
Fine-Grained Failover Using Connection Migration

Alex C. Snoeren, David G. Andersen, and Hari Balakrishnan
MIT Laboratory for Computer Science

Cambridge, MA 02139
{snoeren, dga, hari}@lcs.mit.edu

Abstract

This paper presents a set of techniques for providing
fine-grained failover of long-running connections across
a distributed collection of replica servers, and is espe-
cially useful for fault-tolerant and load-balanced delivery
of streaming media and telephony sessions. Our system
achieves connection-level failover across both local- and
wide-area server replication, without requiring a front-
end transport- or application-layer switch. Our approach
uses recently proposed end-to-end “connection migra-
tion” mechanisms for transport protocols such as TCP,
combined with a soft-state session synchronization pro-
tocol between replica servers.

The end result is a robust, fast, and fine-grained connec-
tion failover mechanism that is transparent to client ap-
plications, and largely transparent to the server applica-
tions. We describe the details of our design and Linux
implementation, as well as experimental data that sug-
gests this approach is an attractive way to engineer ro-
bust systems for distributing long-running streams; con-
nections suffer relatively small performance degradation
even when migration occurs every few seconds, and the
associated server overhead is small.

1 Introduction

Ensuring a high degree of reliability and availability to an
increasingly large client population is a significant chal-
lenge facing Internet content providers and server oper-
ators today. It is widely recognized that the computers
serving Web content and streaming media on the Inter-
net today do not possess the same impressive degree of
reliability as other mission-critical services such as gate-
ways and switches in the telephone network.

An effective way to engineer a reliable system out of
unreliable components is to use redundancy in some
form, and server replication is the way in which reli-

This research was supported in part by DARPA, NSF, NTT Corpora-
tion, Intel, and IBM. Alex C. Snoeren is supported by a National De-
fense Science and Engineering Graduate (NDSEG) Fellowship.

able and available services are provided on the Web to-
day. Because most Web connections last for relatively
short periods of time, the problems of load-balancing
client requests and recovering from unreachable replica
servers can usually be handled at the granularity of
a complete connection. Indeed, this is the approach
seen in several current systems that perform server se-
lection using a front-end transport- or application-layer
switch [2, 6, 11, 18, 20], or using wide-area replication
for Web content distribution [1, 8].

While existing replication technologies provide adequate
degrees of reliability for relatively short Web connec-
tions, streaming media and Internet telephony display
substantially longer transfer lengths. Providing reliable,
robust service over long connections requires the ability
to rapidly transition the client to a new server from an
unresponsive, overloaded, or failed server during a con-
nection [16]. The requirements of these emerging appli-
cations motivate our work.

We have designed and implemented a system that
achieves fine-grained, connection-level failover across
both local- and wide-area server replicas, without a front-
end transport- or application-layer switch. Thus, there
are no single points of failure or potential front-end bot-
tlenecks in our architecture. We achieve this using a
soft-state session synchronization protocol between the
replica servers, combined with a connection resump-
tion mechanism enabled by recently-developed end-to-
end connection migration mechanisms for transport pro-
tocols such as TCP [22] and SCTP [25]. The end result is
a robust, fast, and fine-grained server failover mechanism
that is transparent to the client application, and largely
independent of the server applications. Applications that
can benefit from this include long-running TCP connec-
tions (e.g., HTTP, FTP transfers), Internet telephony, and
streaming media, enabling them to achieve “mid-stream
failover” functionality.

Our architecture is end-to-end, with active participa-
tion by the transport stack of all parties involved in
the communication. Our design is largely application-



independent: applications do not need to be modified to
benefit from the fine-grained failover techniques. How-
ever, because we allow a server to seamlessly take over a
connection from another in the middle of a data stream,
there needs to be some mechanism by which the servers
synchronize application-level state between themselves.
While this is a hard problem in general, there are many
important common cases where it is not as difficult. For
example, when each client request maps directly to data
from a file, our lightweight synchronization mechanism
performs quite well. If content is being generated dy-
namically in a fashion that is not easily reproduced by
another server, handoff becomes harder to accomplish
without additional machinery.

We discuss several issues involved in designing a con-
nection failover mechanism in section 2. Section 3 de-
scribes an end-to-end architecture for fine-grained server
failover targeted at long-running transfers. Our TCP-
based Linux implementation is described in section 4.
Section 5 contains performance studies showing the ef-
fectiveness of the failover mechanism and its resilience
to imperfections in the health monitoring subsystem. We
conclude with a synopsis of related work in section 6 and
summarize our contributions in section 7.

2 Components of a failover system

This section describes three components that a complete
fine-grained failover system should provide:

(i) For any connection in progress, a method to deter-
mine when (and if) to move it to another server;

(ii) a selection process to identify a set of new server
candidates; and

(iii) a mechanism to move the connection and seam-
lessly resume the data transfer from the new server.

2.1 Health monitoring

In general, the end-point of a connection is changed be-
cause the current server is unresponsive; this may happen
because the server is overloaded, has failed, or its path
to the client has become congested. The failover sys-
tem needs to detect this, following which a new server
can be selected and the connection appropriately moved.
We call the agent in the failover system that monitors the
health and load of the servers the health monitor.

There are several possible designs for a health monitor,
and they can be broadly classified into centralized and
distributed implementations. Our architecture accommo-
dates both kinds. We believe, however, that it is better for
the health monitor to be controlled by the servers than the
client. It is often much harder for a client to have the req-
uisite knowledge of the load on other servers, and putting

it in control of making movement decisions may actually
worsen the overall performance of the system.

The focus of this paper is not on novel mechanisms for
load or health monitoring; instead, we leverage related
work that has already been done in this area [3, 12, 17].
For the purposes of this paper, we assume that each
server in a support group is notified of server failure by
an omniscient monitor at the same time. As the exper-
imental results in section 5 demonstrate, however, our
system allows the health monitoring component to be rel-
atively simple—and even overly reactive—without sig-
nificantly degrading performance.

2.2 Server selection

Once the system decides that a connection should be
moved to another server, it must select a new server to
handle the connection. One possibility is to use a content
routing system and treat this as a new request to decide
which server to hand it to. Another is to have the set of
relatively unloaded servers attempt to take over the con-
nection, and arrange for exactly one of them (ideally the
closest one) to succeed. Our failover architecture admits
both styles of server selection.

2.3 Connection migration and resumption

Once a connection has been targeted for movement and
a new server has been selected to be the new end point,
the client application should seamlessly continue without
noticeable disruption or incorrect behavior. This requires
that the application data stream resume from exactly
where it left off at the old server. To achieve this in an
application-independent fashion, the transport-layer state
must be moved to the new server, and the application-
layer state appropriately synchronized and restarted.

There are different ways of doing this: one is a mech-
anism integrated with the application where the clients
and servers implement a protocol that allows the server to
inform the client that its communicating peer will change
to a new one. Then, the client application can terminate
the connections to the current server and initiate them to
the new one, and retrieve the portions of the stream start-
ing from where the previous server left off. An alternate
approach, which our work enables and advocates, is an
application-independent mechanism by using a secure,
transport-layer connection migration mechanism. The
advantage of this method is that existing applications can
benefit from this without modification, while new ones
do not each need to incorporate their own mechanisms to
achieve these results.



3 Architecture

Our architecture preserves the end-to-end semantics of a
connection across moves between servers. Rather than
inserting a Web switch or similar redirecting device, we
associate each connection with a subset of the servers in
the system1. This is the connection’s support group, the
collection of servers that are collectively responsible for
the correct operation of the connection. Each support
group uses a soft-state synchronization protocol to dis-
tribute weakly consistent information about the connec-
tion to each server in the group. This information allows
a stream to resume from the correct offset after a move.

When the health monitor determines that a connection
should be moved, each of the remaining servers in the
connection’s support group becomes a candidate server
for the orphaned client connection. Thus, the responsi-
bility for providing back-up services to orphaned con-
nections is shared equally among the other servers, and
the new server is chosen from the support group in a de-
centralized manner by the client.

Determining the precise point of failure of a server is
a difficult problem, but is fortunately one that does not
need to be solved. It is sufficient to determine when
the client believes the server failed. In the case of se-
quenced byte streams, this can be represented by the
last successfully received contiguous byte as conveyed in
the transport-layer acknowledgment message. Hence the
new server need only elicit an acknowledgement packet
from the client in order to determine the appropriate
point from which to resume transmission.

The state distribution protocol periodically disseminates,
for each connection, the mapping between the transport
layer state and the application-level object being sent to
the client (e.g., the TCP sequence number and an HTTP
URL). For the remainder of this paper, we will use the
term stream mapping to describe the task of translat-
ing the particular transport-layer sequence information
into application-level object references the server can
understand. The transport-layer state is moved to the
new server using a secure connection migration mech-
anism [22]. Together, the techniques described above al-
low for the correct resynchronization of both transport-
layer and application state, transparent to the client ap-
plication

Figure 1 shows the basic architecture of our system for a
simple configuration with two servers, A and B, in a sup-
port group. When a client wishes to retrieve an object, it
is initially directed to Server A through some server se-

1This subset could in fact be the entire set; partitioning the set into
subsets enhances scalability.

Stream Mapper Stream Mapper

Server A Server B

Client

Figure 1: Failover architecture for a support group of
two servers.

lection mechanism. The connection is observed by the
stream mapper, which parses the initial object request
and advertises the object currently being served and the
necessary stream mapping information to the rest of the
support group.

At some point Server B may attempt to assume control
of the connection. This may be caused by the receipt of
a notification from the health monitor that Server A died,
or may be initiated by a load-balancing policy mecha-
nism. Server B initiates a connection migration by con-
tacting the client in-band on the same connection, us-
ing a secure transport-layer connection migration mech-
anism. If it receives a transport-layer acknowledgement
from the client, it knows that it was the candidate server
selected by the client. Because this acknowledgment no-
tifies the server of the next expected data byte, and be-
cause the soft-state synchronization protocol in the sup-
port group has already informed Server B of the content
being served, content delivery can now be resumed at the
correct point. Observe that at no point was the client ac-
tively involved in the decision to migrate the connection,
yet its transport-layer is fully aware that the migration
took place and it even had the opportunity to pick one
of several candidate servers2. All further client requests
on the same connection are now directed to Server B, at
least until the next migration event.

In the rest of this section, we describe the formation and
maintenance of support groups, the soft-state synchro-
nization protocol, and the details of the transport-layer
connection migration.

3.1 Support groups

The size and distribution of support groups clearly has
a large impact on the performance of our scheme. As
the number of servers in a support group increases, the
increased load to any one server of a death in the group
decreases. Unfortunately, the communication load also

2If required, it is possible to provide information about the migra-
tion to the client application; we have not yet explored the ramifications
of this, but plan to do so in the future.



increases, as each member of the group must advertise
connection state to the others.

Since the set of candidate servers for a client whose ini-
tial server dies is bounded by the set of servers in the
support group, it may be desirable to have a diversity
of network locations represented in the support group to
increase the chance the client has an efficient path to a
candidate server. This depends greatly, however, on the
effectiveness of the initial server selection mechanism,
and the stability of that choice over the duration of the
connection. We note that it may be desirable to limit the
number of candidate servers that simultaneously attempt
to contact the client in large support groups, as the im-
plosion of migration requests may swamp the client. As
a practical matter, the quadratic growth in communica-
tion required between the servers in a support group will
likely limit support group size to a reasonable number.

Clearly, the choice of a live initial server is an impor-
tant one, and much previous work has addressed meth-
ods to select appropriate servers in the wide area. Good
servers can be identified using BGP metrics [5], net-
work maps [1], or application-specific metrics. Simi-
larly, clients can be directed to these servers using DNS
redirection [1], HTTP redirection, BGP advertisements,
or anycast [9]. Since our architecture allows connections
to be handed off to any other server at any point in the
connection, the ramifications of a poor initial selection
are not as severe as with current schemes.

We construct support groups by generating a well-known
hash of the server’s IP address. By setting the number of
hash buckets to n, servers are uniformly allocated into
one of n support groups. This mechanism allows for the
servers to be dynamically added and removed from the
server pool. As each server comes on-line, it computes
the hash of its interface address and then begins adver-
tising its connections to a well-known multicast address
for that hash value3. Every server in the support group
becomes a candidate server for the connections from the
new server immediately after receiving the first adver-
tisement. Similarly, the new server begins listening to
advertisements sent to the group’s address, and becomes
a candidate server for any connections advertised after its
group membership4.

The choice of support group membership and final server
that handles a failed client should be engineered in
a manner that avoids the “server implosion” problem,
where all of the clients from a failed server converge

3The required multicast functionality may be provided at the IP
layer or through an application-layer overlay.

4The initial request redirection mechanism must also be informed
of the new server if it is to handle new client requests.

on the same replacement server. We provide two mech-
anisms to support implosion avoidance. The first is
an engineering choice: by choosing smaller support
group sizes (g members per support group out of n total
servers), we can limit with high probability the expected
number of clients that converge on a particular server to
an O(g/n) fraction of the clients from the dead server.
The second is by delaying connection resumption by a
load-dependent factor at each server, increasing the like-
lihood the client is served by a less crowded server. We
evaluate this technique in section 5.

3.2 Soft-state synchronization

The information advertised to the support group about
each content stream can be divided into two parts. The
first portion contains application-dependent information
about the object being retrieved from the server, such as
the HTTP URL of the client request. The second portion
is the transport-layer information necessary to migrate
the connection. In general, this includes the client’s IP
address, port number, and some protocol-specific trans-
port layer state, such as the initial sequence number
of the connection. The amount and type of transport-
specific information varies from protocol to protocol. We
are currently exploring a framework that describes the
necessary information in a protocol-independent fashion.

The state information for a particular connection may be
unavailable at some servers in the support group because
the connection has not yet been announced, or because
all of the periodic announcements were lost. The first
failure mode affects only a small window of new connec-
tions, and can be masked as an initial connection estab-
lishment failure. We assume that connections are long-
running, so the second failure mode must be guarded
against more carefully. If at least one server in the sup-
port group has information about the connection, it can
be re-established. We therefore need only bound the
probability that no servers have fresh information about
connection. It suffices to pick suitable advertisement fre-
quencies and support group sizes (see, e.g., the analysis
of a similar protocol by Raman et al. [19]), hence it is
possible to achieve sufficient robustness in our synchro-
nization protocol with markedly less complexity than a
strongly-consistent mechanism.

3.3 Transport-layer connection migration

When attempting to resume a connection previously han-
dled by another server in a fashion transparent to the
client application, previous approaches have forged the
server’s IP address, making packets from the new server
indistinguishable from the previous ones. This approach
has two major drawbacks:



• The new server and the failed server must be co-
located. Since they both use the same IP address,
packets from the client will be routed to the same
point in the network.

• The previous server cannot be allowed to return
to the network at the same IP address, for oth-
erwise there will be two hosts with the same ad-
dress. Worse, if the initial server attempts to con-
tinue serving the connection, confusion may ensue
at the client’s transport layer.

Current approaches take advantage of the first require-
ment to ameliorate the second. Since both the initial
server and the failover server must be co-located, so-
called layer-four switches or “Web switches” are placed
in front of server groups. Web switches multiplex incom-
ing requests across the servers, and rewrite addresses as
packets pass through. This enables multiple servers to
appear to the external network as one machine, provid-
ing client transparency. The obvious drawback of this
approach, however, is that all servers share fate with the
switch, which may become a performance bottleneck.

By using explicit connection migration, which exposes
the change in server to the client, we remove both of
these restrictions. (Indeed, our approach further empow-
ers the client to take part in the selection of the new
server.) Servers can now be replicated across the wide-
area, and there is no requirement for a redirecting device
on the path between client and server.5

Explicitly informing the client of the change in server
provides robust behavior in the face of server resurrec-
tion as well. If the previous server attempts any further
unsolicited communication with the client—possibly due
to network healing, server restart, or even a false death
report by the health monitoring system, the client sim-
ply rejects the communication in the same fashion as any
other unsolicited network packet.

Our architecture leverages the absence of the co-location
requirement by allowing the client to select its candidate
server of choice. This can be done in the transport layer
by simply accepting the first migration message to arrive.
Assuming that all servers in the support group are noti-
fied of the current server’s failure (section 2.1), the first
request to arrive at the client is likely from the server best
equipped to handle the message. The response time of a
candidate server is the sum of the delay at the server and
propagation delay of the request to the client. While not
guaranteed to be the case due potentially unstable net-
work conditions in the Internet, in general a candidate

5The stream mapper is not such a device; rather, it is a software
module that allows a server application to participate in the soft-state
synchronization protocol and connection resumption mechanism.

server with good (low latency) connectivity and low load
is likely to win out over a loaded candidate server with a
poor route to the client.

Clearly there are exceptions to this rule, but we believe
that it is a reasonable starting point. We note that if a
more sophisticated decision process is desired it can be
implemented either at the candidate servers, since each is
aware of not only the client to be contacted, but has a rea-
sonable knowledge of the identities of the other members
of the support group, or the client application, or both.

3.3.1 Protocol requirements for migration

Our architecture fundamentally requires the ability to
migrate transport-level connections. While not widely
available today, we believe that this capability is a pow-
erful way to support both load-balancing and host mo-
bility, and can be deployed incrementally by backward-
compatible extensions to protocols like TCP [22] and as
an inherent feature of new protocols like the Stream Con-
trol Transport Protocol (SCTP) [25].

In addition to basic address-change negotiation, a mi-
grateable transport protocol must provide two features
to support our failover architecture: (i) it should be pos-
sible for the migration to be securely initiated by a dif-
ferent end-point from the ones used to establish the con-
nection, and (ii) the transport mechanism must provide
a method for extracting the sequence information of the
last successfully received data at the receiver, so that the
resumption can proceed correctly. Furthermore, the per-
formance of our scheme is enhanced by the ability of
multiple candidate servers to simultaneously attempt to
migrate the connection, with the guarantee that at most
one of them will succeed. We now address these issues
in the context of TCP and SCTP.

3.3.2 TCP migration

While not a standard feature of TCP, extensions have
been proposed to support connection migration, includ-
ing the recently-proposed TCP Migrate Options [22, 23].
Using these options, correspondent hosts can preserve
TCP connections across address changes by establishing
a shared, local connection token for each connection. Ei-
ther peer can negotiate migration to a new address by
sending a special Migrate SYN segment containing the
token of the previous connection from the new address.
A migrating host does not need to know the IP addresses
of its new attachment point(s) in advance.

Each migration request includes a sequence number,
and any requests with duplicate sequence numbers are
ignored (actually, they are explicitly rejected through
a RST segment). This provides our scheme with the
needed at-most-once semantics—each candidate server



sends a Migrate Request with the same sequence num-
ber; the first packet to be received at the client “wins,”
and the rest are rejected. Furthermore, once the con-
nection is migrated, packets from the previous address
are similarly rejected, hence any attempt by the previ-
ous server to service the client (perhaps due to network
healing or a erroneous death report) are actively denied.

The Migrate SYN as originally specified used the se-
quence number of the last transmitted data segment.
When packets are lost immediately preceding migration,
retransmissions from the new address carry a sequence
number earlier than the Migrate SYN. Unfortunately,
several currently-deployed stateful firewalls block these
seemingly spurious data segments, considering them to
be a security risk.

We remedy the situation by modifying the semantics of
the Migrate SYN to include the sequence number of
the last data segment successfully acknowledged by the
client. This ensures that all data segments transmitted
from the new address will be sequenced after the Migrate
SYN. Further, since a host cannot reliably know what
the last successfully acknowledged segment number is
(since ACKs may be lost), we relax the enforcement of
sequence number checking on Migrate SYNs.

By allowing the Migrate SYN to fall outside of the cur-
rent sequence space window, however, an attacker does
not need to know the current sequence space of a con-
nection to hijack it. Hence, in our extended model, only
the secured variant of the Migrate Options provides pro-
tection against hijacking by an eavesdropper. The se-
cured form of the Migrate Options uses an Elliptic Curve
Diffie-Hellman key exchange during the initial three-
way handshake to negotiate a cryptographically-secure
connection key. Secure Migrate SYNs must be cryp-
tographically authenticated using this key, hence an at-
tacker without knowledge of the connection key cannot
hijack a connection regardless of the current sequence
space.

This relaxation allows any server with sufficient knowl-
edge of the initial transport state (namely the initial se-
quence number, connection token, and key) to request
a migration. When a server with stale transport layer
state assumes control of a connection, however, the client
needs to flush its SACK blocks (and corresponding out-
of-order packets) for proper operation of the TCP stack
at the new server.6 Otherwise, the transmission of a data
segment that fills a gap in previously-transmitted out-of-
order segments will cause the client to acknowledge re-
ceipt of data that the new server has not yet sent, con-

6This behavior is in full compliance with the SACK specifica-
tion [15].

founding the server’s TCP (and an untold number of mid-
dle boxes).

In general, a host cannot deduce the difference between
a Migrate SYN issued by the original host (from a new
address) that simply failed to receive some number of
ACKs and a new end point. We therefore reserve one
bit from the Migrate SYN to flag when a Migrate Re-
quest is coming from a host other than the one that ini-
tiated the connection [23]. This allows TCP connections
migrated by the same host to avoid the negative perfor-
mance implications of discarding out-of-order segments
while providing correct operation in the face of end host
changeover.

3.3.3 SCTP migration

Recent work in IP telephony signaling has motivated the
development of a new transport protocol by the transport
area of the IETF (Internet Engineering Task Force). A
proposed standard, the Stream Control Transport Proto-
col (SCTP), provides advantages over TCP for connec-
tions to multi-homed hosts [25]. By advertising a set of
IP addresses during connection establishment, a multi-
homed SCTP connection supports transmitting and re-
ceiving data on multiple interfaces. We can leverage this
capability to support connection migration between dif-
ferent servers.

Unlike the TCP Migrate options, however, all addresses
to be used for an SCTP connection must be specified at
connection establishment. While limiting the level of dy-
namism in the server pool, it still supports failover be-
tween servers that were known to the initial server at
the time of connection establishment. A recent Inter-
net Draft [26] attempts to address this issue by allow-
ing for the dynamic addition and deletion of IP addresses
from the association, although it requires the operations
to be initiated by an end point already within the associa-
tion. Additionally, SCTP was designed to support multi-
homed hosts, as opposed to address changes, hence it
does not support the at-most-once semantics required to
allow multiple servers to simultaneously attempt to mi-
grate the connection. We believe this is a deficiency in
SCTP that can be addressed simultaneously while adding
support for dynamic changes to the address associations.

The additional complexity of SCTP requires servers
to communicate more transport-level state information,
but need not increase the frequency of communication.
SCTP end-points are required to emit SACK packets
upon receipt of duplicate data segments, hence the new
server could send a data segment with a Transport Se-
quence Number (TSN) that is known to be stale, eliciting
a SACK with the current sequence state.



3.4 Limitations

Our architecture depends on the ability to perform the
stream mapping function for objects being requested.
Due to variability in header lengths, this requires access
to the transport layer immediately below the application.
In many cases, there is only one (non-trivial) transport
protocol in use, such as TCP or SCTP. In some instances,
however, transport protocols may be layered on top of
each other, such as RTP over TCP. In this instance, both
migration and stream mapping must be performed at the
highest level, namely RTP.

Independent of the transport- and network-layer issues
handled by our architecture, particular applications may
attempt to enforce semantics that are violated by a server
change; clearly such applications cannot be handled in
a transparent fashion. In particular, the object being
served may have changed since the connection was ini-
tially opened, resulting in indeterminate behavior if the
application isn’t aware of this. Further, some applica-
tions make decisions at connection establishment based
on server- or time-sensitive state, and do not normally
continue to reevaluate these conditions. For instance,
current applications may make authorization decisions
based on the IP address of its original peer, or an HTTP
cookie or client certificate that has since expired. Such
applications can be notified of the connection migration
by the stream mapper, however, and allowed to perform
any required steps to resynchronize themselves before re-
suming transmission.

Despite these limitations, the common case of a long-
running uni-directional download from a static file or
consistent stream is handled by our architecture in an
application-transparent manner. As described in the fol-
lowing sections, our implementation allows a connection
to be migrated at any point after the initial object re-
quest completes. Furthermore, our scheme can survive
cascaded failures (when the back-up server fails before
completing the connection migration) due to the seman-
tics of our state distribution mechanism and the robust-
ness of the transport-layer migration functionality.

4 Implementation

Our current prototype implementation supports TCP ap-
plications using the Migrate options [22, 23]. The soft-
state distribution mechanism and stream mapping func-
tionality are implemented as a wedge that runs on the
server and proxies connections for the local content
server. Our current implementation uses Apache 1.3, and
is compatible with any Web server software that supports
HTTP/1.1 range requests. It is possible to optimize per-
formance by handing off the TCP relaying to the kernel

after the request parameters have been determined, in a
manner akin to MSOCKS [14].

4.1 The wedge

The wedge is a TCP relay that accepts inbound connec-
tions from clients, and forwards them to the local content
server. It listens in on the initial portion of a connection
to identify the object being requested by the client, exam-
ines the returned object to determine the parameters nec-
essary to resume the connection if necessary, and then
hands the relaying off to a generic TCP splice to pass
the data between the client and the server. The use of a
user-level splice to copy data from one TCP connection
(server-to-wedge) to another (wedge-to-client) results in
some performance degradation compared to an in-server
or in-kernel implementation, but permits a simple and
clean implementation that can be used with a variety of
back-end servers, not just one modified server.

Each application protocol handled by the wedge requires
a parsing module to identify the requested object and
strip out any protocol headers on the resumed connec-
tion. The architecture of the wedge in the context of
HTTP is shown in figure 2.

The wedge first passes the connection through the HTTP
GET parser, which watches the connection for a GET re-
quest to identify the requested object. The parser passes
the request along to the back-end server, and hands off
further control of the connection to the HTTP header
parser. The parser counts the length of the HTTP headers
to identify the offset in the data stream of the beginning
of the object data, and forwards the headers back to the
client. It then passes control to the generic data relay,
which maintains control of the connection until termina-
tion.

Finally, a protocol-independent soft-state distributor pe-
riodically examines the set of active connections and
sends information about each connection (over UDP) to
its support group. This information includes:

• Client IP address and port number.
• Takeover sequence number.
• TCP Migrate fields (connection token, key, etc.).
• Application-specific object parameters, including

the name of the object.

Each server maintains a table of all the connections in
its support group(s). When a server receives notification
that a peer has failed, it determines if it is in the sup-
port group for any connections previously managed by
the dead server (using the hashing mechanism described
in section 3.1), and attempts to resume the connections.

To do so, it migrates the client connection (section 4.2),



Range Request

Back−end Server

Response Data
Connection reestablishment

Generic Data Relay

Response
Handler

HTTP GET creator

HTTP Header StripperClient

GET Request

HTTP GET parser

HTTP Header Parser

Generic Data Relay

Response
Handler

Request

Back−end Server

Response Data
Initial client connection processing

Client

Figure 2: The wedge handling a new connection (left) and taking over an existing connection (right).

computes the new offset into the data stream by compar-
ing the current TCP sequence number to the connection’s
initial sequence number, and then passes the client con-
nection to the protocol re-establishment module to con-
tinue the connection. For HTTP, the re-establishment
module sends an HTTP range request to the local server,
strips out the protocol headers, and then relays the data
to the client, seamlessly resuming the transfer.

To avoid race conditions, connection migrations are se-
quenced. If a server hears an announcement for a con-
nection it believes it is currently managing, it checks the
sequence number. If that number is greater than its own,
it can safely infer that the connection has been migrated
elsewhere (due to a load-balancing policy decision or an
erroneous death report), and it may terminate its connec-
tion and stop advertising it to others. Similarly, peers
accept only the most recent announcement for a connec-
tion, facilitating convergence after a migration.

4.1.1 Soft-state information dissemination

Soft-state information updates are sent everyUP-
DATE SEC seconds, and expired from remote servers af-
ter CACHE TIMEOUT seconds. The proper values for
these parameters depend on several factors [19]: connec-
tion lengths, packet loss rates between servers, and con-
nection frequency. Our default values for these are an
update frequency of three seconds and a timeout period
of 10 seconds, which result in acceptable update frequen-
cies when serving typical streaming media connections,
without undue state dissemination overhead. The opti-
mal values for these figures would, of course, vary from
site to site.

4.1.2 Persistent connections

Our wedge implementation does not currently support
persistent connections, but could do so with only mi-
nor modification. The wedge would need to continu-
ally monitor the client side of the connection (instead of
blindly handing the connection off to a splice) and watch
for further object requests. When it receives a new re-
quest, the wedge would begin announcing it via the soft-
state distribution protocol. Using techniques from the
LARD persistent connection handler [4], the splice can

still perform fast relaying of the bulk data from the server
to the client. An in-server implementation of the soft-
state dissemination protocol would of course eliminate
this need.

4.2 Socket interface

In order for a new server to handle a migrated connec-
tion, the wedge must preload a socket with sufficient
transport information. Conversely, this information must
be extracted from the socket at the previous server and
communicated to the new server. We have implemented
two new system calls,setsockstate() andgetsockstate(),
to provide this functionality.

The getsockstate() call packages up the TCP control
block of an existing TCP socket, while thesetsockstate()
call injects this information into an unconnected TCP
socket. Only certain parts of the control block are rel-
evant, however, such as the sequence space information,
TCP options, and any user-specified options such as an
MTU clamp. Other, unportable state such as the retrans-
mission queue, timers, and congestion window are re-
turned bygetsockstate(), but not installed into the new
socket bysetsockstate(). Invoking theconnect() system
call will then cause the socket to attempt to migrate the
connection (as specified by the preloaded state) to the
new socket.

After migration is completed (theconnect() call suc-
ceeds), the new server can compare the current sequence
number to the initial sequence number returned byget-
sockstate() to determine how many bytes have been sent
on the connection since its establishment.

4.3 Migration

Figure 3 presents atcpdump trace of a failover event,
collected at the client. There are four hosts in this ex-
ample: the client, cl, and three servers, sA, sB, and sC.
To simulate a diverse set of realistic network conditions,
the servers are routed over distinct DummyNet [21] pipes
with round trip times of approximately 10ms, 40ms, and
200ms respectively. Each pipe has a bottleneck band-
width of 128Kb per second. Initially the client is retriev-
ing an object from sA. After some period of time, an



Initial Data Transmission:

0.00000 cl.1065 > sA.8080: . ack 0505 win 31856

(Erroneous) sA Death Pronouncement Issued

0.08014 sA.8080 > cl.1065: P 0505:1953(1448) ack 1 win 31856

Successful Connection Migration to sB:

0.09515 sB.1033 > cl.1065: S 0:0(0) win 0 <migrate PRELOAD
1>
0.09583 cl.1065 > sB.1033: S 0:0(0) ack 1953 win 32120
0.14244 sB.1033 > cl.1065: . ack 1 win 32120

Continued Data Transmission from sA:

0.17370 sA.8080 > cl.1065: P 0505:1953(1448) ack 1 win 31856
0.17376 cl.1065 > sA.8080: R 1:1(0) win 0

Failed Connection Migration Attempt by sC:

0.17423 sC.1499 > cl.1065: S 0:0(0) win 0 <migrate PRELOAD
1>
0.17450 cl.1065 > sC.1499: R 0:0(0) ack 1 win 0

Resumed Data Transmission from sB:

0.24073 sB.1033 > cl.1065: P 1953:3413(1460) ack 1 win 32120
0.25663 cl.1065 > sB.1033: . ack 3413 win 31856
0.33430 sB.1033 > cl.1065: P 3413:4873(1460) ack 1 win 32120
0.42776 sB.1033 > cl.1065: P 4873:6333(1460) ack 1 win 32120
0.42784 cl.1065 > sB.1033: . ack 6333 win 31856
.
.
.

Figure 3: An annotated failover trace (collected at the
client) depicting the migration of a connection to one
of two candidate servers.

erroneous death pronouncement is simultaneously deliv-
ered to the servers by a simulated health monitor that de-
clares sA dead. This pronouncement is received by the
servers at approximately 0.073s (not shown).

As figure 3 shows, each of the other servers in the sup-
port group immediately attempts to migrate the connec-
tion. Due to their disparate path latencies, the Migrate
SYNs arrive at different times. With a path latency of
only 20ms, the Migrate SYN from sB arrives first, and is
accepted by the client.

The next section of the trace shows the robustness of
our scheme in the face of mistaken death pronounce-
ments. The previous simulated announcement by the
health monitor was in error; sA is in fact still operational.
Furthermore, there are several outstanding unacknowl-
edged data segments (including the segment seen in the
trace at time 0.08014), as the client does not emit any
further ACKs to sA once it has migrated to sB. Hence
sA times out and retransmits the most recent data seg-
ment. The client responds by sending a RST segment,
informing sA it is no longer interested in receiving fur-
ther transmissions. (The remaining retransmissions and
corresponding RSTs are not shown for clarity.)

Continuing on, we see that the Migrate SYN from the
other candidate server, sC finally arrives approximately
100ms after the death announcement. Since the Mi-
grate Request number (1) is identical to the previously re-
ceived Migrate SYN, the client rejects the request. Note
that if sB had died, and this Migrate SYN was an attempt

by sC to further resume the connection, the request num-
ber would have been incremented.

The final portion of the trace shows the resumed data
transmission, continuing from the last contiguous re-
ceived data segment (as indicated by the SYN/ACK sent
by the client). Since the path from client to sB is likely
different from the path to sA, the TCP congestion state is
reset and the connection proceeds in slow start.

5 Performance

We conducted several experiments to study the robust-
ness of our scheme in the presence of overly-reactive or
ill-behaving health monitors, the overhead incurred, and
the consequences of many connections requiring simul-
taneous migration.

5.1 Server stability

We first examined the performance degradation experi-
enced by a connection as a function of the rate at which
it is migrated between different servers. The lower the
impact, the greater the resilience of our scheme to an im-
perfect health monitor or unstable load-balancing policy.
In particular, we would like to isolate the highest migra-
tion frequency before performance severely degrades.

One might assume that performance degradation would
increase steadily as the frequency of oscillations between
servers increases. Hence we conducted a series of sim-
ple experiments where a client was connected to two
servers over distinct links, each with a round-trip propa-
gation time of 40ms and distinct bottleneck bandwidths
of 128Kbps. The bottleneck queue size from both servers
was 14 KBytes, substantially larger than the bandwidth-
delay product of the path. All graphs in this section rep-
resent data collected at the client.

Contrary to our initial intuition, we find that the degra-
dation is non-monotonic in the oscillation frequency for
this experiment. This is shown in figure 4, which de-
picts the progression of five separate downloads, each
subjected to a different rate of oscillation. The connec-
tion served entirely by one server performs best, but the
other rates deviate in an unexpected manner.

While the traces and exact numbers we present are spe-
cific to our link parameters, they illustrate three impor-
tant interactions. The first is intuitive: the longer the time
between server change events, the higher the throughput,
because there is less disruption. This explains the de-
creasing overall trend and the decreasing magnitude of
the “bumps” in figure 5. The second effect is due to
the window growth during slow start; if migrations oc-
cur before the link bandwidth is fully utilized, through-
put decreases dramatically because the connection al-



0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

0 10 20 30 40 50 60

G
oo

dp
ut

 (
by

te
s)

Time (secs)

No Oscillations
10 sec
12 sec
2 sec
5 sec

Figure 4: Connection ACK traces for varying rates of
server oscillation.

60

65

70

75

80

85

0 5 10 15 20 25 30

S
ec

on
ds

 to
 d

ow
nl

oa
d

Seconds between oscillations

With oscillations
No oscillations

Figure 5: Download times vs. oscillation rates. A con-
nection served entirely by one server takes 61.96 sec-
onds to complete.

ways under-utilizes the link. This occurs at at oscilla-
tion periods less than three seconds in the figure 5. The
third interaction occurs when migration occurs during
TCP loss recovery, either due to slow start or conges-
tion avoidance. In this case, thego-back-n retransmis-
sion policy during migration forces the connection to dis-
card already-received data. This interaction explains the
periodic “bumps” in figure 5 and is discussed in more
detail below.

To illustrate the slow-start and loss recovery interactions,
figure 6 examines the sequence traces for the interval
from 35 to 40 seconds of the connections subjected to 2
and 5 second oscillations. At 2 seconds, connections are
still ramping up their window sizes and have experienced
no losses. At 5 seconds, the connections experience mul-
tiple loss events as slow start begins to overrun the buffer
at the bottleneck. Four retransmissions can be observed
to be successfully received, the fifth unfortunately arrives
just after the Migrate SYN from the new server. Since

460000

480000

500000

520000

540000

560000

580000

35 36 37 38 39 40

S
eq

ue
nc

e 
N

um
be

r 
(b

yt
es

)

Time (secs)

2 sec (Server A)
2 sec (Server B)
5 sec (Server A)
5 sec (Server B)

Figure 6: Sequence traces of oscillatory migration be-
havior.

1000

10000

100000

1e+06

1e+07

1 10 100 1000 10000

M
ic

ro
se

co
nd

s 
pe

r 
re

qu
es

t

Request size (Kbytes)

Wedge
Direct

Figure 7: The request overhead of the wedge as a
function of request size.

the remaining data is non-contiguous, it is flushed at the
receiver in accordance with thego-back-n policy, and re-
transmission resumes from substantially earlier. Similar
loss interactions appear as the regular pauses in figure 4.
Regardless of the exact period of interaction, the server
switching overhead for realistic rates of failure is quite
low.

5.2 Overhead

Micro-benchmarks of the request fulfillment time for an
unloaded server are shown in figure 7. The overhead as-
sociated with wedge processing becomes negligible as
request size increases to the long-running, large sessions
for which our scheme is designed. The impact ranges
from an additional 1ms per request (80% overhead) for 1
KByte requests to 12ms (1%) for 8 MByte requests.

The load overhead from the wedge comes from our sim-
ple TCP splicing implementation; we do not present its
evaluation here. The kernel-assisted techniques men-
tioned in section 4 or the TCP splicing techniques de-



Method Avg. Latency Avg. Max Clients
Distance 34ms 2146
Optimal 38ms 1399
Backoff 67ms 1334
Round-Robin 94ms 1112
Random 94ms 1160

Table 1: Simulation distances and node with most
clients for different server selection methods.

scribed by Cohen, Rangarajan, and Slye [7] can elimi-
nate most of the TCP processing overhead, but not the
connection establishment overhead; an in-server imple-
mentation can eliminate nearly all of the overhead.

5.3 Implosion

To explore the degree to which latency-dependent server
selection affected server implosion, we simulated 10,000
clients served by 10 servers. (Other numbers of clients
and servers had nearly identical results). The clients and
servers were laid out on a random two-dimensional grid
to represent the distance between them; possible laten-
cies ranged from 0ms to 250ms.

We first tested two global methods.Optimal caps
server occupancy at 1400 clients and performs a global
minimum-latency assignment to servers.Round-Robin
guarantees that clients are evenly distributed between
(effectively random) servers. Next, we simulated three
distributed methods.Distance uses only the distance
metric to assign servers.Random chooses servers purely
at random from the failure group.Backoff uses an expo-
nential backoff based on the number of clients hosted at
the server and the number of outstanding “offers.”

The performace of each server selection method is shown
in table 5.3. Pure distance assignment has the best la-
tency, but suffers from severe implosion effects. Optimal
does nearly as well without the implosion, but has feasi-
bility issues in a distributed environment. Round-Robin
and random assignment both result in very even distribu-
tions of clients, but have high latency. As expected, our
weighted backoff method achieves a nice compromise.

6 Related work

Request redirection devices can perform per-connection
load balancing, but achieve better performance and flex-
ibility if they route requests based upon thecontent of
the request. Many commercially available Web switches
provide content-based request redirection [2, 6, 11, 18]
by terminating the client’s TCP connection at a front-end
redirector. This redirector interprets the object request in
a manner similar to our wedge, and then passes the re-
quest on to the appropriate server. In this architecture,

however, the redirector must remain on the path for the
duration of the connection, since the connection to the
server must be spliced together with the client’s connec-
tion.

In-line redirection inserts a potential performance bot-
tleneck, and the benefits of TCP splicing [7] and hand-
ing off connections directly to end machines within a
Web server cluster are well known. Handoff mechanisms
were first explored by Hunt, Nahum, and Tracey [13],
and later implemented in the LARD (Locality-Aware Re-
quest Distribution) system [17]. LARD was recently ex-
tended [4] to support request handoff between backend
servers for HTTP/1.1 persistent connections [10]. A key
component of the LARD implementation is a TCP hand-
off mechanism, which allows the front-end load balancer
to hand the connection off to back-end servers after the
load-balancing decision has been made. Similar func-
tionality can now also be found in a commercial product
from Resonate [20]. While all three of these mechanisms
are transparent to the client, they each require the con-
nection to be actively handed off by the front end to the
back-end server.7

The need for previous techniques to maintain hard con-
nection state at the front end has made developing Inter-
net telephony systems with reliability equivalent to cur-
rent circuit-switched technologies quite difficult. A new
Reliable Server Pooling (Rserpool) working group has
recently been formed by the IETF to examine the needs
of such applications. We believe our architecture ad-
dresses many of the requirements set forth in the working
group charter [16] and described in the Aggregate Server
Access Protocol (ASAP) Internet Draft [24].

7 Conclusion

We described the design and implementation of a fine-
grained failover architecture using transport-layer con-
nection migration and an application-layer soft-state syn-
chronization mechanism. Our architecture is end-to-end
and transparent to client applications. It requires deploy-
ment of previously-proposed changes to only the trans-
port protocol at the communicating peers, but leaves
server applications largely unchanged. Because it does
not use a front-end application- or transport-layer switch,
it permits the wide-area distribution of each connection’s
support group.

Experimental results of our prototype Linux implemen-
tation show that the performance of our failover system
is not severely affected even when connection halts and

7Back-end forwarding [4] allows different back ends to serve subse-
quent requests, but requires the previous server to forward the content
(through the front end) back to the client.



resumptions occur every few seconds. Performance de-
creases only marginally with increasing migration fre-
quency, with an additional contribution dependent on the
loss rate of the connection immediately preceding migra-
tion. We therefore believe that this approach to failover
is an attractive way to build robust systems for delivering
long-running Internet streams.

The techniques described in this paper are applicable to
a variety of systems, in addition to the traditional end-
to-end browser-to-server model. Although our archi-
tecture does not require application- or transport-layer
switches for routing and health monitoring, it does not
preclude them. For example, some commercial prod-
ucts (e.g., Cisco LocalDirector [6]) suggest using two co-
located Web switches for redundancy. When used across
long-running connections, our solution allows existing
connections to be seamlessly migrated between multiple
Web switches without adversely affecting performance.

Our source code is available (under GPL) athttp://
nms.lcs.mit.edu/software/migrate/.

References

[1] Akamai Technologies, Inc.http://www.akamai.
com.

[2] Alteon Web Systems. Layer 7 Web Switching.
http://www.alteonwebsystems.com/
products/whitepapers/layer7switching.

[3] E. Amir, S. McCanne, and R. Katz. An active service
framework and its application to real-time multimedia
transcoding. InProc. ACM SIGCOMM ’98, Sept. 1998.

[4] M. Aron, P. Druschel, and W. Zwaenepoel. Efficient sup-
port for P-HTTP in cluster-based web servers. InProc.
USENIX ’99, June 1999.

[5] Cisco Systems. Cisco Distributed Director.
http://www.cisco.com/warp/public/cc/
pd/cxsr/dd/tech/dd_wp.htm.

[6] Cisco Systems. Failover configuration for LocalDirec-
tor. http://www.cisco.com/warp/public/
cc/pd/cxsr/400/tech/locdf_wp.htm.

[7] A. Cohen, S. Rangarajan, and H. Slye. On the perfor-
mance of TCP splicing for URL-aware redirection. In
Proc. USITS ’99, Oct. 1999.

[8] Digital Island, Inc. Digital Island, Inc. Home Page.
http://www.digitalisland.net.

[9] Z. Fei, S. Bhattacharjee, E. W. Zegura, and M. Ammar.
A novel server selection technique for improving the re-
sponse time of a replicated service. InProc. IEEE Info-
com ’98, Mar. 1998.

[10] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and
T. Berners-Lee. HyperText Transfer Protocol—
HTTP/1.1. RFC 2068, IETF, Jan. 1997.

[11] Foundry Networks. ServerIron Internet Traffic Manage-
ment Switches. http://www.foundrynet.com/
PDFs/ServerIron3_00.pdf.

[12] A. Fox, S. Gribble, Y. Chawathe, and E. Brewer. Cluster-
based scalable network services. InProc. ACM SOSP ’97,
Oct. 1997.

[13] G. Hunt, E. Nahum, and J. Tracey. Enabling content-
based load distribution for scalable services. Technical
report, IBM T.J. Watson Research Center, May 1997.

[14] D. Maltz and P. Bhagwat. MSOCKS: An architecture for
transport layer mobility. InProc. IEEE Infocom ’98, Mar.
1998.

[15] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP
Selective Acknowledgment Options. RFC 2018, IETF,
Oct. 1996.

[16] L. Ong and M. Stillman. Reliable Server Pool-
ing. Working group charter, IETF, Dec. 2000.
http://www.ietf.org/html.charters/
rserpool-charter.html.

[17] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum. Locality-aware request
distribution in cluster-based network servers. InProc. AS-
PLOS ’98, Oct. 1998.

[18] Radware. Web Server Director. http://www.
radware.com/archive/pdfs/products/WSD.
pdf.

[19] S. Raman and S. McCanne. A model, analysis, and pro-
tocol framework for soft state-based communication. In
Proc. ACM SIGCOMM ’99, Sept. 1999.

[20] Resonate. Central Dispatch 3.0 - White Paper.
http://www.resonate.com/products/pdf/
WP_CD3.0___final.doc.pdf.

[21] L. Rizzo. Dummynet and forward error correction. In
Proc. Freenix ’98, June 1998.

[22] A. C. Snoeren and H. Balakrishnan. An end-to-end ap-
proach to host mobility. InProc. ACM/IEEE Mobicom
’00, pages 155–166, Aug. 2000.

[23] A. C. Snoeren and H. Balakrishnan. TCP Con-
nection Migration. Internet Draft, IETF, Nov.
2000. draft-snoeren-tcp-migrate-00.txt
(work in progress).

[24] R. R. Stewart and Q. Xie. Aggregate Server Access
Protocol (ASAP). Internet Draft, IETF, Nov. 2000.
draft-xie-rserpool-asap-01.txt (work in
progress).

[25] R. R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. J.
Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang,
and V. Paxson. Stream Control Transmission Protocol.
RFC 2960, IETF, Oct. 2000.

[26] R. R. Stewart, Q. Xie, M. Tuexen, and I. Ry-
tina. SCTP Dynamic Addition of IP ad-
dresses. Internet Draft, IETF, Nov. 2000.
draft-stewart-addip-sctp-sigran-01.
txt (work in progress).


