
Credible Compilation

Martin C. Rinard

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

March 10, 1999

Abstract

This paper presents a new concept in compiler correctness: instead of proving

that the compiler performs all of its transformations correctly, the compiler generates

a proof that the transformed program correctly implements the input program. A

simple proof checker can then verify that the program was compiled correctly. We

call a compiler that produces such proofs a credible compiler, because it produces

veri�able evidence that it is operating correctly.

Compiler optimizations usually consist of two steps | an analysis step determines

if it is legal to apply the optimization, and a transformation step applies the optimiza-

tion to generate a transformed program that computes the same result as the original

program. Our approach supports this two-step structure. It provides a logic that the

compiler can use to prove that its program analysis results are correct, and a logic

that the compiler can use to prove that the transformed program correctly simulates

the original program. These logics are de�ned for a standard program representation,

control
ow graphs. This report de�nes these logics and proves that they are sound

with respect to a standard operational semantics. It also presents detailed examples

that demonstrate how a compiler can use the logics to prove the correctness of several

standard optimizations.

We believe that credible compilation has the potential to revolutionize the way

compilers are built and used. Speci�cally, they will allow programmers to quickly

determine if the compiler compiled their program correctly, help developers �nd and

eliminate bugs in compiler passes, allow large groups of mutually untrusting people

to collaborate productively on the same compiler, increase the speed with which

compilers are developed and released, and make it possible to aggressively upgrade

large, stable compiler systems without fear of inadvertantly introducing undetected

errors.

1 Introduction

Today, compilers are black boxes. The programmer gives the compiler a program, and the
compiler spits out an inscrutable bunch of bits. Until he or she runs the program, the
programmer has no idea if the compiler has compiled the program correctly. Even running

1

the program o�ers no guarantees | compiler errors may show up only for certain inputs.
So the programmer must simply trust the compiler.

We propose a fundamental shift in the relationship between the compiler and the pro-
grammer. Every time the compiler transforms the program, it generates a proof that the
transformed program produces the same result as the original program. When the com-
piler �nishes, the programmer can use a simple proof checker to verify that the program
was compiled correctly. We call a compiler that generates these proofs a credible compiler,
because it produces veri�able evidence that it is operating correctly.

We believe that credible compilation has the potential to revolutionize the way com-
pilers are built and used. Instead of having to accept whatever the compiler generates on
blind faith, programmers will be able to verify that the compiler compiled their program
correctly. Credible compilers will also help developers �nd and eliminate bugs in compiler
passes, allow large groups of mutually untrusting people to collaborate productively on
the same compiler, make it possible to aggressively upgrade large, stable systems without
fear of inadvertantly introducing undetected errors, promote the use of compilers that are
customized for speci�c application domains, shrink the length of the compiler development
cycle by making it practical to use buggy compilers, and make the use of compilers that
do not produce correctness proofs a successful basis for product liability claims.

Figure 1: Traditional Compilation

Figure 2: Credible Compilation

Figures 1 and 2 graphically illustrate the di�erence between traditional compilation and
credible compilation. A traditional compiler generates a compiled program and nothing
else. A credible compiler, on the other hand, also generates a proof that the compiled
program correctly implements the original program. A proof checker can then take the
original program, the proof, and the compiled program, and check if the proof is correct.
If so, the compilation is veri�ed and the compiled program is guaranteed to correctly
implement the original program. If the proof does not check, the compilation is not veri�ed
and all bets are o�.

This paper introduces the basic techniques required to build credible compilers for

2

standard programming languages such as C and Java. The organization is as follows.
Section 2 presents an example that illustrates the basic concepts of standard invariants,
which are used to prove that program analysis results are correct, and simulation invariants,
which are used to prove that a transformed program generates the same result as the
original program. Section 3 presents the technical core of the paper: the logics used to
prove standard invariants and simulation invariants, and the proofs that these logics are
sound. Section 4 presents a running example that shows how to generate correctness
proofs for several standard transformations. Section 5 discusses some anomalies associated
with proving that loops terminate, Section 6 discusses issues related to code generation,
and Section 7 discusses related work. Section 8 discusses the potential impact of credible
compilation. We present our conclusions in Section 9.

2 Example

In this section we present an example that explains how a credible compiler can prove that
it performed a translation correctly. Figure 3 presents the example program represented
as a control
ow graph. The program contains several assignment nodes; for example the
node 5 : i i+x+y at label 5 assigns the value of the expression i+x+y to the variable
i. There is also a conditional branch node 4 : br i < 24 . Control
ows from this node
through its outgoing left edge to the assignment node at label 5 if i < 24, otherwise control

ows through the right edge to the exit node at label 7.

Figure 3: Original Program
Figure 4: Program After Constant Propa-
gation and Constant Folding

Figure 4 presents the program after constant propagation and constant folding. The
compiler has replaced the node 5 : i i+x+y at label 5 with the node 5 : i i+3 . The
goal is to prove that this particular transformation on this particular program preserves the
semantics of the original program. The goal is not to prove that the compiler will always
transform an arbitrary program correctly.

To perform this optimization, the compiler did two things:

3

� Analysis: The compiler determined that x is always 1 and y is always 2 at the
program point before node 5. So, x + y is always 3 at this program point.

� Transformation: The compiler used the analysis information to transform the pro-
gram so that generates the same result while (hopefully) executing in less time or
space or consuming less power. In our example, the compiler simpli�es the expression
x+ y to 3.

Our approach to proving optimizations correct supports this basic two-step structure.
The compiler �rst proves that the analysis is correct, then uses the analysis results to
prove that the original and transformed programs generate the same result. Here is how
this approach works in our example.

2.1 Proving Analysis Results Correct

Many years ago, Floyd came up with a technique for proving properties of programs [4].
This technique was generalized and extended, and eventually came to be understood as a
logic whose proof rules are derived from the structure of the program [2]. The basic idea
is to assert a set of properties about the relationships between variables at di�erent points
in the program, then use the logic to prove that the properties always hold. If so, each
property is called an invariant, because it is always true when the
ow of control reaches
the corresponding point in the program.

In our example, the key invariant is that at the point just before the program exe-
cutes node 5, it is always true that x = 1 and y = 2. We represent this invariant as
hx = 1 ^ y = 2i5. Section 3.3 presents a logic that the compiler can use to prove such in-
variants. In e�ect, this logic allows the compiler to construct proofs by induction on the
length of the partial executions of the program.

In our example, the simplest way for the compiler to generate a proof of hx = 1 ^ y = 2i5
is for it to generate a set of invariants that represent the analysis results, then use the logic
to prove that all of the invariants hold. Here is the set of invariants in our example:

� hx = 1i3

� hx = 1 ^ y = 2i4

� hx = 1 ^ y = 2i5

� hx = 1 ^ y = 2i6

Conceptually, the compiler proves this set of invariants by tracing execution paths.
The proof is by induction on the structure of the partial executions of the program. For
each invariant, the compiler �rst assumes that the invariants at all preceding nodes in the
control
ow graph are true. It then traces the execution through each preceding node
to verify the invariant at the next node. We next present an outline of the proofs for
several key invariants. The compiler can use the logic presented in Section 3.3 to produce
machine-veri�able versions of these proofs.

� hx = 1i3 because the only preceding node, node 2, sets x to 1.

4

� To prove hx = 1 ^ y = 2i4, �rst assume hx = 1i3 and hx = 1 ^ y = 2i6. Then con-
sider the two preceding nodes, nodes 3 and 6. Because hx = 1i3 and 3 sets y to 2,
hx = 1 ^ y = 2i4. Because hx = 1 ^ y = 2i6 and node 6 does not a�ect the value of
either x or y, hx = 1 ^ y = 2i4.

In this proof we have assumed that the compiler generates an invariant at almost all of
the nodes in the program. More traditional approaches use fewer invariants, typically one
invariant per loop, then produce proofs that trace paths consisting of multiple nodes. The
logic presented in Section 3.3 supports both styles of proofs.

2.2 Proving Transformations Correct

When a compiler transforms a program, there are typically some externally observable
e�ects that it must preserve. A standard requirement, for example, is that the compiler
must preserve the input/output relation of the program. In our framework, we assume
that the compiler is operating on a compilation unit such as procedure or method, and
that there are externally observable variables such as global variables or object instance
variables. The compiler must preserve the �nal values of these variables. All other variables
are either parameters or local variables, and the compiler is free to do whatever it wants
to with these variables so long as it preserves the �nal values of the observable variables.
The compiler may also assume that the initial values of the observable variables and the
parameters are the same in both cases.

In our example, the only requirement is that the transformation must preserve the �nal
value of the variable g. The compiler proves this property by proving a simulation corre-
spondence between the original and transformed programs. To present the correspondence,
we must be able to refer, in the same context, to variables and node labels from the two
programs. We adopt the convention that all entities from the original program P will have
a subscript of P , while all entities from the transformed program T will have a subscript
of T . So iP refers to the variable i in the original program, while iT refers to the variable i
in the transformed program.

In our example, the compiler proves that the transformed program simulates the original
program in the following sense: for every execution of the original program P that reaches
the �nal node 7P , there exists an execution of the transformed program T that reaches the
�nal node 7T such that gP at 7P = gT at 7T . We call such a correspondence a simulation

invariant, and write it as hgP i7P � hgT i7T . In Section 3.4 we present a logic that the
compiler can use to prove simulation invariants.

The compiler typically generates a set of simulation invariants, then uses the logic to
construct a proof of the correctness of all of the simulation invariants. The proof is by
induction on the length of the partial executions of the original program. We next outline
how the compiler can use this approach to prove hgP i7P � hgT i7T . First, the compiler is
given that hgP i1P � hgT i1T | in other words, the values of gP and gT are the same at the
start of the two programs. The compiler then generates the following simulation invariants:

� h(gP ; iP)i2P � h(gT ; iT)i2T

� h(gP ; iP)i3P � h(gT ; iT)i3T

� h(gP ; iP)i4P � h(gT ; iT)i4T

5

� h(gP ; iP)i5P � h(gT ; iT)i5T

� h(gP ; iP)i6P � h(gT ; iT)i6T

� hgP i7P � hgT i7T

The key simulation invariants are hgP i7P � hgT i7T , h(gP ; iP)i6P � h(gT ; iT)i6T and
h(gP ; iP)i4P � h(gT ; iT)i4T . We next outline the proofs of these two invariants. The com-
piler can use the logic presented in Section 3.4 to produce machine-veri�able versions of
these proofs.

� To prove hgP i7P �hgT i7T , �rst assume that h(gP ; iP)i4P �h(gT ; iT)i4T . For each path
to 7P in P , we must �nd a corresponding path in T to 7P such that the values of gP
and gT are the same in both paths. The only path to 7P goes from 4P to 7P when
iP � 24. The corresponding path in T goes from 4T to 7T when iT � 24. Because
h(gP ; iP)i4P � h(gT ; iT)i4T , control
ows from 4T to 7T whenever control
ows from
4P to 7P . The simulation invariant h(gP ; iP)i4P � h(gT ; iT)i4T also implies that the
values of gP and gT are the same in both cases.

� To prove h(gP ; iP)i6P � h(gT ; iT)i6T , assume h(gP ; iP)i5P � h(gT ; iT)i5T . The only
path to 6P goes from 5P to 6P , with iP at 6P = iP at 5P + xP at 5P + yP at 5P . The
analysis proofs showed that xP at 5P + yP at 5P = 3, so iP at 6P = iP at 5P +3. The
corresponding path in T goes from 5T to 6T , with iT at 6T = iT at 5T + 3.

The assumed simulation invariant h(gP ; iP)i5P � h(gT ; iT)i5T allows us verify a corre-
spondence between the values of iP at 6P and iT at 6P ; namely that they are equal.
Because 5P does not change gP and 5T does not change gT , gP at 6P and gT at 6P
have the same value.

� To prove h(gP ; iP)i4P � h(gT ; iT)i4T , �rst assume h(gP ; iP)i3P � h(gT ; iT)i3T and
h(gP ; iP)i6P � h(gT ; iT)i6T . There are two paths to 4P :

{ Control
ows from 3P to 4P . The corresponding path in T is from 3T to 4T ,
so we can apply the assumed simulation invariant h(gP ; iP)i3P � h(gT ; iT)i3T to
derive gP at 4P = gT at 4T and iP at 4P = iT at 4T .

{ Control
ows from 6P to 4P , with gP at 4P = 2 � iP at 6P . The corresponding
path in T is from 6T to 4T , with gT at 4T = 2 � iT at 6T . We can apply the
assumed simulation invariant h(gP ; iP)i6P � h(gT ; iT)i6T to derive 2 � iP at 6P
= 2 � iT at 6T . Since 6P does not change iP and 6T does not change iT , we can
derive gP at 4P = gT at 4T and iP at 4P = iT at 4T .

3 Logical Foundations

In this section we present the logical foundations of credible compilation. We formally
de�ne a program representation based on control
ow graphs and de�ne an operational
semantics for this representation. We present the logic used to prove standard invariants
and prove that this logic is sound. We also present the logic used to prove simulation
invariants and prove that this logic is sound.

6

3.1 Program Representation

We propose that compiler passes use a common intermediate representation based on con-
trol
ow graphs. It is possible, of course, to write translators between intermediate represen-
tations so that passes that use specialized or merely di�erent intermediate representations
can participate. In this section we de�ne a simple intermediate representation that we use
to present the major ideas and concepts in the remainder of the paper. We expect that a
practical implementation would require a more elaborate intermediate representation.

We start with expressions e and conditions c. For simplicity we assume the program
computes on integer values; we denote the set of integers by z 2 Z. We also assume disjoint
sets of local variables l 2 L and externally observable variables o 2 O; the set of variables
v 2 V = L[O is the union of these two sets. Variables have integer values and expressions
evaluate to integers. The following abstract syntax de�nes the set of expressions e.

e ::= ZjV je + eje� eje � eje=eje%ej � ej

truejfalseje = eje 6= eje > eje � eje < eje � ej:eje ^ eje _ eje) eje, e

In some cases, we interpret an expression as a condition c whose value is true or false.
We adopt the C convention that a condition is true if its value is not zero, and false if its
value is zero. In the expression grammar above, true is 1 and false is 0.

Each control
ow graph is composed of a set of nodes. Each node has its own label;
these labels are used to determine the
ow of control between nodes. Each node is one of
the following types:

� Assignment: An assignment node s : v e t has its label s, a variable v, an
expression e and a label t. When the node executes, it evaluates e and assigns the
value to v. Execution continues at the node whose label is t.

� Conditional Branch: A conditional branch node s : br c t1 t2 has its label s, a
condition c and two labels t1 and t2. When the node executes, it evaluates c. If
c is true, execution continues at the node whose label is t1. Otherwise, execution
continues at the node whose label is t2.

� Nop: A nop node s : nop t has its label s and another label t. When the node
executes, execution continues at the node whose label is t.

� Exit: The exit node sx : exit is the last node in the graph.

There is a unique entry node with label s0 and a unique exit node with label sx. We require
that there be a path from the entry node to the exit node, and that no two distinct nodes
have the same label.

We use the notation that s : v e t is true if there exists an assignment node with
label s, variable v, expression e and label t in the control
ow graph, and false otherwise.
Also, s : br c t1 t2 is true if there is a conditional branch node in the control
ow graph
with label s, condition c, and labels t1 and t2 in the program, and false otherwise, and
similarly for nop and exit nodes. We use this notation to de�ne the set of predecessors of
a node in the control
ow graph:

7

De�nition 1 Given a label t, the set of predecessors of t is the set of all labels of nodes

from which control may
ow directly to t:
pred(t) = fsjs : v e tg [fsjs : nop tg [fsjs : br c t t0g [fsjs : br c t0 tg

We require that the entry node s0 have no predecessors, i.e., pred(s0) = ;. Also note
that the exit node has no successors, i.e. for all s, sx 62 pred(s).

3.2 Operational Semantics

We next present a simple operational semantics for control
ow graphs. The semantics
uses con�gurations hs;mi, which consist of the label s of the next node to execute and
a memory m : V ! Z that maps each variable to its value. We start by extending the
domain of the memory function m to constants and expressions as shown in Figure 5.

m(z) = z
m(e1 + e2) = m(e1) +m(e2)
m(e1 � e2) = m(e1)�m(e2)
m(e1 � e2) = m(e1) �m(e2)
m(e1=e2) = m(e1)=m(e2)
m(e1%e2) = m(e1)%m(e2)
m(�e) = �m(e)
m(true) = true
m(false) = false
m(e1 = e2) = m(e1) = m(e2)
m(e1 > e2) = m(e1) > m(e2)
m(e1 � e2) = m(e1) � m(e2)
m(e1 < e2) = m(e1) < m(e2)
m(e1 � e2) = m(e1) � m(e2)
m(:e) = :m(e)
m(c1 ^ c2) = m(c1) ^m(c2)
m(c1 _ c2) = m(c1) _m(c2)
m(c1) c2) = m(c1)) m(c2)
m(c1 , c2) = m(c1), m(c2)

Figure 5: Extending m to Constants and Expressions

The operational semantics is de�ned using a transition function ! which maps each
con�guration hs;mi to its successor con�guration hs0; m0i. The successor con�guration is
obtained by executing the node at label s in the context of memory m. Figure 6 presents
the rules that de�ne the transition function. In the initial memory m0, local variables have
value 0 and observable variables have arbitrary values.

We use the operational semantics to de�ne the concept of a partial execution of a control

ow graph. A partial execution starts at the entry node in the graph, and executes part of
the computation.

De�nition 2 A partial execution of a control
ow graph is a sequence of con�gurations

8

s : v e t
hs;mi ! ht;m[v 7! m(e)]i

op-assign (1)

s : nop t
hs;mi ! ht;mi

op-nop (2)

s : br c t1 t2; m(c)
hs;mi ! ht1; mi

op-brtrue (3)

s : br c t1 t2;:m(c)
hs;mi ! ht2; mi

op-brfalse (4)

Figure 6: Operational Semantics

hs0; m0i ! � � � ! hsn; mni in which each con�guration hsi+1; mi+1i is the successor of the

preceding con�guration hsi; mii in the sequence.

3.3 Standard Invariants

We next present the logic that the compiler can use to construct proofs that its analysis
results are correct. The logic consists of a set of proof rules; these rules are a version of
the standard Floyd-Hoare proof rules adapted for control
ow graphs. The rules operate
on several types of invariants:

� hiis: the condition i is always true at the program point before the execution of the
node whose label is s.

� shiit: the condition i is always true at the program point before the execution of the
node whose label is t, if control
owed directly to t from s.

� hiis � t: the condition i is always true at the program point before the execution of
the node whose label is s, if control will
ow next to t.

The proof rules assume a set I of invariants; we require that invariants of the form shiit
or hiis � t do not appear in I. Figure 7 presents the rules. We assume the existence
of a logic for proving standard relationships between integers such as z < z + 1 and
x < 4 ^ y < 3) x + y < 7.

3.3.1 Proof Trees

Proofs consist of a tree whose nodes are rule uses. One rule use is a child of another rule use
if the consequent of the �rst rule use is an antecedent of the second rule use. Contrary to
computer science custom (but consistent with nature), proof trees are customarily drawn
with each parent node below its children. There is a partial order de�ned on the rule uses
| a �rst use precedes a second use if the second use appears on the path from the �rst use
to the root. The last rule in the proof tree is therefore the root.

9

pred(t) 6= ;; 8s 2 pred(t): I ` shiit
I ` hiit

std-pred (5)

s : nop t; I ` hiis � t
I ` shiit

std-nop (6)

s : v e t; I ` hi[e=v]is � t
I ` shiit

std-assign (7)

s : br c t1 t2; I ` hc) iis � t1
I ` shiit1

std-brtrue (8)

s : br c t1 t2; I ` h:c) iis � t2
I ` shiit2

std-brfalse (9)

I ` hiis
I ` hiis � t

std-seq (10)

hi0is 2 I; i0) i
I ` hiis � t

std-induction (11)

i
I ` hiis std-base (12)

Figure 7: Proof Rules for Standard Invariants

10

6 : g 2 � i 4
hx = 1 ^ y = 2i6 2 I x = 1 ^ y = 2) x = 1 ^ y = 2

I ` hx = 1 ^ y = 2i6 � 4
I ` 6hx = 1 ^ y = 2i4

Figure 8: Full Proof Tree for I ` 6hx = 1 ^ y = 2i4

hx = 1 ^ y = 2i6 2 I
I ` hx = 1 ^ y = 2i6 � 4
I ` 6hx = 1 ^ y = 2i4

Figure 9: Abbreviated Proof Tree for I ` 6hx = 1 ^ y = 2i4

hx = 1i3 2 I
I ` hx = 1 ^ 2 = 2i3 � 4
I ` 3hx = 1 ^ y = 2i4

hx = 1 ^ y = 2i6 2 I
I ` hx = 1 ^ y = 2i6 � 4
I ` 6hx = 1 ^ y = 2i4

I ` hx = 1 ^ y = 2i4

Figure 10: Abbreviated Proof Tree for I ` hx = 1 ^ y = 2i4

Figure 8 presents the proof tree for I ` 6hx = 1 ^ y = 2i4. To save space on the page,
from now on we present proof trees in abbreviated form. This form omits details such as
antecedents that are references to nodes in the control
ow graph or trivial implications.
Figure 9 presents the abbreviated proof tree for I ` 6hx = 1 ^ y = 2i4. Figure 10 presents
the abbreviated proof tree for I ` hx = 1 ^ y = 2i4. In these proof trees,

I = fhx = 1i3; hx = 1 ^ y = 2i4; hx = 1 ^ y = 2i5; hx = 1 ^ y = 2i6g

3.3.2 Soundess of Proof Rules for Standard Invariants

We next prove a key soundness theorem: that if there exists a proof of all of the invariants
in I, then the invariants correctly re
ect the relationships during the execution of the
program. We �rst prove a lemma used in the theorem, then prove the theorem itself.

Lemma 1 Assume for all hiis 2 I, I ` hiis. Also assume a proof of I ` hiis � t and a

partial execution hs0; m0i ! � � � ! hs;mi such that I ` hi0is implies m(i0) is true. Then

m(i) is true.

Proof: We do a case analysis of the last rule in the proof of I ` hiis � t. Rules 10 and 11
are the only rules of the correct form.

� The last rule in the proof is rule 10. In this case we have a proof of I ` hiis, and by
assumption m(i) is true.

� The last rule in the proof is rule 11 with hi0is 2 I and i0) i, which implies m(i0))
m(i). By assumption hi0is 2 I implies I ` hi0is, which implies m(i0) is true. We can
therefore simplify m(i0)) m(i) to m(i) is true.

11

Theorem 1 Assume for all standard invariants hiis 2 I, I ` hiis. Then I ` hiit and

hs0; m0i ! � � � ! ht;mi implies m(i) is true.

Proof: Induction on the length of the partial execution hs0; m0i ! � � � ! ht;mi.
Base: In this case t = s0, which implies pred(t) = ;. The proof is therefore a use of rule
12 with i, which implies m(i) is true.
Induction: In this case the partial execution is at least one step long, so we can write it
as hs0; m0i ! � � � hs;m0i ! ht;mi for some s 2 pred(t). We do a case analysis of the last
rule in the proof of I ` hiit. Rules 12 and 5 are the only rules of the correct form.

� The last rule is 12 with i, which implies m(i) is true.

� The last rule is 5. Because s 2 pred(t), there is a proof of I ` shiit. We do a case
analysis of the last rule in this proof. Rules 6, 7, 8 and 9 are the only rules of the
correct form.

{ The last rule is 6, with s : nop t. Then m = m0 and we have a proof of I ` hiis�t.
By Lemma 1, m(i) is true.

{ The last rule is 7, with s : v e t. Then m = m0[v 7! m0(e)] and we have a
proof of I ` hi[e=v]is � t. By Lemma 1, m0(i[e=v]) is true, which we can rewrite
as m0[v 7! m0(e)](i) is true, then simplify to m(i) is true.

{ The last rule is 8, with s : br c t t0, m0 = m, and m0(c) is true, and there is a
proof of I ` hc) iis � t. By Lemma 1, m0(c) i) is true, which we can simplify
to m0(c)) m0(i), then to m(i) is true.

{ The last rule is 9, with s : br c t0 t, m0 = m, and m0(c) is false, and there is
a proof of I ` h:c) iis � t. By Lemma 1, m0(:c) i) is true, which we can
simplify to m0(:c)) m0(i), then to m(i) is true.

3.4 Simulation Invariants

We next present the logic that the compiler uses to prove simulation invariants between
two programs P and T . We assume that P and T are two disjoint control
ow graphs with
entry nodes sP0 and sT0 and initial memories mP

0 and mT

0 , respectively. We also assume sets
foP1 ; : : : ; o

P

n
g and foT1 ; : : : ; o

T

n
g of externally observable variables and that corresponding

externally observable variables have the same values at the start of the program | i.e.,
mP

0 (o
P

i
) = mT

0 (o
T

i
) for 1 � i � n.

For purposes of presentation, we adopt the convention that P is the original program
and T is the transformed program, although of course the logic imposes no constraint on
the origin of the two programs. Simulation invariants consist of two partial simulation
invariants that together express a simulation relationship between the partial executions
of the programs. For example, hc1; e1is1 � hc2; e2is2 is true if for all partial executions
of P that reach s1 with the condition c1 true, there exists a partial execution of T that
reaches s2 with c2 true such that e1 = e2. Like the logic for standard invariants presented
in Section 3.3, the logic for simulation invariants uses multiple labels to express how the

ow of control a�ects relationships between the two programs.

De�nition 3 A partial simulation invariant p has the form hc; eit, shc; eit or hc; eis � t,
where c is a condition and e is an expression.

12

We adopt the convention that a partial simulation invariant of the form heit, sheit, or
heis � t denotes, respectively, htrue; eit, shtrue; eit, or htrue; eis � t.

De�nition 4 A simulation invariant has the form p1 � p2, where p1 and p2 are partial

simulation invariants.

Figures 11, 12, and 13 present the proof rules. Each proof propagates the partial
simulation invariants against the
ow of control through the two programs. Eventually,
the partial simulation invariants reach program points where it is possible to terminate the
proof by applying rule 13 or rule 14. The rules in Figure 12 propagate the partial simulation
invariant from the original program; the rules in Figure 13 propagate the partial simulation
invariant from the transformed program.

The proof rules all refer to a set I of invariants. In general, this set will contain
both standard invariants of the form hcis and simulation invariants of the form hc1; e1is1�
hc2; e2is2. We require that it does not contain simulation invariants whose partial simulation
invariants are of the form shc; eit or hc; eis � t.

The proof rules illustrate a key di�erence between the treatment of the original and
transformed programs. Rule 15 requires that the simulation invariant hold on all paths
in the original program. Rule 22 requires only that the simulation invariant hold on one
path in the transformed program. This di�erence re
ects the asymmetry in the implicit
quanti�ers of the simulation invariant, which is true if for all paths in the original program,
there exists a path in the transformed program that satis�es the appropriate conditions.

(oP1 ; : : : ; o
P

n
) = (oT1 ; : : : ; o

T

n
) ^ c1) c2 ^ e1 = e2

I ` hc1; e1isP0 � hc2; e2is
T

0

base (13)

I ` hi1is1; I ` hi2is2; hc
0

1; e
0

1is1 � hc
0

2; e
0

2is2 2 I;
i1 ^ c1) c0

1; i1 ^ i2 ^ c1 ^ e0

1 = e0

2) (c2 ^ e1 = e2)
I ` hc1; e1is1 � t� hc2; e2is2

induction (14)

Figure 11: Simulation Invariant Base and Induction Proof Rules

3.4.1 The Simulation Condition

To prove that the transformed program simulates the original program, the compiler gen-
erates a set of invariants I and a proof of each invariant. We require one of the invariants
to state that the transformed program preserves the values of the externally observable
variables. We formalize this concepts as follows:

De�nition 5 A transformed program T simulates an original program P if there exists a

set of invariants I such that

� for all standard invariants hiis 2 I, I ` hiis,

� for all simulation invariants hc1; e1is1 � hc2; e2is2 2 I, I ` hc1; e1is1 � hc2; e2is2, and

13

pred(t) 6= ;; 8s 2 pred(t): I ` shc; eit� p
I ` hc; eit� p

orig-pred (15)

s : nop t; I ` hc; eis � t� p
I ` shc; eit� p

orig-nop (16)

s : v e0 t; I ` hc[e0=v]; e[e0=v]is � t� p
I ` shc; eit� p

orig-assign (17)

s : br c0 t1 t2; I ` hc ^ c0; eis � t1 � p
I ` shc; eit1 � p

orig-brtrue (18)

s : br c0 t1 t2; I ` hc ^ :c
0; eis � t2 � p

I ` shc; eit2 � p
orig-brfalse (19)

I ` hc1; eis � t� p; I ` hc2; eis � t� p; c) c1 _ c2
I ` hc; eis � t� p

orig-case (20)

I ` hc; eis� p
I ` hc; eis � t� p

orig-step (21)

Figure 12: Proof Rules for the Original Program P

9s 2 pred(t): I ` p� shc; eit
I ` p� hc; eit

trans-pred (22)

s : nop t; I ` p� hc; eis
I ` p� shc; eit

trans-nop (23)

s : v e0 t; I ` p� hc[e0=v]; e[e0=v]is
I ` p� shc; eit

trans-assign (24)

s : br c0 t1 t2; I ` p� hc ^ c0; eis
I ` p� shc; eit1

trans-brtrue (25)

s : br c0 t1 t2; I ` p� hc ^ :c0; eis
I ` p� shc; eit2

trans-brfalse (26)

Figure 13: Proof Rules for the Transformed Program T

14

� the simulation invariant h(oP1 ; : : : ; o
P

n
)isP

x
� h(oT1 ; : : : ; o

T

n
)isT

x
2 I, where foP1 ; : : : ; o

P

n
g

and foT1 ; : : : ; o
T

n
g are sets of corresponding externally observable variables, sP

x
is the

exit node in P , and sT
x
is the exit node in T .

3.4.2 Standard Form Proofs of Simulation Invariants

We next introduce the concept of a standard form for proofs of simulation invariants. This
standard form simpli�es the presentation of the soundness proofs. A standard form proof
has the following structure. Each leaf in the proof tree is a use of rule 13 or 14. Along
each path in the proof tree from the leaves towards the root, the proof �rst uses rules 22
through 26 to propagate the partial simulation invariant from the transformed program
through the program. Note that in this phase of the proof tree, each rule use has exactly
one child. Next, uses of rules 15 through 21 appear on the path. These uses propagate the
partial simulation invariant from the original program P . Because the proof must verify
the simulation invariant for all paths in the original program, uses of rule 5 will have one
child for each predecessor of the corresponding node in the control
ow graph.

De�nition 6 A proof of a simulation invariant is in standard form if all uses of rules 22

through 26 precede all uses of rules 15 through 21.

Theorem 2 If I ` p1�p2, then there exists a proof of I ` p1�p2 that is in standard form.

Proof: Induction on the depth of the proof of I ` p1 � p2.
Base: The proof is a use of rule 13 or 14. By de�nition of standard form, the proof is in
standard form.
Induction Step: We assume that the proof is in standard form except for the last rule,
then �nd an equivalent proof in standard form. We do a case analysis of the last rule.

� The last rule is one of 15 through 21. By de�nition of standard form, the proof is in
standard form.

� The last rule is one of 22 through 26. The proof is in standard form unless the
next-to-last rule is one of 15 through 21. We do a case analysis on the next-to-last
rule.

{ The next-to-last rule is 21 or one of 16 through 19. Then the proof is of the
form:

�
I ` p0

1 � p0

2

I ` p1 � p0

2

I ` p1 � p2

We can switch the last two rules of the proof to obtain the following equivalent
proof:

�
I ` p0

1 � p0

2

I ` p0

1 � p2
I ` p1 � p2

15

By the induction hypothesis, we can obtain an equivalent standard form proof
�0 for the proof

�
I ` p0

1 � p0

2

I ` p0

1 � p2

The following proof is then in standard form:

�0

I ` p1 � p2

{ The next-to-last rule is 15. Then the proof is of the form:

�1
I ` p11 � p0

2 � � �
�n

I ` pn1 � p0

2

I ` p1 � p0

2

I ` p1 � p2

We can push the last rule of the proof through rule 15 to convert the proof to
an equivalent proof of the form:

�1
I ` p11 � p0

2

I ` p11 � p2 � � �

�n
I ` pn1 � p0

2

I ` pn1 � p2
I ` p1 � p2

By the induction hypothesis, we can obtain a standard form proof �0

i
for each of

the proofs
�i

I ` pi1 � p0

2

I ` pi1 � p2

then use these standard form proofs to construct the following standard form
proof of I ` p1 � p2:

�0

1 � � ��
0

n

I ` p1 � p2

{ The next-to-last rule is 20. Then the proof is of the form:

�1
I ` hc1; eis � t� p0

�2
I ` hc2; eis � t� p0 c) c1 _ c2

I ` hc; eis � t� p0

I ` hc; eis � t� p

We can push the last rule of the proof through rule 20 to convert the proof to
an equivalent proof of the form:

�1
I ` hc1; eis � t� p0

I ` hc1; eis � t� p

�2
I ` hc2; eis � t� p0

I ` hc2; eis � t� p c) c1 _ c2
I ` hc; eis � t� p

16

By the induction hypothesis, we can obtain standard form proofs �0

1 and �0

2 for
the two proofs

�1
I ` hc1; eis � t� p0

I ` hc1; eis � t� p

�2
I ` hc2; eis � t� p0

I ` hc2; eis � t� p

then use these standard form proofs to construct the following standard form
proof of I ` p1 � p2:

�0

1 �0

2 c) c1 _ c2
I ` p1 � p2

3.4.3 Soundness of Proof Rules for Simulation Invariants

We next show that the proof rules for simulation invariants are sound. We �rst prove two
lemmas, then the theorem.

Lemma 2 Assume that for all hiis 2 I, I ` hiis and for all hc1; e1is1 � hc2; e2is2 2 I,
I ` hc1; e1is1 � hc2; e2is2. Assume a standard form proof of I ` p � hc2; e2is2 whose last

rule is one of 13, 14 or 22, where p = hc1; e1is1 or p = hc1; e1is1 � t. Also assume a partial

execution hsP0 ; m
P

0 i ! � � � ! hs1; m1i such that m1(c1) is true. If p = hc1; e1is1 � t, also
assume that I ` hc0; e0is1 � hc; eis and m1(c

0) is true implies that there exists a partial

execution hsT0 ; m
T

0 i ! � � � ! hs;mi such that m(c) is true and m1(e
0) = m(e). Then

there exists a partial execution hsT0 ; m
T

0 i ! � � � ! hs2; m2i such that m2(c2) is true and

m1(e1) = m2(e2).

Proof: Induction on the length of the proof of I ` p� hc2; e2is2.
Base: The proof consists of a use of either rule 13 or rule 14. We do a case analysis of this
rule.

� The proof is a use of rule 13 with (oP1 ; : : : ; o
P

n
) = (oT1 ; : : : ; o

T

n
)) c2 ^ e1 = e2. Then

m1 = mP

0 and m2 = mT

0 , which implies m1(e1) = m2(e2) and m1(c1)) m2(c2).
Because m1(c1) is true, m2(c2) is true.

� The proof is a use of rule 14 with p = hc1; e1is1 � t, I ` hi1is1, I ` hi2is2, hc
0

1; e
0

1is1 �
hc0

2; e
0

2is2 2 I, i1 ^ c1) c0

1 and i1 ^ i2 ^ c1 ^ e0

1 = e0

2) (c2 ^ e1 = e2). By assumption
m1(c1) is true, by Theorem 1 m1(i1) is true, so i1 ^ c1) c0

1 implies m1(c
0

1) is true.
By assumption, hc0

1; e
0

1is1 � hc
0

2; e
0

2is2 2 I implies that I ` hc0

1; e
0

1is1 � hc
0

2; e
0

2is2, so
there exists a partial execution hsT0 ; m

T

0 i ! � � � ! hs;mi such that m(c0

2) is true and
m1(e

0

1) = m(e0

2). By Theorem 1 m(i1) is true. Let m2 = m. Then i1 ^ i2 ^ c1 ^
e0

1 = e0

2) (c2 ^ e1 = e2) implies m1(i1) ^ m2(i2) ^ m1(c1) ^ m1(e
0

1) = m2(e
0

2))
(m2(c2) ^ m1(e1) = m2(e2)), which can be simpli�ed to obtain m2(c2) is true and
m1(e1) = m2(e2).

Induction: We do a case analysis of the last rule of the proof. Because the proof is at
least two rules deep, the last rule cannot be rule 13 or 14. So the last rule must be 22. In
this case there is standard form proof of I ` p � shc2; e2is2. We do a case analysis of the
last rule of this proof. Because the proof is in standard form, rules 23, 24, 25, and 26 are
the only possibilities.

17

� The last rule is 23 with s : nop s2. There is a standard form proof � of I ` p�hc2; e2is.
Consider the last rule in �. Because this proof can be extended using rule 23, then rule
22 to a standard form proof of I ` p�hc2; e2is2, the last rule in � is not one of rules 15
through 21. The only other rules that are of the correct form are rules 13, 14, and 22.
By the induction hypothesis, there exists a partial execution hsT0 ; m

T

0 i ! � � � ! hs;mi
such that m(c2) is true and m1(e1) = m(e2). We can extend this partial execution
to a partial execution hsT0 ; m

T

0 i ! � � � ! hs;mi ! hs2; m2i, where m2 = m. Then
m2(c2) is true and m1(e1) = m2(e2).

� The last rule is 24 with s : v e s2. There is a standard form proof � of I `
p�hc2[e=v]; e2[e=v]is. Consider the last rule in �. Because this proof can be extended
using rule 24, then rule 22 to a standard form proof of I ` p � hc2; e2is2, the last
rule in � is not one of rules 15 through 21. The only other rules that are of the
correct form are rules 13, 14, and 22. By the induction hypothesis, there exists a
partial execution hsT0 ; m

T

0 i ! � � � ! hs;mi such that m(c2[e=v]) is true and m1(e1) =
m(e2[e=v]). We can extend this partial execution to a partial execution hsT0 ; m

T

0 i !
� � � ! hs;mi ! hs2; m2i, where m2 = m[v 7! m(e)]. We can then simplify m(c2[e=v])
is true to m[v 7! m(e)](c2) is true, then to m2(c2) is true. Similarly, we can simplify
m1(e1) = m(e2[e=v]) to m1(e1) = m2(e2).

� The last rule is rule 25 with s : br c s2 t. There is a standard form proof of
I ` p � hc2 ^ c; e2is whose last rule is 13, 14, or 22. By the induction hypothesis,
there exists a partial execution hsT0 ; m

T

0 i ! � � � ! hs;mi such that m(c2 ^ c) is true
and m1(e1) = m(e2). Because m(c) is true, we can extend this partial execution to
a partial execution hsT0 ; m

T

0 i ! � � � ! hs;mi ! hs2; m2i, where m2 = m, and obtain
m2(c2) is true and m1(e1) = m2(e2).

� The last rule is rule 26 with s : br c t s2. There is a standard form proof of
I ` p � hc2 ^ :c; e2is whose last rule is 13, 14, or 22. By the induction hypothesis,
there exists a partial execution hsT0 ; m

T

0 i ! � � � ! hs;mi such that m(c2 ^:c) is true
and m1(e1) = m(e2). Because m(c) is false, we can extend this partial execution to
a partial execution hsT0 ; m

T

0 i ! � � � ! hs;mi ! hs2; m2i, where m2 = m, and obtain
m2(c2) is true and m1(e1) = m2(e2).

Lemma 3 Assume that for all hiis 2 I, I ` hiis and for all hc1; e1is1 � hc2; e2is2 2 I,
I ` hc1; e1is1 � hc2; e2is2. Assume a standard form proof of I ` hc1; e1is1 � t � hc2; e2is2
and a partial execution hsP0 ; m

P

0 i ! � � � ! hs1; m1i such that m1(c1) is true. Also assume

that I ` hc0; e0is1 � hc; eis and m1(c
0) is true implies that there exists a partial execution

hsT0 ; m
T

0 i ! � � � ! hs;mi such that m(c) is true and m1(e
0) = m(e). Then there exists a

partial execution hsT0 ; m
T

0 i ! � � � ! hs2; m2i such that m2(c2) is true and m1(e1) = m2(e2).

Proof: Consider the proof tree of I ` hc1; e1is1 � t � hc2; e2is2. Given a path in this tree
from the root to a leaf, we can start at the root and compute the number of consecutive
uses of rule 20 until the �rst use of a di�erent rule. We call this number the case analysis
number of the path. If, for example, the last rule in the proof is not a use of rule 20, then
the root is not a use of rule 20 and, for all paths, the case analysis number is zero. The

18

proof is by induction on the maximum over all paths from the root to a leaf of the case
analysis number of the path.
Base: In this case the last rule of the proof is not 20. The only other rules that are of the
correct form are rules 14, 22, and 21. We do a case analysis on the last rule of the proof:

� The last rule is 14 or 22. By Lemma 2, there exists a partial execution hsT0 ; m
T

0 i !
� � � ! hs2; m2i such that m2(c2) is true and m1(e1) = m2(e2).

� The last rule is 21, with I ` hc1; e1is1 � hc2; e2is2. Then by assumption, there
exists a partial execution hsT0 ; m

T

0 i ! � � � ! hs2; m2i such that m2(c2) is true and
m1(e1) = m2(e2).

Induction: Assume that the proof has maximum case analysis number of k, where k
is at least one, and the lemma holds for all proofs with maximum case analysis number
less than k. In this case the last rule of the proof is 20 with c1) c11 _ c21, and proofs of
I ` hc11; e1is1 � t � hc2; e2is2, I ` hc

2
1; e1is1 � t � hc2; e2is2. Note that these proofs have a

maximum case analysis number less than k. If we can show that either m1(c
1
1) is true or

m2(c
2
1) is true, we can apply the induction hypothesis to one of the proofs.

Note that c1) c11_ c
2
1 impliesm1(c1)) m1(c

1
1)_m1(c

2
1). Because m1(c1) is true, either

m1(c
1
1) is true or m1(c

2
1) is true. Then by the induction hypothesis, there exists a partial

execution hsT0 ; m
T

0 i ! � � � ! hs2; m2i such that m2(c2) is true and m1(e1) = m2(e2).

Theorem 3 Assume that for all hiis 2 I, I ` hiis and for all hc1; e1is1 � hc2; e2is2 2 I,
I ` hc1; e1is1� hc2; e2is2. Then for all standard form proofs of I ` hc1; e1is1� hc2; e2is2 and
for all partial executions hsP0 ; m

P

0 i ! � � � ! hs1; m1i such that m1(c1) is true, there exists a
partial execution hsT0 ; m

T

0 i ! � � � ! hs2; m2i such that m2(c2) is true and m1(e1) = m2(e2).

Proof: Induction on the length of the partial execution hsP0 ; m
P

0 i ! � � � ! hs1; m1i.
Base: If the length is 0, then s1 = sP0 and pred(s1) = ;. We do a case analysis of the last
rule of the proof of I ` hc1; e1is1 � hc2; e2is2. The only rules that are of the correct form
are rules 13, 15, and 22. Because pred(s1) = ;, rule 15 cannot be the last rule.

� The last rule is 13 or 22. Then by Lemma 2, there exists a partial execution
hsT0 ; m

T

0 i ! � � � ! hs2; m2i such that m2(c2) is true and m1(e1) = m2(e2).

Induction: In this case the partial execution of P is at least one step long, so we can
write it as hsP0 ; m

P

0 i ! � � � ! hs;mi ! hs1; m1i. We do a case analysis of the last rule of
the proof of I ` hc1; e1is1 � hc2; e2is2. The only rules that are of the correct form are rules
13, 15, and 22.

� The last rule is 13 or 22. By Lemma 2, there exists a partial execution hsT0 ; m
T

0 i !
� � � ! hs2; m2i such that m2(c2) is true and m1(e1) = m2(e2).

� The last rule is 15. Because s 2 pred(s1), there is a standard form proof of I `
shc1; e1is1 � hc2; e2is2. We do a case analysis of the last rule in this proof. Because
the proof is in standard form, 22 is not the last rule. The only other rules that are
of the correct form are 16, 17, 18, and 19.

19

{ The last rule is 16, with s : nop s1. Then m1 = m. By assumption m1(c1)
is true, which implies that m(c1) is true. There is also a standard form proof
of I ` hc1; e1is � s1 � hc2; e2is2. By Lemma 3, there exists a partial execution
hsT0 ; m

T

0 i ! � � � ! hs2; m2i such that m2(c2) is true and m(e1) = m2(e2), which
implies that m1(e1) = m2(e2).

{ The last rule is 17, with s : v e s1. Then m1 = m[v 7! m(e)]. By assumption
m1(c1) is true, which implies that m(c1[e=v]) is true. There is also a standard
form proof of I ` hc1[e=v]; e1[e=v]is � s1 � hc2; e2is2. By Lemma 3, there exists
a partial execution hsT0 ; m

T

0 i ! � � � ! hs2; m2i such that m2(c2) is true and
m(e1[e=v]) = m2(e2), which we can simplify to m1(e1) = m2(e2).

{ The last rule is 18, with s : br c s1 t. Then m1 = m and m(c) is true. By
assumption m1(c1) is true, which implies that m(c1 ^ c) is true. There is also
a standard form proof of I ` hc1 ^ c; e1is � s1 � hc2; e2is2. By Lemma 3, there
exists a partial execution hsT0 ; m

T

0 i ! � � � ! hs2; m2i such that m2(c2) is true
and m1(e1) = m2(e2).

{ The last rule is 19, with s : br c t s1. Then m1 = m and m(c) is false. By
assumption m1(c1) is true, which implies that m(c1 ^ :c) is true. There is also
a standard form proof of I ` hc1 ^ :c; e1is � s1 � hc2; e2is2. By Lemma 3, there
exists a partial execution hsT0 ; m

T

0 i ! � � � ! hs2; m2i such that m2(c2) is true
and m1(e1) = m2(e2).

4 Optimization Schemas

We next present examples that illustrate how to prove the correctness of a variety of
standard optimizations. Our goal is to establish a general schema for each optimization.
The compiler would then use the schema to produce a correctness proof that goes along
with each optimization.

4.1 Dead Assignment Elimination

The compiler can eliminate an assignment to a local variable if that variable is not used after
the assignment. The proof schema is relatively simple: the compiler simply generates sim-
luation invariants that assert the equality of corresponding live variables at corresponding
points in the program. Figures 14 and 15 present an example that we use to illustrate the
schema. This example continues the example introduced in Section 2. Figure 16 presents
the invariants that the compiler generates for this example.

Note that the set I of invariants contains no standard invariants. In general, dead
assignment elimination requires only simulation invariants. The proofs of these invariants
are simple; the only complication is the need to skip over dead assignments. Figure 17,
which contains the proof tree for h(gP ; iP)i4P � h(gT ; iT)i4T , illustrates this situation.

20

Figure 14: Program P Before Dead Assign-
ment Elimination

Figure 15: Program T After Dead Assign-
ment Elimination

I = fh(gP ; iP)i4P � h(gT ; iT)i4T ; hiP i5P � hiT i5T ; hiP i6P � hiT i6T ; hgP i7P � hgT i7Tg

Figure 16: Invariants for Dead Assignment Elimination

(gP) = (gT)) (gP ; 0) = (gT ; 0)
I ` h(gP ; 0)i1P � h(gT ; 0)i1T

I ` h(gP ; 0)i1P � 1T h(gT ; iT)i4T
I ` h(gP ; 0)i1P � h(gT ; iT)i4T

I ` h(gP ; 0)i1P � 2P � h(gT ; iT)i4T
I ` 1P h(gP ; iP)i2P � h(gT ; iT)i4T
I ` h(gP ; iP)i2P � h(gT ; iT)i4T

I ` h(gP ; iP)i2P � 3P � h(gT ; iT)i4T
I ` 2P h(gP ; iP)i3P � h(gT ; iT)i4T
I ` h(gP ; iP)i3P � h(gT ; iT)i4T

I ` h(gP ; iP)i3P � 4P � h(gT ; iT)i4T
I ` 3P h(gP ; iP)i4P � h(gT ; iT)i4T

hiP i6P � hiT i6T 2 I;
iP = iT) (2 � iP ; iP) = (2 � iT ; iT)

I ` h(2 � iP ; iP)i6P � 4P � h(2 � iT ; iT)i6T
I ` h(2 � iP ; iP)i6P � 4P � 6T h(gT ; iT)i4T
I ` h(2 � iP ; iP)i6P � 4P � h(gT ; iT)i4T
I ` 6P h(gP ; iP)i4P � h(gT ; iT)i4T

I ` h(gP ; iP)i4P � h(gT ; iT)i4T

Figure 17: Proof Tree for I ` h(gP ; iP)i4P � h(gT ; iT)i4T

21

4.2 Branch Movement

Our next optimization moves a conditional branch from the top of a loop to the bottom.
The optimization is legal if the loop always executes at least once. This optimization is
di�erent from all the other optimizations we have discussed so far in that it changes the
control
ow. Figure 18 presents the program before branch movement; Figure 19 presents
the program after branch movement. Figure 20 presents the set of invariants that the
compiler generates for this example.

Figure 23 presents the proof tree for I ` hgP i7P � hgT i7T . One of the paths that the
proof must consider is the path in the original program P from 1P to 4P to 7P . No execution
of P , of course, will take this path | the loop always executes at least once, and this path
corresponds to the loop executing zero times. The fact that this path will never execute
shows up as a false condition in the partial simulation invariant for P that is propagated
from 7P back to 1P . The corresponding path in T that is used to prove I ` hgP i7P �hgT i7T
is the path from 1T through 5T , 6T , and 4T to 7T . Although the values of gP and gT are not
the same on the two paths, the fact that the condition in the partial simulation invariant
from P is false enables the use of rule 13 at the leaf of the proof tree. Figure 21 presents
the branch of the proof tree for this path.

Figure 18: Program P Before Branch
Movement

Figure 19: Program T After Branch Move-
ment

I = fhiP i5P � hiT i5T ; hiP i6P � hiT i6T ; hgP i7P � hgT i7Tg

Figure 20: Invariants for Branch Movement

22

0 � 24) 3 � 24 ^ gP = 6
I ` h0 � 24; gP i1P � h3 � 24; 6i1T

I ` h0 � 24; gP i1P � 1T hiT + 3 � 24; 2 � (iT + 3)i5T
I ` h0 � 24; gP i1P � hiT + 3 � 24; 2 � (iT + 3)i5T

I ` h0 � 24; gP i1P � 5T hiT � 24; 2 � iT i6T
I ` h0 � 24; gP i1P � hiT � 24; 2 � iT i6T
I ` h0 � 24; gP i1P � 6T hiT � 24; gT i4T
I ` h0 � 24; gP i1P � hiT � 24; gT i4T

I ` h0 � 24; gP i1P � 4T hgT i7T
I ` h0 � 24; gP i1P � hgT i7T

I ` h0 � 24; gP i1P � 4P � hgT i7T
I ` 1P hiP � 24; gP i4P � hgT i7T

Figure 21: Proof Tree �1 for I ` 1P hiP � 24; gP i4P � hgT i7T

hiP i6P � hiT i6T 2 I; iP � 24 ^ iP = iT) (iT � 24 ^ 2 � iP = 2 � iT)
I ` hiP � 24; 2 � iP i6P � 4P � hiT � 24; 2 � iT i6T
I ` hiP � 24; 2 � iP i6P � 4P � 6T hiT � 24; gT i4T
I ` hiP � 24; 2 � iP i6P � 4P � hiT � 24; gT i4T

I ` hiP � 24; 2 � iP i6P � 4P � 4T hgT i7T
I ` hiP � 24; 2 � iP i6P � 4P � hgT i7T
I ` 6P hiP � 24; gP i4P � hgT i7T

Figure 22: Proof Tree �2 for I ` 6P hiP � 24; gP i4P � hgT i7T

�1 �2
I ` hiP � 24; gP i4P � hgT i7T

I ` hiP � 24; gP i4P � 7P � hgT i7T
I ` 4P hgP i7P � hgT i7T
I ` hgP i7P � hgT i7T

Figure 23: Proof Tree for I ` hgP i7P � hgT i7T

23

4.3 Induction Variable Elimination

Our next optimization eliminates the induction variable i from the loop, replacing it with g.
The correctness of this transformation depends on the invariant hgP = 2 � iP i4P . Figure 24
presents the program before induction variable elimination; Figure 25 presents the program
after induction variable elimination. Figure 26 presents the set of invariants that the
compiler generates for this example. These invariants characterize the relationship between
the eliminated induction variable iP from the original program and the variable gT in
the transformed program. Figure 27 presents the proof tree for I ` h2 � iP i4P � hgT i4T ;
Figure 28 presents the proof tree for I ` hgP i7P � hgT i7T .

Figure 24: Program P Before Induction
Variable Elimination

Figure 25: Program T After Induction
Variable Elimination

I = fhgP = 2 � iP i4P ; h2 � iP i5P � hgT i5T ; h2 � iP i4P � hgT i4T ; hgP i7P � hgT i7Tg

Figure 26: Invariants for Induction Variable Elimination

24

h2 � iP i5P � hgT i5T 2 I; 2 � iP = gT) 2 � (iP + 3) = gT + 6
I ` h2 � (iP + 3)i5P � 6P � hgT + 6i5T
I ` h2 � (iP + 3)i5P � 6P � 5T hgT i4T
I ` h2 � (iP + 3)i5P � 6P � hgT i4T

I ` 5P h2 � iP i6P � hgT i4T
I ` h2 � iP i6P � hgT i4T

I ` h2 � iP i6P � 4P � hgT i4T
I ` 6P h2 � iP i4P � hgT i4T
I ` h2 � iP i4P � hgT i4T

Figure 27: Proof Tree for I ` h2 � iP i4P � hgT i4T

I ` hgP = 2 � iP i4P ; h2 � iP i4P � hgT i4T 2 I;
gP = 2 � iP ^ iP � 24 ^ 2 � iP = gT) (gT � 48 ^ gP = gT)

I ` hiP � 24; gP i4P � 7P � hgT � 48; gT i4T
I ` hiP � 24; gP i4P � 7P � 4T hgT i7T
I ` hiP � 24; gP i4P � 7P � hgT i7T

I ` 4P hgP i7P � hgT i7T
I ` hgP i7P � hgT i7T

Figure 28: Proof Tree for I ` hgP i7P � hgT i7T

25

4.4 Loop Unrolling

The next optimization unrolls the loop once. Figure 29 presents the program before loop
unrolling; Figure 30 presents the program after unrolling the loop. Note that the loop
unrolling transformation preserves the loop exit test; this test can be eliminated by the
dead code elimination optimization discussed in Section 4.5.

Figure 29: Program P Before Loop Un-
rolling

Figure 30: Program T After Loop Un-
rolling

I = fhgP%12 = 0 _ gP%12 = 6i4P ; hgP%12 = 0; gP i5P � hgT i2T ;

hgP%12 = 6; gP i4P � hgT i3T ; hgP%12 = 6; gP i5P � hgT i5T ;

hgP%12 = 0; gP i4P � hgT i4T ; hgP i7P � hgP i7Pg

Figure 31: Invariants for Loop Unrolling

Figure 31 presents the set of invariants that the compiler generates for this example.
Note that, unlike the simulation invariants in previous examples, these simulation invariants
have conditions. The conditions are used to separate di�erent executions of the same node
in the original program. Some of the time, the execution at node 4P corresponds to the
execution at node 4T , and other times to the execution at node 3T . The conditions in
the simulation invariants identify when, in the execution of the original program, each
correspondence holds. For example, when gP%12 = 0, the execution at 4P corresponds to
the execution at 4T ; when gP%12 = 6, the execution at 4P corresponds to the execution at
3T .

Figure 34 presents the proof tree for I ` hgP i7P � hgT i7T . The key part of the proof
is the use of the case analysis rule, rule 20. This rule is a key component of correctness
proofs for transformations, like loop unrolling, that replicate code.

26

hgP%12 = 0; gP i4P � hgT i4T 2 I; gP%12 = 0 ^ gP � 48) gP%12 = 0;
gP%12 = 0 ^ gP � 48 ^ gP = gT) (gT � 48 ^ gP = gT)
I ` hgP%12 = 0 ^ gP � 48; gP i4P � 7P � hgT � 48; gT i4T

I ` hgP%12 = 0 ^ gP � 48; gP i4P � 7P � 4T hgT i7T
I ` hgP%12 = 0 ^ gP � 48; gP i4P � 7P � hgT i7T

Figure 32: Proof Tree �1 for I ` hgP%12 = 0 ^ gP � 48; gP i4P � 7P � hgT i7T

I ` hgP%12 = 0 _ gP%12 = 6i4P ; hgP%12 = 6; gP i4P � hgT i3T 2 I;
(gP%12 = 0 _ gP%12 = 6) ^ (gP%12 6= 0 ^ gP � 48)) gP%12 = 6;

(gP%12 = 0 _ gP%12 = 6) ^ (gP%12 6= 0 ^ gP � 48) ^ gP = gT) (gT � 48 ^ gP = gT)
I ` hgP%12 6= 0 ^ gP � 48; gP i4P � 7P � hgT � 48; gT i3T

I ` hgP%12 6= 0 ^ gP � 48; gP i4P � 7P � 3T hgT i7T
I ` hgP%12 6= 0 ^ gP � 48; gP i4P � 7P � hgT i7T

Figure 33: Proof Tree �2 for I ` hgP%12 6= 0 ^ gP � 48; gP i4P � 7P � hgT i7T

�1 �2 gP � 48) (gP%12 = 0 ^ gP � 48) _ (gP%12 6= 0 ^ gP � 48)

I ` hgP � 48; gP i4P � 7P � hgT i7T
I ` 4P hgP i7P � hgT i7T
I ` hgP i7P � hgT i7T

Figure 34: Proof Tree for I ` hgP i7P � hgT i7T

27

4.5 Dead Code Elimination

Our next optimization is dead code elimination. We continue with our example by elim-
inating the branch in the middle of the loop at node 3. Figure 35 presents the program
before the branch is eliminated. The key property that allows the compiler to remove the
branch is that g%12 = 6^ g � 48 at 3, which implies that g < 48 at 3. In other words, the
condition in the branch is always true. Figure 36 presents the program after the branch
is eliminated. Figure 37 presents the set of invariants that the compiler generates for this
example.

Figure 35: Program P Before Dead Code
Elimination

Figure 36: Program T After Dead Code
Elimination

I = fhgP%12 = 0 ^ gP < 48i2P ; hgP%12 = 6 ^ gP � 48i3P ; hgP%12 = 6 ^ gP < 48i5P ;

hgP%12 = 0 ^ gP � 48i4P ; hgP i2P � hgP i2P ; hgP i5P � hgP i5P ;

hgP i3P � hgP i5P ; hgP i4P � hgP i4P ; hgP i7P � hgP i7Pg

Figure 37: Invariants for Dead Code Elimination

Figure 40 presents the proof tree for I ` hiP i7P � hiT i7T . One of the paths that the
proof must consider is the potential loop exit in the original program P from 3P to 7P ;
Figure 39 presents the branch of the proof tree that corresponds to this path. In fact,
the loop always exits from 4P , not 3P . This fact shows up because the conjunction of the
standard invariant hgP%12 = 6 ^ gP � 48i3P with the condition gP � 48 from the partial
simulation invariant for P at 3P is false. The corresponding path in T that is used to prove
I ` hiP i7P � hiT i7T is the path from 5T to 4T to 7T . Although the values of gP and gT
are not the same on the two paths, the fact that the conjunction described above is false
enables the use of rule 14 at the leaf of the proof tree.

28

hgP i4P � hgT i4T 2 I;
gP = gT ^ gP � 48) (gT � 48 ^ gP = gT)
I ` hgP � 48; gP i4P � 7P � hgT � 48; gT i4T

I ` hgP � 48; gP i4P � 7P � 4T hgT i7T
I ` hgP � 48; gP i4P � 7P � hgT i7T

I ` 4P hgP i7P � hgT i7T

Figure 38: Proof Tree �1 for I ` 4P hgP i7P � hgT i7T

I ` hgP%12 = 6 ^ gP � 48i3P ; hgP i3P � hgT i5T 2 I;
gP%12 = 6 ^ gP � 48 ^ gP � 48 ^ gP = gT) (gT + 6 � 48 ^ gP = gT + 6)

I ` hgP � 48; gP i3P � 7P � hgT + 6 � 48; gT + 6i5T
I ` hgP � 48; gP i3P � 7P � 5P hgT � 48; gT i4T
I ` hgP � 48; gP i3P � 7P � hgT � 48; gT i4T

I ` hgP � 48; gP i3P � 7P � 4P hgT i7T
I ` hgP � 48; gP i3P � 7P � hgT i7T

I ` 3P hgP i7P � hgT i7T

Figure 39: Proof Tree �2 for I ` 3P hgP i7P � hgT i7T

�1 �2
I ` hgP i7P � hgT i7T

Figure 40: Proof Tree for I ` hgP i7P � hgT i7T

29

5 Termination Anomalies

Throughout the paper so far, we have required that the transformed program simulate the
original program in the sense that for every execution in the original program that reaches
the exit node, there exists an execution in the transformed program that reaches the exit
node such that the values of the observable variables are the same.

There is, however, an anomaly associated with this notion of simulation. What happens
if the original program contains an in�nite loop? Then any program simulates the original
program. One can imagine that programmers might like to have stronger guarantees.

One option is to require also that the original program simulate the transformed pro-
gram. If the two programs simulate each other, the transformed program terminates if
and only if the original program terminates. And if they terminate, they terminate with
identical values in corresponding observable values. We anticipate that this will be a good
solution in practice.

There is, however, a potential anomaly associated with this approach. The logics for
proving simulation invariants are based on notions of partial correctness. For some pro-
grams, it is impossible to use the logic to prove that they simulate each other, even if they
both terminate with the same result. Consider the two programs in Figures 41 and 42 that
compute g = 48. Using the logic presented in Section 3.4, it is not possible to prove that the
iterative program in Figure 41 simulates the program in Figure 42. Roughly speaking, the
problem is that the logic cannot prove that the loop in the iterative program terminates.

Figure 41: Iterative Program to Compute
g = 48

Figure 42: Closed Form Program to Com-
pute g = 48

We do not anticipate that this anomaly will prove to be a problem in practice, because
the overwhelming majority of compiler transformations do not eliminate or introduce loops.
If it does turn out to be a problem in practice, the solution is to augment the logic so that
it can prove that loops terminate.

6 Code Generation

In principle, we believe that it is possible to produce a proof that the �nal object code
correctly implements the original program. For engineering reasons, however, we designed
the proof system to work with a standard intermediate format based on control
ow graphs.
The parser, which produces the initial control
ow graph, and the code generator, which
generates object code from the �nal control
ow graph, are therefore potential sources

30

of uncaught errors. We believe it should be straightforward, for reasonable languages, to
produce a standard parser that is not a serious source of errors. It is not so obvious how
the code generator can be made simple enough to be reliable.

Our goal is make the step from the �nal control
ow graph to the generated code be
as small as possible. Ideally, each node in the control
ow graph would correspond to
a single instruction in the generated code. To achieve this goal, it must be possible to
express the result of complicated, machine-speci�c code generation algorithms (such as
register allocation and instruction selection) using control
ow graphs. After the compiler
applies these algorithms, the �nal control
ow graph would be structured in a stylized
way appropriate for the target architecture. The code generator for the target architecture
would accept such a control
ow graph as input and use a simple translation algorithm to
produce the �nal object code.

With this approach, we anticipate that code generators can be made approximately as
simple as proof checkers. We therefore anticipate that it will be possible to build standard
code generators with an acceptable level of reliability for most users. However, we would
once again like to emphasize that it should be possible to build a framework in which the
compilation is checked from source code to object code.

In the following two sections, we �rst present an approach for a simple RISC instruction
set, then discuss an approach for more complicated instruction sets.

6.1 A Simple RISC Instruction Set

For a simple RISC instruction set, the key idea is to introduce special variables that the
code generator interprets as registers. The control
ow graph is then transformed so that
each node corresponds to a single instruction in the generated code. We �rst consider
assignment nodes.

� If the destination variable is a register variable, the source expression must be one of
the following:

{ A non-register variable. In this case the node corresponds to a load instruction.

{ A constant. In this case the node corresponds to a load immediate instruction.

{ A single arithmetic operation with register variable operands. In this case the
node corresponds to an arithmetic instruction that operates on the two source
registers to produce a value that is written into the destination register.

{ A single arithmetic operation with one register variable operand and one con-
stant operand. In this case the node corresponds to an arithmetic instruction
that operates on one source register and an immediate constant to produce a
value that is written into the destination register.

� If the destination variable of an assignment node is a non-register variable, the source
expression must consist of a register variable, and the node corresponds to a store
instruction.

It is possible to convert assignment nodes with arbitrary expressions to this form. The �rst
step is to
atten the expression by introducing temporary variables to hold the intermediate
values computed by the expression. Additional assignment nodes transfer these values to

31

the new temporary variables. The second step is to use a register allocation algorithm to
transform the control
ow graph to �t the form described above.

We next consider conditional branch nodes. If the condition is the constant true or false,
the node corresponds to an unconditional branch instruction. Otherwise, the condition
must compare a register variable with zero so that the instruction corresponds either to a
branch if zero instruction or a branch if not zero instruction.

6.2 More Complex Instruction Sets

Many processors o�er more complex instructions that, in e�ect, do multiple things in a
single cycle. In the ARM instruction set, for example, the execution of each instruction
may be predicated on several condition codes. ARM instructions can therefore be modeled
as consisting of a conditional branch plus the other operations in the instruction. The x86
instruction set has instructions that assign values to several registers.

We believe the correct approach for these more complex instruction sets is to let the
compiler writer extend the possible types of nodes in the control
ow graph. The semantics
of each new type of node would be given in terms of the base nodes in standard control

ow graphs. We illustrate this approach with an example.

For instruction sets with condition codes, the programmer would de�ne a new variable
for each condition code and new assignment nodes that set the condition codes appro-
priately. The semantics of each new node would be given as a small control
ow graph
that performed the assignment, tested the appropriate conditions, and set the appropriate
condition code variables. If the instruction set also has predicated execution, the control

ow graph would use conditional branch nodes to check the appropriate condition codes
before performing the instruction.

Each new type of node would come with proof rules automatically derived from its
underlying control
ow graph. The proof checker could therefore verify proofs on control

ow graphs that include these types of nodes. The code generator would require the
preceding phases of the compiler to produce a control
ow graph that contained only those
types of nodes that translate directly into a single instruction on the target architecture.
With this approach, all complex code generation algorithms could operate on control
ow
graphs, with their results checked for correctness.

7 Related Work

Most existing research on compiler correctness has focused on techniques that deliver a
compiler guaranteed to operate correctly on every input program [5]; we call such a com-
piler a totally correct compiler. A credible compiler, on the other hand, is not necessarily
guaranteed to operate correctly on all programs | it merely produces a proof that it has
operated correctly on the current program.

In the absence of other di�erences, one would clearly prefer a totally correct compiler
to a credible compiler. After all, the credible compiler may fail to compile some programs
correctly, while the totally correct compiler will always work. But the totally correct
compiler approach imposes a signi�cant pragmatic drawback: it requires the source code of
the compiler, rather than its output, to be proved correct. So programmers must express
the compiler in a way that is amenable to these correctness proofs. In practice this invasive

32

constraint has restricted the compiler to a limited set of source languages and compiler
algorithms. Although the concept of a totally correct compiler has been around for many
years, there are, to our knowledge, no totally correct compilers that produce close to
production-quality code for realistic programming languages. Credible compilation o�ers
the compiler developer much more freedom. The compiler can be developed in any language
using any methodology and perform arbitrary transformations. The only constraint is that
the compiler produce a proof that its result is correct.

The concept of credible compilers has also arisen in the context of compiling synchronous
languages [3, 7]. Our approach, while philosophically similar, is technically much di�erent.
It is designed for standard imperative languages and therefore uses drastically di�erent
techniques for deriving and expressing the correctness proofs.

We often are asked the question \How is your approach di�erent from proof-carrying
code [6]?"1 In our view, credible compilers and proof-carrying code are orthogonal concepts.
Proof-carrying code is used to prove properties of one program, typically the compiled
program. Credible compilers establish a correspondence between two programs: an original
program and a compiled program. Given a safe programming language, a credible compiler
will produce guarantees that are stronger than those provided by typical applications of
proof-carrying code. So, for example, if the source language is type safe and a credible
compiler produces a proof that the compiled program correctly implements the original
program, then the compiled program is also type safe.

But proof-carrying code can, in principle, be used to prove properties that are not
visible in the semantics of the language. For example, one might use proof-carrying code
to prove that a program does not execute a sequence of instructions that may damage the
hardware. Because most languages simply do not deal with the kinds of concepts required
to prove such a property as a correspondence between two programs, credible compilation
is not particularly relevant to these kinds of problems.

8 Impact of Credible Compilation

We next discuss the potential impact of credible compilation. We consider �ve areas:
debugging compilers, increasing the
exibility of compiler development, just-in-time com-
pilers, concept of an open compiler, and the relationship of credible compilation to building
custom compilers.

8.1 Debugging Compilers

Compilers are notoriously di�cult to build and debug. In a large compiler, a surprising
part of the di�culty is simply recognizing incorrectly generated code. The current state of
the art is to generate code after a set of passes, then test that the generated code produces
the same result as the original code. Once a piece of incorrect code is found, the developer
must spend time tracing the bug back through layers of passes to the original source.

Requiring the compiler to generate a proof for each transformation will dramatically
simplify this process. As soon as a pass operates incorrectly, the developer will immediately
be directed to the incorrect code. Bugs can be found and eliminated as soon as they occur.

1Proof-carrying code is code augmented with a proof that the code satis�es safety properties such as

type safety or the absence of array bounds violations.

33

8.2 Flexible Compiler Development

It is di�cult, if not impossible, to eliminate all of the bugs in a large software system
such as a compiler. Over time, the system tends to stabilize around a relatively reliable
software base as it is incrementally debugged. The price of this stability is that people
become extremely reluctant to change the software, either to add features or even to �x
relatively minor bugs, for fear of inadvertantly introducing new bugs. At some point the
system becomes obsolete because the developers are unable to upgrade it quickly enough
for it to stay relevant.

Credible compilation, combined with the standard organization of the compiler as a
sequence of passes, promises to make it possible to continually introduce new, unreliable
code into a mature compiler without compromising functionality or reliability. Consider
the following scenario. Working under deadline pressure, a compiler developer has come up
a prototype implementation of a complex transformation. This transformation is of great
interest because it dramatically improves the performance of several SPEC benchmarks.
But because the developer cut corners to get the implementation out quickly, it is unreliable.
With credible compilation, this unreliability is not a problem at all | the transformation is
introduced into the production compiler as another pass, with the compiler driver checking
the correctness proof and discarding the results if it didn't work. The compiler operates
as reliably as it did before the introduction of the new pass, but when the pass works, it
generates much better code.

It is well known that the e�ort required to make a compiler work on all conceivable
inputs is much greater than the e�ort required to make the compiler work on all likely
inputs. Credible compilation makes it possible to build the entire compiler as a sequence of
passes that work only for common or important cases. Because developers would be under
no pressure to make passes work on all cases, each pass could be hacked together quickly
with little testing and no complicated code to handle exceptional cases. The result is that
the compiler would be much easier and cheaper to build and much easier to target for good
performance on speci�c programs.

A �nal extrapolation is to build speculative transformations. The idea is that the
compiler simply omits the analysis required to determine if the transformation is legal. It
does the transformation anyway and generates a proof that the transformation is correct.
This proof is valid, of course, only if the transformation is correct. The proof checker �lters
out invalid transformations and keeps the rest.

This approach shifts work from the developer to the proof checker. The proof checker
does the analysis required to determine if the transformation is legal, and the developer
can focus on the transformation and the proof generation, not on writing the analysis code.

8.3 Just-In-Time Compilers

The increased network interconnectivity resulting from the deployment of the Internet has
enabled and promoted a new way to distribute software. Instead of compiling to native
machine code that will run only on one machine, the source program is compiled to a
portable byte code. An interpreter executes the byte code.

The problem is that the interpreted byte code runs much slower than native code. The
proposed solution is to use a just-in-time compiler to generate native code either when the
byte code arrives or dynamically as it runs. Dynamic compilation also has the advantage

34

that it can use dynamically collected pro�ling information to drive the compilation process.
Note, however, that the just-in-time compiler is another complex, potentially erroneous

software component that can a�ect the correct execution of the program. If a compiler
generates native code, the only subsystems that can change the semantics of the native
code binary during normal operation are the loader, dynamic linker, operating system
and hardware, all of which are relatively static systems. An organization that is shipping
software can generate a binary and test it extensively on the kind of systems that its
customers will use. If the customer �nds an error, the organization can investigate the
problem by running the program on a roughly equivalent system.

But with dynamic compilation, the compiled code constantly changes in a way that may
be very di�cult to reproduce. If the dynamic compiler incorrectly compiles the program, it
may be extremely di�cult to reproduce the conditions that caused it to fail. This additional
complexity in the compilation approach makes it more di�cult to build a reliable compiler.
It also makes it di�cult to assign blame for any failure. When an error shows up, it could
be either the compiler or the application. The organizations that built each product tend
to blame each other for the error, and neither one is motivated to work hard to �nd and
�x the problem. The end result is that the total system stays broken.

Credible compilation can eliminate this problem. If the dynamic compiler emits a
proof that it executed correctly, the run-time system can check the proof before accepting
the generated code. All incorrect code would be �ltered out before it caused a problem.
This approach restores the reliability properties of distributing native code binaries while
supporting the convenience and
exibility of dynamic compilation and the distribution of
software in portable byte-code format.

8.4 An Open Compiler

We believe that credible compilers will change the social context in which compilers are
built. Before a developer can safely integrate a pass into the compiler, there must be some
evidence that pass will work. But there is currently no way to verify the correctness of the
pass. Developers are therefore typically reduced to relying on the reputation of the person
that produced the pass, rather than on the trustworthiness of the code itself. In practice,
this means that the entire compiler is typically built by a small, cohesive group of people in
a single organization. The compiler is closed in the sense that these people must coordinate
any contribution to the compiler.

Credible compilation eliminates the need for developers to trust each other. Anyone
can take any pass, integrate into their compiler, and use it. If a pass operates incorrectly,
it is immediately apparent, and the compiler can discard the transformation. There is no
need to trust anyone. The compiler is now open and anyone can contribute. Instead of
relying on a small group of people in one organization, the e�ort, energy, and intelligence
of every compiler developer in the world can be productively applied to the development
of one compiler.

The keys to making this vision a reality are a standard intermediate representation,
logics for expressing the proofs, and a veri�er that checks the proofs. The representation
must be expressive and support the range of program representations required for both
high level and low level analyses and transformations. Ideally, the representation would be
extensible, with developers able to augment the system with new constructs and new axioms
that characterize these constructs. The veri�er would be a standard piece of software. We

35

expect several independent veri�ers to emerge that would be used by most programmers;
paranoid programmers can build their own veri�er. It might even be possible to do a formal
correctness proof of the veri�er.

Once this standard infrastructure is in place, we can leverage the Internet to create a
compiler development community. One could imagine, for example, a compiler development
web portal with code transformation passes, front ends, and veri�ers. Anyone can download
a transformation; anyone can use any of the transformations without fear of obtaining an
incorrect result. Each developer can construct his or her own custom compiler by stringing
together a sequence of optimization passes from this web site. One could even imagine
an intellectual property market emerging, as developers license passes or charge electronic
cash for each use of a pass. In fact, future compilers may consist of a set of transformations
distributed across multiple web sites, with the program (and its correctness proofs)
owing
through the sites as it is optimized.

8.5 Custom Compilers

Compilers are traditionally thought of and built as general-purpose systems that should
be able to compile any program given to them. As a consequence, they tend to contain
analyses and transformations that are of general utility and almost always applicable. Any
extra components would slow the compiler down and increase the complexity.

The problem with this situation is that general techniques tend to do relatively pedes-
trian things to the program. For speci�c classes of programs, more specialized analyses and
transformations would make a huge di�erence [9, 8, 1]. But because they are not generally
useful, they don't make it into widely used compilers.

We believe that credible compilation can make it possible to develop lots of di�erent
custom compilers that have been specialized for speci�c classes of applications. The idea
is to make a set of credible passes available, then allow the compiler builder to combine
them in arbitrary ways. Very specialized passes could be included without threatening the
stability of the compiler. One could easily imagine a range of compilers quickly developed
for each class of applications.

It would even be possible extrapolate this idea to include optimistic transformations. In
some cases, it is di�cult to do the analysis required to perform a speci�c transformation. In
this case, the compiler could simply omit the analysis, do the transformation, and generate
a proof that would be correct if the analysis would have succeeded. If the transformation
is incorrect, it will be �ltered out by the compiler driver. Otherwise, the transformation
goes through.

This example of optimistic transformations illustrates a somewhat paradoxical property
of credible compilation. Even though credible compilation will make it much easier to
develop correct compilers, it also makes it practical to release much buggier compilers. In
fact, as described below, it may change the reliability expectations for compilers.

Programmers currently expect that the compiler will work correctly for every program
that they give it. And you can see that something very close to this level of reliability is
required if the compiler fails silently when it fails | it is very di�cult for programmers to
build a system if there is a reasonable probability that a given error can be caused by the
compiler and not the application.

But credible compilation completely changes the situation. If the programmer can
determine whether or not the the compiler operated correctly before testing the program,

36

the development process can tolerate a compiler that occasionally fails.
In this scenario, the task of the compiler developer changes completely. He or she is

no longer responsible for delivering a program that works almost all of the time. It is
enough to deliver a system whose failures do not signi�cantly hamper the development of
the system. There is little need to make very uncommon cases work correctly, especially if
there are known work-arounds. The result is that compiler developers can be much more
aggressive | the length of the develoment cycle will shrink and new techniques will be
incorporated into production compilers much more quickly.

9 Conclusions

Most research on compiler correctness has focused on obtaining a compiler that is guaran-
teed to generate correct code for every input program. This paper presents a less ambitious,
but hopefully much more practical approach: require the compiler to generate a proof that
the generated code correctly implements the input program. Credible compilation, as we
call this approach, gives the compiler developer maximum
exibility, helps developers �nd
compiler bugs, and eliminates the need to trust the developers of compiler passes.

This paper presents logics that a compiler can use to prove that its transformations are
correct, and provides examples that illustrate how the proofs would work for several stan-
dard transformations. The logics support the standard two-phase approach to optmization:
there is a logic that the compiler can use to prove that its analysis results are correct, and a
logic that the compiler can use to prove that the transformed program correctly implements
the original program.

This paper marks the beginning of the research. Our future plans include integrat-
ing techniques for handling pointers, dynamic memory allocation, and dynamic method
dispatch into the framework. We also intend to implement a credible compiler. This im-
plementation will provide valuable insight into the level of performance achievable with a
credible compiler and the size of the correctness proofs.

In a broader context, humans evolved in small groups characterized by deep, lifelong
personal relationships based on mutual familiarity and trust. But the major changes in
the organization of human society | agriculture, urbanization, the industrial revolution,
and telecommunications | have all changed the human experience towards ever more
ephemeral, anonymous interactions with larger groups of people. A global computer net-
work and the concommitant rise of a society organized primarily around information will
accelerate this trend with a vengeance. As people interact increasingly with and through
networked computers instead of other people, we need a replacement for the trust that
comes with personal relationships. One possible replacement, at least for relationships
based primarily on information manipulation, is to augment information with evidence
that it is in some sense correct. This approach decouples the trustworthiness of the infor-
mation from its source, eliminating the need to trust the entities with whom one interacts.
Credible compilers are one concrete example of this principle.

37

References

[1] S. Amarasinghe, J. Anderson, M. Lam, and C. Tseng. The SUIF compiler for scalable
parallel machines. In Proceedings of the Eighth SIAM Conference on Parallel Processing

for Scienti�c Computing, February 1995.

[2] K. Apt and E. Olderog. Veri�cation of Sequential and Concurrent Programs. Springer-
Verlag, 1997.

[3] A. Cimatti, F. Giunchiglia, P. Pecchiari, B. Pietra, J. Profeta, D. Romano, P. Traverso,
and B. Yu. A provably correct embedded veri�er for the certi�cation of safety criti-
cal software. In Proceedings of the 9th International Conference on Computer Aided

Veri�cation, pages 202{213, Haifa, Israel, June 1997.

[4] R. Floyd. Assigning meanings to programs. In J. Schwartz, editor, Proceedings of the
Symposium in Applied Mathematics, number 19, pages 19{32, 1967.

[5] J. Guttman, J. Ramsdell, and M. Wand. VLISP: a veri�ed implementation of scheme.
Lisp and Symbolic Computing, 8(1{2):33{110, March 1995.

[6] G. Necula. Proof-carrying code. In Proceedings of the 24th Annual ACM Symposium

on the Principles of Programming Languages, pages 106{119, Paris, France, January
1997.

[7] A. Pnueli, M. Siegal, and E. Singerman. Translation validation. In Proceedings of the 4th

International Conference on Tools and Algorithms for the Construction and Analysis

of Systems, Lisbon, Portugal, March 1998.

[8] M. Rinard and P. Diniz. Commutativity analysis: A new framework for parallelizing
compilers. In Proceedings of the SIGPLAN '96 Conference on Program Language Design

and Implementation, pages 54{67, Philadelphia, PA, May 1996. ACM, New York.

[9] R. Rugina and M. Rinard. Automatic parallelization of divide and conquer algorithms.
In Proceedings of the 7th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, Atlanta, GA, May 1999.

38

