
Controlled Physical Unknown Functions: Applications to Secure

Smartcards and Certified Execution

Blaise Gassend, Dwaine Clarke,

Marten van Dijk, Srinivas Devadas

June 10, 2002

Abstract

A Physical Unknown Function (PUF) is a function
that is easy to evaluate but hard to characterize.
We introduce controlled physical unknown functions
(CPUFs) which are PUFs that can only be accessed
via an algorithm that is physically bound to the PUF
in an inseparable way.
Controlled PUFs enable several applications in-

cluding certified execution, where a certificate is
produced that proves that a specific computation
was carried out on a specific processor. Certified
execution has many benefits, including protection
against malicious volunteers/entities in grid comput-
ing, anonymous computing and other forms of dis-
tributed computation.
An integrated circuit (IC) containing a controlled

PUF can be authenticated using challenge-response
pairs (CRP’s). We describe protocols for CRP man-
agement that protect against a man-in-the-middle
attack. We also describe protocols through which
controlled PUF’s can be used in the applications of
smartcard identification and certified execution, and
briefly discuss a software licensing application.

1 Introduction

A Physical Unknown Function (PUF) is a function
that is easy to evaluate but hard to characterize.
PUFs can be implemented in different ways and can
be used in identification and authentication applica-
tions [GCvDD02, Rav01]. In this paper, we intro-
duce controlled physical unknown functions (CPUFs)
which are PUFs that can only be accessed via an al-
gorithm that is physically bound to the PUF in an
inseparable way.
PUFs and controlled PUFs enable a host of appli-

cations, including smartcard identification, certified
execution and software licensing. In current smart-
cards, it is possible for someone who is in possession
of a smartcard to produce a clone of it, by extracting
its digital key information through one of many well
documented attacks [And01]. With a unique PUF

on the smartcard that can be used to authenticate
the chip, a digital key is not required: the smartcard
hardware is itself the secret key. This key cannot be
duplicated, so a person can lose control of it, retrieve
it, and continue using it.

Certified execution produces a certificate which
proves that a specific computation was carried out
on a specific processor chip, and that the computa-
tion produced a given result. The person requesting
the computation can then rely on the trustworthiness
of the chip manufacturer who can vouch that he pro-
duced the chip, instead of relying on the owner of
the chip, who could make up the result without actu-
ally executing the computation.1 Certified execution
is very useful in grid computing (e.g., SETI@home)
and other forms of distributed computation to pro-
tect against malicious volunteers. In fact, certified
execution can enable a business model for anonymous
computing, wherein computation can be sold by in-
dividuals and the customer can be ensured reliability
of service, via the generation of certificates.

Controlled PUFs can also be used to ensure that
a piece of code only runs on a processor chip that
has a specific identity defined by a PUF. In this way,
pirated code would fail to run.

In this paper, we will describe the implementation
of controlled PUFs and key management for con-
trolled PUFs. We will focus on the applications of
smartcard identification and certified execution and
describe the protocols for these applications. We will
only briefly touch upon the software licensing appli-
cation.

We define physical unknown functions (PUFs) and
controlled PUFs in Section 2. The reader who is
not interested in PUF or CPUF implementations can
then skip to Section 5. Implementation of PUFs and
controlled PUFs on silicon integrated circuits is the
subject of Section 3. We also describe how PUFs can

1Of course, the person requesting the computation could
attempt to verify the result produced by either running the
computation on a trusted computer or requesting another chip
owner to run the computation. Both alternatives are not effi-
cient.

1

be strengthened using associated control in Section
4.
In Section 5, we describe our model for using con-

trolled PUFs. In Section 6, we describe a man-in-
the-middle attack, and the protocols that protect a
PUF from it.
We describe how controlled PUFs can be applied

to authentication and certified execution problems in
Section 7, and briefly describe a software licensing
application. We conclude the paper in Section 8.

2 Definitions

Definition 1 A Physical Unknown Function (PUF)
is a function that maps challenges to responses, that
is embodied by a physical device, and that verifies the
following properties:

1. Easy to evaluate: The physical device is eas-
ily capable of evaluating the function in a short
amount of time.

2. Hard to characterize: From a polynomial number
of plausible physical measurements (in particu-
lar, determination of chosen challenge-response
pairs), an attacker who no longer has the device,
and who can only use a polynomial amount of
resources (time, matter, etc...) can only extract
a negligible amount of information about the re-
sponse to a randomly chosen challenge.

In the above definition, the terms short and poly-
nomial are relative the size of the device, which is
the security parameter. In particular, short means
linear or low degree polynomial. The term plausible
is relative to the current state of the art in measure-
ment techniques and is likely to change as improved
methods are devised.
In previous literature [Rav01] PUFs were referred

to as Physical One Way Functions, and realized us-
ing 3-dimensional micro-structures and coherent ra-
diation. We believe this terminology to be confusing
because PUFs do not match the standard meaning of
one way functions [MvOV96].

Definition 2 A PUF is said to be Controlled if it
can only be accessed via an algorithm that is phys-
ically linked to the PUF in an inseparable way. In
particular this algorithm can restrict the challenges
that are presented to the PUF and can limit the in-
formation about responses that is given to the outside
world.

Control turns out to be the fundamental idea that
allows PUFs to go beyond simple authenticated iden-
tification applications. How this is done is the main
focus of this paper.

Definition 3 A type of PUF is said to be Manufac-
turer Resistant if it is technically impossible to pro-
duce two identical PUFs of this type given only a poly-
nomial amount of resources.

Manufacturer resistant PUFs are the most inter-
esting form of PUF as they can be used to make un-
clonable systems.

Definition 4 A PUF is said to be One Way if it is
a collision resistant one way function.

In practice, the types of functions that are good
PUF candidates are often also one way. Some algo-
rithms can be simplified when this is the case.

3 Implementing a Controlled

Physical Unknown Function

In this section, we describe ways in which PUFs and
CPUFs could be implemented. In each case, a silicon
IC enforces the control on the PUF.

3.1 Digital PUF

It is possible to produce a PUF with classical crypto-
graphic primitives. If an IC is equipped with a secret
key k, and a one-way hash function h, and tamper
resistant technology is used to make k impossible to
extract from the IC, then the function

x→ h(k, x)

is a PUF. If control logic is embedded on the tam-
per resistant IC along with the PUF, then we have
effectively created a CPUF.
However, this kind of CPUF is not very sat-

isfactory. First, it requires high quality tamper-
proofing. There are systems available to provide
such tamper-resistance. For example, IBM’s PCI
Cryptographic Coprocessor, encapsulates a 486-class
processing subsystem within a tamper-sensing and
tamper-responding environment where one can run
security-sensitive processes [SW99]. Smart cards also
incorporate barriers to protect the hidden key(s),
many of which have been broken [And01]. In gen-
eral, however, effective tamper resistant packages are
expensive and bulky.
Secondly, the digital PUF is not manufacturer re-

sistant. The PUF manufacturer is free to produce
more than one IC with the same secret key, or some-
one who manages to violate the IC’s tamper-resistant
packaging and extract the secret key can easily pro-
duce a clone of the PUF.
Because of these two weaknesses, a digital PUF

does not offer any security advantage over conven-
tional cryptographic primitives, and it is therefore
better to use a conventional crypto-system.

2

3.2 Silicon PUF

3.2.1 Statistical Variation of Delay

By exploiting statistical variations in the delays of
gates and wires within the IC, we can create a man-
ufacturer resistant PUF [GCvDD02]. Manufactured
IC’s, from either the same lot or wafer have inherent
delay variations. There are random variations in dies
across a wafer, and from wafer to wafer due to, for in-
stance, process temperature and pressure variations,
during the various manufacturing steps. The magni-
tude of delay variation due to this random component
can be 5% or more for metal wires, and is higher for
devices.

On-chip measurement of delays can be carried out
with very high accuracy, and therefore the signal-to-
noise ratio when delays of corresponding wires across
two or more IC’s are compared is quite high. The
delays of the set of devices in a circuit is unique
across multiple IC’s implementing the same circuit
with very high probability, if the set of devices is
large [GCvDD02]. These delays correspond to an im-
plicit hidden key, as opposed to the explicitly hidden
key in a digital PUF. While environmental variations
can cause changes in the delays of devices, relative
measurement of delays, essentially using delay ratios,
provides robustness against environmental variations,
such as varying ambient temperature, on-chip junc-
tion temperature, and power supply variations.

3.2.2 Challenge-Response Pairs

Given a PUF, challenge-response pairs can be gen-
erated, where the challenge can be a digital input
stimulus, and the response depends on the transient
behavior of the PUF, and can be a precise delay mea-
sure, or a digital response based on measured delay.
The number of potential challenges grows exponen-
tially with the number of inputs to the IC. Therefore,
while two IC’s may have a high probability of hav-
ing the same response to a particular challenge, if we
apply enough challenges, we can distinguish between
the two IC’s.

Upon every successful authentication of a given IC,
a set of challenge-response pairs is potentially re-
vealed to an adversary. This means that the same
challenge-response pair cannot be used again. If
the adversary can learn the entire set of challenge-
response pairs, he can create a model of a counter-
feit IC. However, the number of possible challenge-
response pairs is exponentially large. Since an ex-
ponentially large set cannot be stored, one plausible
approach is to “recharge” the set of stored challenge-
response pairs periodically, by turning in the IC to
the authority that performs the authentication.

As before, if control logic is embedded on the IC

along with the PUF, then we have effectively cre-
ated a CPUF. In our protocols described in Section
6, challenge-response pairs can be reused for a CPUF
because the response is never sent in the clear.

3.2.3 Attacks on Silicon PUFs

There are many possible attacks on manufacturer
resistant PUF’s – duplication, model building us-
ing direct measurement, and model building using
adaptively-chosen challenge generation. We briefly
discuss these and show that significant barriers exist
for each of these attacks. A more detailed description
can be found in [GCvDD02].

The adversary can attempt to duplicate a PUF
by fabricating a counterfeit IC containing the PUF.
However, due to statistical variation, unless the PUF
is very simple, the adversary will have to fabricate a
huge number of IC’s and precisely characterize each
one, in order to create and discover a counterfeit.

Assume that the adversary has unrestricted access
to the IC containing the PUF. The adversary can
attempt to create a model of the IC by measuring
or otherwise determining very precisely the delays of
each device and wire within the IC. Direct measure-
ment of device delays requires the adversary to open
the package of the IC, and remove several layers, such
as field oxide and metal. One can also create a pack-
age which has a significant effect on the delays of each
device within the IC, and the removal of the package
will immediately destroy the PUF, since the delays
will change appreciably.

The adversary could try to build a model of the
PUF by measuring the response of the PUF to a poly-
nomial number of adaptively-chosen challenges.2 We
believe this to be the most plausible form of attack.
However, there is a significant barrier to this form
of attack as well because creating timing models of a
circuit accurate to within measurement error is a very
difficult problem that has received a lot of attention
from the simulation community. Manageable-sized
timing models can be produced which are within 10%
of the real delays, but not within the measurement
accuracy of ≈ 0.1%.

4 Improving a PUF Using Con-

trol

Now that we have seen what a CPUF is, and how it
can be implemented, we shall start to look at some
simple advantages of CPUFs over non-controlled
PUFs. This section shows how the control that is

2Clearly, a model can be built by exhaustively enumerating
all possible challenges, but this is intractable.

3

placed around a PUF can be used to overcome a num-
ber of imperfections in the PUF.
In each case, we have a PUF f that we are trying

to improve in some way. Control allows us to improve
f by constructing a new PUF g, that is based on f .
The control only allows f to be evaluated as part of
an evaluation of g, and only uses the result of the
evaluation of f to help evaluate g.
The block diagram in figure 1 shows most of the

improvements that are discussed in this section. The
reader can refer to them to get a better understanding
of what is being explained.

4.1 Preventing Chosen Challenge At-

tacks

Unless one ventures into quantum effects (which
would make a PUF highly unreliable), the number
of physical parameters that define a PUF is propor-
tional to the size of the system that defines it. There-
fore, in principle, if an attacker is able to determine a
number of primitive parameters that is proportional
to the size of the physical system, he can use them
to simulate the system and thus clone the PUF.
To try to determine primitive parameters, the

attacker gets a number of challenge-response pairs
(CRPs), and uses them to build a system of equa-
tions that he can try to solve. By definition, for a
PUF, these equations are impossible to solve in rea-
sonable time. However, there can be physical systems
for which most CRPs lead to unsolvable equations,
while a small subset of CRPs give equations that are
able to break the PUF (which consequently is not
really a PUF). Such a system is not secure because
an adversary can use the CRPs that lead to simple
equations to get a solvable system of equations, cal-
culate the primitive parameters, and clone the PUF
by building a simulator.
With control, it is nevertheless possible to build

a secure system out of one of these broken PUFs.
One way of doing this is for the control layer to sim-
ply refuse to give responses to challenges that lead
to simple equations. Unfortunately, this method as-
sumes that we know all the strategies that the at-
tacker might use to get a simple set of equations from
a chosen set of CRPs.
We can do even better if we pre-compose the bro-

ken PUF with a one way function. Instead of using
f directly, we use

g(x) = f(h(x)),

where h is a one-way function. With this method, it
is impossible for the adversary to choose the challenge
h(x) that is being presented to the underlying PUF,
so even if he finds a challenge that would break it,
he is unable to present that challenge. Now, there is

no need for the designer of the PUF to know what
challenges the adversary might try to exploit.

4.2 Post-Composition with a One-

Way Function

It is desirable for the output of a PUF to exhibit as
much randomness as possible to prevent an adversary
from guessing the response to one challenge by using
the response to another challenge. However, the out-
put of a physical system is likely to produce similar
responses when faced with similar stimuli. Moreover,
as we discussed in section 4.1, CRPs can be used to
get systems of equations that relate the PUF’s un-
derlying physical parameters.

Both of these risks can be eliminated by doing a
simple transformation on the PUF. If f is the PUF
that we are trying to improve, and h is a one-way
hash function, then

g(x) = h(x, f(x))

is a stronger PUF. With this method, we can take
a PUF that has good properties such as manufac-
turer resistance, and make it into a PUF that has
the advantages of a digital PUF. The one-way hash
function’s avalanche-effect ensures that nearby out-
puts of f will lead to completely different outputs of
the composite function, and the one-way nature of h

means that to set up a system of equations, the ad-
versary has to invert h (or include the definition of h
in the system of equations, which is just as bad).

4.3 Unique Identifier

With manufacturer resistant PUFs, the manufacturer
resistance is typically a result of the manufacturer’s
limited control over process variations. Each PUF
is different because of these variations. However, it
is possible that there will be identical PUFs. This
isn’t much of a problem, because in general finding
a pair of PUFs that is identical requires producing,
and comparing an unreasonable number of PUFs.

Nevertheless, it is possible to guarantee that any
two PUFs are different. To do so, we combine the
actual challenge and a unique identifier that is unique
to the chip with a hash before running them through
the rest of the PUF. The unique identifier that is
used here need not be secret, and can be the IC’s
serial number, for example.

In this way, no two PUFs are identical, and even if
two CPUFs share the same underlying PUF f , there
is no way for an adversary to find this out (the man-
ufacturer might be able to discover it before setting
the PUF’s unique identifier, but the cost of testing is
prohibitive in any case).

4

ECCPUF

ID

Improved PUF

Hash
One−Way

Hash
One−Way

Redundancy Information

Response
Personality

Challenge

Figure 1: This diagram shows how control can be used to improve a PUF. One-way hash functions are used
at the input and output of the PUF, an Error Correcting Code is used to make the PUF reliable, a unique
identifier guarantees that no two PUFs will be identical, and a personality selector allows the owner of the
PUF to maintain his privacy.

4.4 Giving a PUF Multiple Personal-

ities

A possible concern with the use of PUFs is in the area
of privacy. Indeed, past experience shows that users
feel uncomfortable with processors that have unique
identifiers, because they feel that they can be tracked.
PUFs being a form of unique identifier, users could
have the same type of concern with their use.
This problem can be solved by providing a PUF

with multiple personalities. The owner of the PUF
has a parameter that she can control that allows her
to show different facets of her PUF to different ap-
plications. To do this, we hash the challenge with a
user-selected personality number, and use that hash
as the input to the rest of the PUF.
In this way, the owner effectively has many differ-

ent PUFs at her disposal, so third parties to which
she has shown different personalities cannot deter-
mine if they interacted with the same PUF.
Section 6.4 goes into the details of the protocols

that use multiple personalities.

4.5 Error Correction

In many cases, the PUF is being calculated using an
analog physical system. It is to be expected that
slight variations from one run to the next will cause
slight changes in the digitized output of the PUF.
This means that the chip only produces an approx-
imation of the response that is expected of it. The
chip and the challenger cannot directly compare the
real response with the desired response as this would
require sending one of the responses in the clear, thus
compromising the shared secret. Therefore, some-
thing must be done to make the PUF’s output con-
sistent.
A suitably selected error correcting code is one pos-

sibility. When a challenge-response pair is created,
some redundant information is also produced that

should allow slight variations in the measured param-
eters to be corrected for. On subsequent uses of the
challenge-response pair, the redundant information is
provided to the PUF along with the challenge. It is
used to correct the response from the physical sys-
tem.
Naturally, the error correction must take place di-

rectly on the measured physical parameters. In par-
ticular, if any one-way functions are added to im-
prove the PUF, they should not be added between
the physical measurements and the error correction.

4.6 Multiple Rounds

To add even more complexity to the attacker’s prob-
lem, it would be possible to use the PUF circuit mul-
tiple times to produce one response. The corrected
response from one round can be fed back into the
PUF circuit. After a few rounds have been done, all
their outputs could get merged together along with
the challenge, the personality and the chip’s identi-
fier and passed through a one-way hash function to
produce the response.

5 Models

5.1 Application Model

Figure 2 illustrates the basic model for applications
using the PUF.

• The user is the principal that wants to make use
of the computing capabilities of a chip.

• The user and the chip are connected to one
another by an untrusted public communication
channel.

• The interface between the chip and the untrusted
communication channel is a PUF.

5

• Given a challenge a PUF can compute a corre-
sponding response.

• The user is in the possession of her own private
list of CRPs originally generated by the PUF.
The list is private because only the user and the
PUF know the responses to each of the chal-
lenges in the list. We assume that the user’s
challenges can be public, and that the user has
established several CRPs with the PUF.

untrusted
communication

channel
CPUF chipUser

Figure 2: Model for Applications

The responses are only known to the user and
the PUF. To establish this property we need a se-
cure way of managing of CRPs as described in sec-
tion 5.2. CPUFs control the access to CRPs by algo-
rithms which turn out to be the key to secure man-
agement. Special attention will be given to protec-
tion against man-in-the-middle-attacks while manag-
ing CRPs. To prevent man-in-the-middle attacks,
we prevent a user from asking for the response to a
specific challenge, during the CRP management pro-
tocols. This is a concern in the CRP management
protocols, as, in these protocols, the chip sends re-
sponses to the user. In the application protocols, the
responses are used to generate MACs, and are never
sent to the user.

5.2 CRP Management Models

In our models for challenge-response pair manage-
ment, the user does not have CRPs for the CPUF
yet, and would like to establish its own private list of
CRPs. For challenge-response pair management, we
introduce the following 3 new principals:

• manufacturer : the manufacturer is the principal
that made the chip with the CPUF. When the
manufacturer had the chip, and was in physical
contact with the chip, it established its own pri-
vate list of CRPs. We assume that, in the special
situation when the manufacturer is in physical
contact with the CPUF chip, the communica-
tion channel between the manufacturer and the
chip is authentic and private. Though the man-
ufacturer was originally in physical contact with
the chip, we assume that it does not have the
chip now.

• owner : the owner is the principal that controls
access to the CPUF. The owner has its own pri-
vate list of CRPs. The owner can be considered
to be the principal that bought the CPUF chip
from the manufacturer.

• certifier : the certifier has its own private list of
CRPs for the CPUF, and is trusted by the user.
The manufacturer of the CPUF chip can act as
a certifier to other users. After the user has es-
tablished its own private list of CRPs, it may act
as a certifier to another user, if the second user
trusts the first user. For example, if the user
trusts the owner of the chip, the owner of the
chip can also act as a certifier.

We have 5 scenarios:

• bootstrapping : the manufacturer of the CPUF
gets the initial CRP from the CPUF.

• introduction: a user, who does not have any
CRPs for the CPUF, securely obtains a CRP
from a certifier.

• private renewal : after obtaining a CRP from a
certifier, the user can use this CRP to generate
his own private list of CRPs.

• renewal : after generating his own private list of
CRPs, the user can use one of these to generate
more private CRPs.

• anonymous introduction: in anonymous intro-
duction, a user, who does not have any CRPs for
the CPUF, securely obtains a certified, anony-
mous, CRP for the CPUF. The user is given
a CRP that is certified by the certifier. How-
ever, in anonymous introduction, the owner of
the CPUF does not want to reveal to the user
which CPUF the user is being given a CRP to.
Thus, at the end of the protocol, the user knows
that he has been given a CRP that is certified by
the certifier, and can use this CRP to generate
other CRPs with the CPUF and run applications
using the CPUF. However, if the user colludes
with the certifier, or other users with certified,
anonymous CRPs to the CPUF, he will not be
able to use the CRPs to determine that he is
communicating with the same CPUF as them.

5.2.1 Bootstrapping

Figure 3 illustrates the model for bootstrapping.
When a CPUF has just been produced, the manu-
facturer generates a CRP for it. We assume that,
when the manufacturer generates this CRP, it is in
physical contact with the chip, and thus, the com-
munication channel is private and authentic. For the

6

other protocols, it is assumed that the manufacturer
no longer has the chip.

Manufacturer CPUF chip

Figure 3: Model for Bootstrapping

5.2.2 Introduction

Figure 4 illustrates the model for CPUF introduc-
tion. In introduction, the certifier gives a CRP for
the CPUF to the user over a channel that is authen-
tic and private.

As the certifier knows the CRP the user is given,
the certifier can read all of the messages the user
exchanges with the CPUF using this CRP. The user,
thus, needs to use the private renewal protocol to
generate his own private list of CRPs.

Furthermore, as, in this scheme, the CPUF honors
messages that are MACed with a key generated from
the response of the CRP the certifier has given to
the user, the user and the certifier can collude to de-
termine that they are communicating with the same
CPUF. They, and other users who use the same certi-
fier, may then be able to use this information to track
and monitor the CPUF’s transactions. The CPUF’s
owner can introduce the CPUF to the user using the
anonymous introduction protocol to deal with this
problem.

Certifier User

Figure 4: Model for Introduction

5.2.3 Private Renewal

Figure 5 illustrates the model for private renewal.
The user is assumed to already have a certified CRP.
However, he wants to generate a private list of CRPs.
In this model, the communication channel between
the user and the CPUF is untrusted.

untrusted
communication

channel
CPUF chipUser

Figure 5: Model for Private Renewal

5.2.4 Renewal

The model for renewal is the same as that for pri-
vate renewal. The user is assumed to have already
generated a private list of CRPs, and would like to
generate more private CRPs with the CPUF. He may
need more CRPs for his applications, say.

5.2.5 Anonymous Introduction

Figure 6 illustrates the model for anonymous intro-
duction. Again, the user is the principal which does
not have CRPs for the CPUF yet, and would like to
establish its own private list of CRPs. The communi-
cation channels between the certifier, owner and user
are secure (private and authentic). The communica-
tion channels between each of these principals and
the CPUF is untrusted. In our version of the proto-
col, the certifier and owner communicate with each
other, the owner and user communicate with each
other, and the owner communicates with the CPUF.
The certifier and user can potentially collude to de-
termine if their CRPs are for the same CPUF.

6 Protocols

We will now describe the protocols that are neces-
sary in order to use PUFs. These protocols must be
designed to make it impossible to get the response
to a chosen challenge. Indeed, if that were possible,
then we would be vulnerable to a man-in-the-middle
attack that breaks nearly all applications.

6.1 Man-in-the-Middle Attack

Before looking at the protocols, let us have a closer
look at man-in-the-middle attack that we must de-
fend against. The ability to prevent this man-in-the-
middle attack is the fundamental difference between
controlled and uncontrolled PUFs.
The scenario is the following. Alice wants to use a

challenge-response pair (CRP) that she has to inter-
act with a CPUF in a controlled way (we are assum-
ing that the CRP is the only shared secret between
Alice and the CPUF). Oscar, the adversary, has ac-
cess to the PUF, and has a method that allows him
to extract from it the response to a challenge of his
choosing. He wants to impersonate the CPUF that
Alice wants to interact with.
At some point, in her interaction with the CPUF,

Alice will have to give the CPUF the challenge for her
CRP so that the CPUF can calculate the response
that it is to share with her. Oscar can read this chal-
lenge because up to this point in the protocol Alice
and the CPUF do not share any secret. Oscar can
now get the response to Alice’s challenge from the

7

untrusted
communication

channel
CPUF chipownercertifier

user

Figure 6: Model for Anonymous Introduction

CPUF, since he has a method of doing so. Once Os-
car has the response, he can impersonate the CPUF
because he knows everything Alice knows about the
PUF. This is not at all what Alice intended.

We should take note that in the above scenario,
there is one thing that Oscar has proven to Alice. He
has proven that he has access to the CPUF. In some
applications, such as the key cards from [Rav01],
proving that someone has access to the CPUF is prob-
ably good enough. However, for more powerful ex-
amples such as certified execution that we will cover
in section 7.2, where we are trying to protect Alice
from the very owner of the CPUF, free access to the
PUF is no longer sufficient.

More subtle forms of the man-in-the-middle attack
exist. Suppose that Alice wants to use the CPUF
to do what we will refer to in section 7.2 as certified
execution. Essentially, Alice is sending the CPUF a
program to execute. This program executes on the
CPUF, and uses the shared secret that the CPUF cal-
culates to interact with Alice in a secure way. Here,
Oscar can replace Alice’s program by a program of
his own choosing, and get his program to execute on
the CPUF. Oscar’s program then uses the shared se-
cret to produce messages that look like the messages
that Alice is expecting, but that are in fact forgeries.

6.2 Defeating the Man-in-the-Middle

Attack

6.2.1 Basic CPUF Access Primitives

In the rest of this section, we will assume that the
CPUF is able to execute some form of program in a
private (nobody can see what the program is doing)
and authentic (nobody can modify what the program
is doing) way. In some CPUF implementations where
we do not need the ability to execute arbitrary algo-
rithms, the program’s actions might in fact be imple-
mented in hardware or by some other means – the
exact implementation details make no difference to
the following discussion.

In this paper we will write programs in pseudo-code
in which a few basic functions are used:

• Output(arg1, ...) is used to send results out
of the CPUF. Anything that is sent out of the
CPUF is potentially visible to the whole world,
except during bootstrapping, where the manu-
facturer is in physical possession of the CPUF.

• EncryptAndMAC(message, key) is used to en-
crypt and MAC message with key.

• PublicEncrypt(message, key) is used to en-
crypt message with key, the public key.

• MAC(message, key) MACs message with key.

The CPUF’s control is designed so that the PUF
can only be accessed by programs, and only by
using two primitive functions: GetResponse and
GetSecret. If f is the PUF, and h is a publicly avail-
able collision resistant one-way hash function then
the primitives are defined as:

GetResponse(PreChallenge) =

f (h (h (Program) , P reChallenge))

GetSecret(Challenge) =

h (h (Program) , f (Challenge))

In these primitives, Program is the program that
is being run in an authentic way. Just before start-
ing the program, the CPUF calculates h(Program),
and later uses this value when GetResponse and
GetSecret are invoked. We shall show in the next
section that these two primitives are sufficient to
implement the CRP management primitives that
were detailed in section 5. We shall also see that
GetResponse is essentially used for CRP generation
while GetSecret is used by applications that want to
produce a shared secret from a CRP.
Figure 7 summarizes the possible ways of going

between pre-challenges, challenges, responses and
shared secrets. In this diagram moving down is easy.

8

Easy only for the right program

Useless

E
as

y

H
ar

d

Pre−Challenge

Shared−SecretChallenge

Response

(3
)

ha
sh

(h
as

h(
G

R
P)

, P
re

C
ha

l)

(4
)

ha
sh

(h
as

h(
G

SP
),

 R
es

po
ns

e)

GRP, GSPGRP

GRP

(1) GRP calls GetResponse

(2) GSP calls GetSecret

(5
) P

UF E
va

lu
ati

on

Figure 7: This diagram shows the different ways of moving between Pre-Challenges, Challenges, Responses
and Shared-Secrets. The dotted arrow indicates what the PUF does, but since the PUF is controlled, nobody
can go along the arrow directly. GRP and GSP are the programs that call GetResponse and GetChallenge

respectively. The challenge and the response depend on the GRP that created them, and the shared secret
depends on the GSP.

You just have to calculate a few one-way hashes.
Moving up is hard because it would involve revers-
ing those one-way hashes. Going from left to right
is easy for the program whose hash is used in the
GetResponse or GetSecret primitives, and hard for
all other programs. The difficulty of going from
right to left is not important, as the adversary’s task
wouldn’t be easier if it was easy.

6.2.2 Using a CRP to Get a Shared Secret

To show that the man-in-the-middle attack has been
defeated, we shall show that a user who has a CRP
can use it to establish a shared secret with the PUF
(previously, the man-in-the-middle could determine
the value of what should have been a shared secret).
The user sends a program like the one below to

the CPUF, where Challenge is the challenge from
the CRP that the user already knows.

begin program

Secret = GetSecret(Challenge);

/* Program that uses Secret as *

* a shared secret with the user */

end program

The user can determine Secret because he knows
the response to Challenge, and so he can calculate
h (h (program) , response). Now we must show that
a man-in-the-middle cannot determine Secret.
By looking at the program that is being sent to

the CPUF, the adversary can determine the chal-
lenge from the CRP that is being used. This is the

only starting point he has to try to find the shared
secret. Unfortunately for him, the adversary can-
not get anything useful from the challenge. Because
the challenge is deduced from the pre-challenge via a
one-way function, the adversary cannot get the pre-
challenge directly. Getting the Response directly is
impossible because the only way to get a response out
of the CPUF is starting with a pre-challenge. There-
fore, the adversary must get the shared secret directly
from the challenge.

However, only a program that hashes to the same
value as the user’s program can get from the chal-
lenge to the secret directly by using GetSecret (any
other program would get a different secret that can’t
be used to find out the response or the sought after
secret because it is the output of a one-way function).
Since the hash function that we are using is collision
resistant, the only program that the attacker can use
to get the shared secret is the user’s program. If the
user program is written in such a way that it does not
leak the secret to the adversary, then the man-in-the
middle attack fails. Of course, it is perfectly possible
that the user’s program could leak the shared secret
if it is badly written. But this is a problem with any
secure program, and is not specific to PUFs. Our goal
isn’t to prevent a program from giving away its secret
but to make it possible for a well written program to
produce a shared secret.

9

6.3 Challenge Response Pair Manage-

ment Protocols

Now we shall see how GetResponse and GetSecret

can be used to implement the key management prim-
itives that were described in section 5.3 It is worth
noting that the CPUF need not preserve any state
between program executions.

6.3.1 Bootstrapping

The manufacturer sends the following program to the
CPUF, where PreChallenge is set to some arbitrary
value.

begin program

Response = GetResponse(PreChallenge);

Output(Response);

end program

The user gets the challenge for his newly created
CRP by calculating h(h(program), PreChallenge),
the response is the output of the program.

6.3.2 Renewal

The user sends the following program to the CPUF,
where PreChallenge is set to some arbitrary value,
and OldChallenge is the challenge from the CRP
that the user already knows.

begin program

NewResponse = GetResponse(PreChallenge);

Output(EncryptAndMAC(

NewResponse, GetSecret(OldChallenge)));

end program

The user and the CPUF have
GetSecret(OldChallenge) as a shared secret
because knowledge of the initial CRP is needed
to produce it. The user can be sure that only
he can get NewResponse, because it is encrypted
with the shared secret. An adversary can change
OldChallenge to a challenge that he knows the
response to, but since OldChallenge is part of the
program, the newly created CRP would be different
from the one that the adversary is trying to hijack
(because GetResponse combines the pre-challenge
with a one-way hash of the program that is being
run). The MAC proves that NewResponse that the

3The implementations that are presented contain the min-
imum amount to encryption to ensure security. A practical
implementation would probably want to include nonces to en-
sure message freshness, and would encrypt and MAC as much
information as possible. In particular, it is not necessary in
our model to encrypt the pre-challenges that are used to pro-
duce CRPs. Nevertheless hiding the pre-challenge (and there-
fore the challenge) would make it harder for an adversary to
mount an attack in which he manages to forcibly extract the
response to a specific challenge from the CPUF.

user is getting originated from the CPUF. The user
gets the challenge for his newly created CRP by
calculating h(h(program), PreChallenge).

6.3.3 Introduction

Introduction is particularly easy. The certifier sim-
ply sends a CRP to the user over some agreed upon
secure channel. In many cases, the certifier will use
renewal to generate a new CRP, and then send that
to the user. The user will then use private renewal
to produce a CRP that the certifier does not know.

6.3.4 Private Renewal

The user sends the following program to the CPUF,
where PreChallenge is set to some arbitrary value,
OldChallenge is the challenge from the CRP that the
user already knows, and PubKey is the user’s public
key.

begin program

NewResponse = GetResponse(PreChallenge);

Message =

PublicEncrypt(NewResponse, PubKey);

Output(Message,

MAC(Message, GetSecret(OldChallenge)));

end program

The user can be sure that only he can read the
NewResponse, because it is encrypted with his pub-
lic key. If the adversary tries to replace PubKey by
his own public key, he will get the response to a dif-
ferent challenge because PubKey is part of the pro-
gram, and therefore indirectly changes the output
of GetResponse. The MAC can only be forged by
the party that the user is sharing the old CRP with
(probably a certifier that the user just performed in-
troduction with). If we assume that that party is
not doing an active attack, then we know that the
MAC was produced by the CPUF, and therefore, the
NewResponse is indeed characteristic of the CPUF.
The user gets the challenge for his newly created CRP
by calculating h(h(program), PreChallenge).

6.4 Anonymity Preserving Protocols

In section 4.4 we showed how a CPUF could be made
to take on many different personalities in order to pre-
serve the anonymity of its owner. People don’t want
their CPUF to give away the fact that the same per-
son is gambling on gambling.com and doing anony-
mous computation for SETI@home. In this section,
we shall add a personality selector to the PUF as
in figure 1. We shall call the personality selector
PersonalitySel. The person who is trying to hide
his identity will be called the owner of the CPUF, but
as we shall see at the end of section 6.4.2 the notion

10

is more general than this. We shall assume that all
sources of information concerning the identity of the
CPUF’s owner have been eliminated by other proto-
col layers, and shall focus on preventing the CPUF
from leaking his identity. We shall also assume that
there are enough people using anonymized introduc-
tion that traffic analysis (correlating the arrival of a
message at a node with the departure of a message a
little while later simply from timing considerations)
is unusable.
Programs must not be allowed to freely set

PersonalitySel , or else they could put the CPUF
into a known personality and defeat the purpose of
having a personality selector. We shall therefore de-
scribe how the value of PersonalitySel is controlled.
First, two new primitive functions are provided by the
CPUF:

• ChangePersonality(Seed) changes the person-
ality to h(PersonalitySel, Seed). Where h is
a one-way hash function.

• RunProg(Program) runs the program that
is given as an argument without changing
PersonalitySel.

Moreover, when a program is loaded into the
CPUF from the outside world, and run (as opposed
to being run by RunProg), PersonalitySel is set to
zero. We shall call this the default personality.
The pseudo-code uses a few extra primitive func-

tions:

• Decrypt(mesg, key) is used to decrypt mesg

that was encrypted with key.

• HashWithProg(x) is used to compute
h(h(program), x). This function reads the
area where the CPUF is storing the hash of the
program.

• Hash(...) is a one-way hash function.

• Blind(mesg,fact) is used to apply the blinding
factor fact to mesg. See section 6.4.2 for a brief
description of blinding.

6.4.1 Choosing the Current Personality

When the CPUF’s owner wants to show a person-
ality other than his CPUF’s default personality, he
intercepts all programs being sent to the CPUF and
encapsulates them in a piece of code of his own:

ESeed =

/* the personality seed *

* encrypted with Secret */

EProgram =

/* the encapsulated program *

* encrypted with Secret */

begin program

Secret = GetSecret(Challenge);

Seed = Decrypt(Eseed, Secret);

Program = Decrypt(EProgram,Secret);

ChangePersonality(Seed);

RunProg(Program);

end program

In this program, the line that appears before
begin program is a piece of data that accompanies
the program but that does not participate in the hash
of the program. If EProgram were included in the
hash, then we would not be able to encrypt it because
the encryption key would depend on the encrypted
program. Other values that appear are Seed, an ar-
bitrarily selected seed; and Challenge, the challenge
of one of the owner’s CRPs.
By encapsulating the program in this way, the

owner is able to change the personality that the
CPUF is exhibiting when it runs the user’s program.
There is no primitive to allow the user’s program to
see the personality that it is using, and the seed that
is used with ChangePersonality is encrypted so the
user has no way of knowing which personality he is
using. The user’s program is encrypted, so even by
monitoring the owner’s communication, the user can-
not determine if the program that is being sent to the
CPUF is his own program.

6.4.2 Anonymous Introduction

The anonymous introduction protocol is much more
complicated than the other protocols we have seen
so far. We will only sketch out the details of why it
works. This protocol uses blinding, a description of
which can be found in [Sch96].
The essential idea of blinding is this: Alice wants

Bob to sign a message for her, but she does not want
Bob to know what he has signed. To do this Alice
hides the message by applying what is called a blind-
ing factor. Bob receives the blinded message, signs
it and returns the signed blinded message to Alice.
Alice can then remove the blinding factor without
damaging Bob’s signature. The resulting message is
signed by Bob, but if Bob signs many messages, he
cannot tell which unblinded message he signed on
which occasion.4

4In this protocol, to avoid over-complication, we have as-
sumed that Alice does not need to know Bob’s public key in
order to sign a message. For real-world protocols such as the
one that David Chaum describes in [Cha85] this is not true.
Therefore, an actual implementation of our anonymous intro-
duction protocol might have to include the certifier’s public
key in the program that is sent to the CPUF. In that case, it
should be encrypted to prevent correlation of messages going

11

Here is the anonymous introduction protocol:

1. The owner collects a challenge from the certifier,
and the user’s public key. He produces the fol-
lowing program from figure 8 that is sent to the
CPUF.

2. The owner decrypts the output from the CPUF,
checks the MAC, and passes Mesg5 on to the cer-
tifier, along with a copy of the program (only the
part that participates in the MAC) encrypted
with the certifier’s public key.

3. The certifier decrypts the program, checks that
it is the official anonymous introduction pro-
gram, then hashes it to calculate CertSecret.
He can then verify that Mesg4 is authentic with
the MAC. He finally signs Mesg4, and sends the
result to the owner.

4. The owner unblinds the message, and ends up
with a signed version of Mesg3. He can check
the signature, and the MAC in Mesg3 to make
sure that the certifier isn’t communicating his
identity to the user. He finally sends the un-
blinded message to the user. This message is in
fact a version of Mesg3 signed by the certifier.

5. The user checks the signature, and decrypts
Mesg2 with his secret key to get a CRP.

Remarks:

• UserPubKey and CertChallenge must be en-
crypted, otherwise it is possible to correlate the
message that Alice sends to the CPUF with the
certifier’s challenge or with the user’s public key.

• Seed must be encrypted to prevent the certifier
or the user from knowing how to voluntarily get
into the personality that the user is being shown.

• PreChallengeSeed must be encrypted to pre-
vent the certifier from finding out the newly cre-
ated challenge when he inspects the program in
step 3.

• The encryption between Mesg5 and Mesg6 is
needed to prevent correlation of the message
from the CPUF to the owner and the message
from the owner to the certifier.

Interestingly, we are not limited to one layer of en-
capsulation. A principal who has gained access to
a personality of a CPUF through anonymous intro-
duction can introduce other parties to this PUF. In
particular, he can send the signed CRP that he re-
ceived back to the certifier and get the certifier to act
as a certifier for his personality when he anonymously
introduces the CPUF to other parties.

to the CPUF with a specific transaction with the certifier.

7 Applications

We believe there are many applications for which
CPUFs can be used, and we describe a few here.
Other applications can be imagined by studying
the literature on secure coprocessors, in particular
[Yee94]. We note that the general applications for
which this technology can be used include all the ap-
plications today in which there is a single symmetric
key on the chip.

7.1 Smartcard Authentication

The easiest application to implement is authentica-
tion. One widespread application is smartcards. Cur-
rent smartcards have hidden digital keys that can
sometimes be extracted using many different kinds of
attacks [And01]. With a unique PUF on the smart-
card that can be used to authenticate the chip, a
digital key is not required: the smartcard hardware
is itself the secret key. This key cannot be duplicated,
so a person can lose control of it, retrieve it, and con-
tinue using it. The smartcard can be turned off if the
owner thinks that it is permanently lost by getting
the application authority to forget what it knows of
the secret signature that is associated with the unique
smartcard.
The following basic protocol is an outline of a pro-

tocol that a bank could use to authenticate messages
from PUF smartcards. This protocol guarantees that
the message the bank receives originated from the
smartcard. It does not, however authenticate the
bearer of the smartcard. Some other means such as
a PIN number or biometrics must be used by the
smartcard to determine if its bearer is allowed to use
it.

1. The bank sends the following program to the
smartcard, where R is a single use number and
Challenge is the bank’s challenge:

begin program

Secret = GetSecret(Challenge);

/* The smartcard somehow *

* generates Message to send *

* to the bank */

Output(Message, MAC((Message, R), Secret));

end program

2. The bank checks the MAC to verify the authen-
ticity and freshness of the message that it gets
back from the PUF.

The number R is useful in the case where the smart-
card has state that is preserved between executions.
In that case it is important to ensure the freshness of
the message.

12

/* Various values encrypted with OwnerSecret. */

ESeed = ...

EPreChallengeSeed = ...

EUserPubKey = ...

ECertChallenge = ...

begin program

OwnerSecret = GetSecret(OwnerChallenge);

Seed = Decrypt(ESeed, OwnerSecret);

PreChallengeSeed = Decrypt(EPreChallengeSeed, OwnerSecret);

UserPubKey = Decrypt(EUserPubKey, OwnerSecret);

CertChallenge = Decrypt(ECertChallenge, OwnerSecret);

CertSecret = GetSecret(CertChallenge);

PreChallenge = Hash(UserPubKey, PreChallengeSeed);

NewChallenge = HashWithProg(PreChallenge);

ChangePersonality(Seed);

NewResponse = GetResponse(PreChallenge);

Mesg1 = (NewChallenge, NewResponse);

Mesg2 = PublicEncrypt(Mesg1, UserPubKey);

Mesg3 = (Mesg2, MAC(Mesg2, OwnerSecret));

Mesg4 = Blind(Mesg3, OwnerSecret);

Mesg5 = (Mesg4, MAC(Mesg4, CertSecret));

Mesg6 = EncryptAndMAC(Mesg5, OwnerSecret);

Output(Mesg6);

end program

Figure 8: The anonymous introduction program.

If the privacy of the smartcard’s message is a re-
quirement, the bank can also encrypt the message
with the same key that is used for the MAC.

7.2 Certified execution

At present, computation power is a commodity that
undergoes massive waste. Most computer users only
use a fraction of their computer’s processing power,
though they use it in a bursty way, which justifies the
constant demand for higher performance. A num-
ber of organizations, such as SETI@home and dis-
tributed.net, are trying to tap that wasted comput-
ing power to carry out large computations in a highly
distributed way. This style of computation is unre-
liable as the person requesting the computation has
no way of knowing that it was executed without any
tampering.

With chip authentication, it would be possible for
a certificate to be produced that proves that a specific
computation was carried out on a specific chip. The
person requesting the computation can then rely on
the trustworthiness of the chip manufacturer who can
vouch that he produced the chip, instead of relying
on the owner of the chip.

There are two ways in which the system could be
used. Either the computation is done directly on the
secure chip, either it is done on a faster insecure chip
that is being monitored in a highly interactive way
by supervisory code on the secure chip.
To illustrate this application, we present a sim-

ple example in which the computation is done di-
rectly on the chip. A user, Alice, wants to run a
computationally expensive program over the week-
end on Bob’s 128-bit, 300MHz, single-tasking com-
puter. Bob’s computer has a single chip, which has
a PUF. Alice has already established CRPs with the
PUF chip.

1. Alice sends the following program to the CPUF,
where Challenge is the challenge from her CRP:

begin program

Secret = GetSecret(Challenge);

/* The certified computation *

* is performed, the result *

* is placed in Result */

Output(Result, MAC(Result, Secret));

end program

2. The bank checks the MAC to verify the authen-

13

ticity of the message that it gets back from the
PUF.

Unlike the smartcard application, we did not in-
clude a single use random number in this protocol.
This is because we are assuming that we are doing
pure computation that cannot become stale (any day
we run the same computation it will give the same
result).

In this application, Alice is trusting that the chip in
Bob’s computer performs the computation correctly.
This is easier to ensure if all the resources used to
perform the computation (memory, CPU, etc.) are
on the PUF chip, and included in the PUF character-
ization. We are currently researching and designing
more sophisticated architectures in which the PUF
chip can securely utilize off-chip resources using some
ideas from [LTM+00].

There is also the possibility of a PUF chip using
the capabilities of other networked PUF chips and
devices using certified executions. The PUF would
have CRPs for each of the computers it would be us-
ing, and perform computations using protocols simi-
lar to the one described in this section.

7.3 Software licensing

We are exploring ways in which a piece of code could
be made to run only on a chip that has a specific
identity defined by a PUF. In this way, pirated code
would fail to run. One method that we are consider-
ing is to encrypt the code using the PUF’s responses
on an instruction per instruction basis. The instruc-
tions would be decrypted inside of the PUF chip, and
could only be decrypted by the intended chip. As the
operating system and off-chip storage is untrustwor-
thy, special architectural support will be needed to
protect the intellectual property as in [LTM+00].

8 Conclusion

We have described how controlled physical unknown
functions (CPUFs) can be applied to two different
security problems in this paper.

CPUFs hold promise in creating smartcards with
an unprecedented level of security. CPUFs also en-
able these smartcards or other processors to run user
programs in a secure manner, producing a certificate
that gives the user confidence in the results gener-
ated. While we have not described software licensing
and intellectual property protection applications in
this paper, the protocols for these applications will
have some similarity to those described herein, and
are a subject of ongoing work.

References

[And01] Ross J. Anderson. Security Engineer-
ing: A Guide to Building Dependable
Distributed Systems. John Wiley and
Sons, 2001.

[Cha85] David Chaum. Security without iden-
tification: Transaction systems to make
big brother obsolete. Communications
of the ACM, 28:1030–1040, 1985.

[GCvDD02] Blaise Gassend, Dwaine Clarke, Marten
van Dijk, and Srinivas Devadas. Silicon
physical unknown functions. Technical
report, MIT LCS TR-833, May 2002.

[LTM+00] David Lie, Chandramohan Thekkath,
Mark Mitchell, Patrick Lincoln, Dan
Boneh, John Mitchell, and Mark
Horowitz. Architectural Support for
Copy and Tamper Resistant Software.
In Proceedings of the 9th International
Conference on Architectural Support for
Programming Languages and Operating
Systems (ASPLOS-IX), pages 169–177,
November 2000.

[MvOV96] Alfred J. Menezes, Paul C. van
Oorschot, and Scott A. Vanstone. Hand-
book of Applied Cryptography. CRC
Press, 1996.

[Rav01] P. S. Ravikanth. Physical One-Way
Functions. PhD thesis, Massachusetts
Institute of Technology, 2001.

[Sch96] Bruce Schneier. Applied Cryptography.
Wiley, 1996.

[SW99] S. W. Smith and S. H. Weingart. Build-
ing a High-Performance, Programmable
Secure Coprocessor. In Computer Net-
works (Special Issue on Computer Net-
work Security), volume 31, pages 831–
860, April 1999.

[Yee94] Bennet S. Yee. Using Secure Coproces-
sors. PhD thesis, Carnegie Mellon Uni-
versity, 1994.

14

