The enabling and disabling of the timer is an aspect of the atomicity mechanism that we will
discuss below. By dedicating this timer to atomicity detection, the cost of managing it becomes
extremely low, permitting extrememly low-cost atomicity “instructions”.

Theuatomctrl bits can be modified by three atomicity control instructions, thesetatom ,
enabatom , and disatom instructions, listed in Figure 2-6. These instructions take a four-
bit mask as an operand, and uses that mask to respectively set, enable, or disable bits of the
uatomctrl register. Thesetatom instruction may be used to directly set the state of all four
bits; it is a priviledged instruction. In contrast, theenabatom anddisatom instructions are
“differential” in that they affect only the atomicity bits which are set in their corresponding masks;
these instructions are “partially priviledged” in that the user is not allowed to modify the kernel-
mode bits, and is allowed to clear the user-mode bits only if the kernel-mode bits are both zero.
See Figure 2-6 for more details of this behavior of thedisatom instruction. Note, also, that both
enabatom anddisatom return the previous value of the theatomicity assert bit in the
full/empty condition code (See Section 2.3.1 and 5.1.1).

The atomicity assert bit is the most basic of the four control bits. When it is clear,
the atomicity mechanism is disabled and the other bits are ignored. This means that messages
at the head of the input queue generate eitheruser message or system message inter-
rupts depending on their message types21. Whenatomicity assert is set, however, atom-
icity is active. This means thatuser message interrupts are suppressed, that access to shared-
memory is restricted, and the atomicity timer is engaged. Althoughuser message interrupts are
suppressed during atomicity, the input queue still generatessystem message interrupts when
system-level messages advance to the head of the queue. Provided that the user continues to extract
messages from the network, this means that the operating system can make forward progress even
while granting the user full control over atomicity. None-the-less, it is one of our design assump-
tions that both system and user-level messages are carried on the same network and placed in the
same queues. As a result, system-level messages could remain blocked (and unprocessed) behind
user-level messages for arbitrary periods of time if it were not for the fact that the user atomicity
mechanism bounds the total time that a message stays blocked in the network.

As mentioned earlier, access to shared memory must be restricted when atomicity is en-
abled since shared-memory requests may become blocked behind messages. Thus, when the
atomicity assert bit is set, shared-memory accesses are monitored by the user atomicity
mechanism. Should the user attempt a shared-memory access that is incompatible with the current

21This is true unless message-interrupts are disabled by the system-level trap mask; however we are not discussing
this at the moment.

Page 72 CHAPTER 2. THE USER-LEVEL ACCESS PROBLEM

state of the machine, then it will be faulted with astymied shared memory trap. Such a trap
acts as an entry into two-case buffering code. Although this is an implementation detail, Alewife
supports three different modes of shared-memory monitoring during atomic sections. In the first
mode, all accesses to shared memory are faulted. In the second, only shared-memory accesses
that require network traffic are faulted. Finally, in the third option, only shared-memory accesses
that require network traffic and which are blocked by a message at the head of the input queue are
faulted. This third option is the least restrictive of the three. It is important to note thatall restric-
tions with respect to shared memory and message atomicity are side-effects of our single-network
restriction. This important conclusion of this thesis will be revisited in Chapter 7 when we suggest
at least two logical channels in a network.

When theatomicity assert bit is set, the timer is automaticallyengaged(but not neces-
sarily enabled). It is disabled when this bit is clear. When engaged,timer force distinguishes
between one of two different behaviors for the timer: monitor or countdown. If thetimer force
bit is clear, then the timer is in monitor mode, meaning that it is enabled whenever there is a user-
level message at the head of the input queue and disabled otherwise. In addition, it is reset briefly
whenever a message is discarded, which occurs during the execution of anipicst instruction
with an infinite skip or length operand. In monitor mode, the countdown timer ensures that user-
level messages never sit at the head of the message queue for longer than the countdown time.
This mode is appropriate for polling as well as the atomic sections of non-priority-inverted mes-
sage handlers. In contrast, if thetimer force bit is set, the timer is enabled regardless of the
presence or absence of a message at the head of the input queue. This mode is useful for atomic
sections of priority-inverted handlers, since it guarantees that the atomic section will be of bounded
duration; in this case, it must be coupled with theatomicity extend bit described below.

Note that the actual value of the atomicity timer is a detail unrelated to correctness. However,
if it is set too low, it may have a non-trival impact on performance, since it could cause frequent
revocation of user-level access to the network. Although the second case (buffered) delivery may
be relatively low overhead, it may still increase message overhead by a factor of two or three22.
Further, if the timeout is too low, then the user may cause excessive network congestion unwit-
tingly. Thus there is a careful balance to be struck. To help in achieving a balance,the atomicity
timer is designed to count only user cycles.This permits the atomicity timer to be tied directly to
the user-level instruction stream, rather than allowing non-deterministic timer behavior caused by
kernel interrupt handlers. Further, the user is allowed to set thetimer force bit during polling
to achieve similiar deterministic behavior in timing —i.e. timeouts become tied to the instruction
stream rather than to the non-deterministic behavior of the the network.

The final two atomicity control bits may be modified only by the kernel. If either of these
bits are set, attempts by the user to clear eitheratomicity assert or timer force cause
synchronous exceptions to the kernel. As we will see in a moment, these bits must be cleared
when the user attempts to exit atomicity. Hence, if either of these bits are set, then a user’s attempt
to exit atomicity will trap into the kernel. The first kernel bit,dispose pending is used to
ensure that a user-level interrupt handler extracts at least one message before exiting atomicity.
This is to avoid a recursive interrupts. Before calling a user-level interrupt handler, the kernel
sets this bit. It is cleared as soon as the user discards at least one message. Hence, user attempts

22This may seem like a lot, but the initial hardware delivery overheads are extremely low.

2.4. User-Direct Messaging Page 73

to exit atomicity whiledispose pending is set cause adispose failure exception. The
second kernel bit,atomicity extend , is used to cause the kernel to be reinvoked after the
user disables atomicity. Hence, user attempts to exit atomicity whileatomicity extend is
set (anddispose pending is clear) cause anatomicity extend exception. This exten-
sion mechanism has a number of uses. For the atomic sections of priority-inverted handlers, the
atomicity extend trap is used to return control to the kernel after the end of the atomic sec-
tion of the handler. In Section 4.3.5 we will see how theatomicity extend mechanism is an
integral part of the software emulation of network queues in during two-case delivery.

enable message atomicity())

enabatom ATOMICITY ASSERT ; Previousatomicity assert in full/empty.

disable message atomicity())

disatom (ATOMICITY ASSERTjTIMER FORCE) ; Previousatomicity assert in full/empty.

Figure 2-12:Translation of UDM atomicity operations into UDM interface instructions.

Implementation of the UDM atomicity operations: Given the atomicity mechanism as

0000

User Code

dispose

1P1P
Handler
Atomic
Section

1P0P
Atomic
Section

disatom
 ^ (P = 0)

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Atomicity
Extend

disatom ^ (P = 1)

enabatom

(0 => P)

interrupt
(inversion => P)

timer force
atomicity assert

dispose pending
atomicity extend

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Premature
Exit

dis
ato

m

timeout

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Two-Case
Buffering

timeout

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Two-Case
Buffering

congestion

congestion

Figure 2-13: Four primary states for the
user-level atomicity mechanism.

we have previously described it, translation of the abstract user-level atomicity operations
enable message atomcity anddisable message atomicity into UDM instructions
is now trivial. Figure 2-12 illustrates this translation. When user-code enables atomicity
(such as for critical sections or during polling), it merely needs to use anenabatom instruc-
tion with the ATOMICITY ASSERTmask. This instruction sets theatomicity assert
bit of theuatomctrl register and returns the pre-
vious value of this bit as a full/empty condition
code. The full/empty code can then be tested with
the coprocessor conditional branch instructions (see
Section 5.1.1). Other, more complicated entries
into atomicity occur through the kernel, and may
involve more complicated masks. To exit atom-
icity, we use thedisatom instruction, but re-
quest clearing of bothATOMICITY ASSERTand
TIMER FORCE. Once again, the previous value
of the atomicity assert bit is returned as a
full/empty condition.

To the extent that hardware use of the atomic-
ity mechanism is a common-case operation, we can
summarize user-atomicity with a state diagram con-
taining three primary user states, an “extension” state
for priority inveresion, and several exception arcs. This is shown in Figure 2-13. In this figure, the
three primary user states are unshaded and represent code running at user level, while the shaded
states represent kernel handlers for exceptional conditions. The first of the user states,user code,
represents code running outside of a critical section; the second,handler atomic sectionis a criti-

Page 74 CHAPTER 2. THE USER-LEVEL ACCESS PROBLEM

cal section which cannot be exited without disposing of a message; the third,atomic section, is a
“normal” critical section. Each of the primary user states are annotated with values for the atomic-
ity control bits. Note that two of the bits, namelytimer force andatomicity extend are
labeled symbolically with the letter “P”; this means that these bits are set to the same value, but
that this value depends on circumstances23.

There are three types of kernel exception arcs in Figure 2-13. The first,two-case buffering,
represents entry into buffering code and can be triggered by the atomicity timeout, as well as
shared-memory or network congestion. Section 4.3.5 and Figure 4-8 (page 136) cover buffering in
greater detail. The second,atomicity extend, is used here exclusively for recovering from priority
inversion and is triggered at the close of the atomic section of a priority-inverted handler. The last,
premature exit, is an error condition that results when the user neglects to free at least one message
before exiting the atomic section of a message handler.

This diagram embodies four different scenarios:

POLLING: To poll, the user simply executes aenable message atomicity op-
eration. This follows the arch fromuser codeto atomic section, setting the “P”
bits to zero. Assuming that no timeout or congestion has occurred, polling is
exited by executingdisable message atomicity , which returns the user
to user code.

CRITICAL SECTION: This is identical to the Polling scenario above, except that it
tends to be much shorter.

NORMAL INTERRUPT HANDLER: When a user-level message handler occurs, the
kernel causes a transition fromuser codeto handler atomic section. The “P”
value is set to zero. Note also that thedispose pending bit is set to one.
Should the user attempt to exit atomicity without disposing of a message, then
the exceptional condition ofpremature exitwill occur. As soon as the user dis-
poses of a message, then we enter theatomic sectionstate. From this point on,
the remainder of the atomic section of the handler is identical to a normal critical
section.

PRIORITY INVERSION: The only difference between a priority inverted handler and
a normal handler is that thetimer force andatomicity extend bits are
set. This means that (1) the duration of the handler is bounded and (2) after
the message is disposed, execution ofdisable message atomicity will
invoke theatomicity extendcode to reenter the kernel.

It is important to note that the third item above (Normal Interrupt Handler) is a bit dif-
ferent from most other systems. The fact that an interrupt handler is transformed transparently
into a “normal” thread is evidenced by the fact that we make no distinction between entry to the
atomic sectionstate from the background task or and interrupt handler. This is only possible be-
cause of our use of featherweight threads to give each interrupt handler a complete thread context.
As discussed in Section 2.2, other alternatives (such as Optimistic Active Messages [114]) con-
struct a thread context on the fly, only if necessary. Interestingly enough, the user-level atomicity

23See the full-blown state diagram in Figure 4-8 for examples in which these bits are not identical.

2.4. User-Direct Messaging Page 75

mechanism as defined here is perfectly compatible with this methodology – if all passes through
thehandler atomic sectionstate set theatomicity extend bit, then exit of the atomic section
would always invoke the atomicity extend handler, which could then construct a thread context.

2.4.6 Putting it all together: hardware support for user-level interrupts

The Alewife system supports “user-level interrupts” only because the kernel message interrupt han-
dler quickly converts a system-level interrupt into an upcall to user code and because the Alewife
operating system provides a system call to perform a return from interrupt. Thus, the manipula-
tions touatomctrl required for a user-level interrupt handler are added in software at the system
level. However, a processorcouldmanipulate theuatomctrl bits directly: theinterrupt arc of
Figure 2-13 could occur entirely in hardware under those circumstances for which a free feather-
weight thread was available. When coupled with a user-level return from interrupt, this mechanism
would produce an extraordinarily low-overhead, user-level message interupt.

What we have described above is sufficient mechanism to provide an extremely fast thread
dispatch to handle user-level interrupts. Unfortunately, this does not address the network output
descriptor array. As described in Section 2.4.3, the descriptor array is multiplexed through a pro-
cess of “callee-saves”, which means that an interrupting thread must be careful to save any state
from the interrupted background thread before sending messages. Of course we cannot trust a user
to do this properly, especially since the background thread may belong to the operating systems
under special situations (priority inversion). Consequently, Alewife accomplishes this in the thin
layer of operating systems code that is run before dispatching the the user-level handler: this code
performs a quick check of thedesc length register to see if the interrupted thread had written
anything to the output window. If so, it saves the registers, then alters the return address of the
interrupted handler to point at a special stub that will reload them. In this way, the machine state
becomes a part of the interrupt thread context. Further, the new thread is free to send messages as
it wishes.

One of the premises behind using callee-saves to multiplex the descriptor array was that inter-
rupting a background process in the middle of an atomic send sequence is “unlikely” (low proba-
bility). Hence, in continuing our exploration of hardware support for user-level interrupts, we note
that it would makes sense to continue to dispatch user-level arrival events directly in hardware as
described at the beginning of this section, while treating the case of a non-zerodesc length
register as an exceptional case that interrupted to the operating system24.

2.4.7 User-Direct Messaging in a Multiuser System

As designed, Alewife is a single-user system. There are several reasons for this, but two are
particularly compelling: First and foremost, the Alewife project was studying a number of issues
of cache-coherence, multithreading, fine-grained communication, and integrated message passing
and shared memory; multi-user timesharing would likely have represented one too many areas of

24An alternative to this would be to provide a separate descriptor array for each register context, which is somewhat
akin to the approach adopted by the M-machine [40] which uses the register file to hold outgoing messages before
launch. This, of course, has direct roots in the Alewife design.

Page 76 CHAPTER 2. THE USER-LEVEL ACCESS PROBLEM

focus. Second, the absence of virtual memory made construction of a multiuser operating-system
difficult. As described in the footnote on page 44, there were a number of reasons that virtual
memory was not included in the Alewife prototype, not the least of which was expedience.

So, to what extent can we generalize the solutions of Alewife to a multiuser system? With
respect to communication models, the answer is that the semantics and most of the implementation
details are completely sufficient for a multiuser system. Multi-user support for shared memory is
easily provided through virtual memory (as has been done for shared-memory multiprocessors for
many years now); hence, we do not really need to discuss it further. Multi-user support for message
passing, while not as straightforward, is greatly simplified by the presence of two-case delivery.
That is the topic of this section.

Before discussing this, we would like to say a brief word about the model of scheduling that we
are assuming. One possible model is strictlyspace-sharedandgang-scheduled. Such machines, of
which the CM-5 is one example, are physically partitioned so that individual jobs have exclusive
use of a set of nodes during their timeslices. Such machine/operating-system combinations have
advantages of simplicity, in that design of the message-passing interface does not have to deal with
an intermixing of messages between different processes. Unfortunately, this type of partitioning
can provide an extremely inflexible and inefficient use of resources. Note, in closing, however, that
User-Direct Messagingcouldbe used directly, without modification in such a system.

However, the model of timesharing that we would like to target here is much more flexible:
loose gang-scheduling. This type of scheduling assumes no restrictions on the intermixing of
threads from different processes within a given machine. Processes may expand to occupy an
optimum number of nodes; this type of scheduling allows simultaneous execution of large multi-
node parallel programs with smaller tasks. The scheduler attempts to schedule threads in groups
so that all of the nodes from given process are “usually” running at the same time. What this
heuristic ensures is that, while messages from different processes may be intermixed within the
same network, the common-case situation is for messages to arrive at nodes that are expecting
them,i.e. that it is a low probability event for messages from one process to arrive at a node which
has another process scheduled. If this type of “message mismatch” is uncommon, then we can take
advantage of this in our architecture.

Two-case delivery is an architectural innovation that enables loose gang-scheduling. The rea-
son for this is that buffered delivery of messages is explicitly built into the messaging mechanisms;
in the case of a multiuser system, we simply extend the basic buffering scheme to include multiple
message buffers, one per process. As a consequence, buffering is always available as an option
for a wide array of message delivery problems, including situations in which messages arrive for
processes that are not currently scheduled — we handle the mismatched arrival of a message at a
node simploy by buffering the mismatched message and delivering it later, when the appropriate
process is scheduled. The extent to which mismatched message delivery is an uncommon situation
is out of the domain of discussion, but is addressed elsewhere[78].

Given two-case delivery as a method for multiplexing traffic from different users, we can make
use of the User-Direct Messaging model unmodified in a multiuser system. In fact, there are only
two issues that must be addressed from animplementationstandpoint:

1. A Process-ID stamp(PID) must be prepended to each outgoing message by the

2.5. The Interaction Between Communication Models Page 77

message injection hardware. The stamp records an identifier of the sending process.
At the receiver, the PID of the message is compared to that of currently active pro-
cess. If it matches, then reception occurs exactly as before. On the other hand, if the
PID does not match, then a specialmessage mismatch interrupt occurs which
invokes buffering software. This permits direct hardware delivery in those situations
for which the scheduler has properly coscheduled senders and receivers.

2. The ability to handle virtual-memory based DMA for messages. To extend the user-
level DMA of User-Direct Messaging to a system with virtual memory requires
careful handling of various types of page faults that may occur. This can be handled
with careful scheduling and manipulation of the free-page cache. This is beyond the
topic of the current discussion, however. See [77].

Thus, the User-Direct Messaging model directly generalizes to a multiuser system with little extra
mechanism. Note that this result stems from the unique mix of hardware and software represented
by two-case delivery.

2.5 The Interaction Between Communication Models

Having discussed both the Latency-Tolerant Shared-Memory and User-Direct Messaging commu-
nication models in detail, we would now like to explore the consequences of their integration. Both
of these communication models are self contained and functional when used separately; thus, we
would like to see how they interact when when used together. We are looking for two different
things: (1) ways in which the combined use of models can lead to interference or deadlock and (2)
ways in which the semantics of the models are sufficiently mismatched that care must be made at
interaction boundaries.

We respect to the first of these, it is important to restate an assumption of the Alewife design:
the use of a single logical network channel. The fact that Alewife was restricted to utilizing only
a single logical network channel was a constraint imposed by the choice of the EMRC network
chips from Caltech: these chips form a network with a single (bi-directional) network channel.
Note that, as a partial solution of theprotocol deadlock problem(Chapter 4), the Stanford DASH
multiprocessor utilized the EMRC to achieved two independent network channels, but this was
done by doubling the amount of hardware and interconnection resources25. This was not deemed
a reasonable cost in Alewife. Consequently, the Alewife design was restricted to functioning with
a single logical network channel.

In some cases, this restriction lead to better solutions (as design within constraints often does).
The methodology of two-case delivery, discussed in detail in Section 4.3, was one positive result
of restricting the number of network channels to one. Unfortunately, some of the inter-model
interactions of this section represent negative consequences of such a restriction. In particular,
the presence of a single logical channel impacts the interface between shared memry and message
passing, in that the semantics or behavior of one can block or impact the other. In some cases,

25Actually quadrupling, since they doubled the width of the network channels, but this is not relevant here.

Page 78 CHAPTER 2. THE USER-LEVEL ACCESS PROBLEM

as we shall see, the user’s model of integrated communication suffers directly, becoming more
complex as a result.

The following are the important issues that arise when integrating shared memory with message
passing:

� The DMA coherence problem. The interaction between messages using DMA transfer and
cache-coherence. Our solution,local coherence, guarantees coherence at message endpoints.
This means that data at the source and destination are coherent with respect to local proces-
sors.Global coherencecan be achieved through a two-phase software process.

� Restrictions on shared-memory accesses during message atomic sections. Because of re-
strictions on network communication, shared-memory accesses made by message handlers
and during polling can lead to deadlock. Solution to this problem involves restrictions im-
posed on system-level users of the network interface, and virtualization of atomicity through
the user-level atomicity mechanism.

� The refused service deadlock. The combination of blocking semantics for shared memory
and the need for processor handling of messages can cause a type of priority inversion that
leads to deadlock. Our solution involves a special type ofsynchronous interruptcalled a
high-availability interrupt.

The following sections explore the first two of these issues, namely theDMA coherence prob-
lem and message handler restrictions. The DMA coherence problem is a natural outcome of
attempts to combine DMA and cache-coherent shared memory; our choice of solution (use of
locally coherent DMA) is driven by considerations of common-case usage, implementation com-
plexity, and characteristics of the network. The restrictions on message handlers, in contrast, derive
almost exclusively from restrictions on network communication and requirements for two-case de-
livery; several of these restrictions could be lifted with hardware enhancements. The third problem,
namely therefused service deadlock, is one of the service interleaving problems; since it can be
solved in a way that is completely transparent to the user, we will defer discussion of it until
Section 3.1.

2.5.1 The DMA Coherence Problem

Since Alewife is a cache-coherent, shared-memory multiprocessor, it is natural to ask which form
of data coherence should be supported by the DMA mechanism. Three possibilities present them-
selves:

1. Non-Coherent DMA: Data is taken directly from memory at the source and deposited di-
rectly to memory at the destination, regardless of the state of local or remote caches.

2. Locally-Coherent DMA: Data at the source and destination are coherent with respect to
local processors. This means that source data is retrieved from the cache at the source, if
necessary. It also means that destination memory-lines are invalidated or updated in the
cache at the destination, if necessary.For reasons described below, the Alewife machine
supports locally-coherent DMA.

2.5. The Interaction Between Communication Models Page 79

3. Globally-Coherent DMA: Data at the source and destination are coherent with respect to
all nodes. Source memory-lines which are dirty in the caches of remote nodes are fetched
during transmission. Destination memory-lines are invalidated or updated in caches which
have copies, ensuring that all nodes have a coherent view of incoming data.

Both locally-coherent DMA and non-coherent DMA have appeared on numerous uniprocessors to
date. Local coherence gives the programmer more flexibility to send and receive data structures
which are in active use, since it removes the need to explicitly flush data to memory. In addition, it
is relatively straightforward to implement in a system which already supports a cache-invalidation
mechanism. Non-coherent DMA can give better performance for messages which are not cached
(such as certain types of I/O), since it does not produce cache invalidation traffic. However, it is
less flexible.

Globally-coherent DMA, on the other hand, is an option only in cache-coherent multiproces-
sors. While attractive as a “universal mechanism”, globally-coherent DMA is not necessarily a
good mechanism to support directly in hardware. There are a number of reasons for this. First, it
provides far more mechanism than is actually needed in many cases. As Chapter 6 demonstrates,
message passing is useful as a way ofbypassingthe coherence protocol. In fact, many of the
applications of message-passing discussed in [58] do not require a complete mechanism.

Second, a machine with a single network port cannot fetch dirty source data while in the mid-
dle of transmitting a larger packet since this requires the sending of messages. Even in a machine
with multiple logical network ports, it is undesirable to retrieve dirty data in the middle of message
transmission because the network resources associated with the message can be idle for multi-
ple network round-trip times. Thus, a monolithic DMA mechanism would have to scan through
the packet descriptor twice; once to collect data, and once to send data. This adds unnecessary
complexity.

Third, globally-coherent DMA complicates network overflow recovery. While hardware can
be designed to invalidate or update remote caches during data arrival (using both input and out-
put ports of the network simultaneously), this introduces a dependence between input and output
queues which may prevent the simple “divert and relaunch” scheme described above for network
overflow recovery: input packets which are in the middle of a globally-coherent storeback block
the input queue when the output queue is clogged.

In the light of these discussions, the Alewife machine supports a locally-coherent DMA mech-
anism.

Synthesizing Global Coherence: The above discussion does not mean that globally-coherent
DMA cannot be accomplished, however. The key is to note that software which desires such
semantics can employ a two-phase “collect” and “send” operation at the source and a “clean” and
“receive” operation at the destination.

Thus, a globally coherent send can be accomplished by first scanning through the source data
to collect values of outstanding dirty copies. Then, a subsequent DMA send operation needs to
access local copies only. With the send mechanism broken into these two pieces, we see that the
the collection operation can potentially occur in parallel: by quickly scanning through the data and
sending invalidations to all caches which have dirty copies.

Page 80 CHAPTER 2. THE USER-LEVEL ACCESS PROBLEM

At the destination, the cleaning operation is similar in flavor to collection. Here the goal of
scanning through destination memory blocks is to invalidate all outstanding copies of memory-
lines before using them for DMA storeback. To this end, some method of marking blocks as “busy”
until invalidation acknowledgments have returned is advantageous (and provided by Alewife);
then, data can be stored to memory in parallel with invalidations.

At the time that Alewife was designed, it was an open question as to whether the collection and
cleaning operations should be assisted by hardware, accomplished by performing multiple non-
binding prefetch operations, or accomplished by scanning the coherence directories and manually
sending invalidations26. As a consequence, the Alewife machine provides no hardware assistance
for achieving global coherence — it must be driven by software.

However, there is at least one situation for which hardware support of global coherence would
be have been desirable: page migration. In particular, one experimental system that was built on
top of Alewife was the Multi-Grained shared-memory (MGS) system[120]. This system provided
a shared-memory abstraction on top of a cluster of Alewife machines27. Communication within
each machine was via hardware shared-memory, with software maintained coherence between ma-
chines. When moving pages from one machine to another, globally-coherent DMA was necessary;
on Alewife, this was accomplished by prefetch loops for page cleaning. In this system, the soft-
ware overhead of cleaning was a non-trivial fraction of execution for a number of applications.
Note also that easy page migration is an important aspect for operating-systems design.

Hence, in retrospect, support for page collection and cleaning would have been good features
to include for Alewife.

2.5.2 Message Atomicity and Shared-Memory Access

A second interaction between shared memory and message passing that we wish to discuss is
between message handlers and shared memory. As described in Section 2.4.1, interrupt handlers
begin with interrupts disabled,i.e. with an atomic section. This is necessary to avoid recursive
interrupts. Unfortunately, during periods in which message interrupts are disabled, no forward
progress of the network as a whole may be guaranteed. We will discuss this in detail in Chapter 4.
However, one immediate consequence that we would like to mention here is the fact that this lack of
forward progress in the network directly impacts the set of operations that may appear in message
handlers; in particular,message handlers may not access shared memory. This particular constraint
is a direct consequence of the fact that both shared-memory and message-passing network traffic
are carried on a single logical network channel: if a message is blocked at the head of the network
input queue, it can stretch into the network, preventing the passage of shared-memory protocol
packets.

This simple interaction has a number of consequences:

� It is one of the causes of the refused service deadlock. We have already pointed out
that we will “fix” this problem in the next chapter.

26An option which is uniquely available with Alewife.
27Actually, it was a simulated cluster —i.e. a partitioning of one large machine.

2.5. The Interaction Between Communication Models Page 81

� As we begin to unravel the Alewife implementation, we will see that accesses to the
shared-address space must be treated carefully at many levels of the implementation,
simply because such traffic has thepotentialto generate network traffic; even if this
is not actually true (e.g. the operating systems designer has carefully reserved a
block of memory that is guaranteed to be unshared), this information is buried too
deeply (in the protocol directory) for higher levels of hardware to take advantage of.
Since all but the most trivial of interrupt handlers must have access to memory, this
implies some other class memory, leading to yet another need forlocal unshared
memory.

� This prohibition toward access of shared memory extends to all atomic sections;
including periods of polling.

This last issue is one of the most restrictive interactions, because it prevents integration of shared
memory and polling message passing. In fact, as we will discuss in Section 4.3.5, this problem can
be masked by appropriate exceptional cases in the user-level atomicity mechanism, triggering two-
case delivery when deadlock would otherwise result. Unfortunately, this can make second-case
delivery (i.e. through software) much more frequent than direct hardware delivery.

Operating-System Message Handlers: Although the user-level atomicity mechanism can mask
deadlock issues from the user, portions of the operating system must still be able to deal with
the raw hardware interface. (This is akin to the fact that portions of all operating systems must
operate in real-mode, despite the fact that virtual memory exists.) Further, the software overhead
involved in masking deadlock issues issues is an overhead that is neither necessary nor desirable for
correctly written code; as an example, the LimitLESS cache-coherence protocol relies on system-
level software handlers for part of its implementation; extraneous software overheads add directly
to the cost of a remote memory accesses. Thus, for the operating system, we would like to codify
a set of rules that interrupt handlers must follow to be correct.

Taking into account the network-overflow methodology of Chapter 4, these rules may be sum-
marized as follows. Before a system-level handler accesses shared-memory, it must:

� Reenable the network overflow interrupt.

� Free the input packetcompletelyand reenable network arrival interrupts.

� Release any low-level hardware locks which will defer invalidations in the interrupted code.

The first of these arises because all global accesses have the potential to require use of the network.
Consequently, they can be blocked indefinitely if the network should overflow. The network over-
flow handling mechanism is discussed in Chapter 4. The second is the shared-memory/message-
passing interaction mentioned above. Finally, the last condition prevents deadlocks in the thrash
elimination mechanism,i.e. avoids theinternode deadlockillustrated in Figure 3-10 and its sur-
rounding text (page 98)28.

28 In fact, in the case of user-level message handlers, we treat this as a form of priority inversion; as soon as the
atomic section completes, we return to perform the shared-memory access required to release the lock. This is aided
by support in the A-1001 CMMU; see Section 6.1.3.

Page 82 CHAPTER 2. THE USER-LEVEL ACCESS PROBLEM

2.6 Postscript

In this chapter, we have explored the high-level aspects of integrating message-passing and shared-

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Shared-Memory Model
(LimitLESS)

Message-Passing Model
(User-Direct Messaging)

Custom
RPC

Featherweight
Threads

Network
Deadlock
Avoidance

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Hardware Mechanisms

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A

Users of communication

Figure 2-14: Exported communication models
in the Alewife multiprocessor.

memory communication models. This involved three major aspects: (1) a threading model, called
featherweight threads, whereby threads are inex-
pensive enough to use for latency tolerance and
interrupts as well as background processes; (2)
shared-memory and message-passing commu-
nication models (called, respectively,Latency-
Tolerant Shared Memoryand User-Direct Mes-
saging) that are compatible with one another,
provide reasonable functionality, and whose in-
teractions may be easily characterized; and (3)
development of a set of interfaces for these com-
munication models. With respect to the last of
these, we have taken the approach that interfaces
are extensions to the ISA. This led us to develop

interfaces that can be represented in a small number of actual instructions. In this process we follow
in the footsteps of of people such as Bill Dally who have espoused the view that communication
should be viewed as being as fundamental as addition and multiplication[34].

This is our solution to challenge of user-level access. The result of this chapter may be sum-
marized by Figure 2-14, which reproduces the middle layers of Figure 1-3 (page 27). The only
aspect of this diagram that we have yet to discuss is the deadlock-avoidance box; that is the topic
of Chapter 4.

Collaborators: As with any large systems project, Alewife intermixed the contributions of
many people. The featherweight threading concepts and code were built on top of existing thread-
ing facilities developed by David Kranz, Beng-Hong Lim, and Dan Nussbaum. David Chaiken was
instrumental in developing the Alewife cache-coherence protocol and was an important collabora-
tor in the development of hardware mechanisms for implementation of LimitLESS cache coher-
ence. David Kranz provided the original impetus to develop user-level messaging on Alewife. Ken
Mackenzie was an important collaborator in the design of the UDM model; he was also responsible
for many of the multiuser aspects of UDM. Kirk Johnson and Donald Yeung were the first users of
the software version of the user-level atomicity mechanism, providing crucial feedback that lead
to the hardware user-level atomicity mechanism presented here (and in Chapter 4).

Chapter 3

The Service-Interleaving Problem

Theraison d́etreof multiprocessing is the exploitation of parallelism to increase the performance
of applications. Not surprisingly, parallelism at the application level leads to parallelism in the
underlying communication substrate. In this chapter, we will examine several instances for which
communication parallelism leads to potential livelocks and deadlocks, especially when shared-
memory and message-passing communication are intermixed. We will group this set of problems
together and refer to them collectively as theService Interleaving Problem.

The Service Interleaving Problem in an integrated architecture such as Alewife arises from the
presence of uncontrolled simultaneity. This simultaneity arises from several sources: First, by their
very nature, multiprocessors support multiple instruction streams (at least one per node), each of
which can generate shared-memory communication traffic. Second, latency-tolerance techniques
such as prefetching and rapid-context switching serve to overlap communication by increasing the
number of outstanding requests from each node. Third, message-passing interfaces can give rise
to an unbounded number of outstanding requests from each node. Hence, the memory system
and network must correctly support many simultaneous requests. Fourth, the boundaries between
shared memory and message passing can be explicitly crossed when hardware events are handled
by software (such as for the LimitLESS coherence protocol[23, 21]); this can introduce another
type of simultaneity in which cache-coherence structures are access by both hardware and software.

Hence, any solution to the Service-Interleaving Problem involves imposing order on this chaos.
In particular, two requirements must be met:

1. All communication operations must complete eventually.

2. All communication operations must complete correctly.

The first statement asserts that the system is free of both livelock and deadlock. It requires the so-
lution of three problems, therefused service deadlock, thewindow of vulnerability livelock, and the
server-interlock problem. The second statement implies the existence of a cache-coherence pro-
tocol to maintain data consistency, and the presence of explicit mechanisms to deal with message
and event reordering. We say that these mechanisms eliminateprotocol reordering sensitivities.

The refused-service deadlock results from an interaction between the blocking semantics of
memory (ultimately resulting from finite processor resources) and the need for processor handling

Page 83

Page 84 CHAPTER 3. THE SERVICE-INTERLEAVING PROBLEM

of messages. This is an unavoidable consequence of the integration between message passing and
shared memory. The next two issues, the window of vulnerability livelock and the server-interlock
problem, are are duals of one another and result from the combined presence of a cache-coherence
protocol and multiple threads competing for limited hardware resources. Finally, the set of protocol
reordering sensitivities result from simultaneity in the hardware at a number of levels.

This chapter describes each of the four facets of the Service-Interleaving Problem, and presents
solutions in the context of Alewife. As we shall see, one of the primary results of this chapter is
the notion of atransaction buffer. A transaction buffer is a fully-associative store of data and state
that sits between the processor and memory (both local and remote). It is used to explicitly track
the state of outstanding transactions from the processor’s standpoint; this type of tracking provides
sufficient information to correct for all sorts of problems: inter-processor data thrashing, cache
replacement thrashing, network reordering, mixed hardware/software handling of cache replace-
ment, guarantees that interrupt handlers can execute. In addition, three other aspects of the solution
to the Service-Interleaving Problem may be summarized as follows:

1. Guarantee that high-priority asynchronous events can be delivered.

2. Guarantee thatat least onewriter eventually succeeds.

3. Provide locks on contended hardware data structures.

It is our goal in this chapter to show how to solve the service-interleaving problem from a high-
level viewpoint; as such, we will present the issues and discuss several different possible solutions.
Later, Section 5.2.3 will present the Alewife transaction buffer in detail, showing how the various
properties that we have attributed to it are embodied in hardware mechanisms.

3.1 The Refused-Service Deadlock

Integrated architectures such as Alewife can be subject to “multi-model interference” caused

R
eq

ue
st

R
eq

ue
st

R
eq

ue
st

Processor

M
es

sa
ge

M
es

sa
ge

M
es

sa
ge

R
es

po
ns

e

R
es

po
ns

e

N
E

T
W

O
R

K

Figure 3-1: The refused-service deadlock.
The pipeline is blocked awaiting completion
of shared-memory transactions.

by interactions between communication mechanisms. Figure 3-1 illustrates one such scenario
that arises in the Alewife multiprocessor, called the
refused-service deadlock. In this figure the processor
has exhausted its ability to issue additional memory
transactions and is thus blocked awaiting the com-
pletion of previously-issued requests. As shown in
this figure, the shared-memory responses that it is
waiting for are blocked in the network, behind mes-
sages. Unfortunately, this situation will not resolve
itself because the removal of messages at the head of
the queue requires action by the processor, either ex-
plicit free operations (if the processor is polling for

messages) or the posting of asynchronous interrupts (if the processor is relying on interrupt notifi-
cation). The fact that the processor will not free messages if it is polling is straightforward, since

3.1. The Refused-Service Deadlock Page 85

the processor is unable to continue executing instructions in the current (polling) thread. How-
ever, the processor will not free these messages,even if it has message interrupts enabled:since
its capacity for issuing memory requests has been exhausted, the processor cannot issue requests
for interrupt handler instructions; further, if the pipeline is frozen, the asynchronous interrupt con-
dition may not even be registered by the processor. Hence, Figure 3-1 represents a deadlocked
situation regardless of the current mode of message notification.

3.1.1 Blocking Memory Operations Cause Deadlock

At the risk of belaboring the point, the situation in this figure arises for two reasons: First, processor
pipelines have finite resources that may be used for outstanding requests to the memory system; for
example, the pipeline of the Sparcle processor on Alewife can have only one outstanding memory
transaction, while more recent processors such as the Power PC or the R10000 support four to eight
outstanding requests. Finite resources are a fact of implementation, and hence this potential ex-
hausting of resources is unavoidable. The second reason, however, results from an explicit design
decision: the use of a single logical network channel. If shared-memory and message-passing net-
work traffic were completely decoupled, through use of multiple networks or virtual channels[31],
then dependencies such as shown in Figure 3-1 would not occur: the shared-memory responses
would simply bypass the messages, unblocking the pipeline, and hence avoiding deadlock. As
with similar deadlocks, we have two components: finite resources (processor load buffers) and
interlocking dependencies (interference between shared memory and message passing).

Although this particular instantiation of the refused-service deadlock may be eliminated by in-
cluding more than one logical channel in the network, other instances are less avoidable. In fact,
the refused service deadlock occurs under any circumstances in which the memory interface is
used for operations that (1) may block and (2) may not complete without processor action. In a
multiprocessor such as Alewife that makes copious use of software handlers to resolve exceptional
situations, examples of this sort of interlocking abound. For instance, as we shall see in Chapter 4,
Alewife makes use of a software scheme calledtwo-case deliveryto recover from protocol dead-
lock in the network. Once again, this sets up a dependency in which shared-memory operations
may not complete without the posting of an atomicity congestion interrupt and the subsequent exe-
cution of the network overflow recovery handler. A related example is that of the blocking aspects
of the network output interface discussed in Section 2.4.2: attempts to describe a message by writ-
ing to the output interface may blocked pending drainage of the network. If the network happens
to be deadlocked, then only the execution of the network overflow handler will permit forward
progress. One slightly different example involves the LimitLESS cache coherence protocol: since
software is an integral aspect of this protocol, then it may be the case that a local operation memory
request may not complete without the execution of a local interrupt handler.

3.1.2 High-Availability Interrupts

In solving the refused-service deadlock, we would like to separate two different subclasses of
this deadlock by the method in which the dependent condition would be resolved:interrupts vs.
polling. The cases in which interrupts are prevented by pending memory operations is the more per-

Page 86 CHAPTER 3. THE SERVICE-INTERLEAVING PROBLEM

nicious of the two, simply because most exceptional conditions are handled via interrupts. The fact
that interrupts can be prevented from occurring is a type of priority inversion: high-priority asyn-
chronous interrupts are deferred pending completion of lower-priority dependent operations. Pri-
ority inversions are invariably bad, because interrupt hierarchies is designed with forward progress
(or timeliness) in mind; any violation of these hierarchies will likely compromise correctness or
cause deadlock. The polling example represented by Figure 3-1 is fundamentally different because
polling represents normal (non-exceptional) execution. Thus, the polling version of the refused
service deadlock can be avoided in several ways: (1) by requiring the user to avoid those situations
that cause deadlock, (2) by increasing the level of resources in, for instance, the network to elim-
inate this problem, or (3) by recognizing when a polling execution cannot complete and invoking
an interrupt to clean up the situation.

Hence, unlike polling versions of the refused-service deadlock, the interrupt version is far more
worrisome: it can prevent forward progress regardless of the care with which the user constructs
code (exceptional conditions are often related only indirectly to the current execution stream)1.
To solve the refused-service priority inversion, we must find a way to deliver interrupts during
those periods in which the processor pipeline is blocked on memory actions. In order to do this,
we must recognize that under “normal” circumstances (those for which typical pipelines are de-
signed), memory operations never block indefinitely — they either complete or fault. Since com-
pletion of outstanding requests is not an option, this leaves faulting. Thus, to deliver high-priority
asynchronous interrupts under exceptional circumstances (i.e. when the pipeline is blocked on
dependent operations), we must fault one or more of the memory operations that are currently
in progress; further, we must redirect the fault handler for these memory operations so that they
vector to an appropriate interrupt handler, rather than to a memory error handler. Later, after the
interrupt returns, the faulted memory operations will be retried.

Asynchronous interrupts that can be delivered by faulting in-progress memory operations under
exceptional circumstances are calledhigh-availability interrupts. A number of Alewife interrupts
are high-availability: reception interrupts, atomicity congestion interrupts (for network deadlock
recovery), local LimitLESS faults, and even the timer interrupt is high-availability in order to
ensure timely delivery of clock events. Note that the presence of high-availability interrupts in-
troduces the possibility of livelock, since in-progress memory operations are faulted and retried.
In fact, this situation represents an instance of the window of vulnerability livelock that will be
discussed in the next section (Section 3.2).

The memory fault that is employed when invoking a high-availability interrupt is closely re-
lated to standard memory faults that are used for memory errors (such as ECC). However, to aid
in proper vectoring of high-availability interrupts, some distinguishing characteristic is desirable.
As discussed in Section 5.1.1, the Sparcle processor includes several synchronous fault lines for
the express purpose of registering high-availability interrupts. However, in the Alewife implemen-
tation, there are enough high-availability interrupts that the set of hardware synchronous trap lines
are insufficient for complete vectoring; hence, the high-availability trap vector performs an addi-
tional level of software dispatch based on a special hardware status register in the CMMU, called

1Note that we are not claiming that the polling version of the refused-service deadlock is unimportant, merely that
it affects the communication model seen by the user rather than system-level forward progress; we will have more to
say about this when we discuss the user-level atomicity mechanism in Section 4.3.5.

3.2. The Window of Vulnerability Livelock Page 87

theAuxFault Vector . This register is set to reflect the type of high-availability interrupt that
has just occurred.

3.1.3 Interrupt Promotion Heuristics

Since high-availability interrupts are asynchronous interrupts that are delivered synchronously un-
der special conditions (i.e. by faulting memory operations), some heuristic must by used to deter-
mine when to promote asynchronous memory operations to synchronous ones. Under the assump-
tion (which is true for Sparcle) that synchronous delivery is more expensive than asynchronous
delivery, we would like this delivery heuristic to be as conservative as possible. In practice, some
types of interrupts are easier to design conservative heuristics for than others. For instance, with
the message arrival interrupt, the set of promotion conditions are straightforward: if the proces-
sor is waiting on a remote access and a message arrival interrupt is pending, then this interrupt
is promoted to synchronous delivery. As discussed in Section 5.2.2.2, high-availability inter-
rupts are controlled directly from within the primary cache-control state machine on the Alewife
CMMU. This permits high-availability interrupts to be promoted to synchronous delivery only in
theResource Wait state of this machine,i.e. when all other options for memory access have
failed. To choose which high-availability interrupt to deliver, special high-availability priority logic
examines the set of pending high-availability interrupts and a set of machine state information (e.g.
in the case of message-arrival interrupts, the fact that the processor is waiting for a remote access).

3.2 The Window of Vulnerability Livelock

This section introduces thewindow of vulnerabilityand describes how the presence of this window
can lead to livelock. The window of vulnerability arises in split-phase shared-memory accesses.
Thewindow of vulnerability livelockrefers to a situation in which an individual thread of control
is unable to complete a shared-memory access: each time that the thread requests shared-memory
data, it is interrupted before data arrives, only to return to find that the data has been invalidated
by another node. This livelock is particularly prevalent in a multiprocessor with rapid context-
switching, because such a system is designed to switch threads immediately after making shared-
memory requests; as a consequence, two threads on different nodes can prevent each other from
making forward progress by attempting to access the same memory-line. However, the window of
vulnerability livelock can also occur a system which mixes shared memory and message passing,
since message arrival can interrupt threads awaiting shared data.

After introducing the window of vulnerability livelock, this section proceeds by investigating
several methods for removing this livelock. It culminates in a unifying architectural framework,
the transaction store. As will be discussed in Chapter 5, the complete framework has been imple-
mented in the Alewife machine; however, other multiprocessor architects may choose to implement
a subset of this framework. To this end, Sections 3.2.5 to 3.2.8 discusses several partial solutions,
each of which are appropriate to a different subset of mechanisms.

Page 88 CHAPTER 3. THE SERVICE-INTERLEAVING PROBLEM

3.2.1 Multi-phase Memory Transactions

Coherent caches are widely recognized as a useful technique for reducing the bandwidth require-
ments of the shared-memory programming model. Because they automatically replicate data close
to where it is being used, caches convert temporal locality of access into physical locality. That
is, after a first-time fetch of data from a remote node, subsequent accesses of the data are satisfied
entirely within the node. The resulting cache coherence problem can be solved using a variety of
directory based schemes [49, 69, 23]. Unfortunately, even with coherent caches, the cost of remote
memory actions can be prohibitive. To fetch data through the interconnection network, the proces-
sor transmits a request, then waits for a response. The request may be satisfied by a single memory
node, or may require the interaction of several nodes in the system. In either case, many processor
cycles may be lost waiting for a response. Applying basic pipelining ideas, resource utilization can
be improved by allowing a processor to transmit more than one memory request at a time. Multi-
ple outstanding transactions can be supported using software prefetch [20, 85], multithreading via
rapid context-switching [115, 5], or weak ordering [1]. Studies have shown that the utilization of
the network, processor, and memory systems can be improved almost in proportion to the number
of outstanding transactions allowed [63, 50].

Multithreading may be implemented with eitherpolling or signaling mechanisms. Polling
involves retrying memory requests until they are satisfied. This is the behavior of simple RISC
pipelines (such as Sparcle) which implement non-binding prefetch or context-switching through
synchronous memory faults. Signaling involves additional hardware mechanisms that permit data
to be consumed immediately upon its arrival. Such signaling mechanisms would be similar to those
used when implementing binding prefetch or out-of-order completion of loads and stores. This
section explores the problems involved in closing the window of vulnerability in polled, context-
switching processors. For a discussion of signaling methods, see [62].

Systems with multiple outstanding requests may view their requests assplit-phasetransac-

Transaction 1

Transaction 2

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Window of Vulnerability

Initiate 1 Initiate 2 Ac cess 1 Access 2

Req 1 Req 2 Resp1 Resp 2

Processor Actions

Memory System Actions

Figure 3-2:Multi-phase memory transactions are
subject to a window of vulnerability.

tions, consisting of decoupled request and response phases. The time between request and re-
sponse may be composed of a number of fac-
tors, including communication delay, protocol
delay, and queueing delay. Single-threaded pro-
cessors typically can make little or no forward
progress until requested data arrives; they spin
while waiting and consume data immediately.
In contrast, multithreaded processors, such as
Sparcle, may perform other work while waiting
for the results of memory requests; as a conse-
quence, data may not be immediately consumed

when it returns. In particular, in multithreaded processors that poll for data, memory transactions
aremulti-phase: request, response, and (later) access.

Figure 3-2 shows a time-line of events for two multi-phase memory transactions that originate
on a single processing node. Time flows from left to right in the diagram. Events on the lower
line are associated with the processor, and events on the upper line are associated with the mem-
ory system. In the figure, a processor initiates a memory transaction (Initiate 1), and instead of

3.2. The Window of Vulnerability Livelock Page 89

waiting for a response from the memory system, it continues to perform useful work. During the
course of this work, it might initiate yet another memory transaction (Initiate 2). At some later
time, the memory system responds to the original request (Response to Request 1). Finally, the
processor completes the transaction (Access 1). As mentioned above, a multithreaded processor
continues working while it awaits responses from the memory system. Consequently, it might not
use returning data immediately. Such is the case in the scenario in Figure 3-2. When the processor
receives the response to its second request (Response to Request 2), it is busy with some (possibly
unrelated) computation. Eventually, the processor completes the memory transaction (Access 2).

Thus, we can identify three distinct phases of a transaction:

1. Request Phase – The time between the transmission of a request for data and the
arrival of this data from memory.

2. Window of Vulnerability – The time between the arrival of data from memory and
the initiation of a successful access of this data by the processor.

3. Access Phase – The period during which the processor atomically accesses and
commits the data.

The window of vulnerability results from the fact that the processor does not consume data im-
mediately upon its arrival. During this period, the data must be placed somewhere, perhaps in the
cache or a temporary buffer. The period between the response and access phases of a transaction
is crucial to forward progress. Should the data be invalidated or lost due to cache conflicts during
this period, the transaction is terminated before the requesting thread can make forward progress.

As a consequence, the window of vulnerability allows scenarios in which processors repeat-
edly attempt to initiate transactions only to have them canceled prematurely. In certain pathological
cases, individual processors are prevented from making forward progress by cyclicthrashingsit-
uations. Section 3.2.3 describes four different scenarios in which the processor repeatedly loses
data, thus generating livelock. These four scenarios comprise the window of vulnerability livelock.

3.2.2 Processor-Side Forward Progress

As shown in Figure 3-3, we will consider the memory system, complete with interconnection

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Processor
and

Cache

“M
em

or
y”

Figure 3-3: Treat the network, coherence
protocol, and other nodes as a “black box”.

network, to be a black-box that satisfies memory re-
quests. While this abstracts away the details of the
memory-side of the cache-coherence protocol and
ignores the fact that memory is physically distributed
with the processors, it permits us to focus on the
processor-side of the system, where the window of
vulnerability arises. For the remainder of this discus-
sion let us assume thatall requests which are made to
the memory-system are eventually satisfied;we will
reconsider this assumption in Section 3.3 when we discuss theserver-interlock problemand its
concomitant problem, themultiple-writer livelock. Consequently, in the following few sections,

Page 90 CHAPTER 3. THE SERVICE-INTERLEAVING PROBLEM

when we say that a processor (or hardware thread) does or does not make forward progress, we
are referring to properties of its local hardware and software, assuming that the remote memory
system always satisfies requests.

Thus, we say that a thread makes forward progress whenever it commits an instruction. Given
a processor with precise interrupts, we can think of this as advancing the instruction pointer. A
load or store instruction makes forward progress if the instruction pointer is advanced beyond it.

Primary and Secondary Transactions: Given this definition of forward progress, we can iden-
tify two distinct classes of transactions,primary andsecondary. Primary transactions are those
which must complete before some hardware thread in the system can make forward progress. Sec-
ondary transactions, on the other hand, are not essential to the forward progress of any thread in
the system.

The categories of primary and secondary transactions distinguish between binding memory op-
erations (normal loads and stores) and non-binding memory operations (prefetches). Non-binding
prefetches are hints to the memory-system; they specify data items whichmaybe needed in the
future. As hints, they can be ignored without affecting the correctness of the computation.

Thus, when handling a prefetch, the memory system may initiate a secondary transaction.
Should this transaction be aborted prematurely, it will not affect the forward progress of the pro-
cessor. However, if the processor later attempts to access prefetched data via a binding load or
store, one of two things can happen:

1. The original transaction has been aborted. In this case the memory system will
initiate a new, primary transaction. This is as if the prefetch never occurred.

2. The secondary transaction is still in progress. Since the forward progress of the pro-
cessor now depends on the successful completion of the transaction, it is effectively
“upgraded” to primary status.

This primary-secondary distinction will appear in later discussion.

Forward Progress and the Window of Vulnerability: Memory models differ in the degree to
which they require primary transactions to complete before the associated loads or stores commit.
Sequentially consistent machines, for instance, require write transactions (associated with store
instructions) to advance beyond the request phase before their associated threads make forward
progress. Weakly-ordered machines, on the other hand, permit store instructions to commitbefore
the end of the request phase. In a sense, the cache system promises to ensure that store accesses
complete. Therefore, for weakly-ordered machines,write transactions have no window of vulner-
ability. In contrast, most memory models require a read transaction to receive a response from
memory before committing the associated load instruction.

As an example, the Alewife multiprocessor uses memory exception traps to cause context
switches. Consequently, data instructions are restarted by “returning from trap,” or refetching
the faulted instruction. If this instruction has been lost due to cache conflicts, then the context

3.2. The Window of Vulnerability Livelock Page 91

may need to fetch it again before making forward progress. Thus, each context can haveboth a
primary instruction transaction and a primary data transaction2. In contrast, a processor that saved
its pipeline state (and faulting instruction) when context-switching would retry only the faulted
data access; hence, each context would have at most one primary transaction.

Unless otherwise noted, this chapter will assume that a hardware context can have no more than
one primary data transaction. This assumption has two implications. First, any weakly ordered
writes that have not yet been seen by the memory system are committed from the standpoint of the
processor. Second, a single context cannot have multiple uncommitted load instructions (as in a
processor with register reservation bits). Similarly, we allow no more than one primary instruction
transaction at a time. In actuality, these restrictions are not necessary for one of our more important
results, thethrashwait algorithm, but they are required for thethrashlock mechanism.

3.2.3 Four Window of Vulnerability Livelock Scenarios

This section introduces the four distinct types of livelock or data thrashing which can occur in

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Window of Vulnerability

Read X

REQ
X

 DATA
X

Memory System Actions

Processor Actions

B C D AA

Trans X

Read X

Cached

Figure 3-4:Successful multithreading.

the processor’s cache system. Before describing these livelocks, consider Figure 3-4. This figure
introduces the context-timeline diagrams that will be
used in this section by illustrating asuccessfulmulti-
phase transaction. Across the bottom of this figure is
a timeline that indicates which of four contexts (la-
beled “A” through “D”) are currently in control of the
processor.

At the beginning, context A is in control. When
it attempts to read data block X, it discovers that it
does not reside on the current node. As a result, the
memory system initiates the request phase of a new
transaction (called “X”) by sending a read request to the current location of the data. Simulta-
neously, context A relinquishes control of the processor to context B, which begins execution.
Later, data for block X returns from the memory system and begins the window of vulnerability
phase of transaction X. Finally, context A regains control of the processor (after the succession
B) C) D) A) and terminates the window of vulnerability after successfully reading the data.
Afterward, block X may reside in a local cache until replaced or invalidated. The fact that context
A returns to retry the original read of block X indicates that this is a polling type of multithreading.

We will now proceed to describe the four instances of the window of vulnerability livelock.
One of these,invalidationthrashing, arises from protocol invalidation for highly contended mem-
ory lines. The remaining three result from replacement in a direct-mapped cache. Inintercon-
text thrashing, different contexts on the same processor can invalidate each other’s data.high-
availability interruptthrashing occurs when interrupt handlers replace a context’s data in the cache.
The last,instruction-data thrashing, appears for processors that context-switch by polling and
which must refetch load or store instructions before checking for the arrival of data. Section 3.2.5
will discuss methods of eliminating these livelock situations.

2Note that factoring instructions into this situation also has some interesting pipeline consequences which will be
examined in Chapter 5.

Page 92 CHAPTER 3. THE SERVICE-INTERLEAVING PROBLEM

Invalidation Thrashing: Figure 3-5 illustrates an interaction between the window of vulnera-

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Window of Vulnerability

Read X

RREQ
X

RDATA
X

RREQ
X

Read X (Retry)

Memory System

Trans X1

B C D AA B

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A

RDATA
X

C

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A

D

Processor Actions (Node 1)

Trans X2

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Window of Vulnerability

Write X

WREQ
X

WDATA
X

Trans X1

B C D AA B C D

Processor Actions (Node 2)

INV
X

ACK
X

INV
X

ACK
X

Trans X2

Write X

WREQ
X

Invalidate
X

Figure 3-5: Invalidation thrashing between con-
text A on Node 1 and context C on node 2.

bility and cache coherence that leads to livelock. This figure shows the time-history of two dif-
ferent nodes, interacting through the network.
Note 1 is attempting to read memory block X,
while node 2 is attempting to write the same
block3. In this scenario, context A of node 1 re-
quests a read copy of block X (RREQ X), then
relinquishes the processor to context B. Later,
the data returns (RDATA X), but context A is
not in control of the processor. Before con-
text A returns for the data, context C of node
2 makes a write request (WREQ X) for block
X, then relinquishes the processor to context D.
This write request invokes the coherence pro-
tocol, invalidating the block in node 1’s cache
(INV X)ACK X). When context A of node 1
returns to look for its data, it discovers the data

missing, and requests the data again. This time (and for subsequent times), the read request (RREQ
X) invokes the coherence protocol and causes an invalidation of the block in node 2’s cache (INV X
)ACK X). Thus, the process shown in Figure 3-5 is self sustaining: node 1 prevents node 2 from
making forward progress and node 2 prevents node 1 from making forward progress. Our expe-
rience (both with simulation and real hardware) indicates that this type of thrashing is infrequent,
but occurs at some point during the execution of most programs.

Replacement Thrashing: Due to the limited set-associativity of a processor’s cache, different

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Window of Vulnerability

Read X

REQ
X

DATA
X

REQ
X

Read X (Retry)

Memory System Actions

REQ
Y

DATA
Y

Read Y

Trans X1

B C D AA B

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Window of Vulnerability

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

DATA
X

C

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Read Y (Retry)

REQ
Y

D

Processor Actions

Trans X2

Trans Y1 Trans Y2

Figure 3-6:Replacement thrashing between con-
texts A and B on the same node.

contexts on the same processor can interfere with each other. Figure 3-6 illustrates this sce-
nario. Contexts A and C try to (respectively)
access blocks X and Y which are congruent in
the cache: First, block X is requested by con-
text A; later, block Y is requested by context C.
Block X arrives first. Since blocks X and Y are
congruent with respect to the cache mapping,
when the data for block Y arrives, it replaces the
data for block X in the cache: in Figure 3-6, the
arrival of data block Y terminates transaction
X during its window of vulnerability. Hence,
context A must retry the read request when it

regains control. Similarly, when data for block X returns, it terminates transaction Y by knocking
its data out of the cache. Each context prevents the other from making forward progress by re-
placing cached data during the window of vulnerability. As a consequence of thisreplacementor
intercontextthrashing, the processor can livelock itself.

3Such a situation is not at all contrived, since block X may contain a spin lock that node 1 is attempting to acquire
and node 2 is attempting to release.

3.2. The Window of Vulnerability Livelock Page 93

High-Availability Interrupt Thrashing: In Section 3.1, we introduced the use of high-
availability interrupts to avoid the refused-service deadlock. In that section we concluded that high-
availability interrupts are necessary in machines such as Alewife with integrated shared-memory
and message-passing communication. Unfortunately, by their very nature, high-availability inter-
rupts may interrupt a processor that is spinning in wait for the completion of a shared-memory
request. This opens the window of vulnerability since the corresponding shared-memory data may
be lost or invalidated during the execution of the interrupt handler.

For instance, Figure 3-7 demonstrates how high-availability interrupts can cause a special case

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Window of Vulnerability

Read X

REQ
X

DATA
X

Memory System Actions

REQ
Y

DATA
Y

Read Y

Trans X1

Interrupt Handler AA

Processor Actions

Trans Y

Interrupt Handler

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Window of Vulnerability

Read X (Retry)

REQ
X

DATA
X

REQ
Y

DATA
Y

Read Y

Trans X2

Trans Y

H-INT H-INT

Figure 3-7:High-availability Interrupt Thrashing:
Context A is thrashing with an interrupt handler.

of replacement thrashing. The figure shows user code attempting to access memory block X and
interrupt code accessing block Y, which maps
to the same cache line as X. During a normal
memory access, the user code would spin-wait
until it received the data associated with block
X. However in this pathological scenario, the
user code is interrupted by a high-availability
interrupt and forced to execute an interrupt han-
dler. While the processor is handling the inter-
rupt, data block X arrives, but is subsequently
replaced when an instruction in the handler ref-
erences block Y. This scenario repeats itself
multiple times. With sufficient randomness in the system, context A mighteventuallysucceed
in completing its access without an interrupt interfering, but this is by no means guaranteed. In
particular, this thrashing scenario will never resolve itself if the interrupt handler must execute as
a condition to handling the access for block X.

Although Figure 3-7 presents an interrupt analog to replacement thrashing, high-availability
interrupts may also exacerbate problems with invalidation thrashing. In fact, as we will see in
Section 3.2.5, the existence of high-availability interrupts complicates the removal of window of
vulnerability livelocks since it permits the loss of dataeven when context-switching is disabled.

Instruction-Data Thrashing: As discussed in Section 5.1.1, processors that use polled mul-

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Window of Vulnerability

Read I

REQ
I

DATA
I

Memory System Actions

Trans I1

B C D AA B C D

Processor Actions

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Window of Vulnerability

DATA
D

Trans D1

Trans I2

Read I
Read D

Read I

A

Cached Locally

REQ
D

B

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

REQ
I

DATA
I

Figure 3-8: Instruction/Data Thrashing: interfer-
ence between instructions and data in context A.

tithreading such as Sparcle may need to refetch instructions whenever the processor returns to
a context to continue execution. Figure 3-8
shows how this type of multithreading is vul-
nerable to a cache conflict between a load in-
struction and its data. In this scenario, context
A must execute a load instruction to make for-
ward progress, but both the load instruction and
its data are congruent in the cache. First, con-
text A initiates a transaction to fetch this in-
struction (Read I), after which it relinquishes
the processor. Later, context A returns and
successfully retrieves its instruction, ending the
window of vulnerability for the transaction; this instruction will be placed in the local cache for a

Page 94 CHAPTER 3. THE SERVICE-INTERLEAVING PROBLEM

short period of time afterwards. Having fetched the load instruction, context A proceeds to execute
this load, thereby initiating a new transaction for the data (Read D) and once again relinquishing
the processor. Unfortunately, when the data returns, it displaces the instruction from cache. Con-
sequently, when context A regains control of the processor and attempts to fetch the instruction,
it finds the instruction missing and must request it again. The re-requested instruction, in turn,
displaces the data, and a thrashing cycle commences.

Instruction-data thrashing is independent of timing, since a single context is competing with
itself. Consequently, if an instruction and its data are congruent in the cache and context-switching
is permitted on all cache-misses, then instruction-data thrashingwill cause livelock. This is in
marked contrast to uniprocessor instruction-data thrashing (which merely degrades performance).

Completeness: The four types of thrashing presented above represent interference to the forward
progress of a given context from four different sources:

� A remote processor (invalidation thrashing)

� Another context (intercontext thrashing)

� Interrupt-code (high-availability interrupt thrashing)

� Itself (instruction-data thrashing).

The later three represent all possible instruction-stream related interference on a context-switching
processor. Assuming that invalidation is the only vehicle for external interference, our four types
of thrashing represent a complete set. Should we discover ways of limiting each of these types of
thrashing, then we will be able to guarantee that each processor context is able to make forward
progress (assuming that all available cycles are not consumed by interrupt code).

3.2.4 Severity of the Window of Vulnerability

Before embarking on a program of eliminating the various window of vulnerability livelocks, we
would like to ask the question: how serious is this problem? To ask this question, the Alewife
research group constructed a cycle-by-cycle simulation of an Alewife node (Sparcle, CMMU, and
network). This simulation environment, called ASIM4, permits parallel programs that are written
in C or LISP to be compiled, linked, and executed on a virtual Alewife machine. A copious set
of statistics-gathering facilities permit post-mortem analysis of the behavior of the program and
machine.

One of the statistics that are of particular interest in this section is the size of the window of
vulnerability. For each access, ASIM computes the time between the instant that a data block
becomes valid in a cache due to a response from memory to the first subsequent access to the
cached data. The simulator measures this period of time only for the fraction of memory accesses
that generate network traffic and are thus susceptible to the window of vulnerability. Figure 3-9
shows typical measurements of the window of vulnerability. The graph is a histogram of window

4For Alewife SIMulator. This simulator has now be supplanted by a simulator which is more faithful to implemen-
tation details. ASIM remains a good research tool, however.

3.2. The Window of Vulnerability Livelock Page 95

of vulnerability sizes, with the size on the horizontal axis and the number of occurrences on the
vertical axis. The graph was produced by a simulation of a 64 processor machine (with 4 contexts
per processor) running 1,415,308 cycles of a numerical integration program.

For the most part, memory accesses are delayed for only a short period of time between cache

|

0
|

20
|

40
|

60
|

80
|

100
|

120
|

140
|

160
|

180

|10

|
|

|
|

|
|

|
|

|100

|
|

|
|

|
|

|
|

|1000

|
|

|
|

|
|

|
|

|10000
|

|
|

|
|

|
|

|
|100000

| | | | | | | | | | |

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

Size of Window of Vulnerability in Cycles

N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Range: 0 - 543219

Average: 161

Standard Deviation: 1047

Figure 3-9: Window of vulnerability: 64
processors, 4 contexts.

fill and cache access: 90% of memory accesses that generate network traffic have windows that are
less than 65 cycles long. However, a small number of accesses encounter pathologically long win-
dows of vulnerability. To make the interesting fea-
tures of the graph visible, it was necessary to plot the
data on a logarithmic scale and to eliminate events
having a frequency of less than 30 occurrences. Due
to a few extremely long context run-lengths, the tail
of this particular graph actually runs out to 543,219
cycles! The high standard deviation provides another
measure of the importance of the graph’s tail. Note
that these results reflect a non-preemptive schedul-
ing of contexts,i.e. contexts are allowed to continue
executing as long as they do not encounter remote
accesses.

The sharp spike at zero cycles illustrates the role
of context switching and high-availability interrupts
in causing the window of vulnerability. The spike is
caused by critical sections of the task scheduler that disable context switching. When context
switching is disabled, a processor will spin-wait for memory accesses to complete, rather than
attempting to tolerate the access latency by doing other work. In this case, the processor accesses
the cache on the same cycle that the data becomes available. Such an event corresponds to a zero-
size window of vulnerability. The window becomes a problem only when context switching is
enabled or when high-availability interrupts interfere with memory accesses.

The window of vulnerability histogram in Figure 3-9 is qualitatively similar to other measure-
ments made for a variety of programs and architectural parameters. The time between cache fill
and cache access is usually short, but a small fraction of memory transactions always suffer from
long windows of vulnerability. In general, both the average window size and the standard deviation
increase with the number of contexts per processor. The window size and standard deviation also
grow when the context switch time is increased. We have observed that high-availability interrupts
cause the same type of behavior although their effects are not quite as dramatic as the effect of
multiple contexts.

For the purposes this section, it does not matter whether the window of vulnerability is large or
small, common or uncommon. Even if a window of vulnerability is only tens or hundreds of cycles
long, it introduces the possibility of livelock that can prevent an application from making forward
progress. The architectural framework described in the next section is necessary merely because
the windowexists. Fortunately, as we shall see, the cost of removing the window of vulnerability
livelock is not prohibitive and provides a number of secondary benefits as well (such as providing
a framework in which to make the cache-coherence protocol insensitive to network ordering.

Page 96 CHAPTER 3. THE SERVICE-INTERLEAVING PROBLEM

3.2.5 Closing the Window: Preliminaries

In the following sections, we will examine three different solutions to the window of vulnera-
bility livelock. Our ultimate goal is to discover a framework that eliminates livelock problems
associated with the window of vulnerability for systems with multiple outstanding requests and
high-availability interrupts. In order to do this, the system must track pending memory transac-
tions in such a way that it can dynamically detect and eliminate pathological thrashing behavior.
The complete framework consists of three major components: a small, associative set oftransac-
tion buffersthat keep track of outstanding memory requests, an algorithm calledthrashwaitthat
detects and eliminates livelock scenarios that are caused by the window of vulnerability, and a
buffer locking scheme that prevents livelock in the presence of high-availability interrupts.

Before discussing this framework, however, we would like to make explicit the set of features
that we are assuming are part of our shared-memory implementation. By making these features
explicit, we can present a range of solutions to the window of vulnerability livelock that address
different combinations of these features. These three features are:

1. Coherent caches to automatically replicate data close to where it is needed, and a
mechanism to allow multiple outstanding requests to memory.

2. The ability to disable context switching for atomic access to data structures.

3. High-availability interrupts for response to high-priority asynchronous events such
as message arrival.

Not all architects will be interested in this full set of mechanisms (for instance, high-availability

Multi +
Multi + Multi + HAI +

Multi Disable HAI Disable
Assoc Locking Yes No Yes No
Thrashwait Yes Yes No No
Assoc Thrashlock Yes Yes Yes Yes

Table 3-1: Window of Vulnerability closure techniques.
Multi represents coherent caches and multiple requests.
Disablerepresents disabling of context switching.HAI rep-
resents high-availability interrupts.

interrupts would be unnecessary in a shared-memory system that does not integrate message pass-
ing and that does not use software ex-
ception handlers for partial implemen-
tation of the coherence protocol). For
this reason, the following three sections
describe different subsets of the frame-
work and the mechanisms that each sub-
set will support. These self-contained
solutions are calledassociative lock-
ing (Section 3.2.6),thrashwait (Sec-
tion 3.2.7), andassociative thrashlock
(Section 3.2.8). Each is appropriate for

a different combination of the above shared-memory mechanisms. As summarized in Table 3-1,
a system with coherent caches and multiple outstanding requests (Multi) is assumed in all cases.
To this is added either the ability to disable context switching (Disable), the presence of high-
availability interrupts (HAI), or a combination of both. AYesin Table 3-1 indicates that a given
solution is appropriate for the specified combination of mechanisms. During the exposition, two
partial solutions are also discussed, namelylockingandassociative thrashwait.

Lockinginvolves freezing external protocol actions during the window of vulnerability by de-
ferring invalidations.Thrashwaitis a heuristic that dynamically detects thrashing situations and

3.2. The Window of Vulnerability Livelock Page 97

Prevents Prevents Prevents Prevents Deadlock Free Free From
Technique Invalidation Intercontext HAI Inst-Data Context Switch Cache line

Thrashing Thrashing Thrashing Thrashing Disable Starvation
Locking Yes Yes Yes Deadlock No No
Assoc Locking Yes Yes Yes Yes No Yes
Thrashwait No Yes No Yes Yes Yes
Assoc TW No Yes Yes Yes Yes Yes

Assoc Thrashlock Yes Yes Yes Yes Yes Yes

Table 3-2:Properties of window of vulnerability closure techniques with respect to the complete
set of features.

selectively disables context-switching in order to prevent livelock.Associativitycan be added to
each of these techniques by supplementing the cache with an associative buffer for transactions.
This yields associative locking and associative thrashwait. Table 3-2 summarizes the deficiencies
of each of these mechanisms with respect to supporting the complete set of mechanisms. Asso-
ciative thrashlock is a hybrid technique that is discussed in Section 3.2.8 and is the only technique
that closes the window of vulnerability with the full set of shared-memory mechanisms.

3.2.6 The Associative Locking Solution

Our first approach to closing the window of vulnerability involves thelockingof transactions. A
locked transaction is one that ignores (or defers) external events that might otherwise terminate
it prematurely. This removes cycles of request and invalidation that characterize the livelocks of
Section 3.2.3. Unfortunately, as we shall see, locking must be approached with care since it can
transform the window of vulnerability livelocks intodeadlocks.

As a first attempt at locking, we will assume that returning data (responses) are placed and
locked in the cache; this is what we call locking without associativity —i.e. the basic associativity
of the cache is not supplemented. After we discuss how this removes livelocks, we explore the
ways in which it can cause deadlock. Since basic locking causes deadlocks, we do not consider
it a complete solution. We then supplement the associativity of the cache with an extra set of
buffers for memory transactions. We call thisassociative locking. It produces a viable solution for
a system with context switching and high-availability interrupts, although it is unable to properly
deal with the disabling of context-switching for atomicity.

Locking State Bits: The basic locking solution requires two special state bits in addition to the
normal state bits associated with each line in the cache: alock bit and adeferred invalidationbit.
Thelockbit signals that a cache line is locked and cannot be replaced. This bit is set when requested
data first returns from memory, and cleared when the requesting context returns and successfully
accesses data. During the period in which the bit is set (which is the window of vulnerability for the
corresponding transaction), the cache line may not be reused for other transactions. This eliminates
thrashing because transactions are never terminated before they have completed successfully. In
some sense, the role of the lock bit is to eliminate thrashing byignoring attempts to terminate
transactions prematurely (or alternatively by preventing conflicting transactions from starting);
any operation thus ignored will be later retried, since we are assuming polled multithreading.

Page 98 CHAPTER 3. THE SERVICE-INTERLEAVING PROBLEM

The lock bit is sufficient to eliminate replacement, high-availability interrupt, and instruction-
data thrashing. We have to be careful in preventing invalidation thrashing, however, because cache-
coherence invalidations cannot be simply ignored — they must be deferred. Thus, the second
locking bit, thedeferred invalidatebit, is used to remember that an invalidation arrived for the
cache-line in question while it was locked. Such deferred invalidations are later performed (and
acknowledged) after the transaction has terminated successfully and the lock bit has been cleared.

The Transaction-In-Progress State: One of the consequences of locking cache lines during a
transaction’s window of vulnerability is that we must also restrict transactions during their request
phase. Since each cache line can store only one outstanding request at a time, multiple requests
could force the memory system to discard one locked line for another, defeating the purpose of
locking. Thus, we supplement the state of a cache line with atransaction-in-progressstate to pre-
vent multiple outstanding requests to this line. The transaction-in-progress state restricts creation
of new transactions, but does not affect data currently in the cache in order to minimize the inter-
ference of memory transactions in the cache. Note that the two bits mentioned previously (lockand
deferred invalidation) have only three unique states: unlocked, locked, and locked with deferred
invalidation. Hence, the forth state may be used to represent transactions in progress.

Premature Lock Release: As described, the above scheme does not quite eliminate all intercon-

Primary−Secondary Instruction−Data

P

1,A
(X)I D

P
(Y)

1,A

Execution

Congruence

D
P

1,A
(X) D

P
(Y)

1,B

Disable

Congruence

Intercontext

D
P

1,A
(X)

Protocol

D (Z)
P

1,B
Protocol

D
is

ab
le

D
isable

D (X)
P

2,D

D
P

(Z)
2,C

D
P

1,A
(X)

Protocol

D 1,A

S
(Z)

Protocol

E
xe

cu
tio

n

E
xecution

D (X)
S

2,C

D
P

(Z)
2,C

Internode

Figure 3-10:Deadlocks that result from pure locking.
AddressesX � Y in cache;X 6= Z.

text thrashing, because one context can unlock or touch the data requested by another context. This
is calledpremature lock release. Locking can, however, be supplemented with additional bits of
state to keep track of which context holds a given lock; then, only the locking context is permitted to
free this lock. This can get quite expensive with the simple locking scheme, because these bit must

be included in tags-file. However, when in-
troduce associative locking (and move the
locus of locking away from the cache), this
additional state is far less prohibitive.

Deadlock Problems: Unfortunately, the
basic locking mechanism can lead to four
distinct types of deadlock, illustrated in Fig-
ure 3-10. This figure contains four different
waits-for graphs[11], which represent de-
pendencies between transactions. In these
graphs, the large italic letters represent trans-
actions: “D” for data transactions and “I ” for
instruction transactions. The superscripts –
either “P” or “S” – represent primary or sec-
ondary transactions, respectively. The sub-
scripts form a pair consisting of processor

number (as an arabic number) and context number (as a letter). The address is given in paren-
theses; in these examples,X andY are congruent in the cache (X � Y), whileX andZ are not
equal (X 6= Z).

3.2. The Window of Vulnerability Livelock Page 99

The labeled arcs represent dependencies; a transaction at the tail of an arc cannot complete
before the transaction at the head has completed (in other words, the tail transactionwaits-for the
head transaction). Labels indicate the sources of dependencies: Acongruencearc arises from
finite associativity in the cache; the transaction at its head is locked, preventing the transaction
at its tail from being initiated. Anexecutionarc arises from execution order.Disablearcs arise
from disabling context-switching; the transactions at their heads belong to active contexts with
context-switching disabled; the tails are from other contexts. Finally, aprotocolarc results from
the coherence protocol; the transaction at its head is locked, deferring invalidations, while the trans-
action at its tail awaits acknowledgment of the invalidation. An example of such a dependence is a
locked write transaction at the head of the arc with a read transaction at the tail. Since completion
of the write transaction could result in modification of the data, the read transaction cannot proceed
until the write has finished. These arcs represent three classes of dependencies: those that prevent
launching of transactions (congruence), those that prevent completion of a transaction’s request
phase (protocol), and those that prevent final completion (executionanddisable).

Now we describe these deadlocks in more detail. Note that larger cycles can be constructed by
combining the basic deadlocks.

� intercontext: The context that has entered a critical section (and disabled context-
switching) may need to use a cache line that is locked by another context.

� internode: This deadlock occurs between two nodes with context-switching dis-
abled. Here, context A on processor 1 is spinning while waiting for variable X,
which is locked in context D on processor 2. Context C on processor 2 is also
spinning, waiting for variable Z, which is locked by context B on processor 1.

� primary-secondary: This is a variant of the internode deadlock problem that arises
if secondary transactions (software prefetches) can be locked. Data blocks from
secondary transactions are accessed after those from primary ones.

� instruction-data: Thrashing between a remote instruction and its data yields a
deadlock in the presence of locks. This occurs after a load or store instruction
has been successfully fetched for the first time. Then, a request is sent for the data,
causing a context-switch. When the data block finally returns, it replaces the in-
struction and becomes locked. However, the data will not be accessed until after
the processor refetches the instruction; however, the instruction cannot be refetched
because the requisite cache-line is locked.

Primary-secondary deadlock is easily removed by recognizing that secondary transactions are
merely hints; locking them is not necessary to ensure forward progress. Unfortunately, the remain-
ing deadlocks have no obvious solution. Due to these deadlock problems, pure locking cannot be
used to close the window of vulnerability.

Associative Locking: A variant of the locking scheme that does not restrict the use of the cache
or launching of congruent transactions islocking with associativity. This scheme supplements the
cache with a fully associative set oftransaction buffers. Each of these buffers contains an address,

Page 100 CHAPTER 3. THE SERVICE-INTERLEAVING PROBLEM

state bits, and space for a memory line’s data. Locking is performed in the transaction buffer, rather
than the cache. As discussed above, invalidations to locked buffers are deferred until the data word
is accessed. Buffer allocation can be as simple as reserving a fixed set of buffers for each context.
More general schemes might keep track of the context that owns each buffer to prevent premature
lock release). The use of a transaction buffer architecture has been presented in several milieux,
such as lockup-free caching [59],victim caching[53], and theremote-access cacheof the DASH
multiprocessor [69].

The need for an associative match on the address stems from several factors. First, protocol
traffic is tagged by address rather than by context number. While requests and responses could
be tagged with a context identifier inexpensively, tagging invalidations would increase the cost of
the directory used to guarantee cache coherence. Second, associativity removes the intercontext
and instruction-data deadlocks of Figure 3-10, because it eliminates all of thecongruencearcs of
Figure 3-10.

Third, the associative match permits consolidation of requests from different contexts to the
same memory-line; before launching a new request, the cache first checks for outstanding trans-
actionsfrom any contextto the desired memory line. Should a match be detected, generation of a
new request is suppressed.

Finally, the associative matching mechanism can permit contexts to access buffers that are
locked by other contexts. Such accesses would have to be performed directly to and from the
buffers in question, since placing them into the cache would effectively unlock them. This opti-
mization is useful in a machine with medium-grained threads, since different threads often execute
similar code and access the same synchronization variables.

The augmentation of basic locking with associativity appears to be close to a solution for the
window of vulnerability. All four thrashing scenarios of Section 3.2.3 are eliminated. Further,
the cache is not bogged down by persistent holes. Access to the cache is unrestricted for both
user and system code. However, this approach still suffers from internode deadlock when context-
switching is disabled. Consequently, as shown in Table 3-1, associative locking is sufficient for
systems which do not permit context-switching to be disabled.

3.2.7 The Thrashwait Solution

Locking transactions prevents livelock by making data invulnerable during a transaction’s window
of vulnerability. To attack the window from another angle, we note that the window is eliminated
when the processor is spinning while waiting for data: when the data word arrives, it can be
consumed immediately. This observation does not seem to be useful in a machine with context-
switching processors, since it requires spinning rather than switching. However, if the processors
could context-switch “most of the time,” spinning only to prevent thrashing, the system could
guarantee forward progress. We call this strategythrashwait (as opposed to touchwait). The
trick in implementing thrashwait lies in dynamically detecting thrashing situations. The thrashwait
detection algorithm is based on an assumption that the frequency of thrashing is low. Thus, the
recovery from a thrashing scenario need not be extremely efficient.

For the purpose of describing the thrashwait scheme, assume that the system has some method
for consolidating transactions from different contexts. To implement this feature, either each cache

3.2. The Window of Vulnerability Livelock Page 101

line or the transaction buffers needs a transaction-in-progress state. If the transaction-in-progress
state is in the cache, as in the pure locking scheme, the system allows only one outstanding trans-
action per cache line.

Consider, for simplicity, a processor with a maximum of one outstanding primary transaction

DO GLOBAL PROCESSORREQUEST(Address, Context)
1: if (data is ready forAddress) then

// Cache HIT!
2: cleartried once[Context]
3: clearthrashwait
4: return READY
5: elsif (Transaction-in-progress[Address]) then

// Still waiting for in-progress transaction
6: if (thrashwait or switching disabled)then
7: return WAIT
8: else return SWITCH
9: elsif (tried once[Context]) then

// Detected thrashing!
10: sendRREQ or WREQ
11: setthrashwait
12: return WAIT
13: else // Normal cache miss
14: sendRREQ or WREQ
15: settried once[Context]
16: if (switching disabled)then
17: return WAIT
18: else return SWITCH

Figure 3-11:The Thrashwait Algorithm

per context; multiple primary transactions will be addressed in the next section. Each context re-
quires a bit of state called atried-once bit.
The memory system sets the bit when the
context initiatesprimary transactions and
clears the bit when the context completes a
global load or store. Note thatglobal ac-
cesses, which involve shared locations and
the cache-coherence protocol, are distin-
guished here fromlocal accesses which are
unshared and do not involve the network
or the protocol. In addition, there is a sin-
gle thrash-wait bitwhich is used to retain
the fact that thrashing has been detected
on the current access. The algorithm can
be described in pseudo-code as shown in
Figure 3-115: This function is executed by
the cache controller each cycle. The return
codes (READY , SWITCH , and WAIT)
refer to a successful cache hit, a context-
switch request, and a pipeline freeze re-
spectively. RREQ is a read request and
WREQ is a write request.

The key to the detecting of thrashing is in line 9. This says that the memory system detects a
thrashing situation when:

1. The context requests a global load or store that misses in the cache.

2. There is no associated transaction-in-progress state.

3. The context’s tried-once bit is set.

The fact that the tried-once bit is set indicates that this context has recently launched a primary
transaction but has not successfully completed a global load or store in the interim. Thus, the
context hasnot made forward progress.

In particular, the current load or store request must be the same one that launched the original
transaction. The fact that transaction-in-progress is clear indicates that the transaction had com-
pleted its request phase (data was returned). Consequently, the fact that the access missed in the
cache means that a data block has been lost. Once thrashing has been detected, the thrashwait al-
gorithm requests the data for a second time and disables context-switching, causing the processor
to wait for the data to arrive.

5Adapted from Chaiken [25]. The pseudo-code notation is borrowed from [30].

Page 102 CHAPTER 3. THE SERVICE-INTERLEAVING PROBLEM

Multiple Primary Transactions: Systems requiring two primary transactions can be accommo-
dated by providing two tried-once bits per context, one for instructions and the other for data. Only
a single thrash-wait bit is required. To see why a single tried-once bit is not sufficient, consider an
instruction-data thrashing situation. Assuming that a processor has successfully fetched the load
or store instruction, it proceeds to send a request for the data, sets the tried-once bit, and switches
contexts. When the data block finally arrives, it displaces the instruction; consequently, when the
context returns to retry the instruction, it concludes that it is thrashingon the instruction fetch.
Context-switching will be disabled until the instruction returns, at which point the tried-once bit is
cleared. Thus, the algorithm fails to detect thrashing on the data line.

As shown in Figure 3-12, the presence of two separate tried-once bits per context (InstTO and
DataTO) solves this problem. This figure shows cache requests from context zero (0) during the
fetching and execution of a load instruction which is subject to instruction-data thrashing. Note
that this ignores pipeline reordering, which will be considered in Chapter 5. The instruction and
data accesses are handled independently, according to the above algorithm. In fact, this two-bit
solution can be generalized to a system with an arbitrary number of primary transactions. The only
requirement for multiple transactions is that each primary transaction must have a unique tried-
once bit that can be associated with it each time the context returns to begin reexecution. (This can
become somewhat complex in the face of deep pipelining or multiple-issue architectures.)

Elimination of Thrashing: The thrashwait algorithm identifies primary transactions that are
likely to be terminated prematurely; that is, before the requesting thread makes forward progress.
Assuming that there are no high-availability interrupts, thrashwait removes livelock by breaking
the thrashing cycle. Thrashwait permits each primary transaction to be aborted only once before it
disables the context-switching mechanism and closes the window of vulnerability.

In a system with multiple primary transactions, livelock removal occurs because primary trans-
actions are ordered by the processor pipeline. A context begins execution by requesting data from
the cache system in a deterministic order. Consequently, under worst-case conditions – when all
transactions are thrashing, the processor will work its way through the implicit order, invoking
thrashwait on each primary transaction in turn. Although a context-switch may flush its pipeline
state, the tried-once bits remain, forcing a pipeline freeze (rather than a switch) when thrashing
occurs.

An example of this would be seen in Figure 3-12 by replacing the first twoREADY responses
(both on instructions) intoWAITs by causing the instruction data to be lost do to conflict with
another context. In this absolute worst-case scenario, the instruction would be requested four
times and the data would be requested twice; the context would make forward progress, however.

Freedom From Deadlock: In this section, we prove that the thrashwait algorithm does not suffer
from any of the deadlocks illustrated in Figure 3-10. We assume (for now) that a processor launches
only one primary transaction at a time. Multiple primary transactions, which must complete to
make forward progress, are allowed; multiple simultaneous transactions, which are caused by a
system that presents several addresses to the memory system at once, are not allowed. At the end
of the proof, we discuss a modification to the thrashwait algorithm that is necessary for handling
multiple functional units and address buses.

3.2. The Window of Vulnerability Livelock Page 103

Context Processor Request Cache Response Cache Actions
0 Fetch Load Inst(A) SWITCH set InstTO[0], Send Request (RREQ[A]).

Other
...

...
... Cache[A] Instruction

Other
...

0 Fetch Load Inst[A] READY clear InstTO[0]
0 Read Data (B� A) SWITCH set DataTO[0], Send Request (RREQ[A])

Other
...

...
... Cache[B] Read Data (Displace Instruction)

Other
...

0 Fetch Load Inst(A) SWITCH set InstTO[0], Send Request (RREQ[A])

Other
...

...
... Cache[B] Instruction (Displace Data)

Other
...

0 Fetch Load Inst(A) READY clear InstTO[0]
0 Read Data (B) WAIT y Send Request (RREQ[A])

0
... WAIT

0 Read Data (B) WAIT Cache[B] Read Data (Displace Instruction)
0 Read Data (B) READY clear DataTO[0]

0
...

...

Figure 3-12:Elimination of instruction-data thrashing through Thrashwait. At the point marked with (y),
Thrashwait is invoked since DataTO[0] is set.

The proof of the deadlock-free property proceeds by contradiction. We assume that the thrash-
wait algorithm can result in a deadlock. Such a deadlock must be caused by a cycle of primary
transactions, linked by the dependencies defined in Section 3.2.6:disable, execution, congruence,
andprotocolarcs. Since the memory transactions involved in the deadlock loop are frozen, it is
correct to view the state of transactions simultaneously, even if they reside on different processors.
By examining the types of arcs and the associated transactions, we show that such a cycle cannot
exist, thereby contradicting the assumption that thrashwait can result in a deadlock.

Disable and execution arcs cannot participate in a deadlock cycle because these dependencies
occur only in systems that use a locking scheme. Since thrashwait avoids locking, it immedi-
ately eliminates two forms of dependency arcs. This is the key property that gives thrashwait its
deadlock-free property. To complete the proof, we only need to show that congruence and protocol
arcs cannot couple to form a deadlock.

A deadlock cycle consisting of congruence and protocol arcs can take only one of three possible
forms: a loop consisting only of congruence arcs, a loop consisting of both congruence arcs and
protocol arcs, or a loop consisting of only protocol arcs. The next three paragraphs show that none
of these types of loops are possible. Congruence and protocol arcs cannot be linked together, due
to type conflictsbetween the head and tail of congruence and protocol arcs.

Page 104 CHAPTER 3. THE SERVICE-INTERLEAVING PROBLEM

First, we show that cycles consisting only of congruence arcs cannot occur. Recall that a
congruence arc arises when an existing transaction blocks the initiation of a new transaction due to
limited cache associativity. A congruence arc requires an existing transaction at its head and a new
transaction at its tail. It is therefore impossible for the tail of a congruence arc (a new transaction)
to also be the head of a different congruence arc (an existing transaction). Thus, it is impossible to
have a loop consisting only of congruence arcs, because the types of a congruence arc’s head and
tail do not match.

Second, a cycle consisting only of protocol arcs cannot exist. By definition, the head of a
protocol arc is a transaction in its window of vulnerability, which is locked so that invalidations are
deferred. The tail of a protocol arc is a transaction in its request phase, waiting for the invalidation
to complete. Since a transaction in its request phase cannot be at the head of a protocol arc, protocol
arcs cannot be linked together, thereby preventing a loop of protocol arcs.

Finally, the tail of a congruence arc cannot be linked to the head of a protocol arc due to
another type conflict: the tail of a congruence arc must be a new transaction, while the head of a
protocol arc is an existing transaction in its window of vulnerability. Thus, deadlock loops cannot
be constructed from combinations of protocol and congruence loops. The fact that congruence arcs
and protocol arcs cannot combine to produce a loop contradicts the assumption that thrashwait can
result in a deadlock, completing the proof.

The above proof of the deadlock-free property allows only one primary transaction to be trans-
mitted simultaneously. In order to permit multiple functional units to issue several memory trans-
actions at a time, the memory system must provide sufficient associativity to permit all such trans-
actions to be launched. Also, if the memory system stalls the processor pipeline while multiple
transactions are requested, then the processor must access a data word as soon as it arrives. These
modifications prevent dependencies between simultaneous transactions and make sure that the
window of vulnerability remains closed.

3.2.8 The Associative Thrashlock Solution

Despite its success in detecting thrashing in systems without high-availability interrupts, thrash-
wait (Section 3.2.7) fails to guarantee forward progress in the presence of such interrupts. This is
a result of the method by which thrashwait closes the window of vulnerability: by causing the pro-
cessor to spin. This corresponds to asserting the memory-hold line and freezing the pipeline. High-
availability interrupts defeat this interlock by faulting the load or store in progress so that interrupt
code can be executed. Viewing the execution of high-availability interrupt handlers as occurring
in an independent “context” reveals that the presence of such interrupts reintroduces three of the
four types of thrashing mentioned in Section 3.2.3. Instruction-data and high-availability interrupt
thrashing arise from interactions between the thrashwaiting context and interrupt code. Invalida-
tion thrashing arises because high-availability interrupts open the window of vulnerability, even
for transactions that are targeted for thrashwaiting. Only intercontext thrashing is avoided, since
software conventions can require high-availability interrupt handlers to return to the interrupted
context. Consequently, a system with high-availability interrupts must implement more than the
simple thrashwait scheme.

3.2. The Window of Vulnerability Livelock Page 105

Associative Thrashwait (Partial Solution): In an attempt to solve the problems introduced by
high-availability interrupts, we supplement the thrashwait scheme with associative transaction
buffers. As described in Section 3.2.6, transaction buffers eliminate restrictions on transaction
launches. Further, instruction-data and high-availability interrupt thrashing are eliminated. This
effect is produced entirely by increased associativity: since transactions are not placed in the cache
during their window of vulnerability, they cannot be lost through conflict. Thus, theassociative
thrashwaitscheme with high-availability interrupts is only vulnerable to invalidation thrashing.
The framework proposed in the next section solves this last remaining problem.

Associative Thrashlock: Now that we have analyzed the benefits and deficiencies of the compo-
nents of our architectural framework, we are ready to present a hybrid approach, calledassociative
thrashlock. This framework solves the problems inherent in each of the independent components.

Assume, for the moment, that we have a single primary transaction per context. As discussed
above, thrashwait with associativity has a flaw. Once the processor has begun thrashwaiting on
a particular transaction, it is unable to protect this transaction from invalidation during high-
availability interrupts. To prevent high-availability interrupts from breaking the thrashwait scheme,
associative thrashlock augments associative thrashwait with asinglebuffer lock. This lock is in-
voked when the processor begins thrashwaiting, and is released when the processor completesany
global access. Should the processor respond to a high-availability interrupt in the interim, the data
will be protected from invalidation.

It is important to stress that this solution providesonelock per processor. The scheme avoids
deadlock by requiring that all high-availability interrupt handlers:

1. Make no references to global memory locations, and

2. Return to the interrupted context.

These two software conventions guarantee that the processor will always return to access this
buffer, and that no additional dependencies are introduced6. Thus, associative thrashlock has the
same transaction dependency graph as thrashwait without high-availability interrupts (as in Sec-
tion 3.2.7). Processor access to the locked buffer is delayed – but not impeded – by the execution
of high-availability interrupts.

Application of the above solution in the face of multiple primary transactions (such as instruc-
tion and data) is not as straightforward as it might seem. We provide a lock for both instructions
and data (in addition to the two tried-once bits specified in Section 3.2.7). When thrashing is
detected, the appropriate lock is invoked.

This locking scheme reintroduces a deadlock loop similar to the primary-secondary problem
discussed earlier. Fortunately, in this case the loop is rather unnatural: it corresponds to two pro-
cessors, each trying to fetch instruction words that are locked asdatain the other node. To prevent
this particular kind of deadlock, a software convention disallows the execution of instructions that
are simultaneously being written. Prohibiting modifications to code segments is a common re-
striction in RISC architectures. Another method for preventing this type of deadlock is to make

6As will be shown in Chapter 5, the first condition can be relaxed somewhat, easing the burden of the runtime
system.

Page 106 CHAPTER 3. THE SERVICE-INTERLEAVING PROBLEM

instruction accesses incoherent. Since invalidations are never generated for instructions, the effect
of the lock is nullified (no protocol arcs).

The complexity of the argument for associative thrashlock might seem to indicate that the archi-
tectural framework is hard to implement. It is important to emphasize, however, that even though
the issues involved in closing the window of vulnerability are complicated, the end product is rel-
atively straightforward. Section 5.2.3 explores the design aspects of the transaction buffer in more
detail, with Section 5.2.3.3 discussing the specifics of theThrash Monitorused to implement the
associative thrashlock algorithm. Further, as we will see in the next two sections and in Chapter 5,
the transaction buffer provides a remarkably flexible interface between the processor and memory
system.

3.3 The Server-Interlock Problem

One way of viewing the existence of shared memory is as a client-server interaction between a
processor and its cache (the client) and a remote protocol engine (the server). Given this viewpoint,
we can ask the obvious question of what happens when a server becomes overloaded or interlocked
for some reason. By anoverloaded server, we simply mean one for which requests are arriving
faster than they can be processed. In contrast, aninterlocked serveris one which is unable to
immediately satisfy an incoming request for reasons of correctness. With the type of networks
that we assume for Alewife-type machines, messages are typicallynot dropped for reasons of
congestion. Consequently, an overloaded server causes messages to back up into the network,
ultimately applying back pressure to the requesters. This is not particularly bad behavior, since the
system will eventually make forward progress; in many cases it is preferable to the alternative of
dropping messages and forcing retries on timeouts.

However, the situation of an interlocked server is more problematic. To make this situation a
bit more concrete, one property of cache-coherence protocols is that they exhibit periods of time in
which memory coherence engines are unable to satisfy new requests for particular memory lines
because these memory lines are in an inconsistent state. A good example is the period of time
between the initiation of an invalidation operation and the reception of the final acknowledgment.
During such periods, new requests cannot be handled and must be deferred in some way. Further,
because the network does not drop packets, we cannot simply refuse to accept these new requests,
since this can deadlock the system. This is a situation very similar to the refused-service deadlock
(Section 3.1): the message at the head of the input queue (request) cannot be processed before the
arrival of pending acknowledgments (which are behind the request). Thus, we have two possible
solutions: (1) queue the request for later processing and (2) send some form of negative acknowl-
edgment (NAK) to the requester, forcing a later retry of the request. Some systems (in particular
the Scalable Coherent Interface (SCI) [98]) make use of the first of these (burying the complexity
of this solution in an already complex protocol), while the second is employed by Alewife, Dash,
and Origin, among others.

3.3. The Server-Interlock Problem Page 107

3.3.1 Queuing Requests for an Interlocked Server

Let us spend a couple of moments exploring the queueing solution. Queueing is attractive from
an abstract standpoint because it obviates any need for mechanisms to prevent livelock or ensure
fairness. Unfortunately, queueing entails a number of complexities that make it a solution not
often taken by hardware designers (software queueing is another story entirely). First, providing
storage in blocks large enough to handle the largest number of requesters (likely the largest number
of processors in the system), is not an efficient use of space. Hence, hardware queuing usually
entails formation of linked-lists directly in hardware. This sort of processing (and the almost
inevitable free-list handling) is a level of complexity best avoided in hardware. However, even
if the complexities of linked-list processing in hardware are overcome, the problem of allocating
sufficient server-side resources for all possible bad situations still remains. As a result, unless
sufficient space can be guaranteed server-side to handle the worse-case request patterns, some
fallback mechanism would be necessary over and above the queueing mechanism.

There is an alternative, however. Queueing of requests at the server requires a potentially
unbounded (or at least unpredictable) amount of memory simply because every node in the system
could simultaneously request data from a single server. Consider this from the standpoint of the
requesting nodes for a moment. The discussion of the transaction-buffer framework in Section 3.2
served to suggest that shared-memory systems should explicitly track outstanding transactions for a
number of reasons. This, in turn, puts a well defined hardware limit on the number of outstanding
requests that can be present at any one time from a given node7. The upshot of this is that a
distributed queueing mechanismcouldbe guaranteed to contain sufficient resources, since the cost
of queue space scales linearly with the number of nodes; in fact, the space that would be used for
queueing might already be there (for the transaction buffer).

This is a variant of the argument used to justify theScalable Coherent Interface(SCI) proto-
col [98]. For SCI, the coherence protocol forms sharing chains through the caches in order to form
a distributed coherence directory. What this means is that the coherence protocol forms a doubly-
linked list of all cached copies of a given memory line, and that this chain threads through the
caches where the data resides. As a result, the space required for maintaining coherence is exactly
matched to the amount of cache and thus grows linearly with the number of nodes in the system.
This is in contrast to most other coherence protocol schemes (including the LimitLESS coherence
scheme of Alewife), that keep track of data sharers at server-side and hence have potentially un-
bounded coherence memory requirements. There are a number of downsides to SCI, not the least
of which is the fact that the protocol is quite complicated, requiring extensive automatic validation
in order to ensure correctness (see [110], for instance for a look at the set of bugs discovered in
the base protocol after it had been out as a tentative standard). With respect to the server-interlock
problem that we have been discussing, however, the fact that SCI performs queueing in hardware
means that it naturally handles incoming requests during periods of invalidation: SCI simply builds
the so-calledprepend queueof requesters at the head of a linked list – even while interlocked for
invalidation [98, 54].

7In fact, modern pipelines with out-of-order execution often have a limit to the number of outstanding requests for
a similar reason. For instance, the R10000 has a maximum limit of four outstanding requests (including prefetches) at
any one time [92].

Page 108 CHAPTER 3. THE SERVICE-INTERLEAVING PROBLEM

While SCI solves the server-interlock problem directly, it has several unfortunate properties in
addition to its complexity. First, and foremost, studies of the properties of a number of parallel
programs suggest that the “worker-set” or number of processors simultaneously sharing a given
piece of data is usually small [22]. Hence, SCI optimizes for the uncommon case rather than
the common case pattern of sharing. Further, since it forms linear chains of data sharers, it risks
long latencies during invalidation. Attempts to correct latency problems have only lead to more
complexity [55, 54]. Finally, the fact that sharing chains stretch through individual caches means
that expensive, high-speed storage (in the form of cache-tags) is being used to support sharing
rather than less expensive DRAM resources.

Queueing With the Transaction Buffer: Hence, for a “complete” queueing solution, we sug-
gest adopting the prepend-queue aspect of SCI while avoiding most of the complexity. Since the
server-interlock problem occurs only during shared-memory requests, its solution falls naturally
into the domain of the transaction buffer as suggested earlier. A prepend queue could be con-
structed with a singly-linked list pointing from from one pending operation to the next. Doubly-
linked lists (such as for SCI) would be unnecessary, since transaction buffers are normally allocated
for the duration of the request process, thus pending requests would not need to be removed from
the chain (one of the primary reasons for the doubly-linked lists of SCI). Further, transaction-buffer
storage is small; the space used for this solution would not require fast pointer storage that scaled
with cache size. Finally, since chains such as this would not impact the method of coherence in-
validation, this would not exhibit the increased-latency that is an aspect of SCI. Note that queueing
as described here is used primarily to control access to highly-contended locations, optimizing for
variables that are under such rapid modification that the worker-sets are small.

This is a natural use of transaction buffers; however, Alewife does not take this approach (al-
though it could have). Instead, it makes use of a non-queueing solution, described in the next
section.

3.3.2 Negative Acknowledgment and the Multiple-Writer Livelock

As described above, hardware queueing has a number of complexities. An alternative way of
avoiding deadlock during server-interlock periods is to discard excess requests by sending NAK
messages back to the requestor. DASH did this [69], Alewife did this [23], and others have done
this. While this removes a large amount of complexity due to queueing, it forces requesting nodes
to retry their requests, thereby leading to the possibility of livelock8. Although we have been doing
so implicitly it is perhaps interesting to contrast this memory-side livelock with the processor-side
livelock that results from thewindow of vulnerability(Section 3.2): these are, in some sense, duals
of each other, since both stem from the cache-coherence protocol.

Before proposing ways to fix this livelock, we need to examine typical directory-based co-
herence protocols in more detail. In particular, most of these protocols are of a multiple-reader,
single-writer variety. What this means, is that these protocols handle multiple simultaneous readers
naturally (without periods of server interlock). However, once readers are combined with writers,

8Nodes that are closer to the server may have a significant advantage accessing data over remote nodes, effectively
locking out attempts by remote nodes to access this data.

3.4. Protocol Reordering Sensitivities Page 109

coherence mechanisms start kicking in, causing periods of server interlock and memory-side live-
lock. Thus, memory-side livelock arises in the presence of multiple writers (hence the fact that we
have called this themultiple-writer livelockin other places of this thesis).

As a consequence, Alewife’s approach to the multiple-writer livelock is to guarantee that at
least one writer always succeeds by retaining the node identifier for the request that triggered
an invalidation in the coherence directory. This hardware property is sufficient to guarantee that
test&test&setspin-locks may be constructed:

� Lock acquisition in the face of contention requires that at least one writer make
forward progress, even while many are simultaneously attempting to write.

� Lock release in the face of contention requires that the lock owner be able to write
to the lock in the fact of many other readers.

Although this does not fully solve the multiple-writer livelock (since there is no guarantee that such
locks will be granted fairly), this hardware property is sufficient to enable construction of software
queue locks (e.g.MCS locks [84]). Thus, we “guarantee” memory fairness through this combined
hardware/software solution. In Note that the single-writer guarantee is more than sufficient by
itself for many (perhaps most) uses of shared memory.

Use of Request Priorities: The SGI Origin takes a slightly different approach to eliminating
the multiple-writer livelock. Each request is given a “priority” value which starts low and is in-
cremented whenever the request is retried. In this way, requests can be guaranteed to eventually
achieve a priority value that is higher than any other simultaneous requesters [67]. This tech-
nique provides an elegant solution to the multiple-writer livelock, removing it entirely with little
hardware complexity or cost in resources. Further, with such a hardware solution, users of the
shared-memory model do not need to be aware of this issue.

3.4 Protocol Reordering Sensitivities

This section presents two problems that can arise from the reordering of events (where an event
is notification that something has happened, either with or without data). The first issue is sen-
sitivity to reordering of cache-coherence messages in the network. We will demonstrate how an
uncompensated protocol can be sensitive to reordering of messages and show how the transaction
buffer can be used to help solve this problem. The second issue has to do with forwarding of
events between hardware and software. In Alewife, the CMMU operates independently of the pro-
cessor under many circumstances; however, certain exceptional situations are passed to software
for handling (e.g. the LimitLESS cache-coherence protocol passes instances of wide sharing to
the processor). This policy exhibits a tradeoff between parallelism and correctness: we would like
the CMMU and processor to operate as independently as possible, while still performing a correct
handoff of events from hardware to software. We will show how two mechanisms, thefaultable
flush queueanddirectory locksmay be used to ensure a smooth handoff from hardware to software.

Page 110 CHAPTER 3. THE SERVICE-INTERLEAVING PROBLEM

3.4.1 Achieving Insensitivity to Network Reordering

In machines such as Alewife, cache coherence is maintained by a cache-coherence protocol. Such
a protocol consists of a sequence of operations applied to memories and caches to achieve the
illusion of continuous data coherence within the system. Operations are mediated by messages in
the system. A basic assumption of coherence protocols is that processors operate asynchronously
from one another and that no global ordering of messages exists. However, a naive view of the
network implicitly assumes that there is apartial ordering of messages,i.e. that two messages sent
in sequence from a given node to another node will arrive in the same sequence. This assumption
allows the collective state of data in caches and memories to be viewed as a set of interacting state
machines, one for each memory line. While this assumption makes cache-coherence protocols
easier to reason about, it comes at the cost of requiring the network to provide such ordering. In
fact, there are a number of reasons for relaxing this constraint:

� It permits use of adaptive or fault-tolerant networks that route packets non-
deterministically.

� It relaxes the design of the processor side of the coherence protocol, since invalida-
tions and data from local memory can be handled independently9.

� It affords flexibility in choosing the algorithm that is used for two-case delivery
(discussed in Section 4.3.5), since software may deliver buffered in a different order
from that in which they arrive.

Hence, for the remainder of this section, let us assume that the network does not actually preserve
the ordering of messages.

Figure 3-13 illustrates one type of problem that may arrive if a cache coherence proto-

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Cache

Processor

DATA

N
et

w
or

k

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Cache

Processor

INV

DATA

N
et

w
or

k

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Cache

Processor

ACK

DATA

N
et

w
or

k

INV
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Cache

Processor

N
et

w
or

k

DATA

Figure 3-13:The effect of network reordering on
an uncompensated protocol.

col is naively designed with an assumption of strict network ordering. This example shows
read-only data (RDATA) returning from a re-
mote memory module to the cache. While
this data is still in transit, the memory issues a
read-invalidation message (INVR) to the same
cache. Because theINVR was transmitted after
the RDATA, an invalidation acknowledgment
should not be sent to memory until after the
RDATAhas been discarded. However, as illus-
trated by the third and fourth panels, this does
not happen. For whatever reason (network con-
tention, perhaps), theINVR arrivesbeforethe
RDATA, even though it was originally trans-
mittedafter theRDATA. As a result, the cache

sends an invalidation acknowledgment (ACK) without discarding the read-only data. When this

9Protocol invalidations require the examination of the cache tags-file, while returning data requires only placement
in the transaction buffer. In the Alewife CMMU, invalidations are handled by one state machine, while returning data
is handled by another.

3.4. Protocol Reordering Sensitivities Page 111

data finally arrives, it would be blithely placed in the cache. Meanwhile, the memory would re-
ceive theACKmessage and grant write permission to another node. Cache incoherence would
result.

While independence from network ordering can always be gained by restricting the number of
simultaneous messages to one, this restriction requires explicit acknowledgments for every mes-
sage reception, and this requirement, in turn, increases required network bandwidth (more mes-
sages) and increases memory access time (more serialization). Thus, we prefer a solution which
has far less communication overhead with respect to a similar protocol that relies on order. To this
end, the Alewife CMMU carefullyrestricts the number and type of protocol messages that can
be simultaneously present in the network and maintains sufficient state at message destinations so
that misordering events can be recognized and dealt with appropriately. To this end, thetransaction
bufferassists by providing state at processor side of the protocol.

Analysis of the Problem: There are two possible destinations for protocol packets: memory and
cache. Each must deal with reordering. At the memory side, two types of messages can arrive
from the processor: requests for data (RREQandWREQ) and “returns” (i.e. acknowledgments or
updates). Acknowledgments (ACK) are generated in response to an invalidation request. Update
messages (UPDATE) contain dirty data and may be returned to memory during replacement of
read-write data in the cache or in response to an invalidation request. The ability to deal with
reordering depends on two invariants:

� Transaction buffers at the processor side guarantee that no more than one simulta-
neous request will be issued from a given processor to a given memory line.

� The protocol guarantees that at any one time there isat most onereturn message
that might arrive from a remote cache. Examples of periods in which return mes-
sages “might arrive” include (1) the period after an invalidation is sent but before an
acknowledgment has arrived, and (2) the entire period beginning with the issuing of
a read-write copy to a remote cache and ending with the return of dirty data in the
form of anUPDATEmessage.

Thus, only the ordering between requests and returns is at issue. This is addressed by an essential
feature of the coherence protocol: during periods in which a return messagemightarrive, no new
requests are processed; they are either deferred or aborted. As an example, suppose that a node
transmits an acknowledgment in response to an invalidation from memory, then proceeds to issue
another request to the same memory-line. If that request reaches memory first, then the memory
will abort the request by returning aBUSYmessage (the memory is currently busy performing an
invalidation at the behest of a different node). The original node will reissue its request at a later
time. Consequently, an explicit processing order is enforced, regardless of network order.

At the cache side, two types of messages can arrive: data and invalidations. Correctly handling
reordering between these types of messages hinges on several things. First, the explicit recording
of transactions guarantees that there is no more than one simultaneous request for a given memory
line; consequently, there can be no more than one data item in flight from memory to the proces-

Page 112 CHAPTER 3. THE SERVICE-INTERLEAVING PROBLEM

sor10. Furthermore, data for a given address can arrive from memoryonly during those periods in
which the transaction store contains a matching transaction buffer with TIP set.

In addition, the memory management hardware will generate no more than one invalidation for
each piece of data that it sends to the processor. Invalidations are divided into two distinct varieties:

1. Read invalidations (INVR), which invalidate read copies and generate acknowledg-
ments.

2. Write invalidations (INVW), which invalidate write copies (if they exist) and gener-
ate updates. If they encounter no data, then they are ignored.

These two varieties reflect two distinct types of cache replacement and are necessary to maintain
the “at most one” property of return messages to memory. When replaced from the cache, read
copies are simply discarded; thus,INVR messages must return explicit acknowledgments. After an
INVR has been transmitted by the memory, no further messages (either invalidations or data) will
be sent by the memory until an acknowledgment has been received. In contrast, dirty read-write
copies generate update messages when they are replaced from the cache; since this can happen at
any time,INVWmessages can only be used to accelerate the process and “dislodge” read-write
copies. They are otherwise ignored by the cache.

Achieving Insensitivity: Thus, we have three types of misordering which may occur between
messages destined for the cache (reordering between two data messages cannot occur, since only
one data item can be in flight at once):

� Between two invalidations: At least one of the two invalidations must be anINVW
messages, since no more than oneINVR can be in flight at once. If both of them
areINVWmessages, then reordering is irrelevant. If one is anINVR, then this must
have been for a read copy. Consequently, there are no write copies for theINVW
message to invalidate and it will be ignored. Again reordering is irrelevant.

� Between an invalidation and a data item, where the invalidation is transmitted first
but arrives second: The invalidation must be anINVW message, since allINVR
messages must be explicitly acknowledged before the memory will start processing
a new request. Consequently, if the data item is a read copy, then theINVWmessage
will be ignored. If the data item is a write copy, then theINVW message might
invalidate the data prematurely, but will not violate cache consistency11.

� Between an invalidation and a data item, where the invalidation is transmitted sec-
ond but arrives first: This was the example given in Figure 3-13 and can lead to
incoherence if not dealt with properly. Memory will be incorrectly notified that an
invalidation has occurred.

10In particular, this restriction means that Alewife does not support an update-style protocol. Such a protocol can
send update messages at any time; unfortunately, no analog of “transaction-in-progress” would be available at the
processor side.

11This is a situation in which reordering causes a slight loss in performance.

3.4. Protocol Reordering Sensitivities Page 113

Consequently, of the three possible types of reordering, only the last must be recognized and
corrected. The heuristic that is employed in Alewife is calleddeferred invalidation: invalidation
requests that arrive while a transaction is in progress and that are of the same type as this transaction
are deferred until the data is received by setting the INV bit in the transaction buffer. When the
data arrives, it is discarded and an acknowledgment is returned to the memory12. Invalidations
that are not of the same type as the transaction cannot be destined for the expected data; they
are processed normally. An individual transaction buffer interacts with premature invalidations by
setting a special bit in its state vector. See section refsubsec:alewife-transbuffer.

The policy of deferring invalidations is only a heuristic: although it successfully untangles
the third type of reordering, it can cause invalidations to be held even when reordering has not
occurred. This delay occurs when data has been replaced in the cache and re-requested. Invalida-
tions which arrive for the old data are deferred rather than being processed immediately. Only a
returning data orBUSYmessage terminates the transaction and performs the invalidation13.

3.4.2 Achieving a Clean Handoff from Hardware to Software

The second type of protocol reordering sensitivity that we will consider is that of handing off of
events from hardware to software. This is of particular interest in Alewife because of Alewife’s
philosophy of implementing common cases in hardware and uncommon cases in software; the
LimitLESS cache coherence protocol is one particularly salient example of this. The issue to be
addressed is the tradeoff between hardware/software parallelism and correctness. One of the rea-
sons this is particularly important is the fact that software handling of events is typically several
orders of magnitude more expensive than equivalent hardware handling; such a discrepancy im-
mediately rules out stopping all hardware handling during periods in which software actions are
pending.

One obvious solution to this type of problem is to decouple the processor and hardware through
queues. Decoupled architectures such as the ZS-1 [103] and WM machine [118] were among the
first to use queues and register interlocks to decouple load and store operations from computa-
tion operations. In these architectures, the potential for parallelism between memory operations
and ALU operations is ultimately limited by the maximum load/use distance that can be achieved
(number of instructions between the loading of a piece of data and its use). However, in a memory
controller, much greater decoupling is possible, since each memory operation is potentially inde-
pendent from the next. What we would like to do in this section is show how the basic notion of
decoupling is applied in Alewife to permit a graceful handoff between hardware shared-memory
mechanisms and software. To this end, we will discuss two mechanisms: thedirectory interlocks
and thefaultable flush-queue.

12If the buffer is locked (See Section 5.2.3), then returning data will be placed into the buffer and the TIP bit will
be cleared. This places the buffer in a transient state. Consequently, the invalidation will be further deferred until the
data is accessed by the processor and the lock is released.

13This is an example in which theexistenceof a mechanism for reordering can impact performance under normal
circumstances.

Page 114 CHAPTER 3. THE SERVICE-INTERLEAVING PROBLEM

3.4.2.1 Directory Interlocks

In the LimitLESS cache-coherence protocol, some “corner-case” operations are handled by for-
warding them from hardware to software [23]. Since software handlers take nearly an order of
magnitude longer to process requests than the hardware does14, some amount of decoupling is
desirable. Two types of decoupling are exploited in this way: First, in most (if not all) cache-
coherence protocols, every memory line is independent of every other one. We exploit this in-
dependence by allowing the hardware to continue to process unrelated memory requests while a
particular request is queued for software handling. Second, data and control operations in a cache-
coherence protocol may be separated in some instances to achieve pipelining. In Alewife, while
software is busy handling the coherence aspects of a read operation, the hardware will fetch data
from memory and return it to the requesting processor; requests for software handling may remain
queued awaiting processing long after read data has been returned to the requestor. This is called
theread-ahead optimization15.

These two types of decoupling require care in implementation, since they can easily lead to

M
eta−State(2 bits)

0481013142332415059

Pointers Available (2 bits)

Pointers In Use (3 bits)

Local Bit (1 bit)

F/E Bits (4 bits)

Pointer #0 (9 bits)

Pointer #1 (9 bits)

Pointer #2 (9 bits)

Pointer #3 (9 bits)

Pointer #4 (9 bits)

User Defined Bits (5 bits)

State (2 bits)

663

Figure 3-14:The Alewife coherence directory.

Name of Meta-State Description
Normal dir. entry under hardware control
Trap On Write reads handled by hw, writes by sw
Write In Progress dir. entry software interlocked
Trap Always all requests handled by sw

Table 3-3:The four meta-states of the Alewife co-
herence directory.

incoherence. As discussed in Section 3.4.1, coherence protocols typically involve one set of inter-
acting state-machines for each memory line.
State transitions that are handled in software
are similar to hardware transitions, with the
exception that they take longer and are not
atomic with respect to the hardware: herein
lies the danger. Consider the specific case
of decoupling hardware and software with re-
spect to requests that arrive across the net-
work. Since the network input queue presents
packets one at a time to the CMMU, requests
that require software processing must be re-
moved from the network input queue in or-
der to allow in order to achieve parallelism
between the hardware and software. During
the time in which a software request remains

pending, the state transition for that particular state machine has not yet fully occurred and hence
the hardware stateis not reflective of the complete state of the corresponding state machine. If
we blindly process incoming requests without accounting for pending software transitions, we can
easily perform incorrect transitions (just because one request requires software processing does not
necessarily mean that a subsequent one also requires hardware handling).

The description of the problem is nearly sufficient to suggest a solution: interlock. When
software requests are pending, we can simply leave a mark in the hardware state machine to indi-
cate that a request is pending. These special interlocks are accomplished by “meta-states” in the
Alewife coherence directory. Figure 3-14 illustrates the format for the coherence directory and

14Although this number is not particularly fundamental, it is amazing how much time can be taken by such simple
things as searching for a software directory in a hash table, manipulating directories at the bit level, etc.

15The FLASH multiprocessor from Stanford [64] takes this approach in a somewhat more conservative fashion: in
that machine, software handling of coherence operations is separated from data prefetching but must simultaneously.

3.4. Protocol Reordering Sensitivities Page 115

Table 3-3 lists the four “meta-states”. Thewrite in prog meta-state is an interlock state: when
a directory entry is marked aswrite in prog , all hardware processing of requests to that direc-
tory entry are suspended; this means that requests that arrive for such a directory entry are left at
the head of the network input queue until a software handler changes the meta-state to something
other thanwrite in prog . The presence of a per-directory-entrywrite in progress state
means that we get maximum hardware/software decoupling as long we have enough queue space
to handle incoming requests and as long as we avoid multiple requests for the same memory line:
whenever the hardware decides to pass a request to software, it simply changes the directory to
write in progress state, then passes the request into the network input queue, just as it does
for other, message-passing messages.

Thenormal , trap on write , andtrap always meta-states cause slightly different be-
havior at the interface between hardware and software. Thenormal meta-state indicates a direc-
tory that is entirely under hardware control. In this state, the only type of request that might require
software handling in this situation is a read request. Should a read request require software han-
dling (because all five of the pointers are in use), we switch the meta-state totrap on write ,
place the request in the message input queue, and send data back to the requestor. This behavior
produces the read-ahead optimization. Thetrap on write meta-state indicates the the hard-
ware directory does not contain sufficient information to handle a write request. However, read re-
quests may continue to be handled as above, producing read-ahead behavior. Finally, when a write
request encounters thetrap on write meta-state, it causes a transition towrite in prog ,
since no further requests may be handled for that memory line until after software has processed
the directory.

The trap always state is a generic state for special protocols that require 100% software
processing. Whenever an incoming request encounterstrap always , it invokes an immediate
transition towrite in prog , forwarding data to the processor.

Directory Access: The above discussion implied that directory entries could be accessed directly
by software. This, in itself, can cause problems if both software and hardware attempt to modify a
directory entry at the same time. Thus, Alewife provides special instructions for directory access,
called rldir (read and lock directory) andwudir (write and unlock directory). Therldir
instruction loads a particular directory entry into the processor, while at the same time invoking
thedirectory lock. The directory lock is a flag to the hardware that tells it to block if it is about to
process a request for the locked entry. Thewudir operation writes and unlocks the specified entry.
This, combined with the interlock meta-states, provides maximum parallelism between hardware
and software,i.e. interlocking only when necessary but retaining correctness.

3.4.2.2 Faultable Flush Queue

The second reordering sensitivity that we would like to examine arises during the handoff of events
from hardware to software during cache replacement. Alewife complicates the replacement pro-
cess in two different ways:

� Thetrap always state requires all protocol processing to pass through software.
While this provides a great source of flexibility, it also complicates the replacement

Page 116 CHAPTER 3. THE SERVICE-INTERLEAVING PROBLEM

process, since items that have been replaced from the cache may require software
handling before they can be retired.

� The Alewife philosophy of handling exceptional cases in software requires an un-
shared address space, since only local unshared memory can be guaranteed to ex-
hibit no dependencies on the network. We discussed the need for unshared memory
in the last chapter and will revisit it in the next. Thus, we need to provide a path to
the memory system that can be guaranteed to complete, despite the fact that shared-
memory accesses may be blocked indefinitely.

Ordering of replacement events is particularly important because an incorrect ordering can effec-
tively deadlock the system: if unshared accesses are unable to bypass shared accesses, then the
network overflow recovery process may not be able to complete. Further, replaced memory lines
that require software handling must be able to wait somewhere in the memory system for software
handling without blocking other accesses.

The transaction buffer provides a particularly clean solution to this problem. In order to avoid
blocking all memory actions during pending replacement operations, flush queues require associa-
tive matching circuitry (otherwise incoherence of local data can result). This is provided by the
transaction buffer already. Further, we can mix unshared-memory and shared-memory replace-
ments in the transaction buffer, as long as we guarantee that some minimum number of entries are
reserved for unshared traffic (solving the second of the two problems above). Finally, the trans-
action buffer provides an ideal place to store replacements that are “faulted”, awaiting software
processing. The transaction buffer can be viewed as both a queue and as a random access memory,
depending on the mode of operation. As shown in Chapter 5, we can get the behavior of two inter-
spersed queues through special transaction buffer flush states and “monitors” that decide which of
a set of pending replacements in the transaction buffer should be flushed next.

3.5 Postscript: The Transaction Buffer Framework

As discussed above, the transaction buffer provides a natural framework in which to solve many
aspects of the service-interleaving problem:

� By monitoring outstanding transactions, it provides a framework in which to prevent
inter-processor data thrashing and to close the window of vulnerability. This level
of processor-side monitoring is also sufficient to permit make the cache-coherence
protocol insensitive to network reordering.

� By providing associativity, it protects against inter-context thrashing on a single
node. This enables, among other things, greater flexibility in reflecting exceptional
conditions to software.

� It provides a natural interface between the processor and memory system, allowing
guarantees to be made of access to unshared memory. Part of the flexibility of
providing two “independent” memory systems (shared and unshared) stems from
the ability to reorder flush operations (thefaultable flush queueof Section 3.4.2.

3.5. Postscript: The Transaction Buffer Framework Page 117

Thus, we could consider the transaction buffer as one of the primary results of this chapter. In
Section 5.2.3, we will revisit the transaction buffer from the standpoint of implementation. We
will demonstrate how to achieve all of the advantages of centralized resource tracking without
compromizing performance.

Collaborators: David Chaiken was the first to observe and address internode data thrashing
problems with the ASIM simulator, back in the early days of the Alewife project. He was a key
collaborator in addressing many of the issues arising from the window of vulnerability. He was
also an important contributer to the transaction buffer design including its use as a framework for
handle misordering of protocol packets in the network.

Page 118 CHAPTER 3. THE SERVICE-INTERLEAVING PROBLEM

Chapter 4

The Protocol Deadlock Problem

This chapter examines the problem of guaranteeing deadlock freedom in a machine that supports
both message passing and shared memory. The deadlocks examined in this chapter are all dis-
tributed in nature,i.e. they involve multiple nodes. Further, unlike the deadlocks of the previous
chapter, which could be avoided through careful restriction of resource locking or removed by re-
ordering of handlers, the deadlocks of this chapter are present as a consequence of cycles in the
communication graph. Hence, a global solution is required.

By way of motivation, we first describe the deadlock problem in cache-coherent shared memory
and explore the “mathematical” approach for providing deadlock freedom by breaking cycles in
the communication graph. Such an approach has been employed in machines such as the Stanford
DASH multiprocessor and the Origin multiprocessor from Silicon Graphics. In fact, as we will
show, guaranteeing deadlock freedom has complexities and costs that increase with the complexity
of the cache-coherence protocol.

Next, we examine the problem of guaranteeing deadlock freedom in a machine with general
message passing. Although machines such as the CM-5haveprovided mechanisms to avoid dead-
lock with a restricted class of communication patterns (such as request/response communication),
these mechanisms are not powerful enough to guarantee deadlock freedom with general commu-
nication patterns. More importantly, users are under no compulsion to make use of deadlock-
avoidance features even if they exist. Hence, machines with user-level message interfaces, such as
described in Chapter 2 for Alewife, introduce the possibility of user-induced network deadlock —
a type of deadlock that operates beyond the domain of carefully constructed hardware or operating-
system software to prevent. As a case in point, programmers have had a tendency to ignore the
deadlock avoidance features provided on machines such as the CM-5, adopting ad-hoc methods of
buffering instead1.

With these two discussions as a backdrop, we will spend the bulk of this chapter examining
an alternate method for deadlock avoidance calledtwo-case delivery. Two-case delivery refers to
on-demand software buffering of messages at their destination as a method for breaking deadlock
cycles. Messages that are buffered in this way are not dropped, but later delivered to the appropri-
ate hardware or software consumer; hence the name “two-case delivery.” Since software is invoked

1In the specific case of the CM-5, greater aggregate network bandwidth is often achieved by treating the request
and response channels as alternate pathways — independent of message type.

Page 119

Page 120 CHAPTER 4. THE PROTOCOL DEADLOCK PROBLEM

to handle exceptional situations, one viewpoint of two-case delivery is that it is a software recovery
scheme. Hence, in Chapter 6, we will introduce DeadSIM, a queueing simulator designed with the
express purpose of examining the frequency of protocol deadlock under varying machine parame-
ters. The frequency of deadlock is important to us precisely because the performance of software
recovery methodologies (such as two-case delivery) is crucially dependent on the frequency with
which software must be invoked. We will find that deadlock can indeed be made infrequent with
appropriate selection of queue sizes.

Among other things, two-case delivery simplifies the design of the cache-coherence protocol,
since the protocol can operateas if it has as many virtual channels as necessary to avoid deadlock
without actually requiring such channels to exist. This solution is one of the system-level benefits
resulting from the efficient message-passing interfaces provided on Alewife.

4.1 Cache-Coherence Protocols and Deadlock

By their very nature, cache-coherence protocols contain cycles in their communication graphs. The

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Output Queue

Input Queue

REQ

RESP

CMMU

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Output Queue

Input Queue
REQ

RESP

CMMU

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Network

Figure 4-1:Cache-coherence protocols contain cycles in their
communication graphs that can cause deadlock.

cycles exist because messages arriving in the input queue (e.g. shared-memory requests) cause the
generation of messages on the output
queue (e.g. data responses). This de-
pendency, combined with finite queue
resources, leaves open the possibility
that two nodes coulddeadlockeach
other. Figure 4-1 illustrates the sim-
plest of such deadlocks. In this figure,
both nodes have full input and output
queues and both nodes have packets
at the downstream side of their output

queues that are destined for the input queue of the other node. Deadlock results because neither
node is able to remove packets from its input queue since it is unable to place responses on its out-
put queue. This problem is fundamental to cache-coherence protocols and hence must be solved
in all shared-memory multiprocessors.

Figure 4-2 illustrates the queue-level dependencies that lead to the simple deadlock. This figure
is awaits-for-graph(WFG) such as we encountered in the last chapter. It shows two nodes interact-
ing across a network. Nodal resources are enclosed within rounded boxes, while arrows represent
both intra-node dependencies and network dependencies (i.e. full input and output queues that are
coupled through the network)2. Each node contains a source of requests (markedREQ), a sink
of responses (markedDATA), and a protocol processor that takes remote requests and produces
responses (markedREQ)DATA). The output queue receives both locally generated requests and
responses destined for remote nodes; this fact is symbolized by the box markedMERGE. Since the
input queue contains a mixture of requests and responses from remote nodes, these must be de-
multiplexed; this function is represented by the box markedSORT. Given this diagram, the source
of deadlock is clear: there is a cycle that includes the two protocol processors, the network, and

2In Section 4.3, we will revisit the implicit assumption of finite queue resources.

4.1. Cache-Coherence Protocols and Deadlock Page 121

S
O

R
TDATA

REQ => DATA

REQ

M
E

R
G

E

S
O

R
T

DATA

REQ => DATA

REQ

M
E

R
G

E

Figure 4-2:Schematic representation for simple
request/response deadlock

DATA

REQ => DATA

REQ

DATA

REQ => DATA

REQ

Figure 4-3: Breaking the simple deadlock with
multiple network channels

theSORTandMERGEhardware. As a result, it is possible for input and output queues to be full
and a request to be at the head of each of the input queues; these requests will emerge from the
protocol-processor branches of theSORTelements, but be unable to be freed because of depen-
dencies through theMERGEelements to the output queues.

Note that low-level network hardware is usually designed to avoid deadlock. However, to
achieve this guarantee (i.e. that every message injected into the network will eventually be deliv-
ered to its destination), users of the network must remove packets as they are delivered. Thus, as
we can see from Figure 4-2, it is the dependencies introduced by the protocol processors that are
responsible for deadlock in cache-coherence protocols. Hence the name:protocol deadlock.

4.1.1 Breaking Cycles With Logical Channels

One solution to this particular deadlock, employed by the DASH [69] multiprocessor, is to rec-
ognize that responses (such as data) can be guaranteed to be “sinkable” at their destinations: as a
precondition to sending a remote request for data, the source of the request can allocate sufficient
space to handle the response when it returns. Consequently, we can take advantage of two network
channels, as shown in Figure 4-3, to prevent deadlock: we assign requests to one channel and re-
sponses to the other. In this diagram, each network path from Figure 4-2 has been replaced by two
independent (orlogical) network channels. Given this topology, no cycles remain in the commu-
nication graph; hence, the protocol processor (responsible for the transformationREQ)DATA) is
never blocked indefinitely. Although DASH used physically separate networks (with independent
wires),virtual channels[31] represent a more practical implementation methodology. For the re-
mainder of this discussion, we will use the term “logical channel” to denote an independent path
between nodes; we will have a bit more to say about implementation later.

Unfortunately, this solution is not sufficient for most cache-coherence protocols, since their
coherence protocols contain more complicated dependencies than simple request/response. Fig-
ure 4-4 illustrates several protocol message dependencies that appear in the DASH and Alewife
multiprocessors. Each of the circles in this diagram represents a physical node while each arrow
represents a message sent between nodes. Below each diagram is amessage dependency graph.
The “)” symbol indicates a protocol dependence, in which the reception of a message to the left
results in the transmission of one or more messages to the right. Each message that is generated
can, in turn, give rise to additional chains of dependency,i.e. protocol dependencies can form

Page 122 CHAPTER 4. THE PROTOCOL DEADLOCK PROBLEM

R
E

Q

D
AT

A

Requester

Home

REQ)DATA

Requester

REQ

Third
Party

A
C

K

IN
V

DATA

Home

REQ)(INV,DATA))ACK

[DASH]

HomeRequester REQ

Third
Party

D
ATA

D
AT

A

IN
V

REQ)INV)(DATA,DATA)

[DASH]

D
AT

A

IN
V

REQ

DATA

HomeRequester

Third
Party

REQ)INV)DATA)DATA

[Alewife]

Figure 4-4:Typical coherence-protocol dependencies. Circles represent physical nodes and arrows rep-
resents messages. Below each figure is a symbolic representation of themessage dependency graph. This
graph is, in general, acyclic. Each “)” represents an action by the protocol processor.

general acyclic graphs rather than just dependence chains.
For instance, the third dependence shown in Figure 4-4 is the data forwarding optimization of

the DASH coherence protocol. This is a three way dependence,REQ)INV)(DATA,DATA) ,
that can be interpreted as follows: a node (Requester) starts by sending a REQ message to another
node (Home). This node receives the REQ and responds with an INV message to the current holder
of data (Third Party). Finally, this last node receives the INV message, then responds by sending
out two copies of the DATA: one to theRequesterand one to theHome. In effect, this implies
two separate protocol-level dependencies,i.e. REQ)INV andINV)(DATA,DATA) . Diagrams
similar to Figure 4-2 and 4-3 can be constructed to demonstrate thatthree independent network
channels are required for complete deadlock freedom (otherwise there is a possible three-node
deadlock).

The upshot of this is that the base DASH coherence protocol is notquite deadlock free, de-
spite the fact that two different network channels were provided to “eliminate” deadlock; to avoid
physically deadlocking network channels, the memory controller aborts dependencies such as
REQ)INV by sending a NAK message back to the source under certain situations involving full
queues[69]. This solution transformspotentialdeadlock into a potential livelock, since the request
must be subsequently retried3. Note that this livelock is of a different variety from the Multiple
Writer Livelock discussed in Chapter 3, since it depends on the vagaries of network behavior and
cannot be corrected by software — even in principle. Consequently, the DASH machine does not
have a complete deadlock avoidance solution.

In general, the most straightforward implementation of a coherence protocol requires as many
independent network channels as the maximum depth of its set of protocol dependence graphs. We
will call this thedependence depthof the protocol. Note that the DASH protocol has a dependence
depth of three, while Alewife has a dependence depth of four. Assuming that we have as many
logical channels as the dependence depth, we simply number the channels sequentially and switch
to the next sequential logical channel with each protocol action (“)”), i.e. for each protocol

3Implementors of DASH claim that this was never a problem in practice, possibly because of the small number of
processors and/or the large network queues (Private communication).

4.1. Cache-Coherence Protocols and Deadlock Page 123

Initiator

Node1

Node2 Node3

Destination

M1

M2
M3 M4

M1)M2)M3)M4

[Original transaction]

Initiator

Node1

Node2 Node3

Destination

P2

M2

M3

M4
M1

P3 P4

M1)P2, M2)P3, M3)P4, M4

[Reduced transaction]

Figure 4-5:Reducing the dependence depth of a cache-coherence protocol by breaking
long dependence chains. In this specific example, a transaction of dependence depth four
is transformed into four separate transactions each of dependence depth two.

action initiated by a message, we send outgoing messages on the logical channel whose index is
one greater than the channel on which the message was received. This guarantees that there are
no cyclic dependencies between logical channels since each channel depends only on the channel
whose index is one greater4. If we guarantee that messages at the leaves of dependency graphs
can always be accepted at their destinations, then the protocol will be deadlock free. Conversely if
we have fewer logical channels than the dependence depth, than there will be at least one protocol
transaction for which we must reuse one or more of the logical channels. This introduces a cycle in
the communication graph and hence the potential for deadlock. The design complexity incurred to
eliminate deadlock is in the generation of protocol dependency graphs; from there, the dependence
depth and requisite number of logical channels can be derived.

4.1.2 Reducing the Dependence Depth

The previous section implied that cache coherence protocols require as many logical channels as
the protocol dependence depth. It turns out that, by increasing the complexity of a protocol, we
can systematically reduce its dependence depth to a minimum of two, as shown in Figure 4-5. This
figure illustrates the transformation of a single protocol transaction of dependence depth four into
four individual transactions, each of dependence depth two.

In this figure, the original dependence graph is of the form:M1)M2)M3)M4. For generality,
the final message (M4) in this transaction is shown as absorbed by a node that is distinct from
the Initiator of the transaction; however, both theInitiator andDestinationcould be the same.
After reduction, this transaction is transformed into four independent transactions of depth two:
M1)P2, M2)P3, M3)P4, andM4 (a one-way message transaction). To perform the reduction
transformation, we use theInitiator node as a proxy to send messages M2 – M4. We do this by
encapsulating these original messages in return messages P2 – P4. If this is all that we do, however,
we have done nothing more than increasing the dependence depth by a factor of two. To finish the

4In fact, there will be no cycles as long as we guarantee that we always use channels in ascending order. We might,
for instance, always send DATA messages on a particular set of logical channels that had higher available bandwidth.
This approach shares many details with methods for deadlock-free routing; see, for instance, Dally [33, 32].

Page 124 CHAPTER 4. THE PROTOCOL DEADLOCK PROBLEM

process of decoupling, we must break the network dependenciesPx)Mx. These dependencies will
be broken if the initiator reserves sufficient space to hold messages P2 – P4 at the time in which
it sends the first message (M1); this permits the initiator node to guarantee that it can always sink
the proxy messages. It is interesting to note that the dependence-depth-reducing transformation
illustrated by Figure 4-5 corresponds roughly to a transformation of the underlying communication
pattern from a “message-passing” style to a “shared-memory” style.

Note that Figure 4-5 takes the dependence-depth-reducing transformation to its logical extreme
— reducing the dependence depth to two5. Intermediate transformations are equally possible,
breaking the original dependence graph at any desired point to reduce the dependence depth to any
value intermediate between its original value and its minimum of two.

Adaptive Depth Reduction: From the standpoint of performance, depth reduction increases the
total time to complete a transaction by a non-trivial factor (if for no other reason than the fact
that the number of network round trips is increased by nearly a factor of two). This suggests that
a reduction transformation should be performedadaptively, i.e. dependencies should be broken
at one of the proxy points only if there are insufficient network resources. In a system with two
logical channels, all messages except for leaf messages could be transmitted on one channel. Then,
if a node is unable to transmit an intermediate message Mx because of queue congestion, it can
construct a proxy message Px instead and send it off to the initiator on the second channel. This
affords the performance advantages of the unreduced protocol when queue resources are available,
while falling back onto the reduced protocol when necessary to avoid deadlock.

Interestingly enough, the Origin multiprocessor[67] from Silicon Graphics (SGI) makes use
of adaptive depth reduction as described here to avoid deadlock with two logical channels and
a DASH-like protocol. The base protocol has a dependency depth of three. When a three-hop
dependency encounters network congestion, the Origin packages information and returns it to
the requesting node. For instance, theREQ)INV)(DATA,DATA) dependency is handled by
placing both REQ and INV messages on the request network and DATA messages on the response
network. If an INV message cannot be queued because of a full queue, then a special message
is returned to the source with sufficient information to continue the invalidation later, from the
source6.

4.1.3 Complexity of Deadlock Avoidance

As discussed in Section 4.1.1 the primary design complexity behind the non-reduced method of
deadlock removal is the production of message-dependence graphs for all of the transactions. This
type of analysis is slightly more complicated than the bare minimum required to design the protocol
in first place, but not by much. Thus, assuming that a sufficient number of logical channels are
available, deadlock can be avoided in this way. The presence of invalidations in cache-coherence

5Lenoski and Weber’s book on multiprocessing mentions the reduction of a depth-three DASH protocol to a depth
two protocol. See [72].

6In fact, this proxy message is a version of the coherence directory, describing multiple invalidation messages in a
compact form.

4.2. Message Passing and Deadlock Page 125

protocols implies that non-reduced coherence protocols have a minimum dependence depth of
three.

Why might an insufficient number of logical channels be available? As mentioned earlier, the
most likely method for implementing logical channels is to make use of underlying virtual channels
in the network. As with all hardware features, virtual channels have a design and performance
cost that grows with the number of channels[26, 8]. Each virtual channel requires a separate
input and/or output queue on each network port. Further, viewing the set of hardware virtual
channels as a scarce resource, there are a number of ways that we might want to allocate them
other than for deadlock avoidance of the cache-coherence protocol. For instance, virtual channels
can be used to smooth out the performance of wormhole-routed mesh networks[31] and to achieve
deadlock freedom in adaptive networks[32]. These particular uses of virtual channels interact
multiplicatively with the deadlock avoidance methods that we have been discussing here. Thus,
for instance, if a particular performance improvement scheme makes use of two virtual channels
and deadlock avoidance requires three logical channels, then the underlying network requiressix
virtual channels: two for each logical channel. Thus, the number of hardware queues can grow
quickly with the dependence depth of a protocol.

As shown in the previous section (Section 4.1.2), we can reduce the number of logical channels
that we need for deadlock avoidance by reducing the dependence depth of the protocol. Abstractly,
the dependence-depth-reducing transformation represented by Figure 4-5 is straightforward. Un-
fortunately, this process hides a number of disadvantages and complexities. For one thing, the
complexity of the protocol increases over that of a non-reduced protocol because the number and
type of messages and protocol operations increases. Although taking our viewpoint here and think-
ing of the protocol reduction process as one of using the initiator as a proxy makes a reduced pro-
tocol easier to think about, such a protocol is still more complex than the non-reduced version.
In addition, as pointed out in the previous section, reduced protocols incur a non-trivial perfor-
mance penalty, suggesting the need for adaptive reduction. This further complicates the protocol
by introducing protocol arcs that choose between reduced and non-reduced forms. Given that veri-
fication of the coherence protocol can be an onerous task, this type of complexity increase must be
approached with care. Finally, the implementation of a reduced protocol becomes more complex
because initiator node must be able to allocate space to sink intermediate proxy messages and be
able to unpackage them for transmission in a deferred fashion: when there are insufficient queue
resources to send unpackaged messages, the initiator must be able to schedule later transmission of
these messages. This type of deferred transmission is unlike other message transmissions, which
are triggered by a direct processor action or message arrival events.

4.2 Message Passing and Deadlock

Since the communication patterns of a cache-coherence protocol are a restricted class of the more
general message-passing paradigm, the problem of deadlock avoidance in message-passing sys-
tems must be at least as difficult as for shared-memory systems. In fact, message-passing intro-
duces a new twist to the deadlock avoidance analysis: software. Message-passing systems export
the lowest (or “link-level”) communication mechanisms directly to software; this is, in fact, one of

Page 126 CHAPTER 4. THE PROTOCOL DEADLOCK PROBLEM

the advantages of message passing touted in earlier chapters. Unfortunately, software can generate
communication graphs of arbitrary dependence depth: for example, nodei can send a message to
nodei+1, which can send a message to nodei+2, etc.This means that, regardless of the number
of logical channels provided to software, there exists a communication pattern that is subject to
deadlock. This means that avoidance of deadlock is out of the hands of the hardware designer.

4.2.1 Elimination of Deadlock by Design

Assuming that message-passing software istrustedandbug-free, then the same type of analysis
that was discussed in Section 4.1 for cache-coherence protocols can be applied to a message-
passing program (including the operating system) to guarantee that it is free from deadlock.
Dependence-depth-reducing transformationscanbe applied to a given communication graph to re-
duce the number of logical channels required to avoid deadlock, although the performance penalty
for for such transformations with software protocols is potentially much larger than for hardware
coherence protocols: by increasing the number of messages that must be sent and received during
a transaction we increase the amount of handler code that must be processed.

Unfortunately, in a system with user-level message passing, much of the software that is send-
ing messages is neither trusted nor guaranteed to be bug-free. This means that deadlock avoidance
is completely out of the hands of both the hardware designer and the writer of the operating system.
The CM5, in fact, allowed users to deadlock the network, relying on periodic timer interrupts (at
scheduler boundaries) to clear the network. This solution was “reasonable” because the CM5 was
strictly gang-scheduled, permitting only one user to access to a given set of network resources at a
time. Since we are interested in general sharing of the message network between different users,
this solution is undesirable because it allows one faulty user task to negatively impact both the
operating system and other users.

4.2.2 Atomicity is the Root of All Deadlock

In Section 4.1, we noted that the dependence arcs introduced by protocol processors are responsible
for the existence of deadlock in shared-memory systems. It is the goal of this section to uncover
similar aspects of message passing that couple the network input and output queues, permitting
the occurrence of deadlock. Chapter 2 discussed the need for atomicity in any model of message
passing7. In fact, the presence of atomicity is precisely what we are looking for: during periods
of atomicity, message notification in the form of interrupts is disabled. Hence, message removal
from the input queue is entirely under control of the currently active thread (either user or system
level). This, in turn,couplesthe input and output queues during periods in which messages are
being sent. In addition, user-level messaging may be performed byincorrectcode that never frees
messages from the network; this has the same detrimental effect on the network as actual deadlock.
In contrast, when atomicity is disabled, message arrival interrupts can occur. Thisdecouplesinput
and output queues since messages can be removed from the input queue by interrupt handlers. The
important conclusion here is that deadlock can occur only during those periods in which atomicity
is enabled.

7Note that atomicity is considered both present and enabled during periods in which a task is polling for messages.

4.3. Exploiting Two-Case Delivery for Deadlock Removal Page 127

On closer examination, atomicity is present in shared-memory system as well. Earlier, we
implied that a dependence graph such asREQ)DATAis anatomic sequence: the reception of a
REQmessage and subsequent transmission of aDATAmessage can not be split by the coherence
protocol hardware. This action implies several disjoint operations that must occur together to avoid
an incorrectly functioning protocol: dequeueing of theREQ, possible flushing of data from internal
buffers, modification of the coherence directory, and transmission of theDATA. Since none of
these operations are idempotent, they must be performed once and only once, with no intervening
operations. In the language of Chapter 2, we can think of the hardware protocol processor as
executing “message-passing handlers” in response to incoming messages; these handlers perform
actions (including the sending of responses) without exiting their atomic sections.

Consequently, for both message-passing and shared-memory systems,atomicity is the source
of all deadlock: atomicity introduces a dependency arc between reception and transmission that,
when coupled with finite queue resources, can cause deadlock. Given this insight, we will focus
on points of message transmission during atomicity when attacking deadlock in Section 4.3. In
Alewife, such atomicity points occur in three different places: during hardware coherence-protocol
processing, during message passing by the operating system, and during user-level messaging.

4.3 Exploiting Two-Case Delivery for Deadlock Removal

We will now discuss an alternative to the mathematical approach to avoiding deadlock, calledtwo-
case delivery. The original motivation for considering alternatives to logical channels was the fact
that the Alewife network has asingle logical channel; this constraint derives from the Caltech
network router that we employed in Alewife. However, as illustrated in the last section, message
passing introduces deadlock issues regardless of the number of logical network channels, since it
is impossible to force a user to employ these channels correctly. Thus, we seek another solution.

4.3.1 Revisiting the Assumption of Finite Buffering

Discussion in Sections 4.1 and 4.2 was predicated on an assumption that we introduced only in
passing,i.e. that queue resources are finite. Finite resources introduce cross-network dependen-
cies, such as in Figures 4-2 and 4-3, allowing deadlocks to be introduced by message atomicity.
The converse of this statement is as follows: if input or output queues areinfinite, then none of
the deadlocks mentioned in the previous sections would occur,regardless of the number of log-
ical channels in the network8. This can be seen by the fact that the presence of infinite queues
removes all dependencies through the network, preventing the occurrence of cycles in protocol
wait-for-graphs. Of course, since hardware resourcesarefinite, this statement does not seem to be
particularly interesting. However, if we permit software buffering under extreme circumstances,
then anapproximationto infinite buffering can be achieved: when deadlock occurs, we buffer
packets in the local memory of the processor, effectively extending the size of the hardware queues
by many orders of magnitude9. The buffering mode introduces overhead that is not present during

8We are still assuming that the network has a deadlock-free routing algorithm.
9We will address concerns that local memory is not infinite later.

Page 128 CHAPTER 4. THE PROTOCOL DEADLOCK PROBLEM

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A

Output Queue

CMMU

Sparcle

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Local Memory

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA

Input Queue

Packet
Divert

(A): Phase I: Divert Mode

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A

CMMU

Sparcle

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Local Memory

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA

Input Queue

Packet
Relaunch

Output Queue

(B): Phase II: Relaunch Mode

Figure 4-6:Two Phases of Network Overflow Recovery

direct hardware delivery, thus we buffer only as needed (ondemand). As a consequence, we call
this atwo-case delivery process: the first case is direct delivery, while the second case is buffered
delivery. Since buffering is invoked to correct deficiencies in hardware resources, we call the
buffering processnetwork overflow recovery.

Figure 4-6 illustrates the two phases of network overflow recovery:divert andrelaunch. Both
of these phases are executed by interrupt handlers on the computational processor. The divert
phase is entered by a high-priorityatomicity congestion interrupt(see Section 4.3.2) and is used
to empty the networkinput queue, placing messages into one or more queues in local memory.
During divert mode, the output queue is completely full, refusing to accept outgoing packets. The
process of emptying the network input queue will eventually lead to elimination of deadlock, since
it inserts extra queue space in one of the branches of the deadlocked wait-for-graph; another way of
looking at this is that the local output queue is clogged because a message at its head is destined for
a node that cannot empty its input queue because of a clogged output queue — the act of emptying
the local input queue helps to unclog this remote output queue, freeing the remote input queue, and
thus indirectly unclogging the local output queue10. Figure 4-6 can be compared with Figure 4-1
to see how this methodology solves the deadlock problem. When network congestion has finally
been eliminated, the relaunch phase is entered at software interrupt level. It is used to empty the
local memory queues of pending messages, effectively restoring the system to its original state.

Two-case delivery is attractive because it eliminates deadlock for shared-memoryandmessage-
passing communication styles. The ability to exploit two-case delivery is an important system-wide
benefit deriving from the close integration of message passing and shared memory in Alewife.

Local Recovery is Good: In Section 6.3.5, we will use the DeadSIM simulator to explore the
nature of actual deadlocks that can occur in a system. One of the striking results that will appear
is that the vast majority of deadlocks occur between two nodes in a system. This means that

10Of course, in high probability, that other node will enter the overflow recovery process as well.

4.3. Exploiting Two-Case Delivery for Deadlock Removal Page 129

a local deadlock recovery mechanism (such as provided by two-case delivery) provides a good
approach for recovering from deadlock — most of the time, only a small number of nodes need to
be interrupted to recover from deadlock.

Divert Mode: Although we will discuss the network overflow recovery process in greater detail
later, we can give a few details now. At the beginning of the divert phase, the processor places the
memory controller (CMMU) into a special mode in which the hardware ignoresall incoming mes-
sages, forwarding them to the message input interface without processing. Note that this process of
diversion has a subtle impact on the design of the protocol processor: hardware handling of cache-
coherence packets must beatomicandnon-blocking, i.e. the memory controller must refuse to
start processing a cache coherence request before it has sufficient resources (such as output queue
space) to complete the request. We will revisit this requirement in Section 4.3.7 when we discuss
the some of the hardware complexities incurred by a machine that is involved in two-case delivery.

The majority of the divert handler is spent transferring packets from the network input queue
to local memory. During this process, packets are sorted into several different memory queues
based on packet type; among other things, this sorting process separates user-level packets from
operating system packets so that different delivery guarantees can be placed on different packet
types. Although the sorting process is important for correctness in a way that we will discuss
later (i.e. for maintenance of user-level atomicity semantics), it can also be thought of as part of
a destination-based flow controlmethodology: user packets can be buffered in the “virtual space”
of the userat the destination, a method being developed by Ken Mackenzie [79]. To make this
a complete flow control mechanism, it requires a method to suppress hyper-active users; this can
be accomplished through the scheduler. Thus, rather than explicitly preventing users from sending
more data than can be received, we let them send as much data as desired and exert back-pressure
through the scheduler. This method avoids the explicit overhead incurred through token or credit-
based flow control mechanisms. This is explored in greater depth elsewhere [78].

Relaunch Mode: The process of packet relaunch (phase two of recovery) can occur in two dif-
ferent ways: either by launching packets to the local memory controller or by passing a pointer
to the queued version of each message to its appropriate message handler. The first of these was
employed in the original Alewife design and is accomplished by sending buffered packets from the
memory queues via the message-passing output interface (hence the term “relaunching”). Since
each of the buffered packets has a routing header that points to the local node (packets are not
altered by the queueing process), the message interface simply routes them through an internal
loopback path, then processes them as if they had arrived from the network. This permits hardware
processing of cache-coherence packets, allowing the buffered requests to be “transparently” pro-
cessed by the memory controller. Message-passing packets can be processed in this way also; they
are routed through the loopback path to the message input interface, where they cause an interrupt
and invoke appropriate handlers11. Thus, the process of relaunch is a generic mechanism.

Unfortunately, relaunch as described above can introduce large overheads in the handling of

11An interesting subtlety is present here: since message interrupts caused by relaunched packets must have higher
priority than interrupts that initiate message relaunch. More on this later.

Page 130 CHAPTER 4. THE PROTOCOL DEADLOCK PROBLEM

small messages. This, coupled with the fact that fine-grained message-passing codes occasionally
make heavy use of the network and can incur frequent use of the overflow handler, introduces a
desire for an alternative to the relaunch process for message-passing packets. The alternative is
relatively simple and is predicated on two simple observations: First, the message input interface
is already “memory-mapped” in its behavior, even though it uses special, out-of-band load/store
instructions. Second, the messages that are relaunched enter and immediately exit the CMMU;
this is a waste of resources and causes the loopback path to be a contended resource. In fact, a
key enabling feature that was missing from the original version of the CMMU (A-1000) was the
ability to access the network input interface with normal load/store instructions. We explored this
in depth in Section 2.4.4 when we discussedtransparency. This ability was added to the A-1001
version of the CMMU. With this one feature, we can arrange for user-level message handlers to
reference the contents of input messages through a reserved register that contains a “base pointer”
to the head of the current message. Under normal circumstances, this register points to the head
of the hardware input queue. During overflow recovery, the overflow handler cantransparently
switch between different delivery modes by simply altering this base pointer to point at queued
messages in memory. Transparency is one of the key assumptions behind the full user-level atom-
icity mechanism discussed in Section 4.3.5. This straightforward mechanism vastly simplifies the
complexity of the relaunch handler and vastly reduces the overhead incurred by messages that pass
through the buffering mechanism.

4.3.2 Detecting the Need for Buffering: Atomicity Congestion Events

By design, two-case message delivery is a process of detection and recovery, not one of preven-
tion. Since message delivery via the recovery process (second-case delivery) is more expensive
than hardware delivery (first-case delivery), we need to be careful about triggering overflow recov-
ery unless it is absolutely necessary. Unfortunately, deadlock is a global (multi-node) phenomena;
as a consequence, true deadlock detection requires a distributed algorithm and out-of-band com-
munication between nodes (since the normal communication network may be blocked). To avoid
this, we would like to find a reasonableapproximationto deadlock detection that employs only
local information. As discussed in Section 4.2.2, we can focus all of our attention to periods of
atomicity. Interestingly enough, Section 6.3 shows that protocol-level deadlocks have a tendency
to involve a small number of nodes (two or three) rather than many nodes; this suggests that local
detection and correction mechanisms may actually be better than global mechanisms.

One aspect of our deadlock detection mechanism is immediately clear: since the computational
processor may be stalled during network congestion (with its pipeline blocked), the process of de-
tecting deadlock must be accomplished by an independent hardware monitor. This hardware would
be expected to flag a high-availability interrupt (in the sense of Chapter 3) whenever deadlock was
suspected. In the following, the resulting interrupts will be calledatomicity congestion eventsand
will be used to invoke the first phase of network overflow recovery.

Alewife exhibits three classes of atomicity. Any monitor that we choose for deadlock detection
must operate correctly for each of them. Briefly, the types of atomicity that we must consider are:

4.3. Exploiting Two-Case Delivery for Deadlock Removal Page 131

� Hardware protocol processing: The handling of cache-coherence requests that
require responses. Hardware-induced problems are completelyinvisibleto software.

� System-level message passing: Atomicity of system-level handlers that send mes-
sages. System-level codecan be trusted to follow simple procedures to guarantee
correctness.

� User-level message passing: Atomicity of user-level handlers that send messages.
User-level codecannotbe trusted to follow any deadlock avoidance protocol.

To handle the first of these, the deadlock-detection monitor must watch the lowest levels of hard-
ware queueing for potential deadlock. Under normal execution, operation of this monitor (and
execution of the corresponding overflow recovery handler) should be continuous and transparent
to users of the network. In contrast, the monitoring of atomicity during system-level messaging
must be selective. The reason for this is that system-level code needs to disable interrupts,includ-
ing the atomicity congestion interrupt, at various times to ensure overall system-level correctness
(e.g. during use of the local memory allocator). This, in turn, implies that high-priority system
code (including network overflow recovery handlers) must be able to executeregardless of the
current state of the network12. Furthermore, many system-level message handlersdo not send
messages (e.g.remote thread dispatch); such handlers are simpler if they leave interrupts disabled
while freeing messages from the network. In essence, since we can trust system-code to follow
simple rules of communication, we can allow it the freedom to ignore deadlock detection when it
is safe to do so. In marked contrast to system-level code, user-code is not reliable; hence, deadlock
detection must be enabled at all times during user-level execution. For example, user-level atom-
icity warrants special treatment because user-code can introduce deadlock at points of atomicity
simply by refusing to free messages from the network.

The above discussion suggests two separate monitoring mechanisms: (1) a hardware mecha-
nism that watches for queue-level deadlock, but which may be disabled when necessary by the
operating system, and (2) a specialized mechanism that detects abuse of atomicity by the user.
Together, these cover all requisite aspects of atomicity congestion detection. In the following sec-
tions, we will discuss both of these mechanisms. First, we will discuss a mechanism for detecting
queue-level deadlock. Next, we will discuss how this can be coupled with system-level code to
achieve deadlock-free execution. Finally, we will combine the lessons from these two in a sin-
gle, user-level atomicity mechanism that achieves protection and deadlock freedom in the face of
potentially incorrect user code.

12This requirement is a non-trivial one to satisfy. We will be discussing it in depth in Section 4.3.7.

Page 132 CHAPTER 4. THE PROTOCOL DEADLOCK PROBLEM

4.3.3 Detecting Queue-Level Deadlock

Figure 4-7 shows the queue topology of the Alewife multiprocessor. As seen in this diagram,

IPI Output
Local Queue

M
U

X
M

U
X Cache Protocol

Output Queue

O
ut

pu
t M

U
X

Network
Output Queue

Network
Input Queue

M
U

X
M

U
XCache /

 Remote TXN /
Memory

Protocol Input

IPI Output
Descriptor

Cache
Protocol Output

IPI Input
Queue

P
ro

ce
ss

or

Memory
Protocol Output

Memory Protocol
Output Queue

Remote TXN
Protocol Output

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA N

et
w

or
k

Input DMA
Control

Output DMA
Control

Memory
Machine

Memory
Machine

Network Queues
and

Control

A
sy

nc
hr

on
ou

s
In

te
rf

a
ce

Figure 4-7:Queue topology for the Alewife CMMU.

there are a number of queues in the system. At the lowest level are the network input and output
queues. Alewife’s integration of message passing and shared memory is evidenced by the fact that
all network traffic feeds through these two queues. The abstract “protocol engine” used to discuss

deadlock in Section 4.1 is, in real-
ity, implemented as three separate
protocol processors: theCache
Management, Remote Transac-
tion and Memory Management
protocol engines. As a conse-
quence, the network input queue
feeds four input paths: the IPI in-
put queue (which forwards mes-
sages to the processor), and the
three different protocol engines13.
Furthermore, three separate out-

put queues feed into the network output queue: the IPI Local Queue (which holds messages from
the processor), the cache-protocol output queue (which accepts packets from both the Cache Man-
agement and Remote Transaction machines), and the memory-protocol output queue (which ac-
cepts packets from the Memory Management protocol engine). We will discuss these different
entities in a bit more detail in Chapter 5. The two muxes along the input path facilitate looping of
packets back from the IPI output descriptor and merging of these packets with incoming network
packets; this mechanism is used during network overflow recovery and will be mentioned later.
One final aspect of Figure 4-7 that we will discuss in Section 4.3.7 is the existence of block DMA
engines; these handle the DMA to and from the network and must be guaranteed to make forward
progress in order to avoid introducing additional opportunities for deadlock.

Let us now return to the topic at hand, namely the detection of queue-level deadlock. Since the
network output queue is downstream from all sources of data in the CMMU, we could conceivably
monitor this queue in order to make estimates about the local state of the network. In all cases
of actualdeadlock, the output queue will be clogged indefinitely. Hence, one possible detection
heuristic would be to monitor the flow of data through the output queue, declaring deadlock in
instances for which the output queue is full and not moving. This heuristic would be guaranteed
to detect all actual deadlocks. Unfortunately, it is a bit too simplistic because it is subject to many
false detections: networks such as those present on Alewife have a wide variance of latency and
throughput since applications tend to be bursty and the resulting contention effects cause intermit-
tent (and widely varying) periods of blockage. Consequently, the output queue can be full and not
moving under normal circumstances. This suggests that hysteresis is an important component of
any detection mechanism14; we will illustrate the need for hysteresis directly when we explore the

13Figure 4-7 does not show the demultiplexor that feeds incoming protocol packets to appropriate hardware.
14As a case in point, the J-machine[87] employed an “interrupt on full output queue” heuristic that tended to be far

too sensitive to network behavior[73].

4.3. Exploiting Two-Case Delivery for Deadlock Removal Page 133

heuristic offset(a measure of the effectiveness of a deadlock detection heuristic) in Section 6.3.5.
We should note that, although the input queue is clogged during deadlock, it provides a less desir-
able detection heuristic than the output queue, since software message handlers introduce periods
of queue blockage on the input that have more to do with software overhead than actual deadlock
(potential or real)15.

Hence, we suggest the following detection heuristic for detecting queue-level deadlock:

� Monitor thenetwork output queue.

� Consider the local networkcloggedif the output queue isfull andnot moving.

� If the network is clogged for a preset period (the hysteresis interval), generate an
atomicity congestion interrupt.

This relatively simple detection heuristic was implemented in Alewife. As we will discuss in
Section 6.3.1, this heuristic is surprisingly robust, but is still subject to a bit of premature triggering:
in practice, it tends to trigger in bursty situations for which the output queue is clogged, but the
input queue is either empty or partially filled. Such a scenario is clearly not a deadlock (which
involves full inputand output queues). Thus, a simple modification to the definition ofclogged
could be:

� Consider the local networkcloggedif the output queue isfull andnot moving, and
the input queue isfull andnot moving.

We explore the efficacy of these two detection heuristics (with respect to false detections) in Sec-
tion 6.3.5, and will show that the latter is more effective at detecting deadlock.

4.3.4 Software Constraints Imposed by Queue-Level Deadlock Detection

Once we have a queue-level deadlock detection mechanism, we must ask the question of how it
should be used. In this section, we will begin to answer this question by exploring the use of
the detection mechanism for hardware-protocol processing (i.e. cache coherence) and operating-
systems-level message passing. We will assume that these two users of the network are “correct”
in the sense that both memory hardware and operating-systems code are extensively tested and
under the control of sophisticated “implementers”16. It is our goal to understand what restrictions
need to respected by these uses of the network interface.

Recall that we already broached this topic in Section 2.5.2, where we discussed the interactions
between shared memory and message passing in interrupt handlers and other atomic sections. That
section explored interactions at the level of the communication models and thus described interac-
tions that were visible to the user. Such interactions (e.g.no shared memory in message handlers),
were discussed in general terms, and attributed to the fact that Alewife has only a single logical

15Alternatively, the hallmark of deadlock is the inability to process messages due to a lack of output queue resources;
this is distinct from network congestion caused by long handler occupancies.

16The extent to which this is true is a recurring matter of debate as systems get more complicated, but we will
assume it as an axiom for the time being.

Page 134 CHAPTER 4. THE PROTOCOL DEADLOCK PROBLEM

network channel. However, that section was written from the point of view of the operating sys-
tem or other users that are not insulated from the raw network hardware. As we pointed out in
Section 4.2.2, all deadlock centers around atomic sections. Hence, one of the results that we will
achieve in this section is to codify the constraints on operating-systems by queue-level deadlock
detection, couple them with the model-level constraints of Section 2.5.2, and ultimately (in Sec-
tion 4.3.5) produce a user-level atomicity mechanism that can remove these constraints through
virtualization.

In this context, it is perhaps interesting that we have not yet directly mentioned atomicity, even
though we stressed the importance of atomicity earlier. In fact, atomicity comes into play with the
enabling and disabling of atomicity congestion interrupts. If atomicity congestion interrupts are
disabled, then codemust not:

� Touch or access shared memory.

� Send messages.

The first constraint arises because the shared-memory system is always active, regardless of the
state of the interrupt enable mask; thus, shared-memory requests might not make forward progress
if atomicity congestion detection is disabled17. However, the attentive reader might ask why the
second of these constraints is necessary if message arrival interrupts are enabled (thereby guaran-
teeing that the messaging softwareis not in an atomic section). This interaction between shared
memory and message passing is a consequence of the decision to rely on a single logical network
channel to carry both styles of communication. It may be understood by examining Figure 4-7: if
message at the head of the network input queue is a shared-memory request, then it can provide
a deadlock-causing dependency, preventing messages behind it in the input queue from being re-
ceived by the processor. The use of a single logical channel effectively couples the shared-memory
and message-passing atomic sections.

A complementary coupling between message passing and shared memory was introduced in
Section 2.5.2 and is also caused by the presence of a single logical network channel: shared-
memory accesses cannot occur during periods in which message arrival interrupts are disabled. We
can appeal to Figure 4-7, once again, to note that the reason for this restriction is that a message
(or group of messages) may stretch through the IPI input queue into the network input queue,
preventing the arrival of shared-memory data. If message arrival interrupts are disabled, then there
is no guarantee this situation will resolve itself. This means thatno accesses to shared memory
are allowed during the atomic sections of message handlers. Note that this constraint is, in fact, a
“law of programming” that is designed to avoid the refused service deadlock (Section 3.1). When
we revisit the assumptions of the Alewife design in Chapter 7, one of our observations will be that
the presence of a single logical network channel provides an unfortunate coupling between shared
memory and message passing that restricts integrated use of these mechanisms.

Exploring these restrictions a bit further, our prohibition toward access of shared memory
wheneitheratomicity congestion interruptsor message arrival interrupts are disabled extends even
to data that a careful operating-systems designer has guaranteed will not be accessed by remote

17Understanding why this is true was, in fact, one of the points of Section 4.1.

4.3. Exploiting Two-Case Delivery for Deadlock Removal Page 135

users18. The reasons for this are a bit subtle, but are basically a constraint imposed by reasonable
implementation. We examine this in a bit more depth in Section 4.3.7.

4.3.5 User-Level Atomicity and Two-Case Delivery

Now that we have examined the constraints on system-level atomicity, we can discuss features of
the complete user-level atomicity mechanism. Section 2.4.5 covered many of the salient points,
but we like to examine them in the complete context of two-case delivery. The goal of the user-
level atomicity mechanism is to provide direct hardware access to the user, but to invoke two-case
delivery as a special case whenever the user violates any of the atomicity constraints that we have
mentioned above. To summarize the high-level constraints of Section 2.4.5 and the hardware
constraints of Section 4.3.4, we must handle the following special circumstances:

1. Whenever the user refuses to free messages from the network we must invoke
second-case delivery. Failure to do so could cause deadlock for any of the rea-
sons mentioned in earlier sections of this chapter. Further, we would like to invoke
buffering when any message been stalled at the head of the network input queue
for some period of time, event if the user will eventually free the message. This is
simply to decongest the network.

2. Whenever the user attempts to access shared memory in an atomic section and a
message is pending at the head of the input queue we must invoke second-case
delivery. We must invoke second-case delivery in order to free the network for
shared-memory arrival.

3. Should a user-level handler be invoked with priority inversion, then we must be able
to revert to the higher priority code when the user exits atomicity. Note that we also
enforce a maximum time limit on priority inverted handler code before triggering
second-case delivery, thereby minimizing the interference between user-code and
the higher-priority code. Included in our classification of “priority inversions” is
the case in which the interrupted context has invoked the thrash-lock mechanism to
avoid thrashing (Section 3.2.8). In that case, we must consider the shared-memory
protocol lock to be of higher priority than the user-level handler.

4. Whenever the queue-level deadlock detection mechanism of Section 4.3.3 triggers,
we must invoke second-case delivery.

Note that the last of these mechanisms is independent of the other three and must be functioning
at all times since queue-level deadlock may occur even under “correct” operation. This is why
we have provided the queue-level deadlock detection mechanism as an independent mechanism
(which is not considered a part of user-level atomicity).

Section 2.4.5 discussed the the user-level atomicity mechanism and provided a simple state
diagram of the “common-case” states of this mechanism (Figure 2-13). Adding two-case delivery
to handle the corner cases produces Figure 4-8. In this diagram, user-code states are unshaded

18Consider the user of shared-memory addresses for operating system stacks.

Page 136 CHAPTER 4. THE PROTOCOL DEADLOCK PROBLEM

and annotated with a four-bituatomctrl value, while OS states are shaded. This is divided
into three distinct sets of states: hardware atomicity (left), queue emulation (middle), and software
atomicity (right). The first category is comprised of the four primary states from Figure 2-13).
These are labeled as “First-Case Delivery”. In this regime, state transitions are under direct control
of the user. Further, the atomicity extension mechanism is used to trigger a return to the operating
system to handle a return to high-priority code during priority inversion. The middle states (shaded
and circled) represent operating-system’s code that emulates network queues during second-case
delivery, while the right three states are active when the user is consuming buffered messages.
Collectively, these seven states are labeled “Second-Case Delivery”. Note that the freedom to
move back and forth between the left and right halves of this diagram stems from the network
access transparency that we made a point of discussing in Section 2.4.4.

This diagram is best understood by starting with the user-level states. For simplicity, all

arrival
congestion

network
clear

(messages
 buffered)

0000

1011

User Code

Handler
Atomic
Section

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Overflow
Divert-2

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Atomicity
Extend

dispose

1001
Atomic
Section

timeout
congestion

shared mem

1P1P
Handler
Atomic
Section

1P0P
Atomic
Section

dispose disatom

disatom
 ^ (P = 0)

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Queue
Emulation

exit b
uffering still buffering

dispose

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Atomicity
Extend

disatom ^ (P = 1)

arrival
congestion

timeout
congestion

shared memenabatom

(0 => P)

interrupt

(inversion => P)

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Overflow
Divert-3

network
clear

(nothing
 buffered)

congestion

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Overflow
Divert-1

network
clear

(messages
 buffered)

network
clear

(messages
 buffered)

network
clear

(nothing
 buffered)

“software
 interrupt”

“software
 interrupt”

First-Case Delivery Second-Case Delivery

Figure 4-8:The interaction of the user-level atomicity mechanism
with two-case buffering. The four bit value is theuatomctrl reg-
ister; these bits areatomicity assert, timer force, disposepending,
andatomicity extendin that order.

of the error arcs have been omitted. The backgrounduser code state is executed when
there are no pending mes-
sages; hence it appears only
on the left half of the diagram.
The other two user states,
handler atomic section
and atomic section
are mirrored on both
sides of the diagram. The
handler atomic section
state is invoked when a mes-
sage handler first starts, and
serves enforce the constraint
that a user must free at least
one message before exiting
the atomic section. Message
disposal transfers into the ap-
propriate atomic section
state (possibly crossing from
right to left if there are no

further buffered messages). The key distinction between these two states is the value of the
dispose pending bit of theuatomctrl register. In addition to handling the second half of
a handler atomic section, theatomic section states are entered during polling and simple
background atomicity requests.

Revocation of the interrupt disable mechanism represents a transition from the left to the right
half of the diagram. Revocation starts by entry into one of the threeoverflow divert states;
these three perform identical buffering functions with the exception of their exit arcs. There are
three distinct types of revocation events that can trigger entry into buffering:network congestion
(i.e. queue-level deadlock detection),atomicity timeout, andshared-memory access. Exit from
these buffering states occurs after buffering one or more messages as long as the network is deemed
“sufficiently clear”.

4.3. Exploiting Two-Case Delivery for Deadlock Removal Page 137

During second-case delivery, the user is not directly impacting the network. Hence, the atom-
icity timeout is never invoked. Further, for similar reasons, shared-memory access is not restricted.
Thus, reentry into buffering from the right of the diagram is triggered either by network congestion
(always a potential problem) or by the arrival of user-level messages. The arrival of new user-level
messages invokes buffering for the simple reason that the user is already occupied processing
buffered message. Hence, we simply add new messages to the end of the software queue at this
point. Transitions from the right to the left of the diagram occur when the user has processed all
pending buffered messages. Should the user exit second-case delivery by consuming all buffered
messages, then new messages will once again be consumed directly.

Note thattransparencyduring second-case delivery means three things here: First, that user
code can read from the message input array without caring whether or not it is buffered in memory;
second, that disposal operations (ipicst instructions) cause traps into the buffering emulation
code; and third, that atomicity extend operations are always invoked at the end of an atomic section
in order to emulate a message arrival interrupt (during buffering). Further, as mentioned above,
message arrival interrupts are redirected into buffering code rather than invoking the featherweight
threading code.

This is the complete user-level atomicity mechanism. It is simple in its high-level details, if
perhaps requiring a bit of care in its implementation.

4.3.6 Virtual Queueing and Second-Case Delivery

In the previous section, we discussed the user-level atomicity mechanism from a relatively high
level. In this section, we would like to explore the process of buffering and second-case delivery
in a bit more detail. Given the presence of software in the buffering process, we are free to de-
multiplex the single incoming message stream into a number of different software queues. This
particular operation, which we callvirtual queueing, was mentioned in Section 2.4.7 in the context
of providing UDM-style messaging a multi-user environment. Message passing in a multi-user
environment occurs simply by buffering messages that arrive for descheduled users (i.e. mis-
matched messages) into reserved buffers, one for each user. When one of these formerly idle users
is rescheduled, we simply begin their execution in the buffered half of the atomicity diagram. It
is up to the scheduler to guarantee that the number of such “mismatched” messages is relatively
small, and hence the amount of time that applications spend in buffering mode at the beginning
of a schedule quantum is relatively small. Ken Mackenzie’s PhD thesis explores this aspect of
buffering in more detail [79] as does [78].

However, virtual queueing is important even in a single user machine such as Alewife. Let
us return to the question of what happens when the queue-level deadlock detection mechanism is
invoked. In Section 4.3.1, we introduced two distinct phases of second-case delivery, namelydivert
andrelaunch. When the hardware queues are deadlocked, much of the system is inoperative. Thus,
thediverthandler is a very high-priority handler (in fact, it is the highest-priority handler). Once it
is invoked, the first thing that it must do is preserve any state that may be required to continue later.
In particular, since the operating system accesses the network input queue directly (especially in
the A-1000 CMMU, where transparency was not available), the divert handler must keep track
of the message at the head of the hardware input queue so that it can restore this message before

Page 138 CHAPTER 4. THE PROTOCOL DEADLOCK PROBLEM

returning from interrupt.
Next, the divert handler must unclog the network, sorting packets as it does so. Alewife sup-

ports several distinct types of message traffic: cache-coherence protocol messages, system-level
messages, and user-level messages. Furthermore, given the presence of the LimitLESS coherence
protocol, cache-coherence packets may be seen as divided into two categories: those that have not
been touched by hardware (unprocessed) and those that have been queued for software handling
(processed); during buffering, these latter two types of messages may be mixed in the same in-
put queue19. Each of these four types of messages require distinct processing and hence must be
queued separately.

The reasons for virtual queueing are straightforward: cache-coherence messages that have al-
ready been processed must be handled by software and (for protocol correctness), must be handled
as a group before any unprocessed coherence messages. In contrast, unprocessed messages must
be relaunched, i.e. passed back to the hardware for processing (this results in more efficient pro-
cessing than any software handler could accomplish). Further, user and system messages must be
buffered in different queues because they have different memory requirements: system-level mes-
sages must be buffered in system space and can be “guaranteed” not to overflow system resources,
whereas user-level messages must be buffered in user-space and are not subject to any constraints
on memory usage20.

When the network is sufficiently unclogged (as noted by the draining of the output queue), the
divert handler restores the initial message by launching through the loopback queue, schedules a
software interrupt, then returns to the interrupted code. Therelaunchprocess is triggered later at
software-interrupt level. The various ordering constraints (such as handling of processed messages
before unprocessed ones) is handled by providing prioritized software interrupts. Note that the
fact that software interrupts are all lower than other interrupts (such as message arrival interrupts)
means that the process of relaunching messages through the loopback path (the only option in the
original Alewife machine) may be gracefully interspersed with interrupts to handle these messages.

4.3.7 What are the Hidden Costs of Two-Case Delivery?

Having spent a number of pages extolling the virtues of two-case delivery (both from a hardware
complexity standpoint and from the standpoint of guaranteeing freedom from deadlock for user-
level message passing), we now turn to some of its hidden complexities. Certainly, two-case
delivery was the right choice for the Alewife machine. At the time that Alewife was initiated,
networks with a single logical network channel were the only ones available; in point of fact, the
EMRC was the only viable choice. However, a complete implementation of Alewife yielded a
number of complexities that can be traced directly back to the requirement of two-case delivery.
Some of these constraints, as we will see, are intrinsic to two-case delivery, while others are specific

19There is a bit in the header that distinguishes these types of messages.
20In fact, the potentially unbounded buffering requirements in a multi-user multiprocessor system can be handled

by buffering user messages in virtual memory backed by a second logical network for paging to disk if necessary;
the scheduler can then be used to squelch processes that are being overzealous in their sending of messages in order
to minimize that actual amount of paging that occurs. This notion ofvirtual bufferingis examined in detail by Ken
Mackenzie in [79].

4.3. Exploiting Two-Case Delivery for Deadlock Removal Page 139

to interactions with other Alewife features. There are four different issues that we would like to
discuss here:

� Software complexity. Two-case delivery introduces a layer of software which is
below even the cache-coherence protocol.

� Hardware-level atomicity. Every action undertaken by the hardware must be guar-
anteed to complete atomically, in a bounded amount of time.

� Flexible network topology,i.e. the ability to “divert” messages normally processed
by hardware into the software input queues.

� Local unshared memory space. Two-case delivery introduces a need for access to
memory that may be used under all circumstances.

� Guarantees that network DMA can always complete, regardless of the state of the
network.

The first item is a general comment about the complexity of divert and relaunch handlers, while
the second three items are hardware requirements that stem directly from two-case delivery.

Software Complexity: First and foremost, the complexity of the divert and relaunch handlers in
Alewife was much greater than anticipated. The network overflow process is buried at a level of
abstraction below most of the layers of the operating system and, for that matter, below the cache
coherence protocol. As a result, problems with this code were non-deterministic and hard to de-
bug. In addition, the presence of two-case delivery added a distinction within the operating system
between code that was protected against network deadlock (when the queue-deadlock detection
interrupt was enabled), and code that was not protected. However, much of the complexity in the
actual divert and relaunch handlers derived from the fact that all messages needed to be relaunched
in the original Alewife machine and hence, queues had to be cleared out in a way that avoided dead-
lock between the relaunch process and users of the output descriptor array. Adding the ability to
transparently extract messages from the network and buffer them in memory without relaunching
them would greatly simplify this code. Further, elevating issues of queue-level deadlock to soft-
ware ensures that the deadlock processis debuggable — the occurrence of deadlock is visible (and
non-fatal) with two-case delivery; contrast this with a hardware-level deadlock removal scheme,
for which bugs in the deadlock avoidance scheme results in fatal network deadlocks. Thus, while
two-case delivery adds another layer of complex software, it has a number of advantages as well.

Hardware-Level Atomicity: On requirement that is introduced by the existence of two-case
delivery is the need for atomicity at all levels of the hardware. In particular, hardware handling of
cache-coherence packets must beatomicandnon-blocking, i.e. the memory controller must refuse
to start processing a cache coherence request before it has sufficient resources (such as output
queue space) to complete the request. There are two reasons for this requirement in the context of
two-case delivery: First, since network congestion is relieved through the execution of an interrupt
handler, the memory controller must be free to handle memory requests from the local processor
(such as instruction cache misses) at all times; thus, it cannot be blocked awaiting the completion

Page 140 CHAPTER 4. THE PROTOCOL DEADLOCK PROBLEM

of a half-processed coherence protocol request. Second, since we may divert and relaunch packets
from the input queue, we must make sure that coherence actions are not executed multiple times
(most coherence protocol processing is not idempotent). Thus, the memory controller must never
stop in the middle of processing a request.

In fact, as it turns out, enforcing atomicity of operations makes for much better scheduling of
the memory controller than would occur otherwise. This is because the amount of time required to
process a request becomes bounded, and the scheduler can maximize use of its cycles (or eliminate
unnecessary dead-time blocking on resources). We will return to this again in Chapter 5 when we
discuss scheduling of the memory controller.

Flexible Network Topology: In addition to the atomicity of operations, a machine that relies
on two-case delivery must also support a flexible network topology, permitting the redirection of
packets normally destined for hardware processing into the message input queues. In Alewife,
this consists of special network control bits in one of the control registers that puts the internal
network into “divert mode”. One of the impacts of hardware atomicity on this mechanism is that
second-case delivery software can place the network into divert mode at any time without risking
partial processing of coherence protocol packets.

Local Unshared-Memory Space: As mentioned previously, the existence of two-case delivery
introduces a need for two classes of memory: shared and unshared. The reason for this distinc-
tion is that shared memory is not guaranteed to be make forward progress when the network is
congested (or deadlocked). Since thedivert handler must be able to execute in order to remove
network deadlock, some other memory space must be available, both for access to instructions and
for temporary data/software queues. That was the local unshared-memory space. What we would
like to explore here is that fact that the distinction between shared and unshared memory must be
visible in the physical addresses, not merely in the coherence directory. The reasons for this are a
bit subtle, but may be described as a constraint imposed by implementation. By tagging accesses
with a “local address space” tag, various levels of the hardware can provide special streamlined
services.

There are three different areas in which this this tag comes in handy: the memory controller
itself, the local request queue to memory, and the transaction buffer. The first of these stems directly
from the atomicity constraint mentioned above: the need for atomicity of memory operations is
best implemented by assuming thateveryshared-memory request processed by the local memory
system requires a minimum amount of queue resources (possibly for invalidation traffic,etc.).
Chapter 5 will discuss this in more detail, but the end result is a memory system that will refuse
to process shared-memory requests during periods of network congestion, even if the satisfaction
of these requests ultimately does not require network resources. These constraints are enforced
by scheduler. By providing a “local memory” tag, the scheduler can avoid checking for queue
resources, knowing that local memory operations are guaranteed not to require the network.

The second area in which the unshared-memory tag is useful is in the request queue to local
memory. The local memory system includes a special request queue between the processor and
local memory. This queue is of depth two, so it is possible for up to two prefetch requests for global
memory to be pending at any one time. As a result, if the network becomes deadlocked, it is possi-

4.3. Exploiting Two-Case Delivery for Deadlock Removal Page 141

ble for these prefetches to become clogged, preventing the success of subsequent requests to local
memory. This would defeat the whole purpose of having a special memory space. Thus, during
network deadlock, all requests to the global memory system are aborted: non-binding prefetches
may be aborted in general, and non-prefetch requests are simply NAKed. This has the effect of
terminating any outstanding transactions to local memory, hence clearing out the request queue
(and freeing up the corresponding transaction buffers). Hence, the unshared-memory tag helps to
guarantee the success of local requests.

The third area in which the unshared-memory tag is useful is in the management of the trans-
action buffer. Architecturally, the transaction buffer lies between the processor and the memory
system. In order to guarantee that accesses to local memory can complete at all times, the trans-
action buffer must be managed by reserving buffers for local accesses. The presence or absence
of local memory tags in the transaction buffer is used directly by the transaction buffer allocation
mechanism to ensure that a minimum number of buffers are always available for local memory
accesses. We mentioned this in the context of the faultable flush queue in Section 3.4.2. The set of
transaction buffer constraints for local accesses are discussed in detail in Section 5.2.3.

Thus, the separation of memory addresses into shared- and unshared-memory ranges is ex-
ploited by a number of levels of the hardware.

On subtle aspect of providing a local memory system that is always available is the need to
demote cached accesses to uncached accesses on demand. The reason for this is that the first-level
cache is a write-back cache. This means that, at any one time, the cache may contain many dirty
cache lines, including lines for the shared-memory space. Under normal circumstances, dirty lines
are simply flushed back to the memory system or network on demand in order to free up space
in the cache. Unfortunately, this means that portions of the cache may become unavailable for
reuse during periods of network congestion. This situation, in turn, would require all instructions
and data for the divert handler to be uncached in order to ensure that it can recover from network
deadlock. This would require distinguishing the divert handler from all other code in the system
(so that its instruction fetches could be issued as uncached), not to mention causing this handler to
run very slowly.

However, as we have discussed in previous paragraphs, forward progress of accesses to the
local memory system are guaranteed by the transaction buffer and other portions of the memory
system. Thus, an alternative to running the divert handler instructions uncached is simply to de-
mote cached accesses to uncached accesses automatically when replacements cannot occur for one
reason or another. “Demote” here means that the processor accesses data directly in the transaction
buffer rather than the first-level cache. Thus, this feature allows accesses to “go around” the first
level cache in those instances for which it is necessary, but permits the instructions and data to be
cached in other circumstances.

Guarantees that DMA Can Complete: The final impact of two-case delivery on implemen-
tation results from message DMA. As discussed in Chapter 2, DMA is an integral part of the
user-level message-passing interface of Alewife. This is tremendously useful from the standpoint
of functionality, but has consequences in the presence of two-case delivery. First, since the basic
tenet of two-case delivery is to recover from deadlocked situations by emptying the network input
queue, it is extremely important that DMA operations that have been started on input packets be

Page 142 CHAPTER 4. THE PROTOCOL DEADLOCK PROBLEM

able to complete at all costs. If it were possible for a congested network to prevent input DMA
from completing, then there would be scenarios in which the divert handler would be unable to
perform its primary function of emptying the network. In addition, since relaunching of packets
through the loopback queue is one of our methods of recovering from deadlock (and could, alterna-
tively, be requested by a user), it must be possible for both input and output DMA to be operational
simultaneously. Thus, there must be two independent DMA engines, one for input messages and
another for output messages.

Further, when two-case delivery is coupled with DMA coherence (see Section 2.5.1), the re-
quirement that DMA engines make forward progress becomes complicated by the coherence as-
pects: data being fetched or invalidated from the local cache must have a guaranteed path back to
the memory system, regardless of the state of the network. Thus, the DMA engines perform a type
of cache invalidation that must be guaranteed to succeed. As we will discuss in Chapter 5, this
is accomplished by passing data from the cache through the transaction buffer, invoking the same
constraints and buffer reservation mechanisms that guarantee the forward progress of local mem-
ory21. This methodology ensures a path to local memory simply by ensuring a minimum number
of transaction buffers devoted to local memory access.

Unfortunately, this solution is not sufficient if data has been DMA’ed from the shared address
space. Since DMA in Alewife is only guaranteed to be locally coherent, the primary issue here
is ensuring that the local coherence directories are kept coherent with the local cache (so as not
to confuse the normal memory access mechanisms). Practically speaking, this means that the
transfer of write permission between the cache and local memory must be handled properly by
DMA. As discussed previously, transaction buffer constraints and memory scheduling are applied
based on the type of memory line that is being handled (shared or unshared), but in a fashion
that is otherwise oblivious to the actual sharing state of this memory line. Hence the difficulty:
although we would like to guarantee that invalidated data can pass through the transaction buffer
and memory scheduler under all circumstances we really have no way to to this without vastly
complicating the memory scheduler and related mechanisms22.

The solution that is employed in Alewife is toseparatethe data and coherence information
from a pending DMA invalidation when the transaction buffer contains too much global data: we
take the data from the cache, mark it as “unshared”, and place it in the transaction buffer; at the
same time, we leave the cache-coherent “write permission” behind in the cache as a specialinvalid
write permission(IWP) state. This IWP state behaves exactly like a read-write copy of a memory-
line, but without the actual data. The transaction buffer and memory scheduler can treat the data as
strictly local, since it no longer contains any coherence information; in fact, the cache-coherence
directory does not need to be accessed. As far as the coherence protocol is concerned, the cache
still owns a dirty copy the memory-line; hence it can be flushed or replaced from the cache in the
normal way (with special provisions for the fact that it does not actually contain data). Should the
processor attempt to access a cache-line that is in the IWP state, it blocks while the IWP is flushed
back to memory and a new copy of the data fetched.

21Passing data through the transaction buffer is important: the processor will be able to find it again should it attempt
to fetch it again before it has returned to memory.

22If the network is not congested and the transaction buffer is unclogged, then transfer of write permission from the
cache to memory can happen in exactly the same way that it normally does for other types of cache replacement.

4.4. Postscript: Two-Case Delivery as a Universal Solution Page 143

4.4 Postscript: Two-Case Delivery as a Universal Solution

This chapter has explored some of the issues involved in preventing cache-coherence protocols
and message-passing applications from deadlocking in the network. As we saw, cache coherence
protocolscanbe designed to be deadlock free, one of the principal requirements being the presence
of two or more logical network channels. In some cases, the cost of multiple virtual channels
can be high, leaving a designer wondering if there are alternatives. User-level message-passing
applications, while in theory amenable to the same sort of analysis as cache-coherence protocols,
cannot be guaranteed to be deadlock free, simply because the user cannot be trusted to produce
bug-free code.

In this chapter, two-case delivery was introduced as an alternative to deadlock-removal via
multiple virtual channels for both cache-coherence protocols and message-passing applications.
Although it has a number of complexities, two-case delivery also has a number of advantages.
Utilizing buffering as a mechanism for eliminating dependencies through the network, two-case
delivery is an ideal mechanism to include in machines that integrate message passing and shared
memory; it subsumes other types of deadlock avoidance mechanisms by absorbing deadlock arcs
into the software queues. Further, two-case delivery provides a natural framework in which to
implement a user-level message-passing system such as UDM in a multi-user environment. Finally,
two-case delivery embodies the integrated-systems philosophy of handling common cases directly
in hardware (first-case delivery), while relegating uncommon or congested situations to software.

Collaborators: Ken Mackenzie was an important contributor to many of the advanced aspects
of two-case delivery. In particular, the concept of virtual buffering was developed in great detail
by Ken in his thesis [79]. Further, Ken was instrumental in transforming two-case delivery from a
deadlock-removal mechanism into a universal delivery paradigm. His thesis illustrates the use of
two-case delivery to handle everything from page-faults in message handlers to incorrect message
delivery in a multiuser multiprocessor. Donald Yeung served as a complex user of many of the
exceptional arcs of Figure 4-8, helping to debug the interactions between user-level atomicity and
network overflow recovery.

Page 144 CHAPTER 4. THE PROTOCOL DEADLOCK PROBLEM

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Consequences
Part 2:

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Page 145

Page 146

In the second part of this thesis we will explore the implementation and performance of an
integrated multiprocessor. In particular, we describe how the three challenges of integration are
embodied in the complete system architecture of the Alewife machine. Hopefully this part of the
thesis can provide a reality check on the discussions of the past three chapters. Alewife isnot just
a paper architecture — real machines exist in the lab and are actively used for research.

Many of the mechanisms present in the Alewife machine (both hardware and software) are
limited if viewed in isolation. Thus, the high-level, hierarchical viewpoint of mechanisms first
illustrated by Figure 1-3 (page 27) must be remembered at all times. It is the communication
models (presented to higher levels of software) which ultimately matter. So, even as we present
the decomposition of Alewife into mechanisms, state machines, and data-path diagrams we will
attempt to keep the resulting mechanisms in context – the context of our desired communication
models. This being said, however, the implementation detailsare important in that they impact
performance in a non-trivial way, and serve to illustrate that a machine such as Alewifecansupport
fast mechanisms.

Why bother to implement? Before continuing, we should address an important issue, namely
the omnipresent question: “Why implement at all?” This question is especially important today,
when many universities have succumb to the notion that implementation in an academic setting
is no longer practical. Alewife operated under severe constraints of limited manpower and finite
resourcesy. Despite these limitations, members of the Alewife team (and in particular this author)
believe quite strongly in the value of a working implementation. These convictions led to the
working Alewife prototype described in this thesis.

To expand on this point for a moment, there were a number of reasons for our belief in the
importance of implementation. First, the speed and realism of real hardware permits a much greater
variety of application studies and problem sizes than would be available from a simulator. This
permits a proposed set of architectural features to be explored in a more realistic context than would
otherwise be possible. In a real implementation, the level of detail is absolute; in a simulator, there
is the omnipresent tradeoff between speed and accuracy. Although simulation technology has
improved much in the last decade, it is still not entirely suited to the execution of large problems
running on top of a complete operating system with all of the real effects present in a real machine.
Execution-driven simulators, such as SimOS [95], Proteus [15], and others have made the greatest
strides in that direction. These simulators are good at reducing the number of simulator instructions
executed per simulated instruction (hence increasing simulation speed), but have trouble when
confronted by effects such as fine-grained interrupts, interaction of local cache misses with global
cache misses, etc. The very nature of some of the proposed Alewife features, such as LimitLESS
cache coherence and the integration of fine-grained message passing and shared memory, requires
a level of faithfulness in simulation that would have defeated many of the advantages of execution-
driven simulation methodologies. Lest this author should give the wrong impression, simulationis
an important tool throughout the design process, serving to choose among alternatives in the early
stages of design and helping to validate during the later stages.

yAlthough similar constraints are perhaps observed in industry, they are often not as severe — the rise of the “Intel
paradigm” (hundreds of engineers working on a single chip) would tend to suggest that they are by no means necessary.

Page 147

Second, the act of implementation is a form of discovery in and of itself — many problems and
complications that are unappreciated during the initial stages of a design become painfully obvi-
ous during the implementation process. This is a fact that was demonstrated several times during
the course of the Alewife implementation and is one that is often ignored by those claiming that
careful simulation studies are sufficient. Many of the details discussed in Chapter 3 on Service
Interleaving, for instance, were apprehended only during the course of implementing the Alewife
CMMU. A designer with a well-tuned intuition might be able to divine some of these problems
and solutions, but would be hard-pressed to stumble upon the final result without embarking on a
complete implementation effort. In this vein, there are those who propose that academicians should
save the time and expense of testing and fabrication by treating the implementation process as an
exercise which does not result in actual hardware. However, as one who partook in the implemen-
tation of Alewife, I would be the first to state that this point of view seriously underestimates the
motivational factors (desire for a final product) involved in implementation.

The final and perhaps most important reason for embarking upon an implementation project is
the fact that it is only with the existence of a reasonable implementation that ideas in computer ar-
chitecture graduate to viable solutions. Too many paper designs propose hardware mechanisms that
would be impossible or unreasonably complicated to implement. Features such as fully-associative
caches, huge cross-bars, and other mechanisms abound in untested architectures. In contrast, the
Alewife multiprocessor exists and is in active use as a research vehicle. The existence of a working
architecture provides validation for the ideas described in the first few chapters. Whether or not
these ideas apply in future situations, they have become viable architectural solutions.

With the previous discussion as motivation, we now embark on a description of the imple-
mentation and performance of the Alewife multiprocessor. The first chapter, Chapter 5, explores
the implementation of the Alewife machine, the most important component of which is the Com-
munications and Memory Management Unit (CMMU). The next chapter, Chapter 6, shows the
performance of the Alewife machine. Finally, Chapter 7 looks back at some of the lessons of the
Alewife project. Figure 1-3 in Chapter 1 (page 27) served as a road-map for the Design portion of
this thesis; it will do so again as we begin the process of exploring the Alewife implementation.

Page 148

Chapter 5

The Hardware Architecture of Alewife

In this chapter, we will unravel some of the details of the Alewife implementation. As a

Directory

Distributed

Private

Memory

Cache

FPU

Network
Router

Alewife node

CMMU

Sparcle

Shared

Distributed

Memory

HOST

VME
Host Interface

SCSI Disk Array

Figure 5-1:Node Diagram and Schematic for a
16-node Alewife Machine.

starting point, we reproduce the Alewife node-diagram in Figure 5-1. This figure gives a
high-level picture of the Alewife implementa-
tion. Each node of Alewife consists of two ma-
jor components, the Sparcle processor and the
communications and memory-management unit
(A-1000 CMMU). Other elements of the system
are subordinate to these two components. The
Sparcle processor contains the basic execution
pipeline and is responsible for all instruction-
fetch and control-flow, as well as execution of
most instructions (with the notable exception of
floating-point instructions, handled by the FPU,
and communication instructions, handled by the
CMMU). Sparcle is best described as a con-
ventional RISC microprocessor with a few addi-
tional features to support multiprocessing. The
CMMU, on the other hand, is responsible for all
memory and communication-related operations:
it generates and consumes network traffic from
the mesh router; it keeps the global caches co-
herent; it performs DRAM refresh and control;
it generates interrupts and gathers statistics. In
some sense, Sparcle handles all of the “standard”
or “non-research” elements of an Alewife instruction stream, while the CMMU is responsible for
everything else.

This particular division of Alewife into Sparcle and CMMU was as much the result of con-
venience of implementation as of anything more fundamental. Since Sparcle was derived from
an industry-standard SPARC integer pipeline, this division reduced the probability of introducing
bugs into a functioning and debugged element of the system. Further, MIT’s control over the Spar-

Page 149

Page 150 CHAPTER 5. THE HARDWARE ARCHITECTURE OF ALEWIFE

cle design process was limited, since all modifications were implemented off-site, at LSI Logic
and Sun Microsystems. Hence, most of the research interest of Sparcle lies in itsinterfacesto
the CMMU, i.e. the way in which it permits user-level communication operations to be passed
directly to the CMMU for processing. In the next section, we will spend some time discussing
these interfaces.

It is important to note that the CMMU (and hence the communication interfaces) is connected
directly to the first-level cache bus. Much debate has waged about cost and feasibility of placing
communication interfaces so close to processor pipeline. In many cases, this debate degenerates
into a philosophical debate about convenience and the degree to which the processor pipeline is
untouchable. The point of view of the author was expressed in Section 2.1, when we discussed
viewing communication interfaces as extensions to the ISA: communication operations are as im-
portant as computation instructions. Thus, it has been our goal throughout this thesis to explore
interfaces that are simple and general enough that they would be included in the processor design
from the beginning. This is in marked contrast to many other multiprocessor designs that tack
communication interfaces onto existing pipelines and consider this a virtue.

Before we move forward, however, we would like to start with a bit of focus. Inasmuch as the
Alewife multiprocessor is a complete, functioning system, many of the mechanisms presented in
this chapter serve as scaffolding on which the research mechanisms are built or serve to provide
functions required for a complete machine. Elements such as DRAM refresh and control or the fast
interrupt controller fall into this category of scaffolding. Thus, before diving into the architecture,
we would like to briefly touch upon the mechanisms orprimitivesthat are directly related to the
integration of message passing and shared memory. To do so, we call to mind the “hardware
primitives” portion of Figure 1-3 on page 27, reproduced here as Figure 5-2.

In this figure, we see five semi-independent classes of mechanism, namelyshared-memory

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Network

R
e

vo
cab

le
In

terrup
t

D
isa

ble

D
ea

dlo
ck

D
etectio

n

Lim
ite

d D
irecto

ry
S

hared M
em

o
ry

w
ith L

im
itL

E
S

S

D
irectory
A

ccess

M
u

ltiple
H

ard
w

are
C

o
ntexts

Atomic Message-Passing Interface with DMA

F
ine

-grain
S

ynch

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Software Layers

Figure 5-2:Hardware Primitives supporting in-
tegration in the Alewife architecture.

support (LimitLESS), rapid context-switching support, message-passing support, deadlock de-
tection, andrevocable interrupt disable support.
The high-level aspects of each of these mecha-
nisms have appeared in discussions of the previ-
ous three chapters. In this chapter, we will look in
more detail at the actual implementation of these
mechanisms.

All told, Alewife provides a plethora of
mechanisms and communication instructions.
This would, at first glance, seem to be a regres-
sion to the days of CISC. However, the actual set
of communication operations is a fairly concise
set. In addition to tightly coupled facilities that
might be considered “instructions”, the CMMU

provides many functions normally handled by other aspects of a system, such as interrupt control,
memory initialization and control, timer facilities and statistics. Further, some of the facilities are
experimental in nature. In this chapter, we will discuss the facilities that Alewife provides. In the
chapter on Lessons of the Alewife Project (Chapter 7), we will revisit the question of essential
mechanisms, attempting to get a better handle on the elusive “instruction set for multiprocessing”.

5.1. Sparcle Architecture and Implementation Page 151

5.1 Sparcle Architecture and Implementation

Our goal in this section is to show how Sparcle enables the fast interfaces of Chapter 2, and hence
permits the tight integration of shared-memory and message-passing communication. As men-
tioned above, Sparcle is best thought of as a standard RISC microprocessor with extensions for
multiprocessing[4]. One of the aspects of Sparcle that was exploited in Alewife was the fact that
it had no on-chip caches, something which is unheard of today. In this sense, Sparcle represents
microprocessor implementation technology from two or three generations ago. It is important to
keep in mind, however, that this was ofimplementation convenience only. It permitted close, but
external, access to the processor pipeline, thereby making it much easier to add instructions and
mechanisms. One of the primary goals (and results) of Alewife was an “instruction set for multi-
processing” that was compatible with standard RISC pipelines. The ease with which Sparcle was
supplemented with multiprocessing capability would translate directly to modern pipelines; these
interfaces would simply be present on-chip rather than off-chip.

This section is divided into two major pieces. First, we discuss the interface between Sparcle
and the CMMU. This interface is flexible enough to permit the construction of a number of power-
ful “instructions for multiprocessing”. Then, we discuss the additions to SPARC to support rapid
context-switching and featherweight threads. An important thing to remember during this discus-
sion, is the fact that Sparcle is a derivative of a SPARC Version-7 processor from LSI Logic. The
additions were relatively minor — they increased the number of gates by about 10% over the basic
SPARC1. Modifications to this processor were specified at MIT, but implemented by LSI Logic
and Sun Microsystems2. Thus, the set of modifications that we requested were necessarily limited
in scope. Hence, Sparcle represents a tradeoff between desired functionality and practicality.

5.1.1 Sparcle/CMMU Interfaces

Sparcle implements a powerful and flexible interface to the CMMU. Figure 5-3 illustrates

Sparcle
Processor

CMMU

External Condition

Trap access
Hold access

Access type/modifier
Address Bus

Data Bus

Launch External
Instruction

Asynch Interrupts

Figure 5-3:High-level interface between the
Sparcle pipeline and the CMMU.

how this interface couples the processor pipeline with the CMMU. As seen in this figure, the
interface can be divided into two general classes
of signals: flexible data-access mechanismsand
instruction-extension mechanisms. Flexible data ac-
cess refers to the ability to distinguish different “fla-
vors” of data access, thereby enabling the memory
system to react differently to each flavor. Instruction-
extension refers to the ability to add new instructions
to the Sparcle pipeline.

Flexible Data Access: There are several important
features of flexible data-access mechanisms as used
in Alewife. First, each load or store to the first-level cache is tagged with a “flavor”, allowing

1Which may sound like a lot until one realizes that this is only about 2000 gates.
2We are eternally in debt to both LSI Logic and Sun, but more specifically to Godfrey D’Souza (LSI Logic) and

Mike Parkin (Sun).

Page 152 CHAPTER 5. THE HARDWARE ARCHITECTURE OF ALEWIFE

a system to possess a range of load and storeoperations, each with slightly different semantics.
Note that these differing semantics are provided by the underlying memory system (CMMU) and
not by the processor. Second, the ability to return condition information from the memory system
to the processor. Third, the ability to extend operations into software by generating inexpensive
exceptions on load/store operations. Inexpensive here means the ability to enter handler routines
in a small number of cycles. This combination of features allows a dazzling array of operations
to be synthesized: non-binding prefetch, fine-grained synchronization, rapid context-switching,
supervisory control over things like cache-coherence directories,etc..

Together, the Access Type, Address Bus, Data Bus, and Hold Access line form the nucleus of
data access mechanisms and comprise a standard external cache interface. To permit the construc-
tion of other types of data accesses for synchronization, this basic interface has been supplemented
with four classes of signals:

� A Modifier that is part of the operation code for load/store instructions and that isnot
interpreted by the core processor pipeline. The modifier provides several “flavors”
or “colors” of load/store instruction.

� An Access Typethat denotes the type of access that is occurring. Critical information
includes the supervisor state, the size of the access, and whether or not atomicity is
requested (for operations like atomic swap, etc).

� Two External Conditionsthat return information about the last access. They can
affect the flow of control through special branch instructions.

� Several vectored memory exception signals (denotedTrap Accessin the figure).
These synchronous trap lines can abort active load/store operations and can invoke
function-specific trap handles.

These mechanisms permit one to extend the load/store architecture of a simple RISC pipeline with
a powerful set of operations.

Instruction Extension: An instruction extension mechanism permits one to augment the ba-
sic instruction set with external functional units. Instructions that are added in this way can be
pipelined in the same fashion as standard instructions. The mechanism that Alewife exploits for
adding instructions is commonly present in older-generation microprocessors (and Sparcle in par-
ticular) to permit close coupling with coprocessors: a special range of opcodes is reserved for
external instructions and alaunch external instructionsignal is provided to initiate execution. Co-
processors are required to snoop on the instruction bus, grabbing the same set of instructions as
the integer unit3. The coprocessor is allowed to begin decoding instructions that it recognizes,
but is not allowed to commit any of them to execution until signaled to do so by the processor.
For this reason, the coprocessor may need to buffer one or more pending operations, allowing for
bubbles in the integer pipeline. Since launching of these instructions occurs under control of the
integer pipeline, all of the complexities of branch-delay slots, pipeline flushing during exceptions,
instruction commit points,etc.are focused in a single place, namely the integer execution unit.

3This mechanism, by its very nature, requires access to the first-level cache-bus.

5.1. Sparcle Architecture and Implementation Page 153

The ability to add new instructions was exploited in Alewife to provide extremely low-overhead
mechanisms for interrupt control, manipulation of the message-passing interface, and profiling
statistics. In addition, the ability to snoop on the floating-point coprocessor interface allowed
the synthesis of a floating-point unit with multiple register sets. Other than the latter, which was
truly an implementation hack, the aforementioned uses of the instruction-extension mechanism
could have been replaced with memory-mapped operations (albeit at an increase in cost of the
corresponding mechanisms).

Implementation of the Interface: Figure 5-4 illustrates specific, SPARC-compatible names for

Sparcle
Processor

CMMU

CCC (2 bits)

MEXC (3 bits)
MHOLD

AType (7 bits)/ASI(8 bits)
Addr (32 bits)

Data (32 bits)

CINS (2 bits)

IRL (4 bits)

Figure 5-4: SPARC-compatible signal
names for the Sparcle/CMMU interface.

the interface between Sparcle and the Alewife CMMU. As mentioned above, Sparcle is derived
from a SPARC Version-7 processor from LSI Logic.
Most of the “features for multiprocessing” that were
added to this processor were already present to some
degree. For instance, the mechanism for instruction
extension was already present as part of a coproces-
sor interface, as was the external condition mecha-
nism (complete with coprocessor “branch on condi-
tion” instructions). These interfaces were co-opted
directly and consist of theCINS andCCCsignals re-
spectively.

The data-access modifier used to provide differ-
ent flavors of load/store operations was already present as a relatively obscure feature of SPARC
architectures, called theAlternate Space Indicatoror ASI. Although this 8-bit tag was attached to
all load and store operations, its potential was wasted to a large extent: gratuitous use of the ASI
was made by memory and cache controllers to alter page tables and to control other supervisor
state. Further, in the original architecture, user-code was allowed to produce only two of the 256
different ASI values. The Sparcle processor enhanced the ASI functionality in two ways:

� User-code is allowed to produce the top 128 of the 256 different ASI values. This
means that the standardlda and sta instructions provided by SPARC may be
executed by the user as long as they specify an ASI of 128 or greater.

� Sparcle provides a number of new load/store instructions that act exactly like stan-
dard load/store instructions except for the fact that they produce different ASI val-
ues. These were added because thelda andsta instructions (mentioned above)
only exist with register/register addressing modes; the ASI value takes up space
normally occupied by the offset in the register/offset mode.

These additions turned a superfluous feature into a powerful mechanism for adding operations.
Most of the access-type information is part of the standard SPARC bus interface. However,

Sparcle adds the current state of the supervisor bit as an extra signal. This is important in that it
allows selective protection to be placed on data accesses, as well as to instructions added with the
instruction-extension mechanism. Alewife uses this feature to protect CMMU registers, as well as
to provide enhanced capabilities to some of the communication instructions (e.g.allowing certain

Page 154 CHAPTER 5. THE HARDWARE ARCHITECTURE OF ALEWIFE

classes of communication to be initiated only by the supervisor). The existence of an external
version of the supervisor bit provides much more flexibility in extending the functionality of the
basic integer pipeline.

Finally, the synchronous trap mechanism was enhanced for Sparcle. The basic processor in-
terface included a single synchronous trap line (called MEXC). One of the predominant Alewife
philosophies (discussed in earlier portions of this thesis) is that of handling common cases in hard-
ware and extending complicated or uncommon operations into software. The impact of transferring
operations from hardware into software depends greatly on the cost of the hand-off mechanism.
Thus, Sparcle adds two additional synchronous trap lines to minimize the overhead of entering
into handler code. The three different lines (now called MEXC0, MEXC1, and MEXC2) behave
identically, except for the fact that they invoke different trap handers. In Alewife, two of these
lines (MEXC0 and MEXC1) are dedicated to context-switching and fine-grained synchronization
respectively. The third is used for all remaining synchronous exceptions. In retrospect, more syn-
chronous trap vectors would have been better. As discussed in Chapter 3, the distinction between
synchronous and asynchronous exceptions (trapsvs. interrupts) becomes greatly blurred in the
presence of high-availability interrupts. SPARC (and Sparcle) provides 15 different asynchronous
trap vectors, encoded with four different trap lines; a similar set of synchronous trap lines would
have been desirable4.

Pipeline Effects on the Interface: The coupling of the Sparcle pipeline with the CMMU results
in user-visible delay slots on the external condition codes and interrupt controller. In particular,
Sparcle requires a delay slot between instructions that modify the external condition codes and the
testing of such codes. For instance:

lden %r8, %r9, %r10 ; Load value, set empty.
noop ; Do something else
cbfull,a GotLock ; If full, got lock. Branch.
add %r10, 3, %r11 ; Other random operation.

Thisexternal condition delay slotis required regardless of whether the setting instruction is a data
operation or an external instruction. The second effect is a bit more obscure, but we will mention it
here as an introduction to later “pipeline hacking”. There is an asymmetry required in order to be
conservative in the interaction between external instructions and asynchronous interrupts: in order
to disable interrupts “immediately”, we need to act in the decode stage, while in order to reenable
interrupts, we need to act after the execute stage. The end effect is that loops such as the following
never actually enable interrupts:

enabint TIMER ; Take a timer interrupt here (if necessary).
disint TIMER ; Disable it again.

These effects are best described with the assistance of pipeline timing diagrams. Such diagrams
will be of use to us later in discussing the CMMU, so we introduce them here. During the course of
the following discussion, we will demonstrate the origin of the condition delay slot. The subtleties
of the interrupt controller behavior we will save until the later discussion of the interrupt controller.

4The A-1001 CMMU included 25 different synchronous traps that were dispatched through these three vectors.

5.1. Sparcle Architecture and Implementation Page 155

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

I1 I2 I3

Fetch
I1

I2 I3

Address

Memory

Decode:
Get Ops: I2 I3

I2

I3I2

I3Execute

Write

ADD
R1,R2

A+B
to RR

RR
to RD

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

I1(Add Instruction)

Instructions following or preceding I1

T T+1 T+2 T+3 T+4 T+5 T+6

I4

I4

I4

I4

I5

I5

I5

Figure 5-5:Pipelining for arithmetic instructions.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

I1 I2 I3

Fetch
I1

I2 I3

Address

Memory

Decode:
Get Ops: I2 I3

I2

I3I2

I3Execute

Write

LOAD
R1,R2

A+B
to AR

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

I1(Load Instruction)

Instructions following or preceding I1

T T+1 T+2 T+3 T+4 T+5 T+6

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

IOP

Data1

IOP

Align LD
to RD

Data1
to LD

I4

I4

I4

I4

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Internal OPs for I1 (Pipeline Bubbles)

T+7

Figure 5-6:Pipelining for a single-word load.

The Sparcle pipeline varies in length from four to seven stages, depending on the type of
instruction that is being executed. This variation in delay is a direct result of the fact that Sparcle
has a single unified first-level instruction/data cache. Arithmetic instructions take four cycles while
data access instructions take five (single-word loads), six (double-word loads, single-word stores),
or seven (double-word stores and atomic, single-word swaps). Figure 5-5 shows timing for an
arithmetic instruction, while Figure 5-6 shows timing for a single-word load[65]. Both of these
diagrams present time across the top. Each line represents a different “stage”:address bus, memory
bus, decode,execute, writeback. The address bus (top line) represents the cycle before a data access
in which the address is presented to the CMMU; hence we are not really counting it as a stage.

As is shown by Figure 5-5, the memory bus is 100% occupied fetching new instructions during
arithmetic operations. This figure shows the execution of anadd instruction, identified asI 1.
Several following instructions are also shown in this diagram. With respect toI 1, this diagram can
be interpreted as follows:

T: The address of theadd instruction appears on the address bus.
T+1: Theadd instruction fetched from the cache.
T+2: Theadd is decoded and operands are fetched from the register file.
T+3: Theadd is executed.
T+4: Results are written back to the register file.

This diagram can be used to illustrate the need for an external condition delay slot: assume
for a moment that instructionI 3 is a branch instruction. Since Sparcle has one branch delay
slot, this means that instructionI 5 might be the branch target. Since the address forI 5 goes out
on cycleT+4, which is the decode cycle forI 3, this means that branch instructions make their
decisionsduring the decode stage. This, in turn, means that any external conditions on which this
decision is based must be available while the branch is still in the fetch (memory) stage5. Note that
I 1 is in the execute stage whenI 3 is in the fetch stage; thus, if I1 produced an external condition,
I 3 would be the first instruction that could act on that condition (hence the delay slot mentioned at
the beginning of this section).

5This is not true forinternalconditions, since internal bypassing is fast enough.

Page 156 CHAPTER 5. THE HARDWARE ARCHITECTURE OF ALEWIFE

Figure 5-6 shows behavior for a load instruction,I 1. Since the memory bus is 100% occupied
with instruction fetches, we must pause the pipeline mechanism long enough to insert an extra data
load cycle. This is accomplished by inserting placeholder instructions into the pipeline (shown
as IOPs). The end result is that, on cycleT+3, instructionI 2 is prevented from advancing into
the decode stage and the address of the load operation is presented on the data bus instead of the
address of instructionI 4. Finally, on cycleT+4, the actual data access is performed. Note that
cycleT+3 illustrates that the fetch ofI 3 continues in spite of the fact thatI 2 has not advanced.
This is the origin of the fact that a coprocessor may need to buffer more than one instruction at a
time (this was mentioned above in the discussion of the instruction extension mechanism). Should
this load produce an external condition, it would do so on cycleT+4. Given the discussion of the
previous paragraph, instructionI 3 would be the first instruction that could act on this condition
(again showing the need for a single delay slot).

5.1.2 Support for Rapid Context-Switching and Featherweight Threads.

Chapter 2 discusses the advantages and high-level justifications for featherweight threads. The
principal barrier to fast switching between threads is the the amount of per-thread state that must
be saved and restored during such a switch. As a result, the more state that is duplicated in hard-
ware (registers, program counters,etc.), the less software overhead that is incurred during a context
switch. A given architecture will support some amount of state duplication (e.g. four contexts in
Alewife); this yields a maximum number of threads that may be loaded and ready to execute at
any one time. Since context switching is invoked automatically under some circumstances (during
a cache miss, for instance), some method must be present to control which of the available hard-
ware contexts areactive. Thus, in this section, we would like to discuss two aspects of Sparcle
that enable fast context switching: the explicit duplication of state (or techniques for duplicating
state), and instructions for switching between active hardware contexts. Our goal is to permit rapid
context switching and context management in as few instructions as possible.

As a starting point, Sparcle builds on the existence of multiple integer register sets in SPARC.
The particular SPARC design that was modified for Sparcle contains eight overlapping register
windows. Rather than using the register windows as a register stack (the intended use for a SPARC
processor), Alewife uses them in pairs to represent four independent, non-overlapping contexts.
This change requires use of a custom compiler, since standard SPARC compilers change window
pointers on (almost) every procedure call6. In this scheme, the SPARCCurrent Window Pointer
(CWP) serves as the context pointer and theWindow Invalid Mask(WIM) indicates which contexts
are disabled and which are active. This particular use of register windows does not involve any
modifications, just a change in software conventions.

Although this is close to what is needed for block multithreading, it is not quite sufficient. In
the following paragraphs, we will discuss the various issues involved. The modifications in Sparcle
that were directed toward block multithreading were, in fact, aimed at minimizing the overhead of
context switching as used for latency tolerance. It turns out, however, that these modifications-line
benefited all uses of block-multithreading, including the more general featherweight threads.

6This was not an issue, since Alewife used its own compiler for many other reasons as well.

5.1. Sparcle Architecture and Implementation Page 157

Use of Traps: One deficiency in SPARC with respect to block multithreading is the fact that
SPARC does not have multiple sets of program counters and status registers. Since adding such fa-
cilities would impact the pipeline in a nontrivial fashion, we chose to implement context-switching
via a special trap with an extremely short trap handler that saves and restores these pieces of state.
A trap is necessary, since this is the only way to get direct access to the two active program coun-
ters. Further, on SPARC, modifications of the CWP (used in Sparcle for context management) and
the processor status register (PSR) are protected operations. As a result, all context management
operations (and hence featherweight thread operations) must pass through supervisor level. Hence,
to achieve latency tolerance, the CMMU generates acontext-switch trap, that causes Sparcle to
switch contexts while simultaneously sending a request for data to a remote node.

Multithreading the FPU and Context-Sensitive Memory Operations: Up to this point, we
have been talking about an unmodified SPARC processor. Unfortunately, such a processor has
several deficiencies with respect to context switching that cannot be addressed with software. First
and foremost, the SPARC FPU contains only one set of registers and a single status register —
complicating the implementation of context-switching. Second, as discussed in Chapter 3, block
multithreading introduces a number of service-interleaving problems whose solutions require per-
context state within the memory controller. Sparcle addresses both of these issues by exporting
the current context identifier (top two bits of the CWP) to the pins; this information is part of the
Access Typeand permits the CMMU to maintain context-dependent state. Among other things,
this modification enables the “FPU multithreading hack”, whereby the CMMU modifies FPU in-
structions on-the-fly, inserting the context identifier into the top two bits of the register specifiers.
This transforms an FPU with one 32-register context into an FPU with four 8-register contexts7.

Context Management Instructions: Another deficiency in SPARC for block multithreading is
the fact that manipulation of the current window pointer is oriented toward a linear, stack-like
usage. This has consequences: for one thing, movement to the next Alewife context requires exe-
cution of two SPARC instructions (since Sparcle uses register windows in pairs). For another, these
instructions invokewindow overflowor window underflowtraps when they encounter a disabled
register set. Sparcle addresses both of these problems by adding new instructions, callednextf
andprevf , for context management. These instructions advance the CWP by two, matching the
Alewife usage of register windows. Further, they use the WIM to indicate which contexts are
considered enabled. When executed, they will move to the next active context (either forward or
backward respectively) as indicated by the WIM register. If no additional contexts are active, they
leave the window pointer unchanged. Hence, these instructions decouple context management
from context switching.

In retrospect, these instructions were close to ideal; other features would have been desirable
however: First, the ability to tell quickly whether or not all contexts were allocated. Second, the
ability to move quickly to the nextdisabledcontext. (These two could have been combined into
a single operation which set a condition bit.) Third, the ability to mark a context as enabled or

7It is important to realize that this was of implementation convenience only — any “real” system would implement
this functionality within the FPU without restricting the number of per-context registers.

Page 158 CHAPTER 5. THE HARDWARE ARCHITECTURE OF ALEWIFE

disabled without have to compute the proper bit mask for operations on the CWP. The presence
of these three operations would have shortened context management to a few instructions in the
common case. Nonetheless,nextf andprevf provided a reasonable set of operations.

Miscellaneous: Two other slight modifications were made to assist block multithreading by min-

rdpsr %r16 ; Save PSR in reserved register
nextf %r0, %r0, %r0 ; Move to next active context
wrpsr %r16 ; Restore PSR.
jmpl %r17, %r0 ; Restore PC.
rett %r18, %r0 ; Restore nPC, start new thread

Figure 5-7:Context switch trap code for Sparcle

Cycle Operation
1 Fetch of Data instruction (load or store)
2 Decode of Data instruction (load or store)
3 Execute of instruction (compute address)
4 Data cycle (which will fail)

) 5 Pipeline freeze, flag exception to processor.
6 Pipeline flush (save PC)
7 Pipeline flush (save nPC, decr. CWP)
8 Fetch: rdpsr %r16
9 Fetch: nextf %r0, %r0, %r0

10 Fetch: wrpsr %r16
11 Fetch: jmpl %r17, %r0
12 Fetch: rett %r18, %r0
13 Dead cycle fromjmpl
14 First fetch of new instruction
15 Dead cycle fromrett

Figure 5-8:Breakdown of a 14-cycle context-switch on
data for a load or store. Note that cycle 15 performs useful
“post context-switch” work.

imizing extraneous trap overhead. One of these was mentioned above, namely the addition of
multiple synchronous trap lines. This allows the dedication of a synchronous trap line (and cor-
responding vector) to cache-miss handling. Second, the default size of a trap vector on SPARC
is four instructions (16 bytes). Sparcle
increases this size to 16 instructions (64
bytes), thereby providing enough space
for a number of short interrupt handlers
to fit entirely within the vector.

Resulting Context-Switch Behavior:
With these changes, the context-switch
trap handler is shown in Figure 5-7.
When the trap occurs, Sparcle switches
onewindow backward (as does a normal
SPARC). This switch places the window
pointerbetweenactive contexts, where a
few registers are reserved by the Alewife
operating-system for context state. As
per normal SPARC trapping behavior, the
PC and nPC are written to registers r17
and r18 by the hardware. This trap code
places the PSR in register r16. Then, the
nextf instruction advances to the trap
frame of the next active context. Finally,
a return from trap sequencejmpl/rett restores the PC and nPC of that context, causing exe-
cution to continue at that point. The net effect is that a Sparcle context switch can be done in 14
cycles as depicted in Figure 5-8. This illustrates the total penalty for a context-switch on a data
instruction. Cycle four (marked with “)”) is the cycle in which the actual miss is flagged via a
synchronous memory fault. A request to memory is initiated at the same time8.

By maintaining a separate PC and PSR for each context, a more aggressive processor design
could switch contexts much faster. However, even with 14 cycles of overhead and four processor-
resident contexts, multithreading can significantly improve system performance [115, 63].

Appendix A shows a more detailed use of the Sparcle context-switching mechanisms to im-
plement featherweight threads for user-level active message handlers. The code shown in this ap-
pendix illustrates how the value in the WIM is combined with thenextf andprevf instructions
to achieve fast allocation and deallocation of contexts, as well as simple multi-level scheduling.

8Although 15 cycles are shown in this diagram, one of them is the fetch of the first instruction from the next context.

5.2. The Communications and Memory Management Unit Page 159

5.2 The Communications and Memory Management Unit

The Alewife Communications and Memory Management Unit (CMMU) [61] is the heart of the

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Cache
Management

and

Invalidation
Control

Remote
Transaction

Machine

Transaction
Buffer

(16 entries)

Network
Interface

and
DMA Control

Interrupt Control,
Registers

and
Statistics

Memory
Management

and

DRAM
Control

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A

ASI Decode
and

Coproc Inst
DispatchS

pa
rc

le

Network

Network Queues
and

Control

D
R

A
M

C
ac

he

A
dd

re
ss

 a
nd

 D
at

a

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Figure 5-9:Block diagram for the Alewife CMMU.

Alewife machine. Whereas Sparcle facilitates the low overhead communication interfaces of
Alewife, the CMMU houses the actual
interfaces as well as all of the commu-
nications functionality. This chip con-
tains approximately one million transis-
tors, consisting of 100,000 gates (four-
transistor inverter equivalents) and about
120,000 bits of SRAM. By today’s stan-
dards, this is a small chip; however, this
was no less challenging to produce in
an academic environment. During the
course of the Alewife project, two dif-
ferent versions of the CMMU were pro-
duced, designated the A-1000 and A-
1001. The primary difference between
these chips is that the A-1001 fixes bugs
present in the A-1000, as well as including an implementation of the user-level atomicity mech-
anism (Section 2.4.5) that was absent in the original. Unfortunately, the A-1001 also had some
noise problems not present in the original, so no large systems were built with this chip9.

Figure 5-9 shows a block diagram for the CMMU. In an Alewife node, the CMMU is con-
nected directly to the first-level cache bus and provides much the same functionality as a cache-
controller/memory-management unit in a uniprocessor: it contains tags for the cache, provides
DRAM refresh and ECC, and handles cache fills and replacements. Most importantly, however, it
also implements the architectural features for multiprocessing discussed in the first part of this the-
sis. The fact that both uniprocessor and multiprocessor features are integrated in the same package
is one of the reasons that Alewife has such low cycle counts for various operations.

Examining this diagram for a moment, we see that the external network connects to theNet-
work Queues and Controlblock. This block is responsible for multiplexing and demultiplexing
data between the CMMU and the network, and provides the central point for the integration of
message-passing and shared-memory communication. Also in this diagram, we see that the Spar-
cle processor interfaces directly to two different logic blocks, theASI Decode and Coprocessor
Instruction Dispatchblock and theCache Management and Invalidation Controlblock. The first
of these is responsible for interpreting and responding to the Sparcle/CMMU interfaces discussed
in Section 5.1.1. Among other things, this block contains a mirror of the processor pipeline that
handles coprocessor instruction extensions (such asipilaunch) and contains logic to interpret
and respond to ASI values (such as Full/Empty operations). The second block implements the
processor side of the cache-coherence protocol, as well as managing the cache and allocation of
Transaction Bufferentries. This block is mirrored by theMemory Management and DRAM Control
block, that handles the memory-side aspects of the cache coherence protocol, as well as providing

9However, see Ken Mackenzie’s thesis [79].

Page 160 CHAPTER 5. THE HARDWARE ARCHITECTURE OF ALEWIFE

DRAM refresh and control.
At the heart of the CMMU is theTransaction Buffer, which was one of the primary results

of Chapter 3. This block provides a 16-entry fully-associative data store that tracks outstanding
cache-coherence transactions, holds prefetched data, and stages data in transit between the cache,
network, and memory. TheTransaction Bufferis at the center of the CMMU and is provides a
16-entry, fully-associative data store that tracks outstanding cache-coherence transactions, holds
prefetched data, and stages data in transit between the cache, network, and memory. TheRemote
Transaction Machineis responsible for handling those aspects of Transaction Buffer manipula-
tion that do not require direct intervention of the Cache Management block; this includes retiring
transient (flush) entries (Section 5.2.3) as well as accepting data that arrives from the network in
response to a data request.

Finally, the Interrupt Control, Register, and Statisticsblock provides a general, memory-
mapped interface to much of the internal state of the CMMU, including those registers required
for sending and receiving user-direct messages. In addition, this block contains all of the interrupt
control functionality, as well as a wide array of statistics gathering facilities.

Since the Alewife CMMU is a large, multi-faceted chip, a complete discussion of the hardware
architecture is somewhat beyond the scope of this document10. Instead, we would like to focus on
a few key aspects of the architecture that are relevant to discussions in the first part of the thesis
and that represent challenging aspects of the implementation. First, Section 5.2.1 discusses how
the five major CMMU state machines interact with the network queues. This particular section
serves to highlight the integration of message passing and shared memory that is present in the
Alewife CMMU. Next, Section 5.2.2 discusses the combined Sparcle/CMMU interface from the
standpoint of the CMMU; this is tightly coupled with cache-management. Among other things,
we will see how high-availability interrupts are forwarded to the processor. Next, Section 5.2.3
discusses the states and functionality of the Alewife transaction buffer. Section 5.2.4 follows with
a discussion of memory scheduling and atomicity, introducing a technique calledservice coupling.
Finally, Section 5.2.5 discusses the implementation of local coherence in Alewife, pulling together
aspects of Cache Management, the transaction buffer, and memory scheduling.

5.2.1 The Division of Labor and the Network Topology

Aside from interface logic (which we will discuss briefly in the next section), the Alewife CMMU
contains five major loci of control: theCache Management Machine, the Remote Transaction
Machine, theMemory Management Machine, theIPI Input Machine, and theIPI Output Machine.
It is the interaction between these five state machines that exemplifies the integration of message
passing and shared memory in Alewife. The first three of these are responsible for handling general
memory access and cache coherence, while the later two are responsible for implementing the
network interface and providing locally coherent DMA.

This division of labor into five different state machines was natural for a number of reasons.
First, as discussed in Section 4.3.7, the DMA engines must be independent of one another and the
shared-memory system in order to avoid deadlock in a machine that relies on two-case delivery.
This argues for independent operation of the two IPI machines. In addition, to permit pipelining

10If for no other reason than it would stretch for more pages than we have here.

5.2. The Communications and Memory Management Unit Page 161

in DMA coherence, the independence of these two state machines from the cache and memory
handling is necessary. Second, division of cache-coherence protocol handling into processor-side
and memory-side state machines naturally reflects the “client-server” nature of cache-coherence
protocols. Finally, the separation of the processor-side of the cache coherence protocol into two
machines, the Cache Management and Remote Transaction machines was natural because it split
processor-side operations into those that required access to the cache tags and those that did not;
this freed the processor to continue execution during the return of remote data and during trans-
action buffer management operations (such as garbage collection; see the discussion of transient
states in Section 5.2.3.1).

To expand for a moment on the distinction between these latter two state machines: The

IPI Output
Local Queue

M
U

X
M

U
X Cache Protocol

Output Queue

O
ut

pu
t M

U
X

Network
Output Queue

Network
Input Queue

M
U

X
M

U
XCache /

 Remote TXN /
Memory

Protocol Input

IPI Output
Descriptor

Cache
Protocol Output

IPI Input
Queue

P
ro

ce
ss

or

Memory
Protocol Output

Memory Protocol
Output Queue

Remote TXN
Protocol Output

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA N

et
w

or
k

Input DMA
Control

Output DMA
Control

Memory
Machine

Memory
Machine

Network Queues
and

Control

A
sy

nc
hr

on
ou

s
In

te
rf

a
ce

Figure 5-10:Queue topology for the Alewife CMMU.

Cache Management Machine is responsible for any operations that touch the first-level cache
directly, including invalidation, cache fills, cache replacements,etc.. Further, it is the sole ini-
tiator of new transactions (and allocator of transaction buffers). The Remote Transaction Ma-
chine, on the other hand, is re-
sponsible for accepting returning
global data from the network11,
flushing transaction buffers into
the network (if they are for remote
addresses), and garbage collect-
ing cached transaction buffer en-
tries.

Not surprisingly, the presence
of these five state machines is re-
flected in the topology of the net-
work queues. Figure 5-10 illus-
trates this topology. This diagram was introduced briefly in Chapter 4 in order to emphasize the
potential conflicts between shared memory and message passing. Here we would like explore this
topology in greater detail. The first thing to note is that two of the blocks from the CMMU block
diagram (Figure 5-9) are shown as grouped sets of queues (surrounded by dashed boxes) in Fig-
ure 5-10: theNetwork Queues and Controlblock and theNetwork Interface and DMA Control
block (unlabeled and split in two at the left of the diagram).

TheNetwork Queues and Controlblock consists of five different queues and several muxes. It
also contains inter-queue routing logic that is not shown. The queues closest to the network (labeled
Network Input QueueandNetwork Output Queue) are driven asynchronously by the EMRC routing
chips. Three separate queues feed into the Network Output Queue: TheCache Protocol Output
Queue, theMemory Protocol Output Queue, and theIPI Output Local Queue. Two of these carry
shared-memory traffic (from the cache and memory sides of the protocol respectively)12, while the
third carries messages from the user-level message-passing interface to the network. Note that this

11Note that returning data isnot placed directly into the first-level cache, since the processor is likely doing some-
thing other than waiting for this data (because of rapid context-switching). If the processordoeshappen to be waiting
for data, however, the data is pipelined directly into the first level cache. See Section 5.2.3.5.

12The fact that the Cache Protocol Output Queue is shared between the Cache Management and Remote Transaction
Machines directly mirrors the sharing of the associative access port of the transaction buffer (see Section 5.2.3).

Page 162 CHAPTER 5. THE HARDWARE ARCHITECTURE OF ALEWIFE

output queue doubles as a “loopback” queue, feeding back into the protocol and message-passing
input queues; this provides a short-cut path for messages that are launched though the message
interface but destined for the local node; one of the reasons that this path was included was for
two-case delivery (see Section 4.3), since it aids in the relaunching of messages that have been
buffered in memory without requiring passage through a possibly congested network.

The input side of the cache coherence protocol is shown as a single, non-demultiplexed input
path. This single path leads to all three of the cache-coherence state machines. Message sorting
hardware (not shown) takes each incoming message and decides whether to route it to message-
passing interface or the coherence protocol interface; if it is the latter, this circuitry additionally
notifies the appropriate state machine that a message is waiting for processing. What is advanta-
geous about this arrangement is that one of the protocol machines can choose to reject an input
message without freeing its contents from the network; in that case the message may be redirected
to the message input port (possibly with slight modifications of the header flit). This is the principal
mechanism for forwarding cache-coherence protocol messages to software for LimitLESS13.

User-Level Network Interfaces: One additional aspect of Figure 5-10 that we would like to
discuss is the message-passing interface. This is shown to the left of the figure, and corresponds
to theNetwork Interface and DMA Controlblock of the CMMU. Queues in this block are mapped
directly to the message-passing interfaces of Section 2.4.2; in particular, theIPI Input Queueis
directly mapped to theinput window array while theIPI Output Descriptoris mapped directly
to theoutput descriptor array (both adjusted for the circular nature of the physical queues).
In fact, the design of interfaces for UDM were targeted toward mapping queues in this way; for
instance, Section 2.4.3 discusses the fact that injection of network packets is stalled during network
congestion through blocking writes to theoutput descriptor array. As another example,
given the direct mapping of of theoutput descriptor array to the IPI Output Descriptor
queue, the atomicity of theipilaunch operation is achieved simply by advancing the head
pointer of a circular queue. Thus, our statement in the introduction that the UDM interfaces were
chosen for fast simple implementation is accurate.

As one final note on this mapping between user interfaces and physical queues: the mapping is
done in a way that maximizes parallelism between the processor and network; thus, for instance,
the illusion is maintained that all flits of a message have arrived at the input interface, even when
they have not. This permits the CMMU to post notification for an incoming message as soon as
the first few flits arrive, thereby allowing interrupt handler or polling code to overlap the arrival of
data (see Section 2.4.4).

Also shown in this portion of Figure 5-10 are the two DMA engines that are responsible for pro-
viding locally-coherent DMA for messages. We will be discussing DMA coherence in more detail
in Section 5.2.5. For now, however, note that message DMA and the related tasks of constructing
outgoing messages and deconstructing incoming messages are activities that are performed by the
IPI Output Machine and IPI Input Machine respectively.

13In fact, the memory system is even more clever than that; to achieve theread-aheadoptimization of Sec-
tion 3.4.2.1, the Memory Machine will process a read request while simultaneously requesting that it be redirected to
the message input queue. This provides quick turn around on data — returning it immediately to the requesting node
— while still invoking software to perform protocol actions.

5.2. The Communications and Memory Management Unit Page 163

5.2.2 The Sparcle/CMMU Interface Revisited

Section 5.1.1 discussed the Sparcle/CMMU interface from the standpoint of the Sparcle processor.
In this section we would like to explore this interface from the standpoint of the CMMU. As men-
tioned earlier, there were two classes of interface mechanisms:flexible data-access mechanisms
andinstruction-extension mechanisms. These are provided by a combination of two blocks in the
block diagram of Figure 5-9: theASI Decode and Coprocessor Instruction Dispatchand theCache
Management and and Invalidation Control. One of our goals in this section is to see how these two
blocks cooperate to simultaneously satisfy the needs of the Sparcle processor without neglecting
the demands of other users for cache invalidation and coherence services. Both of these blocks
operate by tracking aspects of the Sparcle pipeline.

5.2.2.1 The Coprocessor Pipeline

Because it is the most straightforward, we will start by discussing the instruction-extension mecha-
nism. In the SPARC Version-7 specification, coprocessors add instructions to an ISA by mirroring
the instruction-fetch process of the integer unit. The coprocessor is responsible for the decode and
execution of only those instructions that it is providing. In addition, the integer unit retains control
over execution flow by controlling which instructions are fetched in the first place and which of
the fetched instructions should actually be executed by the coprocessor.

In the Alewife CMMU, thiscoprocessor pipeline(part of theASI Decode and Coprocessor
Instruction Dispatch) is responsible for decoding and launching a number of different operations.
Included in this set are the network interface instructions such asipilaunch and ipicst , as
well as interrupt controller instructions such asenabatom , disatom , enabint , anddisint .
Instructions added in this way have the advantage of possessing the same timing as arithmetic
instructions (Figure 5-5). As a consequence, Alewife supports single-cycle instruction controller
operations, single cycle message launch,etc.. It is important to note that this particular imple-
mentation detail is notrequiredfor the interfaces of Chapter 2; memory-mapped operations would
suffice. However, this level of integration with the processor pipeline is in keeping with our view of
interfaces as an extension to the ISA. The coprocessor pipeline is also responsible for controlling
the FPU context-switching mechanisms mentioned in Section 5.1.2.

5.2.2.2 The Cache Management Machine

Whereas the coprocessor pipeline operates by tracking the state of the Sparcle pipeline in detail (at
least for coprocessor and FPU instructions), the Cache Management Machine (CMM) operates by
tracking Sparcle memory operations in detail. Figure 5-11 illustrates that this process can be view
as consisting of five primary meta-states (each of which consists of multiple individual states).
Two of these (theNormal Access andResource Wait meta-states are shaded, indicating
that they may persist for many cycles. In contrast, theCache Fill , Cache Replace , and
Flag Exception states are transient, lasting for short periods of time.

The Normal Access meta-state (an exploded view of which is shown in Figure 5-12) ex-
plicitly tracks normal, cached memory operations. The CMM returns to theHomestate at the

Page 164 CHAPTER 5. THE HARDWARE ARCHITECTURE OF ALEWIFE

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Cache
Fill

Cache
Replace

Resource
WAIT

Normal
Access

Flag
Exception

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

HOMEStore1

LDSTO

Store2

Delayed
Load

Double
Load

ExtLoad
Finish

Normal
Access

Figure 5-11:Meta-states of the Cache Man-
agement Machine. Each of these states is ac-
tually a conglomerate of states (see, for in-
stance, diagram to the right). Shaded meta-
states are potentially long-lived.

Figure 5-12:An exploded view of the normal “state” of
the Cache Management Machine. The Cache Manage-
ment Machine operates entirely within this set of states
as long as it is processing cache hits. Dashed arcs rep-
resent transitions that may occur indirectly, by passing
first through a cache-fill or remote access operation.

beginning of each access to the first-level cache. Multi-cycle memory operations (such as double-
word loads, stores, and atomic swap operations) are handled by brief deviations away from the
Homestate. In addition, theDelayed Load state is used to insert an extra bus-turn around cycle
for uncached accesses from the transaction buffer. The different states of theNormal Access
meta-state are used to control such things as the acquisition of a new address, the direction of
the bus, cache control signals,etc.. In addition, the presence of states other than theHomestate
guarantees that multi-cycle address operations are atomic and unbroken by other operations.

Since Sparcle has no first-level cache, it makes requests to the memory system (for either
instructions or data) on every cycle in which it makes forward progress. Arcs that are dashed in
Figure 5-12 represent transitions that may occur indirectly through other meta-states. For instance,
in the case of store that misses in the cache but hits in the transaction buffer (more about cached
transaction-buffer states in Section 5.2.3), the CMM would transition into theCache Fill meta-
state to fill the cache, then finish by transitioning to theStore1 state.

TheResource Wait “meta-state” (which is actually a single state) is entered whenever Spar-
cle becomes blocked awaiting resources. Thus, for instance, this state is entered whenever the pro-
cessor initiates a cache miss (remote or local). It is also entered for exceptional conditions, such as
the presence of insufficient transaction buffers to initiate some new request. The CMMU asserts a
hold signal whenever the Cache Management Machine enters theResource Wait state.

Multiplexing of the Cache: Multiplexing of the first-level cache between the processor and
other “auxiliary” users (such as remote invalidations or the DMA engines), occurs on one of two
clock edges: either at the beginning of a new access (when the CMM is transitioning to theHome
state) or when the CMM is transitioning to theResource Wait state. Because these are the
only two points at which ownership of the CMM can change, memory operations which the pro-
cessor considers “atomic” (such as swap) remain atomic to operations of the CMM as well. Call

5.2. The Communications and Memory Management Unit Page 165

clock edges in which ownership of the something can be scheduledreschedule points. The CMM
has an accompanying scheduler that is responsible for taking the current set of requests for the
cache (from the processor, network, local memory, and DMA engines), deciding which have suf-
ficient resources to complete, then choosing a new request at each reschedule point from the set
of “schedulable” requests. The scheduler is responsible for making sure that all requesters even-
tually make forward progress; this is done by scheduling them in an LRU fashion. This type of
scheduling is a version ofservice coupling, that we will discuss in Section 5.2.4.

Achieving Flexible Access: Given our discussion of the Cache Management Machine, achieve-
ment of flexible data access (as defined in Section 5.1.1) is straightforward. At the beginning of
each new access (signaled by a transitioninto theHomestate), theASI Decode and Coprocessor
Instruction Dispatch(ADCID) block latches the address, access type, and ASI value for the new
memory request14. Then, based on the access information, the ADCID block chooses one of sev-
eral different sources/destinations of data on the Sparcle data bus. This permits, for instance, the
CMMU registers to be accessed by choosing an instruction with the appropriate ASI value; the
ADCID block is responsible for routing data to/from theInterrupt Control, Registers, and Statis-
tics block. If the type of access is an access to global memory with fine-grained extensions, the
ADCID block is additionally responsible for decoding the ASI value to detect the type of synchro-
nization operation being requested, then modifying the current value of the synchronization bit and
possibly generating a request for afull empty trap .

Hence, as asserted at the beginning of this section, the Sparcle/CMMU interface is imple-
mented by a combination of the ADCID and CMM blocks.

High Availability Interrupts: Finally, the implementation of high-availability interrupts (as dis-
cussed in Section 3.1) is straightforward, given the Cache Management Machine. As a brief
reminder, high-availability interrupts are asynchronous interrupts that may be delivered syn-
chronously under specialized circumstances. In particular, those specialized circumstances are
precisely those periods in which the processor pipeline is blocked on memory operations. In the
CMM, periods in which normal asynchronous interrupts must be transformed into synchronous
interrupts are precisely those points at which the CMM is waiting in theResource Wait .

Under normal circumstances, the Alewife interrupt controller takes a vector of pending asyn-
chronous interrupts and modifies it by the enable mask15. The resulting set of “active” interrupts
are priority-encoded to produce a single asynchronous interrupt that is presented to Sparcle (this is
theIRL signal in the interface diagram of Figure 5-4). In addition to generating the highest-priority
asynchronous interrupt, the interrupt controller examines the set of active interrupts for ones that
are eligible for high-availability delivery16. When the CMM is waiting in theResource Wait

14The CMM is carefully synchronized with Sparcle so that access information is present on this particular edge.
15The enable mask is modified by three instructions,enabint , disint , andsettemask , as well as the user-

level atomicity operations,enabatom , disatom , andsetatom .
16The set of asynchronous interrupts that are considered eligible for synchronous delivery varies based on the current

state of the CMMU and the pending Sparcle memory operation. Thus, for instance, high-availability interrupts are not
delivered when Sparcle is blocked awaiting a cache-fill from the unshared memory. Also, to ensure forward progress,
asynchronous events are promoted to synchronous delivery only if forward progress of the system can be guaranteed.

Page 166 CHAPTER 5. THE HARDWARE ARCHITECTURE OF ALEWIFE

state, it will deliver the highest-priority eligible high-availability interrupt by asserting one of the
Sparcle synchronous trap lines (MEXC2) and by recording an identifier for the type of trap in the
AuxFault Vector register.

5.2.3 The Transaction Buffer Framework

The transaction buffer lies at the heart of the Alewife machine and was one of the major results of
Chapter 3. As noted in that chapter, the presence of the transaction buffer provides a ready solution
to a number of problems facing an integrated architecture such as Alewife. This centralized module
keeps track of outstanding data transactions, both local and remote. In doing this, it combines
several related functions:

� Window of vulnerability closure: The transaction buffer implements the thrashlock
mechanism of Section 3.2.

� Reordering of network packets: The explicit recording of each outstanding transac-
tion permits the Alewife coherence protocol to be insensitive to network order.

� Flush queue to local memory: When dirty lines are replaced from the cache, they
are written to transaction buffers for later processing by the memory management
hardware. As discussed in Section 3.4.2, this has a number of important advantages
over a FIFO replacement queue.

� Transient data storage for DMA coherence: Data flushed from the cache during the
process of providing DMA coherence passes through the transaction buffer, thus
remaining under control of cache-management mechanisms. This is really an ex-
tension of the previous item.

� Small, fully-associative cache: Under normal circumstances, the “access” phase of
a transaction involves transferring a complete cache line from a transaction buffer
to the cache. It is also possible, however, to perform “uncached” reads and writes
which access data directly in the transaction buffer rather than filling the cache;
afterwards, the corresponding memory lines remain in the transaction buffer.

� Repository for prefetched data: This is a simple extension of the previous item:
non-binding prefetch operations return data to the transaction buffer.

The transaction buffer thus provides an important centralized resource. To permit this single inter-
face to be used for all data movement between processor, network, and memory, the access ports
are fully bypassed to allow the pipelining of from one port to another.

The block diagram of Figure 5-9 captures the fact that the transaction buffer lies at the heart of
the three primary cache-coherence protocol machines (the Cache Management, Remote Transac-
tion, and Memory Management blocks). Also, as will be discussed in Section 5.2.5, the transaction
buffer plays a pivotal role in achieving DMA coherence17.

17Figure 5-9 does not show the transaction buffer connected directly to the DMA Control block, since DMA coher-
ence occurs indirectly: the DMA engines request invalidations from the Cache Management block and retrieve data
from the Memory Management block.

5.2. The Communications and Memory Management Unit Page 167

The transaction buffer is comprised of two major blocks: thetransaction state CAM(content-

ThrashDetected

FlushBufferNum

HaveLocalFlush

MemBusyInterlock

HaveMatch

HaveEmpty

GlobFull

TransFull

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Thrashlock
Monitor

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Transaction
Monitor

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
sso

ciative
A

cce
ss P

o
rt

Transaction
Buffer
State

(16 entries)

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
rbite

r

Processor
Read/Write

Remote
Transacton
Read/Write

Memory
Read/Write

(non-associative)

RMBusyInterlock

LockMatched

HaveCached

HaveRemoteFlush

MatchedBufferID

ThrashControl

CSwitchEnable

AccessInfo

Figure 5-13: The transaction state CAM and associated
transaction monitors.

addressable-memory) and thetransaction data store. Together, these pieces comprise sixteen
transaction buffers. Figure 5-13 shows
the key aspects of the transaction state
CAM. This module consists of dual-
ported storage for the state bits, an ar-
bitratedassociative matchfor locating
data, athrashlock monitorwhich im-
plements the thrashlock mechanism of
Section 3.2, and atransaction monitor
for managing the pool of buffers. The
transaction data module (not shown in
this figure) contains sufficient storage
for one complete, four-word memory-
line for each transaction buffer. Each
memory-line is physically divided into
two 64-bit sub-lines.

The choice to implement sixteen
transaction buffers arose from suffi-
ciency arguments and space limitations. Each of the four hardware contexts can have two out-
standing primary transactions; consequently, at least eight buffers are necessary. Then, since the
transaction buffer serves as a flush queue to local memory, a few additional entries are necessary.
Finally, to guarantee access to interrupt code and unshared variables (for network overflow recov-
ery), another buffer is required. Thus approximately eleven buffers are sufficient for operation.
Remaining buffers are targeted for uncached accesses, prefetched data, and victim cached memory
lines. Note that in code which is amenable to software prefetching, fewer primary transactions will
be necessary (since the compiler is orchestrating communications). Section 5.2.3.4 discusses the
ability to trade buffer usage between primary and secondary transactions.

5.2.3.1 Transaction Buffer States

Figure 5-14 illustrates the state of a transaction buffer. Several of its components were dis-

Line Address (28 bits)
Full/Empty (4 bits)
Local (1 bit)
Transaction in Progress (1 bit)
Flush (1 bit)
Invalidate (1 bit)
Transaction Type (2 bits)
Valid (2 bits)
Flush Modify (2 bits)

Figure 5-14:The state of a transaction buffer.

cussed in Chapter 3. Theaddressfield
is 28 bits18. An address which has its
top bit set belongs to the global shared
address space; consequently, buffers with
such global addresses are referred to as
global buffers. The four full/empty bits
hold the synchronization bits for the four
data words. Finally, the 10 remaining
state bits are divided into seven different
fields. Some of these fields encode stable states indicating that transactions are in progress or that

18Sparcle addresses are 32 bits and memory-lines are 16 bytes long.

Page 168 CHAPTER 5. THE HARDWARE ARCHITECTURE OF ALEWIFE

data is valid. Others encode transient states. Briefly, these seven fields are as follows:

� The Local (LOC) bit caches information on whether the address is local (either
shared or unshared) or remote. It is computed when the buffer is allocated.

� The Transaction-In-Progress(TIP) bit indicates a transaction that is in its request
phase,i.e. that a request has been sent but a response has not yet been received.

� TheFlush (F) bit indicates that this buffer is logically part of the flush queue. Any
data which is present is invisible to the processor. If TIP is clear, then this buffer is
transient and scheduled for processing by either the local Memory Machine or the
Remote Transaction Machine.

� The Invalidate(INV) bit indicates that this address has an outstanding protocol in-
validation. It corresponds directly to the deferred invalidate bit that was discussed
in Chapter 3 and is used to delay invalidations to locked buffers until after the re-
questing contexts return for their data. As shown in Section 3.4.1, it is also used to
defer premature invalidations which result from reordering in the network.

� TheTransaction-Type(TT) field consists of two bits. It has three primary states,RO
(read-only),RW(read-write), andRWD(read-write-dirty). When TIP is set, this field
indicates the type of request which was sent to memory and is restricted toROor
RW. When TIP is clear (and data present), all three states are legal.RWDindicates
that the buffer contains data which is dirty with respect to memory. A final state,
BUSYis only valid with an empty buffer; it indicates that a transaction has been
terminated by aBUSYmessage from memory19.

� The Valid (VAL) field contains a two-bit Gray code which indicates the degree to
which buffer data is valid:INVALID , ARRIVING, HALF VALID , andVALID .
The INVALID andVALID states are stable, indicating that the transaction buffer
has either no data or valid data respectively. The remaining two states are transient.
ARRIVING indicates that protocol transitions have occurred, but no data has yet
arrived.HALF VALID indicates that the first 64-bit chunk of data has been written.

� TheFlush Modify(FM) field contains a two bit field that provides the faultable flush
queue functionality of Section 3.4.2.2. The valid states areNORMAL, FAULTED,
FORCE, andDISCARD. States other thanNORMALare valid only forlocal buffers
marked for protocol-level flushing to the local memory.FAULTEDrepresents a
replacement that has pending software action;FORCEand DISCARDrepresent
buffers that need post-software cleanup by the hardware.

Table 5-1 illustrates how combinations of these bits form transaction buffer states. This table
shows legal combinations only; states which are not shown are illegal. For simplicity, the Valid
field is shown with two values,VALID and INVALID . The transient states ofARRIVING and
HALF VALID are logically grouped withVALID .

19This message is a negative acknowledgment on the request. See [25] for more information.

5.2. The Communications and Memory Management Unit Page 169

Buffer State
Note(s) TIP F INV TT Val FM Description
A, G 0 0 0 — INVALID NORMAL Empty and available for allocation.

A RO VALID Read-Only data present
A RW VALID Read-Write data present (clean)
A RWD VALID Read-Write data present (dirty)
B 0 0 1 RO VALID NORMAL Read-Only data/pending invalidate
B RW VALID Read-Write data (clean)/pending invalidate
B RWD VALID Read-Write data (dirty)/pending invalidate

C, H 0 1 0 RWD VALID NORMAL Flush dirty data (no protocol action)
C 0 1 1 RO INVALID NORMAL Send Acknowledgment
C RW INVALID Send Acknowledgment

C, H RWD INVALID Flush F/E bits and write permission
C RWD VALID Flush dirty data and write permission
H 0 1 1 — — FAULTED Buffer faulted, awaiting software processing

C, H — — FORCE Flush dirty data if RWD (skip protocol action)
C, H — — DISCARD Discard buffer with no action

D 1 0 0 RO INVALID NORMAL Read transaction
D RW INVALID Write transaction
D RW VALID Write transaction/read data valid
E 1 0 1 RO INVALID NORMAL Read trans/premature read INV
E RW INVALID Write trans/premature write INV
E RW VALID Write trans/read data valid/prem write
F 1 1 0 RO INVALID NORMAL Read trans/flush on arrival
F RW INVALID Write trans/flush on arrival

E, F 1 1 1 RO INVALID NORMAL Read trans/flush on arrival/prem read INV
E, F RW INVALID Write trans/flush on arrival/prem write INV

Note Text of comment
A These correspond directly to states of a full-associative cache.
B If unlocked, these states are transient and scheduled for flushing.
C Transient and scheduled for flushing.
D These states are entered at the beginning of transactions.
E Entered by rare protocol actions and network reordering.
F Only entered by execution of a flush instruction during a transaction.
G If TT=BUSY, then the previous transaction was terminated by aBUSYmessage.
H For local memory traffic only.

Table 5-1:Legal combinations of transaction buffer state bits. Combinations of bits that do not
appear in this table are invalid.

Before exploring Table 5-1 in more detail, let us examine a simple cache-coherence transaction.
Assume that the processor requests a remote data item which is not in the local cache. This causes
theCache Management Machineto allocate an empty transaction buffer. It sets the transaction-
type field to eitherROor RW, depending on whether the processor has executed a load or store
respectively. It also sets the TIP bit to reflect the fact that a request is in progress. Finally, it sends
a context-switch fault to the processor while simultaneously transmitting a read request (RREQ) or
write request (WREQ) to the remote node.

When data returns from memory, theRemote Transaction Machinegives the address from the
returning packet to the associative access port in order to locate the appropriate transaction buffer.
Then, this machine clears the TIP bit, places the data into the transaction buffer, and sets the Valid
field toVALID . This data will now be available the next time that the processor requests it.

The following paragraphs explore different classes of states and their uses. These include states
for tracking transactions in progress, states for caching data items, transient states, and states which
permit insensitivity to network reordering.

Page 170 CHAPTER 5. THE HARDWARE ARCHITECTURE OF ALEWIFE

Transaction in Progress States: States in Table 5-1 that have their TIP bits set indicate transac-
tions that are in the request phase,i.e. transactions for which requests have been sent but data has
not yet been received. The presence of such transaction buffers prevents duplicate requests from
being sent either by the original context (when it returns to check for data) or by other contexts.
States markedD in Table 5-1 are entered when a transaction is first initiated. Other transaction
in progress states are entered by exceptional events: For instance, states markedE aredeferred
invalidationstates that arise from network reordering (see Section 3.4.1). States markedF arise
when one thread executes a “flush” operation on a memory line that another thread has recently
requested; such transaction buffers are marked for immediate discard when data returns.

The Transaction Buffer as a Cache: States in Table 5-1 that are markedA correspond directly
to states of a fully-associative cache. For this reason, we refer to these ascached states. In the
simple transaction model of Chapter 3, these states can be used to hold data which has just returned
from memory, i.e. during the window of vulnerability. When the original requesting context returns
to look for this data, it can be transferred to the primary cache and its buffer emptied.

However, cached states are far more versatile. Since cache-coherence is fully integrated with
the transaction buffer, this data is kept coherent in the same way as the primary cache. Thus,
cached states can persist outside of primary transactions causing the transaction buffer to act like
a small second-level cache. Consequently, non-binding prefetches simply return their data to the
transaction buffer20. Further, cache-lines can be victim cached [53] in the transaction buffer; this
means that lines that have been replaced from the primary cache are placed into the transaction
buffer rather than dumped into the network. This simple behavior is of great value for ameliorating
the occasional long access latency caused by LimitLESS cache coherence (see Chaiken [24]). Fi-
nally, special “uncached” loads and stores can access data directly in the transaction buffer without
first transferring it to the primary cache. As discussed in Section 4.3.7, the ability to perform an
“on-the-fly” demotion of cached accesses to uncached accesses is a crucial aspect of providing a
local unshared memory that is available under all circumstances.

Use of the transaction buffer as a generic cache has two consequences. First, it requires garbage
collection or replacement, since buffers that are in the cached state can persist indefinitely. During
periods of insufficient resources, the CMMU considers buffers that are in the cached state and not
part of a primary transaction to bereclaimable. Garbage collection is performed on reclaimable
buffers by the Remote Transaction Machine.

Second, the issue of duplicate data between the cache and transaction buffer must be addressed.
The buffer maintenance policy ensures that the only possible duplication is the simultaneous exis-
tence of a read-only copy in the primary cache and a clean read-write copy in the transaction buffer.
Since the protocol guarantees that these two memory-lines will have identical data, no coherence
problem ensues21. As soon as the data is written by the processor, the read-only copy is invalidated
or overwritten.

20In fact, the only difference between transaction buffers used for primary and secondary transactions is that primary
transactions have live tracking vectors pointing at them. See Section 5.2.3.3.

21This situation is allowed because the coherence protocol explicitly checks to see if a requester of write permission
is already one of the readers; if so, it will not invalidate the requester’s copy before granting write permission.

5.2. The Communications and Memory Management Unit Page 171

Transient States: States in Table 5-1 that are markedB andC are transient,i.e. scheduled to
be processed and emptied by either the Memory Management Machine or the Remote Transaction
Machine, depending on whether the Local bit is set or clear. Section 5.2.3.4 discusses the mech-
anism behind this scheduling. The one exception to immediate scheduling is that buffers in states
markedB can be protected by buffer locks (from thethrashlockmechanism of Section 3.2.). Such
buffers remain unmolested in the transaction buffer until their locks are released, at which point
they become scheduled for processing. Buffer locks are discussed in Section 5.2.3.3.

Transient buffers which have their INV bits set are implicit protocol messages. Since protocol
action occurs only on shared memory lines, these buffers must have global addresses. Those with
typesROandRWare invalidation acknowledgments, while those with typeRWDare updates. Thus,
when a buffer of this nature is processed by the memory management hardware, it invokes protocol
actions as if the local processor had marshaled a protocol packet and sent it through the network
to the local memory. Similarly, when the Remote Transaction Machine processes such a buffer, it
generates an appropriate protocol message, destined for the home node of the buffer’s address, and
sends it into the network.

As discussed in Section 3.4.2.2, the transaction buffer serves as the “flush queue” to local mem-
ory. The cache management machine replaces local data items from the processor cache by writing
them into transaction buffers with their Flush bits set. Additionally, replacements which require
protocol action (i.e. global addresses) have their INV bits set. A similar function is performed by
the Remote Transaction Machine for remote data items22.

The use of transient states in this way has three advantages over a more conventional FIFO
queue. First, memory can process flushed cache-lines out of order during network overflow re-
covery. Since network congestion may prevent the processing of global data items, it can process
local unshared data replacements and thus guarantee that the overflow recovery handler can exe-
cute. Second, the difference between transaction buffers which are on the flush queue and those
which are not is a matter of state; in fact, locked transient items become scheduled for flushing
at the time that their locks are released. Consequently, items which are cached in the transaction
buffer can be discarded by setting their Flush bits. The Remote Transaction Machine uses this
method to discard buffers during garbage collection.

Finally, flush entries that incur software exceptions (i.e. that require software processing to
complete) can be held in the transaction buffer for further processing. A flush buffer that is held
in this way is marked with aflush-mode(FM) state ofFAULTED. Such a buffer will remain in this
state indefinitely until software acts upon it; it is thus not a transient state. The existence of one or
more buffers in aFAULTEDstate flags a high-availabilityflush fault interrupt.

5.2.3.2 Transaction Buffer Associative Match

The associative access port of the transaction buffer supports a parallel search for buffers. It is
the presence of the associative match that makes the transaction buffer a powerful mechanism for
tracking transactions. This port is shared between the Cache Management Machine and the Remote

22When remote data items are replaced from the cache, they can either be placed into the transaction buffer or sent
directly into the network. This choice depends on whether or not victim caching is enabled.

Page 172 CHAPTER 5. THE HARDWARE ARCHITECTURE OF ALEWIFE

Transaction Machine23; this is the reason that there is only one network output queue between these
two machines: possession of the transaction buffer is necessary in order to initiate transactions. The
matching address satisfies one of the following conditions (in order of precedence):

1a) TIP= 1
1b) (TIP= 0)^ (Flush= 0)^ (Valid 6= 0)
2) (TIP= 0)^ (Flush= 1)

If multiple buffers match, the one with the highest priority is the one which is returned24. Buffers
of type (1a), with TIP= 1, correspond to active transactions in progress. Buffers of type (1b) are
cached buffers with valid data which is visible to the processor. Buffers of type (2) are transient
and represent return messages (eitherACKor UPDATEmessages).

The Cache Management Machine and coherence protocol maintain two invariants which permit
a unique buffer to be located for each address. The first invariant is that there can be no more than
one buffer which falls in the combined categories of (1a) and (1b). Such buffers hold processor-side
state for transactions which are either in the request phase (1a) or window of vulnerability (1b).
The second invariant is that there will be no more than one buffer in category (2). Such buffers
are implicit return messages (acknowledgments or updates); consequently, this second invariant is
merely theat most oneinvariant for return messages discussed in Section 3.4.1. Matches of type
(2) correspond to the associative matching facilities often included in uniprocessor write-buffers.
They facilitate the location of unshared dirty data during the initiation of new requests to local
memory; without this ability, local memory operations could return incorrect results and local
shared-memory operations might have to invoke unnecessary invalidations25.

Given these two invariants, associative matching is straightforward. Each transaction buffer
has an associated comparator which is used to compare its address with the requested address.
Then, the result of this match is combined with a small amount of logic to produce two signals per
buffer: one that indicates a match of type (1a) or (1b) and one that indicates a match of type (2).
The set of match signals are then combined to produce a unique matched buffer.

On each cycle, the machine which has successfully arbitrated for the associative matcher may
also choose to modify state in the transaction buffer. It may select one of two buffer destinations:
either the next empty buffer or the current matched buffer. The transaction monitor, described in
Section 5.2.3.4 manages empty buffers.

5.2.3.3 Thrashlock Monitor

The function of theThrashlockmonitor is to provide support for the thrashlock mechanism. Its
keeps track of per-context state information which aids in the recognition and resolution of thrash-
ing scenarios. As shown in Figure 5-13, the thrashlock monitor takes as input information about
the current access; this information includes the current context number (0 – 3), the current access

23While satisfying a memory request from the local processor, the Memory Machine passes its address to the
Remote Transaction Machine, which proceeds to locate the pending transaction buffer and perform the protocol state
transitions. This localizes the data response protocol transitions entirely within the Remote Transaction Machine.

24An associative matching option which is provided by the CMMU but not discussed above, is the ability to ignore
buffers which have TIP set but do not have data. This is useful for “locally coherent” DMA operations.

25The result of such a match is sent with requests to local memory.

5.2. The Communications and Memory Management Unit Page 173

type (instruction or data), and whether or not context switching is enabled. It combines these pieces
of information with internal state and the current associative match to produce the THRASHDE-
TECTED signal, which is used to indicate that context switching should be avoided. It also takes
two THRASHCONTROL signals, called CLEARTHRASHINFO and UPDATETHRASHINFO to decide
how to alter the subsequent state of the Thrashlock monitor. This interface will be described later,
after the introduction of the internal state of the Thrashlock Monitor, namely thetracking vectors.

Tracking Vectors: Figure 5-15 shows the state which is maintained by the thrashlock monitor.

Instruction Data

TOTW Buffer ID
(4 bits) TW TO Buffer ID

(4 bits)

TOTW Buffer ID
(4 bits) TW TO Buffer ID

(4 bits)

TOTW Buffer ID
(4 bits) TW TO Buffer ID

(4 bits)

TOTW Buffer ID
(4 bits) TW TO Buffer ID

(4 bits)

Context 0:

Context 1:

Context 2:

Context 3:

Figure 5-15: Tracking vectors for imple-
menting the thrashlock mechanism.

It consists of eighttracking vectors, corresponding to one primary instruction transaction and one
primary data transaction for each of four hardware
contexts. These tracking vectors are responsible for
associating specific primary transactions with trans-
action buffers. In a sense, tracking vectors reflect the
pipeline state of the processor by tracking the state
of its primary accesses. It is because of this close
coupling between tracking vectors and the pipeline
that care must be taken to interpret the stream of ac-
cess requests from the processor in a fashion which
guarantees forward progress.

Each tracking vector has two control bits and
one four-bit pointer. The two control bits are the
tried-oncebit (TO) and thethrash-waitbit (TW). Both of these were introduced in Section 3.2.7,
during the discussion of the Thrashwait mechanism. When a tracking vector has its tried-once
bit set, this state indicates that a primary transaction has been initiated and that the identity of the
associated transaction buffer resides in its four-bit pointer. Such vectors are consideredlive and the
transaction buffers which they point at are denotedprimary transaction buffers. The thrash-wait bit
indicates that thrashing has been detected on this primary transaction. It is set whenever thrashing
is detected and cleared whenever the corresponding primary transaction completes successfully.

Thus, to initiate a new primary transaction, the following operations must be performed:

1. Allocate an empty transaction buffer from the pool of free buffers.

2. Set the address and state of this buffer to reflect the transaction. This involves setting
the TIP bit and the transaction type.

3. Perform any external action (such as sending a request message).

4. Record the transaction buffer ID in appropriate tracking vector and set its TO bit.

5. Finally, if thrashing was detected on a previous incarnation of this primary transac-
tion, set the TW bit.

These operations occur in parallel in the CMMU. To permit thrash detection across interrupts,
tracking vectorsmust notbe altered by accesses to local, unshared memory. Note that there are a
couple of additional pipelining issues with respect to updating these vectors that arise because they
are not directly integrated with the integer pipeline; for more information on this, see [62].

Page 174 CHAPTER 5. THE HARDWARE ARCHITECTURE OF ALEWIFE

If either of the TW bits for the current context is asserted, then the processor pipeline is frozen
with context-switching disabled. This policy makes thrash-detection persistent across the servic-
ing of high-availability interrupts. Since primary transactions are initiated in a unique order (e.g.
instruction then data), thrashing on primary transactions which are later in this ordering will force
context-switching to remain disabled even when transactions which are earlier in the ordering have
to be retried. For example, when the processor is spinning on a thrashing data access and is in-
terrupted to service a high-availability interrupt, it will return to refetch the interrupted instruction
with context-switching disabled. This, behavior, along with the buffer locks described below, guar-
antee that the latest thrashing transaction will eventually complete. Since completion of a given
primary transaction permits the initiation of the next primary transaction, all primary transactions
eventually complete and forward progress follows.

Buffer Locks: The Thrashlock algorithm requires as many buffer locks as simultaneous primary
transactions. Recall from Section 3.2.7 that a buffer is locked during the thrashwait phase to
prevent it from being lost to invalidation. These locks are activated whenever thrashing is detected
on a primary transaction and are deactivated whenever the transaction is successfully completed
by the processor. However, the thrash-wait bits behave in exactly this way. From these bits, the
CMMU generates a 16-bit vector of locks, called the NOINVALIDATE vector. A bit in this vector
is set if the corresponding transaction buffer has a live tracking vector whose TW bit is asserted.

The NOINVALIDATE vector has two functions. First, it causes invalidation requests for locked
buffers to be deferred. This deferral is accomplished by returning an appropriate lock bit with
the results of an associative match, so that the state machines which are processing invalidation
messages can make the appropriate state transitions.

Second, the NOINVALIDATE vector is used to prevent buffers with deferred invalidations from
being visible to those machines which would normally dispose of them. As shown in Table 5-14,
there are three transient states in which INV is set and both TIP and Flush are clear. These states
are for buffers which have data (in their windows of vulnerability) and which also have pending
invalidations. Normally, they are transient, i.e. they immediately generate acknowledgments or
updates and become empty. If locked, however, they must remain as they are, waiting for an access
from the requesting context. The transaction monitor, described in Section 5.2.3.4, is responsible
for scheduling transient states in accordance with current buffer locks.

Note that Section 3.2 showed that multiple buffer locks can lead to deadlock. However, the
Thrashlock Monitor described herein haseight buffer locks! This large number of locks is not a
problem as long as interrupt handlers adhere to the following constraints:

1. Interrupt handlers must return to the same context that they interrupted.

2. Global memory accesses must be from a context other than the interrupted context.

3. Global memory accesses in trap handlers must be to variables which will not thrash.

The second condition ensures that the tracking vectors of the interrupted context are not affected
by the interrupt handler. This occurs naturally if the software reserves a hardware context for rapid
processing of messages. The first and third conditions restrict buffer locks to a single context, since
context switching is disabled when locks are active. Note, in particular, that this is a relaxed form

5.2. The Communications and Memory Management Unit Page 175

of the constraints presented in Section 2.5.2, which simply disallowed global accesses when locks
are present (automatically satisfying condition (3) above).

Unfortunately, for user-level interrupt handlers, we are unable to “trust” the user to avoid incor-
rect use of shared memory. Hence, the presence of a buffer lock in an interrupted context is treated
as a form of priority inversion: the user is allowed to execute the atomic section of a user-level
handler, as long as they do not touch shared memory. When they exit the atomic section, the atom-
icity extension mechanism briefly returns to the interrupted context to finish the locked transaction
(see Section 2.4.5 for a discussion of the atomicity-extension mechanism). If, on the other hand,
the user touches shared memory in the atomic section, this will invoke two-case delivery (this is
normal behavior during a user-level atomic section; see discussion in Section 4.3.5).

Protection of Primary Transaction Buffers: During the period in which a tracking vector is
live, the buffer which it points to is an integral part of the ongoing primary transaction. Conse-
quently, this buffer must be protected against garbage collection and reallocation, even if it should
become empty before the requesting context returns to examine it. This protection is accomplished
through the 16-bit NORECLAIM vector — a bit in this vector is set if the corresponding transaction
buffer is pointed at by a live tracking vector. The NORECLAIM vector is passed to the transaction
monitor, which invokes garbage collections and chooses empty buffers for reallocation.

Protection of primary transactions in this way has a number of advantages. First, transactions
which have entered their window of vulnerability (i.e. have data cached in a transaction buffer) are
not aborted by the garbage collector. Without this protection, important cached buffers would be
considered reclaimable.

Second, premature lock release can be detected. Here it refers to a particular thrashing scenario
in which a context (which we will call therequesting context) initiates a transaction to a memory-
line, which is subsequently satisfied and invalidated. Later, a new transaction is started for the same
memory-line by another context. From the standpoint of the requesting context, this is a thrashing
situation, since the data has come and gone. Unfortunately, when the requesting context returns,
it performs an associative lookup and discovers a transaction buffer for the desired address with
TIP set. Without some additional mechanism, there would be no way to distinguish this situation
from the one in which the original transaction was long-lived. However, by protecting the original
primary transaction buffer from reallocation, we can ensure that the new transaction resides in a
different buffer. Consequently, this situation can be detected.

Finally, protection of primary transaction buffers allows us to flag transactions which are
aborted byBUSY(or NAK) messages: we simply mark them as empty, with the special trans-
action type ofBUSY. Such transactions are not considered to be thrashed. This is appropriate since
BUSYmessages are generated during periods in which the memory is sending or waiting for inval-
idations, which can last for a number of cycles. If thrashing were detected on busied transactions,
it would be possible for the cache system and memory system to get locked into a cycle of sending
requests andBUSYmessages26. It is much better to conserve memory and network bandwidth by
making a single request and switching to another context.

26Note that the presence ofBUSYmessages impacts forward progress at the memory side (See Section 3.3).

Page 176 CHAPTER 5. THE HARDWARE ARCHITECTURE OF ALEWIFE

THRASHDETECTED=

CONTEXT SWITCHING DISABLED _
THRASH WAITData_ THRASH WAIT Inst_ // Thrashing previously detected
(TRIED ONCE^ : MatchedTXB^ TT(POINTER) 6= BUSY) _ // Inter-processor thrashing
(TRIED ONCE^ MatchedTXB^ ID(MatchedTXB)6= POINTER) // Premature lock release

Figure 5-16:Composition of the THRASHDETECTEDsignal. MatchedTXB signals a matched transaction
buffer; ID(MatchedTXB) is its index. POINTER and TRIED ONCE are fields from the active tracking vec-
tor; TT(POINTER) is the trans-type of buffer POINTER; and THRASH WAITData and THRASH WAIT Inst
are from the current context.

Thrash Detection and the Processor Interface: We are now in a position to discuss the in-

DO GLOBAL PROCESSORREQUEST(Address,Context,Type)
1: if (cache-hit forAddress[Type]) then
2: assert CLEARTHRASHINFO

3: return READY
4: elsif (TXB-hit for Address[Type]) then
5: fill cache from transaction buffer
6: clear transaction buffer
7: assert CLEARTHRASHINFO

8: return READY
9: else// Data not currently available

10: if (:MatchedTXB) then
11: sendRREQ or WREQ
12: allocate new transaction buffer (NewTXB)
13: TT(NewTXB) Type, TIP(NewTXB) 1
14: elsif (:TIP(MatchedTXB)) then

// Insufficient access (TT= RO,Type= RW)
15: sendMREQ // Request RW copy
16: TT(MatchedTXB) RW, TIP(MatchedTXB) 1
17: endif
18: assert UPDATETHRASHINFO

19: if (THRASHDETECTED) then return WAIT
20: else return SWITCH
21: endif

Figure 5-17:Data Access with the ThrashLock Algorithm

terface between the thrashlock monitor and the cache management hardware of the CMMU. The
current context number and access type are used to select an appropriate tracking vector. Call this
theactivetracking vector. Then, based on this and on information from the associative matching
circuitry, the thrashlock monitor com-
putes the THRASHDETECTED signal,
as shown in Figure 5-16.

Two operations that can be used
to manipulate the thrashlock moni-
tor are the UPDATETHRASHINFO and
CLEARTHRASHINFO signals. These
operations are defined as follows:

UPDATETHRASHINFO)
THRASH WAIT THRASHDETECTED

TRIED ONCE 1
POINTER WRITETXB

CLEARTHRASHINFO)
THRASH WAIT 0

TRIED ONCE 0

Here, THRASH WAIT (with no sub-
script) is either THRASH WAITData
or THRASH WAIT Inst depending on
the type of the current access. Fur-
ther, WRITETXB denotes the transac-
tion buffer which the processor is about to modify this cycle; WRITETXB is either an empty buffer
or the current associatively matched buffer.

Finally, an updated version of the processor-access pseudo-code of Section 3.2.7 (Figure 3-11)
can now be constructed. Let TIP(MatchedTXB) be the TIP bit from the matched transaction buffer.
Then, a processor access is as shown in Figure 5-17. This pseudo-code is the original ThrashWait
algorithm, updated with ThrashLock semantics and targeted at the Tracking Vector implementation
described in this section.

5.2. The Communications and Memory Management Unit Page 177

5.2.3.4 Transaction Monitor

The transaction monitor, shown in Figure 5-13, is responsible for the allocation and management
of transaction buffers. It takes state information from each of the 16 buffers and combines it
with the NORECLAIM and NOINVALIDATE vectors (see Section 5.2.3.3) to perform a number of
supervisory tasks. These are listed below:

Buffer Allocation Constraints: Since transaction buffers are a limited resource in the CMMU,
some constraints must be placed on their allocation. Two independent (and overlapping) counts
of transaction buffers are generated. The first, TRANSACTIONCOUNT, is a combined count of
outstanding transactions and cached data. Placing a limit on this count forces a tradeoff between
these two buffer classes. The second, GLOBAL COUNT, is used to limit the number of buffers
which might be indefinitely occupied during network overflow.

Let GLOBAL BUFFER be true if a transaction buffer has a global address. Let RECLAIMABLE

be true if a buffer is not protected by the NORECLAIM vector. Then, two allocation invariants
which are maintained by the cache management machine can be defined as follows:

TRANSACTIONCOUNT � 12 Where TRANSACTIONCOUNT is the count of buffers for which:
(GLOBALBUFFER^ TIP= 1) _
(Flush= 0^ INV = 0^ Valid 6= 0)_
: RECLAIMABLE

GLOBALCOUNT � 14 Where GLOBALCOUNT is the count of buffers for which:
(GLOBALBUFFER^ TIP= 1)_
(GLOBALBUFFER^ INV = 1)_
(GLOBALBUFFER^ Flush= 0^ Valid 6= 0)_
: RECLAIMABLE

Note that these invariants are different from the constraints on the number of buffers with identical
addresses which were discussed in Section 5.2.3.2. These allocation invariants are maintained by
the cache system since:

1. The cache management machine never allocates buffers that violate them.

2. Both are monotonically decreasing with respect to non-allocation transitions27.

While the actual limits (12 and 14) are somewhat arbitrary, the important orderings are given in
parentheses. The fact that the maximum GLOBAL COUNT is larger then the maximum TRANS-
ACTIONCOUNT insures that buffers can be available for flushes to global memory, even when the
maximum TransactionCount has been filled with global buffers. The fact that the maximum GLOB-
AL COUNT is less than the total number of buffers ensures that buffers will always be available
for accesses to unshared local memory; when the maximum GLOBAL COUNT has been reached,

27Actually, the TRANSACTIONCOUNT limit may be violated briefly by one transition: unshared transaction in
progress! unshared cached. This causes the TRANSACTIONCOUNT to increase, since unshared transactions are not
counted. However, unshared cached buffers can always be garbage-collected; in fact, the invariant will be immediately
restored by the garbage-collector.

Page 178 CHAPTER 5. THE HARDWARE ARCHITECTURE OF ALEWIFE

the remaining buffers must be flushes without protocol action (which can always be completed),
unshared cached values (which can be garbage-collected and flushed), or unshared transactions
(which can be completed locally).

To expedite the process of maintaining the invariants, the transaction monitor produces two
boolean signals, TRANSFULL and GLOBFULL which are defined as follows:

TRANSFULL) (TRANSACTIONCOUNT � 12)
GLOBFULL) (GLOBALCOUNT � 14)

These signals are asserted whenever their corresponding invariants are in danger of being violated.
As an example of their use, when the Cache Management Machine is about to initiate a new
remote transaction on behalf of the processor, it checks to make sure thatboth TRANSFULL and
GLOBFULL are deasserted (the new buffer would fall into both categories). If not, it asserts the
processor hold line and enters theRESOURCEWAIT state until resources become available.

Allocation of Empty Buffers: Those buffers that are in the empty state and not protected by
the NORECLAIM vector are candidates for allocation. The transaction monitor generates a 16-bit
vector with one bit set for each allocatable buffer. Combining this vector with a base pointer,
it chooses the next available empty buffer in round-robin fashion. This buffer may be written
(allocated) by the state machine that has control of the associative matching port. Only the cache
management hardware actually allocates new buffers. To indicate that free buffers are available,
the transaction monitor generates a signal called HAVEEMPTY.

Identification of Buffers for Garbage Collection: As mentioned in Section 5.2.3.1, use of the
transaction buffer as a generic cache requires some form of garbage-collection. Otherwise, cached
states quickly consume all available resources. Those buffers that are cached (classA) and not pro-
tected by the NORECLAIM vectors are consideredreclaimable. The transaction monitor generates
a 16-bit vector that has one bit set for each reclaimable buffer. As with empty buffer allocation,
it combines the vector of reclaimable buffers with a base pointer28 to choose the next candidate
for garbage-collection. This information is passed to the Remote Transaction Machine which will
perform the actual garbage-collection when resources are low.

Invocation of the garbage-collector is straightforward: the TRANSACTIONCOUNT invariant
forces a trade-off between transactions in progress and cached buffer entries. Thus, whenever
TRANSFULL is asserted, the remote-transaction machine checks to see if any reclaimable buffers
exist. If so, it takes the next candidate from the transaction monitor and reclaims it. Buffers with
transaction-typeROare discarded. Buffers in statesRWor RWDare transformed into transient states
by setting their Flush bits; the INV bits of global buffers are set as well. These buffers then become
transient and are scheduled as described in the next section.

Scheduling of Transient States: As discussed in Section 5.2.3.1, some transaction buffer states
are transient, namely those markedC in Table 5-1 and those markedB which are not locked.

28This is actually the same base pointer as is used for empty buffer allocation. Empty buffers are allocated a fixed
number of buffers ahead of where garbage-collection is occurring.

5.2. The Communications and Memory Management Unit Page 179

The transaction monitor combines the NOINVALIDATE vector, described in Section 5.2.3.3, with
transaction state to produce two classes of transient buffers: those with their Local bits set and those
with their Local bits clear. Those with their Local bits set have local addresses and are processed
by the memory management machine. Those with their Local bits clear are remote addresses and
are processed by the Remote Transaction Machine. These two classes are scheduled separately, in
round-robin fashion. Each machine is informed when it has one or more transient buffer to process
(signals HAVEREMOTEFLUSH and HAVELOCALFLUSH in Figure 5-13) and is informed of which
is the next buffer to process.

The transaction monitor has one addition feature which modifies the scheduling of local buffers
during network overflow. To process transient buffers which are implicit protocol messages (global
buffers), the memory machine may need to send messages. Consequently, during periods of scarce
network resources, it may be impossible to process such buffers at all29. Thus, to guarantee that the
processor has access to unshared portions of memory, the scheduling of local buffers is modified
during network overflow to ignore transient buffers with global addresses. Thus, unshared flushes
can always proceed.

5.2.3.5 Transaction Data

Although we have not said much about the transaction data module, we would like to say a few
words at this time. The transaction data module contains sufficient storage for one complete, four-
word memory-line per transaction buffer. The physical memory cell supports 64-bit data paths,
dividing each 128-bit memory line into two 64-bit chunks. This is matched to the fact that the
memory bus and internal network queues are also 64 bits. As we have noted, the transaction buffer
serves as an extremely flexible interface between the processor, memory, and network. One of the
goals that impacted the design of the transaction buffer was a desire for it to serve as a conduit for
all data accesses, including unshared instruction cache misses to local memory; as such, it should
introduce little or no delay over a more direct, hard-wired path.

This goal was accomplished by pipelining data directly through transaction buffers. In the
CMMU, pipelining of transaction data is accomplished by three things:

� Separate read and write ports, permitting data to be read at the same time that it is
being written. In fact, the CMMU employs a three-port memory file for transaction
buffer data with two read ports and one write port. One of the read ports is dedicated
to the memory management machine for processing flushed buffers.

� Bypass logic to permit data to be read on the same cycle that it is written.

� A per-buffer Valid field which is a two-bit Gray code. The four Valid states,
INVALID , ARRIVING, HALF VALID , and VALID were introduced in Sec-
tion 5.2.3.1. Logic to modify and examine the Valid bits is integrated directly into
the data access ports of the transaction buffer.

29As discussed in Section 5.2.4, the Memory Machine always verifies that it has sufficient resources to finish a
requestbeforestarting to process it.

Page 180 CHAPTER 5. THE HARDWARE ARCHITECTURE OF ALEWIFE

The key to pipelining is in the Valid bits. TheARRIVING state indicates that protocol action
has completed and that data arrival is imminent. This is used to initiate scheduling of any entity
that may be sleeping in wait for data. TheHALF VALID state indicates that the first of the two
64-bit sub-lines has valid data, whileVALID indicates that both lines are valid. Two transitions,
(ARRIVING! HALF VALID), and (HALF VALID ! VALID), are invoked directly by writes to
the transaction data.

In the next section (Section 5.2.4) we introduceservice coupling, an implementation methodol-
ogy that allows the Alewife CMMU to takes advantage of the transaction-buffer pipeline to achieve
extremely low-latency local memory access.

5.2.4 Service Coupling and Memory Scheduling

The Alewife memory system must handle a diverse set of requests: cache-coherent shared

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

S
cheduler

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

D
ata

R
outer

Request
Source #1

Request
Source #2

Request
Source #3

Destination
 #1

Destination
 #2

Destination
 #3

H
ighly

C
ontended

R
esource

Machine
State

Figure 5-18: Use of service coupling to maxi-
mize utilization of a highly-contended resource.
Basic components are stream-basedscheduling,
processing, anddelivery.

memory, message passing with locally-coherent DMA, and unshared memory access. Each of
these categories of communication place differ-
ent demands on the memory system. Ideally, we
would like to find a way to support these different
mechanisms without losing efficiency in terms of
achievable latency or bandwidth.

In this section, we would like to introduce
a simple implementation technique, calledser-
vice coupling, that gives us the flexibility to
smoothly integrate all of the Alewife communi-
cation mechanisms while giving up very little in
terms of performance. As shown in Figure 5-18,
the key insight behind service coupling is that we

can achieve maximal utilization of some highly contended resource (in this case the DRAM sys-
tem) by transforming all requests for that subsystem intostreamsof requests that eventually yield
streams of responses. The components of a service-coupled resource are, therefore:

1. A schedulerthat takes as input several distinct streams of requests, combines these
through some appropriate scheduling criteria, and produces a single multiplexed
stream of requests. Note that, although the source of a request is coded in the output
stream, this information might be examined only by the output router or ignored
entirely.

2. A stream-based resourcethat takes a stream of requests and produces a stream of
responses.

3. A router that takes as input a multiplexed stream of responses and demultiplexes
these to a set of destination streams. Note that the set of response destinations is not
necessarily the same as the set of request sources.

There are a number of things to note about this. First, stream-based processing can offer more
efficient packing of cycles than other options, since it offers a “future look” at the next operation

5.2. The Communications and Memory Management Unit Page 181

in the request stream. Second, stream-based processing naturally leads itself to pipeline optimiza-
tions: the results of an operation is a serial stream of data that lends itself to handling in piecemeal
fashion. Finally, by treating all types of operations in the same way (shown by the fact that all op-
erations stream through a single resource processor), we can remove “irrelevant” complexity from
the act of processing requests (having to do with the destination of the request); in Alewife, this
is particularly important in that the destination of a cache-coherence packet may be either remote
or local, with appropriate pipelining handled by the output router,not the protocol processor. In
many cases, this allows us to make all operations equally efficient30. Note that, in order to use
service coupling, all requests must be cast in a way that resembles a stream input, whether or not
they come from queues. Similarly, all destinations must accept stream-like outputs, regardless of
the actual format of the destination (e.g.network queue, transaction buffer, cache line,etc.).

Scheduling: The service-coupling framework is utilized in the Cache Management Machine
(CMM), the Remote Transaction Machine (RTM), and the Memory Management Machine
(MMM) of the Alewife CMMU because it offers a clean framework for satisfying the multiple
demands of an integrated architecture. One of the consequences of separating operations into the
phases of scheduling, processing, and routing is that it highlights scheduling as an important task.
Both the CMM and MMM schedule requests in a way that guaranteesatomicity of operationsand
fairness of access. We would like to discuss these briefly.

The first of these, atomicity of operations, refers to the guarantee that all operations have suffi-
cient resources to complete before they begin execution. As discussed in Section 4.3.7, atomicity
of operations is very important in a machine that supports two-case delivery, since the memory
system must never lock up awaiting network queue space. In Alewife, this takes the form of a set
of conservative heuristics that guarantee that requests can complete before they pass through the
scheduler. For example, all accesses to shared memory are assumed to require sufficient network
output queue space to support the maximum output traffic (which, on the memory side, is five
outgoing invalidations, encoded in a special format that is unpacked by the output hardware). In
addition, depending on which of the input streams was a source of a given request, other require-
ments may be necessary: for instance, memory requests from the network input queue require
space for one invalidation on the local memory-to-processor invalidation queue. These schedul-
ing heuristics must be conservative enough to guarantee atomicity, but not so conservative that
they introduce deadlock. Input streams that that pass their resource requirements are considered
“schedulable”,i.e. are potential sources for the next request. Note that the filtering of requests for
those that have sufficient resources to complete has the important side-benefit of guaranteeing the
highest possible utilization of a contended resource (such as the Memory Management Machine)
by greatly limiting (or removing) the amount of time that it wastes to interlock cycles; in other
words, this guarantees the lowest possible “occupation” of the contended resource.

The second guarantee, namely fairness of access, addresses forward progress concerns. Its ba-
sic tenet is to ensure that all sources of requests eventually make forward progress. In Alewife, both
the CMM and MMM employ schedulers that provide “essentially” LRU scheduling of streams.
This means that, aside from overrides to ensure that the local processor makes forward progress

30Of course, if we are not careful, we could make all operations equally inefficient.

Page 182 CHAPTER 5. THE HARDWARE ARCHITECTURE OF ALEWIFE

as quickly as possible, these schedulers select the oldest input stream from the set of schedulable
streams. This is done with a hardware priority structure that takes into account the set of required
resources and the current position in the LRU priority to decide which stream should execute next.
Note that to ensure forward progress, this must be done in a way that prevents streams from “steal-
ing” resource from one another. For instance, if stream A needs resources X and Y, but stream B
needs only X, the scheduler will prevent stream B from executing if it is of lower LRU priority
(has executed more recently) than stream A. It is here that the designer must be careful to avoid
cases in which this type of “fair” scheduling prevents forward progress (e.g.a situation for which
resource Y never becomes available until stream B executes).

Thus, within the service-coupling framework, scheduling has a pivotal role. Assuming that
resource requirements are properly formulated and that sources of requests are properly cast as
input streams, this type of scheduling can do much toward maximizing utilization of contended
resources. The Alewife Memory Management Machine supports six different sources of requests:
the processor request queue, the directory operation queue31, the network protocol input queue, the
transaction buffer flush-queue, and the two network DMA engines.

Data Routing: The metaphor for the demultiplexing stage of service coupling is that of network
routing; this is not accidental. By separating the routing of results from the actual production of
results, we can greatly simplify the core processing operation. A good example of this process is
the routing of cache-coherence packets within the CMMU. The Memory Management Machine
can simply generate a result (such as a response to a read request) without worrying about whether
or not this result is destined for the local processor. The design methodology that this engen-
ders views result streams and pipelining as natural and fundamental. Thus, everything that is
downstream from the router (in this example, either the transaction buffer or network) can make
maximal use of pipelining of results.

The basic mechanism of routing is much like a wormhole-routed network: when the “header”
of a particular operation first arrives (this is the first piece of data to emerge from the resource
processor in response to a request), it is used to latch in a particular destination data path, much
like throwing a switch on a train track. In some cases, this routing decision can be quite simple: for
instance, cache-coherence packets with destinations other than the local node are clearly destined
for the network output queue; for these cases, the data switch is thrown so that subsequent data
items get directed into the network. In contrast, the routing decisioncanbe more complex such as
for the case of a local memory request. When the Memory Machine is satisfying a local request,
theRemote Transaction Machineis actually consulted by the routing hardware to discover which
transaction buffer is appropriate to fill. Once the correct buffer is discovered, the switch is thrown
so that data fills the appropriate transaction buffer. One particularly amusing (and simple) example
of routing exists in the Cache Management Machine: if a particular processor write operation is
“squashed”, then the destination is set to DEVNULL, causing data to be tossed away.

One important point to stress is that results are not necessarily routed to the same functional
block that generated the original request. In the CMMU, for instance, a data replacement that came
from the transaction buffer (as a transient state) might generate an output data message that is sent

31A special, out-of-band interface for handing directory operations up to the processor. This is in support of the
rldir andwudir operations discussed in Section 3.4.2.1.

5.2. The Communications and Memory Management Unit Page 183

70 1 2 3 4 5 6 8 9 101112

S
che

dule
R

equest

D
R

A
M

R
ow

 S
e

le
ct

Read
Coherence
Directory

Read Data
Words
0 and 1

Read Data
Words
2 and 3

D
R

A
M

B
u

s D
isable

Write
Coherence
Directory

DRAM
Precharge

S
che

dule
R

equest

P
rotocol

P
roce

ssing

R
esponse

D
a

ta 0/1

Interlock

R
esponse

D
ata 2/3

Maximum Cycle Time
(12 cycles)

F
ix R

oute
(N

etw
ork)

R
esponse
H

eade
r

R
esponse

D
ata 0/1

R
esponse

D
ata 2/3

Response In NetworkRequest
Arrival

Memory
Scheduler:

DRAM
Controller:

Memory
Machine:

Network
Output

 Queue:

D
R

A
M

ID
LE

Cycle:

Synchronous
Request Latency

(7.5 Cycles)

70 1 2 3 4 5 6 8 9 101112Cycle:

S
che

dule
R

equest

D
R

A
M

R
ow

 S
elect

Read
Coherence
Directory

Read Data
Words
0 and 1

Read Data
Words
2 and 3

D
R

A
M

B
us D

isab
le

Write
Coherence
Dirrctory

DRAM
Precharge

S
che

dule
R

equest

P
rotocol

P
roce

ssing

R
esponse

D
ata 0/1

Interlock

R
esponse

D
ata 2/3

Maximum Cycle Time
(12 cycles)

Memory
Scheduler:

DRAM
Controller:

Memory
Machine:

F
ix R

oute
(T

X
B

)

R
esponse

D
ata 0/1

R
esponse

D
ata 2/3

W
rite

W
ord 0

W
rite

W
ord 1

W
rite

W
ord 2

W
rite

W
ord 3

B
us E

nable

A
ttem

pt
R

ead

C
ache

B
u

s D
isable

N
ext

R
ead

Cache Miss
Penalty

(11 Cycles)

Transaction
Buffer:

Cache
Bus:

D
R

A
M

ID
LE

Figure 5-19:Memory-side scheduling of a remote
cache-coherence request. The assumption is that
the Memory Machine is idle when the request first
arrives.

Figure 5-20:Memory-side scheduling of a local
cache-coherence request. Timing is given along the
bottom for the resulting cache fill (assuming mem-
ory initially idle).

to the network; this example might arise as the second half of a data invalidation that resulted
from a remote request for data that is dirty in the local cache. The Alewife Memory Management
Machine supports four different output destinations: the transaction buffer, the local invalidation
queue, the network output queue, and the IPI Local Queue.

The Myth of Expensive Remote Access: To give a more concrete example of the benefits of
service coupling, we would like to tackle a myth. That myth is the notion that remote memory
access must necessarily be expensive. A number of architectures seem to have accepted that a
10 to 1 (or higher) ratio of remote to local access latency is inevitable (for instance, Dash [70]).
Unfortunately, such high remote to local access latencies greatly limit the maximum parallelism
that can be exploited by applications. In fact, with service coupling, this does not have to be true:
Alewife supports a 3 to 1 ratio. Figures 5-19 and 5-20 illustrate this point. These figures show
memory scheduling for two “similar” operations that might be considered quite different in less
integrated architectures: the satisfying of a remote cache-coherence request and the handling of
a local cache miss. The top three rows of these figures, showing the behavior of the memory
scheduler, DRAM controller, and Memory Management Machine, areidentical for both of these
operations. Because this handling is identical, we can afford to invest more design effort optimizing
the DRAM interface. The bottom two rows of these figures show the “routing” aspects of service
coupling,i.e. the consumers of transaction results.

To briefly describe these figures, note that we start with the assumption that memory is initially
idle. The beginning of Cycle 0 marks the arrival of either a remote memory request (Figure 5-19) or

Page 184 CHAPTER 5. THE HARDWARE ARCHITECTURE OF ALEWIFE

a local cache-miss (Figure 5-20). After one cycle of scheduling (assuming that sufficient resources
exist to satisfy the request), the DRAM Controller/Memory Management Machine is invoked. In
the service-coupling model, these two interlocked machines are the stream-based resource that we
are multiplexing32. As shown by these figures, the DRAM controller is busy for the next 10 cycles
handling directory reads/writes and data reads for the local request. Every possible DRAM cycle is
utilized here. At the end of Cycle 10, the scheduler is consulted again for the next request (if there
is one). Assuming that the next request references a different DRAM page than the current one,
Cycles 11 and 12 serve to precharge the DRAM (so that Cycle “13” could begin the DRAM Row
select for the next request). This gives a maximum DRAM cycle time of 12 cycles; less would
be possible if successive requests were to the same DRAM page. Note that references to local
unshared memory would shorted this process by an additional 5 cycles, eliminating two cycles of
cache-coherence directory read, two cycles of directory write, and one bus turn-around cycle.

Note that the cache-coherence directory becomes available at the end of Cycle 3. In Cycle 4,
therefore, the Memory Management Machine performs the cache coherence actions, producing the
output header. As a result, Cycle 5 is the cycle in which we perform the data routing operation,
based on the result header produced at the end of Cycle 4. In Figure 5-19, the data route gets fixed
to the network output queue; allowing for one cycle of pipeline in the network queues, we see that
the first output flit starts entering the network in Cycle 7 (since this is an asynchronous network,
no timing boundaries make sense after that).

In Figure 5-20, the data routing cycle performs a bit more complicated routing operation. At
the end of Cycle 4, a “heads-up” signal is sent to the Remote Transaction Machine, requesting that
it preferentially service the Memory Management Machine if possible. Assuming that everything
works out, the Remote Transaction Machine will perform an associative lookup on the address
during the routing cycle (Cycle 5), returning a transaction buffer identifier to the Memory Man-
agement Machine. It proceeds to fix its route to point at this buffer. As a result, the subsequent
data words are routed into the transaction buffer. Figure 5-20 illustrates the effect of the pipelining
and bypass features of the transaction buffer: the first double-word of data is written into the trans-
action buffer in Cycle 6 and is bypassed through the buffer directly into the cache (if the processor
is waiting)33.

The end result is an 11-cycle cache-miss penalty for local operations to shared memory. In
addition, access to local unshared memory has almost the same timing, as long as one removes
the two coherence directory access periods (for a total of 5 cycles – two 2-cycle directory access
cycles and a 1 cycle bus turnaround). This affects the latency by shorting the cache-miss penalty
for an unshared access to 9 cycles; it is interesting to note that this 9-cycle latency meets or beats
the best cache-miss penalties for SPARCstationsTM with the same generation of processor. Thus,
service coupling allows fast remote access without compromising the latency of local accesses.

It is also interesting to note that the remote cache fill operation implied by Figure 5-19 will
have very similar timing to the latter portion of Figure 5-20. This is due to the service-coupling
behavior of the Remote Transaction Machine at the destination of the message (which pipelines
data directly from the network into the transaction buffer). What this says is that, in an architecture

32The separation of memory handling into two separate loci of control was chosen to simplify the issues of refresh
and ECC handling, separating them from the higher-level issues such as cache-coherence protocol handling.

33The Sparcle cache is written on the falling edge of the clock, hence the half-cycle timing shown here.

5.2. The Communications and Memory Management Unit Page 185

which integrates the network and memory controller,the difference between a remote and local
cache-miss is no more than the two-way network latency plus a couple of extra cycles that may
be attributed to queueing. Thus, the myth that cache-coherence operations must be expensive is
just that: a myth. Remote to local access latencies on the order of 2 to 1 or lower are currently
achievable (see the Origin [67], for instance). In fact, we can expect that remote to local access
latencies will be driven even lower than 2 to 1, given current trends of increasing cache-line sizes
and increasing relative DRAM delays. This merely reflects the fact that the efficiency of commu-
nication in a service-coupled architecture is dependent on fundamental properties of the network
and memory system rather than an artificial distinction between remote and local access.

5.2.5 Implementation of Local DMA Coherence

One final topic related to the hardware architecture of the Alewife CMMU is the implementation of
locally-coherent DMA. This topic is of interest for at least two reasons: First, it contains the details
of one of the high-level interactions between message passing and cache-coherent shared memory;
hence, it is particularly apropos to the topic of this thesis. Second, the DMA mechanism combines
the functionality of several of the blocks of the CMMU, tying them together with multiple levels
of service coupling to achieve a highly-efficient, locally-coherent stream of data.

We have already mentioned the two state machines that provide the user-level message-

E
7

O
7

O
2

E
0

E
1

E
2

E
3

E
4

E
5

E
6

O
0

O
1

O
3

O
4

O
5

O
6

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

D
M

A
 req

uest
H

e
ad P

ointer

IN
V

 req
ue

st
H

e
ad P

ointer

Tail P
o

inter

Invalidations
(For CMM)

DMA Requests
(For MMM)

DMA Control
(From IPI)

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A

Figure 5-21: The double-headedcoherence
queuethat is used to implement local DMA co-
herence. This structure is repeated for each of the
two DMA engines.

passing interfaces in Section 5.2.1, namely theIPI Input Machineand theIPI Output Machine;
these were grouped together as theNetwork In-
terface and DMA Controlblock in the block-
diagram of Figure 5-9. What we would like to
achieve in this section is a description of how
the DMA portions of these machines interact
with the Cache Management Machine (CMM),
the Transaction Buffer (TXB), and the Mem-
ory Management Machine (MMM) to achieve lo-
cally coherent DMA. Given service coupling as
discussed in the previous section, locally coher-
ent DMA is surprisingly easy to implement in a
highly-pipelined fashion.

The key to this implementation is the
“double-headed” queue structure shown in Fig-
ure 5-21; one of these queues is associated with
each of the two DMA engines (and IPI ma-
chines). This structure is a circular queue that
contains records describing DMA operations that
must occur34. Each entry in the queue is processed twice, once for cache invalidation and a second

34Each entry in the queue can handle up to two memory-lines simultaneously (a so-called even (E) and odd (O)
memory-line). Memory-lines are handled in pairs during DMA in order to minimize the impact of DMA coherence on
the processor: cache tags must be consulted for each memory-line to maintain coherence. Note that this implies that
cache tags in the Alewife CMMU are divided into two banks — one for even addresses and another for odd addresses.

Page 186 CHAPTER 5. THE HARDWARE ARCHITECTURE OF ALEWIFE

time to invoke necessary DRAM operations. Because the invalidations must precede memory op-
erations (to achieve local coherence), this queue is organized with one tail pointer (for new records)
and two head pointers (the one closest to the tail being theInvalidation Headand the other head
pointer being theDMA Request Head.). Entries are removed from the queue after they have passed
both head pointers.

When entries are first placed on this coherence queue, they contain information about the ad-
dresses that are to be invalidated. A difference between the Invalidation Head and the Tail indicates
an address that has not yet been invalidated from the cache; in the language of service coupling, this
forms a request queue to the Cache Management Machine (it is one of those “auxiliary” streams
mentioned in Section 5.2.2.2). In the example of Figure 5-21, entries 5 and 6 are awaiting handling
by the CMM (entry 5 is the head request). When the CMM scheduler gets around to scheduling this
invalidation stream, one of two things may happen: either the requested memory line(s) are dirty
in the cache, in which case the invalidation operation writes them into transaction buffers or they
are not in the cache in which case nothing happens. Then, the “routing” phase of this operation
causes the Invalidation Head to advance, optionally writing the identifiers of modified transaction
buffers into the coherence queue (this is why there is a double-headed arrow pointing at the CMM
in Figure 5-21).

A difference between the DMA Request Head and the Invalidation Head represents a DMA
request that has passed invalidation and is awaiting DRAM operations. This forms another request
stream to the Memory Management Machine. In the example of Figure 5-21, entries 2 – 4 are
awaiting handling by the MMM (entry 2 is the head request). Note that these requests are actually
compound operations whose behavior depends on whether or not the invalidation phase put data
into the transaction buffer. For the IPI Output DMA stream, for instance, if data was placed into
the transaction buffer during invalidation, then the requested operation is to take data from the
transaction buffer and write it to both DRAM and the output queue. In contrast, if data was not
placed in the transaction buffer during invalidation, then the request is to read from the DRAM and
place the results into the output queue. For IPI Input operations, either data from the transaction
buffer is merged with incoming data and written to DRAM or incoming data is simply written to
DRAM. Note that the efficiency of the DRAM operation is the same whether or not data came
from the cache or memory during local coherence.

This is the complete story on DMA coherence, except for one slight detail in the case of IPI
Input: there is a danger that the processor will re-request a memory-line after it has been invalidated
but before data has been written to memory. This situation can arise from the above of DMA
requests and would represent a violation of local coherence. A reasonable programming style that
would lead to this behavior would be the polling of a region of memory that is being overwritten
by an incoming message to know when the data is complete; another would be some form of
chaotic simulation that was operating on data that was periodically updated by incoming messages.
The solution to this problem is to watch the processor request queue for addresses that are in the
post-invalidation, pre-DMA coherence stage (between the two Head pointers above). When this
happens, we simply interlock the processor request until the DMA operation is complete. This
mechanism effectively closes the “local coherence hole”.

Thus, locally-coherent DMA takes maximal advantage of service coupling, providing complete
pipelining of the invalidation and DRAM accesses.

5.3. Mechanics of the Alewife Implementation Page 187

Gate Mechanism
Category Count % SM MP LT FG

Processor Requests 11686 12
p p p

Full/Empty Decode 2157 2
p

Memory Machine 13351 13
p p

DRAM Control 8720 9
p p

Transaction Buffer 17399 17
p p p

Tracking Vectors 2108 2
p p

Network Interface 11805 12
p p

Network Queueing 7363 7
p p p p

CMMU Registers 9308 9
p p

Statistics 11958 12
Miscellaneous 4627 5

Figure 5-22:Floorplan for the Alewife
CMMU (15mm � 15mm). Shaded re-
gions are standard-cell memories. Re-
maining blocks are formed from sea-of-
gates transistors.

Table 5-2:Functional block sizes (in gates) for the Alewife
CMMU, as well as contributions to shared memory (SM),
message passing (MP), latency tolerance (LT), and fine-
grain synchronization (FG). Total chip resources: 100K
gates and 120K bits of SRAM.

5.3 Mechanics of the Alewife Implementation

In this section, we would like to mention a few details of the “implementation mechanics” of the
Alewife machine,i.e. the methods by which the Alewife machine (and in particular the CMMU)
was implemented. Construction of the Alewife machine was a careful balance of industrial collabo-
ration and local implementation by members of the Alewife team. LSI Logic, SUN Microsystems,
and the APT group at ISI were instrumental in bringing the Alewife prototype to fruition. How-
ever, by dint of foresight or (more likely) luck on the part of Alewife, we opted for exactly the right
balance of industrial support: help with relatively minor modifications to an existing product (re-
sulting in the Sparcle processor) and assistance with the NRE and mechanics of fabrication for the
CMMU. At no point did we rely on major implementation efforts from our industrial collaborators,
hence avoiding the “cancelation” phenomenon that has plagued other architecture groups.

5.3.1 Implementation of the Alewife CMMU

The CMMU was implemented in LEA-300K hybrid gate-array technology from LSI Logic. This
technology has a 0.6� feature size, three layers of metal, and enables intermixing of dense
standard-cells (for memory) amongst sea-of-gates transistors (for general logic). Figure 5-22
shows the floorplan for the A-1000 CMMU. In this figure, shaded regions represent memory and
remain fixed in the final layout. Unshaded regions, on the other hand, represent the starting loca-
tions for various functional blocks; the place-and-route tool uses this placement of blocks as an
initial seed for the simulated annealing placement process. The chip consists of approximately
120,000 bits of SRAM (for the tags-file and network queues), and 100,000 gates of random logic.

Table 5-2 gives a cost-breakdown for the gate-array portion of the chip. Note that gate counts
in this table are skewed a bit because they represent aspects of the chip that were not implemented

Page 188 CHAPTER 5. THE HARDWARE ARCHITECTURE OF ALEWIFE

as standard-cell memories. For instance, the Transaction Buffer listing includes latches for imple-
mentation of the state bits, since the specialized CAM functionality described in Section 5.2.3.2
was not available as a standard block from LSI Logic.

Several interesting things can be gleaned from this table. First, the network interface portion

Component Size
Coprocessor Pipeline 1589 gates
Asynchronous Network Input 1126 gates
Asynchronous Network Output 1304 gates
Network Control and Datapath 2632 gates
Network Input Queue (1R/1W) 32�65 bits
Network Output Queue (1R/1W) 32�65 bits
IPI Input Queue (2R/1W) 8�64 bits
IPI Output (descriptor) Queue (2R/1W) 8�64 bits
IPI Output Local Queue (1R/1W) 8�65 bits
IPI Input Coherence Queue (2 entries) 1610 gates
IPI Output Coherence Queue (2 entries) 1306 gates
IPI Input Interface 4181 gates
IPI Output Interface 3393 gates

Table 5-3: Module sizing for the message-passing por-
tions of the Alewife CMMU.

of the Alewife CMMU (including DMA) represents only about 12 percent of the chip, approxi-
mately the same size as either the proces-
sor or memory coherence-protocol blocks
and only about 50 percent larger than the
DRAM controller. This suggests that the
addition of the user-direct messaging in-
terface described in Chapter 2 was not a
significant aspect of the implementation,
especially given the large number of ad-
vantages. Table 5-3 gives a more detailed
breakdown of the message-passing por-
tions of the chip, illustrating the asyn-
chronous network interfaces and queues
for local DMA coherence.

Second, the transaction buffer was
one of the largest blocks of random logic

on the chip. This certainly reflects the importance of this block (as does the quantity of text as-
sociated with it on this thesis), but also reflects the unfortunate nature of the implementation. In
a “real” (non-academic) implementation, much of this random logic would be replaced by a spe-
cialized CAM cell that would be more compactand much faster (the transaction buffer was in
the critical path of the final chips). Third, the CMMU registers listing includes such things as the
interrupt controller, as well as all of the user-interface logic to access portions of the chip. Finally,
note that statistics formed an non-trivial portion of the Alewife CMMU; this reflects the academic
nature of the chip. The resulting functionality was priceless and more than worth the time and
effort involved in implementation and debugging.

Unlike Sparcle, which was a collaborative effort between MIT (for specification), and LSI
Logic/Sun Microsystems (for implementation), the Alewife CMMU was designed and imple-
mented almost entirely by one person at MIT (this author)35. With a project of this size, some
concessions must clearly have been made; in Alewife, these concessions involved use of high-
level synthesis and gate-array design. Unfortunately, this design methodology leaves much to
be desired in term of final hardware speed: generated logic tends to have more levels of logic
than strictly necessary, and automatic route and placement tools tend to add delay in inconvenient
places36. Thus, meeting timing constraints was far more challenging in Alewife then it would have
been with more custom design methodologies.

35David Chaiken played a pivotal role in design verification, as well as serving as designer of the cache-coherence
protocol. The asynchronous network interface was a collaborative effort between the author and Jonathan Babb.

36A not-so-amusing example of this was the tendency of the LSI Logic placement tool to separate high-drive buffers
from the logic that they were buffering, leaving low-power logic to drive long wires. This apparently followed from
some heuristic that tried to place multi-fanout logic as close as possible to the things that it was driving.

5.3. Mechanics of the Alewife Implementation Page 189

Figure 5-23 illustrates the overall build tree for the Alewife CMMU. At the top of this diagram

Schematics

(Network, Pads)

Compiled
Nets

(Memory, ECC)

High-Level
Synthesis

36K lines
(Everything Else)

Optimization
(Berkeley SIS)

Behavioral
Testing

Framework
(~6.8K lines)

Simulation
Timing
Analysis

Netlist
Transformations

and
Scan-Chain
Synthesis

Preliminary
Layout

ATPG
Generation

Estimated Build
Time From

Clean Sources:

1.5 Weeks

Compilation
and
Link

Figure 5-23: Build tree for the Alewife CMMU.
Input includes schematics, synthesis, and data-path
compilation.

are the three types of input to the design process. Most of the design was formulated in a high-
level synthesis language called LES from LSI
Logic (at the inception of the Alewife project,
this was all that was available for our use). By
the end of the project, there were about 36,000
lines of high-level synthesis code. This code
included the cache-coherence protocol tables,
interpretation of full-empty bits, the coproces-
sor pipeline, transaction buffer control logic,
statistics,etc.Since high-level synthesis is no-
toriously bad at producing fast logic, output
from the synthesis tool was post-processed by
the Berkeley SIS logic optimization tool. SIS
has a high usage-overhead in terms of cus-
tomized control scripts; the resulting output,
however, is often better than Synopsis. Unfor-
tunately, the combined output of high-level synthesis and optimization still produces obviously
inferior logic in the case of data paths and critical control logic; in these cases, logic (e.g. muxes
and AOI gates) was coded explicitly in the LES code37.

Two other inputs to the design process were schematics and data path compilers. Schematics
were used for the asynchronous network, since the delay and ordering of logic had to be explicitly
controlled. Schematics were also used for the connection of logic around the pads and stubs
for the ATPG scan chain. Data path compilers were the most desirable technique for design,
simply because they required little in the way of designer input, and tended to produce optimized
designs. Unfortunately, LSI Logic had a limited set of compilers of this type. The prime example
of compiled logic was SRAM cells. Other examples included counters, large muxes, and adders.
In addition to the LSI Logic compilers, this author wrote a compiler that produced ECC logic38.

The output from all three types of design input were netlists (consisting of primitive cells and
interconnection information). These netlists were compiled together to produce an image that
could be simulated. This image was combined with the testing framework, described in Sec-
tion 5.3.2, to perform functional test. In addition, the compiled image was used in conjunction
with the block diagram (Figure 5-9) to perform a preliminary place and route. Further, an auto-
matic tool by LSI Logic was used to synthesize a scan chain from those aspects of the design that
were sufficiently synchronous to be tested via ATPG.

LSI Logic takes as input the netlists, block diagram, other design files (specifying pinouts), as
well as sets of generated hardware vectors (the ATPG output in combination with hand-constructed
parallel test vectors). They return working chips39.

37In order to prevent the optimizer from modifying these gates, they were coded with names that were opaque to
both the LES compiler and the optimizer.

38This handled a variety of data widths and two classes of codes. It was only used once in the CMMU, however.
39This statement is idealized, but essentially true. What I am ignoring here is several months of design file prepara-

tion and layout tweeking to produce reasonable hardware speeds.

Page 190 CHAPTER 5. THE HARDWARE ARCHITECTURE OF ALEWIFE

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

DRAM

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Cache

Behavioral

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Synthesized
Nets

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Compiled
Memory

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Schematics

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Compiled
Tables

Linked Netlist
(CMMU)

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAP

ipeline M
atcher

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

DRAM

AAAA
AAAA
AAAA
AAAA

A
A
A
A

Cache

Behavioral

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Synthesized
Nets

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

Compiled
Memory

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

Schematics

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

Compiled
Tables

Linked Netlist
(CMMU)

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

P
ipeline M

atcher

UNIX
 S

ock
ets

NWO Simulator
(1 - 512 proc)
3000 Cycles/Sec

LSI Logic
Simulation Environment

1 Cycle/Sec

Figure 5-24:The Alewife hybrid testing environment supports multiple levels of simulation.
NWO is a high-level simulation which is correct to the level of of queuing topology and ma-
chine states. The LSI Logic simulator, on the other hand, is a compiled, gate-level simulation
of the actual CMMU.

5.3.2 Validation Through Multi-Level Simulation

First-silicon for the Alewife CMMU was remarkably bug free. This can only be attributed to our
testing effort. While the Alewife CMMU was designed and implemented by one person, it was
tested by seven graduate students, one professor, and one research scientist. This testing effort
was coordinated by the author, who retained all control over sources for the controller; in some
sense, you could say that this author was ultimately responsible for the generation and removal
of bugs. However, the testers had the much more difficult task of finding behavior that did not fit
specifications.

Figure 5-24 illustrates the hybrid testing environment utilized in the design of the Alewife
CMMU. As shown by this diagram, the Alewife testing process occurred at two separate levels of
simulation. On one end of the spectrum was the NWO simulator (standing forNew World Order),
written by David Chaiken. This was a high-level simulation, written in Scheme, that was accurate
to the level of Sparcle instruction set, CMMU queue topology, cache-coherence protocol tables40,
and internal CMMU state machines. At the other end of the spectrum was a gate-level simulation
of the final CMMU and Sparcle netlists (post optimization and other netlist transformations). The
difference in speed of these two types of simulation was over three orders of magnitude. Further,
NWO could be configured in multiprocessor fashion (multiple simulated nodes), whereas the LSI
simulation could only handle one node at a time.

NWO was sufficient to catch high-level design flaws, queue-level deadlocks, cache-coherence
protocol problems,etc.It was also the primary vehicle for developing operating systems and ap-

40David Chaiken developed a compiler which took as input the Espresso format for the protocol tables (output by
the LES hardware synthesizer), and generated scheme code that was subsequently loaded into NWO. As a result, the
protocol tables in NWO exactly matched the protocol tables coded into the hardware.

5.3. Mechanics of the Alewife Implementation Page 191

plications code. The LSI simulation, on the other hand, was necessary to detect more detailed
problems, such as pipelining interlock problems, misorderings caused by the actual implementa-
tion,etc.As shown in Figure 5-24, the two simulations could be linked via UNIX sockets to achieve
a multi-level simulation that leveraged the best of both worlds. Because sockets were the primary
form of communication, multiple LSI simulations could be run on separate machines and interact
with a primary NWO simulation. This allowed, for instance, a 64 node NWO simulation to include
one or two “real” nodes, thus effecting a more realistic environment, protocol traffic and all.

So how was this simulator used for testing? One of the key features of the CMMU design

0

5

10

15

20

25

30

35

40

F
e

b
-9

2

A
p

r-
9

2

Ju
n

-9
2

A
u

g
-9

2

O
ct

-9
2

D
e

c-
9

2

F
e

b
-9

3

A
p

r-
9

3

Ju
n

-9
3

A
u

g
-9

3

O
ct

-9
3

Month Of Debugging

N
um

be
r

of
 B

ug
s

} Initial set of “silly” bugs

John Kubiatowicz at ISCA ‘92
(Debugging grinds to a halt)

}

Bugs in hardware
test circuitry

Change in target technology

Use of test “bashers”
(Really nasty bugs)

}

Directed-vector testing}

Figure 5-25:Number of bugs detected in the
Alewife CMMU as a function of time.

that we have not discussed previously, was that it was “designed for test”. What this means in
a practical sense is that most of the internal state of the CMMU is exposed in a way that is ac-
cessible to the processor. As a result, all of the Alewife test “vectors” consisted of code running
on the Sparcle processor. Much of the Alewife testing effort was inspired by a paper by Douglas
Clark [29]. In this paper, he makes a convincing argument for large-scale, complete-system testing.
He argues that, since the interfaces between modules in a large system are as likely to be flawed as
the modules themselves, time spent testing modules
independently is not necessarily the best use of re-
sources. As a result, most of the Alewife testing was
in the form of complete system-level tests, utilizing
the hybrid simulation environment.

The tests utilized in Alewife fell into roughly
three categories (also inspired by the Clark paper):

1. Directed Vectors

2. Bashers and Daemons

3. Full Applications

The first category of tests were written in Sparcle
machine language and targeted at exercising indi-
vidual features of the CMMU. These were the most
labor intensive tests to generate and required the
most supervision by the author. However, these
types of tests were very good at uncovering gross implementation errors and even some subtler
pipeline issues. Note that, although these tests are for specific features, they meet the criteria of
“complete-system test”, since they execute against a completely compiled and linked version of the
CMMU, not against specific submodules. Directed vectors were responsible for a large fraction of
the total bugs detected in the CMMU.

While simple first-level interactions may be targeted by directed vectors, combinations of fea-
tures rapidly grow out of hand, since the cross-product of all features and interactions is a very large
set indeed! Thus, the second category of tests is more automated and attempts to take over where
the first category left off. Ken Mackenzie was extremely successful in developing randomized tests
that combined high utilization of shared-memory and message-passing mechanisms with random

Page 192 CHAPTER 5. THE HARDWARE ARCHITECTURE OF ALEWIFE

mechanism selection and timing41. Further, David Chaiken developed a generic testing framework
that permitted the combining of various directed vectors in random order. Both of these types of
tests explored operation orderings and portions of the testing space that were never addressed by
explicit vectors. Since these types of test had a tendency to stress the system in many ways, they
were dubbed “bashers”. Closely related to bashers were “daemons” that would insert non-fatal er-
rors into a simulation; one of the primary examples for Alewife included inserting single-bit errors
into the simulated DRAM. Although correctable, single-bit errors would invoke an extra pipeline
interlock for correction, thereby changing timing. The basher/daemon strategy was tremendously
successful at discovering complex interactions42. Although the number of bugs discovered this
way was much smaller than the number discovered through directed vectors, these bugs tended to
be far more subtle and hazardous.

Finally, the last category of tests involved execution of complete applications running under
the Alewife operating system. These detected problems in interrupt handlers (such as LimitLESS
protocol handlers) as well as problem due to higher stress use of the coherence protocol. Combined
with daemons, complete application tests adopted some of the characteristics of bashers/daemons
combinations.

Figure 5-25 illustrates a histogram of bug-find-rate over the course of the roughly two years
of CMMU development. This data was taken from bug logs kept by the author43. Ignoring the
upslope at the beginning (which was as much a result of a learning curve on the part of testers as
anything else), this curve has a roughly decaying exponential shape. Deviations from that basic
shape represent interesting events in terms of new testing techniques, changes in technology, or
a different testing focus (e.g. a switch from functional test to generation of manufacturing test
circuitry). Some of these are labeled in the figure.

5.3.3 Hardware Test Methodology

A brief word about the hardware test vectors (used during manufacture) is in order. Most of the
Alewife CMMU was sufficiently synchronous that it could be tested via automatic test pattern gen-
eration (ATPG) targeted at a single scan chain. As mentioned above, a tool from LSI Logic was
used to connect all of the flip-flops in the chip into a scan chain. Unfortunately, there were two
aspects of the chip that were not amenable to this type of test. First, SRAM memories were not
edge-triggered and hence not easily accessible via the scan chain. This was handled by making
them accessible via the processor data bus. A set of parallel vectors was then targeted to perform
fault coverage of the SRAM modules. Second, the asynchronous network was not amenable to full
testing via any synchronous methodologies. Instead, it was tested in two modes: a synchronous
test, in which all of the control signal transitions were synchronized with the clock, and an asyn-
chronous loopback test, in which the output network interface was coupled to the input network

41As a tester of the CMMU, Ken Mackenzie single-handedly found more bugs (and more interesting bugs) than any
other member of the testing team.

42Ken Mackenzie was the king of the basher writers. He discovered more complex bugs than anyone else on the
testing team.

43One amusing accompaniment to this histogram was the “bug chart” that was posted outside of this author’s office.
Each of the testers had a slot on this chart. Whenever they would find a bug, they got a star.

5.4. Postscript: Implementation is Possible and Necessary Page 193

interface. This permitted reasonably sufficient coverage of both the asynchronous SRAM queues
and the control logic44.

5.4 Postscript: Implementation is Possible and Necessary

In this chapter, we touched upon some of the many details of the Alewife implementation, attempt-
ing to focus on those aspects relevant to an integration of message passing and shared memory. In
the next chapter we will examine some performance results to to understand the overall valid-
ity of the Alewife approach and in Chapter 7, we will try to glean a few lessons from Alewife’s
integration of message passing and shared memory.

Section 5.3 condensed (in very short form) a number of years of implementation and debug-
ging work. There is absolutely no question in the mind of this author that the design and imple-
mentation of computer architectures is becoming increasingly difficult to achieve in an academic
environment. There are, perhaps, three possible responses to this situation: One is to “give up”
and perform only simulation studies of future architectures. While there is plenty of room for
simulation studies and not all research groups are capable of launching large-scale design projects
(for lack of resources if not lack of expertise), this is a very dangerous course if taken by all re-
searchers; it is a sure way to make academic computer architecture irrelevant. A second response
is to carefully choose to alter a small number of pieces of an existing architecture, implementing
only a simple “widget” which attaches to a much larger system. Many would say this is the wisest
course, for it has the potential to achieve interesting results with the least investment of time and
effort. In addition, it does not suffer from the same lack of “reality” that plagues the simulation-
only approach. Unfortunately, by its very nature, this approach is incremental: major paradigm
shifts are unlikely. Further, it often generates results that are not fundamental, but rather sensitive
to simple implementation details (e.g. the speed of some external bus to which the widget was
stapled).

A third response to the increasing difficulty of implementation: “work smarter”. This response
is similar to the previous response, but involves a very different attitude. First, the sights of an im-
plementation project should always be high enough to target something fundamental. An important
accompaniment to this attitude is that all aspects of a proposed system should be considered to be
changeable (or “nonstandard”) at the inception of a project45. The essential difference between this
third approach and the previous two is thatall aspects of a system are considered open to innova-
tion. Of course, research groups have limits of one form or another. Thus, having decided what
key things must be changed, the trick is to figure out (1) how to best change those crucial details
and (2) how to leave as many other things unchanged as possible. For Alewife, a small addition of
functionality to Sparcle allowed the implementation of very fast interfaces without altering much
of the integer pipeline. Today, many ASIC manufacturers offer “core” technology that contains
complete RISC pipelines, floating-point units,etc.that can be dropped into larger chip projects.

44Of course, one of the banes of asynchronous design is that it is not really amenable to any of the standard syn-
chronous test methodologies.

45To say, for instance, that integer pipelines are so fixed that they cannot be altered is to ignore the reality that the
last few years have seen a great increase in the functionality (and complexity) of pipelines.

Page 194 CHAPTER 5. THE HARDWARE ARCHITECTURE OF ALEWIFE

Also, forward looking silicon companies understand that they should be looking farther than a
couple of development cycles into the future; such companies can make good allies (within careful
limits) in academic projects46. Finally, software tools for chip design and implementation continue
to improve, although slowly. The use of high-level synthesis in Alewife permitted a relatively large
project to be tackled by a single person.

The bottom line is that implementation is still possible in an academic setting. More im-
portantly, implementation is necessary: without far reaching and forward looking architectures,
backed by reasonable implementations, academic computer architecture research is doomed to
irrelevance. It is the job of computer architects to lead, not follow.

46Although the important thing here is to have other options and/or keep the time horizons of industry participation
short – a number of academic projects have been canceled because some crucial industrial partner decided that it was
no longer interested in the research.

Chapter 6

The Performance of the Alewife Prototype

To some extent, many of the results of this thesis have already been presented as solutions to the

Figure 6-1:16-node machine and 128-node chassis
populated with a 32-node machine.

Three Challenges of Integration, complete with the hardware architectural structures presented
in Chapter 5. However, one of the exciting
things about the Alewife architecture is that
prototypes were actually builtand success-
fully utilized for research. Figure 6-1 shows
two incarnations of the Alewife machine: a
16-node Alewife system, and a 32-node sys-
tem within a chassis scalable to 128 nods. The
16-node system, complete with two internal
31

2
-inch disk drives, is about 74�12�46 cm,

roughly the size of a floor-standing worksta-
tion. Packaging for a 128-node machine occu-
pies a standard 19-inch rack. In this chapter,
we would like to explore the performance of
this prototype. Timing numbers that we will
present reflect a 32-node Alewife machine,
packaged in the lower right quarter of the 128-
node chassis (visible in Figure 6-1).

The first few A-1000 CMMU chips were
received in May of 1994. Because complete software development (including development of the
operating system, boot software, and applications) occurred simultaneously with the development
of Sparcle and the CMMU, two benefits were immediately apparent upon arrival of these chips:
First, the CMMU chips were substantially bug-free on first silicon: although there were a few bugs
in the A-1000 CMMU, all of them had software work-arounds (each of which involved many hours
of this author’s time, but that is another story). Second, the maturity of the software system became
evident when we had a two-node Alewife machine operational within a week of receiving the first
chips. When the next eight chips arrived, this uncovered another bug (including a problem with
DMA coherence), but a subsequent week produced an operational eight-node Alewife machine.
And so on: : : One conclusion to be drawn from our experience during the physical integration

Page 195

Page 196 CHAPTER 6. THE PERFORMANCE OF THE ALEWIFE PROTOTYPE

process is that many of the design and testing decisions that were made at the inception of the
Alewife project were tremendously effective.

On Clock Rates and Technology Curves: Before embarking on a exploration of the perfor-
mance of the Alewife prototype, a brief discussion of clock rates is in order. To be specific, the
Alewife machine was originally targeted for 33MHz operation. At the beginning of the CMMU
implementation (1990), clock rates of 33 MHz were pretty much state of the art (or soon to be
so). Unfortunately, with the long design schedules of an academic project (not to mention the time
involved in “exploratory implementation”,i.e. the time involved in figuring out how to implement
something that had not been implemented before), the Alewife machine was much behind the tech-
nology curve when it was finally operational in 1994. However, this particular author makes no
apologies for this result; it is simply one of the costs of construction in an academic environment.

With respect to the final prototype, how fast did it actually operate? For the most part, the
33MHz speed goal was met, however a bug in the coprocessor pipeline caused the “FPU Hack”
of Section 5.1.2 to miss its bus-turn around cycle during write operations, thereby causing a bus
conflict at full speed. This conflict caused us to generate most of our performance numbers at
20MHz. Note, however, that these speeds do not, in any way, reflect critical paths of the CMMU
or the scalability of mechanisms within the CMMU; integer operations operated much closer to
the speed target,i.e. at 31MHz. Critical patches in the A-1000 had much more to do with lim-
itations of the implementation methodology (gate array with random-gate CAM cells,etc.) than
the base technology. Further, as indicated by the last chapter (and in particular the discussion in
Section 5.2.4 on service-coupling), critical portions of the CMMU were pipelined in a way that
would be easily scalable to higher clock rates and newer technologies.

Thus, performance numbers in this chapter for Alewife must be interpreted with two crucial
mind-sets:

� These numbers reflectbalance between the processor and network. At 45
MBytes/sec, the Alewife network reflects early 1990’s technology in the same way
that the processor and memory controller reflect this technology.

� Cycle countsare important. Keep in mind that one of the goals of this thesis was
the exploration of the notion that communication interfaces should be considered as
extensions to the ISA.

This author fully realizes that cycle counts taken out of the context of clock rates can be meaning-
less; howevera modern processor is implemented by 100s of engineers; the Alewife CMMU was
implemented by one engineer (plus the crucial testers).

On Numbers and Attribution: One important point that should be mentioned before diving into
an exploration of performance is to mention the source of numbers. Many of the numbers in the
following sections were actually taken by others in the Alewife research group; I will do my best
to reference these people as I go. In many cases, I helped to debug the applications that produced
these numbers, helped to design interesting experiments, and to enhance the operating system as
necessary to support these studies. I was also (in conjunction with Sramana Mitra) responsible for

6.1. Microbenchmarks and the Alewife Prototype Page 197

the statistics software used to collect them. Thus, although I did not sit down and physically take
many of the numbers, I will none-the-less use them to discuss the performance of the prototype.
However, I do not want to minimize the tremendous amount of work that went into writing or
porting the applications by others in the group. It is upon their efforts that I build this chapter.

6.1 Microbenchmarks and the Alewife Prototype

In this first section, we would like to discuss some microbenchmarks that indicate the performance
of various communication mechanisms in the Alewife prototype. In the following paragraphs,
we will characterize the raw performance of the Alewife network, as well as the uncontended
performance of shared-memory and message-passing communication. Kirk Johnson was instru-
mental in many of these measurements. Also, many of these numbers have been published else-
where [3, 16, 60].

6.1.1 Performance of the Network

In this section, we perform a characterization of the network performance as a whole. This will

Parameter Count
Network Bandwidth: 44.5 MBytes/sec

Minimum routing latency (one-way): 140 nsec
Per-hop latency (one-way): 39 nsec/hop

Table 6-1:Three critical network parameters

yield a baseline from which we can evaluate the other communication mechanisms. Three num-
bers are of relevance here: (1) the raw,
per-flit bandwidth of a network channel,
(2) the minimum fall-through latency of
a “0-hop” message, and (3) the per-hop
latency of a message. These results are
summarized in Table 6-1.

The raw network bandwidth number is straightforward, since the Alewife DMA mechanisms
are fast enough to saturate the network. Thus, our basic mechanism for measuring bandwidth will
be to send large messages between two nodes via DMA for a variety of different message sizes.
The slope of the “number of bytes sent”vs. “round-trip time” will give us twice the latency of
sending one byte. (Note that this particular method is completely independent of endpoint cost).
Varying message sizes from 32 – 1024 bytes at 20MHz yields a slope of 0.898 bytes/cycle, which
is about 22.5 nsec/byte or 44.5 MBytes/second.

Measurement of the fall-through latencies is more difficult. However, one useful consequence
the asynchronous network in Alewife is that it is possible to vary the processor’s clock rate, thereby
separating the contributions of the network and the CMMU to remote access time1. This was done
for a clean read-miss to a remote node. In addition, a number of different communication distances
were explored as well (to get the per-hop cost). By treating the round-trip time and the clock period
in nanoseconds, we can do a two-variable linear regression: round-trip timevs. clock period and
number of hops. The constant term in this result is the “constant” portion of the latency,i.e.
consists of the sum of the basic delay involved in opening up a round-trip channel in the network
(which we want) and the raw delay involved in pushing flits through the network. By using our

1This is perhaps the only advantage to an asynchronous network — among a plethora of disadvantages in design
and test.

Page 198 CHAPTER 6. THE PERFORMANCE OF THE ALEWIFE PROTOTYPE

22.5 nsec/byte value from the previous paragraph and the 32 bytes involved in a clean read, we
can factor out the second term to yield our minimal routing time. The slope of the round-trip delay
with respect to number of hops is the per-hop latency. Results are quoted in Table 6-1. Note that
there is an implicit assumption here that only “Manhattan distance” matters in the network; in fact
that is true: the mesh network chips route through two levels of dimensional routing (“X” and “Y”)
regardless of the relationship between source and destination.

6.1.2 Performance of Shared Memory

In exploring the performance of shared-memory, we must first take into account the behavior

Miss Home # Inv. hw/ Miss Penalty
Type Location Msgs sw Cycles �sec

local (unshared) N/A hw 9 0.45
local 0 hw 11 0.55

remote 0 hw 38 1.90
Load remote (2-party) 1 hw 42 2.10

remote (3-party) 1 hw 63 3.15
remote – swy 425 21.25

local (unshared) N/A hw 10 0.50
local 0 hw 12 0.60
local 1 hw 40 2.00

remote 0 hw 39 1.95
Store remote (2-party) 1 hw 43 2.15

remote (3-party) 1 hw 66 3.30
remote 5 hw 84 4.20
remote 6 sw 707 35.35

y This sw read time represents the throughput seen by a single node that

invokes LimitLESS handling at a sw-limited rate.

Table 6-2: Typical nearest-neighbor cache-miss penalties
at 20MHz under a variety of circumstances. For longer dis-
tances, add 1.6 cycles/hop.

of Sparcle with respect to cache hits. Sparcle employs a single-ported, unified first-level cache,
with no on-chip instruction cache. Con-
sequently, 32-bit loads and stores that
hit in the cache take two and three cy-
cles, respectively (one cycle for the in-
struction fetch). Figure 5-6 on page 155
illustrated this timing for a load instruc-
tion. Doubleword (64-bit) loads and
stores that hit in the cache take one ad-
ditional cycle over and above the perfor-
mance for normal loads and stores.

Once we know the times of basic op-
erations under cache hits, we can char-
acterize the costs of shared-memory in
terms ofcache-miss penalties, i.e. the
the number of additional cycles incurred
by an access that misses in the cache
and must perform some type of commu-
nication. Table 6-2 shows cache-miss
penalties for a variety of circumstances.
These values were obtained with a se-

quence of experiments run on an otherwise idle Alewife system. All remote misses or invalidations
are between adjacent nodes. As discussed in Section 6.1.1, each additional “hop” of communica-
tion distance increases these latencies by 2�39 nsec or approximately 1.6 cycles.

Each operation in Table 6-2 is categorized by the “Home Location” of the access; this refers
to whether or not the directory for the access resides on the same node that makes the access (i.e.
local) or some remote node (i.e. remote). These locations are further modified with additional
information. Here,unsharedrefers to an access to the unshared-memory space;2-party refers to
an access for which the most up-to-date copy of the data is dirty in the cache on the home-node;
3-party refers to an access for which the most up-to-date copy of the data is dirty in some node
different from either the requesting node or the home node (i.e. there are “three-parties” to the
transaction). The column marked “#Inv. Msgs” indicates the number of invalidation messages sent
in order to satisfy a request.

6.1. Microbenchmarks and the Alewife Prototype Page 199

This compact table encodes a lot of information, some of which we will indicate here. First,
the difference between the penalty to local unshared memory and to local shared memory is two
cycles. These two extra cycles derive from the time to read the coherence directory, which is not
necessary for local unshared memory (see Section 5.2.4). Note that the 9-cycle read-miss penalty
for local unshared memory matches or beats the best times for SPARCstationsTM of the same
generation. As we discussed in Section 5.2.4, this shows that the service coupling methodology
permits fast remote access without compromising local access times.

The next thing to note is the difference between theremoteand remote (2-party)numbers:
4 cycles. This extremely short value reflects the efficiency of scheduling and pipelining within
the Alewife Memory Management Machine and Cache Management Machine, because this is
implemented as twoseparatetransactions: one that takes the incoming request and generates an
invalidation to the local Cache Management Machine, and another that results from scheduling the
resulting flush operation from the transaction buffer2.

Finally, cache-miss entries marked as “sw” represent the access time seen when a cache line is
shared more widely than is supported in hardware (five pointers), so that the home node processor
must be interrupted to service the request. In the case of a load, the software time represents the
maximum throughput available when every request requires software servicing. Because of the
read-ahead optimization (Section 3.4.2.1), and the fact that software handling can be amortized by
emptying the coherence directory (hence allowing the subsequent five read requests to be handled
in software), this latency number will rarely be experienced by a requesting node. The software
store latency represents an actual latency seen by a writer; it includes the time required for the
software handler to send six invalidations, for these invalidations to be received by the hardware,
and for an exclusive copy to be returned.

Breakdown of a Read Request: Finally, we would like to illustrate the breakdown of a 38-

Action Count
Cache-miss to request queued in network 2
Routing Flit Computation 0.5

@ Request transit time (8 bytes) 7
Input Synchronization Time 2.5
Request at memory to output header transmit 7
Routing Flit Computation 0.5

@ Data return in network (24 bytes) 14
Input Synchronization Time 2.5
Cache fill time (non-overlapped) 2

Table 6-3:Rough breakdown of the non-overlapped por-
tions of a 38-cycle clean read-miss to neighboring node
at 20MHz. Note that there are 21 cycles of asynchronous
network communication (marked with “@”).

cycle clean read-miss to remote memory. Such a breakdown is given in Table 6-3. The first
thing to note about the timings in this ta-
ble is that they express non-overlapped
latencies. Thus, for instance, the process-
ing and setup time of the Remote Trans-
action Machine for the cache fill is com-
pletely overlapped. Similarly, the first
half of the cache fill (2 cycles) is com-
pletely overlapped with reception of the
final 8 bytes; that is why “Cache Fill
Time” is listed as 2 cycles. The origins
of the 7-cycle timing for the memory re-
sponse was shown in the previous chap-
ter (Figure 5-19, page 183); this is the la-
tency from the arrival of the request at the
memory controller to the queueing of the header in the asynchronous network output queue. At

2The CMMU contains a directory cache that allows us to skip the DRAM directory read for the second transaction.

Page 200 CHAPTER 6. THE PERFORMANCE OF THE ALEWIFE PROTOTYPE

this point, we should probably explain where the various half-cycle synchronous delays came from.
For output operations, the “Routing Flit Computation” is the extra half cycle used to compute rout-
ing flits in the network routing fabric; the first flit of a message is released into the network on
the falling edge of the clock. On the input side, the two entries marked “Input Synchronization”
represent theaveragedelay through a two-stage synchronizer; the extra half cycle originates from
the fact that, on average, a message arrives half-way through the cycle.

The numbers given in this table are derived from a combination of measurements and exami-
nation of the design. For instance, by varying the clock rate of Alewife (and performing a simple
regression of read-miss time in cyclesvs.clock frequency), we discover that the 38-cycle miss time
is composed of the 17-cycles of clock-rate independent latency that we have attributed to various
operations within the CMMU (these are all operations that are not marked with “@”).

The remaining 21 cycles are considered “asynchronous” and are attributed to the network (they
are marked with “@” in the table). These cycle counts can be derived by using our numbers from
Section 6.1.1 to compute the network transit times. In that section, we discovered that a one-way
latency to a node that is one hop away is about 140 nsec+ 39 nsec or 179 nsec. This is 3.6
cycles. Further, the 8-byte request requires 8�22.5 nsec or 180 nsec, while the 24-byte response
requires 24�22.5 nsec or 540 nsec. This is 3.6 and 10.8 cycles respectively. Thus, we get 7.2 and
14.4 cycles for the outgoing and incoming values respectively3. Since these cycle counts represent
fixeddelay times, independent of clock rate, they simply scale by the clock frequency to yield the
corresponding values for other clock rates. For example, at 33MHz, we would have 11.9 and 23.8
cycles respectively.

Note that, if we remove all cycles devoted to interface with the network (2�2.5+ 2�0.5
cycles) as well as the network cycles (21 cycles), we are left with 11-cycles! This is the same as
the local cache miss penalty4, and illustrates that service-coupling enables efficient utilization of
resources by both local and remote accesses.

6.1.3 Performance of Message Passing

To explore the performance of message passing on the Alewife prototype, this section looks at the
cost of basic message-passing mechanisms. Table 6-4 gives a rough breakdown of the costs of
sending and receiving a null active message with notification via interrupts. Note that sending and
receiving overheads are given separately and that network transit time isnot included in this table;
data from Section 6.1.1 should be invoked to estimate a complete one-way latency.

The sending process portion of Table 6-4 is the most straightforward. The sending of a null
active message requires two words to be stored in the output descriptor array (theHeaderand
Handler arguments), followed by the execution of anipilaunch instruction. From the user’s
standpoint, this takes a total of 7 cycles; this number should be increased by 3 cycles for each
additional argument. Of course, this description of the sending process vastly oversimplifies the
software overheads that lead up to any realistic use of active messages; there is time involved in

3This is consistent with the fact that 38 cycles (total) minus 17 cycles (synchronous latency) is 21 cycles (asyn-
chronous latency).

4Careful examination of these cycles indicates that a couple of the memory-interlock cycles of the DRAM con-
troller have been converted into pipeline-delays into the network queues,i.e. cycles have slightly redistributed.

6.1. Microbenchmarks and the Alewife Prototype Page 201

loading the handler address so that it can be stored into the network interface (perhaps 2 cycles);
there is time involved in constructing a header with the appropriate destination (perhaps 3 or 4
cycles),etc.Consequently, the times given in this table represent a lower bound on overhead. Note
that the message begins to appear in the network 2.5 cycles after execution of theipilaunch .

The receiving process is at once more complicated and more interesting. Table 6-4 gives com-

Message Send cycles

Descriptor construction 6
ipilaunch 1
)Network Queueing 2
)Routing Flit Computation 0.5

send total: 9.5

soft hard
Message Receive (interrupt) atom atom

)Input Synchronization Time 2.5 2.5
)Input queueing & interrupt generation 2 2

Hardware interrupt overhead 4 4
Register allocation & first dispatch 16 13
Atomicity check 2 0
Timer setup 11 1
Thread dispatch 15 6

dispatch overhead: 52.5 28.5

Null handler (ipicst + return) 5 5

Return to supervisor 5 6
Detect handler state 5 0
Restore system timer 14 0
Check for message free 6 0
Return from trap 12 14

cleanup overhead: 42 20

receive total: 99.5 51.5

Atomic Section! Global (optional): >135 1

Table 6-4:Overheads for message send and receive of
a null active message. Operations marked with “)” do
not consume processor cycles. The “soft atom” numbers
are for software emulation of the atomicity mechanism.

plete timings for the scheduling of a user-level active message: from the arrival of the message
at the network input port, to the schedul-
ing of a user-level thread, to the execu-
tion of the null handler, to the freeing of
the thread and processor return from inter-
rupt. The user-level atomicity mechanism
as discussed in Section 2.4.5, was not fully
designed at the time that the original (A-
1000) CMMU was implemented. In fact,
the need for such a mechanism was fully
appreciated only after this author wrote the
runtime system for user-level active mes-
sages. As a result, the original Alewife sys-
tem provided user-level atomicity through
software emulation. Subsequently, given
the lessons learned in the process of pro-
viding atomicity in software, the hardware
version of the user-level atomicity was de-
signed and implemented in the A-1001
CMMU. Portions of the existing runtime
system were rewritten to use this mecha-
nism. As a consequence, Table 6-4, gives
two separate columns of numbers: a “soft
atom” column (for software atomicity) and
a “hard atom” column (for hardware atom-
icity). Comparison of these two columns
will illuminate some of the advantages
of the hardware version of the user-level
atomicity mechanism. As shown by these
tables, the receive overhead is 99.5 and 51.5 cycles respectively. Unlike the send mechanism, these
numbers do not hide other overheads: theydo reflect timings for a null handler execution. Obvi-
ously, timings will increase for more complicated handlers; for instance, there will be a cost of at
least 2 cycles for each additional argument (to load them into registers).

In examining these numbers, however, we must keep in mind that the “hard atom” column
details a scheduler that has more flexibility and functionality than the original scheduler. To expand
on this for a moment, there are two primary differences between these two schedulers, along with
a handful of other minor differences. First and foremost, of course, the “hard” version makes
use of the hardware atomicity mechanism. One big source of savings from this mechanism is

Page 202 CHAPTER 6. THE PERFORMANCE OF THE ALEWIFE PROTOTYPE

the existence of an additional timer that is automatically managed by the hardware. Since the A-
1000 CMMU contains only a single hardware timer that is scheduled to produce a general system
timer facility, the “soft” version must save and restore this timer across atomic sections. As seen by
Table 6-4, manipulation of this timer is single-handedly responsible for over 24 cycles of additional
overhead. Another savings that results from the hardware atomicity mechanism is its automatic
tracking of whether or not the user has freed a message during the handler. This is responsible for
7 cycles of difference (there is a hidden setup cycle that is not shown in the table).

A final savings that results from use of the hardware mechanism is the fact that the user is not
allowed to enable and disable message interrupts in the A-1000; in general, permitting a user to do
so is a serious security risk, especially in a machine such as Alewife for which the operating system
relies on use of the network for correct operation. As a result, any disabling of message interrupts
on behalf of the user must pass through the kernel; this is one of the origins of the huge cost should
a user decide to exit the atomic section and enter the global section of a handler (128 cycles, at
the bottom of the table); we will discuss the other major component of this in a moment. Further,
when the user requests atomicity (i.e. that user level threads will not run), this is done indirectly:
the user sets a bit in a global register. If a message arrives during this period of atomicity, the
message interrupt occurs; then, the fact that the user has requested atomicity is recognized before
a new thread is scheduled. At such a point, the hardware interrupt is disabled by the kernel and
the timer is bypassed to time the resulting atomicity. To exit atomicity, the user executes a special
system-call that restores the timer and reenables the interrupt. Note that the check for atomicity is
shown in the “soft” breakdown (2 cycles).

The second major difference between these two schedulers is the fact that the “hard” scheduler
makes use of featherweight threads. In the original Alewife scheduler, a special context is left free
for interrupts. For user-level message handlers, this context is temporarily consumed during the
atomic section. Should the user exit the handler without exiting the atomic section, this context
can be freed again without violating the normal “interrupt-level” rules of context usage. However,
if the user chooses to exit the atomic section, then something else has to happen, since the context
must now be allocated on a long-term basis. What the original Alewife scheduler does is check for
a free context; if one is not available, it proceeds to unload some other context in order to maintain
one free for interrupts. Further, in the process of creating a full “thread”, this scheduler must al-
locate a free thread descriptor structure. This is the primary cost of theAtomic Section! Global
operation in Table 6-4. In contrast, the “hard” scheduler caches thread information and presched-
ules threads so that the handler need only turn off atomicity to enter its “global” section; more
on this in a moment. Note that the “soft” scheduler’s method of deferring allocation of special
thread structures until after the atomic section means that the atomic section must run at higher
priority than background; thus, the original scheduler has a number of cycles of manipulation of
the interrupt mask that are not present in the “hard” version scheduler.

Use of the user-level atomicity mechanism requires use featherweight threads. The reason
for this is that the transition from atomic section to global section is done with a simple, user-level
operation. Thus, the kernel is given no chance to reschedule the thread should it choose to reenable
message interrupts (i.e. exit the atomic section). Thus, the thread must be fully scheduled on
entrance to the handler. It is only through the use of featherweight threads that the costs of this are
kept low. Even though it would seem that the runtime system must performmorework to schedule

6.2. Macrobenchmarks and the Alewife Prototype Page 203

threads in this way, in fact it performs less. Since much state is cached with featherweight threads,
the thread dispatch is much less expensive. Further, since the atomicity section of the thread is at
the same priority as a normal user thread (with atomicity enabled), no manipulation of the interrupt
mask is necessary. This makes the entrance code (first dispatch) cheaper, as well as the final exit
code for trap return. Interestingly enough, the “hard” scheduler detailed in Table 6-4 even keeps
better track of backgroundvs. message-level priorities and schedules them accordingly. With the
general scheduling of threads (and the hardware atomicity mechanism), the transition from atomic
section to global section is extremely inexpensive: 1 cycle.

Two final changes with respect to the A-1001 CMMU were exploited by the “hard” scheduler:
first, user-level active messages arrive on their own interrupt vector. This saves about 8 cycles of
dispatch over the “soft” version (some of which are reclaimed for more functionality). Second, the
A-1001 exports information about whether or not the system is in priority inversion and whether the
thedesc length register is zero to the coprocessor condition codes on loading of this register.
This saves about 10–12 cycles in the fast interrupt path5.

Unfortunately, for reasons of time and problems with the A-1001 CMMU (it runs perfectly
well at low speeds, but exhibits strange I/O noise problems at higher speeds), the “hard” scheduler
was never incorporated into a complete system. Consequently, the numbers presented in later
sections of this chapter are from an Alewife machine with a “soft” scheduler. Appendix A shows
the fast-path assembly code for the “hard” scheduler.

6.2 Macrobenchmarks and the Alewife Prototype

In this section, we would like to accomplish two things: First, we would like to see the extent
to which the Alewife mechanisms lead to good speedups with a variety of different programs.
Second, we would like to perform a few comparisons between the same program written in
shared-memory and message-passing styles. Many of these numbers have been published else-
where [3, 28], hence this is a summary of the results. One of the key contributers to the numbers
presented in Section 6.2.1 was Ricardo Bianchini, who single-handedly ported a large number
of the SPLASH [101] benchmarks. Fredric Chong was instrumental in performing explorations
of message-passing applications, as well as explorations of the tradeoffs between shared-memory
and message-passing performance (see also Chong’s PhD thesis [27]).

6.2.1 Performance of Shared-Memory Programs

As reported in [3], shared-memory programs perform well on Alewife, proving the viability of the
overall memory controller architecture, the shared-memory interface, and the two-case delivery
mechanism; the operating-system resulted from the combined effort of a number of individual
researchers (David Kranz, David Chaiken, Dan Nussbaum, and Beng-Hong Lim, in addition to
this author, were among the principal contributers). Table 6-5 summarizes the overall performance
of a number of shared-memory applications.

5In fact, the “soft” scheduler does not even attempt to detect that a shared-memory invalidation lock is present (see
footnote on page 81). This is handled automatically by the A-1001 priority-inversion detection mechanism.

Page 204 CHAPTER 6. THE PERFORMANCE OF THE ALEWIFE PROTOTYPE

Running Time (Mcycles) Speedup
Program 1P 2P 4P 8P 16P 32P 1P 2P 4P 8P 16P 32P

Orig MP3D 67.6 41.7 24.8 13.9 7.4 4.3 1.0 1.6 2.7 4.9 9.2 15.7
Mod MP3D 47.4 24.5 12.4 6.9 3.5 2.2 1.0 1.9 3.8 6.9 13.4 21.9
Barnes-Hut 9144.6 4776.5 2486.9 1319.4 719.6 434.2 1.0 1.9 3.7 6.9 12.7 21.1
Barnes-Hut * – 10423.6 5401.6 2873.3 1568.4 908.5 – 2.0 3.9 7.3 13.3 22.9
LocusRoute 1796.0 919.9 474.1 249.5 147.0 97.1 1.0 2.0 3.8 7.2 12.2 18.5
Cholesky 2748.1 1567.3 910.5 545.8 407.7 398.1 1.0 1.8 3.0 5.0 6.7 6.9
Cholesky * – – 2282.2 1320.8 880.9 681.1 – – 4.0 6.9 10.4 13.4
Water 12592.0 6370.8 3320.9 1705.5 897.5 451.3 1.0 2.0 3.8 7.4 14.0 27.9
Appbt 4928.3 2617.3 1360.5 704.7 389.7 223.7 1.0 1.9 3.6 7.0 12.6 22.0
Multigrid 2792.0 1415.6 709.1 406.2 252.9 165.5 1.0 2.0 3.9 6.9 11.0 16.9
CG 1279.2 724.9 498.0 311.1 179.0 124.9 1.0 1.8 2.6 4.1 7.1 10.2
EM3D 331.7 192.1 95.5 46.8 22.4 10.7 1.0 1.7 3.5 7.1 14.8 31.1
Gauss 1877.0 938.9 465.8 226.4 115.7 77.8 1.0 2.0 4.0 8.3 16.2 24.1
FFT 1731.8 928.0 491.8 261.6 136.7 71.8 1.0 1.9 3.5 6.6 12.7 24.1
SOR 1066.2 535.7 268.8 134.9 68.1 32.3 1.0 2.0 4.0 7.9 15.7 33.0
MICCG3D-32-Coarse – 36.6 21.7 11.7 6.9 4.4 – 0.5 0.8 1.5 2.5 3.9
MICCG3D-32-Fine – – 11.7 5.8 2.9 1.5 – – 1.5 3.0 5.9 11.5
MICCG3D-64-Coarse – – – – – 32.2 – – – – – 4.3
MICCG3D-64-Fine – – – – – 12.5 – – – – – 11.1

Table 6-5:Performance of shared-memory applications on Alewife.

The results show that Alewife achieves good application performance, especially for the com-
putational kernels, even for relatively small input sizes. In particular, MP3D (an application with
a difficult shared-memory workload) achieves extremely good results. In contrast, a comparison
between the two entries for Cholesky in the table demonstrates the importance of the input size for
the performance of this application; a 5-fold input size increase leads to a significant improvement
in speedup. The modest speedups of CG and Multigrid result from load imbalance and bad cache
behavior, which can be addressed by using larger input sizes and the latency tolerance mechanisms
in Alewife.

The important point to glean from this table is that the Alewife shared-memory mechanisms
are efficient enough to yield good speedups, even though they are fully integrated with message-
passing mechanisms. One of the principal factors contributing to this result is pipelining in the
transaction buffer and service-coupled scheduling of hardware resources.

The other thing to note from the large number of ported applications is that Alewife provides a
good environment for developing applications. Programs can be easily ported to the machine and
can achieve good performance.

6.2.2 Performance of Message-Passing Programs

The set of message-passing applications written over the course of the Alewife project was much
smaller than the set of shared-memory applications. One of the reasons for this is that the message-
passing development environment was somewhat later in arriving than the shared-memory envi-
ronment. However, the message-passing capabilities of Alewife did inspire several independent
studies by individual Alewife members. We will simply summarize these results here and forward
the reader to the corresponding references.

David Chaiken made extensive use of small and fast messages to complete and enhance the

6.2. Macrobenchmarks and the Alewife Prototype Page 205

Alewife cache coherence protocol [24]. The speed of the message-passing interface is evidenced
by the fact that fact that Alewife shared memory performs well across a range of applications
(previous section). Thus, the success of LimitLESS provides insight into the speed of message-
passing mechanisms.

Further, Alewife members developed two complete programming systems as user-level li-
braries on top of the Alewife user-level message-passing system: the C Region Library (CRL)
by Kirk Johnson [52, 51] and the Multi-Grain Shared-Memory system (MGS) by Donald Ye-
ung [120, 119]. Both of these systems make extensive use of the UDM messaging model, com-
plete with software versions of the user-level atomicity mechanisms (the “soft” runtime system
described in Section 6.1.3). Both of these systems achieved good performance while introducing
software cache-coherence protocol overhead and explicit message-passing. These two systems
represent the ideal target for the message-passing model of Alewife, because they operate at user
level, make full use of atomicity mechanisms, and (in the case of MGS) make frequent use of
message handlers that disable atomicity after freeing their messages.

Finally, Fred Chong wrote a number of fine-grained message-passing applications for Alewife.
Among other things, he explored sparse-matrix kernels, achieving speedups in message-passing
versions on Alewife that surpassed the best known speedups at the time. These explorations are
shown in greater detail in [27]. What is interesting about Fred Chong’s work (and particularly
apropos for this thesis), is that he coded several of these high-communication-volume applications
in different message-passing and shared-memory styles and discovered that their performances are,
in many cases, comparable.

6.2.3 Integration of Message Passing and Shared Memory

As we have indicated in the previous sections, both message-passing and shared-memory commu-
nication mechanisms perform well in the Alewife multiprocessor. What we would like to show in
this section is that Alewife mechanisms are efficient enough that some of the inherent properties of
the individual mechanism (such as bandwidth requirements) start effecting performance. We will
restrict our attention to the characteristics of one application (EM3D). This is joint work with Fred
Chong (who took most of the actual numbers). See [28, 27] for more details and other examples.

EM3D from Berkeley models the propagation of electromagnetic waves through three-
dimensional objects [80]. It implicit red-black computation on an irregular bipartite graph.EM3D

is iterative and is barrier-synchronized between two phases. Communication takes place because
data updated within one phase is used by other nodes in the subsequent phase. In [28],EM3D is
written in five different versions (three message-passing and two shared-memory versions):

1. Fine-grained message-passing with interrupt-driven active messages (“int-mp”).
This version communicates five double-words at a time.

2. Fine-grained message-passing with polling (“poll-mp”). This version also commu-
nicates five double-words at a time.

3. Bulk-transfer message-passing (“bulk-mp”). This version explicitly gathers com-
munication data into a contiguous buffer for subsequent DMA transfer. It makes
use of interrupt-driven active messages with DMA.EM3D allows for large enough

Page 206 CHAPTER 6. THE PERFORMANCE OF THE ALEWIFE PROTOTYPE

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

0

2

4

6

8

10

12

14

16

18

20

int-mp poll-mp bulk-mp sm pre-sm

E
xe

cu
tio

n
T

im
e

(M
C

yc
le

s)

AAAA
AAAA
AAAA
AAAAsync

message overhead
AAAA
AAAA
AAAA
AAAAmemory+NI wait
AAAA
AAAA
AAAA
AAAAcompute

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A

AAAAAAAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

0

0.5

1

1.5

2

2.5

3

int-mp poll-mp bulk-mp sm pre-sm

C
om

m
un

ic
at

io
n

V
ol

um
e

(M
B

yt
es

)

AAAA
AAAA
AAAA
AAAA invalidations

requests
AAAA
AAAA
AAAA
AAAA headers (for data)
AAAA
AAAA
AAAA data

Figure 6-2: Performance breakdown for the five
different versions ofEM3D.

Figure 6-3: Communication volume for the five
different versions ofEM3D.

DMA transfers to cover data gathering overhead. Preprocessing of outgoing data
allows it to be used in-place after it is DMA’ed into memory at the destination. This
preprocessing code, however, is extremely complex and represents high coding ef-
fort.

4. Shared memory without prefetching (“sm”). The shared-memory implementation of
EM3D is much simpler because neither preprocessing code nor pre-communication
steps are required. Barriers provide synchronization between phases.

5. Shared memory with prefetching (“pre-sm”). A write-prefetch was issued to get
write-ownership of data structures before the computation for that data begins. In
addition, read prefetches were used to fetch values two computations ahead of use.
Inserting of these prefetches was straightforward, requiring only three lines of code.

Each of these versions ofEM3D were carefully tuned so that they made best use of the target
communication mechanisms.

Figure 6-2 shows that shared memory and message passing perform competitively with one
another (within 30%). Bulk-transfer gains from lower overheads of DMA transfer, but pays the
costs of message aggregation and software caching. The fine-grained versions suffer from higher
message overhead, which offset the benefits from avoid the costs of aggregation. Also, as seen by
this figure,EM3D benefits from prefetching. It is interesting to compare these performance results
with the communication volume of Figure 6-3. As we see from this figure, the shared-memory
version ofEM3D consumes more than a factor of five (5.6) over the bulk message-passing ver-
sion. Thus we can see that, although shared-memory and message-passing versions ofEM3D may
perform roughly equivalently on Alewife, they have vastly different communication requirements.

These differences in communication behavior can be expected to cause differences in perfor-
mance for systems that have more restricted bandwidth,i.e. message-passing programs would be
expected to perform better than shared-memory programs in low bandwidth environments. Further,
message-passing programs have a tendency to be far more latency tolerant than shared-memory
programs simply because they are written with unidirectional communication: this encourages

6.2. Macrobenchmarks and the Alewife Prototype Page 207

14

15

16

17

18

19

20

21

22

23

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Bisection Bandwidth (bytes/Pcycle)

E
xe

cu
tio

n
T

im
e

(M
C

yc
le

s)

Int-mp
poll-mp
bulk-mp
sm
pre-sm

14

15

16

17

18

19

20

21

22

23

101112131415161718

Network Latency (cycles / 24-byte packet)

E
xe

cu
tio

n
T

im
e

(M
C

yc
le

s)

int-mp
poll-mp
bulk-mp
sm
pre-sm

Figure 6-4: Variation in performance of the five
different versions ofEM3D as a function of the
available bandwidth across the bisection of a 32-
node Alewife machine. Normal Alewife bandwidth
is at 18 bytes/cycle (far right of graph).

Figure 6-5: Variation in performance of the five
different versions ofEM3D as a function of one-way
network latency. At 20 MHz, a 32-node Alewife
machine takes approximately 15 cycles to transmit
a 24-byte message across the bisection.

a coding style that has many messages in flight at any one time, each of which may invoke an
independent computation. In contrast, shared-memory programs tend to have fewer outstanding
requests and have performance that is often directly tied to the round-trip latency of the network.
Thus, message-passing programs would be expected to show a performance advantage in systems
that have higher network latencies as well. What is interesting about the Alewife machine is that
the communication mechanisms that it supports have small enough overheads that they are limited
in performance primarily by the network and DRAM. This means that we can derive simple ex-
periments to show differences in the fundamental behavior of the mechanisms themselves. Such
experiments are reported in detail in [28], but we will show samples of them forEM3D.

Figure 6-4 show the performance effects onEM3D of restricting the total amount of bandwidth
across the bisection of a 32-node Alewife machine. The unrestricted number is approximately 18
bytes/processor cycle across the bisection (which is why the axis is at 18). Numbers to the left of
this represent restricted bandwidth. The bandwidth restriction experiment is performed by using
independent I/O nodes to send message traffic (small messages) across the bisection of the Alewife
machine. For any particular run, the total number of messages successfully sent that way is com-
bined with the runtime to compute the total bandwidth taken from the bisection; this is used to
compute the bandwidth remaining for the application, which ultimately produces the X-axis value
in this figure. As can be seen by this figure, although the shared-memory versions ofEM3D are ini-
tially faster than the message-passing versions, this situation changes for restricted bandwidth. In
fact, for sufficiently restricted available bandwidth, both of the shared-memory versions cross over
the message-passing versions of this program. Given the communication volumes of Figure 6-3,
this is not surprising. Further, since this graph is showing performance as a function of band-
width/processor cycle, a general leftward trend is expected as processors become faster relative to
their underlying communication networks.

In fact, given the asynchronous network of Alewife, we can alter the relative performance be-
tween the network and processors by changing the processor clock rate. This is, perhaps, a more

Page 208 CHAPTER 6. THE PERFORMANCE OF THE ALEWIFE PROTOTYPE

faithful variation of the relative performance between processor and network than the bandwidth
restriction experiment. Obviously, the clock rate cannot be varied by too large an overall frac-
tion6. However, given the variation that is possible, we can see a bit of the crossover between un-
prefetched shared-memory and message-passing versions in Figure 6-5. In this graph, the 20MHz
Alewife machine comes in at approximately 15 cycles/24-byte message across the machine (our
measure for the X-axis).

Thus, the important fact to glean from both Figures 6-4 and 6-5 is that Alewife supports mecha-
nisms that have low enough overheads that their performance is limited by network characteristics
and DRAM bandwidth; as a result we can contrive simple experiments to show variations in the
fundamentalbehavior of these mechanisms. It is the service-coupled hardware scheduling that is
responsible for this efficiency.

6.3 How Frequent IS Deadlock?

In this final section, we would like to explore two-case delivery from the standpoint of several
questions: First, how frequentis deadlock anyway? If protocol level deadlock arises frequently
under normal circumstances, then the software overhead of two-case delivery could easily become
prohibitive. Along similar lines, the frequency of deadlock will be affected by the a number of
machine and application characteristics; which of these is most important to avoiding deadlock?
Second, for a given frequency of deadlocks, how well do the atomicity congestion heuristics of
the previous section (Section 4.3.2) detect deadlock? Since our heuristics are conservative by
design, this question is more properly stated: to what extent do local detection heuristics avoid
triggering network overflow recovery for non-deadlocked (but badly congested) communication
patterns. Finally, from a purely academic point of view, is there any pattern that gleaned in the
distribution of occurrences of deadlock?

6.3.1 Alewife: A Brief Case Study.

In answering these question, we start our examination of the frequency of deadlock by asking
the question: how well does two-case delivery perform on Alewife? This question is addressed by
Figures 6-6 and 6-7. Figure 6-6 presents the runtimes (in billions of cycles) of kernels for a number
of different applications. Some of these are from the Stanford SPASH benchmark suite[101], while
others were written during the course of the Alewife project. Figure 6-7 shows the impact of two-
case delivery on these execution times. The vertical axis in this case is in percentage of execution.
Interestingly enough, none of the applications experience more than a 0.5 percent slowdown, and,
more importantly,most of them experience no invocations of network overflow recovery at all–
the missing bars are actually zero.

Several observations can be made about this data. First, some of the results are sensitive to
the setting of the timeout (or hysteresis) value in the network deadlock detection monitor. In gen-
eral, message-passing applications (ones that have “mp” in the communication designation after

6In fact, the only reason that the clock-rate can be raised relative to the “base” rate of 20MHz is because 20MHz
does not represent the maximum rate of the CMMU – see discussion of the FPU bug at the beginning of this chapter.

6.3. How Frequent IS Deadlock? Page 209

0.0

0.2

0.4

0.6

0.8

1.0

1.2
A

P
P

B
T

 [S
M

]

B
LU

 [S
M

]

C
G

 [S
M

]

C
G

rid
 [S

M
]

E
M

3D
 [S

M
]

F
F

T
 [S

M
]

G
au

se
 [S

M
]

G
rid

 [S
M

]

M
er

ge
S

or
t [

S
M

]

M
P

3D
 [S

M
]

M
M

P
3D

 [S
M

]

M
ul

tiG
rid

 [S
M

]

B
ar

ne
s

[S
M

]

C
ho

le
sk

y
[S

M
]

Lo
cu

s
[S

M
]

W
at

er
 [S

M
]

IC
C

G
-1

8
[in

t-
m

p]

IC
C

G
-1

8
[b

ul
k-

m
p]

IC
C

G
-1

8
[s

m
]

IC
C

G
-1

8
[p

re
-s

m
]

U
ns

tr
uc

 [p
ol

l-m
p]

U
ns

tr
uc

 [i
nt

-m
p]

U
ns

tr
uc

 [b
ul

k-
m

p]

U
ns

tr
uc

 [s
m

]

U
ns

tr
uc

 [p
re

-s
m

] 0.0%

0.5%

1.0%

A
P

P
B

T
 [S

M
]

B
LU

 [S
M

]

C
G

 [S
M

]

C
G

rid
 [S

M
]

E
M

3D
 [S

M
]

F
F

T
 [S

M
]

G
au

se
 [S

M
]

G
rid

 [S
M

]

M
er

ge
S

or
t [

S
M

]

M
P

3D
 [S

M
]

M
M

P
3D

 [S
M

]

M
ul

tiG
rid

 [S
M

]

B
ar

ne
s

[S
M

]

C
ho

le
sk

y
[S

M
]

Lo
cu

s
[S

M
]

W
at

er
 [S

M
]

IC
C

G
-1

8
[in

t-
m

p]

IC
C

G
-1

8
[b

ul
k-

m
p]

IC
C

G
-1

8
[s

m
]

IC
C

G
-1

8
[p

re
-s

m
]

U
ns

tr
uc

 [p
ol

l-m
p]

U
ns

tr
uc

 [i
nt

-m
p]

U
ns

tr
uc

 [b
ul

k-
m

p]

U
ns

tr
uc

 [s
m

]

U
ns

tr
uc

 [p
re

-s
m

]

Figure 6-6: Runtimes for Alewife applications
(in billions of cycles).

Figure 6-7: Percentage of execution time spent
in overflow recovery.

their name) are more subject to triggering of the network overflow heuristic than shared-memory
programs. Figure 6-7 present results obtained with a timeout value of 4096 cycles. For the shared-
memory applications, this timeout value can be lowered to 128 cycles beforeanyatomicity con-
gestion interrupts occur; in fact, the atomicity congestion timeout may be completely disabled and
the shared-memory applications will continue to run. In contrast, the message-passing programs of
Figure 6-7 incur an increase ofan order of magnitudein the number of cycles for network overflow
recovery when the timeout value is lowered to 2048. We can draw two conclusions about two-case
delivery on Alewife from these results:

� For the particular combination of number of processors, queue sizes, packet sizes,
and number of outstanding requests present on Alewife, shared-memory rarely runs
into deadlock.

� Although message-passing applications have a tendency to cause more network con-
gestion than shared memory, much of this congestion does not cause actual deadlock
but rather reflects weaknesses of the simple congestion detection heuristic.

These results are encouraging and suggest that two-case delivery was the correct choice for Alewife
(perhaps with a better detection heuristic). In [78], two-case delivery is further explored in the
context of a multi-user system.

However, to understand two-case delivery in more detail, we need the ability to vary parameters
in a way that is not possible with any particular hardware platform. Further, answers to some of
the questions introduced at the beginning of Section 6.3 require a greater level of visibility into
network queues than possible with actual hardware.

6.3.2 The DeadSIM Simulator

As illustrated in the previous section, two-case delivery works reasonably well in at least one ma-
chine, namely Alewife. One of the most important determinants of its success relative to other more

Page 210 CHAPTER 6. THE PERFORMANCE OF THE ALEWIFE PROTOTYPE

design intensive methods (such as explicit virtual channel management), is the extent to which pro-
tocol deadlock is rare. Unfortunately, the circumstances and frequency with which protocol-level
deadlock will occur is highly dependent on a number of application and system-level parameters,
such as request rates, access patterns, queue lengths, and network topology. As a consequence,
the feasibility of two-case delivery as a general design methodology is hard to evaluate on any
one architecture. Further, the efficacy of local detection and correction techniques depends on the
nature and topology of deadlocks once they occur — information that is hard if not impossible to
acquire on a “real” machine. All of this argues for simulation as a technique for exploration.

Of course, simulation is notorious in its ability to produce reams of meaningless data. This
tendency may be countered in one of two ways:

1. Build detailed (and complicated simulations) that are carefully validated against
some “real” architecture. Detailed questions can then be asked, but the results may
not be particularly generalizable.

2. Build simple simulations (not necessarily “realistic” in all of their details), then ask
broad questions.

Since we would like to ask some general questions about two-case delivery in general, we will
choose the later option — a simple queue-level simulation with enough realism to model wormhole
routed networks and simple, depth-two coherence protocol. Enter DeadSIM.

DeadSIM is a simulator that was specifically designed to explore protocol-level deadlock.
Among other things, it seeks to address the question that was the title of major Section 6.3, “How
frequentis deadlock?” We would like to get an overall sense of whether protocol deadlock is, in
general, a rare occurrence or not. However, as stated, this question is perhaps a bit misleading.
Since no one number would be sufficient for all situations, we will seek, instead, to ask questions
like: given such-and-such an access pattern, how does the frequency of deadlock vary as a func-
tion of queue size, or number of nodes, etc. Further, we would like to explore the extent to which
deadlocks are localized (i.e. involve a small number of nodes). Last, but not least, we would like to
discover whether or not the queue-level deadlock detection heuristics mentioned in Section 4.3.2
are good at avoiding false detections. This is broad set of goals that could easily get out of hand:
we will attempt to use DeadSIM in moderation.

So, what exactly is DeadSIM? DeadSIM is a “message-driven,” queue-level simulator that
simulates a wormhole routed network of processors in one of two different topologies: crossbar
and mesh (of many different dimensions). Queues are offixedsize, so resource contention effects
are fully simulated. Messages work their way through the network; portions of these messages can
be simultaneously present in multiple queues (this is the result of wormhole routing).

Only direct networks are simulated,i.e. networks for which each intermediate node supports
a processor. Themesh networkrouters are somewhat idealized in that they have complete internal
crossbars (within the number of dimensions) and block only on their output queues. Like Alewife,
network connections are bidirectional but support only a single logical channel in each direction.
Thecrossbar networkrepresents a congestion-free network. It has no network routers, but rather
provides a small input queue from every source to every destination; hence, the only contention
occurs within the source and destination nodes.

6.3. How Frequent IS Deadlock? Page 211

Simulation Assumptions: In this section, we are going explore simulated processor nodes that
perform request/response-style communication (i.e. shared memory). The reason that we explore
shared memory is three-fold: (1) shared memory is relatively easy to characterize in terms of
number of outstanding requests; (2) studies have been done about the communication behavior of
shared-memory programs in terms of communication rates and number of outstanding requests;
we will make use of such results; and (3) deadlock recovery with message passing can be handled
efficiently via two-case delivery if we have a system that has a UDM-style network interface which
supports transparency (see Sections 2.4.4 and 4.3.5). In DeadSIM, the total number of outstanding
requests is tunable, as is the size of request and response messages. As with Alewife, we assume
that the memory system operates independently of the processor and provides deterministic service
times for requests (moderated by queue blocking).

Processor requests are to random destinations and are assumed occur after computation sections
whose length is exponentially distributed. The processor will always wait to send a request if the
current number of requests is at its maximum, roughly modeling shared-memory applications that
have some maximum communication parallelism that they can exploit (or alternatively, modeling
architectures that have some maximum number outstanding requests that can be exploited). The
mean length of the computation sections (i.e. the mean of the exponential distribution) is often
called therun-lengthand is very application dependent. We will be exploring a range of run-
lengths and sanity checking this range with results from Lim and Bianchini [76] in which they
measure run-lengths and prefetching behavior from real applications on Alewife.

Deadlock Detection: Since our primary interest in this section is in the frequency of deadlock,
DeadSIM includes a deadlock-detection algorithm that detects cyclic dependencies between mes-
sages. The simulation starts with an empty network. After a brief startup delay, the network
reaches a steady state, during which the deadlock detection algorithm continually monitors the
state of the network. Whenever a cycle in dependencies is detected, the simulation is stopped and
information is recorded about the deadlock (such as number of cycles that the system successfully
completed before the deadlock occurred (we call this thedeadlock-free interval), the number of
messages participating in the deadlock, and the number of nodes involved in the deadlock). To
develop a statistical profile, each set of parameters is run multiples times with different random
seeds, allowing us to collect the averages and standard deviations of parameters7.

6.3.3 On the Character of Deadlocks

Our first task with DeadSIM is to explore the nature of deadlocks, focusing on their topology and
consumption of resources. Simulation crucial for this type of exploration, simply because it affords
direct access to all of the network queues, a feat that is difficult (if not impossible) to achieve with
real hardware. The following, high-level patterns emerge in our explorations:

7The actual heuristic for this is to run until the total number of cycles simulated is equal to some preset value (10
million cycles). Although this yields a varying number of sample points for each parameter set (depending on the
length of the deadlock cycle), it was more convenient for generating a large variety of results — especially since many
combinations of parameters never enter deadlock at all.

Page 212 CHAPTER 6. THE PERFORMANCE OF THE ALEWIFE PROTOTYPE

Deadlock Involves a Small Number of Nodes: One of the most striking results that arises im-
mediately from this type of exploration is that, as long as network queues are large enough to hold a
small number of complete messages,the majority of deadlocks are between two nodes in a system,
regardless of the number of nodes or the set of machine parameters.The one case for which this is
not necessarily true is for a crossbar network which exhibits no network congestion. In that case,
many-node deadlocks are possible, althoughmuchharder to come by. Any network contention at
all (e.g. from a mesh network) seems to restrict the number of nodes to two8. This indicates that a
localizeddeadlock recovery algorithm (such as two-case delivery) is a good choice for recovering
from deadlock, since only a small number of nodes must be interrupted to remove deadlock.

Deadlock Is Memoryless: The second general result that arises is the fact that the process of

0

20

40

60

80

100

120

140

160

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

55
00

0

60
00

0

65
00

0

70
00

0

Deadlock-Free Interval

C
ou

nt
 o

f D
ea

dl
oc

ks

Figure 6-8: Distribution of deadlock-free in-
tervals for a particular set of parameters. The
mean of this distribution is 18306 cycles and the
standard-deviation is 14235.

generating deadlock is memoryless. This property can be seen from two facts: (1) that the mean
and standard-deviation of the deadlock-free in-
tervals are roughly equal (minus a slight startup
transient) regardless of the set of simulated pa-
rameters and (2) the resulting distribution is ba-
sically exponential in appearance. Although the
first of these hints at the second, it is really the
second that confirms this conclusion. For exam-
ple, Figure 6-8 shows a histogram of the num-
ber of deadlocks for a particularly stressful set of
parameters (with a mean deadlock-free interval
of approximately 18306 cycles and a standard-
deviation of 14235). Note the startup transient at
the beginning; this is the reason that the standard-
deviation is somewhat less than the mean. Inter-
estingly enough, this memoryless property is rea-

sonablyindependentof the distribution of run-lengths that is used; for instance, it appears with a
normal and deterministic distribution as well; obviously, however,somerandomness in machine
behavior is necessary (in this case, random message destinations), lest overly deterministic behav-
ior produce a discrete deadlock distribution9.

One conclusion that we might draw from the memoryless property of deadlocks is that a dead-
lock recovery mechanism should buffer a small number of messages, then quickly exit; there is
no particular advantage to waiting for a long period before restarting the computation on a given
node. In the original Alewife system, the deadlock recovery mechanism did not behave this way;
instead, it waited until the output queue drained before continuing. This was done since buffer-
ing was a relatively expensive operation to initiate (see the discussion of Software Complexity in
Section 4.3.7). However, with transparency, the network overflow process could be much lower
overhead, and quick recovery would be a more attractive prospect. Note that one aspect that is not

8The standard-deviation of the number of nodes is effectively zero: The occasional three-node deadlock is ex-
tremely rare and no examples appear of deadlocks with four or more participating nodes.

9In fact, there were one or two well-defined, deterministic patterns, used during testing of the CMMU, that were
guaranteed to deadlock the network; this allowed verification of the deadlock-detection mechanism.

6.3. How Frequent IS Deadlock? Page 213

taken into account by the DeadSIM simulation is the fact that the overflow buffering process has a
bit of a retarding effect on overzealous producers of messages; thus, the ideal behavior of two-case
delivery with respect to system-level messages merits additional study.

Deadlock Depends on Routing Freedom: As shown in Figure 6-9, another interesting prop-

1E+3

1E+4

1E+5

1E+6

1E+7

 M

es
h

[2

 d
im

]

 M

es
h

[3

 d
im

]

 M

es
h

[4

 d
im

]

 M

es
h

[5

 d
im

]

H
yp

er
cu

be
[6

 d
im

]

C
ro

ss
ba

r

Network Topology
M

ea
n

T
im

e
to

 D
ea

dl
oc

k
(c

yc
le

s)

Figure 6-9:Deadlock-free interval as a function
of routing freedom for high-stress communication
pattern. This simulation uses 64 processors.

erty of deadlock formation is the fact that the frequency of deadlock decreases with increas-
ing network dimensionality. This result is sim-
ilar to results by Timothy Pinkston and Sugath
Warnakulasuriya with respect to message dead-
locks in networks with adaptive routing [90]. It
is, perhaps, not entirely surprising given the fact
that we are choosing random destinations for our
messages. However, it does say something about
the formation of deadlocks. The experiment that
produced Figure 6-9 was done with very little
buffering in the network (to avoid confusing ef-
fects due to additional buffering from those due
to increased routing freedom). As a result, pack-
ets typically stretch across the network; thus, one
advantage to be gained from additional network
dimensions, is that fewer packets are likely to be delayed behind packets that happen to be blocked
in the network. This suggests that the formation of deadlocks begins with packets that are blocked
on their way to their destinations, rather than at their destinations. Although the final dimensional-
ity of a network is fixed by many constraints, our result indicates that high-dimensional networks
are more desirable from the standpoint of avoiding deadlock cycles.

Deadlock Depends on Queue Size:The final property of deadlocks that we would like to men-

1E+3

1E+4

1E+5

1E+6

1E+7

64 128 192 256 320 384 448

Queue Size (bytes)

M
ea

n
T

im
e

T
o

D
ea

dl
oc

k
(c

yc
le

s)

Figure 6-10: Deadlock-free interval as a func-
tion of network queue size. This simulation uses
256 processors, a maximum of 4 outstanding re-
quests, and cache-lines of Alewife proportions.

tion here is (perhaps) obvious: the probability of deadlock dependsstronglyon the amount of
resources in the network input and output queues
of the node. This is illustrated by Figure 6-10.
The simulation reported in this figure makes use
of 256 processors, each of which can have a max-
imum of 4 outstanding requests. It uses Alewife-
sized cache-lines (8-byte request packets and 24-
byte response packets). In this figure, we see that
the mean time to deadlock varies by over three
orders of magnitude as we vary the queue size by
less than a factor of eight. Looking at this an-
other way, at 384 bytes, we have enough queue
space in either the input or output queues to hold
three times the number of outstanding requests
(and their responses). At that design point, dead-
lock occurs every two-million cycles (or, given the mean run-length of 20 cycles, every 100,000

Page 214 CHAPTER 6. THE PERFORMANCE OF THE ALEWIFE PROTOTYPE

cache-misses). This means that a deadlock-recovery process could take 20,000 cycles and increase
runtime no more than one percent. Note further that these results are for a particularly stressful
set of parameters: with the DRAM and network parameters used here, the maximum throughput
of remote memory requests is one cache-line every 12 cycles (without contention); hence, with a
20-cycle average run-length, we are running pretty close to maximum memory throughput.

This relationship between frequency of deadlock and queue resources is, perhaps, obvious.
However, two developments make this particularly apropos: (1) Modern, dynamically-scheduled
processors tend allow a small number of outstanding requests since they track pending memory
operations with special, transaction-buffer-like hardware structures; the R10000 [92], for instance,
allows no more than four memory requests to be outstanding at any one time, and (2) The integra-
tion of memory and processor technology continues to improve, easily supporting large network
queue sizes. Together, these suggest that implementing network queues with enough space to hold
several times the number of outstanding requests is not only possible, but reasonable. Of course,
this more difficult when long message-passing style messages are present in the network; how-
ever, we have already noted that deadlock recovery for message-passing messages is a relatively
low-overhead operation, given transparency and two-case delivery.

6.3.4 The Deadlock-Free Interval with Alewife Parameters

So now, we turn to our primary question: how frequentis deadlock? In attempting to answer
this question, we can vary a large number of individual system parameters, so we must be a bit
careful about what we choose to study. The key parameter that we would like to measure is the
deadlock-free interval,i.e. the mean time between deadlocks for a given set of parameters. Our
exploration of deadlock with respect to queue size in the previous section has already indicated
that deadlock can be made relatively infrequent by increasing queue sizes. However, it is perhaps
more interesting to stick within one particular set of sizings and see the variation that arises. Thus,
we will use Alewife parameters for a set of experiments: 2-dimensional mesh, 256-byte network
input and output queue sizes, 19-byte queues within the network (an EMRC value), 8-byte request
packets, 24-byte response packets, and 2-bytes/cycle of network latency.

In [76], Beng-Hong Lim and Ricardo Bianchini explore typical run-lengths for a number of
Alewife applications written in both multithreading and prefetched style. They discovered that
most of these applications have run-lengths over 100 cycles and can take advantage of no more
than four outstanding requests. Given these results, it is interesting to note that:

With Alewife parameters, a 100-cycle run-length, and four outstanding requests, nei-
ther 64-node machines nor 256-node machines experience deadlock.

In fact, with a 100-cycle run-length, a 64-node machine does not experience deadlock even with
12 outstanding requests! With a 40-cycle run-length (less than all measured applications in [76]),
a 64-node machine does not start experiencing deadlock until it reaches six outstanding requests,
and then the mean time to deadlock is at the limits of our 10-million-cycle cutoff.

6.3. How Frequent IS Deadlock? Page 215

Figure 6-11 illustrates the deadlock-free interval for 256 processors, with 4 and 6 outstanding

1E+3

1E+4

1E+5

1E+6

1E+7

0 25 50 75 100 125

Mean Runlength (cycles)

M
ea

n
T

im
e

to
 D

ea
dl

oc
k

(c
yc

le
s)

4-Requests
6-Requests

Figure 6-11: Deadlock-free interval as a func-
tion of run-length for 4 and 6 outstanding re-
quests. This simulation uses 256 processors and
Alewife parameters.

requests, at a variety of run-lengths. We have truncated this data at a 125-cycle run-length simply
because it becomes “infinite”,i.e. deadlock no
longer occurs for either configuration. Further,
reflecting our discussion of deadlock and rout-
ing freedom,these same run-lengths produceno
deadlock for a 4-dimensional mesh network.

What is the primary conclusion that we can
draw from the above experiments? Although
deadlock can be made to occur for “high-stress”
computational parameters, the previous sections
indicate that it is relatively easy to depress the
levels of deadlock via simple techniques such
as increasing the local queue sizes, decreasing
the run-length, or increasing the network routing
freedom. In fact, a systems designer might use
any or all of these techniques to make two-case delivery a viable alternative to other deadlock-
avoidance techniques. Further, UDM-style interfaces have low enough overheads to enable rapid
deadlock recovery; hence, a relatively high-frequency of deadlock could be tolerated without seri-
ous impact on performance. Such “micro-deadlock recovery” would involve the quick removal and
buffering of a small number of messages from the network as a method for removing deadlock10.
However, the next section shows that the deadlock-detection heuristic imposes a lower-bound on
the latency involved in detecting deadlock, ultimately limiting the degree to which we can exploit
quick deadlock detection and recovery.

6.3.5 Deadlock Detection and the Importance of Hysteresis

The deadlock detection algorithm that we have been using in the previous sections requires inti-
mate knowledge of the contents of the queues on all nodes. This is not at all practical for a real
implementation. Thus, as a final topic of exploration for DeadSIM, we would like to examine the
efficacy of the two queue-level deadlock detection algorithms described in Section 4.3.3. The first
of these (which we will call “OUTCLOGGED”) triggers if the network output queue isfull andnot
movingfor a preset timeout period. The second of these (which we will call “IOCLOGGED”) trig-
gers if both the inputandoutput queue are full and not moving for the timeout period. To explore
these heuristics, DeadSIM implements a high-level monitoring facility that keeps track of the input
and output queues for each simulated node. This is sufficient information to decide on which cycle
(if any) a given heuristic would trigger.

To quantify the behavior of heuristic deadlock detection with respect to the presence of actual
deadlocks, DeadSIM collects statistics on a parameter that we will call theheuristic offset. This
value is the difference between the number of cycles into a DeadSIM simulation that the heuristic
triggers and the number of cycles until an actual deadlock occurs. In practice, this means that
for each simulation, we start with an empty network, then simulate untilbotha real deadlock and

10This is appropriate, given the memoryless nature of the deadlock process. See above discussion.

Page 216 CHAPTER 6. THE PERFORMANCE OF THE ALEWIFE PROTOTYPE

a heuristic detection event have occurred. We proceed to perform this multiple times, gathering
statistics as we go.

Ideally, we would like the heuristic offset to be as small in absolute value as possible; this would

Heuristic Timeout (cycles)

-300000

-250000

-200000

-150000

-100000

-50000

0

0 50
0

10
00

15
00

20
00

25
00

30
00

H
eu

ris
tic

 O
ffs

et

Detection Heuristic: OUTclogged

-300000

-250000

-200000

-150000

-100000

-50000

0

0 50
0

10
00

15
00

20
00

25
00

30
00

H
eu

ris
tic

 O
ffs

et

Detection Heuristic: IOclogged

Figure 6-12:Plot of the heuristic offset as a function
heuristic timeout for two deadlock-detection heuristics.
These simulations are with 256 processors. The mean of
the deadlock-free interval is 136,000 cycles.

mean that the heuristic was doing a really good job of detectingactualdeadlocks. As we shall see,
the deadlock detection heuristic exhibits an
“ideal value” of the heuristic timeout: if the
timeout is too small, then the heuristic trig-
gers way too easily and the heuristic offset
is large and negative; if the timeout is too
large, then deadlock detection triggers only
after deadlock has occurred – forcing the
heuristic offset to be positive and roughly
equal to the timeout value.

Our results are exhibited by the two
graphs in Figure 6-12. These graphs ex-
plore the average value of the heuristic
offset for our two different heuristics as
a function of the heuristic timeout value.
The error-bars positive error bars report
the maximum value of the heuristic off-
set, while the negative error bars report the
magnitude of the standard-deviation in the
heuristic offset11. For simulation param-
eters, we have made use of the Alewife
parameters again (see previous sections),
with 256 processors and a mean run-length
of 30 cycles. This set of parameters yields
a deadlock-free interval of approximately

136,000 cycles (i.e. we have chosen a high-stress set of parameters). Heuristic offsets are shown
in cycles with error bars representing the standard-deviation of the values.

One conclusion is immediately obvious from these graphs: the hysteresis provided by the
heuristic timeout isextremely importantto the performance of the deadlock detection algorithm.
For small timeout values, the heuristic offset is large, negative, and approximately equal to the
deadlock-free interval. What this indicates is that mesh networks can exhibit long periods in which
output queues are full and not moving. In this regime, the triggering of the detection is completely
uncorrelated with the occurrence of actual deadlocks (as partially evidenced by the large deviation
in the heuristic offset). This result implies that we should always wait out the presence of temporary
queue blockages — in many cases they will go away. As a case in point, the J-machine, which
triggered a network overflow interrupt as soon as either the input or output queue became full [73],
introduced a lot of software overhead to avoid non-existent deadlocks.

As the heuristic timeout increases, the heuristic offset slowly reduces inmagnitudeuntil it be-

11Since these distributions have huge “tails”, we are not reporting actual minimum values. These error-bars are
there to indicate the magnitude of the deviation in heuristic offset.

6.3. How Frequent IS Deadlock? Page 217

comes positive. At this point, the timeout is long enough to avoid being triggered by spurious
blockages and is triggered by actual deadlocks instead. In this regime, the triggering of the heuris-
tic is directly correlated with the presence of deadlock, as evidenced by the relatively low deviation
in the heuristic offset (essentially invisible here). Further, the heuristic offset varies almost directly
with the heuristic timeout because the typical sequence of events is that deadlock occurs first, fol-
lowed by the countdown of the congestion timeout. Because the standard-deviation and mean are
small, this regime is the ideal operating point for our detection heuristic — it is the most accurate
and directly correlated with deadlock. Note that we would like to pick the smallest value of the
heuristic timeout which causes a crossover to the positive correlated regime, since this triggers the
deadlock recovery process as soon as possible after deadlock has occurred.

Another conclusion that we can draw from Figure 6-12 is that the IOCLOGGED heuristic is
more effective than the OUTCLOGGEDheuristic for detecting deadlock: the IOCLOGGEDheuristic
becomes correlated with actual deadlock at a smaller value of the heuristic timeout. The reason for
this behavior is simply that there are scenarios for which the output queue is clogged but the input
queue still has space — the latter heuristic ignores these situations. Since the necessary timeout
value is smaller, the heuristic can trigger closer to actual deadlock.

Finally, we should stress that the minimum timer value that we can tolerate and still achieve
faithful deadlock detection represents a minimum granularity at which we can detect and recover
from deadlock. Given the memoryless nature of deadlocks (discussed above), we would like make
this detection time as short as possible so as to allow quick removal and buffering of a small number
of messages. However, some residual detection latency will always exist; thus, a tradeoff exists
between the accuracy of the detection heuristic and the granularity of deadlock recovery. This is
clearly a topic for further study.

6.3.6 Future DeadSIM work

Our use of DeadSIM has done little more than scratched the surface with respect to characterizing
protocol-level deadlocks in a multiprocessor. What is encouraging about the results that we have
seen is thatactualdeadlocks are relatively infrequent for realistic systems parameters. When they
occur, they tend to involve a small number of nodes, indicating that local recovery mechanisms
(such as two-case delivery) are a good idea. In addition, we have seen that the local deadlock
detection heuristics presented in Section 4.3.3 can be made to be quite accurate at detecting actual
deadlock.

Future work should include more interesting models for processor requests. In particular,
we should include more “message-passing-like” communication. One possibility for artificial
message-passing communication involves the concept of “Snakes” as used by Rich Lethin in
his thesis [73]. These multi-hop messages express more of communication freedom present in
message-passing algorithms. Also, further DeadSIM work should include more deterministic com-
munication patterns and some notion of locality of memory access; this latter aspect is interesting
because of the strong dependence of deadlock on number of nodes as illustrated by our current
random simulation.

Page 218 CHAPTER 6. THE PERFORMANCE OF THE ALEWIFE PROTOTYPE

Chapter 7

All Good Things : : :

In this final chapter, we would like to draw some conclusions about the integration of message-
passing and shared-memory communication, and, in particular, explore some of the lessons that
we might take away from the Alewife prototype. The reach of the Alewife project as well as
the scope of its implementation encompassed a large number of interrelated ideas. Further, many
aspects of the Alewife system were designed from scratch (in particular, the integrated memory and
communication subsystems). As a result, structures within the Alewife CMMU are tremendously
more “organic” than they would be if the Alewife machine had been implemented by adapting
pieces of a preexisting implementation. This makes evaluating the worth of individual hardware
structures difficult, however, since such such structures often serve multiple functions. None-the-
less, we can draw several high-level conclusions, as well as comment on specific mechanisms. We
will end by mentioning some related work.

Alewife was a huge project, driven by a small number of people: one professor, one research
associate, and 8 graduate students formed the initial group. Others came later, but much was ac-
complished in the first few years. As a group, we tackled multiprocessor algorithms, compilers,
operating and runtime systems, synchronization mechanisms, communication models, and proces-
sor and memory hardware architecture. We implemented a complete system with custom chips,
operating systems, and compilers thatworksand isusable: Ricardo Bianchini visited us from the
university of Rochester one summer and was able to learn about Alewife, then port most of the
SPLASH [101] benchmarks during his stay.

In this sense, Alewife was tremendously more successful than ever anticipated. Ultimately, of
course, there was a cost. Some members of the research group (this author among them) spent a
long time in graduate school as a result. However, much knowledge and experience was gained in
the balance. If any time-related lesson might be gained from the Alewife implementation, it would
be:

Extreme care must be taken with respins of chips for large academic projects. Such
respins are almost never justified, unless to fix project-stopping bugs.

In the case of Alewife, the A-1001 CMMU took about a year and a half of tuning and redesign,
only to exhibit noise problems. Respins of chips can be subject to second-system syndrome (the

Page 219

Page 220 CHAPTER 7. ALL GOOD THINGS: : :

desire to include all features that were excluded from the original system). Further, a respin can
only exacerbate the fact that academic hardware systems projects tend to run behind the technology
curve. For the author, this was a hard-won lesson.

7.1 High-Level Lessons of the Alewife Machine

Respins aside, we might ask ourselves what lessons could be taken away from the Alewife mul-
tiprocessor architecture and implementation? Many lessons might be forthcoming, but we would
like to focus in this chapter on those that are relevant to this thesis.

Efficient Integration: In the opening pages of this thesis, we stated that our goal was to explore
the integration of shared memory and message passing at a number of levels, from communications
models, to runtime systems, to hardware. One of the primary conclusions that can be drawn from
the Alewife design and implementation is that:

The integration of shared-memory and message-passing communication models is
possible at a reasonable cost, and can be done with a level of efficiency that does
not compromise either model.

This is illustrated by the architecture of Chapter 5 and the microbenchmarks of Section 6.1. In
Alewife, there were three principal contributers to this conclusion: (1) careful construction of
the communication models and interfaces (in particular for message passing), (2) use of feather-
weight threads, and (3) use of service coupling to manage hardware resources. As a result, the
message-passing overheads are as low or lower than many similar interfaces in machines such as
the CM-5, J-machine, iWarp, and others — especially for interrupt driven messaging. Further, the
shared-memory implementation has a fast local fill time and a low remote-to-local access time;
examination of the timing for DRAM access in Alewife reveals that shared-memory operations
are essentially as efficient as possible — a more specific implementation would be hard-pressed to
produce better use of the DRAM resource.

Before demonstratinghow to integrate communication mechanisms efficiently, we had to de-
cide exactlywhat it was that we were integrating. Among other things, this lead to the User-Direct
Messaging model, one of the key enabling factors for fast efficient messaging. Thus, we could
state another major conclusion as:

User-Direct Messaging is an attractive message-passing communication model since
it provides low overhead access to the network and enables an efficient, low-cost im-
plementation.

The ability to provide direct user-level access to the network hardware in the common case, while
virtualizing this interface and, in particular, theuser-level atomicity mechanismleads to an ex-
tremely efficient implementation. The primary reason for this was that only the common cases

7.1. High-Level Lessons of the Alewife Machine Page 221

needed to be handled directly in hardware, leading to simpler interfaces and less complicated pro-
tection mechanisms (i.e. ones that could be easily implemented in a standard RISC pipeline).

Two-Case Delivery: References to two-case delivery have been sprinkled throughout these
pages. In Chapter 4, we discussed the fact that two-case delivery frees both the user and the operat-
ing system from concerns about deadlock. Further, as discussed in that chapter, two-case delivery
is the only way to guarantee that a user does not deadlock the network while still providing a direct
network interface that does not drop messages. It also greatly simplifies the implementation of
network interfaces in a multiuser environment (Section 2.4.7). Combining this with the fact that
two-case delivery simplifies the design of cache coherence protocols and is a natural adjunct to
software assisted coherence protocols (e.g.LimitLESS), we conclude that:

Two-case delivery is a universal exception philosophy that greatly simplifies deadlock
avoidance and protection mechanisms, leading to fast, “RISC-like” communication
subsystems. Further, second-case delivery is not common case behavior for a wide
variety of communication scenarios.

In Section 6.3.2, we explored two-case delivery from the standpoint of the frequency of entry into
deadlock. In the Alewife machine, invocation of two-case delivery was non-existent for shared-
memory programs and virtually non-existent for message-passing programs. Further, our simulator
explorations showed that there were a number of machine parameters for which deadlock was
not a major concern. Note that the user-level atomicity mechanism is an essential component of
two-case delivery as applied to user-level message passing. Finally, in an integrated architecture
such as Alewife, two-case delivery provides the only method for dealing with problems associated
with using a single logical network channel to carry both shared-memory and message-passing
communication traffic (see below, however).

We should note that the original Alewife network overflow handler was an extremely compli-
cated piece of software, prone to subtle bugs. Many of these complexities resulted from two key
aspects, however: (1) the lack of “transparency” as described in Section 2.4.4 forced relaunching
of all message traffic, and introduced complexity in tracking queue-level resources to make this
work; and (2) bugs in the original CMMU caused problems with buffering. A two-case delivery
system for hardware with transparent access would be much easier to construct.

Interaction Between Models: In Sections 2.5 and 4.3.4, we explored some of the boundary
conditions in the interaction between shared memory and message passing. Time and time again,
we observed that the use of a single network channel to carry both shared-memory and message-
passing communication traffic greatly complicated the interaction between models during atomic
sections. In fact, the non-virtualized, operating-system’s view of the network prohibits use of
shared memory when network interrupts are disabled. During the course of writing the Alewife
operating system, this proved to be a difficult rule to follow: given a machine that integrates both
shared-memory and message-passing communication styles, use of shared memory within han-
dlers is extremely desirable. In Section 4.3.5 we discussed how the user-level atomicity mecha-

Page 222 CHAPTER 7. ALL GOOD THINGS: : :

nism can be combined with two-case delivery to provide a way for users to access shared memory
during atomic sections. Unfortunately, this almost guarantees that the combination of polling and
shared memory will result in continuous second-case delivery. Thus, one important conclusion
that could be drawn from previous chapters is:

Machines that integrate shared-memory and message-passing communication models
should provide two logical network channels, one for each type of message traffic.

Note that this conclusion proposes a different use of logical channels than the one often employed,
i.e. to remove deadlock, since we employ two-case delivery for that. Instead, this conclusion
proposes the use of two independent network channels as a way of freeing message-passing and
shared-memory communication models to work in concert (as opposed to in opposition).

Further, two-case delivery is best employed in an environment that can support “virtual buffer-
ing” [78]. With virtual buffering, data that is buffered for second-case delivery is placed into the
virtual memory of the receiving application, rather than into real memory. Virtual buffering is
made effectively “infinite” by reserving the option to page buffered message traffic to disk1. Re-
serving the option to page without introducing deadlock requires a second logical network; thus,
in our conclusion about using two logical networks, we would propose to carry message traffic
on one network and both cache-coherence messages and paging traffic (where paging traffic is a
specialized type of message traffic) on the other.

Service Coupling: The whole notion of service coupling,i.e. stream-based handling of schedul-
ing and processing, appears time and time again within the Alewife CMMU. As described in
Section 5.2.4, service coupling was an extremely useful technique for integrating access to highly
contended resources such as the DRAM. As a result, it was well suited for the implementation
of integrated message-passing and shared-memory communication styles. The advantages of ser-
vice coupling arise from the separation of scheduling, execution, and routing via a stream-based
methodology. This separation permits operations to be initiated only after all of their prerequisites
have been satisfied and sufficient resources are present for operations to complete in finite time.
Further, the stream-based routing of results frees execution units to focus on extracting maximum
utilization of resources. Thus:

Service coupling provides maximum utilization for highly contended resources. It also
permits guarantees of operation atomicity and finite completion time.

In fact, modern superscalar processors support a service-coupling-like separation of scheduling
from execution to maximize the utilization of functional units. As mentioned in Section 7.3 below,
the FLASH architecture paper [64] has a diagram that seems to reflect service coupling; this appears
to be a case of convergent evolution.

1Excessive paging is prevented by the scheduler.

7.2. How Do the Lessons of Alewife Apply Today? Page 223

7.2 How Do the Lessons of Alewife Apply Today?

As discussed at the beginning of Chapter 6, the Alewife multiprocessor represents technology that
was state of the art two or three processor generations ago. Thus, the obvious question arises: can
any of the mechanisms and implementation techniques be applied to future architectures?

Fast Message Interfaces: In answering this question, we must ask ourselves which aspects of
the Alewife implementation would not longer apply. Clearly, modern processors with off-chip,
first-level caches are essentially unheard off (with the possible exception of PA-RISC processors
from Hewlett Packard). This has two consequences: (1) it complicates the process of integrating
external network interfaces; and (2) it makes “colored” loads and stores less useful. The important
thing to note about both of these issues is that the Alewife implementation took advantage of the
opportunities presented by the Sparcle interfaces. This was convenient, but by no means necessary
to implement Alewife mechanism in a system that includes them from the outset.

In fact, let us explore the issue of fast network interfaces and their relationship to the processor.
The fact that modern processors have on-chip caches has spurred a complete industry of research
into network interface techniques whose sole aim is to correct for the fact that these processors are
bad at performing uncached accesses to I/O devices2. This is a reactionary approach at best, since
communication is as fundamental as computation. Basing a research program on correcting for
deficiencies in current processors seems to be doomed to obscurity, since processors are changing
very rapidly (evidence the current revolution in out-of-order and stream-based execution).

Consequently, as stressed at many points throughout this thesis, the primary view that we have
taken is that communication interfaces are part of the ISA; thus, network interfaces should be
integrated directly into processor pipelines. Ourmodus operandiwas that we tackled fundamental
problems (such as atomicity) in ways that were simple enough to be implemented directly within
the processor. It is the contention of this author that the User-Direct Messaging interface (complete
with the user-level atomicity mechanism and two-case delivery) has this property. To put this more
succinctly:

Modern processors should include User-Direct Messaging interfaces (including user-
level atomicity) in their instruction sets.

Of course, there is a clear aspect of the messaging interface that belongs in the memory system
(i.e. DMA) instead of in the processor. However, the output descriptor array and message input
windows are aspects of the interface that could be easily integrated onto the processor, with output
“packets” pipelined to the output pins for handling by the memory system; in fact, if these windows
were made the same size as cache-lines, many mechanisms for moving data for the memory system
could potentially be used for handling interfaces3.

2The CNI interface [86] is one particularly clever example of correcting for this deficiency; in some sense, User-
Direct Messaging degenerates to a CNI-style delivery during second-case delivery (i.e. buffered delivery).

3Note that providing a “storeback descriptor array” for describing DMA operations would make theipicst
instruction atomic (in the sense ofipilaunch), more directly mirroring the semantics of thereceive operation.

Page 224 CHAPTER 7. ALL GOOD THINGS: : :

Some would say that this type of integration has been proposed in the past and has failed to
“catch on”. However, the pressures for parallel execution have slowly built over time. Even com-
panies such as Intel produce processors that directly support cache-coherence for two and four
processor multiprocessors. Enterprise applications, with intensive database components, seem to
be leading the drive for increased parallelism. Further, complex distributed systems, handling data
from vast reaches of the globe through the Internet, have introduced needs for parallelism, com-
munication, and complexity management that were unheard of just a few years ago. Visionaries
such as Bill Dally who advocated the tight integration of processors and communication over 10
years ago were, perhaps, ahead of their time.

Featherweight Threads and Fast Interrupts: An important counterpart to the User-Direct
Messaging model was the use of featherweight threads. This simple threading technique permitted
interrupt handlers to run rapidly and with a complete set of registers. Rapid interrupt handling
benefits many aspects of a system, not just message handlers: it permits the reasonable tradeoff
between hardware and software, without encountering the “performance cliff” usually associated
with software exception handlers.

Although the original use of register windows was to avoid saving and restoring registers across
procedure boundaries, global compiler techniques (live register analysis,etc.) can be used to
greatly lessen the cost of register maintenance across these boundaries. However, similar analysis
does not really benefit fast interrupt handling, since the forwarding of live register information to
interrupt handlers would be more expensive than simply saving and restoring all registers. Thus,
the “caching” aspects of featherweight threading really requires at least two independent register
sets.

What does this mean for modern architectures? The UltraSPARC [111] supports register win-
dows of the same type as Sparcle; featherweight threading could be utilized directly on Ultra-
SPARC. Further, a recent and intriguing development in the design of dynamic pipelines is the
notion of simultaneous multithreading [109]. Simultaneous multithreading (SMT) was proposed
as a technique for increasing the utilization of functional units in a superscalar pipeline; it is ru-
mored to be present in the early stages of new processor designs (such as the Alpha). What is
intriguing about SMT is that it provides a user view of the processor that includes multiple inde-
pendent threads (complete with register sets). Use of featherweight threading techniques on SMT
processors would lead to the possibility of very fast interrupts. It would also lead to an interesting
tradeoff between functional-unit parallelism and fast interrupt handling. Thus:

Featherweight threading, which has the potential to vastly reduce the overhead of fast
atomic interrupts, is very much appropriate for modern processors.

Local Unshared-Memory Space: One aspect of the Alewife architecture that we have men-
tioned in a number of places is the presence of a local unshared-memory space. This simple

This would simplifying the processor/memory interface a bit by removing the potential need for multipleipicst
instructions to be issued on a given message (see [77]).

7.2. How Do the Lessons of Alewife Apply Today? Page 225

concept is surprisingly important and not normally present in modern system architectures.

A local, unshared-memory space is extremely useful because it enables software ex-
ception handers to make forward progress under all circumstances, regardless of the
state of the system (and, in particular of the global, shared-memory space).

Interestingly enough, many existing (modern) processors would have trouble supporting a local
memory space in the sense of Alewife’s, since they do not distinguish multiple classes of addresses
(e.g.sharedvs.unshared). This is a problem because most of these chips are highly integrated and
include a cache controller for the external cache on chip: not surprisingly, such cache controllers
do not demote cached accesses to uncached accesses in situations for which dirty lines cannot be
retired to the memory system (see the discussion in Section 4.3.7). This, in turn, can prevent net-
work overflow recovery through two-case delivery, since there would be situations in which the
network handler could not run because its instructions need to displace dirty global memory lines4.
It is the presence of a custom cache controller and transaction-buffer constraints in the CMMU
that makes the Alewife local unshared-memory space generically useful for all types of exceptions
(especially two-case delivery). Note that having this type of memory access is tremendously pow-
erful and easily applied to modern microprocessors; the demotion of cached-accesses to uncached
accesses simply needs to be supported by the on-chip cache controller.

Transaction Buffer: Finally, the transaction buffer was the single most useful structure in the
Alewife CMMU: it helped to remove the window of vulnerability livelock; it helped to combine
multiple outstanding requests to the same memory line; it provided a flexible flush queue to mem-
ory that enabled the implementation of the local, unshared-memory space; it was an integral part
of DMA coherence; it provided a data staging area that efficiently supported the direct pipelining
of data from the memory system or network to the cache, while still supporting the return of data
destined for a context that was not actively executing. The list goes on. In fact, the ability to track
outstanding memory transactions has proven useful in a number of systems outside of Alewife.
Many modern processors have similar structures (often called load or store buffers) to permit the
retiring of memory instructions from the execution pipeline before they have completed.

Processor-side, transaction-buffer structures are incredibly useful because they main-
tain important information about the execution state of outstanding memory opera-
tions without blocking pipeline execution.

It is interesting to note that the presence of transaction-buffer-like structures in modern processors
can go a long way toward lessoning the problems associated with the window of vulnerability. By
permitting the immediate committing of a requested load or store, we could prevent systematic
thrashing in a way that was not available in Alewife’s form of polling context switching.

4This could be solved by adding another level of caching (over and above the one supported by the on-chip cache
controller), but that is probably undesirable from a memory latency standpoint.

Page 226 CHAPTER 7. ALL GOOD THINGS: : :

7.3 Related Work

The communications mechanisms in Alewife build on the results of a number of researchers and
have spurred an equal amount of research. In this section, we would like to mention and examine
some of these other research projects.

7.3.1 Hardware Integration of Communication Models

Recent architectures demonstrate emerging agreement that it is important to integrate message-
passing and shared-memory communication in the same hardware platform [3, 45, 93, 99, 40].
This current interest began, perhaps, with an Alewife paper on the advantages of integration [58].
However, other machines, such as the BB&N-Butterfly [17] supported integrated shared-memory
and message-passing communication (via bulk DMA) long before this. Whatis new, however,
is the implementation of extremely efficientfine-grainedshared-memory and message-passing
mechanisms together in a way that does not compromise either mechanism — allowing tradeoffs
between communication models to reflect high-level properties of the models rather than of the
implementation. This was seen in Section 6.2.3 which summarized some of the results of [28].

The Stanford FLASH multiprocessor [64] takes the “specialized coprocessor” approach to pro-
viding a plethora of mechanisms. As a later generation project, FLASH tackled a number of mul-
tiuser and reliability issues that were not explored by Alewife (although multiuser issues were
addressed in FUGU [77, 78], a related project). By replacing the equivalent of the Alewife CMMU
with a programmable memory controller, the FLASH team gained flexibility to explore a num-
ber of different shared-memory models and message-passing communication styles. There were
two immediate consequences to this approach, however: First, by allowing “anything to be im-
plemented”, FLASH’s focus was a bit diffuse, spanning a large space of possible protocols. In
contrast, Alewife’s focus was toward synthesizing essential mechanism. Among other things, the
Alewife messaging interface is much simpler as a consequence of its implementation in hardware.
Also, one essential difference between the FLASH and Alewife messaging interfaces is that FLASH

implements global DMA coherence whereas Alewife implements local coherence.
The second consequence of providing a programmable memory controller is that it much harder

to optimize use of critical resources such as DRAM. In FLASH, the inherent latency problems
with programmable memory controllers are ameliorated to some extent by using long cache lines
and overlapping the acquisition of data from DRAM with the software processing of coherence
requests. None-the-less, this approach is unable to take advantage of direct pipelining of data from
the DRAM into the processor cache, since it must wait for software decisions to be made before
forwarding data upward in the memory hierarchy. This is another cost of flexibility: coherence
operations take many more cycles than they would if hard-coded.

It is interesting to note that the scheduling architecture adopted by FLASH [64] bears resem-
blance to the service-coupling methodology of Section 5.2.4: requests are queued up at a hardware
scheduler (called theinbox), then forwarded as a “stream” of requests directly to theprotocol pro-
cessor. Results are finally passed to theoutboxfor post distribution. In fact, Figure 4.2 of [64] has
a topological similarity to our Figure 5-18 on page 180. Although it was not discussed outside of
MIT, the Alewife microarchitecture was completed before this paper was published; hence, we can

7.3. Related Work Page 227

only conclude that this is a case of convergent evolution.
The Typhoon [93] and M-machine [40] architectures have approached the integration of

message-passing and shared-memory communication by combining minimal “virtual-memory”
style fine-grained data mapping with fast message interfaces to permit software-managed cache
coherence. Typhoon includes a coprocessor for handling cache-coherence requests, while the M-
machine reserves a hardware thread for special message handling. Unfortunately, the problem with
both of these approaches is that they tend to compromise shared-memory performance, leading to
a suppressed desire on the part of programmers to perform actual communication. Note that the
protocol processor in the FLASH multiprocessor is highly tuned for coherence-style operations,
whereas this is not true of either Typhoon or the M-machine. Although it remains to be seen, it
is this author’s feeling that exacerbating the memory bottleneck by placing software in latency-
critical paths is undesirable from a performance standpoint.

The Cray T3D and T3E [99] integrates message passing and hardware support for a shared
address space. Message passing in the T3E is flexible and includes extensive support for DMA.
However, the T3E does not provide cache coherence.

7.3.2 Hardware Supported Shared-Memory

Alewife’s combination of hardware for common case operations and software for “uncommon”
sharing patterns is still unique to this author’s knowledge. Other cache-coherent shared-memory
machines provide either full hardware support for shared memory or implement coherence entirely
in software.

DASH [71] is a cache-coherent multiprocessor that uses a full-mapped, directory-based cache
coherence protocol implemented entirely in hardware. From the standpoint of timing, the DASH
project was a sibling project to Alewife, although the DASH implementation methodology (FP-
GAs) produced working prototypes much quicker than Alewife. The DASH multiprocessor sup-
ports release consistency, instead of sequential consistency (and, in fact, was one of the driving
forces behind the creation of the release-consistent model [41]). For latency tolerance (or ame-
lioration), DASH includes prefetching and a mechanism for depositing data directly in another
processor’s cache. As discussed in Chapter 4, deadlock issues in DASH were handled through a
combination of multiple virtual channels and negative acknowledgments. Recently, the SGI Ori-
gin [67] has appeared as a commercial offspring of DASH. This machine has taken fast, distributed,
hardware cache-coherence to a new level of performance.

The KSR1 and DDM [43] provide a shared address space through cache-only memory. These
machines also allow prefetching. Issues of deadlock are handled in specialized ways in both of
these machines: the KSR1 takes advantage of its ring-based network topology, while the DDM
exploits its hierarchy of buses. The Sequent NUMA-Q machine takes the FLASH approach of
providing a programmable memory controller, although this controller is not as well tuned as the
FLASH controller resulting in long remote access times.

A few architectures incorporate multiple contexts, pioneered by the HEP [102], switching on
every instruction. These machines, including Monsoon [88] and Tera [6], do not have caches
and rely on a large number of contexts to hide remote memory latency. In contrast, Alewife’s
block multithreading technique switches only on synchronization faults and cache misses to re-

Page 228 CHAPTER 7. ALL GOOD THINGS: : :

mote memory, permitting good single-thread performance and requiring less aggressive hardware
multithreading support. A number of architectures, including HEP, Tera, Monsoon, and the J-
machine, also provide support for fine-grain synchronization in the form of full/empty bits or tags.

7.3.3 Message-Passing Communication

The trend in message interfaces has been to reduce end-to-end overhead by providing user access
to the interface hardware. The User-Direct Messaging model and interfaces build on previous work
in messaging models and mechanisms.

Messaging Models: The User-Direct Messaging (UDM) model is similar to Active Mes-
sages [113] and related to Remote Queues (RQ) [16] as an efficient building-block for messaging
within a protection domain. User-Direct Messaging differs from Active Messages [113] in that it
includes explicit control over message delivery for efficiency; thus, for instance, users may choose
to receive messages via polling or via interrupts.

The relationship between User-Direct Messaging and RQ is not surprising given that this author
participated in both models. RQ provides a polling-based view of a network interface with support
for system interrupts in critical situations. User-Direct Messaging, on the other hand, offers a
more general view in which the application freely shifts between polling and user-interrupt modes.
The RQ implementation on Alewife used a software version of user-controlled atomicity and the
RQ paper outlined a hardware design in progress. The refined details of that hardware interface
appeared in Section 2.4.2. In particular, the formalized notion of atomicity as well as the resulting
user-level atomicity mechanism were only mentioned in the RQ paper, whereas they are integral
parts of the UDM model. Like RQ, UDM depends on buffering to avoid deadlock rather than on
explicit request and reply networks.

The Active Message Applications Programming Interface [81] is a complete programming
system for messaging communication. This API could be efficiently implemented on top of User-
Direct Messaging. UDM is thus lighter weight and more general. Interestingly enough,virtual
queueing, as discussed in Section 4.3.6, is an explicit feature of this API; in this specification, vir-
tual queues are referred to ascommunication endpointsand contain queuing resources for reception
of both inter-domain and intra-domain messages

The Polling Watchdog [82] integrates polling and interrupts for performance improvement. The
resulting programming model is interrupt-based in that application code may receive an interrupt at
any point; the application cannot rely on atomicity implicit in a polling model. A polling watchdog
uses a timeout timer on message handling to accelerate message handling if polling proves slug-
gish. The user-level atomicity mechanism for UDM includes an identical timer but uses it only
to let the operating system clear the network. A polling watchdog mode could be implemented in
Alewife, if so desired.

Direct Network Interfaces: Several machines have provided direct network interfaces. These
include the CM-5, the J-machine, iWarp, the *T interface, Alewife, and Wisconsin’s CNI [68, 35,
13, 89, 3, 86]. These interfaces feature low latency by allowing the processor direct access to the
network queue. Direct NIs can be inefficient unless placed close to the processor. Anticipating

7.3. Related Work Page 229

continued system integration, we place our NI on the processor-cache bus or closer (see discussing
above, in Section 7.2).

Both the J-machine [87] and the CM-5 export hardware message-passing interfaces directly to
the user. These interfaces differ from the Alewife interface in several ways. First, in Alewife, mes-
sages are normally delivered via an interrupt and dispatched in software, while in the J-machine,
messages are queued and dispatched in sequence by the hardware. On the CM-5, message delivery
through interrupts is expensive enough that polling is normally used to access the network. Sec-
ond, neither the J-machine, nor the CM-5 allow network messages to be transferred through DMA.
Third, the J-machine does not provide an atomic message send like Alewife does; this omission
complicates the sharing of a single network interface between user code and interrupt handlers.

The CNI work [86] shows how to partly compensate for a more distant NI by exploiting stan-
dard cache-coherence schemes. This assumes that all messages are copied directly into memory
buffers by the network hardware, then extracted by the processor. Among other things, this uses
memory bandwidth that would not be taken in first-case delivery with UDM and furthermore sup-
ports only a polling interface (and hence no notion of atomicity), rather than permitting the user
to request interrupts on message arrival. To some extent (ignoring the issue of interrupts), the
UDM network interface degenerates into a CNI-like interface during second-case delivery, al-
though without the same efficiency; memory-based buffering is considered to be an exception
situation in Alewife. Note, that in CNI, hardware places messages directly into buffers, making
the process of virtualizing the network interface for multiple users much more difficult.

Direct interface designs have mostly ignored issues of multiprogramming and demand pag-
ing. In [78], we discuss the use of User-Direct Messaging in the context of a multiuser sys-
tem (FUGU). The CM-5 provides restricted multiprogramming by strict gang scheduling and by
context-switching the network with the processors. The *T NI [89] would have included GID
checks and a timeout on message handling for protection as in FUGU. The M-machine [40] re-
ceives messages with a trusted handler that has the ability to quickly forward the message body to
a user thread.

Memory-Based Interfaces: Memory-based interfaces in multicomputers [12, 18, 97, 99, 104]
and workstations [36, 37, 108, 112] provide easy protection for multiprogramming if the NI also
demultiplexes messages into per-process buffers. Automatic hardware buffering also deals well
with sinking bursts of messages and provides the lowest overhead (by avoiding the processors)
when messages are not handled immediately.

Memory-based application interfaces provide low overhead when access to the network hard-
ware is relatively expensive (true for most current systems) and when latency is not an issue. In-
creased integration of computer systems and the mainstreaming of parallel processing challenges
both of these assumptions: on-chip network interfaces can have low overhead and parallel pro-
grams frequently require coordinated scheduling for predictable, low latencies [9]. Alewife pro-
vides low latency for applications where latency matters while including low-cost and reasonably
efficient buffering as a fallback mode.

Page 230 CHAPTER 7. ALL GOOD THINGS: : :

7.3.4 Two-Case Delivery and Deadlock

The notion of two-case delivery has appeared in various guises over the years. Perhaps the clear-
est example of this was with the J-machine [87], which provided overflow interrupts onboth the
input and output queues. The resulting system was studied extensively by Rich Lethin in [73].
Interestingly enough, the fact that the overflow interrupts were generatedimmediatelyafter a cor-
responding queue became full was a source of performance problems in this machine. The Alewife
deadlock detection algorithm adds a crucial hysteresis as we saw in Section 6.3, where we explored
the frequency of overflow detection as a function of the congestion timeout.

One of the results noted by Lethin is that a shared-memory style of communication (re-
quest/reply) tends to lead to overall shorter queue sizes (given infinite queues) then so-called
“Snakes” (message-passing styles that hop from one node to another in a random pattern). Cer-
tainly, we saw in Section 6.3 that shared-memory programs are less likely to invoke second-case
delivery than message-passing programs; in that sense, these results agree. However, the results
of [73] do not take into account hysteresis, instead characterizing the frequency with which queues
are full. We believe that this is often the wrong question (at least for machines that support
better detection heuristics than “queue full”), since temporary blockages are a natural aspect of
wormhole-routed networks.

In exploring the frequency ofactual deadlock in Section 6.3, we were asking the question:
what is the minimum frequency with which a second-case delivery mechanism must be invoked.
This gives a lower-bound on the amount of buffering that must be performed to avoid deadlocking
the machine. Although we took a stab at this, much more work is required.

Greater exploration of User-Direct Messaging and two-case delivery in the context of a mul-
tiuser FUGU system is explored in [78, 79]. There, the use of loose gang scheduling is shown to
prevent the arbitrary buildup of buffered messages as a consequence of scheduler mismatches with
multiple simultaneous processes.

7.3.5 Tradeoffs Between Communication Models

Last, but not least, a number of researchers have explored the effects of integrated shared-memory
and message-passing communication models on performance. As mentioned in Section 6.2.3, it
is only when the these mechanisms have roughly equivalent performance that any tradeoff is pos-
sible. In Alewife, the communication mechanisms are close enough one another in performance
that fundamental properties of these communication mechanisms come into play, rather than im-
plementation artifacts. This is indicated by graphs such as Figure 6-4 in which the performance of
applications based on message passing and and those based on shared memory cross each other as
a function of network bandwidth.

Very few (if any) existing machines provide the level of parity between communication mecha-
nisms that Alewife provides. Thus, studies of the inherent cost of different communication models
on physical hardware are scarce. None-the-less, the Alewife experiments in Section 6.2.3 (and
in [28]) were strongly influenced by studies from Wisconsin, Stanford, and Maryland. Our com-
parison of communication mechanisms is similar to Chandra, Larus and Rogers [96], although
we have available a larger set of mechanisms and we generalize to a range of system parame-
ters. This generalization is similar to the study of latency, occupancy, and bandwidth by Holt et.

7.3. Related Work Page 231

al [48], which focuses exclusively upon shared-memory mechanisms. Although the Alewife ma-
chine provides an excellent starting point for the comparison of a large number of communication
mechanisms, our results are greatly enhanced by our use of emulation, an approach inspired by the
work at Wisconsin [107].

Chandra, Larus and Rogers compare four applications on a simulation of a message-passing
machine similar to a CM-5 multiprocessor against a simulation of a hypothetical machine also
similar to a CM-5, but extended by shared-memory hardware [96]. Their results are a good point
of comparison for our emulation results, since both Alewife and the CM-5 are SPARC-based archi-
tectures with very similar parameters. They found that message passing performed approximately
a factor of two better than shared memory while simulating a network latency of 100 cycles.

Our results agree qualitatively with studies from Stanford. Holt et al. found latency to be crit-
ical to shared-memory performance, as we did. They also found that node-to-network bandwidth
was not critical in modern multiprocessors. Our study shows, however, that bandwidth across
the bisectionof the machine may become a critical cost in supporting shared memory on mod-
ern machines. Such costs will make message passing and specialized user-level protocols [39]
increasingly important as processor speeds increase.

Woo et al. [117] compared bulk transfer with shared memory on simulations of the FLASH

multiprocessor [64] running the SPLASH [101] suite. They found bulk transfer performance to be
disappointing due to the high cost of initiating transfer and the difficulty in finding computation
to overlap with the transfer. Although, Alewife’s DMA mechanism is cheaper to initiate than
theirs, we also found bulk transfer to have performance problems. Our problems arose from the
irregularity of our application suite, which caused high scatter/gather copying costs and limited
data transfer size. It should be noted, however, that Alewife DMA mechanisms were found to
greatly enhance applications (in particular the operating system) with less irregular communication
patterns or with large blocks of data.

Klaiber and Levy [56] study the performance of programs which accesses shared-memory
or message-passing runtime libraries. These libraries generated traces for shared-memory and
message-passing simulators, to generate statistics on message traffic. However, their programs
were not fined tuned for any particular architecture, and hence not fair to either. Our programs are
highly optimized for the mechanisms and performance parameters of a machine supporting both
communication methods. Further, their machine independent libraries tend to introduce unneces-
sary overheads for both methods, leading to additional loss of comparison accuracy. Finally they
report only message traffic, not execution time numbers. They do not show how message traffic
impacts runtime.

Page 232 CHAPTER 7. ALL GOOD THINGS: : :

Appendix A

Active Message Scheduling

In this appendix, we present a fragment of the interrupt handler code for a user-level active mes-
sage. The fragment that we present here (in Figure A-1) is the so-called “fast path”,i.e. the code
that runs if no exceptional cases are taken. A breakdown of the costs for this code were presented
in Table 6-4 (page 201), where this was referred to as the “hard” scheduler.

This code exhibits two important properties: (1) it provides featherweight threading of con-
texts on Sparcle; and (2) it makes use of the hardware features provided by the user-level atomicity
mechanism. Our goal in the next few paragraphs is to point out aspects of the code that support
these two properties. The scheduling philosophy that is supported by this code is simplistic, but
powerful enough to perform many interesting tasks. There are two “levels” of operation. Back-
ground tasks are considered “level 0” and are at lower priority than user-level active message
handlers which are at “level 1”. The implicit assumption here is that there is some unspecified
scheduler that handles level 0 tasks. Our goals are to (1) disable access to level 0 tasks when we
have one or more operating level 1 tasks; and (2) perform featherweight scheduling of level 1 tasks.
Note that we assume that these level 1 tasks have no guaranteed priorities amongst themselves other
than that they will operate at higher priority than background.

To understand this code, a brief word about registers in the Sparcle processor is appropriate.
The Sparcle processor has eight overlapping register windows which Alewife uses as four, non-
overlapping contexts. Thus, windows are used in pairs. The two windows associated with a context
are called theuser frameandtrap framerespectively. Because of the overlapping nature of win-
dows, these two contexts share 8 registers. By convention, these registers are associated with the
user frame. The end result of this is that each context has 24 “user” registers and 8 “trap” registers.
To help in understanding the code of Figure A-1, registers have been given symbolic names with
well-defined prefixes. Thus, user registers start with “uf ”, registers that are exclusively in the trap
frame start with “tf ”, registers that are trap frame names for user registers start with “th ”.

In addition to context-specific registers, there are 8 global registers that are not associated
with any particular context. These three registers, calledalloc wim, background bits , and
background psr , are the key to fast thread scheduling. These registers are considered to be
“supervisor-only”, even though Sparcle does not support protected registers1. Thealloc wim
register contains information about which of the four Sparcle contexts are currently in use; the

1There is precedent for persistent supervisor registers, however. See the PowerPC [91] and the MC88100 [83].

Page 233

Page 234 APPENDIX A. ACTIVE MESSAGE SCHEDULING

ACT MESSENTRY() ; This is the entry point for the active message interrupt.
1: rdpsr %tf old psr ; Save PSR of interrupted context
2: andcc 0b11111111, %alloc wim ; Is there a free context?
3: bne,a checklevel ; Yes, continue
4: wrwim 0b11111111, %alloc wim ; Going to non-allocated context

5:) Here we would have exception code to free up a context by unloading a thread.

checklevel:
6: xnorcc %alloc wim, %background wim, %g0 ; Check– At background level?
7: beq,a newcontext ; Yes, save return CTX
8: move %tf old psr, %background psr

newcontext:
9: nextf %tf old psr, %g0, %th old psr ; Goto new context

10: andn %alloc wim, %tf wim bits, %alloc wim ; Allocate context
11: ldio %desc length, %g0 ; Check desclength (F/E) and pri-invert (B/I)
12: restore %g0, %g0, %g0 ; Goto user frame.
13: cbeandi,a dispatch ; Empty & Idle=> go for it
14: setatom (ATOM|TIMER|DISPOSE) ; Set atomicity mode (no extend)
15: cbempty,a dispatch ; Empty=> priority-invert only
16: setatom (ATOM|TIMER|DISPOSE|EXTEND) ; Set atomicity mode (with extend)

17:) Here we would have exception code to save the outputdescriptor queue.

dispatch:
18: ldio %input window+1, %l0 ; Get address of message handler
19: wrwim %background bits, %alloc wim ; Enable level-1 tasks (handlers)
20: jmpl %l0, %g0 ; Go call handler.
21: wrpsr %uf scratch, SUPER BIT ; Flip into user mode.

user return: ; User code returns here!
22: disatom TIMER ; Trap if extend or message not freed
23: ta SYS MESSRETURN ; Syscall into kernel (no return).

SYS MESSRETURN() ; System-call entry point taken on return from handler.
24: setatom 0 ; Clear atomicity mechanism
25: or %alloc wim, %tf wim bits, %alloc wim ; Deallocate Context
26: xnorcc %alloc wim, %background bits, %g0 ; Check – out of level-1 tasks?
27: beq exit to level 0 ; Yes, return to level 0
28: rdpsr %th scratch ; Restore PSR for next time around.

next level 1:
29: bpos exit to level 1 ; No unloaded level-1 tasks
30: wrwim %alloc wim, %background bits ; Remove context from wim
31: subcc %alloc wim, %tf wim bits, %g0 ; Is this the only free context?
32: beq exit to level 1A: ; Yes. Do not reload now.
33: subcc %tf tpc, %tf check return, %g0 ; Check – proper return?

34:) Here we would have exception code to reload some level-1 thread that was previously unloaded.

exit to level 1:
35: subcc %tf tpc, %tf check return, %g0 ; Check – proper return?

exit to level 1A:
36: bne weird return ; Error – User didn’t return normally!
37: disint CSWITCH ; Disable cswitching (for next time)
38: prev %g0, %g0, %g0 ; Go to another level-1 task
39: wrpsr %tf old psr ; Restore PSR of that task
40: jmpl %tf tpc, %g0 ; Perform return from
41: rett %tf tnpc, %g0 ; trap sequence.

exit to level 0:
42: subcc %tf tpc, %tf check return, %g0 ; Check – proper return?
43: wrpsr %background psr ; Restore PSR/return to background task
44: wrwim %alloc wim, %g0 ; Background wim.
45: bne weird return ; Error – User didn’t return normally!
46: disint CSWITCH ; Disable cswitching (for next time)
47: jmpl %tf tpc, %g0 ; Perform return from
48: rett %tf tnpc, %g0 ; trap sequence.

Figure A-1: Scheduler code for user-level active message interrupts on the A-1001 CMMU. This code
makes use of both featherweight threads and the hardware user-level atomicity mechanism.

A.1. Featherweight Threading Page 235

lowest eight bits of this register are in the same format as theWIMregister, with adjacent pairs
of bits representing the windows of a context. A context is currently in use if its adjacent bits
are zeros and free if they are ones. Thebackground bits register points at contexts that are
currently in use for background (level 0) tasks. Finally, thebackground psr register contains
a copy of the processor status registerPSRfor the background task that was interrupted to begin
execution of the first level 1 task. This value contains, among other things, the window pointer
value for the interrupted context; hence, restoring this value (with awrpsr instruction) will return
to the original context.

This code contains two key entry points:ACT MESSENTRY() andSYS MESSRETURN().
Each of these begins execution in the trap frame of the user context that was executing at the time
that execution began. The first of these is entered by the active message interrupt, and the second is
entered by a special “Trap” instruction, shown at the end ofACT MESSENTRY() , for returning to
system level. Some understanding of SPARC instruction set is appropriate for understanding this
code (see [105]); however, note that all control-flow instructions (branches, jumps, etc) have one
delay slot. The high-level code flow during the execution of an active message handler is that we
begin execution atACT MESSENTRY() . The jmpl instruction at line 20 calls the user handler
code. When the user returns from the handler, we begin with execution of line 22. Then at line 23,
we invoke the software trap instruction that causes us to return to system level and begin execution
at line 24. Finally, the handler exits with lines 40/41 or lines 47/48.

A.1 Featherweight Threading

Given the above description, we have two distinct sets of code that perform featherweight thread-
ing. First we perform allocation: at lines 2–4, we check to see if there are any free contexts
and prepare the wim so that anextf instruction will take us to a free context (by inverting the
alloc wim register, we enable only contexts that are free). Line 5 represents an unspecified
amount of exception code that is responsible for freeing up a context if we cannot find one. Note
that, if we are changing from level 0 to level 1, the code at lines 6–8 saves thebackground psr
for later use. Note that we assume that the thread descriptors and stack frames are already preallo-
cated and loaded into appropriate registers. This is the reason that our dispatch code (lines 18–21)
does not bother setting up user state other than loading the handler address from the message.

Second we perform deallocation: lines 25–32 perform a series of checks. If we are returning
to level 0, we branch off and restore the properWIM. Alternatively, if we are not returning to
level 0, then we may have to do one of two things. If we have unloaded level 1 tasks (because we
previously ran out of contexts), then we must decide whether to reload or not2. The featherweight
heuristic says that we want to reload such unloaded tasksunlesswe have just freed up the only free
context. The reason for this is that we get the desired featherweight behavior in that a set of short
handlers that do not exit their atomic sections will execute very rapidly (except for the first, which
might have to unload a context).

2This is indicated by the unload code by setting the sign bit ofbackground bits , triggering a negative condition
in the comparison of line 26 if there are unloaded tasks.

Page 236 APPENDIX A. ACTIVE MESSAGE SCHEDULING

A.2 User-Level Atomicity Mechanism

The code of Figure A-1 employs and enables use of the hardware user-level atomicity in several
ways. First, since every active message is scheduled as a complete thread, the transition from
handler atomic section to full thread can be accomplished by a message handler (if desired) with
a single-cycledisatom instruction. Further, the atomicity hardware is responsible for starting
and stopping the timer and tracking whether or not the user remembers to free the input message;
hence this dispatch code is not responsible for these functions.

Instead, the dispatch code is responsible for initializing the mechanism properly. We see this
in lines 11–16 (line 12 is there as a delay slot of theldio). The ldio instruction at line 11
sets thefull/emptyandbusy/idlecoprocessor condition codes to indicate two pieces of informa-
tion: full means that the outputdescriptor array contains a partial message description that must
be saved andbusyindicates that a priority inversion has been detected. The fast path, if neither
of these are true, is checked at line 13 (this is a coprocessor branch on empty and idle) instruc-
tion; in this case, we initialize the atomicity mechanism by setting three of the atomicity con-
trol bits: atomicity assert , timer force , anddispose pending . The slightly slower
path, taken if only a priority inversion is present, sets theatomicity extend bit as well. We
have omitted the more complicated unloading of the outputdescriptor array (represented by ex-
ception code at line 17).

On return from the user handler, line 22 is responsible for triggering exception conditions if
they still exist, i.e. causing anatomicity extend or dispose failure trap. Note that
we do this by attempting to shut off thetimer force bit (which we know is on), not the
atomicity bit (hence avoiding the danger of a race condition if the user did not decide to exit
their atomic sections). Lines 33, 35, or 42 perform a check against a reserved trap frame register
(tf check return) to make sure that this was the return path taken by the user. Finally, line 24
disables the atomicity mechanism entirely (for exit).

Some of the odd ordering of instructions seen here is to fill delay slots for various instructions
(e.g.for wrpsr andwrwim with respect to things they affect).

Bibliography

[1] Sarita V. Adve and Mark D. Hill. Weak Ordering - A New Definition. InProceedings 17th
Annual International Symposium on Computer Architecture, pages 2–14, New York, June
1990.

[2] Sarita V. Adve, Mark D. Hill, Barton P. Miller, and Robert H.B. Netzer. Detecting Data
Races on Weak Memory Systems. InProceedings of the 18th Anual Symposium on Com-
puter Architecture, May 1991.

[3] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk Johnson, David Kranz, John Ku-
biatowicz, Beng-Hong Lim, Kenneth Mackenzie, and Donald Yeung. The MIT Alewife
Machine: Architecture and Performance. InProceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 2–13, June 1995.

[4] Anant Agarwal, John Kubiatowicz, David Kranz, Beng-Hong Lim, Donald Yeung, Godfrey
D’Souza, and Mike Parkin. Sparcle: An Evolutionary Processor Design for Multiprocessors.
IEEE Micro, 13(3):48–61, June 1993.

[5] Anant Agarwal, Beng-Hong Lim, David A. Kranz, and John Kubiatowicz. APRIL: A Pro-
cessor Architecture for Multiprocessing. InProceedings 17th Annual International Sympo-
sium on Computer Architecture, pages 104–114, Seattle, WA, June 1990.

[6] Gail Alverson, Robert Alverson, and David Callahan. Exploiting Heterogeneous Parallelism
on a Multithreaded Multiprocessor. InWorkshop on Multithreaded Computers, Proceedings
of Supercomputing ’91. ACM Sigraph & IEEE, November 1991.

[7] Jennifer M. Anderson and Monica S. Lam. Global Optimizations for Parallelism and Lo-
cality on Scalable Parallel Machines. InProceedings of SIGPLAN ’93 Conference on Pro-
gramming Languages Design and Implementation. ACM, June 1993.

[8] Kazuhiro Aoyama and Andrew A. Chien. The Cost of Adaptivity and Virtual Lanes in a
Wormhole Router.Journal of VLSI Design, 2(4):315–333, 1993.

[9] Remzi H. Arpaci, David E. Culler, Arvind Krishnamurthy, Steve G. Steinberg, and Kather-
ine Yelick. Empirical Evaluation of the CRAY-T3D: A Compiler Perspective. InPro-
ceedings of the 22nd Annual International Symposium on Computer Architecture, pages
320–331, June 1995.

Page 237

Page 238 BIBLIOGRAPHY

[10] John K. Bennett, John B. Carter, and Willy Zwaenepoel. Adaptive Software Cache Man-
agement for Distributed Shared Memory Architectures. InProceedings 17th Annual Inter-
national Symposium on Computer Architecture, New York, June 1990. IEEE.

[11] P. A. Bernstein, V. Hadzilacos, and N. Goodman.Concurrency Control and Recovery in
Database Systems. Addison-Wesley Publishing Company, Reading, MA, 1987.

[12] Matthias A. Blumrich, Kai Li, Richard Alpert, Cezary Dubnicki, Edward W. Felten, and
Jonathan Sandberg. Virtual Memory Mapped Network Interface for the SHRIMP Multi-
computer. InProceedings 21st Annual International Symposium on Computer Architecture
(ISCA’94), pages 142–153, April 1994.

[13] S. Borkar, R. Cohn, G. Cox, T. Gross, H.T. Kung, M. Lam, M. Levine, B. Moore, W. Moore,
C. Peterson, J. Susman, J. Sutton, J. Urbanski, and J. Webb. Supporting Systolic and Mem-
ory Communication in iWarp. InProceedings of the 17th Annual International Symposium
on Computer Architecture, pages 70–81, June 1990.

[14] Shekhar Borkar et al. iWarp: An Integrated Solution to High-Speed Parallel Computing. In
Proceedings of Supercomputing ’88, November 1988.

[15] E. A. Brewer, C. N. Dellarocas, A. Colbrook, and W. E. Weihl. PROTEUS: A high-
performance parallel-architecture simulator. Technical Report MIT/LCS/TR-516, Mas-
sachusetts Institute of Technology, September 1991.

[16] Eric Brewer, Fred Chong, Lok Liu, Shamik Sharma, and John Kubiatowicz. Remote
Queues: Exposing Message Queues for Optimization and Atomicity. InProceedings of
the Symposium on Parallel Algorithms and Architectures (SPAA’95). ACM, 1995.

[17] Inside the Butterfly Plus. BB&N Advanced Computers Inc., 1987.

[18] Greg Buzzard, David Jacobson, Milon Mackey, Scott Marovich, and John Wilkes. An
Implementation of the Hamlyn Sender-Managed Interface Architecture. InProceedings of
the Second Symposium on Operating System Design and Implementation, pages 245–259,
1996.

[19] David Callahan and Ken Kennedy. Compiling Programs for Distributed-Memory Multipro-
cessors.Journal of Supercomputing, 2(151-169), October 1988.

[20] David Callahan, Ken Kennedy, and Allan Porterfield. Software Prefetching. InFourth Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS IV), pages 40–52. ACM, April 1991.

[21] David Chaiken. Smart Memory Systems.CMG Transactions, pages 23–32, Winter 1993.

[22] David Chaiken, Craig Fields, Kiyoshi Kurihara, and Anant Agarwal. Directory-Based
Cache-Coherence in Large-Scale Multiprocessors.IEEE Computer, 23(6):41–58, June
1990.

BIBLIOGRAPHY Page 239

[23] David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS Directories: A Scalable
Cache Coherence Scheme. InFourth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS IV), pages 224–234. ACM,
April 1991.

[24] David L. Chaiken. Mechanisms and Interfaces for Software-Extended Coherent Shared
Memory. PhD thesis, Massachusetts Institute of Technology, Department of Electrical En-
gineering and Computer Science, 1994. MIT/LCS TR-644.

[25] David Lars Chaiken. Cache Coherence Protocols for Large-Scale Multiprocessors. Techni-
cal Report MIT-LCS-TM-489, Massachusetts Institute of Technology, September 1990.

[26] Andrew A. Chien. A Cost and Speed Model for k-ary n-cube Wormhole Routers. InHot
Interconnects, 1993.

[27] Fredric T. Chong.Parallel Communication Mechanisms for Sparse, Irregular Applications.
PhD thesis, Massachusetts Institute of Technology, Department of Electrical Engineering
and Computer Science, December 1996.

[28] Fredric T. Chong, Rajeev Barua, Fredrik Dahlgren, John Kubiatowicz, and Anant Agarwal.
The Sensitivity of Communicaton Mechanisms to Bandwidth and Latency. InProceedings
of the Fourth Annual Symposium on High-Performance Computer Architecture, February
1998.

[29] Douglas W. Clark. Large-Scale Hardware Simulation: Modeling and Verification Strategies.
In Proceedings of the 25th Anniversary Symposium, Carnegie Mellon University, Pittsburgh,
PA, September 1990. Carnegie Mellon University.

[30] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.Introduction to Algorithms.
The MIT Press, 1990.

[31] William J. Dally. Virtual-channel Flow Control.IEEE Transactions on Parallel and Dis-
tributed Systems, 3(5):194–205, March 1992.

[32] William J. Dally and Hiromichi Aoki. Deadlock-Free Adaptive Routing in Multicomputer
Networks Using Virtual Channels.IEEE Transactions on Parallel and Distributed Systems,
4(4):466–475, April 1993.

[33] William J. Dally and Charles L. Seitz. Deadlock-Free Message Routing in Multiprocessor
Interconnection Networks.IEEE Transactions on Computing, C-36(5):547–553, May 1987.

[34] W. J. Dally et al. Architecture of a Message-Driven Processor. InProceedings of the
14th Annual Symposium on Computer Architecture, pages 189–196, Washington, D.C., June
1987. IEEE.

[35] William J. Dally et al. The J-Machine: A Fine-Grain Concurrent Computer. InProceedings
of the IFIP (International Federation for Information Processing), 11th World Congress,
pages 1147–1153, New York, 1989. Elsevier Science Publishing.

Page 240 BIBLIOGRAPHY

[36] Chris Dalton, Greg Watson, David Banks, Costas Calamvokis, Aled Edwards, and John
Lumley. Afterburner.IEEE Network, pages 36–43, July 1993.

[37] Peter Druschel, Larry L. Peterson, and Bruce S. Davie. Experiences with a High-Speed
Network Adaptor: A Software Perspective. InProceedings of the Conference on Communi-
cation Architectures, Protocols and Applications, pages 2–13, 1994.

[38] Michel Dubois, Christoph Scheurich, and Faye A. Briggs. Synchronization, coherence, and
event ordering in multiprocessors.IEEE Computer, 21(2):9–21, February 1988.

[39] Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt, Ioannis Schoinas, Mark D. Hill
James R. Larus, Anne Rogers, and David A. Wood. Application-Specific Protocols for
User-Level Shared Memory. InSupercomputing 94, 1994.

[40] Marco Fillo, Stephen W. Keckler, W.J. Dally, Nicholas P. Carter, Andrew Chang, Yevgeny
Gurevich, and Whay S. Lee. The M-Machine Multicomputer. InProceedings of the 28th
Annual International Symposium on Microarchitecture, pages 146–156, Ann Arbor, MI,
November 1995. IEEE Computer Society.

[41] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Mem-
ory Consistency and Event Ordering in Scalable Shared-Memory Multiprocessors. InPro-
ceedings 17th Annual International Symposium on Computer Architecture, New York, June
1990. IEEE.

[42] Kourosh Gharachorloo, Sarita V. Adve, Anoop Gupta, John L. Hennessey, and Mark D.
Hill. Programming for Different Memory Consistency Models.Journal of Parallel and
Distributed Computing, pages 399–407, August 1992.

[43] Erik Hagersten, Anders Landin, and Seif Haridi. DDM — A Cache-Only Memory Archi-
tecture.IEEE Computer, 25(9):44–54, September 1992.

[44] R.H. Halstead and T. Fujita. MASA: A Multithreaded Processor Architecture for Paral-
lel Symbolic Computing. InProceedings of the 15th Annual International Symposium on
Computer Architecture, pages 443–451, New York, June 1988. IEEE.

[45] John Heinlein, Kourosh Gharachorloo, Scott Dresser, and Anoop Gupta. Integration of Mes-
sage Passing and Shared Memory in the Stanford FLASH Multiprocessor. InSixth Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS VI), pages 38–50. ACM, October 1994.

[46] Dana S. Henry and Christopher F. Joerg. A Tightly-Coupled Processor-Network Interface.
In Fifth Internataional Architectural Support for Programming Languages and Operating
Systems (ASPLOS V), Boston, October 1992. ACM.

[47] Mark D. Hill, James R. Larus, Steven K. Reinhardt, and David A. Wood. Cooperative
Shared Memory: Software and Hardware for Scalable Multiprocessors. InFifth Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS V), Boston, October 1992. ACM.

BIBLIOGRAPHY Page 241

[48] C. Holt, M. Heinrich, J. P. Singh, E. Rothberg, and J. Hennessy. The effects of latency,
occupancy and bandwidth on the performance of cache-coherent multprocessors. Technical
report, Stanford University, Stanford, California, January 1995.

[49] David V. James, Anthony T. Laundrie, Stein Gjessing, and Gurindar S. Sohi. Distributed-
Directory Scheme: Scalable Coherent Interface.IEEE Computer, pages 74–77, June 1990.

[50] Kirk Johnson. The impact of communication locality on large-scale multiprocessor perfor-
mance. In19th International Symposium on Computer Architecture, pages 392–402, May
1992.

[51] Kirk L. Johnson.High-Performance All-Software Distributed Shared Memory. PhD thesis,
Massachusetts Institute of Technology, Department of Electrical Engineering and Computer
Science, December 1995.

[52] Kirk L. Johnson, M. Frans Kaashoek, and Deborah A. Wallach. CRL: High-performance
all-software distributed shared memory. InProceedings of the 15th ACM Symposium on
Operating Systems Principles, December 1995.

[53] N.P. Jouppi. Improving Direct-Mapped Cache Performance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers. InProceedings, International Symposium
on Computer Architecture ’90, pages 364–373, June 1990.

[54] Stafanos Kaxiras. Kiloprocessor Extensions to SCI. InProceedings of the 10th International
Parallel Processing Symposium, April 1996.

[55] Stefanos Kaxiras and James R. Goodman. The GLW Cache Coherence Protocol Extensions
for Widely Shared Data. InProceedings of the 10th ACM International Conference on
Supercomputing, May 1996.

[56] A. Klaiber and H. Levy. A Comparison of Message Passing and Shared Memory for Data-
Parallel Programs. InProceedings of the 21st Annual International Symposium on Computer
Architecture, April 1994.

[57] Kathleen Knobe, Joan Lukas, and Guy Steele Jr. Data Optimization: Allocation of Ar-
rays to Reduce Communication on SIMD Machines.Journal of Parallel and Distributed
Computing, 8(2):102–118, August 1990.

[58] David Kranz, Kirk Johnson, Anant Agarwal, John Kubiatowicz, and Beng-Hong Lim. Inte-
grating Message-Passing and Shared-Memory; Early Experience. InPrinciples and Practice
of Parallel Programming (PPoPP) 1993, pages 54–63, San Diego, CA, May 1993. ACM.
Also as MIT/LCS TM-478, January 1993.

[59] David Kroft. Lockup-Free Instruction Fetch/Prefetch Cache Organization. InProceedings
of the 8th Annual Symposium on Computer Architecture, pages 81–87, June 1981.

Page 242 BIBLIOGRAPHY

[60] John Kubiatowicz and Anant Agarwal. Anatomy of a Message in the Alewife Multipro-
cessor. InProceedings of the International Supercomputing Conference (ISC) 1993, Tokyo,
Japan, July 1993. IEEE. Also as MIT/LCS TM-498, December 1992.

[61] John Kubiatowicz, David Chaiken, Anant Agarwal, Arthur Altman, Jonathan Babb, David
Kranz, Beng-Hong Lim, Ken Mackenzie, John Piscitello, and Donald Yeung. The Alewife
CMMU: Addressing the Multiprocessor Communications Gap. InHOTCHIPS, August
1994.

[62] John D. Kubiatowicz. Closing the Window of Vulnerability in Multiphase Memory Trans-
actions: The Alewife Transaction Store. Technical Report TR-594, MIT, November 1993.

[63] Kiyoshi Kurihara, David Chaiken, and Anant Agarwal. Latency Tolerance through Mul-
tithreading in Large-Scale Multiprocessors. InProceedings International Symposium on
Shared Memory Multiprocessing, Japan, April 1991. IPS Press.

[64] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni, Kourosh
Gharachorloo, John Chapin, David Nakahira, Joel Baxter, Mark Horowitz, Anoop Gupta,
Mendel Rosenblum, and John Hennessy. The Stanford FLASH Multiprocessor. InProceed-
ings of the 21st Annual International Symposium on Computer Architecture (ISCA) 1994,
Chicago, IL, April 1994. IEEE.

[65] l64811 SPARC Integer Unit Technical Manual. LSI Logic Corporation, Milpitas, CA 95035,
1989.

[66] Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Executes Multi-
process Programs.IEEE Transactions on Computers, C-28(9), September 1979.

[67] James Laudon and Daniel Lenoski. The SG Origin: A ccNUMA Highly Scalable Server.
In Procedings of the 24th Annual International Symposium on Computer Architecture, June
1997.

[68] Charles E. Leiserson, Aahil S. Abuhamdeh, and David C. Douglas et al. The Network
Architecture of the Connection Machine CM-5. InThe Fourth Annual ACM Symposium on
Parallel Algorithms and Architectures. ACM, 1992.

[69] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The Directory-Based
Cache Coherence Protocol for the DASH Multiprocessor. InProceedings 17th Annual In-
ternational Symposium on Computer Architecture, pages 148–159, New York, June 1990.

[70] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hennessy, M. Horowitz,
and M. Lam. The Stanford DASH Multiprocessor.IEEE Computer, 25(3):63–79, March
1992.

[71] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and J. Hennessy. The dash
prototype: Logic overhead and performance.IEEE Transactions on Parallel and Distributed
Systems, 4(1):41–61, Jan 1993.

BIBLIOGRAPHY Page 243

[72] Daniel E. Lenoski and Wolf-Dietrich Weber.Scalable Shared-Memory Multiprocessing.
Morgan Kaufmann Publishers, 1995.

[73] Richard Anton Lethin.Message-Driven Dynamics. PhD thesis, Massachusetts Institute of
Technology, Department of Electrical Engineering and Computer Science, March 1997.

[74] J. Li and M. Chen. Compiling communication-efficient programs for massively parallel
machines.IEEE Transactions on Parallel and Distributed Systems, 2:361–376, July 1991.

[75] Beng-Hong Lim. Reactive Synchronization Algorithms for Multiprocessors. PhD thesis,
Massachusetts Institute of Technology, Department of Electrical Engineering and Computer
Science, 1995. MIT/LCS TR-664.

[76] Beng-Hong Lim and Ricardo Bianchini. Limits on the Performance Benefits of Multithread-
ing and Prefetching. InProceedings of the International Conference on the Measurement
and Modeling of Computer Systems, May 1996.

[77] Ken Mackenzie, John Kubiatowicz, Anant Agarwal, and M. Frans Kaashoek. FUGU: Imple-
menting Protection and Virtual Memory in a Multiuser, Multimodel Multiprocessor. Tech-
nical Memo MIT/LCS/TM-503, October 1994.

[78] Kenneth Mackenzie, John Kubiatowicz, Matthew Frank, Walter Lee, Victor Lee, Anant
Agarwal, and M. Frans Kaashoek. Exploiting Two-Case Delivery for Fast Protected Mes-
saging. InProceedings of the Fourth Annual Symposium on High-Performance Computer
Architecture, February 1998.

[79] Kenneth M. Mackenzie.TheFUGU Scalable Workstation: Architecture and Performance.
PhD thesis, Massachusetts Institute of Technology, Department of Electrical Engineering
and Computer Science, February 1998.

[80] N. K. Madsen. Divergence preserving discrete surface integral methods for Maxwell’s curl
equations using non-orthogonal unstructured grids. Technical Report 92.04, RIACS, Febru-
ary 1992.

[81] A. Mainwaring and D. Culler. Active Messages: Organization and Applications Program-
ming Interface (API V2.0). University of California at Berkeley, Network of Workstations
Project White Paper, September 1995.

[82] Olivier Maquelin, Guang R. Gao, Herbert H. J. Hum, Kevin Theobald, and Xin-Min Tian.
Polling Watchdog: Combining Polling and Interrupts for Efficient Message Handling. In
Proceedings of the 23rd Annual International Symposium on Computer Architecture, pages
179–188, May 1996.

[83] MC88100 RISC Microprocessor User’s Manual, Second Edition. Motorola, 1990.

[84] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchronization
on shared-memory multiprocessors. COMP TR90-114, Rice University, Houston, Texas,
May 1990.

Page 244 BIBLIOGRAPHY

[85] Todd Mowry and Anoop Gupta. Tolerating Latency Through Software-Controlled Prefetch-
ing in Shared-Memory Multiprocessors.Journal of Parallel and Distributed Computing,
12(2):87–106, June 1991.

[86] Shubhendu S. Mukherjee, Babak Falsafi, Mark D. Hill, and David A. Wood. Coherent Net-
work Interfaces for Fine-Grain Communication. InProceedings of the 23rd International
Symposium on Computer Architecture, pages 247–258, May 1996.

[87] M.D. Noakes, D.A.Wallach, and W.J. Dally. The J-Machine Multicomputer: An Archi-
tectural Evaluation. InIn Proceedings of the 20th Annual International Symposium on
Computer Architecture 1993, pages 224–235, San Diego, CA, May 1993. ACM.

[88] G. M. Papadopoulos and D.E. Culler. Monsoon: An Explicit Token-Store Architecture. In
Proceedings 17th Annual International Symposium on Computer Architecture, pages 82–91,
New York, June 1990. IEEE.

[89] Gregory M. Papadopoulos, G. Andy Boughton, Robert Greiner, and Michael J. Beckerle.
*T: Integrated Building Blocks for Parallel Computing. InSupercomputing ’93, pages 624–
635. IEEE, November 1993.

[90] Timothy M. Pinkston and Sugath Warnakulasuriya. On Deadlocks in Interconnection Net-
works. InProcedings of the 24th Annual International Symposium on Computer Architec-
ture, June 1997.

[91] PowerPC Microprocessor Family: The Programming Environments. IBM Microelectronics
and Motorola, 1994.

[92] R10000 Microprocessor User’s Manual, Ver 2.0. MIPS Technologies/Silicon Graphics,
1996.

[93] Steve K. Reinhardt, James R. Larus, and David A. Wood. Tempest and Typhoon: User-Level
Shared Memory. InProceedings of the 21st Annual International Symposium on Computer
Architecture (ISCA) 1994, Chicago, IL, April 1994. IEEE.

[94] Anne Rogers and Keshav Pingali. Process Decomposition through Locality of Reference.
In SIGPLAN ’89, Conference on Programming Language Design and Implementation, June
1989.

[95] Mendel Rosenblum, Stephen A. Herrod, Emmett Witchel, and Anoop Gupta. Complete
Computer Simulation: The SimOS Approach. InIEEE Parallel and Distributed Technology,
Fall 1995.

[96] Satish Chandra and James Lars and Anne Rogers. Where is Time Spent in Message-Passing
and Shared-Memory Programs. InProceedings of the Sixth International Conference on
Architectural Support for Programming Languages and Operating Systems, pages 61–73,
San Jose, California, 1994.

BIBLIOGRAPHY Page 245

[97] Klaus E. Schauser and Chris J. Scheiman. Experience with Active Messages on the Meiko
CS-2. InProceedings of the 9th International Symposium on Parallel Processing, 1995.

[98] Scalable Coherent Interface. IEEE P1596 SCI standard., 1989.

[99] Steven L. Scott. Synchronization and Communication in the T3E Multiprocessor. InSev-
enth International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 26–36, October 1996.

[100] C.L. Seitz, N.J. Boden, J. Seizovic, and W.K. Su. The Design of the Caltech Mosaic C
Multicomputer. InResearch on Integrated Systems Symposium Proceedings, pages 1–22,
Cambridge, MA, 1993. MIT Press.

[101] J.P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford Parallel Applications for Shared-
Memory. Technical Report CSL-TR-92-526, Stanford University, June 1992.

[102] B.J. Smith. Architecture and Applications of the HEP Multiprocessor Computer System.
Society of Photo-optical Instrumentation Engineers, 298:241–248, 1981.

[103] J. E. Smith, G. E. Dermer, B. D. Vanderwarn, S. D. Klinger, C. M. Rozewski, D. L. Fowler,
K. R. Scidmore, and J. P. Laudon. The ZS-1 Central Processor. InProceedings of the 2nd
Annual Conference on Architectural Support for Programming Languages and Operatings
Systems, October 1987.

[104] Marc Snir and Peter Hochschild. The Communication Software and Parallel Environment
of the IBM SP-2. Technical Report IBM-RC-19812, IBM, IBM Research Center, Yorktown
Heights, NY, January 1995.

[105] SPARC Architecture Manual, 1988. SUN Microsystems, Mountain View, California.

[106] MIT-SPARCLE Specification Version 1.1 (Preliminary). LSI Logic Corporation, Milpitas,
CA 95035, 1990. Addendum to the 64811 specification.

[107] Steven Reinhart and James Larus and David Wood. A Comparison of Message Passing and
Shared Memory for Data-Parallel Programs. InProceedings of the 21st Annual International
Symposium on Computer Architecture, April 1994.

[108] Chandramohan A. Thekkath, Henry M. Levy, and Edward D. Lazowska. Efficient Support
for Multicomputing on ATM Networks. UW-CSE 93-04-03, University of Washington,
Seattle, WA, April 1993.

[109] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levey. Simultaneous Multithreading:
Maximizing On-Chip Parallelism. InProceedings of the 22nd Annual International Sympo-
sium on Computer Architecture, pages 392–403, June 1995.

[110] Ivan Tving.Multiprocessor Interconnection using SCI. PhD thesis, Technical University of
Denmark, Department of Computer Science, August 1994.

Page 246 BIBLIOGRAPHY

[111] UltraSPARC Programmer Reference Manual. Sun Microsystems, 1995.

[112] Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels. U-Net: A User-
Level Network Interface for Parallel and Distributed Computing. InProceedings of the 15th
ACM Symposium on Operating Systems Principles. ACM, December 1995.

[113] Thorsten von Eicken, David Culler, Seth Goldstein, and Klaus Schauser. Active Messages:
A Mechanism for Integrated Communication and Computation. In19th International Sym-
posium on Computer Architecture, May 1992.

[114] Deborah A. Wallach, Wilson C. Hsieh, Kirk L. Johnson, M. Frans Kaashoek, and William E.
Weihl. Optimistic Active Messages: A Mechanism for Scheduling Communication with
Computation. InProceedings of the Fifth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 217–226, August 1995.

[115] Wolf-Dietrich Weber and Anoop Gupta. Exploring the Benefits of Multiple Hardware Con-
texts in a Multiprocessor Architecture: Preliminary Results. InProceedings 16th Annual
International Symposium on Computer Architecture, pages 273–280, New York, June 1989.

[116] Colin Whitby-Strevens. The Transputer. InProceedings 12th Annual International Sympo-
sium on Computer Architecture, pages 292–300, New York, June 1985. IEEE.

[117] Steven Cameron Woo, Jaswinder Pal Singh, and John L. Hennessy. The Performance Ad-
vantages of Integrating Block Data Transfer in Cache-Coherent Multiprocessors. InPro-
ceedings of the Sixth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 219–229, San Jose, California, 1994.

[118] W. A. Wulf. Evaluation of the WM Architecture. InProceedings of the 19th Annual Inter-
natioinal Symposium on Computer Architecture, May 1992.

[119] Donald Yeung.Multigrain Shared Memory Systems. PhD thesis, Massachusetts Institute of
Technology, Department of Electrical Engineering and Computer Science, February 1998.

[120] Donald Yeung, John Kubiatowicz, and Anant Agarwal. MGS: A Multigrain Shared Mem-
ory System. InProceedings of the 23rd Annual International Symposium on Computer
Architecture (ISCA’96), May 1996.

[121] H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic MIMD/SIMD
parallelization.Parallel Computing, 6(1), 1988.

Index

active messages, 54 – 55, 60, 66, 228,
233 – 236

Alewife prototype, 32 – 33, 195 – 197
performance, 195 – 217

macrobenchmarks, 203 – 208
microbenchmarks, 197 – 203
of message-passing primitives, 200 – 203
of network, 197 – 198
of shared-memory primitives, 198 – 200

pictures, 195f
Alternate Space Indicator, 153

interpretation of, 165
ASI, seeAlternate Space Indicator
associative locking,

seewindow of vulnerability
associative thrashlock,

seewindow of vulerability
associative thrashwait,

seewindow of vulerability
atomic section, 55
atomicity,see alsoatomicity mechanism

and launch operation, 58
and message passing, 54 – 55
and rapid context-switching, 47
and scheduling of memory operations,

139 – 140, 181 – 182
atomicity mechanism, 68 – 75, 135 – 137

abbreviated state diagram, 73f
control bits, 70t, 71 – 73
full state diagram, 136f
revocable interrupt disable, 68
shared-memory access, 71,

see alsorefused service deadlock
user-level interrupts,seeuser-level interrupts

challenges to integration, 28 – 32

Protocol Deadlock Problem, 31 – 32,
119 – 143

Service-Interleaving Problem, 30 – 31,
83 – 117

User-Level Access Problem, 28 – 30, 39 – 82
CMMU, seeCommunications and Memory

Management Unit
collaborators, 82, 117, 143
communication model, 18 – 19

interactions between models, 77 – 81
DMA coherence, 78 – 80
shared memory within handlers, 80 – 81,

133 – 135
message passing, 19
shared memory, 18

Communications and Memory Management
Unit, 32, 40, 159 – 180

block diagram, 159f, 159 – 160
ASI Decode and Coprocessor Instruction

Dispatch, 163 – 165
Cache Management and Invalidation

Control, 164f, 164f, 163 – 165, 181
Memory Management Machine and

DRAM Control, 180 – 185
Network Interface and DMA Control, 162,

185 – 186
Network Queues and Control, 160 – 162
Remote Transaction Machine, 170, 172n,

178 – 179, 181, 184
transaction buffer, 166 – 180,

see alsotransaction buffer
build tree, 189f
floorplan, 187f
gate counts, 187t
hybrid testing environment, 190f
interface to Sparcle,

seeSparcle/CMMU interfaces

Page 247

Page 248 INDEX

network-topology, 161f, 160 – 162
testing methodology, 190 – 193

functional test, 190 – 192
hardware test, 192 – 193

transaction buffer,seetransaction buffer
context management

Sparcle support for, 157 – 158
context-switch overhead, 158

DASH, seeStanford DASH
deadlock

characteristics of, 211 – 214
context locking and, 98f,

see alsowindow of vulnerablity
heuristic detection, 132 – 133, 215 – 217
thrashwait and freedom from,

seewindow of vulerability
deadlock-free interval, 211, 214 – 215
DeadSIM, 120, 128, 209 – 217
deferred invalidation, 110 – 113
direct memory access, 78 – 80

globally-coherent data, 79
synthesizing via software, 79 – 80

impact on two-case delivery, 141 – 142
locally-coherent data, 78

implementation in Alewife, 185 – 186
invalid write permission, 141 – 142

non-coherent data, 78
DMA, seedirect memory access

Elko-series mesh routing chip, 32, 138, 161,
214

impact of single logical channel, 77 – 78,
127

EM3D, 205 – 208
EMRC,seeElko-series mesh routing chip

faultable flush queue,seetransaction buffer
featherweight threads, 42 – 43

block multithreading, 42
hardware support, 156 – 158
importance to atomicity mechanism, 74
interaction with atomicity mechanism,

202 – 203
rapid context-switching, 47
scheduling, 43, 233 – 236

example, 234f
fine-grained synchronization,

see alsofull/empty bit, Latency-Tolerant
Shared Memory

implementation, 165
floating-point unit, 32

multithreading and, 157
FPU,seefloating-point unit
full/empty bit, 45,

see alsofull/empty condition code
role of the memory model, 45 – 46

full/empty condition code, 71, 73
pipeline behavior, 154 – 156

garbage collection,seetransaction buffer
globally coherent DMA,

seedirect memory access

heuristic offset, 133, 215
high-availability interrupt, 78, 95,

see alsorefused service deadlock
and thrashing, 93
implementation of, 165 – 166

hysteresis, 215

implementation in academia
why do it?, 147 – 148

instruction-data thrashing, 98, 99
invalid write permission, 141 – 142
IWP, seeinvalid write permission

latency tolerance,
seefeatherweight threads, shared memory

Latency-Tolerant Shared Memory, 43 – 50
fine-grained synchronization, 45
insensitivity to network reordering,

110 – 113
latency tolerance, 46
LimitLESS cache coherence, 49 – 50

read-ahead optimization, 114 – 115
memory model, 45
need for unshared memory,

seelocal unshared memory
performance in Alewife, 198 – 200
prefetch, 46

INDEX Page 249

local unshared memory, 47, 81, 140 – 141,
170

locally coherent DMA,
seedirect memory access

locking,seewindow of vulnerability
logical network channel, 77, 121, 124 – 125,

127
reducing required number, 123 – 124
versus virtual channel, 125

message passing, 19,
see alsoUser-Direct Messaging

advantages of, 21
deadlock in, 125 – 127
disadvantages of, 21 – 22

multi-phase memory transaction,
seewindow of vulnerability

multi-user system, 75 – 77
multiple-writer livelock, 48, 49, 108 – 109
multithreading,seefeatherweight threads

non-coherent DMA,seedirect memory access
notification,seeUser-Direct Messaging model,

User-Direct Messaging interface
transparency, 66

output descriptor array, 58,
see alsoUser-Direct Messaging interface

mapping to hardware queues, 162
saving during user-level interrupts, 75

packet input window, 63,
see alsoUser-Direct Messaging interface

mapping to hardware queues, 162
premature lock release, 97, 98, 175
primary transaction,

seemulti-phase memory transaction
priority inversion, 175
protection

message extraction interface, 67 – 68
message injection interface, 60

protocol reordering sensitivities, 31
protocol reordering sensitivity

directory interlocks, 114 – 115
reordering of network messages, 110 – 113

rapid context-switching,
seefeatherweight threads

reality,seeanother document
refused-service deadlock, 30, 84 – 87

high-availability interrupt, 85 – 87,
165 – 166

related work, 226 – 231
Remote Queues, 228
remote system calls, 66
revocable interrupt disable,

seeatomicity mechanism

Scalable Coherent Interface, 106
and the server-interlock problem, 107 – 108

SCI,seeScalable Coherent Interface
secondary transaction,

seemulti-phase memory transaction
server-interlock problem, 30, 48, 106 – 109
service coupling, 180 – 185

advantages in timing, 198 – 199, 208
routing, 182 – 183
scheduling, 181 – 182

SGI Origin, 109, 124
shared memory, 18,

see alsoLatency-Tolerant Shared Memory
advantages of, 20
deadlock in, 98f, 106, 120 – 125
disadvantages of, 20 – 21
livelock freedom, 48 – 49
livelock in, 91 – 94, 108 – 109
memory model and full/empty

synchronization, 45 – 46
multi-phase memory transaction,

seewindow of vulnerability
window of vulnerability,

seewindow of vulnerability
SPARC Version-7, 151, 153, 163
Sparcle, 32, 151 – 158

interface to the CMMU,
seeSparcle/CMMU interfaces

Sparcle/CMMU interfaces, 151 – 156,
163 – 166

flexible access, 165
high-level view, 151f
SPARC-compatible signals, 153f

Page 250 INDEX

the Cache Management Machine, 163 – 166
the coprocessor pipeline, 163

Stanford DASH, 33n, 121 – 122, 227
streams,seeservice coupling

testing,seeCommunications and Memory
Management Unit

Thinking Machines CM-5, 54, 76, 119, 119n
thrashing,see alsowindow of vulnerability

high-availability interrupt, 93
instruction-data, 93 – 94

elimination via thrashwait, 102
invalidation, 92
replacement, 92

thrashlock,seeassociative thrashlock
thrashwait,seewindow of vulnerability
transaction buffer, 84, 96, 99, 105,

116 – 117, 166 – 180
and the server-interlock problem, 108
faultable flush queue, 115 – 116, 168, 171
garbage collection, 161, 170, 175, 178
states, 169t, 167 – 171

transparency,seenotification, two-case delivery
two-case delivery, 63, 66, 127 – 142,

221 – 222, 230
complexities, 138 – 142

DMA coherence, 141 – 142
efficacy in Alewife, 208 – 209
transparency, 66 – 67
virtual buffering, 138, 143
virtual queueing, 137 – 138, 228

unshared address space, 116
unshared memory,seelocal unshared memory
User-Direct Messaging, 50 – 75

implementation, 162, 185 – 186
interface, 55 – 75

atomicity mechanism,
seeatomicity mechanism

exceptions, 57t
hardware-dispatched user-level interrupts,

75
implementation of

disable message atomicity ,
73

implementation of
enable message atomicity , 73

implementation ofpeek , 65
implementation ofreceive , 64
implementation ofsend , 58
implementation ofsendc , 61
instructions, 56t
message extraction, 63 – 68
message extraction transparency, 66 – 67
message injection, 57 – 63
notification, 66
notification transparency, 66
packet header format, 57f
registers, 57t

model, 52f, 51 – 55
execution model, 54
message extraction operations, 53
message injection operations, 52
notification, 52, 54 – 55
user-level atomicity, 54 – 55

user-level interrupts
hardware support, 75
priority inversion, 70, 74

virtual buffering,seetwo-case delivery
virtual memory, 44n, 76
virtual queueing,seetwo-case delivery

why implement?, 147 – 148
window of vulnerability, 87 – 106

associative locking, 97 – 100
associative thrashlock, 104 – 106

implementation of, 176f, 172 – 176
associative thrashwait, 104 – 105
locking, 97 – 99

deadlock and, 98 – 99
multi-phase memory transaction, 88f,

88 – 89
prefetch and, 90
primary transaction, 90
secondary transaction, 90

thrashwait, 100 – 104
freedom from deadlock, 102 – 104
instruction-data thrashing, 102

transaction buffer,seetransaction buffer
window of vulnerability livelock, 30

