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Abstract

If two parallel threads access the same location and at least one of them performs a write,
a race exists. The detection of races—a major problem in parallel debugging—is compli-
cated by the presence of atomic critical sections. In programs without critical sections, the
existence of a race is usually a bug leading to nondeterministic behavior. In programs with
critical sections, however, accesses in parallel critical sections are not considered bugs, as
the programmer, in specifying the critical sections, presumably intends them to run in par-
allel. Thus, a race detector should find “data races”—races between accesses not contained
in atomic critical sections.

We present algorithms for detecting data races in programs written in the Cilk multi-
threaded language. These algorithms do not verify programs, but rather find data races in
all schedulings of the computation generated when a program executes serially on a given
input. We present two algorithms for programs in which atomicity is specified using locks,
and an algorithm for programs using a proposed “guard statement” language construct to
specify atomicity at a higher level than locks. We also extend each algorithm to handle
critical sections containing parallelism.

We present the following algorithms, each characterized roughly in terms of the factor
by which it slows down the computation being checked. In each case, memory usage is
increased by roughly the same factor, unless otherwise stated.

e ALL-SETS. This algorithm checks programs with locks, with a slowdown factor of kL,
where k is the maximum number of locks held simultaneously, and L is the maximum
number of combinations of locks held during accesses to any particular location.

e BrRELLY. This algorithm checks programs with locks, with a slowdown factor of
only k. The gain in efficiency comes at the cost of flexibility and precision, since
BRELLY detects violations of a proposed locking discipline that precludes some race-
free locking protocols as well as data races.

e REVIEW-GUARDS. This algorithm checks programs with guard statements, with a
slowdown factor of lgk, where k is the maximum number of simultaneously guarded
memory blocks. Space usage is increased by a constant factor.

The extensions of ALL-SETS and BRELLY that handle critical sections containing parallelism
run a factor of k slower than the originals. The extension of REVIEW-GUARDS achieves the
same performance as the original.

Thesis supervisor: Charles E. Leiserson
Title: Professor of Computer Science and Engineering
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My naughty code has fallen sick
While racing on location [.

It’s rather rude and nonatomic—
A nondeterministic hell.

Algorithms find the bug:

“Write to [, line 97.”

Kiss the lemmas, give proofs a hug!
Praise deterministic heaven!
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Chapter 1

Introduction: Race detection and
atomicity

When two parallel threads access the same shared memory location, and at least
one of them performs a write, a “determinacy race” exists: depending on how the
two threads are scheduled, the accesses may occur in either order, possibly lead-
ing to nondeterministic program behavior, which is usually a bug. Race bugs are
common to parallel programming, and they are notoriously hard to eliminate, since
the nondeterministic runtime effects of a race are hard to identify—and even harder
to duplicate—through informal runtime testing. Debugging tools that help detect
races in parallel programs are therefore essential elements in any robust development
environment for multithreaded programming.

To be as broadly useful as possible, race detection tools must handle programs
that contain “atomicity,” a common feature of multithreaded programs in a shared
memory environment. Atomicity is the execution of parallel sections of code in a
mutually exclusive fashion: the sections of code, called “critical sections,” execute
in any order but never interleave or operate simultaneously. The need for atomicity
arises when a programmer intends that operations on the same memory locations
be able to execute in parallel, in any order, as long as they do not interfere with
each other by overwriting each other’s intermediate or final results. For example, if
a global counter is incremented in parallel by multiple threads and not printed out
until after all the threads have finished, the printed value of the counter will be the
same as long as the individual increment operations are atomic with respect to each
other.

The presence of atomic operations in programs complicates the problem of race
detection, since a determinacy race between mutually exclusive accesses should not
be considered a potential bug. The programmer, in specifying that the operations
be atomic, presumably intends that they run in parallel—atomicity has no meaning
otherwise. To properly deal with atomicity, a race detection tool should only report

Parts of this chapter are based on “Detecting data races in Cilk programs that use locks,” a
paper by the present author, Mingdong Feng, Charles E. Leiserson, Keith H. Randall, and Andrew
F. Stark [3].
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“data races,” which are determinacy races between nonatomic accesses. To eliminate
a data race, a user might either prevent the accesses from running in parallel, or make
them mutually exclusive.

This thesis presents algorithms for detecting data races in the computations of Cilk
programs containing atomicity. Cilk [4] is a multithreaded programming language
based on C being developed at MIT’s Lab for Computer Science. Linguistically, it
adds to C [14] a “spawn” command, which creates subprocedures that execute in
parallel, and a “sync” command, which forces a processor to wait for all spawned
subprocedures to complete. We consider programs that use either of two mechanisms
for specifying atomicity in Cilk: mutual-exclusion locks, which are available in version
5.1 of Cilk; and “guard statements,” a new Cilk language construct proposed in this
thesis. Locks are global variables which can be “held” by at most one processor
at a time. Processors “lock” (or “acquire”) and “unlock” (or “release”) these lock
variables in a mutually exclusive fashion: only one processor can hold a given lock at a
time; any other processors trying to acquire a lock already held by another processor
must wait until that processor releases the lock. Thus, atomicity can be provided by
acquiring and releasing locks before and after critical sections. Figure 1-1 illustrates
a data race in a Cilk program with locks.

The guard statement we propose provides atomicity at a higher level than locks,
by allowing a user to directly specify which memory locations should be “guarded”—
i.e. accessed atomically—within critical sections of code delimited by the usual C
braces. Figure 1-2 illustrates guard statements, as well as data races in the context
of guard statements.

The following algorithms are presented in this thesis, with worst-case performance
bounds given for a Cilk computation that runs serially in time 7', uses V' shared
memory locations, and either holds at most & locks simultaneously or guards at most
k memory blocks simultaneously.

AvLL-SETS. This algorithm detects data races in Cilk programs which use locks for
atomicity. It runs in O(LT(k + «(V,V))) time and O(kLV') space, where L
is the maximum number of combinations of locks held during accesses to any
particular location, and « is Tarjan’s functional inverse of Ackermann’s function,
an extremely slowly growing function that is for all practical purposes at most
4. (Throughout this thesis, we use « to denote Tarjan’s functional inverse of
Ackermann’s function.) ALL-SETS is the fastest known data-race detection
algorithm, and seems to be practical when L is a small constant, which is the
case for programs in which a particular data structure is always accessed using
a particular lock or set of locks. There are programs, however, for which L
grows with input size; for these programs ALL-SETS is less attractive and may
be impractical. (For an example of such a program, see our discussion of a
parallel maximum-flow code in Chapter 5.)

BRrELLY. This algorithm is meant for Cilk programs which use locks for atomicity
and for which the performance of ALL-SETS is inadequate. It detects violations
of the “umbrella locking discipline,” defined in this thesis, which precludes data



int x; cilk void foo3() {

Cilk_lockvar A, B; Cilk_lock(B);
X++;
cilk void fool() { Cilk_unlock(B);
Cilk_lock(A); }
Cilk_lock(B);
X += 5; cilk int main() {
Cilk_unlock(B); Cilk_lock_init(A);
Cilk_unlock(A); Cilk_lock_init(B);
} x = 0;
spawn fool();
cilk void foo2() { spawn foo2();
Cilk_lock(A); spawn foo3();
x -= 3; sync;
Cilk_unlock(A); printf ("%d", x);
} }

Figure 1-1: A Cilk program using locks, with a data race. The function Cilk_lock()
acquires a specified lock, and Cilk unlock () releases a currently held lock. The procedures
fool, f002, and foo3 run in parallel, resulting in parallel accesses to the shared variable x.
The accesses in fool and foo2 are protected by lock A and hence do not form a data race.
Likewise, the accesses in fool and foo3 are protected by lock B. The accesses in foo2 and
foo3 are not protected by a common lock, however, and therefore form a data race. If
all accesses had been protected by the same lock, only the value 3 would be printed, no
matter how the computation is scheduled. Because of the data race, however, the value
of x printed by main might be 2, 3, or 6, depending on scheduling, since the x -= 3 and
x++ statements in f002 and foo3 are composed of multiple machine instructions that may
interleave, possibly resulting in a lost update to x.

races and also some complex, race-free locking protocols. Specifically, the um-
brella discipline requires that within every parallel subcomputation, each shared
memory location is protected by a unique lock. Threads that are in series may
use different locks for the same location (or possibly even none, if no parallel
accesses occur), but if two threads in series are both in parallel with a third and
all access the same location, then all three threads must agree on a single lock
for that location. One feature of the umbrella discipline is that it allows sepa-
rate program modules to be composed in series without global agreement on a
lock for each location. For example, an application may have three phases—an
initialization phase, a work phase, and a clean-up phase—which can be de-
veloped independently without agreeing globally on the locks used to protect
particular locations. If a fourth module runs in parallel with all of these phases
and accesses the same memory locations, however, the umbrella discipline does
require that all phases agree on the lock for each shared location.

The adoption of the umbrella discipline makes data-race detection easier,
allowing BRELLY to run in O(kT a(V,V)) time and O(kV') space—roughly a
factor of L better than ALL-SETS. Since programs do not generally hold many



int x, y; cilk void foo3() {

guard(y) {
cilk void fool() { X++;
guard(x; y) { y++;
X +=5; b
y += 5; }
}
} cilk int main() {
x=y=0;
cilk void foo2() { spawn fool();
guard(x) { spawn foo2();
x —-= 3; spawn foo3();
y —= 3; sync;
} printf ("%d 44", x, y);
} }

Figure 1-2: A Cilk program using guard statements, with two data races. Each guard
statement specifies which shared variables to guard—e.g. guard(x, y) guards x and y—and
a section of code during which the variables should be guarded—e.g. { x += 5; y += 5 }.
Parallel accesses which access a shared location while it is guarded are atomic, so the accesses
to x in fool and foo2, and the accesses to y in fool and foo3, do not form data races.
The accesses to x and y in foo2 and foo3 do form data races against each other, however,
since foo2 does not guard y and foo3 does not guard x. Because of these data races, the
program may print any of 2, 3, or 6 for both x and y, as in the program in Figure 1-1.

locks simultaneously—*% is almost always a small constant—these bounds are
nearly linear.

If a program contains many nonrace violations of the umbrella discipline,
debugging with BRELLY may be impractical, since reports of data races may be
buried under a deluge of reports of the nonrace violations. There exist, however,
useful conservative heuristics that help BRELLY determine whether a violation
is indeed caused by a data race; in some cases, these heuristics drastically reduce
the number of nonrace violations reported.

REVIEW-GUARDS. This algorithm detects data races in Cilk programs that use
guard statements for atomicity. It runs in O(T(lgk+a(V,V))) time and O(V +
k) space. We know of no previous data-race detection algorithms explicitly
designed for language constructs similar to the guard statement we propose.

The -SHARED extensions. The basic versions of ALL-SETS, BRELLY, and REVIEW-
GUARDS assume that critical regions do not contain parallelism. If critical
sections do not contain parallelism, all accesses within a single critical section
are never in parallel and so cannot be involved in races with each other. If
critical sections do contain parallelism—as is necessary in some applications—
the algorithms fail to detect data races between parallel accesses in the same
critical section. Fortunately, the algorithms can be extended to correctly check



critical sections containing parallelism. The extended versions of ALL-SETS
and BRELLY, called ALL-SETS-SHARED and BRELLY-SHARED, run a factor
of k slower and use a factor of £ more space than the original versions. The
extended version for guard statements, called REVIEW-GUARDS-SHARED, has
the same asymptotic time and space bounds as REVIEW-GUARDS. We know
of no previous data-race detection algorithms which allow for critical sections
containing parallelism.

These algorithms are not source-based verifiers; they do not ensure the detection
of all possible data races in all possible schedulings of a program run on all possible
inputs. Instead they check for data races that exist in all possible schedulings of
the computation generated by the serial execution of a multithreaded program on a
given input. Furthermore, like most race detectors, the algorithms attempt to find, in
the terminology of Netzer and Miller [21], “apparent” data races—those that appear
to occur in a computation according to the parallel control constructs—rather than
“feasible” data races—those that can actually occur during program execution. The
distinction arises because operations in critical sections may affect program control
depending on the way threads are scheduled. An apparent data race between two
threads in a given computation might be infeasible, because the computation itself
may change if the threads are scheduled in a different order. Since the problem of
finding feasible data races exactly is intractable [20], attention has naturally focused
on the easier (but still difficult) problem of finding apparent data races.

Programs whose critical sections produce the same results independent of their
execution order—i.e., programs with commutative critical sections—always produce,
when running on a given input, a single computation in which an apparent race exists
if and only if a feasible race exists [3]. On such “abelian” programs, the algorithms in
this thesis can be used to guarantee that a program always produces the same behavior
on a given input, regardless of scheduling. On all programs, these algorithms can be
used to help find races and ensure correct, deterministic behavior in parallel codes
that contain atomicity.

Related work

Since race detection is a major concern in parallel debugging, and locking is a common
form of providing atomicity, automatic data-race detection in programs with locks
has been studied extensively. Static race detectors [18] can sometimes determine
whether a program will ever produce a data race when run on all possible inputs.
Checking every possible control-flow of an arbitrary program is intractable, however,
so most race detectors are dynamic tools in which potential races are detected at
runtime by executing the program on a given input. Some dynamic race detectors
perform a post-mortem analysis based on program execution traces [8, 12, 16, 19],
while others perform an on-the-fly analysis during program execution. On-the-fly
debuggers directly instrument memory accesses via the compiler [6, 7, 9, 10, 15, 22],
by binary rewriting [25], or by augmenting the machine’s cache coherence protocol [17,
23]. The algorithms presented in this thesis detect data races dynamically, and can



be used to create either post-mortem or on-the-fly debugging tools. (For convenience,
we will describe them as on-the-fly algorithms.)

In previous work, Dinning and Schonberg’s “lock-covers” algorithm [7] also detects
all data races in a computation. Our ALL-SETS algorithm improves the lock-covers
algorithm by generalizing the data structures and techniques from the original Non-
determinator to produce better time and space bounds. Perkovic and Keleher [23]
offer an on-the-fly race-detection algorithm that “piggybacks” on a cache-coherence
protocol for lazy release consistency. Their approach is fast (about twice the serial
work, and the tool runs in parallel), but it only catches races that actually occur
during a parallel execution, not those that are logically present in the computation.

Savage et al. [25] originally suggested that efficient debugging tools can be devel-
oped by requiring programs to obey a locking discipline. Their Eraser tool enforces a
simple discipline in which any shared variable is protected by a single lock throughout
the course of the program execution. Whenever a thread accesses a shared variable, it
must acquire the designated lock. This discipline precludes data races from occurring,
and Eraser finds violations of the discipline in O(kT") time and O(kV') space. (These
bounds are for the serial work; Eraser actually runs in parallel.) Eraser only works
in a parallel environment containing several linear threads, however, with no nested
parallelism or thread joining as is permitted in Cilk. In addition, since Eraser does
not understand the series/parallel relationships between threads, it does not fully
understand at what times a variable is actually shared. Specifically, it heuristically
guesses when the “initialization phase” of a variable ends and the “sharing phase”
begins, and thus it may miss some data races.

In comparison, our BRELLY algorithm performs nearly as efficiently, is guaranteed
to find all violations in a computation, and, importantly, supports a more flexible
discipline. The umbrella discipline allows separate program modules to be composed
in series without global agreement on a lock for each location, as seen above in the
imagined program with three phases, each of which can use locks independently of
the others.

Organization of this thesis

Chapter 2 provides a background on Cilk computations and SP-BAGS, the determi-
nacy-race detection algorithm upon which the algorithms in this thesis are based. It
also discusses locks in Cilk.

In Chapter 3, we present the ALL-SETS algorithm for detecting data races in
computations with locks. We also give a general model for computations with critical
sections containing parallelism, and present the -SHARED extension of ALL-SETS for
correctly handling such computations.

In Chapter 4, we consider the umbrella locking discipline and algorithms for de-
tecting violations of the discipline. After showing that ALL-SETS may be impractical
for some programs, we define the discipline itself. We then present the BRELLY algo-
rithm for detecting violations of the discipline and its -SHARED extension for handling
critical sections that contain parallelism. Finally, we describe several heuristics for
conservatively determining whether a violation of the discipline is caused by a data



race; these heuristics may increase BRELLY’s usefulness in practice.

Chapter 5 presents an empirical comparison of the runtime performance of ALL-
SETS and BRELLY on several Cilk programs and input. While these results are highly
preliminary, we see that BRELLY is, as predicted by our asymptotic bounds, faster
than ALL-SETS for computations which hold many different sets of locks during
accesses to particular locations.

In Chapter 6, we turn to the the problem of detecting data races in computations
that use the proposed guard statement to specify atomicity. We first discuss the
syntax, semantics, and possible implementations of the guard statement. Then, after
showing how the algorithms for locks presented in Chapters 3 and 4 can be modified
for guard statements but are not optimal, we present the efficient REVIEW-GUARDS
algorithm its -SHARED extension for handling critical sections containing parallelism.

Chapter 7 summarizes the thesis, outlines further questions that arise from our
work, and explores the dilemma of trying to debug parallel programs with algorithms
that find apparent races instead of feasible ones.






Chapter 2

Background: Cilk and the
Nondeterminator

This chapter provides background for the rest of the thesis. Because of Cilk’s sim-
ple model of parallelism, computations of Cilk programs can be modeled as “series-
parallel parse trees,” which cleanly express the serial/parallel relationships between
threads. We presents this model, as well as two lemmas about the series/parallel
relationships between threads that will be useful for proving the correctness of our
algorithms. We then discuss the Nondeterminator, an efficient determinacy-race de-
tection tool for Cilk programs. SP-BAGS, the algorithm used by the Nondeterminator,
is the basis for the algorithms in this thesis. Finally, we discuss locks in Cilk and
define some basic locking terms that will be used when we present the algorithms deal-
ing with locks in Chapters 3 and 4. Guard statements, the other form the atomicity
considered in this thesis, are discussed in Chapter 6.

Modeling Cilk computations as SP-trees

Cilk extends the C programming language with two parallel commands: spawn creates
a parallel subprocedure and sync causes a procedure wait for any subprocedures it
has spawned to complete. In addition, normal C functions can be turned into Cilk
procedures with the cilk tag, enabling them to be spawned. Cilk code has normal
C semantics when executed serially (i.e. on a single processor): spawns of Cilk
procedures behave like calls to normal C functions, with a depth-first execution of
function calls leading to a linear call stack.

A Cilk computation is the execution of a Cilk program on a given input, sched-
uled in a particular way. In this thesis, we will refer only to the computation of
a program executing serially on a given input. A thread is a maximal sequence of
instructions not containing any parallel command. Threads may contain normal C
function calls, since all normal C code is executed serially, but not spawns of Cilk

This chapter’s discussion of Cilk computations and the SP-BAGS algorithm are based on [9],
which contains a fuller treatment of the material only summarized here. The discussion of locks in
Cilk and the fake read lock is from [3].



/ printf ("%d", x)
} / P

x=0
{Aa,B} ) P
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Figure 2-1: The series-parallel parse tree (SP-tree) for the Cilk program in Figure 1-1,
abbreviated to show only the accesses to shared location x. Each leaf is labeled with a code
fragment that accesses x, with the set of locks held during that access shown above the code
fragment.

procedures, which execute in parallel. All procedure instances and threads in a com-
putation have unique (numerical) IDs.

The computation of a Cilk program on a given input can be viewed as a directed
acyclic graph (dag) in which vertices are instructions and edges denote ordering con-
straints imposed by control statements. A spawn statement generates a vertex with
out-degree 2, and a sync statement generates a vertex whose in-degree is 1 plus the
number of subprocedures synchronizing at that point.

The computation dag generated by a Cilk program can itself be represented as
a binary sertes-parallel parse tree, as illustrated in Figure 2-1 for the program
in Figure 1-1. In the parse tree of a Cilk computation, leaf nodes represent threads.
Each internal node is either an S-node if the computation represented by its left
subtree logically precedes the computation represented by its right subtree, or a P-
node if its two subtrees’ computations are logically in parallel. We use the term
“logically” to mean with respect to the series-parallel control, not with respect to any
additional synchronization through shared variables.

A parse tree allows the series/parallel relationship between two threads e; and
es to be determined by examining their least common ancestor, which we denote by
LCA(eq, e3). If LCA(eq, €2) is a P-node, the two threads are logically in parallel, which
we denote by e; || es. If LCA(eyr,e2) is an S-node, the two threads are logically in
series, which we denote by e; < ey, assuming that e; precedes ey in a left-to-right
depth-first treewalk of the parse tree. The series relation < is transitive.

It is sometimes possible to infer the series/parallel relationship between two threads
based on the relation of the two threads to a common third thread. The following
lemmas, proved in [9], show how to do so in two important cases. They will be used
throughout the proofs of correctness for the algorithms in this thesis.

Lemma 2.1 Suppose that three threads e;, e;, and e3 execute in order in a serial,
depth-first execution of a Cilk program. If e; < ey and ey || e3, then e, || es. n
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Lemma 2.2 (Pseudotransitivity of ||) Suppose that three threads e;, es, and e
execute in order in a serial, depth-first execution of a Cilk program. If e; || ex and
ey || es, then e; || e3. =

The Nondeterminator and the SP-BAGS algorithm

The race-detection algorithms in this thesis are based on the the SP-BAGS algorithm
used in the Nondeterminator tool [9], which efficiently finds determinacy races (as op-
posed to data races) in Cilk programs. SP-BAGS is the fastest published determinacy-
race detection algorithm that finds a determinacy race in a computation if and only
if one exists. The algorithm serves as a strong foundation from which to attack the
related, but more difficult problem of data-race detection.

The SP-BAGS algorithm executes a Cilk program on a given input in serial, depth-
first order. This execution order mirrors that of normal C programs: every subcom-
putation that is spawned executes completely before the procedure that spawned
it continues. While executing the program, SP-BAGS maintains an “SP-bags” data
structure based on Tarjan’s nearly linear-time least-common-ancestors algorithm [27].
The SP-bags data structure allows the algorithm to determine the series/parallel rela-
tionship between the currently executing thread and any previously executed thread
in O(a(V,V)) amortized time, where V' is the size of shared memory. In addition,
SP-BAGS maintains a “shadow space” where information about previous accesses to
each location is kept. This information is used during an access to check previous
threads that have accessed the same location for data races. Implementing the SP-
BAGS algorithm involves modifying the Cilk compiler to instrument, according to logic
of SP-BAGS, each memory access and parallel control statement For a Cilk program
that runs in 7" time serially and references V' shared memory locations, the SP-BAGS
algorithm runs in O(7T «(V,V)) time and uses O(V') space.

Each of the algorithms in this thesis uses the SP-bags data structure to determine
the series/parallel relationship between threads, and, like SP-BAGS, executes a Cilk
program serially on a given input, in left-to-right depth-first order, with appropriate
race-detection logic being executed at each memory accesses and, in some case, at each
parallel control statement. In addition to spawn and sync, parallel control statements
include the return from a spawned Cilk procedure when it finishes.

Furthermore, like SP-BAGS, each of the algorithms in this thesis runs in a per-
location manner. Some data structures are kept globally during the serial execution—
e.g. the set of currently held locks—but much data is kept per-location, and indepen-
dently across locations, in various shadow spaces of shared memory. Since our task is
to detect data races, which occur on specific memory locations, it is useful to think of
the algorithms as executing the same computation multiple times in sequence, with a
different location being checked for data races at each instance. In reality, of course,
each algorithm runs a computation just once, with per-location information being
kept in the shadow spaces independently.
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Locks in Cilk

Release 5.1 of Cilk [4] provides the user with mutual-exclusion locks, including the
command Cilk_lock to acquire a specified lock and Cilk_unlock to release a cur-
rently held lock. Any number of locks may be held simultaneously, and locks can be
acquired and released however the user likes. We do assume for simplicity, however,
that a lock is never released by a spawned child of the procedure which acquired it
and that no locks are ever held when a Cilk procedure returns. For a given lock A, the
sequence of instructions from a Cilk_lock(A) to its corresponding Cilk_unlock(A)
is called a eritical section, and we say that all accesses in the critical section are
protected by lock A. If a critical section does not contain parallelism, we say it is a
sertal critical section.

The lock set of an access is the set of locks held when the access occurs. The lock
set of several accesses is the intersection of their respective lock sets. In programs
with serial critical sections, a data race can be defined in terms of lock sets as follows:
if the lock set of two parallel accesses to the same location is empty, and at least one
of the accesses is a write, then a data race exists.

To simplify the description and analysis of the race detection algorithms in Chap-
ter 3umbrella, we will use a small trick to avoid the extra condition for a race that
“at least one of the accesses is a write.” The idea is to introduce a fake lock for read
accesses called the R-LOCK, which is implicitly acquired immediately before a read
and released immediately afterwards. The fake lock behaves from the race detector’s
point of view just like a normal lock, but it is never actually acquired and released
(as it does not exist). The use of R-LOCK simplifies the description and analysis of
our race detection algorithms, because it allows us to state the condition for a data
race more succinctly: if the lock set of two parallel accesses to the same location is
empty, then a data race exists. By this condition, a data race (correctly) does not
exist for two read accesses, since their lock set contains the R-LOCK.
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Chapter 3

Data-race detection in
computations with locks

In this chapter, we consider the problem of precisely detecting data races in pro-
grams that use locks to provide atomicity, presenting the ALL-SETS algorithm and
an extension of it that handles critical sections containing parallelism. ALL-SETS is
precise: it detects a data race in a computation if and only if one exists. ALL-SETS is
also reasonably efficient for many computations. On a Cilk program running serially
in time 7 using V' shared memory locations, ALL-SETS runs in O(LT (k + «(V,V)))
time using O(kLV') space, where k is the maximum number of locks held simultane-
ously and L is the maximum number of combinations of locks held during accesses
to any particular location. For programs which always use the same lock or set of
locks to access particular locations, L is a small constant and ALL-SETS will likely
be practical. ALL-SETS-SHARED, the extension of ALL-SETS for handling critical
sections containing parallelism, runs only a factor of £ slower and uses only a factor
k more space than the original in the worst case.

This chapter is organized as follows. Section 3.1 presents the ALL-SETS algorithm,
showing how it conceptually remembers every shared memory access during an exe-
cution, but with at most one shadow space entry per distinct lock set per location.
Then, in Section 3.2, we extend the SP-tree model of Cilk computations (see Chap-
ter 2) to provide for critical sections containing parallelism. This extended SP-tree
model is the basis for the operation of ALL-SETS-SHARED, presented in Section 3.3,
as well as the -SHARED version of the BRELLY algorithm for detecting violations of
the umbrella discipline, presented in Chapter 4.

3.1 The ALL-SETS algorithm

The ALL-SETS algorithm finds data races in Cilk computations that use locks, as-
suming critical sections do not contain parallelism. In this section, we see how the
algorithm, while conceptually keeping track of every accesses to every location during

Section 3.1 is based on joint work published in [3].
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an execution, actually prunes redundant entries from the shadow space to ensure that
at most one entry per lock set per location is recorded. This logic leads directly to fac-
tor of L in the performance bounds of ALL-SETS: on a Cilk program running serially
on given input in time 7" using V' space, ALL-SETS runs in O(LT(k+ «(V,V))) time
using O(kLV') space, where k is the maximum number of locks held simultaneously
and L is the maximum number of combinations of locks held during accesses to any
particular location. We prove the correctness of ALL-SETS and show these bounds
at the end of this section.

Like the efficient SP-BAGS algorithm used by the original Nondeterminator (Chap-
ter 2), upon which it is based, ALL-SETS executes a Cilk program on a particular
input in serial depth-first order. The ALL-SETS algorithm also uses the SP-bags
data structure from SP-BAGS to determine the series/parallel relationship between
threads.

Its shadow space lockers is more complex than the shadow space of SP-BAGS,
however, because it keeps track of which locks were held by previous accesses to
the various locations. The entry lockers[l] stores a list of lockers: threads that
access location [, each paired with the lock set that is held during the access. If
(e, H) € lockers[l], then location [ is accessed by thread e while it holds the lock
set H. As an example of what the shadow space lockers may contain, consider a
thread e that performs the following:

Cilk_lock(A);
Cilk_lock(B);
READ(])
Cilk_unlock(B);
Cilk_lock(C);
WRITE()
Cilk_unlock(C);
Cilk_unlock(A) ;

For this example, the list lockers[l] contains two lockers—(e, {A,B, R-LOCK}) and
(e, {A,C}).

The ALL-SETS algorithm is shown in Figure 3-1. Intuitively, this algorithm
records all lockers, but it is careful to prune redundant lockers, keeping at most
one locker per distinct lock set per location. Lines 1-3 check to see if a data race
has occurred and report any violations. Lines 4-11 then add the current locker to
the lockers shadow space and prune redundant lockers. While it is only necessary
to prune lockers with identical lock sets to achieve the stated performance bounds,
ALL-SETS is also able, in some cases, to prune a locker if its lock set is a proper
subset of another locker’s lock set.

When a location [ is accessed outside any critical section, the lock set H contains
either the empty set or the singleton R-LOCK set, depending on whether the access
is a write or a read, respectively. Thus, the original SP-BAGS algorithm, which finds
determinacy races in Cilk programs without locks, can be considered a special case
of ALL-SETS in which the only two lock sets that appear in the lockers shadow space
are the empty set and the singleton R-LOCK set.
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AccEess(l) in thread e with lock set H

1 for each (¢/, H') € lockers]l]

2 do if ¢ ||[eand H' N H = {}

3 then declare a data race

4 redundant <— FALSE

5 for each (¢, H') € lockers|l]

6 do if¢ <eand H' DO H

7 then lockers[l] <— lockers[l] — {(¢/, H')}
8 ife||eand H C H

9 then redundant <~ TRUE
10 if redundant = FALSE
11 then lockers|l] < lockers[l] U {{e, H)}

Figure 3-1: The ALL-SETS algorithm. The operations for the spawn, sync, and return
actions that maintain the SP-bags data structure are unchanged from the SP-BAGS algo-
rithm on which ALL-SETS is based. Additionally, the Cilk_lock and Cilk_unlock functions
must be instrumented to appropriately add and remove locks from H, the set of currently
held locks.

We now prove that ALL-SETS correctly finds data races.

Theorem 3.1 Consider a Cilk program with locks and serial critical sections. The
ALL-SETS algorithm detects a data race in the computation of this program running
serially on a given input if and only if a data race exists in the computation.

Proof: (=) To prove that any race reported by the ALL-SETS algorithm really exists
in the computation, observe that every locker added to lockers[l] in line 11 consists
of a thread and the lock set held by that thread when it accesses [. The algorithm
declares a race when it detects in line 2 that the lock set of two parallel accesses (by
the current thread e and one from lockers[l]) is empty, which is exactly the condition
required for a data race.

(<) Assuming a data race exists in a computation, we shall show that a data race
is reported. If a data race exists, then we can choose two threads e; and e; such that
e, is the last thread before e, in the serial execution which has a data race with ey. If
we let H; and Hs be the lock sets held by e; and ey respectively, then we have e; || 3
and H; N Hy = {} by definition of a data race.

We first show that immediately after e; executes, lockers|l] contains some thread
es that races with eq. If (e;, Hy) is added to lockers[l] in line 11, then e; is such an ej.
Otherwise, the redundant flag must have been set in line 9, so there must exist a
locker (es, H3) € lockers|l] with e3 || e; and Hy C H;. Thus, by pseudotransitivity
of || (Lemma 2.2), we have e3 || ea. Moreover, since H3 C H, and Hy N Hy = {}, we
have Hy N Hy = {}, and therefore e3, which belongs to lockers|l], races with es.

To complete the proof, we now show that the locker (es, Hs) is not removed from
lockers[l] between the times that e; and ey are executed. Suppose to the contrary
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that (e4, Hy) is a locker that causes (es, H3) to be removed from lockers[l] in line 7.
Then, we must have e3 < e, and Hy O Hy, and by Lemma 2.1, we have e4 || es.
Moreover, since Hy O H, and Hy N Hy = {}, we have Hy N Hy, = {}, contradicting
the choice of e; as the last thread before es to race with es.

Therefore, thread es, which races with ey, still belongs to lockers[l] when ey exe-
cutes, and so lines 1-3 report a race. [

We now show the performance bounds for ALL-SETS.

Theorem 3.2 Consider a Cilk program—one with locks and serial critical sections—
that, on a given input, executes serially in time 7', references V' shared memory
locations, and holds at most k locks simultaneously. The ALL-SETS algorithm checks
this computation for data races in O(LT(k+«(V,V))) time and O(kLV') space, where
L is the maximum of the number of distinct lock sets used to access any particular
location.

Proof:  First, observe that, for some location [, no two lockers in lockers[l] for have
the same lock set, because the logic in lines 4-11 ensures that if H = H', then locker
(e, H) either replaces (¢/, H') (line 7) or is considered redundant (line 9). Thus, there
are at most L lockers in the list lockers[l]. Each lock set takes O(k) space, so the space
needed for lockers is O(kLV'). The length of the list lockers[l] at the time of an access
determines the number of series/parallel relationships that are tested during that
access. In the worst case, we need to perform 2L such tests and 2L set operations per
access (line 2 and lines 6 and 8). Each series/parallel test takes amortized O(«(V,V))
time, and each set operation takes O(k) time (lock sets can be stored in sorted order).
Therefore, the ALL-SETS algorithm runs in O(LT'(k + «(V,V))) time, since T is an
upper bound on the number of accesses. [

The bounds proven in Theorem 3.2 show that the performance of ALL-SETS is
directly proportional to the value of L for a program running on a particular input. If a
program uses many distinct lock sets to access each memory location, and especially
if the number locks sets to access individual locations grows with input size, the
performance of ALL-SETS may be inadequate, as we will see in Chapter 5. For many
programs, however, both L and k are small constants—e.g. if each data structure is
always accessed with a single lock or lock set—and so the bounds for ALL-SETS are
good. In these cases, empirical performance is also good, as we also see in Chapter 5.

3.2 Locked critical sections containing parallelism

In this section, we extend the SP-tree model of Cilk computations to provide for pro-
grams with locked critical sections containing parallelism. This extended model is the
basis of the detection algorithms which correctly handle critical sections containing
parallelism: ALL-SETS-SHARED in Section 3.3 and BRELLY-SHARED in Section 4.3.
(Some of the concepts introduced here are borrowed in Section 6.4, which presents
the -SHARED extension of the REVIEW-GUARDS algorithm for detecting data races
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int x, y; cilk int main() {

Cilk_lockvar A, B; Cilk_lock_init (A);
Cilk_lock_init(B);

cilk void increment() { x =y =0;
X++; Cilk_lock(A) ;
Cilk_lock(B); spawn increment();
y++; spawn increment();
Cilk_unlock(B); sync;

} Cilk_unlock(A);

printf ("/%d %d", x, y);

Figure 3-2: A Cilk program with a critical section containing parallelism. The critical
section protected by lock A in main spawns two instances of increment, the accesses in
which are not protected against each other by lock A.

in programs using “guard statements” rather than locks for atomicity.) After seeing
why our definition of data races based on the simple SP-tree model is faulty when
critical sections contain parallelism, we explain the model itself, and finally show how
to use it to redefine the notion of a data race to provide for programs with critical
sections containing parallelism.

Under the assumption that critical sections contain only serial code, two parallel
accesses are mutually exclusive, and therefore not in a data race, if they hold a com-
mon lock, since the accesses, being in parallel, are protected by separate “instances” of
the lock—i.e. the common lock is held during the accesses due to separate Cilk_lock
statements in the computation. The ALL-SETS algorithm, which assumes no paral-
lelism within critical sections, takes advantage of this fact in its basic logic: it never
declares a data races between accesses that hold a lock in common. If critical sections
can contain parallelism, however, this logic is faulty, since two parallel accesses within
the same locked critical section may hold the same instance of a common lock—i.e.
they share the same instance of that lock—and so the lock does not protect the
accesses against each other. Indeed, any parallel accesses within the same critical
section share the instance of the lock that protects the critical section.

For example, consider the Cilk program in Figure 3-2. This program acquires
lock A, spawns two instances of the increment procedure, syncs, and then releases
lock A. The accesses to the shared variable x in the two instances of increment form
a data race, even though lock A is held during both accesses. Lock A does not protect
the accesses against each other, since they share the same instance of A—the one
acquired in main. For the same reason, lock A does not protect the accesses to y in
increment against each other, but no data race exists between these accesses since
they are protected against each other by lock B, which is acquired separately by each
instance of increment.

How can we formally model critical sections that contain parallelism and specify
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data races in this model? We first need to specify what parallelism is allowed within
critical sections. Intuitively, we would like the easy-to-understand serial semantics
of any critical section to hold when run in parallel: if a lock is held during some
access in the serial execution, it should be held during that access in any parallel
execution. Fortunately, ensuring these semantics requires only one rule to be followed:
all parallel procedures spawned within a critical section (i.e. those spawned while a
lock is held) must complete before the end of the critical section. Linguistically, this
means there must be a sync between the final spawn and the Cilk_unlock statement
in the execution of a critical section, if the section contains any spawns at all. Without
this sync after the last spawn in a critical section, the Cilk_unlock statement that
ends the section would be logically in parallel with at least one of the spawns in
the critical section (perhaps all of them), meaning that the lock might be released
before these spawns finish and therefore would not protect them against other parallel
threads holding the same lock. With the sync, however, all the spawned procedures
(together with all the serial operations) in the critical section are guaranteed to be
executed while the section’s lock is held. Thus, we require a sync at the end of critical
sections.’

There is no analogous need for a spawn to be followed by a sync before the next
Cilk lock statement, even though a spawn followed by a Cilk_lock without an
intervening sync would result in the spawned procedure being logically in parallel
with the lock acquisition. Since the Cilk lock may be scheduled after the time
the spawned procedure runs, we must assume that the spawned procedure is not
protected by the lock, which, as desired, corresponds to the intuitive serial semantics
of the code.

To model a computation with critical sections containing parallelism using SP-
trees, we define a locked P-node to be a P-node corresponding to either the first
spawn in a critical section or the first spawn after a sync within a critical section, which
is immediately preceded, in the depth-first left-to-right treewalk, by the acquisition
of one or more locks and immediately succeeded by the release of these locks. These
locks are said to be held across the P-node, as are any locks acquired at any time
before and released at any time after the depth-first traversal of a P-node’s subtree.
Any parallel accesses in an SP-tree that are descendents of a particular locked P-node
are not protected against each other by any lock held across the P-node, since they
share the same instance of the lock. Figure 3-3 shows the SP-tree, a with a locked
P-node, for the program in Figure 3-2.

Is this notion of locked P-nodes sufficient to model all critical sections containing
parallelism? In general, any critical section in a Cilk program can be modeled at
runtime as a sequence of zero or more “sync blocks” followed by a final thread;

'In fact, we suggest that the semantics of Cilk_unlock be extended to include an implicit sync.
The extra sync would cause no overhead when no spawns are outstanding at the execution of a
Cilk_ unlock statement, since syncs in serial code are ignored by the Cilk compiler. If Cilk unlock
does not include an implicit sync, then violations of the sync-before-unlock rule can be easily detected
during a depth-first serial execution: keep a global flag that is set at each sync and Cilk_lock
statement, cleared at each spawn, and verified to be to set at each Cilk_unlock statement.
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Figure 3-3: The SP-tree for the Cilk program in Figure 3-2. Each leaf is labeled a code
fragment that accesses either x or y, the two shared memory variables in the program, with
the lock set for that access shown above the code fragment. The P-node representing the
first spawn of increment (the only P-node in the tree) is locked by A, indicated by the
labeled arc over it. This arc represents the fact that a single instance of lock A is held across
all the accesses in the subtree rooted by the P-node, so that these accesses are not protected
against each other by A, despite the fact that A is a member of each of their lock sets.

Figure 3-4: The SP-tree, with locked P-nodes, representing the generalized form of a
critical section protected by lock A. Although the lock is held across this entire tree, the
P-nodes corresponding to the first spawns in each sync block are shown as locked P-nodes,
as if separate instance of A were held across them. Also, the first threads of each sync
block, ei,es,...,¢e;, and the thread € at the end of the critical section— none of which
are descendents of a locked P-node—are considered to hold their own instances of A (not
shown).
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each sync block consists of a one or more spawns interleaved with serial code and is
terminated by a sync. In other words, a critical section during execution has the form

Cilk_lock(A);

e1; spawn F'; e; spawn [; e; ...; spawn ['; e; sync;
e9; spawn F'; e; spawn [; e; ...; spawn ['; e; sync;
e;; spawn F'; e; spawn F'; e; ...; spawn [I'; e; sync;
!
€5

Cilk_unlock(A);

where each of ey, es,...,¢; is the thread at the beginning of a sync block, each e is
a (possibly empty) thread, each F is a Cilk procedure, and €' is the final (possibly
empty) thread after the last sync block before the end of the critical section. (Note
that the threads in a critical section may acquire or release other locks, as the critical
section may contain or overlap other critical sections.) Because a single critical sec-
tion may contain several sync blocks, it might appear that locked P-nodes, which are
explicitly defined to correspond to locks held across only a single sync block, are in-
sufficient to model all critical sections with parallelism. Locked P-nodes are sufficient,
however, since a series of sync blocks are, by definition, logically in series, and there-
fore contain no races among them. From the point of view of race detection, a series
of several sync blocks all surrounded by a single lock/unlock pair is equivalent to a
series of the same sync blocks, each individually surrounded by the same lock/unlock
pair. Furthermore, it is also equivalent to consider the threads eq,es,...,e; at the
beginnings of sync blocks, and the thread e’ at the end of a critical section, to be
protected by their own instances of the same lock, since they too are logically in series
with the rest of the sync blocks. Figure 3-4 shows the SP-tree, with locked P-nodes,
for the generalized form of a critical section shown above. Notice that the threads
€1,€s,...,6; and €, and the sync blocks themselves, are all logically in series with
each other, and that any parallel threads within the critical section are descendents
of the same locked P-node.

The problem of detecting data races in computations with critical sections that
may contain parallelism reduces, then, to the problem of finding data races in an
SP-tree which may include locked P-nodes. But what comprises a data race in such
an SP-tree? Before answering this question, it will be useful to define several further
notions. The lock-sharing depth of any node in an SP-tree (internal or leaf) is the
number of locked P-nodes among its ancestors, including itself. The depth-¢ lock
set of an access is the set of locks held during the access minus the locks which are
held across the access’s ancestor P-nodes with lock-sharing depth less than or equal
to 2. Note that the depth-0 lock set for any access is the set of all currently held locks.
See Figure 3-5 for an illustration of lock-sharing depth and depth-based lock sets.

A precise formulation of a data race in an SP-tree with locked P-nodes can be given
based on depth-based lock sets and the following notion of depth-based cousinhood: if
the the lock-sharing depth of the least-common ancestor of two accesses in an SP-tree
is 7, the accesses are depth-t cousins. Furthermore, if the depth-i lock sets of the
accesses have no locks in common, then they form a data race.
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Figure 3-5: An SP-tree containing locked P-nodes. Each leaf represents a thread that
accesses some shared location /. Locked P-nodes are marked with bold arcs above them,
annotated with the lock acquired just before and after the traversal of their subtrees. For
ease of identifying where any particular lock is acquired and released, locks acquired at the
beginning and released at the end of a single thread, and thus protecting a serial critical
section, are shown in a similar way: a thin arc, annotated with the lock, appears above
thread, as with e;. Under each thread are the depth-based lock sets of the thread’s memory
access, with Hy being the depth-0 lock set, H; being the depth-1 lock set, and so on, up the
the lock-sharing depth of the access. For example, the access in ey is at lock-sharing depth
2, since there are two locked P-nodes among its ancestors, the one at depth 1 locked by A
and the one at depth 2 locked by B. For this access, the depth-0 lock sets includes all locks
held ({A,B}), while these locks are successively subtracted, first A at depth 1 and then B
at depth 2, to form the depth-1 and depth-2 lock sets. The lock sets for the access in eg,
which is also at lock-sharing depth 2, are the same as those for the access in eq, except that
lock ¢ is additionally included in every lock set, since ¢ does not lock a P-node at all, but
rather protects a serial critical section in e
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For example, consider Figure 3-5. The parallel accesses in e; and ez are depth-0
cousins, since their least-common ancestor is the P-node at the root of the entire tree,
which is not locked. The intersection of their depth-0 lock sets contains lock A, which
indeed protects them against each other, since e; is protected by its own instance of
A and e3 by the instance of A that locks the right child of the root. The access in
e is likewise a depth-0 cousin of the accesses in ey, e5, and eg, and is also protected
against them by lock A. The same holds for the relationship between the access in e,
and the ones in e3, e4, and e5, except that in these cases the accesses are protected
against each other by lock B, different instance of which are held across ez and e, (the
one locking LCA(e3, e4)) and e5 (its own instance). No lock protects the accesses in
es and eg from each other, indicated by the empty intersection of their depth-0 lock
sets.

Now, consider the depth-1 cousins in the tree. The access in e4 is a depth-1 cousins
of the accesses in e5 and eg, since their least-common ancestor is the right child of the
root, and there is one locked P-node (the ancestor itself) along the path from that
ancestor to the root. The access in es is protected against the one in e4 by B (which is
in the respective depth-1 lock sets), since, as we saw above, they are performed under
different instances of the lock. No lock protects the accesses in e, and eg against
each other, and the intersection of their depth-1 lock sets is accordingly empty. The
accesses in e; and eg are also depth-1 cousins that are unprotected against each other,
as seen by their depth-1 lock sets.

Finally, consider the two depth-2 cousins in the tree: ez and es. The accesses in
these threads, despite both being performed while both locks A and B are held, are
not protected against each other, since they hold no unshared lock in common, as
indicated by the empty intersection of their depth-2 lock sets.

The following theorem and corollary show that our formulation of data races based
on depth-based cousinhood and lock sets is correct.

Theorem 3.3 Suppose e; and ey are depth-i cousins that access a shared location
in parallel, and let h be a lock that is held by both accesses. The accesses share the
same instance of h if and only if A is not in in the intersection of their depth-: lock
sets.

Proof: (=) Suppose the accesses share the same instance of h. Then they must
both be descendents some P-node p;, locked by h. Let p be the deepest locked P-node
of which both e; and ey are descendents. By the definition of cousinhood, the lock-
sharing depth of p is ¢, and so, by definition of depth-based lock sets and the fact
that p, must be equal to or an ancestor of p, neither of the accesses’ depth-z lock sets
contains h.

(<) Suppose h is not in the intersection of the accesses’ depth-i lock sets. Assume
without loss of generality that A is not in the depth-i lock set of e;. By definition
of depth-based lock sets, we know that h is held across some P-node p among e;’s
ancestors of lock-sharing depth i or less. Since e; and e, are depth-i cousins, es is
also a descendent of p. Thus, they share the same instance of h, namely, the one that
is held across p. n
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Corollary 3.4 Two parallel accesses that are depth-i cousins form a data race if and
only if the intersection of their depth-i lock sets is empty. [

3.3 The ALL-SETS-SHARED algorithm

Now that we have a model for Cilk computations with critical sections that contain
parallelism, and further know how to recognize a data race in this model, we can
extend ALL-SETS to handle such computations correctly. In this section we describe
ALL-SETS-SHARED, an extension of ALL-SETS based on this model. We show that
it correctly detects data races in such computations, and prove that it runs a factor
of k slower and uses a factor of £ more space than the original ALL-SETS algorithm.
The operation of ALL-SETS-SHARED, which is conceptually based on the execution
of multiple instances of the original ALL-SETS at various lock-sharing depths during
each access, also provides a model for the operation of BRELLY-SHARED, discussed
in Section 4.3.

The logic of the ALL-SETS-SHARED algorithm is based on Corollary 3.4: at each
shared memory access, for ¢ = 0,1,..., D where D is the lock-sharing depth of the
access, compare the access’s depth-z lock set with the depth-7 lock sets of its previously
executed depth-i cousins, declaring a race whenever the intersection of two lock sets
is empty. To do this, ALL-SETS-SHARED in essence runs one instance of ALL-SETS
for each depth of cousinhood at each memory access, keeping a separate set of lockers
for each depth. For an intuition of how this might work, again consider Figure 3-5,
and imagine that ALL-SETS were run on the entire tree, using depth-0 lock sets; on
the subtree rooted by the right child of the root, using depth-1 lock sets; and on the
subtree rooted by LCA(es, e4), using depth-2 lock sets. Rather nice how all data races
would be found correctly, isn’t it?

The ALL-SETS-SHARED algorithm maintains a global variable D, the lock-sharing
depth of the current access, and global lock sets H® for i = 0,1,...,D, where
H® is the current access’s depth-i lock set. To help maintain D, the algorithm
also tags each entry in the Cilk procedure call stack with a sync-depth field, which
records the number of subprocedures associated with locked P-nodes, spawned from
the procedure, that have yet to be synchronized. There is a dynamic global array
pstack, indexed pstack(l),pstack(Z), e ,pstack(D), containing a stack of the IDs of
the locked P-nodes which are the ancestors of the current access, from oldest to most
recent. (The ID of the Cilk procedure instance associated with a locked P-node serves
nicely as the node’s ID.)

For each shared memory location [, ALL-SETS-SHARED keeps a list of depth-0
lockers in lockers® 1], a list of depth-1 lockers in lockers(l)[l], a list of depth-2 lockers
in lockers® [l], and so on, up to the lock-sharing depth of the most-recent access
to [, which is stored in lockers-depth[l]. Analogously to ALL-SETS, each locker in
lockersV[l] is a pair (e, H), where e is the ID of a thread which accesses [ at a lock-
sharing depth greater than or equal to ¢, and H is the depth-7 lock set held during the
access. Finally, there is a P-node ID pid[lockers”[l]] associated with each lockers'™ [[]
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for i = 1,2,..., lockers-depth[l], indicating the depth-i locked P-node among the
ancestors of the last access to . (There is no need for a pid at depth 0 since a locked
P-node is never at lock-sharing depth 0.)

The logic for ALL-SETS-SHARED is shown in Figure 3-6, including the actions
for locking and unlocking; spawns, syncs, and returns; and memory accesses. (As in
all the algorithms for computations with locks, ALL-SETS-SHARED uses the R-LOCK
trick to avoid distinguishing between reads and writes.) The algorithm maintains
D, the current lock-sharing depth, in lines 2-3 of SPAWN, where D is incremented
whenever a spawn occurs while a lock is held; and in lines 1-2 of SyNC, where D
is decremented by sync-depth[F], which in essence is the number of locked P-nodes
whose subtrees are being completed at the sync. The current depth-based lock sets,
HO through H(D), are updated in LOoCkK and UNLOCK, which simply add or remove
a lock from each lock set; and in line 4 of SPAWN, which adds a new empty lock set
H®) whenever D is incremented. The stack of locked P-nodes among the ancestors of
the current access is maintained by line 5 of SPAWN. (For simplicity, we do not show
obsolete entries of pstack™—those with index i greater than the current D—being
cleared.)

With D and the depth-based lock sets properly maintained, the algorithm per-
forms two phases during each access to a shared memory location [, shown in ACCESS.
First, in lines 14, it deletes the lists of lockers for the location whose pid’s are no
longer in pstack, as these lockers are no longer relevant because the computation has
reached a different part of the SP-tree (line 3)?; and it updates the pid’s of each of
I’s lists of lockers to be equal to the ID of the P-node stored in pstack at the same
depth (line 4), so that future accesses can tell whether these lockers are relevant to
them. To help with this first phase, lockers-depth is updated at each access in line 5.

The second phase of Accgss((), in lines 6-17, executes the logic of ALL-SETS
for each lock-sharing depth of the access (0 through D), checking the access against
previously recorded lockers and updating the lists of lockers appropriately. Notice
that lines 7-17 exactly duplicate the code of ALL-SETS (Figure 3-1), except that the
lock sets and lockers considered at each iteration are for a specific lock-sharing depth.

Our proof of the correctness of ALL-SETS-SHARED assumes that the global vari-
ables D and pstack, and the pid’s of the lists of lockers and lockers-depth for each
location, are maintained correctly according to the following lemma, itself stated
without proof.

Lemma 3.5 During an access to a location [ in ALL-SETS-SHARED, the access’s
lock-sharing depth is recorded in D, and the IDs of the locked P-nodes among the
access’s ancestors in the SP-tree are recorded, oldest to most recent, in pstack(l),
pstack™®, ..., pstack™®). Also, at the start of AccEess(l), the lock-sharing depth of
the most-recently executed access to [ is recorded in lockers-depthll], and the IDs of

2As shown in Figure 3-6, the algorithm deletes only those lists of lockers which are at or below
the current depth D; any deeper lists of lockers are ignored because the iteration in line 6 only goes
to D. If the execution ever reaches a deeper access, the left-over lists of lockers are deleted then.
Of course, the lists of lockers deeper than D could be deleted up front at every access: it makes no
difference whether they are deleted now or later.
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SPAWN procedure F' from procedure F Lock(a)

1 if HP £} 1 fori< 0toD

2  then D+« D+1 2 do HY « HD Ua
3 sync-depth[F] < sync-depth[F] + 1

4 HD « {} UNLOCK (a)

5 pstack®) «— F' 1 fori<+ 0to D

6 update SP-bags data structure according to 2 do HD « H®D —¢

the SPAWN logic in SP-BAGS

SYNC in procedure F
1 D <« D — sync-depth|F|
2 sync-depth[F]| < 0
3 update SP-bags data structure according to
the SYNC logic in SP-BAGS

RETURN from procedure F' to procedure F'

1 update SP-bags data structure according to
the RETURN logic in SP-BAGS

Access(l) in thread e

1 fori<1toD
2 do if i > lockers-depth[l] or pstack™ # pid[lockers[l]]
3 then lockersV[l] « {}
4 pid[lockers[l]] « pstack
5 lockers-depth|l] < D
6 fori<0toD
7 do for each (¢/, H') € lockers")[l]
8 do if ¢’ || e and H' N HY = {}
9 then declare a data race
10 redundant <— FALSE
11 for each (¢, H') € lockers"[l]
12 do if e’ < e and H' O HY
13 then lockersV[l] < lockers®[l] — {(¢’, H')}
14 if e/ || e and H' C HY
15 then redundant <— TRUE
16 if redundant = FALSE
17 then lockersV[l] « lockers®[I] U {(e, H(i)>}

Figure 3-6: The ALL-SETS-SHARED algorithm for detecting data races in Cilk computa-
tions with critical sections containing parallelism. LOCK and UNLOCK are executed when
acquiring and releasing locks; SPAWN, SYNC, and RETURN at parallel control statements;
and ACCESS when reading or writing a shared memory location.
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the locked P-nodes among that last access’s ancestors are recorded, oldest to most

recent, in pid[lockersO[l]], pid[lockersV[1]], . . ., pid[lockers'ockers-derthliD ), "

We now show that ALL-SETS-SHARED correctly detects data races in Cilk com-
putations with critical sections that may contain parallelism.3

Theorem 3.6 Consider a Cilk program with locks and critical sections containing
perallelism, restricted as described in Section 3.2. The ALL-SETS-SHARED algorithm
detects a data race in the computation of this program running serially on a given
input if and only if a data race exists in the computation.

Proof: (=) Suppose ALL-SETS-SHARED declares a race between the current thread
es and a previous thread e;; we show that a race between these threads indeed exists.
Let d be the value of the iteration variable 7 in ACCEsS (line 6 at the time of the race
declaration. Thus, we know that ey is at a lock-sharing depth of at least d. Since
every locker added to lockers'”) in line 17 consists of a thread and the depth-i lock
set held by that thread, from line 8 we know that the lock-sharing depth of e; is also
at least d and that the intersection of the depth-d lock sets of e; and e, is empty.

We now consider the depth at which e; and e; are cousins. If they are depth-d
cousins, then they form a data race, since their the intersection of their depth-d lock
sets is empty. If they are depth-j cousins for some j > d, then they also form a data
race, since, with 5 > d, their depth-j lock sets are subsets of their depth-d lock sets
and so do not have any locks in common. It now suffices to show that the accesses
cannot be depth-j cousins for any 7 < d. Suppose for contradiction that e; and ey
are depth-j cousins for some j < d, and let p; and py be the depth-d locked P-node
among the ancestors of e; and ey, respectively. Then p; # po, since otherwise e; and
e would be depth-k cousins for some k£ > d. As no nodes in an SP-tree at the same
lock-sharing depth can be descendents of one another, p; and p, root non-overlapping
subtrees. Consider what happens to lockers'® [[] in lines 2-3 at the first access to [
after the subtree rooted by p; finishes, which must occur either before or in thread
es, since ey accesses [, happens after e, and is not a descendent of p;. Either the
access is at lock-sharing depth less than d, or its depth-d locked P-node ancestor,
stored in pstack'?, is a P-node other than py, stored in pid[lockers?[l]): in both
cases, lockers'® l] is cleared in line 3. Thus, by the time ey runs, the locker with e;
is not in lockers'[l]; this contradicts our premise that a race between e; and e, had
been declared, implying that the cousinhood between e; and e, is at least as deep at
d and so form a data race, as shown above.

(<) Assuming a data race exists in a computation, we show that a data race is
reported. Choose two threads e; and ey such that e; is the last thread before e, in

3We give direct proofs of the correctness and performance bounds of ALL-SETS-SHARED—they
are not overly complicated—even though it is possible to provide more succinct and modular proofs
based on the correctness and bounds of ALL-SETS (Theorems 3.1 and 3.2). For an idea of how this
might be done, see the proofs for BRELLY-SHARED (Corollary 4.7 and Theorem 4.8) in Section 4.3,
which are based on the proofs for BRELLY.
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the serial execution which has a data race with e,. Suppose these two threads are
deglth d Cousms which means they are both at lock-sharing depth at least d, and let

Hi"’ and H ) be their depth d locks sets, respectively. Since e; and ey form a data
race, we know H'? n #\ = ={}.

We first show that immediately after e; executes, lockers'¥[l] contains some thread
es3 that races with e,. If (e, Hgd)> is added to lockers'@[l] in line 17, then e; is such
an e3. Otherwise, the redundant flag must have been set in line 15, so there must
exist a locker (eg,Hgd)> € lockers[l] with e; || e; and HY ¢ H”. Thus, by
pseudotransitivity (Lemma 2.2), we have es || ea. Moreover, since H(d) C H(d and
HY n H = {}, we have HY nHY = = {}, and therefore ez, which belongs to
lockers [l], races with e.

To complete the proof, we now show that the locker (e3, H gd)> is not removed from
lockers? [[] between the times that e3 and e, are executed. A locker can be removed
in either line 13 or line 3. Suppose for contradiction that (es, H fld)> is a locker that
causes (eg,Hgd)> to be removed from lockers”[l] in line 13. Then, we must have
ez < ey and HY D H", and by Lemma 2.1, We have es || e2. Moreover, since
H( ) H ) and H gd) = {}, we have HEL N H = {}, contradicting the choice
of e; as the last thread before e, to race with es.

Suppose for contradiction that some access between e; and e, causes lockers? 1]
to be cleared in line 3. This means the computation has left the subtree rooted by
e3’s depth-d locked P-node ancestor, and therefore also the subtree rooted by e;’s
depth-d locked P-node ancestor, as e; executed before or is equal to e3. Hence, e;
and ey cannot be depth-d cousins, a contradicting the definition of d.

Therefore, thread es, which races with ey, still belongs to lockers[l] when ey exe-
cutes, and so lines 7-9 report a race. [

The following theorem shows that ALL-SETS-SHARED runs a factor of k slower,
and uses a factor of £ more space, than ALL-SETS, where £ is the maximum number
of simultaneously held locks.

Theorem 3.7 Consider a Cilk program with locks and critical sections containing
parallelism, restricted as described above, that, on a given input, executes serially in
time 7T, references V' shared memory locations, uses a total of n locks, and holds at
most k locks simultaneously. The ALL-SETS-SHARED algorithm checks this compu-
tation for data races in O(KLT (k+«(V,V))) time and O(k*LV') space, where L is the
maximum of the number of distinct lock sets used to access any particular location.

Proof: We first prove bound on space. Space usage is dominated by the lists of
lockers recorded for each location. Observe that no two lockers in lockers® [l] for a
given depth ¢ and location [ have the same lock set, because the logic in lines 11—
15 ensures that if HE:)H', then locker (e, Hzo) either replaces (¢/, H') (line 13) or
is considered redundant (line 15). Thus, there are at most L lockers in the list
lockers® [l] for a given i. The maximum lock-sharing depth of any access is at most
k, so there are at most k lists of lockers, and so the total number of lockers for a
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single location is at most kL. Each lock set takes at most O(k) space, so the lockers
for a single location take at most O(k*L) space, for a total space of O(k*LV).

We now prove the bound on running time. Since each each lock set contains at
most k locks and the maximum value of D is at most k, each instance of LOCK
and UNLOCK run in O(k?) time. Apart from the SP-BAas logic, each instance
of SPAWN and SYNC runs in O(1) time. In AcCCESS, lines 1-4 runs in O(k) time,
and, in each of the at most k iterations of lines 6-17, the algorithm performs at
most 2L series/parallel tests (line 8 and lines 12 and 14) and 2L set operations
(lines 8, 12, and 14), since the there are at most L lockers in each lockers®”). Each
series/parallel test takes amortized O(«(V,V)) time, and each set operation takes
O(k) time. Therefore, the ALL-SETS-SHARED algorithm runs in O(kLT (k+«(V,V)))
time. [
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Chapter 4

Data-race detection with the
umbrella locking discipline

The ALL-SETS algorithm from Chapter 3 seems to be practical for programs in
which L—the maximum number of combinations of locks held during accesses to
any particular location—is a small constant. Such programs are common, since of-
ten a particular data structure is consistently accessed using the same lock or set of
locks. When L is is not a small constant, however, ALL-SETS may be impractical.
In this chapter, we see how the problem of data-race detection can be simplified by
the adoption of the “umbrella locking discipline,” and we present the BRELLY and
BRELLY-SHARED algorithms for detecting violations of the discipline. BRELLY de-
tects violations of the discipline in O(kT «(V,V)) time using O(kV') space on a Cilk
program that runs serially on a given input in time 7', uses V' shared memory loca-
tions, and holds at most k£ locks simultaneously. BRELLY-SHARED, an extension of
BRELLY which handles programs with critical sections containing parallelism, runs
only a factor of k slower and uses only a factor of £ more space.

These improvements in performance come at the cost of flexibility and precision,
since the umbrella discipline precludes some race-free locking protocols as well as
data races. Specifically, it requires that within every parallel subcomputation, each
location is protected by a unique lock. While the umbrella discipline is more flex-
ible than similar locking disciplines proposed in the context of race detection, it is
more restrictive than ALL-SETS, which may be considered to enforce an ideal locking
discipline that only disallows data races.

This chapter is organized as follows. Section 4.1 defines and discusses the umbrella
locking discipline. Section 4.2 presents the BRELLY algorithm for detecting violations
of the umbrella discipline, and Section 4.3 presents BRELLY-SHARED, an extension
of BRELLY which correctly handles critical sections containing parallelism. Finally,
Section 4.4 presents several heuristics that conservatively try to determine when a
violation of the umbrella discipline is in fact caused by a data race. Such heuristics
seem to be important in the practical use of BRELLY and BRELLY-SHARED for data-
race detection.

Sections 4.1 and 4.2 are based largely on joint work published in [3].
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4.1 The umbrella locking discipline

In this section, we introduce and discuss the “umbrella locking discipline,” violations

of which are detected by the BRELLY and BRELLY-SHARED algorithms (Sections 4.2
and 4.3, respectively). The umbrella discipline requires that within each parallel
subcomputation, all accesses to any particular location are protected by a single lock;
parallel subcomputations in series with each other may use different locks to protect
the same location. By detecting violations of this discipline rather than data races
directly, we gain efficiency at the cost of precision and flexibility, since the discipline
precludes some race-free locking protocols as well as data races.

Most programs do not use many different combinations of locks to access the
same locations. Typically, there is a lock associated with each element of a shared
data structure which is used to protect parallel accesses to that element against each
other. Or there are a fixed number of global locks, which are used in a regular way to
make parallel subcomputations atomic with each other. In these cases, the L in the
performance bounds shown for ALL-SETS in Theorem 3.2 will be a small constant
and the algorithm will run with roughly a constant factor slowdown, and roughly a
constant factor blowup in space, as compared to the running time and space usage
of the serial computation. There are some programs, however, which use many lock
sets while accessing the same locations—i.e. L is not a small constant—and for which
ALL-SETS may be unacceptably inefficient. For example, consider a graph algorithm
that performs operations on arbitrary graph edges in parallel: at each edge operation,
the algorithm acquires the locks associated with the nodes at both the head and tail
of the edge and updates the two nodes. In the worst case, a node of degree d will be
accessed with d different lock sets; in a dense graph, L will be linear with the size
of the graph. (See Chapter 5 for empirical results indicating that the efficiency of
ALL-SETS indeed varies directly with L, with performance slowing down significantly
as L grows with input size.)

How can we make race detection more efficient when L is not a small constant?
The BRELLY algorithm presented in the next section runs in O(kT «(V,V')) time and
uses O(kV') space, for a Cilk computation that runs serially in 7" time, uses V' space,
and holds at most k£ locks simultaneously. These bounds are a factor of L better
than those for ALL-SETS, and depend only on k, which is almost never more than
2 or 3. The improvement in performance come at a cost, however. Rather than
detecting data races directly, BRELLY only detects violations of a locking discipline
that precludes data races, and also some other race-date locking protocols. We now
define this discipline, called the “umbrella locking discipline.”

The umbrella locking discipline requires all accesses to any particular location
within a given parallel subcomputation to be protected by a single lock. Subcompu-
tations in series may each use a different lock, or even none, if no parallel accesses
to the location occur within the subcomputation. This discipline can be defined pre-
cisely in terms of the parse tree of a Cilk computation. An umbrella of accesses to
a location [ is a subtree rooted at a P-node containing accesses to [ in both its left
and right subtrees, as is illustrated in Figure 4-1. Umbrellas are always considered
with respect to accesses to a single location {.
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Figure 4-1: Three umbrellas of accesses to a location [. In this parse tree, each shaded
leaf represents a thread that accesses [. Each umbrella of accesses to [ is enclosed by a
dashed line.

The umbrella locking discipline requires that, in every umbrella of accesses to
a location [ be “protected,” that is, there be some lock that protects all the accesses in
the umbrella against each other. In other words, within each umbrella of accesses to
a location [, all threads must agree on at least one lock to protect their accesses to [.
Under the assumption that critical sections do not contain parallelism, the notion of
protected umbrellas can be formally defined as followed: an umbrella of accesses to [ is
protected if the lock set of these accesses is nonempty, and unprotected otherwise.
(Recall from Chapter 2 that the lock set of several accesses is the intersection of their
respective individual lock sets.) Since instances of a lock are never shared by parallel
accesses, any lock held by all the accesses in an umbrella will protect them against
each other.

If critical sections can contain parallelism, the definition of a protected umbrella
needs to be refined to allow for the possibility that a lock held by all accesses in an
umbrella may not protect the umbrella, since the same instance of the lock may be
shared by some or all of the accesses. Specifically, we say that an umbrella of accesses
to [ is protected if the lock set of these accesses contains some lock that is not held
across any pair of parallel accesses to [ in the umbrella, and unprotected otherwise.
Equivalently, we can say that an umbrella is protected if the lock set of its accesses
contains some lock that is not held across the entire umbrella, and it does not contain
an unprotected umbrella; it is unprotected otherwise.

The next theorem implies that adherence to the umbrella discipline precludes data
races from occurring.

Theorem 4.1 A Cilk computation with a data race violates the umbrella discipline.

Proof: Any two accesses involved in a data race must have a P-node p as their least
common ancestor in the parse tree, because they operate in parallel. If the lock sets
of the two accesses are disjoint, then p roots an unprotected umbrella. Otherwise,
any locks held in common by the accesses must be shared by them, i.e. held across
p, and so p roots an unprotected umbrella. [
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8iuThe umbrella discipline can also be violated by unusual, but data-race free,
locking protocols. For instance, suppose that a location is protected by three locks
and that every thread always acquires two of the three locks before accessing the
location. No single lock protects the location, but every pair of such accesses is
mutually exclusive. The ALL-SETS algorithm properly certifies this bizarre example
as race-free, whereas BRELLY detects a discipline violation. In return for disallowing
this and other unusual locking protocols (which may or may not be as silly), BRELLY
checks programs asymptotically much faster than ALL-SETS.

How might the umbrella discipline be used in practice? First, a programmer may
choose to adopt the umbrella discipline as a good programming practice, and write
code accordingly. Then data races can be detected using the BRELLY (or BRELLY-
SHARED) algorithm. Even umbrella violations not resulting from races would be
considered breaches of programming practice and should be fixed. Alternatively,
a programmer can use the BRELLY algorithm to detect violations of the discipline
without trying to follow it a priori, and then manually determine whether violations
are caused by data races, ignoring those that are not.

4.2 The BRELLY algorithm

We now present the BRELLY algorithm for detection violations of the umbrella dis-
cipline in Cilk computations with locks and serial critical sections. On a program
running serially on a given input in time 7" using V' shared memory locations, BRELLY
detects umbrella discipline violations in O(kT «(V,V)) time using O(kV') space, where
k is the maximum number of locks held simultaneously. After describing the algorithm
and giving an example of its execution, we show that it correctly detects umbrella
discipline violations and prove these performance bounds.

Like ALL-SETS, the BRELLY algorithm extends the SP-BAGS algorithm used in
the original Nondeterminator and uses the R-LOCK fake lock for read accesses (see
Chapter 2). Figure 4-2 gives pseudocode for BRELLY. Like the SP-BAGS algorithm,
BRELLY executes the program on a given input in serial depth-first order, maintain-
ing the SP-bags data structure so that the series/parallel relationship between the
currently executing thread and any previously executed thread can be determined
quickly in O(a(V,V)) time. Like the ALL-SETSs algorithm, BRELLY also maintains a
sett H of currently held locks. In addition, BRELLY maintains two shadow spaces of
shared memory: accessor|l], which stores for each location [ a thread that performed
an access to that location; and locks|l], which stores the lock set of that access. (Ex-
actly which thread is stored in accessor|l] is explained below.) Each entry in the
accessor space is initialized to the initial thread (which logically precedes all threads
in the computation), and each entry in the locks space is initialized to the empty set.

Unlike the ALL-SETS algorithm, BRELLY keeps only a single lock set, rather than
a list of lock sets, for each shared memory location. For a location [, each lock in
locks[l] potentially belongs to the lock set of the largest umbrella of accesses to [ that
includes the current thread. The BRELLY algorithm tags each lock h € locks[l] with
two pieces of information: a thread nonlocker[h] and a flag alive[h]. Each of these tags
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Accgss(() in thread e with lock set H
1 if accessor|l] < e
2 then > serial access
locks[l] < H, leaving nonlocker[h] with its old
nonlocker if it was already in locks[l] but
setting nonlocker|[h] <— accessor[l] otherwise

3 for each lock h € locks|l]

4 do alive[h] < TRUE

5 accessor[l] < e

6 else > parallel access

7 for each lock h € locks[l]| — H

8 do if alive[h] = TRUE

9 then alive[h] < FALSE
10 nonlocker|h] < e
11 for each lock h € locks[l| N H
12 do if alive[h] = TRUE and nonlocker[h] || e
13 then alive[h] < FALSE
14 if no locks in locks[l] are alive (or locks|l] = {})
15 then report violation on [ involving

e and accessor]l]

16 for each lock h € H N locks]l]
17 do report access to [ without h

by nonlocker[h]

Figure 4-2: The BRELLY algorithm. While executing a Cilk program in serial depth-first
order, at each access to a shared memory location [, the code shown is executed. Not shown
are the updates to H, the set of currently held set of locks, which occur whenever locks are
acquired or released. To determine whether the currently executing thread is in series or
parallel with previously executed threads, BRELLY uses the SP-bags data structure from [9].

is associated with the entry of a lock in locks|l] for some location [; no tag is associated
with a lock globally, across all locations. The thread nonlocker|[h] is a nonlocker of
[ with respect to lock h, that is, a thread which accesses [ without holding h. The flag
alive[h] indicates whether h should still be considered to potentially belong to the
lock set of the umbrella. To allow reports of violations to specify which threads are
involved, the algorithm kills a lock h by setting alive[h] < FALSE when it determines
that A does not belong to the lock set of the umbrella, rather than simply removing
it from locks|l].

Whenever BRELLY encounters an access by a thread e to a location [, it checks for
a violation with previous accesses to [, updating the shadow spaces appropriately for
the benefit of future accesses. The way any particular access to [ is handled depends
on whether it is logically in series or in parallel with the thread in accessor[l] at the
time. If accessor[l] < e, we say the access is a serial access, and the algorithm
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Figure 4-3: An example execution of the BRELLY algorithm. We restrict our attention
to the algorithm’s operation on a single location [. In the parse tree, each leaf represents
an access to [ and is labeled with the thread that performs the access (e.g. e;) and the lock
set of that access (e.g. {A,B}). Umbrellas are enclosed by dashed lines. The table displays
the values of accessor[l] and locks[l] after each thread’s access. The nonlocker for each lock
is given in parentheses after the lock, and killed locks are underlined. The “access type”
column indicates whether the access is a parallel or serial access.

performs lines 2-5, setting locks[l] < H and accessor[l] < e, as well as updating
nonlocker[h] and alive|h| appropriately for each h € H. If accessor][l] || e, we say the
access is a parallel access, and the algorithm performs lines 6-17, killing the locks in
locks|l] that do not belong to the current lock set H (lines 7-10) or whose nonlockers
are in parallel with the current thread (lines 11-13). If BRELLY discovers in line 14
that there are no locks left alive in locks[l] after a parallel access, it has discovered an
unprotected umbrella, and it reports a discipline violation in lines 15-17.

When reporting a violation, BRELLY specifies the location [, the current thread
e, and the thread accessor[l]. It may be that e and accessor|l] hold locks in common,
in which case the algorithm uses the nonlocker information in lines 16-17 to report
threads which accessed [ without each of these locks.

Figure 4-3 illustrates how BRELLY works. The umbrella containing threads ey,
ey, and e3 is protected by lock A but not by lock B, which is reflected in locks|l] after
thread ez executes. The umbrella containing e; and eg is protected by B but not
by A, which is reflected in locks[l] after thread eg executes. During the execution of
thread eg, lock A is killed and nonlocker[A] is set to eg, according to the logic in lines 7
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10. When e; executes, B remains as the only lock alive in locks[l] and nonlocker|B]
is e4 (due to line 2 during e;’s execution). Since ey || e7, lines 11-13 kill B, leaving no
locks alive in locks[l], properly reflecting the fact that no lock protects the umbrella
containing threads e, through e;. Consequently, the test in line 14 causes BRELLY to
declare a violation at this point.

The following two lemmas are helpful in proving the correctness of BRELLY.

Lemma 4.2 Suppose a thread e performs a serial access to location [ during an
execution of BRELLY. Then all previously executed accesses to [ logically precede e
in the computation.

Proof: By transitivity of the < relation, all serial accesses to [ that execute before
e logically precede e. We must also show the same for all parallel accesses to [ that
are executed before e. Consider a thread ¢’ that performs a parallel access to [ before
e executes, and let ¢” || ¢’ be the thread stored in accessor[l] when €' executes its
parallel access. Since €” is a serial access to [ that executes before e, we have ¢’ < e.
Consequently, we must have e’ < e, because if €' || e, by pseudotransitivity we would
have € || e, a contradiction. =

Lemma 4.3 The BRELLY algorithm maintains the invariant that for any location [
and lock h € locks[l], the thread nonlocker[h] is either the initial thread or a thread
that accessed [ without holding h.

Proof:  There are two cases in which nonlocker[h] is updated. The first is in line 10,
which sets nonlocker[h] <— e. This update only occurs when the current thread e does
not hold lock A (line 7). The second case is when nonlocker|h] is set to accessor|l]
in line 2. If this update occurs during the first access to [ in the program, then
accessor|[l] will be the initial thread. Otherwise, locks[l] will be the set of locks held
during an access to [ in accessor[l], since locks|l] and accessor|l] are always updated
together to the current lock set H and current thread e, respectively, during a serial
access (lines 2-5). Thus, if h & locks[l], which is the case if nonlocker[h] is being set
to accessor[l] in line 2, then accessor[l] did not hold lock h during its access tol. =

We now show that BRELLY correctly detects violations of the umbrella discipline.

Theorem 4.4 Consider a Cilk program with locks and serial critical sections. The
BRELLY algorithm detects a violation of the umbrella discipline in a computation of
this program running serially on a given input if and only if a violation exists.

Proof: We first show that BRELLY only detects actual violations of the discipline,
and then we argue that no violations are missed. In this proof, we denote by locks™|l]
the set of locks in locks[l] that have TRUE alive flags.

(=) Suppose that BRELLY detects a violation caused by a thread e, and let
eg = accessor[l] when e executes. Since we have ey || e, it follows that p = LCA(ep, €)
roots an umbrella of accesses to [, because p is a P-node and it has an access to [
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in both subtrees. We shall argue that the lock set U of the umbrella rooted at p is
empty. Since BRELLY only reports violations when locks*[l] = {}, it suffices to show
that U C locks™[l] at all times after ey executes.

Since ey is a serial access, lines 25 cause locks™[l] to be the lock set of ey. At
this point, we know that U C locks*[l], because U can only contain locks held by
every access in p’s subtree. Suppose that a lock h is killed (and thus removed from
locks™[l]), either in line 9 or line 13, when some thread €' executes a parallel access
between the times that ¢y and e execute. We shall show that in both cases h ¢ U,
and so U C locks™[l] is maintained.

In the first case, if thread €’ kills A in line 9, it does not hold h, and thus h € U.

In the second case, we shall show that w, the thread stored in nonlocker[h] when
h is killed, is a descendant of p, which implies that h ¢ U, because by Lemma 4.3,
w accesses | without the lock h. Assume for the purpose of contradiction that w is
not a descendant of p. Then, we have LCA(w,ey) = LCA(w,e'), which implies that
w || e, because w || ¢’. Now, consider whether nonlocker[h] was set to w in line 10
or in line 2 (not counting when nonlocker[h] is left with its old value in line 2). If
line 10 sets nonlocker[h] < w, then w must execute before eg, since otherwise, w
would be a parallel access, and lock A would have been killed in line 9 by w before €’
executes. By Lemma 4.2, we therefore have the contradiction that w < eqy. If line 2
sets nonlocker[h] < w, then w performs a serial access, which must be prior to the
most recent serial access by eg. By Lemma 4.2, we once again obtain the contradiction
that w < ey.

(<) We now show that if a violation of the umbrella discipline exists, then BRELLY
detects a violation. If a violation exists, then there must be an unprotected umbrella
of accesses to a location [. Of these unprotected umbrellas, let 1" be a maximal one
in the sense that 71" is not a subtree of another umbrella of accesses to [, and let p be
the P-node that roots 7. The proof focuses on the values of accessor|l] and locks|l]
just after p’s left subtree executes.

We first show that at this point, accessor[l] is a left-descendant of p. Assume
for the purpose of contradiction that accessor[l] is not a left-descendant of p (and is
therefore not a descendant of p at all), and let p' = LCA(accessor[l],p). We know
that p’ must be a P-node, since otherwise accessor[l] would have been overwritten in
line 5 by the first access in p’s left subtree. But then p' roots an umbrella which is a
proper superset of T, contradicting the maximality of 7.

Since accessor[l] belongs to p’s left subtree, no access in p’s right subtree overwrites
locks|l], as they are all logically in parallel with accessor[l]. Therefore, the accesses
in p’s right subtree may only kill locks in locks[l]. It suffices to show that by the time
all accesses in p’s right subtree execute, all locks in locks[l] (if any) have been killed,
thus causing a race to be declared. Let h be some lock in locks™[l] just after the left
subtree of p completes.

Since T is unprotected, an access to [ unprotected by A must exist in at least one
of p’s two subtrees. If some access to [ is not protected by h in p’s right subtree,
then h is killed in line 9. Otherwise, let e, be the most-recently executed thread
in p’s left subtree that performs an access to [ not protected by h. Let e’ be the
thread in accessor|l] just after e, executes, and let ez, be the first access to [ in
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the right subtree of p. We now show that in each of the following cases, we have
nonlocker[h] || €igne When e, executes, and thus A is killed in line 13.

Case 1: Thread e is a serial access. Just after ej.p executes, we have h & locks|(]
(by the choice of e;) and accessor[l] = ep. Therefore, when h is later placed
in locks[l] in line 2, nonlocker|h] is set to e.p. Thus, we have nonlocker|h] =
Cleft || €right -

Case 2: Thread e,p, is a parallel access and h € locks[l] just before ejp, executes. Just
after €’ executes, we have h € locks|l] and alive|h] = TRUE, since h € locks]l]
when e executes and all accesses to [ between e’ and e are parallel and do
not place locks into locks[l]. By pseudotransitivity (Lemma 2.2), €' || e and
eiefr || €righe implies €' || eigni. Note that €' must be a descendant of p, since if
it were not, 7" would be not be a maximal umbrella of accesses to [. Let ¢” be
the most recently executed thread before or equal to e;p that kills A. In doing
so, €" sets nonlocker[h] < €" in line 10. Now, since both €’ and ey belong to
p’s left subtree and e” follows €’ in the execution order and comes before or is
equal to ejp, it must be that e” also belongs to p’s left subtree. Consequently,
we have nonlocker[h] = €" || erign-

Case 3: Thread eyp is a parallel access and h & locks[l] just before e executes.
When h is later added to locks[l], its nonlocker[h] is set to e’. As above, by
pseudotransitivity, € || e and ep || €pigne implies nonlocker[h] = €' || €righs-

In each of these cases, nonlocker[h] || erign still holds when ez, executes, since
€left, DY assumption, is the most recent thread to access [ without h in p’s left subtree.
Thus, h is killed in line 13 when e, g, executes. [

We now show the performance bounds for BRELLY.

Theorem 4.5 On a Cilk program with locks and critical sections without paral-
lelism, which on a given input executes serially in time 7', uses V' shared memory
locations, and holds at most k£ locks simultaneously, the BRELLY algorithm runs in

O(kT a(V,V)) time and O(kV') space.

Proof: 'The total space is dominated by the locks shadow space. For any location [,
the BRELLY algorithm stores at most k locks in locks[l] at any time, since locks are
placed in locks|l] only in line 2 and |H| < k. Hence, the total space is O(kV).

Each loop in Figure 4-2 takes O(k) time if lock sets are kept in sorted order,
excluding the checking of nonlocker[h] || e in line 12, which dominates the asymptotic
running time of the algorithm. The total number of times nonlocker[h] || e is checked
over the course of the program is at most kT, requiring O (kT a(V,V)) time. n
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4.3 The BRELLY-SHARED algorithm

In this section we present BRELLY-SHARED, an extension of BRELLY which correctly
handles programs with critical sections that contain parallelism—as specified in Sec-
tion 3.2. After describing how the algorithm works, we prove its correctness and
performance bounds, which are a factor of £ larger than those for BRELLY in both
time and space. Rather then directly proving the BRELLY-SHARED detects discipline
violations, we show that it essentially simulates the original BRELLY algorithm at
each lock-sharing depth at each access, and that it does so correctly. This proof is an
example of a general approach to extending data-race detection algorithms based on
the SP-tree model to handle critical sections containing parallelism.

The basic approach of BRELLY-SHARED mirrors that of ALL-SETS-SHARED: just
as ALL-SETS-SHARED simultaneously runs an instance of the original ALL-SETS for
each depth of cousinhood at each access, comparing only locks sets and lockers of
the same lock-sharing depth, so BRELLY-SHARED simultaneously runs an instance of
the original BRELLY for each depth at each access. In BRELLY, for each location [,
there is a single accessor|l] variable, which holds the last serial access to [; and a
single locks[l] variable, which holds the locks that may protect the largest umbrella
including the current thread. In BRELLY-SHARED, there are several instance of both
of these variables, indexed by lock-sharing depth i: accessor® [{] holds the last serial
access among the depth-i cousins of the current thread, and locks™ [l] keeps the locks
which may protect the largest umbrella among these depth-i cousins. Consider the
SP-tree in Figure 3-5 for intuition: imagine the original BRELLY running on the entire
tree using depth-0 lock sets, then on the subtree rooted by the root’s right child using
depth-1 lock sets, and finally on the subtree rooted by LCA(es, e4) using depth-2 lock
sets.

Besides the multiple accessor and locks variables for each location, BRELLY-
SHARED maintains the following global variables as in ALL-SETS-SHARED: D), the
current, lock-sharing depth; H @ for 0 < i < D, the current depth-based lock sets; and
pstack(i) for 1 < < D, the IDs of the locked P-nodes among the current thread’s
ancestors. For each location [, the algorithm keeps the lock-sharing depth of the
last access to [ in locks-depthll], and IDs of the locked P-nodes among that access’s
ancestors, oldest to most recent, in pid[l] for 1 < i < locks-depthll).

The logic for accesses in BRELLY-SHARED is shown in Figure 4-4; the logic for
acquiring and releasing locks, and for parallel control commands, is the same as
in ALL-SETS-SHARED (Figure 3-6). In ACCESs, lines 1-5 updates the accessor and
locks variables according to the locked P-node ancestors of the current access, clearing
locks[I] and setting accessor[l] to the ID of the initial thread (which logically pre-
cedes all other threads) if the subtree rooted by the locked P-node recorded in pid ™[]
has already completely executed. Lines 7-24 then execute the original BRELLY logic
at each depth, comparing against accessor® [[] and intersecting the current depth-i
lock set into locks[l] at each iteration.

Instead of directly proving that BRELLY-SHARED detects umbrella discipline vio-
lations, we show that BRELLY-SHARED correctly performs the original BRELLY logic
for each subtree rooted by a locked P-node, using the lock sets appropriate to that

38
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for: < 1to D

do if pstack' # pid®[I] or i > locks-depth]l]
then locks"[l] + {}

accessor[l] <— ID of initial thread
pidD[l] « pstack®

locks-depth[l] < D

fori+0to D

do if accessor®[l] < e
then > serial access

else

locksW[l] < H, leaving nonlocker[h] with its old
nonlocker if it was already in locks®[l] but
setting nonlocker[h] < accessor™[l] otherwise
for each lock h € locks'")[l]
do alive[h] < TRUE
accessorV]l] < e
> parallel access
for each lock h € locks[l] — H
do if alive[h] = TRUE
then alive[h] < FALSE
nonlocker[h] < e
for each lock h € locks[l| N H
do if alive[h] = TRUE and nonlocker[h] || e
then alive[h| <— FALSE
if no locks in locks”[I] are alive (or locksP[l] = {})
then report violation on [ involving
e and accessor®[l]
for each lock h € H N locks™]]]
do report access to [ without A
by nonlocker[h]

Figure 4-4: The BRELLY-SHARED algorithm. While executing a Cilk program in serial
depth-first order, at each access to a shared memory location [, the code shown is executed.
The logic for Lock and UNLOCK, and for SPAWN, SYNC, and RETURN, is the same as that
in ALL-SETS-SHARED (Figure 3-6).
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subtree. Recall that the global data structures of the algorithm are correctly main-
tained as described (Lemma 3.5).

Theorem 4.6 Let p be a depth-d locked P-node in the SP-tree of a Cilk computation
with any parallelism within crtical sections restricted as described in Section 3.2.
The BRELLY-SHARED algorithm, when run on this computation, executes the logic
of BRELLY on the subtree rooted by p as if the subtree represented a self-contained
computation, using the depth-d lock sets of the accesses in the subtree.

Proof: Pick an arbitrary location [ and consider BRELLY-SHARED's actions concern-
ing [ during the execution of p’s subtree. If there are no accesses to [ in p’s subtree,
then the algorithm does nothing, just as BRELLY would do nothing in a tree with no
accesses to [. Now suppose there are accesses to [ in the subtree, and let e be the
first such access in the serial depth-first execution. Consider what happens in the
lines 1-5 of AccEss(l) during e, in the iteration when ¢ = d. Since this is the first
access to [ in p’s subtree, the P-node recorded in pid(d), if locks-depth[l] is not less
than D, will not be p, and so locks'P[l] will be set to {}, accessor®[]] to the ID of
the initial thread, and pid@[l] to p. Note that locks'@[l] and accessor@[l] have been
initialized as they would have been in the beginning of BRELLY, were it run on the
subtree rooted by p. Now, pid@[l] will not be set to another value, and so locks'® [[]
and accessor¥[l] will not be reset, until the execution finishes all the thread in p’s
subtree; in the meantime, BRELLY-SHARED will update locksV[l] and accessor@ |[]
exactly according to the logic of BRELLY (lines 824 are exactly analogous to the
code for AcCEss(l) in BRELLY), except using depth-d lock sets at each access. Thus,
the theorem holds. [

Corollary 4.7 The BRELLY-SHARED algorithm detects a violation of the umbrella
discipline in a computation of a Cilk program with locks running serially on a given
input if and only if a violation exists. [

The following theorem shows that BRELLY-SHARED runs a factor of k£ slower, and
uses a factor of k more space than BRELLY, where k is the maximum number of locks
held simultaneously.

Theorem 4.8 On a Cilk program which on a given input executes serially in time 7',
uses V' shared memory locations, and holds at most & locks simultaneously, the
BRELLY-SHARED algorithm runs in O(k?*T «(V,V)) time and O(k*V') space.

Proof:  Since the lock-sharing depth of any access is at most £, the algorithm keeps
at most k£ times the number of locks and accessor entries per location, and iterates at
most k times through lines 7-24 at each access, performing at most £ times as many
series/parallel checks as BRELLY. Thus, the bounds follow from the bounds shown
for BRELLY (Theorem 4.5). n
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4.4 Data-race detection heuristics for BRELLY and
BRELLY-SHARED

A user may adopt the umbrella discipline as a good programming practice and then
use BRELLY or BRELLY-SHARED to find violations of the discipline, which are always
considered undesirable. However, some users may be concerned primarily with data
races outright. In this section we outline several heuristics to improve the usefulness of
BRELLY’s output, by causing it to report straightforward data races and hide non-race
violations—i.e. unprotected umbrellas which do not contain data races—whenever
possible. These heuristics are conservative: they never hide violations that are caused
by data races unless a related data race has already been reported. For simplicity,
we discuss the heuristics in the context of BRELLY; they extend in the natural way
to BRELLY-SHARED.

Before considering the heuristics themselves, recall how BRELLY reports violations.
As given in Figure 4-2, it reports violations by specifying the memory location, the
current access, the accessor access, and the nonlocker access of each lock that was
held during both the the current access and the accessor. In identifying an access, the
original string of code that was the source of that access can be printed: the filename,
line number, and the variable name used in the code. The nonlocker accesses show
the user why the locks held by both the current access and the one in accessor do
not protect the umbrella rooted at their least common ancestor. Unfortunately, it is
not always easy or possible to determine from such a report where the data race is,
or whether there is a data race at all, which is why we would like to conservatively
report a violations as being between exactly two accesses—a straightforward data
race—whenever possible.

Suppose BRELLY detects a methodology violation during an access to location [
in thread e which holds the lock set H: accessor][l] || e and there are no alive locks in
locks[l]. The following heuristics can be used:

1. Report a data race between e and accessor[l] if HNlocks[l] = {}. This is already
the logic of lines 15-17 in Figure 4-2, since in such a case only two threads will
be involved in the violation, clearly indicating a data race.

2. If there is exactly one lock ¢ in H and ¢ € locks[l], report a data race between ¢
and nonlocker(c] if nonlocker|c| || e; otherwise ignore the violation as an um-
brella violation without any data race. This heuristic is only correct if BRELLY
is slightly modified: line 10 should set nonlocker|c] <— e only if e is in series
with the existing nonlocker|c]. This logic ensures that the nonlocker of each
lock in locks[l] is the “most-parallel” access to [ without that lock, that is, the
nonlocker which any future thread will be logically in parallel with if it is in
parallel with any such nonlocker.

3. If a data race has been reported since the most recent serial access (i.e. since
accessor(l] was last updated), hide the violation unless there is a data race be-
tween e and accessor[l] (determined with heuristics 1 and 2). Although this

41



heuristic might hide data races, this seems acceptable since a data race in the
same umbrella has already been discovered and reported. This heuristic re-
quires a per-location “data-race detected” flag to be set whenever a data race
is detected and reset at serial accesses.

4. If a data race has already been reported between the source code strings that
caused the accesses in e and accessor[l] (regardless of whether it was the same
memory location), hide the violation. In general, hide the violation if a data
race between the source code strings of any pair of accesses involved, including
the relevant nonlockers, has already been reported. This requires keeping track
of the races reported, which can be done efficiently with a hash table.

5. If heuristics 1, 2, and 4 do not apply, hide the violation if a violation involving
the same set of accesses (including the nonlockers) has already been reported.
This can be done with a hash table, as in heuristic 4. A more aggressive and
efficient version of this heuristic, which may cause data races to be nonconserva-
tively hidden by previous false violations, is to hide the violation if any violation
with the same “endpoints” —i.e. the current thread and accessor—has been
reported.

6. Summarize violations at the end, leaving out violations that can be been hidden
based on data races found subsequently (a la heuristic 4). Also, while summa-
rizing, violations can be sorted by source code string as an aid to the user when
tracking down bugs.

Some highly preliminary testing has been done with these heuristics. On a partic-
ular computation (Chapter 5’s maxflow running on a typical input), BRELLY, with
no heuristics, reported 65 violations. With heuristics 1-4 and the aggressive, non-
conservative version of heuristic 5 enabled, BRELLY reported 25 straightforward data
races and 6 unprotected umbrellas. Of the unprotected umbrellas, the 2 that contain
data races would have been correctly hidden by heuristic 6 (since the data races were
subsequently reported separately) and the other 4 are easily checked manually by the
user.

To give a sense of how many of these apparent data races and violations are
infeasible, we note that there is only one a single bug related to data races in maxflow:
one line of code, which wrote to shared memory, was mistakenly put just after the
end of a crtical section instead of within it. This bug leads to a handful of feasible
data races, since the unprotected write in the misplaced line races with several other
accesses. The large majority of the data races and umbrella discipline violations
reported in this example are, however, infeasible. They result from the practice of
memory publishing (a linked-list work queue is used extensively in maxflow), which
is discussed in the conclusion (Chapter 7).
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Chapter 5

Empirical comparison of ALL-SETS
and BRELLY

In this section, we compare the empirical performance of ALL-SETS and BRELLY on
a number of programs and inputs, based on preliminary tests with four Cilk programs
that use locks and several inputs. These initial findings strongly indicate that our
performance bounds for the algorithms are at least roughly reliable. Specifically,
we see that L, the factor by which BRELLY’s performance bounds are better than
ALL-SETS’s, is predictive: if a program always accesses a particular location with
the same lock (so L is a small constant), ALL-SETS performs as fast as BRELLY;
when the number of lock sets per location grows with input size (so L grows with
input size), BRELLY significantly outperforms ALL-SETS. In addition, we see that
the factor by which BRELLY slows down the original program’s computation is a
constant independent of input size, whereas the factor by which ALL-SETS slows
down a program can grow with input size. Finally, we give an initial indication of
how many nonrace umbrella violations BRELLY typically reports.

Our tests were done using the Nondeterminator-2, a new version of the Nonde-
terminator (see Chapter 2) currently under development. The implementations of
ALL-SETS and BRELLY are not optimized, and so better performance than what we
report here is likely to be possible.

According to Theorem 3.2, the factor by which ALL-SETS slows down a program
compared to its original running time is roughly O(kL), where L is the maximum
number of distinct lock sets used by the program when accessing any particular loca-
tion, and k is the maximum number of locks held by a thread at one time. According
to Theorem 4.5, the slowdown factor for BRELLY is about O(k). In order to compare
our experimental results with the theoretical bounds, we characterize our four test
programs in terms of the parameters k and L, not counting the implicit fake R-LOCK
used by the detection algorithms:

maxflow: A maximum-flow code based on Goldberg’s push-relabel method [11].
Each vertex in the graph contains a lock. Parallel threads perform simple

This chapter is based on joint work published in [3].
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parameters time (sec.) slowdown
program | input kL |original ALL-SETS BRELLY | ALL-SETS BRELLY
maxflow | sparse 1K 2 32| 0.05 30 3 990 66
sparse 4K 2 64| 0.2 484 14 2421 68
dense 256 2 256 | 0.2 263 15 1315 78
dense 512 2 512 | 2.0 7578 136 3789 68
n-body | 1K 1 1] 0.6 47 47 79 78
2K 1 1] 1.6 122 119 76 74
bucket | 100K 1 1| 03 22 22 74 73
rad iteration 1 2 65| 1.2 109 45 91 37
iteration 2 2 94| 1.0 179 45 179 45
iteration 5 2 168 | 2.8 e 94 276 33
iteration 13 2 528 | 9.1 13123 559 1442 61

Figure 5-1: Timings of our implementations on a variety of programs and inputs. The
input parameters are given as sparse/dense and number of vertices for maxflow, number
of bodies for n-body, number of elements for bucket, and iteration number for rad. The
parameter L is the maximum number of distinct lock sets used while accessing any particular
location, and & is the maximum number of locks held simultaneously. Running times for the
original optimized code, for ALL-SETS, and for BRELLY are given, as well as the slowdowns
of ALL-SETS and BRELLY as compared to the original running time.

operations asynchronously on graph edges and vertices. To operate on a vertex
u, a thread acquires u’s lock, and to operate on an edge (u,v), the thread
acquires both u’s lock and v’s lock (making sure not to introduce a deadlock).
Thus, for this application, the maximum number of locks held by a thread is
k =2, and L is at most the maximum degree of any vertex.

n-body: An n-body gravity simulation using the Barnes-Hut algorithm [1]. In one
phase of the program, parallel threads race to build various parts of an “octtree”
data structure. Each part is protected by an associated lock, and the first thread
to acquire that lock builds that part of the structure. As the program never
holds more than one lock at a time, we have k = L = 1.

bucket: A bucket sort [5, Section 9.4]. Parallel threads acquire the lock associated
with a bucket before adding elements to it. This algorithm is analogous to the

typical way a hash table is accessed in parallel. For this program, we have
k=L=1.

rad: A 3-dimensional radiosity renderer running on a “maze” scene. The original
75-source-file C code was developed in Belgium by Bekaert et. al. [2]. We used
Cilk to parallelize its scene geometry calculations. Each surface in the scene
has its own lock, as does each “patch” of the surface. In order to lock a patch,
the surface lock must also be acquired, so that £ = 2, and L is the maximum
number of patches per surface, which increases at each iteration as the rendering
is refined.
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Figure 5-1 shows the results of our experiments on the test codes. These results
indicate that the performance of ALL-SETS is indeed dependent on the parameter L.
Essentially no performance difference exists between ALL-SETS and BRELLY when
L =1, but ALL-SETS gets progressively worse as L increases due to larger inputs,
while the slowdown factor of BRELLY is constant, independent of L and input size.
On all of our test programs, BRELLY runs fast enough to be useful as a debugging
tool. In some cases, ALL-SETS is as fast, but in other cases, the overhead of ALL-
SETS is too extreme (iteration 13 of rad takes over 3.5 hours) to allow interactive
debugging.!

Although we have not done formal testing, it appears that the number of nonrace
umbrella violations reported by BRELLY can be significant, even overwhelming, in
some cases. These violations are typically infeasible, being caused by the common
practice of memory publishing (see discussion in Chapter 7). For an example one
such case, see the discussion of maxflow at the end of Section 4.4. Programs that
do not publish memory seem to naturally obey the umbrella discipline much more
readily, with no major cause of discipline violations.

!For a production debugging tool, the implementations of these and the other algorithms in this
thesis would need to be highly optimized, since they instrument every access to shared memory. We
expect that one key optimization is to handle reads and writes separately with code specific to each
case and without the convenience of a fake read lock. Is it be possible to implement the algorithms
efficiently enough to be general purpose, comparable to SP-BAGS in efficiency when no locks are
used?
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Chapter 6

Data-race detection in
computations with guard
statements

In this chapter, we discuss data-race detection in programs that use a proposed “guard
statement” language construct, instead of locks, for atomicity. The guard statement
allows users to specify atomicity at a higher level than with locks, and with built-in
structure. Happily, because of the more restrictive semantics of guard statements,
detecting data races in programs with guard statements is easier than detecting data
races in those with locks. We present the REVIEW-GUARDS algorithm, which, on a
Cilk program that runs serially on a given input in time 7', uses V' shared memory
locations, and guards at most & memory blocks simultaneously, detects data races in
O(T(1gk + a(V,V))) time using O(V + k) space. The REVIEW-GUARDS-SHARED
algorithm, an extension of REVIEW-GUARDS which correctly handles critical sections
containing parallelism, achieves the same asymptotic performance bounds.

Our discussion of the guard statement is not intended to be definitive: the proper
way to provide structure atomicity is left as an open question. The guard statement
proposed in this chapter does, however, touch on several key design choices and
provides a basis for the REVIEW-GUARDS algorithms, which show that data races can
be detected efficiently in programs with a reasonable form of higher-level structured
atomicity.

This chapter is organized as follows. In Section 6.1, we propose a syntax and
semantics for the guard statement, with consideration of how the new language con-
struct might be implemented at runtime. In Section 6.2, we compare the guard
statement with locks, showing that, although the data-race detection algorithms for
locks can be modified to work with guard statements, new algorithms specific to
guard statements can give better performance. Accordingly, we present the REVIEW-
GUARDS and REVIEW-GUARDS-SHARED algorithms in Sections 6.3 and 6.4, respec-
tively.

The proposed guard statement and implementation ideas in Section 6.1 were developed jointly
with Charles E. Leiserson, Mingdong Feng, and other members of the Cilk group at MIT.
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6.1 The guard statement for providing structured
atomicity

In this section, we propose a “guard statement” language construct for providing
structured atomicity. We first explain some of the disadvantages of locks, motivating
the need for a way to specify atomicity at a higher level. We then specify and
syntax and semantics of the guard statement, showing how it might be implemented
at runtime. In order to achieve an efficient implementation, we then redefine guard
statements to include “same-start semantics”: parallel access are mutually atomic
only if they are guarded using memory blocks with the same start address. We argue
that these semantics can be implemented efficiently. Finally, we discuss the limitations
on expressibility imposed by guard statements with these restricted semantics.

Using locks to provide atomicity has two major disadvantages. First, locks require
users to allocate lock variables explicitly in their code, which can be a nuisance
and possibly a serious hit on memory usage, as, for example, in the case of a large
array with a lock associated with each element. Second, and more importantly, the
flexibility of locks, which can be acquired and released according to whatever protocol
(or lack of protocol) a user chooses to follow, can easily lead to convoluted or incorrect
code. For instance, deadlock, in which a program comes to a standstill because each
thread waits for another thread to release a lock in a circular dependency, is a common
problem.

These problems with locks are not insurmountable: deadlock, for one, can be
avoided by the standard discipline of always acquiring locks in a fixed global order.
Nonetheless, some languages limit the flexibility of locks—for instance, by allowing
at most one lock to be held at a time. Other languages hide locks from the user
altogether and provide atomicity with higher-level language constructs. Java, for
instance, does not provide explicit locks but allows methods of an object class to be
denoted as “synchronized”; such methods, if invoked in parallel for a single object,
operate atomically with respect to each other. Java also provides a separate language
construct, with the syntax

synchronized( object ) { statements }

that implicitly acquires the lock associated with object (all Java objects have hidden
locks associated with them), executes the code in statements, and then releases the
lock. These Java language features for atomicity allow users to ignore the details of
locks and reason about atomicity at a higher level.

The current version of Cilk, version 5.1, supports atomicity exclusively through
locks. An alternative mechanism for atomicity, which we propose here, is a guard
statement language construct which allows the user to indicate that a block a code
should be executed atomically on a specific range of memory. Consider the following
syntax:

guard ( blocky; blocksy; ... ) { statements }

Between the curly braces, statements is arbitrary Cilk code that does not contain
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another guard statement; this code is to be executed normally, except that accesses
to the specified memory blocks will be guarded. The one or more memory blocks to
be guarded are specified in a semicolon-delimited list between the parentheses just
after the guard keyword, where each block; is either the memory associated with a
variable, specified by the variable name; or an arbitrary array of memory, specified
by a pointer and size, separated by a comma. For example, if x is a storage variable
(of type int, float, struct, etc.) and pl and p2 are pointers, the guard statement

guard(x; pl, 20; p2, n+1) {...}

has the semantics: “Within this body of code, make accesses to x, the 20 array
elements beginning at location p1, and the n+1 array elements beginning at p2 atomic
with respect to other parallel accesses to these locations which are also guarded.”?

With guard statements, atomicity is well structured and does not requires the
user to allocate extra data structures. Furthermore, as the syntax disallows nested
guard statements, the runtime system can easily prevent deadlock by automatically
acquiring any hidden locks it needs in a fixed global order. We therefore include in the
specification of the guard statement the following guarantee, which an implementation
must ensure: a program with guard statements but without locks will never deadlock.?

The guard statement does require more language support than locks, both in the
compiler, which must handle the new syntax, and at runtime. To implement atomic-
ity, the runtime system needs to allocate, acquire, and release locks behind the scenes,
based on the user’s guard statements. We suggest that the runtime system allocate a
fixed number of hidden lock variables, and then translate each memory location which
needs to be guarded into one of these locks using a hash function. When executing a
guard statement, the locks associated (through the hash function) with each guarded
memory location are acquired before, and released after, the execution of the code
within the guard statement.

The glaring problem with this straightforward implementation is that guarding
arrays of memory, such as in the example above (p1, 20 and p2, n+1), is unaccept-
ably inefficient, since one lock per element is acquired. (Acquiring a lock is typically
an expensive operation, taking over a dozen cycles on a Sun UltraSPARC 1 using
the compare-and-swap instruction, for instance.) There might be an efficient way of
“locking” an entire block of memory without having to lock each byte individually.
An interval-tree-like data structure in which intervals can be quickly added, deleted,
and searched in parallel would be helpful, and possibly fast enough: the runtime sys-
tem could maintain the currently guarded blocks of memory as intervals in the data

!The sizes of variable and array elements are determined by variable and pointer types, as usual
in C. Also, to be consistent with C blocks, the open and close braces surrounding statements are
optional when guarding a single statement.

2The prohibition against nested guard statements may seem overly restrictive: why not allow
the user to nest guard statements if he is willing to do without the guarantee of deadlock-freedom?
Because with guard statements, the order in which (hidden) locks are acquired is not in the user’s
control, and therefore a user cannot implement application-specific deadlock-prevention protocols,
as is possible with explicit locks.
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structure and, when executing a guard statement, check for already guarded memory
blocks that overlap with the to-be-guarded memory blocks in the structure, waiting
for them to be removed before executing the body of the guard statement. In any
case, we know of no such data structure.

How then should the runtime system implement guard statements? Our solution
is to modify the semantics of the guard statement. Specifically, we specify same-
start semantics: memory accesses are atomic with each other if they are within
guard statements, the locations accessed are in memory blocks specified in the guard
statements, and these blocks of memory have the same start addresses for each lo-
cation. For example, parallel threads which guard and access memory addresses 1
through 10, 1 through 5, and the single byte at address 1, are atomic with each other;
threads which guard and access addresses 1 through 10, 2 through 9, and the sin-
gle byte at address 5, are not. With these more limited guard-statement semantics,
the runtime system need only acquire the lock associated with the first byte of each
guarded memory block, meaning that only one lock per guarded block, rather per
guarded location, is acquired. For convenience, we say that the guard address of a
guarded memory access is the start address of the guarded memory block that con-
tains the accessed location, and that the access is protected by the start address.
The REVIEW-GUARDS and REVIEW-GUARD-SHARED algorithms detect data races
according to these semantics.?

There is another potential problem with using a hash function to associate memory
locations with lock variables: since the number of available locks is presumably much
smaller than the size of shared memory, multiple memory locations hash to the same
lock, possibly resulting in guard statements which protect unrelated blocks of memory
being forced to be atomic with each other. For example, suppose one guard statement
protects location [; and another protects a different location l,, and that [; and /5 hash
to the same hidden lock. These two guard statements are atomic with each other,
as they use the same lock, which, while not incorrect, may degrade performance,
since the guard statements are forced to wait for each other to finish if they run
simultaneously. Fortunately, the sharing of locks by different memory locations can
be solved by allocating a sufficiently large number of hidden locks. The maximum
number of simultaneously guarded blocks of memory during a parallel execution, and
therefore the maximum number of simultaneously held lock variables, is small: it is

3Limiting the semantics of the guard statements is equivalent to adopting a “guarding discipline,”
analogous to a locking discipline, except that in this case the motivation for the discipline is to make
runtime implementation more efficient, rather than to simplify race detection or avoid deadlock. We
might stipulate that a program not guard, in parallel, overlapping blocks of memory with different
start addresses, and then have the race detection algorithms report violations of this discipline as
well as data races under the original guard semantics. Unlike with umbrella semantics, however,
violations of such a guarding discipline would always be data races, since the runtime system, under
the same-start semantics, in fact only locks the first byte of each guarded block.

Note that adoption of the same-start semantics leads to an awkward situation in a typical im-
plementation: the sizes of guarded memory blocks are ignored during runtime. The sizes remain
in the syntax of the guard statement, however, since they may be used by the memory-consistency
algorithm in a distributed system, as suggested below in Section 6.2.
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at most kP, where k is the maximum number of simultaneously guarded memory
blocks in a serial execution, and P is the number of processors. Thus, if the number
of available locks is N, then the probability that any given memory location will
be translated by a hash function that appears uniformly random into a lock that is
currently being used for a different memory location is less than kP/N. If k < 4
and P < 256—usually safe assumptions—then, with 100 KB of hidden locks, we have
kP/N < 1/100, which should be small enough to make delay caused by accidentally
shared locks negligible.

How severe a limitation, algorithmically, are same-start semantics for guard state-
ments? Programs often access identical memory blocks in parallel, sometimes even
performing identical operations on them: for example, global counters which are
updated in parallel; nodes of a graph which are operated on atomically by various
procedures; and slots of a parallel hash table. In such cases, same-start semantics
are natural and sufficient. Sometimes, however, a program may access parts of a
global data structure in one thread, and the entire data structure in another, parallel
thread. For example, consider a table which is updated one entry at a time, or sorted
all at once: the update and sort operations, if occurring in parallel, access overlap-
ping memory locations which do not necessarily have the same start address, and
so the same-start semantics are insufficient. The original semantics of guard state-
ments, which do not require overlapping memory blocks guarded in parallel to have
the same start addresses, are needed for these table operations. The straightforward
implementation of those semantics mentioned above, in which one lock per guarded
location is acquired, would likely be unacceptably slow, however. It seems that, apart
from a fast implementation of the original guard semantics, guard statements may
are not a good choice for programming these parallel table operations.

One should note that even with locks, the correct solution is not clear: if a program
using locks acquires a lock associated with the entire table each time it updates an
entry, then the updates would not execute simultaneously. If, on the other hand, the
program acquires every entry’s lock before sorting the table, it would have the same,
rather serious, performance hit as the straightforward implementation of the original
guard semantics. Locks are, of course, more flexible, giving the user the choice of how
to provide atomicity for any given problem; guard statements, by design, limit the
possibilities in the interests of simplicity.

6.2 The need for detection algorithms specific to
guard statements

Do we need data-race detection algorithms specific to guard statements? Can we use
the algorithms for programs with locks, perhaps with minor changes, to detect data
races in programs with guard statements? In this section, we show that although the
algorithms for locks can be made to work with guard statements, they are not optimal.
Thus, a need exists for detection algorithms specific to guard statements, such as
REVIEW-GUARDS and REVIEW-GUARDS-SHARED, which we present in Sections 6.3
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cilk void guard_swap(int *qi, cilk void lock_swap(int *ql,

int *q2) { int *q2) {

int temp; int temp;
guard(*ql) { Cilk_lock(A);

temp = *qi; temp = *qi;

*ql = *q2; *ql = *q2;

*q2 = temp; *q2 = temp;
} Cilk_unlock(A);

¥ ¥

Figure 6-1: The functions guard swap and lock_swap ostensibly do the same thing:
atomically swap the integers pointed to by the parameters q1 and q2. (The variable A is a
global lock, whose declaration and initialization is not shown.) In fact, however, guard_swap
only guards accesses to *ql, whereas lock_swap correctly protects the entire swap operation
with a lock. Changing guard(*ql) to guard(*ql; *q2) in guard_swap would make it
correctly atomic.

and 6.4, respectively.

The translation of guarded memory blocks to locks by the runtime system may
seem to imply that the locking algorithms for programs with locks presented in Chap-
ters 3 and 4 can be used directly for race detection, leaving no need for new algorithms.
One might even think the guard statement to be merely a mechanism for hiding or
restricting the syntax of locks, with the same underlying semantics. For example,
consider the guard_swap and lock_swap functions shown in Figure 6-1, which swap a
pair of integer locations, the first using a guard statement and the second with a lock.
Parallel threads running lock_swap will be correctly atomic with each other due to
the global lock swap_lockvar. Wouldn’t parallel threads executing guard_lock also
be atomic with each other, since the runtime system acquires the lock associated with
*q1l before swapping the values?

The answer is no. Recall that the semantics state that only the accesses to the
specifically guarded memory blocks are atomic, meaning that the guarded swap oper-
ation in guard_swap is not atomic with itself since *q2 is not specifically guarded. In
a distributed system with software-simulated shared memory (e.g. Distributed Cilk
[24, Chapter 8]), these semantics might be implemented strictly, with the memory
system ensuring consistency between parallel threads during their execution, by per-
forming expensive memory update operations between the distributed memories, only
for specifically guarded memory blocks. In such a system, the value of *q2, which is
not guarded, might not be updated between parallel threads executing guard_swap,
leading to incorrect behavior. The memory semantics of user locks is stronger, re-
quiring all modified locations within a critical section to be updated between parallel
threads, so lock_swap is atomic and correct.* It is true that on a hardware shared-

“The use of locks typically requires at least release consistency [13, p. 716], in which memory
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memory machine, the implementation we have suggested for guard statements would
likely result in an atomic guard_swap as well, since a fast memory barrier can be
used to update all memory after critical sections, but this would be an accident of
the implementation, not an implication of the guard statement semantics. Guard
statements are indeed more than syntactic sugar; they are not merely hiding the
acquisition and release of locks associated with certain memory blocks.

Detecting data races in a program that uses guard statements for atomicity is
not, then, immediately reducible to the problem of detecting data races in programs
with locks. Still, the problem is not wholly different: data races can be found in
the same general way, with accesses protected by guard addresses instead of lock
variables. The key distinctive feature is that atomicity is explicitly associated with
specific memory locations. In the case of locks, an algorithm can find out which
locks protect any particular access by referring to the single, globally maintained
set, of currently held locks. In the case of guard statements, there is no analogous
global lock set: an algorithm must keep track of whether each location is guarded or
not, and by which address, individually. Our algorithms for detecting data races in
programs with locks—ALL-SETS and BRELLY (Sections 3.1 and 4.2, respectively)—
can be modified to work for programs using guard statements by using an extra
shadow space H[l] to keep track of which lock (i.e. guard address) protects each
location [ instead of a global lock set H, used for accesses to all locations. Instead of
updating H at each lock and unlock, the algorithms update the appropriate locations
of H[l] when entering and exiting guard statements, and use the appropriate H (]
instead of a global H when executing its logic at a memory access.

While these modified algorithms are convenient, giving us tools for checking pro-
grams with guard statements with little extra effort, they are not optimal. Consider
the bounds for ALL-SETS: O(LT (k+ «(V,V))) time and O(kLV') space on a compu-
tation that runs serially in time 7', uses V' shared memory locations, holds at most &
locks simultaneously, and holds at most L different lock sets during accesses to any
particular location. With guard statements, there is at most one guard address at a
time per location, so k = 1, leaving us with a time bound of O(LT «(V,V')) and space
bound of O(LV'), where L is in this context the maximum number of guard addresses
used to protect any particular location. These bounds are reasonable, especially if
we might expect L to be small for most programs, but they can be improved, as
we will see with REVIEW-GUARDS below. Now consider the bounds for BRELLY:
O(kT a(V,V)) time and O(kV) space. With £ = 1 in programs with guard state-
ments, these bounds become O (T «(V,V)) and O(V)—almost linear. Unfortunately,
BRELLY has the disadvantage of reporting violations of the umbrella discipline instead
of data races directly.

We would like to have an algorithm for detecting data races in programs using
guard statements that runs in nearly linear time and always reports only data races.
In fact, BRELLY, modified as described above, is almost such an algorithm. If locks
sets always contain at most a single lock, BRELLY always reports violations that are
unambiguously due to data races (see lines 15-17 of the BRELLY code in Figure 4-2).

updates are made visible to other processors upon the release of a lock.
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And, when modified for guard statements, locks sets in BRELLY would contain at
most a single lock (i.e. guard address) if not for the use of the fake read lock, which
increases the maximum size of locks sets to two, enough to cause nonrace umbrella
violations.

The solution is to check programs according to logic of the BRELLY modified
for guard statements, but without the convenience of the fake read lock. Reads and
writes must be handled separately, with explicit logic to ignore reads that “race” with
other reads. The remaining sections of this chapter present the details of an algorithm
along these lines, called REVIEW-GUARDS, and an extension of the algorithm, called
REVIEW-GUARDS-SHARED, that correctly handles guard statements which contain
parallelism.

6.3 The REVIEW-GUARDS algorithm

The REVIEW-GUARDS algorithm finds data races in Cilk programs with guard state-
ments that never contain parallelism. In this section, we describe the algorithm and
then prove that it acheives O(T'(Igk + «(V,V))) time and O(V + k) space bounds on
a program that, on a given input, runs serially in time 7" using V' space, with at most
k simultaneously guarded memory blocks.

During the serial depth-first execution of a program on a specific input, the
REVIEW-GUARDS algorithm maintains the set of currently guarded memory blocks
in the global variable current-blocks, which can be implemented as a red-black tree
[5, Chapter 14] indexed by the start addresses of the memory blocks, allowing mem-
ory blocks to be inserted and deleted efficiently. To record information about past
memory accesses, the algorithm maintains the following shadow space information
for each shared memory location I: writer[l] and writer-guard[l], the thread ID and
guard address (or NIL), respectively, of the last “serial write” to [; and reader[l] and
reader-guard[l], the thread ID and guard address (or NIL), respectively, of the last
“serial read” from [. Serial writes and reads, and parallel writes and reads,
are analogous to BRELLY’s serial and parallel accesses: they are logically in series or
in parallel with the previous writer[l] or reader(l], respectively. These shadow spaces
are initialized to NIL or the ID of the initial thread (which logically precedes all other
threads) as appropriate. In addition, both writer-guard[l] and reader-guard|l] are
tagged, when not NIL, with a nonguarder field indicating the thread ID of an access
to [ (writes for writer-guard[l] and reads for reader-guard|l]) which is unguarded or
guarded by a different address—these nonguarders are analogous to BRELLY’s non-
lockers. Each of these tags is associated with the guard address stored at a particular
location; no tag is associated with a guard address globally, across all locations.

Besides maintaining, according to the SP-BAGs algorithm (Chapter 2), an SP-
bags data structure for determining the series-parallel relationship between the cur-
rent thread and any previously executed thread, REVIEW-GUARDS updates current-
blocks appropriately whenever entering or exiting a guard statement (see Figure 6-2),
and checks for data races and updates the other shadow spaces at every shared mem-
ory access (see Figure 6-3). At the begining of each memory access, the algorithm
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ENTER-GUARD with memory blocks p;[ni], pe[ns], . ..
1 for each memory block p;[n;]
2 do insert p;[n;] into current-blocks

EXIT-GUARD with memory blocks pi[n1], pa[na], . . .
1 for each memory block p;[n;]
2 do delete p;[n;] from current-blocks

Figure 6-2: The REVIEW-GUARDS algorithm. Pseudocode for entering and exiting a
guard statement. Note that all memory blocks, whether storage variables or pointers to
arrays, can be considered a pointer p; followed by the number of bytes n;, indicating the
size of the block. The global data structure current-blocks keeps track of the currently
guarded memory blocks.

determines the guard address (if any) of the memory location being accessed by look-
ing in current-blocks for a memory block containing the location (lines 1-3 of READ
and WRITE).

REVIEW-GUARDS’s logic for READ and WRITE is closely based on BRELLY's logic
for AccEss, with writes checked against previous reads and writes and reads checked
against previous writes, rather than generic accesses checked against all previous
accesses. In lines 4-10 of WRITE, a write is checked against previous writes; in
lines 17-21, a write is checked against previous reads. In lines 4-8 of READ, a read
is checked against previous writes. For the benefit of future accesses, serial reads and
writes update reader[l] and reader-guard[l], and writer[l] and writer-guard[l], along
with the nonguarder tags, in lines 12-17 of READ and lines 11-16 of WRITE. Notice
the absence of alive flags, which are not needed because an access races either with
reader]l], writer[l], or a nonguarder, and so previous guard addresses that have been
overwritten (or “killed,” in BRELLY’s terminology) are irrelevant.

REVIEW-GUARDS does make one addition to the basic logic of BRELLY: in lines 7—
8 of WRITE and lines 10-11 of READ, the algorithm overwrites the nonguarder of
writer-guard|l] or reader-guard|l] with the current guard address if the current access
is logically in series with the the existing nonguarder. Doing so ensures that the
nonguarder will be the one logically in parallel with the most future threads.?

We now show that REVIEW-(GGUARDS is correct, using an approach that is, not
surprisingly, similar to the one used for BRELLY in Section 4.2. The following lemma
is analogous to Lemma 4.2 and follows from analogous reasoning.

Lemma 6.1 Suppose a thread e reads (or writes) some location [ during an execution
of REVIEW-GUARDS. Then all previously executed reads (or writes) of [ logically
precede e in the computation. [

>The reasoning here is the same as in heuristic 2 for BRELLY in Section 4.4.
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WRITE(!) in thread e
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if there exists a memory block in current-blocks containing [
then current-guard < the start address of the block
else current-guard < NIL
if writer[l] || e
then if writer-guard|[l] = NIL or writer-guard[l] # current-guard
then report race between writer|l] and e
if writer-guard[l] # NIL and nonguarder|writer-guard|l]] < e
then nonguarder|writer-guard|l]] < e
elseif nonguarder|writer-guard[l]] || e
then report race between nonguarder|writer-guard|l]] and current write
else if current-guard = NIL
then writer-guard[l] < NIL
elseif current-guard # writer-guard]l]
then writer-guard[l] < current-guard
nonguarder|writer-guard[l]] < writerl]
writer[l] < e
if reader[l] || e
then if reader-guard[l] = NIL or reader-guard|[l] # current-guard
then report race between reader(l] and current write
elseif nonguarder|[reader-guard]l]] || e
then report race between nonguarder|reader-guard|[l]] and current write

READ(!) in thread e

1
2
3
4
>
6
7
8
9
0

1

11
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17

if there exists a memory block in current-blocks containing [
then current-guard < the start address of the block
else current-guard <— NIL
if writer(l] || e
then if writer-guard|[l] = NIL or writer-guard[l] # current-guard
then report race between writer|[l] and current read
elseif nonguarder|writer-guard[l]] || e
then report race between nonguarder|writer-guard|l]] and current read
if reader[l] || e
then if reader-guard[l] # NIL and reader-guard|l] # current-guard
and nonguarder|reader-guard[l]] < e
then nonguarder|reader-guard|l]] < e
else if current-guard = NIL
then reader-guard|l] <— NIL
elseif current-guard # reader-guard|l]
then reader-guard|l] < current-guard
nonguarder|reader-guard[l]] < reader|l]
readerl|l] < e

Figure 6-3: The REVIEW-GUARDS algorithm. Pseudocode for accessing shared memory
locations.
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Throughout the proofs of the following lemma and theorem we use the fact that
at all times the value in reader-guard[l] (writer-guard[l]) corresponds to the access
recorded in reader[l] (writer|l])—i.e. it is the guard address of that access or NIL
if the access was unguarded. This correspondence holds because reader-guard[l] and
reader(l] (writer-guard[l] and writer[l]) are always updated together in lines 12-17 of
READ (lines 11-16 of WRITE). We also rely on the fact that, during any access to [,
current-guard|l] is the guard address of [, or NIL if none; this is ensured by the logic
of ENTER-GUARD and EXIT-GUARD.

Lemma 6.2 Suppose reader-guard[l] # NIL at some point during the execution of
REVIEW-GUARDS, and let e be the most recent thread performing a serial read from [
without being protected by the guard address in reader-guard[l], or the initial thread
if no such serial read exists. Then nonguarder|[reader-guard]l]] is either e or a thread
after e in the serial execution in series with it. The analogous statement holds for
writer-guard|[l] and nonguarder|writer-guard|[l]].

Proof: Fix a moment in the execution and let e be as defined in the lemma. We first
show that nonguarder|[reader-guard[l]] is set to e at some point and then it is always
updated, if at all, to a thread after it in the serial execution in series with it. All line
numbers refer to READ(]).

Let €’ be the first serial read after e in the serial execution; such a serial read exists
because reader-guard[l] # NIL and reader-guard[l] is only set to a guard address
during a serial read in line 15. Since e is the most recent serial read from [ not
protected by reader-guard[l], €' is protected by reader-guard[l] and therefore updated
nonguarder|reader-guard[l]] to the previous reader[l], namely e, in line 16. (Recall
that reader[l] is initialized to the ID of the initial thread.)

Now consider, in order of the serial execution, each thread ¢” that updates non-
guarder|reader-guard|l]] after €, if any such thread exists. Now e” must be a parallel
read, since every serial read from [ after e is protected by reader-guard|l], causing
the test in line 14 to fail and preventing line 16 to be run. Thus, nonguarder|reader-
guard[l]] is updated by €” to €” (the most recent thread at the time) after the al-
gorithm checks that e” is in series with the previous value of nonguarder|[reader-
guard[l]] (lines 10-11). By transitivity of <, we know the whatever thread ends up
in nonguarder|[reader-guard[l]], if not e, runs after e and is in series with it.

The analogous statement about writer-guard[l] and nonguarder[writer-guard]l]]
follows from analogous reasoning. n

Theorem 6.3 Consider a Cilk program with guard statements that never contain
parallelism. The REVIEW-GUARDS algorithm detects a data race in the computation
of this program running serially on a given input if and only if a data race exists in
the computation.

Proof: (=) We now show that data races reported indeed exist. Given that at least
one write is involved, REVIEW-GUARDS reports a race in the following two cases:
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Case 1: The current access is in parallel with reader (writer) and either reader-
guard (writer-guard) is NIL or a different guard address than the one protecting
the current access, so a race between the current access and reader (writer) is
reported—e.g. line 6 of WRITE. In this case, the existence of a data race as
reported follows because reader-guard (writer-guard) always corresponds to the
guard address of reader (writer).

Case 2: The current access uses the same guard as reader-guard (writer-guard) but
is in parallel with nonguarder|[reader-guard] (nonguarder|writer-guard]), so a
race between the current access and the nonguarder is reported—e.g. line 10
of WRITE. In this case, the existence of a data race as reported follows from
Lemma 6.2.

(<) Suppose a data race exists; we show that the algorithm reports a race. Let
e; and ey be threads which form a data race on [, where ey executes after e; in the
serial execution. Since there is a race, the threads did not use the same guard address
while accessing [ or at least one of the accesses was unguarded.

Suppose e; reads and ey writes, and that reader[l] = e when ey runs. If e = ey,
then consider what happens in WRITE(/) when ey runs: the algorithm will discover
that reader[l] || ey (since reader[l] = e = e;) and that reader-guard[l] is e;’s guard
address or NIL, causing a race to be reported in line 19. We now assume that e # e;
and consider two cases depending on whether e; is a serial or parallel read. Note
that since reader[l] and reader-guard|l] correspond, reader-guard[l] will be the guard
address used by e, or NIL if none, at the time e, runs.

Case 1: The access in e; is a serial read, so it updates reader[l] <— e;. In this
case, e must run after e; since reader|[l] = e when es runs. By Lemma 6.1 we
have e; < e; and then by e; || eo and Lemma 2.1 we have e || e;. Consider
what happens in WRITE(/) when e, runs. If reader-guard|l] is NIL or different
from ey’s current guard address (current-guard), then a race will be reported in
line 19.

Otherwise, current-guard|l] = reader-guard[l] and we need to show that
nonguarder|[reader-guard[l]] || e2 and that a race is reported in line 21. Consider
the most recent serial read e’ before e which was unguarded or protected by
a different guard address than reader-guard[l] (e’s guard address). Since the
serial read in e; was either unguarded or not protected by current-guard|l] =
reader-guard(l] (there would be no race with ey otherwise), either ¢ = e; or
¢’ ran after ey, in which case by Lemma 6.1 we have e; < ¢/. By Lemma 6.2
we know that nonguarder|reader-guard[l]] either equals e’ or is a thread af-
ter € in series with it, so either trivially or by transitivity we have e; <
nonguarder|reader-guard[l]]. By Lemma 2.1 we then have nonguarder|reader-
guard[l]] || ea, as desired.

Case 2: The access in e; is a parallel read, and so does not update reader[l]. Let
¢’ be the most recent thread which updates reader|[l] before e;. Then €' || e,
since otherwise e; would have updated reader[l] in line 17 of READ(I). By
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pseudotransitivity (Lemma 2.2) we have €' || e. Either ¢/ = e and thus e || e;
or, by Lemma 6.1, ¢’ < e, which further means, by Lemma 2.1, that e || e.
Consider what happens in WRITE(/) when e, runs. As in the previous case
above, if reader-guard[l] is NIL or different from current-guard[l], a race will be
reported in line 19.

Otherwise reader-guard[l] = current-guard|l], and we need to show that
nonguarder|reader-guard[l]] will be discovered to be in parallel with ey, leading
to a race being reported in line 21. Let €’ be the most recent serial read not
protected by reader-guard[l] (e’s guard address), or the initial thread if no such
read exists.

Suppose €” either equals €’ or that it ran after ¢/, in which case by Lemma 6.1
we have ¢/ < €. By Lemma 6.2 we have either nonguarder|reader-guard[l]] = "
or that nonguarder|reader-guard[l]] is a thread after €” in series with it. Thus, ei-
ther trivially or by applying transitivity (to get ¢’ < nonguarder|reader-guard]l]])
and Lemma 2.1 (using the fact that €’ || e2), we have nonguarder|reader-guard]l]]
|| e2, as desired.

Now suppose €’ ran before €/, and let w be the thread stored in non-
guarder|reader-guard|l]] at the time the read in e; executed. Since €” is the most
recent serial read not protected by e’s guard address (the same as e5’s) or no such
read exists, at the time e; runs (which is after ') we have reader-guard[l] # NIL
and reader-guard|l] # current-guard (since €', being after €, has the same guard
address as ey but e; does not). Thus, since e; is a parallel read, it checked
whether w < ey, and if it was, set nonguarder|reader-guard[l]] <— e, (lines 10—
11 of READ(])). As any serial read after ¢” used the same guard address as e
and so nonguarder|reader-guard|l]] is not updated in a serial read, any Subse-
quent updates to nonguarder|[reader-guard[l]] are in parallel reads and therefore
only update nonguarder|reader-quard[l]] with serial values (lines 10-11). By
transitivity we have e; < nonguarder|reader-guard[l]] and by Lemma 2.1 we
have nonguarder|reader-guard[l]] || es. If, however, the read in e; found that w
was in parallel in line 10 of READ(/) and so did not update nonguarder|reader-
guard[l]], then by pseudotransitivity (Lemma 2.2) we have w || e3, and by similar
reasoning we can by transitivity conclude that w < nonguarder|[reader-guard|l]|
and thus, by Lemma 2.1, that nonguarder|reader-guard[l]] || es, as desired.

The argument when ¢e; is a write and e, is either a read or a write is analogous.

In proving the runtime performance of REVIEW-GUARDS, we assume that current-
blocks is maintained as a red-black tree indexed by the start addresses of the memory
blocks. Insertion and deletion of memory blocks in ENTER-GUARD and EXIT-GUARD
are handled in the obvious way. In lines 1-3 of READ and WRITE, the algorithm finds
the guard address (if any) of a location by searching the tree for either a memory block
that starts with the location, in which case the location itself is the guard address, or
the predecessor to the memory location in the tree, in which case the predecessor’s
start address is the guard address if that memory block contains the location. Since
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insert, delete, search, and search-for-predecessor operations for a red-black tree run in
logarithmic time, and the size of current-blocks is at most k, the operations involving
current-blocks each run in O(lgk) time.

Theorem 6.4 Consider a Cilk program with guard statements that never contain
parallelism which runs serially on a given input in 7', uses V' shared memory loca-
tions, and guards at most £ memory blocks simultaneously. The REVIEW-GUARDS
algorithm checks this computation in O(T'(1gk+a(V,V))) time using O(V +k) space.

Proof: 'The space bound follows since a constant amount of shadow space information
per shared memory location, and current-blocks takes O(k) space. The time bound
follows since, in addition to the red-black tree operations during ENTER-GUARD,
EXIiT-GUARD, and each memory access, the algorithm performs, at each access, a
constant number of series/parallel relationships checks, each taking O(«(V,V)) time.

]

Since k is almost always at most 2 or 3, it is probably not worth using a red-black
tree in practice. Instead, the current-blocks data structure can be kept as an unsorted
linked list, with operations on it taking O(k) time.

6.4 The REVIEW-GUARDS-SHARED algorithm

In this section, we present the REVIEW-(GUARDS-SHARED algorithm, an extension
of REVIEW-GUARDS that allows for parallelism within critical section. The logic of
REVIEW-GUARDS-SHARED is, oddly enough, almost exactly a concatenation of the
logic of REVIEW-GUARDS with that of SP-BAGS, the algorithm upon which all the
algorithms in thesis thesis, including REVIEW-GUARDS, are based. After describing
REVIEW-GUARDS-SHARED, we show that it is correct and prove that it has the same,
almost-linear performance bounds as the original REVIEW-GUARDS.

As discussed in Section 3.2, we require that all procedures spawned in a critical
section always finish before the end of the critical section. Therefore, just as we require
a sync after the last spawn in a critical section ended by a Cilk_unlock statement,
we extend the semantics of guard statements to include an implicit sync just before
the exit from a guard statement.

When guard statements contain parallelism, two parallel accesses protected by
the same guard address may still form a data race, since they may share the same
“instance” of the guard address. Given a guarded access to location [, the instance
of the guard address of that access is the outermost guard statement in the runtime
computation which protects a memory block including [—in other words, the current
guard statement that actually acquired a lock, or otherwise provides atomicity, for
I’'s guard address. If two parallel accesses to the same location, at least one of which
is a write, share the same instance of a guard address, the accesses form a data race.

Parallelism within guard statements is considerably easier to handle than par-
allelism within locked critical regions, because there is always at most one guard
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ENTER-GUARD with memory blocks p;[ni], pa[ns], . ..
1 for each memory block p;[n;]
2 do insert p;[n;] into current-blocks
for each location [ in p;[n;]
do inside-reader]|l] < ID of initial thread
inside-writer([l] <— ID of initial thread

Tt = W

Ex1T-GUARD with guard statement ID s and memory blocks p;[ni], pe[ns], . ..
1 perform EXIT-GUARD logic from the original REVIEW-GUARDS

WRITE(]) in thread e
1 perform WRITE(/) logic from the original REVIEW-GUARDS
2 if current-guard # NIL > current-guard variable from line 1
3 then if inside-writer[l] || e

then declare race between inside-writer|l] and current write
if inside-readerll] || e

then declare race between insider-reader|l] and current write
inside-writer[l] < e

~ O Ot W~

READ(!) in thread e
1 perform READ(!) logic from the original REVIEW-GUARDS
2 if current-guard # NIL > current-guard variable from line 1

3 then if inside-writer[l] || e

4 then declare race between inside-writer|l] and current read
5 if inside-reader[l] < e

6 then inside-reader|l] < e

Figure 6-4: The REVIEW-GUARDS-SHARED algorithm. Logic is shown for for entering
and exiting a guard statement, and for reading and writing a shared memory location.
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address protecting any given location. To find data races involving parallelism within
guard statements, a detection algorithm need only check a guarded access against
other accesses sharing the instance of its one guard address. In fact, it would be
sufficient to find basic determinacy races on a location [ within guard statements that
protect location [, since any accesses to [ within such guard statements cannot also
be guarded by any other guard statements.

Accordingly, REVIEW-GUARDS-SHARED extends REVIEW-GUARDS by simply
performing the logic of SP-BAGS, the efficient determinacy race detection algorithm
(Chapter 2), to find races on a location [ within each guard statement that protects [.
SP-BAGS maintains reader[l] and writer|[l] at each location [ to record information
about past reads and writes to [ in the SP-tree; REVIEW-GUARDS-SHARED main-
tains, if [ is currently guarded, inside-reader|l] and inside-writer|l] to do the same
thing, except only for the part of the SP-tree corresponding to the code inside the
guard statement that protects [. At the entry to a guard statement that protects [,
REVIEW-GUARDS-SHARED resets inside-reader|l] and inside-writer[l] to the value
they would have at the beginning of SP-BAGS (the ID of the initial thread), so that
the determinacy-race detection logic can begin anew for the part of the computation
within that guard statement.

The logic for REVIEW-GUARDS-SHARED is shown in Figure 6-4. Lines 3-6 of
READ and lines 3-7 of WRITE exactly mirror the read and write logic in SP-BAGS (see
[9]). The logic for entering and exiting guard statements is exactly as in the original
REVIEW-GUARDS algorithm (Figure 6-2), except that in lines 4-5 of ENTER-GUARD,
the inside-reader|l] and insider-writer[l] fields are reset to the ID of the initial thread.

Theorem 6.5 The REVIEW-GUARDS-SHARED algorithm detects a data race in the
computation of a Cilk program with guard statements running serially on a given
input if and only if a data race exists, assuming that any parallelism within guard
statements is restricted as described above.

Proof: That REVIEW-GUARDS-SHARED correctly finds data races between unguard-
ed accesses or accesses protected by different guard addresses follows trivially from the
correctness of REVIEW-GUARDS (Theorem 6.3). That it correctly finds data races
between guarded accesses that share the same instance of a guard address follows
from the correctness SP-BAGS (see [9]), and the fact that REVIEW-GUARDS-SHARED
performs SP-BAGS’s logic for a location [ within each guard statement that protects (.

]

Theorem 6.6 Consider a Cilk program with guard statements that runs serially on
a given input in 7" time using V' shared memory locations. The REVIEW-GUARDS-
SHARED algorithm checks this computation in O(T (Igk+«(V,V))) time using O(V +
k) space.

Proof:  Follows trivially from the performance bounds of the REVIEW-GUARDS and
SP-BAGs algorithms. [
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Chapter 7

Conclusion

After summarizing this thesis, we conclude by discussing two questions. First, we
outline several issues related to the question, “How should atomicity be specified?”
Second, we consider the pitfalls of detecting apparent rather than feasible races,
explaining how the correctness guarantees proven for the algorithms in this thesis,
though of limited practical use, are suggestive of debugging methodologies involving
the cooperation between program annotation and algorithms with guarantees.

Summary of thesis

This thesis has presented three algorithms for data-race detection in multithreaded
programs, as well as extensions to these algorithms for handling critical sections
containing parallelism. We have constrained the debugging problem by considering
only the computation of a program running serially on a given input, which in Cilk
corresponds to a left-to-right depth-first treewalk of the series-parallel parse tree rep-
resenting the program’s dynamically unfolding dag of threads. Threads have been
considered to be “logically in parallel” according to this parse tree, taking no account
of program semantics which may cause nonexisting races to show up as apparent races
in the tree. Given these limiting assumptions, we have shown that our algorithms
are guaranteed to find data races (or umbrella discipline violations) in computations
if and only if any exist.

The first algorithm, ALL-SETS, detects (apparent) data races precisely, with slow-
down and space-blowup factors (i.e. the factors by which a computation’s running
time is slowed down and space usage increased) dominated by L, the maximum num-
ber of lock sets held during accesses to any particular location. Even though L may
grow with input size for some applications, likely causing the algorithm to be imprac-
tical, ALL-SETS is the fastest data-race detection algorithm seen to date.

The second algorithm, BRELLY, debugs computations asymptotically faster than
ALL-SETS, with slowdown and space-blowup factors of only &, the maximum number
of simultaneously held locks. BRELLY achieves this gain in efficiency at the cost of
flexibility and precision: rather than detecting data races directly, it detects (appar-
ent) violations of the “umbrella locking discipline,” which precludes some race-free
locking protocols as well as data races. Preliminary testing shows that BRELLY is
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indeed significantly faster than ALL-SETS in practice when L is not a small constant.
We also have preliminary experience showing that the number of nonrace violations
reported by BRELLY can be significant, due to apparent but infeasible violations
caused by the practice of “memory publishing,” described below. Despite its limita-
tions, the umbrella discipline in more flexible than other locking disciplines proposed
in the context of data race detection. We have also presented several heuristics that
can conservatively determine whether an umbrella violation is caused by a data race.

The third algorithm, REVIEW-GUARDS, checks for (apparent) data races in the
serial computations of programs using a proposed “guard statement,” rather than
locks, to specify atomicity. This algorithm takes advantage of the higher-level seman-
tics of guard statements, which associate atomic operations with specific memory
locations, to achieve nearly linear performance in both time and space. We know of
no other algorithm for detecting data races in the context of a language construct
similar to our guard statement.

We have given -SHARED extensions for each of these three algorithm which cor-
rectly handle critical sections containing parallelism. The extensions for ALL-SETS
and BRELLY perform only a factor of £ worse than the originals in time and space,
while the extension of REVIEW-GUARDS performs with the same nearly-linear asymp-
totic performance as the original.

In the course of presenting these algorithms, we have given a useful model for
programs with critical sections containing parallelism, and, in extending our basic
algorithms, have given examples of how to use this model in a way that may generalize
to other algorithms. We have also specified the guard statement and suggested how
it might be implemented, given the stipulation of “same-start semantics,” which is
motivated by runtime efficiency.

What should atomicity look like?

A theme of our work in this thesis has been the question: how should atomicity be
specified? A good answer to this question must satisfy concerns at several different
levels. Atomicity should be expressed in a way that is easy for programmers to use and
understand. Many different kinds of applications, with various atomic operations and
data structures, need to be provided for. The overhead of atomicity during runtime
must be minimal. And, of course, there should be efficient and reliable algorithms for
detecting data races in programs containing atomicity. The following are several issues
that arise in the search for good tradeoffs between these often competing interests.

The “right” locking discipline. Is the umbrella discipline in any meaningful
way the right locking discipline? We have seen that adopting it allows significant
and provable performance gains in debugging, but does it correspond to any useful
programming methodology? Since the discipline allows different parallel subcompu-
tations that are in series with each other to use different locks for each location, we
expect the main utility of the discipline to be in modular software development. If,
within each parallel module, a programmer ensures that one lock (or set of locks)
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always protects each particular data structure, the modules can be combined in series
without unifying their locking schemes.

Other disciplines are either easier to understand or may be more flexible, however.
Enforcing a single lock that protects each location throughout an entire program is
straightforward, and it is not overly restrictive for the many programs that naturally
follow such a rule. One possibly useful discipline that is more flexible than the um-
brella discipline is the requirement that each “writer-centric parallel region” (instead
of each umbrella) use a single lock to protect each location. A writer-centric parallel
region consists of all the accesses to some location that are logically in parallel with
some write to that location. Since umbrellas encompass both writer- and reader-
centric parallel regions (defined analogously), enforcing fixed locks per location only
in writer-centric regions is more flexible. It may also be more natural, since a write
always races with parallel accesses while a read in parallel with another read is never
a race. We have investigated algorithms for checking for violations of a discipline
based on writer-center regions but found nothing promising.

Are guard statements too limiting? We have no experience using the guard
statement in real-world applications. We do expect that its syntax and semantics are
sufficient for many programs, in which the needed atomic operations fit naturally with
the built-in structure, and which do not need more than same-start semantics. And as
we have seen with the parallel table example at the end of Section 6.1, programming
tasks for which guard statements, as given, are not sufficient may be intrinsically
difficult, even with the full flexibility of user-level locking.

Efficient implementation of the original semantics of guard statements.
Guard statements would be easier to think about and more flexible to use if we could
do away with the requirement that guarded blocks of memory start with the same
address. To do this, we need to find a runtime efficient implementation of the original
semantics, in which atomicity is truly considered per-location, with no reference to
blocks of memory and start addresses. As for data-race detection, REVIEW-GUARDS
can easily be modified to work with the original semantics: in ENTER-GUARD, update
the current guard address of each location to itself rather than to the start address
of the block of memory which contains it. We consider it unlikely, however, that
an efficient implementation exists: again, there seem to be intrinsic difficulties with
performing atomic operations on overlapping blocks of memory.

Guard statements with locks. Perhaps an ideal programming language would
provide both guard statements and locks to users, giving them to the option of using
either or both in any particular situation. Are there general guidelines for programs

!The question of the “right” locking discipline can also be asked with reference of deadlock
detection. The problem of detecting deadlocks, even “apparent” deadlocks in a computation dag,
is NP-hard [28]. We have investigated using locking disciplines based on the notion of umbrellas
to make the problem of deadlock detection easier, with no progress. Is there some useful locking
discipline which precludes deadlock and for which violations are easy (or just tractable) to detect?
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using guard statements and locks or unexpected complications arising from their
interaction, perhaps relating to deadlock? As for data-race detection, such “mixed”
programs could be checked by a further variation of the algorithms for locks modified
for guard statements, described in Section 6.2. The algorithm keeps both a global lock
set H and per-location guard addresses H[l]. Then, each access to [ is considered to
be protected (as it indeed is) by H U H|l], with the rest of the algorithm as usual.

Since HJl] contains at most a single guard address per location [, the maximum
size of the unioned lock set would be one more than the maximum number of locks
held simultaneously. Thus, the asymptotic bounds for the variants of ALL-SETS and
BRELLY for mixed programs would be the same as for the original algorithms for
locks alone. To handle mixed programs with critical sections (of either kind) con-
taining parallelism, the logic for REVIEW-GUARDS-SHARED could easily be merged,
also without degrading asymptotic performance, into the -SHARED versions of the
algorithms for locks.

Apparent versus feasible data races

The algorithms we presented in this thesis are guaranteed to find all apparent data
races (or discipline violations) in a computation. The utility of this guarantee is
significantly weakened by the existence of apparent but infeasible races, which lead
to false alarms. Apparent races are races between accesses that appear to be in parallel
according to the SP-tree that captures the semantics of the parallel control commands
in a program’s execution—i.e. the accesses are logically in parallel. Apparent races
may or may not actually be feasible since alternate control flows due to changes in
scheduling may cause certain accesses to never happen at all: so they either happen
in one order (after some other access, for instance) or not at all. Our algorithms
cannot distinguish between apparent and feasible races because they rely solely on
the structure of spawns and syncs in the computation to deduce the series/parallel
relationships between threads.

In our experience, a significant source of apparent but infeasible data races is the
practice of “memory publishing.” Suppose some thread allocates some memory from
global storage, writes to the memory, and then “publishes” the memory by making a
pointer to it available to other threads through a global, shared data structure. Then,
if another thread logically in parallel with this thread reads from the newly published
memory, the two threads will form an apparent data race—even though the read from
the memory could only happen after the write, since the memory was not globally
accessible until after the memory was published after the write. Apparent data races
due to memory publishing is common in programs operating on global linked-list and
other dynamic data structures in parallel. Stark gives a thorough discussion of the
problem in [26].

Stark also presents in [26] a theory of nondeterminism, in which one feature is
the notion of an “abelian” program. Intuitively, a program is abelian if its critical
section commute—i.e. they produce the same results regardless of the order in which
they execute. Stark shows that abelian programs without data races (and without
deadlocks) produce the same computation when running on a given input no matter
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how threads are scheduled. Further, he shows that if a feasible data race exists in
an abelian program, an apparent race will exist in any computation of that program.
Thus, the algorithms presented in this thesis can be used to certify that an abelian
program, when running on a given input, either produces determinate results or
contains a data race.

What about nonabelian programs? The guarantee that the algorithms in this
thesis find all data races (or discipline violations) in a computation seem to be rather
pointless for these programs. Indeed, for nonabelian programs, the guarantees are
not in themselves particularly useful, except perhaps as an vague indication that our
algorithms may tend to catch more data races than algorithms with no guarantees.

But the chief value of our guarantees—the if-and-only-if correctness proofs of
our algorithms—is that they are suggestive. We know we cannot expect program
verification: finding feasible data races exactly is NP-hard [20]. But there may be a
via media between intractable problems and merely heuristic solutions. For instance,
could programmers annotate code to help race detection algorithms “understand” the
program’s semantics better? The practice of memory publishing, which can cause
many apparent but infeasible data races in a computation, might be alleviated, if not
decidedly solved, in this way. Suppose a programmer annotated code that publishes
memory in a way that a compiler could tell a debugging tool what was happening.
Perhaps the debugging tool could then figure out when apparent data races were
caused by the publication of memory. A simpler idea is to have a programmer use
fake locks to “protect” the creation and later access of data object after publication
against each other. (These explicit fake locks are akin to the hidden fake read lock
used by the ALL-SETS and BRELLY algorithms; see Chapter 2.) In essence, the
programmer uses a fake lock to tell the debugging algorithm that the two operations
do not form a data race. He translates application-specific logic into something simple
that detection algorithms can understand: locks. There may very well be other ways
in which program annotation and algorithms, with guarantees, can work together.
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