
QoS Preserving Totally Ordered Multicast

Ziv Bar�Joseph

Lab for Computer Science

Massachusetts Institute of Technology

Cambridge� MA ������ USA

zivbj�mit�edu

Idit Keidar

Lab for Computer Science

Massachusetts Institute of Technology

Cambridge� MA ������ USA

idish�theory�lcs�mit�edu

http���theory�lcs�mit�edu��idish

Tal Anker

Computer Science Institute

The Hebrew University of Jerusalem

Jerusalem� ������ Israel

anker�cs�huji�ac�il

http���www�cs�huji�ac�il��anker

Nancy Lynch

Lab for Computer Science

Massachusetts Institute of Technology

Cambridge� MA ������ USA

lynch�theory�lcs�mit�edu

http���theory�lcs�mit�edu��lynch

January ��� ����

Abstract

This paper studies the Quality of Service �QoS	 guarantees of totally ordered multicast algo

rithms� The paper shows that totally ordered multicast can coexist with guaranteed predictable
delays in certain network models� The paper considers two reservation models� constant bit
rate �CBR	 and variable bit rate �VBR	� For these models� the paper presents totally ordered
multicast algorithms that preserve the bandwidth and latency reserved by the application within
certain additive constants� Furthermore� the paper presents an algorithm that tolerates message
loss �in which case� there can be gaps in the total order	 and allows for dynamic joining and
leaving of processes while still preserving the QoS guarantees�

Keywords� Quality of Service �QoS�� multicast� total order

� Introduction

Totally ordered multicast allows multiple processes to send messages� so that all the processes deliver
messages in the same order� Totally ordered multicast is a useful paradigm for applications that
replicate state of some sort using the state machine approach ���� �	
�
Much work has been dedicated to totally ordered multicast algorithms� Roughly� such algo�

rithms may be classi�ed as symmetric ����

� ��� �
� where all the processes execute the same
algorithm to independently determine the total order� or leader based ��
� where one of the pro�
cesses� �the leader�� determines the total order and informs the others� A hybrid approach is
presented in ���
� where processes that transmit at a high rate use the symmetric approach and
other processes use a leader based approach�
In the past few years� we have witnessed many new applications that involve multimedia multi�

cast and unicast �e�g�� ���� ��� �

�� These applications require quality of service �QoS� guarantees
from the network� some need strict guarantees on available bandwidth� others need a bound on the
latency a packet can su�er when transmitted over the network� ATM networks allow applications
to reserve QoS parameters such as bounded latency and guaranteed bandwidth� they provide QoS
classes such as Constant Bit�Rate �CBR� and Variable Bit�Rate �VBR� ��
� The IETF Integrated

Services working group �
�
 is concerned with adding similar QoS support to the Internet� The QoS
parameters that the new services will support include� among others� bounded latency� guaranteed
bandwidth reservation and bounds on message loss �see ���� ��
��
There are several applications that replicate state with a certain degree of consistency and

yet also require predictable message delays� Such applications can bene�t from totally ordered
multicast� as long as the introduction of total order does not introduce excessive delays� An
example of such an application is an online strategy game �
��

 which allows multiple users to
play at the same time and see the same image of the game� Bounded delay is important for the
�real time� feeling of the game� Totally ordered multicast is important for keeping the view of
the game consistent� For example� if one player shoots and another simultaneously moves away� it
is important that both observe the shooting and moving as occurring in the same order because
otherwise the moving player will be observed as dead by one player while he will be considered
alive by another� Other example applications include joint editing of a shared white�board ���� ��
�
a shared text editor ��

� and military command and control applications�
Applications such as those described above seldom exploit totally ordered multicast� This

is because achieving total order requires delaying messages until agreement upon their order is
reached� and many believe that this delay is too large� For example� in his book Internetworking
Multimedia �
�
� Crowcroft writes�

�The requirements of resilience and scalability dictate that total consistency of view is

not possible unless mechanisms requiring unacceptable delays are employed��

The idea that consistency and predictable delays are mutually exclusive is at the root of design
decisions made in building such applications ���� �

� Such applications usually settle for weak
consistency constraints and run application�speci�c algorithms to detect and resolve inconsistencies�
In this paper we study the tradeo�s between di�erent levels of consistency and QoS guarantees�

We show that totally ordered multicast can coexist with guaranteed predictable delays in certain
network models� The network models we discuss are de�ned in Section �� In Section � we de�ne
two di�erent semantics of totally ordered multicast � reliable �gap free� total order �which is often
called Atomic Broadcast �
�
�� and total order with gaps� Reliable total order can provide strong
consistency� Total order with gaps can provide a weaker form of consistency� Total order with gaps

may be extended to eventually provide strong consistency� under certain conditions on network
behavior� e�g�� by the algorithms of ��
� ��� ��
��
�
 that are not application�speci�c� We analyze
the QoS guarantees that can be made by algorithms providing these two semantics in various
di�erent network models�
Previous papers �e�g�� �
�� ��
� measured and analyzed average delays of total order protocols�

However� they did not assume QoS and did not prove any bounds on the delay� We are not aware
of previous work studying QoS guarantees of totally ordered multicast�
For most of the paper� we consider a reservation service for two QoS parameters � bandwidth

and latency� and we assume no message loss� In Section � we also consider a third QoS parameter
� a bound on the number of consecutive messages that may be lost� We consider two types of
bandwidth reservations� CBR and VBR� We present symmetric totally ordered multicast algorithms
that preserve the reserved bandwidth and latency within some additive constants� Our algorithms
are variations on the algorithm of ��
� tailored to the speci�c network and reservation models�
In the CBR model� the application reserves a �xed bandwidth� The application can send at a

lower rate than the reserved rate at certain times� but it cannot send bursts that exceed the reserved
rate� In any case� the application is charged for the reserved rate regardless of the sending rate� In
Section �� we present an algorithm for reliable totally ordered multicast for this model in a failure�
free environment� Our algorithm does not require additional bandwidth over the reserved rate with
the exception of in�band messages sent at start�up and whenever QoS renegotiation occurs �i�e��
when the application changes its reserved QoS parameters�� Furthermore� our algorithm preserves
a tight bound on message latency� if the processes� clocks are synchronized with each other with
a deviation of at most �� then the totally ordered multicast algorithm delivers messages with a
maximum latency of � � �� where � is the maximum latency of the underlying network�
In the VBR model� the application reserves two parameters� the application�s average trans�

mission rate over long periods of time� and a maximum burst size� which is the maximum the
application can send during a short period of time which we call a slot� The slot size is denoted
�� In Section �� we present an algorithm for reliable totally ordered multicast for this model in
a failure�free environment� Our algorithm preserves the reserved maximum burst size and induces
an overhead of at most
�� over the average transmission rate� in other words� the totally ordered
multicast algorithm needs to reserve an average transmission rate that is larger by
�� than the
average rate reserved by the application� The maximum latency guaranteed by this algorithm is
� � � � �� Thus� with this algorithm� there is a tradeo� between the increase in the average
transmission rate overhead and the increase in latency�
In Section � we extend our algorithm for the VBR model to allow for process failures and

joins� and also comment on the handling of network partitions� In Section � we extend the model
further to allow for message loss� We show that if processes can fail� an algorithm implementing
reliable total order can guarantee� at best� a latency bound which is proportional to the number
of failures it can tolerate� We therefore relax the requirements of the totally ordered multicast
protocol to allow gaps in the total order when discussing failure prone cases� We then present an
algorithm that tolerates message loss and allows for dynamic joining and leaving of processes while
still preserving the QoS guarantees� This is in contrast to totally ordered group communication
algorithms �e�g�� �
��
�� ��� �� ��� �
� which typically block message delivery at re�con�guration
times and thus induce a large latency at such times� When adding support for join�leave and
message loss� the maximum latency of the VBR algorithm is increased by � to become �������
The average transmission rate and maximum burst of the VBR algorithm are not a�ected by the
added support for join�leave� The handling of message loss increases the transmission overhead by
adding an integer to the header of every message� When a failed process recovers� it can join the

�

algorithm � � � � � time after it wakes up�
In Section 	 we analyze the QoS guarantees of leader�based algorithms� Handling fault tolerance

in leader�based algorithms is generally di cult� and is bound to introduce long delays� Furthermore�
we show that in the model of this paper� QoS guarantees of leader�based algorithms are inferior to
those of symmetric ones� This motivates our focus on symmetric algorithms in this paper� Section �
concludes the paper and discusses future directions�

� Model

We assume a static universe of n processes Where we assume process failures� processes fail by
crashing and may later recover�
We assume a message�passing model� Our model consists of three layers� as shown in Figure
�

the network layer� the totally ordered multicast layer �denoted TO algorithm�� and the application
layer� In this section we explain the assumptions we make regarding the network layer� Since the
network layer guarantees depend on proper behavior of the application� we describe the expected
behavior of the application in each of the network models� Several algorithms implementing the
TO layer will be discussed in the following sections�

init-rate(m) Applicationnew-rate(m)
i

i,jdeliver(m)i
reserve(m)

ii

Network

TO Algorithm

net-receive(str,m)
i,j

app-mcast(m)

net-mcast(str,m)
i

Figure
� The network and TO service interfaces�

��� Network Model

Processes communicate by exchanging multicast messages� The message size is bounded� The
network preserves a fifo order on messages sent between every pair of processes�� The network
does not duplicate� corrupt� or spontaneously generate messages�
We assume that the network allows for reservation of two QoS parameters� bandwidth and

latency� We assume that the network guarantees a maximum message latency � �i�e�� the reserva�
tion service is used to reserve this latency�� The delay is the same for all processes� any message
sent from some process i �the net�mcast�str�m�i action in Figure
� will reach every process j
�via the net�receive�str�m�i�j action� in at most � time� The network can be modeled as a timed
automaton �see ���
� Ch� ����
In this paper we assume a sender based reservation protocol �as in the ATM model ��� �
��

although some of the common reservation protocols �e�g�� ���
� are receiver based� In Section � we
explain how our algorithms can work with receiver based reservation without additional delay�

�Although messages sent over the Internet can rarely arrive out of fifo order� this is easy to �x using sequence
numbers�

�

Each process i reserves the bandwidth it needs� according to the application transmission rate�
The reservation is done by the reserve�m���i request made to the network �reserve�m�����i for
the VBR model�� Each time a sending process changes its transmission rate� it must renegotiate
its reservation with the network� Since we are only interested in studying cases in which the
reservation and renegotiation are successful� we limit our attention to such cases� Thus� we assume
all reservation requests made by a process are accepted by the network�
Typically� QoS reservation and renegotiation take some time for the network to process� and a

process may start sending messages at the reserved � renegotiated rate only after this time� This
time does not a�ect the message latency� and for the sake of the analysis in this paper it is safe
to ignore it� Therefore� for simplicity� we ignore this time in our analysis and assume that once
a reservation request is made� the bandwidth that was requested is immediately available to the
reserving process�
In this paper we look at two di�erent reservation models� CBR and VBR� In both models� the

application typically declares its transmission rate in bytes per second� For simplicity� we assume
that the rate is declared in units of messages per second� Since message size is bounded� these rates
correspond closely�
In Section � we assume the CBR reservation model� In this model� the reservation is requested

from the network using the reserve�m���i action� � is the maximum latency� and m is an integer
that holds the message rate i wishes to reserve� We assume that � is �xed throughout this paper�
therefore� for simplicity� we omit it and write reserve�m�i� If the application reserves a rate
NetRate of m messages per second� it is then assumed to send at most one message each
�m
second �that is� it can either send or not send a message each
�m second� but it cannot send more
than one message over
�m second�� The application pays for the rate it reserves whether it uses
it or not�
In Sections ��	 we assume the VBR reservation model where processes reserve an average rate

and a maximum burst size� In this model� message sending is divided into slots of a �xed size�
�� which is the same for all processes and is �xed throughout the execution of the algorithm� In
addition� there exists a well�known constant k which is the number of slots over which the average
is computed� Speci�cally� the application declares two rate parameters�

� NetAvgRate � the average message rate per � time� This means that k �NetAvgRate is the
maximum number of messages that may be sent during k �� time�

�� NetMaxBurst � the maximum number of messages that may be sent during � time�

The reservation requestm has two �elds� NetAvgRate andNetMaxBurst� The reservation request
interface for this model is reserve�m�����i� Since all the processes reserve the same � and the
same �� we omit these parameters and simply write reserve�m�i� Note that although � is �xed
and known to all processes in each application� di�erent applications can use di�erent slot sizes�
In both reservation models� if the application violates its declared rate then there is no delay

guarantee from the network for these messages� and� furthermore� some messages may be dropped�
Throughout this paper we assume that the application does not violate its declared rates� thus the
guarantees still hold and we can analyze the delay of the TO service as a function of the network
delay�
In Sections � and � we assume that no process failures or joins occur during the execution of

the algorithm� that is� a �xed set of processes run the algorithm� Furthermore� we assume that
the network is reliable �i�e�� there are no message losses�� We discuss process failures and joins in
Section � and message loss in Section ��

�

��� Clock synchronization and scheduling

We assume each process i has an internal clock denoted by clocki� We assume that the di�erence
between clocki and the real time is bounded� Throughout this paper we denote by now the real time
that has passed from the beginning of the execution�� thus� each execution starts with now ! ��
We assume that the maximum di�erence between clocki and now is at most ���� thus� we have for
each process i�

now � ��� � clocki � now � ���

This inequality is assumed to hold throughout the execution of the algorithm� Note that this
implies that the maximum di�erence between two processes� internal clocks is at most �� In
this paper we represent the algorithm as timed automata �cf� ���
� Ch� ���� and assume that the
processes� clocks guarantee the above properties�
The assumption that clocks are synchronized within a bound is very reasonable� For example�

the Network Time Protocol �NTP� ���
 can synchronize clocks to within one to �fty milliseconds on
most network environments today� The synchronization level depends on the network technology�
and on the distances between the synchronizing processes�
In addition to clock synchronization� we make the assumption that each process can precisely

schedule events according to its local clock� For this assumption to hold� operating system support
for real�time scheduling is required �for examples� see �	� �� ��� ���
	� ��� ��
��

� Totally Ordered Multicast Service Speci�cations

The algorithms we present in this work guarantee total ordering of messages and preserve QoS
parameters�

��� Total Order

We present two di�erent semantics of totally ordered multicast�
In the following de�nitions� we say that a message is sent by a process i when app�mcast�i� oc�

curs� that i delivers a message m when the total order service at process i performs the deliver�m�i�k
action� for a message m sent by the application at process k� We say that i receives a message m
when the network performs the net�receive�str�m�i�k action for a message m sent by the applica�
tion at process k� In absence of recoveries� processes that do not crash are considered correct� In
Section � we explain when recovering processes are considered to be joining the algorithm� that is�
when they become �correct� for the sake of the de�nitions below�
We �rst de�ne reliable �gap�free� total order �sometimes called Atomic Broadcast �
�
��

De�nition � Reliable Total Order

� Total Order� If processes i and j both deliver the same two messages m and m�� they deliver

these messages in the same order�

� Integrity� A message m is only delivered if it was previously sent� and is not delivered more

times than it was sent�

� Liveness� Every message sent or delivered by some correct process is eventually delivered by

every correct process�
�The real time is used as an abstraction for the analysis � we analyze the latency guarantees in terms of the real

time that has elapsed�

�

This de�nition implies that throughout the execution of the algorithm� for every two processes
i and j� if j delivers at least as many messages as i� then the sequence of messages delivered by i
is a pre�x of the sequence of messages delivered by j�
The following de�nition weakens the liveness condition of the previous one� to allow for gaps in

the total order� The safety conditions �Total Order and Integrity� remain the same�

De�nition � Total Order with Gaps�

� Total Order and Integrity� As in De	nition
�

� Liveness� Every message that is sent by some correct process j and received by a correct

process i� is eventually delivered by i�

Note that the liveness condition here depends on the liveness of the underlying network� since
the total order algorithm is required to deliver messages from correct process that were received
from the underlying network� Thus� although gaps in the total order are permitted� the dropped
messages must have been sent by faulty processes or omitted by the underlying network�
Total order with gaps is provided by several group communication systems �e�g�� Ensemble �
�
�

Horus �
�
� Phoenix ��	
� RMP ���
� Totem ��� ��
 and Transis ��
�� The algorithms of ���
��
��
�
� ��
 are implemented atop group communication systems providing total order with gaps� and
extend them to eventually provide reliable total order under certain conditions on failures in the
underlying network� However� these algorithms do not provide latency guarantees�

��� QoS parameters

The sending application declares its transmission rate using the init�rate�m�i action at the begin�
ning of the algorithm� The application can renegotiate its transmission rate using the new�rate�m�i
action� at any time during the execution� We denote the rate requested by the application in the
CBR model by AppRate� and the rates of the VBR model by AppAvgRate and AppMaxBurst�
These are dual to the respective network QoS parameters�
Our algorithms guarantee a bound on the maximum latency on message delivery to the ap�

plication� AppLatency� AppLatency is the supremum over all executions� all messages m and all
processes i from the time app�mcast�m�i action is performed by process i in some execution until
m is ready to be delivered by all processes that deliver it� That is� the time at which the action
deliver�m�j�i is enabled for every process j that performs the deliver�m�j�i action� We ignore the
local scheduling time until deliver is executed� for simplicity� Throughout the paper� we analyze
AppLatency as a function of �� Assuming the network guarantees an upper bound � on message
latency� we analyze the upper bound� AppLatency� that the total order algorithm can guarantee
on message delivery time�

� CBR

In the CBR model the application declares a rate of m messages per second� so that it will send at
most one message each
�m second� We assume no process failures or joins and no message loss�
We present a totally ordered multicast algorithm� and then analyze its QoS guarantees and show
its correctness�

�

��� The algorithm

The algorithm we present is symmetric � all the processes implement the same algorithm to decide
which message to deliver next to the application� Since we assume that no process fails� we could
actually have each process deliver all messages from other processes in round robin order� for
example deliver a message from
� then from � etc� However� since we assume that processes have
di�erent transmission rates� this would cause messages sent by processes with high transmission
rates to be delayed by processes with low transmission rates� For example consider the case that
process
 sends
� messages per second and process � sends
�� messages per second� In this case�
messages from process � would take longer and longer to get delivered as the execution progresses�
Thus� the algorithm introduces unbounded delays� which violate QoS guarantees and also require
unbounded bu�er space�
To remedy this shortcoming� Chockler et al� ��
 have suggested an algorithm that explicitly

uses the process sending rates to agree upon the order in which messages are delivered� Assuming
that the relative sending rates are as above and are known to the processes� those rates can be
exploited as follows� all the processes deliver one message from process
 for every ten messages
they deliver from process �� The algorithm in ��
 tracks process sending rates to predict future rates�
In our model� this is not necessary since we assume that processes declare their rates initially� and
whenever they change their rates� Our algorithm is therefore a variation on the algorithm of ��
�
tailored to preserve the QoS parameters of our model�
We present our algorithm as a collection of identical timed automata� one for each process i�

The automaton may be in several modes� tracked by the state variable mode� The mode changes
of the automaton are depicted in Figure �� We present the timed automaton implementing this
algorithm in Figures � and �� In this algorithm� M stands for the set of possible messages and
N denotes the natural numbers� The automaton for this algorithm works in the following way�
First� the application must declare its initial transmission rate using the init�rate�m�i action� The
automaton then moves to the FirstReserve mode where reserve�m� occurs� and then� the mode
changes to DetOrder� Process i then multicasts its rate to all processes� and waits to receive the
initial rate messages from all the other processes� When i receives the transmission rates from all
other processes� it computes a vector� Porder� that determines the order in which messages will
be delivered� Porder is computed in the Update function as we explain below� The process then
executes the internal action start�deliver� and changes its mode to DeliverMessages�

GetRate
First

Reserve
DetOrder

Deliver
Messages

Reserve
init-rate

start-
deliver

reserve

new-rate

new-rate

reserve

Figure �� Mode changes in the CBR algorithm�

If the application at process i declares a transmission rate of m messages per second� then the
total order algorithm at process i sends a message each
�m second� When the application does not
send at the reserved rate� the algorithm uses explicit time�outs to send dummy messages �using the
dummy internal action�� When messages are received� they are stored in a local bu�er� Rqueue�
per source� Messages are delivered from Rqueue to the application using the deliver�m�i�j action
according to the Porder vector� That is� the algorithm �rst delivers a message from the Rqueue
bu�er of process number Porder��
� then from Porder�

� etc� After the last entry of Porder� it
cycles back to Porder��
� If the next message ready for delivery is a dummy message� it is discarded

�

�this is done in the handle�dummy action��
When the application performs the new�rate�m�i action� i changes mode to Reserve �or� if

in DetOrder� FirstReserve�� where it reserves the new rate using the reserve�m�i action before
returning� Process i then multicasts the new rate as its next message� If the next message ready for
delivery according to Porder is a new rate message from another process� the algorithm recomputes
its Porder vector in the change�rate action� From this point on� it delivers messages according to
the new vector it computed�

Signature
Input�

app�mcast�m�i� m �M
init�rate�m�i� m � N
new�rate�m�i�m � N
net�receive�str�m�i�j � str � String� m � �N �M�

Output�
deliver�m�i�j� m �M
net�mcast�str�m�i� str � String� m � �N �M�
reserve�m�i� m � N

Time�passing�
v�t�� t � R�

Internal�
update�ratej
dummy
handle�dummy
start�deliver
change�rate

State

Squeue� a fifo queue of messages� initially empty

For all j� Rqueue�j�� a fifo queue of messages� initially empty

rate� an array of integers �one for each process�� initially � in all places

myRate� an integer� initially �

Porder� vector of process indices� initially of length 	

current� an integer

 The current place in Porder

clock � R��� initially 	

last � R� � f�g� initially �

mode � fGetRate�F irstReserve�DetOrder�DeliverMessages�Reserveg� initially GetRate

derived total � sizeof�Porder�� an integer

 The size of Porder

Figure �� The CBR algorithm automaton for process i� signature and variables�

The automaton uses the Update internal function presented in Figure � to compute the order of
the messages� The parameters P and cur are passed to Update by reference� and Update changes
them� Update is used at startup � to create the initial order vector � and it is subsequently used to
create a new order when a process changes its rate� At startup� Porder is �rst set to have rate�

entries� all containing
� Then Update is called with n set to � to insert the rate of process �� and
so on until process n is inserted�
The Update function constructs the Porder vector� which determines the delivery order of

messages sent during one second� Consider the set of pairs �i� k� where
 � i � n is a process index
and � � k � �rate�i
 �
� is i�s k �
st message sent in a second� This set corresponds to the set
of messages sent by all processes in one second� Porder de�nes an order on these pairs so that if
k�rate�i
 � k��rate�i�
 then �i� k� precedes �i�� k�� in Porder�
If the clocks of i and i� are perfectly synchronized� then k�rate�i
 � k��rate�i�
 implies that k

was sent before k�� Thus� if every process sends according to the rate it speci�ed� and processes�
clocks are perfectly synchronized� in order to deliver a particular message m� a process needs to
wait only for messages that were sent at the same time as m or earlier� Since we assume that clocks
are synchronized within �� this implies that� in order to deliver a particular message m� a process
needs not wait for messages that were sent later than � time after the sending time of m�

	

Transitions
Input init�rate�m�i

E�� if �myRate ��� f
add �
init�rate��m� to Squeue
myRate �� m
mode �� FirstReserve
last �� clock � ��myRate

g

Output reserve�m�i
Pre� mode � FirstReserve or mode � Reserve

m � myRate
E�� if �mode � FirstReserve�

mode �� DetOrder
else

mode �� DeliverMessages

Internal update�ratej
Pre� �
init�rate��m� is �rst on Rqueue�j�
E�� rate�j� �� m

discard �rst element of Rqueue�j�

Internal start�deliver
Pre� mode � DetOrder

for all � � j � n rate�j� ���
E�� Porder�����rate���� �� �

for each j in �����n�
Update�Porder�	� rate� j� j�

current �� 	
mode �� DeliverMessages

Input app�mcast�m�i
E�� if �mode �� GetRate�

add �
message��m� to Squeue

Output net�mcast�str�m�i
Pre� �str�m� is �rst on Squeue
E�� last �� last� ��myRate

remove �rst element of Squeue

Internal dummy
Pre� clock � last
E�� add�
dummy��
dummy�� to Squeue

Input net�receive�str�m�i�j
E�� add �str�m� to Rqueue�j�

Output deliver�m�i�j
Pre� mode � DeliverMessages

j � Porder�current�
�
message��m� is �rst on Rqueue�j�

E�� current �� �current� �� mod total
discard �rst element of Rqueue�j�

Internal handle�dummy
Pre� mode � DeliverMessages

j � Porder�current�
�
dummy��m� is �rst on Rqueue�j�

E�� current �� �current� �� mod total
discard �rst element of Rqueue�j�

Input new�rate�m�i
E�� if �mode �� GetRate� f

add �
new�rate��m� to Squeue
myRate �� m
if �mode � DetOrder�

mode �� FirstReserve
else

mode �� Reserve
g

Internal change�rate
Pre� mode � DeliverMessages

j � Porder�current�
�
new�rate��m� is �rst on Rqueue�j�

E�� rate�j� �� m
Update�Porder� current� rate� j� n�
discard �rst element of Rqueue�j�

TimePassage v�t�
choose p � 	

Pre� now � t� ��� � clock � p � now � t� ���
clock � p � last

E�� now �� now � t
clock �� clock � p

Figure �� The CBR algorithm automaton for process i� transitions�

�

When the new Porder vector is computed� current is also updated according to the new rate�
We would like to continue to deliver messages from the place we were before we updated Porder�
Thus� when recomputing Porder we update current to point to the next message that we should
have delivered had we not updated Porder�

algorithm for adding the new rate of process j
Update�vector P � integer cur� array rate� integer j� integer n� f

deliveredJ � � �appearances of j in P until cur�
PrateJ � � �appearances of j in P �

 j�s previous rate
cur �� cur � deliveredJ
P �� P without all the appearances of j
total ��

Pn

i��
rate�i�

temp �� new vector of size total
count �� new array of size n� initially 	 in all places
oldIndex � 	
for�newIndex �� 	 to total � �� f

i � P �oldIndex�
if �count�j��rate�j� � count�i��rate�i�� f

temp�newIndex� �� j
count�j� � �
if �count�j��rate�j� � deliveredJ�PrateJ� cur ��

g else f
temp�newIndex� �� i
count�i� � �
oldIndex��

g
g
P �� temp

g

Figure �� The CBR algorithm automaton� internal function Update�

��� Using receiver based reservation

The above algorithm uses a sender based reservation protocol� It is easy to modify the algorithm
to use a receiver based reservation protocol� Since in our algorithm the sender sends its rate
parameters each time they change� we can simply have the receiver reserve the new rate when it
receives this rate� Since the sender cannot know exactly when the reservation occurs� it must send
at the minimum of the old rate and the new one until it learns that the reservation was successful�
If the new rate is slower than the old rate� the receiver immediately changes its Porder vector
accordingly� Otherwise� the receiver sends a message to inform the sender that the reservation was
successful� Once the sender receives such messages from all the processes� it sends a special message
to denote that it is now starting to use the new rate� and following it� sends at the new rate� When
such a new rate message is received� the receiver changes its Porder vector�
This modi�cation does not a�ect the latency of the algorithm� In both cases� the sender�s rate

changes exactly after it sends the message that causes Porder to change at the receivers� The time
from when a process sends its new rate message until it actually starts using this rate is part of the
renegotiation time� and is not taken into account in our delay analysis�

�

��� Correctness of the algorithm

In order to prove the correctness of this algorithm we show that De�nition
 holds� Integrity is
trivially satis�ed from our assumptions on the network� Liveness is satis�ed since all the processes
continuously send messages and eventually all messages arrive at each process� Since Porder
contains entries for all the processes� all the messages eventually get delivered� The following two
lemmas prove that Total Order is also preserved by this algorithm�
We say that process i processes a message m when i executes an action that removes the message

from Rqueue� In our algorithm� a message �other than an init�rate message� can be processed by
one of the following three message processing actions� deliver�m�i�j � handle�dummy and change�
rate� In the following lemmas we use the following notations� Denote by Porderki �k �
� i�s Porder
vector immediately before i processes its kth message �that is� the vector according to which i�s kth
message is processed�� Denote by currentki the value of i�s current variable immediately before i
processes its kth message�

Lemma ��� For any process j� Porderki ! Porderkj �where this equality means that the vectors

are identical� and currentki ! currentkj �

Proof� By induction on k� Base �k !
�� i processes its �rst message after it computes Porder for
the �rst time� because invoking each of these functions requires mode ! DeliverMessages which
does not happen until i calculates Porder� When i processes its �rst message� its order is based
on the �rst rate message sent to it by each process� This is so because i updates its rate array
before it computes Porder only upon receipt of an init�rate message from another process� Since
such a message is sent only once by each process� when computing Porder for the �rst time �in
i�s start�deliver internal action�� i�s order is based on the �rst rate message sent by each process�
Since the channels ensure fifo ordering of messages from each process� j will also see the same
rates for all the processes �the init�rate messages are the �rst message sent by each process� and
will have the same vector Porder as i�s initial vector �they both calculate this order using the same
deterministic function� and so will have the same vector as a result�� Since current is set to � after
computing the order for the �rst time� both processes will have the same value for current when
they process their �rst message�
Inductive step� Assume the kth message i processes is from p� and assume this is the nth

message sent by p that i received� Since p multicasts its messages� and the channels preserve fifo
order� this will also be the nth message from p that process j receives� But if i processes n �

messages from p prior to processing this message� then it must be that j processes exactly the
same number of messages from p before it processes its kth message� because each time i processes
a message from p prior to the kth message it processes� j also processes a message from p� since
according to the induction hypothesis� their vector and place in it are the same for each previous
processing of a received message� So when j processes its kth message� it also sees the nth message
from p� Now� if the nth message from p is a regular message of the application or a dummy message�
then both processes will advance current by
 and will not change their Porder vector� and so
Porderk��i ! Porderk��j and currentk��i ! currentk��j � If the nth message from p is a new�rate
message� then both j and i will use the function Update to calculate a new vector based on p�s new
rate� But since they both had the same vector previously� and both have the same new rate for p
�and apart from that all the rates stay as before�� they will both have the same Porder vector and
current value after executing the Update function� So in both cases i and j will have the same
Porder vector and current value after processing their kth message�

Lemma ��� The kth message delivered by i is the kth message delivered by j�

Proof� Denote by r the number of messages i processed before delivering its kth message �the
kth message it delivers is the r �
 message it processed�� Then� according to the previous lemma
this is also the r �
 message that j processes� For each message i processed until this message�
j processed the same message and so for every message i delivered� j delivered the same message�
So after processing r messages j also delivered k �
 message� and so the r�
 message is also the
kth message j delivers�

The Total Order of De�nition
 follows directly from Lemma ���� since for each k� the kth message
delivered by i is the kth message delivered by j� then if i and j both deliver the same two messages
m and m�� they deliver these messages in the same order�

��� QoS guarantees of the algorithm

We now analyze the QoS guarantees of the algorithm� We �rst analyze the latency� and then the
transmission rate�

Theorem �

AppLatency ! �� �

Proof� We constructed our ordering of message delivery based on the transmission rate of each
process� Our algorithm ensures that each process actually sends according to its rate �using dummy
messages if the application has nothing to send�� Thus� the ordering in Porder guarantees that in
order to deliver a message m we have to wait only for messages that were sent before m or at the
same time according to the senders� local clocks� The possible di�erence between process clocks
may add at most � to the delay� So in order to deliver m we have to wait for messages that were
sent at most � time after m� According to the network guarantees� every such message will arrive
at every process in at most � time� So in order to deliver m� a process has to wait at most �� �
from the time the message was sent to receive all message that are ordered before it� Note that
this latency can actually occur� so this is the maximum possible latency�

Rate� If the application speci�es a certain message rate AppRate� our algorithm uses the same
rate as speci�ed by the application� and so we have�

NetRate ! AppRate

Our algorithm does not induce any overhead in addition to the reserved rate� with the exception
of in�band rate messages sent at start�up time and at renegotiation time� Since renegotiation is
expected to be rare� and is known to be costly for reasons external to our algorithm� we ignore the
extra overhead induced by such messages�
Note that although the total order protocol of this section does not increase the reserved rate�

it does increase the load by sending dummy messages in case the application sends at a lower rate
than it reserved� In general� the CBR model is costly since typical applications do not transmit at
a uniform rate� This shortcoming is addressed by the VBR model discussed in the next section�

� VBR

In the VBR model� there is a �xed slot size� �� which is known to all of the processes� The
application declares two parameters� AppAvgRate and AppMaxBurst per � time� In this section
we assume no process failures or joins and no message loss�

�

��� The VBR algorithm

We present a symmetric algorithm� in which all the processes deliver messages according to the
same rule� The algorithm automaton is presented in Figures � and �� In this algorithm we use slots
for sending and delivering messages�

Signature
Input�

app�mcast�m�i� m �M
init�rate�avg�max�i� avg�max � N
new�rate�avg�max�i� m � N
net�receive�str�m�i�j � str � String� m � �N �M�

Output�
deliver�m�i�j� m �M
net�mcast�str�m�i� str � String� m � �N �M�
reserve�m�i� m a two �eld variable

Time�passing�
v�t�� t � R�

Internal�
update�ratej
dummy
handle�dummy
start�deliver
change�rate
next�slot

State

Squeue� a fifo queue of messages� initially empty

For all j� Rqueue�j�� a fifo queue of messages� initially empty

current� an integer initially ��

 current process to receive from

count� an integer initially 	�

 number of messages received from current in this slot

myCount an integer initially 	�

 number of messages sent in this slot

slot� an integer initially ��

 current slot number

maxRate� array of size n of integers� initially � in all places

myAvg�myMax� integers initially �

maxSend� integer initially �

 i�s AppMaxBurst rate

clock � R��� initially 	

last � R� � f�g� initially �

mode � fGetRate�DetRate�DeliverMessagesg� initially GetRate

changeRate� boolean� initially FALSE

 indicates that reserve has to happen

Figure �� The VBR algorithm automaton for process i� signature and variables�

As in the CBR algorithm� the application has to perform the init�rate action� this time stating
two parameters� AppAvgRate and AppMaxBurst� The algorithm reserves the following rates
from the network� NetMaxBurst ! AppMaxBurst� and NetAvgRate ! AppAvgRate�
��� The
reserve�m�i action also places a ��rate�� AppMaxBurst� message at the head of the sending queue�
and thus� AppMaxBurst is sent to all the processes� While both AppAvgRate and AppMaxBurst
are used for specifying the reserved QoS� only AppMaxBurst e�ects the message ordering� and
therefore� only AppMaxBurst is sent to other processes� The AppMaxBurst values are stored in
the array maxRate by the update�ratej action�
Processes use slots for sending and delivering messages� The algorithm sends �using net�mcast�

application messages to all processes in the same slot as they were app�mcast by the application�
When a slot ends �that is� � time has passed from the time it started� the process checks the
number of messages it sent during this slot� If this number is equal to its AppMaxBurst� then it
moves to the next slot using its next�slot action� Otherwise� it sends a dummy message as the last
message in the slot� �in the dummy action� and then moves to the next slot�

�

Transitions
Input init�rate�avg�max�i

E�� if �myAvg ��� f
myAvg �� avg � ���
myMax �� max
last �� clock ��
changeRate � TRUE
mode �� DetRate

g

Output reserve�m�i
Pre� myCount � 	

changeRate � TRUE
m � �myAvg�myMax�

E�� add �
rate��myMax� as �rst element in Squeue
maxSend �� myMax
changeRate �� FALSE
myCount��

Internal update�ratej
Pre� �
rate��max� is �rst on Rqueue�j�

maxRate�j� ��
E�� maxRate�j� �� max

discard �rst element of Rqueue�j�

Internal start�deliver
Pre� mode � DetRate

for all � � j � n
maxRate�j� ���

E�� mode �� DeliverMessages

Input app�mcast�m�i
E�� if �mode �� GetRate�

add �
message��m� to Squeue

Output net�mcast�str�m�i
Pre� �str�m� is �rst on Squeue

myCount � maxSend
changeRate � FALSE 	myCount � 	

E�� if �str � dummy�
myCount �� maxSend

else
myCount��

remove �rst element of Squeue

Internal dummy
Pre� clock � last

myCount � maxSend
Squeue is empty

E�� add �
dummy��
dummy�� to Squeue

Internal next�slot
Pre� clock � last

myCount � maxSend
E�� last �� clock ��

slot��
myCount �� 	

Input net�receive�str�m�i�j
E�� add �str�m� to Rqueue�j�

Output deliver�m�i�j
Pre� mode � DeliverMessages

j � current
�
message��m� is �rst on Rqueue�j�

E�� count ���
if �count � maxRate�j�� f

count �� 	
current �� �current� �� mod n

g
discard �rst element of Rqueue�j�

Internal handle�dummy
Pre� mode � DeliverMessages

j � current
�
dummy��m� is �rst on Rqueue�j�

E�� current �� �current� �� mod n
count �� 	
discard �rst element of Rqueue�j�

Input new�rate�avg�max�i
E�� if �mode �� GetRate� f

myAvg �� avg � ���
myMax �� max
changeRate �� TRUE

g

Internal change�rate
Pre� mode � DeliverMessages

j � current
�
rate��max� is �rst on Rqueue�j�

E�� maxRate�j� �� max
count ��

TimePassage v�t�
choose p � 	

Pre� now � t� ��� � clock � p � now � t����
clock � p � last

E�� now �� now � t
clock �� clock � p

Figure �� The VBR algorithm automaton for process i� transition de�nitions�

�

For each slot� the algorithm delivers messages according to the process indices� it delivers all
the messages for this slot sent by process
� then all the messages sent by � etc� This is done in
the deliver�m�i�j action� If process i is currently delivering messages for slot s from process j�
it will move to deliver messages from �j �
 mod n� if it sees a dummy message from j �in its
handle�dummy internal action�� or upon delivery of maxRate�j
 messages from j in this slot�
The application can perform the new�rate action at any time to change the rate parameters�

However� the new rates will be used only from the ensuing slot� Each time the application changes
its rate� the algorithm uses its reserve�m� action to reserve the new rates� The reserve�m� action
also places a ��rate�� AppMaxBurst� message at the head of the sending queue� This message is
sent as the �rst message in the next slot� When a rate message is the next message to be delivered�
the receiving process starts delivering messages according to the new rate and discards this message
�using its change�rate action��

��� Correctness

In order to prove the correctness of this algorithm we have to show that De�nition
 holds� In�
tegrity is trivially satis�ed from our assumption that the network does not duplicate� corrupt or
spontaneously generate messages� The following lemmas show that Total Order and Liveness hold�

Lemma ��� Denote by maxSendsi the value of i�s maxSend variable when i terminates slot s
�using the next�slot action�� Denote by maxRate�i
sj the value of maxRate�i
 at j when j delivers

the last message i sent in slot s� Then� maxSendsi ! maxRate�i
sj�

Proof� By induction on s� Base �s !
�� i�s initial maxSend value is the value i declared in its
init�rate action� Denote this value by r� ��rate��r� is sent as i�s �rst message in slot
� and all
processes wait to receive this value before they start delivering messages� So r is the �rst value
j has for maxRate�i
� After adding this message to i�s Squeue� i increments myCount �in the
reserve�m�i action�� Since the precondition for sending a rate message and changing i�s maxSend
value is that myCount ! �� i will not send any other rate message in slot
 �because myCount is
set to � again only after i �nishes slot
�� So maxSend�i ! r� Since j changes maxRate�i
 only
when it processes a rate message from i� j will not change its initial value of maxRate�i
 �which is
r� when it delivers i�s messages for slot
� So maxRate�i
�j ! r�
Inductive step� If the �rst message i sent in slot s �
 is not a rate message� then as explained
above i will not send any rate message during slot s�
� and will not change its maxSend value in
this slot� Since j only changes its maxRate�i
 value after processing a rate message from i� j will
not change its maxRate�i
 value when delivering i�s messages for slot s�
� Combining this with
the induction hypothesis we get maxSends��i ! maxRate�i
s��j �
If the �rst message i sent in slot s�
 is a ��rate��r� message� then as explained above r will be i�s
maxSend value at the end of this slot� and so maxSends��i ! r� Since j will process this message
as the �rst message i sent for this slot� j will set its maxRate�i
 value to r after processing i�s �rst
message for slot s �
� This is the only rate message j will receive from i for this slot� and so
maxRate�i
s��j ! r�

Lemma ��� Let s be a slot� Assume that each process delivers all the messages sent before slot s
before delivering any message sent in slot s� Then� all the processes deliver all the messages sent

in slot s in the same order� before delivering any messages sent in later slots�

Proof� When process j delivers process i�s messages for slot s� j waits to receive all of i�s messages
for this slot before it moves to deliver messages from the next process� This is guaranteed by the

�

fact that j will not move on before it received a dummy message from i or it already delivered
maxRate�i
 messages from i� and from Lemma ��
� these are exactly all the messages i sent in s�
This is true for all processes� and since the network preserves the fifo order and messages are

not lost� all processes will deliver the same messages from i in for slot s� and in the same order�
Since the processes deliver messages in each slot according to a prede�ned process order ��rst from

 then from � and so on�� all processes will deliver messages in the same order for slot s�

This lemma is true for each slot s� and so we can show by simple induction on s �the slot
number� that if i and j both delivered s slots� they delivered the same set of messages� and in the
same order�

��� QoS guarantees

The maximum delay caused by this algorithm is the following�

Theorem �

AppLatency ! �� ���

Proof� We only add a dummy message �to end a slot� after the time for this slot is over� and
Squeue is empty� So all messages that were app�mcast before the dummy message are net�mcast
before it� If the application sends AppMaxBurst messages for slot s� we do not add a dummy
message and all messages are net�mcast before the slot ends� So in both cases �using a dummy
message to end a slot or AppMaxBurst messages are sent by the application�� if a message is
app�mcast before the time at which slot s ends� then it will be net�mcast in slot s� So from now
on when we say that a message was �sent� in slot s it means that both app�mcast and net�mcast
were performed in that slot�
Assume that process i sends a message m in slot s� and the delivery of m is delayed until a

message m� from another process� j� will be received and delivered� Since message delivery is done
per slot �see Lemma ��� above�� m� must be sent by j before the end of slot s� Since the di�erence
between the two processes� internal clock is at most �� we know that i sent m �in slot s� at most
� � � time before j sent its last message for s �see Figure 	�� Since j�s last message arrives at all
the processes at most � time after it is sent� all the processes receive m� at most � time after j�s
last message for slot s was sent� Thus� after at most � � � � � time from the time i sent m� its
delivery will be enabled at all the processes� Since the scenario illustrated in Figure 	 can actually
happen� � � � �� is the maximum delay for any message sent in this algorithm�

The algorithm reserves rates that are a function of the application speci�ed rates� The following
theorem proves that the rates reserved by the algorithm guarantee that the application messages
will have the required bandwidth� That is� enough bandwidth is reserved to allow both the sending
of the application messages and the extra messages that are added by the algorithm�

Theorem �

NetAvgRate ! AppAvgRate�
��

NetMaxBurst ! AppMaxBurst

�

j starts s j finishes s

j’s last mesage for sΓ

∆ + Θ + Γ

Θ

∆

i starts s

All the processes receive

Figure 	� Maximum delay with the VBR algorithm�

Proof� The only message this algorithm adds to the messages sent by the application is the
dummy message� This message is sent at most once every slot as the last message in the slot�
Thus� the message rate is increased by at most one message each slot� and so the average rate is
increased by
��� If the application sent AppMaxBurst messages in slot s� the algorithm does not
add any message of its own� and so AppMaxBurst remains the same as the one declared by the
application�

Note the interesting tradeo� between the increase in the delay and the increase in the trans�
mission rate� A bigger � will cause increased delay while decreasing the rate� while a smaller �
gives rise to a smaller delay� but increases the transmission rate�

� Process Failures and Joins

In this section we extend the VBR model of the previous section to allow for process failures and
joins�

��� A lower bound on reliable total order with process failures

The following theorem shows that in this model any algorithm implementing reliable total order
�De�nition
 of TO� can guarantee� at best� a latency bound which is proportional to the number
of failures it can tolerate�

Theorem � A reliable total order algorithm that can tolerate f process failures cannot guarantee
a latency bound smaller than �f �
���

Proof� Assume that a reliable total order algorithm A can tolerate f process failures and guar�
antees a latency bound of �� We now show that � � �f �
��� As shown in �
�
� the processes may
use A to solve the Consensus problem by sending their initial values as their �rst messages and
agreeing upon the value in the �rst delivered message� By our assumption on A� this message is
delivered at most � time after the algorithm is initiated� and thus� Consensus is solved in � time�
Since f�
 rounds is a well known lower bound for synchronous Consensus tolerating f stopping

failures �see ���
� Ch� ����� and from our assumption that messages can be delayed up to � time
in the network� we conclude that the algorithm cannot guarantee that Consensus be solved in less
than �f �
�� time� and hence � � �f �
���

�

��� Total order with gaps� Detecting faults

The above theorem proves that the latency achieved by a reliable total order algorithm is bound
to be proportional to the number of faults tolerated� In order to achieve delays that are constant
no matter how many processes fail� we relax the reliable total order de�nition and consider total
order with gaps �De�nition �� for the rest of this section and the next one� Since in this section
we do not consider message loss� gaps in the total order can only correspond to messages of faulty
processes� For example� if process i sends a message m and immediately fails� then it is possible
that some correct process will deliver m and another will not�
Since we allow for such gaps� the algorithm can deliver messages without checking if other

processes received these messages too� Processes deliver all the messages that they do receive
according to the order speci�ed in the previous section� For example� we do not want a situation
in which after i starts delivering messages from process j �
 for slot s it receives a new message
from j for slot s� In order to overcome faults and yet avoid this situation we implement an internal
failure detector at each process as explained below�
According to the network guarantees� if a process sends a message all other processes will receive

it in at most � time� This allows us to implement a failure detector at each process in the following
way� We say that i �nished slot s when i executes its internal next�slot action and increments its
slot number to s �
� If a process i waits more than � � � time from the time it �nished slot s�
for a message from another process for this slot� then it knows that this process has failed� Once
process i detects that process j failed� it stops waiting for messages from j� and delivers the rest of
the messages sent by other processes for slot s� From slot s�
 until j is added again �as will be
described later�� i does not deliver messages from j� This requires i to keep track of the slot it is
delivering messages for�

��� Allowing new processes to join

For a joining process we allow an initialization time� During this time the process does not have
to deliver all messages it receives �it is not considered �correct� for De�nition ��� After the initial�
ization time� the process joins the algorithm� and is required to deliver every message it receives as
per De�nition �� We now analyze the initialization time as a function of the �� � and ��
When a process j wants to join the algorithm� it just needs to know in which slot the rest of the

processes are in order to start sending messages� To do so� j checks its own clock� and computes
the slot the execution has reached� Since each execution starts with now ! �� j can know the slot
it is in by setting s to clockj��� In order to join� j sends a ��join�� j� r� s� message to all processes
where r is j�s rate and s is the slot in which j should be added� Whenever a process receives a
�join� message it immediately processes it� and records that j should be added at slot s with the
rate r� Since this message arrives at all processes at most � time after it is sent� and since the
di�erence between j�s clock and all other processes� internal clocks is at most �� j can know that
all processes will receive it before they start slot Smax ! �clockj ��������
� Thus� j chooses
Smax ! �clockj��������
 as the slot it will join in� sends ��join�� j� r� Smax� to all processes�
and starts sending and delivering messages from slot Smax�
When a process i receives j�s ��join�� j� r� Smax� message� it adds j to its list of active processes

upon starting to deliver messages for slot Smax� Then� with the �rst message in slot Smax� i
includes the slot number �Smax� and its own transmission rate� Thus� j learns where the other
processes start Smax and �nds out their rates before starting to deliver their messages� From
Smax onward �or until j is detected as failed again�� i waits for messages from j in every slot�
Since all the active processes start slot Smax after j wakes up� j will receive all the messages

	

sent for slot Smax� Furthermore� all the processes will receive j�s join message before they start
this slot� Process j only joins the algorithm �that is� starts delivering messages to the application�
at slot Smax� and it discards all messages it receives for earlier slots� Note that j is added to the
algorithm at the same slot �Smax� by all the processes �including j itself�� Process j starts this
slot at the latest � � � � � time after it wakes up� Thus� every other process starts this slot at
most � � �� � � time after j wakes up� and j delivers all the messages that were sent at least �
� �� � � time after j wakes up�

��� Correctness

The Integrity and Total Order of De�nition � for this algorithm follows directly from the correctness
proof for the algorithm in the previous section� The only di�erence between the two algorithms is
that when a process fails� some of its messages may be delivered by one correct process and not by
another correct process� However� the method in which the messages are delivered �by slot� and in
each slot according to processes indices� remains the same and the total order is still preserved� In
addition� the following lemma proves the liveness condition�

Lemma 	�� All the messages received by a process i are delivered to the application�

Proof� The only di�erence between the algorithm in this section and the one in the previous
section is that if process i suspects j to be faulty in a slot s� i does not deliver j�s messages in s�
Thus� in order to prove the liveness property we need to show that if a process j sends messages to
process i for a slot s� and j does not subsequently fail� then i does not consider j to be faulty in slot
s� To prove this we show that �
� if at some point i does not suspect j and j does not subsequently
fail� then i does not subsequently suspect j� and ��� if j recovers and re�joins the algorithm starting
to send messages in slot s� then every correct process i will consider j to be correct at s and hence
deliver j�s messages for s�
�
� is true since i suspects j only if j�s messages for s fail to reach i within ��� time from the

time i �nished s� From our assumptions on clock synchronization and network latency� this implies
that j has failed� ��� is true since if j recovers and re�joins the algorithm� it sends a �join� message
indicating the slot Smax in which it will start sending messages� As argued above� Smax is chosen
to be late enough to guarantee that the �join� message arrives at all the correct processes before
they start slot Smax� The processes process this message immediately upon receipt� and thus j is
considered correct by the time it starts sending messages�

Note that in this proof we omit messages that are received during the initialization time� For these
messages� we allow i not to deliver messages for slots that precede the slot i joins in�

��� QoS guarantees

We �rst analyze the latency�

Theorem �

AppLatency ! ���� ��

Proof� As stated� a process j waits � � � time after it �nishes slot s in order to receive all
messages sent by all processes for this slot� If after that time a message from some process k did

�

not arrive it knows �as proved in the correctness above� that k failed� and so after that time j
�nishes delivering messages for slot s� Let i and j be two correct processes� and assume i sends
a message m in slot s� From our assumption on clock synchronization� we know that j �nishes
s at most � � � time after i starts slot s �see Figure ��� According to the algorithm� j delivers
all messages sent for s at most � � � time after it �nishes s� So j delivers message m at most
� � � � � � � ! � � �� � � time after the time it was sent by the application in i� Since the
scenario in Figure � can actually occur� �� ���� is the maximum delay for any message sent in
this algorithm�

i starts s
j finishes sj starts s k fails

Γ Θ

∆ + Θ + 2Γ

j is waiting for a
message from k

∆ + Γ

j delivers all messages
for s

Figure �� Maximal delay when process failures are tolerated�

The transmission rate is not e�ected by the added support for fault tolerance� BothNetAvgRate
and NetMaxBurst remain the same as in the previous section� since no new messages are added
to the algorithm presented in this section with the exception of �join� messages and the rates sent
in response to these messages� As mentioned before� we do not take the cost of initialization and
renegotiation into account when analyzing the cost of the �normal� operation of the algorithm�

��� Notes on handling network partitions

When handling process joins� we have the join occur at the same point in the message sequence
at all the processes including the joining process� This point de�nes the time starting which the
liveness constraints hold� and the joining process has to deliver all the messages it receives� In
contrast� for failed processes� we do not require that their failure be observed atomically �that is�
at the same point in the message sequence�� This is so since we implement total order with gaps�
When handling network partitions and merges� one has to decide whether to require that parti�

tions and merges be observed atomically by all processes� If� like process failures� partitions do not
have to be detected atomically� then the detached processes can be detected to be faulty using the
existing mechanisms for detecting messages faults� If we do not require that merges be observed
as occurring at the same point by all the processes� then handling merges can be done as follows�
When a process i receives a message from a process j that is not in its active list of processes� i
sends j a �merge� request for slot Smax ! �clockj � � � ���� �
 containing its current rate�
When j receives this message� if i is in its active list it ignores the message� Otherwise� j treats it
like a �join� message� that is� adds i to its list of active processes upon starting to deliver messages
for slot Smax� In both cases� j sends a dual �merge� message with its own rate to i and tags the
�rst message in slot Smax with the slot number �Smax��

��

� Message Loss

Using De�nition � we can also relax the assumption that the network does not lose messages� and
still preserve the total order� In this section we assume that messages may be lost� but there is a
bound x on the number of consecutive messages sent by the same sender that the network can lose�
This bound is one of the reserved QoS parameters� it is called burst loss sensitivity in ���
��
We modify the algorithm of the previous section to accommodate message loss� To ensure that

the ordering is computed consistently at all processes� we must make sure that all the messages
containing rates will reach their destinations� To this end� each �init�rate� and �new�rate� message
is sent x �
 consecutive times� To avoid wasting network resources� it is possible to append the
rate to the �rst x�
 messages being sent at startup� after renegotiation and when the rate is sent
to a new process that joins� Likewise� �join� messages have to be sent x �
 consecutive times�
This mechanism makes sure that all the processes use the same ordering�
As before� when a process i is delivering messages from process j for a certain slot s� i moves to

deliver messages from j �
 upon receipt of a dummy message or upon delivery of AppMaxBurst
messages from j� In addition� we must provide a mechanism for detecting lost messages� To this
end� the slot number is included in the header of each message sent� When process i is delivering
messages from process j for a certain slot s� i needs to be able to detect the fact that some
messages that j sent for this slot were lost �or that the dummy message was lost in case less than
AppMaxBurst messages were sent in the slot�� in order to proceed to deliver messages from j �
�
Process i can detect this by one of two ways� First� if i waits �� � time from the time it �nished
slot s and it still did not receive all of j�s messages for s� it knows it will never receive them� Second�
if the next message from j pertains to slot s�
� then by the fifo order no further messages for slot
s may be received from j� As an optimization� when a process sends AppMaxBurst messages in a
slot� it can tag the last one with a bit denoting that it is the last message of the slot� to provide an
additional way for detecting the end of the slot� In all cases� i proceeds to deliver messages from
j �
�
However� if i times out on j� i cannot know whether j�s message was lost� or whether j failed

during this slot� Therefore� in this algorithm� i will keep j in the list of active processes and will
still try to deliver messages from j during the following slots� Process i removes j from the active
list only if it did not receive any messages from j during x�
 consecutive slots�

	�� Correctness

In order to prove the correctness of the algorithm� we show that De�nition � holds� Integrity follows
from the fact that the network does not corrupt or spontaneously generate messages� and that our
algorithm sends application messages at most once�
As for Total Order� the sending of rate messages x �
 consecutive times guarantees that

processes� order information is kept consistent� and the ordering in each slot is preserved� The use
of slot numbers in message headers makes sure that a message is delivered in the same slot by all
the processes�
To prove Liveness� we must show that a processes does not detect the loss of a message that

will later be received� Message loss is detected in two ways� First� using a time�out mechanism
which was proven in the previous section to detect only cases in which messages are indeed lost�

�Burst loss sensitivity enumerates the maximum number of consecutive messages of MTU �minimum transmission
unit� size or smaller that may be lost� In this paper� we assume that all the messages are small enough to bene�t
from this guarantee�

�

Second� processes detect a lost message from j for a slot s when receiving a message from j for
slot s�
� By the fifo nature of the communication links� a message for slot s cannot be received
after a message for slot s�
� so the loss is detected correctly and the Liveness speci�cation is not
violated�

	�� QoS guarantees

The maximum latency remains the same as the delay in the previous section� This is because each
time the application at process i changes its rate parameters we guarantee that all processes will
receive the new rates by sending them x �
 times and thus all processes will use the right rates
�as in the previous section� when delivering messages in each slot� In addition� we time out each
slot in the same way we did in the previous section �each process waits at most � � � time after
it �nished slot s� and after that delivers all messages for that slot�� Thus� the delay is unchanged�
The algorithm in this section does not send additional messages� but it does increase the trans�

mission rate by adding the slot number at the header of each packet� The slot number can be
represented by four bytes�� The signi�cance of this addition depends on the payload message size�
If application messages are fairly large� this addition is not signi�cant�
The algorithm in this section also adds the transmission rate to the header of multiple messages�

However� these messages are only sent at startup times� including startup of another process� �i�e��
join� and renegotiation times� As mentioned before� we do not take the cost of initialization and
renegotiation into account when analyzing the cost of the �normal� operation of the algorithm�

	 Leader Based Algorithms

In previous sections� we presented symmetric algorithms� We chose to consider symmetric algo�
rithms� since it is di cult to make leader�based algorithms fault tolerant without violating QoS
guarantees� When the leader fails� electing a surrogate leader may block the algorithm for an exten�
sive period and induce signi�cant delays� We do not discuss fault tolerant leader based algorithms
in this paper� We only analyze the QoS guarantees of leader based algorithms in the absence of
faults�
In this section we assume the VBR model of Section � �with no process failures or joins and

no message loss�� although we do not assume the process clocks are synchronized� We discuss two
leader�based algorithms� a leader broadcast algorithm in Section 	�
� and a timestamp leader ��

in Section 	��� We present general descriptions of how the algorithms work and study their QoS
guarantees�

�� Leader broadcast algorithm

In the leader broadcast algorithm� all the processes send their messages to the leader� The leader
sends the messages in the order they are received to all processes� When a process receives a
message from the leader it delivers it to the application� Since the messages are sent from one
process to all processes� and from the fifo assumption on links� all the processes deliver messages
in the same order� Each process has to reserve bandwidth only to the leader� The leader reserves
bandwidth to all the processes�
In this algorithm each message is now sent twice� once from the sending process to the leader�

and then from the leader to all processes� This causes a delay of �� for a message to arrive at

�For slots of size of �		 milliseconds� four bytes will su�ce for over three years�

��

all processes� In addition� messages are delayed at the leader� from the time the leader receives a
message from the network and until it multicasts it� We denote this time by processingOverhead�
The total delay is therefore�

AppLatency ! ��� processingOverhead

Two points are worth noting about this latency� First� the processing overhead is not constant�
If the network load is high� messages can pile up at the leader� and the delay until a message can
be processed by the leader is bound to grow� This growth limits the scalability of leader based
algorithms� When implementing a leader based algorithm� it is important to chose a powerful
machine for the leader� in order to minimize the e�ect of this growth�
Second� it may be possible to chose a leader such that the network latency between the leader

and every other processes ��� will be smaller than the latency between an arbitrary pair of processes
�� in the previous sections�� Since multicast is usually implemented using a rooted spanning tree�
it may be possible to chose the leader to be close to the root of the spanning tree� However� the
root itself is usually a router� and is not available to the application� Identifying a process with
optimal latency to other processes is generally di cult�
The reserved transmission rate is increased by this algorithm� since every message is sent twice�

First it is unicast to the leader and then the leader multicasts it to all processes�
Although unicast messages are in a sense �cheaper� than multicast messages as they are not

propagated through the entire multicast tree� we cannot precisely compare the cost of a unicast
message with the cost of a multicast message since this depends on the network topology�

�� Timestamp leader algorithm

In the timestamp leader algorithm� the leader does not multicast the messages themselves� Instead�
whenever a process wants to send a certain number� k� of messages� it asks the leader for k times�
tamps and immediately multicasts the messages to all the processes� When the leader receives a
request for k timestamps� it assigns the next k timestamps �or sequence numbers� to this process�
and noti�es all processes of this assignment� Each process delivers the messages according to the
timestamp associated with them� For example� if a process i delivered a message with timestamp
l� and timestamp l�
 is allocated to process j� then the next message i will deliver will be from j�
If a process asked for k timestamps� there is a time limit on the time until it sends k messages� If it
sees that by this time it does not have that many messages to send� it must send dummy messages
instead� For the VBR model� this time limit may be chosen to be the slot size� �� and k may be
chosen to be the AppMaxBurst�
Since the timestamps are assigned by a single process� they are consistent� and no two processes

are assigned the same timestamp� By the fifo order of links� delivering messages according to
these timestamps guarantees total order�
In addition to the reservation for application messages� processes need to reserve bandwidth

for sending timestamp requests and the leader must reserve extra bandwidth for the timestamp
messages�

���� QoS guarantees

There are two cases in which a received message can be delayed before it can be delivered� First�
a message can arrive prior to its assigned timestamp� Since a request for a timestamp is sent
before the message is actually sent� the time it takes for the timestamp to arrive is at most �� �

��

processingOverhead� � to arrive at the leader� processingOverhead for the leader to respond to
it and another � to arrive at each receiving process� Second� a message can arrive prior to other
messages that have preceding timestamps� The time it takes until the preceding messages arrive
is at most � � � since after � time a process is obliged to send the number of messages it asked
for� The total maximum delay is the maximum of these two delays� thus the total delay time after
a message arrives is�

AppLatency ! ��Max�� � processingOverhead���

Note� that although we still take the leader processing time into account when analyzing the
delay for this algorithm� this time will be much smaller because the leader only processes timestamp
requests �one request is sent for k messages� as opposed to processing all the messages in the leader
broadcast algorithm presented above�
This algorithm increases the transmission rate due to sending of timestamp requests and times�

tamps� These messages are sent once per slot� In addition� as in the algorithm of Section �� the
average transmission rate is increased by the sending of dummy messages� also sent at most once
per slot� Thus� the average rate is increased by three messages per slot for each process� The
maximum burst is only increased by two messages per slot for each process since we do not add a
dummmy message in this case but the timestamp messages are still being sent�

 Conclusions and Future Work

This paper sets the framework for analyzing QoS guarantees of totally ordered multicast services�
Speci�cally� we have shown how to achieve totally ordered multicast without violating QoS guar�
antees in certain network models� We have shown that in failure prone networks one can achieve
total order with gaps at a reasonable latency� Reliable total order� on the other hand� can induce
latencies which are proportional to the number of faults occurring�
Understanding of this tradeo� may suggest a certain design for applications� like military com�

mand and control� that need to present updates in a timely manner even if they are not entirely
consistent� as long as they later converge to a consistent state� Such applications may exploit al�
gorithms such as those suggested here for fast updates� and in the background implement reliable
total order so that the data will eventually be consistent�
This paper is a �rst step in the way of providing a mathematical approach to understanding

the costs of di�erent services in di�erent network models� Such understanding is vital for e cient
design of distributed applications� Future work will consider richer network models� making the
suggested algorithms more suitable for large scale distributed applications on the Internet� such
as collaborative text editing� An interesting issue to study is the cost of achieving reliability over
an unreliable network� It would be interesting to study the latency�bandwidth tradeo�s between
using retransmissions and using forward error correction �FEC� �for example� see ���� ��
� to achieve
reliability�
Other interesting future work can consider di�erent QoS parameters� For example� instead of

analyzing a �xed latency bound one may want to consider the average latency and the maximum
jitter �that is� the variation of the latency�� Randomized algorithms may be able to provide such
QoS guarantees most e�ectively�

��

References

�� ��Six � A massive online team play over the Internet� URL� http���www�tensix�com� �
http���www�heat�net���sixchannel�index�html�

�� Y� Amir� D� Dolev� P� M� Melliar
Smith� and L� E� Moser� Robust and E�cient Replication using Group
Communication� Technical Report CS��
��� Institute of Computer Science� The Hebrew University of
Jerusalem� Jerusalem� Israel� �����

�� Y� Amir� L� E� Moser� P� M� Melliar
Smith� D� A� Agarwal� and P� Ciarfella� The Totem single
ring
ordering and membership protocol� ACM Trans� Comput� Syst�� ����	� November �����

�� The ATM Forum Technical Committee� ATM User Network Interface �UNI� Speci�cation Version ����
June ����� ISBN �
��
������
X�

�� The ATM Forum Technical Committee� ATM User�Network Interface �UNI� Signalling Speci�cation
Version 	��
 af�sig���������� July �����

�� J� Chang and N� Maxemchunk� Reliable broadcast protocols� ACM Trans� Comput� Syst�� ���	� �����

�� G� Chockler� N� Huleihel� and D� Dolev� An adaptive totally ordered multicast protocol that tolerates
partitions� In ��th ACM Symposium on Principles of Distributed Computing �PODC�� pages ��������
June �����

�� G� Coulson and G� Blair� Architectural Principles and Techniques for Distributed Multimedia Applica

tion Support in Operating Systems� ACM Operating Systems Review� ����	������� October �����

�� Coulson� G� and Blair� G�S� and P� Robin� Micro
kernel Support for Continuous Media in Distributed
Systems� In Proceedings of Computer Networks and ISDN Systems
�� pages ���������� �����

��� J� Crowcroft� M� Handley� and I� Wakeman� Internetworking Multimedia� UCL Press� September �����
Available on
line from� http���www�cs�ucl�ac�uk�sta��j�crowcroft�mmbook�book�book�html�

��� D� Dolev� S� Kramer� and D� Malki� Early delivery totally ordered broadcast in asynchronous environ

ments� In
�rd IEEE Fault�Tolerant Computing Symposium �FTCS�� pages �������� June �����

��� A� Fekete� N� Lynch� and A� Shvartsman� Specifying and using a partionable group communication
service� In ��th ACM Symposium on Principles of Distributed Computing �PODC�� pages ������ August
�����

��� R� Friedman and R� van Renesse� Packing messages as a tool for boosting the performance of total
ordering protocols� In �th IEEE International Symposium on High Performance Distributed Computing�
����� Also available as Technical Report ��
����� Department of Computer Science� Cornell University�

��� R� Friedman and A� Vaysburg� Fast replicated state machines over partitionable networks� In ��th
IEEE International Symposium on Reliable Distributed Systems �SRDS�� October �����

��� L� Gautier and C� Diot� Design and Evaluation of MiMaze� a Multi
player Game on the Inter

net� In Proceedings of IEEE Multimedia Systems� June ��
 July � ����� URL http���www

sop�inria�fr�rodeo�MiMaze��

��� V� Hadzilacos and S� Toueg� Fault
tolerant broadcasts and related problems� In S� Mullender� editor�
chapter in� Distributed Systems� ACM Press� �����

��� M� Hayden and R� van Renesse� Optimizing Layered Communication Protocols� Technical Report
TR��
����� Dept� of Computer Science� Cornell University� Ithaca� NY ������ USA� November �����

��� H�Q� Nguyen and C� Bac and G� Bernard� Integrating QoS Management in a micro
kernel based UNIX
Operating System� In Proceedings of the
�rd Euromicro Conference� September �
� �����

��� IETF� The Integrated Services �intserv� IETF Working Group Home Page
 URL�
http���www�ietf�org�html�charters�intserv�charter�html�

��

��� J� Bruno� E� Gabber� B� �Ozden� and A� Silberschatz� The Eclipse Operating System� Providing Quality
of Service via Reservation Domains� In Proceedings of the USENIX ���� Annual Technical Conference�
June �����

��� I� Keidar and D� Dolev� E�cient message ordering in dynamic networks� In ��th ACM Symposium on
Principles of Distributed Computing �PODC�� pages ������ May �����

��� I� Keidar and D� Dolev� Totally ordered broadcast in the face of network partitions� exploiting group
communication for replication in partitionable networks� In D� Avresky� editor� Chapter � of Dependable
Network Computing� Kluwer Academic� �����

��� L� Lamport� Time� clocks� and the ordering of events in a distributed system� Commun� ACM� ����	�����
���� July ���

��� C� Lee� R� Rajkumar� and C� Mercer� Experiences with processor reservation and dynamic qos in
real
time mach� In the proceedings of Multimedia Japan ��� april �����

��� I� Leslie� D� McAuley� R� Black� T� Roscoe� P� Barham� D� Evers� R� Fairbairns� and
E� Hyden� The Design and Implementation of an Operating System to Support Dis

tributed Multimedia Applications� IEEE Journal on Selected Areas in Communications� �����
http���www�cl�cam�ac�uk�Research�SRG�netos�nemesis��

��� J� B� M� Luby� M� Mitzenmacher� and A� Rege� A digital fountain approach to reliable distribution of
bulk data� In ACM SIGCOMM ���� September �����

��� N� Lynch� Distributed Algorithms� Morgan Kaufmann Publishers� �����

��� C� P� Malloth� P� Felber� A� Schiper� and U� Wilhelm� Phoenix� A toolkit for building fault
tolerant�
distributed applications in large scale� In Workshop on Parallel and Distributed Platforms in Industrial
Products� October �����

��� The MASH Project� University of California� Berkeley� The MediaBoard� URL� http���www

mash�cs�berkeley�edu�mash�projects�mboard�mb�html�

��� S� McCanne� A Distributed Whiteboard for Network Conferencing� UC Berkeley CS Dept�� May �����
Unpublished Report� Software available from ftp���ftp�ee�lbl�gov�conferencing�wb�

��� S� McCanne and V� Jacobson� Vic� A �exible framework for packet video� In Proceedings of ACM
Multimedia� pages �������� November �����

��� D� L� Mills� Network Time Protocol �Version �� Speci�cation
 Implementation
 RFC ����� March �����
Internet Engineering Task Force� Network Working Group�

��� L� E� Moser� P� M� Melliar
Smith� D� A� Agarwal� R� K� Budhia� and C� A� Lingley
Papadopoulos�
Totem� A fault
tolerant multicast group communication system� Commun� ACM� ����	� April �����

��� L� E� Moser� P� M� Melliar
Smith� and V� Agrawala� Asynchronous fault
tolerant total ordering algo

rithms� SIAM J� Comput�� ����	��������� August �����

��� J� Nonnenmacher and E� W� Biersack� Reliable multicast� Where to use FEC� In IFIP �th International
Workshop on Protocols for High Speed Networks �PfHSN����� October �����

��� C� Partridge� A Proposed Flow Speci�cation
 RFC ����� September ����� Internet Engineering Task
Force� Network Working Group�

��� L� Rodrigues� H� Fonseca� and P� Verissimo� Totally ordered multicast in large
scale systems� In
International Conference on Distributed Computing Systems �ICDCS�� �����

��� F� B� Schneider� Implementing fault tolerant services using the state machine approach� A tutorial�
ACM Comput� Surv�� ����	��������� December �����

��� S� Shenker� C� Partridge� and R� Guerin� Speci�cation of Guaranteed Quality of Service
 RFC

�
�
September ����� Internet Engineering Task Force� Network Working Group�

��

��� The Real
Time and Multimedia Laboratory in the Department of Computer Science at Carnegie
Mellon University� The Real�Time Mach Project� URL� http���www�cs�cmu�edu�afs�cs�project�art

��www�rtmach�html�

��� The UCL Networked Multimedia Research Group� NTE� Network Text Editor� URL� http���www

mice�cs�ucl�ac�uk�multimedia�software�nte��

��� B� Whetten� T� Montgomery� and S� Kaplan� A high perfomance totally ordered multicast protocol�
In K� P� Birman� F� Mattern� and A� Schipper� editors� Theory and Practice in Distributed Systems�
International Workshop� pages ������ Springer Verlag� ����� LNCS ����

��� J� Wroclawski� Speci�cation of the Controlled�Load Network Element Service
 RFC

��� September
����� Internet Engineering Task Force� Network Working Group�

��� L� Zhang� S� Deering� D� Estrin� S� Shenker� and D� Zappala� RSVP� A new resource
reservation protocol� In IEEE Network� September ����� The RSVP Project home page�
http���www�isi�edu�div��rsvp�rsvp�html�

��

