
Maps: A Compiler-Managed Memory System for
Software-Exposed Architectures

by

Rajeev Barua

B.Tech., Computer Science and Engineering
Indian Institute of Technology, New Delhi, 1992

S.M., Electrical Engineering and Computer Science
Massachusetts Institute of Technology, 1994

Submitted to the Department of Electrical Engineering and Computer Science
in partial ful�llment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 2000

c
 2000 Massachusetts Institute of Technology. All rights reserved.

Signature of Author:
Department of Electrical Engineering and Computer Science

January 21, 2000

Certi�ed by:
Saman Amarasinghe

Assistant Professor of Computer Science and Engineering
Thesis Supervisor

Certi�ed by:
Anant Agarwal

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by:
Arthur C. Smith

Chairman, Departmental Graduate Committee

2

Maps: A Compiler-Managed Memory System for
Software-Exposed Architectures

by

Rajeev Barua

Submitted to the Department of Electrical Engineering and Computer Science
on January 21, 2000 in partial ful�llment of the

requirements for the Degree of
Doctor of Philosophy

in Electrical Engineering and Computer Science

ABSTRACT

Microprocessors must exploit both instruction-level parallelism (ILP) and memory
parallelism for high performance. Sophisticated techniques for ILP have boosted the
ability of modern-day microprocessors to exploit ILP when available. Unfortunately,
improvements in memory parallelism in microprocessors have lagged behind. This thesis
explains why memory parallelism is hard to exploit in microprocessors and advocate
bank-exposed architectures as an e�ective way to exploit more memory parallelism. Bank-
exposed architectures are a kind of software-exposed architecture: one in which the low-
level details of the hardware are visible to the software. In a bank-exposed architecture,
the memory banks are visible to the software, enabling the compiler to exploit a high
degree of memory parallelism in addition to ILP. Bank-exposed architectures can be
employed by general-purpose processors, and by embedded chips, such as those used for
digital-signal processing.

This thesis presents Maps, an enabling compiler technology for bank-exposed archi-
tectures. Maps solves the problem of bank-disambiguation, i.e., how to distribute data
in sequential programs among several banks to best exploit memory parallelism, while
retaining the ability to disambiguate each data reference to a particular bank. Two meth-
ods for bank disambiguation are presented: equivalence-class uni�cation and modulo un-
rolling. Taking a sequential program as input, a bank-disambiguation method produces
two outputs: �rst, a distribution of each program object among the memory banks; and
second, a bank number for every reference that can be proven to access a single, known
bank for that data distribution. Finally, the thesis shows why non-disambiguated accesses
are sometimes desirable. Dependences between disambiguated and non-disambiguated
accesses are enforced through explicit synchronization and software serial ordering.

The MIT Raw machine is an example of a software-exposed architecture. Raw ex-
poses its ILP, memory and communication mechanisms. The Maps system has been
implemented in the Raw compiler. Results on Raw using sequential codes demonstrate
that using bank disambiguation in addition to ILP improves performance by a factor of
3 to 5 over using ILP alone.

Thesis Advisors: S. Amarasinghe, Assistant Professor, Computer Science & Engineering
A. Agarwal, Professor, Computer Science & Engineering

4

Dedication

To my wife, Alpana.
Thank you for your love, support and patience!

5

Acknowledgments

There are several people I would like to thank, the foremost among them are my two
advisors, Saman Amarasinghe and Anant Agarwal; and my fellow student, Walter Lee.
Saman became my advisor three years ago, but his impact on my thesis has been great.
My research bene�ted tremendously from his enthusiasm, and his willingness to put in
many hours on discussions, brainstorming and giving comments. His deep knowledge of
compilers helped �nd innovative solutions to many of the problems we tackled in the Raw
compiler. He discovered many of the ideas in this thesis during our many brainstorming
sessions. His passion for perfection pushed me to strive for high standards in talks and
papers. His help, advice and support have been invaluable in many matters, from writing
papers to applying for a job.

Anant Agarwal has been my advisor throughout my years in graduate school. One
of the smartest people I know, Anant has the uncanny ability to spot what is important
amongst a myriad of possibilities, and state it in one or two sentences. There have
been innumerable instances when I have walked into his o�ce, depressed about some
experiment not going well; then after hearing me out, he �nds a way out, or suggests a
new direction { and suddenly, the problem seems more tractable. His feel for what makes
for a worthwhile direction of research is unparalleled. His boundless energy, positive
attitude and fantastic people skills have made it a pleasure to work with him.

I would like to thank Walter Lee, my collaborator in designing and implementing
the Raw compiler. I have very much enjoyed working with Walter. We worked closely
on all aspects of the Raw compiler; his ideas have left their mark on virtually every
aspect of this thesis. Though Walter was primarily responsible for the back-end space-
time scheduler, and I for the front-end memory system, we collaborated extensively on
both parts. In this thesis, Walter �rst suggested mapping each alias equivalence class
to a single node yielding equivalence class uni�cation. Walter was invaluable in many
brainstorming sessions that ultimately yielded several other ideas in Maps. He was also
a co-author on all the papers that led to this thesis. Finally, Walter wrote a great deal
of the common infrastructure that went into the Raw compiler.

Martin Rinard and Radu Rugina were key contributors to Maps. Martin �rst ex-
plained to me the power and capabilities of pointer analysis. My early discussions with
Martin were invaluable in realizing how pointer analysis might be leveraged in the Raw
compiler. Since then, Radu has been extremely helpful in providing his powerful pointer
analysis package, as well as customizing it to interface to Raw. He has always made
himself available for implementing new functionality in Raw and for bug �xes. I am
grateful for his time and e�orts. Martin, besides helping in technical matters, has been
a friend and an informal advisor; his down-to-earth advice have been a great resource in
navigating my job-search and planning my future career.

The concept of software-exposed architectures, and the Raw Machine in particular,
was the result of the e�orts of several people listed as the authors of [1]. Among these, I

6

would like to thank Elliot Waingold and Michael Taylor for the development of the Raw
simulator. This simulator has been used to obtain all the timing results in this thesis.
Jonathan Babb helped revamp the Raw compiler directory structure and provided several
make�les to make it easy to run benchmarks. He also provided the Raw benchmark
suite [2] which we used to evaluate the Raw compiler. Devabhaktuni Srikrishna wrote
the unrolling and renaming passes for the Raw compiler. Matthew Frank was helpful in
many related discussions, and he provided several benchmarks. He also gave valuable
feedback on my talks and papers. Benjamin Greenwald, who knows more about Unix
systems than anyone else I know, bailed us out of infrastructure-related trouble on many
occasions. Andras Moritz provided detailed and useful feedback on many of my talks.

My thesis reader, Charles Leiserson, helped me become a better writer. He taught
me things about presentation, organization and formatting that I never knew before, and
might have never known but for him. His feedback on the thesis helped improve the draft
almost beyond recognition. I will never forget his advice; I am sure it will help me in
whatever I write in the future.

Krste Asanovic and Arvind have been very helpful in providing feedback and outside
perspective on this work. Both discussed my work with me for hours, and helped improve
its presentation. Krste helped me understand vector machine compilers better, and their
relationship to compilation in Maps.

I thank my parents and sisters for their constant love, support and encouragement.
My parents instilled in me the work ethic and integrity that have enabled me to work
hard on a doctorate program. I can never repay them for all that they have done for
me; I can only give my heartfelt thanks. To my friends in Boston: thank you for your
companionship and support.

Finally, I thank my wife, Alpana, for her friendship, love and understanding; she
makes life worth looking forward to. She has patiently gone through most of my long,
hard years in graduate school; always cheerfully and with love; cheering me when I did
well, and making me feel better when things were down. She, more than anyone else,
gave me the strength to complete a doctoral program. She has been very understanding
in the many instances I have been too busy and unavailable while working on my thesis;
I promise to do better in the future!

Contents

1 Introduction 13
1.1 Uni�ed memory: a hardware vs. compiler approach 15
1.2 Bank-exposed architectures . 20
1.3 Bank disambiguation . 24
1.4 Non-disambiguated accesses . 30
1.5 Compiler
ow . 34
1.6 Overview of the thesis . 36

2 Software-exposed architectures 39
2.1 Exposing ILP . 40
2.2 Exposing the memory system . 42
2.3 Exposing communication . 47
2.4 Raw architecture . 48
2.5 Summary . 52

3 Equivalence-class uni�cation 53
3.1 Pointer analysis . 53
3.2 Equivalence-class uni�cation method . 54
3.3 Quality of the disambiguation . 57
3.4 Summary . 58

4 Modulo unrolling 59
4.1 Motivation and example . 59
4.2 Modulo unrolling method . 62
4.3 Deriving the unroll factors . 64
4.4 Code growth: bounds and the padding optimization 69
4.5 An additional transformation . 72
4.6 A�ne code generation . 74
4.7 Other optimizations for array accesses 75
4.8 Summary . 76

5 Non-disambiguated or dynamic accesses 77
5.1 Uses for dynamic references . 78

7

8 CONTENTS

5.2 Enforcing dependences . 79
5.3 Enforcing dependences between dynamic accesses 79
5.4 Software serial ordering . 81
5.5 Dependences across scheduling units . 83
5.6 Dynamic optimizations . 87
5.7 Future work . 90
5.8 Summary . 90

6 Maps implementation 93
6.1 Platform used . 93
6.2 Detailed compiler
ow and description 94

7 Memory allocation and address management 107
7.1 Address representation and handling . 107
7.2 Aggregate objects and distributed stacks 110
7.3 Global and local addresses . 112
7.4 E�ectiveness of pointer analysis . 113

8 Language and environment features 115
8.1 Procedure Calls . 115
8.2 Handling libraries . 116

8.2.1 Pointer analysis stubs . 118
8.2.2 Library calls with pointer arguments 119

8.3 Array reshapes in FORTRAN . 119

9 Results 123
9.1 Bank disambiguation results . 126
9.2 Memory distribution and utilization . 131
9.3 Static vs. dynamic accesses . 134
9.4 Summary . 138

10 Related work 139
10.1 Bank disambiguation . 139
10.2 Other kinds of memory disambiguation 141
10.3 Modulo addressing and streaming applications 143
10.4 Multiprocessor compilers . 144
10.5 Compilers for vector machines . 146
10.6 Compilers for systolic arrays . 148

11 Conclusion 151

List of Figures

1.1 ILP and memory parallelism for microprocessors, 1980-99 13
1.2 Hardware-managed memory system . 16
1.3 Wire delay across chip, future prediction 17
1.4 Illustration of why arbitration logic does not scale 18
1.5 Exposed vs. non-exposed memory systems 21
1.6 Raw Architecture . 23
1.7 Example illustrating modulo unrolling 27
1.8 Example illustrating equivalence-class uni�cation 29
1.9 Bene�ts of bank disambiguation . 30
1.10 Example illustrating software serial ordering 32
1.11 Example showing independent epochs . 34
1.12 Structure of the Raw compiler . 35

2.1 Instruction interface without and with exposed ILP 41
2.2 Memory system without and with bank-exposure 43
2.3 Two kinds of bank-exposed machines . 45
2.4 Classi�cation of architectures . 46
2.5 Raw Architecture . 48
2.6 Anatomy of a dynamic load . 51
2.7 Memory operation cost breakdown . 52

3.1 Example showing equivalence-class uni�cation 55

4.1 Example showing modulo unrolling . 61
4.2 Modulo unrolling for code fragment from Tomcatv 73
4.3 Sample loop with unknown lower bound and non-unit step size 73
4.4 Code transformed for disambiguation (4 bank system) for example in �g-

ure 4.3 . 74
4.5 Bank-disambiguated code for example in �gure 1.7 75

5.1 Illustration of software serial ordering . 82
5.2 Example showing software serial ordering 84
5.3 Transition between scheduling units without and with a barrier 86
5.4 Example showing an independent epoch 88
5.5 Example code bene�ting from updates 89

9

10 LIST OF FIGURES

6.1 Detailed Rawcc compiler
ow . 95
6.2 Example showing forward-propagation to array indices 96
6.3 Example showing unrolling in Maps . 98
6.4 Example showing several tasks on code with a�ne accesses 99
6.5 Example showing several tasks on code with dynamic accesses 101

7.1 Address representation in Rawcc . 108
7.2 Sample layout of aggregate objects and stacks 111

8.1 Example of a parallel procedure . 117
8.2 Example of a pointer analysis stub . 119

9.1 Bene�ts of ECU and modulo unrolling 127
9.2 Percentage of arrays disambiguated using ECU vs. modulo unrolling . . . 130
9.3 Distribution of primary data on a 32-tile Raw machine 132
9.4 Weighted bandwidth utilization of the memory system 133
9.5 Benchmark speedup with all arrays distributed 135
9.6 Speedups of benchmarks with selective use of dynamic accesses 136

List of Tables

2.1 Cost of memory operations in processor cycles 51

9.1 Experimentally measured cost of memory operations in processor cycles for

simulated Raw design . 124
9.2 Benchmark characteristics . 125
9.3 Benchmark speedup with memory disambiguation 129
9.4 Performance improvement using software serial ordering 137

11

12 LIST OF TABLES

Chapter 1

Introduction

Microprocessors over the last two decades have made great strides in their ability to
exploit instruction-level parallelism (ILP). During the same period, however, parallelism
in accessing primary memory has improved at a much slower rate. Consequently, memory
has become a major bottleneck in processor design and threatens to become an even
bigger problem. Dick Sites, the chief designer of Alpha microprocessors at the time,
warns in his 1996 column titled, \It's the memory, stupid!" [3] that future performance
gains are in jeopardy unless memory performance improves. Figure 1.1 shows the trend
over the last two decades [4]. The �gure shows that ILP rates have improved from 1
instruction per cycle in the early 1980s, to 4 to 6 instructions per cycle today. Yet, the
number of independent words that can be accessed per cycle from primary L1 cache has
remained virtually unchanged, from 1 per cycle in the early 1980s, to 1, or at most 2 per
cycle today. For example, the Alpha 21364 [5, 6], expected to ship in mid-2000, supports
up to 6 instructions and 2 cache accesses per cycle.

 Instructions per cycle
� L1 accesses per cycle

|
1980

|
1985

|
1990

|
1995

|0

|1

|2

|3

|4

|5

|6

|7

 Year

 P
ar

al
le

lis
m

 p
er

 c
yc

le

� � � � � � � � �

�

�

�

� � �

� �

�

Figure 1.1: ILP and memory parallelism for various microprocessors over the last two decades.
Points in the graph represent commercial microprocessors from that year. Each microprocessor
contributes two points, one for its maximum number of instructions per cycle (ILP), and one for
its maximum number of primary cache (L1) accesses per cycle (memory parallelism). Memory
parallelism has remained at 1 or 2 accesses per cycle, while ILP has improved much more.

13

14 CHAPTER 1. INTRODUCTION

Even though microprocessors have become increasingly complex over the last decade,
the abstraction microprocessors provide to the software has remained the same. Most
microprocessors provide the abstraction of a single processing element (PE) accessing
a single memory bank. This simple view in software, however, comes at a price: the
overhead of a providing a hardware-based uni�ed view of memory has resulted in mem-
ory parallelism remaining stagnant over the last two decades. Section 1.1 shows why
hardware-based uni�ed memory systems limit memory parallelism and prevent scaling
to a larger number of banks.

Although it is desirable, for ease of programming, to provide a uni�ed view of memory
to the programmer, the hardware need not provide the uni�ed view; instead this thesis
explores how the compiler can provide a uni�ed view of memory to the programmer on
top of distributed memory hardware. The performance of the architecture can be vastly
improved if it does not need to provide a uni�ed view of memory. The hardware can,
instead, expose its multiple memory banks to the low-level software by eliminating the
uni�ed memory hardware. Such architectures with exposed memory banks are called
bank-exposed architectures. In such architectures, the abstraction presented to low-level
software is not that of a monolithic memory; instead load/store instructions target par-
ticular memory banks encoded in the software. The user continues to program in a
convenient sequential model { sequential programs are desirable since they are easier to
write, debug and port to di�erent architectures.

This thesis presents compiler technology that provides a uni�ed view of memory in the
compiler on top of the distributed memory hardware of bank-exposed machines. Banks
are exposed to the low-level software, but not to the programmer. The Maps compiler
system presented in this thesis provides a convenient sequential programming model, yet
it exploits a high degree of memory parallelism on a bank-exposed architecture.

We show that bank disambiguation is the main compiler technique for obtaining good
performance on bank-exposed architectures. A memory reference instruction in a pro-
gram is said to be bank-disambiguated when the compiler guarantees that every dynamic
instance of that instruction references the same compile-time-known bank. We show that
bank disambiguation allows accesses on bank-exposed architectures to avoid the complex
hardware that provides a uni�ed view of memory, and reduces the wire delay incurred by
memory references. This thesis presents two methods for bank disambiguation: modulo
unrolling and equivalence-class uni�cation. Bank disambiguation may not disambiguate
all accesses: this thesis shows how non-disambiguated accesses can be handled. The
major challenge for non-disambiguated accesses is that, for good performance, their long
access latencies should be overlapped with computation and other communication as
much as possible, while respecting all dependences. This thesis presents a general scheme
for overlapping access latencies of non-disambiguated accesses called software serial or-
dering. Two optimizations on software serial ordering, namely independent epochs and
updates, are also presented.

An outline of this chapter follows. Section 1.1 compares the hardware and compiler-
directed approaches to providing a uni�ed view of memory to the programmer. It explains
why it is di�cult to scale hardware-based uni�ed memory, and highlights opportunities

1.1. UNIFIED MEMORY: A HARDWARE VS. COMPILER APPROACH 15

available in the compiler to improve scalability and performance. Section 1.2 advocates
the bank-exposed class of architectures; such architectures rely on a compiler-directed
approach to improve memory performance. Section 1.3 shows why bank disambiguation
is the key compiler technology needed for bank-exposed architectures, and outlines our
two techniques for bank disambiguation. The section previews results showing perfor-
mance improvements from using our techniques for bank disambiguation on a particular
bank-exposed design, the MIT Raw machine [1]. Results show that using bank disam-
biguation in addition to ILP improves performance by a factor of 3 to 5 over using ILP
alone. Section 1.4 illustrates the challenge in e�ciently handling accesses that are not
disambiguated by bank disambiguation, and outlines our techniques for handling non-
disambiguated accesses. Section 1.5 shows one possible compiler
ow for a bank-exposed
architecture. Section 1.6 provides an brief overview of the thesis by outlining the scope
of our methods, the contributions of the thesis, and the organization of the thesis.

1.1 Uni�ed memory: a hardware vs. compiler ap-

proach

This section begins by describing how conventional microprocessors provide a uni�ed view
of memory using hardware. This section then explains why delay through the arbitration
logic and wire delay make it di�cult to scale hardware-based uni�ed memory to a high
degree of memory parallelism. Finally, it outlines opportunities available in using the
compiler instead of complex hardware to provide a uni�ed view of memory; thus setting
the stage for the compiler-directed solution outlined in the rest of this chapter.

Di�culties scaling hardware-based uni�ed memory

This sub-section describes the hardware-based uni�ed memory systems of conventional
microprocessors, and discusses how the design prevents scaling to a higher level of mem-
ory parallelism. Figure 1.2 shows the typical organization of a hardware-based uni�ed
memory system in a conventional microprocessor. Processing elements (PEs) refer to el-
ementary ALUs present on the chip; the memory banks (L1) refer to the multiple banks
in the primary level-1 cache. Figure 1.2 does not show the complete layout of the chip,
only the interface between the processing elements and memory. A uni�ed view of mem-
ory is provided by a layer of hardware we call arbitration logic. The memory semantics
provided by the arbitration logic is that of a single monolithic memory bank accessed
sequentially, although the arbitration logic actually connects to multiple memory banks
in an e�ort to exploit memory parallelism. Typically, the arbitration logic consists of
routing hardware for requests to and replies from memory banks, as well as a write
bu�er with associated hardware to enforce memory dependences between outstanding
memory requests. To achieve sequential memory semantics, the arbitration logic stores
all outstanding requests, routes each request to the bank on which the requested data
resides, ensures sequentiality between accesses to the same bank, and routes back results

16 CHAPTER 1. INTRODUCTION

to the requesting processing elements. The results to any one processing element are
returned in the order they were requested. Correct sequential semantics are maintained
while aiming to overlap requests to di�erent banks as much as possible.

PE

L1L1

PE PE/
Addr

PE/
Addr

Arbitration
 logic

Execute
stage

Memory
stage

Figure 1.2: Hardware-managed memory system in conventional microprocessors. Processing
elements (PE) are of two kinds. Some PEs can compute the e�ective address of load/store
instructions (PE/Addr), and are connected to primary cache banks (L1) through the arbitration
logic. Others (PE) are specialized to non-memory instructions alone, and do not interface with
the memory system. The number of PE/Addr and L1 are kept small to restrict the complexity
of, and delay through, the arbitration logic.

While uni�ed memory hardware simpli�es the compiler's task, such hardware has two
costs associated with scaling the memory system. First, uni�ed memory hardware does
not scale well with the degree of memory parallelism desired. Increasing memory paral-
lelism requires more PEs to be connected to the arbitration logic to issue requests and
more memory banks connected to satisfy the requests. Unfortunately, greater connec-
tivity with the arbitration logic increases its delay. Since the arbitration logic delay is a
part of the hit time of the primary cache, the delay must be small. To minimize the arbi-
tration logic delay, all commercial microprocessors today limit their memory parallelism
to 1 or at most 2 parallel L1-cache accesses per cycle.

A second cost of a uni�ed view of memory in hardware is that it implies the use
of long wires to access memory, resulting in poor on-chip locality. Long wires result
from the use of a single gateway, i.e., the arbitration logic, to access the di�erent banks.
Processing elements and cache banks, connected through the arbitration logic, are in
general distributed over far-
ung areas of the chip, implying long wires. Thus, cache hits,
which go through the arbitration logic, may on average traverse half the chip diameter
each way. In a billion-transistor, several-gigahertz processor of the future, such a cache
hit will become a multi-cycle operation from the wire delay alone. Figure 1.3 illustrates
the trend of increasing wire delays by plotting expected cross-chip wire-delay over the

1.1. UNIFIED MEMORY: A HARDWARE VS. COMPILER APPROACH 17

next decade1. The �gure shows that it will take four cycles to cross a chip by 2002
and sixteen cycles by 2007, up from just one cycle in 1997. With increasing wire delay,
the primary cache hit time will grow rapidly if the memory system is organized as a
monolithic unit accessed from far corners of the chip. Further, the access time within a
monolithic cache will also grow as cache sizes grow with VLSI generations.

|
1996

|
1998

|
2000

|
2002

|
2004

|
2006

|
2008

|0

|4
|8

|12

|16

 Year

 C
yc

le
s

�

�

�

�

�

Figure 1.3: Predicted wire delay in cycles for a signal to cross the chip diameter over the
coming decade.

Figure 1.4 further illustrates why arbitration logic does not scale with the degree of
memory parallelism desired. Let N be the number of PE/Addr in the conventional micro-
processor design in �gure 1.2; consequently N is also the number of memory instructions
that can issue in parallel in one cycle. Figure 1.4(a) shows a sample code with N memory
reference instructions, each of which may be either a load or a store. Assume that these
N references are issued in parallel to the arbitration logic on a machine with N PE/Addr
units. Figure 1.4(b) shows the condition that needs to be hardware-executed in the ar-
bitration logic at run-time before reference addr i (i 2 [1; N]) can proceed to its memory
bank. The condition shows that for a reference to proceed, it must compare its address
with all references issued in the same cycle that are earlier in program order. No check is

1Figure 1.3 is derived by combining Matzke's prediction for cross-chip delay versus processor feature
size [7] with the Semiconductor Roadmap's prediction for feature size versus year [8]. Matzke assumes
that as feature sizes reduce, wires will become thinner, increasing their resistance and hence delay. He
also assumes that clock cycle times will reduce with feature size as predicted, thus further increasing the
number of cycles for any �xed wire delay.

18 CHAPTER 1. INTRODUCTION

necessary when both the reference and the previous reference in consideration are loads.
A reference proceeds only when all its preceding references in program order that con
ict
with it have completed2. Unfortunately, the implementation of this check in hardware is
not scalable with N . In particular, the minimum delay through the logic is O(logN) by
the time all the N references have issued. To see this, consider that for the last reference
to proceed, it must perform a binary inclusive or of the results of address checks with all
N � 1 previous references; an O(log(N � 1)) = O(logN) operation. Further, the silicon
area of arbitration logic increases with N , reducing scalability; it is possible to achieve
O(logN) delay with O(N) silicon area using a pre�x tree scheme [9], or with O(N2) area
using all-to-all checks that improve the delay by a constant factor. In either case, the
minimum area is O(N) and the minimum delay is O(logN); thus the area and delay both
increase with N. The wire delay and power consumption also increase with N in any such
scheme.

 if (addr == addr)i

 wait for reference *addr to completej

j

*addr

*addr

.

.

.
1

N

i
Condition for reference *addr to proceed:

Forall j<i

(a) (b)

if (either *addr or *addr is a store)
j i

Figure 1.4: Illustration of why arbitration logic does not scale. (a) Code fragment with N
memory reference instructions, assumed issued in parallel to the arbitration logic in a conven-
tional microprocessor with N PE/Addr (see �gure 1.2). (b) Condition for addr i (i 2 [1; N]) to
proceed to its memory bank. Executing the condition in hardware requires delay and area that
increase with N .

The non-scalable delay and latency of uni�ed memory systems threatens continuing
improvements in microprocessor performance. Already, the e�ects are becoming visible.
The primary cache hit time for the Alpha 21264 [6] has increased to 2 cycles, up from 1
cycle for the 21164, because of increased wire delay in bank access. At the same time,
the number of concurrent memory accesses allowed has stagnated at 1 or 2 per cycle. Bill
Dally of Stanford University recognized the memory-limited nature of today's designs in
his 1996 column [10] by saying:

\Computers in 2006 will be memory, not processor, dominated. Cost will be driven
by memory capacity, and performance by memory latency and bandwidth."

2Optimizations are possible in certain cases, for example, when a load follows a store in program
order, and they refer to the same location. It is possible to implement a hardware scheme in which the
load need not wait for the store to complete; instead the load returns the value being stored by the
store, without going to memory. Nevertheless, even with such optimizations, the number of checks in
�gure 1.4(b) does not decrease.

1.1. UNIFIED MEMORY: A HARDWARE VS. COMPILER APPROACH 19

Dick Sites, the chief designer of Alpha chips at the time, takes the same position in his
1996 column [3] by concluding:

\Over the coming decade, memory subsystem design will be the only important
design issue for microprocessors."

Opportunities in software

Information discovered by the compiler provides an opportunity to improve microproces-
sor performance, including memory performance. Compilers have highly detailed infor-
mation about ILP, memory parallelism and locality that instruction sets of conventional
machines fail to take advantage of. For instance, superscalar architectures discover ILP in
hardware, while presenting a single-issue instruction-stream interface to software. Com-
pilers often know which instructions can execute in parallel, but there is no way for them
to convey this ILP information to the hardware through a superscalar instruction-set
architecture (ISA). As a result, superscalar hardware must rediscover ILP information
at the cost of considerable area, delay, and power. VLIWs expose their instruction-issue
slots to the software, and can exploit somewhat more compiler information. Although
VLIWs do not exploit compiler-known memory parallelism information, they do exploit
compiler-known ILP information. Interest in VLIWs has resurged recently, fueled by
their avoidance of costly ILP-discovering hardware, combined with the increasing sophis-
tication of compilers. Recent VLIW-like processors include the Intel/HP EPIC architec-
ture [11, 12], Transmeta's x86 chip [13], Tensilica's Xtensa embedded CPU [14], and the
MAJC chip from Sun Microsystems [15].

Even VLIWs, however, cannot exploit much of the information that compilers can
provide, and compilers can potentially discover far more information. In particular, they
can optimize for both memory parallelism and on-chip locality. First, compilers can
provide information about which memory instructions can execute in parallel. VLIW
and superscalar machines cannot exploit memory-parallelism information, as such ma-
chines use hardware-based uni�ed-memory systems that do not scale. Second, compilers
can provide information about data access patterns. Access-pattern information can be
used to derive data layouts and instruction schedules that optimize for on-chip locality.
Conventional architectures fail to exploit on-chip locality because they use long wires.

Exposing resources to software

The inability of conventional architectures to use all available compiler information pro-
vides an opportunity to improve performance if new kinds of architecture can fully exploit
compiler information. One way to exploit more compiler knowledge is to expose more
hardware resources to the software. Resources that can be exposed include processing
elements, memory banks and the communication network (wires) on chip. Architectures
that expose their resources to software are given the generic name of software-exposed
architectures [1]. VLIWs are partially software-exposed since they expose processing el-

20 CHAPTER 1. INTRODUCTION

ements through multiple instruction-issue slots. In this thesis we focus on bank-exposed
architectures.

1.2 Bank-exposed architectures

This section advocates the bank-exposed class of architecture, a class of architecture
that exposes its memory banks to the low-level software. The section explains how
bank-exposed architectures enable scaling to a high degree of memory parallelism. Next,
examples of bank-exposed designs from the past are presented. The MIT Raw machine,
a bank-exposed architecture being designed in our research group, is also presented.
Finally, a comparison with multiprocessors is made, showing the di�erences of bank-
exposed microprocessors with multiprocessors that also expose their memory banks.

The minimum architectural feature required to exploit the compiler methods in this
thesis is that the architecture be a bank-exposed architecture. A bank-exposed architec-
ture is a software-exposed architecture with two de�ning features: �rst, several disjoint
software-visible address spaces, corresponding to di�erent memory banks; and second,
memory references that can be directed at compile-time to particular address spaces.
Compile-time resolution of the bank number is the key characteristic of bank-exposed
machines. Run-time resolution, in contrast, implies a hardware-based uni�ed memory
system.

Figure 1.5 compares the memory system of a bank-exposed architecture with a
hardware-based uni�ed memory system. Figure 1.5(a) shows a hardware-based uni�ed
memory system. Every access goes through the arbitration logic. Figure 1.5(b) shows a
bank-exposed architecture. Figures 1.5(a) and (b) do not show the complete architecture,
but only the interface between PEs and memory. In �gure 1.5(b), there are two ways
to access memory. First, memory reference instructions accessing compile-time-known
banks travel over an on-chip communication network, avoiding run-time arbitration. Sec-
ond, memory instructions to compile-time-unknown banks need run-time arbitration,
and hence they go through the slower arbitration logic (not shown). Bank-exposed ar-
chitectures are advantageous only if most memory instructions reference banks known at
compile-time. The compile-time task of discovering a bank number for each reference is
called bank disambiguation, which is discussed in section 1.3.

A motivating advantage for bank-exposed designs is that they can potentially over-
come the two costs of hardware-based uni�ed memory: non-scalable delay through ar-
bitration logic and poor on-chip locality. These advantages are gained, however, only
when most memory instructions access compile-time-known banks. The advantages of
such accesses to known banks, over accesses in a conventional memory system, are as
follows. First, accesses to compile-time-known banks avoid going through the arbitration
logic, and so they do not su�er the logic's delay. Consequently, the number of banks can
be increased without increasing the cache hit time for local accesses. Second, accesses
to compile-time-known banks can exploit on-chip locality, as the compiler can place the
memory reference close to the bank where the reference's data resides. In the best case,

1.2. BANK-EXPOSED ARCHITECTURES 21

PE PEPEPE

L1 L1L1L1

Arbitration Logic

Execute

Memory

(a)

PE

L1

PE

L1

PE

L1

PE

L1

Execute

Memory

(b)

Communication network

Figure 1.5: Exposed vs. non-exposed memory systems. (a) A hardware-based uni�ed memory
system (non-exposed). (b) A bank-exposed architecture. Memory instructions that access a
compile-time-known bank complete over an on-chip communication network. Only memory
instructions accessing compile-time-unknown banks need to go through the arbitration logic
(not shown).

22 CHAPTER 1. INTRODUCTION

the compiler places the load/store instruction on the PE local to the bank on which the
reference's data resides. In this manner, the wire-delay incurred is optimized by the com-
piler. The L1 cache is split into many small and independently accessed banks, instead
of one or two large banks as in a conventional memory system. Accesses to known banks
need only go to a small, nearby bank with low access delay, instead of a larger, far-away
bank with higher access delay.

We revisit �gure 1.4 to see how bank-exposed architectures eliminate the cost of
arbitration logic. Figure 1.4(a) shows a code fragment with N memory instructions;
�gure 1.4(b) shows the condition that the arbitration logic needs to evaluate before it
can proceed with issuing the ith reference. Bank-exposed architectures, in contrast, avoid
the arbitration logic and its delay for memory instructions to compile-time-known banks.
The reason why the arbitration logic is avoided is that accesses proven by the compiler to
go to di�erent banks cannot be dependent; hence they need not be checked for dependence
at run-time. In addition, accesses known to go to the same bank are serialized at the
bank anyway, so checks provide little bene�t and are not done. Consequently, accesses
to compile-time-known banks require no run-time arbitration whatsoever { the O(logN
delay through arbitration logic is thus avoided, allowingN to be increased to many banks
without increasing the cache hit time.

Examples of bank-exposed architectures

Bank-exposed architectures are not a new idea. Bank-exposed general-purpose micro-
processors date back to at least 1983 when Josh Fisher proposed the ELI-512 VLIW ma-
chine [16]. The ELI-512 is an unusual VLIW that uses a point-to-point network, rather
than a bus, to connect its di�erent processing elements, each having its own memory
bank. The ELI-512 supports two ways of accessing memory. Accesses to compile-time-
known banks use a \front door" to memory, while accesses to compile-time-unknown
banks use a slower \back door" to memory. The iWarp machine [17] is another bank-
exposed design: it exposes not only memory, but also its processing elements and network.
Digital-signal processing (DSP) chips, such as the Motorola DSP56000 family [18], have
also used bank-exposed designs. DSP chips usually have 2 to 3 software-exposed banks,
called X, Y, and Z memories. DSP chips usually provide no arbitration logic; all accesses
must be to compile-time-known banks. Shortcomings in bank-exposed compilers have
meant that, even today, most DSP chips are hand programmed.

The MIT Raw machine [1], being developed in our research group at MIT, is the
latest in the line of bank-exposed general-purpose designs. The methods in this thesis
apply, however, to any bank-exposed design. The Raw machine exposes not only its
memory, but also its processing elements and networks. The Raw architecture is shown
in �gure 1.6. A Raw architecture consists of a 2-dimensional mesh of tiles. Each tile
is composed of a processing element and a cache memory bank. A switch is provided
on each tile to communicate with other tiles. Two communication networks connect the
tiles: the static network and the dynamic network. The static network is a fast register-
level network. Accesses to compile-time-known banks complete over the static network,

1.2. BANK-EXPOSED ARCHITECTURES 23

or are local from a PE to its local bank. The dynamic network is a slower memory-level
network that replaces the arbitration logic. Accesses to compile-time-unknown banks
complete over the dynamic network. Details of the Raw architecture, along with the
reasons for using two networks, are presented in section 2.4.

IMEM
DMEM

REGS

ALU

SMEM

SWITCH

PC

PC

RawTile

Raw P

Figure 1.6: A Raw microprocessor is a mesh of tiles, each with a processing element, some
memory and a switch. The processing element contains both registers and an ALU. The
processing element interfaces with its local instruction memory, local data memory and local
switch. The switch contains its own instruction memory.

For any bank-exposed architecture, as in �gure 1.5(b), the term tile is naturally
de�ned as a memory bank with all its associated functional units. The Raw machine
has only one processing element per bank, and hence a tile is a single processing element
with its associated memory bank.

Comparison with multiprocessors

Distributed memory multiprocessors, such as Flash [19], Alewife [20] and IBM's SP2 [21],
have multiple memory banks exposed to the software. To date, however, the relatively
long remote-access latencies of multiprocessors have restricted them to exploiting coarse-
grain parallelism rather than ILP.

The reason for the slow access times on multiprocessors is their lack of hardware
support for static scheduling of memory accesses. Memory accesses can be statically
(at compile-time) scheduled if their access patterns are known and the architecture pro-
vides a way of statically ordering memory accesses on each bank. Statically ordered
references on each bank provide dependence enforcement without expensive overheads.
An architecture can provide references that are statically ordered in two ways. Either
the architecture guarantees a predictable access time to every bank, or it provides a
network that guarantees that messages are delivered in the order speci�ed at compile-
time. The Raw architecture takes the second approach by providing the compiler-routed
static network. Predictable ordering of messages reduces the overheads of run-time rout-
ing. In multiprocessors, the inherent unpredictability in the arrival order and timing

24 CHAPTER 1. INTRODUCTION

of messages requires expensive reception mechanisms such as polling or interrupts, and
expensive run-time congestion-control schemes that arise due to the unpredictable order-
ing of messages. The consequently faster communication on bank-exposed architectures
enables their compilers to focus on ILP, instead of coarse-grained parallelism.

Compilers for multiprocessors aim to discover coarse-grain parallelism from sequential
programs. Unfortunately, discovering coarse-grained parallelism in the compiler involves
complex whole-program analysis, which has thus far proven successful only for dense ma-
trix applications [22, 23]. An alternative to automatic parallelization for multiprocessors
is programming them using an explicitly parallel language. This approach, however,
has not found widespread acceptance outside a small group of programmers, mostly in
the scienti�c community. Thus, while the ideas in this thesis apply equally to parallel
programs, we focus on sequential programs alone.

1.3 Bank disambiguation

This section explains bank disambiguation, and shows why it is the central challenge
for extracting good performance from bank-exposed architectures. Bank disambiguation
enables memory instructions to go to compile-time-known banks. Bank disambiguation
is motivated, and the quality criteria required for bank disambiguation are explained. An
important bene�t of bank disambiguation, static scheduling of memory instructions, is il-
lustrated. Our two methods for bank-disambiguation, modulo unrolling and equivalence-
class uni�cation are outlined. Finally, results demonstrating performance improvements
from using our bank disambiguation methods are presented.

Motivation and de�nition

Bank disambiguation is motivated by the existence of two ways to access memory on
a bank-exposed architecture. First, memory instructions that access a compile-time-
known bank avoid arbitration logic, using a communication network for access instead.
Second, memory instructions that access a compile-time-unknown bank must use the
slower arbitration logic. Accesses to compile-time-known banks are preferable as they
avoid non-scalable run-time arbitration and exploit on-chip locality. Hence, the com-
piler aims to �nd a �xed bank number, known at compile-time, for as many memory
instructions as possible.

De�nition 1.1 A particular load or store memory-reference instruction in the program
is said to be bank disambiguated to a particular bank if the instruction accesses the
same compile-time predictable bank in every dynamic instance.

Success in bank disambiguation critically depends on the data distributions used. The
methods in this thesis carefully choose data distributions so that bank disambiguation
is possible for most accesses, resulting in a high degree of memory parallelism. Poorly
selected data distributions may imply that most memory instructions in the program go

1.3. BANK DISAMBIGUATION 25

to di�erent banks in di�erent dynamic instances, thus failing disambiguation, even if the
distribution provides memory parallelism.

Quality criteria

Not all bank disambiguation methods are of equal quality: some schemes are better than
others. Speci�cally, bank disambiguation needs to be achieved while optimizing for two
factors:

� Memory parallelism The bank disambiguation scheme should achieve a high
degree of memory parallelism. It is easy to bank-disambiguate without memory
parallelism: all program data can be allocated to a single bank, thus trivially
disambiguating all references to that bank. Better bank disambiguation methods
allocate data to several tiles so that di�erent memory instructions can be issued in
parallel, yet most memory instructions go to a �xed bank predictable at compile-
time.

� Code size Some bank disambiguation schemes require program transformations,
such as loop unrolling, that increase the code size of the program. Good disam-
biguation schemes keep code growth to a minimum. The modulo unrolling example
presented later in this section shows that a naive scheme for bank disambiguation
involves fully unrolling loops. Full unrolling is expensive, however, if the range of
loop-bounds is large, and is not possible for unknown loop bounds. The methods
in this thesis keep the code growth bounded by a constant factor, independent of
the loop bounds.

Bank disambiguation aids static scheduling

A major advantage of bank disambiguation is that it enables the static scheduling of
memory references. Static scheduling of memory references requires that the hardware
provide a way of statically ordering memory accesses on each bank, either using banks
having compile-time-guaranteed latencies, or by providing a compiler-routed network
with compiler-speci�ed ordering of messages. Even with hardware that allows static
ordering of memory references, without bank disambiguation the banks accessed for each
reference are not known, making it impossible to guarantee the ordering of accesses on
each bank, thereby making static scheduling impossible. Thus, bank disambiguation is
a necessary for static scheduling.

Further, bank disambiguation is also su�cient for static scheduling if the assignment
of memory instructions to PEs is under compiler control. A compile-time-known PE
for a memory instruction implies that a compiler-routed message can be used from the
memory instruction to its bank. Alternatively, if the hardware provides a guaranteed
latency to each bank, knowing the PE for the memory instruction provides a guaranteed

26 CHAPTER 1. INTRODUCTION

latency for the entire memory access from PE to the bank. Either way, a compiler-time-
known PE assignment for each memory instruction, along with bank disambiguation, is
su�cient for static scheduling.

Modulo unrolling

To understand bank disambiguation, consider �gure 1.7. The �gure shows an example
of how bank disambiguation is done using modulo unrolling, one of the two bank dis-
ambiguation schemes presented in this thesis. Figure 1.7(a) shows the code fragment
forming the compiler input, consisting of a simple for loop containing a single array
reference A[i]. The array A[] is assumed to range from 0 to 99. The array A[] is shown
distributed among 4 memory banks using low-order interleaving3.

Now, suppose we want to bank-disambiguate the A[i] memory instruction on a bank-
exposed architecture with 4 banks. For disambiguation, an array reference instruction
must access the same bank in every dynamic instance. If the array A[] is distributed
in any way at all, then by the de�nition of distribution, the di�erent dynamic instances
of A[i] go to di�erent banks in di�erent iterations, thus failing disambiguation. For
example, assume that array A[] is distributed using low-order interleaving, as depicted in
�gure 1.7(a). The A[i] reference accesses all 4 banks for di�erent values of i, as depicted
by the arrows from the reference to all 4 banks. The A[i] reference has the bank-access
pattern of 0, 1, 2, 3, 0, 1, 2, 3, . . . in successive loop iterations. Since the reference
instruction goes to more than one bank, it fails disambiguation.

A naive way to attain bank disambiguation and memory parallelism is to fully un-
roll the loop. Figure 1.7(b) shows the sample loop in �gure 1.7(a) fully unrolled, i.e.,
unrolled by a factor of 100. Full unrolling makes all the array-reference indices constant
in the unrolled code, and hence all the array references in the unrolled loop are trivially
disambiguated to the bank holding the known array element. For example, the reference
A[99] = : : : is disambiguated to bank 99 mod 4 = 3. Full unrolling provides disambigua-
tion with memory parallelism, but full unrolling is prohibitively expensive in terms of
code-size increase. Full unrolling is not even possible for compile-time-unknown loop
bounds. Consequently, the Maps system never uses full unrolling.

Fortunately, in this case, there is a way to attain both memory parallelism and bank
disambiguation without a huge increase in code size. The solution involves transforming
the program using loop unrolling. Figure 1.7(c) shows the result of unrolling the code
in �gure 1.7(a) by a factor of 4. Now, each access always refers to elements on the same
memory bank. Speci�cally, A[i] always refers to tile 0, A[i + 1] to tile 1, A[i + 2] to
tile 2, and A[i + 3] to tile 3. Therefore, all 4 new references are bank disambiguated.
Furthermore, the 4 references in �gure 1.7(c) can proceed in parallel, thus providing
memory parallelism.

3Low-order interleaving is a data layout in which array elements are interleaved among the N di�erent
banks in a round-robin manner, beginning at bank 0. That is, for array A[], element A[i] is allocated on
bank i mod N . The array A[] is thus broken up into N sub-arrays, A0[] to AN�1[], such that A[i] maps
to Ai mod N [i div N].

1.3. BANK DISAMBIGUATION 27

. . .
A[10]

A[5] A[6]

A[11]A[9]

Bank 1

. . .

Bank 3

A[2] A[3]

A[4] A[7]

.

A[1]

A[5]

Bank 0

. . .

Bank 2

A[2]

A[6]

A[10]

A[1]

A[8]

A[3]

A[7]

A[11]
.

A[0]

Bank 2 Bank 3

A[8]

A[0]

A[4]

A[8]

A[4]

Bank 1

A[1]

A[5]

A[9]
. . .

A[9]

A[2]

A[6]

A[10]
. . .

. . .

A[3]

A[7]

A[11]
. . .

Bank 0 Bank 1 Bank 2 Bank 3

Bank 0

(c)

endfor

for i = 0 to 99 step 4 do

A[i + 0] = . . .

A[i + 1] = . . .

A[i + 2] = . . .

A[i + 3] = . . .

A[0]

. . .

for i = 0 to 99 do

endfor

A[i] = . . .

A[0] = . . .

A[1] = . . .

A[99] = . . .

(a) (b)

.

.

.

Figure 1.7: Example of modulo unrolling. (a) Original code. Array A is low-order interleaved
on a 4-bank bank-exposed machine. The A[i] memory reference instruction goes to di�erent
banks for di�erent values of i. (b) Code after full unrolling. Disambiguation is attained, i.e.,
each reference goes to a single bank, but code size is huge. (c) Code after unrolling by factor
4. Disambiguation is attained with limited code size increase.

28 CHAPTER 1. INTRODUCTION

The program transformation in �gure 1.7 is not a one-instance special case. Rather,
it is a speci�c application of a fully automated general technique for bank disambiguation
called modulo unrolling. Presented in this thesis, modulo unrolling is a technique that
provably disambiguates any array reference in a nested loop if the indices of the array
reference are a�ne functions4 of the index variables of the enclosing loops. The modulo
unrolling transformation provides both bank disambiguation and memory parallelism.
Chapter 4 presents details on how modulo unrolling is automated. A�ne array accesses
are common in scienti�c codes and some multimedia codes, and are present even in some
irregular programs. Modulo unrolling provides a signi�cant performance improvement
for such programs.

Equivalence-class uni�cation

Equivalence-class uni�cation (ECU) is the second of the two techniques for bank disam-
biguation presented in this thesis. ECU is applicable in all cases that modulo unrolling
is not applicable; i.e., ECU aims to disambiguate all accesses other than a�ne array
accesses. ECU handles all kinds of accesses in an integrated framework, including non-
a�ne array accesses, pointer dereferences, structure references, and heap references, in
programs with arbitrary memory-aliasing.

Figure 1.8 demonstrates ECU through an example. Figure 1.8(a) shows the original
code input to the compiler. There are three integers { a, b and c { and two pointer
references { �p and �q. The value of boolean variable cond is assumed to be unknown
at compile-time. Figure 1.8(b) shows the code and data after ECU on a 2-banked bank-
exposed machine. In order to bank-disambiguate the �p and �q references, ECU places
a and b on bank 0, and c on bank 1. With this data allocation, both references go to
only one bank, irrespective of the run-time value of cond, thus bank disambiguating both
references.

Chapter 3 shows how the ECU method can be generalized to handle any input pro-
gram, and it describes the general method. The ECU method aims for memory par-
allelism across data objects, rather than within. Arrays are allocated to a single tile;
structures, however, are distributed as ECU considers structure �elds as individual data
objects. A drawback of ECU is that it does not exploit memory parallelism within arrays
and array-like heap-allocated memory blocks accessed by non-a�ne accesses. Modulo
unrolling overrules ECU for arrays accessed primarily by a�ne functions, so arrays are
placed on one node only if they are primarily accessed by non-a�ne accesses.

4An a�ne function of a set of variables is de�ned as a linear combination of those variables, plus a
constant. As an example, given i and j as enclosing loop variables, A[i+ 2j + 3][2j] is an a�ne access,
but A[i � j + 4] is not.

1.3. BANK DISAMBIGUATION 29

*q = . . .
*p = . . .

int a,b,c;

q = &c;

p = cond ? &a : &b;

int *p, *q;

boolean cond;

p = cond ? &a : &b;
q = &c;

*p = . . .
*q = . . .

(a) (b)

int a int c

int b

bank 1bank 0

Figure 1.8: Example showing equivalence-class uni�cation (ECU). (a) Original code. (b) Code
and data after ECU on a 2-banked bank-exposed machine. The data declarations are not
repeated. With integers a, b and c allocated as shown, both pointer references each go to only
one bank, enabling disambiguation.

Results

To demonstrate the e�ectiveness of our bank disambiguation methods, we now preview
some results. Maps, including techniques for bank disambiguation and for handling non-
disambiguated accesses, has been implemented in a SUIF-based compiler [24] for the Raw
machine, called Rawcc. The Maps system is a part of the Raw project's common infras-
tructure. The Maps infrastructure has been used by at least 6 members of the Raw group.
Rawcc accepts as input, ordinary sequential programs with no special user-directives or
pragmas. Rawcc automatically detects and exploits both ILP and memory parallelism.
Evaluation is performed on a cycle-accurate simulator of the Raw microprocessor.

Figure 1.9 compares the speedup for various programs on a 32-tile Raw machine for
two cases: a compiler using ILP alone versus a compiler using ILP augmented with
the bank disambiguation methods in this thesis. The baseline for both strategies is the
sequential program running on one tile with a speedup of 1. In both sets of numbers, ILP
is exploited by compiler-discovery, as in VLIW machines. Our techniques for extracting
ILP are described in [25]. The ILP alone numbers use 32 PEs, but only one memory bank,
as they have no way of disambiguating memory. The ILP + bank disambiguation numbers
use 32 PE-memory bank pairs. The bene�t from bank disambiguation is the improvement
in performance of the ILP + bank disambiguation numbers over the ILP alone numbers.
Figure 1.9 demonstrates that using bank disambiguation improves performance over using
ILP alone by a factor of 3 to 5 for a broad spectrum of programs5.

5Adpcm, SHA and fppp-kernel are exceptions; see chapter 9 for reasons why.

30 CHAPTER 1. INTRODUCTION

0

4

8

12

16

20

24

S
p

ee
d

u
p

ILP alone (32 PEs, 1 bank)

ILP + bank disambiguation (32 PEs, 32 banks)

Btrix

Cholesky
Swim

Tomcatv
Vpenta

Mxm Life
Jacobi

Alvinn
Ocean

Adpcm
SHA

MPEG-kernel
Latnrm

FIR fil
ter

Fppp-kernel

Moldyn-array

Moldyn-str
uct

Unstru
ct-array

Unstru
ct-st

ruct

Figure 1.9: Bene�ts of bank disambiguation. Comparison of 32-tile speedups using instruction-
level parallelism (ILP) alone, versus ILP combined with our bank disambiguation techniques.

The results show that ILP alone is not enough; exploiting memory parallelism dra-
matically improves performance over using ILP alone. This result has signi�cance beyond
Raw. Although this thesis makes no direct comparison with machines other than Raw,
the con�guration for the ILP alone numbers approximates a conventional microprocessor:
it has a large number of PEs (32) and a monolithic L1 cache that supports 1 memory
access per cycle. The results argue that using a bank-exposed architecture, coupled with
bank disambiguation, improves performance over using a conventional architecture with
a hardware-based uni�ed memory system.

1.4 Non-disambiguated accesses

This section outlines how non-disambiguated accesses are handled e�ciently in the Maps
compiler system. First, the need of non-disambiguated accesses is motivated. Second,
the challenges in e�ciently handling non-disambiguated accesses are illustrated. Finally,
methods for handling non-disambiguated accesses e�ciently in Maps are presented. A
baseline method for handling non-disambiguated accesses called software serial ordering
is presented; an optimization called independent epochs, applicable in certain cases, is
also outlined.

1.4. NON-DISAMBIGUATED ACCESSES 31

Motivation

Although ECU alone can provably disambiguate all memory reference instructions, there
are cases where it is not desirable to disambiguate all references. Figure 1.10(a) illustrates
one such situation. The �gure shows two references, �p and �q. The values of variables
x and y are assumed to be unknown at compile-time. The pointers p and q point to
unknown locations within the array A[] and potentially alias to the same location when
x = y. Assume that the array A[] is accessed by only a�ne accesses in the rest of the
program and that the a�ne accesses make up the performance-critical portions of the
code. Strict application of ECU would place the array on one tile because of the two
non-a�ne pointer accesses, destroying performance in the performance-critical portions
that have a�ne accesses. Rather than using ECU, it might be better to keep array
A[] distributed, use modulo unrolling in the performance critical portions, and use slow
non-disambiguated accesses for the �p and �q references. Therefore, an e�cient way
to deal with non-disambiguated (dynamic)6 accesses is needed. Amdahl's law predicts
that even a small fraction of the program running slowly can signi�cantly degrade the
overall performance. Other scenarios where dynamic accesses are helpful are outlined in
chapter 5.

Challenges in handling non-disambiguated accesses

To e�ciently implement dynamic accesses, their comparatively long access latencies
should be overlapped with each other and with computation as much as possible, while
respecting memory dependences. If the arbitration logic is hardware-managed, as in most
microprocessors, the task of overlapping latencies is done by the arbitration logic hard-
ware. Although sophisticated write-bu�ers aim to overlap as much latency as possible,
the scalability of arbitration logic is limited. Consequently, the Raw machine investigates
the use of a scalable, distributed and point-to-point dynamic network in place of the ar-
bitration logic. The lack of run-time arbitration in such networks means that the task of
providing correct memory semantics while overlapping latencies is left to the compiler.

Figure 1.10(b) depicts complete serialization, the most obvious way of implementing
the code in �gure 1.10(a) using dynamic accesses on Raw. Serialization ensures that
the possible dependence between the �p and �q references is satis�ed. Each dynamic
store consists of a non-disambiguated request message to a bank that is unknown at
compile-time, followed by an acknowledgment message to the PE scheduled to receive
the acknowledgment. In complete serialization, the �q access does not start until the
�p access receives its reply. The long latencies of dynamic accesses imply that complete
serialization is expensive, as complete serialization fails to overlap the dynamic latencies.
Overlapping latencies is tricky, because there are no timing guarantees on a distributed
dynamic network, such as on Raw. Simply issuing the requests from di�erent banks in

6From this point on, the terms \non-disambiguated" and \dynamic" are used interchangeably. Non-
disambiguated accesses resolve their bank numbers dynamically, i.e., at run-time, hence the term dy-
namic. The dynamic network on Raw is used to complete dynamic accesses.

32 CHAPTER 1. INTRODUCTION

(a)
ordering constraint
static message

p = &A[x]
dynamic message

*q = . . .

*q = . . .*p = . . .

*p = . . .
p = &A[y]

*p = . . .(b) (c)

bank 0 bank 1

turnstile

*q = . . .

bank 0 bank 1

Figure 1.10: Example showing software serial ordering (SSO). (a) Input code. Variables x and
y have values unknown at compile-time. (b) Possible dependence enforced through complete
serialization. The actual locations accessed are unknown at compile-time. To enforce the
possible dependence, the �q reference does not proceed until the �p reference is complete. (c)
Dependence enforced through software serial ordering. The only serialization is at the turnstile
node. Much of the dynamic latencies are overlapped.

program order using explicit synchronization may violate correctness. Request messages
might arrive at a memory bank out of order, even if they are issued in order from di�erent
banks.

Software serial ordering

This thesis proposes a method called software serial ordering (SSO) to overlap access
latencies on distributed dynamic networks while maintaining dependences. SSO relies
upon the in-order, wire-like property between every pair of tiles, o�ered by many dynamic
networks, including the dynamic network on Raw. This property states that if two or
more messages are sent between the same source and destination, they appear at the
destination tile in the same order as they were launched at the source.

Figure 1.10(c) shows the code in �gure 1.10(a) implemented using SSO on a Raw-
like distributed dynamic network. SSO involves serializing accesses at a special turnstile
node, which may be placed on any of the PEs. The �p and �q references make requests
to the turnstile node using statically scheduled messages on the static network. The
requests are issued in order, from the turnstile to the memory banks, on the dynamic
network. At the destination memory bank, whose number is resolved only at run-time,
the access is performed and a store-acknowledgment message is sent back to a compile-
time known PE, di�erent for di�erent acknowledgments. Correctness is ensured, because

1.4. NON-DISAMBIGUATED ACCESSES 33

request messages from the turnstile to any one memory bank arrive in program order;
in-order delivery follows from the pair-wise in-order property of the network. Hence, if
the two references, �p and �q, actually alias to the same location at run-time, the request
messages arrive at the memory bank containing the location in program order. Finally,
when all the acknowledgments are received, the control moves to the next scheduling
unit of code after the current scheduling unit. A scheduling unit is the code-granularity
at which the Raw compiler performs instruction scheduling; it is de�ned more precisely
in section 1.5.

SSO is slower than ECU. The �p and �q references are faster if array A[] is placed
on one node. SSO is slower, because the accesses in SSO are serialized, just as in the
ECU case, and they also su�er from dynamic overhead. The advantage of SSO is not
in the portion of code it is used. Rather, SSO may allow other portions of code else-
where in the program to run faster, because, unlike ECU, SSO uses distributed arrays.
Consequently, other parts of the program can use modulo unrolling if a�ne accesses are
present, improving the performance of those accesses. SSO has been implemented in the
Rawcc compiler, and results are presented in chapter 9.

Independent epochs

It is possible, in certain cases, to implement dynamic accesses without the turnstile's
serialization. If the compiler can prove that accesses to a set of data objects in a region of
code are all dynamic and are all independent, then the accesses proceed in parallel without
a turnstile. Such a region of code is called an independent epoch. A trivial example of an
independent epoch is a region whose dynamic accesses to a set of data objects are all loads.
Otherwise, independent accesses are found using dependence analysis [26]. Dependence
analysis is aided by pointer analysis, array-index analysis, and data
ow analysis.

Figure 1.11 shows an example of an independent epoch. Figure 1.11(a) shows the
initial code. The code is very similar to that in �gure 1.10(a), except that the pointers p
and q point to consecutive unknown locations in array A[] instead of any two unknown
locations. Dependence analysis reveals that the �p and �q references are always inde-
pendent, irrespective of the value of variable x. Hence, the two references are issued
in parallel without a turnstile. Parallel dynamic accesses are depicted in �gure 1.11(b).
Turnstile serialization is avoided because the references cannot alias at run-time.

One additional step must be taken to ensure correctness for independent epochs:
memory barriers must be placed before and after each independent epoch region. A
memory barrier is a construct that guarantees that all outstanding memory requests
up to that point have been completed. Memory barriers are needed before and after
an independent epoch to isolate the epoch from the accesses elsewhere in the program.
Without isolation, an access from inside the epoch could be incorrectly reordered at run-
time with a dependent access outside the epoch. Implementation of memory barriers is
discussed in section 5.5.

34 CHAPTER 1. INTRODUCTION

ordering constraint

*p = . . .

*q = . . .

dynamic message

p = &A[x+1]
p = &A[x]

*p = . . .

(b)

bank 0 bank 1

*q = . . .(a)

Figure 1.11: Example showing independent epochs. (a) Initial code. (b) References imple-
mented as an independent epoch. Dependence analysis reveals that the �p and the �q reference
are independent, and hence the references are issued as an independent epoch, without serial-
ization.

1.5 Compiler
ow

This section shows one possible compiler
ow of a compiler for a software-exposed ar-
chitecture. While other organizations are possible, this is the structure adopted by our
compiler for the MIT Raw machine, Rawcc.

Figure 1.12 shows one possible structure for a compiler targeting a software-exposed
architecture. The compiler accepts sequential programs, and automatically extracts par-
allelism from them for a software-exposed architecture. Rawcc has two main parts. The
�rst part performs tasks related to the management of an exposed memory system. The
Maps memory system presented in this thesis comprises this �rst part. The second part
of the compiler is the space-time scheduler [25]. The space-time scheduler performs in-
struction scheduling and partitioning, as well as routing of static messages. Both Maps
and the space-time scheduler are discussed in this section. Taken together, Maps and the
space-time scheduler provide a uni�ed view of distributed resources to the user, without
requiring a uni�ed view from the hardware.

The Maps memory system begins with pointer analysis and array-speci�c analysis,
and then it performs bank disambiguation. Bank disambiguation �rst de�nes a layout
of all the data objects in the program, and then tries to specify a �xed bank number,
known at compile-time, for every load/store memory reference. Accesses for which a �xed
bank number is found at compile-time are annotated with that bank number, and are
called disambiguated accesses. Disambiguated accesses translate to fast, local accesses
on a bank-exposed machine. Since their results are routed on the static network for
Raw, disambiguated accesses are also called static accesses. The remaining accesses to
unknown banks are called non-disambiguated accesses and complete over the fall-back

1.5. COMPILER FLOW 35

Build cfg

Traditional dataflow optimizations

Pointer analysis/ Array analysis

 Maps

Executable for software−exposed machine

Sequential program

Bank disambiguation

Handling of dynamic accesses

Space−time scheduler

Figure 1.12: Structure of the Raw compiler.

arbitration logic. In the case of Raw, the arbitration logic is replaced by the dynamic
network. Hence, non-disambiguated accesses are also called dynamic accesses. While
disambiguation can be attained at the cost of memory parallelism by mapping all the
data to one bank, our techniques provide bank disambiguation while distributing data
to several banks.

Following bank disambiguation, Maps ensures that non-disambiguated (dynamic) ac-
cesses are handled e�ciently. The greatest challenge to improving performance of dy-
namic accesses is overlapping their long access latencies with other computation and com-
munication while respecting all dependences. This thesis presents methods to aggressively
schedule dynamic accesses while respecting dependences. Methods for non-disambiguated
accesses include software-serial ordering, independent epochs, and updates.

The second part of the compiler, the space-time scheduler [25], follows the analysis
and code transformations in Maps. The space-time scheduler parallelizes the computa-
tion in each scheduling unit across the processing elements. A scheduling unit is the code
granularity the space-time scheduler considers at one time. Scheduling units are basic
blocks or larger; control-localization [25] extends scheduling units to regions of code with
forward-control-
ow only. Space-time scheduling uses the data distribution and disam-
biguation information provided by Maps, respecting any dependence and serialization
requirements of Maps. Parallelization is achieved by statically distributing the instruc-
tions across the tiles and orchestrating any necessary communication at the register level
over the static network. The decision of how to map instructions considers the tradeo�s
between locality, parallelism and communication cost. Individual instruction streams
proceed in a loosely synchronous manner, communicating only when there are register

36 CHAPTER 1. INTRODUCTION

dependences and at the end of the scheduling units. For more details on the space-time
scheduler, please refer to [25].

This compiler structure has been implemented in Rawcc, the Raw compiler built on
top of SUIF [24]. Rawcc accepts a sequential program written in C or FORTRAN, and
produces a Raw executable. Results in this thesis were obtained by evaluating the Rawcc
compiler.

1.6 Overview of the thesis

This section presents a brief overview of the thesis. First, the scope of our compiler
methods, in terms of the architectures to which they apply, is presented. Second, the
contributions of this thesis are summarized as a list. Third, the organization of the thesis
is presented.

Scope of our methods

The methods in this thesis apply to any bank-exposed architecture, not just those for
general-purpose computing. Experimental results focus on general-purpose machines.
Results are presented on the MIT Raw machine [1]. The compiler methods in this
thesis apply to ILP-exploiting bank-exposed designs proposed in the past, such as the
ELI-512 [16] and Iwarp [17]. The methods in this thesis also apply to many embedded
system chips. Embedded chips are used for many consumer products today, ranging
from cellular phones to automobiles. Embedded chips already exceed general-purpose
processors in dollar volume. Many digital-signal processing (DSP) chips use more than
one software-addressable memory bank [27], such as the Motorola DSP56000 family [18].
Such DSP chips with multiple software-exposed banks are bank-exposed architectures
and fall within the target domain of Maps. The lack of e�ective compiler technology up
to this point means that even today, many of these chips are hand-coded in assembly
language. An exciting future application for the methods in this thesis is implementing
them for DSP chips, thus aiding automatic compilation.

Contributions

This thesis makes the following contributions:

� A case is made for why software-exposed architectures exploit memory parallelism
in microprocessors and why they are suited for emerging VLSI trends.

� Exploitation of memory parallelism on bank-exposed architectures is formulated as
a bank disambiguation problem.

� Two techniques for bank disambiguation are developed: equivalence-class uni�ca-
tion (ECU) and modulo unrolling.

1.6. OVERVIEW OF THE THESIS 37

� For the �rst time, pointer analysis is incorporated into bank disambiguation.
Pointer analysis is used in the ECU technique.

� The modulo unrolling method is proposed for disambiguating a�ne-function array
accesses. The method works even in the presence of non-a�ne accesses in the same
loops as the a�ne functions.

� An e�cient method for overlapping latencies of dynamic accesses, called software
serial ordering, is proposed. Two optimizations applicable in certain cases, namely
independent epochs and updates, are presented.

� The Maps system has been implemented for the Raw machine and forms part of the
Raw project's common infrastructure. The Maps implementation has been used by
at least 6 members of the Raw group.

� Results using Maps are presented. Runtimes are shown to decrease by factors of 3
to 5 using Maps with ILP, compared to using ILP alone.

Organization

The remainder of this thesis is organized as follows. Chapter 2 presents software-exposure
as a metric for classifying architectures. Architectures that expose their resources to
a higher degree than conventional microprocessors are broadly called software-exposed
architectures. Three di�erent resources { instruction-issue slots, memory banks, and
the on-chip communication mechanism { are discussed, as well as the advantages and
disadvantages of exposing them to the software. Finally, the MIT Raw machine, an
example of the software-exposed class, is described along with its memory mechanisms.

Chapters 3 and 4 present our two methods for bank disambiguation. Chapter 3
describes equivalence-class uni�cation, the �rst method for bank disambiguation. Since
equivalence-class uni�cation uses pointer analysis, the chapter �rst describes pointer anal-
ysis. Chapter 4 describes modulo unrolling, the second method for bank disambiguation.
The chapter starts by motivating modulo unrolling through a detailed example. Mod-
ulo unrolling uses some involved mathematics in its derivation, but its use is simple.
The chapter states how modulo unrolling is applied along with the formulas needed;
then it goes on to prove the formulas. Finally, additional transformations needed, and
optimizations possible, are described.

Our bank disambiguation schemes may choose not to disambiguate all memory refer-
ences; Chapter 5 explains how non-disambiguated references can be e�ciently supported.
First, the chapter explains why it is di�cult to e�ciently handle dynamic references.
Next, software serial ordering, a method for e�ciently handling non-disambiguated ref-
erences, is presented. Finally, two optimizations for software serial ordering { independent
epochs and updates { are discussed.

Chapters 6, 7, and 8 describe implementation issues for Maps. Chapter 6 describes
the compiler structure in detail. Worked examples help explain each of the 23 compiler

38 CHAPTER 1. INTRODUCTION

tasks presented. Chapter 7 discusses issues relating to memory allocation and address
management on bank-exposed architectures. Chapter 8 describes the implementation of
certain language-speci�c and environment-speci�c features.

Chapter 9 presents results. A suite of applications compiled through Maps, contain-
ing dense-matrix, multimedia, and irregular applications, is evaluated using a simulator
for the MIT Raw machine. First, numbers with and without bank disambiguation are
compared. The results demonstrate that using bank disambiguation improves perfor-
mance by a factor of 3 to 5 over not using it. Second, more detailed application statistics
are presented, along with discussions. The �nal set of results demonstrate that the selec-
tive use of non-disambiguated references can improve performance in certain cases, even
though non-disambiguated references have longer latencies than disambiguated accesses.

Chapter 10 discusses related work, and chapter 11 concludes. Related work in chap-
ter 10 compares the techniques in Maps with compiler techniques discovered elsewhere,
both for bank disambiguated architectures and other architectures. Other architectures
are described only to an extent needed to understand their compiler techniques. For
direct comparison of software-exposed architectures to other architectures, see [1].

Chapter 2

Software-exposed architectures

Software-exposed architectures are motivated by an increasing disconnect between the
software view of microprocessors and their hardware implementation, and the ine�cien-
cies arising from this disconnect. The instruction set architectures (ISA) of modern
superscalars maintain a simple abstraction in software: that of a single thread of control
accessing a single memory bank. In early microprocessors, such as the MIPS R2000 [28],
this ISA abstraction actually re
ects the hardware internals of the machine: most early
microprocessors used one processing element connected to a single memory bank. To-
day, however, the hardware internals of modern microprocessors are more complex, using
many distributed resources. For example, the AMD K7 x86 chip [29] uses six process-
ing elements and two memory banks. To maintain the simple ISA abstraction, today's
hardware designers must go to great lengths at considerable cost in area, delay and power.

Exposure of resources to the software o�ers one way to improve the performance
of microprocessors. A resource is said to be visible to software if the machine code
programming interface o�ers a direct way to access the resource and control its func-
tionality. Di�erent resources may or may not be exposed in any particular design; hence
software-exposure is a metric for classifying architectures. Architectures that expose
more resources than on conventional microprocessors are broadly called software-exposed
architectures. Even with exposed resources, however, a uni�ed view of the machine is
desirable for the programmer; consequently in software-exposed architectures, it is the
compiler's task to provide a sequential view of the machine on top of the exposed hard-
ware.

Software-exposure in architectures is not a new idea; architectures in the past have
exposed their resources to various degrees. Superscalars expose their registers to the
instruction-set architecture (ISA) interface used by software. The Stanford MIPS ISA [30]
exposes it its pipeline to the software; for example, through branch-delay slots. VLIWs
expose their ILP available to the software, by exposing multiple instruction-issue slots to
the software. Clustered VLIWs, such as the Multi
ow trace [31] and the likely implemen-
tations [11] of the Intel/HP IA-64 microprocessors, expose ILP and multiple register-�les
to the software. Certain DSP chips, such as the Motorola DSP56000 family [18], ex-
pose their ILP, register �les, and memory banks to the software, as does the ELI-512

39

40 CHAPTER 2. SOFTWARE-EXPOSED ARCHITECTURES

VLIW [16] general-purpose architecture. Finally, the MIT Raw microprocessor, dis-
cussed in section 2.4, and the Iwarp [17] systolic array expose their ILP, register �les,
memory banks, and communication network to the software.

The downside of resource-exposure is that, to present a sequential programming in-
terface to the user, the compiler becomes more complex. For every additional distributed
resource, the compiler must orchestrate the parallelism available in that resource auto-
matically and e�ciently. The lack of suitable compiler technology has been the biggest
obstacle hindering the use of exposed designs. Pressures to simplify hardware and the
increasing sophistication of compiler technology have, however, contributed to a renewed
interest in VLIW designs in the last 3 years [11, 13, 14, 15]. This thesis aims to further
bridge the gap between compiler requirements and available compiler technology by pre-
senting compiler methods that orchestrate multiple memory banks automatically with a
high degree of memory parallelism.

The rest of this chapter is organized as follows. The �rst three sections, Sec-
tions 2.1, 2.2 and 2.3, discuss the exposure of three di�erent resources, namely ILP,
memory and communication, respectively. Section 2.4 describes the MIT Raw machine,
which is one example of a software-exposed architecture. Section 2.5 summarizes the
chapter.

2.1 Exposing ILP

This section illustrates how ILP is exposed to the low-level software by making multiple
instruction-issue slots visible to the software. The interface between the fetch, decode,
and execute stages of RISC pipelines for both exposed and non-exposed ILP machines is
described. Architecture classes with and without exposed ILP are listed.

Exposing the instruction-level parallelism (ILP) available on chip to the software
is one way designers have aimed to reduce design complexity and improve performance.
Exposing ILP implies that the instruction stream interface consists of multiple instruction
issue slots, rather than a single issue slot. Figure 2.1 shows machines without and with
ILP-exposure. Figure 2.1(a) shows a machine without exposed ILP. ILP is hardware-
discovered from a single-issue instruction stream by the decode stage, as is typical in
modern superscalar pipelines [32]. Figure 2.1(b) shows a machine with exposed ILP. ILP
is exposed to the software in the multiple, parallel, issue slots. Each slot of the multiple-
issue instruction stream directly interfaces to its own associated functional unit, without
the need for a dispatch at the decode stage. The task of discovering ILP and scheduling
instructions to parallel issue slots is left to the compiler. The motivation for exposed ILP
designs is that they avoid ILP-discovering hardware, along with the cost in area, power
and delay of such hardware.

Both exposing ILP, and not exposing ILP, have been explored by machines in the
past. The most common class of microprocessors without exposed ILP are superscalars;
the most common class with exposed ILP are VLIWs. Both ILP interfaces can be used
with with or without bank-exposure. Bank-exposure is discussed in section 2.2.

2.1. EXPOSING ILP 41

Fetch &
Decode

PE PE PE

(a)

Single−issue instruction stream

Execute

Fetch &
Decode

PE PE PE

(b)

Multiple−issue instruction stream

Execute

Figure 2.1: Instruction interface without and with exposed ILP. (a) Interface without exposed
ILP. It shows a single instruction issue slot interfacing with a modern pipeline. ILP is discovered
by the decode stage, and instructions are dispatched to multiple processing elements (PEs). (b)
Interface when ILP is exposed through multiple instruction issue slots. Each issue slot interfaces
with its own processing element. The compiler discovers ILP and schedules instructions into
the di�erent issue slots.

42 CHAPTER 2. SOFTWARE-EXPOSED ARCHITECTURES

2.2 Exposing the memory system

This section shows how multiple memory banks can be exposed to the low-level software,
along with the pros and cons of exposed memory. Since ILP and memory banks can be
exposed orthogonally, two di�erent kinds of bank-exposed machines result: those with
and without exposed ILP. Both kinds are discussed, and a classi�cation of architectures
based on orthogonally varying ILP and memory bank exposure is presented.

Exposing the memory banks to the software is the central opportunity exploited
by this thesis. A bank-exposed architecture is one that has several disjoint address
spaces, corresponding to di�erent primary cache memory banks, all visible to the software,
and memory references which are directed at compile-time to particular address spaces.
Compile-time resolution of the bank number is the distinguishing characteristic of bank-
exposed machines: run-time resolution implies a conventional hardware-based uni�ed
memory system.

Figure 2.2 show a memory system without and with bank-exposure. Figure 2.2(a)
shows a hardware-based uni�ed memory system, implying that the banks are not exposed.
Such a memory system is used in all conventional microprocessors. Other processing
elements (PEs), not connected to memory, may be present. Figure 2.2(b) shows the
memory system of a bank-exposed architecture.

Exposing the primary cache banks to software has two main advantages over the
hardware-managed memory systems of conventional microprocessors, provided most ac-
cesses are to known banks. The �rst advantage of accesses to known banks is that they
avoid the cost of arbitration logic used in uni�ed memory hardware. Memory reference
instructions to known banks and are either local, or use the communication network.
Memory instructions to unknown banks use the arbitration logic (not shown). In con-
ventional memory systems, in contrast, every access must go through the arbitration
logic. The second advantage of accesses to known banks is that they result in on-chip
locality, minimizing the penalty from wire delay. Knowing the bank accessed enables the
compiler to minimize the distance from the bank to the PE where the memory reference
instruction is scheduled. In the best case, the access is made local. Accesses to nearby
banks will be increasingly pro�table over time as wire delays across chip in terms of
number of cycles are expected to rapidly increase over the coming decade. Conventional
memory systems, in contrast, su�er from wire delay for every cache hit, as the wires to
and from arbitration logic span large distances on the chip.

Taken together, the di�culties in scaling hardware-based uni�ed memory systems
implies that they are restricted to a small number of banks, usually 1 or 2. In contrast,
bank-exposed architectures scale to dozens of banks without increase in cache latency,
while increasing memory parallelism available. For example, results in chapter 9 show
that on the Raw architecture, application performance continues to improve with more
banks, to up to 32 memory banks.

Yet another, more indirect, bene�t of bank-exposed architectures is that they employ
a larger total L1 cache than conventional architectures, without increase in L1-cache
latency. Today, most chip area becoming available is being dedicated predominantly to

2.2. EXPOSING THE MEMORY SYSTEM 43

PE PEPEPE

L1 L1L1L1

Arbitration Logic

Execute

Memory

(a)

PE

L1

PE

L1

PE

L1

PE

L1

Execute

Memory

(b)

Communication network

Figure 2.2: Memory system without and with bank-exposure. (a) A hardware-based uni�ed
memory system, i.e., without bank-exposure. The delay through the arbitration logic and long
wires are encountered by every memory access. Most microprocessors limit the number of cache
banks (L1) and memory-connected PEs to a very small number (one or two) to limit the delay
through the arbitration logic. (b) The memory system of a bank-exposed architecture. Accesses
to banks known at compile-time complete over the communication network. Only accesses to
banks unknown at compile-time need to go through the arbitration logic (not shown).

44 CHAPTER 2. SOFTWARE-EXPOSED ARCHITECTURES

on-chip L2 cache, rather than L1. The AMD K6-III [33] has a 64K L1 cache and a 256K
L2 cache, both on-chip, and the Alpha 21364 [5], to be shipped in 2000, will have a 64K
L1 cache and a 1.5M L2 cache, also both on-chip. Most on-chip area is going to L2
cache rather than L1 because a cache cannot be made both large and fast. On the other
hand, bank-exposed architectures have many independent L1 cache banks. Using many
independent banks, exposed-memory systems have a much greater total L1-cache area
than hardware-based uni�ed memory systems with their limited number of L1 banks,
without increase in cache latency.

Arbitration logic is needed for all bank-exposed architectures, but is used only for
accesses to compile-time unknown banks. If the arbitration logic is exposed to the soft-
ware, as in Raw, it is called a dynamic network. Bank disambiguated accesses use the
on-chip communication network; non-disambiguated accesses use the arbitration logic.

For bank-exposed architectures, as in �gure 1.5, the term tile is naturally de�ned as
a memory bank with all its associated functional units. In the case of the MIT Raw
machine, a tile consists of one processing element and one associated memory bank.

Exposed memory systems are relatively unexplored for microprocessors1. Most tradi-
tional microprocessors, including superscalars and VLIWs, use uni�ed memory systems
instead. Until now, it has not been considered feasible to guarantee at compile-time that
most source-code memory instructions go to the same bank in every dynamic instance, as
required for good performance on bank-exposed architectures. This thesis shows how this
guarantee can be provided by the compiler, making bank-exposed architectures feasible.

Two di�erent types of bank-exposed architectures

Exposing ILP is orthogonal to exposing memory banks, leading to two di�erent kinds
of bank-exposed machines: those that do not expose ILP, and those that do. Although
both kinds of bank-exposed machines can equally use the compiler methods in this the-
sis, the two kinds di�er. Figure 2.3 shows the two kinds of bank-exposed architecture.
Figure 2.3(a) shows a bank-exposed machine without exposed ILP, obtained by combin-
ing �gure 2.1(a) with �gure 2.2(b). Figure 2.3(b) shows a bank-exposed machine with
exposed ILP, obtained by combining �gure 2.1(b) with �gure 2.2(b).

The second kind of bank-exposed design, as in �gure 2.3(b), has been adopted by the
MIT Raw machine. The Raw machine exposes both ILP and memory. The Raw machine
goes further in that it exposes its communication network as well. Other ILP-exploiting
machines exposing both ILP and memory include Iwarp [17] and some DSP chips [27].

As far as we are aware, there are no machines that have adopted the �rst kind of
bank-exposed design shown in �gure 2.3(a). Bank disambiguation, however, opens up the
possibility of bank-exposed machines either with or without exposed ILP. Bank-exposed
machines without exposed ILP, as in �gure 2.3(a), have a single-issue instruction stream,
but with an extra �eld for load/store instructions to encode their memory bank number.
The pipeline decode stage dispatches each load/store instruction to the PE/memory-bank

1See related works (chapter 10) for previous work in this area.

2.2. EXPOSING THE MEMORY SYSTEM 45

PE PE PE
(a)

Fetch &
Decode

Single−issue instruction stream

Execute

L1 L1L1

Communication network

Fetch &
Decode

PE PE PE

(b)

Multiple−issue instruction stream

Execute

L1 L1L1

Communication network

Figure 2.3: Two kinds of bank-exposed machines. (a) A machine without exposed ILP. (b) A
machine with exposed ILP. The latter machine gains the full bene�ts of ILP exposure, but the
former is an interesting partial solution. It retains a single instruction stream but with exposed
banks.

46 CHAPTER 2. SOFTWARE-EXPOSED ARCHITECTURES

pair it is assigned to. Although bank-exposed machines without exposed ILP exploit the
bene�ts of bank-exposure, their decode-stage dispatch logic is centralized, limiting their
scalability. This thesis does not study such machines further. Nevertheless, our compiler
techniques apply to such machines, opening up the possibility of small microprocessors
with a few exposed banks, programmed by a single instruction stream.

Classi�cation of architectures

Since ILP and memory exposure are orthogonal, a new classi�cation of architectures
emerges. Figure 2.4 illustrates this classi�cation. Varying ILP and memory exposure
independently leads to the four possibilities shown. Within each square are salient ar-
chitecture classes �tting that model. The areas shaded darker represent bank-exposed
machines. The possible single-instruction-stream, bank-exposed machines refer to the
as-yet-unexplored possibility discussed earlier in this section.

ILP

not exposed exposed

not
exposed

exposed

Memory

Superscalars VLIWs

RAW machines

Possible
single−issue
bank−exposed
machines DSP chips

Figure 2.4: Classi�cation of architectures. ILP and Memory exposure may be varied indepen-
dently, leading to four possibilities. Each contains architectures exhibiting its characteristics.
Areas shaded darker represent bank-exposed machines.

2.3. EXPOSING COMMUNICATION 47

2.3 Exposing communication

This section discusses how on-chip communication can be exposed to the low-level soft-
ware. All microprocessors need on-chip wires and communication control to transfer
data between the physical registers and functional units. In most microprocessors this
communication is hardware-discovered; alternatively the communication may be software-
speci�ed. The advantages of both are presented. Communication-exposure may expose
more that message speci�cation; software-speci�ed communication may in addition ex-
pose intermediate-node routing, leading to compiler-routed messages.

All microprocessors require on-chip wires to communicate values between di�erent
physical registers, ALUs and memory banks. Exposing communication implies that on-
chip communication messages are explicitly speci�ed in the instruction steam. Such
software-speci�ed messages, as opposed to hardware-generated messages, are the hall-
mark of exposed communication. Most microprocessors use non-exposed schemes, such
as Scoreboarding or Tomasulo's algorithm [32], that discover needed communication pat-
terns based on program dependences automatically using hardware. For example, in
Scoreboarding, a centralized hardware structure called a scoreboard is used. Every in-
struction after decoding is registered in the scoreboard along with its source and desti-
nation operands; the scoreboard keeps track of the available operands for all instructions
that are awaiting issue, as well as the functional unit where issued instructions are as-
signed. When the operands become available, the scoreboard directs communication
between the physical register where the latest value is available, to where it is used, be-
sides updating the register �le. Instructions are removed from the scoreboard after they
exit the pipeline.

The advantage of non-exposed (hardware-generated) schemes for on-chip commu-
nication is compiler simplicity: the compiler need not schedule messages, as they are
automatically deduced from data dependence. The disadvantage of non-exposed com-
munication is that some form of centralizing hardware, like a scoreboard, is needed to
keep track of all communication. Centralizing hardware inhibits scalability, and necessi-
tates long wires to and from far corners of the chip. Long wires will su�er from rapidly
increasing wire delays over the coming decade. Software-speci�ed communication avoids
the centralizing hardware and its disadvantages. The Raw machine uses exposed com-
munication for both its networks to leverage the scalability and wire-delay advantages of
exposed communication.

Communication may be exposed to the software beyond software-speci�ed messages:
the intermediate-node routing may also be exposed. Exposing intermediate-node routing
to the software implies a compiler-routed network instead of a runtime-routed network.
A message can be compiler-routed if its destination tile is known at compile-time, oth-
erwise it must be runtime-routed. The advantage of a compiler-routed network over a
run-time routed network is that the compiler orders the messages according to a static
(compile-time decided) schedule, aiding static scheduling of memory and non-memory
instructions [25]. The Raw microprocessor, discussed in section 2.4, provides both a
compiler-routed and a runtime-routed network.

48 CHAPTER 2. SOFTWARE-EXPOSED ARCHITECTURES

2.4 Raw architecture

IMEM
DMEM

REGS

ALU

SMEM

SWITCH

PC

PC

RawTile

Raw P

Figure 2.5: A Raw microprocessor is a mesh of tiles, each with a processing element, some
memory and a switch. The processing element contains both registers and an ALU. The
processing element interfaces with its local instruction memory, local data memory and local
switch. The switch contains its own instruction memory.

This section describes the Raw microprocessor, a particular software-exposed archi-
tecture currently being designed in our research group at MIT. The features of its two
networks are explained, along with the reason for two networks. The memory mechanisms
in Raw are presented, along with their experimentally measured run-time costs.

The Raw microprocessor [1], an instance of a software-exposed architecture, exposes
its ILP, memory and communication networks. Developed at our research group at
MIT, the Raw microprocessor is designed to address the issue of building a scalable
architecture in the face of increasing transistor budgets and wire delays that do not
scale with technology. Figure 2.5 depicts the layout of a Raw machine. A Raw machine
consists of simple, replicated tiles arranged in a two-dimensional mesh. Each tile, the
basic unit of bank-exposed architectures, is a single processor-cache bank pair. Each
tile is equipped with a switch to communicate with other tiles. The processor is a
simple RISC pipeline, and the switch is integrated directly into the processor pipeline
to support fast register-level communication between neighboring tiles: a word of data
travels across one tile in one clock cycle. Scalability on Raw is achieved through the
following design guidelines: limiting the length of the wires to the length of one tile;
stripping the machine of complex hardware components; and organizing all resources in
a distributed, decentralized manner.

Communication

Communication on the Raw machine is handled by two distinct networks: �rst, a fast
compiler-routed register-level network called the static network, and second, a traditional
runtime-routed memory-level network called the dynamic network. The interfaces to both

2.4. RAW ARCHITECTURE 49

networks are fully exposed to the software. Both networks consist of switches on each
tile that perform message-routing.

The static network is used for messages whose source and destination tiles are known
at compile-time. For such a message, the routing of the message is encoded into the
instruction stream of each tile. Bank-disambiguated memory instructions can use the
static network since the processing element on which the instruction is placed is decided
at compile-time, and the identity of the bank accessed is compile-time-known. The static
network provides statically ordered communication, i.e., the relative order of messages
arriving at each port on each tile is compiler-speci�ed, and enforced at run-time. Mes-
sage ordering is enforced by each intermediate node by routing messages in the order
speci�ed by the switch instruction stream. Statically ordered communication enables
static scheduling of instructions; dependences between instructions that are mapped to
di�erent tiles are implemented by a message between them. Routing instructions in the
switch instruction stream have blocking semantics that provide near-neighbor
ow con-
trol; a processor or switch stalls if it is executing an instruction that attempts to access
an empty input port or a full output port. Blocking semantics ensure correctness in
the presence of timing variations introduced by dynamic events such as interrupts and
I/O. Blocking semantics also obviate the lock-step synchronization of program counters
required by many statically scheduled machines.

The dynamic network is used for messages for whom either the source or destination
tile is unknown at compile-time. Such messages arise, for example, whenever a memory
instruction accesses a bank whose identity is unknown at compile-time. Lacking compile-
time routing information, messages on the dynamic network are run-time routed. The
dynamic switch, present on each tile, is a traditional worm-hole router that makes routing
decisions at run-time based on the header of each message. Processors handle incoming
dynamic messages using either polling or interrupts.

The static network is faster than the dynamic network; much of the overhead in dy-
namic networks is because of the unpredictable timing and routing of dynamic messages.
Three reasons for why the dynamic network is slower are as follows. First, because of
unpredictability in the arrival order and timing of messages, expensive reception mech-
anisms such as polling or interrupts are required. On the static network, the exact
ordering of messages is known; hence a processor expecting a static message blocks until
the message arrives, without needing polling or interrupts. Blocking time is low, and
often zero, as timing can be predicted on the static network barring dynamic events such
as interrupts and I/O. Processors block for static messages only at the times they ex-
pect incoming messages. A second reason why the dynamic network is slower is that no
overhead words are needed in a static message other than the data; dynamic messages
must include a destination tile, and a handler address or message ID. Overhead words
in messages require time to compose, launch, route and handle. A third reason why the
dynamic network is slower is that it may incur congestion costs; when more messages
arrive at a tile than can �t in the incoming message queue, some messages are spilled
to memory. Spilling to memory is an expensive operation; in contrast, spilling is never
needed on the static network, as a message does not arrive on a tile until its preceding

50 CHAPTER 2. SOFTWARE-EXPOSED ARCHITECTURES

message, if any, is handled.

Why have two networks?

Having two networks for inter-tile communication goes against the principle of unity
of mechanism; why provide two networks when one would su�ce? Indeed, there are
disadvantages in providing two networks. Two networks take up more chip area than
one, and require two interfaces from the processor pipeline instead of one. Nevertheless,
there are arguments supporting the use of two networks. Results in chapter 9 show that
using both networks provides improved performance over using the dynamic network
alone, often by a factor of 5 or more. This result argues that the static network is
valuable. Even when the dynamic accesses are optimized using independent epochs and
updates (section 5.6), performance is competitive with the static-only case only for 32
or more tiles. Moreover, independent epoch and update optimizations are not applicable
for all dynamic accesses.

We have argued for the static network; however, it is less clear why the dynamic
network is needed. The methods in this thesis can eliminate all non-disambiguated
dynamic accesses if desired. The dynamic network is included in Raw not so much
because of the recommendations of this thesis, but to allow for greater functionality in
connections with o�-chip devices such as DRAM memory and I/O devices. Scheduling of
unpredictable events, such as cache misses, interrupts and I/O messages, is not possible
on the compiler-scheduled static network. Another, lesser, factor arguing for a dynamic
network are the results in chapter 9 that show that limited use of the dynamic network
improves performance is some cases.

Memory mechanisms on Raw

From its communication mechanisms, the Raw architecture provides three ways of access-
ing memory: local access, remote static access, and dynamic access, in increasing order
of cost. A memory reference can be a local access or a remote static access if it satis�es
the static residence property | that is, (a) every dynamic instance of the reference must
refer to memory on the same tile, and (b) the tile must be known at compile time. The
access is local if the Raw compiler places the subsequent use of the data on the same tile
as its memory location; otherwise, the access is a remote static access. A remote static
access works as follows. The processor on the tile with the data performs the load, and
places the loaded value onto the output port of its static switch. Then, the pre-compiled
instruction streams of the static network route the loaded value through the network
to the processor needing the data. Finally, the destination processor accesses its static
input port to get the loaded value.

If a memory reference fails to satisfy the static residence property, it is implemented
as a dynamic access. A load access, for example, turns into a split-phase transaction re-
quiring two dynamic messages: a load-request message followed by a load-reply message.
Figure 2.6 shows the components of a dynamic load. The requesting tile extracts the

2.4. RAW ARCHITECTURE 51

resident tile and the local address from the \global" address of the dynamic load. The
requesting tile sends a load-request message containing the local address to the resident
tile. When a resident tile receives a request message, it is interrupted, performs the
load of the requested address, and sends a load-reply with the requested data. The tile
needing the data eventually receives and processes the load-reply through an interrupt,
which stores the received value in a predetermined register and sets a
ag. When the
resident tile needs the value, the resident tile checks the
ag and fetches the value when
the
ag is set. The request for a load need not be on the same tile as the use of the load.

Tile x

load_request(x)

Tile y

load_handler

Tile z

load_repl_handler

y=wait_for_load()

Figure 2.6: Anatomy of a dynamic load. A dynamic load is implemented with a request and
a reply dynamic message. The request for a load need not be on the same tile as the use of the
load.

Distance 0 1 2 3 4

Dynamic store 17 20 21 22 23
Static store 1 4 5 6 7
Dynamic load 28 34 36 38 40
Static load 3 6 7 8 9

Table 2.1: Cost of memory operations in processor cycles

Table 2.1 lists the end-to-end costs of memory operations as a function of the tile
distance. The costs include both the processing costs and the network latencies. Fig-
ure 2.7 breaks down these costs for a tile distance of 2. The measurements show that a
dynamic memory operation is signi�cantly more expensive than a corresponding static
memory operation. Part of the overhead comes from the protocol overhead of using a
general network, but much of the overhead is fundamental to the nature of a dynamic
access. For example, a dynamic load requires sending a load request to the proper mem-
ory tile, while a static load can optimize away such a request, because the memory tile
is known at compile time. The need for
ow control and message atomicity to avoid
deadlocks further contributes to the cost of dynamic messages [34]. Finally, the inherent

52 CHAPTER 2. SOFTWARE-EXPOSED ARCHITECTURES

unpredictability in the arrival order and timing of messages requires expensive reception
mechanisms such as polling or interrupts. In the static network, blocking semantics com-
bine with compile-time ordering and scheduling of static messages to obviate the need
for expensive reception mechanisms.

request memory use

cycles
0 10 20 30 40

net. net.

static store

static load

dynam. store

dynam. load

Figure 2.7: Breakdown of the cost of memory operations between tiles 2 units apart. High-
lighted portions represent processor occupancy. Unlifted portions represent network latency.

2.5 Summary

A summary of this chapter follows. The chapter begins by showing that software-
exposure is a metric to classify architectures. A rationale for software-exposure is pre-
sented, i.e., less hardware to automatically manage resources, and consequently, savings
in delay though the hardware. Subsequently, the exposure of three di�erent resources {
instruction-issue slots, memory banks, and communication wires { are discussed. A classi-
�cation of architectures based upon orthogonally varying the exposure of instruction-issue
slots and memory banks is presented. Finally the MIT Raw architecture is described,
along with its motivations. The Raw architecture uses two networks; the advantages and
disadvantages of each are mentioned. Finally, the di�erent ways of accessing memory in
Raw are described, and their costs compared.

Chapter 3

Equivalence-class uni�cation

This chapter describes equivalence-class uni�cation, our �rst method for bank disam-
biguation. Equivalence class uni�cation (ECU) is used by Maps as a baseline technique,
i.e., all accesses by default use ECU for bank disambiguation. Arrays with mostly a�ne
accesses are promoted using modulo unrolling, our second technique for bank disam-
biguation, described in chapter 4. ECU handles all kinds of accesses in an integrated
framework, including non-a�ne array accesses, pointer dereferences, structure references
and heap references. ECU handles programs with arbitrary memory-aliasing. ECU does
not transform the code, hence the code size is not increased. Instead, ECU provides
disambiguation by using intelligent data partitions. ECU can always bank disambiguate
all references, although the amount of memory parallelism exposed may vary, depending
upon the characteristics of the program.

This chapter is organized as follows. Section 3.1 describes pointer analysis, a tradi-
tional technique, leveraged by Maps and ECU in particular. Section 3.2 describes the
ECU method, and shows an example of its use. Section 3.3 discusses the quality of
the disambiguation ECU provides, and ways to improve it. Section 3.4 summarizes the
chapter.

3.1 Pointer analysis

This section describes pointer analysis, a compiler analysis technique discovered else-
where, that is needed to understand ECU. The information provided by pointer analysis
is described, and three uses of pointer analysis in Maps are discussed: for ECU; for
minimization of memory dependences; and for software serial ordering, a technique for
non-disambiguated accesses.

In order to understand ECU, pointer analysis [35, 36] needs to be understood �rst.
Pointer analysis is a compile-time technique that, for every memory-reference instruc-
tion, determines the data objects that the instruction can possibly refer. Maps uses
SPAN [35], a state-of-the-art pointer-analysis package that provides an inter-procedural,

ow-sensitive and context-sensitive pointer analysis.

53

54 CHAPTER 3. EQUIVALENCE-CLASS UNIFICATION

To understand pointer analysis, consider the input program in �gure 3.1(a). Fig-
ure 3.1(b) shows the results of the SPAN pointer analysis package on the code in �g-
ure 3.1(a). SPAN assigns a unique number, called a location-set number, to each abstract
object in the program. An abstract data object is either a stack-allocated variable decla-
ration in the program, or a group of dynamic objects created by the same heap-memory
allocation call site in the program. Figure 3.1(b) shows the abstract data objects marked
with assign comments, with the location set numbers for the objects listed alongside the
comment. An entire array is considered a single object, but each �eld in a structure is
considered a separate object. Finally, pointer analysis annotates each memory reference
instruction with a location-set list, a list of location-set numbers corresponding to the
objects that the memory instruction can refer. In �gure 3.1(b), each memory instruction
is annotated with its location-set list, shown as ref comments. For simplicity, location-set
numbers are shown only for objects that have program load/stores to them; in reality all
objects are assigned such numbers.

Uses of pointer analysis

Maps uses pointer analysis for three purposes: minimization of dependence edges, equivalence-
class uni�cation (ECU), and software serial ordering (SSO). First, pointer analysis is used
to minimize memory-dependence edges. With no information, all memory references are
potentially dependent, and hence every pair of memory instructions of which at least
one instruction is a store are connected by a dependence edge. With pointer analysis,
however, more precise information is available. A pair of memory instructions have a
dependence edge between them if and only if the intersection of their location-set lists
is non-empty1, and at least one of the instructions is a store. Figure 3.1(b) shows this
rule for inserting dependence edges: edges, shown with dotted arrows, are present be-
tween memory instructions only when the intersection of the referenced location-set lists
is non-empty.

The second use of pointer analysis is in ECU, described in section 3.2. The third
use for pointer analysis is in SSO: SSO uses equivalence classes to assign a turnstile per
class; equivalence classes are derived from pointer analysis information in ECU. SSO is
described in section 5.4.

3.2 Equivalence-class uni�cation method

This section describes equivalence-class uni�cation, the �rst of two bank disambiguation
schemes presented in this thesis.

1For dependences between array references, we can do better. Pointer analysis does not distinguish
between references to di�erent elements in an array, so that reference pairs such as A[1] and A[2] are
analyzed to be dependent. For array references, Maps, in addition, uses traditional array dependence
analysis to obtain �ner grained dependence information [37].

3.2. EQUIVALENCE-CLASS UNIFICATION METHOD 55

malloc.y (6) malloc.z(7)(c)

(d)

*q=33f.y=11 *r=44 p->x=22

malloc.z(7)

pf->y=55

malloc.y (6)malloc.x (5)f.x (1)ctr (4)f.z (3)f.y (2)

pf->y = 55

pf->y=55

malloc.x (5)ctr (4)f.z (3)f.y (2) f.x (1)

f.y=11 *q=33 p->x=22*r=44

void fn (int cond) {

 int x, y, z;
struct foo {

};

 struct foo f;
 int ctr;
 struct foo *pf, *p;
 int *q, *r;

 pf = (struct foo *)
 malloc (sizeof (struct foo));

 p = cond ? &f : pf;

 q = cond ? &f.y : &f.z;

 r = cond ? &f.x : &ctr;

}

// ref : 2 f.y = 11;

 p->x = 22;

 *q = 33;

 *r = 44;
 pf->y = 55;

void fn (int cond) {

 int x, y, z;
struct foo {

};

 struct foo f;
 int ctr;
 struct foo *pf, *p;
 int *q, *r;

 pf = (struct foo *)
 malloc (sizeof (struct foo));

 p = cond ? &f : pf;

 q = cond ? &f.y : &f.z;

 r = cond ? &f.x : &ctr;

}

 f.y = 11;

 p->x = 22;

 *q = 33;

 *r = 44;
 pf->y = 55;

// ref : 1,4
// ref : 6

 // assign : 1,2,3

// assign : 5,6,7

// assign : 4

// ref : 1,5

// ref : 2,3

(a) (b)

Equiv. class 2Equiv. class 1 Equiv. class 4Equiv. class 3

(e)

f.x (1)

malloc.x(5)

ctr (4)

malloc.y(6)f.y (2)

f.z (3)

malloc.z(7)

Bank 0 Bank 1 Bank 2 Bank 3

p = cond ? &f : pf
p->x = 22
r = cond ? &f.x : &ctr
*r = 44

q = cond? &f.y : &f.z
*q = 33

f.y = 11

PE 0 PE 1 PE 2 PE 3

Figure 3.1: Example showing equivalence-class uni�cation. (a) Initial program. (b) After
pointer analysis, showing location-set numbers and dependence edges (dotted lines). (c) Mem-
ory objects and instructions represented as bi-partite graph. (d) Connected components of
bi-partite graph marked as equivalence classes (ECs). There are 4 ECs: f2,3g, f1,4,5g, f6g,
f7g. (e) After code generation. PE = Processing element. Each EC is mapped to a single bank;
the code is distributed among the di�erent PEs while ensuring that reference instructions are
local to the bank they access.

56 CHAPTER 3. EQUIVALENCE-CLASS UNIFICATION

Equivalence class uni�cation (ECU) is a technique that uses intelligent data distri-
bution to achieve bank disambiguation. Figure 3.1 helps illustrate the steps involved
in ECU through an example. As a �rst step, ECU runs pointer analysis: �gure 3.1(b)
shows the results of pointer analysis on the program in �gure 3.1(a). Each data allocation
site is annotated with a location-set list, where each location-set corresponds to a data
object allocated by that site. Each memory instruction is annotated by the location-sets
corresponding to the data objects the instruction can reference. Dependence edges are
also computed using pointer analysis.

Next, ECU represents the pointer analysis information as a bipartite graph of data
objects and memory references. Figure 3.1(c) shows the bipartite graph for the program
in �gure 3.1(b). A node is constructed for each abstract object, and for each memory
reference instruction. In the �gure, the upper row shows the abstract objects, with the
location-set number for each object in parenthesis, and the lower row shows the memory
reference instructions. Edges are constructed from each memory reference to the all the
abstract objects whose numbers are in the reference's location-set list.

Subsequently, ECU de�nes the concept of alias equivalence classes using the bi-partite
graph. Alias equivalence classes form the �nest partition of the location set numbers such
that each memory access refers to location-set numbers in only one class. Figure 3.1(d)
shows the bi-partite graph in �gure 3.1(c) partitioned into 4 equivalence classes. Maps
derives the equivalence classes by computing the connected components of the bi-partite
graph for the program. The location-set numbers in each connected component form
a single alias equivalence class, along with the memory-reference instructions to those
location sets. Instructions in the same alias class potentially refer to the same object,
while references in di�erent classes never refer to the same object.

Finally, each equivalence class is mapped to a single tile to achieve bank disambigua-
tion. Mapping each class to a single bank disambiguates all memory instructions, as
all the data objects the instruction possibly accesses are in one connected component.
Since each connected component is mapped to a single bank, all instructions are bank-
disambiguated. Figure 3.1(e) shows the results of code generation using the equivalence
classes in �gure 3.1(d). Equivalence class 1 is mapped to bank 0, class 2 to bank 1, class
3 to bank 2, and class 4 to bank 3. This particular class-to-bank mapping is incidental;
any mapping from classes to banks can be used. The advantage of mapping di�erent
equivalence classes to di�erent banks is that memory parallelism between accesses to
di�erent classes is exploited. Since equivalence class uni�cation does not depend on any
particular application characteristic, it extracts available parallelism from all classes of
programs, even those with irregular access patterns and heavy pointer usage.

Rather than specifying physical banks, ECU speci�es a virtual bank number for each
class, assuming an in�nite number of virtual banks. If the number of physical banks is
less than the number of virtual banks used, a many-to-one virtual-to-physical mapping is
done. The space-time scheduler [25] performs the virtual-to-physical mapping with the
aim of choosing mappings in which virtual banks that are rarely accessed concurrently
are mapped to the same physical bank.

Figure 3.1(e) leaves certain implementation details unspeci�ed, for example, how to

3.3. QUALITY OF THE DISAMBIGUATION 57

implement distributed malloc() calls, or pointers to distributed objects. Chapter 7 de-
scribes the implementation of distributed objects; chapter 8 describes the implementation
of procedure calls.

3.3 Quality of the disambiguation

This section discusses the quality, in terms of memory parallelism, of the disambiguation
provided by ECU, and how it may be improved in certain cases.

The quality of the disambiguation o�ered by strictly applying ECU depends upon
the number and size of the alias classes. A large number of small classes gives the most
memory parallelism, as accesses mapped to di�erent classes can execute in parallel. The
number and size of the classes depends upon the access patterns of the program, which
the compiler cannot control. The compiler can, however, improve upon ECU by applying
it with modi�cations, or performing additional transformations. This section describes
three ways in which ECU can be improved: sub-dividing aggregate objects, detecting
`bad' references and making them non-disambiguated, and �nally, cloning procedures.

First, dividing single location sets further into multiple banks may allow us to improve
upon ECU. Sub-dividing single location-sets may be pro�table for aggregate data objects
such as arrays and structures, as parallelism is often available between accesses to di�erent
parts of such objects. That ECU does not distribute arrays is the motivation for modulo
unrolling, the second disambiguation scheme in this thesis. Modulo unrolling, discussed in
chapter 4, exploits parallelism within arrays. Structures need not be handled separately
as ECU itself �nds parallelism within structures. SPAN di�erentiates between accesses
to di�erent �elds, so that �elds of a structure can be in di�erent alias equivalence classes
and distributed across the tiles.

Second, allowing some accesses to remain non-disambiguated may help improve upon
ECU. Consider a case when a single `bad' reference causes ECU to map several location
sets into a single equivalence class, yet in most of the program, those location sets are
accessed in parallel by other references. If pro�ling data can reveal this situation by
comparing execution frequencies, an optimization may be possible. It may be pro�table
to keep the location sets in separate classes at the cost of making the infrequent 'bad'
access non-disambiguated, and hence slow. Keeping the location sets in di�erent banks
enables the more common parallel accesses to go to di�erent banks, preserving their par-
allelism. This optimization involving `bad' references has not been automated; hence all
the performance improvements in our results were obtained without it. Studies involving
the selective use of non-disambiguated accesses are presented in section 9.3.

Finally, cloning of procedures before ECU may improve the performance of ECU.
Consider a procedure having a pointer for a formal parameter, and two call sites whose
actual argument values point to di�erent location-sets. If the procedure body dereferences
the pointer, then ECU maps both location sets to the same class in order to disambiguate
the dereference. One way to improve performance is to clone the procedure into two
copies, one for each call-site. With procedure cloning, the two location sets are not

58 CHAPTER 3. EQUIVALENCE-CLASS UNIFICATION

mapped to the same class, which is helpful if they are accessed in parallel elsewhere in
the program.

3.4 Summary

A summary of the chapter follows. Equivalence class uni�cation (ECU) is described;
ECU is shown to be a e�ective method for providing bank disambiguation with memory
parallelism, and without any increase in code size. Disambiguation is attained by care-
fully distributing the data and memory instructions; the code is not transformed. Pointer
analysis, a traditional compiler technique is used to guide data placement in ECU. Pointer
analysis is also used in Maps for minimizing dependence edges, and in software serial or-
dering, a technique for handling non-disambiguated accesses (chapter 5). This chapter
concludes by showing scenarios in which ECU can be improved, and how. The lack of
memory parallelism within arrays in ECU is the motivation for our second method for
bank disambiguation, modulo unrolling, described in chapter 4.

Chapter 4

Modulo unrolling

This chapter presents modulo unrolling, our second bank disambiguation method. Mod-
ulo unrolling is applicable for programs having array references whose index expressions
are predominantly a�ne functions of enclosing loop induction variables 1. Modulo un-
rolling is provably able to bank disambiguate all a�ne accesses. A�ne array accesses,
along with scalar variables, form the bulk of the accesses in dense-matrix scienti�c codes,
as well as some multimedia and streaming applications.

This chapter is organized as follows. Section 4.1 motivates modulo unrolling, and out-
lines it using a simple example. Section 4.2 states the modulo unrolling method in terms
of a formula for the unroll factors, and presents the scope of the method. Section 4.3
derives the formulas for the minimum unroll factors required. Section 4.4 discusses issues
related to the code growth in modulo unrolling. Upper bounds for the code growth are
derived, and an optimization called the padding optimization is shown to reduce the code
growth in certain cases. Up to this point, modulo unrolling guarantees that all targeted
array references refer to memory on a single bank, but the identity of that bank may
not be determinable at compile time. Section 4.5 outlines an additional transformation
that is required in some cases to make this bank compile-time determinable. Section 4.6
describes a�ne code generation. It shows how the bank numbers and local o�set expres-
sions are actually determined. Section 4.7 discusses optimizations for array references,
other than modulo unrolling. Section 4.8 summarizes the chapter.

4.1 Motivation and example

This section motivates and describes modulo unrolling through the use of a step-by-step
example.

The major limitation of equivalence class uni�cation is that an array is treated as a
single object belonging to a single equivalence class. Mapping an entire array to a single

1An a�ne function of a set of variables is de�ned as a linear combination of those variables, plus a
constant. As an example, given i,j as enclosing loop variables, A[i + 2j + 3][2j] is an a�ne access, but
A[ij + 4] and A[2i2 + 1] are not.

59

60 CHAPTER 4. MODULO UNROLLING

memory bank sequentializes accesses to that array and destroys the parallelism found in
many loops. Therefore, arrays with a�ne accesses are not disambiguated using ECU;
instead they are disambiguated using modulo unrolling.

Figure 4.1 shows an example of how bank disambiguation is done using modulo un-
rolling. Figure 4.1(a) shows the initial code fragment consisting of a simple for loop with
three array accesses inside the loop. The data space depicts the view from the compiler
at that point; at the input, the programmer views all data objects, A[] and B[] in this
case, to be in one uni�ed address space. Both arrays are assumed to range from 0 to 99.

Figure 4.1(b) shows the array distributed using low-order interleaving. In low-order
interleaving, successive array elements are interleaved among the N banks in a round-
robin manner, beginning at bank 0. More formally, array A[] is broken up into N sub-
arrays, A0[] to AN�1[], such that A[i] maps to Ai mod N [i div N]. Low-order interleaving
is desirable since spatially-close array accesses, such as A[i] and A[i + 1], are also often
temporally close. Low-order interleaving places these on di�erent banks, thus allowing
for parallelism in their accesses. For certain programs, more tailored layouts may improve
performance, but that would destroy the uniformity that makes bank disambiguation and
static promotion workable without extensive inter-procedural analysis. Unfortunately, all
3 array references each access all 4 banks, as depicted by the arrows from each of the 3
references to all 4 banks. The A[i] reference, for example, has the bank-access pattern
of 0, 1, 2, 3, 0, 1, 2, 3, . . . in successive loop iterations. Since it goes to more than one
bank, it fails disambiguation.

A naive way to attain bank disambiguation and memory parallelism is to fully unroll
the loop. For the code in �gure 4.1(b), the loop could be unrolled by a factor of 100.
Full unrolling of the loop makes all the array-reference indices constant in the unrolled
code; hence all the array references are trivially disambiguated to the bank holding the
known array element. Full unrolling provides disambiguation with memory parallelism;
however, full unrolling is prohibitively expensive in terms of code-size increase. Full
unrolling is not even possible for compile-time-unknown loop bounds. Consequently,
the Maps system never uses full unrolling. The challenge is to attain disambiguation
and memory parallelism in a method that keeps code growth bounded, and works for
unknown loop bounds.

In this case, there is a way to attain both memory parallelism and bank disambigua-
tion, without a huge increase in code size. The solution stems from the observation that
in the original code, the bank-access pattern for all 3 accesses repeat themselves after a
�xed distance of 4. For example, for the B[i+ i] access, the bank-access pattern of 1, 2,
3, 0, 1, 2, 3, 0 . . . is a repetition of the pattern 1, 2, 3, 0. Consequently, a loop-unroll
by a factor of the repetition distance, 4 in this case, has the property that in the un-
rolled loop, each array reference will go to a single bank. Figures 4.1(c) through 4.1(e)
illustrate bank-disambiguation through modulo-unrolling. Figure 4.1(c) shows the loop
unrolled by a factor of 4. Figure 4.1(d) shows that in the unrolled loop, each access goes
to only one memory bank, enabling the original references to be replaced by references
to the sub-arrays A0 to A3, and B0 to B3. For example, the two A[i + 1] references in
�gure 4.1(c) access data elements A[1], A[5], A[9], A[13], . . . ; since all these elements are

4.1. MOTIVATION AND EXAMPLE 61

Bank3Bank2 Bank 1Bank 0

PE 2 PE 3PE 1PE 0

(c)

 A[i+1] = A[i+1] + B[i+2]
 A[i+2] = A[i+2] + B[i+3]
 A[i+3] = A[i+3] + B[i+4]

for i = 0 to 99 step 4 do
 A[i] = A[i] + B[i+1]

(d) i’ = 0
for i = 0 to 99 step 4 do

 i’ = i’ + 1

00

0

1

2

3

1

1

2

3

2

3

 A [i’] = A [i’] + B [i’]
 A [i’] = A [i’] + B [i’]
 A [i’] = A [i’] + B [i’]
 A [i’] = A [i’] + B [i’+1]

Code

Data

 A[i] = A[i] + B[i+1]

B[]

(a)
for i = 0 to 99 do

A[]

 A[i] = A[i] + B[i+1]

(b)
for i = 0 to 99 do

A [] A [] A [] A []

B []B []B []B []

0 1 2 3

3210

A [] A [] A [] A []

B []B []B []B []

0 1 2 3

3210

A [] A [] A [] A []

B []B []B []B []

0 1 2 3

3210

Edge from memory access to possible bank
Scalar dependence edge (register communication)

A [i’]=A [i’] +tmp1 A [i’]=A [i’] +tmp2 A [i’]=A [i’] +tmp3 A [i’]=A [i’] +tmp0
0

tmp0 = B [i’+1] tmp1 = B [i’] tmp2 = B [i’] tmp3 = B [i’]

0

1 2 3

33221 10

(e)

A []

B []

0

0

A []

B []

2

2

A []

B []

1

1

A []

B []

3

3

Figure 4.1: Example showing modulo unrolling. Pictures show sample code and a view of
memory after successive compiler steps for a 4-banked memory. (a) Initial program and uni�ed
view of memory. (b) After low-order interleaving. (c) After modulo unrolling step 1. (d)
After modulo unrolling step 2. (e) After code generation, PE=processing element. In (b), each
memory instruction goes to all 4 banks in di�erent iterations. In (d) and (e), each memory
instruction goes to a �xed bank number known at compile-time.

62 CHAPTER 4. MODULO UNROLLING

mapped to sub-array A1[], the A[i + 1] references are replaced in �gure 4.1(d) by refer-
ences to A1[i

0]. The index i0 is a local index ranging from 0 to 24, replacing the original
index i that ranged from 0 to 99; i0 is incremented by 1 for every iteration of the unrolled
loop, instead of 4. The transformations needed to convert the code in �gure 4.1(c) to
that in �gure 4.1(d) are described in chapter 6.

Figure 4.1(e) shows the generated code for the 4 processing elements (PEs) associated
with the 4 banks in the bank-exposed architecture. The sub-array reference instructions
are all local, i.e., a sub-array reference is placed on the PE local to the bank on which the
sub-array resides. The placement of references in �gure 4.1(e) implies that communication
is required. For example, the add instruction that adds A0[i

0] and B1[i
0] is scheduled on

PE 0, but since B1[i
0] is loaded on PE 1, the value of B1[i

0] is loaded into a temporary
variable tmp1 that is shipped over to PE 0 using the register-communication network.
A register-communication message is needed for every data-dependence that goes from
one PE to a di�erent PE. Register communication always involves compile-time-known
messages; hence, compile-time scheduling of the messages is possible. On Raw, the static
network is used to communicate register communication values.

The program transformation in �gure 4.1 is an example of the general technique of
modulo unrolling described in this chapter. Modulo unrolling is a technique that provably
disambiguates any array reference in a nested loop if the indices of the array reference
are a�ne functions of the index variables of the enclosing loops. The modulo unrolling
transformation provides both bank disambiguation and memory parallelism. Section 4.3
proves that unroll factors exist for all loops such that a�ne functions within the loop
nests are disambiguated upon unrolling, and derives a formula for the precise unroll
factors required.

The price to pay for modulo unrolling is increased code size from unrolling. Fortu-
nately, section 4.4 shows that the unroll factors required depend only upon the number
of banks and the a�ne-function characteristics, and are independent of the loop bounds.
The unroll factor for most common cases is upper-bounded by N , the number of banks,
and hence, the code-growth is modest. Further, the negative impact of code growth on
I-cache performance is likely to be limited for the following reason. The code is divided
into N di�erent I-caches for a machine with multiple instruction streams, such as the
MIT Raw machine. For low-order interleaved arrays accessed by a�ne references, it is
likely that all the I-caches miss simultaneously, for example, when the loop is reached
the �rst time. Simultaneous I-cache misses are desirable as they overlap miss latencies
with each other, thus reducing the performance penalty from

4.2 Modulo unrolling method

This section formally states the method for modulo unrolling, including the formula for
the unroll factors used. The formula is derived later in section 4.3. The scope of nested
loops to which modulo unrolling applies is described.

The method for modulo unrolling is as follows. First, the compiler looks for a�ne

4.2. MODULO UNROLLING METHOD 63

array accesses inside loop-nests. Let k be the number of loops in the loop nest for any
one a�ne function. Next, the compiler computes the unroll factor Uj, for all j in [1; k],
induced by each a�ne array access on the jth loop from its enclosing loop-nest. Uj is
computed using the following formula, which uses Dj as an intermediate variable.

Dj = N = gcd

0
@N;

dX
i=1

0
@ci;j

dY
l=i+1

MAX l

1
A
1
A

Uj = lcm(Dj; sj) / sj
where

k is the number of loops in the loop nest enclosing the a�ne function;
d is the number of array dimensions in the a�ne array access;
vj is the induction variable of the jth loop in the loop nest (1 � j � k);
ci;j is the constant coe�cient of vj in the ith array

dimension of the a�ne access (1 � i � d; 1 � j � k);
ci;k+1 is the constant factor in the ith array

dimension of the a�ne access (1 � i � d);
N is the number of memory banks in the target software-exposed architecture;
MAX i is the size of the ith array dimension (1 � i � d);
sj is the step size of the jth loop in the loop nest (1 � j � k).

All symbols de�ned above, and in the rest of this chapter, are integers. The formula
for Uj is derived in section 4.3. Once the compiler computes the induced unroll factors
for each loop for each a�ne access, the �nal unroll factor for any loop is computed as
the lcm of the unroll factors induced by all enclosing a�ne array accesses. Taking the
lcm of the unroll factors induced by all the array references is needed, as we want to
disambiguate all the references, each possibly demanding a di�erent unroll factor. Next,
the additional transformation described in section 4.5 is performed when needed. Finally,
code generation occurs as described in section 4.6.

While a row-major layout is assumed to prove the result in the unroll-factor theorem,
a di�erent layout may be used for the remaining code generation. The row-major choice in
the unroll-factor theorem is used to partition the array and computation in one particular
manner: once that partitioning is done, any ordering can be used on the resultant new
local arrays.

Scope

Modulo unrolling handles arbitrary a�ne functions with few other restrictions. Within its
framework, it handles imperfectly nested loops, non-unit loop step sizes, hand-linearized
multidimensional arrays, and unknown loop bounds. First, imperfectly nested loops are
automatically handled with no penalty or special cases, as the derivation in section 4.3

64 CHAPTER 4. MODULO UNROLLING

did not assume perfect nesting. Second, non-unit loop step sizes are handled as they
are integrated into the framework. Third, the method works unchanged even if multi-
dimensional arrays are hand-linearized by the programmer. Hand-linearization preserves
the a�ne property: a linear combination of a�ne functions is also a�ne, and the o�set
of any array element from its base remains unchanged using hand-linearization. Finally,
modulo unrolling handles unknown loop bounds, but code with unknown lower bounds
may require an additional transformation, as explained in section 4.5.

4.3 Deriving the unroll factors

This section proves that unrolling each loop in a loop nest by a certain factor disam-
biguates all a�ne array accesses in that nest. The proof also derives the formula for the
unroll factor Uj that yields the minimum overall code growth. The symbols used are
de�ned in section 4.2. Additional symbols needed in the proof are de�ned when needed.

A roadmap for the proof follows. First, two supporting theorems involving modular
arithmetic are proved, namely, the product modulo theorem (Theorem 4.1) and the sum-
of-products modulo theorem (Theorem 4.2). Next, the form of an a�ne array access is
de�ned (De�nition 4.3). After that, a formula for the address of an array access is de�ned
for row-major addressing (De�nition 4.4). Next, the condition for bank disambiguation
of an array access is expressed as a mathematical formula (Theorem 4.5). Then, for the
mathematical formula for bank disambiguation to be satis�ed, a formula for the step-size
required after unrolling is derived (Theorem 4.6). Next, the unroll factor implied by the
step-size required after unrolling, is shown to result in the minimum code-size increase
among unrolls that provide bank disambiguation (Theorem 4.7). Finally, for each loop
in the loop nest containing the a�ne access, the formula for the actual unroll factor is
derived, such that the required step-size after unrolling is attained (Theorem 4.8).

In all the proofs that follow, all variables and constants introduced are integers. The proof
begins by supplying two supporting theorems, theorems 4.1 and 4.2, involving modular
arithmetic.

Theorem 4.1 requires Lemmas 1 and 2; stated below without proof.

Lemma 1 Let X � 0; N � 1. From the de�nition of gcd (greatest common divisor),
N = gcd(N;X)p1, and X = gcd(N;X)p2 where p1; p2 � 1 are relatively prime.

2

Lemma 2 Let X � 0; N � 1, and p1; p2 are as de�ned in Lemma 1. Then
lcm(N;X) = p1X = p2N .

2

Theorem 4.1 (Product modulo theorem) Assume D;X � 0 and N � 1. Then
minfD j DX mod N = 0g = N= gcd(N;X).

4.3. DERIVING THE UNROLL FACTORS 65

Proof From lemma 1, p1 = N= gcd(N;X); hence showing
minfD j DX mod N = 0g = p1 is adequate.

From the de�nition of minimum2:

minfD j DX mod N = 0g = p1 ()
(p1X mod N = 0 and (p3X mod N = 0 implies p3 � p1))

Hence proving minfD j DX mod N = 0g = p1 is equivalent to proving two claims: �rst,

p1X mod N = 0;

and second,

p3X mod N = 0 implies p3 � p1.

Both these claims are proven below.

First,

p1X mod N = lcm(N;X) mod N (from lemma 2)
= 0. (from de�nition of lcm)

Second, to show p3X mod N = 0 implies p3 � p1, a proof by contradiction follows.
Assume there exists some p3 < p1 such that p3X mod N = 0. Then,

p3X = kN for some k > 0 (since p3X mod N = 0)
� lcm(N;X) (from de�niion of lcm)
� p1X. (from [1])

Cancelling X, we get p3 � p1, which violates the contrary assumption p3 < p1, thus
proving the result.

2

Another theorem involving integer modulo arithmetic follows.

Theorem 4.2 (Sum-of-products modulo theorem) Let n � 1, N � 1, and bi � 0
for 1 � i � n. Then, for all ki � 0 for 1 � i � n,

(k1b1 + � � �+ knbn) mod N = 0 implies bi mod N = 0 for all i; 1 � i � n.

Proof (by contradiction) Assume that there exists i; 1 � i � n such that
bi mod N 6= 0, but for all ki; 1 � i � n, (k1b1 + � � �+ knbn) mod N = 0.

Since (k1b1 + � � �+ knbn) mod N = 0 is true for all ki, it is true for ki = 1 and
kj = 0; j 6= i, for some particular i. This yields

2The notation `()' denotes \if and only if"

66 CHAPTER 4. MODULO UNROLLING

bi mod N = 0.

The above is a contradiction, as we started with bi mod N 6= 0, thus proving the result.
2

The form of an a�ne array access assumed in the rest of the section is as follows:

De�nition 4.3 The representation of an a�ne array access, assuming a
d-dimensional a�ne array access in a k-deep loop nest is

A[(
Pk

j=1 c1;jvj) + c1;k+1; : : : ; (
Pk

j=1 cd;jvj) + cd;k+1]:
2

In the rest of the section, let address(val1; : : : ; valk) be de�ned as the address of the
a�ne function in de�nition 4.3, at index variable values vj = valj (1 � j � k), assuming
row-major array layout.

The following de�nition gives the formula for the address of an array reference as-
suming a row-major layout for the array.

De�nition 4.4 For a row-major array layout, address(val1; : : : ; valk) =

&A + (: : : ((c1;1MAX 2 + c2;1)MAX 3 + c3;1) + � � �+ cd;1)val1
...

+ (: : : ((c1;kMAX 2 + c2;k)MAX 3 + c3;k) + � � �+ cd;k)valk

+ (: : : ((c1;k+1MAX 2 + c2;k+1)MAX 3 + c3;k+1) + � � �+ cd;k+1)

where &A is the base address of array A. The formula follows from the de�nition of
row-major array addressing.

2

The theorem below derives the condition for memory bank disambiguation for an
a�ne function access of the form in de�nition 4.3. Section 1.3 states the condition for
disambiguation of any memory-reference instruction: that the memory-reference instruc-
tion access the same compile-time determinable bank in every dynamic instance. This
condition is specialized to the a�ne functions below. Theorem 4.5 assumes that array A
is low-order interleaved among N banks3.

For all j; 1 � j � k, let lj be the lower bound of the jth loop nest from the outside
enclosing an a�ne access.

3Low-order interleaving is a data layout in which array elements are interleaved among the di�erent
banks in a round-robin manner, beginning at bank 0. That is, element A[i] is allocated to bank i mod N .

4.3. DERIVING THE UNROLL FACTORS 67

Theorem 4.5 (Disambiguation condition) Suppose all the loop nests enclosing an
a�ne access are unrolled, such that the jth loop nest (1 � j � k) has a step size of Dj

after unrolling. Then, the condition for memory disambiguation of that access is

address(l1; : : : ; lk) mod N = address(l1 +m1D1; : : : ; lk +mkDk) mod N

for all positive integral values of mj (1 � j � k; forall mj � 0):

Proof The address of the a�ne function in the �rst iteration of all the loops is
address(l1; : : : ; lk). Since the array A is assumed to be low-order interleaved across
banks with A[0] on bank 0, it follows that the bank number on which address(l1; : : : ; lk)
resides is the low-order bits of the address, i.e.,

address(l1; : : : ; lk) mod N: [3]

Similarly, the bank number for any later iteration is represented as follows. Any later
iteration increments the jth loop index variable value by mkDk where mk is the number
of iterations of the unrolled loop, and Dk is its step size. Hence, the address of any later
iteration is represented as

address(l1 +m1D1; : : : ; lk +mkDk) mod N: [4]

For disambiguation, it is necessary and su�cient that the bank number for all iterations
be the same, and hence the same as in the �rst iteration. This condition for
disambiguation is the same as equating [3] and [4], yielding

address(l1; : : : ; lk) mod N = address(l1 +m1D1; : : : ; lk +mkDk) mod N:
2

The following theorem derives the minimum value of Dj, the step size after unroll,
needed for disambiguation of the a�ne access in consideration.

Theorem 4.6 (Formula for Dj) To ensure that the condition for disambiguation
given in theorem 4.5 is satis�ed, the minimum value of Dj (1 � j � k) must be

Dj = N = gcd

0
@N;

dX
i=1

0
@ci;j

dY
l=i+1

MAX l

1
A
1
A

Any multiple of the above value for Dj also satis�es the condition.

Proof The condition from theorem 4.5 is

address(l1; : : : ; lk) mod N = address(l1 +m1D1; : : : ; lk +mkDk) mod N

for all positive integral values of mj (1 � j � k; forall mj � 0). Using de�nition 4.4,
both sides of this condition are expanded. First, the left-hand side of the condition is

(&A + (: : : ((c1;1MAX 2 + c2;1)MAX 3 + c3;1) + � � �+ cd;1) l1

68 CHAPTER 4. MODULO UNROLLING

...
+ (: : : ((c1;kMAX 2 + c2;k)MAX 3 + c3;k) + � � �+ cd;k) lk
+ (: : : ((c1;k+1MAX 2 + c2;k+1)MAX 3 + c3;k+1) + � � �+ cd;k+1)) mod N .

Second, the right-hand side of the condition is

(&A + (: : : ((c1;1MAX 2 + c2;1)MAX 3 + c3;1) + � � �+ cd;1) (l1 +m1D1)
...

+ (: : : ((c1;kMAX 2 + c2;k)MAX 3 + c3;k) + � � �+ cd;k) (lk +mkDk)
+ (: : : ((c1;k+1MAX 2 + c2;k+1)MAX 3 + c3;k+1) + � � �+ cd;k+1)) mod N .

The left-hand side of the equality is of the form a mod N , and right-hand side is of the
form b mod N . If a mod N = b mod N , it follows that (b� a) mod N = 0. Substituting
in a and b yields

((: : : ((c1;1MAX 2 + c2;1)MAX 3 + c3;1) + � � �+ cd;1) m1D1 +
...

(: : : ((c1;kMAX 2 + c2;k)MAX 3 + c3;k) + � � �+ cd;k) mkDk) mod N = 0.

The above desired condition is exactly the form of the required condition in
theorem 4.2, with mi here equal to ki in the theorem, and k here equal to n in the
theorem. Hence the implied expression in that theorem is true for disambiguation,
which translates in this instance to

Dj(: : : ((c1;jMAX 2 + c2;j)MAX 3 + c3;j) + � � �+ cd;j) mod N = 0 (1 � j � k);

i.e.,

Dj

0
@

dX
i=1

0
@ci;j

dY
l=i+1

MAX l

1
A
1
A mod N = 0 (1 � j � k):

Using theorem 4.1, the minimum value of Dj satisfying this condition is:

Dj = N = gcd

0
@N;

dX
i=1

0
@ci;j

dY
l=i+1

MAX l

1
A
1
A

Any multiple of the above value for Dj also satis�es the condition.
2

The following theorem shows that the minimum value of Dj derived in theorem 4.6
minimizes the overall code size for unrolling schemes that provide disambiguation.

4.4. CODE GROWTH: BOUNDS AND THE PADDING OPTIMIZATION 69

Theorem 4.7 (Minimum code size) The value of Dj in theorem 4.6 minimizes the
overall code size of the entire loop nest unrolled appropriately for providing
disambiguation.

Proof The overall code size for the unrolled loop nest is proportional to D1 : : :Dk,
i.e., the product of the unrolled step sizes. From theorem 4.6, the given value of
Dj (1 � j �) is minimum for disambiguation for each j, independent of the values of
Dj at other j. Hence the product of Dj's is minimized when Dj for each j is
individually minimized, as was done in theorem 4.6.

2

The following theorem derives the �nal result, i.e., the value of the unroll factor Uj, in
terms of step size after unroll Dj.

Theorem 4.8 (Unroll factor formula) In order to attain the value of Dj in
theorem 4.6, we need to unroll the jth loop nest (1 � j � k) by a factor Uj given by

Uj = lcm(Dj; sj) / sj:

Proof By de�nition:

Dj is the desired step size of the jth loop in the loop nest unrolled for disambiguation.

sj is the step size of the jth loop in the loop nest before unrolling.

If Dj is a multiple of sj, then the unroll factor is Dj=sj. In general, it may not be.
Attainable unrolled step sizes are

sj or any multiple. [5]

For disambiguation, from theorem 4.6, unrolled step sizes must be

Dj or any multiple. [6]

Combining [5] and [6], the lowest attainable step size that results in disambiguation is
lcm(Dj; sj). The unroll factor is the unrolled step size divided by the initial step size,
i.e.,

Uj = lcm(Dj; sj) / sj:
2

4.4 Code growth: bounds and the padding

optimization

This section examines the increase in code size implied by the modulo unrolling. Code
growth is an undesirable side-e�ect of modulo unrolling; �rst, upper bounds on how much

70 CHAPTER 4. MODULO UNROLLING

the code size can grow in the worst case are derived. Second, the padding optimization is
described; it reduces the code growth for most cases seen in practice. Finally, an example
demonstrates the application of the modulo unrolling formulas, both with and without
the padding optimization.

Bounds on unroll factors

Unrolling incurs the cost of increased code size. To establish a bound, we show that the
unroll factor Uj derived in Theorem 4.8 is provably at most N , the number of banks.
Consider that Dj is at most N as Dj is computed by an expression that is N divided by
a positive, non-zero integer. Further, since Uj is given by lcm(Dj; sj)/sj, Uj is no more
than Dj, because the lcm of two numbers is always at most their product. Hence Uj is
at most N .

In the worst case, since all the k loop in the loop nest may be unrolled N ways,
the overall code growth is at most a factor of Nk. For k �2, Nk can be large. In
practice, however, for most a�ne functions, the overall code growth is often limited to
N irrespective of k by using the padding optimization, discussed later in this section.

A �nal observation regarding code growth is that the decision of whether or not to
modulo unroll any one nested loop does not a�ect the rest of the code. In particular, if
the code growth from modulo unrolling is deemed excessive for any one nested loop, that
nested loop is not unrolled; the accesses in it are made non-disambiguated, and the rest
of the code is una�ected.

Padding Optimization

For many a�ne functions that occur in practice, a simple optimization enables us to
restrict the overall code growth, as well as greatly simplify the code generation. This
optimization is the padding optimization, which involves padding the last array dimension
size to be a multiple ofN for all arrays. To see how, �rst we derive a simpler expression for
Dj than the one in theorem 4.8, in the case when the padding optimization is performed.

Corollary 4.9 In theorem 4.8, if the last dimension of the array (MAX d) is padded to
the next higher multiple of N , then the expression for Dj simpli�es to

Dj = N = gcd (N; cd;j):

Proof From the expansion of the expression for Dj in theorem 4.6, we get

Dj = N = gcd (N; ((: : : ((c1;jMAX 2 + c2;j)MAX 3 + c3;j) + � � �)MAX d + cd;j)):

The above equation is of the form

Dj = N = gcd (N; (XMAX d + cd;j)):

4.4. CODE GROWTH: BOUNDS AND THE PADDING OPTIMIZATION 71

where X is some integer. If MAX d is a multiple of N , it follows that irrespective of the
value of X, the gcd expression simpli�es to gcd(N; cd;j), which yields the result. It can
be shown that since the value of X does not matter for this result, the result holds for
cases when all but the last dimension of the array reference are not a�ne.

2

We de�ne the following class of array references that are shown to bene�t from the
padding optimization.

De�nition 4.10 (Simple-index last dimension) The simple-index last dimension
class of array references are those whose index expression in the last array dimension
is of the form c1 � i+ c2, where i is any loop induction variable and c1; c2 are any integer
constants. The array index expressions other than for the last dimension are unrestricted,
and need not even be a�ne.

Most a�ne functions that occur in real programs are of the simple-index last dimen-
sion class. Some references that have non-a�ne expressions in all but the last array
dimension are also in this class. The following theorem shows that for this class, at most
one of the enclosing loops is unrolled by modulo unrolling.

Theorem 4.11 Consider an array reference of the simple-index last dimension class. If
the array accessed by the reference has its last dimension padded to a multiple of N , then
at most one of its enclosing loops is unrolled. That is, the Uj values for the other loops
will automatically be 1.

Proof The expression for Dj in this case is obtained from corollary 4.9 as

Dj = N = gcd (N; cd;j):

Recall that cd;j is the index of the jth loop induction variable in the last array
dimension. Since the reference is a simple-index in the last dimension, all but one of the
cd;j's for di�erent j are zero. For all these j values with cd;j = 0, it follows that
Dj = N= gcd(N; 0) = 1. Hence, Uj, the unroll factor, is also 1.

2

Theorem 4.11 further tightens the code-size growth bound of Nk derived at the be-
ginning of section 4.4, where N is the number of memory banks, and k is the number of
loops in the enclosing loop nest of the a�ne reference. Using the padding optimization,
however, theorem 4.11 shows that the code-size growth is no more than N for array refer-
ences that are in the simple-index last dimension class, irrespective of k, thus tightening
the bound.

In some cases the padding optimization fails to bound the overall code growth to N .
Such cases include those where the a�ne functions are not simple index functions, as well

72 CHAPTER 4. MODULO UNROLLING

as cases where the loop nest contains multiple simple index functions that induce unrolls
on di�erent loops of the loop nest. For cases where the code growth is more than a factor
of N , if the code growth is deemed excessive, the array accesses are executed on the
dynamic network, thus avoiding any code growth. The dynamically executed accesses,
however, do not interfere with the disambiguation of other accesses.

Example of applying modulo unrolling

As an example of how modulo unrolling is used to automatically compute the unroll
factors, consider �gure 4.2. Figure 4.2(a) shows a code fragment from Tomcatv, one of
the Spec92 benchmarks. Figure 4.2(b) shows the unroll factors computed using modulo
unrolling for the X[I][J] and X[I][1] accesses on di�erent rows, for both I and J loops.
The last row shows the overall unroll factors. The second column shows the expressions
for unroll factors using the formula in Theorem 4.8. Assuming N = 8 and array sizes for
the X and Y arrays being 29� 29, the third and fourth columns show the unroll factors
with and without the padding optimization. In the fourth column, the last dimension
size JMAX = 29 is assumed to be padded to 32, the next multiple of N . Using the unroll
factor formula, the unroll factors for the X[I][J] access for the I and J loops are shown
as 1 and 8 after padding. The unroll factors would have been larger (8 and 8) without
padding. If the unroll factors induced by all the accesses are similarly computed (not
shown), and the lcm for each loop in the loop nest taken, the overall unroll factors in the
last row results.

4.5 An additional transformation

This section describes an additional transformation needed after modulo unrolling for
bank disambiguation of loops having an unknown lower bound and a non-unit step size.

After the code is unrolled by the factors dictated by Theorem 4.8, each a�ne array
access refers to the same bank in every dynamic instance. In addition, in most cases
after unrolling, the bank numbers of the accesses are compile-time constants. For a loop
with an unknown lower bound and a non-unit step size, however, the repeating pattern
of bank numbers may depend on the lower bound. As an example, consider the code
in �gure 4.3. When the lower bound l is 0, the banks referenced by successive accesses
is 0, 2, 0, 2, . . . , but if l is 2 the pattern changes to 1, 3, 1, 3, As a result, bank
disambiguation is not possible.

To allow bank disambiguation for a loop with unknown loop bounds and non-unit
step size, a switch statement is needed in the output code. The switch has Dj/Uj cases
and is made on the value of l mod (Dj=Uj), each case executing the original loop unrolled
by a factor Uj but with di�erent patterns of bank numbers. The resulting code for the
example in �gure 4.3 is shown in �gure 4.4. For this example, Dj = 4 and Uj = 2.

4.5. AN ADDITIONAL TRANSFORMATION 73

real X[IMAX][JMAX], Y[IMAX][JMAX]

for I=2 to M-1 do
for J=2 to M-1 do

X[I][J] = 0.9 * X[I][1]
Y[I][J] = 0.9 * ((1.0 - X[I][1]) * Y[1][J] + X[I][1] * Y[M][J])

endfor

(a)

ACCESS UNROLL FACTORS

Abstract Expression Without padding With padding
(JMAX = 29) (JMAX padded to 32)

X[I][J] Loop I DI = UI = N= gcd(N; 1 � JMAX+ 0 � 1) 8= gcd(8; 29) = 8 8= gcd(8; 32) = 1
Loop J DJ = UJ = N= gcd(N; 0 � JMAX+ 1 � 1) 8= gcd(8; 1) = 8 8= gcd(8; 1) = 8

X[I][1] Loop I DI = UI = N= gcd(N; 1 � JMAX+ 0 � 1) 8= gcd(8; 29) = 8 8= gcd(8; 32) = 1
Loop J DJ = UJ = N= gcd(N; 0 � JMAX+ 0 � 1) 8= gcd(8; 0) = 1 8= gcd(8; 0) = 1

Overall Loop I 8 1
Loop J 8 8

(b)

Figure 4.2: Modulo unrolling for code fragment from Tomcatv. (a) Code fragment. (b) Unroll
factors computed for two of the accesses for N = 8 and X and Y array sizes being 29� 29. The
unroll factors are shown with and without the padding optimization. The last row shows the
overall unroll factor computed to be the lcm of all 7 accesses.

for i=l to 99 step 2 do
A[i] = � � �

endfor

Figure 4.3: Sample loop with unknown lower bound and non-unit step size.

74 CHAPTER 4. MODULO UNROLLING

switch (l mod 2)
case 0: for i=l to 99 step 4 do

A[i] = � � � //bank 0
A[i+2] = � � � //bank 2

endfor

case 1: for i=l to 99 step 4 do
A[i] = � � � //bank 1
A[i+2] = � � � //bank 3

endfor

endswitch

Figure 4.4: Code transformed for disambiguation (4 bank system) for example in �gure 4.3.
The original loop has an unknown lower bound and non-unit step size, resulting in a bank access
pattern that depends upon the lower bound value. The transformed code has a switch statement
with Dj / Uj cases, the switch made on lmod (Dj=Uj). Each case has a compile-time-known
bank access pattern.

4.6 A�ne code generation

Once loops are unrolled and the additional transformation in section 4.5 is performed
when required, each a�ne access refers to the same bank in all dynamic instances. This
section outlines how the constant bank numbers, and the expressions for local o�sets
within the banks, are actually computed.

Code generation e�ectively distributes a single array of S elements in the original
program across the banks, so that each bank has an array of size dS=Ne. Using low-
order interleaving, the bank number of an access is its global o�set modulo N , and the
local o�set is the global o�set divided by N . When the last dimension is padded, as is
done because of the padding optimization in section 4.4, the bank number is simply the
last dimension modulo N . In addition, the local o�set is obtained by replacing the last
dimension index with the index divided by N .

Strip mining

While the observations in section 4.6 can be used to generate code directly, code gener-
ation is automated by strip-mining the last dimension by N and strength-reducing the
divide operations. This process of strength-reduction following strip mining is done fol-
lowing the method for strength-reduction in [38]. Strip mining replaces the last dimension
by itself divided by N , and it adds a new dimension at the end with the index being the
original last dimension index mod N . The division expressions are strength-reduced in
all cases, and the mod expressions representing bank numbers are reduced to constants

4.7. OTHER OPTIMIZATIONS FOR ARRAY ACCESSES 75

using compiler knowledge of the modulo values of loop variables combined with modulo
arithmetic [39].

Startup and cleanup code

Unrolling always generates cleanup code after the unrolled loop if the number of iterations
is not a multiple of the unroll factor. In addition, unrolling in the modulo unrolling
method generates startup code when the lower bound is unknown. The startup code
ensures that the main loop is started with the induction variable value being the next
higher multiple of N , thus making the bank numbers known inside the main loop.

idiv4 = 0;
for i=0 to 99 step 4 do
A[idiv4][0] = � � �
A[idiv4][1] = � � �
A[idiv4][2] = � � �
A[idiv4][3] = � � �
idiv4++

endfor

Figure 4.5: Bank-disambiguated code for example in �gure 1.7.

Figure 4.5 shows the �nal result of bank disambiguation on the original code in
�gure 1.7 for a four-bank Raw machine. The code is �rst unrolled by N = 4 and the last
array dimension is strip mined by N = 4. The division expression is strength reduced to
the variable idiv4. The new last dimension in �gure 4.5 represents the bank numbers,
which have been reduced to the constants 0, 1, 2 and 3. The bank access pattern in the
transformed loop is 0, 1, 2, 3, 0, 1, 2, 3 . . . as in the original code, except that now each
access always refers to the same bank. In the Raw compiler, the transformed code is
�nally mapped by the space-time scheduler to the Raw executable.

4.7 Other optimizations for array accesses

This section outlines two optimizations for array accesses on Raw in addition to modulo
unrolling: dependence elimination and the array-permutation transformation.

Dependence elimination

Dependence edges are introduced between memory instructions that the compiler can
either prove to refer to the same location, or cannot prove to refer to di�erent locations.

76 CHAPTER 4. MODULO UNROLLING

Unnecessary dependence edges restrict ILP, since they imply sequentiality of accesses
and thus restrict scheduling freedom. For scienti�c codes containing a�ne array ac-
cesses, three simple rules su�ce to disambiguate most memory instructions that can be
disambiguated. First, pointer analysis proves that instructions referring to di�erent un-
aliased arrays are memory-independent. Second, memory instructions that are found to
refer to di�erent banks by modulo unrolling are always memory-independent. Finally,
even among memory instructions referring to the same bank, instructions belonging to
the same uniformly generated set4, and di�ering by a non-zero constant are memory--
independent.

Array-permutation transformation

Sometimes modulo unrolling unrolls the outer loop in a loop nest and not the inner
loop. Unrolling only the outer loop is ine�ective in terms of exposing ILP within basic
blocks, because the basic blocks are very small. The array-permutation transformation
is a transformation that replaces array references inducing outer loop unrolling by ref-
erences to a permuted array such that the new references induce unrolling on the inner
loop. A permuted array is one that has the same number and size of dimensions as the
original array, but in a permuted order. When all the loops in a program request the
same permutation for an array, the original array is replaced by the permuted array.
When di�erent loops request con
icting permutations, it may be pro�table to copy one
permuted array to another in between loops.

The array-permutation transformation is currently performed by hand in places where
it might be pro�table. The transformation can be automated by discovering permutations
desired, and by using a cost model to determine when copying is pro�table.

4.8 Summary

This chapter describes modulo unrolling, the second of our two methods for bank disam-
biguation. Modulo unrolling improves upon the �rst method, equivalence-class uni�ca-
tion, by exploiting memory parallelism within arrays, while providing bank disambigua-
tion for a�ne array accesses. The method for modulo unrolling is �rst stated, then the
formula for the unroll factor stated is derived. The padding optimization helps control
the code size increase, and simpli�es code generation. Modulo unrolling is shown to
work for arbitrary a�ne functions, imperfectly nested loops and unknown loop bounds.
Most importantly, modulo unrolling continues to work for loops with a�ne accesses even
when they also contain non-a�ne accesses. This behavior is unlike many a�ne-based
parallelization schemes such as those for multiprocessor and vector compilers.

4Two a�ne memory instructions are in the same uniformly generated set if they access the same
array, and their index expressions di�er by at most a constant. For example, A[i] and A[i+2] are in the
same uniformly generated set, but A[i] and A[i+ j] are not [40].

Chapter 5

Non-disambiguated or dynamic

accesses

This chapter describes the mechanisms Maps provides for correctly and e�ciently han-
dling non-disambiguated memory-reference instructions on bank-exposed architectures.
Non-disambiguated accesses are those that are not disambiguated to a particular bank
by bank disambiguation. Bank disambiguation disambiguates every memory instruction
that is known to access the same compile-time-known bank in every dynamic instance.
Non-disambiguated references, by de�nition, may go to di�erent banks in di�erent dy-
namic instances; hence non-disambiguated references cannot be scheduled at compile-
time. Since compiler-scheduling is not possible, a separate run-time routed network,
called a dynamic network, must be provided on the bank-exposed architecture to complete
non-disambiguated references. The dynamic network may be either a hardware-managed
centralized network, or a distributed network under software control.

This chapter is organized as follows. Section 5.1 begins by showing the need for
dynamic accesses. Section 5.2 illustrates how Maps enforces di�erent kinds of memory
dependences. Section 5.3 shows how the kind of dynamic network used in
uences how
dependences are enforced. It also shows why it is a challenge to e�ciently enforce de-
pendences on distributed dynamic networks that do not themselves provide dependence
or timing guarantees. The rest of this chapter is devoted to optimizations possible on a
distributed dynamic network, in case one is used. Section 5.4 describes software serial
ordering (SSO), an optimization method for aggressively overlapping dynamic access la-
tencies on a distributed network, while correctly enforcing dependences between dynamic
accesses. Section 5.5 describes how dependences across scheduling units are maintained
while using SSO, irrespective of what kind of dynamic network is used. Section 5.6 de-
scribes optimizations that improve performance by reducing the amount of dependences
that need to be enforced. Two optimizations, independent epochs and memory updates,
are presented. The Raw machine uses a distributed dynamic network, and thus can
bene�t from SSO and its optimizations. Section 5.7 describes future work. Section 5.8
summarizes the chapter.

From this point, the terms `non-disambiguated' and `dynamic' are used interchange-

77

78 CHAPTER 5. NON-DISAMBIGUATED OR DYNAMIC ACCESSES

ably, and so are the terms `disambiguated' and `static'. Both sets of terminologies are
maintained as a distinction between concept and implementation: non-disambiguated
accesses are implemented as dynamic accesses; disambiguated accesses are implemented
as static accesses.

5.1 Uses for dynamic references

This section motivates the need for non-disambiguated accesses by showing that although
they are slower than disambiguated accesses, selective use of non-disambiguated accesses
can improve performance in certain cases.

A compiler can bank disambiguate all accesses through equivalence-class uni�cation
alone, and modulo unrolling helps improve memory parallelism further. There are several
reasons, however, why it may be undesirable to disambiguate all accesses. Some reasons
are listed here:

� Modulo unrolling sometimes requires unrolling of more than one dimension of multi-
dimensional loops. This unrolling can lead to excessive code expansion. To reduce
the unrolling requirement, some accesses in these loops can be made dynamic.

� Bank disambiguation may sometimes be achieved at the expense of memory paral-
lelism. For example, indirect array accesses of the form A[B[i]] cannot be disam-
biguated unless the array A[] is placed entirely on a single bank. This placement,
however, yields no memory parallelism for A[]. Instead, Maps can choose to forgo
bank disambiguation and distribute the array. Indirect accesses to these arrays
would be implemented dynamically, which yields better parallelism at the cost of
higher access latency.

� Dynamic accesses can improve performance by not destroying compile-timememory
parallelism in critical parts of the program. Without dynamic accesses, arrays with
mostly a�ne accesses but a few irregular accesses, even in non-critical portions,
would have to be mapped to one bank, thus losing all potential memory parallelism
to the arrays.

� As described in section 3.3, dynamic accesses can increase the resolution of equiva-
lence class uni�cation. A few isolated \bad references" may cause pointer analysis
to yield very few equivalence classes. By selectively removing these references from
disambiguation consideration, more equivalence classes can be discovered, enabling
better data distribution and improving memory parallelism. The misbehaving ref-
erences can then be implemented as dynamic accesses.

For these reasons, it is important to have a good fall-back mechanism for dynamic
references. More important, such a mechanism must integrate well with the static (dis-
ambiguated) mechanism. The next section explains how these goals are accommodated.

5.2. ENFORCING DEPENDENCES 79

For a given memory access, the choice of whether to use a static or a dynamic access
is not always obvious. Because of the signi�cantly lower overhead of static accesses, the
current Maps system makes most accesses static by default, with one exception. Arrays
with any a�ne accesses are always distributed, and two types of accesses to those arrays
are implemented as dynamic accesses: non-a�ne accesses, and a�ne accesses that require
excessive unroll factors for bank disambiguation. Automatic detection of other situations
which can bene�t from dynamic accesses has not been implemented. However, section 9
shows two programs, Unstructured and Moldyn, whose performance can be improved
when dynamic accesses are selectively used.

5.2 Enforcing dependences

The issue of implementing dynamic accesses e�ciently is closely tied to the enforcing of
possible dependences between memory accesses. This section describes how dependences
between di�erent combinations of static and dynamic references are enforced. We show
that dynamic-dynamic dependences are the hardest to enforce e�ciently.

Dependence pairs on a software-exposed architecture can be classi�ed into three types:
those between two static accesses, those between a static and a dynamic access, and
those between two dynamic accesses. The �rst two types can be e�ciently enforced in a
straightforward manner as follows. First, dependences between static accesses are easily
enforced. References mapped to di�erent memory banks are necessarily non-con
icting.
For references mapped to the same bank, the compiler need only ensure that their order
in the �nal code is the same as in the original source. Since static accesses are fast,
there is little opportunity or need for overlap of latency. Second, a dependence between
a static and a dynamic accesses is also enforced in a straightforward manner. A static
synchronization message can be used to communicate the completion of the �rst access
to the initiation of the dependent access. Since static messages are fast, this synchro-
nization has little overhead. If a dynamic store is followed by a dependent static load,
this synchronization requires an extra dynamic store acknowledgment message at the
completion of the store, so that a clear completion point for the dynamic store exists in
the code.

For dependences between pairs of dynamic memory references, however, a straight-
forward implementation that serializes the references is slow. Dynamic access latencies
are long compared to static access latencies. Complete serialization fails to overlap the
dynamic access latencies; hence techniques to handle dynamic latencies focus on trying
to overlap the dynamic latencies as much as possible while maintaining correctness.

5.3 Enforcing dependences between dynamic accesses

This section shows how enforcing dependences between dynamic accesses depends upon
the kind of dynamic network used. Enforcing dependences between pairs of dynamic
accesses can be very expensive; fortunately, optimizations are possible. The costs and

80 CHAPTER 5. NON-DISAMBIGUATED OR DYNAMIC ACCESSES

optimizations possible depend upon the nature of the dynamic network itself. Finally,
the section shows the challenge in enforcing dependence on a distributed network that
does not itself provide any dependence or timing guarantees.

Di�erent kinds of dynamic networks

There are many di�erent kinds of networks [9] that can be used on a bank-exposed
machine. Dynamic networks connect the tiles on bank-exposed architectures; possible
topologies include buses, linear arrays, meshes, trees, hypercubes, butter
ies, and net-
works centralized at a serial arbitrator.

For the purposes of enforcing dependences, we classify dynamic networks into three
types as follows. The �rst class of networks are those that enforce dependences in hard-
ware. In this class of network, the hardware ensures that accesses that are issued in
program order commit to memory in order. In such networks the task of overlapping
latency falls to the hardware, and there is no role for the compiler in this aspect. Most
microprocessor memory buses with associated arbitration logic fall in this class. The sec-
ond class of networks are those in which the hardware does not guarantee that accesses
that issue in program order commit in order, yet, the network guarantees the timing
between the issue and commit of a request message, irrespective of network contention.
Such networks include full crossbars, whether implemented as single-stage or multi-stage
networks. Such networks, i.e.those having guaranteed timing between issue and commit
of memory references, allow the compiler to enforce dependence by ensuring two proper-
ties: one, by statically scheduling requests such that only one request reaches each bank
per cycle, and two, by ensuring that the requests reach the banks in program order, even
if issued out of order. Such static scheduling of the network is possible using methods
similar to those in the Raw space-time scheduler [25] for the static network.

The third kind of dynamic network is one in which not only does the hardware
not guarantee dependence, but in addition the timing between the issue and commit of
a request message is not guaranteed, and depends upon the network contention. Most
distributed-memory multiprocessor networks, such as meshes, trees, and buses are in this
class of network. The Raw machine explores such a network with no timing guarantees.
The motivation for Raw to explore such a network is that networks with no dependence
checking and no timing guarantees is two-fold. First, such networks are more scalable, as
they have no centralized dependence-checking hardware. Second, such networks require
less wires than guaranteed-timing networks, and thus are easier to implement.

Enforcing dependences in the compiler

In networks with no dependence checking in hardware and no timing guarantees, the
task of ensuring dependence falls to the compiler. The lack of dependence guarantees
opens up new challenges in the compiler; however, the scalability of distributed network
implementations opens up new opportunities as well. If compiler techniques are e�ective,

5.4. SOFTWARE SERIAL ORDERING 81

they can exploit far more parallelism than can centralized arbitration logic. The rest of
this chapter is dedicated to such techniques for distributed dynamic networks.

To see the di�culty involved in enforcing dependences e�ciently on networks with no
hardware dependence enforcement and no timing-guarantees, we begin with an example.
Consider the case of a dependence that orders a dynamic store before a potentially
con
icting dynamic load. Because of the dependence, it would not be correct to issue
the two requests in parallel from di�erent tiles. Furthermore, it would not su�ce to
synchronize the issues of the requests on di�erent tiles. Raw-like distributed dynamic
networks have no timing guarantees: even if the memory operations are issued in correct
order, they may still be delivered to a memory bank in incorrect order. One obvious
solution is complete serialization as shown in �gure 5.1(a), where the later memory
reference cannot initiate until the earlier reference is known to complete. Complete
serialization, however, is expensive because it serializes the slow round-trip latencies of
the dynamic requests.

Section 5.4 presents a new technique called software serial ordering to optimize be-
yond complete serialization. Software serial ordering depends upon the properties of the
distributed network used. In particular software serial ordering leverages the in-order
messaging property provided by many dynamic networks. The in-order property states
that if two or more messages are sent between the same source and destination, they
appear at the destination tile in the same order as they were launched at the source.
Software serial ordering is described in section 5.4.

5.4 Software serial ordering

This section describes a new technique called software serial ordering (SSO) to e�ciently
ensure dependences between dynamic accesses on networks that o�er no hardware depen-
dence enforcement and no timing guarantees. It then illustrates SSO using an example.

Figure 5.1(b) illustrates SSO. SSO leverages the in-order delivery of messages on
the point-to-point network between any source-destination pair of tiles. SSO works as
follows. Each equivalence class is assigned a turnstile node. The role of the turnstile is to
serialize the request portions of the memory references in the corresponding equivalence
class. The address computations for the di�erent accesses in one class are not serialized,
only the requests are serialized. Moreover, the address computations communicate their
addresses to turnstiles using register-level (static) messages. Once memory references go
through the turnstile in the right order, correct behavior is ensured from three facts. First,
requests destined for di�erent tiles must necessarily refer to di�erent memory locations,
so no memory dependence needs to be enforced. Second, requests destined for the same
tile are delivered in order by the dynamic network, as guaranteed by the network's in-
order delivery property. Finally, the memory tile handles requests in the order they are
delivered.

In order to guarantee correct ordering of processing of memory requests, serialization
is inevitable. SSO serializes only the memory requests, and allows the exploitation of

82 CHAPTER 5. NON-DISAMBIGUATED OR DYNAMIC ACCESSES

P1 P2

M1 M2

P1 P2

M1 M2

T

(a) (b)

loadstore

loadstore

Figure 5.1: Two methods for enforcing dependences between dynamic accesses. P1 and P2
are processing nodes initiating two potentially con
icting dynamic requests; both diagrams
illustrate an instance when the two requests don't con
ict. M1 and M2 are the destinations
of the memory requests. The light arrows are static messages, the dark arrows are dynamic
messages, and the dashed arrows indicate serialization. The dependence to be enforced is that
the store on P1 must precede the load on P2. In (a), dependence is enforced through complete
serialization. In (b), dependence is enforced through software serial ordering. T is the turnstile
node. The only serialization point is the launches of the dynamic memory requests at T. The
Raw tiles are not specialized; any tile can serve in any or all of the following roles, as processing
node, memory node, or turnstile node.

5.5. DEPENDENCES ACROSS SCHEDULING UNITS 83

parallelism available in address computations, latency of memory requests and replies,
and processing time of memory requests to di�erent tiles. For e�ciency, software serial
ordering uses the static network to handle synchronization and data transfer whenever
possible. Furthermore, di�erent equivalence classes use di�erent turnstiles and issue
requests in parallel. Interestingly, though SSO enforces dependences correctly while
allowing potentially dependent dynamic accesses to be processed in parallel, it does not
use a single explicit check of run-time addresses.

Example of software serial ordering

Figure 5.2 explains SSO through an example. The initial code in �gure 5.2(a) has an
A[B[i]] reference inside a for loop. The reference to A[] is non-a�ne. Assume that
in order to exploit memory parallelism between a�ne accesses to A[] elsewhere in the
program, the array A[] is distributed using low-order interleaving.

Figure 5.2(b) shows the code after bank disambiguation and SSO. The B[] access is
disambiguated using modulo unrolling; hence, the for loop is unrolled by a factor of 4.
The A[] references in the unrolled loop remain non-disambiguated, as the references are
non-a�ne and array A[] is distributed. Consequently, the 4 A[] references in �gure 5.2(b)
are handled using SSO. The requests are made to the turnstile using compiler-scheduled
communication. Next, the turnstile issues the 4 non-blocking requests to memory serially,
on the distributed dynamic network. The store requests reach memory banks that are
unknown at compile-time, where they are serviced, and store acknowledgments are sent
back to a PE waiting for them, decided at compile-time. Finally, when all the acknowl-
edgments are received, the control moves to the next section of code after the unrolled
loop body. Correctness is ensured because request messages from the turnstile to any
one memory bank arrive in program order; in-order delivery follows from the pair-wise
in-order property of the network. To see how SSO works, suppose that, in �gure 5.2(b),
A[B0[i

0]] and A[B1[i
0]] accesses resolve at run-time to the same address (i.e., they are

truly dependent). Then the requests for the two accesses, from the turnstile to the bank
containing the accessed location, arrive in program order, ensuring that the writes com-
mit in order. Figure 5.2(c) shows one possible result after code generation: the turnstile
in this case is placed on PE 0.

5.5 Dependences across scheduling units

This section shows why software-serial ordering on its own is not enough; a scheme for
enforcing static-dynamic dependences across scheduling units is needed. Memory barriers
are presented as one way to enforce such dependences across scheduling units. Finally,
cases when memory barriers can be optimized away are described.

Ensuring dependences between static and dynamic accesses across scheduling units
poses an extra challenge, irrespective of whether a hardware-managed or software-controlled
dynamic network is used. A scheduling unit is the granularity of code on which the space-

84 CHAPTER 5. NON-DISAMBIGUATED OR DYNAMIC ACCESSES

A []A []0 2

Bank 0

A []A [] 31

0B []

Bank2 Bank 1

2

Bank3

A []

Scalar dependence edge (register communication)

0B []

1

1A []

1

2A []

B []

0

3B []2B []

B []

PE 0 PE 1 PE 3PE 2

3

B []

3

B []

A []

Code

Data

for i = 0 to 99 do
 A[B[i]] = . . .

A[]

B[]

(b)

Non-disambiguated (dynamic) access request
Non-disambiguated (dynamic) access acknowlegdement

1

1

i’ = 0
for i = 0 to 99 step 4 do

 A[B [i’]] = . . .
 i’ = i’ + 1

 A[B [i’]] = . . .

0

3

2

 A[B [i’]] = . . .

 A[B [i’]] = . . .

(a)

Edge from memory access to possible bank or serialization point

Memory dependence edge

 A[B [i’]] = . . . A[B [i’]] = . . . A[B [i’]] = . . . A[B [i’]] = . . .(c)

3210

Turnstile

Turnstile

Figure 5.2: Example showing software serial ordering (SSO). (a) Initial code; (b) After bank
disambiguation and SSO. A[] is distributed, so A[] accesses are non-disambiguated and use SSO.
B[] accesses are bank-disambiguated using modulo-unrolling. SSO involves serialization at the
turnstile, which can be placed on any of the PEs. The scheduling unit (in this case the loop
body) waits for the write acknowledgments before moving to the next scheduling unit. (c) After
code generation.

5.5. DEPENDENCES ACROSS SCHEDULING UNITS 85

time scheduler [25] performs instruction scheduling and code generation; the space-time
scheduler is the phase following Maps in the Raw compiler. Scheduling units are basic
blocks or larger; control-localization [25] extends them to forward-control-
ow regions.
Static-static and dynamic-dynamic dependences are enforced in a straight-forward man-
ner: the static accesses are ordered in program order on their owner tile, and the dynamic
accesses are ordered in program order on the turnstile. In contrast, static-dynamic de-
pendences require point-to-point synchronization messages between successive accesses
to ensure serialization within the same equivalence class. Point-to-point synchronization
messages are easily scheduled within a scheduling unit. Across scheduling units, how-
ever, point-to-point synchronization messages cannot be compiler-scheduled because the
predecessor for a scheduling unit is not known at compile-time.

Memory barriers

The Raw compiler adopts memory barriers as a simple solution to the problem of enforc-
ing static-dynamic dependences across scheduling units. Run between scheduling units,
memory barriers isolate di�erent scheduling units from each other, obviating the need
for pairwise synchronization between accesses in di�erent scheduling units. A memory
barrier is a software construct that waits for the completion of every reference on every
tile before allowing the next scheduling unit to execute on any tile. A barrier is associ-
ated with every edge of the program's control-
ow graph1 that exits a scheduling unit,
including those leading back to the start of the same unit.

A memory barrier is implemented as follows. In the predecessor scheduling unit, every
tile containing static accesses, or dynamic-access returns, sends a message to a central
tile upon completion of the predecessor. Next, the central tile waits until all incoming
messages are received, and then broadcasts a completion message to every tile. Each tile
starts executing the successor upon receiving its completion message, thus completing the
barrier. Two observations regarding performance follow. First, since the barrier involves
a compile-time-known communication pattern, all messages involved in the barrier are
static. Second, the many-to-one and one-to-many communication patterns in a barrier
are implemented as trees in case a distributed network is used, reducing the barrier
overhead for when the number of tiles is large.

Figure 5.3 depicts the transition between two scheduling units without and with a
barrier. Figure 5.3(a) shows the transition from scheduling unit S1 to scheduling unit
S2 without a barrier. S2 starts execution as soon as the branch condition at the end
of S1 becomes available2. Without a barrier, a static-dynamic dependence across the
two scheduling units may not be respected, as the access commits may be re-ordered.

1A control-
ow graph [41] of a program is a directed graph whose nodes correspond to basic blocks
in the program, and edges correspond to branches between basic blocks.

2The condition for the branch at the end of S1 is computed on some one tile, and then broadcast to
all the tiles. The broadcast is absent if the end of the scheduling unit does not have a branch, or if it is
unconditional.

86 CHAPTER 5. NON-DISAMBIGUATED OR DYNAMIC ACCESSES

Figure 5.3(b) shows the same two scheduling units with a barrier between them. S2 does
not start on any node until S1 on every node is complete.

(a)

Tile 0 Tile 1 Tile 2 Tile 3

S1 S1S1S1

S2 S2

S2

S2

(b)

Tile 0 Tile 1 Tile 2 Tile 3

S1 S1S1S1

S2 S2
S2

S2

Time

Barrier broadcast

Barrier messages

Branch condition broadcast

Branch condition messages

Figure 5.3: Transition between scheduling units without and with a barrier. In both (a) and
(b), a 4-tile machine is assumed. S1 is the predecessor scheduling unit; S2 is the successor.
Both S1 and S2 have been parallelized into 4 threads by Maps and the space-time scheduler.
The vertical axis is time. The sets of 4 side-by-side vertical lines represent parallel threads of
S1 (above), and of S2 (below). The branch condition at the end of S1 is computed on a single
tile (decided by the space-time scheduler; here tile 2) and broadcast to the other tiles. (a)
Transition without a barrier. (b) Transition with a barrier in-between S1 and S2. The barrier
starts with all tiles signaling completion of S1 to a central tile (here tile 1). After all completion
messages are received, the central tile broadcasts to all tiles signaling them to proceed to S2.

Optimizing away memory barriers

There is a special case when a barrier is not needed. If in the predecessor, the last access
for each equivalence class is of the same kind (static or dynamic) as the �rst access for
that class in the successor, then no barrier is needed. The compiler should check for this
condition. To see the utility of this check, consider three common cases in which the
check automatically reveals that no barrier is needed. First, if all the accesses in both
scheduling units are static, no barrier is needed. Second, if both scheduling units have
only dynamic accesses, and all dynamic accesses are implemented through software-serial
ordering, no barrier is needed. Third, if the predecessor and successor scheduling units

5.6. DYNAMIC OPTIMIZATIONS 87

are the same (i.e., the scheduling unit is a loop body), and if each equivalence class in
that scheduling unit has only one kind of access (static or dynamic), then too, no barrier
is needed.

5.6 Dynamic optimizations

This section describes two optimizations for dynamic references that are handled by
software serial ordering (SSO). The �rst, independent epochs, improves upon SSO by
eliminating the turnstile's serialization in certain scheduling units. The second, updates,
increases the number of cases when independent epochs are applicable.

Independent epochs

Isolating the memory references in di�erent scheduling units, as in section 5.5, opens
up the possibility of using di�erent dependence strategies in di�erent scheduling units.
In particular, more aggressive schemes than software-serial ordering are possible for cer-
tain scheduling units with special properties, in case a distributed, software-controlled
dynamic network is used. The optimizations are applied orthogonally for each equiv-
alence class. We describe one of these optimizations, termed the independent epoch
optimization, below.

The independent epoch optimization applies to code regions in which the compiler
can determine that all accesses within a single equivalence class are independent from
each other. We call such a region an independent epoch for that class. Such code regions
are not related to the scheduling units used by the space-time scheduling compiler phase;
independent epochs may be smaller than, equal to, or larger than the scheduling units.
Normally in software serial ordering, all dynamic memory requests in a single alias equiv-
alence class have to go through a turnstile for the entire duration of the program. Inside
an independent epoch, all accesses issue in parallel, without going through a turnstile.
Parallel issue is correct because the accesses are independent. Further, proper serial-
ization with memory accesses outside the independent epoch is guaranteed by placing
memory barriers before and after the independent epoch. Memory barriers are described
in section 5.5. Memory barriers are needed before and after the independent epoch in
all cases, regardless of whether barriers are needed if the same scheduling unit were im-
plemented using software-serial ordering. A trivial example of an independent epoch is
a region whose dynamic accesses to an equivalence class are all loads. Otherwise inde-
pendent accesses are found using dependence analysis [26]; dependence analysis is aided
by pointer analysis, array-index analysis and data
ow analysis.

Figure 5.4 shows an example of an independent epoch. Figure 5.4(a) shows the initial
code with an A[i + x] reference inside a loop. Assume that the variable x is not a loop
index variable and does not have a known constant value; hence the A[i+x] access is not
a�ne. Further assume that the array A[] is distributed using low-order interleaving. The
A[] reference is non-disambiguated because it is a non-a�ne reference to a distributed

88 CHAPTER 5. NON-DISAMBIGUATED OR DYNAMIC ACCESSES

array. Figure 5.4(b) shows the loop after unrolling by a factor of 4, and application
of independent epochs. The loop is unrolled to expose memory parallelism in the A[]
access. Dependence analysis shows that the 4 accesses after unrolling are independent
because they are separated by constant o�sets. Consequently, the 4 references form an
independent epoch and are issued in parallel without a turnstile. Parallel dynamic access
are shown in �gure 5.4(b), and after code generation, in �gure 5.4(c). Memory barriers
before and after the independent epoch (not shown) ensure correct ordering with regard
to references outside it.

A []0 1A []

A[i+x+3] = . . .

A []

Bank3

A[i+x+1] = . . .

A []

A[i+x+2] = . . .

PE 3PE 2

Bank2

A[i+x] = . . .

3

Bank 1

2

Bank 0

PE 0 PE 1

for i = 0 to 99 step 4 do

Non-disambiguated (dynamic) access request
Non-disambiguated (dynamic) access acknowlegdement

Code

Data

for i = 0 to 99 do
(a)

A[]

 A[i+x] = . . .

(b)
 A[i + x] = . . .

 A[i + x + 1] = . . .

 A[i + x + 2] = . . .

 A[i + x + 3] = . . .

0 1 2 3A [] A [] A [] A []

(c)

Figure 5.4: Example showing an independent epoch. (a) Initial code. The A[] access non-a�ne.
(b) After unrolling, dependence analysis and the independent epoch optimization. Dependence
analysis �nds that the 4 A[] accesses are independent, and hence they are issued as an inde-
pendent epoch, without serialization. (c) After code generation.

5.6. DYNAMIC OPTIMIZATIONS 89

Updates

To understand the update optimization, consider the example in �gure 5.5(a). Two
read/modify/write operations on di�erent elements of array A[] are shown. As the values
of the B[] array are assumed unknown, the two A[� � �] locations alias in the case B[i] =
B[i+1]; hence the two stores to A[� � �] are potentially dependent and must be serialized.
The dependence between the two stores is shown by the dependence edge between them.

Dependence edge

A[B[i]] += . . .

A[B[i+1]] += . . . A[B[i+1]] += . . .

A[B[i]] += . . .

Figure 5.5: Example code bene�ting from updates. (a) Initial code. Read/modify/write
operations are performed on the two A[� � �] locations. The two stores to A[� � �] are poten-
tially dependent and must be serialized. (b) Code after the update optimization. The two
read/modify/write operations are moved into atomic message handlers for dynamic messages.
Consequently, the two e�ectively have no dependence, since addition is associative and commu-
tative. Hence the two read/modify/writes can be run as an independent epoch, as in described
earlier in this section.

It is possible to improve the performance of the code in �gure 5.5(a) in the follow-
ing manner. Observe that if the two read/modify/write operations are each performed
atomically, then the two operations are independent, since addition is both associative
and commutative. The update optimization aims to bene�t from independence by imple-
menting the read/modify/write atomically. In particular, updates are memory handlers
that implement simple read/modify/write operations on memory elements. For each
read/modify/write operation, a dynamic message is generated that is sent to the mem-
ory bank containing the data operated upon. In this case, each A[� � �]+ = � � � operation is
converted to a dynamic message. The actual read/modify/write operation is performed
in the dynamic message handler. Handler atomicity guarantees update atomicity. Up-
dates are possible on any software-exposed architecture whose dynamic network supports
programmable active messages, such as Raw.

Figure 5.5(b) shows the code after the update optimization. Implementing the two
read/modify/writes as atomic updates eliminates the dependence between them. Updates
improve performance in two ways. First, an update collapses two expensive and serial
dynamic memory operations, a load and a store, into one. Second, the associativity
and commutativity of the updates e�ectively removes dependences between di�erent
updates. Dependence elimination helps increase the utility of independent epochs by
�nding regions with independent updates to an alias equivalence class.

90 CHAPTER 5. NON-DISAMBIGUATED OR DYNAMIC ACCESSES

The compiler migrates many di�erent simple read/modify/write memory operations
from the main program to the memory handlers. The modify operation is required to
be both associative and commutative. Common examples include increment/decrement,
add, multiply, and max/min.

In case
oating point stability is required, updates cannot be applied to
oating point
addition and multiplication. Floating point addition and multiplication are not truly
associative. For such operations, using updates retains correctness but not numerical
stability. A compiler
ag is provided that disables updates for
oating point addition
and multiplication upon user request.

Updates are a special case of the general technique ofmoving computation to memory.
Moving computation to memory, possible on any software-exposed architecture whose dy-
namic network supports programmable active messages, refers to the process of migrating
a code fragment normally in the main program into an active message handler. Moving
computation to memory may be pro�table for dynamic memory accesses if they refer to
the same location multiple times, with computation between successive accesses. When
pro�table, the dynamic accesses with associated computation are packaged in a single
active-message handler; the handler moves computation local to memory and obviates
the need for long-latency communication between successive accesses.

5.7 Future work

While software-serial ordering has been fully implemented in the Raw compiler, the in-
dependent epoch and update optimizations have not. The evaluation of independent
epochs and updates in the results chapter (chapter 9) is done using a hand-coded imple-
mentation. Future work will automate the implementation, and obtain more extensive
results. The cost for memory barriers will be measured, and sophisticated strategies for
when to use dynamic accesses will be investigated.

5.8 Summary

A summary of this chapter follows. The chapter begins by showing situations where
dynamic accesses are useful. E�ciently implementing dynamic accesses is closely tied
to enforcing dependence: schemes for implementing dynamic accesses aim to overlap as
much of the dynamic latencies as possible while respecting all dependences. We show why
dependences between dynamic accesses are hard to enforce e�ciently. Software serial or-
dering is presented as a scheme to e�ciently enforce dependence; it uses a combination of
static and dynamic messages to enforce dynamic-dynamic dependences. Software serial
ordering involves serializing the non-blocking requests to memory at a node called the
turnstile; only references within each equivalence class, computed by equivalence-class
uni�cation, need to be serialized. Di�erent equivalence classes use di�erent turnstile
nodes. Enforcing dependences across scheduling units is done by using memory barriers;

5.8. SUMMARY 91

in some cases the barriers can be optimized away. Optimizing away the turnstile serializa-
tion is sometimes possible using the independent epoch optimization. The e�ectiveness
of independent epochs is increased in some cases by the update optimization.

92 CHAPTER 5. NON-DISAMBIGUATED OR DYNAMIC ACCESSES

Chapter 6

Maps implementation

The next three chapters discuss implementing Maps as part of a complete compiler
system. Several complex challenges arose in the implementation of the compiler for Raw.
There is little in the literature on how to compile for bank-exposed architectures, so we
were forced to devise our own strategies in many situations. The next three chapters
document our solutions. In some cases, our solutions are not the only ones possible;
nevertheless, the chapters document the issues that need to be considered, and provide
one set of workable and consistent transformations and analyses. The next three chapters
should be valuable to anyone wanting a deeper understanding of compilation for software-
exposed machines, or someone involved in implementing such a compiler.

The next three chapters, chapters 6, 7 and 8, are organized as follows. This chapter
describes the platform used and task
ow of the Rawcc compiler. The software platform
used in discussed in section 6.1. A detailed compiler
ow, taking up most of the chapter,
is presented in section 6.2. Each task in the compiler is explained { some tasks that re-
quire more involved explanations are explained in the following two chapters. Chapter 7
discusses issues relating to memory allocation and address management. Chapter 8 dis-
cusses the implementation of certain language-speci�c and environment-speci�c features.

6.1 Platform used

This section describes the software platform used for the Rawcc infrastructure. Rawcc
is implemented using the SUIF version 1.2 compiler infrastructure [24]. SUIF provides
a language-independent intermediate format for input programs, and a set of tools that
implement traditional compiler tasks common to most architectures. SUIF also pro-
vides a set of tools to parallelize code for multiprocessors; however, we use none of the
SUIF parallelization tools. The only SUIF tools used by Rawcc are related to traditional
single-processor compiler tasks { all ILP and memory parallelization tasks had to be writ-
ten in-house, customized for software-exposed architectures, rather than multiprocessors.
Consequently, 18 out of 23 tasks in �gure 6.1 were written in-house. For the remaining
5, we were able to use standard SUIF tools, or tools written elsewhere; for these 5 tasks,
the tools used are mentioned in the task descriptions in this section.

93

94 CHAPTER 6. MAPS IMPLEMENTATION

6.2 Detailed compiler
ow and description

This section lists out the tasks of the Rawcc compiler. Each task is discussed; many are
illustrated through running examples.

Figure 6.1 shows the
ow of the Rawcc compiler in detail. Only the tasks relevant to
compiling for a software-exposed architecture are shown; traditional compiler tasks such
as parsing, traditional code optimizations and back-end code generation are not shown.
Each task in the �gure is described in this section in the order of execution. Traditional
code optimizations performed in the Raw compiler include constant propagation, loop
invariant code motion, strength reduction and dead-code elimination; these are performed
both before and after Maps.

Each of the compiler tasks in �gure 6.1 is described below, in the order the tasks are
performed.

Dismantle aggregate-object copies This task dismantles copies of aggregate ob-
jects, such as structures and arrays, into element-by-element copies. Certain program-
ming languages allow aggregate objects to be copied to other aggregate objects of the
same type by using the assignment operator. For example, ANSI C allows copying of en-
tire structures in a single statement, but not entire arrays. Normally, the compiler's back-
end dismantles each aggregate copy into an element-by-element or word-by-word copy.
For Maps, however, all individual load/stores must be visible to the bank-disambiguation
methods so that each load/store may be placed on the tile where its data resides. Hence,
aggregate copies are dismantled before bank disambiguation, instead of the in the back-
end.

The dismantling of each aggregate copy in this task produces an element-by-element
copy, not a word-by-word copy. A word-by-word copy results in type conversions and
un-typed copies; type conversions and un-typed copies violate our type-conversion re-
strictions, stated in section 7.1.

Build structured control-
ow from unstructured This task builds structured
control-
ow from unstructured control-
ow. The standard SUIF pass porky is used for
this task with the
ags for control-simpli�cation and unstructured-control-
ow optimiza-
tion set. Modulo unrolling bene�ts from for loops, an example of structured control
ow.
This compiler task builds while loops, not for loops, from unstructured-control
ow; for
loops are built in the next task.

Convert while loops to for loops Performs induction-variable recognition, followed
by code transformation, to convert while loops to for loops wherever possible. Modulo
Unrolling bene�ts from for loops. The standard SUIF pass porky is used for this task
with the
ag for �nding and building for loops set.

Forward-propagate to array indices Forward-propagation is a standard compiler
task that moves expressions used in the calculation of local variables into uses of those

6.2. DETAILED COMPILER FLOW AND DESCRIPTION 95

loopsforloops towhileConvert

unstructured
Build structured control-flow from

Dismantle aggregate-object copies

Forward-propagate to array indices

Pointer analysis

Handling array reshapes

Handling library calls with pointer
arguments

Strip-mine distributed arrays

Equivalence-class unification

computation

Affine-access detection

Dynamic-access generation

Communication generation

Memory-dependence analysis

Epoch detection and handling

Instruction partitioning

Thread generation

Raw executable

Sequential C or FORTRAN program

Unroll loops, producing mod-region

Infer mod values using mod-region
annotes

annotes

creation sites to global address

Replace accesses disambiguated with
modulo unrolling to use local address

Data and instruction placement

Modulo unrolling unroll-factor

Strength-reduce mod and div
operators

Convert distributed-array address-

Figure 6.1: Detailed Rawcc compiler
ow. Maps tasks are lightly shaded, space-time scheduler
tasks (following Maps) are shaded darker.

96 CHAPTER 6. MAPS IMPLEMENTATION

variables when possible. Forward propagation applied everywhere is not desirable, as
it performs the opposite of common sub-expression elimination, and may reduce perfor-
mance.

There is one case where forward-propagation is helpful: when the local variables being
replaced are part of the index expressions of array references. Such forward-propagation
to array indices helps identify a�ne references; a�ne references perform well using mod-
ulo unrolling. Figure 6.2 shows an example of how forward-propagation to array indices
helps identify a�ne references. Figure 6.2(a) shows a code fragment with an array ref-
erence. Figure 6.2(b) shows the same code fragment with forward-propagation to array
indices run. In �gure 6.2(b), the a�ne references have subscripts which are directly a�ne,
aiding their identi�cation as a�ne references.

 . . .

 A[2*i + 3] = 11;
 A[2*i + 4] = 22;

for i = . . .

int x;int x;

for i = . . .
 x = 2*i + 3;
 . . .

 A[x] = 11;
 A[x+1] = 22;

(a) (b)

Figure 6.2: Example showing forward-propagation to array indices. (a) Initial code. (b) Code
after forward-propagation to array indices.

Pointer analysis Pointer analysis is a compiler technique [35, 36] that identi�es the
possible data objects referenced by every memory-access instruction in the input program.
Data objects are identi�ed by their declaration or allocation sites. Maps uses SPAN, a
state-of-the-art pointer analysis package [35], developed by Martin Rinard and Radu
Rugina at MIT. Pointer analysis is used in Maps for three purposes: minimization of
dependence edges, equivalence-class uni�cation, and software serial ordering. Pointer
analysis and its uses are discussed in detail in section 3.1.

A�ne-access detection This task identi�es array accesses to be a�ne whenever pos-
sible. Array accesses whose indices are a�ne functions of enclosing loop-induction vari-
ables are bank disambiguated using modulo unrolling. Such a�ne array-accesses need
to be recognized in order for modulo unrolling to be e�ective. An a�ne-access detection
library is implemented for Maps. The library performs algebraic simpli�cation of expres-
sions by applying the associative rules for multiplication over addition and subtraction.
For example, the a�ne-access detection library simpli�es (3i� 4) � 2 + 1 to 6i� 7.

Handling array reshapes Array reshapes in FORTRAN allow arrays to be viewed
with di�erent dimensionality in di�erent regions of the code. Section 8.3 discusses ar-

6.2. DETAILED COMPILER FLOW AND DESCRIPTION 97

ray reshapes in detail, along with how they impact bank-disambiguation. In summary,
array reshapes disallow the padding optimization for distributed arrays in some cases.
Maps handles such cases by not distributing the arrays, and disambiguating them using
equivalence-class uni�cation instead of modulo unrolling. See section 8.3 for details.

Handling library calls with pointer arguments Library functions in the Rawcc
compiler are handled by placing each function entirely on one node. Placing the functions
on one node allows the functions to be pre-compiled, instead of them being recompiled
as a part of every program. Further, library calls that interface with I/O may need to
be placed on one node for hardware reasons.

This task handles library functions that have pointer arguments. Section 8.2.2 de-
scribes this task in detail; a summary follows. Library functions that have pointer ar-
guments access user-program data objects; hence the objects must be available on the
tile where the library call is made. Consequently, Maps handles pointer arguments by
forcing the di�erent location-sets referred to by each pointer argument on to the same
equivalence class. This way, since each equivalence class is mapped to a single tile by
equivalence-class uni�cation, each pointer argument refers to data on only one tile. Fur-
ther, if there is more than one pointer argument, the di�erent location-sets for di�erent
pointer arguments are all forced on to the same tile as well. Finally, the library call is
placed on the tile where its pointed-to data resides. Di�erent calls to the same functions
can reside on di�erent tiles.

Equivalence-class uni�cation Equivalence-class uni�cation (ECU) is described at
length in chapter 3. A summary follows. First, the results on pointer analysis are used
to construct a bi-partite graph. Next, connected components of the graph are found;
the connected components form the equivalence classes. Finally, each equivalence class
is mapped to a unique virtual bank. A virtual-to-physical mapping is done later in the
compiler
ow, in the space-time scheduler. ECU respects equivalence classes formed by
forcing di�erent location sets together into one equivalence class by the earlier pass of
handling library calls with pointer arguments.

Modulo unrolling unroll-factor computation This task computes the unroll factor
for each loop containing a�ne-function array accesses, using the method in section 4.2.

Unroll loops producing mod-region assertions This task unrolls each loop by the
factor computed by the immediately preceding unroll-factor computation task. Unrolling
in Maps di�ers from standard unrolling in that a pre-conditioning loop is generated if
the lower bound of the original loop is not a compile-time known constant. The pre-
conditioning loop guarantees that the main unrolled loop has a lower-bound value whose
mod with the unroll factor is compile-time known. The known lower-bound modulo
value is output in the mod-region compiler-inserted assertion. A lower bound for the

98 CHAPTER 6. MAPS IMPLEMENTATION

main loop with known modulo value allows a�ne accesses in the main loop to go to a
known bank using modulo unrolling.

Figure 6.3 demonstrates how Maps performs unrolling. Figure 6.3(a) shows a code
fragment with an unknown lower bound. Figure 6.3(b) shows the code after unrolling
by a factor of 4. The pre-conditioning loop ensures that the main loop starts at the
next-higher multiple of the unroll-factor beyond the original lower bound x, in this case,
(x div 4) � 4 + 4. A mod-region compiler assertion is inserted on the main loop; the
argument of the assertion is the condition that is guaranteed to be true by the compiler
in the loop body. Here, the condition asserted is that the loop induction variable has
a known mod value with the unroll factor in the main loop body. Hence, a mod-region
assertion is of the form induction � var mod unroll�factor = constant; in �gure 6.3(b),
this is i%4 = 0; the mod operator is shown as % in all code samples. The assertion is
implementation is implemented as an annotation on for loops in SUIF. The mod-region
annotation is used in the `infer mod values using mod-region' task, later in the compiler

ow.

(a) (b)
for i = x to 99 do
 A[i] = i

int new_lb;

if (x % 4 == 0)
 new_lb = x
else

for i = x to (new_lb-1) do
 A[i] = i

for i = new_lb to 99 step 4 do

 A[i+1] = i+1
 A[i] = i

 A[i+3] = i+3
 A[i+2] = i+2

 new_lb = (x div 4)*4 + 4

//mod-region i % 4 == 0

Figure 6.3: Example showing unrolling in Maps. (a) Initial code. (b) Loop unrolled by a factor
of 4. The % operator is the mod operator. In (b), the lower bound of the main loop has a
known value mod value with the unroll factor: here, new lb mod 4 = 0.

At this point, the extended example in �gure 6.4 for N = 4 banks is introduced.
The initial code in �gure 6.4(a) involves a�ne accesses; hence the running example helps
illustrate several of the subsequent tasks in the compiler
ow that a�ect a�ne functions.
Figure 6.4(b) shows the initial code after unrolling by a factor of 4, as required by a
4-banked memory system.

Strip-mine distributed arrays This task strip-mines arrays that Maps has decided
to distribute (distributed arrays are low-order interleaved across the memory banks).
Strip-mining an array with last-dimension size L replaces the last dimension with two

6.2. DETAILED COMPILER FLOW AND DESCRIPTION 99

(a)

 A[i] = i
for i = 0 to 99 do
int A[100]

(b) int A[100]

int A[25][4]

for i = 0 to 99 step 4 do

int A[25][4](c) (d)

 A[i div 4][i%4] = i
 A[(i+1) div 4][(i+1)%4] = i+1

 A[(i+2) div 4][(i+2)%4] = i+2
 A[(i+3) div 4][(i+3)%4] = i+3

int A[25][4]int A[25][4] (f)(e)

 A[i+1] = i+1
 A[i] = i

 A[i+3] = i+3
 A[i+2] = i+2

for i = 0 to 99 step 4 do

i’ = 0
for i = 0 to 99 step 4 do

 A[i’][i%4] = i
 A[i’][(i+1)%4] = i+1
 A[i’][(i+2)%4] = i+2
 A[i’][(i+3)%4] = i+3

i’ = i’ + 1

i’ = 0
for i = 0 to 99 step 4 do

 A[i’][0] = i
 A[i’][1] = i+1
 A[i’][2] = i+2
 A[i’][3] = i+3

i’ = i’ + 1

i’ = 0
for i = 0 to 99 step 4 do

i’ = i’ + 1

// bank 0
// bank 1
// bank 2
// bank 3

//mod-region i % 4 == 0

//mod-region i % 4 == 0 //mod-region i % 4 == 0

//mod-region i % 4 == 0//mod-region i % 4 == 0

0 A [i’] = i
 A [i’] = i+1

 A [i’] = i+3
 A [i’] = i+2

1

2

3

Figure 6.4: Example showing several tasks on code with a�ne accesses (N = 4). Italics are
comments. (a) Initial code. (b) After unrolling, producing mod-region assertions. (c) After
strip-mining. (d) After strength-reducing div operators. (e) After inferring mod values using
mod-region assertions. (f) After replacing disambiguated accesses to use local addresses.

100 CHAPTER 6. MAPS IMPLEMENTATION

new dimensions of sizes dL=Ne1 and N , in that order. For example, strip-mining an
array A[8][102] for N = 4 banks changes the array to A[8][26][4]. Each array reference is
correspondingly modi�ed; for example, A[i][j] is changed to A[i][jdiv4][j mod 4]. Strip-
mining leads to the same result as when the last dimension of the array is padded to the
next higher multiple of N , followed by strip-mining. Hence strip-mining conceptually
performs padding; padding the last dimension is required for the padding optimization
described in section 4.4.

Figure 6.4(c) shows the results of strip-mining array A for the code in �gure 6.4(b)
for N = 4 banks. A[100] is replaced by A[25][4], and the references are strip-mined such
that, in general, A[x] is replaced by A[xdiv4][x mod 4]; mod is shown as % in all code
samples.

Strip-mining is useful for code generation: for any array reference after strip-mining,
the new last dimension represents the bank number of the array element accessed, and
the remaining dimensions represent the local o�set of the local array on the bank. The
compiler in later tasks aims to reduce the new last-dimension value for any array reference
to a compile-time constant; if it succeeds, then the array reference is bank disambiguated
to the bank number given by the constant.

At this point, the second of two extended examples is introduced: �gure 6.5 illustrates
several subsequent compiler tasks on a code fragment with dynamic accesses, for N = 4
banks. Figure 6.5(a) shows the initial code; �gure 6.5(b) shows the code after strip-
mining. The di�erence with �gure 6.4 is that the array accesses are non-a�ne: x; y are
variables other than loop induction variables.

Strength-reduce mod and div operators Integer remainder (mod) and integer di-
vision (div) operations are introduced into the code by strip-mining, the immediately
preceding compiler task. Since mod and div are expensive operations at runtime, this
task tries to optimize them away. A new strength-reduction technique [38] is used to
optimize away div and mod operations whenever possible. Figure 6.4(d) shows the re-
sult of applying strength-reduction on the code in �gure 6.4(c). The div operations are
optimized away by introduction of a new variable i0; i0 is incremented by 1 every time i
is incremented by 4. The mod operations are not optimized away in this case.

Infer mod values using mod-region assertions This task simpli�es down to con-
stants, the mod operations introduced by strip-mining. The simpli�cation is done with
the help of the mod-region assertions introduced by unrolling, 3 tasks before this one. The
mod-region assertions, applied to loop bodies, always have the format var%int1 == int2 ,
where % is the mod operator. In this case, the mod-region assertion is i mod 4 = 0. Us-
ing the information that i mod 4 = 0, this task simpli�es the mod values as follows:
i%4 simpli�es to 0, and the rest are simpli�ed using the associative rule for mod over
addition and subtraction: (a + b) mod c = (a mod c + b mod c) mod c. Using this rule,
all 4 mod expressions reduce to constants.

1dxe denotes the ceiling of the
oating point number x.

6.2. DETAILED COMPILER FLOW AND DESCRIPTION 101

issue_write(((addr_y>>2)&3), ((addr_y>>4)<<2), 22, 3) // turnstile 0

block_for_write() // tile 2
block_for_write() // tile 3

// turnstile 0issue_write(((addr_x>>2)&3), ((addr_x>>4)<<2), 11, 2)

A[y] = 22

A[x] = 11

A[y div 4][y%4] = 22 A[y div 4][y%4] = 22

A[x div 4][x%4] = 11

int A[100]

int A[25][4]

int A[25][4]

(c)

(a)

int A[25][4]

A[x div 4][x%4] = 11

local_addr_x = &A[x div 4]

addr_y = (local_addr_y<<2) | ((y%4)<<2)
local_addr_y = &A[y div 4]

addr_x = (local_addr_x<<2) | ((x%4)<<2)

(b)

(e)

(d)
addr_x = (local_addr_x<<2) | ((x%4)<<2)

addr_y = (local_addr_y<<2) | ((y%4)<<2)

*addr_x = 11

*addr_y = 22

local_addr_y = &A[y div 4]

local_addr_x = &A[x div 4]

int A[25][4]

Figure 6.5: Example showing several tasks on code with dynamic accesses (N = 4). Italics
are comments; % is the mod operator. (a) Initial code. (b) After strip-mining. (c) After
memory-dependence analysis, dotted line is dependence edge. (d) After converting to global
addresses. (e) After dynamic-access generation. issue write is a dynamic store-request with
parameters issue write(tile; o�set in tile; value; return tile). The two requests are serialized
on turnstile 0; the block for write() waits for the store-acknowledgments on return tiles 2 and
3. The particular tile numbers shown are virtual tile numbers. Their choice is incidental; they
are re-mapped to physical tile numbers in the space-time scheduler.

102 CHAPTER 6. MAPS IMPLEMENTATION

Memory-dependence analysis This task introduces dependence edges between all
pairs of memory references that can access the same location at run-time. Dependence
edges are computed using pointer analysis, and further re�ned using array-index analysis.
Section 3.1 describes how Maps computes dependence edges. Dependence edges are
enforced in di�erent ways, depending upon the nature of the dependent references. Static-
static dependences are enforced by serializing on the disambiguated tile; static-dynamic
dependences are enforced by explicit synchronization; dynamic-dynamic dependences
are enforced by software serial ordering. See section 5.2 for details on enforcing memory
dependences.

Figure 6.5(c) shows the results of memory dependence analysis on the code in �g-
ure 6.5(b). A dependence edge (dotted line) is introduced between the two array accesses,
as they alias to the same location in the case x equals y. In �gure 6.5(e), memory de-
pendence analysis reveals that the four references are independent; hence no dependence
edges are introduced.

Convert distributed-array address-creation sites to global address Represent-
ation of addresses is a complex issue in bank-exposed architectures: section 7.3 explains
address representation in full. This task and the next involve address representation;
both are summarized here. This task converts all address-creation sites for distributed
arrays to generate global addresses2. Nothing needs to be done for address-creation sites
not involving distributed arrays. The global address at distributed-array address-creation
sites is computed in terms of the local address; the local address is �rst computed into a
new compiler-introduced variable.

More precisely, for distributed arrays, the existing address is converted to a global
address as follows. The array's last dimension is removed; the remaining expression is
assigned to a local address. For example, for the strip-mined distributed-array address
&A[i][j] creation site, the local address is &A[i], leading to the assignment local addr =
&A[i]. Then at the address-creation site, &A[i][j] is replaced by a global address variable
assigned to (local addr << log(N))j(j << L), where N is the number of memory banks,
L is the log of the array element-size (in bytes), j is bitwise-or, << is left-shift, and >>
is right-shift. To understand this formula, see the format for global addresses in Maps
shown in �gure 7.1.

Figure 6.5(d) shows the code in �gure 6.5(c) after the two distributed-array address-
creation sites are converted to global addresses. The local and global addresses are derived
using the formulas in the previous paragraph. This task is not shown for �gure 6.4 since
for a�ne functions, the next compiler task, `replace accesses disambiguated with modulo
unrolling to use local address', reverses the e�ect of this task.

2An address-creation site is a address expression in the program that is not simply an o�set from
an existing address, but an expression that computes an address of a data object using the `address-of'
operator (`&' in C), or an address returned from a heap-allocation routine. For example, a is an integer
and p is a pointer, then &a is an address-creation site, but (p + 1) is not. Address creation points for
arrays are compiler operators for taking the address of an array symbol, and memory allocation call-sites
used as arrays.

6.2. DETAILED COMPILER FLOW AND DESCRIPTION 103

Replace accesses disambiguated with modulo unrolling to use local address
This task replaces the addresses used in array references disambiguated by modulo un-
rolling to use local addresses. The local addresses are obtained from the corresponding
array address-computation by dropping the last dimension. Since the access is disam-
biguated, its last dimension value, which gives the bank number, must be a constant.
The constant bank number is placed as an annotation on the reference for use in tile
assignment by the space-time scheduler.

Figure 6.4(f) shows the result of replacing the addresses of the memory references
with local addresses, for the 4 array accesses disambiguated using modulo unrolling. The
last dimension for each reference determines the particular local array accessed; a last
dimension constant value c implies that the local array Ac is accessed. The bank number
is also shown as a comment on the code. Figure 6.5 has no references disambiguated
using modulo unrolling; hence this task has no e�ect on it.

Epoch detection and handling In this task, independent epochs are detected and
handled. For details, refer to section 5.6. Independent epochs are not yet implemented in
Rawcc, but an outline of a possible implementation is given in section 5.6. In summary,
the implementation involves three steps. First, epochs are detected using a combination
of pointer analysis, array dependence analysis, and relative memory disambiguation.
Second, all dynamic accesses in the epoch are marked as having no turnstile; no turnstile
assignment is therefore made for them by the subsequent dynamic-access generation task.
Third, memory-barriers are placed immediately before and after the epoch.

Dynamic-access generation In this task, all non-disambiguated accesses are re-
placed with messages implementing a request-response model. Each load is replaced
by an issue read(tile; o�set in tile; return tile) call. Each store is replaced by an
issue write(tile; o�set in tile; value; return tile) call. The tile and o�set in tile re-
fer to the location of the remote address being accessed; the return tile refers to the
tile number where the reply bank should be sent. The issue read and issue write calls
are inlined into dynamic-network message-launch instructions in the compiler back-end.
In addition to an issue read, each load also produces a block for read() call. Simi-
larly, in addition to an issue write, each store also produces a block for write() call.
The block for read() waits for a load-reply; the block for write() waits for a store-
acknowledgment.

Figure 6.5(e) shows the result of dynamic-access generation on the code in �gure 6.5(d).
The two stores, �addr x = 11 and �addr y = 22, are replaced by issue write and
block for write() calls. Since the writes are memory-dependent, they are serialized
through the same turnstile, in this case, mapped to tile 0. The two block for write()
calls are distributed to tiles 2 and 3 for parallelism. All tile numbers shown here are
assumed to be virtual tiles; virtual tiles are an abstraction that assumes a potentially
in�nite number of tiles, and act as place-holders for physical tiles actually present on the
machine. A many-to-one virtual-to-physical mapping is done later in the compiler in the
`data and instruction placement' phase of the space-time scheduler. The actual virtual

104 CHAPTER 6. MAPS IMPLEMENTATION

tile values chosen, in this case 0, 1 and 2, is incidental; the virtual-to-physical mapping
re-maps these numbers to physical bank numbers.

The space-time scheduler guarantees that there is at most one outstanding
block for : : : call of either type outstanding at one time. Having at most one
block for : : : call has the advantage that at run-time, time need not be wasted
checking for which dynamic access an incoming reply corresponds to. If there are
more block for : : : calls than the number of tiles, then some tiles may have multiple
block for : : : calls. If a tile has multiple block for : : : calls, the corresponding re-
quests for the memory accesses are serialized to ensure that there is only one outstanding
block for : : : call at one time.

Space-time scheduler

The 19 tasks above implement Maps; the remaining 4 tasks in �gure 6.1 compose the
space-time scheduler [25]. At the conclusion of Maps, all memory objects and references
are mapped to virtual tiles. The space-time scheduler partitions the instructions into
multiple tiles and produces an executable. Maps assigns memory instructions to virtual
tiles; the space-time scheduler assigns non-memory instructions to virtual tiles. Next,
the space-time scheduler does a virtual-to-physical mapping of the tiles. Subsequently,
multiple threads are generated, one per tile. Finally, communication is generated.

The space-time scheduler tasks are outlined below. For a more detailed description,
see [25].

Instruction partitioning This task assigns non-memory instructions to virtual tiles.
Tile assignment is done to optimize for locality, i.e., instructions that sequentially depend
on each other are favored to be placed on the same tile to avoid inter-tile communication.
Mostly independent streams are placed on di�erent tiles for parallelism. Some register-
communication is inevitable { the assignment tries to balance the goals of minimizing
communication and maximizing parallelism.

Data and instruction placement This task performs a virtual-to-physical mapping
on tile numbers. The placement phase takes into account the target machine's register-
level communication network's topology. The number of hops on the network determines
the non-uniform access latency for any communication message. The Raw machine uses
a 2-dimensional mesh topology. This task aims to minimize the number of hops traveled
for most messages.

Thread generation This task splits the instructions and data into multiple threads,
based upon the tile assignments made by the placer. Stacks and aggregate objects are
padded, as required by Maps. Section 7.2 explains padding for stacks and aggregate
objects.

6.2. DETAILED COMPILER FLOW AND DESCRIPTION 105

Communication generation In this task, intermediate-node routing for register-level
communication is performed. Such intermediate-node routing is required if the target
architecture uses a compiler-routed network. Routing is done while ensuring that the
routing schedule is deadlock-free. To minimize communication volume, multiple messages
from the same source are serviced using a single multi-cast operation.
At the end of the space-time scheduler, the compiler back-end (not shown) generates
machine-code instructions speci�c to the ISA of the target architecture. The Raw pro-
totype uses a MIPS R4000 ISA for each tile, augmented with communication-access
primitives, and bits for static-network routing. Rawcc uses the Machsuif [42] back-end
code generator, modi�ed to produce communication instructions and routing bits, in
addition to standard MIPS instructions.

106 CHAPTER 6. MAPS IMPLEMENTATION

Chapter 7

Memory allocation and address

management

This chapter discusses implementation issues regarding memory allocation, and the rep-
resentation and management of addresses in Maps. There are two kinds of addresses in
Maps: local and global. Disambiguated accesses use local addresses to access memory,
since disambiguated accesses on Raw go to local banks. Non-disambiguated accesses re-
fer to memory on a compile-time-unknown bank; hence non-disambiguated accesses use
software-constructed global addresses. This chapter discusses issues related to maintain-
ing two address representations. The chapter also describes how distributed stacks and
aggregate objects are implemented.

This chapter is organized as follows. Section 7.1 describes the representation and
handling of addresses in bank-exposed architectures. Section 7.2 shows how address
management of aggregate objects is done by the compiler. The section also shows how
stacks are distributed in an manner analogous to aggregate objects. Section 7.3 describes
how the compiler keeps track of which addresses are local, and which are global. Sec-
tion 7.4 discusses how the e�ectiveness of pointer analysis varies with di�erent kinds of
analyses used.

7.1 Address representation and handling

This section describes the format of addresses in Rawcc and their handling in the com-
piler. First, the format of both disambiguated and non-disambiguated addresses is de-
scribed. Second, how these addresses are interfaced to the hardware is explained. Fi-
nally, a discussion of the choice of address format follows, including a discussion on
type-dependent and type-independent formats.

Address format

This section discusses how Maps handles addresses for disambiguated and non-
disambiguated accesses. Recall that Maps begins with the data objects in a sequential

107

108 CHAPTER 7. MEMORY ALLOCATION AND ADDRESS MANAGEMENT

program and through its disambiguation methods, derives a precise data distribution
for each object. This data can be referenced through either disambiguated or non-
disambiguated accesses. For disambiguated accesses, by de�nition the particular cache
bank they access is �xed and known; hence their address expressions are maintained in
Maps as local within the bank accessed. The bank number is speci�ed by annotating the
access with the bank number, and ensuring that the later phases of the compiler schedule
the reference to be local to that bank. In Rawcc , disambiguated references are always
made local.

Address representation for non-disambiguated accesses is more complex. For such
accesses, the bank accessed is unknown and may vary at runtime. Maps maintains
their addresses as global in software. While many bit-encodings of global addresses are
possible, Maps uses a low-order interleaved format, i.e., the low-order bits represent the
bank number, and the high-order bits represent the o�set within the bank. The lowest-
order bits represent a byte-o�set, appended to allow pointer arithmetic. Figure 7.1
shows this representation of global addresses, and its relationship to local addresses. As
an example, for a 32-bit Raw machine with 8 banks, a pointer to integer would have
bit widths of 2, 3 and 27 for the byte o�set, bank number, and o�set-within-bank �elds
respectively. For any such format, pointer arithmetic in bytes continues to work within
arrays or heap-allocated chunks of memory which have been low-order interleaved by
modulo unrolling1.

log(size of dereferenced
 type in bytes)

Bank number

log(number
 of banks)

Word offset within bank

Remaining bits

Global
address

Local
address

Byte offset

Figure 7.1: Address representation in Rawcc. Global addresses are shown using a low-order
interleaved format. Local addresses within a tile correspond to the global address without the
bank number. While global addresses are used for non-disambiguated references, local addresses
are used for disambiguated references.

1To make this work the o�sets of all such aggregate objects have to be the same on all memory banks.
Section 7.2 describes how this is achieved.

7.1. ADDRESS REPRESENTATION AND HANDLING 109

Interfacing addresses to hardware

How the above software global addresses are interfaced to hardware depends on whether
the software-exposed architecture provides a shared or distributed hardware view of mem-
ory. If a shared memory view is provided, global addresses are used as hardware addresses.
If a distributed memory view is provided, Maps has the additional task of converting
non-disambiguated global references into messages with message handlers using local
addresses. For each such reference, the bank number and local address are extracted
from the global address into separate words in software, and then used as the target and
contents of remote-request messages respectively. Remote message handlers perform a
local access on the address in the contents. This is the approach in the Raw machine.
Section 2.4 describes how load/stores are converted to messages in Raw.

Type-dependent vs. type-independent address

formats: type-conversion restrictions

Address formats used in Rawcc , as speci�ed in �gure 7.1, are type-dependent, i.e., they
use an address format whose bit-widths depend upon the type of the data pointed to.
Our type-dependent format interleaves at the granularity of data elements, not any �xed
number of bytes. For example, for an array of integers (4-byte elements), interleaving is
at the 4-byte level; for an array of doubles (8-byte elements), interleaving is at the 8-byte
level. To allow interleaving at a type-independent number of bytes, interleaving must be
done at the granularity of the largest scalar elements; any smaller �xed granularity splits
the largest scalar elements into more than one bank. Since single elements must not be
divided to di�erent banks, type-independent formats interleave at the granularity of the
largest scalar elements; for most compilers, these are doubles.

The advantage of type-dependent formats is that they o�er the most memory par-
allelism. Using a type-independent format results in a loss of memory parallelism. For
example, for array A[] of integers, A[0] and A[1] are mapped to the same bank in a
type-independent format that interleaves at an 8-byte level. The disadvantage of type-
dependent formats is that they do not allow the same array to be accessed as arrays
of di�erent types having di�erent element sizes; thus programs with type-casts between
arrays of di�erent types are not allowed.

Since Rawcc uses a type-dependent format, it disallows programs with arrays cast to
di�erent types2. While Rawcc uses a type-dependent format, it is possible to build an
implementation of Maps that uses a type-independent address format. To avoid the loss
of memory parallelism when element-sizes are smaller than the largest element size, it is
possible to use an optimization that uses a type-independent format for the object only
when type conversions are possible on it.

2The SPAN pointer analysis package disallows programs with arrays cast to di�erent types anyway,
as described in section 7.4, so no additional restriction is placed because of Maps.

110 CHAPTER 7. MEMORY ALLOCATION AND ADDRESS MANAGEMENT

7.2 Aggregate objects and distributed stacks

This section describes the challenges in allocating and managing the addresses of aggre-
gate objects that are distributed among multiple exposed memory banks. The solution
used in Maps is outlined. The same solution is used to manage distributed stacks as well;
distributed stacks are those that are distributed to multiple banks.

Representation of the addresses of distributed aggregate data objects such as arrays
and structures presents a problem in a distributed memory system. In order to gain
memory parallelism, the disambiguation methods in this thesis distribute these objects
among multiple cache memory banks. Doing so may result in base o�sets on di�erent
banks that may di�er. This is highly problematic, as now every pointer to a distributed
object has to be represented by a di�erent pointer on each tile. Furthermore, pointer
arithmetic on array-like objects does not directly work if the base o�sets of an array are
di�erent on di�erent banks.

A simple yet e�ective solution to this problem of unequal base addresses is to keep
the base address for every aggregate object aligned across all the banks. Alignment is
achieved by padding the object on each tile to the largest size on any tile. Padding
ensures that distributed objects have the same address on each tile. Padding is done for
all distributed objects, as well as for stack frames and heap-allocated objects. Padding
in this manner has several advantages. First, a single address now su�ces to represent
all pointers, such as program pointers, the stack-frame pointer and pointers internal to
heap-management routines. Second, address computation for any reference can be done
on a di�erent tile from the reference, increasing parallelism and scheduling
exibility.
Finally, pointer arithmetic works within distributed array-like objects. For arrays, mod-
ulo unrolling distributes the arrays in a low-order interleaved manner, giving good load
balance. Maps aims to distribute the scalar objects inside structures and stack frames
to di�erent banks as much as possible, so good load balance is likely.

Distributed stacks are implemented in a manner similar to the implementation of
aggregate objects. The stack elements are distributed among the tiles in a load-balanced
manner, with the beginning of the stack frame identical across all the tiles. Alignment
across tiles is achieved as before by using padding; in this case, padding the stack frame
on each tile to the largest size on any tile. Thus, a single value represents the stack-
frame pointer on all tiles, instead of having a separate pointer on each tile. For memory
parallelism, it is desirable to distribute di�erent elements in a stack frame, as is ensured
by this scheme.

Figure 7.2 illustrates the implementation of both stacks and aggregate objects. Fig-
ure 7.2(a) shows a code fragment with data declarations including a structure aggregate
object. Assume that the declarations are for the stack. Figure 7.2(b) shows the layout
of the objects in memory when the stack is allocated using the scheme described in this
section on a 4-banked system. The stack frame's beginning is identical on all the tiles,
and so is the beginning of the structure. The stack frames are padded on banks 2 and 3
to maintain the alignment for subsequent stack frames.

7.2. AGGREGATE OBJECTS AND DISTRIBUTED STACKS 111

int a;

int b;

struct f
double f1;

int f2;

int f3;

g c;

(a)

4 bytes

4 bytes
c . f1

c . f2 c . f3

a

b
Old stack
pointer

New stack
pointer

Bank 0 Bank 1 Bank 2 Bank 3

Shaded areas represent
wasted space from padding

(b)

Figure 7.2: Sample layout of aggregate objects and stacks. (a) Code fragment with data
declarations for the stack. (b) Data layout of the objects on a 4-banked memory system for
a software-exposed architecture. Doubles are assumed to take 8 bytes; integers, 4 bytes. The
beginnings of both the stack frame and the structure object are kept aligned across the di�erent
banks. This invariant is maintained by padding at the end of the stack frame.

112 CHAPTER 7. MEMORY ALLOCATION AND ADDRESS MANAGEMENT

7.3 Global and local addresses

This section describes how Maps keeps tracks of which addresses in the program are
global, and which are local. The objective is to ensure that each memory reference gets
the address format it expects in its address.

While disambiguated references require local addresses and non-disambiguated refer-
ences require global addresses, it is not easy to divide up all pointers used in a program at
compile-time based upon their ultimate usage. Yet this distinction is important because
at the usage points, namely references, the representation assumed for the reference ad-
dress, i.e., local or global, must be the actual representation of the address at that point
in the program. It is di�cult to classify all pointers as their ultimate usage may not even
be known, and di�erent uses may refer to the object in di�erent ways.

The solution used by Maps is based upon the following observation: the only single
location sets that could be distributed are arrays3. (Structure �elds are assigned to
di�erent location sets.) Hence the only pointers that could refer to distributed location
sets, and hence be used in non-disambiguated accesses, are those that could point to
distributed arrays. Based upon this observation, Maps always constructs global addresses
at address-creation points for distributed arrays4, leaving other pointers local. A local-
address expression is created �rst; the existing address-creation expression is replaced by
one that constructs a global address in terms of the local address. The local address is
also computed because it may be needed later. Address manipulation instructions are
left unchanged. Finally, in array references disambiguated through modulo unrolling the
global address is replaced by a local address.

The strategy in the previous paragraph ensures correctness using two properties.
First, all possible non-disambiguated references get global addresses (the desired behav-
ior) as they must be to distributed arrays. Second, references disambiguated using ECU
get local addresses, as they must be to non-arrays. For array references disambiguated
through modulo unrolling, the only remaining case, the global address is replaced by a
local address. This replacement is done as follows. At each array reference disambiguated
by modulo unrolling, the address used is replaced by the new local-address variable gen-
erated at the address-creation site. If the global address is never used, i.e., when the
address computation is used only for disambiguated accesses, then the global-address
variable-assignment is dead-code eliminated by a subsequent dead-code elimination pass.
The strategy of computing both global and local addresses at address-creation sites avoids
having to keep track of all the uses of an address at its creation point.

3Or heap-allocated blocks used as arrays.
4An address-creation site is a address expression in the program that is not simply an o�set from

an existing address, but an expression that computes an address of a data object using the `address-of'
operator (`&' in C), or an address returned from a heap-allocation routine. For example, a is an integer
and p is a pointer, then &a is an address-creation site, but (p + 1) is not. Address creation points for
arrays are compiler operators for taking the address of an array symbol, and memory allocation call-sites
used as arrays.

7.4. EFFECTIVENESS OF POINTER ANALYSIS 113

7.4 E�ectiveness of pointer analysis

This section describes how pointer analysis may limit the class of programs accepted,
based upon the kind of pointer analysis algorithm used. The trade-o�s among the dif-
ferent kinds of algorithms possible are stated.

Pointer analysis packages are of two types: those that track conversions between
pointers and integers [43], and those that do not [35, 36]. The �rst kind of package, i.e.,
those that track conversions, ensure that pointer information is retained when a pointer is
converted to an integer; some arithmetic done on the integer; and the result cast back to
a pointer. The second kind of package, i.e., those that do not keep track of conversions,
lose information when a pointer is converted into an integer; integers are not tracked,
and pointers cast back from integers are assumed to point to any address. The advantage
of the second kind of package, however, is that they can a�ord to use more precise and
time-consuming algorithms, since they track only pointer values, a smaller set that the
set of all pointer and integer values.

Maps can use any pointer analysis package; however, the Rawcc implementation of
Maps uses the SPAN package [35]. SPAN does not allow casts between pointers and
integers; hence, neither does Rawcc.

114 CHAPTER 7. MEMORY ALLOCATION AND ADDRESS MANAGEMENT

Chapter 8

Language and environment features

This chapter describes how certain language-speci�c and environment-speci�c features
are implemented in Maps. Features that have special requirements and constraints on
the data they access need to be handled in Maps, as Maps allocates all the data accessed
by the program. Features that require special handling in Maps are presented: the
handling of procedures, library calls and array reshapes in FORTRAN are discussed.
For example, a convention needs to be decided on the locations used for the parameters
and return values of procedures. Further, the procedure stack needs to be distributed.
Library calls also have special requirements on their input and output data. Array
reshapes in FORTRAN restrict the data allocation strategies that can be used for bank
disambiguation. Rawcc currently accepts C and FORTRAN programs. Though the
features are discussed in the context of the languages that the Raw compiler Rawcc
supports, they can be generalized to similar constructs in other languages.

This chapter is organized as follows. Section 8.1 describes how procedure calls are
implemented in Maps. Section 8.2 discusses the issues involved in implementing library
calls, and presents the approach taken in Raw. Section 8.3 describes how array reshapes
in FORTRAN are handled.

8.1 Procedure Calls

This section is describes how procedures are handled in Maps. The focus on how their
memory is handled, i.e., memory for their input arguments, return values and local stack.

Maps classi�es procedures into two types: parallel procedures, and sequential pro-
cedures. Parallel procedures are those procedures whose code is distributed over all
the tiles; execution proceeds in parallel across the di�erent tiles. Most procedures in
Rawcc are, by default, made into parallel procedures. Parallel procedures enable the
full exploitation of ILP and memory parallelism. A parallel procedure is implemented
by creating a local procedure on each tile that implements a portion of the original se-
quential procedure in the input program. A single procedure call in the input program
is translated to a procedure call on every tile in the executable; each tile calling its own
local procedure. The original procedure's stack is implemented as a stack distributed

115

116 CHAPTER 8. LANGUAGE AND ENVIRONMENT FEATURES

across the local procedures, such that each original stack object is mapped to one of the
stacks of the local procedures. Handling of distributed stacks is detailed in section 7.2.

Figure 8.1 demonstrates how procedures are made into parallel procedures. Fig-
ure 8.1(a) shows the initial code of a procedure foo(). Procedure foo takes in an integer
argument x, and returns an integer value, besides allocating three local variables, a, b and
c, and a local array D[]. At the end of the procedure, the value in integer b is returned.
A single call to foo() is also shown. Figure 8.1(b) shows the code for a 4-tile machine
after Rawcc has converted foo() to a parallel procedure. Procedure foo is cloned into 4
local procedures, foo0, foo1, foo2, and foo3, one on each tile. The space-time scheduler
allocates the arguments and return values to particular tiles; in this case, argument x is
placed on tile 1, and the return value is placed on tile 2. The stack variables a, b and c
are distributed among the local procedures. The stack array D[] is assumed distributed
using modulo unrolling, resulting in 4 low-order interleaved local arrays being allocated,
one on each tile. The body of the procedure (not shown) is partitioned across the tiles.
The call to foo translates to a parallel call on all 4 tiles, with each tile calling its local
version of foo(). Tile 1 passes in the argument x, tile 2 receives the return value.

Sequential procedures, on the other hand, are those that are executed entirely on one
tile. Sequential procedures resemble procedures in most conventional microprocessors, in
that their entire code and stack are mapped to one tile. Sequential procedures can be
called only from the tile on which they reside, however, their parameters may be obtained
from, and results send to, other tiles.

While parallel procedures provide the most parallelism, there are situations where
Maps chooses to make procedures sequential. All library calls are made into sequential
procedures. Section 8.2 describes why library calls are made sequential. In addition, se-
quential procedures may perform better than parallel procedure for very small procedures
that have no parallelism and perform no memory accesses. If such small procedures are
made parallel, only one tile might have any computation in it. It may be better to make
the small procedure sequential to avoid the overhead of all the tiles making calls to local
procedures, when only one tile has anything in its local procedure. Further, when small
procedures are made sequential, di�erent calls to small procedures can exploit parallelism
between the calls. Such parallel calls to small procedures commonly arise when a loop
with a small-procedure call in its body is unrolled.

8.2 Handling libraries

This section describes the special features needed to handle library calls in Maps. The
reason for why they need special handling is described. Next, the method of using pointer
analysis stubs is shown; pointer analysis stubs allow library calls to be pre-compiled
without running pointer analysis on them. Finally, the handling of library calls with
pointer arguments is described.

Library calls need special handling in a compiler for a bank-exposed architecture for
two reasons: �rst, library functions may need to be sequentialized to a single tile, and

8.2. HANDLING LIBRARIES 117

 float D[100];

 return b;

 . . .

r = foo(3);
}

(a)

 int a,b,c;

{

 . . .

}

 float D[25];

foo_1(3);

void foo_1(int x)
{

 . . .

{

 int a;

foo_0();
}

int r;

{

 . . .

 return b;
}

 int b;
 float D[25];

r = foo_2();

int foo_2()
{

 . . .

}

 float D[25];
 int c;

foo_3();

void foo_3()

int foo(int x)

 float D[25];

int r;

void foo_0()

(b)
Tile 2 Tile 3Tile 0 Tile 1

Figure 8.1: Example of a parallel procedure. (a) Initial code. (b) Code after procedure foo()
is made into a parallel procedure on a 4-tile machine. Procedure foo() is cloned into 4 local
procedures, and the call to foo() is also cloned. The stack data and the code is distributed
among the 4 tiles.

118 CHAPTER 8. LANGUAGE AND ENVIRONMENT FEATURES

second, pre-compilation of libraries may be desired. Each reason is discussed in turn.
First, library functions may need to be sequentialized to a single tile, i.e., handled as
sequential procedures. Library calls dealing with o�-chip input and output may need
to be on a single tile if the I/O handling mechanism so demands. Guaranteeing correct
sequential semantics is easier if the I/O routines are sequentialized to one tile. Some
library functions may have complex code that violates the type-conversion restrictions of
Rawcc , stated in section 7.1, and thus cannot be parallelized by Maps. The second reason
for special handling of library calls is that it is desirable to pre-compile library calls once,
rather than re-compile them for every application. A consequence of pre-compilation is
that at the time of compilation of the libraries, the pointer analysis information of the
applications are not known. Consequently, simplifying assumptions are made about the
location of program data accessed by the library function; all program data accessed by
a library function is assumed to reside on one tile, and the library function is scheduled
on that single tile.

Having pre-compiled, sequential, library functions has two further implications on the
implementation of library calls. Section 8.2.1 describes the �rst implication, i.e., pointer
analysis stubs. Section 8.2.2 describes the second implication, i.e., handling of library
calls with pointer arguments and return values.

8.2.1 Pointer analysis stubs

For library functions having arguments or return values that are pointers, Rawcc needs
to know a summary of their pointer behavior at compile-time. For example, consider
the template of the strtol() function in �gure 8.2(a). strtol() returns as a long integer
the value represented by the character string pointed to by str. The string is scanned
up to the �rst character inconsistent with base. The address of the remaining string,
after the number, is returned in the ptr parameter. For the strtol() function, Rawcc
needs to know at compile-time that the location-set returned by the ptr parameter is the
same location-set passed in through the str parameter. Without running pointer analysis
on the library function, the location-set returned by ptr is not known. Running pointer
analysis on the library functions is inconvenient, as the pre-compiled libraries would need
to be re-compiled through pointer analysis. Re-compilation is time consuming, and may
not work if the library function violates the type-conversion restrictions of Rawcc , stated
in section 7.1.

Pointer analysis stubs are an innovative solution, �rst proposed by Robert Wilson in
his thesis [44], that provide a summary of the pointer behavior of library functions, with-
out the need for re-compiling them through pointer analysis. A pointer analysis stub for
a library function is a short procedure having the same template as the library function,
that summarizes the pointer analysis information of the library function. Pointer analysis
stubs are not correct implementations of the function. They are linked in at application
compile-time, and discarded after pointer analysis. Figure 8.2(b) shows the pointer anal-
ysis stub for the library function template in �gure 8.2(a). The pointer analysis stub tells
pointer analysis that the location-set pointed to by ptr is the same location-set (object)

8.3. ARRAY RESHAPES IN FORTRAN 119

// Pointer analysis stub for strtol()

long strtol(char *str, char **ptr, int base)

{

 *ptr = str;

}

// return any bogus number return 1;

// to by str. str is scanned up to the first

// character inconsistent with base. The

// remaining string is returned through the

// parameter ptr.

// strtol() returns as a long integer the value

// represented by the character string pointed

long strtol(char *str, char **ptr, int base);

(b)(a)

Figure 8.2: Example of a pointer analysis stub. (a) Template of the strtol() library function. Its
functionality is explained in a comment. (b) Pointer analysis stub for the strtol(). The pointer
analysis stub summarizes the pointer behavior of the function; it is not a correct implementation
of strtol().

as that in str. Pointer analysis stubs are usually very simple, and rarely exceed a few
lines of code. Pointer analysis recognizes the malloc function as a special case that re-
turns a new location-set not aliased with any other object in the program; hence malloc
has no stub. Malloc may be used in the pointer analysis stubs of other library calls to
express a newly-allocated block of memory.

8.2.2 Library calls with pointer arguments

Since library functions are sequential, it is assumed that parameters and return values
that are pointers point to data on a single tile. Consequently, Rawcc must ensure at
application compile-time that all pointed-to data for each library call resides on a single
tile. Single-tile data for each library call is ensured as follows. For each library call, the
location-sets of all the pointed-to objects are forcibly merged into one equivalence class
during equivalence-class uni�cation. Therefore, since each equivalence class is mapped to
a single tile by equivalence-class uni�cation, all pointer arguments and return values refer
to data on the same tile. Finally, the library call is placed on the tile where its pointed-to
data resides. Di�erent calls to the same library function may reside on di�erent tiles,
enabling parallelism between the calls.

8.3 Array reshapes in FORTRAN

This section describes what array reshapes in FORTRAN are, and why they need special
handling in Maps. Array sections, which could occur in C as well, are also described, as
they are handled in a manner similar to array reshapes.

Array reshapes in FORTRAN have implications on whether the padding optimiza-
tion for modulo unrolling can be applied. An array is said to be reshaped if it is accessed
in di�erent parts of the program with a di�erent number of dimensions, or di�erent sizes

120 CHAPTER 8. LANGUAGE AND ENVIRONMENT FEATURES

of dimensions. For example, if an array A of 100 elements is accessed in the program as-
suming dimensionality A[100], but accessed elsewhere assuming dimensionality A[25][4],
then the array A is said to be reshaped. Array reshapes can happen in FORTRAN in
three ways: parameter reshapes, equivalences and di�erent common block declarations.
For details, see [39]. An example of a reshape is when an array is be passed as an argu-
ment to a procedure that accesses it with di�erent dimensionality. In any reshape, the
correspondence of the elements between di�erent versions of the same array is one-to-one
and in-order on the column-major ordering of the array.

Array reshapes have no e�ect on Maps if the padding optimization, described in sec-
tion 4.4, is not applied. Without padding, the array elements are low-order interleaved
based upon the total o�set of the array element (in row-major or column-major order-
ing, as the case may be). By de�nition, the total o�set of an array element does not
change when the array is reshaped; hence, modulo unrolling produces the same bank
number and o�set for an element across di�erent reshapes, without any special handling.
Consequently, without padding, reshapes do not a�ect Maps.

With the padding optimization, however, array reshapes make the default handling
of distributed arrays incorrect. The padding optimization, applied on distributed arrays,
low-order interleaves the array based upon the last dimension value alone. Across di�erent
reshapes, using the last dimension value for �nding the bank number and the remaining
dimensions for �nding the o�set within the bank is incorrect, since for di�erent reshapes,
di�erent bank numbers and o�sets incorrectly result for the same array element.

The current implementation of Maps uniformly applies the padding optimization to
all arrays, and uses the last dimension value for low-order interleaving. Consequently,
as padding makes reshapes incorrect, any array that is padded in any of its reshapes
is not distributed { it is placed entirely on one node and handled using equivalence-
class uni�cation. Padding is always applied since not padding distributed arrays either
increases the code size and code generation complexity in case disambiguation is desired,
or makes all the array references dynamic. Neither scenario for not padding is very
attractive, and have not been studied in detail in the Raw compiler.

Passing array sections

A similar concept to array reshapes is the passing of array sections. An array section
is said to be passed when the actual argument for an array parameter is a pointer to
the middle of an array, rather than its beginning. This makes modulo unrolling, used
for distributed arrays, incorrect for the following reason. The code generation phase of
modulo unrolling assumes that the formal array is low-order interleaved, with the �rst
element of the array aligned to a known bank, which then allows the bank number for any
element to be computed. Currently, Rawcc always aligns the �rst element of the array
to be on bank 0. If the actual parameter is a pointer to an element that is not known
at compile time, the assumption of the code generation phase is violated. Furthermore,
even if the alignment of the actual is known, di�erent call-sites may have di�erent actual
alignments. When faced with array sections not aligned to a known bank, the compiler

8.3. ARRAY RESHAPES IN FORTRAN 121

has two choices: it can either keep the array distributed and make the formal accesses
to it dynamic, or allocate the entire array to one bank retaining disambiguated access.
Rawcc currently always does the latter. The former has not been investigated.

A related concept to array sections is partial-dimension passing in C. Note that in C,
a multi-dimensional array is really a one-dimensional array of smaller arrays, each with
one less dimension. We de�ne partial-dimension passing to be when the actual argument
has fewer dimensions than the actual array, and the formal parameter correspondingly
has the remaining dimensions. However, unlike array section passing, partial-dimension
passing does not require the array to be mapped to a single bank. The reason is that
with the padding optimization, the alignment of any partial-dimension argument with
bank 0 is maintained.

122 CHAPTER 8. LANGUAGE AND ENVIRONMENT FEATURES

Chapter 9

Results

This chapter presents some of the results for the Maps compiler system implemented as
part of the compiler for Raw. Application programs are compiled through Maps, and
simulated on the Raw simulator. Three sets of results are presented. In the �rst set of
results, applications are compiled with and without bank disambiguation, in either case
using compiler-exploited ILP. Results show that in the 32-tile case, using bank disam-
biguation improves performance by a factor of 3 to 5 over not using it for a broad range of
programs. In the second set of results, more detailed numbers are collected for programs
compiled with bank disambiguation. Speedups are measured for a varying number of
tiles; the numbers show that performance scales well with the degree of memory paral-
lelism available. In addition, statistics measuring load balance and aggregate memory
bandwidth are presented. In the third and �nal set of results, the performance bene�ts
of the selective use of dynamic accesses are studied. Results show that software serial
moderately improves performance in some cases. Additional results show that indepen-
dent epochs can be valuable, but only for a high number of tiles, and for a restricted
class of programs that have many independent memory references.

Before describing the results, the evaluation framework and application suite are
described.

Evaluation framework

Results in this chapter have been obtained using Maps implemented as part of Rawcc, the
Raw compiler based on the SUIF compiler infrastructure [24]. Evaluation is performed
on a cycle-accurate simulator of the Raw microprocessor, bug. The bug simulator models
an intermediate design point for Raw, roughly modelling the design as of early 1999.
The �nal design for the Raw chip prototype is still in evolution. The design simulated
for the results consists of one static network and one dynamic network. Each tile uses a
MIPS R4000 instruction set appended with network access instructions for the processing
element. The data and instruction memories on each tile are assumed in�nite; cache
behavior is not simulated. The
oating point units simulated are not pipelined. The
simulator faithfully models both the single static and single dynamic network, including

123

124 CHAPTER 9. RESULTS

any contention e�ects. The experimentally-measured number of cycles for static and
dynamic memory references on the simulated design are presented in table 9.1. The
numbers in table 9.1 assume no contention, and include both the processing costs and
the network latencies.

Distance 0 1 2 3 4

Dynamic store 17 20 21 22 23
Static store 1 4 5 6 7
Dynamic load 28 34 36 38 40
Static load 3 6 7 8 9

Table 9.1: Experimentally measured cost of memory operations in processor cycles for simu-
lated Raw design

The design for the Raw prototype has progressed beyond that in the bug simulator and
is still evolving; a more recent design point can be found in [34]. Design changes since
bug include having two identical static networks and two identical dynamic networks,
instead of one each. Having two networks of a kind instead of one increases the routing
resources available on the chip, i.e., two values can be received at a tile per cycle rather
than one. Both networks are register-mapped; two values can be read into a chip in one
cycle as the two input operands of a 3-operand MIPS R4000 instruction. An additional
motivation for a second dynamic network is better performance for deadlock-avoidance
strategies. Another di�erence of the latest Raw design from the simulated design is that
the
oating point units are now fully pipelined. A �nal di�erence is that the prototype,
of course, has limited memory per tile; software caching schemes are being considered for
the prototype, rather than hardware caches.

Application speedup is derived from comparison with the performance of code gener-
ated by the Machsuif MIPS compiler [42] executed on the R4000 processing element of
a single Raw tile. To expose instruction level parallelism across basic blocks, Rawcc uses
loop unrolling and control localization [25], among other techniques.

Application suite

Table 9.2 gives the characteristics of the benchmarks used for the evaluation. The bench-
marks were derived from the following sources: SPEC [45], Rawbench [2], Jade [46],
Mediabench [47], UC Berkeley MPEG-1 Tools [48], UTDSP [49] and CHAOS [50]. In
addition, SHA was the version written by Matt Frank at MIT, derived from Schneier's
Applied Cryptography [51]. Benchmarks include several dense matrix applications, mul-
timedia applications, and applications with irregular memory access patterns. All the
benchmarks are ordinary sequential programs written for a uni�ed address space, without
any user directives or pragmas of any kind. Note that we do not rely upon hand-coded
parallel programs or programs written for any particular high-performance architecture.
All speedups were attained with our automated compiler without any user intervention.

125

Benchmark Source Language Lines Seq. Primary Description
of time Array

code (cycles) size

DENSE MATRIX

Btrix Nasa7 FORTRAN 236 287M 15�15� Vectorized Block
(SPEC92) 15�5 Tri-Diagonal Solver

Cholesky Nasa7 FORTRAN 126 34.3M 16�16�32 Cholesky Decomposition
(SPEC92) & Substitution

Swim SPEC95 FORTRAN 486 96.2M 513�33 Shallow Water Model

Tomcatv SPEC92 FORTRAN 254 78.4M 32�32 Mesh Generation with
Thompson's Solver

Vpenta Nasa7 FORTRAN 157 21.0M 32�32 Inverts 3 Pentadiagonals
(SPEC92) Simultaneously

Mxm Nasa7 FORTRAN 64 2.01M 32�64, Matrix Multiplication
(SPEC92) 64�8

Life Rawbench C 118 2.44M 32�32 Conway's Game of Life

Jacobi Rawbench C 59 2.38M 32�32 Jacobi Relaxation

Alvinn SPEC92 C 331 23.8M 30�131 Neural-Network
Training

Ocean Splash/ C 1174 309.7M 256�256 Ocean Movement
Jade Simulation

MULTIMEDIA

Adpcm Media- C 295 2.8M 10240 Speech Compression
bench

SHA Perl Oasis C 608 1.0M 512�16 Secure Hash
Algorithm

MPEG-kernel UC C 86 14.6K 32�32 MPEG-1 Video Software
Berkeley Encoder Kernel

Latnrm UTDSP C 81 103K 64 Normalized Lattice
Filter

FIR-�lter UTDSP C 44 548K 1024 Finite Impulse
Response Filter

IRREGULAR

fppp-kernel SPEC92 FORTRAN 735 8.98K - Electron Interval
Derivatives

Moldyn CHAOS C 805 63M 256�3, Molecular Dynamics
32000�2 Encoder Kernel

Unstructured CHAOS C 850 150M 17377�3, Computational Fluid
32000�2 Dynamics

Table 9.2: Benchmark characteristics. Sequential time is the runtime for uniprocessor code
generated by the Machsuif MIPS compiler.

126 CHAPTER 9. RESULTS

Some benchmarks are full applications; others are key kernels from full applications.
Btrix, Cholesky, Mxm and Vpenta are extracted from Nasa7 of SPEC92fp. MPEG-
kernel is the portion of MPEG-1 Video Encoder standard [52] that takes up 70% of the
total run-time. The code was the UC Berkeley implementation of the standard [48], with
the kernel extracted by Sam Larsen at MIT. FIR �lter is an important multimedia kernel
that is at the heart of several audio, image and video applications. Because the Raw
simulator currently does not support double-precision
oating point, all
oating point
operations are converted to single precision.

Some of the applications are modi�ed to compile through the Rawcc compiler. A
summary of the modi�cations follows. Since Rawcc does not yet have automated library
support for I/O, the I/O calls in the applications are replaced by simple, low-level I/O
primitives supported by the simulator. Some of the applications in which control-
ow is
not dependent upon data values, data initialized using input is initialized using random
data instead. I/O support is currently in the process of being automated in the Rawcc
compiler. For many of the applications, the problem sizes are reduced from the standard
sizes for the benchmark, in order to reduce simulation time; see table 9.2 for the problem
sizes used in the evaluation. Some of the benchmarks had data initialization associated
with data declarations { data initialization is not currently automated in Maps; hence
the initializations are replaced in the source-code with explicit data assignments.

The rest of this chapter is organized as follows. Section 9.1 compares results with
and without bank disambiguation. More detailed results with bank disambiguation are
also presented. Section 9.2 presents statistics on memory distribution and utilization
for di�erent applications compiled with bank disambiguation. Section 9.3 presents re-
sults comparing methods for handling non-disambiguated accesses with methods that
disambiguate all accesses. Section 9.4 summarizes the chapter.

9.1 Bank disambiguation results

This section measures the performance of our applications with and without using bank
disambiguation. In either case, full compiler-exploited ILP is used. Next, more detailed
application results are presented for applications compiled with bank disambiguation, for
a varying number of memory banks. The performance of many individual applications
are explained.

In the �rst set of results, �gure 9.1 measures the bene�ts of using the bank disam-
biguation schemes of this thesis on overall speedups. It compares the speedups on 32
tiles for three strategies: using instruction-level parallelism (ILP) compiler techniques,
ILP supplemented with equivalence-class uni�cation (ECU), and ILP supplemented with
both ECU and modulo unrolling. The baseline for all three strategies is the sequential
program running on one tile with a speedup of one. The compiler techniques for extract-
ing ILP are described in [25], and are conceptually similar to those used for ILP-exposed
conventional machines such as VLIWs. The ILP alone numbers, while using 32 PEs, use
only one of the memory banks on Raw, as they have no way of distributing memory.

9.1. BANK DISAMBIGUATION RESULTS 127

0

4

8

12

16

20

24

S
p

ee
d

u
p

ILP alone (1 bank)

ILP + ECU (32 banks)

ILP + ECU + Modulo Unrolling (32 banks)

Btrix

Cholesky
Swim

Tomcatv
Vpenta

Mxm Life
Jacobi

Alvinn
Ocean

Adpcm
SHA

MPEG-kernel
Latnrm

FIR fil
ter

Fppp-kernel

Moldyn-array

Moldyn-str
uct

Unstru
ct-array

Unstru
ct-st

ruct

Figure 9.1: Comparison of 32-tile speedups using instruction-level parallelism (ILP) alone, ILP
with ECU, and ILP with both ECU and modulo unrolling.

128 CHAPTER 9. RESULTS

They still use multiple tiles to exploit ILP, and the static network for communication.
The latter two numbers use as many memory banks as PEs, and our compiler methods
to disambiguate to those banks.

The results show that while using ILP alone often gives a speedup in the range 1-4, us-
ing memory parallelism can increase performance substantially beyond that. Speci�cally,
using ECU increases the speedup on average by a factor of two beyond using ILP alone,
boosting it to between 2 and 61. In applications where modulo unrolling is applicable,
namely dense matrix and some multi-media codes, its use further improves speedup to
between 7 and 24. Overall, the methods in this thesis can often deliver an additional
factor of 3 to 5 in performance over using ILP alone.

The results in �gure 9.1 may have implications beyond Raw. They show that ap-
plications with a lot of ILP often have high memory bandwidth requirements. These
applications would perform poorly on a system with many functional units but limited
memory bandwidth. A Raw machine using ILP alone, and hence using only one memory
bank, �ts this architectural description, as do superscalars and centralized VLIWs with
centralized memory systems. In addition, the Raw machine using ILP alone su�ers from
high memory latency due to a lack of locality between the processors and the single mem-
ory; this latency is analogous to the multi-cycle on-chip wire delays conventional designs
will likely su�er in future VLSI technologies. Faced with similar problems, conventional
architectures may well �nd that a software-exposed distributed memory system com-
bined with a Maps-like compiler can improve its performance the same way it improves
the performance of a Raw machine with multiple memory banks.

Figure 9.2 breaks down the use of the two techniques for bank disambiguation on
arrays. The �gure shows for each application, the percentage of arrays whose references
are mapped to a single bank, as recommended by ECU, versus those that are distributed,
as recommended by modulo unrolling. Arrays can map to a single node if they contain
non-a�ne references; or are reshaped or passed in unaligned sections (see section 8.3).

Detailed application results

Table 9.3 shows the speedups attained by the benchmarks for Raw microprocessors for a
varying number of tiles. The numbers are those obtained using both ECU and modulo
unrolling. The numbers in the last column, for N = 32, are identical to the ILP + ECU
+ modulo unrolling numbers in �gure 9.1. Some application-speci�c comments are made
below.

Dense-matrix applications Most dense-matrix codes got very good speedups, ranging
from 5 to 23 for 32 tiles. The predominance of a�ne function array accesses in such
codes implied that all of them bene�ted greatly from modulo unrolling, as evidenced by
�gure 9.1. Out of eleven programs, seven attained speedups exceeding 15. The remaining
four, Mgrid, Alvinn, Btrix and Ocean, lost some performance for varying reasons. Mgrid

1Adpcm, SHA and fppp-kernel are exceptions; see section 9.1 for details.

9.1. BANK DISAMBIGUATION RESULTS 129

Benchmark N=1 N=2 N=4 N=8 N=16 N=32

DENSE MATRIX

Btrix 0.83 1.48 2.61 4.40 8.58 9.64
Cholesky 0.88 1.75 3.33 6.24 10.22 17.15
Swim 0.88 1.43 2.70 4.47 8.97 17.81
Tomcatv 0.92 1.64 2.76 5.52 9.91 19.31
Vpenta 0.78 1.90 3.36 7.06 12.17 20.12
Mxm 0.94 1.97 3.60 6.64 12.20 23.19
Life 0.96 1.73 3.03 6.06 11.70 20.29
Jacobi 1.01 1.68 3.03 5.95 11.13 17.58
Alvinn 1.04 1.30 2.07 2.93 4.31 5.22
Ocean 0.88 1.16 1.97 3.05 4.09 4.51

MULTIMEDIA

Adpcm 0.97 0.99 1.19 1.23 1.13 1.13
SHA 0.96 1.18 1.63 1.53 1.44 1.42
MPEG-kernel 0.90 1.36 2.15 3.46 4.48 7.07
Latnrm 0.93 1.30 1.87 2.80 3.39 6.06
FIR-�lter 0.80 1.04 1.59 2.55 6.55 14.25

IRREGULAR

fppp-kernel 0.52 0.73 1.51 3.26 6.72 10.20
Moldyn array 0.95 1.36 2.38 2.99 4.28 4.38

structure 0.92 0.94 1.60 2.57 3.11 3.59
Unstruct array 0.82 1.21 2.35 3.59 5.22 6.12

structure 0.86 1.29 2.07 3.00 4.10 4.92

Table 9.3: Benchmark speedup with full Maps bank disambiguation through equivalence class
uni�cation and modulo unrolling. Speedup compares the run-time of the Rawcc-compiled code
versus the run-time of the code generated by the Machsuif MIPS compiler for a varying number
of tiles N .

130 CHAPTER 9. RESULTS

0

20

40

60

80

100

P
er

ce
n

ta
g

e
o

f
ar

ra
ys

ECU

modulo unrolling

Btri
x

Cho
les

ky
Swim

Tom
ca

tv

Vpe
nta

M
xm Life

Ja
co

bi

Alvi
nn

Oce
an

Adp
cm

SHA

M
PEG-k

ern
el

M
gr

id

FIR
 fi

lte
r

M
old

yn
-ar

ray

M
old

yn
-st

ru
ct

Uns
tru

ct-
arr

ay

Uns
tru

ct-
str

uc
t

Figure 9.2: Percentage of arrays whose references are disambiguated through modulo unrolling
versus those that are disambiguated through equivalence class uni�cation (ECU). fppp-kernel
has no arrays, so is not included.

had many of its arrays reshaped, causing them to be allocated on a single node. Alvinn
had array accesses in most innermost loops whose indices did not vary with the induction
variable of the innermost loop. This caused their memory accesses to all go the same
bank. For Btrix, most arrays had a last dimension size of �ve, which acted as a bound
on parallelism available within arrays distributed using the padding optimization. In
Ocean, using modulo unrolling caused an N2 unroll for some loops, leading to excessive
code size. To prevent this, the outer loops were not unrolled, forcing some accesses to
remain non-disambiguated and slow. Nevertheless, for these four applications, the regular
structure of their code ensured competent speedups ranging from 4 to 9, and signi�cant
improvements over ILP alone.

Multi-media applications In this class, two applications, Adpcm and SHA, gave low
speedups while two, Mpeg-kernel and FIR-�lter, gave high speedups. Both Adpcm and
SHA have a low degree of available memory parallelism. Furthermore, they were able to
exploit only a low degree of ILP, as evidenced by their low speedups in the `ILP alone' case
in �gure 9.1. The reason for Adpcm was that the code is inherently serial for the large
part: most instructions depend upon the result of immediately previous instructions. For
SHA, while some ILP was available, it was too �ne-grained for our current techniques
to exploit. The communication incurred, even on the fast static network, nulli�ed any
parallelism.

Mpeg-kernel and FIR-�lter were able to exploit a high degree of speedup. Both made
signi�cant use of arrays, and were somewhat similar to dense-matrix codes in program

9.2. MEMORY DISTRIBUTION AND UTILIZATION 131

structure. In Mpeg-kernel, a 16x16 window of pixels is manipulated at a time. The
speedup was limited to 7 because one of the arrays has a base that is an unknown
pointer into a larger array, e�ectively making its accesses non-a�ne. The good results
on this class of multi-media applications are especially encouraging, as these are key
components of the emerging workloads of the future involving audio, image and video
data.

Irregular applications Results are presented for Fppp-kernel, Moldyn and Unstruc-
tured. Fppp-kernel consists of a time-intensive huge basic-block with mostly accesses to
scalar data. A high degree of ILP is exploited. Since only scalar variables are present,
the space-time scheduler itself is able to distribute data in the ILP-alone number; there
is no further improvement from ECU and modulo unrolling. Moldyn and Unstructured
are more typical examples of scienti�c programs with irregular access patterns. Their
accesses are predominantly non-a�ne. Available parallelism is within di�erent �elds of
array elements. For both, we present results for two di�erent versions: using structures
and using arrays. While the structure versions use arrays of structures to represent their
data, the array versions use 2-dimensional arrays with the second dimension represent-
ing the �elds of the structure. The opportunities for memory parallelism are identical
for both versions, but Maps exposes that parallelism through di�erent means. Memory
parallelism in the array versions is exposed through array distribution and modulo un-
rolling, while parallelism in the structure version is exposed through equivalence class
uni�cation. The di�erent speedups for the two versions are accounted for by details con-
cerning address calculation costs and opportunities for optimization of those costs. Note
that the speedup for Moldyn is obtained without special handling of the reduction in its
time-intensive loop. Its performance should improve further with reduction recognition.

Admittedly, at this point our coverage of irregular applications is low. Many irregular
applications have small basic-blocks. Even when memory parallelism is available in terms
of objects, it may not be exploitable because of a low degree of parallelism within basic
blocks. Ongoing research in the Raw group is investigating techniques to exploit ILP
across basic blocks and through speculation.

9.2 Memory distribution and utilization

This section measures statistics concerning memory distribution and utilization for our
applications. Two sets of numbers are presented, measuring memory load balance and
memory bandwidth utilization.

Memory load balance

The �rst set of numbers measures memory load balance. In general, balanced data
distribution is desirable because it minimizes the per-tile memory needed to run an
application, and it alleviates the need to build large and centralized memory which is
also fast.

132 CHAPTER 9. RESULTS

1
3

5
7

9
11

13
15

17
19

21
23

25
27

29
31

m
p

e
g

-k
e
rn

e
l

m
o

ld
y
n

a
d

p
c
m

m
o

ld
y
n

-s
tr

u
c
t

u
n

s
tr

u
c
t

u
n

s
tr

u
c
t-

s
tr

u
c
t

b
tr

ix s
h

a

c
h

o
le

s
k
y

ja
c
o

b
i

s
w

im

a
lv

in
n

la
tn

rm F
IR

v
p

e
n

ta

to
m

c
a
tv

m
x
m li
fe

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
e

m
o

ry
 a

ll
o

c
a

te
d

 t
o

 e
a

c
h

 t
il

e

(n
o

rm
a

li
z
e

d
)

Tile ID Number

Figure 9.3: Distribution of primary data on a 32-tile Raw machine. The tiles are sorted in
decreasing order of memory consumption. For each benchmark, the graph displays the memory
consumption on each tile normalized by the memory consumption of the tile with the largest
consumption. (Needs updating with new benchmarks)

9.2. MEMORY DISTRIBUTION AND UTILIZATION 133

Figure 9.3 shows the distribution of primary data across tiles for our benchmarks
executing on 32 tiles. Most dense matrix codes can fully distribute their data; Swim
and Cholesky can only partially distribute their data because of their small problem
sizes, but their distributions become balanced with larger problem sizes. For smaller
data sets, the array dimension sizes are comparable to, or smaller than, the number of
tiles (32 in �gure 9.3); since modulo-unrolling low-order interleaves the values on the last
dimension value, a small dimension size results in a slight load imbalance. MPEG-kernel
has a few non-a�ne array accesses; therefore, it cannot use only disambiguated memory
accesses while distributing data. Consequently, it handles one array using ECU; hence
its distribution is not load-balanced. The remaining applications can partially distribute
their data across a range of 3 to 16 tiles. For many of these remaining applications, the
limited load balance is because of two factors: the limited number of equivalence classes,
and the unequal size of the classes.

Memory bandwidth utilization

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31 fi
r

li
fe

ja
c

o
b

i

la
tn

rm

v
p

e
n

ta

fp
p

p

c
h

o
le

s
k

y

to
m

c
a

tv

s
w

im

o
c

e
a

n

m
x

m

b
tr

ix

m
p

e
g

u
n

s
tr

u
c

tu
re

m
o

ld
y

n

s
h

a

a
d

p
c

m

0

10

20

30

40

50

60

70

80

90

100

P
e

rc
e

n
ta

g
e

 o
f

m
e

m
o

ry
 r

e
fe

re
n

c
e

s

Number of Tiles

Figure 9.4: Weighted bandwidth utilization of the memory system on a 32-tile machine. The
graph displays the percentage of memory references being issued in a time slot when a given
number of tiles is issuing memory requests.

Here, memory bandwidth utilization is measured when bank disambiguation is used.

134 CHAPTER 9. RESULTS

Memory bandwidth utilization measures how well an application takes advantage of
Raw's independent memory banks. It depends on the amount of memory parallelism
exposed by Maps and the amount of parallelism in the application.

Figure 9.4 measures the weighted memory bandwidth utilization of a 32-tile machine.
It plots the percentage of memory references being issued in a clock cycle when a given
number of tiles is simultaneously issuing memory requests. Therefore, the sum of the
percentages for any one application is 100%. For example, �gure 9.4 shows that for
Cholesky, almost 20% of the memory references are issued in a cycle in which a total of
7 memory references issued in all the tiles. Results show that except for the two highly
serial benchmarks (Adpcm and SHA), all the benchmarks are able to exploit at least a
small amount of parallel memory bandwidth. Most of the other multimedia applications
and dense matrix applications have at least 20% of their accesses being performed on
cycles that issue �ve or more accesses, with Vpenta enjoying 10-way memory parallelism
for over 20% of its accesses.

The signi�cance of �gure 9.4 is that for most applications, it shows that it is not
true that 1 or 2 memory instructions are all that are needed to exploit available memory
parallelism. The �gure shows that a higher degree of memory parallelism is often avail-
able in applications; further, that the available memory parallelism can be exploited on
architectures that support multiple memory instructions per cycle.

9.3 Static vs. dynamic accesses

This section investigates whether the selective use of dynamic access can improve per-
formance. First, the performance of 3 of our applications is compared for three cases:
with only static accesses, with software serial ordering, and with independent epochs and
updates. Second, a case when software serial ordering improves performance is demon-
strated.

Static (disambiguated) accesses are usually better than dynamic (non-disambiguated)
accesses because of their low overhead. Sometimes, however, static accesses can only
be attained at the expense of memory parallelism. MPEG-kernel, Unstructured, and
Moldyn are benchmarks with irregular accesses that can take advantage of high memory
parallelism. This section examines the opportunity of increasing the memory parallelism
of these programs by distributing their arrays and using dynamic accesses to implement
parallel, irregular accesses.

Figure 9.5 shows the performance of the aforementioned benchmarks when all ar-
rays are distributed. Irregular accesses are implemented through dynamic accesses, with
software serial ordering to ensure correctness. Results for Moldyn and Unstructured are
poor, with slow-downs for all con�gurations. MPEG-kernel attains speedup but is twice
as slow as its purely static speedup. This result is not surprising: dynamic accesses seri-
alized through a turnstile are slower than corresponding static accesses serialized through
a memory node. In either case, the degree of serialization is the same, with the dynamic
case su�ering from additional overhead.

9.3. STATIC VS. DYNAMIC ACCESSES 135

 MPEG-kernel

 Moldyn
� Unstructured

|

0
|

4
|

8
|

12
|

16
|

20
|

24
|

28
|

32

|0

|1

|2

|3

|4

|5

|6

|7

|8

 Ntiles

 S
pe

ed
up

�

� �
�

� �

Figure 9.5: Benchmark speedup with all arrays distributed, with irregular array references
implemented as dynamic accesses with software serial ordering.

To improve the performance with dynamic accesses, serialization of dynamic accesses
has to be reduced through independent epoch and update optimizations. Currently,
independent epoch generation has not been automated, so our evaluation uses a hand-
coded implementation of independent epochs and updates. To simplify the hand-coding
task, the optimizations are limited to a selected loop from each of Moldyn and Unstruc-
tured, and the full MPEG-kernel. The loop selected from Moldyn accounts for 86% of
the run-time. In Unstructured, many of the loops with irregular accesses have similar
structure; one such representative loop is selected. Figure 9.6 shows the performance
of dynamic references when independent epoch and update optimizations are applied to
these applications, compared with the unoptimized dynamic performance and the static
performance. The �gure shows that the dynamic optimizations are e�ective in reduc-
ing serialization and attaining speedup. All three benchmarks bene�t from independent
epochs, while Moldyn and Unstructured bene�t from updates as well. Together, the
optimizations completely eliminate the turnstile serialization for these applications.

The speedup trends of these applications re
ect the amount of available memory
parallelism. For static accesses, the amount of memory parallelism that can be exposed
through ECU is limited to the number of alias equivalence classes. Depending on the
access patterns, the amount of useful memory parallelism may be less than that. This
level of memory parallelism does not scale with the number of tiles. For a small number
of tiles, ECU can expose enough parallelism to satisfy the number of processing elements.
For a larger number of tiles, insu�cient memory parallelism causes the speedup curve to
level o�.

In contrast, the use of dynamic accesses allow arrays to be distributed, which in turn

136 CHAPTER 9. RESULTS

 static

 dynamic-epoch
� dynamic-base

|

0
|

4
|

8
|

12
|

16
|

20
|

24
|

28
|

32

|0

|1

|2

|3

|4

|5

|6

|7

|8

 MPEG-kernel

 Ntiles

 S
pe

ed
up

��

�
�

�

�

 static

 dynamic-epoch
� dynamic-base

|

0
|

4
|

8
|

12
|

16
|

20
|

24
|

28
|

32

|0

|1

|2

|3
|4

|5

|6

|7

|8

 Moldyn-loop

 Ntiles

 S
pe

ed
up

�
� � � � �

 static

 dynamic-epoch
� dynamic-base

|

0
|

4
|

8
|

12
|

16
|

20
|

24
|

28
|

32

|0

|1

|2

|3

|4

|5

|6

|7

|8

 Unstructured-loop

 Ntiles

 S
pe

ed
up

�

�
�

� � �

Figure 9.6: Speedups of benchmarks with selective use of dynamic accesses. The dynamic-
epoch numbers are for the programs optimized with independent epochs and updates. The
dynamic case without optimization is in dynamic-base. For comparison the static number, with
no dynamic accesses, is also presented.

9.3. STATIC VS. DYNAMIC ACCESSES 137

exposes memory parallelism scalable with the number of tiles. As a result, the speedup
curve for optimized dynamic scales better than that for static. For up to 16 tiles, static
outperforms optimized dynamic; for 32 tiles, optimized dynamic actually outperforms
static, and the trend suggests that optimized dynamic increasingly outperforms static
for even larger numbers of tiles. To understand this trend, note that the static case has
lower memory parallelism but also lower overhead for each access; for a lower number of
tiles, the available parallelism is adequate. Dynamic accesses perform poorly for a low
number of tiles because the available parallelism is not fully exploited by the low number
of tiles, yet the overhead of dynamic accesses causes them to be slower. For a high
number of tiles, the increased parallelism of dynamic accesses enables them to partially
o�set the performance loss from their higher overhead. For the dynamic experiment,
only the irregular accesses are selectively made dynamic; the a�ne array accesses and all
scalar data are accessed on the static network.

Why do we need software serial ordering?

As discussed earlier in this section, dynamic accesses using software serial ordering can
never perform better than static accesses disambiguated through ECU. Here we show,
by using an example from Unstructured, how software serial ordering can nevertheless
be useful.

Unstructured contains an array X[] that is accessed in only two loops, an initialization
loop (init) and a usage loop (use). The initialization loop makes irregular accesses to X[]
and is executed only once. The usage loop makes a�ne accesses to X[] and is executed
many times. For best performance, Maps should optimize the placement of X[] for the
usage loop.

Array mapping Loop Access type Speedup

centralized init static serial 1.89
use static serial 3.86
total { 3.85

distributed init dynamic serial 0.59
use static parallel 4.43
total { 4.42

Table 9.4: An example of overall performance improvement through the use of software serial
ordering. Software serial ordering enables Maps to distribute a critical array, which optimizes
for static parallel access in the critical use loop in exchange for dynamic accesses with software
serial ordering in the non-critical init loop. Performance is measured for 32 tiles.

Table 9.4 compares the performance of the loops when X[] is placed on one tile to
when it is distributed across 32 tiles. When the array is centralized, both init and use
attain speedups because they enjoy fast static accesses. When the array is distributed,
however, init su�ers slowdown because it has dynamic serial accesses going through a
turnstile, while use attain better speedup compared to the centralized case. For the full
program, however, the performance of use matters much more. Thus, distributing X[]

138 CHAPTER 9. RESULTS

provides the better overall performance, despite the overhead init incurs from software
serial ordering.

The example in table 9.4 illustrates the general use of software serial ordering (SSO).
SSO is a way of enforcing dynamic dependences that is more e�cient than other mecha-
nisms such as complete serialization or placing barriers between the dependent accesses.
SSO is used not to improve the performance of the code segment using it, but as an en-
abling mechanism to allow the compiler to improve the parts of the program that really
a�ect performance. SSO provides a universal and e�cient handling of dynamic accesses
in the absence of applicable optimizations. The overall utility of dynamic accesses re-
mains to be seen, but its use with software serial ordering provides a reasonable starting
point on which further optimizations can be explored.

9.4 Summary

This chapter describes experimental results on executables produced from sequential code
using the Raw compiler, and evaluated on the Raw simulator. The suite of applications
spans dense-matrix applications, multimedia applications, and irregular applications. To
measure the bene�t from bank disambiguation, the speedup of each application is mea-
sured on a 32-tile machine using ILP alone, and ILP augmented with bank disambigua-
tion. A speedup of 1 corresponds to the application running on a machine with one pro-
cessing element and one memory bank. The results show that while ILP alone provides
some speedup, augmenting ILP with bank disambiguation improves the speedups by an
additional factor of 3 to 5 for many applications over using ILP alone. The speedups from
ECU and modulo unrolling are separated out to measure their individual impacts. More
detailed results show how the speedups using ILP augmented with bank disambiguation
scale with power-of-two tile numbers between 1 and 32.

The next part of the chapter measures more parameters for the bank disambiguated
codes. First, results are presented on the load balance provided by the di�erent appli-
cations. Maps is able to provide excellent load balance when modulo unrolling is used,
and some load balance when ECU is used. Using ECU, the load balance is limited by a
limited number of equivalence classes and unequal sizes of the di�erent classes. Second,
results are also presented showing the frequency of cycles in which multiple memory re-
quests are issued in one cycle. Results show that modulo unrolling delivers a high degree
of memory parallelism; ECU delivers some memory parallelism, but a lesser amount.

The �nal part of the chapter measures the bene�t from the selective use of dynamic
accesses, over using purely static schemes. Overall, the results show that while in some
cases performance improves, the improvement is not large. While more extensive evalu-
ation might show otherwise, our results show that using dynamic accesses outperforms
purely static schemes in some cases only when independent epochs can be used, and only
for 32 or more tiles. As expected, SSO leads to poor performance in the parts of the
code it is used. Results on one of our applications shows, however, that SSO allows the
rest of the program to run faster, improving overall performance.

Chapter 10

Related work

This chapter discusses related work with respect to the compiler methods in this the-
sis. Compiler methods having similarities with, or relevance to, bank-exposed compilers
are discussed. Compilers investigated include compilers for other architectures, such as
microprocessors, DSP chips, multiprocessors, vector machines and systolic arrays. Fea-
tures of architectures are discussed only to explain the role of their compilers; for direct
comparisons of software-exposed architectures to other architectures, see [1].

This chapter is organized as follows. Section 10.1 discusses bank disambiguation
strategies proposed elsewhere. Section 10.2 describes four kinds of memory disambigua-
tion, other than bank disambiguation, developed in the literature. Section 10.3 describes
a hardware-supported addressing scheme for DSP chips called modulo addressing, and
its relation to compilers for software-exposed machines. Section 10.4 discusses multi-
processor compilers. Section 10.5 discusses compilers for vector machines. Section 10.6
discusses compilers for systolic arrays.

10.1 Bank disambiguation

This section describes work related to bank disambiguation in both general-purpose and
DSP domains. Little work has been done on bank disambiguation in the general-purpose
community, as few bank-exposed architectures have been proposed in the past. Indeed,
that bank disambiguation is considered a hard problem is probably why few general-
purpose bank-exposed architectures have been proposed. Recently, however, proposals
have appeared for bank-exposed architectures, for example, Cooper and Harvey [53] pro-
pose a small, fast, exposed memory for general-purpose architectures to handle memory
tra�c from register spills. In essence, the scheme in [53] bank disambiguates all register
spills to one bank. DSP chips, on the other hand, have long used more than one exposed
memory bank. The lack of bank disambiguation methods has meant that most DSP chips
have been hand-coded using assembly language. Recently, some work has been done for
bank disambiguation for DSP chips, and is described in this section.

An early general-purpose bank-exposed design is the ELI-512 VLIW machine [16]
proposed by Josh Fisher in 1983. The ELI-512 is an unusual VLIW design with a

139

140 CHAPTER 10. RELATED WORK

point-to-point network connecting its various tiles, each with its exposed memory bank.
Fisher recognized the importance of bank disambiguation for such a machine. The ELI-
512 provided two ways to access memory: through a fast \front door" to directly to
a memory bank when the accessed bank is known at compile-time, or a slower \back
door" for accesses for which the accessed bank is unknown. These mechanisms identify
the architecture as bank-exposed. Most VLIWs today, however, use global buses and a
uni�ed memory system rather than point-to-point networks.

Modulo unrolling is related to an observation made by Fisher [16]. He observes
that unrolling can sometimes help disambiguate accesses. Based on this observation, his
compiler relies on user annotations to determine the unrolling factor needed for such
disambiguation. In contrast, modulo unrolling is a fully automated and formalized tech-
nique that computes the necessary unrolling factors needed to perform disambiguation
for dense matrix codes. It includes a precise speci�cation of the scope of the technique
and a theory to predict the minimal required unroll.

Saghir, Chow and Lee [54] have developed a method for exploiting dual-memory-
bank digital-signal processing (DSP) chips. Many DSP chips today have two exposed
memory banks, called X and Y memory, such as in the Motorola DSP56000 family [18]
and the NEC �PD7701x family [55]. The method in [54] divides the data in C programs
among the two banks in a way that optimizes for memory parallelism. The method
consists of two steps. First, an interference graph is built whose nodes are the variables
in the program, and each edge represents the parallelism penalty of putting the two
variables connected by the edge on the same bank. The penalty is initialized to zero, and
incremented for every pair of references that can issue in parallel. The increment amount
is the loop-nesting depth of the references, roughly approximating the importance of
placing the references on di�erent banks. In the second step, the interference graph is
partitioned among the two banks using a greedy algorithm that aims to minimize the
total cost of the edges within each bank. In this way, the parallelism penalty incurred is
minimized.

The method in [54], described in the previous paragraph, is bank-disambiguation, in
that it assigns every variable to a bank. It is super�cially similar to ECU, however, it
is complementary to our work. The method in [54] is more akin to virtual-to-physical
bank assignment, rather than ECU. Virtual-to-physical bank mapping is done by the
space-time scheduler [25], the second phase of Rawcc after Maps, in a manner that
places data on di�erent banks if there are many parallel pairs of accesses to the data.
The di�erences of Maps with [54] are as follows. First, ECU derives the virtual-bank
partition as the underlying upper-bound on the parallelism available, while [54] targets
a particular number of physical banks, taking into account the actual parallel references
present1. Second, ECU handles programs with arbitrary pointers, while [54] does not.
ECU, in fact, uses pointer analysis to guide the placement of data. Third, [54] always

1One shortcoming of ECU compared to [54] is that ECU says nothing about how mapping to physical
banks is done. ECU delegated the responsibility for virtual-to-physical mapping to the space-time
scheduler. The space-time scheduler, in turn, could use an approach similar to [54].

10.2. OTHER KINDS OF MEMORY DISAMBIGUATION 141

places each data object on a single bank, including arrays and structures. In contrast,
modulo unrolling distributes arrays, and ECU distributes structures, thus extracting
parallelism within objects. For many dense-matrix and signal-processing applications,
extracting parallelismwithin arrays using modulo unrolling greatly improves performance
(see chapter 9); [54] has no analog for modulo unrolling.

Sudarsanam and Malik [56], in an earlier work, present a solution to the same problem
as in [54]. The innovative feature about the method in [56] is that it handles register
allocation and memory bank assignment simultaneously, instead of in a de-coupled man-
ner. Most other DSP compilation strategies [54, 57, 58] perform register allocation and
memory bank assignment separately. Simultaneous handling of register allocation and
memory bank assignment is valuable in architectures where there are constraints on which
registers can be used to store data from a particular data bank. Many DSP architec-
tures [18] place such constraints because of their limited connectivity. The method in [56]
models the problem using a constraint graph, on which graph labeling is performed to
�nd a register and memory assignment. In terms of a comparison with Maps, since the
method in [56] is conceptually similar to the method in [54], the same comparison com-
ments for [54] with Maps apply to the comparison of [56] with Maps. The only additional
observation is that Maps performs data and instruction placement (virtual-to-physical
mapping) simultaneously, as in [56], in the space-time scheduler. This is because Raw
has heterogeneous connectivity: register �les are directly connected only to their local
memory banks, making it pro�table to consider data and instruction placement together.

Systolic arrays have exposed memory banks, however, their computation model is
entirely di�erent from our model. Section 10.6. discusses systolic compilers.

10.2 Other kinds of memory disambiguation

Atleast four di�erent kinds of memory disambiguation, other than bank disambigua-
tion, have been proposed in the literature. These are relative memory disambiguation,
run-time disambiguation, dynamic memory disambiguation, and a�ne-memory disam-
biguation. Each of the four is discussed in this section, in the order listed. The discussion
states what they are, how they compare to bank disambiguation, and if they are useful
for Maps in any way.

Relative memory disambiguation [59] is a kind of memory disambiguation useful for
any machine with multiple memory banks that allows multiple outstanding requests to
memory. The work in [59] targeted bus-based VLIW machines such as the Multi
ow
Trace [31]. Relative memory disambiguation aims to discover cases where two memory
accesses never refer to the same memory location. Successful disambiguation implies
that the accesses can be executed in parallel. Relative memory disambiguation uses
dependence analysis, pointer analysis and data
ow analysis techniques to discover the
relative o�sets of di�erent references. For example, relative memory disambiguation may
be able to prove that the references �p and �(p + 1) always go to di�erent banks if the
data is low-order interleaved. To do so, the compiler would need to prove that p is not

142 CHAPTER 10. RELATED WORK

modi�ed in between the two accesses. Data
ow analysis may be able to prove that p is
not modi�ed.

Relative memory disambiguation does not specify the actual bank that a reference
accesses, or guarantee that the bank accessed is the same in all dynamic instances, hence
relative memory disambiguation solves a di�erent problem from bank disambiguation.
Nevertheless, relative memory disambiguation is useful in Maps in the independent epoch
optimization for non-disambiguated accesses. An Independent epoch may be used for
a set of non-disambiguated accesses when all the accesses are independent. Relative
memory disambiguation is able to prove independence of accesses in some cases.

Run-time disambiguation, proposed by Nicolau [60], is another kind of memory dis-
ambiguation. Nicolau's method uses software address-comparison checks, inserted into
the code by the compiler, that compare addresses for di�erent memory references at
run-time. If the check reveals that the references access di�erent addresses, then a code
fragment that re-orders them is run, else a slower fragment using in-order accesses is run.
Thus, run-time disambiguation aims for scheduling
exibility of instructions; re-ordering
instructions leads to performance gain, as early scheduling of instructions having many
dependent-instructions increases the ILP exposed. Run-time checks are used only when
purely static dependence-analysis fail to prove independence, as run-time checks incur
overhead, and the number of checks grows rapidly with the number of instructions re-
ordered: if m loads bypass n stores, mn run-checks are needed.

We initially considered run-time disambiguation as a scheme to e�ciently handle
dynamic accesses, before discovering software serial ordering. The proposal involved
comparing addresses of references using run-time checks; if di�erent the references would
be issued in parallel, else they would be serialized. We abandoned this possibility in
favor of software serial ordering (SSO) upon discovering SSO. Software serial ordering,
like run-time disambiguation, overlaps much of the latency of dynamic accesses while
ensuring dependence. Unlike run-time disambiguation, however, SSO is more scalable as
it uses no explicit check of addresses, and does not incur their overhead. The number
of run-time checks in run-time disambiguation grows quadratically with the number of
accesses involved. Further, SSO, unlike run-time disambiguation, overlaps much of the
latency of accesses even when they are dependent.

Run-time disambiguation, discussed above, is a di�erent problem from bank-disambiguation,
and complementary to it. Run-time disambiguation need not to predict the bank accessed
by each reference, so it does not. Instead, run-time disambiguation is complementary
to bank-disambiguation: it is conceivable to use run-time disambiguation between non-
disambiguated accesses, or accesses disambiguated to the same bank, to re-order them
for scheduling
exibility2.

Dynamic memory disambiguation, such as in Chen [61] and Gallagher et. al. [62], is
the hardware version of run-time disambiguation. Like run-time disambiguation, dynamic
memory disambiguation performs checks of addresses at run-time to increase scheduling

2Run-time disambiguation is not needed between accesses disambiguated to di�erent banks, as they
are already known to be independent.

10.3. MODULO ADDRESSING AND STREAMING APPLICATIONS 143

exibility, and thus ILP. Unlike run-time disambiguation, dynamic memory disambigua-
tion does not perform software-checks; rather, it uses a special hardware unit called a
memory con
ict bu�er to perform the checks in hardware. The memory con
ict bu�er
was proposed in [61] and [62], and improved in [63]. To use the memory con
ict bu�er
approach, the software must use a special load instruction, called a preload, for any
load that has been moved from after possibly con
icting stores, to before. Further, the
software must insert a special check instruction to signal to the hardware to look for
dependence violations, and jump to compiler-provided correction code to recover from
the violations.

Since dynamic memory disambiguation is similar to run-time disambiguation in the
task performed, in comparing with bank disambiguation, the same comments apply for
dynamic memory disambiguation as for run-time disambiguation. That is, dynamic
memory disambiguation solves a di�erent problem from bank disambiguation; dynamic
memory disambiguation does not ensure that accesses go to a single bank. Instead, it is
complementary to the bank disambiguation methods in Maps: dynamic memory disam-
biguation may be used to re-order non-disambiguated accesses, or accesses disambiguated
to the same bank.

A�ne-memory disambiguation, a term used by Maydan [64] for his work, is yet an-
other kind of memory disambiguation appearing in the literature. A compile-time anal-
ysis, a�ne-memory disambiguation is a precise form of dependence analysis. Traditional
dependence analysis [65, 66, 67] aims to prove that pairs of references are independent,
failing which it conservatively assumes that the references may be dependent, even if at
run-time they turn out to be always independent. A�ne-memory disambiguation aims
to answer the question of dependence more precisely; i.e., it places a dependence edge
if and only if there is an actual dynamic instance at run-time for which the references
access the same address. Maydan [64] claims that, for all cases appearing in practice, his
analysis is exact.

A�ne-memory disambiguation di�ers from bank disambiguation. Bank disambigua-
tion predicts the bank number for any reference; a�ne-memory disambiguation, a form
of dependence analysis, proves that pairs of references are independent. Maps, like most
compilers, bene�ts from dependence analysis. A�ne-memory disambiguation can be used
for dependence analysis in Maps, instead of the more traditional methods used.

10.3 Modulo addressing and streaming applications

Modulo addressing [68, 69] is the name of a hardware-supported addressing mode often
present in DSP chips, such as the NEC �PD7701x [55]. Modulo addressing maps the
software-address addr to always implicitly refer to location addr%M , where M is an
integer, usually a power of two. In e�ect, modulo-addressing implements the address
space as a circular bu�er. Modulo addressing is useful in applications such as FIR
�lter [68], where only a sliding window of a large stream of data is kept on chip at one
time. Without modulo-addressing, the entire array needs to be shifted by one element

144 CHAPTER 10. RELATED WORK

every time a new element comes in from the stream. With modulo addressing, no shift
is required, as the new element simply overwrites the oldest (outgoing) element at the
end of the circular bu�er.

Modulo addressing is mentioned here for two reasons. First, to clarify that mod-
ulo addressing has nothing to do with modulo unrolling, with which it bears a similar
name. Second, there is an interesting possibility of using software-implemented modulo
addressing in Raw for real-time streaming applications. The FIR-�lter evaluated in the
results chapter (chapter 9) implements a version where the entire data-stream is mapped
to unique address-space locations at compile-time. For a real-time, potentially in�nite,
streaming version of FIR, mapping the entire data stream to unique locations is not pos-
sible. Ordinarily, a real-time FIR on Raw requires explicit data-shifts to accommodate
new elements, leading to a whole new, streaming compilation model incompatible with
Rawcc. With modulo addressing, however, no shift is required, as the new element is
mapped to an existing location at the middle of the array, where the outgoing element
used to reside. Moreover, with small modi�cations, this modulo addressing compilation
model is compatible with Rawcc. Before access, references to the data stream would
perform a mod operation of the array index with the circular bu�er size, thus mapping
an in�nite stream to a �nite bu�er. The circular bu�er size need not be equal to N , the
number of banks; instead it can be any power-of-two: mod operations with powers of
two are cheaply implemented in software as bit-wise and operations.

10.4 Multiprocessor compilers

Other researchers have parallelized some of the benchmarks in this paper for multi-
processors. Automatic parallelization has been demonstrated to work well for dense
matrix scienti�c codes [22, 23]. In addition, some irregular scienti�c applications can be
parallelized using the inspector-executor method [70]. Typically these techniques involve
user-inserted calls to a runtime library such as CHAOS [71], and are not automatic. The
programmer is responsible for recognizing cases amenable to such parallelization, namely
those where the same communication pattern is repeated for the entire duration of the
loop, and inserting several library calls.

In contrast, the Maps approach is more general and requires no user intervention. Its
generality stems from its exploitation of ILP rather than coarse-grain parallelism targeted
by [70] and [22]. Multiprocessors are mostly restricted to such coarse-grain parallelism
because of their relatively high communication and synchronization costs. Unfortunately,
�nding coarse grain parallelism often requires whole program analysis by the compiler,
which works well only in restricted domains. A software-exposed machine can successfully
exploit ILP because of the presence of fast register-level communication. For the Raw
machine, this is the static network. Of course, software-exposed machines can exploit
coarse-grain parallelism as well if the compiler so chooses.

In addition to the advantages of ILP, cheaper synchronization is another bene�t of a
fast compiler-scheduled network in software-exposed architectures such as Raw. In multi-

10.4. MULTIPROCESSOR COMPILERS 145

processors, sharing a variable across di�erent tiles requires heavy-duty synchronization
mechanisms such as locks to ensure correct serial ordering. When a compiler-scheduled
network is present, however, the ordering guarantees provided by the network provide
correctness, without the need for mechanisms such as locks.

For message-passing multiprocessors, it is pro�table to know the bank numbers ac-
cessed for data elements at compile-time. Compile-time knowledge avoids the need for a
software check at run-time of whether the element is remote or local. Remote elements
are accessed via user-level messages3. Much work has been done in the area of data
mapping and code generation for multiprocessors [72, 73, 74, 75, 76, 77]. These methods
decompose the program into several parallel threads, one per processor, and decompose
arrays using custom allocation strategies, such as blocked, cyclic, or block-cyclic, depend-
ing upon which allocation strategy minimizes communication for that program. Further,
methods such as [73] specify, for each processor, the accessed data element regions on each
remote processor's memory. [73] models the accessed data regions on remote processors
by elements satisfying a system of linear inequalities in the data space.

While methods for a�ne-function code generation on multiprocessors generate bank
information, they are inappropriate for use on a bank-exposed microprocessor for the
following two reasons. First, multiprocessor compilation methods often produce block or
block-cyclic data partitions, which provide coarse-grained parallelism, not ILP. In many
programs array accesses that are spatially close, such as A[i] and A[i + 1], are also tem-
porally close. If A[] is block-partitioned, sets of temporally close loop iterations would
likely be mapped to the same tile, rather than di�erent tiles, thus providing no ILP.
Since bank-exposed machines rely on ILP, block or block-cyclic partitions are inappro-
priate for such machines. Second, forcing multiprocessor compilers to only use cyclic
partitions (low-order interleaving) is not a good strategy for generating code for bank-
exposed architectures. Bank-exposed architectures need bank disambiguation for good
performance; a reference is bank disambiguated if it accesses the same bank in every
dynamic instance. Multiprocessor compilation schemes generate remote-region informa-
tion for each remote bank accessed, i.e., for each tile, the region of data accessed on
every remote bank by the current tile is output as symbolically de�ned region in the
data space. Multiprocessor compilers do not generate bank-disambiguated code; how-
ever, it is conceivable to adapt them to do so. One possibility is grouping remote-region
accesses together to run in the program code, instead of bulk-message handlers as in
multiprocessors. Each access in the remote region accesses a single tile (its home), thus
providing bank disambiguation. While conceivable, grouping the remote regions together
is undesirable for the following two reasons. First, remote-region sizes are unknown at
compile-time when unknown loop bounds are present. Unknown communication pat-
terns make it di�cult to use register-level communication, such as the compiler-routed

3Shared-memory multiprocessors do not need to do a software local vs. remote check, as shared-
memory hardware does the check for every element anyway. Nevertheless, shared memory multi-
processors too bene�t from knowledge of the location of data, in order to map computation in a manner
than minimizes communication.

146 CHAPTER 10. RELATED WORK

communication on Raw. Second, multiprocessor compiler methods provide no way of in-
tegrating non-a�ne accesses into their parallelization strategies, while modulo unrolling
integrates seamlessly with non-a�ne parallelism (from ECU) and with ILP.

Software distributed shared memory schemes on multiprocessors (DSMs) [78] [79]
are similar in spirit to Map's software approach to managing memory. They emulate
in software the task of cache coherence, one that is traditionally performed by complex
hardware. In contrast, Maps turns sequential accesses from a single memory image into
decentralized accesses across Raw tiles. This technique enables the parallelization of
sequential programs on a distributed machine. The question of cache-coherence does not
arise in bank-exposed architectures as they do not use global caches, i.e., each memory
location can be cached in only one �xed cache bank, on which its address is mapped.

10.5 Compilers for vector machines

Vector machines aim to exploit �ne-grained memory parallelism in vectorizable scienti�c
codes [32, 80]. Vector machines provide vector instructions: vector instructions perform
the same operation in successive cycles on successive elements of vector registers. Only
one operation is executed per cycle from each vector instruction. No parallelism is ex-
ploited within vectors [81]; rather, parallelism stems from two factors: �rst, parallelism
between di�erent vector instructions and, second, parallelism between vector and scalar
instructions. Hardware-supported methods like chaining and tailgating allow a vector in-
struction to start before all the operations of a preceding vector instruction, on which the
current instruction is dependent, complete. Even with chaining and tailgating, however,
only one operation is executed per cycle from each vector instruction.

Memory is accessed in vector machines using vector-memory instructions; vector-
memory instructions access successive locations that form an arithmetic progression,
i.e., are related by a constant stride. Vector machines typically use many interleaved
main-memory banks and no caches. While only a single word request is issued per cycle,
the long access latencies of successive words are partially overlapped provided they go
to di�erent banks. If addresses are hardware-mapped in a low-order interleaved manner
across the banks, a stride of one ensures that successive accesses go to di�erent banks.
For strides that are powers of two, however, low-order interleaving results in the same
bank being accessed for successive accesses [82] for a smaller power-of-two number of
banks. Power-of-two strides can occur, for example, in multi-dimensional arrays with
power-of-two dimensions. To avoid going to the same bank in successive accesses, the
usual solution used is a hashing scheme in hardware [82, 83, 84] that maps addresses to
banks. The hash function is selected to behave like a pseudo-random function, such that,
for most constant strides (including powers of two), successive accesses map to di�erent
banks.

Compilers for vector machines, such as the one by Corinna Lee [81], have the task
of identifying cases where vector instructions are applicable, and generating code that
uses vector instructions. This compiler task is called vectorization. Lee identi�es four

10.5. COMPILERS FOR VECTOR MACHINES 147

properties required of a code fragment for it to be vectorizable: �rst, it must be a
loop; second, it must have at least one array variable; third, the addresses accessed by
each array reference must form an arithmetic progression; and fourth, any statement
containing an array reference cannot depend on itself. Lee goes on to present a vector-
instruction scheduling algorithm, and a register-assignment algorithm.

Bank disambiguation and vectorizing compilers solve di�erent problems. Software-
exposed architectures require the compiler to know the actual banks accessed for each
reference, not just that the banks are di�erent as in vector machines. The bank dis-
ambiguation methods in this thesis provide bank numbers, while vectorizing compilers
have no need to. Bank disambiguation enables avoiding arbitration logic, and long wires
from processing elements to memory, as explained in chapter 14. The major memory-
parallelism requirement for vector machines is that successive accesses in a vector-memory
instruction go to di�erent banks; a requirement that is satis�ed by hardware hashing
schemes for any constant stride. Recognition of vector-memory instructions is done using
a�ne-speci�c techniques, conceptually similar to modulo unrolling. Modulo unrolling,
however, provides the additional guarantee that the banks are known, not just di�er-
ent; a property useful for bank-exposed architectures. Krste Asanovic (MIT) pointed
out an interesting possibility of using modulo unrolling information in vectorizing com-
pilers. In vectorizable loops, there are often more than one vector-memory instructions
ready to issue. The issue-order selected impacts performance: if instructions that con-

ict in the banks accessed are issued together, then performance su�ers compared to
the case when non-con
icting instructions are issued together. For vector machines, the
pre-conditioning loop produced by modulo unrolling can be used to ensure that the main
loop begins with a known bank number for each a�ne reference. The main loop is then
vectorized, not unrolled. The known starting bank number for each vector-memory in-
struction in the main loop can be used to determine an issue-order that minimizes bank
con
icts.

Comparing the relative strengths of vector machines and bank-exposed architectures
is di�cult, as they have di�erent motivations, problem domains and design elements.
Nevertheless, we attempt a brief overview. Two advantages of vector machines are as fol-
lows. First, vector machines have smaller I-cache tra�c than bank-exposed architectures,
superscalars or VLIWs: vector machines encode many operations in a single instruction,
leading to very compact code. Second, vectorizing compiler technology is mature, and
does not need to perform bank disambiguation for good performance. Four advantages
of bank-exposed architectures over vector machines are as follows. First, vector machines
perform well primarily on a�ne-function scienti�c programs; bank-exposed machines can
pro�t from programs with non-a�ne accesses as well. In particular, vectorizing compilers
cannot exploit the non-a�ne memory parallelism from equivalence-class uni�cation any

4Arbitration logic and wire-delay concerns are less important for vector machines. Since latency for
main memory access is usually dozens of cycles, the added fractional cost of arbitration logic is low; for
fast caches, however, arbitration logic increases latency by a larger fraction. Similarly, wire-delay adds
a larger fraction to cache access time than to main-memory access time.

148 CHAPTER 10. RELATED WORK

better than a conventional microprocessor. Second, modulo unrolling tolerates non-a�ne
accesses in its loops along with a�ne array accesses, �nding available parallelism from
each class of access. In vector machines, non-a�ne accesses prevent vectorization if they
have scalar or memory dependences with the a�ne accesses. Third, vector machine char-
acteristics do not allow loops with self-dependent array accesses to be vectorized [81],
while bank-exposed machines have no such restriction. Fourth, vector machines primar-
ily exploit parallelism across di�erent vector instructions, not within vector instructions.
Bank-exposed architectures exploit parallelism within a single vectorizable group of op-
erations, as well as across di�erent vectorizable groups.

10.6 Compilers for systolic arrays

Systolic array architectures, such as Warp [85] and iWarp [17], consist of a array of pro-
cessors, usually connected in a linear array or a 2-dimensional mesh, that communicate
with each other using uni-directional or bi-directional links. Communication is directly
CPU-to-CPU at the register-level rather than through memory; [17] argues the advan-
tages of register communication in terms of reducing the number of memory accesses,
and reducing size of memory required, as many temporary values need never to be stored.
One similarity of systolic architectures with the Raw machine is the use of an exposed
register-level communication network between the di�erent processing elements.

Compilers for systolic arrays, such as the one by Ribas [86] for the Warp machine [85]
and other systolic compilers [87, 88], have demonstrated automatic conversion of dense-
matrix scienti�c codes into parallel systolic programs. Ribas exploits pipelined parallelism
by mapping dependence chains onto systolic communication channels for programs with
a�ne-function accesses. Mapping dependence chains to a systolic array is pro�table when
long dependence chains are available and re-used for di�erent data elements. Re-use of the
dependence-chains is key; otherwise, no pipelined parallelism is available. Ribas detects
the dependence chains using his own dependence analysis technique, which formulates
�nding dependence as a linear integer programming problem. The resulting dependence
patterns are represented as dependence vectors. Ribas shows that dependences can be
mapped to systolic arrays when the dependence vectors are constant. For some a�ne-
function codes, the dependence vectors are not constant; Ribas shows additional program
transformations, that for some of these non-constant cases, result in constant dependence
vectors after transformation.

Systolic compilers tackle a di�erent problem from Maps: while systolic compilers deal
with decomposing computation into pipelines, Maps performs bank disambiguation in an
ILP-exploiting framework. Systolic mappings do not distribute their primary data among
di�erent systolic cells; instead the input data is streamed in from one end of the systolic
array and output data is produced at the other. Memory has no �xed home bank on
the systolic array; hence the question of disambiguation does not arise. In terms of the
systolic computation model itself, it is pro�table only for programs with long, regular and
re-used dependence chains. The ILP-centric approach in our compiler is more general,

10.6. COMPILERS FOR SYSTOLIC ARRAYS 149

giving comparable speedups to systolic arrays for systolic programs, while successfully
parallelizing others as well. The Raw machine itself can be programmed as a systolic
array if desired, however, it is not restricted to that programming model.

While the designers of systolic array machines like Warp [85] and iWarp [17] intended
them to be used with a systolic compilation model, it is conceivable to apply an ILP-
centric model to them, like that used in Maps. In particular, IWarp shares many features
with the MIT Raw machine, such as exposed instruction-issue slots and exposed memory
banks, and a compiler-routed communication network. Both are organized as tiles on a
2-D mesh, with each tile containing processing and memory. While we have not done
a detailed study, it seems that Maps is applicable to Iwarp in principle. Iwarp satis�es
the two prerequisites for Maps to apply: a bank-exposed architecture, and a network
that provides compiler-ordering of messages. One source of possible performance loss is
that Iwarp's network is optimized for streaming data and not the scalar communication
required by Maps; in particular, it takes 4 cycles to set up a communication channel, but
a 1 cycle throughput is possible. A lower setup time would help performance of Maps on
Iwarp.

150 CHAPTER 10. RELATED WORK

Chapter 11

Conclusion

This thesis presents a way improve the memory parallelism of microprocessor designs
by using a compiler-centric approach. Most microprocessors today present a uni�ed
view of memory using hardware; unfortunately such hardware is di�cult to scale to a
high degree of memory parallelism. Two factors inhibit scalability: all-to-all dependence
checks required by uni�ed memory hardware, and the use of long wires in such hardware.
Consequently, conventional microprocessors exploit only a limited amount of memory
parallelism, usually no more than 1 or 2 memory instructions per cycle. This thesis
explores an alternative approach: eliminate the uni�ed memory hardware, and instead
have the compiler provide a uni�ed view of memory to the programmer. Eliminating
uni�ed memory hardware implies that such architectures have multiple memory banks
visible to the software. These architectures are called bank-exposed architectures. The
programmer continues to program in a convenient sequential model; the compiler au-
tomatically converts sequential programs to programs targeting many exposed banks.
Memory parallelism is thus improved without increase in programming e�ort or memory
latency.

This thesis shows that bank disambiguation is the key compiler technology required
for good performance on bank-exposed architectures. Bank disambiguation is the act
of ensuring that a memory reference instruction goes to a single compile-time-known
bank in every dynamic instance. For most data distributions, bank disambiguation is
not even possible for a majority of the references, as references may access di�erent
banks during di�erent dynamic instances. Successful bank disambiguation schemes use
carefully selected data distributions such that most references access a single bank, yet
a high degree of memory parallelism exists between di�erent references. Experimental
results demonstrate that using the bank disambiguation methods in this thesis improves
performance, in many cases, by a factor of 3 to 5 over not using bank disambiguation.

Bank disambiguation provides performance advantages as well as power advantages.
A performance advantage in gained in two ways. First, since disambiguated references
do not need to go through uni�ed memory hardware, they avoid its non-scalable delay,
thus making references faster, and allowing the number of banks to be increased. Second,
since disambiguated references access known banks, the compiler can place instructions

151

152 CHAPTER 11. CONCLUSION

close to data, thus minimizing the distance traveled on chip to memory banks. This
reduction in wire delay will become increasingly important over the next decade as wire-
delay across chip, measured in cycles, is projected to rapidly rise. Besides performance,
bank disambiguation also reduces power consumption. Power savings are realized for two
reasons. First, not using complex, uni�ed memory hardware implies that no power is
used in such hardware. Second, shorter distances traveled on chip by memory references
reduces power dissipation from resistance.

While bank disambiguation applies to any bank-exposed architecture, two domains
are identi�ed: general-purpose microprocessors and digital-signal processing (DSP) chips.
The evaluation in this thesis focuses on general-purpose machines. Such machines have
rapidly improved in performance over the last two decades; however, future performance
gains are threatened by non-scalable memory parallelism and increasing wire delay on
chip, measured in number of cycles. Billion-transistor architecture proposals have focused
on compiler-reliant schemes that overcome these challenges through compiler knowledge.
Bank disambiguation is an exciting technology for this era; bank disambiguation can
minimize wire delay, and at the same time help scale memory parallelism to a high
degree.

DSP chips, on the other hand, have for long used multiple exposed memory banks.
DSP chips are used in many embedded systems, including portable devices; embedded
system chips have recently exceeded general-purpose processors in dollar volume. For
DSP chips, the lack of uni�ed memory hardware translates to lower cost and lower power
consumption. Low cost and power are particularly important to the DSP domain. Unfor-
tunately, compiler technology for such chips has lagged behind their usage { even today,
most DSP chips are hand-programmed in assembly language. The bank disambiguation
methods in this thesis are a step towards automating this process. Exciting future work
in bank disambiguation could focus on applying the methods in this thesis to the DSP
domain.

Maps presents two disambiguation methods to ensure that most references satisfy the
disambiguation property. First, equivalence class uni�cation targets all programs, even
those with irregular memory references such as references using unrestricted pointers,
structures, pointer-based data structures and heap-allocated objects in their addresses.
The quality of disambiguation can vary with the structure of the program. The second
method, modulo unrolling, is an optimization for arrays whose references are primarily
a�ne function accesses. Dense-matrix scienti�c codes and some multimedia codes bene�t
from modulo unrolling. Modulo unrolling also improved the performance of some of our
irregular applications. The reason is that most programs contain some a�ne memory
accesses, and modulo unrolling remains e�ective for these programs even in the presence
of irregular references in the same basic block.

Bank disambiguation methods yielded most of the performance gains demonstrated
in this thesis. Using equivalence-class uni�cation, application performance improved
by a factor of two over the speedups obtained using ILP alone. This improvement is
fairly consistent over all classes of applications. Modulo unrolling is able to boost the
performance of dense-matrix codes and some multimedia codes further, often to a factor

153

of three to �ve over using ILP alone. The overall speedups on these codes was competitive
with their speedup on multiprocessors, even though our approach exploited ILP rather
than coarse-grained parallelism. Modulo unrolling gave some improvements in irregular
programs for reasons given above.

Further, we show that selective use of non-disambiguated (dynamic) references is help-
ful in certain cases to augment bank disambiguation. One bene�t of dynamic accesses is
when dynamic support allows arrays with non-a�ne accesses to be distributed, possibly
exposing more memory parallelism and attaining better speedups. Another bene�t of
dynamic accesses is to use them for infrequent irregular references to arrays, allowing
more frequently accessed portions to be bank disambiguated via modulo unrolling. Fi-
nally using dynamic accesses for a few `bad' references can prevent excessive merging
of equivalence classes, yielding higher memory parallelism. Software serial ordering is
introduced as an e�cient method of enforcing dependences between dynamic accesses.
Optimizations on software serial ordering, called independent epochs and updates, are
also presented.

We are encouraged by the results of the Maps approach to memory orchestration.
Maps is able to exploit memory parallelism in a range of applications, from those con-
taining small amounts of memory parallelism to more regular applications with large
amounts of memory parallelism. This versatility opens up a range of possible applica-
tions for Maps. From small embedded designs to desktop microprocessor-based systems
to supercomputers, machines with exposed memory banks will bene�t from our tech-
niques.

154 CHAPTER 11. CONCLUSION

Bibliography

[1] Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar, Walter Lee, Vic-
tor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev Barua, Jonathan Babb, Saman
Amarasinghe, and Anant Agarwal. Baring It All to Software: Raw Machines. IEEE
Computer, 30(9):86{93, September 1997. Also available as MIT-LCS-TR-709.

[2] Jonathan Babb, Matthew Frank, Victor Lee, Elliot Waingold, Rajeev Barua, Michael
Taylor, Jang Kim, Srikrishna Devabhaktuni, and Anant Agarwal. The raw benchmark
suite: Computation structures for general purpose computing. In IEEE Symposium on
Field-Programmable Custom Computing Machines, Napa Valley, CA, April 1997.

[3] Dick Sites. It's the Memory, Stupid! Microprocessor Report, 10(10):19, August 5 1996.

[4] Tom Burd. http://infopad.eecs.berkeley.edu/CIC/summary/local/. 1999. Table derived
from website and related sources.

[5] Linley Gwennap. Alpha 21364 to Ease Memory Bottleneck. Microprocessor Report,
12(14):12, October 26 1998.

[6] Linley Gwennap. Digital 21264 Sets New Standard. Microprocessor Report, 10(14):11,
October 28 1996.

[7] Doug Matzke. Will Physical Scalability Sabotage Performance Gains? Computer, pages
37{39, September 1997.

[8] International Technology Roadmap for Semiconductors, 1998 Update. Semiconductor In-
dustry Association, page 4, 1998.

[9] F. Thomson Leighton. Introduction to parallel algorithms and architectures: arrays, trees,
hypercubes. Morgan Kaufmann, San Mateo, CA, 1992.

[10] William Dally. Memory-Centric Computers. Microprocessor Report, 10(10):21, August 5
1996.

[11] Peter Song. Demystifying EPIC and IA-64. Microprocessor Report, 12(1):21, January 26
1998.

[12] Linley Gwennap. IA-64: A Parallel Instruction Set. Microprocessor Report, 13(7):1, May
31 1999.

[13] Rich Belgard. Transmeta Exposed. Microprocessor Report, 12(16):9, December 7 1998.

155

156 BIBLIOGRAPHY

[14] Jim Turley. Tensilica CPU Bends to Designers' Will. Microprocessor Report, 13(3):12,
March 8 1999.

[15] Tom R. Halfhill. Sun Reveals secrets of "Magic". Microprocessor Report, 13(11):13, August
23 1999.

[16] Joseph A. Fisher. Very Long Instruction Word Architectures and the ELI-512. In Pro-
ceedings of the 10th Annual International Symposium on Computer Architecture, pages
140{150, Stockholm, Sweden, June 1983.

[17] S. Borkar, R. Cohn, G. Cox, T. Gross, H. T. Kung, M. Lam, M. Levine, B. Moore,
W. Moore, C. Peterson, J. Susman, J. Sutton, J. Urbanski, and J. Webb. Supporting
Systolic and Memory Communication in iWarp. In Proceedings of the 17th Annual Inter-
national Symposium on Computer Architecture, pages 70{81, June 1990.

[18] DSP56000 24-bit Digital Signal Processor Family Manual. Motorola, 1995. Also available
at www.motorola.com.

[19] Je�rey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni, Kourosh
Gharachorloo, John Chapin, David Nakahira, Joel Baxter, Mark Horowitz, Anoop Gupta,
Mendel Rosenblum, and John Hennessy. The Stanford FLASH Multiprocessor. In Pro-
ceedings of the 21st Annual International Symposium on Computer Architecture (ISCA)
1994, Chicago, IL, April 1994. IEEE.

[20] Anant Agarwal, David Chaiken, Godfrey D'Souza, Kirk Johnson, David Kranz, John Ku-
biatowicz, Kiyoshi Kurihara, Beng-Hong Lim, Gino Maa, Dan Nussbaum, Mike Parkin,
and Donald Yeung. The MIT Alewife Machine: A Large-Scale Distributed-Memory Multi-
processor. In Proceedings of Workshop on Scalable Shared Memory Multiprocessors. Kluwer
Academic Publishers, 1991. An extended version of this paper appears as MIT/LCS Memo
TM-454, 1991.

[21] Tilak Agerwala, Joanne Martin, Jamshed H. Mirza, David Sadler, Dan Dias, and Marc
Snir. SP2 System Architecture. IBM Corporation Research Report IBM-RC-20012, Jan
1995.

[22] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, E. Bugnion,
and M. S. Lam. Maximizing Multiprocessor Performance with the SUIF Compiler. IEEE
Computer, 29(12):84{89, December 1996.

[23] William Blume, Rudolf Eigenmann, Keith Faigin, John Grout, Jay Hoe
inger, David
Padua, Paul Petersen, Bill Pottenger, Lawrence Rauchwerger, Peng Tu, and Stephen
Weatherford. E�ective Automatic Parallelization with Polaris. International Journal of
Parallel Programming, May 1995.

[24] Robert Wilson, Robert French, Christopher Wilson, Saman Amarasinghe, Jennifer Ander-
son, Steve Tjiang, Shih-Wei Liao, Chau-Wen Tseng, Mary Hall, Monica Lam, and John
Hennessy. SUIF: An Infrastructure for Research on Parallelizing and Optimizing Compil-
ers. ACM SIGPLAN Notices, 29(12), December 1996.

BIBLIOGRAPHY 157

[25] Walter Lee, Rajeev Barua, Matthew Frank, Devabhatuni Srikrishna, Jonathan Babb,
Vivek Sarkar, and Saman Amarasinghe. Space-Time Scheduling of Instruction-Level Par-
allelism on a Raw Machine. In Proceedings of the Eighth ACM Conference on Architectural
Support for Programming Languages and Operating Systems, pages 46{57, San Jose, CA,
October 1998.

[26] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,
San Francisco, CA, 1997.

[27] P. Paulin, C. Liem, M. Cornero, F. Nacabal, and G. Goossens. Embedded Software in
Real-Time Signal Processing Systems: Application and Architecture Trends. Invited paper,
Proceedings of the IEEE, 85(3), March 1997.

[28] S. Przybylski, T. Gross, J. Hennessy, N. Jouppi, and C. Rowen. Organization and VLSI Im-
plementation of MIPS. Journal of VLSI and Computer Systems, 1(2):170{208, December
1984.

[29] Keith Diefendor�. K7 Challenges Intel. Microprocessor Report, 12(14):1, October 26 1998.

[30] John Hennessy, Norman Jouppi, Forest Baskett, and John Gill. Mips: A vlsi processor
architecture. Technical Report 223, Stanford University, Stanford, CA, June 1983.

[31] Robert P. Colwell, Robert P. Nix, John J. O'Donnell, David P. Papworth, and Paul K.
Rodman. A VLIW architecture for a trace scheduling compiler. In Proceedings of the
Second International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 180{192, Palo Alto, California, October 5{8, 1987.

[32] John Hennessy and David Patterson. Computer Architecture A Quantitative Approach.
Morgan Kaufmann, Palo Alto, CA, second edition, 1996.

[33] Linley Gwennap. AMD Gets the IIIrd Degree. Microprocessor Report, 13(3):22, March 8
1999.

[34] Michael B. Taylor. Design Decisions in the Implementation of a Raw Architecture Work-
station. Master's thesis, Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, September 1999.

[35] R. Rugina and M. Rinard. Pointer Analysis for Multithreaded Programs. In Proceedings of
the SIGPLAN '99 Conference on Program Language Design and Implementation, Atlanta,
GA, May 1999.

[36] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive interprocedural
points-to analysis in the presence of function pointers. In Proceedings of the ACM SIG-
PLAN '94 Conference on Programming Languages Design and Implementation, Orlando,
FL, June 1994.

[37] D. E. Maydan, J. L. Hennessy, and M. S. Lam. E�cient and Exact Data Dependence
Analysis. In Proceedings of the SIGPLAN '91 Conference on Program Language Design
and Implementation, Toronto, June 1991.

158 BIBLIOGRAPHY

[38] Saman Amarasinghe, Walter Lee, and Ben Greenwald. Strength Reduction of Integer
Division and Modulo Operations. MIT Laboratory for Computer Science Technical Memo,
MIT-LCS-TM-600, November 1999.

[39] Saman Amarasinghe. Parallelizing Compiler Techniques Based on Linear Inequalities.
In Ph.D Thesis, Stanford University. Also appears as Techical Report CSL-TR-97-714,
January 1997.

[40] Anant Agarwal, David Kranz, and Venkat Natarajan. Automatic Partitioning of Parallel
Loops for Cache-Coherent Multiprocessors. In 22nd International Conference on Parallel
Processing, pages 943{962, St. Charles, IL, August 1993. IEEE. Also in IEEE Transactions
on Parallel and Distributed Systems, vol 6, pp 943-961, September 1995.

[41] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graph
and its use in optimization. toplas, 1987.

[42] Michael D. Smith. Extending SUIF for Machine-dependent Optimizations. In Proceedings
of the First SUIF Compiler Workshop, pages 14{25, Stanford, CA, January 1996.

[43] Bjarne Steensgaard. Points-to analysis in almost linear time. St. Petersburg Beach, FL,
January 1996.

[44] Robert P. Wilson. E�cient Context-Sensitive Pointer Analysis For C Programs. In Ph.D
Thesis, Stanford University, Computer Systems Laboratory, December 1997.

[45] Standard Performance Evaluation Corporation. The SPEC benchmark suites.
http://www.spec.org/.

[46] Martin C. Rinard and Monica S. Lam. The Design, Implementation, and Evaluation of
Jade. ACM Transactions on Programming Languages and Systems, 20(3):483{545, May
1998.

[47] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBench: A Tool for Evaluating
and Synthesizing Multimedia and Communications Systems. In Proceedings of the 30th
Annual International Symposium on Microarchitecture (MICRO-30), Research Triangle
Park, NC, December 1997. IEEE Computer Society.

[48] Lawrence A. Rowe, Kevin Gong, Eugene Hung, Ketan Patel, Steve Smoot, and Dan Wal-
lach. Berkeley MPEG Tools. http://bmrc.berkeley.edu/frame/research/mpeg/.

[49] Corinna Lee and Mark Stoodley. UTDSP BenchMark Suite.
http://www.eecg.toronto.edu/ corinna/DSP/infrastructure/UTDSP.html, 1992.

[50] Joel Saltz, Ravi Ponnusamy, Shamik Sharma, Bongki Moon, Yuan-Shin Hwang, Mustafa
Uysal, and Raja Das. A Manual for the CHAOS Runtime Library. Technical report,
University of Maryland: Department of Computer Science and UMIACS, March 1995.

[51] Bruce Schneier. Applied cryptography: protocols, algorithms, and source code in C. John
Wiley, New York, second edition, 1996.

BIBLIOGRAPHY 159

[52] International Standards Organization (ISO). MPEG-1 Video standard. ISO CD 11172-2.
Also at http://www.iso.ch/.

[53] Keith D. Cooper and Timothy J. Harvey. Compiler-controlled memory. In Proceedings
of the Eighth ACM Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-VIII), pages 2{11, San Jose, CA, October 1998.

[54] Mazen A. R. Saghir, Paul Chow, and Corinna G. Lee. Exploiting dual data-memory banks
in digital signal processors. In Proceedings of the Seventh International Conference on
Architectural Support for Programming Languages and Operating Systems, pages 234{243,
Cambridge, MA, October 1{5, 1996.

[55] NEC �PD7701x Family User's Guide. NEC Corporation, 1995.

[56] Ashok Sudarsanam and Sharad Malik. Memory Bank and Register Allocation in Software
Synthesis for ASIPs. Proceedings of the International Conference on Computer-Aided De-
sign, pages 388{392, 1995.

[57] D. B. Powell, E. A. Lee, and W. C. Newman. Direct Synthesis of Optimized DSP Assembly
Code from Signal Flow Block Diagrams. In Proceedings of the International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), volume 5, pages 553{556, 1992.

[58] B. Wess. Automatic Code Generation for Integrated Digital Signal Processors. In Pro-
ceedings of the International Symposium on Circuits and Systems, pages 33{36, 1991.

[59] P. Lowney, S. Freudenberger, T. Karzes, W. Lichtenstein, R. Nix, J. O'Donnell, and J. Rut-
tenberg. The Multi
ow Trace Scheduling Compiler. In Journal of Supercomputing, pages
51{142, January 1993.

[60] Alexandru Nicolau. Run-Time Disambiguation: Coping with Statically Unpredictable
Dependences. IEEE Transactions on Computers, 38(2), May 1989.

[61] William Y. Chen. Data Preload for Superscalar and VLIW processors. PhD thesis, Dept. of
Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana,
IL, 1993.

[62] David M. Gallagher, William Y. Chen, Scott A. Mahlke, John C. Gyllenhaal, and Wen
mei W. Hwu. Dynamic Memory Disambiguation Using the Memory Con
ict Bu�er. In
Sixth International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS VI), San Jose, CA, October 1994. ACM.

[63] David M. Gallagher. Memory Disambiguation to Facilitate Instruction-Level Parallelism
Compilation. PhD thesis, Dept. of Electrical and Computer Engineering, University of
Illinois at Urbana-Champaign, Urbana, IL, 1995.

[64] Dror E. Maydan. Accurate Analysis of Array References. In Ph.D Thesis, Stanford Uni-
versity. Also appears as Techical Reports CSL-TR-92-547, STAN-CS-92-1449, September
1992.

[65] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishers,
Boston, 1988.

160 BIBLIOGRAPHY

[66] Randy Allen and Ken Kennedy. Automatic translation of fortran programs to vector form.
ACM Transactions on Programming Languages and Systems, 9(4):491{542, October 1987.

[67] M. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press, Cambridge,
MA, 1989.

[68] Markus Willems, Holger Keding, Vojin Zivojnovic, and Heinrich Meyr. Modulo-Addressing
Utilization in Automatic Software Synthesis for Digital Signal Processors. In Proceedings
of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
pages 687{690, 1997.

[69] Vojin Zivojnovic. Compilers for Digital Signal Processors: The Hard Way from Marketing-
to Production-Tool. DSP and Multimedia Technology Magazine, 4(5):27{45, July/August
1995.

[70] Raja Das, Mustafa Uysal, Joel Saltz, and Yuan-Shin Hwang. Communication Optimiza-
tions for Irregular Scienti�c Computations on Distributed Memory Architectures. Journal
of Parallel and Distributed Computing, 22(3), September 1994.

[71] Shubhendu Mukherjee, Shamik Sharma, Mark Hill, James Larus, Anne Rogers, and Joel
Saltz. E�cient Support for Irregular Applications on Distributed-Memory Machines. In
Principles and Practice of Parallel Programming (PPoPP) 1995, pages 68{79, Santa Clara,
CA, July 1995. ACM.

[72] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiling Fortran D for MIMD
Distributed Memory Machines. Communications of the ACM, 35(8):66{80, August 1992.

[73] Saman P. Amarasinghe and Monica S. Lam. Communication Optimization and Code
Generation for DistributedMemory Machines. In Proceedings of SIGPLAN '93, Conference
on Programming Languages Design and Implementation, June 1993.

[74] R. Barua, D. Kranz, and A. Agarwal. Communication-Minimal Partitioning of Parallel
Loops and Data Arrays for Cache-Coherent Distributed-Memory Multiprocessors. In Lan-
guages and Compilters for Parallel Computing, pages 350{368. Springer-Verlag Publishers,
August 1996.

[75] J. Ramanujam and P. Sadayappan. Compile-Time Techniques for Data Distribution in
Distributed Memory Machines. IEEE Transactions on Parallel and Distributed Systems,
2(4):472{482, October 1991.

[76] Jennifer M. Anderson and Monica S. Lam. Global Optimizations for Parallelism and
Locality on Scalable Parallel Machines. In Proceedings of SIGPLAN '93 Conference on
Programming Languages Design and Implementation. ACM, June 1993.

[77] Manish Gupta and Prithviraj Banerjee. PARADIGM: A Compiler for Automatic Data
Distribution on Multicomputers. In Proceedings 1993 International Conference on Super-
computing, Tokyo, Japan, July 1993. ACM.

[78] Sandhya Dwarkadas, Alan L. Cox, and Willy Zwaenepoel. An Integrated Compile-
Time/Run-Time Software Distributed Shared Memory System. In Proceedings of the

BIBLIOGRAPHY 161

Seventh International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 186{197, Cambridge, MA, October 1{5, 1996.

[79] Daniel J. Scales, Kourosh Gharachorloo, and Chandramohan A. Thekkath. Shasta: A
Low Overhead, Software-Only Approach for Supporting Fine-Grain Shared Memory. In
Proceedings of the Seventh International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 174{185, Cambridge, Massachusetts,
October 1{5, 1996.

[80] Krste Asanovic. Vector Microprocessors. PhD thesis, University of California, Berkeley,
May 1998.

[81] Corinna G. Lee. Code Optimizers and Register Organizations for Vector Architectures.
PhD thesis, University of California, Berkeley, May 1992.

[82] B. Ramakrishna Rau. Pseudo-Randomly Interleaved Memory. In Proceedings of the 18rd
International Symposium on Computer Architecture (ISCA), volume 19, pages 74{83, May
1991.

[83] Mayez A. Al-Mouhamed and Steven S. Seiden. Minimization of memory and network
contention for accessing arbitrary data patterns in simd systems. IEEE Transactions on
Computers, 45(6):757{762, June 1996.

[84] M. Valero, T. Lang, J. M. Llaberia, M. Peiron, E. Ayguade, and J. J. Navarro. Increasing
the Number of Strides for Con
ict-free Vector Access. In Proceedings of the 19th Interna-
tional Symposium on Computer Architecture, Gold Coast, Australia, May 1992.

[85] M. Annaratone et al. Warp architecture and implementation. In Proc. 13th Annual Inter-
national Symposium on Computer Architecture, pages 346{356, Los Alamitos, Calif., 1986.
IEEE Computer Society Press.

[86] Hudson B. Ribas. Automatic Generation of Systolic Programs from Nested Loops. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, June 1990.

[87] R. Capello, Peter Engstrom, and Bradley R. Engstrom. The Sdef Systolic Programming
System. In Proceedings International Conference on Parallel Processing (ICPP), pages
645{652. ACM, 1987.

[88] Sanjay V. Rajopadhye, S. Purushothaman, and Richard M. Fujimoto. On Synthesizing
Systolic Arrays from Recurrence Equations with Linear Dependencies. In Proceedings of
the Sixth Conference on Foundations of Software Technology and Theoretical Computer
Science, New Delhi, India, December 1986. Springer Verlag, LNCS No. 241.

