
MIT-LCS-TR-817

PRACTICAL BYZANTINE FAULT
TOLERANCE

Miguel Castro

01/31/2001

Practical Byzantine Fault Tolerance

Miguel Castro

January 31, 2001

c
Massachusetts Institute of Technology 2001

This research was supported in part by DARPA under contract DABT63-95-C-005,monitored by
Army Fort Huachuca, and under contract F30602-98-1-0237 monitored by the Air Force Research
Laboratory. The author was supported by a fellowship from the Portuguese Ministry for Science
and Technology, and by a fellowship from the Calouste Gulbenkian Foundation.

Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, Massachusetts, USA

Practical Byzantine Fault Tolerance
by

Miguel Castro

Abstract

Our growing reliance on online services accessible on the Internet demands highly-available systems
that provide correct service without interruptions. Byzantine faults such as software bugs, operator
mistakes, and malicious attacks are the major cause of service interruptions. This thesis describes
a new replication algorithm, BFT, that can be used to build highly-available systems that tolerate
Byzantine faults. It shows, for the first time, how to build Byzantine-fault-tolerant systems that can
be used in practice to implement real services because they do not rely on unrealistic assumptions
and they perform well. BFT works in asynchronous environments like the Internet, it incorporates
mechanisms to defend against Byzantine-faulty clients, and it recovers replicas proactively. The
recovery mechanism allows the algorithm to tolerate any number of faults over the lifetime of the
system provided fewer than 1=3 of the replicas become faulty within a small window of vulnerability.
The window may increase under a denial-of-service attack but the algorithm can detect and respond
to such attacks and it can also detect when the state of a replica is corrupted by an attacker.

BFT has been implemented as a generic program library with a simple interface. The BFT
library provides a complete solution to the problem of building real services that tolerate Byzantine
faults. We used the library to implement the first Byzantine-fault-tolerant NFS file system, BFS. The
BFT library and BFS perform well because the library incorporates several important optimizations.
The most important optimization is the use of symmetric cryptography to authenticate messages.
Public-key cryptography, which was the major bottleneck in previous systems, is used only to
exchange the symmetric keys. The performance results show that BFS performs 2% faster to 24%
slower than production implementations of the NFS protocol that are not replicated. Therefore, we
believe that the BFT library can be used to build practical systems that tolerate Byzantine faults.

Keywords: algorithms, analytic modelling, asynchronous systems, Byzantine faults, correct-
ness proofs, fault tolerance, high availability, integrity, performance, proactive security, replication,
and security.

This report is a minor revision of the dissertation of the same title submitted to the Department
of Electrical Engineering and Computer Science on November 30, 2000, in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in that department. The thesis was supervised
by Professor Barbara Liskov.

Acknowledgments

First, I must thank my thesis supervisor, Barbara Liskov, for her constant support and wise advice.
I feel very fortunate for having had the chance to work closely with her.

The other members of my thesis committee, Frans Kaashoek, Butler Lampson, and Nancy
Lynch suggested many important improvements to this thesis and interesting directions for future
work. I greatly appreciate their suggestions.

It has been a pleasure to be a graduate student in the Programming Methodology Group. I want
to thank all the group members: Atul Adya, Sarah Ahmed, Sameer Ajmani, Ron Bodkin, Philip
Bogle, Chandrasekhar Boyapati, Dorothy Curtis, Sanjay Ghemawat, Robert Gruber, Kyle Jamieson,
Paul Jonhson, Umesh Maheshwari, Andrew Myers, Tony Ng, Rodrigo Rodrigues, Liuba Shrira,
Ziqiang Tang, Zheng Yang, Yan Zhang, and Quinton Zondervan. Andrew and Atul deserve special
thanks for the many stimulating discussions we had. I also want to thank Rodrigo for reading my
formal proof, and for his help in handling the details of the thesis submission process.

I am grateful to my parents for their support over the years. My mother was always willing to
drop everything and cross the ocean to help us, and my father is largely responsible for my interest
in computers and programming.

Above all, I want to thank my wife, Inês, and my children, Madalena, and Gonçalo. They made
my life at MIT great. I felt so miserable without them during my last two months at MIT that I had
to finish my thesis and leave.

Contents

1 Introduction 11
1.1 Contributions : 12
1.2 Thesis Outline : 14

2 BFT-PK: An Algorithm With Signatures 15
2.1 System Model : 15
2.2 Service Properties : 16
2.3 The Algorithm : 18

2.3.1 Quorums and Certificates : 19
2.3.2 The Client : 19
2.3.3 Normal-Case Operation : 20
2.3.4 Garbage Collection : 22
2.3.5 View Changes : 23

2.4 Formal Model : 26
2.4.1 I/O Automata : 26
2.4.2 System Model : 26
2.4.3 Modified Linearizability : 29
2.4.4 Algorithm Specification : 31

3 BFT: An Algorithm Without Signatures 39
3.1 Why it is Hard to Replace Signatures by MACs : : : : : : : : : : : : : : : : : : 39
3.2 The New Algorithm : 40

3.2.1 Authenticators : 41
3.2.2 Normal-Case Operation : 42
3.2.3 Garbage Collection : 43
3.2.4 View Changes : 43
3.2.5 View Changes With Bounded Space : 48

4 BFT-PR: BFT With Proactive Recovery 52
4.1 Overview : 52
4.2 Additional Assumptions : 53
4.3 Modified Algorithm : 54

4.3.1 Key Exchanges : 55
4.3.2 Recovery : 55
4.3.3 Improved Service Properties : 58

5 Implementation Techniques 60
5.1 Optimizations : 60

7

5.1.1 Digest Replies : 60
5.1.2 Tentative Execution : 61
5.1.3 Read-only Operations : 62
5.1.4 Request Batching : 63
5.1.5 Separate Request Transmission : 64

5.2 Message Retransmission : 64
5.3 Checkpoint Management : 66

5.3.1 Data Structures : 66
5.3.2 State Transfer : 67
5.3.3 State Checking : 69

5.4 Non-Determinism : 70
5.5 Defenses Against Denial-Of-Service Attacks : : : : : : : : : : : : : : : : : : : 71

6 The BFT Library 72
6.1 Implementation : 72
6.2 Interface : 75
6.3 BFS: A Byzantine-Fault-tolerant File System : : : : : : : : : : : : : : : : : : : 76

7 Performance Model 78
7.1 Component Models : 78

7.1.1 Digest Computation : 78
7.1.2 MAC Computation : 78
7.1.3 Communication : 79

7.2 Protocol Constants : 81
7.3 Latency : 81

7.3.1 Read-Only Operations : 82
7.3.2 Read-Write Operations : 84

7.4 Throughput : 86
7.4.1 Read-Only Requests : 86
7.4.2 Read-Write Requests : 87

7.5 Discussion : 88

8 Performance Evaluation 89
8.1 Experimental Setup : 89
8.2 Performance Model Parameters : 90

8.2.1 Digest Computation : 90
8.2.2 MAC Computation : 91
8.2.3 Communication : 91

8.3 Normal Case : 93
8.3.1 Latency : 93
8.3.2 Throughput : 97
8.3.3 Impact of Optimizations : 100
8.3.4 Configurations With More Replicas : 107
8.3.5 Sensitivity to Variations in Model Parameters : : : : : : : : : : : : : : : 112

8.4 Checkpoint Management : 115
8.4.1 Checkpoint Creation : 115
8.4.2 State Transfer : 117

8.5 View Changes : 119

8

8.6 BFS : 120
8.6.1 Experimental Setup : 121
8.6.2 Performance Without Recovery : 122
8.6.3 Performance With Recovery : 126

8.7 Summary : 129
8.7.1 Micro-Benchmarks : 129
8.7.2 BFS : 131

9 Related Work 132
9.1 Replication With Benign Faults : 132
9.2 Replication With Byzantine Faults : 133
9.3 Other Related Work : 136

10 Conclusions 137
10.1 Summary : 137
10.2 Future Work : 139

A Formal Safety Proof for BFT-PK 141
A.1 Algorithm Without Garbage Collection : 141
A.2 Algorithm With Garbage Collection : 158

9

Chapter 1

Introduction

We are increasingly dependent on services provided by computer systems and our vulnerability to

computer failures is growing as a result. We would like these systems to be highly-available: they

should work correctly and they should provide service without interruptions.

There is a large body of research on replication techniques to implement highly-available

systems. The idea is simple: instead of using a single server to implement a service, these techniques

replicate the server and use an algorithm to coordinate the replicas. The algorithm provides the

abstraction of a single service to the clients but the replicated server continues to provide correct

service even when a fraction of the replicas fail. Therefore, the system is highly available provided

the replicas are not likely to fail all at the same time.

The problem is that research on replication has focused on techniques that tolerate benign

faults (e.g., [AD76, Gif79, OL88, Lam89, LGG+91]): these techniques assume components fail

by stopping or by omitting some steps and may not provide correct service if a single faulty

component violates this assumption. Unfortunately, this assumption is no longer valid because

malicious attacks, operator mistakes, and software errors can cause faulty nodes to exhibit arbitrary

behavior and they are increasingly common causes of failure. The growing reliance of industry

and government on computer systems provides the motif for malicious attacks and the increased

connectivity to the Internet exposes these systems to more attacks. Operator mistakes are also cited

as one of the main causes of failure [ML00]. In addition, the number of software errors is increasing

due to the growth in size and complexity of software.

Techniques that tolerate Byzantine faults [PSL80, LSP82] provide a potential solution to this

problem because they make no assumptions about the behavior of faulty components. There

is a significant body of work on agreement and replication techniques that tolerate Byzantine

faults. However, most earlier work (e.g., [CR92, Rei96, MR96a, MR96b, GM98, KMMS98]) either

concerns techniques designed to demonstrate theoretical feasibility that are too inefficient to be

used in practice, or relies on unrealistic assumptions that can be invalidated easily by an attacker.

For example, it is dangerous to rely on synchrony for correctness, i.e., to rely on known bounds on

11

message delays and process speeds. An attacker may compromise the correctness of a service by

delaying non-faulty nodes or the communication between them until they are tagged as faulty and

excluded from the replica group. Such a denial-of-service attack is generally easier than gaining

control over a non-faulty node.

This thesis describes a new algorithm and implementation techniques to build highly-available

systems that tolerate Byzantine faults. These systems can be used in practice because they perform

well and do not rely on unrealistic assumptions. The next section describes our contributions in

more detail.

1.1 Contributions

This thesis presents BFT, a new algorithm for state machine replication [Lam78, Sch90] that tolerates

Byzantine faults. BFT offers both liveness and safety provided at most bn�1
3 c out of a total of n

replicas are faulty. This means that clients eventually receive replies to their requests and those

replies are correct according to linearizability [HW87, CL99a]. We used formal methods to specify

the algorithm and prove its safety. Formal reasoning is an important step towards correctness

because algorithms that tolerate Byzantine faults are subtle.

BFT is the first Byzantine-fault-tolerant, state-machine replication algorithm that works correctly

in asynchronous systems like the Internet: it does not rely on any synchrony assumption to provide

safety. In particular, it never returns bad replies even in the presence of denial-of-service attacks.

Additionally, it guarantees liveness provided message delays are bounded eventually. The service

may be unable to return replies when a denial of service attack is active but clients are guaranteed

to receive replies when the attack ends.

Safety is provided regardless of how many faulty clients are using the service (even if they

collude with faulty replicas): all operations performed by faulty clients are observed in a consistent

way by non-faulty clients. Since BFT is a state-machine replication algorithm, it has the ability to

replicate services with complex operations. This is an important defense against Byzantine-faulty

clients: operations can be designed to preserve invariants on the service state, to offer narrow

interfaces, and to perform access control. The safety property ensures faulty clients are unable

to break these invariants or bypass access controls. Algorithms that restrict service operations to

simple reads and blind writes (e.g., [MR98b]) are more vulnerable to Byzantine-faulty clients; they

rely on the clients to order and group these simple operations correctly in order to enforce invariants.

BFT is also the first Byzantine-fault-tolerant replication algorithm to recover replicas proactively

in an asynchronous system; replicas are recovered periodically even if there is no reason to suspect

that they are faulty. This allows the replicated system to tolerate any number of faults over the

lifetime of the system provided fewer than 1=3 of the replicas become faulty within a window of

vulnerability. The best that could be guaranteed previously was correct behavior if fewer than 1=3

12

of the replicas failed during the lifetime of a system. Limiting the number of failures that can

occur in a finite window is a synchrony assumption but such an assumption is unavoidable: since

Byzantine-faulty replicas can discard the service state, we must bound the number of failures that

can occur before recovery completes. To tolerate less than 1=3 faults over the lifetime of the system,

we require no synchrony assumptions for safety.

The window of vulnerability can be made very small (e.g., a few minutes) under normal

conditions with a low impact on performance. Our algorithm provides detection of denial-of-

service attacks aimed at increasing the window; replicas can time how long a recovery takes and

alert their administrator if it exceeds some pre-established bound. Therefore, integrity can be

preserved even when there is a denial-of-service attack. Additionally, the algorithm detects when

the state of a replica is corrupted by an attacker.

Unlike prior research in Byzantine fault tolerance in asynchronous systems, this thesis describes

a complete solution to the problem of building real services that tolerate Byzantine faults. For

example, it describes efficient techniques to garbage collect information, to transfer state to bring

replicas up-to-date, to retransmit messages, and to handle services with non-deterministic behavior.

Additionally, BFT incorporates a number of important optimizations that allow the algorithm

to perform well so that it can be used in practice. The most important optimization is the use of

symmetric cryptography to authenticate messages. Public-key cryptography, which was cited as

the major latency [Rei94] and throughput [MR96a] bottleneck in previous systems, is used only

to exchange the symmetric keys. Other optimizations reduce the communication overhead: the

algorithm uses only one message round trip to execute read-only operations and two to execute

read-write operations, and it uses batching under load to amortize the protocol overhead for read-

write operations over many requests. The algorithm also uses optimizations to reduce protocol

overhead as the operation argument and return sizes increase.

BFT has been implemented as a generic program library with a simple interface. The BFT

library can be used to provide Byzantine-fault-tolerant versions of different services. The thesis

describes the BFT library and explains how it was used to implement a real service: the first

Byzantine-fault-tolerant distributed file system, BFS, which supports the NFS protocol.

The thesis presents a thorough performance analysis of the BFT library and BFS. This analysis

includes a detailed analytic performance model. The experimental results show that BFS performs

2% faster to 24% slower than production implementations of the NFS protocol that are not replicated.

These results support our claim that the BFT library can be used to implement practical Byzantine-

fault-tolerant systems.

There is one problem that deserves further attention: the BFT library (or any other replication

technique) provides little benefit when there is a strong positive correlation between the failure

probabilities of the different replicas. Our library is effective at masking several important types

of faults, e.g., it can mask non-deterministic software errors and faults due to resource leaks.

13

Additionally, it can mask other types of faults if some simple steps are taken to increase diversity in

the execution environment. For example, the library can mask administrator attacks or mistakes if

replicas are administered by different people.

However, it is important to develop affordable and effective techniques to further reduce the

probability of 1=3 or more faults within the same window of vulnerability. In the future, we plan to

explore existing independent implementations of important services like databases or file systems

to mask additional types of faults. Chapter 10 discusses these issues in more detail.

1.2 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 describes BFT-PK, which is a version of BFT

that uses public-key signatures to authenticate all messages. We start by describing BFT-PK because

it is simpler than BFT but captures the key ideas. This chapter presents a formalization of BFT-PK

and Appendix A presents a formal safety proof. Chapter 3 describes BFT: it explains how to modify

BFT-PK to use symmetric cryptography to authenticate all messages. The proactive recovery

mechanism is presented in Chapter 4. Chapter 5 describes optimizations and implementation

techniques that are important to implement a complete, practical solution for replication in the

presence of Byzantine faults. The implementation of the BFT library and BFS is presented in

Chapter 6. The analytic performance model is described in Chapter 7 and Chapter 8 presents

a detailed performance analysis for the BFT library and BFS. Chapter 9 discusses related work.

Finally, our conclusions and some directions for future work appear on Chapter 10.

14

Chapter 2

BFT-PK: An Algorithm With Signatures

This chapter describes BFT-PK, which is an algorithm that uses public-key signatures to authenticate

all messages and does not support recovery. We start by explaining BFT-PK because it is simple

and it captures the key ideas behind our more complex algorithms. The next chapters explain how

to eliminate public-key signatures and perform recovery, and Chapter 5 describes several important

optimizations.

We begin by describing our system model and assumptions. Section 2.2 describes the problem

solved by the algorithm and states correctness conditions. The algorithm is described informally

in Section 2.3 and Section 2.4 presents a formalization of the system model, the problem, and the

algorithm. BFT-PK was first presented in [CL99c] and the formalization appeared in [CL99a].

2.1 System Model

Section 2.4.2 presents a formal definition of the system model. This section describes the model

informally. BFT-PK is a form of state machine replication [Lam78, Sch90]: it can be used to

replicate any service that can be modeled as a deterministic state machine. These services can

have operations that perform arbitrary computations provided they are deterministic: the result and

new state produced when an operation is executed must be completely determined by the current

state and the operation arguments. We can handle some common forms of non-determinism as

explained in Section 5.4. The idea is to modify the services to remove computations that make

non-deterministic choices and to pass the results of those choices as operation arguments.

The algorithm does not require all replicas to run the same service code. It is sufficient for

them to run implementations with the same observable behavior, that is, implementations that

produce the same sequence of results for any sequence of operations they execute. A consequence

of this observation is that service implementations are allowed to have non-deterministic behavior

provided it is not observable. The ability to run different implementations or implementations with

non-deterministic behavior is important to reduce the probability of simultaneous failures due to

software errors.

15

The replicated service is implemented by n replicas. Clients issue requests to the replicated

service to invoke operations and wait for replies. Clients and replicas are correct if they follow

the algorithm in Section 2.3. The clients and replicas run in different nodes in an asynchronous

distributed system. These nodes are connected by an unreliable network. The network may fail to

deliver messages, delay them, duplicate them, or deliver them out of order.

BFT-PK uses digital signatures. Any non-faulty client or replica, x, can authenticate messages

it sends on the multicast channel by signing them. We denote a message m signed by x as hmi�x .

The algorithm also uses a cryptographic hash function D to compute message digests.

We use a Byzantine failure model, i.e., faulty nodes may behave arbitrarily. We allow for a very

strong adversary that can coordinate faulty nodes, delay communication, or delay correct nodes

in order to cause the most damage to the replicated service. But we assume that the adversary is

computationally bound so that (with very high probability) it is unable to subvert the cryptographic

techniques mentioned above.

We assume the signature scheme is non-existentially forgeable even with an adaptive chosen

message attack [GMR88]: if a node x is not faulty and it did not sign message m, the adversary is

unable to generate a valid signature hmi�x for any m. We also assume that the cryptographic hash

function is collision resistant [Dam89]: the adversary is unable to find two distinct messagesm and

m0 such that D(m) = D(m0). These assumptions are probabilistic but they are believed to hold

with high probability for the cryptographic primitives we use [BR96, Riv92]. Therefore, we will

assume that they hold with probability one in the rest of the text.

If we were only concerned with non-malicious faults (e.g., software errors), it would be pos-

sible to relax the assumptions about the cryptographic primitives and use weaker, more efficient

constructions.

2.2 Service Properties

BFT-PK provides both safety and liveness properties [Lyn96] assuming no more than bn�1
3 c replicas

are faulty over the lifetime of the system. The safety property is a form of linearizability [HW87]:

the replicated service behaves like a centralized implementation that executes operations atomically

one at a time. We modified the original definition of linearizability because it does not work with

Byzantine-faulty clients. Section 2.4.3 presents our modified definition formally.

In a fail-stop [SS83] model, it is possible to provide safety even when all replicas fail. But, in a

Byzantine failure model, safety requires a bound on the number of faulty replicas because they can

behave arbitrarily (for example, they can destroy their state).

The resilience of BFT-PK is optimal: 3f + 1 is the minimum number of replicas that allow

an asynchronous system to provide the safety and liveness properties when up to f replicas are

faulty. To understand the bound on the number of faulty replicas, consider a replicated service that

16

implements a mutable variable with read and write operations. To provide liveness, the replicated

service may have to return a reply to a request before the request is received by all replicas. Since

f replicas might be faulty and not responding, the service may have to return a reply before the

request is received by more than n� f replicas. Therefore, the service may reply to a write request

after the new value is written only to a set W with n � f replicas. If later a client issues a read

request, it may receive a reply based on the state of a set R with n� f replicas. R and W may have

only n� 2f replicas in common. Additionally, it is possible that the f replicas that did not respond

are not faulty and, therefore, f of those that responded might be faulty. As a result, the intersection

between R and W may contain only n � 3f non-faulty replicas. It is impossible to ensure that

the read returns the correct value unless R and W have at least one non-faulty replica in common;

therefore n > 3f .

Safety is provided regardless of how many faulty clients are using the service (even if they collude

with faulty replicas): all operations performed by faulty clients are observed in a consistent way by

non-faulty clients. In particular, if the service operations are designed to preserve some invariants

on the service state, faulty clients cannot break those invariants. This is an important defense against

Byzantine-faulty clients that is enabled by BFT-PK’s ability to implement an arbitrary abstract data

type [LZ75] with complex operations.

Algorithms that restrict service operations to simple reads and blind writes (e.g., [MR98b])

are more vulnerable to Byzantine-faulty clients; they rely on the clients to order and group these

simple operations correctly in order to enforce invariants. For example, creating a file requires

updates to meta-data information. In BFT-PK, this operation can be implemented to enforce meta-

data invariants such as ensuring the file is assigned a new inode. In algorithms that restrict the

complexity of service operations, a faulty client will be able to write meta-data information and

violate important invariants, e.g., it could assign the inode of another file to the newly created file.

The modified linearizability property may be insufficient to guard against faulty clients, e.g., in

a file system a faulty client can write garbage data to some shared file. However, we further limit

the amount of damage a faulty client can do by providing access control: we authenticate clients

and deny access if the client issuing a request does not have the right to invoke the operation. Also,

services may provide operations to change the access permissions for a client. Since the algorithm

ensures that the effects of access revocation operations are observed consistently by all clients, this

provides a powerful mechanism to recover from attacks by faulty clients.

BFT-PK does not rely on synchrony to provide safety. Therefore, it must rely on synchrony to

provide liveness; otherwise it could be used to implement consensus in an asynchronous system,

which is not possible [FLP85]. We guarantee liveness, i.e., clients eventually receive replies to

their requests, provided at most bn�1
3 c replicas are faulty and delay(t) does not grow faster than t

indefinitely. Here, delay(t) is the time between the moment t when a message is sent for the first

time and the moment when it is received by its destination (assuming the sender keeps retransmitting

17

the message until it is received). This is a rather weak synchrony assumption that is likely to be

true in any real system provided network faults are eventually repaired and denial-of-service attacks

eventually stop, yet it enables us to circumvent the impossibility result in [FLP85].

There are randomized algorithms to solve consensus with Byzantine faults that do not rely on any

synchrony assumption but provide probabilistic liveness guarantees, e.g.,[BT85, CR92, CKS00].

The algorithm in [BT85] assumes there is some round in which messages from correct replicas

are delivered before the ones from faulty replicas; this is less likely to be true in practice than

our synchrony assumption. The algorithms in [CR92, CKS00] do not rely on this assumption

but, like BFT-PK, they are not going to be able to make progress in the presence of a network

failure or denial-of-service attack that prevents communication among a majority of the replicas.

Furthermore, they rely on expensive cryptography whereas we explain how to modify BFT-PK to

use only inexpensive symmetric cryptography in Chapter 4.

Our algorithms do not address the problem of fault-tolerant privacy: a faulty replica may leak

information to an attacker. It is not feasible to offer fault-tolerant privacy in the general case because

service operations may perform arbitrary computations using their arguments and the service state;

replicas need this information in the clear to execute such operations efficiently. It is possible to use

secret sharing schemes [Sha79] to obtain privacy even in the presence of a threshold of malicious

replicas [HT88] for the arguments and portions of the state that are opaque to the service operations.

We plan to investigate these techniques in the future.

2.3 The Algorithm

Our algorithm builds on previous work on state machine replication [Lam78, Sch90]. The service

is modeled as a state machine that is replicated across different nodes in a distributed system. Each

replica maintains the service state and implements the service operations. We denote the set of

replicas by R and identify each replica using an integer in f0; :::; jRj � 1g. For simplicity, we

assume jRj = 3f + 1 where f is the maximum number of replicas that may be faulty; although

there could be more than 3f + 1 replicas, the additional replicas degrade performance (since more

and bigger messages are being exchanged) without providing improved resilience.

BFT-PK works roughly as follows. Clients send requests to execute operations to the replicas

and all non-faulty replicas execute the same operations in the same order. Since replicas are

deterministic and start in the same state, all non-faulty replicas send replies with identical results

for each operation. The client waits for f + 1 replies from different replicas with the same result.

Since at least one of these replicas is not faulty, this is the correct result of the operation.

The hard problem in state machine replication is ensuring non-faulty replicas execute the

same requests in the same order. Like Viewstamped Replication [OL88] and Paxos [Lam89], our

algorithm uses a combination of primary-backup [AD76] and quorum replication [Gif79] techniques

18

to order requests. But it tolerates Byzantine faults whereas Paxos and Viewstamped replication only

tolerate benign faults.

In a primary-backup mechanism, replicas move through a succession of configurations called

views. In a view one replica is the primary and the others are backups. We choose the primary of a

view to be replica p such that p = v mod jRj, where v is the view number and views are numbered

consecutively. This is important with Byzantine faults to ensure that the primary of a view is not

faulty for more than f consecutive views. The mechanism used to select the new primary in Paxos

and Viewstamped replication does not have this property.

The primary picks the ordering for execution of operations requested by clients. It does this by

assigning a sequence number to each request and sending this assignment to the backups. But the

primary may be faulty: it may assign the same sequence number to different requests, it may stop

assigning sequence numbers, or it may leave gaps between request sequence numbers. Therefore,

the backups check the sequence numbers assigned by the primary and trigger view changes to select

a new primary when it appears that the current one has failed.

The remainder of this section describes a simplified version of the algorithm informally. We omit

details related to message retransmissions and some important optimizations. These are explained

in Chapter 5. We present a formal specification of the algorithm in Section 2.4.4.

2.3.1 Quorums and Certificates

To order requests correctly despite failures, we rely on quorums [Gif79]. We could use any Byzantine

dissemination quorum system construction [MR97] but currently our quorums are just sets with at

least 2f + 1 replicas. Since there are 3f + 1 replicas, quorums have two important properties:

� Intersection property: any two quorums have at least one correct replica in common.

� Availability property: there is always a quorum available with no faulty replicas.

These properties enable the use of quorums as a reliable memory for protocol information. The

information is written to quorums and replicas collect quorum certificates, which are sets with one

message from each element in a quorum saying that it stored the information. We also use weak

certificates, which are sets with at least f + 1 messages from different replicas. Weak certificates

prove that at least one correct replica stored the information. Every step in the protocol is justified

by a certificate.

2.3.2 The Client

A client c requests the execution of state machine operation o by sending a hREQUEST; o; t; ci�c
message to the primary. Timestamp t is used to ensure exactly-once semantics for the execution of

client requests. Timestamps for c’s requests are totally ordered such that later requests have higher

19

timestamps than earlier ones. For example, the timestamp could be the value of the client’s local

clock when the request is issued to ensure ordering even across client reboots.

Each reply message sent by the replicas to the client includes the current view number, allowing

the client to track the view and hence the current primary. A client sends a request to what it

believes is the current primary using a point-to-point message. The primary atomically multicasts

the request to all the backups using the protocol described in the next section.

A replica sends the reply to the request directly to the client. The reply has the form

hREPLY; v; t; c; i; ri�i where v is the current view number, t is the timestamp of the correspond-

ing request, i is the replica number, and r is the result of executing the requested operation.

The client waits for a weak certificate with f + 1 replies with valid signatures from different

replicas, and with the same t and r, before accepting the result r. Since at most f replicas can be

faulty, this ensures that the result is valid. We call this certificate the reply certificate.

If the client does not receive a reply certificate soon enough, it broadcasts the request to all

replicas. If the request has already been processed, the replicas simply re-send the reply; replicas

remember the last reply message they sent to each client. Otherwise, if the replica is not the primary,

it relays the request to the primary. If the primary does not multicast the request to the group, it will

eventually be suspected to be faulty by enough replicas to cause a view change.

We assume that the client waits for one request to complete before sending the next one but it

is not hard to change the protocol to allow a client to make asynchronous requests, yet preserve

ordering constraints on them.

2.3.3 Normal-Case Operation

We use a three-phase protocol to atomically multicast requests to the replicas. The three phases

are pre-prepare, prepare, and commit. The pre-prepare and prepare phases are used to totally order

requests sent in the same view even when the primary, which proposes the ordering of requests,

is faulty. The prepare and commit phases are used to ensure that requests that commit are totally

ordered across views. Figure 2-1 shows the operation of the algorithm in the normal case of no

primary faults. Replica 0 is the primary and replica 3 is faulty.

The state of each replica includes the state of the service, a message log containing messages

the replica has accepted or sent, and an integer denoting the replica’s current view. We describe

how to truncate the log in Section 2.3.4. The state can be kept in volatile memory; it does not need

to be stable.

When the primary p receives a request m from a client, it assigns a sequence number n to

m. Then it multicasts a pre-prepare message with the assignment to the backups and inserts this

message in its log. The message has the form hPRE-PREPARE; v; n;mi�p , where v indicates the view

in which the message is being sent.

Like pre-prepares, the prepare and commit messages sent in the other phases also contain n

20

X

request pre−prepare prepare commit reply

client

replica 0

replica 1

replica 2

replica 3

Figure 2-1: Normal Case Operation

and v. A replica only accepts one of these messages provided it is in view v; it can verify the

authenticity of the message; and n is between a low water mark, h, and a high water mark, H .

The last condition is necessary to enable garbage collection and to prevent a faulty primary from

exhausting the space of sequence numbers by selecting a very large one. We discuss how H and h

advance in Section 2.3.4.

A backup i accepts the pre-prepare message provided (in addition to the conditions above) it

has not accepted a pre-prepare for view v and sequence number n containing a different request.

If i accepts the pre-prepare, it enters the prepare phase by multicasting a hPREPARE; v; n; d; ii�i
message with m’s digest d to all other replicas; in addition, it adds both the pre-prepare and prepare

messages to its log. Otherwise, it does nothing. The prepare message signals that the backup agreed

to assign sequence number n to m in view v. We say that a request is pre-prepared at a particular

replica if the replica sent a pre-prepare or prepare message for the request.

Then, each replica collects messages until it has a quorum certificate with the pre-prepare and 2f

matching prepare messages for sequence number n, view v, and request m. We call this certificate

the prepared certificate and we say that the replica prepared the request. After this point, replicas

agree on an order for requests in the same view. The protocol guarantees that it is not possible to

obtain prepared certificates for the same view and sequence number and different requests.

It is interesting to reason why this is true because it illustrates one use of quorum certificates.

Assume that it were false and there existed two distinct requestsm andm0 with prepared certificates

for the same view v and sequence number n. Then, the quorums for these certificates would have at

least one non-faulty replica in common. This replica would have sent prepare messages agreeing to

assign the same sequence number to both m and m0 in the same view. Therefore, m and m0 would

not be distinct, which contradicts our assumption.

This is not sufficient to ensure a total order for requests across view changes however. Replicas

may collect prepared certificates in different views with the same sequence number and different

requests. The following example illustrates the problem. A replica collects a prepared certificate

21

in view v for m with sequence number n. The primary for v is faulty and there is a view change.

The new primary may not have the prepared certificate. It may even have accepted a pre-prepare

message in v for a distinct request with the same sequence number. The new primary may try to

prevent conflicting sequence number assignments by reading ordering information from a quorum.

It is guaranteed to obtain one reply from a correct replica that assigned n to m in v but it may

also receive conflicting replies or replies from replicas that never assigned sequence number n.

Unfortunately, there is no way to ensure it will choose the correct one.

The commit phase solves this problem as follows. Each replica imulticasts hCOMMIT; v; n; d; ii�i
saying it has the prepared certificate and adds this message to its log. Then each replica collects

messages until it has a quorum certificate with 2f + 1 commit messages for the same sequence

number n and digest d from different replicas (including itself). We call this certificate the com-

mitted certificate and say that the request is committed by the replica when it has both the prepared

and committed certificates.

After the request is committed, the protocol guarantees that the request has been prepared by a

quorum. New primaries ensure information about committed requests is propagated to new views as

follows: they read prepared certificates from a quorum and select the sequence number assignments

in the certificates for the latest views. Since prepared certificates for the same view never conflict

and cannot be forged, this ensures replicas agree on sequence numbers assigned to requests that

committed across views.

Each replica i executes the operation requested by the client whenm is committed with sequence

number n and the replica has executed all requests with lower sequence numbers. This ensures

that all non-faulty replicas execute requests in the same order as required to provide safety. After

executing the requested operation, replicas send a reply to the client. Replicas discard requests

whose timestamp is lower than the timestamp in the last reply they sent to the client to guarantee

exactly-once semantics.

We do not rely on ordered message delivery, and therefore it is possible for a replica to commit

requests out of order. This does not matter since it keeps the pre-prepare, prepare, and commit

messages logged until the corresponding request can be executed.

2.3.4 Garbage Collection

This section discusses the garbage collection mechanism that prevents message logs from growing

without bound. Replicas must discard information about requests that have already been executed

from their logs. But a replica cannot simply discard messages when it executes the corresponding

requests because it could discard a prepared certificate that will later be necessary to ensure safety.

Instead, the replica must first obtain a proof that its state is correct. Then, it can discard messages

corresponding to requests whose execution is reflected in the state.

Generating these proofs after executing every operation would be expensive. Instead, they are

22

generated periodically, when a request with a sequence number divisible by the checkpoint period,

K , is executed. We will refer to the states produced by the execution of these requests as checkpoints

and we will say that a checkpoint with a proof is a stable checkpoint.

When replica i produces a checkpoint, it multicasts a hCHECKPOINT; v; n; d; ii�i message to the

other replicas, where n is the sequence number of the last request whose execution is reflected in

the state and d is the digest of the state. A replica maintains several logical copies of the service

state: the last stable checkpoint, zero or more checkpoints that are not stable, and the current state.

This is necessary to ensure that the replica has both the state and the matching proof for its stable

checkpoint. Section 5.3 describes how we manage checkpoints and transfer state between replicas

efficiently.

Each replica collects messages until it has a weak certificate with f + 1 checkpoint messages

(including its own) signed by different replicas with the same sequence number n and digest d.

This certificate is the proof of correctness for the checkpoint: it proves that at least one correct

replica obtained a checkpoint with sequence number n and digest d. We call this certificate the

stable certificate. At this point, the checkpoint with sequence number n is stable and the replica

discards all entries in its log with sequence numbers less than or equal to n; it also discards all

earlier checkpoints.

The checkpoint protocol is used to advance the low and high water marks (which limit what

messages will be added to the log). The low-water mark h is equal to the sequence number of the

last stable checkpoint and the high water mark isH = h+L, whereL is the log size. The log size is

the maximum number of consecutive sequence numbers for which the replica will log information.

It is obtained by multiplying K by a small constant factor (e.g., 2) that is big enough so that it is

unlikely for replicas to stall waiting for a checkpoint to become stable.

2.3.5 View Changes

The view change protocol provides liveness by allowing the system to make progress when the

current primary fails. The protocol must also preserve safety: it must ensure that non-faulty replicas

agree on the sequence numbers of committed requests across views.

View changes are triggered by timeouts that prevent backups from waiting indefinitely for

requests to execute. A backup is waiting for a request if it received a valid request and has not

executed it. A backup starts a timer when it receives a request and the timer is not already running.

It stops the timer when it is no longer waiting to execute the request, but restarts it if at that point it

is waiting to execute some other request.

If the timer of backup i expires in view v, the backup starts a view change to move the system

to view v + 1. It stops accepting messages (other than checkpoint, view-change, and new-view

messages) and multicasts a hVIEW-CHANGE; v + 1; n; s; C;P; ii�i message to all replicas. Here n

is the sequence number of the last stable checkpoint s known to i, C is the stable certificate for

23

that checkpoint, and P is a set with a prepared certificate for each request that prepared at i with a

sequence number greater than n. Figure 2-2 depicts an instance of the view change protocol.

Replica 0 = primary v

Replica 1 = primary v+1

Replica 2

Replica 3

X
view−change new−view

Figure 2-2: View Change Protocol

The new primary p for view v + 1 collects a quorum certificate with 2f + 1 valid view-change

messages for view v + 1 signed by different replicas (possibly including its own message). We

call this certificate the new-view certificate. It is guaranteed to contain messages with prepared

certificates for all requests that committed in previous views and also for some requests that only

prepared. The new primary uses this information to compute a set of pre-prepare messages to send

in v + 1. This ensures that sequence numbers assigned to committed requests in previous views do

not get reassigned to a different request in v + 1.

After obtaining a new-view certificate, p multicasts a hNEW-VIEW; v+1;V;O;Ni�p message to

all other replicas. Here V is the new-view certificate, andO [N is the set of pre-prepare messages

that propagate sequence number assignments from previous views. O and N are computed as

follows:

1. The primary determines the sequence number h of the latest stable checkpoint in V and the

highest sequence number H in a prepared certificate in a message in V .

2. The primary creates a new pre-prepare message for view v + 1 for each sequence number n

such that h < n � H . There are two cases: (1) there is a prepared certificate in a message

in V with sequence number n, or (2) there is no prepared certificate. In the first case, the

primary adds a new message hPRE-PREPARE; v + 1; n;mi�p to O, where m is the request in a

prepared certificate with sequence number n and with the highest view number in a message

in V . In the second case, it adds a new pre-prepare message hPRE-PREPARE; v+1; n; nulli�p to

N . Here, null is the digest of a special null request; a null request goes through the protocol

like other requests, but its execution is a no-op. (Paxos [Lam89] used a similar technique to

fill in gaps.)

Next the primary appends the messages in O andN to its log. If h is greater than the sequence

number of its latest stable checkpoint, the primary also adds the stable certificate for the checkpoint

with sequence numberh to its log and discards information from the log as discussed in Section 2.3.4.

If h is greater than the primary’s current state, it also updates its current state to be equal to the

24

checkpoint with sequence number h. Then it enters view v + 1: at this point it is able to accept

messages for view v + 1.

A backup accepts a new-view message for view v+1 if it is signed properly, if it contains a valid

new-view certificate for view v+1, and if the setsO andN are correct: it verifies the correctness of

these sets by performing a computation similar to the one used by the primary to create them. These

checks prevent backups from accepting sequence number assignments that conflict with requests

that committed in previous views. Then the backup adds the new information to its log as described

for the primary, multicasts a prepare for each message inO[N to all the other replicas, adds these

prepares to its log, and enters view v + 1.

Thereafter, the protocol proceeds as described in Section 2.3.3. Replicas redo the protocol

for messages between h and H but they avoid re-executing client requests by using their stored

information about the last reply sent to each client.

Liveness

To provide liveness, replicas must move to a new view if they are unable to execute a request. But it

is important to maximize the period of time when at least 2f + 1 non-faulty replicas are in the same

view, and to ensure that this period of time increases exponentially until some operation executes.

We achieve these goals by three means.

First, to avoid starting a view change too soon, a replica that multicasts a view-change message

for view v + 1 waits for 2f + 1 view-change messages for view v + 1 before starting its timer.

Then, it starts its timer to expire after some time T . If the timer expires before it receives a valid

new-view message for v+ 1 or before it executes a request in the new view that it had not executed

previously, it starts the view change for view v + 2 but this time it will wait 2T before starting a

view change for view v + 3.

Second, if a replica receives a set of f + 1 valid view-change messages from other replicas for

views greater than its current view, it sends a view-change message for the smallest view in the set,

even if its timer has not expired; this prevents it from starting the next view change too late.

Third, faulty replicas are unable to impede progress by forcing frequent view changes. A faulty

replica cannot cause a view change by sending a view-change message, because a view change will

happen only if at least f + 1 replicas send view-change messages. But it can cause a view change

when it is the primary (by not sending messages or sending bad messages). However, because the

primary of view v is the replica p such that p = v mod jRj, the primary cannot be faulty for more

than f consecutive views.

These three techniques guarantee liveness unless message delays grow faster than the timeout

period indefinitely, which is unlikely in a real system.

Our implementation guarantees fairness: it ensures clients get replies to their requests even

25

when there are other clients accessing the service. A non-faulty primary assigns sequence numbers

using a FIFO discipline. Backups maintain the requests in a FIFO queue and they only stop the

view change timer when the first request in their queue is executed; this prevents faulty primaries

from giving preference to some clients while not processing requests from others.

2.4 Formal Model

This section presents a formalization of BFT-PK using I/O automata [Lyn96]. It starts with a

brief introduction to I/O automata. Then, it presents a formal description of the system model and

assumptions behind BFT-PK. Section 2.4.3 provides a specification for the modified linearizability

condition implemented by BFT-PK and Section 2.4.4 contains the specification for the algorithm

ran by clients and replicas. We present a formal safety proof for BFT-PK in Appendix A.

2.4.1 I/O Automata

An I/O automaton is an automaton with (possibly infinite) state and with an action labeling each

transition. These actions have a pre-condition, which determines whether they are enabled, and

they have effects, which determine how the state is modified when they execute. The actions of an

I/O automaton are classified as input, output and internal actions, where input actions are required

to be always enabled. Automata execute by repeating the following two steps: first, an enabled

action is selected non-deterministically, and then it is executed. Several automata can be composed

by combining input and output actions. Lynch’s book [Lyn96] provides a good description of I/O

automata.

2.4.2 System Model

The algorithm can replicate any service that can be modeled by a deterministic state machine as

defined in Definition 2.4.1. The requirement that the state machine’s transition function g be total

means that the service behavior must be well defined for all possible operations and arguments. This

is important to ensure non-faulty replicas produce the same results even when they are requested to

execute invalid operations. The client identifier is included explicitly as an argument to g because

the algorithm authenticates the client that requests an operation and provides the service with its

identity. This enables the service to enforce access control.

Definition 2.4.1 A deterministic state machine is a tuple hS; C;O;O0; g; soi. It has a state in a set

S (initially equal to so) and its behavior is defined by a transition function:

g : C � O � S ! O0 � S

26

The arguments to the function are a client identifier in C, an operation in a setO, which encodes an

operation identifier and any arguments to that operation, and an initial state. These arguments are

mapped by g to the result of the operation in O0 and a new state; g must be total.

Cc

Cd Pd

Pc

MC

Rj

Ri

node c

node d

node i

node j

A

request(o) d

request(o) c

reply(r) c

reply(r) d

client-failure

client-failure c

d

replica-failure

replica-failure i

j

Figure 2-3: System Model

The distributed system that implements a replicated state machine hS; C;O;O0; g; soi is modeled

as a set of I/O automata [Lyn96]. Each client has a unique identifier c in C and is modeled by a client

automaton Cc. The composition of all clients is denoted by C . The replicated service is modeled

as an automaton A that is the composition of three types of automata: proxy, multicast channel,

and replica. Figure 2-3 shows the architecture of the system and Figure 2-4 presents the external

interface of A.

Input: REQUEST(o)c, o 2 O, c 2 C

CLIENT-FAILUREc, c 2 C

REPLICA-FAILUREi, i 2 R

Output: REPLY(r)c, r 2 O0, c 2 C

Figure 2-4: External Signature of the Replicated Service Automaton, A

There is a proxy automaton Pc for each client Cc. Pc provides an input action for client c to

invoke an operation o on the state machine, REQUEST(o)c, and an output action for c to learn the

27

result r of an operation it requested, REPLY(r)c. The communication between Cc and Pc does not

involve any network; they are assumed to execute in the same node in the distributed system. Pc

communicates with a set of state machine replicas to implement the interface it offers to the client.

Each replica has a unique identifier i in a set R and is modeled by an automaton Ri.

Replicas and proxies execute in different nodes in the distributed system. Automata have no

access to the state components of automata running on other nodes in the distributed system. They

communicate through an unreliable network.

Signature:
Input: SEND(m;X)x

Internal: MISBEHAVE(m;X;X0)

Output: RECEIVE(m)x

Here, m 2M, X;X 0 � X , and x 2 X

State:
wire � M� 2X , initially fg

Transitions:
SEND(m;X)x

Eff: wire := wire [f(m;X)g

RECEIVE(m)x
Pre: 9(m;X) 2 wire : (x 2 X

Eff: wire := wire� f(m;X)g [f(m;X � fxg)g)

MISBEHAVE(m;X;X0)
Pre: (m;X) 2 wire
Eff: wire := wire� f(m;X)g [f(m;X 0)g

Figure 2-5: Network specification: multicast channel automaton.

The network between replicas and proxies is modeled as the multicast channel automaton,MC ,

defined in Figure 2-5. There is a single multicast automaton in the system with SEND and RECEIVE

actions for each proxy and replica. These actions allow automata to send messages in a universal

message setM to any subset of automata with identifiers inX = C[R. The automaton has a single

state component wire that stores pairs with a message and a destination set. It does not provide

authenticated communication; the RECEIVE actions do not identify the sender of the message.

The SEND actions simply add the argument message and its destination set to wire and the

RECEIVE actions deliver a message to one of the elements in its destination set (and remove this

element from the set). The MISBEHAVE actions allow the channel to lose messages or duplicate

them and the RECEIVE actions are defined such that messages may be reordered. Additionally, the

automaton is defined such that every message that was ever sent on the channel is remembered

in wire. This allows the MISBEHAVE actions to simulate replays of any of these messages by an

attacker. We do not assume synchrony. The nodes are part of an asynchronous distributed system

with no known bounds on message delays or on the time for automata to take enabled actions.

We use a Byzantine failure model, i.e., faulty clients and replicas may behave arbitrarily (except

for the restrictions discussed next). The CLIENT-FAILURE and REPLICA-FAILURE actions are used to

28

model client and replica failures. Once such a failure action occurs the corresponding automaton is

replaced by an arbitrary automaton with the same external interface and it remains faulty for the rest

of the execution. We assume however that this arbitrary automaton has a state component called

faulty that is set to true. It is important to understand that the failure actions and the faulty variables

are used only to model failures formally for the correctness proof; our algorithm does not know

whether a client or replica is faulty or not.

As discussed in Section 2.1, the algorithm uses digital signatures and cryptographic hash func-

tions. We assume the signature scheme is non-existentially forgeable even with an adaptive chosen

message attack [GMR88] and that the cryptographic hash function is collision resistant [Dam89].

These assumptions amount to restrictions on the computational power of the adversary and the

Byzantine-faulty replicas and clients it may control.

2.4.3 Modified Linearizability

The safety property offered by BFT-PK is a form of linearizability [HW87]: the replicated service

behaves like a centralized implementation that executes operations atomically one at a time.

We modified the definition of linearizability because the original definition does not work with

Byzantine-faulty clients. The problem is that these clients are not restricted to use the REQUEST

and REPLY interface provided by the replicated service automaton. For example, they can make the

replicated service execute their requests by injecting appropriate messages directly into the network.

Therefore, the modified linearizability property treats faulty and non-faulty clients differently.

A similar modification to linearizability was proposed concurrently in [MRL98]. Their proposal

uses conditions on execution traces to specify the modified linearizability property. We specify the

property using an I/O automaton, S, with the same external signature as the replicated service

automaton, A. Our approach has several advantages: it produces a simpler specification and it

enables the use of state-based proof techniques like invariant assertions and simulation relations to

reason about linearizability. These proof techniques are better than those that reason directly about

execution traces because they are more stylized and better suited to produce automatic proofs.

The specification of modified linearizability, S, is a simple, abstract, centralized implementation

of the state machine hS; C;O;O0; g; soi that is defined in Figure 2-6. We say that A satisfies the

safety property if it implements S.

The state of S includes the following components: val is the current value of the state machine,

in records requests to execute operations, and out records replies with operation results. Each

last-reqc component is used to timestamp requests by client c to totally order them, and last-rep-tc
remembers the value of last-reqc that was associated with the last operation executed for c. The

faulty-clientc and faulty-replicai indicate which clients and replicas are faulty.

The CLIENT-FAILURE and REPLICA-FAILURE actions are used to model failures; they set the

faulty-clientc or the faulty-replicai variables to true. The REQUEST(o)c actions increment last-reqc

29

Signature:
Input: REQUEST(o)c

CLIENT-FAILUREc

REPLICA-FAILUREi

Internal: EXECUTE(o; t; c)

FAULTY-REQUEST(o; t; c)

Output: REPLY(r)c

Here, o 2 O, t 2 N, c 2 C, i 2 R, and r 2 O0

State:
val 2 S, initially so
in � O � N� C, initially fg
out � O0 � N� C, initially fg
8 c 2 C; last-reqc 2 N, initially last-reqc = 0
8 c 2 C; last-rep-tc 2 N, initially last-rep-tc = 0
8 c 2 C; faulty-clientc 2 Bool, initially faulty-clientc = false
8 i 2 R; faulty-replicai 2 Bool, initially faulty-replicai = false
n-faulty � jf i j faulty-replicai = true gj

Transitions (if n-faulty � b jRj�1
3 c):

REQUEST(o)c
Eff: last-reqc := last-reqc + 1

in := in [fho; last-reqc; cig

CLIENT-FAILUREc

Eff: faulty-clientc := true

REPLICA-FAILUREi

Eff: faulty-replicai := true

REPLY(r)c
Pre: faulty-clientc = true _ 9t : (hr; t; ci 2 out
Eff: out := out� fhr; t; cig)

FAULTY-REQUEST(o; t; c)
Pre: faulty-clientc = true
Eff: in := in [fho; t; cig

EXECUTE(o; t; c)
Pre: ho; t; ci 2 in
Eff: in := in� fho; t; cig

if t > last-rep-tc then
(r; val) := g(c; o; val)
out := out [fhr; t; cig
last-rep-tc := t

Figure 2-6: Specification of Safe Behavior, S

to obtain a new timestamp for the request, and add a triple to in with the requested operation, o,

the timestamp value, last-reqc, and the client identifier. The FAULTY-REQUEST actions are similar.

They model execution of requests by faulty clients that bypass the external signature of A, e.g., by

injecting the appropriate messages into the multicast channel.

The EXECUTE(o; t; c) actions pick a request with a triple ho; t; ci in in for execution and remove

the triple from in. They execute the request only if the timestamp t is greater than the timestamp

of the last request executed on c’s behalf. This models a well-formedness condition on non-faulty

clients: they are expected to wait for the reply to the last requested operation before they issue the

next request. Otherwise, one of the requests may not even execute and the client may be unable to

match the replies with the requests. When a request is executed, the transition function of the state

machine, g, is used to compute a new value for the state and a result, r, for operation o. The client

identifier is passed as an argument to g to allow the service to enforce access control. Then, the

30

actions add a triple with the result r, the request timestamp, and the client identifier to out.

The REPLY(r)c actions return an operation result with a triple in out to client c and remove

the triple from out. The REPLY precondition is weaker for faulty clients to allow arbitrary replies

for such clients. The algorithm cannot guarantee safety if more than b jRj�1
3 c replicas are faulty.

Therefore, the behavior of S is left unspecified in this case.

2.4.4 Algorithm Specification

Proxy. Each client Cc interacts with the replicated service through a proxy automaton Pc, which is

defined in Figure 2-7.

Signature:
Input: REQUEST(o)c

RECEIVE(hREPLY; v; t; c; i; ri�i)c

CLIENT-FAILUREc

Output: REPLY(r)c

SEND(m;X)c

Here, o 2 O, v; t 2 N, c 2 C, i 2 R, r 2 O0, m 2M , and X � X
State:
viewc 2 N, initially 0
inc � M, initially fg
outc � M, initially fg
last-reqc 2 N, initially 0
retransc 2 Bool, initially false
faultyc 2 Bool, initially false

Transitions:

REQUEST(o)c
Eff: last-reqc := last-reqc + 1

outc := fhREQUEST; o; last-reqc; ci�cg
inc := fg
retransc := false

RECEIVE(hREPLY; v; t; c; i; ri�i)c
Eff: if (outc 6= fg ^ last-reqc = t) then

inc := inc [fhREPLY; v; t; c; i; ri�ig

CLIENT-FAILUREc
Eff: faultyc := true

SEND(m; fviewc mod jRjg)c
Pre: m 2 outc ^ :retransc
Eff: retransc := true

SEND(m;R)c
Pre: m 2 outc ^ retransc
Eff: none

REPLY(r)c
Pre: outc 6= fg ^ 9R : (jRj > f ^ 8i 2 R : (9v : (hREPLY; v; last-reqc; c; i; ri�i 2 inc)))
Eff: viewc := max(fvjhREPLY; v; last-reqc; c; i; ri�i 2 incg)

outc := fg

Figure 2-7: Proxy automaton

The proxy remembers the last request sent to the replicas in outc and it collects replies that match

this request in inc. It uses last-reqc to generate timestamps for requests, viewc to track the current

view of the replicated system, and retransc to indicate whether a request is being retransmitted.

The REQUEST actions add a request for the argument operation to outc. This request is sent on

31

the multicast channel when one of the SEND actions execute: requests are sent first to the primary

of viewc and are retransmitted to all replicas. The RECEIVE actions collect replies in inc that match

the request in outc. Once there are more than f replies in inc, the REPLY action becomes enabled

and returns the result of the requested operation to the client.

Replica. The signature and state of replica automata are described in Figure 2-8.

Signature:
Input: RECEIVE(hREQUEST; o; t; ci�c)i

RECEIVE(hPRE-PREPARE; v; n;mi�j)i

RECEIVE(hPREPARE; v; n; d; ji�j)i

RECEIVE(hCOMMIT; v; n; d; ji�j)i

RECEIVE(hCHECKPOINT; v; n; d; ji�j)i

RECEIVE(hVIEW-CHANGE; v; n; s; C; P; ji�j)

RECEIVE(hNEW-VIEW; v; V; O; Ni�j)i

REPLICA-FAILUREi

Internal: SEND-PRE-PREPARE(m;v; n)i

SEND-COMMIT(m; v; n)i

EXECUTE(m;v; n)i

VIEW-CHANGE(v)i

SEND-NEW-VIEW(v; V)i

COLLECT-GARBAGEi

Output: SEND(m;X)c

Here, t; v; n 2 N, c 2 C, i; j 2 R, m 2M, s 2 V 0, V;O;N; C; P �M, X � X , and d 2 D0

where V0 = V � (C ! O)� (C ! N) and D0 = fd j 9s 2 V 0 : (d = D(s))g

State:
vali 2 S, initially so
last-repi : C ! O0, initially 8 c 2 C : last-repi(c) = null-rep
last-rep-ti : C ! N, initially 8 c 2 C : last-rep-ti(c) = 0
chkptsi � N � V 0, initially fh0; hv0; null-rep; 0iig
ini � M, initially fhCHECKPOINT; 0; D(hv0; null-rep; 0i); ki�k j 8 k 2 Rg
outi � M, initially fg
viewi 2 N, initially 0
last-execi 2 N, initially 0
seqnoi 2 N, initially 0
faultyi 2 Bool, initially false
hi � min(fn j hn; �i 2 chkptsig)
stable-chkpti � � j hhi; �i 2 chkptsi

Figure 2-8: Signature and State of Replica Automaton i

The state variables of the automaton for replica i include the current value of the replica’s copy

of the state machine, vali, the last reply last-repi sent to each client, and the timestamps in those

replies last-rep-ti. There is also a set of checkpoints, chkptsi, whose elements contain not only a

snapshot of vali but also a snapshot of last-repi and last-rep-ti. The log with messages received or

sent by the replica is stored in ini and outi buffers messages that are about to be sent on the multicast

32

channel. Replica’s also maintain the current view number, viewi, the sequence number of the last

request executed, last-execi, and, if they are the primary, the sequence number assigned to the last

request, seqnoi.

tag(m;u) � m = hu; :::i
primary(v) � v mod j Rj
primary(i) � viewi mod j Rj
in-v(v; i) � viewi = v

in-w(n; i) � 0 < n� hi � L, where L 2 N
in-wv(v; n; i) � in-w(n; i) ^ in-v(v; i)
prepared(m; v; n;M) � hPRE-PREPARE; v; n;mi�primary(v)

2 M ^

9 R : (jRj � 2f ^ primary(v) 62 R ^ 8 k 2 R : (hPREPARE; v; n;D(m); ki�k 2 M))
prepared(m; v; n; i) � prepared(m; v; n; ini)
last-prepared(m; v; n;M) � prepared(m;v; n;M) ^
69m0; v0 : ((prepared(m0; v0; n;M) ^ v0 > v) _ (prepared(m0; v; n;M) ^ m 6= m0))

last-prepared(m; v; n; i) � last-prepared(m;v; n; ini)
committed(m; v; n; i) � (9 v0 : (hPRE-PREPARE; v0; n;mi�primary(v0)

2 ini) _ m 2 ini) ^

9 R : (jRj � 2f + 1 ^ 8 k 2 R : (hCOMMIT; v; n;D(m); ki�k 2 ini))
correct-view-change(m;v; j) � 9 n; s; C; P : (m = hVIEW-CHANGE; v; n; s; C; P; ji�j ^
9 R : (jRj > f ^ 8 k 2 R : (9 v00 < v : (hCHECKPOINT; v00; n;D(s); ki�k 2 C)) ^
8 hPRE-PREPARE; v0; n0;m0i�primary(v0)

2 P :

(last-prepared(m0; v0; n0; P) ^ v0 < v ^ 0 < n0 � n � L)
merge-P(V) � fm j 9 hVIEW-CHANGE; v; n; s; C; P; ki�k 2 V : (m 2 P) g
max-n(M) � max(f n j hPRE-PREPARE; v; n;mi�i 2 M _ hVIEW-CHANGE; v; n; s; C; P; ii�i 2 Mg)
correct-new-view(m; v) �
9 V;O;N;R : (m = hNEW-VIEW; v; V; O; Ni�primary(v)

^ jV j = jRj = 2f + 1 ^

8 k 2 R : (9m0 2 V : (correct-view-change(m0; v; k))) ^
O = f hPRE-PREPARE; v; n;m0i�primary(v)

j n > max-n(V) ^ 9 v0 : last-prepared(m0; v0; n;merge-P(V))g ^

N = f hPRE-PREPARE; v; n; nulli�primary(v)
j max-n(V) < n < max-n(O) ^

69 v0;m0; n : last-prepared(m0; v0; n;merge-P(V)))
update-state-nv(i; v; V;m) �
if max-n(V) > hi then

ini := ini [(pick C : 9 hVIEW-CHANGE; v;max-n(V); s; C; P; ki�k 2 V)
if hCHECKPOINT; v;max-n(V); D(s); ii�i 62 ini then

ini = ini [fhCHECKPOINT; v;max-n(V); D(s); ii�ig
outi = outi [fhCHECKPOINT; v;max-n(V); D(s); ii�ig

chkptsi := chkptsi � fp = hn0; s0i j p 2 chkptsi ^ n0 < max-n(V)g
if max-n(V) > last-execi then

chkptsi := chkptsi [fhmax-n(V); si j 9 hVIEW-CHANGE; v;max-n(V); s; C; P; ki�k 2 V g
(vali; last-repi; last-rep-ti) := stable-chkpti
last-execi := max-n(V)

has-new-view(v; i) � v = 0 _ 9m : (m 2 ini ^ correct-new-view(m;v))
take-chkpt(n) � (n mod chkpt-int) = 0, where chkpt-int 2 N ^ chkpt-int < L

Figure 2-9: Auxiliary Functions

Figure 2-9 defines several auxiliary functions that are used in the specification of replicas’

actions. The tag(m;u) predicate is true if and only if the tag of message m is u. The function

primary(v) returns the identifier of the primary replica for view v and primary(i) returns the

identifier of the primary for the view with number viewi.

The next three predicates are used by replicas to decide which messages to log: in-v(v; i) is

33

true if and only if v equals i’s current view; in-w(n; i) is true if and only if sequence number n is

between the low and high water marks in i’s log; and in-wv(v; n; i) is the conjunction of the two.

The prepared(m; v; n;M) predicate is true if and only if there is a prepared certificate in M

for request m with sequence number n and view v. last-prepared(m; v; n;M) is true if and only

if the certificate with view v is the one with the greatest view number for sequence number n.

The predicate committed(m; v; n; i) is true provided the request is committed at replica i: there

is a committed certificate in ini for request m with sequence number n and view v, and m (or a

pre-prepare message containing m) is also in ini.

The correct-view-change(m; v; j) and correct-new-view(m; v) predicates check the correctness

of view-change and new-view messages, respectively. The function update-state-nv updates the

replica’s checkpoints and current state after receiving (or sending) a new-view message. Sec-

tion 2.3.5 explains how correct view-change and new-view messages are built and how the state is

updated. Finally, has-new-view(v; i) returns true if replica i is in view 0 or has a valid new-view

message for view v, and take-chkpt(n) returns true if n is the sequence number of a checkpoint (as

explained in Section 2.3.4).

SEND(m;R� fig)i
Pre: m 2 outi ^ :tag(m; REQUEST) ^ :tag(m;REPLY)
Eff: outi := outi � fmg

SEND(m; fprimary(i)g)i
Pre: m 2 outi ^ tag(m; REQUEST)
Eff: outi := outi � fmg

SEND(hREPLY; v; t; c; i; ri�i ; fcg)i
Pre: hREPLY; v; t; c; i; ri�i 2 outi
Eff: outi := outi � fhREPLY; v; t; c; i; ri�ig

Figure 2-10: Output Actions

The replica’s output actions are defined in Figure 2-10. They are very simple: actions of the

first type multicast messages to the other replicas, the others are used to forward requests to the

primary and to send replies to the clients, respectively. Figure 2-11 presents the garbage collection

actions, which are also simple. The RECEIVE actions collect checkpoint messages in the log and

the COLLECT-GARBAGE actions discard old messages and checkpoints when the replica has a stable

certificate logged.

Figure 2-12 presents the actions associated with the normal-case protocol. The actions match the

description in Section 2.3.3 closely but there are some details that were omitted in that description.

For example, pre-prepare messages are sent by the primary or accepted by the backups only if the

replica has a new-view message logged for its current view; this is important to ensure the replica

has enough information to prevent conflicting sequence number assignments.

34

The execute action is the most complex. To ensure exactly-once semantics, a replica executes a

request only if its timestamp is greater than the timestamp in the last reply sent to the client. When

it executes a request, the replica uses the state machine’s transition function g to compute a new

value for the state and a reply to send to the client. Then, if take-chkpt is true, the replica takes a

checkpoint by adding a snapshot of of vali; last-repi, and last-rep-ti to the checkpoint set and puts

a matching checkpoint message in outi to be multicast to the other replicas.

RECEIVE(hCHECKPOINT; v; n; d; ji�j)i (j 6= i)
Eff: if viewi � v ^ in-w(n; i) then

ini := ini [fhCHECKPOINT; v; n; d; ji�jg

COLLECT-GARBAGEi
Pre: 9R;n; d : (jRj > f ^ i 2 R ^ 8k 2 R : (9v : (hCHECKPOINT; v; n; d; ki�k ini)
Eff: ini := ini � fm = hPRE-PREPARE; v0; n0;m0i�j jm 2 ini ^ n0 � ng

ini := ini � fm = hPREPARE; v0; n0; d0; ji�j jm 2 ini ^ n0 � ng
ini := ini � fm = hCOMMIT; v0; n0; d0; ji�j jm 2 ini ^ n0 � ng
ini := ini � fm = hCHECKPOINT; v0; n0; d0; ji�j jm 2 ini ^ n0 < ng
chkptsi := chkptsi � fp = hn0; sijp 2 chkptsi ^ n

0 < ng)

Figure 2-11: Garbage Collection Actions

The last set of actions is presented in Figure 2-13. These actions define the behavior of the replica

automata during view changes and are more complex. The SEND-VIEW-CHANGE action increments

the view number and builds a new view-change message that is put in outi to be multicast to the other

replicas. This view-change message contains the replica’s stable checkpoint sequence number, hi,

the stable checkpoint, stable-chkpti, a copy of the stable certificate in the replica’s log, C , and a

copy of the prepared certificates in the log with the highest view number for each sequence number.

The replicas collect view-change messages that are correct and have a view number greater than or

equal to their current view.

The SEND-NEW-VIEW(v; V)i action is enabled when the new primary has a new-view certificate,

V , in the log for view v. When this action executes, the primary picks the checkpoint with the

highest sequence number, h = max-n(V), to be the start state for request processing in the new

view. Then it computes the sets O and N with pre-prepare messages for view v: O has a message

for each request with a prepared certificate in some message in V with sequence number greater

than h; and N has a pre-prepare for the null request for every sequence number between max-n(V)

and max-n(O) without a message in O. The new-view message includes V , N , and O. The new

primary updates seqnoi to be max-n(O) to ensure it will not assign sequence numbers that are

already assigned in O. If needed, the update-state-nv function updates the replica’s checkpoint set

and vali to reflect the information in V .

When the backups receive the new-view message, they check if it is correct. If it is, they update

their state like the primary and they add prepare messages for each message in O [N to outi to be

multicast to the other replicas.

35

RECEIVE(hREQUEST; o; t; ci�c)i
Eff: let m = hREQUEST; o; t; ci�c

if t = last-rep-ti(c) then
outi := outi [fhREPLY; viewi; t; c; i; last-repi(c)i�ig

else if t > last-rep-ti(c) then
ini := ini [fmg
if primary(i) 6= i then

outi := outi [fmg

SEND-PRE-PREPARE(m;v; n)i
Pre: primary(i) = i ^ seqnoi = n� 1 ^ in-wv(v; n; i) ^ has-new-view(v; i)^

9o; t; c : (m = hREQUEST; o; t; ci�c ^m 2 ini)^ 69hPRE-PREPARE; v; n0;mi�i 2 ini
Eff: seqnoi := seqnoi + 1

let p = hPRE-PREPARE; v; n;mi�i
outi := outi [fpg
ini := ini [fpg

RECEIVEhPRE-PREPARE; v; n;mi�j)i (j 6= i)
Eff: if j = primary(i) ^ in-wv(v; n; i) ^ has-new-view(v; i)^

69d : (d 6= D(m) ^ hPREPARE; v; n; d; ii�i 2 ini) then
let p = hPREPARE; v; n; D(m); ii�i

ini := ini [fhPRE-PREPARE; v; n;mi�j ; pg
outi := outi [fpg

RECEIVE(hPREPARE; v; n; d; ji�j)i (j 6= i)
Eff: if j 6= primary(i) ^ in-wv(v; n; i) then

ini := ini [fhPREPARE; v; n; d; ji�jg

SEND-COMMIT(m;v; n)i
Pre: prepared(m; v; n; i) ^ hCOMMIT; v; n;D(m); ii�i 62 ini
Eff: let c = hCOMMIT; v; n;D(m); ii�i

outi := outi [fcg
ini := ini [fcg

RECEIVE(hCOMMIT; v; n; d; ji�j)i (j 6= i)
Eff: if viewi � v ^ in-w(n; i) then

ini := ini [fhCOMMIT; v; n; d; ji�jg

EXECUTE(m;v; n)i
Pre: n = last-execi + 1 ^ committed(m;v; n; i)
Eff: last-execi := n

if (m 6= null) then
if 9o; t; c : (m = hREQUEST; o; t; ci�c then

if t � last-rep-ti(c) then
if t > last-rep-ti(c) then

last-rep-ti(c) := t

(last-repi(c); vali) := g(c; o; vali)
outi := outi [fhREPLY; viewi; t; c; i; last-repi(c)i�ig)

ini := ini � fmg
if take-chkpt(n) then

let m0 = hCHECKPOINT; viewi; n; D(hvali; last-repi; last-rep-tii); ii�i
outi := outi [fm0g
ini := ini [fm0g

chkptsi := chkptsi [fhn; hvali; last-repi; last-rep-tiiig

Figure 2-12: Normal Case Actions

36

We omitted some details in order to simplify the definitions. For example, we omitted the au-

tomata code to ensure fairness, the safe guards to ensure the log size is bounded, and retransmissions.

This was done after careful reasoning that adding these details would not affect safety. The other

thing we omitted was the automata code to manipulate view-change timers and ensure liveness.

Adding this code would not affect safety because it simply adds restrictions to the pre-condition of

SEND-VIEW-CHANGE.

37

REPLICA-FAILUREi
Eff: faultyi := true

SEND-VIEW-CHANGE(v)i
Pre: v = viewi + 1
Eff: viewi := v

let P 0 = fhm; v; nijlast-prepared(m; v; n; i)g,
P =

S
hm;v;ni2P 0

(fp = hPREPARE; v; n; D(m); ki�k jp 2 inig [fhPRE-PREPARE; v; n;mi�primary(v)
g),

C = fm0 = hCHECKPOINT; v00; hi; D(stable-chkpti); ki�k jm
0 2 inig,

m = hVIEW-CHANGE; v; hi; stable-chkpti; C; P; ii�i
outi := outi [fmg
ini := ini [fmg

RECEIVE(hVIEW-CHANGE; v; n; s; C; P; ji�j)i (j 6= i)
Eff: let m = hVIEW-CHANGE; v; n; s; C; P; ji�j

if v � viewi ^ correct-view-change(m; v; j) then
ini := ini [fmg

SEND-NEW-VIEW(v; V)i
Pre: primary(v) = i ^ v � viewi ^ v > 0 ^ V � ini ^ jV j = 2f + 1 ^ :has-new-view(v; i)^

9R : (jRj = 2f + 1 ^ 8k 2 R : (9n; s; C; P : (hVIEW-CHANGE; v; n; s;C; P; ki�k 2 V)))
Eff: viewi := v

let O = fhPRE-PREPARE; v; n;mi�i jn > max-n(V) ^ 9v0 : last-prepared(m; v0; n;merge-P(V))g,
N = fhPRE-PREPARE; v; n; nulli�i jmax-n(V) < n < max-n(O)^
69v0;m; n : last-prepared(m; v0; n;merge-P(V))g,

m = hNEW-VIEW; v; V; O; Ni�i
seqnoi := max-n(O)
ini := ini [O [N [fmg
outi := fmg
update-state-nv(i; v; V;m)
ini := ini � fhREQUEST; o; t; ci�c 2 inijt � last-rep-ti(c)g

RECEIVE(hNEW-VIEW; v; V; O;Ni�j)i (j 6= i)
Eff: let m = hNEW-VIEW; v; V; O;Ni�j

if v > 0 ^ v � viewi ^ correct-new-view(m;v) ^ :has-new-view(v; i) then
viewi := v

outi := fg
ini := ini [O [N [fmg
for all hPRE-PREPARE; v; n0;m0i�j 2 (O [N) do

outi := outi [fhPREPARE; v; n0; D(m0); ii�ig
if n0 > hi then

ini := ini [fhPREPARE; v; n0; D(m0); ii�ig
update-state-nv(i; v; V;m)
ini := ini � fhREQUEST; o; t; ci�c 2 inijt � last-rep-ti(c)g

Figure 2-13: View Change Actions

38

Chapter 3

BFT: An Algorithm Without Signatures

The algorithm in the previous chapter, BFT-PK, is simple but it is slow because it relies on public-key

cryptography to sign all messages. Public-key cryptography is the main performance bottleneck

in previous Byzantine-fault-tolerant state machine replication systems [Rei94, MR96a, KMMS98].

This chapter describes BFT, a new algorithm that uses message authentication codes (MACs) to

authenticate all messages. MACs are based on symmetric cryptography and they can be computed

three orders of magnitude faster than signatures. Therefore, the modified algorithm is significantly

faster. Additionally, as explained in Chapter 4, the new algorithm eliminates a fundamental problem

that prevents BFT-PK from supporting recovery of faulty replicas.

The new algorithm is also interesting from a theoretical perspective because it can be modified

to work without relying on cryptography. This can be done by using authenticated point-to-point

channels between nodes and by replacing message digests by the message values. With this

modification, the algorithm is secure against computationally unbounded adversaries.

The first section in this chapter explains why it is hard to modify BFT-PK to replace signatures

by message authentication codes. Section 3.2 presents a description of BFT. An earlier version

of this algorithm appeared in [CL99b] and the algorithm in its current form was first presented

in [CL00].

3.1 Why it is Hard to Replace Signatures by MACs

Replacing signatures by MACs seems like a trivial optimization but it is not. The problem is that

MACs are not as powerful as public-key signatures. For example, in a synchronous system, it is

possible to solve the Byzantine consensus problem with any number of faulty participants when

using signatures [PSL80]. However, it is necessary to have fewer than one third faulty participants

to solve this problem with symmetric authentication [PSL80].

Digital signatures are computed using public-key cryptography. The sender of a message

computes a signature, which is a function of the message and the sender’s private key, and appends

the signature to the message. The receiver can verify the signature using the public key of the

39

sender. Since only the sender knows the signing key and the verification key is public, the receiver

can also convince a third party that the message is authentic. It can prove the message was sent by

the original sender by simply forwarding the signed message to that third party.

MACs use symmetric cryptography to authenticate the communication between two parties that

share a secret session key. The sender of a message computes a MAC, which is a small bit string

that is a function of the message and the key it shares with the receiver, and appends the MAC to

the message. The receiver can check the authenticity of the message by computing the MAC in the

same way and comparing it to the one appended to the message.

MACs are not as powerful as signatures: the receiver may be unable to convince a third party

that the message is authentic. This is a fundamental limitation due to the symmetry of MAC

computation. The third party is unable to verify the MAC because it does not know the key used

to generate it. Revealing the key to the third party does not remove this limitation because a faulty

receiver could send messages pretending to be the sender. The other possibility would be for the

sender to compute an extra MAC (using a different key shared with the third party) and to append

both this MAC and the MAC for the receiver to the message. But this does not work either because

a faulty sender could compute a valid MAC for the receiver and an invalid MAC for the third party;

since the receiver is unable to check the validity of the second MAC, it could accept the message

and not be able to prove its authenticity to the third party.

MACs are sufficient to authenticate messages in many protocols but BFT-PK and previous

Byzantine-fault-tolerant algorithms [Rei96, KMMS98] for state machine replication rely on the

extra power of digital signatures. BFT-PK is based on the notion of quorum certificates and weak

certificates, which are sets with messages from different replicas. Its correctness relies on the

exchange during view changes of certificates collected by the replicas. This works only if the

messages in these sets are signed. If messages are authenticated with MACs, a replica can collect a

certificate but may be unable to prove to others that it has the certificate.

3.2 The New Algorithm

BFT uses the same system model as BFT-PK and it provides the same service properties. The system

model and properties are defined informally in Sections 2.1 and 2.2, and formally in Section 2.4.

But BFT uses MACs to authenticate all messages including client requests and replies. Therefore,

it can no longer rely on the exchange of prepared, stable and new-view certificates during view

changes. We were able to retain the same communication structure during normal case operation

and garbage collection at the expense of significant and subtle changes to the view change protocol.

The basic idea behind the new view change protocol is the following: if some non-faulty replica

i collects a quorum certificate for some piece of information x, the non-faulty replicas in the quorum

can cooperate to send a weak certificate for x to any replica j during view changes. This can be done

40

by having the replicas in the quorum retransmit to j the messages in the certificate they originally

sent to i. Since a quorum certificate has at least 2f + 1 messages and at most f replicas can be

faulty, j will eventually receive a weak certificate for the same information x with at least f + 1

messages. But weak certificates are not as powerful as quorum certificates. For example, weak

prepared certificates can conflict: they can assign the same sequence number to different requests

in the same view. The new view change protocol uses invariants that are enforced during normal

case operation to decide correctly between conflicting weak certificates.

The use of MACs to authenticate client requests raises additional problems. It is possible for

some replicas to be able to authenticate a request while others are unable to do it. This can lead

both to safety violations and liveness problems.

Section 3.2.1 explains how messages are authenticated in BFT. Section 3.2.2 describes how

the algorithm works when there are no view changes and how it handles authentication of client

requests. The new view change protocol is discussed in Section 3.2.4.

3.2.1 Authenticators

The new algorithm uses MACs to authenticate all messages including client requests. There is a

pair of session keys for each pair of replicas i and j: ki;j is used to compute MACs for messages

sent from i to j, and kj;i is used for messages sent from j to i. Each replica also shares a single

secret key with each client; this key is used for to authenticate communication in both directions.

These session keys can be established and refreshed dynamically using the mechanism described in

Section 4.3.1 or any other key exchange protocol.

Messages that are sent point-to-point to a single recipient contain a single MAC; we denote such

a message as hmi�ij , where i is the sender, j is the receiver, and the MAC is computed using ki;j .

Messages that are multicast to all the replicas contain authenticators; we denote such a message as

hmi�i , where i is the sender. An authenticator is a vector of MACs, one per replica j (j 6= i), where

the MAC in entry j is computed using ki;j . The receiver of a message verifies its authenticity by

checking the corresponding MAC in the authenticator.

The time to generate and verify signatures is independent of the number of replicas. The time

to verify an authenticator is constant but the time to generate one grows linearly with the number

of replicas. This is not a problem because we do not expect to have a large number of replicas and

there is a large performance gap between MAC and digital signature computation. For example,

BFT is expected to perform better than BFT-PK with up to 280 replicas in the experiment described

in Section 8.3.3. The size of authenticators also grows linearly with the number of replicas but

it grows slowly: it is equal to 8n bytes in the current implementation (where n is the number of

replicas). For example, an authenticator is smaller than an RSA signature with a 1024-bit modulus

for n � 16 (i.e., systems that can tolerate up to 5 simultaneous faults).

41

3.2.2 Normal-Case Operation

The behaviors of BFT and BFT-PK are almost identical during normal case operation. The only

differences are the following. BFT uses authenticators in request, pre-prepare, prepare, and commit

messages and uses a MAC to authenticate replies. The modified protocol continues to ensure the

invariant that non-faulty replicas never prepare different requests with the same view and sequence

number.

Another difference concerns request authentication. In BFT-PK, backups checked the authen-

ticity of a request when it was about to be executed. Since requests were signed, all replicas would

agree either on the client that sent the request or that the request was a forgery. This does not work

in BFT because some replicas may be able to authenticate a request while others are unable to do it.

We integrated request authentication into BFT to solve this problem: the primary checks the

authenticity of requests it receives from clients and only assigns sequence numbers to authentic

requests; and backups accept a pre-prepare message only if they can authenticate the request it

contains. A request hREQUEST; o; t; ci�c in a pre-prepare message is considered authentic by a

backup i in one of the following conditions:

1. the MAC for i in the request’s authenticator is correct or

2. i has accepted f prepare messages with the request’s digest or

3. i has received a request from client c with the same operation and timestamp and with a

correct MAC for i in its authenticator

Condition 1 is usually sufficient for the backups to authenticate requests. But it is possible for

the primary to include a request with a corrupt authenticator in a pre-prepare message. This can

happen because the client is faulty, the primary is faulty, or the request was corrupted in the network.

A request with an incorrect authenticator may commit provided it has at least f+1 correct MACs.

Without condition 2, the system could deadlock permanently when this happens. This condition

ensures that if a request commits, all backups are eventually able to authenticate it. The condition

is safe because the request is not considered authentic unless at least one correct replica was able

to verify its MAC in the request’s authenticator. It is important for correct replicas to remember

requests they pre-prepared across view changes because it may be necessary for them to convince

others that requests, which are propagated from previous views, are authentic. Section 3.2.4 explains

how this problem is solved.

It is also possible for a request with a corrupt authenticator to force a view change. This may

happen when a sequence number is assigned to a request whose authenticator has less than f + 1

correct MACs, or when a request is sent to at least one correct backup and the primary is unable

to authenticate the request. These view changes are desirable when the cause of the problem is a

faulty primary. But they can also be used to mount denial-of-service attacks by replacing correct

42

primaries frequently. Condition 3 allows correct clients to fix the problem by retransmitting the

request with a correct authenticator to all the replicas.

However, faulty clients can still force view changes. Our current implementation does not deal

with this problem but view changes are sufficiently fast (see Section 8.5) that it is not very serious.

We could force suspected clients to sign their requests and replicas could process these requests at

lower priority to bound the rate of these view changes.

3.2.3 Garbage Collection

The garbage collection mechanism in BFT is similar to the one in BFT-PK. Replicas collect a stable

certificate with checkpoint messages for some sequence number n and then they discard all entries

in their log with sequence numbers less than or equal to n and all earlier checkpoints. But since

checkpoint messages have authenticators instead of signatures, a weak certificate is insufficient for

replicas to prove the correctness of the stable checkpoint during view changes. BFT solves this

problem by requiring the stable certificate to be a quorum certificate; this ensures other replicas

will be able to obtain a weak certificate proving that the stable checkpoint is correct during view

changes.

3.2.4 View Changes

The view change protocol is significantly different in BFT because of the inability to exchange

certificates between the replicas. The new protocol is depicted in Figure 3-1. It has the same

communication pattern except that backups send acknowledgments to the new primary for each

view-change message they receive from another backup. These acknowledgments are used to prove

the authenticity of the view-change messages in the new-view certificate.

Replica 0 = primary v

Replica 1 = primary v+1

Replica 2

Replica 3

X
view-change view-change-ack new-view

Figure 3-1: View Change Protocol

The basic idea behind the protocol is for non-faulty replicas to cooperate to reconstruct weak

certificates corresponding to any prepared or stable certificate that might have been collected by

some non-faulty replica in a previous view. This is done by having replicas include in view-change

messages information about pre-prepare, prepare, and checkpoint messages that they sent in the

past.

43

We start by describing a simplified view change protocol that may require unbounded space.

Section 3.2.5 presents a modification to the protocol that eliminates the problem.

Data structures. Replicas record information about what happened in earlier views. This informa-

tion is maintained in two sets, the PSet and the QSet. A replica also stores the requests corresponding

to the entries in these sets. These sets only contain information for sequence numbers between the

current low and high water marks in the log. The sets allow the view change protocol to work

properly even when more than one view change occurs before the system is able to continue normal

operation; the sets are usually empty while the system is running normally.

The PSet at replica i stores information about requests that have prepared at i in previous views.

Its entries are tuples hn; d; vimeaning that i collected a prepared certificate for a request with digest

d with number n in view v and no request prepared at i in a later view.

The QSet stores information about requests that have pre-prepared at i in previous views

(i.e., requests for which i has sent a pre-prepare or prepare message). Its entries are tuples

hn; f:::; hdk ; vki; :::gi meaning for each k that vk is the latest view in which a request pre-prepared

with sequence number n and digest dk at i. This information is used to construct weak certificates

for prepared certificates proposed in the view-change messages of non-faulty replicas.

let v be the view before the view change, L be the size of the log, and h be the log’s low water mark

for all n such that h < n � h+ L do
if request number n with digest d is prepared or committed in view v then

add hn; d; vi to P
else if 9 hn; d0; v0i 2 PSet then

add hn; d0; v0i to P

if request number n with digest d is pre-prepared, prepared or committed in view v then
if :9 hn;Di 2 QSet then

add hn; fhd; vigi to Q
else if 9 hd; v0i 2 D then

add hn; D [fhd; vig � fhd; v0igi to Q
else

add hn;D [fhd; vigi to Q
else if 9 hn;Di 2 QSet then

add hn;Di to Q

Figure 3-2: Computing P and Q

View-change messages. When a backup i suspects the primary for view v is faulty, it enters view

v + 1 and multicasts a hVIEW-CHANGE; v + 1; h; C;P;Q; ii�i message to all replicas. Here h is the

sequence number of the latest stable checkpoint known to i; C is a set of pairs with the sequence

number and digest of each checkpoint stored at i; and P and Q are sets containing a tuple for

every request that is prepared or pre-prepared, respectively, at i. These sets are computed using the

information in the log, the PSet, and the QSet, as explained in Figure 3-2. Once the view-change

44

message has been sent, i storesP in PSet,Q in QSet, and clears its log. The QSet may grow without

bound if the algorithm changes views repeatedly without making progress. Section 3.2.5 describes

a solution to this problem. (It is interesting to note that this problem did not arise in BFT-PK; since

prepared certificates contained signed messages, there was no need to maintain information about

pre-prepared requests.)

View-change-ack messages. Replicas collect view-change messages for v + 1 and send acknowl-

edgments for them to v + 1’s primary, p. Replicas only accept these view-change messages if all

the information in their P and Q components is for view numbers less than or equal to v. The

acknowledgments have the form hVIEW-CHANGE-ACK; v + 1; i; j; di�ip where i is the identifier of

the sender, d is the digest of the view-change message being acknowledged, and j is the replica that

sent that view-change message. These acknowledgments allow the primary to prove authenticity of

view-change messages sent by faulty replicas.

New-view message construction. The new primary p collects view-change and view-change-ack

messages (including messages from itself). It stores view-change messages in a set S . It adds a

view-change message received from replica i to S after receiving 2f � 1 view-change-acks for i’s

view-change message from other replicas. These view-change-ack messages together with the view

change message it received and the view-change-ack it could have sent form a quorum certificate.

We call it the view-change certificate. Each entry in S is for a different replica.

The new primary uses the information in S and the decision procedure sketched in Figure 3-3

to choose a checkpoint and a set of requests. This procedure runs each time the primary receives

new information, e.g., when it adds a new message to S .

let D = fhn; di j 9 2f + 1 messages m 2 S : m:h � n ^ 9 f + 1 messages m 2 S : hn; di 2 m: Cg

if 9 hh; di 2 D : 8 hn0; d0i 2 D : n0 � h then
select checkpoint with digest d and number h

else exit

for all n such that h < n � h+ L do
A. if 9m 2 S with hn; d; vi 2 m: P that verifies:

A1. 9 2f + 1 messages m0 2 S:
m0:h < n ^ 8 hn; d0; v0i 2 m0: P : v0 < v _ (v0 = v ^ d0 = d)

A2. 9 f + 1 messages m0 2 S :
9 hn; f:::; hd0; v0i; :::gi 2 m0: Q : v0 � v ^ d0 = d

A3. the primary has the request with digest d
then select the request with digest d for number n

B. else if 9 2f + 1 messages m 2 S such that m:h < n ^ m: P has no entry for n
then select the null request for number n

Figure 3-3: Decision procedure at the primary.

The primary starts by selecting the checkpoint that is going to be the starting state for request

45

processing in the new view. It picks the checkpoint with the highest number h from the set of

checkpoints that are known to be correct (because they have a weak certificate) and that have

numbers higher than the low water mark in the log of at least f + 1 non-faulty replicas. The last

condition is necessary for safety; it ensures that the ordering information for requests that committed

with numbers higher than h is still available.

Next, the primary selects a request to pre-prepare in the new view for each sequence number

between h and h+L (where L is the size of the log). For each number n that was assigned to some

request m that committed in a previous view, the decision procedure selectsm to pre-prepare in the

new view with the same number; this ensures safety because no distinct request can commit with

that number in the new view. For other numbers, the primary may pre-prepare a request that was in

progress but had not yet committed, or it might select a special null request that goes through the

protocol as a regular request but whose execution is a no-op.

The decision procedure ends when the primary has selected a request for each number. After

deciding, the primary multicasts a new-view message to the other replicas with its decision. The

new-view message has the form hNEW-VIEW; v+ 1;V;Xi�p . Here, V contains a pair for each entry

in S consisting of the identifier of the sending replica and the digest of its view-change message, and

X identifies the checkpoint and request values selected. The view-changes in V are the new-view

certificate.

New-view message processing. The primary updates its state to reflect the information in the

new-view message. It records all requests in X as pre-prepared in view v + 1 in its log. If it does

not have the checkpoint with sequence number h, it also initiates the protocol to fetch the missing

state (see Section 5.3.2). In any case the primary does not accept any prepare or commit messages

with sequence number less than or equal to h and does not send any pre-prepare message with such

a sequence number.

The backups in view v + 1 collect messages for view v + 1 until they have a correct new-view

message and a correct matching view-change message for each pair in V . If a backup did not receive

one of the view-change messages for some replica with a pair in V , the primary alone may be unable

to prove that the message it received is authentic because it is not signed. The use of view-change-

ack messages solves this problem. Since the primary only includes a view-change message in S
after obtaining a matching view-change certificate, at least f + 1 non-faulty replicas can vouch for

the authenticity of every view-change message whose digest is inV . Therefore, if the original sender

of a view-change is uncooperative the primary retransmits that sender’s view-change message and

the non-faulty backups retransmit their view-change-acks. A backup can accept a view-change

message whose authenticator is incorrect if it receives f view-change-acks that match the digest

and identifier in V .

After obtaining the new-view message and the matching view-change messages, the backups

check if these messages support the decisions reported by the primary by carrying out the decision

46

procedure in Figure 3-3. If they do not, the replicas move immediately to view v + 2. Otherwise,

they modify their state to account for the new information in a way similar to the primary. The

only difference is that they multicast a prepare message for v + 1 for each request they mark as

pre-prepared. Thereafter, normal case operation resumes.

The replicas use the status mechanism in Section 5.2 to request retransmission of missing

requests as well as missing view-change, view-change acknowledgment, and new-view messages.

Correctness

We now argue informally that the view change protocol preserves safety and that it is live. We will

start by sketching a proof of Theorem 3.2.1. This theorem implies that after a request commits in

view v with sequence number n no distinct request can pre-prepare at any correct replica with the

same sequence number for views later than v. Therefore, correct replicas agree on a total order for

requests because they never commit distinct requests with the same sequence number.

Theorem 3.2.1 If a request m commits with sequence number n at some correct replica in view v

then the decision procedure in Figure 3-3 will not choose a distinct request for sequence number n

in any view v0 > v

Proof sketch:The proof is by induction on the number of views between v and v0. If m

committed at some correct replica i, i received commit messages from a quorum of replicas, Q,

saying that they prepared the request with sequence number n and view v.

In the base case, assume by contradiction that the decision procedure chooses a requestm0 6= m

for sequence number n in v0 = v + 1. This implies that either condition A1 or condition B must

be true. By the quorum intersection property, there must be at least one view-change message from

a correct replica j 2 Q with h < n in any quorum certificate used to satisfy conditions A1 or B.

But since this replica did not garbage collect information for sequence number n, its view-change

message must include hn;D(m); vi in its P component. Therefore, condition B cannot be true.

Similarly, condition A1 cannot be true for hn;D(m0); vf i because D(m0) 6= D(m) (with high

probability) and vf � v (because view-change messages for v 0 are not accepted if there is any tuple

with view number greater than v0 � 1 in their P component).

The reasoning is similar for the inductive step: v0 > v + 1. There must be at least one view-

change message from a correct replica j 2 Q with h < n in any quorum certificate used to satisfy

conditions A1 or B. From the inductive hypothesis and the procedure to compute P described in

Figure 3-2, j’s view-change message for v0 must include hn;D(m); vci in its P component with

vc � v. Therefore, condition B cannot be true. But condition A1 can be true if a view-change

message from a faulty replica includes hn;D(m0); vf i in its P component with vf > vc; condition

A2 prevents this problem. Condition A2 is true only if there is a view-change message from

a correct replica with hn; f:::; hD(m0); v0ci; :::gi in its Q component such that v0c � vf . Since

47

D(m0) 6= D(m) (with high probability), the inductive hypothesis implies that v0c � v. Therefore,

vf � v and conditions A1 and A2 cannot both be true, which finishes the proof of the theorem.

The primary will also be able to make a correct decision eventually (unless there is a subsequent

view change). Assume by contradiction that the primary is unable to do this. Let hc be the sequence

number of the latest checkpoint that is stable at some correct replica. Since this checkpoint is stable,

it has been reached by f + 1 correct replicas and therefore the primary will be able to choose the

value hc for h. For every sequence number between h and h + L, there are two cases: (1) some

correct replica prepared a request with sequence number n; or (2) there is no such replica.

In case (1), condition A1 will be verified because there are 2f + 1 non-faulty replicas and

non-faulty replicas never prepare different requests for the same view and sequence number; A2

will also be satisfied since a request that prepares at a non-faulty replica pre-prepares at at least f+1

non-faulty replicas. Condition A3 may not be satisfied initially, but the primary will eventually

receive the request in a response to its status messages (discussed in Section 5.2) and this will trigger

the decision procedure to run. Furthermore, since condition A2 is true every replica will be able to

authenticate the request that is chosen.

In case (2), condition B will eventually be satisfied because there are 2f + 1 correct replicas

that by assumption did not prepare any request with sequence number n.

3.2.5 View Changes With Bounded Space

The protocol in the previous section may require an unbounded amount of memory. It bounds the

number of tuples in the QSet by L but each tuple may grow without bound if there is an unbounded

number of view changes before a request with the corresponding sequence number is prepared by

a quorum.

This section describes a modified view change protocol that solves this problem. The new

protocol bounds the size of each tuple in QSet; it retains only pairs corresponding to the M distinct

requests that pre-prepared in the latest views where M is a small constant greater than 1 (e.g., 2).

The idea behind the new protocol is the following. When a replica pre-prepares a request with

sequence number n in view v, it knows that no distinct request committed in a view earlier than

v. But it cannot discard any of the corresponding pairs from the tuple for n in the QSet until it

can prove this to the other replicas. To obtain these proofs, each replica records this not-committed

information. Additionally, the protocol delays pre-preparing a request (if that would cause an entry

to be discarded from the QSet) until the replica obtains messages from a quorum stating that they

have matching not-committed information. The not-committed information is sent in view-change

messages; if a replica claims that a request prepared for sequence number n but f + 1 replicas

say that it did not commit, the new primary can choose a null request for n. The next paragraphs

describe the new protocol in more detail.

The new protocol computes the view-change messages as before except that it bounds the size

48

ofQ and the QSet as shown in Figure 3-4: if the number of pairs in a tuple exceeds an upper bound,

M , the pair with the lowest view number is discarded.

let v be the view before the view change, L be the size of the log, and h be the log’s low water mark

for all n such that h < n � h+ L do
if request number n with digest d is prepared or committed in view v then

add hn; d; vi to P
else if 9 hn; d0; v0i 2 PSet then

add hn; d0; v0i to P

if request number n with digest d is pre-prepared, prepared or committed in view v then
if :9 hn;Di 2 QSet then

add hn; fhd; vigi to Q
else if 9 hd; v0i 2 D then

add hn; D [fhd; vig � fhd; v0igi to Q
else

add hn;D [fhd; vigi to Q
if jDj > M then

remove entry with lowest view number from D
else if 9 hn;Di 2 QSet then

add hn;Di to Q

Figure 3-4: Computing P and Q (with bounded space).

The new protocol has an additional data struture — the NCset. Like the others, this set only

contains information for sequence numbers between the current low and high water marks in the

log. The NCset at replica i stores information to prove that certain requests did not commit. Its

entries are tuples hn; d; v; ui meaning that: d was the digest of request number n proposed in the

new-view message with the latest view number v received by i; and no request committed in a view

v0 � u with sequence number n. The view-change messages have an extra field, NC, with the

current value of the NCset. Replicas only accept a view-change message for view v0 provided all

tuples hn; d; v; ui in its NC component have v < v0 and u < v.

Replicas collect view-change and view-change-ack messages as before but the decision pro-

cedure used to compute and check the new-view message, which is described in Figure 3-5, is

different. It has an extra option, C, that enables the new primary to choose a null request for a

sequence number if at least one correct replica claims that none of the requests proposed as prepared

with that number in 2f + 1 view-change messages could have committed.

The decision procedure takes O(L� jRj2 �M) local steps in the worst case and the normal

case is much faster because most view-change messages propose identical values, they contain

information for less than L requests, and theirQ components contain tuples with less than M pairs.

The NCSet is updated when the primary creates a new-view message or a backup accepts a

new-view message. This is described in Figure 3-6.

Before sending any prepare message for the requests proposed in a new-view message, each

49

let D = fhn; di j 9 2f + 1 messages m 2 S : m:h � n ^ 9 f + 1 messages m 2 S : hn; di 2 m: Cg

if 9 hh; di 2 D : 8 hn0; d0i 2 D : n0 � h then
select checkpoint with digest d and number h

else exit

for all n such that h < n � h+ L do
A. if 9m 2 S with hn; d; vi 2 m: P that verifies:

A1. 9 2f + 1 messages m0 2 S:
m0:h < n ^ 8 hn; d0; v0i 2 m0: P : v0 < v _ (v0 = v ^ d0 = d)

A2. 9 f + 1 messages m0 2 S :
9 hn; f:::; hd0; v0i; :::gi 2 m0: Q : v0 � v ^ d0 = d

A3. the primary has the request with digest d
then select the request with digest d for number n

B. else if 9 2f + 1 messages m 2 S such that m:h < n ^ m: P has no entry for n
then select the null request for number n

C. else if 2f + 1 messages m 2 S : m:h < n
^ 8 hn; d; vi 2 m: P : 9 f + 1 messages m0 2 S :

9 hn; d0; v0; ui 2 m0: NC : (d 6= d0 ^ v0 > v) _ u � v
then select the null request for number n

Figure 3-5: Decision procedure at the primary (with bounded space).

backup i checks if that would cause an entry to be discarded from the QSet. In this case, i multicasts

a message hNOT-COMMITTED; v+ 1; d; ii�i to all the other replicas where d = D(V;X) is the digest

of the contents of the new-view message. The other replicas reply by multicasting a similar message

if they accepted the same new-view message and they have updated their NCset according to that

message. Backup i waits for not-committed messages from a quorum before sending the prepare

messages in v+1. This ensures that the not-committed information to justify discarding information

from the QSet is stored by a quorum and, therefore, will be available in subsequent view changes.

let hNEW-VIEW; v + 1; V; Xi�p
be the new-view message

for all hn; di 2 X do
if :9 hn; d0; v0; ui 2 NCSet then

add hn; d; v + 1; 0i to NCSet
else if 9 hn; d0; v0; ui 2 NCSet then

if d0 = d then
NCSet := NCSet � fhn; d0; v0; uig [fhn; d; v + 1; uig

else
NCSet := NCSet � fhn; d0; v0; uig [fhn; d; v + 1; v0ig

Figure 3-6: Computing not-committed information.

Sending a new-view message implicitly pre-prepares a set of requests. Therefore, the new

primary p also checks if pre-preparing any of those requests would cause an entry to be discarded

50

from the QSet. In this case, p multicasts a message hNOT-COMMITTED-PRIMARY; v + 1;V;Xi�p to

all the backups where V and X are the values it intends to send in the new-view message. The

backups check the correctness of this message and update their not-committed information as if

they were processing a new-view message. Then, they reply by multicasting hNOT-COMMITTED; v+

1;D(V;X); ii�i to all other replicas. Once the primary has not-committed messages from a quorum

it sends the new-view message.

Processing not-committed messages does not introduce a significant overhead and these mes-

sages are sent rarely even for small values of M .

Correctness

The modified view change protocol preserves safety and it is live. We will first argue that Theo-

rem 3.2.1 is true by reusing the proof that was presented at the end of the previous section. For the

modified protocol to make the theorem false, condition C must be true for a sequence number n in

view v0 after a request commits with sequence number n in a view v < v0. The proof is by induction

on the number of views between v and v0. In the base case (v0 = v+ 1), condition C cannot be true

because replicas do not accept view-change messages for view v+1 unless all tuples hn; d; v 00; ui in

their NC component have u < v00 � v. For the inductive step, condition C cannot be true because

the inductive hypothesis and the procedure to update the NCSet imply that no correct replica can

send a view-change message with hn; d0; v00; ui with u � v or d0 6= D(m) ^ v00 > v.

The modified protocol also enables the primary to eventually make the correct decision. Dis-

carding information from the QSet could potentially prevent progress: a correct replica could

prepare a request with sequence number n and another correct replica could discard information

that the request had pre-prepared. This could prevent the primary from making a decision because

neither condition A2 nor condition B would ever be true. The new protocol prevents the problem

because when a correct replica drops information for sequence number n from its QSet there is

not-committed information justifying its action in the NCSet of all correct replicas in a quorum.

Therefore, condition C will be true for sequence number n if neither condition A nor B can be true.

51

Chapter 4

BFT-PR: BFT With Proactive Recovery

BFT provides safety and liveness if fewer than 1=3 of the replicas fail during the lifetime of the

system. These guarantees are insufficient for long-lived systems because the bound is likely to be

exceeded in this case. We developed a recovery mechanism for BFT that makes faulty replicas

behave correctly again. BFT with recovery, BFT-PR, can tolerate any number of faults provided

fewer than 1=3 of the replicas become faulty within a window of vulnerability.

Limiting the number of faults that can occur in a finite window is a synchrony assumption but

such an assumption is unavoidable: since Byzantine-faulty replicas can discard the service state, it

is necessary to bound the number of failures that can occur before recovery completes. To tolerate

f faults over the lifetime of the system, BFT-PR requires no synchrony assumptions.

By making recoveries automatic, the window of vulnerability can be made very small (e.g., a

few minutes) with low impact on performance. Additionally, our algorithm provides detection of

denial-of-service attacks aimed at increasing the window; replicas can time how long a recovery

takes and alert their administrator if it exceeds some pre-established bound. The administrator can

then take steps to allow recovery to complete. Therefore, integrity can be preserved even when

there is a denial-of-service attack. Furthermore, the algorithm detects when the state of a replica is

corrupted by an attacker and can log the differences between the corrupt state and the state of non-

faulty replicas. This information can be valuable to analyze the attack and patch the vulnerability

it exploited.

Section 4.1 presents an overview of the problems that arise when providing recovery from

Byzantine faults. Section 4.2 describes the additional assumptions required to provide automatic

recoveries and the modifications to the algorithm are described in Section 4.3.

4.1 Overview

The recovery mechanism embodies several new techniques needed to solve the problems that arise

when providing recovery from Byzantine faults:

Proactive recovery. A Byzantine-faulty replica may appear to behave properly even when broken;

52

therefore recovery must be proactive to prevent an attacker from compromising the service by

corrupting 1=3 of the replicas without being detected. Our algorithm recovers replicas periodically

independent of any failure detection mechanism. However, a recovering replica may not be faulty

and recovery must not cause it to become faulty, since otherwise the number of faulty replicas

could exceed the bound required to provide correctness. In fact, we need to allow the replica

to continue participating in the request processing protocol while it is recovering, since this is

sometimes required for it to complete the recovery.

Fresh messages. An attacker must be prevented from impersonating a replica that was faulty after

it recovers. Impersonation can happen if the attacker learns the keys used to authenticate messages.

But even if messages are signed using a secure cryptographic co-processor, an attacker will be able

to sign bad messages while it controls a faulty replica. These bad messages could be replayed later

to compromise safety. To solve this problem, we define a notion of authentication freshness and

replicas reject messages that are not fresh. As a consequence, replicas may be unable to prove to a

third party that some message they received is authentic because it may no longer be fresh. BFT can

support recovery because it does not rely on such proofs but BFT-PK and all previous state-machine

replication algorithms [Rei95, KMMS98] relied on them.

Efficient state transfer. State transfer is harder in the presence of Byzantine faults and efficiency

is crucial to enable frequent recovery with low degradation of service performance. To bring a

recovering replica up to date, the state transfer mechanism must check the local copy of the state

to determine which portions are both up-to-date and not corrupt. Then, it must ensure that any

missing state it obtains from other replicas is correct. We have developed an efficient hierarchical

state transfer mechanism based on Merkle trees [Mer87] and incremental cryptography [BM97]; the

mechanism tolerates Byzantine-faults and modifications to the state while transfers are in progress.

It is described in Section 5.3.2.

4.2 Additional Assumptions

To implement recovery, we must mutually authenticate a faulty replica that recovers to the other

replicas, and we need a reliable mechanism to trigger periodic recoveries. This can be achieved by

involving system administrators in the recovery process, but such an approach is impractical given

our goal of recovering replicas frequently. To implement automatic recoveries we need additional

assumptions:

Secure Cryptography. Each replica has a secure cryptographic co-processor, e.g., a Dallas Semi-

conductors iButton or the security chip in the motherboard of the IBM PC 300PL. The co-processor

stores the replica’s private key, and can sign and decrypt messages without exposing this key. It

also contains a true random number generator, e.g., based on thermal noise, and a counter that never

goes backwards. This enables it to append random numbers or the counter to messages it signs.

53

Read-Only Memory. Each replica stores the public keys for other replicas in some memory that

survives failures without being corrupted (provided the attacker does not have physical access to the

machine). This memory could be a portion of the flash BIOS. Most motherboards can be configured

such that it is necessary to have physical access to the machine to modify the BIOS.

Watchdog Timer. Each replica has a watchdog timer that periodically interrupts processing and

hands control to a recovery monitor, which is stored in the read-only memory. For this mechanism

to be effective, an attacker should be unable to change the rate of watchdog interrupts without

physical access to the machine. Some motherboards and extension cards offer the watchdog timer

functionality but allow the timer to be reset without physical access to the machine. However, this

is easy to fix by preventing write access to control registers unless some jumper switch is closed.

These assumptions are likely to hold when the attacker does not have physical access to the

replicas, which we expect to be the common case. When they fail we can fall back on the system

administrators to perform recovery.

Note that all previous proactive security algorithms [OY91, HJKY95, HJJ+97, CHH97, GGJR99]

assume the entire program run by a replica is in read-only memory so that it cannot be modified

by an attacker, and most also assume that there are authenticated channels between the replicas that

continue to work even after a replica recovers from a compromise. These assumptions would be

sufficient to implement our algorithm but they are less likely to hold in practice. We only require a

small monitor in read-only memory and use the secure co-processors to establish new session keys

between the replicas after a recovery.

The only work on proactive security that does not assume authenticated channels is [CHH97],

but the best that a replica can do when its private key is compromised is alert an administrator.

Our secure cryptography assumption enables automatic recovery from most failures, and secure

co-processors with the properties we require are now readily available, e.g., IBM is selling PCs

with a cryptographic co-processor in the motherboard at essentially no added cost. We also assume

clients have a secure co-processor; this simplifies the key exchange protocol between clients and

replicas but it could be avoided by adding an extra round to this protocol.

4.3 Modified Algorithm

Recall that in BFT replicas collect certificates. Correctness requires that certificates contain at most

f messages that were sent by replicas when they were faulty. Recovery complicates the collection

of certificates. If a replica collects messages for a certificate over a sufficiently long period of time,

it can end up with more than f messages from faulty replicas. We avoid this problem by changing

keys periodically and by having replicas reject messages that are authenticated with old keys. This

is explained in Section 4.3.1 and the recovery mechanism is discussed in Section 4.3.2.

54

4.3.1 Key Exchanges

Replicas and clients refresh the session keys used to send messages to them by sending new-key

messages periodically (e.g., every minute). The same mechanism is used to establish the initial

session keys. The message has the form hNEW-KEY; i; :::; fkj;ig�j ; :::; ti�i . The message is signed

by the secure co-processor (using the replica’s private key) and t is the value of its counter; the

counter is incremented by the co-processor and appended to the message every time it generates a

signature. (This prevents suppress-replay attacks [Gon92].) Each kj;i is the key replica j should

use to authenticate messages it sends to i in the future; kj;i is encrypted by j’s public key, so that

only j can read it. Replicas use timestamp t to detect spurious new-key messages: t must be larger

than the timestamp of the last new-key message received from i.

Each replica shares a single secret key with each client; this key is used for communication in

both directions. The key is refreshed by the client periodically, using the new-key message. If a

client neglects to do this within some system-defined period, a replica discards its current key for

that client, which forces the client to refresh the key.

When a replica or client sends a new-key message, it discards all messages in its log that are not

part of a complete certificate (with the exception of pre-prepare and prepare messages it sent) and

it rejects any messages it receives in the future that are authenticated with old keys. This ensures

that correct nodes only accept certificates with equally fresh messages, i.e., messages authenticated

with keys created in the same refreshment epoch.

4.3.2 Recovery

The recovery protocol makes faulty replicas behave correctly again to allow the system to tolerate

more than f faults over its lifetime. To achieve this, the protocol ensures that after a replica recovers:

it is running correct code, it cannot be impersonated by an attacker, and it has correct state that is

up to date.

Reboot. Recovery is proactive — it starts periodically when the watchdog timer goes off. The

recovery monitor saves the replica’s state (the log, the service state, and checkpoints) to disk. Then it

reboots the system with correct code and restarts the replica from the saved state. The correctness of

the operating system and service code can be ensured by storing their digest in the read-only memory

and by having the recovery monitor check this digest. If the copy of the code stored by the replica

is corrupt, the recovery monitor can fetch the correct code from the other replicas. Alternatively,

the entire code can be stored in a read-only medium; this is feasible because there are several disks

that can be write protected by physically closing a jumper switch (e.g., the Seagate Cheetah 18LP).

Rebooting restores the operating system data structures to a correct state and removes any Trojan

horses left by an attacker.

If the recovering replica believes it is in a view v for which it is the primary, it multicasts a

55

view-change message for v + 1 just before saving its state and rebooting; any correct replica that

receives this message and is in view v changes to view v+1 immediately. This improves availability

because the backups do not have to wait for their timers to expire before changing to v+1. A faulty

primary could send such a message and force a view change but this is not a problem because it is

always good to replace a faulty primary.

After this point, the recovering replica’s code is correct and it did not lose its state. The replica

must retain its state and use it to process requests even while it is recovering. This is vital to ensure

both safety and liveness in the common case when the recovering replica is not faulty; otherwise,

recovery could cause the f+1st fault. But if the recovering replica was faulty, the state may be

corrupt and the attacker may forge messages because it knows the MAC keys used to authenticate

both incoming and outgoing messages. The rest of the recovery protocol solves these problems.

The recovering replica i starts by discarding the keys it shares with clients and it multicasts a

new-key message to change the keys it uses to authenticate messages sent by the other replicas.

This is important if i was faulty because otherwise the attacker could prevent a successful recovery

by impersonating any client or replica.

Run estimation protocol. Next, i runs a simple protocol to estimate an upper bound, HM , on the

high-water mark that it would have in its log if it were not faulty; it discards any log entries or

checkpoints with greater sequence numbers to bound the sequence number of corrupt information

in its state. Estimation works as follows: i multicasts a hQUERY-STABLE; ii�i message to the other

replicas. When replica j receives this message, it replies hREPLY-STABLE; c; p; ii�ji , where c and

p are the sequence numbers of the last checkpoint and the last request prepared at j respectively.

Replica i keeps retransmitting the query message and processing replies; it keeps the minimum

value of c and the maximum value of p it received from each replica. It also keeps its own values

of c and p. During estimation i does not handle any other protocol messages except new-key,

query-stable, and status messages (see Section 5.2).

The recovering replica uses the responses to select HM as follows. HM = L+ cM where L is

the log size and cM is a value c received from one replica j that satisfies two conditions: 2f replicas

other than j reported values for c less than or equal to cM , and f replicas other than j reported

values of p greater than or equal to cM .

For safety, cM must be greater than the sequence number of any stable checkpoint i may have

when it is not faulty so that it will not discard log entries in this case. This is insured because if a

checkpoint is stable, it will have been created by at least f + 1 non-faulty replicas and it will have a

sequence number less than or equal to any value of c that they propose. The test against p ensures

that cM is close to a checkpoint at some non-faulty replica since at least one non-faulty replica

reports a p not less than cM ; this is important because it prevents a faulty replica from prolonging

i’s recovery. Estimation is live because there are 2f + 1 non-faulty replicas and they only propose

a value of c if the corresponding request committed; this implies that it prepared at at least f + 1

56

correct replicas. Therefore, i can always base its choice of cM on the set of messages sent by correct

replicas.

After this point i participates in the protocol as if it were not recovering but it will not send any

messages above HM until it has a correct stable checkpoint with sequence number greater than or

equal to HM . This ensures a bound HM on the sequence number of any bad messages i may send

based on corrupt state.

Send recovery request. Next i multicasts a recovery request to the other replicas with the form:

hREQUEST; hRECOVERY;HM i; t; ii�i . This message is produced by the cryptographic co-processor

and t is the co-processor’s counter to prevent replays. The other replicas reject the request if it is a

replay or if they accepted a recovery request from i recently (where recently can be defined as half

of the watchdog period). This is important to prevent a denial-of-service attack where non-faulty

replicas are kept busy executing recovery requests.

The recovery request is treated like any other request: it is assigned a sequence number nR and

it goes through the usual three phases. But when another replica executes the recovery request, it

sends its own new-key message. Replicas also send a new-key message when they fetch missing

state (see Section 5.3.2) and determine that it reflects the execution of a new recovery request. This

is important because these keys may be known to the attacker if the recovering replica was faulty.

By changing these keys, we bound the sequence number of messages forged by the attacker that

may be accepted by the other replicas — they are guaranteed not to accept forged messages with

sequence numbers greater than the maximum high water mark in the log when the recovery request

executes, i.e., HR = bnR=Kc �K + L.

The reply to the recovery request includes the sequence number nR. Replica i uses the same

protocol as the client to collect the correct reply to its recovery request but waits for 2f + 1 replies.

Then it computes its recovery point, H = max(HM ;HR). The replica also computes a valid view:

it retains its current view, vr , if there are f + 1 replies to the recovery request with views greater

than or equal to vr, else it changes to the median of the views in the replies. The replica also retains

its view if it changed to that view after recovery started.

The mechanism to compute a valid view ensures that non-faulty replicas never change to a view

with a number smaller than their last active view. If the recovering replica is correct and has an

active view with number vr, there is a quorum of replicas with view numbers greater than or equal

to vr. Therefore, the recovery request will not prepare at any correct replica with a view number

smaller than vr. Additionally, the median of the view numbers in replies to the recovery request

will be greater than or equal to the view number in a reply from a correct replica. Therefore, it will

be greater than or equal to vr. Changing to the median, vm, of the view numbers in the replies is

also safe because at least one correct replica executed the recovery request at a view number greater

than or equal to vm. Since the recovery point is greater than or equal to HR, it will be greater than

the sequence number of any request that propagated to vr from an earlier view.

57

Check and fetch state. While i is recovering, it uses the state transfer mechanism discussed in

Section 5.3.3 to determine what pages of the state are corrupt and to fetch pages that are out-of-date

or corrupt.

Replica i is recovered when the checkpoint with sequence numberH is stable. This ensures that

any state other replicas relied on i to have is actually held by f + 1 non-faulty replicas. Therefore

if some other replica fails now, we can be sure the state of the system will not be lost. This is true

because the estimation procedure run at the beginning of recovery ensures that while recovering

i never sends bad messages for sequence numbers above the recovery point. Furthermore, the

recovery request ensures that other replicas will not accept forged messages with sequence numbers

greater than H .

If clients aren’t using the system this could delay recovery, since request number H needs to

execute for recovery to complete. However, this is easy to fix. While a recovery is occurring, the

primary sends pre-prepares for null requests.

Our protocol has the nice property that any replica knows that i has completed its recovery when

checkpointH is stable. This allows replicas to estimate the duration of i’s recovery, which is useful

to detect denial-of-service attacks that slow down recovery with low false positives.

4.3.3 Improved Service Properties

Our system ensures safety and liveness (as defined in Section 2.2) for an execution � provided

at most f replicas become faulty within a window of vulnerability of size Tv = 2Tk + Tr. The

values of Tk and Tr are characteristic of each execution � and unknown to the algorithm. Tk is the

maximum key refreshment period in � for a non-faulty node, and Tr is the maximum time between

when a replica fails and when it recovers from that fault in � .

The session key refreshment mechanism from Section 4.3.1 ensures non-faulty nodes only

accept certificates with messages generated within an interval of size at most 2Tk.1 The bound

on the number of faults within Tv ensures there are never more than f faulty replicas within any

interval of size at most 2Tk. Therefore, safety and liveness are provided because non-faulty nodes

never accept certificates with more than f bad messages.

Because replicas discard messages in incomplete certificates when they change keys, BFT-

PR requires a stronger synchrony assumption in order to provide liveness. It assumes there is

some unknown point in the execution after which all messages are delivered (possibly after being

retransmitted) within some constant time d or all non-faulty clients have received replies to their

requests; here, d is a constant that depends on the timeout values used by the algorithm to refresh

keys, and trigger view-changes and recoveries.

1It would be Tk except that during view changes replicas may accept messages that are claimed authentic by f + 1
replicas without directly checking their authentication token.

58

We have little control over the value of Tv because Tr may be increased by a denial-of-service

attack. But we have good control over Tk and the maximum time between watchdog timeouts, Tw,

because their values are determined by timer rates, which are quite stable. Setting these timeout

values involves a tradeoff between security and performance: small values improve security by

reducing the window of vulnerability but degrade performance by causing more frequent recoveries

and key changes. Section 8.6.3 analyzes this tradeoff and shows that these timeouts can be quite

small with low performance degradation.

The period between key changes, Tk, can be small without impacting performance significantly

(e.g., 15 seconds). But Tk should be substantially larger than 3 message delays under normal load

conditions to provide liveness.

The value of Tw should be set based on Rn, the time it takes to recover a non-faulty replica

under normal load conditions. There is no point in recovering a replica when its previous recovery

has not yet finished; and we stagger the recoveries so that no more than f replicas are recovering

at once, since otherwise service could be interrupted even without an attack. Therefore, we set

Tw = 4� s� Rn. Here, the factor 4 accounts for the staggered recovery of 3f + 1 replicas f at a

time, and s is a safety factor to account for benign overload conditions (i.e., no attack).

The results in Section 8.6.3 indicate that Rn is dominated by the time to reboot and check the

correctness of the replica’s copy of the service state. Since a replica that is not faulty checks its

state without placing much load on the network or any other replica, we expect the time to recover

f replicas in parallel and the time to recover a replica under benign overload conditions to be close

to Rn; thus we can set s close to 1.

We cannot guarantee any bound on Tv under a denial-of-service attack but it is possible for

replicas to time recoveries and alert an administrator if they take longer than some constant times

Rn. The administrator can then take action to allow the recovery to terminate. For example, if

replicas are connected by a private network, they may stop processing incoming requests and use

the private network to complete recovery. This will interrupt service until recovery completes but it

does not give any advantage to the attacker; if the attacker can prevent recovery from completing,

it can also prevent requests from executing. It may be possible to automate this response.

Replicas should also log information about recoveries, including whether there was a fault at a

recovering node, and how long the recovery took, since this information is useful to strengthen the

system against future attacks.

59

Chapter 5

Implementation Techniques

We developed several important techniques to implement BFT efficiently. This chapter describes

these techniques. They range from protocol optimizations to protocol extensions that enable repli-

cation of some non-deterministic services. The protocol optimizations are described in Section 5.1.

Section 5.2 explains a message retransmission mechanism that is well-suited for BFT and Sec-

tion 5.3 explains how to manage checkpoints efficiently. The last two sections describe how to

handle non-deterministic services and how to defend against denial of service attacks.

5.1 Optimizations

This section describes several optimizations that improve the performance during normal case

operation while preserving the safety and liveness properties. The optimizations can all be combined

and they can be applied to BFT-PK as well as BFT (with or without recovery).

5.1.1 Digest Replies

The first optimization reduces network bandwidth consumption and CPU overhead significantly

when operations have large results. A client request designates a replica to send the result. This

replica may be chosen randomly or using some other load balancing scheme. After the designated

replica executes the request, it sends back a reply containing the result. The other replicas send back

replies containing only the digest of the result. The client collects at least f + 1 replies (including

the one with the result) and uses the digests to check the correctness of the result. If the client

does not receive a correct result from the designated replica, it retransmits the request (as usual)

requesting all replicas to send replies with the result. This optimization is not used for very small

replies; the threshold in the current implementation is set to 32 bytes.

This optimization is very effective when combined with request batching (see Section 5.1.4). It

enables several clients to receive large replies in parallel from different replicas. As a result, the

aggregate throughput from the service to the clients can be several times above the maximum link

bandwidth. The optimization is also important at reducing protocol overhead when the number of

60

replicas increases: it makes the overhead due to additional replicas independent of the size of the

operation result.

5.1.2 Tentative Execution

The second optimization reduces the number of message delays for an operation invocation from 5

to 4. Replicas execute requests tentatively. A request is executed as soon as the following conditions

are satisfied: the replicas have a prepared certificate for the request; their state reflects the execution

of all requests with lower sequence number; and these requests are all known to have committed.

After executing the request, the replicas send tentative replies to the client.

Since replies are tentative, the client must wait for a quorum certificate with replies with the

same result before it accepts that result. This ensures that the request is prepared by a quorum and,

therefore, it is guaranteed to commit eventually at non-faulty replicas. If the client’s retransmission

timer expires before it receives these replies, the client retransmits the request and waits for a weak

certificate with non-tentative replies. Figure 5-1 presents an example tentative execution.

X

request pre-prepare prepare commit
reply &

client

primary

backup 1

backup 2

backup 3

Figure 5-1: Tentative execution

A request that has executed tentatively may abort if there is a view change and it is replaced by

a null request. In this case, the replica reverts its state to the checkpoint in the new-view message

or to its last checkpointed state (depending on which one has the higher sequence number).

Replicas checkpoint their state immediately after executing a request, whose sequence number

is divisible by the checkpoint interval, tentatively. But they only send a checkpoint message after

the request commits.

It is possible to take advantage of tentative execution to eliminate commit messages; they can

be piggybacked in the next pre-prepare or prepare message sent by a replica. Since clients receive

replies after a request prepares, piggybacking commits does not increase latency and it reduces

both load on the network and on the replicas’ CPUs. However, it has a low impact on the latency

61

of the service because, with tentative execution, the commit phase is already overlapped with the

sending of new requests to the service. Its impact on throughput is also low because the batching

optimization described in Section 5.1.4 amortizes the cost of the commit phase over many requests.

5.1.3 Read-only Operations

The next optimization improves the performance of read-only operations, which do not modify the

service state. A client multicasts a read-only request to all replicas. The replicas execute the request

immediately after checking that it is properly authenticated, that the client has access, and that the

request is in fact read-only. The last two checks are performed by a service specific upcall. The

last check is important because a faulty client could mark as read-only a request that modifies the

service state.

A replica sends back a reply only after all requests reflected in the state in which it executed

the read-only request have committed; this is necessary to prevent the client from observing un-

committed state that may be rolled back. The client waits for a quorum certificate with replies with

the same result. It may be unable to collect this certificate if there are concurrent writes to data

that affect the result. In this case, it retransmits the request as a regular read-write request after its

retransmission timer expires. This optimization reduces latency to a single round-trip for read-only

requests as depicted in Figure 5-2.

X

request reply

client

primary

backup 1

backup 2

backup 3

Figure 5-2: Read-only operations

The read-only optimization preserves the modified linearizability condition. To show this, we

will argue that any read-only operation o can be serialized after any operation that ends before o

starts and before any operation that starts after o ends. (An operation starts when the request to

execute it is sent for the first time and ends when the client obtains the result.)

Let Q be the quorum certificate containing the replicas that send the replies with o’s result.

When any read-write operation, p, that precedes o ends, it has been tentatively executed by a

quorumQ0. Therefore, any write performed by pwill be reflected in o’s result becauseQ0 intersects

Q in at least one correct replica. Similarly, any operation that starts after o ends will return a result

62

that reflects all the writes observed by o and maybe later writes. This is true because o’s results

do not reflect uncommitted state and Q0 intersects in at least one correct replica the quorum that

tentatively executes any later read-write operation or the quorum that sends replies to any later

read-only operation.

Note that for the read-only optimization to work correctly, it is required that the client obtain

a quorum certificate with replies not only for read-only operations but also for any read-write

operation. This is the case when replies are tentative but the algorithm must be modified for this

to happen with non-tentative replies (before it was sufficient to obtain a weak certificate). This is

generally a good tradeoff; the only exception are environments with a high message loss rate.

5.1.4 Request Batching

The algorithm can process many requests in parallel. The primary can send a pre-prepare with a

sequence number assignment for a request as soon as it receives the request; it does not need to

wait for previous requests to execute. This is important for networks with a large bandwidth-delay

product but, when the service is overloaded, it is better to process requests in batches.

X

request pre−prepare prepare reply & commit

client 1

primary

backup 1

backup 2

backup 3

client 2

client n

Figure 5-3: Request batching

Batching reduces protocol overhead under load by assigning a single sequence number to a

batch of requests and by starting a single instance of the normal case protocol for the batch; this

optimization is similar to a group commit in transactional systems [GK85]. Figure 5-3 depicts the

processing of a batch of requests.

We use a sliding-window mechanism to bound the number of protocol instances that can run in

parallel. Let e be the sequence number of the last batch of requests executed by the primary and let

p be the sequence number of the last pre-prepare sent by the primary. When the primary receives

a request, it starts the protocol immediately unless p � e+ w, where w is the window size. In the

63

latter case, it queues the request.

When requests execute, the window slides forward allowing queued requests to be processed.

The primary picks the first requests from the queue such that the sum of their sizes is below a

constant bound; it assigns them a sequence number; and it sends them in a single pre-prepare

message. The protocol proceeds exactly as it did for a single request except that replicas execute

the batch of requests (in the order in which they were added to the pre-prepare message) and they

send back separate replies for each request.

Our batching mechanism reduces both CPU and network overhead under load without increasing

the latency to process requests in an unloaded system. Previous state machine replication systems

that tolerate Byzantine faults [MR96a, KMMS98] have used batching techniques that impact latency

significantly.

5.1.5 Separate Request Transmission

The algorithm we described inlines requests in pre-prepare messages. This simplifies request

handling but it leads to higher latency for large requests because they go over the network twice:

the client sends the request to the primary and then the primary sends the request to the backups in a

pre-prepare message. Additionally, it does not allow request authentication and digest computation

to be performed in parallel by the primary and the backups: the primary authenticates requests

before it sends the pre-prepare message and the backups authenticate requests when they receive

this message.

We modified the algorithm not to inline requests whose size is greater than a threshold (currently

255 bytes), in pre-prepare messages. Instead, the clients multicast these requests to all replicas;

replicas authenticate the requests in parallel; and they buffer those that are authentic. The primary

selects a batch of requests to include in a pre-prepare message (as described in the previous section)

but it only includes their digests in the message. This reduces latency for operations with large

arguments and it also improves throughput because it increases the number of large requests that

can be batched in a single pre-prepare message.

5.2 Message Retransmission

BFT is implemented using low-level, unreliable communication protocols, which may duplicate or

lose messages or deliver them out of order. The algorithm tolerates out-of-order delivery and rejects

duplicates. This Section describes a technique to recover from lost messages.

It is legitimate to ask why BFT does not use an existing reliable communication protocol. There

are many protocols in the literature to implement reliable point-to-point (e.g., TCP [Pos81]) and

multicast communication channels (e.g., XTP [SDW92]). These protocols ensure that messages sent

between correct processes are eventually delivered but they are ill-suited for algorithms that tolerate

64

faults in asynchronous systems. The problem is that any reliable channel implementation requires

messages to be buffered until they are known to have been received. Since a faulty receiver cannot

be distinguished from a slow one in an asynchronous system, any reliable channel implementation

requires either an unbounded amount of buffer space or requires the algorithm to stop when buffer

space runs out due to a faulty receiver.

BFT uses a receiver-based mechanism inspired by the SRM [FJL+95] framework to recover

from lost messages in the communication between replicas: a replica i multicasts small status

messages that summarize its state; when other replicas receive a status message they retransmit

messages they have sent in the past that i is missing using unicast. Status messages are sent

periodically and when the replica detects that it is missing information (i.e., they also function as

negative acknowledgments).

This receiver-based mechanism works better than a sender-based one because it eliminates

unnecessary retransmissions. The sender can use the summary of the receiver’s state to avoid

retransmitting messages that are no longer required for the receiver to make progress. For exam-

ple, assume replica j sent a prepare message p to i, which was lost, but i prepared the request

corresponding to p using messages received from other replicas. In this case, i’s status message

will indicate that the request is prepared and j will not retransmit p. Additionally, this mechanism

eliminates retransmissions to faulty replicas.

The next paragraphs describe the mechanism BFT uses to recover from lost messages in

more detail. A replica i whose current view v is active multicasts messages with the format

hSTATUS-ACTIVE; v; h; le; i; P; Ci�i . Here, h is the sequence number of the last stable checkpoint,

le is the sequence number of the last request i has executed, P contains a bit for every sequence

number between le andH (the high water mark in the log) indicating whether that request prepared

at i, and C is similar but indicates whether the request committed at i.

If the replica’s current view is pending, it multicasts a status message with a different format to

trigger retransmission of view-change protocol messages: hSTATUS-PENDING; v; h; le; i; n; V;Ri�i .
Here, the components with the same name have the same meaning, n is a flag that indicates whether

i has the new-view message, V is a set with a bit for each replica that indicates whether i has

accepted a view-change message for v from that replica, and R is a set with tuples hn; ui indicating

that i is missing a request that prepared in view u with sequence number n.

If a replica j is unable to validate the status message, it sends its last new-key message to i.

Otherwise, j sends messages it sent in the past that i may require in order to make progress. For

example, if i is in a view less than j’s, j sends i its latest view-change message. In all cases, j

authenticates messages it retransmits with the latest keys it received in a new-key message from i.

This is important to ensure liveness with frequent key changes.

BFT uses a different mechanism to handle communication between clients and replicas. The

receiver-based mechanism does not scale well to a large number of clients because the information

65

about the last requests received from each client grows linearly with the number of clients. Instead,

BFT uses an adaptive retransmission scheme [KP91] similar to the one used in TCP. Clients

retransmit requests to replicas until they receive enough replies. They measure response times to

compute the retransmission timeout and use a randomized exponential back off if they fail to receive

a reply within the computed timeout. If a replica receives a request that has already been executed,

it retransmits the corresponding reply to the client.

5.3 Checkpoint Management

BFT’s garbage collection mechanism (see Section 2.3.4) takes logical snapshots of the service state

called checkpoints. These snapshots are used to replace messages that have been garbage collected

from the log. This section describes a technique to manage checkpoints. It starts by describing

checkpoint creation, computation of checkpoint digests, and the data structures used to record

checkpoint information. Then, it describes a state transfer mechanism that is used to bring replicas

up to date when some of the messages they are missing were garbage collected. It ends with an

explanation of the mechanism used to check the correctness of a replica’s state during recovery.

5.3.1 Data Structures

We use hierarchical state partitions to reduce the cost of computing checkpoint digests and the

amount of information transferred to bring replicas up-to-date. The root partition corresponds to

the entire service state and each non-leaf partition is divided into s equal-sized, contiguous sub-

partitions. Figure 5-4 depicts a partition tree with three levels. We call the leaf partitions pages and

the interior ones meta-data. For example, the experiments described in Chapter 8 were run with a

hierarchy with four levels, s equal to 256, and 4KB pages.

Each replica maintains one logical copy of the partition tree for each checkpoint. The copy is

created when the checkpoint is taken and it is discarded when a later checkpoint becomes stable.

Checkpoints are taken immediately after tentatively executing a request batch with sequence number

divisible by the checkpoint periodK (but the corresponding checkpoint messages are sent only after

the batch commits).

The tree for a checkpoint stores a tuple hlm; di for each meta-data partition and a tuple hlm; d; pi
for each page. Here, lm is the sequence number of the checkpoint at the end of the last checkpoint

epoch where the partition was modified, d is the digest of the partition, and p is the value of the

page.

Partition digests are important. Replicas use the digest of the root partition during view changes

to agree on a start state for request processing in the new view without transferring a large amount

of data. They are also used to reduce the amount of data sent during state transfer.

The digests are computed efficiently as follows. A page digest is obtained by applying a

66

lm d

lm d p lm d p lm d p1 2 m1 2 m

lm d’ lm d’

lm d

state pages

root

1 2 m/s

Figure 5-4: Partition tree.

cryptographic hash function (currently MD5 [Riv92]) to the string obtained by concatenating the

index of the page within the state, its value oflm, andp. A meta-data digest is obtained by applying

the hash function to the string obtained by concatenating the index of the partition within its level,

its value oflm, and the sum modulo a large integer of the digests of its sub-partitions. Thus, we

apply AdHash [BM97] at each meta-data level. This construction has the advantage that the digests

for a checkpoint can be obtained efficiently by updating the digests from the previous checkpoint

incrementally. It is inspired by Merkle trees [Mer87].

The copies of the partition tree are logical because we use copy-on-write so that only copies

of the tuples modified since the checkpoint was taken are stored. This reduces the space and time

overheads for maintaining these checkpoints significantly.

5.3.2 State Transfer

A replica initiates a state transfer when it learns about a stable checkpoint with sequence number

greater than the high water mark in its log. It uses the state transfer mechanism to fetch modifications

to the service state that it is missing. The replica may learn about such a checkpoint by receiving

checkpoint messages or as the result of a view change.

It is important for the state transfer mechanism to be efficient because it is used to bring a

replica up to date during recovery and we perform proactive recoveries frequently. The key issues

to achieving efficiency are reducing the amount of information transferred and reducing the burden

imposed on other replicas. The strategy to fetch state efficiently is to recurse down the partition

hierarchy to determine which partitions are out of date. This reduces the amount of information

about (both non-leaf and leaf) partitions that needs to be fetched.

The state transfer mechanism must also ensure that the transferred state is correct even when

some replicas are faulty. The idea is that the digest of a partition commits the values of all its

67

sub-partitions. A replica starts a state transfer by obtaining a weak certificate with the digest of

the root partition at some checkpointc. Then it uses this digest to verify the correctness of the

sub-partitions it fetches. The replica does not need a weak certificate for the sub-partitions unless

the value of a sub-partition at checkpointc has been discarded. The next paragraphs describe the

state transfer mechanism in more detail.

A replicai multicastshFETCH; l; x; lc; c; k; ii�i to all other replicas to obtain information for the

partition with indexx in level l of the tree. Here,lc is the sequence number of the last checkpointi

knows for the partition, andc is either -1 or it specifies thati is seeking the value of the partition at

sequence numberc from replicak.

When a replicai determines that it needs to initiate a state transfer, it multicasts a fetch message

for the root partition withlc equal to its last checkpoint. The value ofc is not negative wheni knows

the correct digest of the partition information at checkpointc, e.g., after a view change completes

i knows the digest of the checkpoint that propagated to the new view but might not have it.i also

creates a new (logical) copy of the tree to store the state it fetches and initializes a tableLC in which

it stores the number of the latest checkpoint reflected in the state of each partition in the new tree.

Initially each entry in the table will containlc.

If hFETCH; l; x; lc; c; k; ii�i is received by the designated replier,k, and it has a checkpoint for

sequence numberc, it sends backhMETA-DATA; c; l; x; P; ki, whereP is a set with a tuplehx0; lm; di
for each sub-partition of(l; x) with indexx0, digestd, andlm > lc. Sincei knows the correct

digest for the partition value at checkpointc, it can verify the correctness of the reply without the

need for a certificate or even authentication. This reduces the burden imposed on other replicas and

it is important to provide liveness in view changes when the start state for request processing in the

new view is held by a single correct replica.

Replicas other than the designated replier only reply to the fetch message if they have a stable

checkpoint greater thanlc andc. Their replies are similar tok’s except thatc is replaced by the

sequence number of their stable checkpoint and the message contains a MAC. These replies are

necessary to guarantee progress when replicas have discarded a specific checkpoint requested byi.

Replicai retransmits the fetch message (choosing a differentk each time) until it receives a valid

reply from somek or a weak certificate with equally fresh responses with the same sub-partition

values for the same sequence numbercp (greater thanlc andc). Then, it compares its digests for

each sub-partition of(l; x) with those in the fetched information; it multicasts a fetch message for

sub-partitions where there is a difference, and sets the value inLC to c (or cp) for the sub-partitions

that are up to date. Sincei learns the correct digest of each sub-partition at checkpointc (or cp), it

can use the optimized protocol to fetch them using the digests to ensure their correctness.

The protocol recurses down the tree untili sends fetch messages for out-of-date pages. Pages are

fetched like other partitions except that meta-data replies contain the digest and last modification

sequence number for the page rather than sub-partitions, and the designated replier sends back

68

hDATA; x; pi. Here,x is the page index andp is the page value. The protocol imposes little overhead

on other replicas; only one replica replies with the full page and it does not even need to compute a

MAC for the message sincei can verify the reply using the digest it already knows.

Wheni obtains the new value for a page, it updates the state of the page, its digest, the value of

the last modification sequence number, and the value corresponding to the page inLC. Then, the

protocol goes up to its parent and fetches another missing sibling. After fetching all the siblings,

it checks if the parent partition isconsistent. A partition is consistent up to sequence numberc, if

c is the minimum of all the sequence numbers inLC for its sub-partitions, andc is greater than or

equal to the maximum of the last modification sequence numbers in its sub-partitions. If the parent

partition is not consistent, the protocol sends another fetch for the partition. Otherwise, the protocol

goes up again to its parent and fetches missing siblings.

The protocol ends when it visits the root partition and determines that it is consistent for some

sequence numberc. Then the replica can start processing requests with sequence numbers greater

thanc.

Since state transfer happens concurrently with request execution at other replicas and other

replicas are free to garbage collect checkpoints, it may take some time for a replica to complete

the protocol, e.g., each time it fetches a missing partition, it receives information about yet a later

modification. If the service operations change data faster than it can be transfered, an out-of-date

replica may never catch up. The state transfer mechanism described can transfer data fast enough that

this is unlikely to be a problem for most services. The transfer rate could be improved by fetching

pages in parallel from different replicas but this is not currently implemented. Furthermore, if the

replica fetching the state ever is actually needed (because others have failed), the system will wait

for it to catch up.

5.3.3 State Checking

It is necessary to ensure that a replica’s state is both correct and up-to-date after recovery. This is

done by using the state transfer mechanism to fetch out-of-date pages and to obtain the digests of

up-to-date partitions; the recovering replica uses these digests to check if its copies of the partitions

are correct.

The recovering replica starts by computing the partition digests for all meta-data assuming that

the digests for the pages match the values it stores. Then, it initiates a state transfer as described

above except that the value oflc in thefirst fetch message for each meta-data partition is set to�1.

This ensures that the meta-data replies include digests for all sub-partitions.

The replica processes replies to fetch messages as described before but, rather than ignoring

up-to-date partitions, it checks if the partition digests match the ones it has recorded in the partition

tree. If they do not, the partition is queued for fetching as if it was out-of-date; otherwise, the

partition is queued for checking.

69

Partition checking is overlapped with the time spent waiting for fetch replies. A replica checks

a partition by computing the digests for each of the partition’s pages and by comparing those digests

with the ones in the partition tree. Those pages whose digests do not match are queued for fetching.

5.4 Non-Determinism

State machine replicas must be deterministic but many services involve some form of non-

determinism. For example, the time-last-modified in a distributedfile system is set by reading

the server’s local clock; if this were done independently at each replica, the states of non-faulty

replicas would diverge. This section explains how to extend the algorithm to allow replication of

such services.

The idea is to modify the service code to remove the computations that make non-deterministic

choices. Replicas run a protocol to agree on the value of these choices for each operation and this

value is passed as an argument to the operation. In general, the client cannot select the value because

it does not have enough information; for example, it does not know how its request will be ordered

relative to concurrent requests by other clients. Instead the primary selects the value independently

or based on values provided by the backups.

If the primary selects the non-deterministic value independently, it concatenates the value with

the associated request batch and sends the value and the batch in a pre-prepare message. Then, it

runs the three phase protocol to ensure that non-faulty replicas agree on a sequence number for the

request batch and the value. This prevents a faulty primary from causing replica state to diverge

by sending different values to different backups. However, a faulty primary might send the same,

incorrect, value to all backups. Therefore, when the backups are about to execute the request,

they check the value proposed by the primary. If this value is correct, they execute the request;

otherwise, they can choose an alternative or reject the request. But they must be able to decide

deterministically whether the value is correct (and what to do if it is not); their decision must be

completely determined by the service state and operation arguments.

This protocol is adequate for most services (including the NFS service in Section 6.3) but

occasionally backups must participate in selecting the values to satisfy a service’s specification,

e.g., in services that generate a timestamp that must be close to real time. This can be accomplished

by adding an extra phase to the protocol: the primary obtains authenticated values proposed by the

backups, concatenates 2f + 1 of them with the associated request batch, and starts the three phase

protocol for the concatenated message. Replicas choose the value by a deterministic computation

on the 2f +1 values and their state, e.g., taking the median ensures that the chosen value is between

the values proposed by two non-faulty replicas.

It may be possible to optimize away the extra phase in the common case. For example, if

replicas need a time value that is“close enough” to that of their local clock, the extra phase can

70

be avoided when their clocks are synchronized within some delta. Replicas can check the value

proposed by the primary in the pre-prepare message and reject this message if the value is not close

to their local clock. A primary that proposes bad values is replaced as usual by the view change

mechanism.

5.5 Defenses Against Denial-Of-Service Attacks

The most important defense against denial-of-service attacks is to avoid making synchrony as-

sumptions. BFT does not rely on any synchrony assumption to provide safety. Therefore, a

denial-of-service attack cannot cause a replicated service to return incorrect replies. But it can

prevent the service from returning replies by exhausting resources at the replicas or the network.

We implemented several defenses to make denial-of-service attacks harder and to ensure that

systems can continue to provide correct service after an attack ends. The idea is to manage resources

carefully to prevent individual clients or replicas from monopolizing any resource. The defenses

include using inexpensive message authentication, bounding the rate of execution of expensive

operations, bounding the amount of memory used, and scheduling client requests fairly.

Replicas only accept messages that are authenticated by a known client or another replica; other

messages are immediately rejected. This can be done efficiently because most message types use

MACs that are inexpensive to compute. The only exception are new-key messages and recovery

requests, which are signed using public-key cryptography. Since correct replicas and clients only

send these messages periodically, replicas can discard these messages without even checking their

signatures if the last message from the same principal was processed less than a threshold time

before. This bounds the rate of signature verification and the rate at which authentic messages from

faulty principals are processed, which is important because they they are expensive to process.

The amount of memory used by the algorithm is bounded: it retains information only about

sequence numbers between the low and high water mark in the log, and it bounds the amount of

information per sequence number. Additionally, it bounds the fraction of memory used on behalf of

any single client or replica. For example, it retains information about a single pre-prepare, prepare,

or commit message from any replica for the same view and sequence number. This ensures that the

algorithm always has enough memory space to provide service after an attack ends.

To ensure that client requests are scheduled fairly, the algorithm maintains a FIFO queue for

requests waiting to be processed and it retains in the queue only the request with the highest

timestamp from each client. If the current primary does not schedule requests fairly, the backups

trigger a view change. The algorithm defends against attacks that replay authentic requests by

caching the last reply sent to each client and the timestamp,t, of the corresponding request.

Requests with timestamp lower thant are immediately discarded and replicas use the cached reply

to handle requests with timestampt efficiently.

71

Chapter 6

The BFT Library

The algorithm has been implemented as a generic program library with a simple interface. The

library can be used to provide Byzantine-fault-tolerant versions of different services. Section 6.1

describes the library’s implementation and Section 6.2 presents its interface. We used the library to

implement a Byzantine-fault-tolerant NFSfile system, which is described in Section 6.3.

6.1 Implementation

The library uses a connectionless model of communication: point-to-point communication between

nodes is implemented using UDP [Pos80], and multicast to the group of replicas is implemented

using UDP over IP multicast [DC90]. There is a single IP multicast group for each service, which

contains all the replicas. Clients are not members of this multicast group (unless they are also

replicas).

The library is implemented in C++. We use an event-driven implementation with a structure

very similar to the I/O automaton code in the formalization of the algorithm in Section 2.4. Replicas

and clients are single threaded and their code is structured as a set of event handlers. This set

contains a handler for each message type and a handler for each timer. Each handler corresponds

to an input action in the formalization and there are also methods that correspond to the internal

actions. The similarity between the code and the formalization is intentional and it was important:

it helped identify several errors in the code and omissions in the formalization.

The event handling loop works as follows. Replicas and clients wait in aselect call for a

message to arrive or for a timer deadline to be reached and then they call the appropriate handler.

The handler performs computations similar to the corresponding action in the formalization and

then it invokes any methods corresponding to internal actions whose pre-conditions become true.

The handlers never block waiting for messages.

We use the SFS [MKKW99] implementation of a Rabin-Williams public-key cryptosystem

with a 1024-bit modulus to establish 128-bit session keys. All messages are then authenticated

using message authentication codes computed using these keys and UMAC32 [BHK+99]. Message

72

digests are computed using MD5 [Riv92].

The implementation of public-key cryptography signs and encrypts messages as described

in [BR96] and [BR95], respectively. These techniques are provably secure in therandom oracle

model [BR95]. In particular, signatures are non-existentially forgeable even with an adaptive chosen

message attack. UMAC32 is also provably secure in the random oracle model. MD5 should still

provide adequate security and it can be replaced easily by a more secure hash function (for example,

SHA-1 [SHA94]) at the expense of some performance degradation.

We have described our protocol messages at a logical level without specifying the size or layout

of the differentfields. We believe that it is premature to specify the detailed format of protocol

messages without further experimentation. But to understand the performance results in the next

two chapters, it is important to describe the format of request, reply, pre-prepare, and prepare

messages in detail. Figure 6-1 shows these formats in our current implementation.

request

replier cid
rid

opsz

 op
 (opsz bytes long)

0 32 63
flags sizeReq

request
header

auth(request header)

MD5(cid # rid # op)

reply
0 32 63

flags size

rid

view

MD5(res)

replica ressz

 res
(ressz bytes long)

Rep

reply
header

UMAC32(reply header)

0 32 63
flags size

view
PPrep

sequence number pre−prepare
header

ireqsz

auth(pre−prepare header)

ndetszsreqno

pre−prepare
payload

MD5(pre−prepare payload)

 ireqs
(ireqsz bytes long)

 sreqs
(sreqno MD5 digests)

 ndet
(ndetsz bytes long)

pre−prepare
0 32 63

flags size
view

sequence number

MD5(pre−prepare payload)

prepare

replica 0 padding

prepare
header

auth(prepare header)

Prep

Figure 6-1: Message formats.

All protocol messages have a generic 64-bit header, which contains a tag that identifies the

message type, a set of flags that are type specific, and the total size of the message. The generic

header is part of a type-specific header, which has a fixed size for each type.

73

The request header includes an MD5 digest of the string obtained by concatenating the client

identifier, the request identifier (timestamp), and the operation being requested. The header also

includes the identifier of the designated replier (that is the replica chosen to return the result in the

digest-replies optimization), the size of the operation in bytes,opsz, the client identifier,cid, and

the request identifier,rid. The flags in the request header indicate whether to use the read-only

optimization and whether the request contains a signature or an authenticator. In the normal case, all

requests contain authenticators. In addition to the header, the request message includes a variable

size payload with the operation being requested and an authenticator. The authenticator is composed

of a 64-bit nonce, andn 64-bit UMAC32 tags that authenticate the request header (wheren is the

number of replicas). When a replica receives a request, it checks if the corresponding MAC in the

authenticator and the digest in the header are correct.

The primary assigns a sequence number to a batch of requests and sends a pre-prepare message.

The pre-prepare header includes the primary’s view number, the sequence number, an MD5 digest of

the pre-prepare payload, the number of bytes in requests inlined in the message,ireqsz, the number

of digests of requests that are not inlined,sreqno, and the number of bytes in the non-deterministic

value associated with the batch,ndetsz. The variable size payload includes the requests that are

inlined, ireqs, the digests in the headers of the remaining requests in the batch,sreqs, and the

non-deterministic choices,ndet. Additionally, the message includes an authenticator with a nonce,

andn� 1 UMAC32 tags that authenticate the pre-prepare header.

The current implementation limits the total size of pre-prepare messages to 9000 bytes (to fit in

a UDP message in most kernel configurations) and the number of request digests to 16 (to limit the

amount of storage used up by the log). This limits the batch size.

When the backups receive a pre-prepare message they check if the corresponding MAC in the

authenticator and the digest in the header are correct. They also check the requests that are inlined

in the message. The requests that are transmitted separately are usually checked in parallel by the

primary and the backups.

If the backups accept the pre-prepare message and they have already accepted the requests in

the batch that are transmitted separately, they send a prepare message. The prepare header includes

the view number, the sequence number, an MD5 digest of the pre-prepare payload, the identifier of

the backup, and it is padded with 0’s to a 64-bit boundary. The message has an authenticator with a

nonce, andn� 1 UMAC32 tags that authenticate the prepare header. When the replicas receive a

prepare message, they check the corresponding MAC in the authenticator.

Once the replicas have the pre-prepare and at least 2f prepare messages with the same digest in

the header, they execute all operations in the batch tentatively and send a reply for each of them. The

reply header includes the view number, the request identifier,rid, an MD5 digest of the operation

result, the identifier of the replica, and the size of the result in bytes,ressz. Additionally, the reply

message contains the operation result if the replica is the designated replier. The other replicas omit

74

the result from the reply message and set the result size in the header to -1. Reply messages contain

a single UMAC32 nonce and tag that authenticates the reply header. The client checks the MAC in

the replies it receives and it also checks the result digest in the reply with the result.

Note that the MACs are computed only over the fixed-size header. This has the advantage of

making the cost of authenticator computation, which grows linearly with the number of replicas,

independent of the payload size (e.g., independent of the operation argument size in requests and

the size of the batch in pre-prepares).

6.2 Interface

We implemented the algorithm as a library with a very simple interface (see Figure 6-2). Some

components of the library run on clients and others at the replicas.
Client:
int Byz init client(char *conf);
int Byz invoke(Byz req *req, Byz rep *rep, bool ro);

Server:
int Byz init replica(char *conf, char *mem, int size, proc exec, proc nondet);
void Byz modify(char *mod, int size);

Server upcalls:
int execute(Byz req *req, Byz rep *rep, Byz buffer *ndet, int cid, bool ro);

int nondet(Seqno seqno, Byz req *req, Byz buffer *ndet);

Figure 6-2: The replication library API.

On the client side, the library provides a procedure to initialize the client using a configuration

file, which contains the public keys and IP addresses of the replicas. The library also provides a

procedure,invoke, that is called to cause an operation to be executed. This procedure carries out the

client side of the protocol and returns the result when enough replicas have responded. The library

also provides a split interface with separate send and receive calls to invoke requests.

On the server side, we provide an initialization procedure that takes as arguments: a configuration

file with the public keys and IP addresses of replicas and clients, the region of memory where the

service state is stored, a procedure to execute requests, and a procedure to compute non-deterministic

choices. When our system needs to execute an operation, it does an upcall to theexecute procedure.

The arguments to this procedure include a buffer with the requested operation and its arguments,

req, and a buffer to fill with the operation result,rep. The execute procedure carries out the

operation as specified for the service, using the service state. As the service performs the operation,

each time it is about to modify the service state, it calls themodify procedure to inform the library of

the locations about to be modified. This call allows us to maintain checkpoints and compute digests

efficiently as described in Section 5.3.2.

Additionally, theexecute procedure takes as arguments the identifier of the client who requested

75

the operation and a boolean flag indicating whether the request was processed with the read-only

optimization. The service code uses this information to perform access control and to reject

operations that modify the state but were flagged read-only by faulty clients. When the primary

receives a request, it selects a non-deterministic value for the request by making an upcall to the

nondet procedure. The non-deterministic choice associated with a request is also passed as an

argument to theexecute upcall.

6.3 BFS: A Byzantine-Fault-tolerant File System

We implemented BFS, a Byzantine-fault-tolerant NFS [S+85] service, using the replication library.

BFS implements version 2 of the NFS protocol. Figure 6-3 shows the architecture of BFS. A

file system exported by the fault-tolerant NFS service is mounted on the client machine like any

regular NFS file system. Application processes run unmodified and interact with the mounted file

system through the NFS client in the kernel. We rely on user levelrelay processes to mediate

communication between the standard NFS client and the replicas. A relay receives NFS protocol

requests, calls theinvoke procedure of our replication library, and sends the result back to the NFS

client.

Andrew
benchmark

kernel NFS client

replication
library

relay

client

replica 0

replication
library

snfsd

kernel VM

replica n

replication
library

snfsd

kernel VM

Figure 6-3: BFS: Replicated File System Architecture.

Each replica runs a user-level process with the replication library and our NFS V2 daemon,

which we will refer to assnfsd (for simplenfsd). The replication library receives requests from the

relay, interacts withsnfsd by making upcalls, and packages NFS replies into replication protocol

replies that it sends to the relay.

We implementedsnfsd using a fixed-size memory-mapped file. All the file system data struc-

tures, e.g., inodes, blocks and their free lists, are in the mapped file. We rely on the operating

system to manage the cache of memory-mapped file pages and to write modified pages to disk

76

asynchronously. The current implementation uses 4KB blocks and inodes contain the NFS status

information plus 256 bytes of data, which is used to store directory entries in directories, pointers

to blocks in files, and text in symbolic links. Directories and files may also use indirect blocks in a

way similar to Unix.

Our implementation ensures that all state machine replicas start in the same initial state and are

deterministic, which are necessary conditions for the correctness of a service implemented using

our protocol. The primary proposes the values for time-last-modified and time-last-accessed, and

replicas select the larger of the proposed value and one greater than the maximum of all values

selected for earlier requests. The primary selects these values by executing the upcall to compute

non-deterministic choices, which simply returns the result ofgettimeofday in this case.

We do not require synchronous writes to implement NFS V2 protocol semantics because BFS

achieves stability of modified data and meta-data through replication as was done in Harp [LGG+91].

If power failures are likely to affect all replicas, each replica should have an Uninterruptible Power

Supply (UPS). The UPS will allow enough time for a replica to write its state to disk in the event of

a power failure as was done in Harp [LGG+91].

77

Chapter 7

Performance Model

Analytic models are invaluable to explain the results of experiments and to predict performance

in experimental conditions for which no measurements are performed. But care must be taken to

ensure that they match reality. This chapter develops an analytic model for the performance of

replicated services implemented using the BFT library. We validate the model by showing that it

predicts the experimental results in the next chapter with accuracy. The model ignores the cost of

checkpoint management, view changes, key refreshment, and recovery; these costs are analyzed in

the next chapter.

7.1 Component Models

The experimental results show that the time to execute operations on a replicated service has three

major components: digest computation, MAC computation, and communication.

7.1.1 Digest Computation

The model for the time to compute digests is simple. It has only two parameters: a fixed cost,Df ,

and a cost per byte,Dv . The time to compute the digest of a string withl bytes is modeled as:

TD(l) = Df +Dv � l

This model is accurate for the MD5 [Riv92] cryptographic hash function, which is used in the

current implementation of the BFT library. Another model parameter related to digest computation

is the size of digests in bytes,SD.

7.1.2 MAC Computation

We intended to use a similar model for the time to compute MACs but our experimental results

showed that such a model would be extremely inaccurate for small input strings. Instead, we

measured the time to compute a MAC in microseconds,TM(l), for each string size ofl bytes. This

was feasible because our current implementation only computes MACs on strings with one of two

constant sizes (40 or 48 bytes).

78

The size of MACs in bytes isSM = SMN+ SMT, whereSMN is the size of the MAC nonce and

SMT is the size of the MAC tag (both 8 bytes in UMAC32 [BHK+99]).

Replies contain a single MAC but other messages contain authenticators. Authenticators have

a MAC for each replica except that when the sender is a replica they do not have a MAC for the

sender. Thus, the time to generate an authenticatorTGA in microseconds is modeled as:

TGAc(l; n) = n� TM(l), for a client or

TGAr(l; n) = (n� 1)� TM(l), for a replica.

Herel is the size of the string the MAC is computed on andn is the number of replicas. The time

to verify an authenticator is modeled as:

TVA(l) = TM(l), for a client or a replica.

Since the library uses a single nonce for all the MACs in an authenticator, the size of an

authenticator in bytes is given by the formula:

SAc(n) = n� SMT + SMN, for a client or

SAr(n) = (n� 1)� SMT + SMN, for a replica.

7.1.3 Communication

The performance model for communication assumes that each client and each replica is connected

by a dedicated full-duplex link to a store-and-forward switch. All the links have the same bandwidth

and the switch can forward both unicast and multicast traffic at link speed. The model assumes that

the propagation delay on the cables connecting the hosts to the switch is negligible. The switch

does not flood multicast traffic on all links; instead multicast traffic addressed to a group is only

forwarded on the links of hosts that are group members. The model also assumes that messages

are not lost; this is reasonable when the loss rate (due to congestion or other causes) is sufficiently

low not to affect performance. These assumptions match our experimental environment, which is

described in Section 8.1.

The first attempt to model the communication time used a fixed cost,Cf , and a cost per byte,Cv:

the time to send a message withl bytes between two hosts was modeled as:TC(l) = Cf + Cv � l.

Unfortunately, this simple model does not separate the time spent at the hosts from the time spent

in the switch. Therefore, it cannot predict the communication time with accuracy when multiple

messages are sent in parallel or when a message is fragmented. To avoid this problem, we broke

communication time into time spent in the switch, and time spent computing at each of the hosts.

The model for the time spent in the switch has two parameters: a fixed cost in microseconds,

Sf , and a variable cost in microseconds per byte,Sv. The fixed cost is the switch latency and the

variable cost is the inverse of the link bandwidth.

The actual time spent in the switch by a frame sent between hosts depends on the load on the

switch. It always takes the switchSv � l microseconds to receive all the bits in the frame. Since

the switch is store-and-forward, it waits until it receives all the bits before forwarding the frame

79

on an output link. Then, it takes an additionalSf microseconds before forwarding the frame. If

the output links are free, it takesSv � l microseconds to forward the frame. Otherwise, there is an

additional delay while other frames are forwarded.

The model for the computation time at the hosts also has two parameters:Hf is a fixed cost in

microseconds andHv is the cost per byte. The computation time,TH(l), to send a frame ofl bytes

is modeled as:

TH(l) = Hf +Hv � l

The computation time to receive a frame ofl bytes is assumed to be identical for simplicity. The

accuracy of the model suggests that this is reasonable in our experimental environment.

Combining the two models yields the following total communication time for a frame ofl bytes

without congestion:

TC(l) = Sf + 2Sv � l + 2TH(l)

When several messages are sent in parallel, it is necessary to reason how the computation times at

the hosts and the switch overlap in order to compute the total communication time. For example,

Figure 7-1 shows a time diagram for the case wheren hosts send frames ofl bytes in parallel to the

same host. The communication time in this case is:

TCpar(l; n) = 2TH(l) + Sf + 2Sv � l + (n� 1)max(Sv � l;TH(l))

It is necessary to take the maximum because the receiver can process frames only after it receives

them but it may take longer for the receiver to process a frame than its transmission time.

TH(l)

TH(l)

TH(l)sender 1

sender 2

sender n

link 1

link 2

link n

receiver

receiver link

Sf + Sv x l

Sv x l

Sf + Sv x l

Sf + Sv x l

Sv x lSv x l

TH(l) TH(l) TH(l)

n-1

n-1

Figure 7-1: Performance model: time to sendn frames withl bytes in parallel.

The model uses frames rather than messages to compute the communication time. To complete

the model, it is necessary to define a mapping between the messages sent by the library and the

80

frames actually sent on the wire. These differ because messages may be fragmented into several

frames and frames include additional protocol headers and trailers. For example, IP fragments UDP

messages sent over Ethernet when their size is greater than 1472 bytes. We defineNF(l) as the

number of fragments for a message ofl bytes. The message hasNF(l)�1 fragments whose frames

have the maximum size,MFS, and one fragment that contains the remaining bytes. The function

RFS(l) returns the frame size of the fragment that contains the remaining bytes. The mapping

between messages and frames is used next to derive an expression for the communication time of

fragmented messages.

sender

sender link

receiver

receiver link

TH(l’)

TH(RFS(l)) TH(MFS)

Sv x RFS(l)

Sv x MFS

Sv x MFSSv x MFS

Sv x MFS

TH(MFS)

NF(l)−2

Sf+Sv x RFS(l)

Figure 7-2: Performance model: time to send a message with l bytes that is fragmented. l0 is the size
of the message plus the number of bytes of protocol overhead (l0 = RFS(l) + (NF(l)� 1)�MFS).

Figure 7-2 shows a time diagram for the case where a host sends a message of l bytes that is

fragmented. This figure assumes that the small fragment is sent first as it is done in the Linux kernel

in our experimental setup. The figure also reflects the fact that in Linux the sender performs almost

all the computation before the first fragment is sent on the wire. The communication time in this

case is:

TCfrag(l) = TH(RFS(l) + (NF(l)� 1)�MFS) + Sf + 2Sv � RFS(l)

+max(Sv � (2MFS� RFS(l));TH(RFS(l)))

+(NF(l)� 2)�max(Sv �MFS;TH(MFS)) + TH(MFS)

7.2 Protocol Constants

Table 7.1 describes several constants that are characteristic of the protocol used by the BFT library

and independent of the experimental environment. These constants appear in the analytic models

for latency and throughput presented in the following sections.

7.3 Latency

We will now derive a model for the latency of the replicated service using the component models

presented in the previous section. We will start with read-only operations because they are simpler.

81

name value description
RID 12 bytes sum of the sizes of the client and request identifiers
REQH 40 bytes size of request message header
REPH 48 bytes size of reply message header
PPH 48 bytes size of pre-prepare message header
PH 48 bytes size of prepare message header

Table 7.1: Protocol Constants

7.3.1 Read-Only Operations

Figure 7-3 shows a timing diagram for a read-only operation. The client starts by digesting the

operation argument, the client identifier, and the request identifier. Then, it places the resulting

digest in the request header and computes an authenticator for the header that is appended to the

request message. Next, the request is sent to all the replicas. The replicas check the authenticator

and the digest. If the message passes these checks, the replicas execute the operation. The reply

message includes a digest of the operation result in its header and a MAC of the header. After

building the reply messages, the replicas send them to the client.

TD(RID+a)
+ TGAc(REQH,n)

TD(r)+TM(REPH)

client

primary

backup 1

TD(RID+a)
+ TVA(REQH) TE

TD(RID+a)
+ TVA(REQH)

TD(RID+a)
+ TVA(REQH)

TE

TE

TD(r)+TM(REPH)

TD(r)+TM(REPH)

Creq Crep

Treq repT

Tro

backup 3f

Figure 7-3: Performance model: read-only requests. Here, a is the size of the argument to the
requested operation, r is the size of the operation result, and n is equal to 3f + 1.

The total time to execute a request is the sum of the time Treq until a request is ready for

execution at the replicas, the execution time TE, and the time Trep from the execution of the request

till the client receives enough replies.

Tro(a; r; n) = Treq(a; n) + TE + Trep(r; n)

82

Treq(a; n) = 2TD(RID + a) + TGAc(REQH; n) + TVA(REQH) + Creq(a; n)

Trep(r; n) = TD(r) + TM(REPH) + Crep(r; n)

Here, a is the size of the operation argument, r is the size of the operation result, n is the number of

replicas, andCreq andCrep are the communication time for the request and the replies, respectively.

The communication time for the request depends on whether the request is fragmented or not.

It is given by the formula:

Creq(a; n) = TC(RFS(REQS(a; n))), if NF(REQS(a; n)) = 1

TCfrag(REQS(a; n)), otherwise.

with REQS(a; n) = REQH + a+ SAc(n) (i.e., the request size).

The communication time for replies also depends on the size, r, of the operation result. There

are three cases. Figure 7-4 depicts the first case where r is sufficiently large that digest replies

are used but small enough that the reply with the operation result is not fragmented. The Figure

assumes that the reply with the result is scheduled last on the client link. This overestimates the

communication cost; latency may be lower if this reply is one of the first 2f + 1 to be scheduled.

TH(REPW)

TH(REPDW)

TH(REPDW)

Sf + Sv x REPDW

Sf + Sv x REPDW

Sv x REPDW Sv x REPDW

TH(REPDW)+TM(REPH) TH(REPW) TD(r)+TM(REPH)

Sf + Sv x REPW

 Sv x REPW

3f

3f

replica 0

link 0

replica 1

link 1

replica 3f

link 3f

client

client link
TH(REPDW)

Figure 7-4: Communication time for replies that are not fragmented. REPW is the size of the reply
frame with the result of the operation and REPDW is the size of a frame with a digest reply.

The communication time in this case is:

C1(r; n) = max(TH(REPW(r)) + Sf + Sv � REPW(r); TH(REPDW) + Sf + (3f + 1)Sv � REPDW)

C2(r; n) = max(C1(r; n) + Sv � REPW(r);

TH(REPDW) + Sf + 2Sv � REPDW + 3fTH(REPDW) + 2fTM(REPH))

Crep(r; n) = C2(r; n) + TH(REPW(r)) + TD(r) + TM(REPH)

REPW(r) = RFS(REPH + r + SM) is the size of the reply frame with the result of the operation,

REPDW = RFS(REPH + SM) is the size of a frame with a digest reply, C1 is the time when the

frame with the result starts being forwarded on the client link, and C2 is the time when the client

starts processing this frame. These formulas account for the overlap between the time to verify the

83

MACs in replies and communication.

In the second case, the reply message with the result is fragmented. To derive the formula

for Crep in this case, we combine the last formula with the formula for TCfrag . We assume that

the time between the instants the first bit of the first fragment and the last bit of the last fragment

are forwarded on the client link is Sv � NF(REPH + r + SM) � MFS. This was always true in

Figure 7-2 but here the time may be smaller if congestion due to the other replies delays forwarding

for sufficiently long (this only happens for f � 6 in our experimental setup).

The value of Crep with fragmentation is given by the following formulas:

C3(r; n) = max(TH(RFS(REPS(r)) + (NF(REPS(r)) � 1)MFS) + Sf + Sv � RFS(REPS(r));

TH(REPDW) + Sf + (3f + 1)Sv � REPDW)

C4(r; n) = max(C3(r; n) + Sv � RFS(REPS(r));

TH(REPDW) + Sf + 2Sv � REPDW + 3fTH(REPDW) + 2fTM(REPH))

C5(r; n) = max(C4(r; n) + TH(RFS(REPS(r))) + (NF(REPS(r)) � 2)TH(MFS);

C3(r; n) + Sv � NF(REPS(r)) �MFS))

Crep(r; n) = C5(r; n) + TH(MFS) + TD(r) + TM(REPH)

Here, REPS(r) = REPH+ r+ SM, C3 is the time when the first fragment starts to be forwarded on

the client link, C4 is the time when the client starts to process the first fragment, and C5 is the time

when the client starts to process the last fragment.

The third case occurs when r is less than a threshold (currently 33 bytes). In this case, all

replicas send replies with the operation result instead of using the digest replies optimization. Since

all replies have the same size and are not fragmented, we use the formula for TCpar modified to

account for the overlap between MAC computation and communication. The value of Crep is:

Crep(r; n) = 2TH(REPW(r)) + Sf + 2Sv � REPW(r)

+2f �max(Sv � REPW(r);TH(REPW) + TM(REPH)) + TD(r)

7.3.2 Read-Write Operations

Next, we derive a model for read-write operations. There are two cases depending on the size of the

operation argument. If the size of the argument is less than a threshold (currently 256 bytes), the

client sends the request only to the primary and the request is inlined in the pre-prepare message.

Otherwise, the client multicasts the request to all replicas and the pre-prepare message includes

only the digest of the request. Figure 7-5 shows a time diagram for the second case.

The first part of the read-write algorithm is identical to the read-only case. Thus, Treq can be

computed using the same formula. After checking the request, the primary computes the digest of

the digest in the request header. Then, it constructs a pre-prepare message with the resulting digest

in its header and an authenticator for the header. The backups check the pre-prepare message by

verifying the authenticator and recomputing the digest. If they accept the pre-prepare and already

have a matching request, they build a prepare message with an authenticator and send it to all other

84

client

primary

backup 1

backup 3f

Treq

Trw

TE

repT

TGAr(PPH,n)
+ TD(SD)

TVA(PPH)
+ TD(SD)

TVA(PPH)
+ TD(SD)

TGA(PH,n)

TGA(PH,n)

TE

TE

Cpp Cp

Tprep

Figure 7-5: Performance model: read-write requests.

replicas. After replicas have prepared the request, they execute it and the algorithm proceeds as in

the read-only case; Trep is given by the same formulas.

The total time to execute the read-write request in the figure is the sum of Treq, the time Tprep

from the moment the primary starts to build the prepare message till the request is prepared, the

execution time TE, and Trep:

Trw(a; r; n) = Treq(a; n) + Tprep(a; n) + TE + Trep(r; n)

Tprep(a; n) = 2TD(SD) + TGAr(PPH; n) + TVA(PPH; n)

+TGAr(PH; n) + Cpp(a; n) + Cp(n)

The communication time for the pre-prepare message, Cpp(a; n), is computed using a formula

similar to Creq; it is:

Cpp(a; n) = TC(RFS(PPS(a; n))), if NF(PPS(a; n)) = 1

TCfrag(PPS(a; n)), otherwise.

with PPS(a; n) = PPH + SD + SAr(n) (i.e., the pre-prepare size).

The communication time for prepare messages is similar in structure to TCpar but it accounts

for the overlap between authenticator verification and computation:

Cp(n) = 2TH(PW(n)) + Sf + 2Sv � PW(n)

+max((3f � 1)(Sv � PW(n)); (3f � 1)TH(PW(n)) + (2f � 1)TVA(PH)) + TVA(PH)

with PW(n) = RFS(PH + SAr(n)) (i.e., the prepare size on the wire).

The case when requests are inlined in the pre-prepare message is similar. The differences are

thatCpp increases because the pre-prepare message is bigger and that backups only check the request

when they receive the pre-prepare message. The resulting formulas are:

Tprep(a; n) = 2TD(SD) + TGAr(PPH; n) + TVA(PPH; n) + TD(RID + a) + TVA(REQH)

+TGAr(PH; n) + Cpp(a; n) + Cp(n)

85

Cpp(a; n) = TC(RFS(PPS(a; n))), if NF(PPS(a; n)) = 1

TCfrag(PPS(a; n)), otherwise.

with PPS(a; n) = PPH + REQS(a; n) + SAr(n)

7.4 Throughput

We obtain a model for the throughput of a replicated system by developing a model for the time

to process a batch of requests. This model is based on the latency models in the previous section

but it has two additional parameters: the batch size b and the number of client machines m. Each

client sends b=m of the requests in the batch. For simplicity, we assume that all the clients send the

requests at the same time.

7.4.1 Read-Only Requests

We start with read-only requests again because they are simpler. The strategy is to split the total

time, T b
ro, into the sum of two components: the time to get the requests ready to execute at the

replicas, T b
req, and the time to execute the requests and get the replies to the clients, T b

erep. The value

of each of these components is obtained by taking the maximum of the computation times over all

the nodes and the communication times over all the links. An accurate model for latency requires

careful reasoning about scheduling of communication and computation at the different components

but taking the maximum is a good approximation for large request batches.

We use Figure 7-3 and the formulas for Treq in the previous section to derive the following

formulas for T b
req:

T b
reqc

(a; n; b;m) = b� (TD(RID + a) + TGAc(REQH; n) + TH(REQW(a; n)))=m

T b
reqr

(a; n; b;m) = b� (TD(RID + a) + TVA(REQH) + TH(RFS(REQS(a; n)))
+(NF(REQS(a; n))� 1)TH(MFS))

T b
reqcl

(a; n; b;m) = b� Sv � REQW(a; n)=m

T b
reqrl

(a; n; b;m) = b� Sv � REQW(a; n)

T b
req(a; n;B;m) = max(T b

reqc
(a; n; b;m); T b

reqr
(a; n; b;m); T b

reqcl
(a; n; b;m); T b

reqrl
(a; n; b;m))

with REQW(a; n) = RFS(REQS(a; n)) + (NF(REQS(a; n))� 1)�MFS.

Here, REQW is the number of bytes in frames that contain the request. T b
reqc

is the computation

time at each client; it is equal to the corresponding client computation time for a single request

multiplied by b=m (because each client sends only b=m requests). Replicas receive all the requests

in the batch so their computation time is multiplied by b; this is reflected in the formula for the

computation time at each replica, T b
reqr

. Similarly only b=m requests flow over each client link

whereas b requests go through each replica’s link. This is accounted for in the formulas for T b
reqcl

,

which is the communication time at each client link, and T b
reqrl

, which is the communication time

at each replica link.

86

T b
erep can be computed using the following formulas (ignoring the case without digest replies to

simplify the model):

T b
erepc

(r; n; b;m) = b� (TD(r) + (2f + 1)TM(REPH) + 3f � TH(REPDW)
+TH(RFS(REPS(r))) + (NF(REPS(r)) � 1)TH(MFS))=m

T b
erepr

(r; n; b;m) = b� (TE + TD(r) + TM(REPH)) + TH(REPW(r))b=n+ TH(REPDW)(b� b=n)

T b
erepcl

(r; n; b;m) = b� Sv � (REPW(r) + 3f � REPDW)=m

T b
ereprl

(r; n; b;m) = Sv � (REPW (r) � b=n+REPDW � (b� b=n))

T b
erep(r; n;B;m) = max(T b

erepc
(r; n; b;m); T b

erepr
(r; n; b;m); T b

erepcl
(r; n; b;m); T b

ereprl
(r; n; b;m))

REPW(r) and REPDW were defined previously; they are the number of bytes in frames with the

operation result and the number of bytes in frames with digest replies, respectively. T b
erepc

is the

computation time at each client; it accounts for receiving 3f+1 replies, computing the result digest,

and authenticating 2f+1 replies for each of the b=m requests sent by a client. Each replica executes

b requests and computes a result digest and a MAC for the reply to each of them. But a replica only

sends b=n replies with the operation result; the other replies contain only digests. This is reflected in

the formula for T b
erepr

, which is the computation time at each replica. T b
erepcl

is the communication

time at each client’s link, and T b
ereprl

is the communication time at each replica’s link.

Using these formulas, we can now compute the time to execute the batch of read-only requests:

T b
ro(a; r; n; b;m) = T b

req(a; n; b;m) + T b
erep(r; n; b;m)

The throughput in operations per microsecond is b=T b
ro(a; r; n; b;m).

7.4.2 Read-Write Requests

The time to execute a batch of read-write requests is split into the sum of three components: T b
req,

T b
erep, and the time for the batch of requests to prepare, T b

prep. T b
req and T b

erep can be computed using

the formulas derived for read-only requests. The formula for T b
prep is identical to the formula for

Tprep except that it accounts for the fact that the pre-prepare message is sent for a batch of requests.

In the case where, requests are inlined in the pre-prepare message T b
prep is:

T b
prep(a; n; b) = b� (TD(RID + a) + 2TD(SD) + TVA(REQH))

+TGAr(PPH; n) + TVA(PPH; n) + TGAr(PH; n) + Cb
pp(a; n; b) + Cp(n)

Cb
pp(a; n; b) = TC(RFS(PPSb(a; n; b))), if NF(PPS(a; n)) = 1

TCfrag(PPSb(a; n; b)), otherwise.

PPSb(a; n; b) = PPH + b� REQS(a; n) + SAr(n)

Here, PPSb(a; n; b) is the size of a pre-prepare message with b copies of requests for an operation

with argument size a; andCb
pp is the communication time for the message, which is identical to Cpp

except that the pre-prepare message is larger.

87

There are two differences when the requests are not inlined in the pre-prepare message: the size

of this message decreases because it includes only digests of the requests rather than copies; and

the backups check the requests in parallel with the primary, which eliminates b� (TD(RID + a) +

TVA(REQH))�s. This is reflected in the following formulas for T b
prep when requests are not inlined:

T b
prep(a; n; b) = 2b� TD(SD)

+TGAr(PPH; n) + TVA(PPH; n) + TGAr(PH; n) + Cb
pp(a; n; b) + Cp(n)

PPSb(a; n; b) = PPH + b� SD + SAr(n)

These formulas allow us to compute the time to execute the batch of read-write requests:

T b
rw(a; r; n; b;m) = T b

req(a; n; b;m) + T b
prep(a; n; b) + T b

erep(r; n; b;m)

The throughput in operations per microsecond is b=T b
rw(a; r; n; b;m).

7.5 Discussion

The analytic model for latency has some properties that are worth highlighting:

� Treq grows linearly with the number of replicas because of authenticator generation and

increased communication cost due to growth in the size of request authenticators. Treq grows

linearly with the argument size due to increased communication and digest computation time

for requests.

� Trep grows linearly with the number of replicas because each replica sends a reply to the

client. Trep also grows linearly with the result size due to increased communication and

digest computation time for replies.

� Tprep is (mostly) independent of argument and result sizes. However, it grows with the square

of the number of replicas because of the prepare messages that are sent in parallel by the

backups and contain authenticators whose size grows linearly with the number of replicas.

� The overhead introduced by adding additional replicas is (mostly) independent of operation

argument and result sizes.

The same observations are valid for the corresponding components in the throughput model.

According to this model, the only cost that grows with the square of the number of replicas, T b
prep, is

amortized over the batch size. Additionally, the computation time at a replica and the communication

time in its link decrease linearly with the number of replicas (if there are more clients than replicas).

88

Chapter 8

Performance Evaluation

The BFT library can be used to implement Byzantine-fault-tolerant systems but these systems will

not be used in practice unless they perform well. This chapter presents results of experiments to

evaluate the performance of these systems. The results show that they perform well — systems

implemented with the BFT library have performance that is competitive with unreplicated systems.

We ran several benchmarks to measure the performance of BFS, our Byzantine-fault-tolerant

NFS. The results show that BFS performs 2% faster to 24% slower than production implementations

of the NFS protocol, which are used daily by many users and are not replicated. Additionally, we ran

micro-benchmarks to evaluate the performance of the replication library in a service-independent

way and to determine the impact of each of our optimizations. We also measured performance when

the number of replicas increases and we used the analytic model to study sensitivity to variations in

the model parameters.

The experiments were performed using the setup in Section 8.1. We describe experiments

to measure the value of the analytic model parameters in Section 8.2. Section 8.3 uses micro-

benchmarks to evaluate the performance during the normal case without checkpoint management,

view changes, key refreshment, or recovery. Sections 8.4 and 8.5 present results of experiments to

evaluate the performance of checkpoint management, and view changes, respectively. Section 8.6

studies the performance of the BFS file system with and without proactive recoveries.

The main results in this chapter are summarized in Section 8.7.

8.1 Experimental Setup

The experiments ran on nine Dell Precision 410 workstations with a single Pentium III processor,

512 MB of memory, and a Quantum Atlas 10K 18WLS disk. All machines ran Linux 2.2.16-3

compiled without SMP support. The processor clock speed was 600 MHz in seven machines and

700 MHz in the other two. All experiments ran on the slower machines except where noted.

The machines were connected by a 100 Mb/s switched Ethernet and had 3Com 3C905B interface

cards. Each machine was connected by a single Category 5 cable to a full-duplex port in an Extreme

89

Networks Summit48 V4.1 switch. This is a store-and-forward switch that can forward IP unicast

and multicast traffic at link speed. Additionally, it performs IGMP snooping such that multicast

traffic is forwarded only to the members of the destination group. All experiments ran on an isolated

network and we used the Pentium cycle counter to measure time accurately.

The library was configured as follows. The checkpoint period, K , was 128 sequence numbers,

which causes garbage collection to occur several times in each experiment. The size of the log,

L, was 256 sequence numbers. The state partition tree had 4 levels, each internal node had 256

children, and the leaves had 4 KB. Requests for operations with argument size greater than 255 bytes

were transmitted separately; the others were inlined in pre-prepares. The digest replies optimization

was not applied when the size of the operation result was less than or equal to 32 bytes. The window

size for request batching was set to 1.

8.2 Performance Model Parameters

In order to use the analytic model to explain the experimental results in the next sections, it is

necessary to measure the value of each parameter in the model in our experimental setup. This

section describes experiments to measure these values.

8.2.1 Digest Computation

The BFT library uses the MD5 [Riv92] cryptographic hash function to compute digests. We ran

an experiment to measure the time to compute MD5 digests as a function of the input string. The

experiment was designed such that the input string was not in any of the processor caches before

being digested. Figure 8-1 presents the results.

0 1000 2000 3000 4000

input size (bytes)

0

10

20

30

40

50

el
ap

se
d

ti
m

e
(m

ic
ro

se
co

nd
s)

measured
predicted

Figure 8-1: Time to compute MD5 digests as a function of the input size.

We used a linear regression (least squares method) to compute the parameters Df and Dv in

90

the digest computation model. Table 8.1 shows the values we obtained and Figure 8-1 shows digest

computation times predicted with TD(l) = Df +Dv � l. The predicted and measured values are

almost indistinguishable as evidenced by a high coefficient of determination (0.999).

parameter value description
Df 2.034 �s time to digest 0 bytes
Dv 0.012 �s/byte additional cost per byte
SD 16 bytes digest size

Table 8.1: Digest computation model: parameter values

8.2.2 MAC Computation

The BFT library only computes MACs of message headers that have a constant size of either

40 or 48 bytes. We ran an experiment to measure the time to compute these MACs using the

UMAC32 [BHK+99] algorithm. The parameter values for the model are listed in Table 8.2.

parameter value description
TM(40) 965 ns time to MAC 40 bytes
TM(48) 958 ns time to MAC 48 bytes
SMT 8 bytes size of MAC tag
SMN 8 bytes size of MAC nonce

Table 8.2: MAC computation model: parameter values

8.2.3 Communication

The communication model is split into two components: time spent at the switch and time spent

at the hosts. To separate out these two components, we measured round-trip latency for different

frame sizes with and without the switch. In the configuration without the switch, the two hosts were

connected directly by a crossover Category 5 cable.

According to our model, the total (one-way) communication time through the switch for a frame

of l bytes without congestion is:

TC(l) = Sf + 2Sv � l + 2TH(l)

The same communication time without the switch is:

TCns(l) = Sv � l + 2TH(l)

Therefore, the difference between the measured round-trip times is:

�(l) = 2(TC(l)� TCns(l)) = 2(Sf + Sv � l)

91

The reasoning assumes that the propagation delay on the network cables is negligible. This is a good

assumption in our experimental environment; we use only Category 5 cables that add a maximum

delay of 0.011�s per meter [Spu00] and our cables are significantly shorter than 10 meters.

We ran a linear regression with the values �(l)=2 obtained by dividing the difference between

the measured round-trip times by two. It yielded the values Sf = 9:79�s and Sv = 0:08�s/B with

a coefficient of determination of 0.999. The high coefficient of determination shows that the model

matches the experimental data and Sv = 0:08�s/B also matches the nominal bandwidth of Fast

Ethernet.

With the value of Sv , we computed TH(l) by subtracting Sv � l from the round-trip time

measured without the switch and dividing the result by two. Finally, we performed a linear

regression analysis on these values and obtained Hf = 20:83�s and Hv = 0:011�s/B with a

coefficient of determination of 0.996. Table 8.3 shows the values of the parameters associated with

the communication model.

parameter value description
Sf 9.79�s switch latency
Sv 0.08�s/byte inverse of link bandwidth
Hf 20.83�s host time to send 0 byte frame
Hv 0.011�s/byte host time to send each additional byte

MFS 1514 bytes maximum size of frame with fragment

Table 8.3: Communication model: parameter values

To complete the communication model, it is necessary to define the functions that map between

messages and frames. These functions have the following values in UDP/IP over Ethernet:

NF(l) = 1, if l � 1472

1 + d(l � 1472)=1480e, otherwise

RFS(l) = l + 42, if l � 1472

(l � 1472) mod 1480 + 34, otherwise

The IP, UDP, and Ethernet headers and the Ethernet trailer sum 42 bytes in length. The maximum

size for a frame is 1514 bytes. The fragment with the first bytes in the message has both IP and

UDP headers so it can hold 1472 message bytes. The other fragments do not have the UDP header

so they can hold up to 1480 message bytes.

We validated the communication model by comparing predicted and measured communication

times for various message sizes. Figure 8-2 shows both absolute times and the relative error of the

predicted values. The predicted values were obtained using: TC(RFS(l)) for messages that are

not fragmented and TCfrag(l) with fragmentation (these formulas are defined in Section 7.1.3).

The model is very accurate; it deviates at most 3.6% from the measured values and all the points

92

except the first have an error with absolute value less than 1%.

0 2000 4000 6000 8000

message size (bytes)

0

200

400

600

800

1000

el
ap

se
d

ti
m

e
(m

ic
ro

se
co

nd
s)

0 2000 4000 6000 8000

message size (bytes)

-4

-2

0

2

4

re
la

ti
ve

 p
re

di
ct

io
n

er
ro

r
(%

)

predicted
 measured

Figure 8-2: Communication time: measured and predicted values.

8.3 Normal Case

This section evaluates the performance during the normal case: there are no view changes or

recoveries, and MAC keys are not refreshed. It compares the performance of two implementations

of a simple service: one implementation, BFT, is replicated using the BFT library and the other,

NO-REP, is not replicated and uses UDP directly for communication between the clients and the

server.

The simple service is really the skeleton of a real service: it has no state and the service

operations receive arguments from the clients and return (zero-filled) results but they perform no

computation. We performed experiments with different argument and result sizes for both read-

only and read-write operations. These experiments provide a service-independent evaluation of the

performance of the replication library.

Sections 8.3.1 and 8.3.2 describe experiments to evaluate the latency and throughput of the simple

replicated service, respectively. Section 8.3.3 evaluates the impact of the various optimizations on

performance. All these experiments use four replicas. In Section 8.3.4, we investigate the impact

on performance as the number of replicas increases. Finally, Section 8.3.5 uses the analytic model

to predict performance in a WAN environment and in a very fast LAN.

8.3.1 Latency

We measured the latency to invoke an operation when the service is accessed by a single client.

All experiments ran with four replicas. Four replicas can tolerate one Byzantine fault; we expect

this reliability level to suffice for most applications. The results were obtained by timing a large

93

number of invocations in three separate runs. We report the average of the three runs. The standard

deviations were always below 3% of the reported values.

Varying Argument Size

Figure 8-3 shows the latency to invoke the replicated service as the size of the operation argument

increases while keeping the result size fixed at 8 bytes. It has one graph with elapsed times and

another with the slowdown of BFT relative to NO-REP. The graphs have results for both read-write

and read-only operations.

0 2000 4000 6000 8000

argument size (bytes)

0

500

1000

1500

la
te

nc
y

(m
ic

ro
se

co
nd

s)

0 2000 4000 6000 8000

argument size (bytes)

0

1

2

3

4

sl
ow

do
w

n

BFT read-write
BFT read-only
NO-REP

Figure 8-3: Latency with varying argument sizes: absolute times and slowdown relative to NO-REP.

The results show that the BFT library introduces a significant overhead relative to NO-REP

in this benchmark. It is important to note that this is a worst-case comparison; in real services,

computation or I/O at the clients and servers would reduce the slowdown (as shown in Section 8.6).

The two major sources of overhead are digest computation and the additional communication due

to the replication protocol. The cost of MAC computation is almost negligible (less than 3%).

The results show two major trends: the read-only optimization is very effective at reducing the

slowdown introduced by the BFT library; and the slowdown decreases significantly as the size of

the operation argument increases.

The read-only optimization improves performance by eliminating the time to prepare the re-

quests. The analytic model predicts that this time does not change as the argument size increases

(for arguments greater than 255 bytes). This is confirmed by the experimental results: the difference

between the latency of read-only and read-write operations for the same argument size is approxi-

mately constant and equal to 225�s. Therefore, the speed up afforded by the read-only optimization

decreases to zero as the argument size increases: it reduces latency by 52% with 8 B arguments but

only by 15% for 8 KB arguments.

94

The slowdown for the read-write operation decreases from 4.07 with 8 B arguments to 1.52

with 8 KB arguments and it decreases from 1.93 to 1.29 with the read-only optimization. The

decreased slowdown is also explained by the analytic model. The only component that changes as

the argument size increases is Treq, which is the time to get the request to the replicas. Treq increases

because the communication time and the time to digest the request grow with the argument size.

In our experimental setup, the communication time increases faster than the digest computation

time: communication increases 0:011+0:08 = 0:091�s per byte (the sum accounts for the variable

cost at the sender and at the switch); and the digest computation time increases 2 � 0:012�s

per byte (which accounts for the variable cost of computing the request digest at both the client

and the replicas). Since the communication cost of NO-REP also increases 0:091�s/byte, the

model predicts that the slowdown will decrease as the argument size increases till an asymptote of

(0:091 + 2 � 0:012)=0:091 = 1:26, which is close to the experimental results for the read-only

operation.

The performance model can predict the results in Figure 8-3 with very high accuracy. Figure 8-4

shows the error of the latency values predicted by the model relative to the values measured. The

absolute value of the error is always below 2.3%.

0 2000 4000 6000 8000

argument size (bytes)

-4

-2

0

2

4

re
la

ti
ve

 p
re

di
ct

io
n

er
ro

r
(%

)

predicted read-write
predicted read-only
measured

Figure 8-4: Latency model: relative prediction error for varying argument sizes.

Varying Result Sizes

Figure 8-5 shows the latency to invoke the replicated service as the size of the operation result

increases while keeping the argument size fixed at 8 B. The graphs in this figure are very similar to

the ones for varying argument size: they also show that the read-only optimization is effective at

reducing the slowdown introduced by the BFT library; and that the slowdown decreases significantly

as the size of the operation result increases. The major sources of overhead are again additional

95

communication and digest computation (this time for replies).

0 2000 4000 6000 8000

result size (bytes)

0

500

1000

1500

la
te

nc
y

(m
ic

ro
se

co
nd

s)

0 2000 4000 6000 8000

result size (bytes)

0

1

2

3

4

sl
ow

do
w

n

BFT read-write
BFT read-only
NO-REP

Figure 8-5: Latency with varying result sizes: absolute times and slowdown relative to NO-REP.

The impact of the read-only optimization can be explained exactly as before. In this case, the

difference between the latency of read-only and read-write operations for the same result size is

approximately constant and equal to 215�s. The optimization also speeds up latency by 52% with

8 byte results but only by 15% for 8 KB results.

The slowdown for the read-write operation decreases from 4.08 with 8 B results to 1.47 with

8 KB results and it decreases from 1.95 to 1.25 with the read-only optimization. The argument why

the slowdown decreases is similar to the one presented for varying arguments. But, in this case, the

only component that changes as the result size increases is Trep, which is the time to get the replies

to the client. Trep grows as the result size increases due to the increased communication cost to

send the reply with the result to the client and due to the increased cost to compute the digest of

the result at the replicas and the client. Since the communication cost in NO-REP increases at the

same rate, the model predicts that the slowdown will decrease as the result size increases towards

the same asymptote as before (1.26); this prediction is close to the experimental results.

The performance model can also predict latency with varying result sizes accurately. Figure 8-4

shows the error of the latency values predicted by the model relative to the values measured. The

absolute value of the error is always below 2.7% for all result sizes except for 64 and 128 bytes,

where it is as high as 11.5%. It is not clear why the model overestimates the latency for these

result sizes but it may be due to our pessimistic assumption that the reply with the complete result

is always scheduled last for forwarding on the client’s link.

96

0 2000 4000 6000 8000

result size (bytes)

0

5

10

re
la

ti
ve

 p
re

di
ct

io
n

er
ro

r
(%

)

predicted read-write
predicted read-only
measured

Figure 8-6: Latency model: relative prediction error for varying result sizes.

8.3.2 Throughput

This section reports the result of experiments to measure the throughput of BFT and NO-REP as

a function of the number of clients accessing the simple service. The client processes were evenly

distributed over 5 client machines1 and each client process invoked operations synchronously, i.e.,

it waited for a reply before invoking a new operation. We measured throughput for operations with

different argument and result sizes. Each operation type is denoted by a/b, where a and b are the

sizes of the argument and result in KB.

The experiment ran as follows: all client processes started invoking operations almost simulta-

neously; each client process executed 3K operations (where K was a large number) and measured

the time to execute the middle K operations. The throughput was computed asK multiplied by the

number of client processes and divided by the maximum time (taken over all clients) to complete

the K operations. This methodology provides a conservative throughput measurement: it accounts

for cases where clients are not treated fairly and take longer to complete the K iterations. Each

throughput value reported is the average of at least three independent runs.

Figure 8-7 shows throughput results for operation 0/0. The standard deviation was always below

2% of the reported values. The bottleneck in operation 0/0 is the server’s CPU. BFT has lower

throughput than NO-REP due to extra messages and cryptographic operations that increase the

CPU load. BFT’s throughput is 52% lower for read-write operations and 35% lower for read-only

operations.

The read-only optimization improves throughput by eliminating the cost of preparing the batch

of requests. The throughput of the read-write operation improves as the number of clients increases

1Two client machines had 700 MHz PIIIs but were otherwise identical to the other machines.

97

0 50 100 150 200

number of clients

0

10000

20000

30000

op
er

at
io

ns
 p

er
 s

ec
on

d

NO-REP
BFT read-only
BFT read-write

Figure 8-7: Throughput for operation 0/0 (with 8 byte argument and result).

because the cost of preparing the batch of requests is amortized over the size of the batch. In the

current implementation, the size of the batch is limited by how many requests can be inlined in

a pre-prepare message; this limit is equal to 101 requests for this operation. The average batch

size in this experiment is approximately equal to the total number of clients divided by two (with

the constraint that it is not greater than 101 requests). Therefore, the throughput of the read-write

operation increases as the client population grows up to 200 and then it saturates.

Figure 8-8 shows throughput results for operation 0/4. Each point is an average of five indepen-

dent runs for the read-write operation and ten for the read-only operation. The standard deviation

was below 4% of the reported values for the read-write operation but was as high as 18% for the

read-only operation.

0 50 100 150 200

number of clients

0

2000

4000

6000

8000

op
er

at
io

ns
 p

er
 s

ec
on

d

BFT read-only
BFT read-write
NO-REP

Figure 8-8: Throughput for operation 0/4 (with 8 byte argument and 4 KByte result).

98

BFT has better throughput than NO-REP. The bottleneck for NO-REP in operation 0/4 is the link

bandwidth; NO-REP executes approximately 3000 operations per second, which saturates the link

bandwidth of 12 MB/s. BFT achieves better throughput because of the digest-replies optimization:

each client chooses one replica randomly; this replica’s reply includes the 4 KB result but the replies

of the other replicas only contain small digests. As a result, clients obtain the large replies in parallel

from different replicas. BFT achieves a maximum throughput of 6625 operations per second for the

read-write operation and 8698 operations per second with the read-only operation; this corresponds

to an aggregate throughput of 26MB/s and 34 MB/s. The bottleneck for BFT is the replicas’ CPU.

The throughput of the read-write operation increases with the number of clients because the

cost of preparing the batch of requests is amortized over the batch size. The throughput with the

read-only optimization is very unstable. The instability occurs because the system is not always fair

to all clients; this results in a large variance in the maximum time to complete the K operations,

which is the time we use to compute the throughput. The average time for the clients to compute

the K operations remains stable. Figure 8-9 compares the throughput for this operation computed

both using the maximum time and the average time to complete the K operations at all clients.

0 50 100 150 200

number of clients

0

2000

4000

6000

8000

op
er

at
io

ns
 p

er
 s

ec
on

d

read-only avg
read-only

Figure 8-9: Throughput for read-only operation 0/4. The results labeled avg are based on the
average time to complete the middle K operations rather than the maximum.

Figure 8-10 shows throughput results for operation 0/4. The standard deviation was below 7%

of the reported value. There are no points with more than 15 clients for NO-REP operation 4/0

because of lost request messages; NO-REP uses UDP directly and does not retransmit requests.

The bottleneck in operation 4/0 for both NO-REP and BFT is the time to get the requests through

the network. Since the link bandwidth is 12 MB/s, the maximum throughput achievable is 3000

operations per second. NO-REP achieves a maximum throughput of 2921 operations per second

while BFT achieves 2591 for read-write operations (11% less than NO-REP) and 2865 with the

read-only optimization (2% less than NO-REP).

99

0 20 40 60

number of clients

0

1000

2000

3000

op
er

at
io

ns
 p

er
 s

ec
on

d

NO-REP
BFT read-only
BFT read-write

Figure 8-10: Throughput for operation 4/0 (with 4 KByte argument and 8 byte result).

Batching is once more responsible for increasing the throughput of the read-write operation

as the number of clients increases. The requests for operation 4/0 are not inlined in pre-prepare

messages and the current implementation imposes a limit of 16 such requests per batch. We

measured an average batch size equal to the number of clients divided by two (up to the 16 request

maximum). This explains why the throughput stops growing with approximately 30 clients. The

throughput drops and its variance increases for more clients due to an increase in lost messages

and retransmissions. This variance also disappears if we use the average time to complete the K

operations to compute throughput rather than the maximum.

configuration 0/0 0/4 4/0
read-only 19707 (-0.4%) 8132 (-7%) 2717 (-5%)
read-write 14298 (-9%) 7034 (+6%) 2590 (0%)

Table 8.4: Throughput model: predicted values and errors relative to measured values.

The throughput performance model is accurate. Table 8.4 shows the maximum throughput

values predicted by the model and the error relative to the values measured. The values for

operations 0/0 and 0/4 were computed with a batch size of 101 and the values for operation 4/0

were computed with a batch size of 16. The absolute value of the error is always below 10%.

8.3.3 Impact of Optimizations

The experiments in the previous sections show that the read-only optimization is effective at reducing

latency and improving throughput of services replicated using the BFT library. The read-only

optimization is special because it can only be applied to operations that satisfy a specific semantic

100

constraint (namely not modifying the state). This section analyses the performance impact of the

other optimizations that are applied to operations regardless of their semantics. It starts by studying

the impact of the most important optimization: the elimination of public-key cryptography. Then,

it analyzes the impact of the optimizations described in Section 5.1.

Elimination of Public-Key Cryptography

To evaluate the benefit of using MACs instead of public key signatures, we implemented a version

of the library that uses the BFT-PK algorithm. The version of BFT-PK described in Chapter 2

relies on the extra power of digital signatures to authenticate pre-prepare, prepare, checkpoint, and

view-change messages but it can be modified easily to use MACs to authenticate other messages.

Our implementation of BFT-PK is identical to the BFT library but it uses public-key signatures to

authenticate these four types of messages. This allowed us to measure the impact of the more subtle

part of this optimization.

The experiments compared the latency and throughput of two implementations of the simple

service: the one labeled BFT used the BFT library and the one labeled BFT-PK used the BFT-PK

library. We only compared performance of read-write operations because both libraries have the

same performance with the read-only optimization.

Table 8.5 reports the latency to invoke an operation when the simple service is accessed by a

single client. The results were obtained by timing a large number of invocations in three separate

runs. We report the average of the three runs. The standard deviations were always below 0.5% of

the reported value.

system 0/0 0/4 4/0
BFT-PK 59368 59761 59805
BFT 431 999 1046

Table 8.5: Cost of public-key cryptography: operation latency in microseconds.

BFT-PK has two signatures in the critical path and each of them takes 29.4 ms to compute. BFT

eliminates the need for these signatures and achieves a speedup between 57 and 138 relative to BFT-

PK. We use the SFS [MKKW99] implementation of a Rabin-Williams public-key cryptosystem

with a 1024-bit modulus to sign messages and verify signatures. There are other public-key

cryptosystems that generate signatures faster, e.g., elliptic curve public-key cryptosystems, but

signature verification is slower [Wie98] and in our algorithm each signature is verified many times.

Theoretically, BFT-PK scales better than BFT as the number of replicas increases because the

latency in BFT-PK grows linearly with the number of replicas rather than with the square of this

number. But in practice BFT-PK only outperforms BFT for an unreasonably large number of

101

replicas. For example, the performance model predicts that BFT’s latency for operation 0/0 with

280 replicas is still lower than BFT-PK’s latency with 4 replicas.

Figure 8-11 compares the throughput of the two implementations of the simple service for

operations with different argument and result sizes. It uses the experimental setup and methodology

described in Section 8.3.2: there are 5 client machines and 4 replicas. Each point in the graph is

the average of at least three independent runs and the standard deviation for all points was below

4% of the reported value (except that it was as high as 17% for the last four points in the graph for

BFT-PK operation 4/0).

0 50 100 150 200
number of clients

0

5000

10000

15000

0/
0

op
er

at
io

ns
 p

er
 s

ec
on

d

0 50 100 150 200
number of clients

0

2000

4000

6000

8000

0/
4

op
er

at
io

ns
 p

er
 s

ec
on

d

0 20 40 60
number of clients

0

1000

2000

3000

4/
0

op
er

at
io

ns
 p

er
 s

ec
on

d

BFT
BFT-PK

Figure 8-11: Cost of public-key cryptography: throughput in operations per second.

The throughput of both implementations increases with the number of concurrent clients because

of request batching. Batching amortizes the signature generation overhead in BFT-PK over the size

of the batch. Since this overhead is independent of the batch size, the throughput of the two

implementations grows closer as the batch size increases. The current implementation limits batch

size to 101 requests in operations 0/0 and 0/4 and 16 requests in operation 4/0; the throughput of

both implementations saturates once the batch size reaches its maximum. The maximum throughput

achieved by BFT-PK is 5 to 11 times worse than the one achieved by BFT.

If there were no limits on batch size, the two implementations would theoretically reach sim-

ilar throughput values. However, this could only happen with an unreasonably large number of

concurrent clients.

Digest Replies

To evaluate the impact of the digest replies optimization described in Section 5.1.1, we modified

the BFT library not to use this optimization. This section compares the performance of two

implementations of the simple service: BFT, which uses the regular BFT library, and BFT-NDR,

which uses the version of the library without the digest replies optimization.

Figure 8-12 compares the latency to invoke the two implementations of the simple service as

the size of the operation result increases. The standard deviations were always below 3% of the

reported value. The digest replies optimization reduces the latency to invoke operations with large

102

0 2000 4000 6000 8000

result size (bytes)

0

1000

2000

3000

la
te

nc
y

(m
ic

ro
se

co
nd

s)

read-write NDR
read-only NDR
read-only
read-write

Figure 8-12: Latency with varying result sizes with and without the digest replies optimization.
The lines labeled NDR correspond to the configuration without the optimization.

results significantly: it speeds up execution by up to a factor of 2.6.

The performance benefit of the digest replies optimization increases linearly with the number

of replicas. In BFT-NDR, all replicas send back replies with the operation result to the client;

whereas in BFT only one replica sends back a reply with the result and the others send small digests.

Therefore, the speedup afforded by the optimization is approximately equal to 2f + 1 with large

result sizes.

0 20 40 60 80 100

number of clients

0

2000

4000

6000

8000

op
er

at
io

ns
 p

er
 s

ec
on

d

read-only
read-write
read-only NDR
read-write NDR

Figure 8-13: Throughput for operation 0/4 with and without the digest replies optimization. The
lines labeled NDR correspond to the configuration without the optimization.

Figure 8-13 shows throughput results for operation 0/4. The values in the figure for BFT are

the same that appeared in Figure 8-8. The standard deviation for the BFT-NDR values was always

below 2% of the reported value.

103

BFT achieves a throughput up to 3 times better than BFT-NDR. The bottleneck for BFT-NDR is

the link bandwidth: it is limited to a maximum of at most 3000 operations per-second regardless of

the number of replicas. The digest replies optimization enables the available bandwidth for sending

replies to the clients to scale linearly with the number of replicas and it also reduces load on replicas’

CPUs.

Request Batching

The throughput results have shown the importance of batching requests and running a single instance

of the protocol to prepare the batch. However, we did not present a direct comparison between the

performance of the service with and without request batching; Figure 8-14 offers this comparison

for the throughput of operation 0/0. Without batching, the throughput does not grow beyond 3848

operations per second and starts to decrease with more than 20 clients. The experiments in the

previous section show that throughput reaches 15740 operations per second with batching.

0 10 20 30 40

number of clients

0

5000

10000

15000

op
er

at
io

ns
 p

er
 s

ec
on

d

with batching
no batching

Figure 8-14: Throughput for operation 0/0 with and without request batching.

Since the replication algorithm can process many requests in parallel, the throughput without

batching grows with the number of clients up to a maximum that is 66% better than the throughput

with a single client. But processing each of these requests requires a full instance of the prepare

protocol; and the replica’s CPUs saturate for a small number of clients hindering throughput.

For our experimental environment, the best configuration uses a batching window of 1: the

primary waits until the requests in a batch execute before sending a pre-prepare message for the

next batch. In WAN environments where the latency is higher, the window should be set to a larger

value to allow several batches to be processed in parallel.

104

Separate Request Transmission

The BFT library sends small requests inlined in pre-prepare messages but requests with argument

size greater than 255 bytes are not inlined. These requests are multicast by the client to all replicas

and the primary only includes their digests in pre-prepare messages. We measured the impact on

latency and throughput of separating request transmission.

0 2000 4000 6000 8000

argument size (bytes)

0

1000

2000

3000

la
te

nc
y

(m
ic

ro
se

co
nd

s)

NO-SRT
SRT

Figure 8-15: Latency for varying argument sizes with separate request transmission, SRT, and
without, NO-SRT.

Figure 8-15 compares the latency to invoke the simple service for varying argument sizes with

and without separate request transmission. Separating request transmission reduces latency by up

to 40% because the request is sent only once and the primary and the backups compute the request’s

digest in parallel. The performance model predicts that the reduction will increase towards an

asymptote of 53% as the argument size increases.

The other benefit of separate request transmission is improved throughput for large requests.

Figure 8-16 compares the throughput for operation 4/0 with and without separate request transmis-

sion. It shows that the optimization improves throughput by up to 91%. This happens because the

requests go over the network twice when they are inlined in pre-prepare messages: once from the

client to the primary and then from the primary to the backups. Additionally, inlining the requests

results in a maximum batch size of 2 (due to the limit on the size of pre-prepares).

Other Optimizations

The tentative execution optimization eliminates one round of the protocol: it allows replicas to

execute requests and send replies to clients as soon as requests prepare. We implemented one

version of the simple service, BFT-NTE, that uses the BFT library modified not to execute requests

tentatively.

105

0 20 40 60

number of clients

0

1000

2000

3000

op
er

at
io

ns
 p

er
 s

ec
on

d
SRT
NO-SRT

Figure 8-16: Throughput for operation 4/0 with separate request transmission, SRT, and without,
NO-SRT.

We measured the latency of the BFT-NTE service as the argument and result sizes vary between

8 B and 8 KB. The tentative execution of requests reduces latency by a value that does not depend

on the size of argument and result values. Therefore, the impact of this optimization decreases

as the argument or result size increases. For example, the optimization improves performance by

27% with 8 B argument and result sizes but only by 5% when the argument size increases to 8 KB.

We also measured the throughput of operations 0/0, 0/4, and 4/0 without tentative execution. The

results show that this optimization has an insignificant impact on throughput.

We conclude that tentative execution of requests does not improve performance as significantly

as the previous optimizations did (in our experimental setup). Even in WAN environments where

communication latency is higher, this optimization should not improve service latency by more

than 20% (because it eliminates one message delay from a total of 5). Since the throughput in

these environments is also lower, the performance gain should be significantly smaller than this

maximum.

A potential benefit of tentative execution of requests is that it enables the piggybacking of

commit messages on pre-prepare and prepare messages. We implemented a version of the simple

service with piggybacked commits and measured its latency and throughput. This optimization is

not part of the BFT library; we only wrote code for it to work in the normal case.

Piggybacking commits has a negligible impact on latency because the commit phase of the

protocol is performed in the background thanks to tentative execution of requests. It also has a

small impact on throughput except when the number of concurrent clients accessing the service

is small. For example, Figure 8-17 compares the throughput for operation 0/0 with and without

this optimization. Piggybacking commits improves throughput by 33% with 5 clients and by 27%

106

with 10 but only by 3% with 200 clients. The benefit decreases with the number of clients because

batching amortizes the cost of processing the commit messages over the batch size.

0 50 100 150 200

number of clients

0

5000

10000

15000

op
er

at
io

ns
 p

er
 s

ec
on

d
no piggybacking
with piggybacking

Figure 8-17: Throughput for operation 0/0 with and without piggybacked commits.

8.3.4 Configurations With More Replicas

The experiments in the previous sections ran in a configuration with four replicas, which can tolerate

one fault. We believe this level of reliability will be sufficient for most applications. But some

applications will have more stringent reliability requirements and will need to run in configurations

with more replicas. Therefore, it is important to understand how the performance of a service

implemented with the BFT library is affected when the number of replicas increases. This section

describes experiments to measure the latency and throughput of a system with seven replicas (f = 2)

and uses the analytic performance model to predict performance with more replicas.

Latency

We ran experiments to measure the latency with varying argument and result sizes with 7 replicas

and compared these results with the ones obtained with 4 replicas. In both configurations, all the

replicas had a 600 MHz Pentium III processor and the client had a 700 MHz Pentium III processor.

Varying argument size. Figure 8-18 compares the latency to invoke the replicated service with

f = 1 (4 replicas) and f = 2 (7 replicas) as the size of the operation argument increases while

keeping the result size fixed at 8 bytes. The figure has two graphs: the first one shows elapsed

times and the second shows the percentage slowdown of the configuration with f = 2 relative to

the configuration with f = 1. The standard deviation was always below 2% of the reported value.

It is not clear why the slowdown drops for argument sizes of 5 KB and 6 KB with the read-only

optimization.

107

0 2000 4000 6000 8000

argument size (bytes)

0

500

1000

1500
la

te
nc

y
(m

ic
ro

se
co

nd
s)

read-write f=2
read-write f=1
read-only f=2
read-only f=1

0 2000 4000 6000 8000

argument size (bytes)

0

10

20

30

sl
ow

do
w

n
(%

)

read-write f=2
read-only f=2

Figure 8-18: Latency with varying argument sizes with f = 2: absolute times and slowdown
relative to f = 1.

The results show that the slowdown caused by increasing the number of replicas to 7 is low. The

maximum slowdown for the read-write operation is 30% and it is 26% for the read-only operation.

The results also show that the slowdown decreases as the argument size increases: with an argument

size of 8 KB, the slowdown is only 7% for the read-write operation and 2% with the read-only

optimization. According to the performance model, increasing the number of replicas introduces an

overhead that is independent of the size of the operation argument; this explains why the slowdown

decreases as the argument size increases.

0 2000 4000 6000 8000

argument size (bytes)

0

2

4

6

8

10

re
la

ti
ve

 p
re

di
ct

io
n

er
ro

r
(%

)

predicted read-write
predicted read-only

Figure 8-19: Latency model: relative prediction error for varying argument sizes with f = 2.

The latency model can predict these experimental results accurately. Figure 8-19 shows the

108

error of the latency values predicted by the model for f = 2 relative to the values measured. The

error is always below 8% and it is significantly lower for most argument sizes.

Since the model proved to be quite accurate, we used it to predict latency for configurations

with more replicas. Figure 8-20 shows the predicted slowdown relative to the configuration with

f = 1 for configurations with increasing values of f . The slowdown increases linearly with the

number of replicas for read-only operations. For read-write operations, the slowdown increases

with the square of the number of replicas but with a small constant. Since the overhead due to

adding more replicas is independent of the argument size, the slowdown decreases as the argument

size increases: for example, the slowdown for the read-write operation with f = 10 is 4.2 with 8

byte arguments, 2.3 with 4 KB, and only 1.9 with 8 KB.

0 2 4 6 8 10

f

0

1

2

3

4

op
er

at
io

n
0/

0:
 s

lo
w

do
w

n

read-write
read-only

0 2 4 6 8 10

f

0

1

2

3

4

op
er

at
io

n
4/

0:
 s

lo
w

do
w

n

0 2 4 6 8 10

f

0

1

2

3

4

op
er

at
io

n
8/

0:
 s

lo
w

do
w

n

Figure 8-20: Predicted slowdown relative to the configuration with f = 1 for increasing f and
argument size.

Varying result size. We also measured the latency for varying result sizes with f = 2; Figure 8-

21 compares these results with those obtained with f = 1. The figure has two graphs: the first

one shows elapsed times and the second shows the percentage slowdown of the configuration with

f = 2 relative to the configuration with f = 1. The values are averages of 5 independent runs and

the standard deviation was always below 2% of the reported averages.

Like in the case of varying argument sizes, the results show that the slowdown caused by

increasing the number of replicas to 7 is small: the maximum slowdown for both read-only and

read-write operations is 26%. The digest-replies optimization makes the overhead introduced by

increasing the number of replicas independent of the result size. Therefore, the slowdown also

decreases as the result size increases: the slowdown with 8 KB results is 5% for the read-write

operation and only 1% with the read-only optimization.

The digest-replies optimization has another interesting effect: the communication time for the

large reply with the result hides the time to process the small replies with the digests. Because of

this effect, the slowdown drops faster as the result size increases than it does when the argument

size increases. This effect is clear with the slowdown for the read-only operation.

Figure 8-22 shows that the performance model is less accurate at predicting the latency for

109

0 2000 4000 6000 8000

result size (bytes)

0

500

1000

1500

la
te

nc
y

(m
ic

ro
se

co
nd

s)

read-write f=2
read-write f=1
read-only f=1
read-only f=2

0 2000 4000 6000 8000

result size (bytes)

0

10

20

30

sl
ow

do
w

n
(%

)

read-write
read-only

Figure 8-21: Latency with varying result sizes with f = 2: absolute times and slowdown relative
to f = 1.

0 2000 4000 6000 8000

result size (bytes)

0

5

10

15

20

25

re
la

ti
ve

 p
re

di
ct

io
n

er
ro

r
(%

)

predicted read-write
predicted read-only

Figure 8-22: Latency model: relative prediction error for varying result sizes with f = 2.

110

f = 2 as the result size increases. The error is as high as 23% for small result sizes but it is less

than 3% for result sizes greater than 512 bytes. This experimental configuration uses a client that

is faster than the machines where the parameters for the model were measured; this can explain

the large error for small result sizes (for larger result sizes this error is hidden because the cost of

processing digest replies is overlapped with the communication time for the reply with the result).

The performance model is sufficiently accurate to make interesting predictions for configurations

with more replicas. Figure 8-23 shows the predicted slowdown relative to the configuration with

f = 1 for operations 0/0, 0/4, and 0/8. The results for operation 0/4 and 0/8 are similar to those

presented for operations 4/0 and 8/0. The difference is that the slowdown grows slower as the

number of replicas increases. This happens because the time to process the small replies is hidden

by the communication time for the reply with the result for large result sizes.

0 2 4 6 8 10

f

0

1

2

3

4

op
er

at
io

n
0/

0:
 s

lo
w

do
w

n

read-write
read-only

0 2 4 6 8 10

f

0

1

2

3

4

op
er

at
io

n
0/

4:
 s

lo
w

do
w

n

0 2 4 6 8 10

f

0

1

2

3

4

op
er

at
io

n
0/

8:
 s

lo
w

do
w

n

Figure 8-23: Predicted slowdown relative to the configuration with f = 1 for increasing f and
result size.

Throughput

We tried to measure the throughput of the system configured with f = 2. But since this configuration

requires 7 replicas, the experiments were limited to use 2 machines to run the processes that simulate

the client population. This prevented us from obtaining meaningful results because the CPU of the

client machines and their links to the switch became bottlenecks.

The performance model was able to predict the maximum throughput for f = 1 and the latency

for f = 2 with good accuracy. Therefore, we are confident that it provides a good prediction for

the maximum throughput in configurations with more replicas; Figure 8-24 shows this prediction

for operations 0/0, 0/4, and 4/0. The prediction was obtained for 100 client machines with a batch

size of 100 for operations 0/0 and 0/4, and with a batch size of 16 for operation 4/0.

The figure suggests that increasing the value of f up to 10 does not cause a severe throughput

degradation. To explain this, it is necessary to look at the components of the model in more detail.

The model breaks the time to execute the requests into three components: the time to get the requests

in the batch to the replicas, T b
req, the time to prepare the batch, T b

prep, and the time to execute the

111

0 2 4 6 8 10

f

0

5000

10000

15000

20000

0/
0

op
er

at
io

ns
 p

er
 s

ec
on

d

read-only
read-write

0 2 4 6 8 10

f

0

2000

4000

6000

8000

10000

0/
4

op
er

at
io

ns
 p

er
 s

ec
on

d

0 2 4 6 8 10

f

0

1000

2000

3000

4/
0

op
er

at
io

ns
 p

er
 s

ec
on

d

Figure 8-24: Predicted throughput for increasing f for operations 0/0, 0/4 and 4/0.

requests in the batch and get the replies to the clients T b
erep.

For our experimental setup and the values in this figure, the last component is equal to the CPU

time spent by the replicas executing the requests and sending the replies. Therefore, T b
erep does

not increase with the number of replicas. T b
req is either equal to the communication time in each

replica’s link (in operation 4/0) or to the CPU time receiving and checking the requests at the replicas

(in operations 0/0 and 0/4). In either case, T b
req grows slowly with the number of replicas; it grows

only because of increased communication cost due to larger authenticators. T b
prep grows quickly as

the number of replicas increases because both the number and size of pre-prepare/prepare messages

processed by the replicas grow linearly with f . But the growing overhead in T b
prep is amortized over

the size of the batch.

The T b
prep component is 0 for read-only requests, which explains why the throughput decreases

more slowly with the read-only optimization for operations 0/0 and 4/0. Additionally, Tb
erep actually

decreases with the number of replicas for operation 0/4, which explains why throughput improves

slightly as the number of replicas increases.

For read-write operations 0/0 and 0/4, the current implementation might not do as well as the

model predicts because the requests in these operations are inlined in the pre-prepare message and

the maximum batch size would decrease down to 27 for f = 10. But this is not an intrinsic problem;

the library could use separate request transmission for all request sizes.

8.3.5 Sensitivity to Variations in Model Parameters

We used the analytic model to predict the performance of the BFT library in two different experi-

mental setups: a WAN environment, and a LAN with 1Gb/s Ethernet and 1.2GHz processors. The

WAN environment is interesting because placing the replicas in different geographic locations is an

important technique to increase their failure independence. The LAN environment represents the

fastest LAN available today.

112

WAN

We assumed that the only parameters that varied when switching between our current experimental

setup and the WAN environment were the network latency, Sf , and the network cost per byte, Sv,

(i.e., the inverse of the throughput). We also assumed that these parameters were the same for

communication between all pairs of nodes.

We measured the value of these parameters between a host at MIT and a host at the University of

California at Berkeley. We obtained a round-trip latency of 75ms and a throughput of approximately

150KB/s. Based on these values, we set Sf = 37500�s and Sv = 6:61�s/byte.

We are not modeling message losses. We measured a loss rate of less than 0.5%; this should

not impact performance very significantly. Furthermore, the algorithm can tolerate some message

loss without requiring retransmissions. We are also assuming that multicast works in the WAN

environment; this is not true in the entire Internet today but there are already several important ISPs

that provide multicast services (e.g. UUNET).

Figure 8-25 shows the predicted slowdown in the latency to invoke the replicated service, BFT,

relative to the service without replication, NO-REP, in a WAN. It presents results for operations 0/0,

0/8, and 8/0 with and without the read-only optimization. The number of replicas was four.

0/0 0/8 8/0
0

1

2

sl
ow

do
w

n

read-write
read-only

Figure 8-25: Latency: predicted slowdown due to BFT library in a WAN environment.

In the LAN, we measured a slowdown of approximately 4 for operation 0/0 without the read-

only optimization and 2 with the optimization. The slowdown decreases in the WAN because

the CPU costs are dwarfed by the network costs. The slowdown is approximately 2 for read-write

operation 0/0 because the protocol introduces an extra round-trip delay relative to the system without

replication. The read-only optimization eliminates the extra round-trip and virtually eliminates the

slowdown.

The slowdown for read-write operations 0/8 and 8/0 is actually slightly larger than the value we

measured in our experimental setup. This is because the ratio between a round-trip delay and the

113

time to transmit an 8 KB message is higher in the WAN environment. However, the slowdown in the

WAN should virtually vanish for larger result and argument sizes whereas it tends to an asymptote of

1.26 in our LAN. In many configurations, communication between the replicas is likely to be faster

than communication between clients and replicas. This would decrease slowdown even further.

The throughput in the WAN environment is bound by the low network throughput in our model.

The extra round-trip latency introduced by the protocol is amortized over the batch size and we

can run the protocol in parallel for several batches. Thus, the limit is the network throughput in

the server links not the extra computation and communication introduced by the protocol. For

example, the server link bandwidth limits the throughput in NO-REP to 18 operations per second in

operation 0/8. The predicted throughput for BFT is 59 operations per second without the read-only

optimization and 65 operations per second with the optimization.

Fast LAN

To model the LAN with 1Gb/s Ethernet and 1.2GHz processors, we divided the switch parameters

we measured by 10 and the processor parameters by 2. Figure 8-26 shows the predicted slowdown

in the latency to invoke the replicated service, BFT, relative to the service without replication,

NO-REP, in the fast LAN environment. It presents results for operations 0/0, 0/8, and 8/0 with and

without the read-only optimization. The number of replicas was four.

0/0 0/8 8/0
0

1

2

3

4

sl
ow

do
w

n

read-write
read-only

Figure 8-26: Latency: predicted slowdown due to BFT library in a fast LAN environment.

The predictions for the slowdown in operation 0/0 in the fast LAN environment are almost

identical to those in our experimental environment. But the slowdown for operations 0/8 and 8/0

is higher. This is explained by a higher ratio between the cost per byte of digest computation and

the cost per byte of communication. The model predicts an asymptote of 1.65 for the slowdown as

the argument and result sizes increase whereas it predicts an asymptote of 1.26 in our experimental

environment.

114

Figure 8-27 shows the predicted throughput for BFT in our experimental environment and in

the fast LAN. The throughput is normalized to allow a comparison: it is divided by the predicted

throughput for NO-REP in the same configuration.

0/0 0/8 8/0
read-write

0

1

2

3

no
rm

al
iz

ed
 t

hr
ou

gh
pu

t

slow LAN
fast LAN

0/0 0/8 8/0
read-only

0

1

2

3

no
rm

al
iz

ed
 t

hr
ou

gh
pu

t

slow LAN
fast LAN

Figure 8-27: Predicted throughput for BFT in slow and fast LANs normalized to NO-REP’s
throughput.

The normalized throughputs for operation 0/0 in the two configurations are very similar because

the server CPU is the bottleneck for both BFT and NO-REP in the two configurations. But the

normalized throughput for operations 0/8 and 8/0 is lower in the fast LAN. This happens because

the network speed increases by a factor of 10 but the CPU speed only increases by a factor of 2 and

BFT places a heavier load on the CPUs than NO-REP.

8.4 Checkpoint Management

The experiments in the previous section used a simple service that had no state. The only checkpoint

management overhead in those experiments was due to storing the last replies to read-write opera-

tions sent to each client. This section analyzes the performance overhead introduced by checkpoint

management using a modified version of the simple service that adds state. The state in the new

service is a persistent array of contiguous pages that is implemented by the replicas using a large

memory-mapped file. The service operations can read or write these pages.

The section presents results of experiments to measure both the time to create checkpoints and

the time for state transfer to bring replicas up-to-date.

8.4.1 Checkpoint Creation

The BFT library creates a checkpoint whenever the requests in a batch with sequence number

divisible by the checkpoint period are executed. The requests that execute between two checkpoints

115

are said to be in the same checkpoint epoch. The checkpoints are created using the technique

described in Section 5.3. In our experimental setup, the checkpoint period, K , is equal to 128. The

state partition tree has 4 levels, each internal node has 256 children, and the pages (i.e. the leaves

of the tree) have 4 KB.

We ran a benchmark to measure the cost of checkpoint creation using the simple service with

state. The benchmark used a state with 256 MB, 4 replicas, and 1 client. The client invoked

operations that received an offset into the state and a stride as arguments; and then wrote eight

4-byte words to the state starting at the offset and separated by the stride. The offset argument for

an operation was made equal to the offset of the last word written by the previous operation plus the

stride value. This allowed us to measure the cost of checkpointing in a controlled way: by running

experiments with different stride values, we were able to vary the number of modified pages per

checkpoint epoch without changing the cost to run the protocol and execute the operations.

The cost of checkpoint creation has two components: the time to perform copy-on-write (COW)

and the time to compute the checkpoint digest. Figure 8-28 shows the values we measured for these

times with a varying number of modified pages per checkpoint epoch. The time to create checkpoints

increases slightly when the modified pages are selected at random (for example, it increases 4% for

128 pages).

0 200 400 600 800 1000

modified pages per checkpoint epoch

0

20

40

60

80

100

el
ap

se
d

ti
m

e
pe

r
ch

ec
kp

oi
nt

 (
m

s)

total checkpoint
digest
COW

Figure 8-28: Checkpoint cost with a varying number of modified pages per checkpoint epoch.

The results show that both the time to perform copy-on-write and the time to compute digests

grow linearly with the number m of distinct pages modified during a checkpoint epoch. We ran a

linear regression on the digest and copy-on-write results. The coefficient of determination was 1

for the digest results and 0.996 for the copy-on-write results. We obtained the following model for

the checkpoint time in microseconds:

Tchcpt(m) = Tdigest(m) + Tcow(m)

116

Tdigest(m) = 248 + 72�m

Tcow(m) = 767 + 29�m

Tdigest includes the time to iterate over a bitmap that indicates which pages have been modified

and the time to clear this bitmap; this accounts for the 248�s latency. The cost to digest each page

is 72�s, which is 39% higher than the time to digest a page using MD5. The additional overhead

is due to the cost of updating the incremental checkpoint for the parent using the AdHash [BM97]

algorithm.

Tcow includes the time to allocate memory to hold a copy of the page and the time to copy

the page. The model for Tcow is not as good because the cost per page actually increases with the

number of pages modified; this accounts for the high latency of 767�s in spite of an experimental

result of 52�s with m = 3. We ran some micro-benchmarks that showed that the increased cost per

page was due to a growing cost to allocate memory to hold the copy of the page.

In these experiments, the service state fit in main memory. We do not expect checkpointing

to increase the number of disk accesses significantly when the state does not fit in main memory.

A page is copied just before it is accessed and digests are computed on the pages that have been

modified in the preceding checkpoint epoch; these pages are likely to be in main memory. The only

case where checkpointing can increase the number of disk accesses significantly is when the space

overhead to keep the checkpoints represents a significant fraction of the memory available; this case

is unlikely in practice.

The cost of checkpoint creation can represent a substantial fraction of the average cost to run an

operation when the rate of change is high. For example, the cost of checkpoint creation represents

approximately 65% of the total cost to run the experiment with a stride of 1024. This is a worst-case

example because each operation modifies 8 pages without performing any computation and with

little communication overhead (because it has small argument and result sizes). Nevertheless, it is

not hard to imagine real applications where the current implementation of checkpoint management

will be the bottleneck.

It is possible to improve checkpoint performance with sparse writes by using smaller pages in

the partition hierarchy. But decreasing the size of these pages increases the space overhead due to

additional meta-data. A more interesting alternative would be to compute checkpoint digests lazily.

It is possible to modify the protocol not to send checkpoint digests in checkpoint messages. Thus,

checkpoint digests would need to be computed only before a view change or a state transfer. This

has the potential of substantially reducing the overhead during the normal case at the expense of

potentially slower view changes and state transfers.

8.4.2 State Transfer

We also ran experiments to measure the time to complete a state transfer. The experiments used

the simple service with 256 MB of state and 4 replicas. In the first experiment, a client invoked

117

operations that modified a certain number of pages m. Then, the client was stopped and one of the

backups was restarted from its initial state. We measured the time to complete the state transfer to

bring that backup up-to-date in an idle system. The experiment was run for several values ofm both

with randomly chosen pages and pages chosen sequentially. Figure 8-29 shows the elapsed time to

complete the state transfer and its throughput.

0 20000 40000 60000

number of pages

0

10

20

30

40

50

 e
la

ps
ed

 t
im

e
(s

ec
on

ds
)

0 20000 40000 60000

number of pages

0

1

2

3

4

5

th
ro

ug
hp

ut
 (

M
B

/s
)

sequential
random

Figure 8-29: State transfer latency and throughput.

The results show that the time to complete the state transfer is proportional to the number

of pages that are out-of-date. The throughput is approximately equal to 5 MB/s except that it is

4.5 MB/s when fetching 1000 random pages. The throughput is lower with random pages because

it is necessary to fetch more meta-data information but this additional overhead is dwarfed by the

time to fetch a large number of pages.

The time to complete the state transfer is dominated by the time to fetch data pages and the

time to compute their digests to check their correctness. We measured an average time to digest

each page of 56�s and our communication model predicts 651�s to send the fetch message and

receive the data. This predicts a throughput of 5.5 MB/s, which is close to the maximum throughput

observed (5.1MB/s).

The second experiment ran 5 clients. Each client invoked an operation that took a 4 KB page

as an argument and wrote its value to a random page in the state. We ran this experiment with 3

replicas and measured an aggregate throughput of 6.7 MB/s from the clients to the service. Then,

we reran the experiment with 4 replicas but one of the replicas was started 25 seconds after the

beginning of the experiment. The results show that the replica was unable to get up-to-date; it

started a state transfer that never ended because the state was modified faster than it could fetch

the modifications. This happened because the maximum state transfer throughout is approximately

5 MB/s and the current implementation does not give priority to fetch messages (it uses a single

118

queue for all messages). On the positive side, the state transfer did not delay request processing

significantly and the clients achieved an aggregate throughput of 6.5 MB/s.

The problem in the previous paragraph may decrease availability: if there is a fault, the system

will stop processing client requests until the out-of-date replica can complete the state transfer. There

are several ways to ameliorate this problem. First, the throughput of the state transfer mechanism

can be improved by fetching pages in parallel from all replicas; this should improve throughput to

the link bandwidth (12MB/s). Second, the replicas can give priority to handling of fetch requests:

this will reduce the degradation in the state transfer throughput in the presence of request processing.

Additionally, it will slow down request processing thereby increasing the chances that the replica

will be able to complete the state transfer. A more drastic step would be to artificially restrict the

rate of change.

8.5 View Changes

The experiments described so far analyze the performance of the system when there are no failures.

This section studies the performance of the view change protocol. It measures the time from the

moment a replica sends a view-change message until it is ready to start processing requests in the

new view. This time includes not only the time to receive and process the new-view message but

also the time to obtain any missing requests and, if necessary, the checkpoint chosen as the starting

point for request processing in the new view.

We measured the time to complete the view change protocol using the simple service with

256 MB of state and 4 replicas. There was a single client that invoked two types of operations: a

read-only operation that returned the value of a page; and a write operation that took a 4KB page

value as an argument and wrote it to the state. The client chose the operation type and the page

randomly. View changes were triggered by a separate process that multicast special messages that

caused all replicas to move to the next view at approximately the same time.

Table 8.6 shows the time to complete a view change for an idle system, and when the client

executes write operations with 10% and 50% probability. For each experiment, we timed 128 view

changes at each replica and present the average value taken over all replicas.

idle 10% 50%
view-change time (�s) 575 4162 7005

Table 8.6: Average view change time with varying write percentage.

Replicas never pre-prepare any request in the idle system. Therefore, this case represents the

minimum time to complete a view change. This time is small; it is only 34% greater than the time

to execute operation 0/0 on the simple service.

119

The view change time increases when the replicas process client requests because view-change

messages include information about requests that are prepared or pre-prepared by the replicas.

Table 8.7 shows that the average size of view changes increases: they contain information about

an average of 56 requests for 10% writes and 71 requests for 50% writes. The increase in the

view change time from 10% to 50% writes is partly explained by the 27% increase in the number

of requests in view change messages but most of it is due to one view change that took 607ms to

complete. This view change was much slower because the replica was out-of-date and had to fetch a

missing checkpoint before it could start processing requests in the new view. The time to complete

view changes also increases when it is necessary to fetch missing requests or when the replica has

to rollback its state because it executed a request tentatively that did not commit. But these are

relatively uncommon occurrences.

idle 10% 50%
view-change size (bytes) 160 1954 2418

new-view size (bytes) 136 189 203

Table 8.7: Average size of view-change and new-view messages with varying write percentage.

The time to complete a view change when the primary fails has an additional component: the

timeout replicas wait for an outstanding request to execute before suspecting that the primary is

faulty. The cost of the view change protocol in our library is small; this enables the timeout to be set

to a small value (e.g., one second or less) to improve availability without risking poor performance

due to false failure suspicions.

8.6 BFS

We measured the performance of the BFT library using simple, service-independent benchmarks.

Next, we present the results of a set of experiments to evaluate the performance of a real service —

BFS, which is a Byzantine-fault-tolerant NFS service built using the BFT library that was described

in Section 6.3.

The experiments compared the performance of BFS with two other implementations of NFS:

NO-REP, which is identical to BFS except that it is not replicated, and NFS-STD, which is the

NFS V2 implementation in Linux with Ext2fs at the server. The first comparison allows us to

evaluate the overhead of the BFT library accurately within an implementation of a real service. The

second comparison shows that BFS is practical: its performance is similar to the performance of

NFS-STD, which is used daily by many users. Since the implementation of NFS in Linux does

not ensure stability of modified data and meta-data before replying to the client (as required by the

NFS protocol [S+85]), we also compare BFS with NFS-DEC, which is the NFS implementation in

120

Digital Unix and provides the correct semantics.

The section starts with a description of the experimental setup. Then, it evaluates the perfor-

mance of BFS without view-changes or proactive recovery and it ends with an analysis of the cost

of proactive recovery.

8.6.1 Experimental Setup

The experiments to evaluate BFS used the setup described in Section 8.1. They ran two well-

known file system benchmarks: the modified Andrew benchmark [Ous90, HKM+88] and Post-

Mark [Kat97].

The modified Andrew benchmark emulates a software development workload. It has five phases:

(1) creates subdirectories recursively; (2) copies a source tree; (3) examines the status of all the

files in the tree without examining their data; (4) examines every byte of data in all the files; and (5)

compiles and links the files.

Unfortunately, Andrew is so small for today’s systems that it does not exercise the NFS service.

So we increased the size of the benchmark by a factor of n as follows: phase 1 and 2 create n copies

of the source tree, and the other phases operate in all these copies. We ran a version of Andrew

with n equal to 100, Andrew100, and another with n equal to 500, Andrew500. BFS builds a file

system inside a memory mapped file. We ran Andrew100 in a file system file with 205 MB and

Andrew500 in a file system file with 1 GB; both benchmarks fill 90% of theses files. Andrew100

fits in memory at both the client and the replicas but Andrew500 does not.

PostMark [Kat97] models the load on Internet Service Providers. It emulates the workload

generated by a combination of electronic mail, netnews, and web-based commerce transactions.

The benchmark starts by creating a large pool of files with random sizes within a configurable

range. Then, it runs a large number of transactions on these files. Each transaction consists of

a pair of sub-transactions: the first one creates or deletes a file, and the other one reads a file or

appends data to a file. The operation types for each sub-transaction are selected randomly with

uniform probability distribution. The create operation creates a file with a random size within the

configurable range. The delete operation deletes a random file from the pool. The read operation

reads a random file in its entirety. The append operation opens a random file, seeks to its end, and

appends a random amount of data. After completing all the transactions, the remaining files are

deleted.

We configured PostMark with an initial pool of 10000 files with sizes between 512 bytes and

16 Kbytes. The files were uniformly distributed over 130 directories. The benchmark ran 100000

transactions.

For all benchmarks and NFS implementations, the actual benchmark code ran at the client

workstation using the standard NFS client implementation in the Linux kernel with the same

mount options. The most relevant of these options for the benchmark are: UDP transport, 4096-

121

byte read and write buffers, allowing write-back client caching, and allowing attribute caching.

Both NO-REP and BFS used two relay processes at the client (see Section 6.3).

Out of the 18 operations in the NFS V2 protocol only getattr is read-only because the time-

last-accessed attribute of files and directories is set by operations that would otherwise be read-only,

e.g., read and lookup. We modified BFS not to maintain the time-last-accessed attribute in order

to apply the read-only optimization to read and lookup operations. This modification violates

strict Unix file system semantics but is unlikely to have adverse effects in practice.

8.6.2 Performance Without Recovery

We will now analyze the performance of BFS without view-changes or proactive recovery. We will

start by presenting results of experiments that ran with four replicas and later we will present results

obtained with seven replicas. We also evaluate the impact of the most important optimization in

BFT, the elimination of public-key cryptography, on the performance of BFS.

Four Replicas

Figures 8-30 and 8-31 present results for Andrew100 and Andrew500,respectively, in a configuration

with four replicas and one client machine. We report the mean of 3 runs of the benchmark. The

standard deviation was always below 1% of the reported averages except for phase 1 where it was

as high as 33%.

BFS NO-REP NFS-STD
0

100

200

300

400

el
ap

se
d

ti
m

e
(s

ec
on

ds
)

phase 1
phase 2
phase 3
phase 4
phase 5

Figure 8-30: Andrew100: elapsed time in seconds.

The comparison between BFS and NO-REP shows that the overhead of Byzantine fault tolerance

is low for this service — BFS takes only 14% more time to run Andrew100 and 22% more time to run

Andrew500. This slowdown is smaller than what was observed with the latency of the simple service

because the client spends a significant fraction of the elapsed time computing between operations

(i.e., between receiving the reply to an operation and issuing the next request) and operations at the

122

server perform some computation. Additionally, there are a significant number of disk writes at the

server in Andrew500.

The overhead is not uniform across the benchmark phases: it is 40% and 45% for the first two

phases and approximately 11% for the last three. The main reason for this is a variation in the

amount of time the client spends computing between operations.

The comparison with NFS-STD shows that BFS can be used in practice — it takes only

15% longer to complete Andrew100 and 24% longer to complete Andrew500. The performance

difference would be smaller if Linux implemented NFS correctly. For example, the results in

Table 8.8 show that BFS is 2% faster than the NFS implementation in Digital Unix,which implements

the correct semantics. The implementation of NFS on Linux does not ensure stability of modified

data and meta-data before replying to the client as required by the NFS protocol, whereas BFS

ensures stability through replication.

BFS NO-REP NFS-STD
0

500

1000

1500

2000

el
ap

se
d

ti
m

e
(s

ec
on

ds
)

phase 1
phase 2
phase 3
phase 4
phase 5

Figure 8-31: Andrew500: elapsed time in seconds.

Table 8.8 shows a comparison between BFS, NO-REP, and the NFS V2 implementation in

Digital Unix, NFS-DEC. These experiments ran the Andrew benchmark with one client and four

replicas on DEC 3000/400 Alpha workstations connected by a switched 10Mb/s Ethernet. The

complete experimental setup is described in [CL99c].

The results show that BFS is 2% faster than NFS-DEC. This is because during phases 1, 2, and

5 a large fraction (between 21% and 40%) of the operations issued by the client are synchronous,

i.e., operations that require the NFS implementation to ensure stability of modified file system state

before replying to the client. NFS-DEC achieves stability by writing modified state to disk whereas

BFS achieves stability with lower latency using replication (as in Harp [LGG+91]). NFS-DEC is

faster than BFS in phases 3 and 4 because the client does not issue synchronous operations.

Figure 8-32 presents the throughput measured using PostMark. The results are averages of three

runs and the standard deviation was below 2% of the reported value. The overhead of Byzantine

fault tolerance is higher in this benchmark: BFS’s throughput is 47% lower than NO-REP’s. This

123

phase BFS NO-REP NFS-DEC
1 0.47 0.35 1.75
2 7.91 5.08 9.46
3 6.45 6.11 5.36
4 7.87 7.41 6.60
5 38.3 32.12 39.35

total 61.07 51.07 62.52

Table 8.8: Andrew: BFS vs NFS-DEC elapsed times in seconds.

BFS NFS-STD NO-REP
0

100

200

300

400

500

tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

Figure 8-32: PostMark: throughput in transactions per second.

124

is explained by a reduction on the computation time at the client relative to Andrew. What is

interesting is that BFS’s throughput is only 13% lower than NFS-STD’s. The higher overhead is

offset by an increase in the number of disk accesses performed by NFS-STD in this workload.

Seven Replicas

Figure 8-33 shows a comparison between the time to complete Andrew100 with four replicas

(f = 1) and with seven replicas (f = 2). All replicas had a 600 MHz Pentium III processor and the

client had a 700 MHz Pentium III processor. We report the average of three runs of the benchmark.

The standard deviation was always below 1% of the reported value.

BFS (f=1) BFS (f=2)
0

100

200

300

400

el
ap

se
d

ti
m

e
(s

ec
on

ds
)

phase 1
phase 2
phase 3
phase 4
phase 5

Figure 8-33: Andrew100: elapsed time with f=1 and f=2.

The results show that improving the resilience of the system by increasing the number of replicas

from four to seven does not degrade performance significantly. This outcome was predictable given

the micro-benchmark results in the previous sections. Since there is a significant amount of

computation at the client in Andrew100, BFS with f = 2 is only 3% slower than with f = 1.

Elimination of Public-Key Cryptography

The micro-benchmarks in Section 8.3.3 showed that the replacement of digital signatures by MACs

improved performance dramatically. To evaluate the impact of this optimization on the performance

of a real service, we implemented BFS-PK using the BFT-PK library (that was described in that

section). Tables 8.9 and 8.10 present results comparing the time to complete Andrew100 and

Andrew500 (respectively) in BFS and BFS-PK.

The results show that BFS-PK takes 12 times longer than BFS to run Andrew100 and 15

times longer to run Andrew500. The slowdown is smaller than the one observed with the micro-

benchmarks because the client performs a significant amount of computation in this benchmark.

Additionally, both BFS and BFS-PK use the read-only optimization for getattr, read and

125

phase BFS-PK BFS
1 25.4 0.7
2 1528.6 39.8
3 80.1 34.1
4 87.5 41.3
5 2935.1 265.4

total 4656.7 381.3

Table 8.9: Andrew100: elapsed time in seconds for BFS and BFS-PK.

lookup; this reduces the performance difference between BFS and BFS-PK during phases 3 and

4 where most operations are read-only.

phase BFS-PK BFS
1 122.0 4.2
2 8080.4 204.5
3 387.5 170.2
4 496.0 262.8
5 23201.3 1561.2

total 32287.2 2202.9

Table 8.10: Andrew500: elapsed time in seconds for BFS and BFS-PK.

8.6.3 Performance With Recovery

Frequent proactive recoveries and key changes improve resilience to faults by reducing the window

of vulnerability, but they also degrade performance. We ran Andrew to determine the minimum

window of vulnerability that can be achieved without overlapping recoveries. Then, we configured

the replicated file system to achieve this window, and measured the performance degradation relative

to a system without recoveries.

The implementation of the proactive recovery mechanism is complete except that we are sim-

ulating the secure co-processor, the read-only memory, and the watchdog timer in software. We

are also simulating fast reboots. The LinuxBIOS project [Min00] has been experimenting with

replacing the BIOS by Linux. They claim to be able to reboot Linux in 35 s (0.1 s to get the

kernel running and 34.9 to execute scripts in /etc/rc.d) [Min00]. This means that in a suitably

configured machine we should be able to reboot in less than a second. Replicas simulate a reboot by

sleeping either 1 or 30 seconds and calling msync to invalidate the service-state pages (this forces

reads from disk the next time they are accessed).

126

Recovery Time

The time to complete recovery determines the minimum window of vulnerability that can be achieved

without overlaps. We measured the recovery time for Andrew100 and Andrew500 with 30s reboots

and with the period between key changes, Tk, set to 15s.

Table 8.11 presents a breakdown of the maximum time to recover a replica in both benchmarks.

Since the processes of checking the state for correctness and fetching missing updates over the

network to bring the recovering replica up to date are executed in parallel, Table 8.11 presents a

single line for both of them. The line labeled restore state only accounts for reading the log from

disk; the service state pages are read from disk on demand when they are checked.

Andrew100 Andrew500
save state 2.84 6.3

reboot 30.05 30.05
restore state 0.09 0.30
estimation 0.21 0.15

send new-key 0.03 0.04
send request 0.03 0.03

fetch and check 9.34 106.81
total 42.59 143.68

Table 8.11: Andrew: maximum recovery time in seconds.

The most significant components of the recovery time are the time to save the replica’s log and

service state to disk, the time to reboot, and the time to check and fetch state. The other components

are insignificant. The time to reboot is the dominant component for Andrew100 and checking and

fetching state account for most of the recovery time in Andrew500 because the state is bigger.

Given these times, we set the period between watchdog timeouts, Tw, to 3.5 minutes in An-

drew100 and to 10 minutes in Andrew500. These settings correspond to a minimum window of

vulnerability of 4 and 10.5 minutes, respectively. We also ran the experiments for Andrew100 with

a 1s reboot and the maximum time to complete recovery in this case was 13.3s. This enables a

window of vulnerability of 1.5 minutes with Tw set to 1 minute.

Recovery must be fast to achieve a small window of vulnerability. While the current recovery

times are low, it is possible to reduce them further. For example, the time to check the state can

be reduced by periodically backing up the state onto a disk that is normally write-protected and

by using copy-on-write to create copies of modified pages on a writable disk. This way only the

modified pages need to be checked. If the read-only copy of the state is brought up to date frequently

(e.g., daily), it will be possible to scale to very large states while achieving even lower recovery

times.

127

Recovery Overhead

We also evaluated the impact of recovery on performance in the experimental setup described in the

previous section; Figure 8-34 shows the elapsed time to complete Andrew100 and Andrew500 as

the window of vulnerability increases. BFS-PR is BFS with proactive recoveries. The number in

square brackets is the minimum window of vulnerability in minutes.

BFS-PR[1.5] BFS-PR[4] BFS
Andrew100

0

100

200

300

400

500

el
ap

se
d

ti
m

e

BFS-PR[10.5] BFS
Andrew500

0

500

1000

1500

2000

el
ap

se
d

ti
m

e

Figure 8-34: Andrew: elapsed time in seconds with and without proactive recoveries.

The results show that adding frequent proactive recoveries to BFS has a low impact on perfor-

mance: BFS-PR[4] is 16% slower than BFS in Andrew100 and BFS-PR[1.5] is only 27% slower

(even though every 15s one replica starts a recovery). The overhead of proactive recovery in

Andrew500 is even lower: BFS-PR[10.5] is only 2% slower than BFS.

There are several reasons why recoveries have a low impact on performance. The most obvious

is that recoveries are staggered such that there is never more than one replica recovering; this allows

the remaining replicas to continue processing client requests. But it is necessary to perform a view

change whenever recovery is applied to the current primary and the clients cannot obtain further

service until the view change completes. These view changes are inexpensive because a primary

multicasts a view-change message just before its recovery starts and this causes the other replicas

to move to the next view immediately.

The results also show that the period between key changes, Tk, can be small without impacting

performance significantly. Tk could be smaller than 15s but it should be substantially larger than

3 message delays under normal load conditions to provide liveness. The problem is that changing

keys frequently does not scale well with the number of clients. Active clients need to refresh their

keys to ensure that the reply certificates contain only messages generated by the replicas within

an interval of size at most 2 � Tk. This means that, with 200 active clients and Tk = 15s, each

replica would spend 20% of the time processing new-key messages from clients. This processing

128

is performed by the secure co-processor, which allows the replicas to use the CPUs to execute the

protocol. Nevertheless, it may be a problem with a large number of active clients.

8.7 Summary

The results in this chapter show that services implemented with the BFT library perform well even

when compared with unreplicated implementations. Section 8.7.1 summarizes the experimental

results obtained with the micro-benchmarks, which were designed to evaluate the performance of

the BFT library in a service-independent way, and the performance results for BFS are summarized

in Section 8.7.2.

8.7.1 Micro-Benchmarks

Recall that the micro-benchmarks compare two implementations of a simple service with no state and

whose operations perform no computation. The two implementations are BFT, which is replicated

using the BFT library, and NO-REP, which is not replicated. The micro-benchmarks overestimate

the overhead introduced by the BFT library because, in real services, computation or I/O at clients

and servers reduces the overhead relative to unreplicated implementations.

The experimental results show that our analytic performance model is accurate: the absolute

value of the relative prediction error for latency and throughput was below 10% of the experimental

results for almost all experiments.

Latency

When the operation argument and result sizes are very small, the latency to invoke the replicated

service is much higher than without replication. The maximum slowdown relative to NO-REP

occurs when the operation argument and result size are both equal to 8 B and it is equal to 4.07 for

read-write operations and 1.93 with the read-only optimization.

However, the slowdown decreases quickly as the argument and result sizes increase. For

example, the slowdown with an 8 KB result size is 1.47 for read-write operations and 1.25 with

the read-only optimization. The model predicts an asymptote of 1.26 for the slowdown with very

large arguments or results for both read-write and read-only operations. The read-only optimization

reduces slowdown significantly with small argument and result sizes but its benefit decreases to

zero as these sizes increase.

The model predicts similar trends in a WAN environment. However, the maximum predicted

slowdown relative to NO-REP is approximately 2 for read-write operations because the communi-

cation latency in the WAN dwarfs CPU costs and BFT only adds an extra round-trip. The read-only

optimization removes this round-trip and virtually eliminates the overhead.

129

Increasing the number of replicas from 4 to 7 does not cause a severe increase in the latency

to invoke the replicated service. In our experimental setup, the maximum overhead relative to

the configuration with 4 replicas is 30% with very small argument and result sizes. Furthermore,

the overhead decreases as the argument or result sizes increase: it is at most 7% for read-write

operations and 2% with the read-only optimization with an argument or result size of 8 KB.

The model predicts a similar behavior in configurations with up to 31 replicas (f = 10): there

is a large overhead for operations with small argument and result sizes but it decreases as these sizes

increase. For example, BFT with f = 10 is 4.2 times slower than with f = 1 with 8 B arguments

and results but only 1.9 with 8 KB arguments and 1.7 with 8 KB results. The slowdown is lower

with the read-only optimization: BFT with f = 10 is at most 3.3 times slower with 8 B arguments

and results but only 1.35 with 8 KB arguments and 1.13 with 8 KB results.

Throughput

The results show that BFT has significantly lower throughput than NO-REP for operations with

small argument and result sizes. The bottleneck in this case is the replica (or server) CPU and BFT

generates more CPU load than NO-REP. For example, when both the argument and the result size

are equal to 8 B, BFT achieves a throughput that is 52% lower than NO-REP’s with read-write

operations and 35% lower with the read-only optimization.

However, the throughput degradation is less significant with large argument sizes: BFT’s

throughput is only 11% lower than NO-REP’s with 4 KB arguments. The bottleneck in this case is

the network link to each replica (or to the server). Furthermore, with large result sizes BFT achieves

better throughput than NO-REP because different clients can obtain large results in parallel from

different replicas: BFT’s throughput with 4 KB results is 2.3 times higher than NO-REP’s for

read-write operations and up to 3 times higher with the read-only optimization. The bottleneck in

NO-REP is the network link to the client and in BFT it is the CPU at the replicas.

According to our model, increasing the resilience of the system to f = 10 does not cause a

severe throughput degradation relative to the configuration with f = 1: the maximum degradation is

31% for read-write operations with very small argument and result sizes. Furthermore, it decreases

as these sizes increase. The degradation is even lower for read-only operations: the maximum

degradation is 5% and throughput actually improves as the number of replicas increases for large

result sizes.

Impact Of Optimizations

BFT performs well because of several important optimizations. The most important is the elimi-

nation of public-key cryptography. This optimization improves latency dramatically in our exper-

imental setup; it achieves a speedup between 57 and 138 depending on argument and result sizes.

130

The optimization also increases throughput by a factor of 5 to 11.

Batching requests, digest replies, and separate request transmission are also very important

optimizations. Batching requests is very effective at improving throughput of read-write operations.

For example, it improves the throughput of an operation with argument and result size equal to 8 B

by a factor of 4.1. The digest replies optimization has a significant impact with large result sizes.

Our results show that it reduces latency by up to a factor of 2.6 and improves throughput by up to a

factor of 3. Similarly, separate request transmission improves latency and throughput significantly

for operations with large argument sizes: it reduces latency by 40% and improves throughput by

91%.

Tentative execution of requests is not as effective: it improves latency by at most 27% and has

no significant impact on throughput.

8.7.2 BFS

The performance results for BFS show that the relative overhead introduced by the BFT library is

even lower for a real service. BFS takes 14% to 22% more time than an unreplicated service (which

uses the same file system code) to complete scaled up versions of the Andrew benchmark.

The comparison with NFS implementations in production operating systems (Linux and Digital

Unix) shows that BFS can be used in practice: its performs similarly to these systems, which are

used daily by many users. BFS’ performance ranges from 2% faster to 21% slower depending on

the NFS implementation and the amount of data used in the scaled up Andrew benchmark. BFS is

2% faster than the NFS implementation in Digital Unix, which implements correct NFS semantics,

and up to 21% slower than the NFS implementation in Linux with Ext2fs, which does not implement

the correct semantics.

Finally, the experiments with proactive recovery show that the overhead is low even with very

frequent recoveries: it ranges from 27% with a minimum window of vulnerability of 1.5 minutes to

2% with a window of vulnerability of 10.5 minutes. Therefore, it is possible to improve resilience

by decreasing the window of vulnerability with a low impact on performance.

131

Chapter 9

Related Work

There is a large body of research on replication but the earlier work did not provide an adequate

solution for building systems that tolerate software bugs, operator mistakes, or malicious attacks.

Most of this work relied on assumptions that are not realistic in the presence of these types of faults,

and the work that did not rely on unrealistic assumptions performed poorly and did not provide a

complete solution to build replicated systems.

Sections 9.1 and Section 9.2 discuss replication techniques that assume benign faults and

replication techniques that tolerate Byzantine faults, respectively. Section 9.3 discusses other

related work.

9.1 Replication With Benign Faults

Most research on replication has focused on techniques that tolerate benign faults (e.g., [AD76,

Lam78, Gif79, OL88, Lam89, LGG+91]): they assume replicas fail by stopping or by omitting some

steps. This assumption is not valid with software bugs, operator mistakes, or malicious attacks.

For example, an attacker can replace the code of a faulty replica to make it behave arbitrarily.

Furthermore, services with mutable state may return incorrect replies when a single replica fails

because this replica may propagate corrupt information to the others. Consequently, replication may

decrease resilience to these types of faults: the probability of incorrect system behavior increases

with the number of replicas.

Viewstamped replication [OL88] and Paxos [Lam89] use a combination of primary-backup

[AD76] and quorum [Gif79] techniques to tolerate benign faults in an asynchronous system. They

use a primary to assign sequence numbers to requests and they replace primaries that appear to

be faulty using a view change protocol. Both algorithms use quorums to ensure that request

ordering information is propagated to the new view. BFT borrows these ideas from the two

algorithms. But tolerating Byzantine faults requires a protocol that is significantly more complex:

BFT uses cryptographic authentication,quorum certificates, an extra pre-prepare phase, and different

techniques to perform view changes, select primaries, and garbage collect information.

132

We are the first to provide a replicated file system that tolerates Byzantine faults but there are

several replicated file systems that tolerate benign faults, e.g. Ficus [GHM+90], Coda [Sat90],

Echo [HBJ+90], and Harp [LGG+91]. Our system is most similar to Harp, which also implements

the NFS protocol. Like Harp, we take advantage of replication to ensure stability of modified data

and meta-data before replying to clients (as required by the NFS protocol) without synchronous

disk writes.

9.2 Replication With Byzantine Faults

Techniques that tolerate Byzantine faults [PSL80, LSP82] make no assumptions about the behavior

of faulty components and, therefore, can tolerate even malicious attacks. However, most earlier work

(e.g., [PSL80, LSP82, Sch90, CASD85, Rei96, MR96a, GM98, KMMS98]) assumes synchrony,

which is not a good assumption in real systems because of bursty load in both the processors and

the network. This assumption is particularly dangerous with malicious attackers that can launch

denial-of-service attacks to flood the processors or the network with spurious requests.

Agreement and Consensus

Some agreement and consensus algorithms tolerate Byzantine faults in asynchronous systems (e.g,

[BT85, CR92, MR96b, DGGS99, CKS00]). However, they do not provide a complete solution for

state machine replication, and furthermore, most of them were designed to demonstrate theoretical

feasibility and are too slow to be used in practice.

BFT’s protocol during normal-case operation is similar to the Byzantine agreement algorithm

in [BT85]. However, this algorithm is insufficient to implement state-machine replication: it

guarantees that non-faulty processes agree on a message sent by a primary but it is unable to survive

primary failures. Their algorithm also uses symmetric cryptography but since it does not provide

view changes, garbage collection, or client authentication, it does not solve the problems that make

eliminating public-key cryptography hard.

The algorithm in [CKS00] solves consensus more efficiently than previous algorithms. It is

possible to use this algorithm as a building block to implement state machine replication but the

performance would be poor: it would require 7 message delays to process client requests and it

would perform at least three public-key signatures in the critical path. The algorithm in [CKS00]

uses a signature sharing scheme to generate the equivalent of our quorum certificates. This is

interesting: it could be combined with proactive signature sharing [HJJ+97] to produce certificates

that could be exchanged among replicas even with recoveries.

133

State Machine Replication

Our work is inspired by Rampart [Rei94, Rei95, Rei96, MR96a] and SecureRing [KMMS98], which

also implement state machine replication. However, these systems rely on synchrony assumptions

for safety.

Both Rampart and SecureRing use group communication techniques [BSS91] with dynamic

group membership. They must exclude faulty replicas from the group to make progress (e.g., to

remove a faulty primary and elect a new one), and to perform garbage collection. For example, a

replica is required to know that a message was received by all the replicas in the group before it can

discard the message. So it may be necessary to exclude faulty nodes to discard messages.

These systems rely on failure detectors to determine which replicas are faulty. However, failure

detectors cannot be accurate in an asynchronous system [Lyn96], i.e., they may misclassify a

replica as faulty. Since correctness requires that fewer than 1=3 of group members be faulty, a

misclassification can compromise correctness by removing a non-faulty replica from the group.

This opens an avenue of attack: an attacker gains control over a single replica but does not change

its behavior in any detectable way; then it slows correct replicas or the communication between

them until enough are excluded from the group. It is even possible for these system to behave

incorrectly without any compromised replicas. This can happen if all the replicas that send a reply

to a client are removed from the group and the remaining replicas never process the client’s request.

To reduce the probability of misclassification, failure detectors can be calibrated to delay

classifying a replica as faulty. However, for the probability to be negligible the delay must be very

large, which is undesirable. For example, if the primary has actually failed, the group will be unable

to process client requests until the delay has expired, which reduces availability. Our algorithm

is not vulnerable to this problem because it only requires communication between quorums of

replicas. Since there is always a quorum available with no faulty replicas, BFT never needs to

exclude replicas from the group.

Public-key cryptography was the major performance bottleneck in Rampart and SecureRing

despite the fact that these systems include sophisticated techniques to reduce the cost of public-key

cryptography at the expense of security or latency. These systems rely on public-key signatures to

work correctly and cannot use symmetric cryptography to authenticate messages. BFT uses MACs

to authenticate all messages and public-key cryptography is used only to exchange the symmetric

keys to compute the MACs. This approach improves performance by up to two orders of magnitude

without loosing security.

Rampart and SecureRing can guarantee safety only if fewer than 1=3 of the replicas are faulty

during the lifetime of the system. This guarantee is too weak for long-lived systems. Our system

improves this guarantee by recovering replicas proactively and frequently; it can tolerate any number

of faults if fewer than 1=3 of the replicas become faulty within a window of vulnerability, which

134

can be made small under normal load conditions with low impact on performance.

Rampart and SecureRing provide group membership protocols that can be used to implement

recovery, but only in the presence of benign faults. These approaches cannot be guaranteed to work

in the presence of Byzantine faults for two reasons. First, the system may be unable to provide safety

if a replica that is not faulty is removed from the group to be recovered. Second, the algorithms rely

on messages signed by replicas even after they are removed from the group and there is no way to

prevent attackers from impersonating removed replicas that they controlled.

Quorum Replication

Phalanx [MR97, MR98a, MR98b] and its successor Fleet [MR00] apply quorum replication tech-

niques [Gif79] to achieve Byzantine fault-tolerance in asynchronous systems. This work does not

provide generic state machine replication. Instead, it offers a data repository with operations to

read or write individual variables and to acquire locks. We can implement arbitrary operations that

access any number of variables and can both read and write to those variables, whereas in Fleet it

would be necessary to acquire and release locks to execute such operations. This makes Fleet more

vulnerable to malicious clients because it relies on clients to group and order reads and blind writes

to preserve any invariants over the service state.

Fleet provides an algorithm with optimal resilience (n > 3f + 1 replicas to tolerate f faults)

but malicious clients can make the state of correct replicas diverge when this algorithm is used. To

prevent this, Fleet requires n > 4f + 1 replicas.

Fleet does not provide a recovery mechanism for faulty replicas. However, it includes a mecha-

nism to estimate the number of faulty replicas in the system [APMR99] and a mechanism to adapt

the threshold f on the number of faults tolerated by the system based on this estimate [AMP+00].

This is interesting but it is not clear whether it will work in practice: a clever attacker can make

compromised replicas appear to behave correctly until it controls more than f and then it is too late

to adapt or respond in any other way.

There are no published performance numbers for Fleet or Phalanx but we believe our system is

faster because it has fewer message delays in the critical path and because of our use of MACs rather

than public key cryptography. In Fleet, writes require three message round-trips to execute and reads

require one or two round-trips. Our algorithm executes read-write operations in two round-trips

and most read-only operations in one. Furthermore, all communication in Fleet is between the

client and the replicas. This reduces opportunities for request batching and may result in increased

latency since we expect that in most configurations communication between replicas will be faster

than communication with the client.

The approach in Fleet offers the potential for improved scalability: each operation is processed

by only a subset of replicas. However, the load on each replica decreases slowly with n (it is

135

Ω(1=
p
n)). Therefore, we believe that partitioning the state by several state machine replica groups

is a better approach to achieve scalability for most applications. Furthermore, it is possible to

combine our algorithm with quorum systems that tolerate benign faults to improve on Fleet’s

scalability but this is future work.

9.3 Other Related Work

The problem of efficient state transfer has not been addressed by previous work on Byzantine-fault-

tolerant replication. We present an efficient state transfer mechanism that enables frequent proactive

recoveries with low performance degradation. The state transfer algorithm is also unusual because

it is highly asynchronous. In replication algorithms for benign faults, e.g.,[LGG+91], replicas

typically retain a checkpoint of the state and messages in their log until the recovering replica is

brought up-to-date. This could open an avenue for a denial-of-service attack in the presence of

Byzantine faults. Instead, in our algorithm, replicas are free to garbage collect information and are

minimally delayed by the recovery.

The SFS read-only file system [FKM00] can tolerate Byzantine faults. This file system uses a

technique to transfer data between replicas and clients that is similar to our state transfer technique.

They are both based on Merkle trees [Mer87] but the read-only SFS uses data structures that are

optimized for a file system service. Another difference is that our state transfer handles modifications

to the state while the transfer is in progress. Our technique to check the integrity of the replica’s

state during recovery is similar to those in [BEG+94] and [MVS00] except that we obtain the tree

with correct digests from the other replicas rather than from a secure co-processor.

The concept of a system that can tolerate more than f faults provided no more than f nodes

in the system become faulty in some time window was introduced in [OY91]. This concept has

previously been applied in synchronous systems to secret-sharing schemes [HJKY95], threshold

cryptography [HJJ+97], and more recently secure information storage and retrieval [GGJR99]

(which provides single-writer single-reader replicated variables). But our algorithm is more general;

it allows a group of nodes in an asynchronous system to implement an arbitrary state machine.

136

Chapter 10

Conclusions

The growing reliance of our society on computers demands highly-available systems that provide

correct service without interruptions. Byzantine faults such as software bugs, operator mistakes,

and malicious attacks are the major cause of service interruptions. This thesis describes a new

replication algorithm and implementation techniques to build highly-available systems that tolerate

Byzantine faults. It shows, for the first time, how to build Byzantine-fault-tolerant systems that can

be used in practice to implement real services because they do not rely on unrealistic assumptions

and they perform well.

This chapter presents a summary of the main results in the thesis and directions for future work.

10.1 Summary

This thesis describes BFT, a state-machine replication algorithm that tolerates Byzantine faults

provided fewer than 1=3 of the replicas are faulty.

BFT does not rely on unrealistic assumptions. For example, it is bad to assume synchrony

because a denial-of-service attack can cause the service to return incorrect replies. BFT is the first

state-machine replication algorithm that works correctly in asynchronous systems with Byzantine

faults: it provides linearizability, which is a strong safety property, without relying on any synchrony

assumption. Additionally, it guarantees liveness provided message delays are bounded eventually.

A service may be unable to return replies when a denial of service attack is active but it never returns

incorrect replies and clients are guaranteed to receive replies when the attack ends.

It is also bad to assume that client faults are benign because clients are usually easier to

compromise than replicas. BFT provides safety and liveness regardless of the number of Byzantine-

faulty clients. Additionally, it can be used to replicate services with complex operations, which

is important to limit the damage Byzantine-faulty clients can cause. Service operations can be

designed to preserve invariants on the service state and to perform access control; BFT ensures

faulty clients are unable to break these invariants or bypass the access control checks. Algorithms

that restrict service operations to simple reads and blind writes are more vulnerable to Byzantine-

137

faulty clients because they rely on the clients to order and group these simple operations correctly

in order to enforce invariants.

It is not realistic to assume that fewer than 1=3 of the replicas fail over the lifetime of the system.

This thesis describes a proactive recovery mechanism that allows the replicated system to tolerate

any number of faults over the lifetime of the system provided fewer than 1=3 of the replicas become

faulty within a window of vulnerability. This mechanism recovers replicas periodically even if

there is no reason to suspect that they are faulty. Replicas can be recovered frequently to shrink

the window of vulnerability to a few minutes with a low impact on performance. Additionally, the

proactive recovery mechanism provides detection of denial-of-service attacks aimed at increasing

the window and it also detects when the state of a replica is corrupted by an attacker.

BFT has been implemented as a generic program library with a simple interface. The BFT

library provides a complete solution to the problem of building real services that tolerate Byzantine

faults. For example, it includes efficient techniques to garbage collect information, to transfer state

to bring replicas up-to-date, to retransmit messages, and to handle services with non-deterministic

behavior. The thesis describes a real service that was implemented using the BFT library: the first

Byzantine-fault-tolerant NFS file system, BFS.

The BFT library and BFS perform well. For example, BFS performs 2% faster to 24% slower

than production implementations of the NFS protocol that are not replicated. This good perfor-

mance is due to several optimizations. The most important optimization is the use of symmetric

cryptography to authenticate messages. Public-key cryptography, which was the major bottleneck

in previous systems, is used only to exchange the symmetric keys. Other optimizations reduce the

communication overhead: the algorithm uses only one message round trip to execute read-only

operations and two to execute read-write operations, and it uses batching under load to amortize the

protocol overhead over many requests. The algorithm also uses optimizations to reduce protocol

overhead as the operation argument and return sizes increase.

There is little benefit in using the BFT library or any other replication technique when there

is a strong positive correlation between the failure probabilities of the replicas. For example, our

approach cannot mask a software error that occurs at all replicas at the same time. But the BFT

library can mask nondeterministic software errors, which seem to be the most persistent [Gra00]

since they are the hardest to detect. In fact, we encountered such a software bug while running our

system, and our algorithm was able to continue running correctly in spite of it. The BFT library can

also mask software errors due to aging (e.g., resource leaks). It improves on the usual technique of

rebooting the system because it refreshes state automatically and staggers recovery so that individual

replicas are highly unlikely to fail simultaneously. Additionally, systems replicated with the BFT

library can tolerate attacks that take longer than the window of vulnerability to succeed.

One can increase the benefit of replication further by taking steps to increase diversity. One

possibility is to have diversity in the execution environment: the replicas can be administered by

138

different people; they can be in different geographic locations; and they can have different config-

urations (e.g., run different combinations of services, or run schedulers with different parameters).

This improves resilience to several types of faults, for example, administrator attacks or mistakes,

attacks involving physical access to the replicas, attacks that exploit weaknesses in other services,

and software bugs due to race conditions.

An agent from Europol reported in a recent news article [Sul00] that a bank lost millions of

dollars through a scheme implemented by one of its own system administrators who added a few

lines of code to the bank’s software. The BFT library could have prevented this problem.

10.2 Future Work

We want to explore the use of software diversity to improve resilience to software bugs and

attacks that exploit software bugs because these faults are the most common. N-version program-

ming [CA78] is expensive but since there are several independent implementations available of

operating systems and important services (e.g., file systems, data bases, and WEB servers), replicas

can run different operating systems and different implementations of the code for these services.

For this to work, it is necessary to implement a small software layer to ensure that the different

replicas have the same observable behavior. This is simplified by the existence of standardized

protocols to access important services (e.g., NFS [S+85] and ODBC [Gei95]) but there are some

interesting issues on how to implement this layer efficiently.

Additionally, for checkpoint management and state transfer to work with software diversity, it

is necessary to define a common observable service state and to implement efficient translation

functions between the state in each implementation and this observable state. Since the observable

state abstracts away implementation details, this technique will also improve resilience to resource

leaks in the service code; our state transfer technique can be used to restart a replica from a correct

checkpoint of the observable state that is obtained from the others.

It is possible to improve security further by exploiting software diversity across recoveries. One

possibility is to restrict the service interface at a replica after its state is found to be corrupt. Another

potential approach is to use obfuscation and randomization techniques [CT00, F+97] to produce a

new version of the software each time a replica is recovered. These techniques are not very resilient

to attacks but they can be very effective when combined with proactive recovery because the attacker

has a bounded time to break them.

The algorithm described in this thesis uses a fixed group of replicas. We would like to extend

it to allow dynamic configuration changes. This is hard with Byzantine faults: an attacker that

controls a quorum of the replicas in some old configuration may fool clients into believing that

the current configuration is an arbitrary set of replicas under its control. We believe it is possible

to use proactive signature sharing [HJJ+97] to solve this problem. The idea is that the members

139

of the group would be able to generate a shared signature that could be verified with a constant,

well-known public key. Such a signature could be used to convince the clients of the current group

membership. To prevent an attacker from learning how to generate a valid signature, the shares

used to generate it would be refreshed on every configuration change. For this to work, it would be

necessary to develop a refreshment protocol for the shares that worked both correctly and efficiently

in asynchronous systems.

Another problem of special interest is reducing the amount of resources required to implement

a replicated service. The number of replicas can be reduced by using f replicas as witnesses [Par86,

LGG+91] that are involved in the protocol only when some full replica fails. It is also possible to

reduce the number of copies of the state to f + 1 but the details remain to be worked out.

We have shown how to implement a Byzantine-fault-tolerant file system. It would be interesting

to use the BFT library to implement other services, for example, a relational database or an httpd.

The library has already been used to replicate the Thor [LAC+96, CALM97] object-oriented

database [Rod00] and a Domain Name Service (DNS) [TPRZ84] with dynamic updates [Ahm00,

Yan99]. DNS is interesting because it uses hierarchical state partitioning and caching to achieve

scalability. To implement a Byzantine-fault-tolerant DNS, we had to develop an efficient protocol

for replicated clients that allows the replicas in a group to request operations from another group of

replicas.

This thesis has focused on the performance of the BFT library in the normal case. It is important

to perform an experimental evaluation of the reliability and performance of the library with faults

by using fault-injection techniques. The challenge is that attacks are hard to model. For example,

attacks can involve cooperation between faulty clients and replicas, and can combine denial-of-

service with penetration. Ultimately, we would like to make a replicated service available on the

Internet and launch a challenge to break it.

Source Code Availability

We made the source code for the BFT library, BFS, and the benchmarks used in their performance

evaluation available to allow others to reproduce our results and improve on this work. It can be

obtained from:

http://www.pmg.lcs.mit.edu/˜castro/byz.html

140

Appendix A

Formal Safety Proof for BFT-PK

This appendix presents a formal safety proof for the BFT-PK algorithm. The proof is based on in-

variant assertions and simulation relations. It shows that the algorithmAgc formalized in Section 2.4

implements the automatonS, which specifies safe behavior and was defined in Section 2.4.3. We use

the following strategy to show this. We start by proving that a simplified version of the algorithm,

A, which does not have garbage collection, implements S. Then, we prove that Agc implements A.

A.1 Algorithm Without Garbage Collection

This section specifies the simplified algorithm A, which does not have garbage collection. The

proxy and multicast channel automata in A are identical to the ones defined for Agc in Section 2.4.

The difference is in the specification of the replica automata. Each replica automaton Ri in A is

defined as follows.

Signature:
Input: RECEIVE(hREQUEST; o; t; ci�c)i

RECEIVE(hPRE-PREPARE; v; n;mi�j)i

RECEIVE(hPREPARE; v; n; d; ji�j)i

RECEIVE(hCOMMIT; v; n; d; ji�j)i

RECEIVE(hVIEW-CHANGE; v; P; ji�j)i

RECEIVE(hNEW-VIEW; v; V; O; Ni�j)i

REPLICA-FAILUREi

Internal: SEND-PRE-PREPARE(m;v; n)i

SEND-COMMIT(m; v; n)i

EXECUTE(m;v; n)i

VIEW-CHANGE(v)i

SEND-NEW-VIEW(v; V)i

Output: SEND(m;X)c

Here, t; v; n 2 N, c 2 C, i; j 2 R, m 2 M, V; O;N � M, X � X , and

d 2 D = fd j 9m 2 M : (d = D(m))g

141

State:
vali 2 S, initially so
viewi 2 N, initially 0
ini � M, initially fg
outi � M, initially fg
last-repi : C ! O0, initially 8 c 2 C : last-repi(c) = null-rep
last-rep-ti : C ! N, initially 8 c 2 C : last-rep-ti(c) = 0
seqnoi 2 N, initially 0
last-execi 2 N, initially 0
faultyi 2 Bool, initially false

Auxiliary functions:
tag(m;u) � m = hu; :::i
primary(v) � v mod j Rj
primary(i) � viewi mod j Rj
in-v(v; i) � viewi = v

prepared(m; v; n;M) � hPRE-PREPARE; v; n;mi�primary(v)
2 M ^

9 R : (jRj � 2f ^ primary(v) 62 R ^ 8 k 2 R : (hPREPARE; v; n;D(m); ki�k 2 M))
prepared(m; v; n; i) � prepared(m; v; n; ini)
last-prepared(m; v; n;M) � prepared(m;v; n;M) ^
69m0; v0 : ((prepared(m0; v0; n;M) ^ v0 > v) _ (prepared(m0; v; n;M) ^ m 6= m0))

last-prepared(m; v; n; i) � last-prepared(m;v; n; ini)
committed(m; v; n; i) � (9 v0 : (hPRE-PREPARE; v0; n;mi�primary(v0)

2 ini) _ m 2 ini) ^

9 R : (jRj � 2f + 1 ^ 8 k 2 R : (hCOMMIT; v; n;D(m); ki�k 2 ini))
correct-view-change(m;v; j) � 9 P : (m = hVIEW-CHANGE; v; P; ji�j ^
8 hPRE-PREPARE; v0; n;m0i�primary(v0)

2 P : (last-prepared(m0; v0; n; P) ^ v0 < v)

merge-P(V) � fm j 9 hVIEW-CHANGE; v; P; ki�k 2 V : m 2 P g
max-n(M) � max(f n j hPRE-PREPARE; v; n;mi�i 2 Mg)
correct-new-view(m; v) �
9 V;O;N;R : (m = hNEW-VIEW; v; V; O; Ni�primary(v)

^ jV j = jRj = 2f + 1 ^

8 k 2 R : (9m0 2 V : (correct-view-change(m0; v; k))) ^
O = f hPRE-PREPARE; v; n;m0i�primary(v)

j 9 v0 : last-prepared(m0; v0; n;merge-P(V))g ^

N = f hPRE-PREPARE; v; n; nulli�primary(v)
j n < max-n(O) ^

69 v0;m0; n : last-prepared(m0; v0; n;merge-P(V)))
has-new-view(v; i) � v = 0 _ 9m : (m 2 ini ^ correct-new-view(m;v))

Output Transitions:

SEND(m;R� fig)i
Pre: m 2 outi ^ :tag(m; REQUEST) ^ :tag(m;REPLY)
Eff: outi := outi � fmg

SEND(m; fprimary(i)g)i
Pre: m 2 outi ^ tag(m; REQUEST)
Eff: outi := outi � fmg

SEND(hREPLY; v; t; c; i; ri�i ; fcg)i
Pre: hREPLY; v; t; c; i; ri�i 2 outi
Eff: outi := outi � fhREPLY; v; t; c; i; ri�ig

142

Input Transitions:

RECEIVE(hREQUEST; o; t; ci�c)i
Eff: let m = hREQUEST; o; t; ci�c

if t = last-rep-ti(c) then
outi := outi [fhREPLY; viewi; t; c; i; last-repi(c)i�ig

else
ini := ini [fmg
if primary(i) 6= i then

outi := outi [fmg

RECEIVE(hPRE-PREPARE; v; n;mi�j)i (j 6= i)
Eff: if j = primary(i) ^ in-v(v; i) ^ has-new-view(v; i)^

69d : (d 6= D(m) ^ hPREPARE; v; n; d; ii�i 2 ini) then
let p = hPREPARE; v; n; D(m); ii�i

ini := ini [fhPRE-PREPARE; v; n;mi�j ; pg
outi := outi [fpg

else if 9o; t; c : (m = hREQUEST; o; t; ci�c) then
ini := ini [fmg

RECEIVE(hPREPARE; v; n; d; ji�j)i (j 6= i)
Eff: if j 6= primary(i) ^ in-v(v; i) then

ini := ini [fhPREPARE; v; n; d; ji�jg

RECEIVE(hCOMMIT; v; n; d; ji�j)i (j 6= i)
Eff: if viewi � v then

ini := ini [fhCOMMIT; v; n; d; ji�jg

RECEIVE(hVIEW-CHANGE; v;P; ji�j)i (j 6= i)
Eff: let m = hVIEW-CHANGE; v;P; ji�j

if v � viewi ^ correct-view-change(m;v; j) then
ini := ini [fmg

RECEIVE(hNEW-VIEW; v;X; O;Ni�j)i (j 6= i)
Eff: let m = hNEW-VIEW; v;X; O;Ni�j ,

P = fhPREPARE; v; n0; D(m0); ii�i jhPRE-PREPARE; v; n0;m0i�j 2 (O [N)g
if v > 0 ^ v � viewi ^ correct-new-view(m; v) ^ :has-new-view(v; i) then

viewi := v

ini := ini [O [N [fmg [P

outi := P

REPLICA-FAILUREi
Eff: faultyi := true

Internal Transitions:

SEND-PRE-PREPARE(m;v; n)i
Pre: primary(i) = i ^ seqnoi = n� 1 ^ in-v(v; i) ^ has-new-view(v; i)^

9o; t; c : (m = hREQUEST; o; t; ci�c ^m 2 ini)^ 69hPRE-PREPARE; v; n0;mi�i 2 ini
Eff: seqnoi := seqnoi + 1

let p = hPRE-PREPARE; v; n;mi�i
outi := outi [fpg
ini := ini [fpg

SEND-COMMIT(m;v; n)i
Pre: prepared(m; v; n; i) ^ hCOMMIT; v; n;D(m); ii�i 62 ini
Eff: let c = hCOMMIT; v; n;D(m); ii�i

outi := outi [fcg
ini := ini [fcg

143

EXECUTE(m;v; n)i
Pre: n = last-execi + 1 ^ committed(m;v; n; i)
Eff: last-execi := n

if (m 6= null) then
let hREQUEST; o; t; ci�c = m

if t � last-rep-ti(c) then
if t > last-rep-ti(c) then

last-rep-ti(c) := t

(last-repi(c); vali) := g(c; o; vali)
outi := outi [fhREPLY; viewi; t; c; i; last-repi(c)i�ig

ini := ini � fmg

SEND-VIEW-CHANGE(v)i
Pre: v = viewi + 1
Eff: viewi := v

let P 0 = fhm; v; nijlast-prepared(m; v; n; i)g,
P =

S
hm;v;ni2P 0

(fp = hPREPARE; v; n; D(m); ki�k jp 2 inig [fhPRE-PREPARE; v; n;mi�primary(v)
g),

m = hVIEW-CHANGE; v; P; ii�i
outi := outi [fmg
ini := ini [fmg

SEND-NEW-VIEW(v; V)i
Pre: primary(v) = i ^ v � viewi ^ v > 0 ^ V � ini ^ jV j = 2f + 1 ^ :has-new-view(v; i)^

9R : (jRj = 2f + 1 ^ 8k 2 R : (9P : (hVIEW-CHANGE; v; P; ki�k 2 V)))
Eff: viewi := v

let O = fhPRE-PREPARE; v; n;mi�i j9v
0 : last-prepared(m; v0; n;merge-P(V))g,

N = fhPRE-PREPARE; v; n; nulli�i jn < max-n(O)^ 69v0;m; n : last-prepared(m; v0; n;merge-P(V))g,
m = hNEW-VIEW; v; V; O; Ni�i
seqnoi := max-n(O)
ini := ini [O [N [fmg
outi := fmg

Safety Proof

Next, we prove that A implements S. We start by proving some invariants. The first invariant says

that messages, which are signed by a non-faulty replica, are in the replica’s log. This invariant is

important because its proof is the only place where it is necessary to reason about the security of

signatures and it enables most of the other invariants to reason only about the local state of a replica.

The key results are Invariant A.1.4, which says that correct replicas never prepare distinct

requests with the same view and sequence number, and Invariant A.1.11, which says that correct

replicas never commit distinct requests with the same sequence number. We use these invariants

and a simulation relation to prove that A implements S.

Invariant A.1.1 The following is true of any reachable state in an execution of A,

8 i; j 2 R; m 2 M : ((:faultyi ^ :faultyj ^ :tag(m; REPLY)))
((hmi�i 2 inj _ 9m0 = hVIEW-CHANGE; v; P; ki�k : (m0 2 inj ^ hmi�i 2 P) _
9m0 = hNEW-VIEW; v; V; O; Ni�k : (m0 2 inj ^ (hmi�i 2 V _ hmi�i 2 merge-P(V))))
) hmi�i 2 ini))

The same is also true if one replaces inj by fm j 9X : (m;X) 2 wireg or by outj

144

Proof: For any reachable state x of A and message value m that is not a reply message, if replica i

is not faulty in state x, hmi�i 2 outi) hmi�i 2 ini. Additionally, if hmi�i 2 ini is true for some

state in an execution, it remains true in all subsequent states in that execution or until i becomes

faulty. By inspection of the code for automaton Ri, these two conditions are true because every

action of Ri that inserts a message hmi�i in outi also inserts it in ini and no action ever removes a

message signed by i from ini.

Our assumption on the strength of authentication guarantees that no automaton can impersonate

a non-faulty replica Ri by sending hmi�i (for all values of m) on the multicast channel. Therefore,

for a signed message hmi�i to be in some state component of a non-faulty automaton other than

Ri, it is necessary for SEND(hmi�i ;X)i to have executed for some value of X at some earlier point

in that execution. The precondition for the execution of such a send action requires hmi�i 2 outi.

The latter and the two former conditions prove the invariant.

The next batch of invariants states self-consistency conditions for the state of individual replicas.

For example, it states that replicas never log conflicting pre-prepare or prepare messages for the

same view and sequence number.

Invariant A.1.2 The following is true of any reachable state in an execution of A, for any replica
i such that faultyi is false:

1. 8hPREPARE; v; n; d; ii�i 2 ini : (6 9d0 6= d : (hPREPARE; v; n; d0; ii�i 2 ini))

2. 8v; n;m : ((i = primary(v) ^ hPRE-PREPARE; v; n;mi�i 2 ini))
69m0 : (m0 6= m ^ hPRE-PREPARE; v; n;m0i�i 2 ini))

3. 8hPRE-PREPARE; v; n;mi�i 2 ini : (i = primary(v)) n � seqnoi)

4. 8hPRE-PREPARE; v; n;mi�primary(v)
2 ini :

(v > 0) 9m0 = hNEW-VIEW; v;X;O;Ni�primary(v)
: (m0 2 ini ^ correct-new-view(m0; v)))

5. 8m0 = hNEW-VIEW; v; X;O;Ni�primary(v)
2 ini : correct-new-view(m0; v)

6. 8m0 = hVIEW-CHANGE; v;P; ji�j 2 ini : correct-view-change(m0; v; j)

7. 8hPREPARE; v; n;D(m); ii�i 2 ini : (hPRE-PREPARE; v; n;mi�primary(v)
2 ini)

8. 8hPRE-PREPARE; v; n;mi�primary(v)
2 ini : (i 6= primary(v)) hPREPARE; v; n;D(m); ii�i 2 ini)

9. 8hPRE-PREPARE; v; n;mi�primary(v)
2 ini : v � viewi

Proof: The proof is by induction on the length of the execution. The initializations ensure that

ini = fg and, therefore, all conditions are vacuously true in the base case. For the inductive step,

assume that the invariant holds for every state of any execution � of length at most l. We will show

that the invariant also holds for any one step extension �1 of �.

Condition (1) can be violated in �1 only if an action that may insert a prepare message signed

by i in ini executes. These are actions of the form:

1. RECEIVE(hPRE-PREPARE; v; n;m0i�j)i

2. RECEIVE(hPREPARE; v; n; d; ji�j)i

3. RECEIVE(hNEW-VIEW; v; V; O; Ni�j)i

145

The first type of action cannot violate condition (1) because the condition in the if statement en-

sures that hPREPARE; v; n;D(m0); ii�i is not inserted in ini when there exists a hPREPARE; v; n; d; ii�i 2
ini such that D(m0) 6= d. Similarly, the second type of action cannot violate condition (1) because

it only inserts the argument prepare message in ini if it is signed by a replica other than Ri.

For the case v = 0, actions of type 3 never have effects on the state of Ri. For the case v > 0,

we can apply the inductive hypothesis of conditions (7) and (4) to conclude that if there existed a

hPREPARE; v; n;D(m); ii�i 2 ini in the last state in �, there would also exist a new-view message

for view v in ini in that state. Therefore, the precondition of actions of type 3 would prevent

them from executing in such a state. Since actions of type 3 may insert multiple prepare messages

signed by Ri into ini, there is still a chance they can violate condition (1). However, this cannot

happen because these actions are enabled only if the argument new-view message is correct and the

definition of correct-new-view ensures that there is at most one pre-prepare message with a given

sequence number in O [N .

Condition (2) can be violated in �1 only by the execution of an action of one of the following

types:

1. RECEIVE(hPRE-PREPARE; v; n;m0i�j)i,

2. RECEIVE(hNEW-VIEW; v; V; O; Ni�j)i,

3. SEND-PRE-PREPARE(m;v; n)i, or

4. SEND-NEW-VIEW(v; V)i

Actions of the first two types cannot violate condition (2) because they only insert pre-prepare

messages in ini that are not signed by Ri. Actions of the third type cannot violate condition (2)

because the inductive hypothesis for condition (3) and the precondition for the send-pre-prepare

action ensure that the pre-prepare message inserted in ini has a sequence number that is one higher

than the sequence number of any pre-prepare message for the same view signed byRi in ini. Finally,

actions of the fourth type cannot violate condition (2). For v = 0, they are not enabled. For v > 0,

the inductive hypothesis of condition (4) and the precondition for the send-new-view action ensure

that no pre-prepare for view v can be in ini when the action executes, and the definition of O and N

ensures that there is at most one pre-prepare message with a given sequence number in O [N .

Condition (3) can potentially be violated by actions that insert pre-prepares in ini or modify

seqnoi. These are exactly the actions of the types listed for condition (2). As before, actions of

the first two types cannot violate condition (3) because they only insert pre-prepare messages in ini

that are not signed by Ri and they do not modify seqnoi. The send-pre-prepare action preserves

condition (3) because it increments seqnoi such that it becomes equal to the sequence number of

the pre-prepare message it inserts in ini. The send-new-view actions also preserve condition (3):

(as shown before) actions of this type only execute if there is no pre-prepare for view v in ini and,

when they execute, they set seqnoi := max-n(O), which is equal to the sequence number of the

pre-prepare for view v with the highest sequence number in ini.

146

To violate condition (4), an action must either insert a pre-prepare message in ini or remove a

new-view message from ini. No action ever removes new-view messages from ini. The actions that

may insert pre-prepare messages in ini are exactly the actions of the types listed for condition (2). The

first type of action in this list cannot violate condition (4) because the if statement in its body ensures

that the argument pre-prepare message is inserted in ini only when has-new-view(v; i) is true. The

second type of action only inserts pre-prepare messages for view v in ini if the argument new-view

message is correct and in this case it also inserts the argument new-view message in ini. Therefore,

the second type of action also preserves condition (4). The precondition of send-pre-prepare actions

ensures that send-pre-prepare actions preserve condition (4). Finally, the send-new-view actions

also preserve condition (4) because their effects and the inductive hypothesis for condition (6) ensure

that a correct new-view message for view v is inserted in ini whenever a pre-prepare for view v is

inserted in ini.

Conditions (5) and (6) are never violated. First, received new-view and view-change messages

are always checked for correctness before being inserted in ini. Second, the effects of send-view-

change actions together with the inductive hypothesis of condition (9) and the precondition of

send-view-change actions ensure that only correct view-change messages are inserted in ini. Third,

the inductive hypothesis of condition (6) and the effects of send-new-view actions ensure that only

correct new-view messages are inserted in ini.

Condition (7) is never violated because no action ever removes a pre-prepare from ini and the

actions that insert a hPREPARE; v; n;D(m); ii�i in ini (namely RECEIVE(hPRE-PREPARE; v; n;m0i�j)i
and RECEIVE(hNEW-VIEW; v; V;O;Ni�j)i actions) also insert a hPRE-PREPARE; v; n;mi�primary(v)
in ini.

Condition (8) can only be violated by actions that insert pre-prepare messages in ini because

prepare messages are never removed from ini. These are exactly the actions listed for condition

(2). The first two types of actions preserve condition (8) because whenever they insert a pre-prepare

message in ini they always insert a matching prepare message. The last two types of actions can

not violate condition (8) because they never insert pre-prepare messages for views v such that

primary(v) 6= i in ini.

The only actions that can violate condition (9) are actions that insert pre-prepare messages in

ini or make viewi smaller. Since no actions ever make viewi smaller, the actions that may violate

condition (9) are exactly those listed for condition (2). The if statement in the first type of action

ensures that it only inserts pre-prepare messages in ini when their view number is equal to viewi.

The if statement in the second type of action ensures that it only inserts pre-prepare messages in ini

when their view number is greater than or equal to viewi. Therefore, both types of actions preserve

the invariant. The precondition for the third type of action and the effects of the fourth type of action

ensure that only pre-prepare messages with view number equal to viewi are inserted in ini. Thus,

these two types of actions also preserve the invariant.

147

Definition A.1.3 n-faulty � jfi 2 Rjfaultyi = truegj

The next two invariants are important. They state that replicas agree on an order for requests

within a single view, i.e., it is impossible to produce prepared certificates with the same view and

sequence number and with distinct requests. The intuition behind the proof is that correct replicas

do not accept conflicting pre-prepare messages with the same view and sequence number, and that

the quorums corresponding to any two certificates intersect in at least one correct replica.

Invariant A.1.4 The following is true of any reachable state in an execution of A,
8 i; j 2 R; n; v 2 N; m;m0 2 M : ((:faultyi ^ :faultyj ^ n-faulty � f))

(prepared(m;v; n; i) ^ prepared(m0; v; n; j)) D(m) = D(m0)))

Proof: By contradiction, assume the invariant does not hold. Then prepared(m; v; n; i) = true and

prepared(m0; v; n; j) = true for some values of m;m0; v; n; i; j such that D(m0) 6= D(m). Since

there are 3f + 1 replicas, this condition and the definition of the prepared predicate imply:

(a) 9R : (jRj > f ^ 8k 2 R :

(((hPRE-PREPARE; v; n;mi�k 2 ini ^ k = primary(v)) _ hPREPARE; v; n;D(m); ki�k 2 ini) ^

((hPRE-PREPARE; v; n;m0i�k 2 inj ^ k = primary(v)) _ hPREPARE; v; n;D(m0); ki�k 2 inj)))

Since there are at most f faulty replicas and R has size at least f + 1, condition (a) implies:

(b) 9k 2 R : (faultyk = false^

(((hPRE-PREPARE; v; n;mi�k 2 ini ^ k = primary(v)) _ hPREPARE; v; n;D(m); ki�k 2 ini) ^

((hPRE-PREPARE; v; n;m0i�k 2 inj ^ k = primary(v)) _ hPREPARE; v; n;D(m0); ki�k 2 inj)))

Invariant A.1.1 and (b) imply:

(c) 9k 2 R : (faultyk = false^

(((hPRE-PREPARE; v; n;mi�k 2 ink ^ k = primary(v)) _ hPREPARE; v; n;D(m); ki�k 2 ink) ^

((hPRE-PREPARE; v; n;m0i�k 2 ink ^ k = primary(v)) _ hPREPARE; v; n;D(m0); ki�k 2 ink)))

Condition (c) contradicts Invariant A.1.2 (conditions 1, 7 and 2.)

Invariant A.1.5 The following is true of any reachable state in an execution of A,
8 i 2 R : ((:faultyi ^ n-faulty � f))
(8 hNEW-VIEW; v; V; O;Ni�k 2 ini; n; v0 2 N :
(prepared(m;v0; n;merge-P(V)) ^ prepared(m0; v0; n;merge-P(V))) D(m) = D(m0))))

Proof: Since Invariant A.1.2 (condition 5) ensures any new-view message in ini for a non-faulty i

satisfies correct-new-view, the proof for Invariant A.1.4 can also be used here with minor modifica-

tions.

Invariants A.1.6 to A.1.10 show that ordering information in prepared certificates stored by a

quorum is propagated to subsequent views. The intuition is that new-view messages are built by

collecting prepared certificates from a quorum and any two quorums intersect in at least one correct

replica. These invariants allow us to prove Invariant A.1.11, which shows that replicas agree on the

sequence numbers of committed requests.

148

Invariant A.1.6 The following is true of any reachable state in an execution of A,

8i 2 R : (:faultyi) 8hCOMMIT; v; n; d; ii�i 2 ini : (9m : (D(m) = d ^ prepared(m; v; n; i) = true))

Proof: The proof is by induction on the length of the execution. The initializations ensure that

ini = fg and, therefore, the condition is vacuously true in the base case. For the inductive step,

the only actions that can violate the condition are those that insert commit messages in ini, i.e.,

actions of the form RECEIVE(hCOMMIT; v; n; d; ji�j)i or SEND-COMMIT(m; v; n)i. Actions of the

first type never violate the lemma because they only insert commit messages signed by replicas

other than Ri in ini. The precondition for send-commit actions ensures that they only insert

hCOMMIT; v; n;D(m); ii�i in ini if prepared(m; v; n; i) is true.

Invariant A.1.7 The following is true of any reachable state in an execution of A,

8 i 2 R; n; v 2 N; m 2 M : ((:faultyi ^ committed(m;v; n; i)))
(9 R : (jRj > 2f � n-faulty ^ 8 k 2 R : (faultyk = false ^ prepared(m; v; n; k)))))

Proof: From the definition of the committed predicate committed(m; v; n; i) = true implies

(a) 9R : (jRj � 2f + 1 ^ 8k 2 R : (hCOMMIT; v; n;D(m); ki�k 2 ini)).

Invariant A.1.1 implies

(b) 9R : (jRj > 2f � n-faulty ^ 8k 2 R : (faultyk = false ^ hCOMMIT; v; n;D(m); ki�k 2 ink)).

Invariant A.1.6 and (b) prove the invariant.

Invariant A.1.8 The following are true of any reachable state in an execution of A, for any replica
i such that faultyi is false:

1. 8m; v; n; P : (hVIEW-CHANGE; v; P; ii�i 2 ini)
8v0 < v : (last-prepared-b(m; v0; n; i; v), last-prepared(m; v0; n; P)))

2. 8m = hNEW-VIEW; v; V; O;Ni�primary(v)
2 ini : ((O [N) � ini)

Where last-prepared-b is defined as follows:

last-prepared-b(m; v; n; i; b) � v < b ^ prepared(m; v; n; ini)^

69m0; v0 : ((prepared(m0; v0; n; ini) ^ v < v0 < b) _ (prepared(m0; v; n; ini) ^m 6= m0)).

Proof: The proof is by induction on the length of the execution. The initializations ensure that

ini = fg and, therefore, the condition is vacuously true in the base case.

For the inductive step, the only actions that can violate condition (1) are those that insert view-

change messages in ini and those that insert pre-prepare or prepare messages in ini (no pre-prepare

or prepare message is ever removed from ini.)

These actions have one of the following schemas:

1. RECEIVE(hVIEW-CHANGE; v; P; ji�j)i

2. VIEW-CHANGE(v)i

3. RECEIVE(hPRE-PREPARE; v; n;m0i�j)i,

4. RECEIVE(hPREPARE; v; n; d; ji�j)i,

149

5. RECEIVE(hNEW-VIEW; v; V; O; Ni�j)i,

6. SEND-PRE-PREPARE(m;v; n)i, or

7. SEND-NEW-VIEW(v; V)i

Actions of the first type never violate the lemma because they only insert view-change messages

signed by replicas other than Ri in ini. The effects of actions of the second type ensure that when a

view-change message hVIEW-CHANGE; v; P; ii�i is inserted in ini the following condition is true:

(a) 8v0 < v : (last-prepared(m; v0; n; i) , last-prepared(m; v0; n;P)). Condition (a) and Invari-

ant A.1.2 (condition 9) imply condition 1 of the invariant.

For the other types of actions, assume there exists at least a view change message for v signed by

Ri in ini before one of the other types of actions executes (otherwise the lemma would be vacuously

true) and pick any m0 = hVIEW-CHANGE; v; P; ii�i 2 ini. The inductive hypothesis ensures that the

following condition holds before the actions execute:

8m;n; v0 < v : (last-prepared-b(m; v0; n; i; v) , last-prepared(m; v0; n;P))
Therefore, it is sufficient to prove that the actions preserve this condition. The logical value of

last-prepared(m; v0; n;P)) does not change (for allm0;m; n; v0) because the view-change messages

in ini are immutable.

To prove that the value of last-prepared-b(m; v0; n; i; v) is also preserved (for all m0;m; n; v0),

we will first prove the following invariant (b): For any reachable state in an execution of A, any

non-faulty replica Ri, and any view-change message m0 = hVIEW-CHANGE; v; P; ii�i , m0 2 ini)
viewi � v.

The proof for (b) is by induction on the length of the execution. It is vacuously true in the base

case. For the inductive step, the only actions that can violate (b) are actions that insert view-change

messages signed byRi in ini or actions that make viewi smaller. Since there are no actions that make

viewi smaller, these actions have the form VIEW-CHANGE(v)i. The effects of actions of this form

ensure the invariant is preserved by setting viewi to the view number in the view-change message.

Given (b) it is easy to see that the other types of actions do not violate condition 1 of the

lemma. They only insert pre-prepare or prepare messages in ini whose view number is equal to

viewi after the action executes. Invariant (b) guarantees that viewi is greater than or equal to the

view number v of any view-change message in ini. Therefore, these actions cannot change the value

of last-prepared-b(m; v0; n; i; v) for any m0;m; n; v0.

Condition (2) of the lemma can only be violated by actions that insert new-view messages in

ini or remove pre-prepare messages from ini. Since no action ever removes pre-prepare messages

from ini, the only actions that can violate condition (2) are: RECEIVE(hNEW-VIEW; v; V;O;Ni�j)i
and SEND-NEW-VIEW(v; V)i. The first type of action preserves condition (2) because it inserts all

the pre-prepares in O [N in ini whenever it inserts the argument new-view message in ini. The

second type of action preserves condition (2) in a similar way.

Invariant A.1.9 The following is true of any reachable state in an execution of A,

150

8 i 2 R; m 2 M; v; n 2 N : ((:faultyi ^ n-faulty � f ^
9 R : (jRj > f ^ 8 k 2 R : (:faultyk ^ prepared(m; v; n; k))))
8 v0 > v 2 N; m0 2 M : (hPRE-PREPARE; v0; n;m0i�primary(v0)

2 ini) m0 = m))

Proof: Rather than proving the invariant directly, we will prove the following condition is true:

8 i 2 R; m 2 M; v; n 2 N : ((:faultyi ^ n-faulty � f ^
9 R : (jRj > f ^ 8 k 2 R : (:faultyk ^ prepared(m; v; n; k))))
8 v0 > v 2 N; hNEW-VIEW; v0; V; O; Ni�primary(v0)

2 ini :

(hPRE-PREPARE; v0; n;mi�primary(v0)
2 O))

Condition (a) implies the invariant. Invariant A.1.2 (condition 4) states that there is never a

pre-prepare message in ini for a view v0 > 0 without a correct new-view message in ini for the same

view. But if there is a correct new-view message hNEW-VIEW; v0; V;O;Ni�primary(v0) 2 ini then

Invariant A.1.8 (condition 2) implies that (O [N) � ini. This and condition (a) imply that there is

a hPRE-PREPARE; v0; n;mi�primary(v0) 2 ini and Invariant A.1.2 (conditions 1,2 and 8) implies that

no different pre-prepare message for sequence number n and view v0 is ever in ini.

The proof is by induction on the number of views between v and v0. For the base case,

v = v0, condition (a) is vacuously true. For the inductive step, assume condition (a) holds for

v00 such that v < v00 < v0. We will show that it also holds for v0. Assume there exists a new-

view message m1 = hNEW-VIEW; v0; V1; O1; N1i�primary(v0) in ini (otherwise (a) is vacuously

true.) From Invariant A.1.2 (condition 5), this message must verify correct-new-view(m1; v
0). This

implies that it must contain 2f + 1 correct view-change messages for view v0 from replicas in some

set R1.

Assume that the following condition is true (b) 9R : (jRj > f ^ 8k 2 R : (faultyk = false ^

prepared(m; v; n; k) = true)) (otherwise (a) is vacuously true.) Since there are only 3f + 1 replicas,

R and R1 intersect in at least one replica and this replica is not faulty; call this replica k. Let k’s

view-change message in m1 be m2 = hVIEW-CHANGE; v0; P2; ki�k .

Invariant A.1.4 implies last-prepared-b(m; v; n; k; v + 1) is true because k is non-faulty and

prepared(m; v; n; k) = true. Therefore, one of the following conditions is true:

1. last-prepared-b(m; v; n; k; v0)

2. 9v00;m0 : (v < v00 < v0 ^ last-prepared-b(m0; v00; n; k; v0))

Since condition (a) implies the invariant, the inductive hypothesis implies that m = m0 in the

second case. Therefore, Invariants A.1.1 and A.1.8 imply that (c) 9v2 � v : last-prepared(m; v2; n; P2)

Condition (c), Invariant A.1.5, and the fact that correct-new-view(m1; v
0) is true imply that one

of the following conditions is true:

1. last-prepared(m; v2; n;merge-P(V1))

2. 9v00;m0 : (v2 < v00 < v0 ^ last-prepared(m0; v00; n;merge-P(V1)))

151

In case (1), (a) is obviously true. If case (2) holds, Invariants A.1.1 and A.1.2 (condition 7) imply

that there exists at least one non-faulty replica j with hPRE-PREPARE; v00; n;m0i�primary(v00) 2 inj .

Since condition (a) implies the invariant, the inductive hypothesis implies thatm = m0 in the second

case.

Invariant A.1.10 The following is true of any reachable state in an execution of A,

8 n; v; v0 2 N; m;m0 2 M : (n-faulty � f)
(9 R � R : (jRj > f ^ 8 k 2 R : (:faultyk ^ prepared(m;v; n; k))) ^
9 R0 � R : (jR0j > f ^ 8 k 2 R0 : (:faultyk ^ prepared(m0; v0; n; k))))) D(m) = D(m0))

Proof: Assume without loss of generality that v � v0. For the case v = v0, the negation of this

invariant implies that there exist two requestsm andm0 (D(m0) 6= D(m)), a sequence numbern, and

two non-faulty replicas Ri; Rj , such that prepared(m; v; n; i) = true and prepared(m0; v; n; j) =

true; this contradicts Invariant A.1.4.

For v > v0, assume this invariant is false. The negation of the invariant and the definition of the

prepared predicate imply:

9 n; v; v0 2 N; m;m0 2 M : (v > v0 ^ n-faulty � f ^
(9 R � R : (jRj > f ^ 8 k 2 R : (:faultyk ^ prepared(m;v; n; k))) ^
9 i 2 R : (:faultyi ^ hPRE-PREPARE; v0; n;m0i�primary(v0)

2 ini) ^ D(m) 6= D(m0))

But this contradicts Invariant A.1.9 as long as the probability thatm 6= m0 whileD(m) = D(m0)

is negligible.

Invariant A.1.11 The following is true of any reachable state in an execution of A,

8 i; j 2 R; n; v; v0 2 N; m;m0 2 M : ((:faultyi ^ :faultyj ^ n-faulty � f))
(committed(m;v; n; i) ^ committed(m0; v0; n; j)) D(m) = D(m0)))

Invariant A.1.12 The following is true of any reachable state in an execution of A,

8 i 2 R; n; v; v0 2 N; m;m0 2 M : ((:faultyi ^ n-faulty � f)) (committed(m; v; n; i) ^
9 R0 � R : (jR0j > f ^ 8 k 2 R0 : (:faultyk ^ prepared(m0; v0; n; k))))) D(m) = D(m0))

Proof: Both Invariant A.1.11 and A.1.12 are implied by Invariants A.1.10 and A.1.7.

Rather than proving that A implements S directly, we will prove that A implements S0, which

replaces the value of the state machine in S by the history of all the operations executed. S 0 is better

suited for the proof and we will use a simple simulation relation to prove that it implements S. We

start by defining a set of auxiliary functions that will be useful in the proof.

152

Definition A.1.13 We define the following functions inductively:

val : (N� O �N� C)� ! S
last-rep : (N� O �N� C)� ! (C ! O0)
last-rep-t : (N� O �N� C)� ! (C ! N)

val(�) = so
8 c : (last-rep(�)(c) = null-rep)
8 c : (last-rep-t(�)(c) = 0)

val(�:hn; o; t; ci) = s
last-rep(�:hn; o; t; ci)(c) = r
last-rep-t(�:hn; o; t; ci)(c) = t
8 c0 6= c : (last-rep(�:hn; o; t; ci)(c0) = last-rep(�)(c0))
8 c0 6= c : (last-rep-t(�:hn; o; t; ci)(c0) = last-rep-t(�)(c0))

where (r; s) = g(c; o; val(�))

Automaton S0 has the same signature as S except for the addition of an internal action EXECUTE-

NULL. It also has the same state components except that the val component is replaced by a sequence

of operations:

hist 2 (N�O �N� C)�, initially �;

and there is a new seqno component:

seqno 2N, initially 0.

Similarly to S, the transitions for S0 are only defined when n-faulty � f . Also, the transitions

for S0 are identical to S’s except for those defined bellow.

EXECUTE(o; t; c)
Pre: ho; t; ci 2 in
Eff: seqno := seqno + 1

in := in� fho; t; cig
if t > last-rep-t(hist)(c) then

hist := hist:hseqno; o; t; ci
out := out [fhlast-rep(c); t; cig

EXECUTE-NULL

Eff: seqno := seqno + 1

The EXECUTE-NULL actions allow the seqno component to be incremented without removing

any tuple from in. This is useful to model execution of null requests.

Theorem A.1.14 S 0 implements S

Proof: The proof uses a forward simulation F from S0 to S. F is defined as follows:

Definition A.1.15 F is a subset of states(S0) � states(S); (x; y) is an element of F (also written
as y 2 F [x]) if and only if all the following conditions are satisfied:

1. All state components with the same name are equal in x and y.

2. x:val = val(y:hist)

3. x:last-rep-tc = last-rep(y:hist)(c);8c 2 C

153

To prove that F is in fact a forward simulation from S0 to S one most prove that both of the

following are true [Lyn96].

1. For all x 2 start(S0), F [x] \ start(S) 6= fg

2. For all (x; �; x0) 2 trans(S0), where x is a reachable state of S 0, and for all y 2 F [x], where

y is reachable in S, there exists an execution fragment � of S starting with y and ending with

some y0 2 F [x0] such that trace(�) = trace(�).

It is clear that F verifies the first condition because all variables with the same name in S and

S0 are initialized to the same values and, since hist is initially equal to �, x:val = so = val(�) and

x:last-rep-tc = 0 = last-rep(�)(c).

We use case analysis to show that the second condition holds for each � 2 acts(S 0). For

all actions � except EXECUTE-NULL, let � consist of a single � step. For � = EXECUTE-NULL,

let � be �. It is clear that this satisfies the second condition for all actions but EXECUTE. For

� = EXECUTE(o; t; c), definition A.1.13 and the inductive hypothesis (i.e., x:val = val(y:hist) and

x:last-rep-tc = last-rep(y:hist)(c)) ensure that y0 2 F [x0].

Definition A.1.16 We define the function prefix : (N�O�N�C)� ! (N�O�N�C)� as follows:

prefix(�; n) is the subsequence obtained from � by removing all tuples whose first component is

greater than n.

Invariant A.1.17 The following is true of any reachable state in an execution of S 0,
8 hn; o; t; ci 2 hist : (t > last-rep-t(prefix(hist; n� 1))(c))

Proof: The proof is by induction on the length of the execution. The initial states of S0 verify the

condition vacuously because hist is initially �. For the inductive step, the only actions that can

violate the invariant are those that modify hist, i.e., EXECUTE(o; t; c). But these actions only modify

hist if t > last-rep-t(hist)(c).

Invariant A.1.18 The following are true of any reachable state in an execution of S 0:

1. 8hn; o; t; ci 2 hist : (:faultyc) t � last-reqc)

2. 8ho; t; ci 2 in : (:faultyc) t � last-reqc)

Proof: The proof is by induction on the length of the execution. The initial states of S0 verify the

condition vacuously because hist is initially � and in is empty. For the inductive step, since no action

ever decrements last-reqc or changes faultyc from true to false, the only actions that can violate

the invariant are those that append tuples from a non-faulty client c to hist, i.e., EXECUTE(o; t; c) or

to in, REQUEST(o; c). The EXECUTE actions only append a tuple hn; o; t; ci to hist if ho; t; ci 2 in;

therefore, the inductive hypothesis for condition 2 implies that they preserve the invariant. The

REQUEST actions also preserve the invariant because the tuple ho; t; ci inserted in in has t equal to

the value of last-reqc after the action executes.

154

We are now ready to prove the main theorem in this section.

Theorem A.1.19 A implements S

Proof: We prove thatA implements S0, which implies thatA implements S (Theorem A.1.14.) The

proof uses a forward simulation G from A0 to S0 (A0 is equal to A but with all output actions not in

the external signature of S hidden.) G is defined as follows.

Definition A.1.20 G is a subset of states(A0) � states(S0); (x; y) is an element of G if and only if
the following are satisfied:

1. 8i 2 R : (x:faultyi = y:faulty-replicai)

2. 8c 2 C : (x:faultyc = y:faulty-clientc)

and the following are satisfied when n-faulty � f

3. 8c 2 C : (:x:faultyc) x:last-reqc = y:last-reqc)

4. 8i 2 R : (:x:faultyi) x:last-execi � y:seqno)

5. 8i 2 R : (:x:faultyi) x:vali = val(prefix(y:hist; x:last-execi)))

6. 8i 2 R : (:x:faultyi) 8c 2 C : (x:last-repi(c) = last-rep(prefix(y:hist; x:last-execi))(c)))

7. 8i 2 R : (:x:faultyi) 8c 2 C : (x:last-rep-ti(c) = last-rep-t(prefix(x:hist; y:last-execi))(c)))

8. 80 < n � y:seqno :
9hn; o; t; ci 2 y:hist : (9R � R; v 2 N : (jRj > 2f � y:n-faulty ^

8k 2 R : (:x:faultyk ^ prepared(hREQUEST; o; t; ci�c ; v; n; A
0:k)))) _

(:9hn; o; t; ci 2 y:hist ^
(9R � R; v; t 2 N; o 2 O; c 2 C : (jRj > 2f � y:n-faulty ^ t � last-rep-t(prefix(y:hist; n � 1))(c)) ^

8k 2 R : (:x:faultyk ^ prepared(hREQUEST; o; t; ci�c ; v; n; A
0:k))))

_ 9R � R; v 2 N : (jRj > 2f � y:n-faulty ^ 8k 2 R : (:x:faultyk ^ prepared(null; v; n; A0:k)))))

9. 8hREPLY; v; t; c; i; ri�i 2 (x:outi [fmj9X : (m;X) 2 x:wireg [x:inc) :
(:x:faultyi) 9hn; o; t; ci 2 y:hist : (r = last-rep(prefix(y:hist; n))(c)))

10. 8hn; o; y:last-reqc; ci 2 y:hist :
((:x:faultyc ^ x:outc 6= fg)) 9hlast-rep(prefix(y:hist; n))(c); y:last-reqc; ci 2 y:out)

11. Let Mc = x:outc [fmj9i 2 R : (:x:faultyi ^m 2 x:ini [x:outig [fmj9X : (m;X) 2 x:wireg,
and M1

c = merge-P(fm = hVIEW-CHANGE; v; P; ji�j jm 2Mc _
9hNEW-VIEW; v; V; O; Ni�j 2Mc : (m 2 V)g),

8c 2 C : (:x:faultyc) 8o 2 O; t 2 N : ((m = hREQUEST; o; t; ci�c 2Mc_
9hPRE-PREPARE; v; n;mi�j 2Mc [M

1
c)) (ho; t; ci 2 y:in _ 9n : (hn; o; t; ci 2 y:hist))))

The intuition behind the definition of G is the following. The first two conditions say that the

same replicas and clients are faulty in related A0 and S0 states. The next condition requires the

last request timestamp for all non-faulty clients to be equal in related states. Condition 4 says that

automaton A0 cannot execute requests with sequence numbers that have not yet been executed in

S0. Conditions 5 to 7 state that x:vali; x:last-repi, and x:last-rep-ti can be obtained by executing

the prefix of y’s history up to the sequence number of the last request executed by replica i in x.

Condition 8 is the most interesting because it relates the commit point for requests in A0 with

the execution of regular and null requests in S0. All sequence numbers in y that correspond to a

request in y’s history must be prepared by at least f + 1 correct replicas in x. The other sequence

155

numbers must correspond to a request with an old timestamp or a null request that is prepared by at

least f + 1 correct replicas in x. Condition 9 says that replies from non-faulty replicas in A0 must

correspond to replies returned in S0. The next condition requires every request from a correct client

in y’s history to have a reply in y:out if that reply was not received by the client in x. The final

condition states that all requests in x must be either in y’s history or in y:in.

Note that most of the conditions in the definition of G only need to hold when n-faulty � f , for

n-faulty > f any relation will do because the behavior of S0 is unspecified.

To prove that G is in fact a forward simulation from A0 to S0 one most prove that both of the

following are true.

1. For all x 2 start(A0), G[x] \ start(S0) 6= fg

2. For all (x; �; x0) 2 trans(A0), where x is a reachable state of A0, and for all y 2 G[x], where

y is reachable in S0, there exists an execution fragment � of S0 starting with y and ending

with some y0 2 G[x0] such that trace(�) = trace(�).

It is easy to see that the first condition holds. We use case analysis to show that the second

condition 2 holds for each � 2 acts(A0)

Non-faulty proxy actions. If � = REQUEST(o)c, � = CLIENT-FAILUREc, or � = REPLY(r)c, let

� consist of a single � step. G is preserved in a trivial way if � is a CLIENT-FAILURE action. If � is a

REQUEST action, neither � nor � modify the variables involved in all conditions in the definition of

G except 3, and 10 and 11. Condition 3 is preserved because both � and � increment y:last-reqc.

Condition 10 is also preserved because Invariant A.1.18 implies that there are no tuples in y:hist

with timestamp y0:last-reqc and � does not add any tuple to y:hist. Even though � inserts a new

request in x:outc, condition 11 is preserved because � inserts ho; t; ci in y:in.

If � is a REPLY(r)c action that is enabled in x, the REPLY(r)c action in � is also enabled. Since

there are less than f faulty replicas, the precondition of � ensures that there is at least one non-faulty

replica i and a view v such that hREPLY; v; x:last-reqc; c; i; ri�i 2 x:inc and that x:outc 6= fg.

Therefore, the inductive hypothesis (conditions 9 and 10) implies that hr; t; ci 2 y:out and thus

REPLY(r)c is enabled. G is preserved because � ensures that x0:outc = fg.

If � = RECEIVE(m)c, or � = SEND(m;X)c, let � be �. This preserves G because y 2 G[x] and

the preconditions require that the reply message being received is in some tuple in x:wire and the

request message being sent is in x:outc.

Internal channel actions. If � is a MISBEHAVE(m;X;X 0) action, let � be �. G is preserved

because � does not add new messages to x:wire and retains a tuple with m on x0:wire.

Non-faulty replica actions. For all actions � except � = REPLICA-FAILUREi and � =

EXECUTE(m; v; n)i, let � be �. It is clear that this could only violate conditions 8, 9 and 11

because these actions do not modify the state components involved in the other conditions. They

can not violate condition 8; since no messages are ever removed from ink (where k is any non-faulty

156

replica), if prepared(m; v; n; k) = true, it remains true for the entire execution or until replica k

becomes faulty. And these actions do not violate conditions 9 and 11 because any request or reply

messages they add to x:ini, x:outi, or x:wire (either directly or as part of other messages) was

already in x:wire, x:ini, or x:outi.

For � = REPLICA-FAILUREi, let � consist of a single � step. This does not violate the conditions

in the definition of G. For conditions other than 1 and 8, it either does not change variables involved

in these conditions (2 and 3), or makes them vacuously true. Condition 1 is satisfied in a trivial way

because � also sets y:faulty-replicai to true. And condition 8 is not violated because the size of the

sets R in the condition is allowed to decrease when additional replicas become faulty.

Non-faulty replica execute (non-null request.)

For � = EXECUTE(hREQUEST; o; t; ci�c ; v; n)i, there are two cases: if x:last-execi < y:seqno,

let � be �; otherwise, let � consist of the execution of a single EXECUTE(o; t; c) action preceded by

FAULTY-REQUEST(o; t; c) in the case where x:faultyc = true. In any of these cases, it is clear that

only conditions 4 to 11 can be violated.

For the case where � = �, conditions 4, 8, 10 and 11 are also preserved in a trivial way. For the

other conditions we consider two cases (a) t > last-rep-ti(c) and (b) otherwise. The precondition

of � ensures that x:committed(hREQUEST; o; t; ci�c ; v; n; i) is true. In case (a), this precondition,

Invariant A.1.12, and the definition of G (condition 8) imply that there is a tuple in y:hist with

sequence number n and that it is equal to hn; o; t; ci. Therefore, conditions 5 to 7 and 9 are

preserved. In case (b), the precondition of �, Invariant A.1.12, the definition of G (condition 8),

and Invariant A.1.17 imply that there is no tuple with sequence number n in y:hist. Therefore,

conditions 5 to 9 are preserved in this case.

For the case where � 6= �, when � is enabled in x the actions in � are also enabled in y. In the

case where c is faulty, FAULTY-REQUEST(o; t; c) is enabled and its execution enables EXECUTE(o; t; c).

Otherwise, since y 2 G[x], condition 11 in Definition A.1.20 and the precondition of � imply that

EXECUTE(o; t; c) is enabled in y.

It is easy to see that conditions 4 to 7 and 9 to 11 are preserved. For condition 8, we consider

two cases (a) t > last-rep-ti(c) and (b) otherwise. In both cases, the precondition of � ensures that

x:committed(hREQUEST; o; t; ci�c ; v; n; i) is true. This precondition, Invariant A.1.7 and the fact

that � appends a tuple hy0:seqno; o; t; ci to y:hist, ensure that condition 8 is preserved in this case.

In case (b), the precondition Invariant A.1.7 and the assumption that t � last-rep-ti(c), ensure that

condition 8 is preserved also in this case.

Non-faulty replica execute (null request.)

For � = EXECUTE(null; v; n)i, if x:last-execi < y:seqno, let � be �; otherwise, let � consist

of the execution of a single EXECUTE-NULL action. Execution of a null request only increments

x:last-execi and � can at most increment y:seqno. Therefore, only conditions 4 to 8 can be violated.

Condition 4 is not violated because � increments y:seqno in the case where x:last-execi = y:seqno.

157

For the case where, � = �, conditions 5 to 7 are also not violated because � does not append

any new tuple to y:hist and all tuples in y:hist have sequence number less than y0:seqno; therefore,

prefix(y:hist; x:last-execi) = prefix(y0:hist; x0:last-execi). Since the precondition of � implies that

x:committed(null; v; n; i) is true, Invariant A.1.7 ensures condition 8 is also preserved in this case.

For the case where� consists of a EXECUTE-NULL step, x:committed(null; v; n; i), n-faulty � f ,

Invariant A.1.12, and the definition of G (condition 8) imply that there is no tuple in y0:hist with se-

quence number x0:last-execi; therefore, prefix(y:hist; x:last-execi) = prefix(y0:hist; x0:last-execi).

Faulty replica actions. If � is an action of a faulty replica i (i.e., x:faultyi = true), let � be

�. Since � can not modify faultyi and a faulty replica cannot forge the signature of a non-faulty

automaton this preserves G in a trivial way.

Faulty proxy actions. If � is an action of a faulty proxy c (i.e., x:faultyc = true), let � consist

of a single � step for REQUEST, REPLY and CLIENT-FAILURE actions and � for the other actions.

Since � can not modify faultyc and faulty clients cannot forge signatures of non-faulty automata

this preserves G in a trivial way. Additionally, if � is a REPLY action enabled in x, � is also enabled

in y.

A.2 Algorithm With Garbage Collection

We are now ready to prove that Agc (the algorithm specified in Section 2.4) implements S. We

start by introducing some definitions and proving a couple of invariants. Then, we use a simulation

relation to prove Agc implements A.

Definition A.2.1 We define the following functions inductively:

Let RM = fhREQUEST; o; t; ci�c j o 2 O ^ t 2 N ^ c 2 Cg [fnullg,
r-val : RM� ! S
r-last-rep : RM� ! (C ! O0)
r-last-rep-t : RM� ! (C ! N)

r-val(�) = so
8 c 2 C : (r-last-rep(�)(c) = null-rep)
8 c 2 C : (r-last-rep-t(�)(c) = 0)

8 � 2 RM+,
r-val(�:null) = r-val(�)
r-last-rep(�:null) = r-last-rep(�)
r-last-rep-t(�:null) = r-last-rep-t(�)

8 hREQUEST; o; t; ci�c 2 RM; � 2 RM+,
8 c0 6= c : (r-last-rep(�:hREQUEST; o; t; ci�c)(c

0) = r-last-rep(�)(c0))
8 c0 6= c : (r-last-rep-t(�:hREQUEST; o; t; ci�c)(c

0) = r-last-rep-t(�)(c0))
if t > r-last-rep-t(�)(c) then

let (r; s) = g(c; o; r-val(�))
r-val(�:hREQUEST; o; t; ci�c) = s

r-last-rep(�:hREQUEST; o; t; ci�c)(c) = r

r-last-rep-t(�:hREQUEST; o; t; ci�c)(c) = t

158

else
r-val(�:hREQUEST; o; t; ci�c) = r-val(�)
r-last-rep(�:hREQUEST; o; t; ci�c)(c) = r-last-rep(�)(c)

r-last-rep-t(�:hREQUEST; o; t; ci�c)(c) = r-last-rep-t(�)(c)

Definition A.2.2 We define the following subsets of M and predicate:

Wire � fm j 9X : ((m;X) 2 wire) g
Wire+o � Wire [fm j 9 j 2 R : (:faultyj ^ m 2 outj) g

Wire+io � Wire+o [fm j 9 j 2 R : (:faultyj ^ m 2 inj) g

committed-Wire(s; l; t; n; v; �) �
9m1:::mn = � 2 RM� : (s = r-val(�) ^ l = r-last-rep(�) ^ t = r-last-rep-t(�) ^
8 0 < k � n : (9 v0 � v; R : (jRj > 2f ^

8 q 2 R : (hCOMMIT; v0; k;D(mk); qi�q 2 Wire+o))

^ (9 v0 � v : (hPRE-PREPARE; v0; k;mki�primary(v0)
2 Wire+o)

_mk 2 Wire+o)))

The functions in Definition A.2.1 compute the value of the various checkpoint components after

executing a sequence of requests. The predicate committed-Wire relates the value of the checkpoint

components with a sequence of committed requests in Wire+o that can be executed to obtain those

values (where Wire+o is the set of messages in the multicast channel or in the out variables of correct

replicas). The following invariant states that committed-Wire is true for the state components of

correct replicas and the checkpoint messages they send.

Invariant A.2.3 The following is true of any reachable state in an execution of Agc:

1. 8 i 2 R : ((:faultyi ^ n-faulty � f))
9 � 2 RM� : committed-Wire(vali; last-repi; last-rep-ti; last-execi; viewi; �))

2. 8 i 2 R : (:faultyi ^ n-faulty � f))
8 hCHECKPOINT; v; n;D(hs; l; ti); ii�i 2 N : (9 � 2 RM� : committed-Wire(s; l; t; n; v; �))

where:
N = fm j m 2 Wire+io _ 9 hVIEW-CHANGE; v; n; s; C; P; ji�j 2 Wire+io : (m 2 C) _

9 hNEW-VIEW; v; V; O;Ni�j 2 Wire+io : (9 hVIEW-CHANGE; v; n; s; C; P; qi�q 2 V : (m 2 C)) g,

Proof: The proof is by induction on the length of the execution. For the base case, the initializations

ensure that vali = r-val(�), last-repi = r-last-rep(�), and last-rep-ti = r-last-rep-t(�). There-

fore, 1 is obviously true in the base case and 2 is also true because all the checkpoint messages

hCHECKPOINT; v; n;D(hs; l; ti); ii�i 2 N have s = vali; l = last-repi; t = last-rep-ti.

For the inductive step, assume that the invariant holds for every state of any execution� of length

at most l. We will show that the lemma also holds for any one step extension �1 of �. The only

actions that can violate 1 are actions that change vali; last-repi; last-rep-ti; last-execi, decrement

viewi, or remove messages from Wire+o. But no actions ever decrement viewi. Similarly, no

159

actions ever remove messages from Wire+o because wire remembers all messages that were ever

sent over the multicast channel and messages are only removed from outj (for any non-faulty replica

j) when they are sent over the multicast channel. Therefore, the only actions that can violate 1 are:

1. RECEIVE(hNEW-VIEW; v; V; O; Ni�j)i

2. EXECUTE(m;v; n)i

3. SEND-NEW-VIEW(v; V)i

The inductive hypothesis of condition 2 ensures that actions of the first and third type do not

violate condition 1 because they set vali; last-repi; last-rep-ti and last-execi to the corresponding

values in a checkpoint message from a non-faulty replica.

Actions of the second type also do not violate 1 because of the inductive hypothesis, and because

the executed request, mn, verifies committed(mn; v; n; i) for v � viewi and n = last-execi + 1.

Since committed(mn; v; n; i) is true, the 2f + 1 commits and the pre-prepare (or mn) necessary

for committed-Wire to hold are in ini. These messages were either received by i over the multicast

channel or they are messages from i, in which case they are in outi or have already been sent over

the multicast channel.

The only actions that can violate condition 2 are those that insert checkpoint messages in N :

1. RECEIVE(hCHECKPOINT; v; n; d; ii�i)j

2. RECEIVE(hVIEW-CHANGE; v; n; s; C; P; qi�q)j

3. RECEIVE(hNEW-VIEW; v; V; O; Ni�q)j

4. SEND(m;R)i

5. EXECUTE(m;v; n)j

6. SEND-VIEW-CHANGE(v)j

7. SEND-NEW-VIEW(v; V)j

where j is any non-faulty replica. Actions of types 1, 2, 4, and 6 preserve 2 because the checkpoints

they insert intoN are already inN before the action executes and because of the inductive hypothesis.

Actions of types 3 and 7 may insert a new checkpoint message from j into N ; but they also preserve

condition 2 because this message has the same sequence number and checkpoint digest as some

checkpoint message from a non-faulty replica that is already in N before the action executes and

because of the inductive hypothesis. Finally, the argument to show that actions of the fifth type

preserve 1 also shows that they preserve condition 2.

Invariant A.2.4 The following is true of any reachable state in an execution of A:

n-faulty � f) 8 �; �0 2 RM� : ((9 s; l; t; v; s0; l0; t0; v0 : (committed-Wire(s; l; t; n; v; �) ^
committed-Wire(s0; l0; t0; n0; v0; �0)) ^ �:length � �0:length)) 9 �00 2 RM� : (�0 = �:�00))

Proof: (By contradiction) Suppose that the invariant is false. Then, there may exist some sequence
number k (0 < k � �:length) and two different requests mk1 and mk2 such that:

160

9 v1; R1 : (jR1j > 2f ^ 8 q 2 R1 : (hCOMMIT; v1; k;D(mk1); qi�q 2 Wire+o)) and
9 v2; R2 : (jR2j > 2f ^ 8 q 2 R2 : (hCOMMIT; v2; k;D(mk2); qi�q 2 Wire+o))

This, Invariant A.1.1 and Invariant A.1.6 contradict Invariant A.1.10.

Invariant A.2.4 states that if committed-Wire is true for two sequences of messages in A (which

is the algorithm without garbage collection) then one sequence must be a prefix of the other. Now

we can prove our main result: Agc implements S.

Theorem A.2.5 Agc implements S

Proof: We prove that Agc implements A, which implies that it implements S (Theorems A.1.19

and A.1.14.) The proof uses a forward simulation H from A0
gc to A0 (A0

gc is equal to Agc but with

all output actions not in the external signature of S hidden.)

Definition A.2.6 H is a subset of states(A0
gc)� states(A0); (x; y) is an element of H if and only if

all the following conditions are satisfied for any replica i such that x:faultyi = false, and for any
replica j:

1. The values of the state variables in y are equal to the corresponding values in x except for y:wire, y:ini and y:outi.

2. y:ini � fm = hPRE-PREPARE; v; n;mi�j _ m = hPREPARE; v; n; d; ji�j _
m = hCOMMIT; v; n; d; ji�j jm 2 y:ini ^ n � x:hig

� fm jm 2 y:ini ^ (tag(m; VIEW-CHANGE) _ tag(m; NEW-VIEW))g
= x:ini � fm = hPRE-PREPARE; v; n;mi�j _ m = hPREPARE; v; n; d; ji�j _

m = hCOMMIT; v; n; d; ji�j jm 2 x:ini ^ n � x:hig
� fm jm 2 x:ini ^ (tag(m; CHECKPOINT) _ tag(m; VIEW-CHANGE) _ tag(m; NEW-VIEW))g

3. Let consistent-vc(m1;m2) �
9 v; n; s; l; t; C; P; P 0; j : (m1 = hVIEW-CHANGE; v; n; hs; l; ti; C; P; ji�j ^

m2 = hVIEW-CHANGE; v; P 0; ji�j ^

A0
gc:correct-view-change(m1; v; j) , (A0:correct-view-change(m2; v; j) ^
P = P 0 � fm = hPRE-PREPARE; v0; n0; m0i�k _m = hPREPARE; v0; n0; d0; ki�k jm 2 P 0 ^ n0 � ng)))

consistent-vc-set(M1;M 2) �
8m1 2 M 1 : (9m2 2 M 2 : consistent-vc(m1;m2)) ^
8m2 2 M 2 : (9m1 2 M 1 : consistent-vc(m1;m2)),

and let y:vci = fhVIEW-CHANGE; v; P; ji�j 2 y:ini g,
x:vci = fhVIEW-CHANGE; v; n; hs; l; ti; C; P; ji�j 2 x:inig

then consistent-vc-set(x:vci; y:vci) is true

4. Let consistent-nv-set(M1;M2) �
M2 = fm2 = hNEW-VIEW; v; V 0; O0; N 0i�j j

9m1 = hNEW-VIEW; v; V; O; Ni�j 2 M1 : (consistent-vc-set(V; V 0) ^

A0
gc:correct-new-view(m1; v) , (A0:correct-new-view(m2; v) ^
O = O0 � fm = hPRE-PREPARE; v; n;m0i�j jm 2 O0 ^ n � max-n(V)g ^
N = N 0 � fm = hPRE-PREPARE; v; n;m0i�j jm 2 N 0 ^ n � max-n(V)g))g,

and let y:nvi = fhNEW-VIEW; v; V; O;Ni�j 2 y:ini g,
x:nvi = fhNEW-VIEW; v; V; O; Ni�j 2 x:ini g

then consistent-nv-set(x:nvi; y:nvi) is true.

5. Let consistent-all(M1;M 2) �
8m 2 M 1 : (9m0 2 M 2 : (tag(m; VIEW-CHANGE) ^ consistent-vc(m;m0)) _
(tag(m; NEW-VIEW) ^ consistent-nv-set(fmg; fm0g)) _
(:tag(m; VIEW-CHANGE) ^ :tag(m;NEW-VIEW) ^ m = m0)),
Xi = x:outi [fhmi�i j hmi�i 2 x:Wireg � fm j tag(m; CHECKPOINT)g,
and Yi = y:outi [fhmi�i j hmi�i 2 y:Wireg,

then consistent-all(Xi: Yi)

161

6. Let Xfaulty = f hmi�j j x:faultyj ^ hmi�j 2 x:Wireg,
Yfaulty = f hmi�j j y:faultyj ^ hmi�j 2 y:Wireg,

consistent-all(Xfaulty; Yfaulty)

7. 8 hri�c 2 x:Wire : (9 hri�c 2 y:Wire)

Additionally, we assume faulty automata in x are also faulty and identical in H[x] (i.e., they

have the same actions and the same state.) Note that the conditions in the definition ofH only need

to hold when n-faulty � f , for n-faulty > f the behavior of S is unspecified.

States related by H have the same values for variables with the same name with the exception

of wire, and the in and out variables of non-faulty replicas. The second condition says that the in

variables of non-faulty replicas have the same messages in related states with the exception of those

messages that were garbage collected in x and view-change, new-view, and checkpoint messages.

Conditions 3 and 4 specify that view-change and new-view messages in x:ini and y:ini are

consistent. These conditions define the notion of consistency precisely but the intuition is the

following. A view-change message m in x is consistent with a view-change message m0 in y

if m contains exactly the pre-prepare and prepare messages in m0 with sequence number greater

than the checkpoint in m. Similarly, new-view messages are consistent if they contain consistent

view-change messages and they propagate the same pre-prepares for the new-view with sequence

number greater than the checkpoint that is propagated to the new view in A0
gc.

Condition 5 says that messages in the wire or out variables of non-faulty replicas in x have

identical or consistent messages in the wire or out variables in y. The next condition requires the

same of messages in the wire that are signed by faulty replicas. The final condition says that all

requests in the wire in x are also in the wire in y.

To prove that H is in fact a forward simulation from A0
gc to A0 one most prove that both of the

following are true:

1. For all x 2 start(A0
gc), H[x] \ start(A0) 6= fg

2. For all (x; �; x0) 2 trans(A0
gc), where x is a reachable state of A0

gc, and for all y 2 H[x],

where y is reachable in A0, there exists an execution fragment � of A0 starting with y and

ending with some y0 2 H[x0] such that trace(�) = trace(�).

Condition 1 holds because (x; y) 2 H for any initial state x of A0
gc and y of A0. It is clear

that x and y satisfy the first clause in the definition of H because the initial value of the variables

mentioned in this clause is the same in A0
gc and A0. Clauses 2 to 7 are satisfied because x:ini only

contains checkpoint messages, and y:ini, x:outi, y:outi, x:wire, and y:wire are empty.

We prove condition 2 by showing it holds for every action of A0
gc. We start by defining

an auxiliary function �(y;m; a) to compute a sequence of actions of A0 starting from state y to

simulate a receive of messagem by an automaton a (where a is either a client or replica identifier):

162

�(y;m; a) =
if 9 X : ((m;X) 2 y:wire) then
if 9X : ((m;X) 2 y:wire ^ a 2 X) then

RECEIVE(m)a
else

MISBEHAVE(m;X;X [fag). RECEIVE(m)a j (m;X) 2 y:wire
else
if 9 i : (y:faultyi = false ^ m 2 y:outi) then

SEND(m; fag)i. RECEIVE(m)a
else
?

If RECEIVE(m)a is enabled in a state x, there is an m0 such that �(y;m0; a) is defined and the

actions in �(y;m0; a) are enabled for all y 2 H[x], and:

� m = m0, if m is not a checkpoint, view-change, or new-view message

� consistent-vc(m;m0), if m is a view-change message

� consistent-nv-set(fmg; fm0g), if m is a new-view message

This is guaranteed by clauses 5, 6, and 7 in the definition of H.

Now, we proceed by cases proving condition 2 holds for each � 2 acts(A0
gc)

Non-faulty proxy actions. If � is an action of a non-faulty proxy automaton Pc other than

RECEIVE(m = hREPLY; v; t; c; i; ri�i)c, let � consist of a single � step. For the receive actions, let

� = �(y;m; c). In either case, when � is enabled in x all the actions in � are also enabled starting

from y and an inspection of the code shows that the state relation defined by H is preserved in all

these cases.

Internal channel actions. If � is a MISBEHAVE(m;X;X 0) action, there are two cases: if � is

not enabled in y, let � be �; otherwise, let � contain a single � step. In either case,H is preserved.

because � does not add new messages to x:Wire.

Receive of request, pre-prepare, prepare, or commit. For actions � = RECEIVE(m)i where

m is a syntactically valid request, pre-prepare, prepare, or commit message, let � = �(y;m; i); �

transforms y into y0 2 H[x0]:

� � and � modify wire in a way that preserves clauses 5, 6, and 7.

� For receives of request messages, � and � add the same messages to outi and ini thereby

preserving the state correspondence defined by H.

� For the other message types, the definition of H and the definition of in-wv ensure that when

the first if condition is true in x, it is also true in y (because the condition is more restrictive in

A0
gc, and x:ini and y:ini have the same prepare and commit messages with sequence numbers

higher than x:hi.) Thus, in this case, the state correspondence defined byH is preserved. But

it is possible for the if condition to be true in y and false in x; this will cause a message to

163

be added to y:ini and (possibly) y:outi that is not added to x:ini or x:outi. Since this happens

only if the sequence number of the message received is lower than or equal to x:hi, the state

correspondence is also preserved in this case.

Garbage collection. If� = RECEIVE(hCHECKPOINT; v; n; d; ji�j)i, or� = COLLECT-GARBAGEi,

the condition holds when � is �. It is clear that the condition holds for the first type of action.

For the second type, the condition is satisfied because all the messages removed from x:ini have

sequence number lower than or equal to n and the action sets x:hi to n. The action sets x:hi to

n because it removes all triples with sequence number lower than n from x:chkptsi and there is

a triple with sequence number n in x:chkptsi. The existence of this triple is guaranteed because

the precondition for the collect-garbagei action requires that there is a checkpoint message from

i with sequence number n in x:ini and i only inserts checkpoint messages in ini when it inserts a

corresponding checkpoint in chkptsi.

Receive view-change. If � = RECEIVE(m = hVIEW-CHANGE; v; n; s; C; P; ji�j)i, let � =

�(y;m0; i) such that consistent-vc(m;m0). The definition of consistent-vc ensures that either both

messages are incorrect or both are correct. In the first case, � and � only modify the destination set

of the messages in wire; otherwise, they both insert the view change message in ini. In either case,

the state correspondence defined by H is preserved.

Receive new-view. When � = RECEIVE(m = hNEW-VIEW; v; V;O;Ni�j)i, we consider

two cases. Firstly, if the condition in the outer if is not satisfied, let � = �(y;m0; i), where

consistent-nv-set(fmg; fm0g). It is clear that this ensures y0 2 H[x0] under the assumption that

y 2 H[x]. Secondly, if the condition in the outer if is satisfied when � executes in x, let � be the

execution of the following sequence of actions of A0:

1. The actions in �(y;m0 = hNEW-VIEW; v; V 0; O0; N 0i�j ; i), where consistent-nv-set(fmg; fm0g)

2. Let C be a sequence of tuples (vn; Rn;mn) from N� 2R � RM such that the following conditions are true:
i) 8 n : (x:last-execi < n � max-n(V))

ii) 8 (vn; Rn;mn) : (vn < v ^ jRnj > 2f ^ 8 k 2 Rn : (hCOMMIT; vn; n;D(mn); ki�k 2 x:Wire+o)
^ (9 v0 : (hPRE-PREPARE; v0; n;mni�primary(v0)

2 x:Wire+o) _ mn 2 x:Wire+o)

for each (vn; Rn;mn) 2 C in order of increasing n execute:

a) �(y; cnk = hCOMMIT; vn; n;D(mn); ki�k ; i), for each k 2 Rn

b) if enabled �(y; pn = hPRE-PREPARE; v0; n;mni�primary(v0)
; i) else �(y;mn; i)

c) EXECUTE(mn; vn; n)i

The definition of H (clauses 1, 4, 5 and 6) ensures that, when the receive of the new-view

message executes in y, the condition in the outer if is true exactly when it is satisfied in x. Let y1

be the state after �(y;m0; i) executes; we show that whenC is empty (i.e., max-n(V) � last-execi),

y0 = y1 2 H[x0]. This is true because:

164

� Both � and �(y;m0; i) set viewi to v, add all the pre-prepares in O [N to ini, and add

consistent new-view messages to ini.

� �(y;m0; i) also adds the pre-prepares in (O0 [N 0)� (O [N) to ini but this does not violate

H because � ensures that x0:hi is greater than or equal to the sequence numbers in these

pre-prepares.

� Both � and �(y;m0; i) add prepares to ini and outi; �(y;m0; i) adds all the prepares added by

� and some extra prepares whose sequence numbers are less than or equal to x0:hi.

When C is not empty (i.e., max-n(V) > last-execi), it is possible that y1 62 H[x0] because some

of the requests whose execution is reflected in the last checkpoint in x0 may not have executed in

y1. The extra actions in � ensure that y0 2 H[x0].

We will first show that C is well-defined, i.e., there exists a sequence with one tuple for each n

between x:last-execi and max-n(V) that satisfies conditions i) and ii).

Let m00 = hVIEW-CHANGE; v;max-n(V); hs; l; ti; C 0; P; ki�k be the view-change message in V

whose checkpoint value, hs; l; ti, is assigned to (vali; last-repi; last-rep-ti). Since m00 is correct,

C 0 contains at least f + 1 checkpoint messages with sequence number max-n(V) and the digest of

hs; l; ti. Therefore, the bound on the number of faulty replicas, and Invariant A.2.3 (condition 2)

imply there is a sequence of requests �1 such that committed-Wire(s; l; t;max-n(V); v; �1).

Since by the inductive hypothesis y 2 H[x], all the the commit, pre-prepare and request

messages corresponding to �1 are also in y:Wire+o. Therefore, all the actions in a) and at least one

of the actions in b) are enabled starting from y1 for eachn and each k 2 Rn. Since vn < v for all the

tuples inC , each receive in �(y; cnk ; i) will insert cnk in ini. Similarly, the receive of the pre-prepare

or request will insert a matching pre-prepare or request in ini. This enables execute(mn; vn; n)i.

Invariant A.2.3 (condition 1) also asserts that there exists a sequence of requests �2 such

that committed-Wire(x:vali; x:last-repi; x:last-rep-ti; x:last-execi; x:viewi; �2). Since by the inductive

hypothesis y 2 H[x], all the the commit, pre-prepare and request messages corresponding to �1 and

�2 are also in y:Wire+o. This and Invariant A.2.4 imply that �2 is a prefix of �1. Therefore, after

the execution of �, vali; last-repi; last-rep-ti; last-execi have the same value in x0 and y0 as required

by H.

Send. If � = SEND(m;X)i, let � be:

� A single send(m;X)i step, if m does not have the CHECKPOINT, VIEW-CHANGE, or NEW-VIEW

tag and this action is enabled in y.

� �, if m has the CHECKPOINT tag or the action is not enabled in y (because the message is

already in the channel.)

� A single send(m0;X)i step, if m has the VIEW-CHANGE tag and this action is enabled in y

(where consistent-vc(m;m0).)

165

� A single send(m0;X)i step, if m has the NEW-VIEW tag and this action is enabled in y (where

consistent-nv-set(fmg; fm0g).)
Send-pre-prepare and send-commit. If � = SEND-PRE-PREPARE(m; v; n)i or � = SEND-

COMMIT(m; v; n)i, let � contain a single � step. This ensures y0 2 H[x0] because these actions are

only enabled in x when they are enabled in y, and they insert and remove the same messages from

ini and outi.

Execute. When � = EXECUTE(m; v; n)i, let � contain a single � step. The action is enabled

in y when it is enabled in x because it is only enabled in x for n > x:hi and x:ini and y:ini have

the same pre-prepare and commit messages with sequence numbers greater than x:hi and the same

requests. It is easy to see that the state correspondence defined byH is preserved by inspecting the

code.

View-change. If � = VIEW-CHANGE(v)i, let � contain a single � step. The action is enabled in

y when it is enabled in x because viewi has the same value in x and y. Both � and � insert view-

change messages m and m0 (respectively) in ini and outi; it is clear that this ensures y0 2 H[x0]

provided consistent-vc(m0;m0) is true. Clause 2 in the definition of H ensures that m and m0

contain the same messages in the P component for sequence numbers greater than x:hi; therefore,

consistent-vc(m0;m0) is true.

Send-new-view. If � = SEND-NEW-VIEW(v; V)i, let � be the execution of the following

sequence of actions of A0:
1. send-new-view(v; V 0)i step, where consistent-vc-set(V; V 0).

2. Let C be a sequence of tuples (vn; Rn;mn) from N� 2R � RM such that the following conditions are true:
i) 8 n : (x:last-execi < n � max-n(V))

ii) 8 (vn; Rn;mn) : (vn < v ^ jRnj > 2f ^ 8 k 2 Rn : (hCOMMIT; vn; n;D(mn); ki�k 2 x:Wire+o)
^ (9 v0 : (hPRE-PREPARE; v0; n;mni�primary(v0)

2 x:Wire+o) _ mn 2 x:Wire+o)

for each (vn; Rn;mn) 2 C in order of increasing n execute:

a) �(y; cnk = hCOMMIT; vn; n;D(mn); ki�k ; i), for each k 2 Rn

b) if enabled �(y; pn = hPRE-PREPARE; v0; n;mni�primary(v0)
; i) else �(y;mn; i)

c) EXECUTE(mn; vn; n)i

This simulation and the argument why it preserves H is very similar to the one presented for

receives of new-view messages.

Failure. If � = REPLICA-FAILUREi or � = CLIENT-FAILUREi, let � contain a single � step. It is

easy to see that y0 2 H[x0].

Actions by faulty nodes. If � is an action of a faulty automaton, let � contain a single � step.

The definition of H ensures that � is enabled in y whenever � is enabled in x. Modifications to

the internal state of the faulty automaton cannot violate H. The only actions that could potentially

violate H are sends. But this is not possible because a faulty automaton cannot forge the signature

of a non-faulty one.

166

Bibliography

[AD76] P. A. Alsberg and J. D. Day. A principle for resilient sharing of distributed resources.
In Proceedings of the 2nd International Conference on Software Engineering, pages
627–644, San Francisco, CA, Oct. 1976.

[Ahm00] S. Ahmed. Private communication, 2000.

[AMP+00] L. Alvisi, D. Malkhi, E. Pierce, M. Reiter, and R. Wright. Dynamic Byzantine Quorum
Systems. In International Conference on Dependable Systems and Networks (DSN,
FTCS-30 and DCCA-8), pages 283–292, New York, New York, June 2000.

[APMR99] L. Alvisi, E. Pierce, D. Malkhi, and M. Reiter. Fault Detection for Byzantine Quorum
Systems. In Proceedings of the Seventh IFIP International Working Conference on
Dependable Computing for Critical Applications (DCCA-7), pages 357–371, San
Jose, California, Jan. 1999.

[BEG+94] M. Blum, W. Evans, P. Gemmel, S. Kannan, and M. Naor. Checking the Correctness
of Memories. Algorithmica, 12:225–244, 1994.

[BHK+99] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC: Fast and
Secure Message Authentication. In Advances in Cryptology - CRYPTO’99, pages
216–233, 1999.

[BM97] M. Bellare and D. Micciancio. A New Paradigm for Collision-free Hashing: Incre-
mentality at Reduced Cost. In Advances in Cryptology – EUROCRYPT’ 97, 1997.

[BR95] M. Bellare and P. Rogaway. Optimal asymmetric encryption - How to encrypt with
RSA. In Advances in Cryptology - EUROCRYPT 94, Lecture Notes in Computer
Science, Vol. 950. Springer-Verlag, 1995.

[BR96] M. Bellare and P. Rogaway. The exact security of digital signatures- How to sign
with RSA and Rabin. In Advances in Cryptology - EUROCRYPT 96, Lecture Notes
in Computer Science, Vol. 1070. Springer-Verlag, 1996.

[BSS91] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group
multicast. In ACM Transactions on Computer Systems, volume 9(3), Aug. 1991.

[BT85] G. Bracha and S. Toueg. Asynchronous Consensus and Broadcast Protocols. Journal
of the ACM, 32(4):824–240, 1985.

[CA78] L. Chen and A. Avizienis. N-Version Programming: A Fault-Tolerance Approach to
Reliability of Software Operation. In Fault Tolerant Computing, FTCS-8, pages 3–9,
1978.

167

[CALM97] M. Castro, A. Adya, B. Liskov, and A. Myers. HAC: Hybrid Adaptive Caching
for Distributed Storage Systems. In Proc. 16th ACM Symp. on Operating System
Principles (SOSP), pages 102–115, St. Malo, France, Oct. 1997.

[CASD85] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic Broadcast: From Simple
Message Diffusion to Byzantine Agreement. In 15th International Conference on
Fault Tolerant Computing, Ann Arbor, Mi., June 1985.

[CHH97] R. Canetti, S. Halevi, and A. Herzberg. Maintaining authenticated communication in
the presence of break-ins. In Proc. of the 1997 ACM Conference on Computers and
Communication Security, 1997.

[CKS00] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in Constantinople: Practical
asynchronous Byzantine agreement using cryptography. In Proceedings of the 19th
ACM Symposium on Principles of Distributed Computing (PODC 2000), Portland,
OR, July 2000.

[CL99a] M. Castro and B. Liskov. A Correctness Proof for a Practical Byzantine-Fault-Tolerant
Replication Algorithm. Technical Memo MIT/LCS/TM-590, MIT Laboratory for
Computer Science, 1999.

[CL99b] M. Castro and B. Liskov. Authenticated Byzantine Fault Tolerance Without Public-Key
Cryptography. Technical Memo MIT/LCS/TM-589, MIT Laboratory for Computer
Science, 1999.

[CL99c] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In Proceedings of the
Third Symposium on Operating Systems Design and Implementation (OSDI), New
Orleans, LA, Feb. 1999.

[CL00] M. Castro and B. Liskov. Proactive Recovery in a Byzantine-Fault-Tolerant Sys-
tem. In Proceedings of the Fourth Symposium on Operating Systems Design and
Implementation (OSDI), San Diego, CA, Oct. 2000.

[CR92] R. Canneti and T. Rabin. Optimal Asynchronous Byzantine Agreement. Technical
Report #92-15, Computer Science Department, Hebrew University, 1992.

[CT00] C. Collberg and C. Thomborson. Watermarking, Tamper-Proofing, and Obfuscation
- Tools for Software Protection. Technical Report 2000-03, University of Arizona,
2000.

[Dam89] I. Damgard. A Design Principle for Hash Functions. In G. Brassard, editor, Advances
in Cryptology – Crypto’ 89 Proceedings, number 435 in Lecture Notes in Computer
Science. Springer-Verlag, 1989.

[DC90] S. Deering and D. Cheriton. Multicast routing in datagram internetworks and extended
LANs. ACM Transactions on Computer Systems, 8(2), May 1990.

[DGGS99] A. Doudou, B. Garbinato, R. Guerraoui, and A. Schiper. Muteness Failure Detectors:
Specification and Implementation. In J. Hlavicka, E. Maehle, and A. Pataricza, editors,
Proceedings of the 3rd European Dependable Computing Conference (EDCC-3),
pages 71–87. Springer-Verlag, Lecture Notes in Computer Science, Volume 1667,
1999.

168

[F+97] S. Forrest et al. Building diverse computer systems. In Proceedings of the 6th
Workshop on Hot Topics in Operating Systems, May 1997.

[FJL+95] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. H. Zhang. A Reliable Multicast
Framework for Light-weight Sessions and Application Level Framing. IEEE/ACM
Transactions on Networking, 5(6), Aug. 1995.

[FKM00] K. Fu, M. F. Kaashoek, and D. Mazières. Fast and secure distributed read-only file
system. In Proceedings of the 4th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 2000), San Diego, California, Oct. 2000.

[FLP85] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374–382, Apr. 1985.

[Gei95] K. Geiger. Inside ODBC. Microsoft Press, 1995.

[GGJR99] J. Garay, R. Gennaro, C. Jutla, and T. Rabin. Secure Distributed Storage and Retrieval.
Theoretical Computer Science, 1999.

[GHM+90] R. Guy, J. Heidemann, W. Mak, J. Page, T., G. Popek, and D. Rothneier. Implemen-
tation of the Ficus replicated file system. In USENIX Conference Proceedings, pages
63–71, June 1990.

[Gif79] D. K. Gifford. Weighted voting for replicated data. In Proc. of the Seventh Symposium
on Operating Systems Principles, pages 150–162, Pacific Grove, CA, Dec. 1979.
ACM SIGOPS.

[GK85] D. Gawlick and D. Kinkade. Varieties of concurrency control in IMS/VS fast path.
Database Engineering, 8(2):63–70, June 1985.

[GM98] J. Garay and Y. Moses. Fully polynomial byzantine agreement for n i 3t processors
in t+1 rounds. SIAM Journal of Computing, 27(1):247–290, Feb. 1998.

[GMR88] S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure Against
Adaptive Chosen Message Attacks. SIAM Journal of Computing, 17(2):281–308, Apr.
1988.

[Gon92] L. Gong. A security risk of depending on synchronized clocks. Operating Systems
Review, 26(1):49–53, Jan. 1992.

[Gra00] J. Gray. FT 101. Talk at the University of California at Berkeley, Nov. 2000.

[HBJ+90] A. Hisgen, A. Birrell, C. Jerian, T. Mann, M. Schroeder, and G. Swart. Granularity
and semantic level of replication in the Echo distributed file system. In Proceedings
of the Workshop on Management of Replicated Data, Houston, TX, Nov. 1990. IEEE.

[HJJ+97] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung. Proactive public
key and signature systems. In Proc. of the 1997 ACM Conference on Computers and
Communication Security, 1997.

[HJKY95] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing, or:
How to cope with perpetual leakage. In Advances in Cryptology – CRYPTO’95, 1995.

169

[HKM+88] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham, and
M. West. Scale and performance in a distributed file system. ACM Transactions on
Computer Systems, 6(1):51–81, Feb. 1988.

[HT88] M. Herlihy and J. Tygar. How to make replicated data secure. Advances in Cryptology
(Lecture Notes in Computer Science 293), pages 379–391, 1988.

[HW87] M. P. Herlihy and J. M. Wing. Axioms for Concurrent Objects. In Proceedings of
14th ACM Symposium on Principles of Programming Languages, pages 13–26, Jan.
1987.

[Kat97] J. Katcher. PostMark: A New File System Benhmark. Technical Report TR-3022,
Network Appliance, Oct. 1997.

[KMMS98] K. Kihlstrom, L. Moser, and P. Melliar-Smith. The SecureRing Protocols for Securing
Group Communication. In Proc. of the Hawaii International Conference on System
Sciences, Hawaii, Jan. 1998.

[KP91] P. Karn and C. Partridge. Improving round-trip time estimates in reliable transport
protocols. Theoretical Computer Science, 4(9):364–373, Nov. 1991.

[LAC+96] B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat, R. Gruber, U. Maheshwari,
A. Myers, and L. Shrira. Safe and Efficient Sharing of Persistent Objects in Thor.
In Proc. of ACM SIGMOD International Conference on Management of Data, pages
318–329, Montreal, Canada, June 1996.

[Lam78] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Comm.
of the ACM, 21(7):558–565, July 1978.

[Lam89] L. Lamport. The Part-Time Parliament. Report Research Report 49,Digital Equipment
Corporation Systems Research Center, Palo Alto, CA, Sept. 1989.

[LGG+91] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and M. Williams. Repli-
cation in the Harp File System. In Proc. 13th ACM Symp. on Operating System
Principles (SOSP), pages 226–238. ACM Press, 1991.

[LSP82] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, July 1982.

[Lyn96] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[LZ75] B. Liskov and S. Zilles. Specification techniques for data abstractions. IEEE Trans-
actions on Software Engineering, SE-1(1), Mar. 1975.

[Mer87] R. C. Merkle. A Digital Signature Based on a Conventional Encryption Function. In
C. Pomerance, editor, Advances in Cryptology - Crypto’87, number 293 in Lecture
Notes in Computer Science, pages 369–378. Springer-Verlag, 1987.

[Min00] R. Minnich. The Linux BIOS Home Page. http://www.acl.lanl.gov/linuxbios, 2000.

[MKKW99] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Separating key man-
agement from file system security. In Proceedings of the 17th ACM Symposium on
Operating System Principles, Kiawah Island, SC, Dec. 1999.

170

[ML00] B. Murphy and B. Levidow. Windows 2000 dependability. In Proceedings of IEEE
International Conference on Dependable Systems and Networks, New York, NY, June
2000. IEEE.

[MR96a] D. Malkhi and M. Reiter. A high-throughput secure reliable multicast protocol. In
Proc. of the 9th Computer Security Foundations Workshop, pages 9–17, Ireland, June
1996.

[MR96b] D. Malkhi and M. Reiter. Unreliable Intrusion Detection in Distributed Computations.
In Proc. of the 9th Computer Security Foundations Workshop, pages 9–17, Ireland,
June 1996.

[MR97] D. Malkhi and M. Reiter. Byzantine quorum systems. In Proc. of the 29th ACM
Symposium on Theory of Computing, pages 569–578, El Paso, Texas, May 1997.

[MR98a] D. Malkhi and M. Reiter. Byzantine Quorum Systems. Journal of Distributed Com-
puting, 11(4):203–213, 1998.

[MR98b] D. Malkhi and M. Reiter. Secure and scalable replication in phalanx. In Proc. of the
17th IEEE Symposium on Reliable Distributed Systems, Oct. 1998.

[MR00] D. Malkhi and M. Reiter. An Architecture for Survivable Coordination in Large
Distributed Systems. IEEE Transactions on Knowledge and Data Engineering,
12(2):187–202, Apr. 2000.

[MRL98] D. Malkhi, M. Reiter, and N. Lynch. A Correctness Condition for Memory Shared by
Byzantine Processes. Submitted for publication., Sept. 1998.

[MVS00] U. Maheshwari, R. Vingralek, and B. Shapiro. How to Build a Trusted Database
System on Untrusted Storage. In Proceedings of the 4th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 2000), San Diego, California,
Oct. 2000.

[OL88] B. Oki and B. Liskov. Viewstamped Replication: A New Primary Copy Method
to Support Highly-Available Distributed Systems. In Proc. of ACM Symposium on
Principles of Distributed Computing, pages 8–17, 1988.

[Ous90] J. Ousterhout. Why Aren’ t Operating Systems Getting Faster as Fast as Hardware?
In Proc. of USENIX Summer Conference, pages 247–256, Anaheim, CA, June 1990.

[OY91] R. Ostrovsky and M. Yung. How to withstand mobile virus attack. In Proc. of the 19th
Symposium on Principles of Distributed Computing, pages 51–59. ACM, Oct. 1991.

[Par86] J.-F. Paris. Voting with witnesses: A consistency scheme for replicated files. In Proc.
of the 6th International Conference on Distributed Computer Systems, pages 606–612.
IEEE, 1986.

[Pos80] J. Postel. User datagram protocol. DARPA-Internet RFC-768, Aug. 1980.

[Pos81] J. Postel. DoD standard transmition control protocol. DARPA-Internet RFC-793,
Sept. 1981.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching Agreement in the Presence of Faults.
Journal of the ACM, 27(2):228–234, Apr. 1980.

171

[Rei94] M. Reiter. Secure Agreement Protocols. In Proc. of the 2nd ACM Conference on
Computer and Communication Security, pages 68–80, Nov. 1994.

[Rei95] M. Reiter. The Rampart toolkit for building high-integrity services. Theory and
Practice in Distributed Systems (Lecture Notes in Computer Science 938), pages
99–110, 1995.

[Rei96] M. Reiter. A secure group membership protocol. IEEE Transactions on Software
Engineering, 22(1):31–42, Jan. 1996.

[Riv92] R. Rivest. The MD5 message-digest algorithm. Internet RFC-1321, Apr. 1992.

[Rod00] R. Rodrigues. Private communication, 2000.

[S+85] R. Sandberg et al. Design and implementation of the sun network filesystem. In
Proceedings of the Summer 1985 USENIX Conference, pages 119–130, June 1985.

[Sat90] M. Satyanarayanan. Scalable, secure, and highly available distributed file access. In
IEEE Computer, May 1990.

[Sch90] F. Schneider. Implementing fault-tolerant services using the state machine approach:
a tutorial. ACM Computing Surveys, 22(4):299–319, Dec. 1990.

[SDW92] W. Strayer, B. Dempsey, and A. Weaver. XTP: The Xpress Transfer Protocol. Addison-
Wesley, Reading, Massachusetts, 1992.

[Sha79] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[SHA94] National Institute of Standards and Technology (NIST). Announcement of Weakness
in Secure Hash Standard, 1994.

[Spu00] C. E. Spurgeon. Ethernet: The Definitive Guide. O’Reilly and Associates, 2000.

[SS83] R. D. Schlichting and F. B. Schneider. Fail-stop processors: An approach to de-
signing fault-tolerant computing systems. ACM Transactions on Computing Systems,
1(3):222–238, 1983.

[Sul00] B. Sullivan. Inside Europe’s cybersleuth central. MSNBC, Oct. 2000.

[TPRZ84] D. B. Terry, M. Painter, D. Riggle, and S. Zhou. The Berkeley Internet Name Domain
Server. In Proceedings USENIX Summer Conference, Salt Lake City, Utah, June
1984.

[Wie98] M. Wiener. Performance Comparison of Public-Key Cryptosystems. RSA Laborato-
ries’ CryptoBytes, 4(1), 1998.

[Yan99] Z. Yang. Byzantine Fault-Tolerant DNS Infrastructure. Master’s thesis, Massachusetts
Institute of Technology, Cambridge, MA, June 1999.

172

