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Abstract

This paper presents a formal design for a novel group multicast service that provides virtually
synchronous semantics in asynchronous fault-prone environments. The design employs a client-
server architecture in which group membership is maintained not by every process but only by
dedicated membership servers, while virtually synchronous group multicast is implemented by
service end-points running at the clients. This architecture allows the service to be scalable in
the topology it spans, in the number of groups, and in the number of clients. Our design allows
the virtual synchrony algorithm to run in a single message exchange round, in parallel with
the membership algorithm: it does not require pre-agreement upon a common identi�er by the
membership algorithm.

Speci�cally, the paper de�nes service semantics for the client-server interface, that is, for
the group membership service. The paper then speci�es virtually synchronous semantics for the
new group multicast service, as a collection of safety and liveness properties. These properties
have been previously suggested and have been shown to be useful for distributed applications.
The paper then presents new algorithms that use the de�ned group membership service to
implement the speci�ed properties. The speci�cations and algorithms are presented incremen-
tally, using a novel inheritance-based formal construct [26]. The algorithm that provides the
complete virtually synchronous semantics executes in a single message round, and is therefore
more e�cient than previously suggested algorithms providing such semantics. The algorithm
has been implemented in C++. All the speci�cations and algorithms are presented using the
I/O automaton formalism. Furthermore, the paper includes formal proofs showing that the
algorithms meet their speci�cations. Safety properties are proven using invariant assertions and
simulations. Liveness is proven using invariant assertions and careful operational arguments.
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1 Introduction

Group communication systems [1, 39] are powerful building blocks that facilitate the development
of fault-tolerant distributed applications. Group communication provides the notion of group ab-
straction, which allows processes to be easily organized in multicast groups. Group communication
systems typically integrate two types of services: group membership and reliable group multicast.
The membership service maintains a listing of the currently active and connected group members
and delivers this information to its clients whenever it changes. The output of the membership ser-
vice is called a view. Reliable multicast services that deliver messages to the current view members
complement the membership service. For simplicity's sake, in this paper we restrict our attention
to a single multicast group.

Group communication systems usually run in asynchronous fault-prone environments. In such
environments, group communication systems generally provide some variant of virtual synchrony
semantics which synchronize membership noti�cations with regular messages and thus simulate a
\benign" world in which message delivery is reliable within the set of connected processes. Such
semantics are especially useful for constructing fault-tolerant applications that maintain consistent
replicated state of some sort (e.g., [3, 6, 25, 18, 37, 9, 28]). The key aspect of virtual synchrony
is the semantics of interleaving of message send and delivery events with view delivery events. In
order to reason about this interleaving, we associate message send and delivery events with views:
we say that an event e occurs at a process p in view v if v was the last view delivered to p before
e, or a default initial view vp if no such view was delivered.

Many variants of virtual synchrony semantics have been suggested [32, 19, 39, 12, 34, 18]. All
of these variants specify that every message is delivered in the same view by all processes that
deliver it. Some of these semantics (e.g., strong virtual synchrony [19]) strengthen this property
to require that the view in which a message is delivered is the same view in which it was sent.
Another useful property speci�ed by nearly all variants of virtual synchrony is the agreement of the
processes moving together from a view v to another view v0 on the set of messages delivered in v.
Our group communication service speci�cation includes all of these, as well as several additional
safety and liveness properties. In Section 4 we present the properties we have chosen to provide.

Traditionally, virtual synchrony semantics were implemented by algorithms that were integrated
with group membership algorithms (e.g., in [19, 22, 7]). Recently, Keidar et al. [27, 8] proposed
a novel client-server oriented group membership service that decouples membership maintenance
from group multicast, in order to provide scalable membership services in a wide area network
(WAN). In their approach, a small set of dedicated membership servers maintains client membership
information (i.e., which clients are members of each group). Virtual synchrony is achieved by service
end-points running at the clients. This architecture allows the group communication system to be
scalable in the topology it spans, in the number of groups and in the number of clients.

In this paper we present a novel client-server oriented virtually synchronous group multicast
service that interacts with such an external membership service. Introducing the client-server
design poses a major challenge: One has to de�ne an interface by which a membership server
interacts with its clients, in a way that would allow for simple and e�cient implementations of
both group membership (by the membership servers), and virtual synchrony (by service end-points
at the clients). Such an interface has to provide su�cient level of synchronization to allow the
virtual synchrony algorithm to reach agreement upon the set of messages delivered in the old view
in parallel with the servers' agreement on views. In addition, one has to try to minimize the
communication overhead induced due to messages sent as part of this interface.

We have designed an interface that addresses the challenges listed above. Our interface consists

1



of two types of messages sent from servers to their clients: When a server engages in a view
change algorithm, it sends its clients a start change message notifying them that a view change
is in progress. Each start change message contains a locally (per-client) unique identi�er. This
identi�er is not globally agreed upon: start changemessages sent to di�erent processes can contain
di�erent identi�ers. Once the server agrees upon the new view with the other servers, it noti�es
the clients of the view via a view message. The view contains information that maps processes
to the last start change identi�ers they received before receiving this view. The servers do not
need to receive messages from all their clients in order to complete the view change algorithm. The
client-server interface is presented in Section 3.

Our interface allows for straightforward implementations of both membership and virtual syn-
chrony: In Section 5 we present a simple one-round virtual synchrony algorithm that exploits this
interface. We have implemented this algorithm in C++ using the scalable membership service
of [27], which is a simple one-round membership algorithm providing the speci�ed interface and
assumptions. With our algorithm, the virtual synchrony round and the membership round are con-
ducted in parallel: once the clients receive the start change noti�cations, clients send each other
special synchronization messages which allow them to agree upon the set of messages to be delivered
before moving to the new view. We are not aware of any other algorithm that implements virtual
synchrony in one communication round without pre-agreement upon a globally unique identi�er by
the membership algorithm.

During the period in which the group communication service is attempting to reach agreement
on a view, new processes may attempt to join. In such cases, previously suggested virtual syn-
chrony algorithms, e.g., [22, 16], can have the current invocation of the membership and virtual
synchrony algorithms proceed to termination without adding the new processes, and then invoke
the algorithms again to add the new processes. In contrast, our algorithm never delivers views
that re
ect a membership that is already known to be out of date. Thus, we avoid inducing extra
overhead for applications to process unnecessary views. In addition, our algorithm allows some
application messages to be delivered while it is recon�guring.

Throughout this paper we use the I/O automaton formalism (cf. [31] and [30], Ch. 8) to pro-
vide rigorous speci�cations and algorithm descriptions. Previously suggested I/O automaton-style
speci�cations of group communication systems used a single abstract automaton to represent mul-
tiple properties of the same system component and presented a single algorithm automaton that
implements all of these properties. Thus, no means were provided for reasoning about a subset of
the properties, and it was often di�cult to follow which part of the algorithm implements which
part of the speci�cation. We address this shortcoming by specifying separate properties as sepa-
rate abstract automata, and by incrementally constructing the algorithm that implements them {
in each step adding support for an additional property { using a novel inheritance-based formal
construct, recently introduced to the I/O automaton model [26].

We formally prove the correctness of the presented algorithms, that is, that they meet the
speci�cations of Section 4. In Section 6, we prove that the safety properties of our algorithms are
satis�ed using invariant assertions and simulations. The safety proof is modular: we exploit the
inheritance-based structure of our speci�cations and algorithms to reuse proofs. In Section 7, we
prove the liveness of our algorithm using invariant assertions and operational arguments.

2 Formal Model and Notation

In the I/O automaton model (cf. [31] and [30], Ch. 8), a system component is described as a state-
machine, called an I/O automaton. The transitions of this state-machine are associated with named
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actions, which are classi�ed as either input, output, or internal. Input and output actions model the
component's interaction with other components, while internal actions are externally-unobservable.

Formally, an I/O automaton is de�ned as the following �ve-tuple: a signature (input, output
and internal actions), a set of states, a set of start states, a state-transition relation (a cross-product
between states, actions, and states), and a partition of output and internal actions into tasks. Tasks
are used for de�ning fairness conditions on an execution of the automaton.

An action � is said to be enabled in a state s if the automaton has a transition of the form (s,
�, s'); input actions are enabled in every state. An execution of an automaton is an alternating
sequence of states and actions that begins with its start state and in which every action is enabled
in the preceding state. An in�nite execution is fair if, for each task, it either contains in�nitely
many actions from this task or in�nitely many occurrences of states in which no action from this
task is enabled; a �nite execution is fair if no action is enabled in its �nal state. A trace is a
subsequence of an execution consisting solely of the automaton's external actions. A fair trace is a
trace of a fair execution.

When reasoning about an automaton, we are only interested in its externally-observable behav-
ior as re
ected in its traces. There are two types of trace properties: safety and liveness. Safety
properties usually specify that some particular bad thing never happens. In this paper we specify
safety properties using (abstract) I/O automata that generate the legal sets of traces; for such au-
tomata we do not specify task partitions. An implementation automaton satis�es a speci�cation if
all of its traces are also traces of the speci�cation automaton. Re�nement mappings are commonly
used technique for proving trace inclusion, in which one automaton (the algorithm) simulates the
behavior of another automaton (the speci�cation). Re�nement mappings and other related tech-
niques are reviewed in Appendix A. Liveness properties usually specify that some good thing
eventually happens. An implementation automaton satis�es a liveness property if the property
holds in all of its fair traces.

The composition operation de�nes how automata interact via their input and output actions:
It matches output and input actions with the same name in di�erent component automata; when
a component automaton performs a step involving an output action, so do all components that
have this action as an input one. The result of composing an output action with an input action is
classi�ed as an output to allow for future compositions with other automata. A hide operator can
re-classify an output action as an internal one to prevent it from being externally observable. When
reasoning about a certain system component, we compose it with abstract speci�cation automata
that specify the behavior of its environment.

I/O automata are conveniently presented using the precondition-e�ect style: In this style, typed
state variables with initial values specify the set of states and the start states. A variable type is a
set (if S is a set, the notation S? refers to the set S[f?g). Transitions are grouped by action name,
and are speci�ed as a list of triples consisting of an action name (possibly with parameters), a pre:
block with preconditions on the states in which the action is enabled and an eff: block which
speci�es how the pre-state is modi�ed; the e�ect is executed atomically to yield the post-state.

We use a novel inheritance-based formal concept, recently introduced into the I/O automaton
model [26]. A child automaton is speci�ed as a modi�cation of the parent automaton's code, which
restricts the parent's behavior. When presenting a child we �rst specify a signature extension which
consists of new actions (labeled new) and modi�ed actions (the modi�ed action is labeled with the
name of the action which they modify as follows: modi�es parent.action(parameters)). We next
specify the state extension consisting of new state variables added by the child. Finally, we describe
the transition restriction which consists of new preconditions and e�ects added by the child to both
new and modi�ed actions. For modi�ed actions, the preconditions and e�ects of the parent are
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appended to those added by the child. New e�ects added by the child are performed before the
e�ects of the parent, all of them in a single atomic step. The child's e�ects are not allowed to
modify state variables of the parent. This restriction ensures that the set of traces of the child,
when projected onto the parent's signature, is a subset of the parent's set of traces.

Inheritance allows us to reuse code and avoid redundancies. It also allows us to reuse proofs:
Assume that an implementation automaton I can simulates a speci�cation automaton S, and let
I' and S' be child automata of I and S, respectively. Then the Proof Extension theorem of [26]
asserts that in order to prove that I' can simulate S' it is su�cient to show that the restrictions
added by I' are consistent with the restrictions S' places on S, and that the new functionality of
I' can simulate new functionality of S'. Appendix A contains more detailed information on the
Proof Extension theorem of [26].

3 Client-Server Architecture and Environment Speci�cation

Our service is implemented in an asynchronous message-passing environment. Processes can crash
and recover; communication links may fail and may later recover. Initially, we assume that stable
storage is used, that is, we assume that crashed processes recover with their state intact. We do
not explicitly model process crashes as under this asusmption, a process crash is equivalent to that
processes' migration into a singleton view. In Section 8 we show that our algorithms also provide
meaningful semantics without using stable storage, and explain how crash and recovery events can
be modeled.

The service is implemented by group communication service end-points (GCS end-points) run-
ning at client processes. Throughout this paper we use the words \process" and \end-point"
interchangeably. The end-points receive views from an external membership service whose speci�-
cation appears in Section 3.1. The group communication end-points communicate with each other
using a reliable fifo multicast service which we describe in Section 3.2. We specify the member-
ship and multicast services using centralized (global) I/O automata. Each external action in these
speci�cations is tagged with a subscript p, which denotes the process at which this action occurs.
The architecture is depicted in Figure 1.

Figure 1 The client-server architecture: GCS end-points using an external membership service.

Connection-Oriented Reliable FIFO Multicast Service

Group Membership Service

GCS End-pointGCS End-point

Application Application

3.1 The membership service speci�cation

In Figure 2 we specify an external membership service whose interface consists of two output events:
Like every other membership service, the service provides its clients with views that contain a set
of members currently believed to be alive and an increasing identi�er. In addition, it provides
start change actions which notify clients that the membership service is attempting to form a
new view. The membership service is partitionable [16, 39, 10], i.e., allows several disjoint views
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to exist concurrently. It can be implemented by dedicated membership servers. The mbrshp

automaton interface consists of two types of output actions:

Figure 2 Membership service safety speci�cation.

automaton mbrshp

Type View: ViewId x SetOf(Proc) x (Proc ! StartChangeId)

Signature:

Output: start changep(cid, set), Proc p, StartChangeId cid, SetOf(Proc) set

viewp(v), Proc p, View v

State:

Forall Proc p: View mbrshp view[p], initially vp = hvid0, fpg, f(p !cid0)gi

Forall Proc p: (StartChangeId x SetOf(Proc)) start change[p], initially hcid0, {}i
Forall Proc p: mode[p] 2 fnormal, change startedg, initially normal

Transitions:

OUTPUT start changep(cid, set)

pre: cid > start change[p].id

p 2 set

eff: start change[p]  hcid, seti
mode[p]  change started

OUTPUT viewp(v)

pre: v.id > mbrshp view[p].id

v.set � start change[p].set ^ p 2 v.set

v.startId(p) = start change[p].id

mode[p] = change started

eff: mbrshp view[p]  v

mode[p]  normal

start changep(cid; set) noti�es process p that the membership service is attempting to form
a new view with the members in set. cid is a locally unique (increasing) start change
identi�er (taken from a totally ordered set StartChangeId with the smallest element cid0,
e.g., integers).

viewp(v) noti�es process p of the new view v. A view v is a triple consisting of an increasing
identi�er v.id (from a partially ordered set ViewId with the smallest element vid0, e.g.,
integers), a set of members v.set (which is a subset of the set in the latest preceding
start changep(cid; set)), and a function v.startId that maps members of v to the cids in
the last start changes they received before receiving v. Two views are considered to be the
same if they consist of identical triples.

The membership speci�cation captures two basic membership properties: Self Inclusion requires
every view delivered to an end-point p to include p as a member, and Local Monotonicity requires
that view identi�ers delivered to an end-point be monotonically increasing. Local Monotonicity
has two important consequences: it guarantees that the same view is not delivered more then once
to the same end-point and that if two views are delivered to two end-points they are delivered in
the same order. These properties are ful�lled by virtually all group membership services (e.g., [12,
16, 7, 19, 10, 27, 34, 5]).

In addition, using the mode[p] variable, the mbrshp automaton requires that the membership
service send at least one start change to an end-point p prior to every view v sent to p. It
also requires that the start change identi�er v.startId(p) be the same as the cid of the latest
start change delivered to p before the view, and that v.set be a subset of the set suggested in
that start change. Note that this speci�cation does allow the membership service to add new
processes while it is recon�guring, as long as a new start change is sent to the clients.
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Keidar et al. [27] describe a simple and e�cient service that satis�es this speci�cation; the
start change interface was explicitly built into [27]. It would be straightforward to extend other
membership algorithms (e.g., [16, 7]) to provide this interface, by having these algorithms send
start change messages to processes when they start the membership algorithm, and then include
the start change identi�ers in the view.

The speci�ed service allows its clients to implement virtual synchrony as follows: When a
process receives a start change, it begins engaging in the virtual synchrony algorithm and sends
synchronization messages to its peers. The process then waits to receive such messages from its
peers, and uses them to decide upon the set of messages that will be delivered in the old view before
moving to the new one. In order to have processes agree upon the set of messages in the old view,
it is necessary that they all use the same set of synchronization messages. In order to uniquely
identify this set of messages, previously suggested virtual synchrony algorithms (e.g., [7, 22]) had
the processes �rst agree upon a common identi�er (usually the view identi�er of the view to be
delivered), and then exchange synchronization messages tagged with this identi�er. In contrast,
our algorithm tags synchronization messages with start change identi�ers which are not globally
agreed upon, and includes in each view a function startId which maps each process to the start
change identi�ers provided to it. Thus, the speci�cation allows the virtual synchrony algorithm to
execute in parallel with the membership algorithm without requiring pre-agreement on a globally
unique identi�er.

We do not specify any liveness property for the membership service. Instead, we state and
prove the liveness properties of our group multicast service conditionally on the behavior of the
membership service. The membership service of [27] which we use in our implementation satis�es
a liveness guarantee which is, in turn, conditional on the behavior of the underlying network and
of the failure detector it employs.

3.2 The connection-oriented reliable fifo multicast service speci�cation

The group communication end-points communicate with each other using an underlying connection-
oriented reliable fifo multicast service; this service provides reliable fifo communication between
every pair of connected processes. Many existing group communication systems (e.g., [22, 10, 16, 5])
implement virtual synchrony over similar underlying reliable communication substrates. In our
implementation, we currently use the service of [36].

We specify the reliable fifo multicast service in Figure 3 as a centralized automaton co rfifo.
co rfifo maintains a fifo queue channel[p][q] for every pair of end-points. The input action
sendp(set; m) models the multicast of message m from end-point p to the end-points listed in the
set by appending it to the queues channel[p][q] for every end-point q in set. The deliverp;q(m)
action removes the �rst message from channel[p][q] and delivers it to the end-point q.

An end-point p uses the action reliablep(set) to inform co rfifo that it wishes to maintain
reliable (gap-free) fifo connections to the end-points in set, and to them only. As an e�ect of this
action, set is stored in the variable reliable set[p]. For every process q not in reliable set[p],
co rfifo may lose an arbitrary su�x of the messages sent from p to q, as modeled by the action
lose(p; q).

When specifying the liveness of co rfifo, we would like to require that messages sent to
live and connected processes eventually reach their destinations. Unfortunately, we cannot use
reliable set[p] for this purpose, as it does not necessarily re
ect the real network situation
because the reliable set[p] is controlled by the client. Therefore, we use an additional variable,
live set[p], which is assumed to re
ect the real state of the network, that is, the set of processes
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Figure 3 Connection-oriented reliable fifo multicast service speci�cation.

automaton co rfifo

Signature:

Input: sendp(set, m), Proc p, SetOf(Proc) set, Msg m

reliablep(set), Proc p, SetOf(Proc) set

livep(set), Proc p, SetOf(Proc) set

Output: deliverp,q(m), Proc p, Proc q, Msg m

Internal: lose(p,q), Proc p, Proc q

State:

For all Proc p, Proc q: SeqOf(Msg) channel[p][q], initially empty

For all Proc p: SetOf(Proc) reliable set[p], initially fpg
For all Proc p: SetOf(Proc) live set[p], initially fpg

Transitions:

INPUT sendp(set, m)

eff: (8 q 2 set) append m to channel[p][q]

OUTPUT deliverp,q(m) hidden param live set[p]

pre: m = First(channel[p][q])

eff: dequeue m from channel[p][q]

Tasks:

(8 p)(8 q 2 live set[p]) fdeliverp,q(m)g

fdummy()g [ fdeliverp,q(m) | q 62 live set[p]g [ flose(p,q)g

INPUT reliablep(set)

eff: reliable set[p]  set

INTERNAL lose(p, q)

pre: q 62 reliable set[p]

eff: dequeue last message from channel[p][q]

INPUT livep(set)

eff: live set[p]  set

which are really alive and connected to p. This variable is set by the action livep(set), and is
used in the de�nition of co rfifo's tasks to require that a message sent from p to a process in
live set[p] be delivered at some point.

4 Speci�cations of the Group Communication Service

Our group communication service satis�es a set of common properties previously suggested in
several variants of virtual synchrony. These properties have been proven to be useful for many
distributed applications. In Section 4.1, we specify the safety properties satis�ed by our service as
abstract I/O automata (without tasks). We present the liveness property of the group communi-
cation service in Section 4.2.

4.1 Safety properties

The safety properties of our service are speci�ed as centralized (global) I/O automata. Each
action in the speci�cations is tagged with a subscript p, which denotes the process at which this
action occurs. We present our speci�cations in four steps, as four automata: In Section 4.1.1 we
specify a simple group communication service that provides reliable fifo multicast within views.
In Section 4.1.2 we extend the speci�cation of Section 4.1.1, to require also that processes moving
together from view v to view v0 deliver the same set of messages in view v. In Section 4.1.3
we specify a service which provides transitional sets (�rst presented as part of Extended Virtual
Synchrony (EVS) [32]). In Section 4.1.4 we specify the Self Delivery property which requires
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processes to deliver their own messages. We note that our speci�cations are partitionable [16, 39, 10]
in that they allow several disjoint views to exist concurrently.

4.1.1 Within-view reliable fifo multicast

In Figure 4 we present the within-view reliable fifo (wv rfifo) service speci�cation. The speci�-
cation uses centralized queues of application messages, msgs[p][v], for each sender p for each view
v. The action sendp(m) models the multicast of message m from process p to the members of p's
current view by appending m to msgs[p][current view[p]]. The deliverp(q; m) action models the
delivery to process p of message m sent by process q while in p's current view. The speci�cation
enforces gap-free fifo ordered delivery of messages by using the variable last dlvrd[q][p] to index
the last message from q delivered to p in p's current view.

Figure 4 Within-view reliable fifo multicast service speci�cation.

automaton wv rfifo : spec

Signature:

Input: sendp(m), Proc p, AppMsg m Output: deliverp(q, m), Proc p, Proc q, AppMsg m

viewp(v), Proc p, View v

State:

For each Proc p, View v: SeqOf(AppMsg) msgs[p][v], initially empty

For each Proc p, Proc q: Int last dlvrd[p][q], initially 0

For each Proc p: View current view[p], initially vp

Transitions:

INPUT sendp(m)

eff: append m to msgs[p][current view[p ]]

OUTPUT deliverp(q, m)

pre: m = msgs[q][current view[p ]] [last dlvrd[q][p]+1]

eff: last dlvrd[q][p]  last dlvrd[q][p]+1

OUTPUT viewp(v)

pre: p 2 v.set

v.id > current view[p].id

eff: (8 q) last dlvrd[q][p]  0

current view[p]  v

wv rfifo satis�es the following properties:

� It delivers membership views to the application in a manner that preserves the basic properties
of the membership service: Local Monotonicity and Self Inclusion.

� wv rfifo delivers messages in the view in which they were sent. This property is useful for
applications (cf. [19, 39, 37]) and appears in several systems (e.g., Isis [12], Horus [38] and
Totem [7]) and speci�cations (e.g., [32, 18, 24, 15]). Some systems weaken this property by
requiring that each message be delivered in the same view at every process that delivers it, but
not necessarily the view in which it was sent. This weaker property is typically implemented
on top of the implementation that provides within-view delivery.

� wv rfifo guarantees that messages are delivered in gap-free fifo order (within views). We
have chosen to provide fifo multicast as opposed to a service with stronger ordering guar-
antees (causally or totally ordered), since fifo is a basic service upon which one can build
stronger services. For example, the totally ordered multicast algorithm of [13] is implemented
atop a service that satis�es the wv rfifo speci�cation.
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4.1.2 Virtual synchrony

In Figure 5 we specify a virtually synchronous reliable fifo multicast service, vs rfifo. We use
inheritance to extend the wv rfifo speci�cation presented above: vs rfifo is a child of the
wv rfifo automaton. Thus, Figure 5 contains only the modi�cation of the wv rfifo automaton,
and the vs rfifo speci�cation consists of the code presented in both Figures 4 and 5.

Like most variants of virtual synchrony (e.g., [32, 19, 39, 12, 34, 23]), our speci�cation requires
that processes moving together from view v to view v0 deliver the same set of messages in v.
This property by itself is often called Virtual Synchrony. In order to model this property, we
add an internal action set cut(v; v0; c), which non-deterministically �xes the set of messages to be
delivered in view v by every process that moves from v to v0. The reliable fifo order of message
delivery allows us to represent the set of delivered messages using the index of the last delivered
message from each sender.

Figure 5 Virtually synchronous reliable fifo multicast service speci�cation.

automaton vs rfifo : spec modifies wv rfifo : spec

Signature Extension:

Output: viewp(v) modi�es wv rfifo.viewp(v)

Internal: set cut(v, v 0 , c), View v, View v 0 , (Proc ! Int)? c new

State Extension:

For each View v, v 0 : (Proc ! Int)? cut[v][v 0 ], initially ?

Transition Restriction:

OUTPUT viewp(v)

pre: cut[current view[p ]] [v] 6= ?
(8 q) last dlvrd[q][p] = cut[current view[p ]] [v](q)

INTERNAL set cut(v, v 0 , c)

pre: cut[v][v 0 ] = ?
eff: cut[v][v 0 ]  c

Note that the speci�cation does not prevent processes from delivering messages beyond an
established cut. However, if they do, they are not allowed to move into the view associated with
this cut.

Virtual Synchrony is especially useful for applications that implement data replication using
the state machine approach [35], (e.g., [37, 20, 4, 2, 25, 28]). When a new view forms, such
applications must exchange special messages in order to synchronize members of the new view. A
group communication system that supports Virtual Synchrony allows processes to avoid such costly
exchange among processes that continue together from one view to the next.

4.1.3 Transitional set

While Virtual Synchrony is a useful property, a process that moves from view v to view v0 cannot
locally tell which of the processes in v:set \ v0:set move to view v0 directly from view v, and which
move to v0 from some other view. In order for the application to be able to exploit the Virtual
Synchrony property, application processes need to be told which other processes move together with
them from their old views in to their new views. The set of such processes is called a transitional
set. The notion of a transitional set was �rst introduced as part of a special, transitional view in
the EVS [32] model. In our formulation, transitional sets are delivered to the applications together
with (regular) views, as an additional parameter T. The delivery of transitional sets satis�es the
following property (de�ned in [39]):
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Property 4.1 (Transitional Set) When a process p moves from view v to view v0, the transi-
tional set it delivers with v0 is a subset of v:set \ v0:set which includes all the processes that move
directly from v to v0, (including p), and does not include any member of v0:set that moves to v0

from any view other than v.

Note that di�erent transitional sets may be associated with the same view v0 at di�erent
processes (if they move to v0 from di�erent previous views).

Figure 6 Transitional set speci�cation.

automaton trans set : spec

Signature:

Output: viewp(v, T), Proc p, View v, SetOf(Proc) T

Internal: set prev viewp(v), Proc p, View v

State:

For each Proc p: View current view[p], initially vp
For each Proc p, View v: View? prev view[p][v], initially ?

Transitions:

OUTPUT viewp(v, T)

pre: prev view[p][v] = current view[p]

(8 q 2 v.set \ current view[p].set)

prev view[q][v] 6= ?
T = fq 2 v.set \ current view[p].set |

prev view[q][v] = current view[p]g
eff: current view[p]  v

INTERNAL set prev viewp(v)

pre: p 2 v.set

prev view[p][v] = ?
eff: prev view[p][v]  current view[p]

We present the transitional set speci�cation in Figure 6 as a separate automaton (without using
inheritance). In order to compute the transitional set for a view v0, a process needs to know the
previous views of the other processes that move to view v0. We use the variable prev view to keep
track of these previous views as follows: A process \declares" its intention to move to v0 from the
current view by means of the action set prev view(v0) which sets prev view[p][v0] to the current
view. Before a process p can move to view v0 from view v, all the members of v:set \ v0:set must
call set prev view(v0) to \declare" from which view they intend to move to v0. The transitional
set of p at the time of delivering view v0 is then computed to consist of those processes q in
v:set \ v0:set for which prev view[q][v0] = v.

4.1.4 Self delivery

In Figure 7 we specify the Self Delivery property as a modi�cation to the wv rfifo speci�cation
automaton which requires that an end-point p not deliver a new view without having delivered all
the messages the application at p had sent in its current view. Note that we specify Self Delivery
as a safety property. In contrast, other speci�cations (e.g., [39, 32]) formulate Self Delivery as a
liveness property which requires processes to eventually deliver their own messages. Together with
the liveness property we state below, Property 4.2, our speci�cation of Self Delivery implies the
Self Delivery liveness property stated in [39].

In order to implement Self Delivery together with Virtual Synchrony in a live manner, applica-
tions of the service must be blocked from sending new messages while a view change is taking place
(as proven in [19]).
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Figure 7 Self Delivery property speci�cation.

automaton self : spec modifies wv rfifo : spec

Signature Extension:

Output: viewp(v) modi�es wv rfifo.viewp(v)

Transition Restriction:

OUTPUT viewp(v)

pre: last dlvrd[p][p] = LastIndexOf(msgs[p][current view[p ]] )

4.2 Liveness property

We now specify liveness of our group communication system. Liveness is an important complement
to safety, since without requiring liveness, safety properties can be satis�ed by trivial implemen-
tations which do nothing. Liveness of a group communication service is bound to depend on the
behavior of the underlying network. In a fault-prone asynchronous model, it is not feasible to
require that the group communication service be live in every execution. The only way to spec-
ify useful liveness properties without strengthening the communication model is to make these
properties conditional on the underlying network behavior (as speci�ed, e.g., in [18, 14, 39]).

Since in this paper we use an external membership service, our liveness property is conditional
on the behavior of the membership service. This approach is meaningful when we use an exter-
nal membership service which itself satis�es some meaningful liveness properties (e.g.,the service
of [27]).

Our liveness speci�cation requires that if the membership eventually stabilizes, i.e., delivers the
same view to all the view members and does not deliver any subsequent views, then the group
communication service also delivers this view to all of its applications and delivers all the messages
sent in this view. Formally:

Property 4.2 (Liveness) Let v be a view with v:set = S. Let � be a fair execution sequence of
a group communication service GCS in which, for every p 2 S, the action mbrshp:viewp(v) occurs
and is followed by neither mbrshp:viewp nor mbrshp:start changep actions. Then at each end-
point p 2 S, gcs:viewp(v) eventually occurs. Furthermore, for every gcs:sendp(m) that occurs
after gcs:viewp(v), and for every q 2 S, gcs:deliverq(p; m) also occurs.

It is important to note that although our liveness property requires a GCS to be live only
in certain executions, the conditions on these executions are external to the GCS implementation.
Thus, any implementation which satis�es our liveness requirement has to attempt to be live in every
execution because it cannot know whether or not the membership has permanently stabilized.

Note also that formally, membership stability is required to last forever. In practice, it only has
to hold \long enough" for the group communication service to recon�gure, as explained in [17, 21].
However in an asynchronous model, we cannot explicitly introduce the bound on this time period,
because its duration depends on external conditions such as message latency, process scheduling
and processing time.

5 The Virtually Synchronous Group Multicast Algorithm

The group communication service is implemented by symmetric GCS end-points, i.e., all end-
points run the same algorithm. When reasoning about our algorithm, we consider a composition
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of all end-point automata with the automata specifying their environment, mbrshp and co rfifo,
described in Section 3. After composing the automata, we hide all the output actions except for
the application interface.

Figure 8 A GCS end-point and its environment.
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Figure 8 (a) shows the interaction of a GCS end-point with its environment. The application
sends messages via the GCS end-point, and the end-point delivers application messages and views to
the application. The GCS, in turn, uses co rfifo to send messages to other GCS end-points, and
co rfifo delivers such messages to the GCS. The GCS uses the action co rfifo:reliablep(set)
to inform co rfifo that it wishes to maintain reliable (gap-free) fifo connections to the end-points
in set, and to them only.

The GCS end-point also receives start change and view noti�cations from the membership
service. In addition, mbrshp:start changep(id; set) is linked with co rfifo:livep(set), and
mbrshp:viewp(v) with co rfifo:livep(v:set). This way, the live set[p] at co rfifo matches
the membership's perception of which processes are alive and connected to p. Linking the mbrshp
output actions with the co rfifo.live inputs re
ects our assumption that every permanently
disconnected end-point is eventually excluded either from a start change noti�cation or from a
view.

We construct the algorithm in steps, at each step adding support for a new property (see
Figure 8 (b)):

� In Section 5.1, we present an algorithm wv rfifop for an end-point of a within-view reliable
fifo multicast service, and argue that the group communication system built from these
end-points satis�es the safety speci�cation wv rfifo : spec and the liveness Property 4.2.

� In Section 5.2, we modify the wv rfifop algorithm to also satisfy the Virtual Synchrony
and Transitional Set properties. We present an algorithm vs rfifo+tsp, which is a child of
wv rfifop, which allows us to reuse the correctness of the within-view reliable fifo service
to argue that the group communication system built from vs rfifo+tsp end-points satis�es
the safety speci�cations vs rfifo : spec and ts : spec.
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� In Section 5.3, we modify vs rfifo+tsp to also satisfy the Self Delivery property. The result-
ing automaton vs rfifo+ts+sd models the algorithm of our group communication service
gcs. Since we use inheritance, the �nal algorithm automatically satis�es wv rfifo : spec,
vs rfifo : spec, and ts : spec safety speci�cations. We argue that it also satis�es self : spec

and Property 4.2.

In the presented end-point automata, each locally controlled action is de�ned to be a task by itself,
which means that it eventually happens if it becomes enabled and is not subsequently disabled
by another action. In this section we present informal correctness arguments; formal correctness
proofs appear in Sections 6 and 7.

We would like to note that the algorithm automata present the key ideas at a level that would be
easy to follow. We supplement this presentation with a discussion of some important optimizations
that a real implementation of our algorithm may perform.

5.1 Within-view reliable fifo multicast algorithm

wv rfifo : spec (cf. Section 4.1.1) requires the following properties: �rst, it requires membership
views to be delivered to the application in a manner that preserves Local Monotonicity and Self
Inclusion; second, it requires that messages be delivered in the views in which they were sent; and
�nally it requires that messages be delivered in a gap-free fifo order (within views).

wv rfifo forwards to its application views generated by the mbrshp service which satis�es
Local Monotonicity and Self Inclusion, and it multicasts messages using the co rfifo service that
provides gap-free fifo communication. Thus, the only task left to wv rfifo is to synchronize
message delivery with views in order to guarantee that messages be delivered in the views in which
they were sent.

To this end, wv rfifo sends a view msg(v) to all the members of a view v before sending
them application messages in v. An application message from sender q received via co rfifo is
associated with the view conveyed by the latest view msg(v) from q. wv rfifo delivers to its
application only messages that are associated with its current view.

In addition, our wv rfifo service allows processes to forward application messages on behalf of
other processes. Thus, it does not put itself at mercy of co rfifo to determine which messages to
deliver in a given view. wv rfifo does not establish a particular message forwarding strategy. Ac-
tual implementations and extensions of wv rfifo may de�ne the forwarding strategy appropriate
for them by adding preconditions on the action that sends forwarded messages.

In Figure 9 we present the wv rfifop automaton at end-point p. Views received from mbrshp

are stored in mbrshp view and then delivered to the application. The variable current view

contains the latest view delivered to the application. wv rfifo satis�es Self-Inclusion and Local
Monotonicity on views since wv rfifo forwards views generated by mbrshp to its application
without changing their order.

When an application sends a message, this message is appended to msgs[p][current view].
Messages from msgs[p][current view] are multicast in fifo order to the other view members
using co rfifo:send. The index last sent points to the last message in msgs[p][current view]
that was sent. Since view msgs are sent within the message stream, end-points can associate
application messages sent by their peers with the views in which they were sent: multicast messages
are received using co rfifo:deliverq;p and stored in msgs[q][view msg[q]], where view msg[q]

is the view in the last view msg received from q. Messages are delivered to the application from
msgs[q][current view] (in fifo order) so they are delivered in the view in which they were sent.
last rcvd[q] is the index of the last message received from q, and last dlvrd[q] is the index of
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Figure 9 Within-view reliable fifo multicast end-point automaton.

automaton wv rfifop

Signature:

Input: sendp(m), AppMsg m

co rfifo.deliverq,p(m), Proc q, (AppMsg + ViewMsg + FwdMsg) m

mbrshp.viewp(v), View v

Output: deliverp(q, m), Proc q, AppMsg m

co rfifo.sendp(set, m), SetOf(Proc) set, (AppMsg + ViewMsg + FwdMsg) m

viewp(v), View v

State:

// Variables for handling application messages
For all Proc q, View v: SeqOf(AppMsg?) msgs[q][v], initially empty

Int last sent, initially 0

For all Proc q: Int last rcvd[q], initially 0

For all Proc q: Int last dlvrd[q], initially 0

// Variables for handling views and view messages
View current view, initially vp
View mbrshp view, initially vp
For all Proc q: View view msg[q], initially vq

SetOf(Proc) reliable set, initially vp.set

Transitions:

INPUT mbrshp.viewp(v)

eff: mbrshp view  v

OUTPUT viewp(v)

pre: v = mbrshp view

v.id > current view.id

eff: current view  v

last sent  0

(8 q) last dlvrd[q]  0

OUTPUT co r�fo.reliablep(set)

pre: current view.set � set

eff: reliable set  set

OUTPUT co r�fo.sendp(set, tag=view msg, v)

pre: view msg[p] 6= current view

current view.set � reliable set

set = current view.set - fpg
v = current view

eff: view msg[p]  current view

INPUT co r�fo.deliver
q, p

(tag=view msg, v)

eff: view msg[q]  v

last rcvd[q]  0

INPUT sendp(m)

eff: append m to msgs[p][current view]

OUTPUT deliverp(q, m)

pre: m = msgs[q][current view][last dlvrd[q]+1]

(q = p) ) (last dlvrd[q] < last sent)

eff: last dlvrd[q]  last dlvrd[q] + 1

OUTPUT co r�fo.sendp(set, tag=app msg, m)

pre: view msg[p] = current view

set = current view.set - fpg
m = msgs[p][current view][last sent + 1]

eff: last sent  last sent + 1

INPUT co r�fo.deliverq,p(tag=app msg, m)

eff: msgs[q][view msg[q ]] [last rcvd[q]+1] m

last rcvd[q]  last rcvd[q] + 1

OUTPUT co r�fo.sendp(set,tag=fwd msg,r,v,m,i)

pre: m = msgs[r][v][i]

INPUT co r�fo.deliverq,p(tag=fwd msg,r,v,m,i)

eff: msgs[r][v][i]  m

the last message from q that was delivered to the application. Gap-free fifo delivery of regular
messages is guaranteed by the use of ordered message queues together with the guarantees of
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co rfifo. Note that an end-point cannot self-deliver its own message without �rst sending it to
the other view members using co rfifo:send.

Now, let us consider forwarded messages. Such messages are tagged with information about
their original sender, the view in which they were originally sent, and their index in the msgs bu�er.
When a forwarded message is received, it is stored in the appropriate place in the appropriate bu�er
according to the index and view information it was tagged with. This information is correct since
the original messages are associated with the correct information and forwarded messages directly
or indirectly initiate from original messages.

Messages are always sent to all the current view members, since while messages are sent
in a certain view, the reliable set is a superset of that view. This is true since the action
co rfifo:reliablep(set) is enabled only for a set which is a superset of current view.set, and
since a view msg is not sent until the reliable set has become a superset of current view.set.
In wv rfifo, the reliable set is allowed to be an arbitrary superset of current view.set. This
set is further restricted in vs rfifo+ts.

wv fifo also satis�es the liveness Property 4.2: If a set of end-points receives the same view
from the membership and no view events afterwards, then it is straightforward to show that, in a
fair execution, each of these end-points eventually delivers this view to its application, as well as
all messages sent subsequently in the context of this view. This relies on the liveness of co rfifo,
which guarantees that messages sent between connected processes (as perceived by the membership
service) are eventually delivered.

Note that the algorithm as we have described it never removes messages from its bu�ers. Any
actual implementation of the algorithm needs to employ some sort of a garbage collection mechanism
for discarding old messages. Group communication systems usually use acknowledgments to track
which messages have been delivered to all the view members, and such messages are discarded. In
addition, whenever a process delivers a new view, it can discard messages from previous views.

5.2 Adding support for Virtual Synchrony and Transitional Sets

The wv rfifo service presented above guarantees that in each view v every member delivers some
pre�x of the fifo ordered messages sent by each end-point in v. The vs rfifo+ts service presented
in this section extends wv rfifo to guarantee also that those end-points which transition directly
from view v to the same new view v0 deliver not just \some" pre�xes but \the same" pre�xes of
the fifo ordered messages sent by each end-point in view v (cf. Property Virtual Synchrony in
Section 4.1.2). Moreover, the vs rfifo+ts service delivers a transitional set, T with every view
v such that T satis�es the Transitional Set property of Section 4.1.3. In order to satisfy these
properties, an end-point moving from a view v to a view v0 must �rst learn which other end-points
may transition from v to v0 and must agree with them on the lengths of the pre�xes they need to
deliver.

In a nutshell, here is how the vs rfifo+ts service accomplishes this: Each time an end-point
is noti�ed via mbrshp:start changep(cid; set) of the mbrshp's attempt to form a new view, p
reliably sends to set a synchronization message tagged with cid. This cid uniquely identi�es the
synchronization message, due to the local uniqueness of start change identi�ers. The synchroniza-
tion messages are used for computing the transitional set and for agreeing upon the set of messages
to be delivered to the application before moving to the next view. When mbrshp:viewp(v

0) is
delivered to p, p uses the mapping v0:startId in order to determine the set of synchronization
messages to be used for these purposes: it uses a message tagged with v0:startId(q) from each
end-point q in v:set \ v0:set. Since v0:startId mapping is part of the view v0, all the processes

15



moving from view v to v0 use the same set of synchronization messages for computing the transi-
tional set and the set of messages to be delivered to the application before v0. Thus, the inclusion
of the startId mapping in views eliminates the need to pre-agree on a common tag for identifying
which synchronization messages to consider for a given view.

5.2.1 Algorithm details and safety argument

Figure 10 presents the vs rfifo+tsp automaton as a child of wv rfifop. While there are no view
changes, vs rfifo+tsp does not modify the behavior of wv rfifop. When a view change is taking
place, vs rfifo+tsp sends and handles synchronization messages, and also restricts the delivery
of application messages according to the synchronization messages associated with the new view.

Upon receiving a start changep(cid; set) noti�cation from mbrshp, end-point p stores hcid,
seti in the variable start change, informs co rfifo that it wishes to maintain reliable communi-
cation to the end-points in current view [ set, and then sends a synchronization message tagged
with cid to every end-point in set. The synchronization message contains p's current view v

and a cut, which is a mapping from processes to indices; cut(q) is the index of the last message
from q that p commits to deliver before delivering any view v0 with v0:startId(p) = cid. In
order to preserve liveness, p does not commit to deliver messages that it does not already have in
msgs[q][current view].

End-point p stores the synchronization message from q tagged with cid in sync msg[q][cid].
Until p receives a view from mbrshp, it does not know which synchronization messages from
others to consider, so it restricts delivery of application messages to only those identi�ed in its
own latest cut. When a mbrshp view v0 is delivered to p, the v0:startId mapping tells p

to use the synchronization messages sync msg[q][v0:startId(q)] from q 2 v0:set. The members
of p's transitional set for view v0 are those end-points q whose sync msg[q][v0:startId(q)]:view
is the same as p's current view v. After receiving view v0 from mbrshp, p allows delivery of
application messages identi�ed in the cuts conveyed in synchronization messages from processes
that are already known to be members of the transitional set. The delivery of viewp(v

0; T) to p's
application is enabled only after p has received the synchronization messages from all the potential
members of T and after it has delivered all application messages committed to by the cuts of the
members of T. Since all the end-points that move from v to v0 use the same set of synchronization
messages, the safety properties Virtual Synchrony and Transitional Set are satis�ed.

End-point p is guaranteed to eventually receive all the application messages sent by the mem-
bers of its transitional set T. However, p may fail to receive some of the application messages
sent by disconnected end-points (not in T) although certain cuts of members of T commit to de-
liver these messages. Such messages need to be forwarded to p by the members of T that have
them. These members of T deduce from the p's cut that p lacks these messages and they use a
ForwardingStrategyPredicate to compute which of them have to forward which missing messages
to p. We discuss possible such predictes below.
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Figure 10 Virtually synchronous reliable fifo multicast and transitional set end-point automaton.

automaton vs rfifo+tsp modifies wv rfifop

Signature Extension:

Input: sendp(m) modi�es wv rfifo.sendp(m)

mbrshp.start changep(id, set), StartChangeId id, SetOf(Proc) set new

co rfifo.deliverq,p(m), Proc q, SyncMsg m new

Output: deliverp(q, m) modi�es wv rfifo.deliverp(q, m)

viewp(v, T), SetOf(Proc) T modi�es wv rfifo.viewp(v)

co rfifo.reliablep(set), SetOf(Proc) set modi�es wv rfifo.co rfifo.reliablep(set)

co rfifo.sendp(set, m), SetOf(Proc) set, SyncMsg m new

co rfifo.sendp(set, m) modi�es wv rfifo.co rfifo.sendp(set, m), FwdMsg m

State Extension:

(StartChangeId � SetOf(Proc))? start change, initially ?
For all Proc q, ViewId id: (View v, (Proc!Int) cut)? sync msg[q][id], initially ?
SetOf(FwdMsg) forwarded set, initially empty

Transition Restriction:

INPUT mbrshp.start changep(id, set)

eff: start change  hid, seti

OUTPUT co r�fo.reliablep(set)

pre: start change = ? ) set = current view.set

start change 6= ? ) set = current view.set [ start change.set

OUTPUT co r�fo.sendp(set, tag=sync msg, cid, v, cut)

pre: start change 6= ?
start change.set � reliable set

hcid, seti = hstart change.id, start change.set - fpgi
sync msg[p][cid] = ? ^ v = current view

(8 q 2 current view.set) cut(q) = LongestPrefixOf(msgs[q][v])

eff: sync msg[p][cid]  hv, cuti

INPUT co r�fo.deliverq,p(tag=sync msg, cid, v, cut)

eff: sync msg[q][cid]  hv, cuti

OUTPUT deliverp(q, m)

pre: if (start change 6= ? ^ sync msg[p][start change.id] 6= ?) then

if start change.id 6= mbrshp view.startId(p) then

last dlvrd[q]+1 � sync msg[p][start change.id].cut(q)

else let S = fr 2 mbrshp view.set \ current view.set |

sync msg[r][mbrshp view.startId(r)].view = current viewg
last dlvrd[q]+1 � max

r 2 S
sync msg[r][mbrshp view.startId(r)].cut(q)

OUTPUT viewp(v, T)

pre: v.startId(p) = start change.id // to prevent delivery of obsolete views
(8 q 2 v.set \ current view.set) sync msg[q][v.startId(q)] 6= ?
T = fq 2 v.set \ current view.set | sync msg[q][v.startId(q)].view = current viewg
(8 q 2 current view.set) last dlvrd[q] = max

r 2 T
sync msg[r][v.startId(r)].cut(q)

eff: start change  ?

OUTPUT co r�fo.sendp(set,tag=fwd msg,r,v,m,i)

pre: (8 q 2 set) hq, r, v, ii 62 forwarded set

ForwardStrategyPredicate(h set, r, v, ii, current state)

eff: (8 q 2 set) add hq, r, v, m, ii to forwarded set
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5.2.2 Forwarding Strategy Predicate

In this section we provide two examples of ForwardingStrategyPredicates. With the �rst, mul-
tiple copies of the same message are forwarded by di�erent end-points (Recall that one end-point
does not forward the same message to a second end-point more than once. This is due to the use
of forwarded set in the co rfifo:send action.) The second strategy minimizes the number of
forwarded copies of a message. Obviously, many other possible strategies exist. For example, a
strategy can employ randomization to decide whether an end-point should forward a message in a
certain time slice, and suppress the forwarding of messages that have already been forwarded by
others.

A simple strategy

According to our �rst example strategy, a process p forwards a message m only if p has committed
to deliver m. In addition, if m was originally sent in view v, p forwards m to a process q only if p does
not know of any later view of q than v, and if the latest sync msg from q sent in view v indicates
that q has not received message m. The strategy is de�ned as follows:

ForwardingStrategyPredicate(set, r, v, i, s[p]) =
pre: (9 cid) s[p].sync msg[p][cid].view = v

i � s[p].sync msg[p][cid].cut(r)

set = f q | s[p].view msg[q] � v

(9 cid 0) s[p].sync msg[q][cid 0].view = v

^ (69 cid 0 0
> cid 0) s[p].sync msg[q][cid 0 0].view = v

^ s[p].sync msg[q][cid 0].cut(r) < i g

According to this strategy, if some process q is missing a certain message m, m will be forwarded
to q as soon as some other end-point that has committed to deliver m learns from q's sync msg that
q misses it.

Since p has to be committed to deliver the messages that it forwards, there is only a �nite
number of such messages. We rely on the fact that only a �nite number of messages are forwarded
in order to argue that if the strategy enables forwarding of a message m, them m is eventually
forwarded. Otherwise, p may keep receiving and forwarding later messages instead of m1.

Minimizing the number of forwarded copies of a message

The second ForwardingStrategyPredicate we present uses the transitional set in order to
agree which message should be forwarded by which member of the transitional set. Assume that T
is known to be the transitional set for moving from view v to v0. Assume further that a member
of T misses a message m that was originally sent in view v by a non-member of T and some other
members of T have committed to deliver m. The strategy uses the sync msgs to deterministically
decide which of those members of T that have committed to deliver m will forward it. We use
min function to deterministically select one such end-point. More involved functions can take into
account topology of the network, communication cost, etc.

Note that although q's sync msg may indicate that q misses a message from a member of T, q
will eventually receive this message from its original sender, hence there is no need to forward it.
The strategy is as follows:

ForwardingStrategyPredicate(set, r, v, i, s[p]) =

pre: v = s[p].mbrshp view // the current membership view can be same as current view

1Note that we do not specify that messages are forwarded in fifo order.
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s[p].sync msg[p][v.startId(p)] 6= ? // already sent own sync msg
Let I = v.set \ s[p].sync msg[p][v.startId(p)].view.set

(8 q 2 I) s[p].sync msg[q][v.startId(q)] 6= ? // already rcvd right sync msgs from potential T
Let T = fq 2 I | s[p].sync msg[q][v.startId(q)].view = s[p].sync msg[p][v.startId(p)].viewg
r 62 T // only forward messages from end--point not in T.
set = fu 2 T | s[p].sync msg[u][v.startId(u)].cut(r) < i g
p = minfu 2 T | s[p].sync msg[u][v.startId(u)].cut(r) � i g

Note that in a situation when q needs to recover a message m in order to move into v0 but
another process p has already moved into a view v00 > v0, p will not forward m to q. However, this
does not violate liveness since in this case v0 is obsolete (p has already moved from it to a later
view). In case v' is not obsolete, (i.e., if none of the members of v' deliver later views than v'),
then this strategy guarantees that if q needs to recover a message m in order to move into v0, then
there will be at least one end-point p that will forward m to q reliably via a co rfifo channel.

Usually, only one copy of m will be sent, but this is not always the case. In some cases when
mbrshp provides di�erent mbrshp views to di�erent processes, more than one end-point may for-
ward the same message. However, scenarios that would cause this are not dominant.

Note that with this strategy an end-point waits to receive a mbrshp view and all the right
sync msgs before it forwards any messages. End-point q has to wait until it receives this message
before it is able to proceed in to the next view.

5.2.3 Liveness of vs rfifo+ts

Consider a fair execution, �, in which the same mbrshp view v0 is delivered to all its members,
with no subsequent mbrshp events. In order for vs rfifo+ts to be live in �, the preconditions for
viewp(v

0; �) should eventually be satis�ed for every p 2 v0:set. There are three preconditions on
view delivery:

1. The precondition v:startId(p) = start change:id is satis�ed from our assumption that no
start change events occur at p after p receives v0.

2. p needs to have received synchronization messages tagged with the \right" cid from all the
processes in v:set \ v0:set. This precondition is eventually satis�ed since, from our assump-
tion, every process q in v:set \ v0:set receives view v0 from mbrshp. Hence, a preceding
start changeq(v

0:startId(q); set) occurs, and since � is fair, q sends a synchronization
message tagged with v0:startId(q) while p is in q's reliable set, and p receives this message.

3. The last delivered message from every q is equal to:
maxr2Tsync msg[r][mbrshp view:startId(r)]:cut(q). This condition is satis�ed if p did not
deliver any messages beyond those committed to in the cuts of the members of its transitional
set Tp (as follows from the precondition on application message delivery) and if p eventually
receives all the messages committed to in the cuts of the members of Tp. Note that for
each such message, there is at least one end-point in Tp that has the message in its msgs
bu�er. If the original sender of the message, q, is in Tp, then p eventually receives the
message since co rfifo provides a live and reliable service from q to p (as p is in both
co rfifo:reliable set[p] and co rfifo:live set[p]). Otherwise, one of the members of
Tp that has the message forwards it to p (according to the ForwardingStrategyPredicate)
on behalf of q, and p receives it.

19



5.2.4 Optimizations

Notice that end-point p does not need to send its current view and its cut to end-points which are
not in current view.set because p cannot be included in their transitional sets. Nevertheless,
these end-points may wait to hear from p as p may still be in their current views. Therefore,
in our algorithm, p sends synchronization messages to all the end-points in start change.set.
As an optimization, p could send a di�erent (smaller) synchronization message to processes in
start change:set� current view:set, containing its start change.id only (but neither a view
nor a cut). This message would be interpreted as saying \I am not in your transitional set", and
the recipients would not include p in their transitional sets for views v0 with v0:startId(p) = p's
start change.id. When using this optimization, p also does not need to include its current view
in synchronization messages sent to current view:set� start change:set, since the view can be
deduced from a preceding view msg that p sent to them.

Another optimization can be used to minimize synchronization message sizes if we strengthen
the membership speci�cation to require a mbrshp.start change to be sent every time the mem-
bership changes its mind about the next view. In this case, the latest mbrshp.start change has
the same membership as the delivered mbrshp.view, and therefore the synchronization messages
do not need to include information about messages delivered from end-points in start change.set

\ current view.set because the synchronization message from each of these end-points can ter-
minate a stream of application messages that this end-point would deliver in its current view.

5.3 Adding support for Self Delivery

As a �nal step in constructing the automaton that models an end-point of our group communication
service, gcsp, we add support for Self Delivery to the vs rfifo+tsp automaton presented above.
Self Delivery requires each end-point to deliver to its application all the messages the application
sends in a view, before moving on to the next view.

In order to implement Self Delivery and Virtual Synchrony together in a live manner, each end-
point must block its application from sending new messages while a view change is taking place (as
proven in [19]). Therefore, we modify vs rfifo+tsp to have an output action block and an input
action block ok, and we assume that the application at end-point p has the matching actions and
that it eventually responds to every block request with a block ok response and subsequently
refrains from sending messages until a view is delivered to it. In Section 6.4, we formalize this
requirement by specifying an abstract client automaton.

The gcsp automaton appears in Figure 11. After receiving the �rst start change noti�ca-
tion in a given view, end-point p issues a block request to the application and awaits receiving a
block ok response before sending a synchronization message to other members of start change.set.
The cut sent in the synchronization message commits to all the messages p received from its ap-
plication in the current view.

Since the application is required to respond with block ok and is then blocked from sending
further messages, and since the p's cut commits to all the messages the application has sent in
the current view, the set of messages agreed upon based on the cuts includes all of p's messages.
Therefore, p delivers all these messages before moving on to a new view, and Self Delivery is
satis�ed. Since end-point p has its own messages on the msgs[p][p] queue, the modi�cation does
not a�ect the liveness property of vs rfifo+ts. Finally, we note that due to the use of inheritance,
the gcsp automaton satis�es all the properties we have speci�ed in Secion 4.
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Figure 11 GCSp end-point automaton: Adding support for Self Delivery.

automaton gcsp = vs rfifo+ts+sdp modifies vs rfifo+tsp

Signature Extension:

Input: block okp() new

Output: blockp() new

viewp(v, T) modi�es vs rfifo+ts.viewp(v, T)

co rfifo.sendp(set, m) modi�es vs rfifo+ts.co rfifo.sendp(set, m), SyncMsg m

State Extension:

block status 2 funblocked, requested, blockedg, initially unblocked

Transition Restriction:

OUTPUT blockp()

pre: start change 6= ?
block status = unblocked

eff: block status  requested

OUTPUT co r�fo.sendp(set, tag=sync msg, cid, v, cut)

pre: block status = blocked

INPUT block okp()

eff: block status  blocked

OUTPUT viewp(v,T)

eff: block status  unblocked

6 Correctness Proof: Safety Properties

We now prove that the safety properties of our algorithms are satis�ed using invariant assertions and
simulations. The safety proof ismodular: we exploit the inheritance-based structure of our speci�ca-
tions and algorithms to reuse proofs. In Section 6.1 we prove correctness of the within-view reliable
fifo multicast service by showing a re�nement mapping from wv rfifo to wv rfifo : spec. In
Section 6.2 we extend this re�nement mapping to map the new state added in vs rfifo+ts to that
in vs rfifo : spec. In Section 6.3 we prove that vs rfifo+ts also simulates ts : spec. Finally,
in Section 6.4 we extend the re�nement above to map the new state of gcs to that of self : spec.

6.1 Within-view reliable fifo multicast

Intuitively, in order to simulate wv rfifo : spec with wv rfifo, we need to show that wv rfifo

satis�es Self Inclusion and Local Monotonicity on delivered views and we need to show that the i'th
message delivered by q from p in view v is the i'th message sent in view v by the application client at
p. Showing Self Inclusion and Local Monotonicity is straightforward. In order to prove the latter,
we need to show that the algorithms correctly associate messages with the views in which they
were sent, and their indices in the sequences of messages sent in these views. We prove this using
invariant assertions; we then present a re�nement mapping from wv rfifo to wv rfifo : spec

and the non-trivial steps of its simulation proof.

6.1.1 Invariants

The following invariant captures the Self-Inclusion property.

Invariant 6.1 In every reachable state s of wv rfifo, for all Proc p, p 2 s[p].mbrshp view.set

and p 2 s[p].current view.set.
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Proof 6.1: Straightforward induction based on the mbrshp speci�cation.

In any view, before an end-point sends a view msg to others (and hence before it sends any
application message to others) it tells co rfifo to maintain reliable connection to everybody in
its current view. The following invariant captures this property.

Invariant 6.2 In every reachable state s of wv rfifo, for all Proc p, if s[p].current view =
s[p].view msg[p], then s[p].current view.set � s[p].reliable set.

Proof 6.2: Straightforward induction.

The fact that the views delivered by an end-point satisfy Local Monotonicity is straightforward
because it is a direct outcome of the underlying mbrshp service satisfying this property. Therefore,
a stream of view msgs that an end-point sends to others is also monotonic. The following invariant
captures this property.

Invariant 6.3 Let s be a reachable state of wv rfifo. Consider the subsequence of messages in
s.channel[p][q] for which m.tag=view msg. We examine the sequence of views included in
these view messages, and construct a new sequence seq of views by pre-pending this view sequence
with the element s[q].view msg[p]. For all Proc p, Proc q, the following propositions are true:

1. The sequence seq is (strictly) monotonically increasing.

2. If s[p].current view 6= s[p].view msg[p], then s[p].current view is strictly greater then
the last (largest) element of seq.

3. If s[p].current view = s[p].view msg[p], and if q 2 s[p].current view.set, then
s[p].current view is equal to the last (largest) element of seq.

Proof 6.3: All three propositions are true in the initial state. We now consider steps involving
the critical actions:
co rfifo:lose(p; q): The �rst two propositions remain true because this action throws away only
the last message from the co rfifo s.channel[p][q].

The third proposition is vacuously true because q can not be in s[p].current view.set. If it
were, the co rfifo:lose(p; q) action would not be enabled because Invariant 6.2 would imply
that s[p].current view.set is a subset of s[p].reliable set, which would then imply that q
2 s.reliable set[p] (because s[p].reliable set = s.reliable set[p], as can be shown by
straightforward induction).

viewp(v): The �rst proposition is una�ected. The second proposition follows from the inductive
hypothesis and the precondition v.id > s[p].current view.id. The third proposition is vac-
uously true because s[p].current view 6= s[p].view msg[p] as follows from the precondition
v.id > s[p].current view.id and the fact that, in every reachable state s, s[p].current view

� s[p].view msg[p] (can be proven by straightforward induction).

co rfifo:sendp(set; tag = view msg; v): The �rst proposition is true in the post-state because
of the inductive hypothesis of the second proposition. The second proposition is vacuously true in
the post-state. The third proposition is true in the post-state because of the e�ect of this action.

co rfifo:deliverp;q(tag = view msg; v): It is straightforward to see that all three propositions
remain true in the post-state.

22



In order to reason about original application messages traveling on co rfifo channels we need a
way of referencing the views in which they were sent and their fifo indices. To this end we augment
each original application message h tag=app msg, m i with two history tags, Hv and Hi, that
are set to current view and last sent + 1 resp. when co rfifo:sendp(set; tag = app msg; m)
occurs. (See Appendix A for details on history variables).

OUTPUT co rfifo.sendp(set, tag=app msg, m, Hv, Hi)

pre: ...

Hv = current view

Hi = last sent + 1

eff: ...

With the addition of these history tags, the interface between wv rfifo and co rfifo for han-
dling original application messages becomes co rfifo:sendp(set; tag = app msg; m; Hv; Hi) and
co rfifo:deliverp;q(tag = app msg; m; Hv; Hi).

We show that, when process q receives an application message m tagged with a history view Hv

and a history index Hi, the current value of q's view msg[p] equals Hv and that of last rcvd[p] + 1

equals Hi. The following two invariants capture this relationship:

Invariant 6.4 In every reachable state s of wv rfifo, for all Proc p, Proc q, the following is
true:

For all messages h tag=app msg, m, Hv, Hi i on the co rfifo s.channel[p][q], view Hv

equals either the view of the closest preceding view message on s.channel[p][q] if there is such,
or s[q].view msg[p] otherwise.

Proof 6.4: By induction. The step involving a co rfifo:sendp(set; tag = app msg; m; Hv; Hi)
action follows directly from Invariant 6.3 Part 3. The proposition is not a�ected by steps involv-
ing co rfifo:lose(p; q) because those may only remove the last messages from the co rfifo

s.channel[p][q]. The other steps are straightforward.

Invariant 6.5 In every reachable state s of wv rfifo, for all Proc p and Proc q, the following
is true:

The history index attached to an original application message m sent in a view Hv that is in
transit on a co rfifo channel to end-point q is equal to the number of such messages (including
m) that precede m on that channel, plus those (if any) that q has already received.

Formally, if h tag=app msg, m, Hv, Hi i = s.channel[p][q][j] for some index j, then

Hi =��fmsg 2 s.channel[p][q][ .. j] : msg.tag=app msg and msg.Hv = Hvg
��+

+

�
s[q].last rcvd[p] if s[q].view msg[p] = Hv

0 otherwise

Proof 6.5: In the initial state the proposition is vacuously true because s.channel[p][q] is
empty.
co rfifo:lose(p; q): The proposition remains true since co rfifo:lose(p; q) discards only the
last messages from the co rfifo s.channel[p][q].
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co rfifo:deliverp;q(tag = view msg; v): We have to consider the e�ects on two types of appli-
cation messages: those associated with view s[q].view msg[p], and those associated with view
Hv. Invariants 6.3 Part 1 and 6.4 imply that there are no application messages with msg.Hv =
s[q].view msg[p] on the co rfifo channel[p][q]. Thus, the proposition does not apply for
such messages. For those messages that have msg.Hv = Hv, the proposition remains true because
s0[q]:last rcvd[p] is set to 0 as a result of this action.

co rfifo:deliverp;q(tag = app msg; m; Hv; Hi): Follows immediately from the e�ect of this ac-
tion, the inductive hypothesis, and Invariant 6.4.

co rfifo:sendp(set; tag = app msg; m; Hv; Hi): The inductive step follows immediately from the
inductive hypothesis if we can prove the following proposition for q 2 s[p].current view.set:

s[p].last sent =��fmsg 2 s.channel[p][q] : msg.tag=app msg and msg.Hv = s[p].current viewg
��+

+

�
s[q].last rcvd[p] if s[q].view msg[p] = s[p].current view

0 otherwise

i.e., that the value of s[p].last sent equals to the number of application messages that p sent in
its current view and that are either still in transit on the co rfifo s.channel[p][q] or already
received by q.

This proposition is proven by induction as follows.

�Assume that the last message on s.channel[p][q] is an application message msg with msg.Hv

= s[p].current view. If a step involving co rfifo:lose(p; q) action could occur, then the
proposition would be false. However, as we are going to argue now, q 2 s.reliable set[p],
so such a step cannot occur.
We can prove by straightforward induction that the fact that msg is in s.channel[p][q] implies
that s[p].view msg[p] = s[p].current view. By invariant 6.2 , s[p].current view.set

� s[p].reliable set. Since q 2 s[p].current view.set, then q 2 s.reliable set[p]

(because s[p].reliable set = s.reliable set[p]).

�The proposition remains true for steps involving viewp(v) action because its e�ect sets
s0[p]:last sent to 0 and because both summands of the right hand side of the equation also
becomes 0. Indeed, the �rst summand becomes 0 because co rfifo channels never have mes-
sages tagged with views that are larger then the current views of the messages' senders (as can
be shown by a simple inductive proof); the second summand becomes 0 because Invariant 6.3
Part 2 implies that s0[q]:view msg[p] 6= s0[p]:current view.

�The proposition remains true for steps involving co rfifo:deliverp;q(tag = view msg; v)
action because s[q].view msg[p] 6= s[p].current view, as follows immediately from Invari-
ant 6.3.

�The proposition remains true for steps involving co rfifo:sendp(set; tag = app msg; m; Hv; Hi)
and co rfifo:deliverp;q(tag = app msg; m; Hv; Hi) actions follow immediately from their ef-
fects, the inductive hypotheses, and Invariant 6.4.

Now we can prove the following key invariant which relates application messages either in transit
on the co rfifo channels or at end-points' queues to the corresponding messages on the senders'
queues.
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Invariant 6.6 In every reachable state s of wv rfifo, for all Proc p and Proc q, the following
are true:

1. If h tag=app msg, m, Hv, Hi i 2 s.channel[p][q], then s[p].msgs[p][Hv][Hi] = m.

2. If h tag=fwd msg, r, m, v, i i 2 s.channel[p][q], then s[r].msgs[r][v][i] = m.

3. If s[q].msgs[p][v][i] = m, then s[p].msgs[p][v][i] = m.

Proof 6.6:

Basis: The propositions are vacuously true in the initial state because all message queues are empty.

Inductive Step: The following are the critical actions:

sendp(m),

co rfifo.sendp(set, tag=app msg, m, Hv, Hi),

co rfifo.deliverq,p(tag=app msg, m, Hv, Hi),

co rfifo.sendp(set, tag=fwd msg, r, v, m, i),

co rfifo.deliverq,p(tag=fwd msg, r, v, m, i).

Inductive steps involving each of these critical actions are straightforward. For steps involving
co rfifo:deliverq;p(tag = app msg; m; Hv; Hi), we have to use Invariants 6.4 and Invariant 6.5,
which respectively imply that history view Hv equals s[p].view msg[q] and that history index Hi

equals s[p].last rcvd[q] + 1.

6.1.2 Simulation

Lemma 6.1 The following function R() is a re�nement mapping from automaton wv rfifo to
automaton wv rfifo : spec with respect to their reachable states.

R(s: wv rfifo) ! wv rfifo : spec =

For each Proc p, View v: msgs[p][v] = s[p].msgs[p][v]

For each Proc p, Proc q: last dlvrd[p][q] = s[q].last dlvrd[p]

For each Proc p: current view[p] = s[p].current view

Proof 6.1:

Action Correspondence: Automaton wv rfifo : spec has three types of actions. Actions of
the types viewp(v), sendp(m), and deliverp(q; m), are simulated when wv rfifo takes respectively
the corresponding actions viewp(v), sendp(m), and deliverp(q; m). Steps of wv rfifo involving
other actions correspond to empty steps of wv rfifo : spec.

Simulation Proof: In the most part the simulation proof is straightforward. Here, we present
only the interesting steps:

The fact that the corresponding step of wv rfifo : spec is enabled when wv rfifo takes a step
involving viewp(v) relies on p 2 mbrshp view.set (Invariant 6.1).

For steps involving deliverp(q; m), to deduce that the corresponding step of wv rfifo : spec is
enabled, we need to know that the message at index s[p].last dlvrd[q] + 1 at end-point p's
s[p].msgs[q][s[p].current view] is the same message that end-point q has on its corresponding
queue at the same index. This property is implied by Invariant 6.6 Part 3.
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Steps that involve receiving original and forwarded application messages from the network sim-
ulate empty steps of wv rfifo : spec. Among these steps the only critical ones are those that
deliver a message from p to p because they may a�ect s[p].msgs[p][p] queue. Since end-points
do not send original application messages to themselves, such steps involving original messages
may not happen; This can be proven by straightforward induction, as the only critical action
co rfifo:sendp(set; tag = app msg; m) is preconditioned by set= s[p].current view.set - fpg.
Unlike original messages, forwarded messages may theoretically be sent and delivered to their orig-
inal end-points. However, as Invariant 6.6 Part 2 shows, these messages are the same as those they
replace, thus the message queue is not a�ected.

Lemma 6.1 establishes function R() as a re�nement mapping from the algorithm automaton
wv rfifo to the speci�cation automaton wv rfifo : spec. It allows us to conclude the following
Theorem.

Theorem 6.1 Automaton wv rfifo implements automaton wv rfifo : spec in the sense of
trace inclusion.

Proof 6.1: Follows immediately from Lemma 6.1.

6.2 Virtual Synchrony

We now show that automaton vs rfifo+ts simulates vs rfifo : spec. We prove this by extending
the re�nement above using the Proof Extension Theorem of [26] (see Appendix A for details).

6.2.1 Invariants

We need to prove that end-points that move together from one view to the next use the same sets
of cuts (i.e., compute the same transitional sets and use the same synchronization messages from
the members of the transitional set).

Invariant 6.7 In every reachable state s of vs rfifo+ts, for all Proc p, Proc q, and for every
StartChangeId cid, if e[q].sync msg[p][cid] 6= ?, then:
e[q].sync msg[p][cid] = s[p].sync msg[p][cid].

Proof 6.7: The proposition is true in the initial state s0 as all s0[q]:sync msg[p][cid] = ?.
The inductive step involving a co rfifo:sendp(set; tag = sync msg; cid; v; cut) action is trivial.
The inductive step involving a co rfifo:deliverp;q(tag = sync msg; cid; v; cut) action follows
immediately from the following proposition:

htag=sync msg, cid, v, cuti 2 s.channel[p][q]) s[p].sync msg[p][cid] = hv, cuti;

which can be proven by straightforward induction.

Corollary 6.1 End-points that move together from one view to the next, use the same sets of cuts.
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Proof : Consider two end-points that at di�erent times install a view v0 while in a view v. At the
time of installing view v0, each of these end-points has synchronization messages from all end-points
in the intersection of these views (�rst precondition), and these synchronization messages are the
same as those at their original end-points (Invariant 6.7). Thus, the two end-points calculate the
same transitional sets (see how transitional set is calculated), and use the same cuts from the
members of this transitional set.

6.2.2 Simulation

We augment vs rfifo+ts with a global history variable H cut that keeps track of the cuts used for
moving between views.

For each View v, v 0: (Proc ! Int)? H cut[v][v 0], initially ?

OUTPUT viewp(v, T) modi�es wv rfifo.viewp(v)

pre: ...

eff: ...

H cut[current view][v]  max
r 2 T

sync msg[r][v.startId(r)].cut[q]

We now extend the re�nement mapping R() of Lemma 6.1 with the following new mapping
Rn():

For each View v, v0: cut[v][v0] = s:H cut[v][v0]:

We call the resulting mapping R0(). We exploit the Proof Extension Theorem of [26] (see
Appendix A for details) in order to prove that R0() is a re�nement mapping from automaton
vs rfifo+ts to automaton vs rfifo : spec.

Lemma 6.2 The mapping R0() de�ned above is a re�nement mapping from automaton vs rfifo+ts
to automaton vs rfifo : spec.

Proof 6.2:

Action Correspondence: The action correspondence of wv rfifo is modi�ed as follows: Con-
sider steps (s; viewp(v

0; T); s0) of vs rfifo+ts which involve delivering views to the application
clients. Among these steps, those that are the �rst to set variable H cut[v][v0] (when s:H cut[v][v0]
= ?) simulate two steps of vs rfifo : spec, a step involving set cut(v; v0; s0:H cut[v][v0]), fol-
lowed by a step involving viewp(v

0). The rest (when s:H cut[v][v0] 6= ?) simulate single steps that
involve just viewp(v

0).

Simulation Proof:

First, we have to show that the re�nement mapping of wv rfifo (presented in Lemma 6.1) is still
preserved after the modi�cations introduced by vs rfifo : spec to wv rfifo : spec. Automaton
vs rfifo : spec adds the following preconditions to viewp(v

0) actions of wv rfifo : spec:

cut[current view[p]][v] 6= ?
(8 q) last dlvrd[q][p] = cut[current view[p]][v](q)
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Using the vs rfifo+ts automaton code, the extended mapping R0(), and the action correspondence
above, it is straightforward to show that both of these preconditions are satis�ed when a step of
vs rfifo+ts involving viewp(v

0; T) attempts to simulate a step of vs rfifo : spec involving
viewp(v

0).

Second, we have to show that the mapping Rn() used to extend R() to R0() is also a re�nement.
For those steps (s; viewp(v

0; T); s0) that are the �rst to set variable H cut[v][v0], the action cor-
respondence implies that the mapping is preserved. For those steps that are not the �rst to set
variable H cut[v][v0], the mapping is preserved because s0:H cut[v][v0] = s:H cut[v][v0], as follows
from Corollary 6.1.

Lemma 6.2 establishes function R0() as a re�nement mapping from the algorithm automaton
vs rfifo+ts to the speci�cation automaton vs rfifo : spec. It allows us to deduce the following
Theorem:

Theorem 6.2 Automaton vs rfifo+ts implements automaton vs rfifo : spec in the sense of
trace inclusion.

Proof 6.2: Follows immediately from Lemma 6.2.

6.3 Transitional Set

We now show that vs rfifo+ts simulates ts : spec. The proofs makes use of prophecy variables.
A simulation proof that uses prophecy variables implies only �nite trace inclusion (and not in�nite
trace inclusion). Finite trace inclusion is su�cient for proving safety properties, (see Appendix A
for details).

6.3.1 Invariants

Invariant 6.8 In every reachable state s of vs rfifo+ts, for all Proc p and StartChangeId id,

if id > s[mbrshp].start change[p].id, then s[p].sync msg[p][id] = ?.

Proof 6.8: The proposition is true in the initial state. It remains true for the inductive step
involving mbrshp:start changep(id; set) because s[mbrshp].start change[p].id is increased
as a result of this action. For the step involving co rfifo:sendp(set; tag = sync msg; cid; v; cut),
the proposition remains true because cid = s[mbrshp].start change[p].id, as implied by the
precondition cid = s[p].start change.id and the following invariant which can be proven by
straightforward induction:

In every reachable state s of vs rfifo+ts, for all Proc p, if s[p].start change.id 6= ?, then
s[mbrshp].start change[p].id = s[p].start change.id. This invariant holds in the initial
state. Critical action mbrshp:start changep(id; set) makes it true; Critical action viewp(v; T)
makes it vacuously true.

Finally, a step involving co rfifo:deliverq;p(tag = sync msg; cid; v; cut) does not a�ect
the proposition because the case q=p can not happen since, as can be proven by straightforward
induction, end-points do not send synchronization messages to themselves.
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Lemma 6.3 For any step (s;mbrshp:start changep(id; set); s
0) of vs rfifo+ts,

s[p].sync msg[p][start change.id] = ?:

Proof 6.3: Follows immediately from the precondition id > s[mbrshp].start change[p].id

and Invariant 6.8.

Invariant 6.9 In every reachable state s of vs rfifo+ts, for all Proc p, if s[p].start change

6= ? and s[p].sync msg[p][s[p].start change.id] 6= ?, then

s[p].sync msg[p][s[p].start change.id].view= s[p].current view:

Proof 6.9: The proposition is vacuously true in the initial state. For the inductive step, consider
the following critical actions:
mbrshp:start changep(id; set): The proposition remains vacuously true because

s0[p]:sync msg[p][start change:id] = ? (Lemma 6.3).

co rfifo:sendp(set; tag = sync msg; cid; v; cut): Follows immediately from the code.

co rfifo:deliverq;p(tag = sync msg; cid; v; cut): The proposition is una�ected because the case
q=p can not happen since, as can be proven by straightforward induction, end-points do not send
synchronization messages to themselves.

viewp(v): The proposition becomes vacuously true because s0[p]:start change = ?.

6.3.2 Simulation

We augment vs rfifo+ts with a prophecy variable P legal views(p)(id) for each Proc p, and
each StartChangeId id. This variable is set, at the time a start change id is delivered to an end-
point p, to a predicted �nite set of future views that are allowed to contain id as p's start change
id.

Prophecy Variable:

For each Proc p, StartChangeId id: SetOf(View) P legal views(p)(id), initially arbitrary

INTERNAL mbrshp.start changep(id, set) hidden param V, a �nite set of views

pre: ...

choose V such that 8 v 2 V: (p 2 v.set) ^ (v.startId(p) = id)

eff: ...

P legal views(p)(id)  V

OUTPUT viewp(v, T)

pre: ...

(8 q 2 v.set) v 2 P legal views(q)(v.startId(q))

eff: ...

The vs rfifo+ts automaton augmented with the prophecy variable has the same traces as
those of the original automaton because, it is straightforward to seen that the following conditions
required for adding a prophecy variable hold:
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1. Every state has at least one value for P legal views(p)(id).

2. No step is disabled in the backward direction by new preconditions involving P legal views.

3. Values assigned to state variables do not depend on the values of P legal views.

4. If s0 is an initial state of vs rfifo+ts, and hs0; P legal viewsi is a state of the automaton
vs rfifo+ts augmented with the prophecy variable, then this state is an initial state.

Invariant 6.10 In every reachable state s of vs rfifo+ts, for all Proc p, if s[p].start change

6= ?, then, for all View v 2 P legal views(p)(s[p].start change.id), it follows that p 2 v.set

and v.startId(p) = s[p].start change.id.

Proof 6.10: By induction. The only critical actions are mbrshp:start changep(id; set) and
viewp(v; T). The proposition is true after the former, and is vacuously true after the latter.

Lemma 6.4 The following function TS() is a re�nement mapping from automaton vs rfifo+ts

to automaton ts : spec with respect to their reachable states.

TS(s: vs rfifo+ts)! ts : spec =

For each Proc p: current view[p] = s[p].current view

For each Proc p, View v: prev view[p][v] =

=

�
? if v 62 s.P legal views[p][v.startId(p)]

s[p].sync msg[p][v.startId(p)].view otherwise

Proof 6.4:

Action Correspondence: A step (s, co rfifo:sendp(set; tag = sync msg; cid; v; cut), s0) of
vs rfifo+ts simulates a sequence of steps of ts : spec that involve one set prev viewp(v

0) for
each v0 2 s.P legal views(p)(cid). A step (s, viewp(v; T), s

0) of vs rfifo+ts simulates (TS(s),
viewp(v; T), TS(s

0)) of ts : spec.

Simulation Proof: Consider the following critical actions:
mbrshp:start changep(id; set): A step involving this action simulates an empty step of ts : spec.

The simulation holds because s[p].sync msg[p][id] = ? (Lemma 6.3).

co rfifo:sendp(set; tag = sync msg; cid; v; cut): simulates a sequence of steps of ts : spec

that involve one set prev viewp(v
0) for each v0 2 s.P legal views(p)(cid). Each such step is

enabled as can be seen from the following derivation:

TS(s).prev view[p][v] = s[p].sync msg[p][v.startId(p)].view (Re�nement mapping)

= s[p].sync msg[p][cid].view (Invariant 6.10)

= ?: (Precondition)

The simulation step follows from the code, re�nement mapping TD(), and the way action corre-
spondence is de�ned.

co rfifo:deliverq;p(tag = sync msg; cid; v; cut): A step involving this action does not a�ect
any of the variables of the re�nement mapping and thus simulates an empty step of ts : spec.
In particular, note that the case of q=p may not happen because end-points do not send cuts to
themselves; This can be shown by straightforward induction.
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viewp(v; T): A step involving this action simulates a step of ts : spec that involves viewp(v; T).

The key thing is to show that it is enabled (since it is straightforward to see that, if it is, the
re�nement is preserved). Action viewp(v; T) of ts : spec has three preconditions. The fact that
they are enabled follows directly from the inductive hypothesis, the code, the re�nement mapping,
and Invariants 6.9 and 6.10.

Lemma 6.4 establishes function TS() as a re�nement mapping from the algorithm automaton
vs rfifo+ts to the speci�cation automaton ts : spec. It allows us to conclude the following
Theorem.

Theorem 6.3 Automaton vs rfifo+ts implements automaton ts : spec in the sense of �nite
trace inclusion.

Proof 6.3: Follows immediately from Lemma 6.4.

6.4 Self Delivery

We now prove that the complete gcs end-point automaton simulates self : spec. In order to prove
this, we need to formalize our assumptions about the behavior of the clients of a gcs end-point:
we assume that a client eventually responds to every block request with a block ok response
and subsequently refrains from sending messages until a view is delivered to it. We formalize this
requirement by specifying an abstract client automaton in Figure 12. In this automaton, each
locally controlled action is de�ned to be a task by itself, which means that it eventually happens if
it becomes enabled unless it is subsequently disabled by another action.

Figure 12 Abstract speci�cation of a blocking client at end-point p

automaton clientp : spec

Signature:

Input: deliverp(q, m), Proc q, AppMsg m

viewp(v), View v

blockp()

Output: sendp(m), AppMsg m

block okp()

State:

block status 2 funblocked, requested, blockedg, initially unblocked

Transitions:

INPUT blockp()

eff: block status  requested

OUTPUT block okp()

pre: block status = requested

eff: block status  blocked

OUTPUT sendp(m)

pre: block status 6= blocked

eff: none

INPUT deliverp(q, m)

eff: none

INPUT viewp(v)

eff: block status  unblocked
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6.4.1 Invariants

The following invariant states that gcs end-points and their clients have the same perception of
what their block status is.

Invariant 6.11 In every reachable state s of gcs, for all Proc p,

s[gcsp]:block status = s[clientp]:block status:

Proof 6.11: Trivial induction.

Invariant 6.12 In every reachable state s of gcs, for all Proc p, if s[p].start change 6= ? and

s[p].block status 6= blocked, then s[p].sync msg[p][s[p].start change.id] = ?.

Proof 6.12: The proposition is vacuously true in the initial state s0 because s0[p]:start change

= ?. For the inductive step, consider the following critical actions:
mbrshp:start changep(id; set): The proposition remains true because of Lemma 6.3.

blockp(): The proposition is true in the post-state if it is true in the pre-state.

block okp(): The proposition becomes vacuously true because s0[p]:block status = blocked.

co rfifo:sendp(set; tag = sync msg; cid; v; cut): The proposition remains vacuously true be-

cause s[p].block status = s0[p]:block status = blocked.

co rfifo:deliverq;p(tag = sync msg; cid; v; cut): The proposition is una�ected because the case
q=p can not happen since, as can be proven by straightforward induction, end-points do not send
cuts to themselves.

viewp(v; T): The proposition becomes vacuously true because s0[p]:start change = ?.

Invariant 6.13 In every reachable state s of gcs, for all Proc p, if s[p].start change 6= ? and

s[p].sync msg[p][s[p].start change.id] 6= ?,
s[p].sync msg[p][s[p].start change.id].cut[p] =
LastIndexOf(s[p].msgs[p][s[p].current view]).

Proof 6.13: The proposition is vacuously true in the initial state s0 because s0[p]:start change

= ?. For the inductive step, consider the following critical actions:
sendp(m): The proposition is vacuously true because s0[p]:sync msg[p][s[p]:start change:id] = ?,

as follows from the precondition s[clientp]:block status 6= blocked on this action at clientp,
and from Invariants 6.11 and 6.12.

mbrshp:start changep(id; set): The proposition is vacuously true because s0[p]:sync msg[p][id]

= ? (Lemma 6.3).

co rfifo:sendp(set; tag = sync msg; cid; v; cut): Follows directly from the code. More speci�-

cally from the precondition: (8q 2 current view:set) cut(q) = LongestPrefixOf(msgs[q][v]),
and from the fact that p 2 current view.set (Invariant 6.1).
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co rfifo:deliverq;p(tag = sync msg; cid; v; cut): The proposition is una�ected because the case
q=p can not happen since, as can be proven by straightforward induction, end-points do not send
cuts to themselves.

viewp(v; T): The proposition becomes vacuously true because s0[p]:start change = ?.

6.4.2 Simulation

Lemma 6.2 in Section 6.2 on page 27 establishes function R0() as a re�nement mapping from au-
tomaton vs rfifo+ts to automaton vs rfifo : spec. We now argue that R0() is also a re�nement
mapping from automaton gcs to automaton self : spec.

Lemma 6.5 Re�nement mapping R0() from automaton vs rfifo+ts to automaton vs rfifo : spec

(presented in Lemma 6.2) is also a re�nement mapping from automaton gcs to automaton self : spec,
under the assumption that clients at each end-point p satisfy the speci�cation automaton client : specp
for blocking clients.

Proof : Automaton self : spec modi�es automaton wv rfifo : spec by adding a precondition,
last dlvrd[p][p] = LastIndexOf(msgs[p][current view[p]]), to the steps involving viewp()
actions. We have to show that this precondition is enabled when a step of gcs involving viewp(v; T)
attempts to simulate a step of self : spec involving viewp(v).

Consider the following derivation:

s[p].last dlvrd[p] = maxr2Tsync msg[r][v:startId(r)]:cut[p] (a precondition)

� s[p].sync msg[p][v.startId(p)].cut[p]

= s[p].sync msg[p][s[p].start change.id].cut[p] (a precondition)

= LastIndexOf(s[p].msgs[p][s[p].current view]) (Invariant 6.13).

Thus, R0(s):last dlvrd[p][p]) = LastIndexOf(R0(s):msgs[p][R0(s):current view[p]]) according
to mapping R0(), and the precondition is satis�ed.

Lemma 6.5 establishes function R0() from Section 6.2 as a re�nement mapping from the algo-
rithm automaton gcs to the speci�cation automaton self : spec. It allows us to conclude the
following Theorem.

Theorem 6.4 Automaton gcs implements automaton self : spec in the sense of trace inclu-
sion, under the assumption that clients at each end-point p satisfy the speci�cation automaton
client : specp for blocking clients.

Proof 6.4: Follows from Lemmas 6.1, 6.2, and 6.5.

We have shown that gcs implements all of the safety speci�cations.

Theorem 6.5 Automaton gcs implements each of wv rfifo : spec, vs rfifo : spec, ts : spec,
and self : spec automata.

Proof : Follows from Theorems 6.1, 6.2, 6.3, and 6.4.
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7 Correctness Proof: Liveness Properties

In this section we prove that our group communication service gcs satis�es the liveness property
of Section 4.2. The proof is operational for the most part; In order to show that a certain action
is eventually executed, we argue that the preconditions on this action eventually become and stay
satis�ed and rely on low-level fairness to conclude that the action is eventually executed. The proof
also relies on a number of invariants, which we state and prove below.

7.1 Invariants

The following invariant captures the fact that end-points do not deliver messages other than the
messages committed in the synchronization messages received from the members of the end-points'
transitional sets.

Invariant 7.1 In every reachable state s of gcs, for all Proc p, if s[p].start change 6= ? and

s[p].sync msg[p][s[p].start change.id] 6= ?, then for all Proc q 2 s[p].current view.set,

1. If s[p].start change.id 6= s[p].mbrshp view.startId(p), then

s[p].last dlvrd[q] � s[p].sync msg[p][s[p].start change.id].cut[q]:

2. Otherwise, let v = s[p].current view, v0 = s[p].mbrshp view, and let
T = fq 2 v0:set \ v.set j sync msg[q][v0:startId(q)]:view = vg, then

s[p].last dlvrd[q] � maxr2T s[p]:sync msg[r][v0:startId(r)]:cut[q]:

Proof 7.1: Both propositions are true in the initial state s0 since s0[p]:start change = ?. For
the inductive step, consider the following critical actions:
deliverp(q; m): The proposition remains true because s0[p]:last dlvrd[q] = s[p].last dlvrd[q]

+1 and because of the precondition on this action, which mimics the statement of this proposition.

mbrshp:start changep(id; set): The proposition is vacuously true because s0[p]:sync msg[p][id]

= ? (Lemma 6.3).

mbrshp:viewp(v): The proposition is true because p 2 T, which follows from Invariant 6.1.

co rfifo:sendp(set; tag = sync msg; cid; v; cut): The proposition is true since
s[p].last dlvrd[q] is bounded by LongestPrefixOf(s[p].msgs[q][s[p].current view]) in
every reachable state of the system for any Proc q 2 s[p].current view.set (this fact can be
straightforwardly proved by induction) and from the precondition, \(8q 2 s[p]:current view:set)
cut(q) = LongestPrefixOf(s[p].msgs[q][s[p].current view])", on this action.

co rfifo:deliverq;p(tag = sync msg; cid; v; cut): The proposition is una�ected because the case

q = p is impossible since end-points don't send cuts to themselves (this can be straightforwardly
proved by induction).

viewp(v; T): The proposition becomes vacuously true because s0[p]:start change = ?.

The following Invariant states that end-points' cuts specify \real" messages, i.e., those that they
do have on their message queues.
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Invariant 7.2 In every reachable state s of gcs, for all Proc p, if s[p].start change 6= ? and
s[p].sync msg[p][s[p].start change.id] 6= ?, then, for all Proc q and for all Int i such that
1 � i � s[p].sync msg[p][s[p].start change.id].cut[q],

s[p].msgs[q][s[p].current view][i] 6= ?:

Proof 7.2: The proposition can be straightforwardly proved by induction. The only interesting ac-
tion is co rfifo:sendp(set; tag = sync msg; cid; v; cut). The truth of the proposition after this
action is taken follows immediately from the action's precondition: \(8q 2 s[p]:current view:set)
cut(q) = LongestPrefixOf(s[p].msgs[q][s[p].current view])."

The following Corollary states that if an end-point p has end-point q's cut committing certain
messages sent by end-point r in view v, then end-point q has those messages bu�ered.

Corollary 7.1 In every reachable state s of gcs, for all Proc p, Proc q, Proc r, and
StartChangeId cid, it follows that if s[p].sync msg[q][cid] 6= ?, then for every integer i

between 1 and
s[p].sync msg[q][cid].cut[r], s[q].msgs[r][s[p].sync msg[q][cid].view][i] 6= ?.

Proof 7.1: Follows immediately from Invariants 6.7 and 7.2.

7.2 Operational Lemmas

Lemma 7.1 In any execution sequence � of gcs, the following are true:

1. For every gcs:viewp(v; T) event, there is a preceding mbrshp:viewp(v) event such that
there is no other mbrshp:start changep, mbrshp:viewp, nor gcs:viewp events between
mbrshp:viewp(v) and gcs:viewp(v; T).

2. For every mbrshp:viewp(v) event, there is a preceding mbrshp:start changep(id; set)
event with id = v.startId(p) and set � v.set. Moreover, no mbrshp:start changep,
mbrshp:viewp or gcs:viewp events occur in � between mbrshp:start changep(id; set)
and mbrshp:viewp(v).

Proof 7.1:

1. Assume that gcs:viewp(v; T) event occurs in �. One of the preconditions on gcs:viewp(v; T)
is v = p:mbrshp view, which can only become satis�ed as a result of a precedingmbrshp:viewp(v).
Also, notice that

� mbrshp:start changep event cannot occur between mbrshp:viewp(v) and gcs:viewp(v; T)
because it would increase the value of p:start change:id beyond v:startId(p) making
it impossible for gcs:viewp(v; T) to occur.

� mbrshp:viewp event cannot occur between mbrshp:viewp(v) and gcs:viewp(v; T) be-
cause it would change the value of p:mbrshp view making it impossible for gcs:viewp(v; T)
to occur.

� gcs:viewp(v
0; T) event cannot occur between mbrshp:viewp(v) and gcs:viewp(v; T)

because it would set p:start change to ? making it impossible for gcs:viewp(v; T) to
occur.
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2. Assume that mbrshp:viewp(v) event occurs in �. Then mbrshp:start changep(id; set)
event with id = v.startId(p) and set � v.set must precede mbrshp:viewp(v) be-
cause the initial values for state variables of mbrshp do not satisfy the preconditions for
mbrshp:viewp(v), and the only event that can cause these preconditions to become true is
mbrshp:start changep(id; set).

Also, notice that

� mbrshp:start changep event cannot occur between mbrshp:start changep(id; set)
andmbrshp:viewp(v) because it would increase the value of mbrshp:start change[p]:id
beyond v.startId(p) making it impossible for mbrshp:viewp(v) to occur.

� mbrshp:viewp(v
0) event cannot occur between mbrshp:start changep(id; set) and

mbrshp:viewp(v) because it would set mbrshp:mode[p] to normalmaking it impossible
for mbrshp:viewp(v) to occur.

� gcs:viewp(v
0; T0) event cannot occur between mbrshp:start changep(id; set) and

mbrshp:viewp(v) because its two preconditions, v0 = p.mbrshp view and v0:startId(p)
= p.start change.id= v.startId(p), can not hold together. Indeed, mbrshp:viewp(v

0)
is the only action that can satisfy the precondition v0 = p.mbrshp view. It can not oc-
cur after mbrshp:start changep(id; set) for the reasons given above. It also can not
occur before mbrshp:start changep(id; set) because otherwise it would imply that
v.startId(p) > v0:startId(p), which would contradict the second precondition.

Lemma 7.2 (Liveness) Let v be a view with v:set = S. Let � be a fair execution sequence of a
group communication service GCS in which, for every p 2 S, the action mbrshp:viewp(v) occurs
and is followed by neither mbrshp:viewp nor mbrshp:start changep actions. Then at each end-
point p 2 S, gcs:viewp(v; �) eventually occurs. Furthermore, for every gcs:sendp(m) that occurs
after gcs:viewp(v; �), and for every q 2 S, gcs:deliverq(p; m) also occurs.

Proof 7.2: We �rst prove that gcs:viewp(v; �) eventually occurs. Our task is to show, for
each p 2 v.set, that action gcs:viewp(v; �) becomes enabled at some point after p receives
mbrshp:viewp(v) and that it stays enabled forever thereafter unless it is executed. The fact that
� is a fair execution of gcs then implies that gcs:viewp(v; �) is in fact executed.

In order for gcs:viewp(v; �) to become enabled its preconditions on the state variables of gcsp
must eventually become and stay satis�ed:

v = p.mbrshp view

v.id i current view.id

v.startId(p) = p.start change.id

(8 q 2 v.set \ p.current view.set) p.sync msg[q][v.startId(q)] 6= ?
T = fq 2 v.set \ p.current view.set | p.sync msg[q][v.startId(q)].view = p.current viewg
(8 q 2 current view.set) p.last dlvrd[q] = max

r 2 T
p.sync msg[r][v.startId(r)].cut(q)

We now look at each precondition for gcs:viewp(v; �) and argue that it eventually becomes
satis�ed and that it stays satis�ed from that point on until gcs:viewp(v; �) is executed.
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v = p:mbrshp view and v:id > current view:id: These preconditions become satis�ed as a re-
sult of mbrshp:viewp(v). In particular, notice that the latter becomes satis�es because in any
reachable state of the system mbrshp.mbrshp view = p.mbrshp view � p.current view (this
can be straightforwardly proved by induction). These preconditions stay satis�ed forever, unless
gcs:viewp(v; �) is executed, because, by our assumption, � does not contain any subsequent
mbrshp:viewp(v

0), and hence, by contrapositive of Lemma 7.1.1, it also does not contain any
subsequent gcs:viewp(v

0; �) with v0 6= v.

v:startId(p) = p:start change:id: This condition becomes satis�ed as a result of a
mbrshp:start changep(id; set) event with id = v.startId(p) and set � v.set, which must
precede mbrshp:viewp(v) in � by Lemma 7.1.2.

This condition stays satis�ed from the time of mbrshp:start changep(id; set) at least until
gcs:viewp(v; �) because the only two types of actions, mbrshp:start changep(id

0; set0) and
gcs:viewp(v

0; �) with v0 6= v that may a�ect the value of p.start change cannot occur after
mbrshp:start changep(id; set), as implied by the assumption on this lemms, Lemma 7.1.2, and
the contrapositive of Lemma 7.1.2.

(8q 2 v:set \ p:current view:set) p:sync msg[q][v:startId(q)] 6= ?: In order to show that p even-
tually receives the right synchronization messages from every q in v:set \ p:current view:set, we
have to prove that (a) q eventually sends to p a synchronization message tagged with v.startId(q)

and that (b) co rfifo eventually delivers this message to p.

� We start with part (a). In order for co rfifo:sendq(set; tag = sync msg; v:startId(q); v0; cut)
to happen, the following preconditions have to become and stay satis�ed until this action is
executed (see the code in Figures 9, 10, and 11):

1. start change 6= ?;

2. start change:id = v:startId(q):

3. sync msg[p][v:startId(q)] = ?;

4. start change:set � reliable set;

5. block status = blocked.

We now consider each of these preconditions: The �rst three become true when q receives
mbrshp:start changeq(v:startId(q); set), the occurrence of which follows from Lemma 7.1.2.
This is straightforward for the �rst two, and is implied by Lemma 6.3 for the third. They
remain satis�ed from that point on, at least until the synchronization message is sent. This
is because, as implied by Lemma 7.1.2 and the assumption on �, there are no subsequent
start change events at q which may set start change:id to a di�erent value, and because
the only event (contrapositive of Lemma 7.1.2), gcs:viewq(v), that can reset start change

to ? may occur only after q sends the synchronization message.

The fourth precondition becomes satis�ed when co rfifo:reliableq(set) occurs with set

= current view:set [ start change:set. This action eventually occurs because it becomes
and remains enabled when q receives mbrshp:start changeq(v:startId(q); set). Note that
although co rfifo:reliableq(set) may occur multiple times afterwards, reliable set re-
mains unchanged until gcs:viewq(v) occurs since both current view:set and
start change:set remain unchanged.

The �fth precondition, block status = blocked, becomes satis�ed as a result of a block okq()
input from the application client at q. Notice that if block status has the value blocked

at anytime after mbrshp:start changeq(v:startId(q); set) then it does not lose this value
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until gcs:viewq(v) happens because neither blockq() nor client:block okq() are enabled
after that, and because gcs:viewq(v) is the only possible gcs view event (the contrapositive
of Lemma 7.1.2). To see that block status does in fact become blocked consider the
three possible values of block status right after mbrshp:start changeq(v:startId(q); set)
occurs:

1. block status = blocked: We are all set.

2. block status = requested: By Invariant 6.11, client:block okq() is enabled. It stays
enabled until it is executed because the actions, blockq() and gcs:viewq(), which would
disable it, cannot occur. When it is executed, the precondition becomes satis�ed.

3. block status = unblocked: When mbrshp:start changeq(v:startId(q); set) occurs,
blockq() becomes and stays enabled until it is executed. After that, block status

becomes requested and the same reasoning as in the previous case applies.

Since all the preconditions for co rfifo:sendq(set; tag = sync msg; v:startId(q); v0; cut)
at some point become and stay satis�ed, this action is executed and the synchronization
message is appended to co rfifo:channel[q][p].

� For part (b), we have to show that co rfifo eventually delivers this synchronization mes-
sage to p. For this we have to argue that, when the synchronization message is placed
on co rfifo:channel[q][p] and at least until it is delivered to p, end-point p is in both
co rfifo:reliable set[q] and co rfifo:live set[q]. The former implies that co rfifo

does not lose any messages (in particular, this synchronization message) from q to p. It
becomes satis�ed because, as was argued above, co rfifo:reliableq(set) with set =
current view:set [ start change:set eventually occurs, and because

p 2 v.set � q.start change.set � set = co rfifo.reliable set[q]:

This precondition remains satis�ed afterwards because co rfifo.reliable set[q] remains
unchanged until gcs:viewq(v; �) occurs (as was explained above). The latter, in conjunction
with low-level fairness, implies that co rfifo eventually delivers every message (in particu-
lar, this synchronization message) on the channel from q to p. It becomes satis�ed because
mbrshp:viewq(v) is linked to co rfifo:live setq(v:set) and because p 2 v.set. This
precondition remains satis�ed afterward because � does not contain any subsequent mbrshp
events at end-point q.

Thus, end-point p eventually receives the right synchronization messages from every q in
v:set \ p:current view:set.

(8q 2 current view:set) p:last dlvrd[q] = maxr2Tp:sync msg[r][v:startId(r)]:cut[q]:

By Invariant 7.1, p.last dlvrd[q] never exceeds maxr2T fp.sync msg[r][v.startId(r)].cut[q]g
at any q. It is therefore left to show that p.last dlvrd[q] does not remain smaller than maxr2T.

We have shown above that all the other preconditions for delivering view v by p eventually be-
come and remain satis�ed until the view is delivered. Consider the part of � after all of these
preconditions hold. Let q be an end-point in current view.set such that p.last dlvrd[q] <

maxr2Tp:sync msg[r][v:startId(r)]:cut[q]. Let i = p.last dlvrd[q] + 1. We now argue that
p.last dlvrd[q] eventually becomes i, i.e., that p eventually delivers the next message from
q. Applying this argument inductively, implies that p.last dlvrd[q] eventually reaches maxr2T
fp.sync msg[r][v.startId(r)].cut[q]g.
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Notice that all the preconditions, except perhaps p.msgs[q][p.current view][i] 6= ?, for de-
livering the i'th message from q are satis�ed because they are the same as the preconditions on
p delivering view v that we have shown to be satis�ed. Thus, if the i'th message is already
on p.msgs[q][p.current view][i], then delivery of this message eventually occurs by low-level
fairness, p.last dlvrd[q] is incremented, and we are all done.

Therefore, consider the case when p lacks the i'th message from q.

There are two possibilities:

If end-point q is in p's transitional set T for view v, then we know the following:

� q's view prior to installing view v is the same as p's current view (by de�nition of T and
Invariant 6.9).

� q's reliable set contains p starting before q sent any messages in that view and continuing
for the rest of �.

� Corollary 7.1 implies that r has this message and all the messages that precede it in
r.msgs[r][p.current view].

� End-point r is enabled to send these messages to p in fifo order. The only event that
could prevent r from sending these messages is gcs:viewr(v), as it would change the value
of r.current view. However, Self Delivery implies that this event cannot happen until r
self-delivers its own messages, which in turn is preconditioned on r sending these messages to
others via co rfifochannels.

� The fact that the connection between q and p is live at least after q receives mbrshp:viewq(v)
implies that co rfifo eventually delivers this message to p.

Otherwise, if end-point q is not in p's transitional set T for view v, we know by the fact that
i is � maxr2T fp.sync msg[r][v.startId(r)].cut[q]g, that there exist some end-points in
T whose synchronization messages commit them to delivering the i'th message from q in view
p.current view. Let r be an end-point with a smallest identi�er among these end-points. Here is
what we know:

� Corollary 7.1 implies that r has this message on its r.msgs[r][p.current view] queue.

� q's reliable set contains p starting before q sent any messages in that view and continuing
for the rest of �.

� Upon examination of each of the ForwardingStrategyPredicates in Section 5.2.2, we see
that the preconditions for r forwarding the i'th message of q to a set including p eventually
become and stay satis�ed.

� Since in both forwarding strategies there is a �nite number of messages from q sent in this
view that can be forwarded, the low-level fairness condition implies that the i's message is
eventually forwarded to p.

� The fact that the connection between q and p is live at least after q receives mbrshp:viewq(v)
implies that co rfifo eventually delivers this message to p.

Therefore, the i'th message from q is eventually delivered to p, and since the preconditions on
delivering this message to the application client at p are satis�ed, this delivery eventually oc-
curs and p.last dlvrd[q] is incremented. Applying this argument inductively, we conclude
that p.last dlvrd[q] eventually reaches maxr2Tp:sync msg[r][v:startId(r)]:cut[q] for every q

in current view:set).
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We have shown that each precondition on p delivering gcs:viewp(v; �) eventually becomes and
stays satis�ed. Low-level fairness implies that gcs:viewp(v; �) eventually occurs.

Now, consider the second part of the theorem. We have to prove that after gcs:viewp(v; �)
occurs at p, for every gcs:sendp(m) event that occurs at p, there is a corresponding event
gcs:deliverq(p; m) that occurs at q 2 v.set. Consider the following argument:

1. For the rest of �, after gcs:viewp(v; �) occurs, co rfifo:live set[p] is equal to v:set.

This is true because co rfifo:live set[p] is set to v:set when mbrshp:viewp(v) occurs
and remains unchanged thereafter because of the assumption that � does not contain any
subsequent mbrshp events at end-point p.

2. After gcs:viewp(v; �) occurs and before any co rfifo:sendp event involving a ViewMsg or
an AppMsg occurs, p eventually executes co rfifo:reliablep(v:set). Moreover, after that
and forever thereafter, both p:reliable set and co rfifo:reliable set[p] equal v:set.

This is true because gcs:viewp(v; �) sets p:start change to ? and p:current view:set to
v:set, thus enabling co rfifo:reliablep(v:set). This action is eventually happens because
of low-level fairness and the facts that for the rest of � there are no subsequent start changep
and gcs:viewp(v

0; �) events. Moreover, since p:start change and p:current view:set re-
main unchanged because of the latter reason, whenever co rfifo:reliablep subsequently
happens, both p:reliable set and co rfifo:reliable set[p] remain equal to v:set.

From the above two points and low-level fairness, it follows that, whatever messages p sends
to q afterwards, it will be eventually delivered to q. The arguments below about delivery of
messages to q rely on this fact.

3. After co rfifo:reliablep(v:set) occurs, co rfifo:sendp(v:set� fpg; tag = view msg; v)
eventually occurs. Moreover, after that p does not send any ViewMsg in the future,

This follows directly from low-level fairness and the code in Figure 10.

4. Every process q 2 v.set-fpg eventually receives a ViewMsg containing v from p. At that
time it sets its q.view msg[p] to v.

5. After q receives the ViewMsg from p, q.view msg[p] remains set to v for the remainder of �.

This is true because, as was argued before, p sends only one view msg since the time it moves
in to view v.

6. Moreover, the ViewMsg q receives from p is received prior to q receiving any application
message sent by p in view v.

This is true because p sends application messages in view v only after sent the ViewMsg, and
because co rfifo preserves the order in which messages are sent.

7. After p has sent the ViewMsg, for the rest of �, if p:msgs[p][v][p:last sent+ 1] contains
a message (say m), co rfifo:sendp(v:set� fpg; tag = app msg; m) is enabled and hence
eventually occurs by low-level fairness.

8. Message m is eventually delivered to every q 2 v.set-fpg.

9. Since, as was argued above, q.view msg[p] is equal to v at the time q receives m, q appends
m to its q.msgs[p][v] queue.
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10. Since p.last sent is incremented after each application message is sent, any message on
p:msgs[p][v] is eventually sent out and is delivered to each q 2 v.set-fpg.

11. Once qmoves in to view v, the delivery of a message m0 from q.msgs[p][v][q.last dlvrd+1]

becomes enabled and is thus eventually executed by low-level fairness. If p = q, there is an
additional precondition that requires q to �rst send m0 to others in v via co rfifo, before it
can self-deliver m0 to its application client. This precondition becomes eventually satis�ed,
as was argued above.

12. Since q.last dlvrd[p] is incremented after each application message is delivered to q's
application client, any message on q:msgs[p][v] is eventually delivered.

Therefore, taking everything said above in to consideration, when the application client at p
sends a message m in view v, m is eventually delivered to the application client at every q 2 v.set.

8 Modeling Crash and Recovery of End-Points

In this section we show that the service presented in Section 5 also provides meaningful and correct
semantics in the environment where GCS end-points can crash and recover. In particular, it allows
the recovered GCS end-points to continue running the algorithm under their original identity (in
contrast e.g., to [12] which requires recovered processes to assume new identities). Furthermore,
GCS end-points do not need to store any information on stable storage: upon recovery, they can
re-start the algorithm with their variables in initial state.

In order to model crash and recovery in our algorithms, the input actions crashp() and
recoverp() are added to all the automata running at location p; these include the application
clients, the group communication service end-points, the reliable connection-oriented fifo service
and the membership service. We view the crashp() as causing the application clients and the group
communication service end-points to crash, and notifying the membership service of the crash. The
membership service does not crash and does not lose it's state. recoverp() sets mbrshp:mode[p]
to normal.

A boolean 
ag crashedp, initially set to false, is added to the state of the application client
and the group communication service end-points at location p. The crashp() input sets this 
ag
to true. When crashedp is true, all locally controlled actions and the e�ects of all input actions
of both the group communication end-point and its application client at process p are disabled.
The recoverp() action resets all the state variables, including the crashedp 
ag, to their initial
values.

Notice that, recovering to an initial default view does not violate Local Monotonicity as this
initial view is not delivered to the application. The �rst view delivered after a recovery is guaranteed
to satisfy Local Monotonicity since the membership service does not crash and hence maintains the
last startchange[p]:id and mbrshp view[p]:id values.

The connection-oriented fifo service responds to crashp() by making both reliable set[p]
and live set[p] empty, thus allowing the last messages from the crashed p to other processes to
be dropped.

The speci�cations of Section 4 are adapted to account for crash and recovery in a similar manner.
They respond to crashp() and recoverp() actions in the same way as the algorithms do, except
to preserve the pre-crashed values of the start change and current view variables upon recovery.
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This speci�es that the recovered processes still have to preserve Local Monotonicity on start change
and view identi�ers.

It is possible to show that all the invariants and simulations proven in Section 6 still hold
whenever crashedp is false. In order to formally prove these invariants and simulations, one needs
to use history variables which recall past values of process states before their crashes. Providing
such formal proofs is beyond the scope of this paper.

9 Conclusions

We have designed a novel group multicast service that interacts with an external membership ser-
vice to provide virtually synchronous communication semantics. Our service is currently being
implemented as part of a novel architecture for scalable group communication in WANs. We have
constructed a virtually synchronous group multicast algorithm which exchanges one round of syn-
chronization messages during recon�guration, in parallel with the execution of a group membership
algorithm. In contrast to previously suggested virtual synchrony algorithms, (e.g., [7, 22, 16, 5, 33])
our algorithm does not require processes to conduct an additional communication round in order
to pre-agree upon a globally unique identi�er.

This feature is achieved by virtue of a simple yet powerful idea: the inclusion of a list of locally
unique start change identi�ers in the membership view. The inclusion of such identi�ers in the
view eliminates the need to tag messages with a common (globally unique) identi�er.

Two views are considered the same only if they carry the same list of start change identi�ers.
The membership service of [27] which we use in our implementation guarantees that if the network
eventually stabilizes, all the processes eventually receive the same view (with the same list of
start change identi�ers) and do not receive new view or start change messages henceforward. In
such cases, the entire group communication service is live: the last membership view is delivered
to the application, as well as all the messages sent in this view.

The start change interface is an important aspect of the design of a client-server oriented group
communication service which decouples membership maintenance from group multicast in order to
provide scalable group membership services in WANs. Maestro [11] also separates the maintenance
of membership from group multicast. Unlike Maestro [11], in our design, the client does not wait
for the membership to agree upon a globally unique identi�er before starting the virtual synchrony
algorithm, and the membership service does not wait for responses from clients asserting that
virtual synchrony was achieved before delivering views.

We have implemented the virtually synchronous group multicast service and are currently test-
ing its scalability limits. In order to increase the scalability, we intend to explore ways to incorporate
a two-tier hierarchy into our algorithm, as suggested by Guo et al. [22]. With this approach, pro-
cesses will not directly send cut messages to all of their peers. Instead, messages will be sent by
each process to its designated leader, which will in turn, aggregate the cut messages into a single
message and forward it to the other leaders. We have presented the algorithm at an abstract level
that would allow incorporating such extentions without violating its correctness.
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A Review of Proof Techniques

In this section we describe the main techniques used to prove correctness of I/O automata: invariant
assertions, hierarchical proofs, re�nement mappings, and history and prophecy variables. The
material in this section is closely based on [30, pages 216-228] and [29, pages 3,4, and 13]. In
Section A.3 we present a proof-extension theorem of [26] that provides a formal framework for the
reuse of simulation proofs based on re�nement mappings.

A.1 Invariants

The most fundamental type of property to be proved about an automaton is an invariant assertion,
or just invariant, for short. An invariant assertion of an automaton A is de�ned as any property
that is true in every single reachable state of A.

Invariants are typically proved by induction on the number of steps in an execution leading to
the state in question. While proving an inductive step, we consider only critical actions, which
a�ect the state variables appearing in the invariant.

A.2 Hierarchical Proofs

One of the important proof strategies is based on a hierarchy of automata. This hierarchy represents
a series of descriptions of a system or algorithm, at di�erent levels of abstraction. The process of
moving through the series of abstractions, from the highest level to the lowest level, is known as
successive re�nement. The top level may be nothing more than a problem speci�cation written
in the form of an automaton. The next level is typically a very abstract representation of the
system: it may be centralized rather than distributed, or have actions with large granularity, or
have simple but ine�cient data structures. Lower levels in the hierarchy look more and more like
the actual system or algorithm that will be used in practice: they may be more distributed, have
actions with small granularity, and contain optimizations. Because of all this extra detail, lower
levels in the hierarchy are usually harder to understand than the higher levels. The best way to
prove properties of the lower-level automata is by relating these automata to automata at higher
levels in the hierarchy, rather than by carrying out direct proofs from scratch.

A.2.1 Re�nement Mappings

The simplest way to relate two automata, say A and S, is to present a re�nement mapping R

from the reachable states of A to the reachable state of S such that it satis�es the following two
conditions:

1. If t0 is an initial state of A, then R(s0) is an initial state of S.

2. If t and R(t) are reachable states of A and S respectively, and (t; �; t0) is a step of A, then
there exists an execution fragment of S beginning at state R(t) and ending at state R(t)0,
with its trace being the same as the trace of � and its �nal state R(t)0 being the same as
R(t0).

The �rst condition asserts that any initial state of A has some corresponding initial state of S.
The second condition asserts that any step of A has a corresponding sequence of steps of S. This
corresponding sequence can consist of one step, many steps, or even no steps, as long as the
correspondence between the states is preserved and the external behavior is the same.

The following theorem gives the key property of re�nement mappings:
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Theorem A.1 If there is a re�nement mapping from A to S, then

traces(A) � traces(S):

If automata A and S have the same external signature and the traces of A are the traces of S,
then we say that A implements S in the sense of trace inclusion, which means that A never does
anything that S couldn't do. Theorem A.1 implies that, in order to prove that one automaton
implements another in the sense of trace inclusion, it is enough to produce a re�nement mapping
from the former to the latter.

A.2.2 History and Prophecy Variables

Sometimes, however, even when the traces of A are the traces of S, it is not possible to give a
re�nement mapping from A to S. This may happen due to the following two generic reasons:

� The states of S may contain more information than the states of A.

� S may make some premature choices, which A makes later.

The situation when A has been optimized not to retain certain information that S maintains
can be resolved by augmenting the state of A with additional components, called history variables
(because they keep track of additional information about the history of execution), subject to the
following constraints:

1. Every initial state has at least one value for the history variables.

2. No existing step is disabled by the addition of predicates involving history variables.

3. A value assigned to an existing state component must not depend on the value of a history
variable.

These constraints guarantee that the history variables simply record additional state information
and do not otherwise a�ect the behavior exhibited by the automaton. If the automaton AHV

augmented with history variables can be shown to implement S by presenting a re�nement mapping,
it follows that the original automaton A without the history variables also implements S, because
they have the same traces.

The situation when S is making a premature choice, which A makes later, can be resolved by
augmenting A with a di�erent sort of auxiliary variable, prophecy variable, which can look into
the future just as history variable looks into the past. A prophecy variable guesses in advance
some non-deterministic choice that A is going to make later. The guess gives enough information
to construct a re�nement mapping to S (which is making the premature choice). For an added
variable to be a prophecy variable, it must satisfy the following conditions:

1. Every state has at least one value for the prophecy variable.

2. No existing step is disabled in the backward direction by the new preconditions involving a
prophecy variable. More precisely, for each step (t; �; t0) there must be a state (t; p) and a p'
such that there is a step ((t; p); �; (t0; p0)).

3. A value assigned to an existing state component must not depend on the value of prophecy
variable.
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4. If t is an initial state of A and (t; p) is a state of the A augmented with the prophecy variable,
then it must be its initial state.

If these conditions are satis�ed, the automaton augmented with the prophecy variable will have
the same (�nite) traces as the automaton without it. Therefore, if we can exhibit a re�nement
mapping from APV to S, we know that the A implements S.

A.3 Inheritance and Proof Extension Theorem

We now present a theorem from [26] which lays the foundation for incremental proof construction.
Consider the example illustrated in Figure 13, where a re�nement mapping R from an algorithm A

to a speci�cation S is given, and we want to construct a re�nement mapping R0 from a child A0 of
an automaton A to a child S0 of a speci�cation automaton S.

Figure 13 Algorithm A simulates speci�cation S with R. Can R be reused for building a re�nement
R0 from a child A0 of A to a child S0 of S?
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Theorem A.2 below implies that such a re�nement R0 can be constructed by supplementing R

with a mapping Rn from the states of A0 to the state extension introduced by S0. Mapping Rn has
to map every initial state of A0 to some initial state extension of A0 and it has to satisfy a step
condition similar to the one for re�nement mapping (Sec. A.2.1), but only involving the transition
restriction of S0.

Theorem A.2 Let automaton A0 be a child of automaton A. Let automaton S0 be a child of au-
tomaton S. Let mapping R be a re�nement from A to S.

Let Rn be a mapping from the states of A0 to the state extension introduced by S0.
A mapping R0 from the states of A0 to the states of S0, de�ned in terms of R and Rn as

R0(ht; tni) = hR(t); Rn(ht; tni)i

is a re�nement from A0 to S0 if R0 satis�es the following two conditions:

1. If t is an initial state of A0, then Rn(t) is an initial state extension of S0.

2. If ht; tni is a reachable state of A0, s = hR(t); Rn(ht; tni)i is a reachable state of S0, and
(ht; tni; �; ht

0; t0ni) is a step of A0, then there exists a �nite sequence � of alternating states
and actions of S0, beginning from s and ending at some state s0, and satisfying the following
conditions:
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(a) � projected onto states of S is an execution sequence of S.

(b) Every step (si; �; si+1) in � is consistent with the transition restriction that S0 places
on S.

(c) The parent component of the �nal state s0 is R(t0).

(d) The child component of the �nal state s0 is Rn(ht
0; t0ni).

(e) � has the same trace as �.

In practice, one would exploit this theorem as follows: The simulation proof between the parent
automata already provides a corresponding execution sequence of the parent speci�cation for every
step of the parent algorithm. It is typically the case that the same execution sequence, padded with
new state variables, corresponds to the same step at the child algorithm. Thus, conditions 2a, 2c,
and 2e of Theorem A.2 hold for this sequence. The only conditions that have to be checked are 2b,
and 2d, i.e., that every step of this execution sequence is consistent with the transition restriction
placed on S by S0 and that the values of the new state variables of S0 in the �nal state of this
execution match those obtained when Rn is applied to the post-state of the child algorithm.

A.4 Safety versus Liveness

Proving that one automaton implements another in the sense of trace inclusion constitutes only
partial correctness, as it implies safety but not liveness. In other words, partial correctness ensures
than \bad" things never happen, but it does not say anything whether some \good" thing eventually
happens.

In this paper, we use invariant assertions and simulation techniques to prove that our algo-
rithms satisfy safety properties, which are stated as I/O automata. For liveness proofs, we use a
combination of invariant assertions and carefully proven operational arguments.
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